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PART ONE 

SOLUTION METHODS 



CHAPTER 1 

SOLUTION METHODS AND NON-LINEAR FORWARD-LOOKING 
MODELS l 

Michel Juillard, Douglas Laxton, Peter McAdam and Hope Pioro 

1. INTRODUCTION 

In this paper, we compare the perfonnance of two leading algorithms now 
regularly used to solve large forward-looking models. In particular we relate traditional 
Fair-Taylor 'extended path' algorithms to the newer breed of stacked Newton Raphson 
ones.2 As a testing ground for these solution methods we use the IMFs world 
econometric model,MULTIMOD (Mason et al,1990) which may be considered typical 
of many current forward-looking large macro-models.' 

The organisation of the paper is as follows: in section II we review the 
structure of both types of algorithms and review their general convergence properties. 
Section ill extends the discussion to forward-looking looking models. In section N we 
compare the perfonnance of the Fair-Taylor algorithm and a new state-of-the-art 
Newton Raphson algorithm called NEWST ACK that is available in portable TROLL. 
Section VI provides some illustrative simulation times from NEWST ACK that were 
obtained from several different macroeconomic models and computer platforms. 
Finally, in section VII we offer conclusions. 

2. TRADITIONAL SOLUTION METHODS 

In this section, we illustrate the mechanics and convergence properties of our 
chosen solution methods. These results are already well known and so merely motivate 
and support the remainder of the paper. We first deal with first order then discuss 

1 We thank Ralph Bryant, Don Coletti, Peter Hollinger, Andrew Hughes Hallett, Ben Hunt, Tiff Macklem, 
Guy Meredith, Susanna Mursula, Steve Syrnansky, Bob Tetlow, Jakob Toftgard and Jan in't Veld for 
helpful comments and for providing simulation analyses on several models. The usual disclaimer applies. 

2 This is not to suggest that they are the only methods of solving forward-looking models only that they would 
appear to be the most popular - viable alternatives include Penalty function methods (Holly and Zarrop,1983) 
and shooting methods (Lipton et al,1982). 

3 MULTIMOD is an annual estimated econometric model containing the 07 countries as well as distinct other 
country blocks. Each country incorporates 53 equations (of which 34 are identities) and for which there are 
roughly 19 exogenous variables including, principally, monetary target, government expenditure, debt target, 
oil price and population etc. A full description of MULTIMOD's properties and simulation characteristics is 
given in Masson et al (1990) and model vintages in Helliwell et al (1990) and Mason et al (1988~Exercises in 
cross model comparisons may be found in Bryant et al (1988,1993) and Mitchell et aJ (1995) ,amongst others. 
Finally note that for these exercises we use the basic production vintage of the MULTIMOD model -
MULTAR. With some exceptions - such as the ERM members' (cubic) monetary reaction function and the 
obvious case of price deflators and log-linear functional forms - the model is highly linear and so should, in 
principle, be relatively straight forward to solve. 
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Newton-type methods. We also deal with the necessary extensions to these algorithms 
to solve models with lead variables separately in section three. 

In linear systems, solutions methods merely require the substitution of 
exogenous (and pre-detennined) variables into the reduced fonn. To illustrate given a 
structural estimated model, 

AY+BX=U 

we can solve for the reduced fonn - assuming that the A matrix is square and of full 
rank: 

Y=IIX+V 

where, n = -(Arl B ; V= (AI) U . 

In non-linear systems, however, the impact and dynamic multipliers embodied 
n are base and perturbation dependent and so yield no unique reduced fonn. Such 
systems therefore are solved iteratively with the initial search based on a series of "first
guesses" or "starts" for each endogenous variable, usually their lagged values. 

2.1 First Order Algorithms 

In a first-order solution (Gauss-Seidel, Jacobi or variants) the iterative solution 
is of the fonn: 

y" = Gy"·l + bs 

In Gauss-Seidel (GS) we progress by solving equations sequentially (based on first
guesses for the endogenous variables Y'.l or yo in the case of the first iteration) with an 
exogenous variable set. In other words: 

ys2t = hzl Y'lt + ~nj~3 bij Y'\ + bzt 

ysJt = b31 Y'lt +hJ2 Y'lt + ~nj=4 bij Y'.ljt + hJt 

collecting tenns, 
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The iteration pattern therefore depends on values already solved for (indicated L for 
lower) and values for which there is not yet a new solution because they are solved 
further down in the model (indicated U for upper). This last equation can be re-written 
as: 

(1) 

where G = (I-Lr1U and k = (I-L}-lht. 

This iterative process terminates only when the values of the endogenous variables in 
successive iterations converge to a pre-set tolerance(o): 

max I <Y -yl)/y.-l I < 0 
j 

for alljj=I,2,3, .. ,n,subject to a maximum iterations setting. 

Popular extensions to this basic . GS scheme include Successive Over
relaxation (SOR) and Fast-Gauss-Seidel (FGS) in which the Gauss-Seidel result are 
further damped or extrapolated according to the iteration matrices: 

GSOR = (I-aLr1(aU +(1-a)1) 

GFGS = y(l-aLr1(aU +(I-a)1) + (1-r)I (2) 

Note that variations are nested within (2) - with (a=I,y=I) retrieving (pure) 
Gauss-Seidel,«(I:;t:l,y=I) retrieving Gauss-Seidel plus SOR and (a=I;Y'~I) yielding Fast 
Gauss-Seidel with no SOR 4 

The convergence properties for these schemes are reasonably well know. 
Equation (1) converges if the spectral radius (i.e., the absolute value of the largest 
eigenvalue) of the iteration matrix, G, is less than unity - see Young (1971). The FGS 
case converges for some non-zero y if the real parts of the eigenvalues of G are all less 
than unity - see Hughes-Hallett (1981). In the SOR case there are limited convergence 
results; it is convergent if the for some (I:;t:{) (where we require 0<a<2 for convergence) 
if all the roots of (I-B) are less than unity in real parts.' However the general properties 
of SOR are well known to programmers and modellers alike (see Dorn and McCracken 

4 There are also the much less popular Jacobi and Jacobi Over-Relaxation Methods; in the case of the Jacobi 
iteration pattern we use only past iteration values in the ClllTent iteration update whilst OS uses (where possible) 
the value of current iterations in solving forward Gauss-Seidel tends to be considered the faster of the two 
(Fair,1984). In the context of our previous discussion this yields : 
Y'. = OY'"I. + k,; where 0= U andk= b.. 
5 Note an wo<O setting converges super quick but is a meaningless one since the simulation tends to the 
(uncooked) baseline as the new iterated values are 'damped away'. 
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(1972) for a simple example and Hughes-Hallett (1981) for SOR searches on a range of 
vintage US models) with the iteration number-SOR space a unique minimum. 

Equivalent results hold for non-linear models: the iteration matrix,G,,"I,and the 
forcing fimction, k , will be base and iteration dependent: 

Y"t = Go-1y>-\ + k" 

Convergence requires that the spectral radius of the iteration matrix evaluated at the true 
Solution ,GYSol, is less than unity. 

2.2 Newton Raphson Algorithms 

Given a non-linear model where y and x represent endogenous and exogenous 
variable sets respectively and f, the model's fimctional fonn, 

f;(y,x) = 0 i=I.2, ...• n 

then the Newton Raphson (NR) solution is based on an expansion around a starting 
solution yl: 

Where F, the Jacobian, is the matrix of partial derivatives evaluated at the present 
iteration: 

F-1 = [OfIOy]Y(s_l) 

The convergence results for NR methods are relatively straight forward; if the form of 
the fimctional form f(.) is continuously differentiable over a convex set 0 containing the 
unique true solution, ySol. where f(YSol) in non-singular and f(YSol,x)=O then there exists 
around ySoI an open set C such that 

F-1 = [OfIOy]y(s-I) 

converges from any starting values in the set of C. Furthermore if 

holds with d>O the rate of convergence becomes: 

II Y" - ySoI "s 0 " y>-I _ ySoI) " l-+q 

Where s is the current iteration number. Thus convergence is quadratic (as opposed to 
linear as under First-Order systems) with q=1 and 0>0. Indeed quadratic convergence 
rates is the norm if C is sufficiently small when 

f;(y,x) = 0 
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is twice differentiable around ySol. 

Thus convergence to ySol is guaranteed once the iterates (or indeed any 
arbitraty starts) are within some open set C - without the need for damping or 
acceleration parameters. 6 

However despite these seemingly trivial convergence requirements traditional 
NR solutions are computational problematic because of the need to evaluate, invert and 
update F, the Jacobian (which is of the order of the model) at each iteration and that 
problem worsens if we have inappropriate first-guesses7 or if the Jacobian is near 
singular around the solution. Therefore, unless the system can be decomposed or the 
algorithm takes advantage of the sparseness of the Jacobian the solution remains 
unambiguously inefficient for large systems. We now present a simple example of how 
such sparseness in the Jacobian manifests itself. 

model: 

2.3 A Simple Example Of Sparse Jacobians. 

Consider the following traditional closed-economy Income-Expenditure 

Consumption Function. 
Ct = a*yd + b*Ct.l 
Disposable Income Identity. 
ydt=Yt-Tt 
National Income Identity 
Yt=Ct+Gt+It 
Non-Linear Tax Yield 
Tt = (RY)t 
Tax Rate 
Rt=c+d*Yt 

We can build up the (first-iteration) Jacobian matrix, Fo : 

l-aOOO 
o 1 -1 1 0 
-1 0 1 0 0 
o 0 -R, 1 -Yo 
00-<101 

where the subscript 0 indicates starting (or lagged) values. 

Thus it can be seen that over 50% (13 out of 25) of the elements in the 
Jacobian are sparse (Le., zero). Indeed sparseness is very much a feature of identified 

6 In practise damping is useful in the annoury ofNR users and of the form: 
y' = y~1 - a(F'"lrl tty~l,x),where O<~l. 
7 i.e., yo.1 Ii! C. 
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macro-models (and certainly not just a construct of this particular example) since 
typically not all of the endogenous variables appear in every single equation in a system. 

Here of course continual evaluation, inversion and updating of the Jacobian is 
negligible given its trivial dimensions (5*5) however this would not carry over to ,say, a 
100+ equation model. 

For Newton techniques to be tractable therefore invariably implies that 
programmers minimise their computational burden. 

NR techniques can be simplified by for example rank updating schemes 
(which avoid the need for continual Jacobian inversion) or only re-evaluating the 
Jacobian at discreet pre-set points. In the last case the more the steps to re-evaluation the 
more we tend to traditional NR methods, the fewer (LimiL.oo) the more the initial 
Jacobian matrix is used throughout all subsequent calculations.· 

Furthermore NR methods are often based on models re-ordered into recursive 
and simultaneous blocks because if the simultaneous block is small then computational 
savings are made (relative to the formerly ordered model) from solving the equation 
system on a recursive basis - assuming those blocks are themselves easy to solve. 

However, NR algorithms which exploit the sparseness and block structure of 
the Jacobian matrix hold out perhaps the most promising means of accelerating NR 
methods. Although there is nothing new about such methods - see for example 
Du1f(1977),Duff et al(l986),Press et al(1992) - they have become relatively more well 
known and more successful recently with the common implementation of a new breed 
of Stacked-Newton algorithms - see for example Laffargue (1990),Boucekkine(l995) 
and Juillard (1996).However we reserve a discussion of those techniques until section 
ill which deals specifically with algorithms for solving models with lead variables. 

2.4 A General Comparison Of FO and NR Methods. 

FO methods require an explicit normalisation and in turn are sensitive to 
equation ordering; simulations may converge slowly or not at all (even when a well
defined stable solution exists), depending on whatever equation ordering call exists. 
Moreover, in case of convergence difficulties there are practical difficulties in arranging 
an alternative successful ordering.9 Normalisation itself is also important: models can be 
written in any number of (algebraically equivalent) ways but may fail to solve 
depending on whatever normalisation is employed. 

NR methods (which require no explicit normalisation) are sensitive to the 
choice of starting values and so, where \",-1 ~ C, convergence (in non-linear models) is 
certain to fail. In most contemporary macro-models this does not - it should be admitted 
- present too much of a practical problem since invariably 'starts' are derived from 

8 This however will reduce the rate of convergence from Superlinear to linear; a clear trade off therefore. 

9 Individual modellers will of course follow their own practises such as calling the least embedded equations 
ftrst,solving for flows before stocks, solving the (uncovered interest parity) exchange rate equation first etc. 
However there exists a considerable literature on reordering techniques - for example Stewart(1962),Don and 
Gallo(1987),Hughes Hallett and Piscitelli (1998) and Hughes Hallett and Fisher (1990) investigate others. 
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lagged or steady state values. IO However the overwhelming problem with Newton 
methods remains that - as they stand - they are rarely computationally feasible since the 
solution method requires evaluation, inversion and updating of the Jacobian, F, at each 
iteration : for models of;::: 100 equations the computational burden involved is non
trivial. In addition, that problem worsens if we have inappropriate first-guesses or if the 
Jacobian is near singular around the solution. Therefore workable Newton methods 
require some decomposition of the Jacobian. 

3. EXTENSIONS TO MODELS WITH 'RATIONAL' EXPECTATIONS (RE). 

Normal First Order or Newton methods have to be changed to accommodate 
RE models otherwise they would treat the lead as exogenous in the same way as Ff 
Type 1 solution. 

3.1 First Order Techniques For RE Models. 

For First-Order Techniques invariably the Fair-Taylor algorithm is used - we 
fix the expectational terms at their baseline values and solve the system as in the 
conventional case period by period with normal Gauss-Seidel iterative techniques (or 
indeed any solution method),l1 having done this 'Type I' or 'inner loop' we then update 
the lead terms, for each variable in turn. We then return to the inner or Type 1 loop with 
the expectational terms updated and perform another iteration - until the tolerance 
between successive iteration on both loops respects the pre-set convergence criteria -
which may be set differently across loops. We therefor have a two-part scheme - an 
inner or Typel loop, which solves for the current, and lagged parts of the model with 
fixed expectations and an outer or Type 2 loop, which solves the model consistently. 
When the outer or Type 2 loop has converged the model has consistently solved subject 
to iteration tolerance. 

To illustrate ,consider the model: 

which stacked over time yields: 

10 Although of course that in itself is no guarantee that these values are within C either. 

11 In these exercises we have chosen to solve the type 1 loop of the IT runs with Newton matrix inversion 
methods since in the authors' experience this has proved more robust at solving and developing this particular 
model. Solving the model with Gauss methods was examined in Poiro et al (1996) using different software 
(Fisher'S (1990) SLIM) and a vintage ofthe model (MULT AQ) but with far less successful resuhs in terms of 
generating convergent scenarios for the FO methods. 
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which can be written more compactly as: 

with bt containing predetenruned variables such as lags, residuals, exogenous terms and 
perhaps forward terms if expectations are fixed. A solution only exists if H"I is defmed 
with the matrix H itself being unit block diagonal with upper and lower triangular sub
matrices of US-I and e l . The lower triangle can by solved by any solution method 
keeping expectations fixed with the upper block triangle solved by setting expectational 
terms equal to (or as a weighted average of solved and baseline estimates of) their 
forward solution from the lower triangle. 

Often modeHers have sought to take advantage of this splitting of the solution 
procedure with the most popular method the so-called incomplete inner iterations 
method. '2 This may be explained as follows: since the solutions of the inner or Type 1 
loop will be updated with every outer or Type 2 loop the practise choose is to avoid 
these extra and unnecessary calculations - we can therefore set the convergence criteria 
for the inner or Type 1 loop looser relative to the outer (Rational Expectations) loop. 
Alternatively we may require the Type 1 loop to have tighter or the same convergence 
criteria as the Type 2.13 Alternatively rather than loosen convergence criteria (cc) we 
could vary the maximum number of iterations allowed over each loop. 

3.2 Newton Techniques For RE Models 

Fundamentally we have two approaches for solving RE models with Newton 
Teclmiques. First we simply use Newton for calculating the inner or type 1 loop (rather 
than First Order methods) and so yielding essentially the same type of analysis of 
section II.I,'4 the other is to use a single loop NR method in which we endogenous leads. 
In this paper we compare FT methods (with Newton on the inner) and a single-loop 
Newton method. We have found elsewhere (poiro et al (1996) , Juillard et al (1998) ) 
that first order methods have performed particularly poorly in the case of Multimod." 

As suggested operational NR teclmiques often require some decomposition of 
the Jacobian matrix to reduce the computational burden to manageable levels; for 

12 Fisher (1992) and Fisher et aI (1986) discuss many more types of splitting. according to their own 

classification the method presented here is their (preferred) c method. 

13 The (TROLL) IT macro that we use was developed by Faust, Tyron and Gagnon at the Federal Reserve 
Board Of Governors and interestingly would seem to have CC _Type! < CC _ Type2 as its default. 
14 Although the convergence requirements foJlow that given in section lUI rather than 11.1 . 

15 We have also found that another Newton based one loop procedure· discussed in Annstrong et al(1995) • 
performed badly and therefore excluded it from our analysis. 



11 

example in the MULTAR vintage of MULTIMOD with 466 equations and ,say, 120 
simulation periods we would have a Jacobian of dimension 56,852 by 56,852 
(i.e.,[n*(T+2)]*[n*(T+2)].16 However as is shown in Laffargue(1990) the structure of 
this matrix is such that its triangularization can be handled recursively and so there is no 
need to store the entire Jacobian at anyone time; the matrix stored need only in fact be 
of order 55,920 by 112 (ie,n*T by TNL V - where TNL V = Total Number Of Lead 
Variables). 

In this paper we concentrate on an extension of such techniques based on 
Laffargue (1990), Boucekkine (1995) and Juillard (1996). In accordance with modem 
programming parlance we shall call this algorithm NEWSTACK although it has also 
been variously called 'LBJ' - after the aforementioned authors - in Juillard et al(1998) 
and the 'Stacked-Time Simulator' in Hollinger (1996). 

3.3 A New NR Method For RE Models: NewStack 

We can write the equations of a model as 

for t-1,2, .. ,T and Zt=[y't-!,y't,y't+d'. That is to say as a stacked non-normalised equation 
set over time. 

Solving all periods simultaneously we can build up the vector of endogenous variables: 

Y' = [y'o,y'!, ... ,y'T,y'nd'. 

We know the initial and terminal points: 

and so the entire system forms a (T+2)*n equation system: 

16 The problem here is essentially a two-point boundary problem accommodating initial and terminal 
conditions hence the 2 in 'T + 2'. 
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F(Y)= 

fT(ZT) 

fT+1(YT+1» 

=0 

Now recall the general NR structure: 

yt = yt-I _ (F-Irl f(yt-\x) 

or 

/1yt = _ (F-I rl f(yt-\x) 

(F-I) /1 yt = _ f(yt-I,X) 

which here in full matrix form becomes: 

0 0 0 0 0 

LI CI FI 0 0 0 

0 0 0 

0 0 Lt Ct Ft 0 

0 0 0 

0 0 0 0 LT CT 

0 0 0 0 0 0 

0 0 

0 fl (ZI) 

0 

o *!lY=- ft(Zt) 

0 

FT fT(ZT) 

0 

where L, C and F are the partial Jacobian for lagged, contemporaneous and forward 
variables ,i.e., 

Ft = ~(zJ/ayt+1 
etc. 

The approach of Newstack is to remove elements below or above the main 
diagonal (here we remove below but the solution is invariant to whether you end up 
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with an upper or lower block Jacobian) and so the solution can proceed recursively 
either backwards or forwards. 

Consider the first period solution : 

(3) 

Given ~yo=O this reduces to: 

For the second period: 

~ Y1 can be retrieved from (3) and substitution Yt-I for Y1 yields: 

We can do this for all subsequent periods but clearly this M and d pattern is 
emerging. Thus the system can be recomposed as 

I 0 0 0 0 0 

0 I MI 0 0 dl 

0 0 0 *~Y= 

0 0 0 I MT dT 

0 0 0 0 0 

And the value of ~ Y can be retrieved through backward substitution: 

And so in this approach it is only the Mt and <it block, for t=1,2, .. ,T which 
require storage. And further storage reduction can be achieved by taking into account 
the sparse columns of the Jacobians using conventional sparse matrix techniques - see 
for example Duff et al(l986),Press et al(l992). 
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4. THE SIMULATION FRAMEWORK: THE SIMULATIONS 
UNDERTAKEN 

In these exercises we run the following detenninistic simulations on the US 
country : 

(A) A pennanent increased in Government Expenditure of 5% of real 
baseline GDP. 

(B) A pennanent 5% decreases in the Debt target. 

(C) A pennanent 5% increases in the monetary target. 

(D) A pennanent 50% increases in World Oil Production.17 

Whilst these scenarios are by no means exhaustive they are certainly representative; for 
a wider selection see Poiro et al (19%). Furthermore to test for robustness and any non
linearities involved (in the timing and accuracy dimension) we also doubled both the 
size of these shocks (from 5% to 10% etc) and the simulation horizon (from T to 
2T).Specifically, we perform these shocks for the US economy.18 

Finally in these exercise - as in Armstrong et al (1995) - we set a common 
convergence setting of: 19 

max I (y' - y'-1)/(y'-1+5) I < O. 
j 

Where 0, the convergence tolerance, is changed at various junctures to accommodate 
incomplete inner iterations. Such a rule may be justified as a mixture of relative and 
absolute convergence criteria since the '5' in the denominator prevents division by zero 
for variables which may take values around zero (e.g., the trade balance) - it makes the 
convergence criteria approximate an absolute one for small iterated values of yanda 
relative one for larger values. 

Specifically (and to accommodate incomplete-inner-iterations) we follow the 
following codes for the FT simulations: we start off with three types (A,B,C) where we 
set a common Type 2 convergence criteria ofO,(X)1 which matches that of Newstack. As 
we move from A to B however we progressively tighten the type 1 convergence criteria 
from ten times looser (0.01) to ten times tighter (0.0001) the type 2 one. Thereafter (D 
to F) we perform the same pattern although with tighter type 2 convergence criteria at 
0.0001. The reason for the latter scenario is our prior knowledge that Newstack is 

17 Note that this is a shock to oil production rather than oil prices - the fonner is exogenous whilst the 1atter is 
endogenous. For Oil Price Shocks see Juillard et al(1998). 

18 All in all this involves running 32 simulations. These jobs were perfonned on batch mode overnight on a 
Pentium PC with 32mb of Ram and a 200Mhz clock at Strathclyde University. Any further information on 
these simulation can be directed to p.mcadam@Jukc.ac.uk. For all the simulations we used the TROLL 
simulation software,Hollinger and Spivakovaky(1996). 
191n TROLL parlance:CONOPT STOP 200 CONCR 0.001 GAMMA S;. 
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exceptionally accurate - in the sense that (whatever the differences in timing) it takes a 
very tight convergence criteria on FT to replicate its results. 

FT _ill: FAIR _ T AYLOR (incomplete inner iterations) 
CC_TYPEl=0.01:CC_TYPE2=0.OOI 

FT_EI: FAIR_TAYLOR (equal iterations) 
CC_TYPEl=O.001:CC_TYPE2=0.001 (ie,CC_TYPEl=CC_TYPE2) 

FT_TO: FAIR_TAYLOR (tight outer iterations) 
CC _ TYPEI =0.0001 :CC _ TYPE2=O.00 1 

NEWSTACK:CC=O.OOI 

5. COMPARISONS 

Table 1 shows that in the overwhelming majority of cases Newstack 
outperforms the FT variants both in terms of solution times and numerical accuracy , 
table 2.Typically FT meets the cc at its margins whereas Newstack yields a solution well 
below it . For example in the US_G 5% (t=60) the percentage error of the last 
convergent variable before global convergence was declared was 1.03e-007 whereas for 
FT it was 7.00e-004 for a common cc of 0.001. 

Indeed tightening the cc will not overly disrupt the solution times for 
NewStack - which is exactly what we would expect with its quadratic convergence 
pattern. It is clear however that (although it still performs relatively poorly compared to 
NewStack) simple acceleration strategies are feasible for the Newton FT variant -
loosening the Type 1 cc brings a significant time saving with no real cost in terms of 
accuracy (relative to FT _ EI). Clearly tightening the type 2 cc (in FT _TO) is 
approximating the more accurate Newstack results (and so is also making smaller errors 
compared to FT-ill and FT_EI) but is doing so at a high (and probably unacceptable) 
cost in relative solution terms . 

6. SOME RECENT EXPERIENCES WITH NEWTON-RAPHSON 
ALGORITHMS IN PORTABLE TROLL 

The availability of two state-of-the-art Newton-Raphson algorithms in 
portable TROLL has made it considerably easier to solve non-linear forward-looking 
econometric models. These two Newton-Raphson algorithms are referred to as 
NEWST ACK (NS) and OLDST ACK (OS) in portable TROLL. The algorithms 
differ in their approach for exploiting the sparse structure of the Jacobians that arise 
in forward-looking macroeconomic models. For some initial documentation on the 
performance of these two algorithms see Armstrong and others (1998) and Juillard 
and others (1999). Because the performance of NS tends to dominate the 
performance of OS, the main results that we focus on in this chapter is for the 
former, but in some cases we will also report results for OS when this algorithm 
solves faster than the NS algorithm. Both algorithms have an extremely desirable 
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property in that extremely accurate solutions can be obtained in a few Newton
Raphson iterations if the model is approximately linear. 

This section reports on some simulation experiences of several TROLL 
users in the model building community. The users were asked to provide simulation 
times under NS for representative simulation experiments that they conduct on a 
regular basis. In addition, they were asked to provide information such as: (1) the 
number of Newton-Raphson iterations to achieve convergence; (2) the number of 
equations in their model; (3) the number of periods that the simulation was carried 
out over; and (4) their experiences with first-order methods versus the second-order 
Newton-Raphson methods that are available in portable TROLL. 

Overall Experiences First-Order and Second-Order Methods 

All of the model builders that were surveyed reported that they had 
encountered significant convergence problems with first-order methods in the past 
and most model builders reported that they have abandoned first-order methods for 
this reason. One model builder reported that on highly non-linear models it is 
sometimes necessary to move to hybrid methods that combine first-order iterations 
and with second-order methods. One multicountry model builder reported that it was 
more efficient to use NS to solve for each country block conditional on guesses for 
the solutions for the other countries and then to use first-order Jacobi iterations to 
reach full convergence for the entire system. 

Solution Times on Various Computer Platforms and Individual 
Experiences 

Table 3 reports solution times and the other information that was requested 
for a number of macroeconomic models of nontrivial dimension (greater than 50 
equations). We do not report estimates for models that have less than 50 equations 
because these two Newton-based algorithms are so fast that the results are 
uninteresting for most applications.20 Table 3 reports estimates of simulation times 
for models that vary in size between 56 and 1031 equations. These simulations were 
conducted by model users and developers on several different types of computer 
platforms. Each model simulator was asked to perform a typical simulation that 
might be conducted on these models. 

1. Small Model of World Government Debt 

This is a small annual model of the world economy that was used by 
Faruqee et al. (1997) to study the crowding out effects of world government debt. 
The model consists of 56 equations and can be solved in 4 NS iterations in under one 
second on an RS/6000 machine, model 595, Power2 SC (135 MHz CPU with 640 
megabytes of RAM). The model users report that they obtain similar times for open
economy versions of this model as well as other models that have a similar number 
of equations. They also obtain similar performance with the OLDST ACK algorithm 

20 Because of their speed and robustness these algorithms have also been used for conducting stochastic 
simulations on small forward-looking models to examine the implications of uncertainty for the design of 
monetary policy rules-for example, see Laxton, Rose and Tambakis (1998). 
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in portable TROLL. The solution times under NS are roughly proportional to the 
number of periods solved so doubling the number of periods approximately doubles 
the solution times. 

2. IMF Multicountry Model (MULTIMOD Mark III): Canada Submodel 

This is one of the individual country models in the Mark III version of 
MULTIMOD-for documentation, see Laxton and others (1998). The model can be 
used to study the effects of various shocks as well as the effects of different 
monetary and fiscal policy rules. A novel feature of the model is that it contains a 
significant non-linearity in the unemployment-inflation process so the effects of 
fiscal and monetary policy shocks will depend on the initial state of the business 
cycle. For example, the real short-run effects of positive monetary and fiscal shocks 
will be greater when there is significant slack in the economy than when the 
economy is characterised by excess demand. The model consists of 92 equations 
and can be solved in about 3 seconds on an RS/6000 machine, model 595, Power2 
SC (135 MHz CPU with 640 megabytes of RAM). 

3. The Federal Reserve Board o/Governors' US Model (FRB/US): Canada 
Submodel 

FRB/Global is a large-scale quarterly multi country macro model developed 
by the staff of the Federal Reserve Board. Simulation experiments conducted with 
FRB/Global assist the Board in analysing exogenous shocks and alternative policy 
responses in the United States and foreign economies. Expectations are modelled 
explicitly, and the model can be solved under the assumption of adaptive or rational 
expectations. The Canadian block of the model consists of 161 equations and can be 
solved in about 7 seconds on a Sparc Ultra 2, (300 MHz CPU with 512 megabytes of 
RAM). For documentation on the model and its properties see Levin, Rogers and 
Tryon (1997). The users solve the multicountry model by using a mixture of 
first-order and second order methods. NS is used to solve for each country block 
conditional on guesses for the solutions for the other countries and then they use 
Jacobi iterations to reach full convergence for the entire system. 

4. Canadian Policy Analysis Model (CP AM) 

CP AM is a quarterly model of the Canadian economy that has been 
designed to study monetary and fiscal policy issues. The model consists of 177 
equations and can be solved in about156 seconds on a Sparc Ultra 2, (296 MHz CPU 
with 524 megabytes of RAM). In this case the modellers report significant 
timesavings from using OS instead of NS. For documentation on the model and its 
properties see Black and Rose (1997). 

5. RBNZ's Forecasting and Policy System Model (FPS) 

FPS is a quarterly model of the New Zealand economy that was constructed 
by Richard Black, David Rose and staff the Reserve Bank of New Zealand It has 
been designed to support quarterly economic projections and conduct policy 
analysis. Since June 1997, FPS has been used to prepare the RBNZ's published 
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quarterly economic projections and has enabled the publication of several alternative 
scenarios that highlight keys risks to those projections. A body of research work 
examining efficient policy rules for inflation targeting regimes has also been 
produced using FPS. The model consists of 185 equations and can be solved in 
about 244 seconds on a Compac Dual Processor, Model 6000 (300 MHz CPU with 
256 megabytes of RAM). For documentation on the model and its properties see 
Black and others (1997). 

6. Small Two Country Model (Bryant, J 999) 

The model has been designed to study the own-country and spillover effects 
of alternative fiscal policies. For documentation of the model and its properties see 
Bryant (1999). The model consists of 236 equations and can be solved in about 118 
seconds on a Dell Pentium Pro (266 MHz CPU with 64 megabytes ofRAM). 

7. The Federal Reserve Board of Governors ' US Model (FRBIUS) 

FRB/uS is a medium-sized non-linear macroeconometric model of the 
United States. First brought into production in 1996, FRB/uS can be simulated using 
either expectations generated from a small-scale V AR, or 'rational' expectations. 
When simulated under rational expectations, the model has 38 non-predetermined 
variables. The various versions of the model are used for both forecasting and policy 
analysis exercises at the U.S. Federal Reserve Board of Governors. For 
documentation of the model and its properties see Brayton and Tinsley (1996), 
Brayton and others (1997) and Bomfim and others (1997). The model consists of 
280 equations and can be solved in about 245 seconds on a Sun Ultra 4 (296 MHz 
with 2 gigabytes of RAM). 

8. Bank of Canada 's Quarterly Projection Model (QPM) 

QPM is a quarterly model of the Canadian economy designed to serve a 
dual purpose. First, as its name implies, the model is intended for use by Bank of 
Canada staff in preparing economic projections. Second, the model is designed as a 
research tool, to be used when analysing important changes to the economy or to 
macroeconomic policies which require a deeper understanding of the longer-term 
equilibrium forces that influence economic behaviour over time. The model consists 
of 402 equations and can be solved in about 779 seconds on a Sparc Ultra 2, (296 
MHz CPU with 524 megabytes of RAM). For documentation on the model and its 
properties see Black and others (1994) and Coletti and others (1996). 

9. IMF Multicountry Model (MULTIMOD Mark III) 

MUL TIMOD is a modem dynamic multicountry macro model of the world 
economy that has been designed to study the transmission of shocks across countries 
as well as the short-run and medium-run consequences of alternative monetary and 
fiscal policies. It has several variants, the current versions of which are referred to as 
the Mark III generation. The core Mark III model includes explicit country 
sub-models for each of the seven largest industrial countries and an aggregate 
grouping of 14 smaller industrial countries. The remaining economies of the world 
are then aggregated into two separate blocks of developing and transition economies. 
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Extended versions of MUL TlMOD include separate sub-models for many of the 
smaller industrial countries, and work has been initiated on expanding the analysis of 
the developing and transition economies. The model consists of 601 equations and 
can be solved in about 261 seconds on an RS/6000 machine, model 595, Power2 SC, 
(135 MHz CPU with 640 megabytes of RAM). For documentation of the model and 
its properties see Laxton and others (1998). 

10. IMF Multicountry Model with Endogenous TFP (MULTIMOD Mark III) 

This is an extended version of the Mark III version of MUL TIMOD that 
allows for endogenous trend total factor productivity. This type of model is 
significantly more difficult to solve because of the simultaneity between demand and 
supply. The model consists of 625 equations and can be solved in about 2000 
seconds on an RS/6000 machine, model 595, Power2 SC, (135 MHz CPU with 640 
megabytes of RAM). For documentation of the model and its properties see 
Bayoumi, Coe and Laxton (1998). 

12. Representative Industrial Country Block ojMULTIMOD Mark II (ICB) 

The model is a variant of a representative industrial country block contained 
in the Mark II version of MUL TlMOD. The model can be used to construct long-run 
baseline scenarios for an individual country using the 1MF staff's medium-term 
WEO forecast as a starting point. Simulations involving policy shocks and other 
changes to the exogenous variables can then be run around this baseline solution. 
The model has been used extensively to analyze the long-run equilibrium path for the 
Japanese exchange rate, including the effects of alternative policy actions on the 
exchange rate path in the presence of a liquidity trap that prevents nominal interest 
rates from becoming negative. In its fully forward-looking mode, a typical 
simulation can be performed in about 10 seconds on a Toshiba Tecra 550CDT (266 
MHz CPU with 64 megabytes of RAM). 

13. European Commission's Quarterly Multicountry Model (QUEST) 

This is the largest model of the group and consists of 1031 equations. 
QUEST was designed to analyse the economies of the member states of the 
European Union. It includes structural submodels for each of the EU member states, 
the US and Japan, and 11 smaller trade feedback models for the remaining regions of 
the world. The model is based on principles of dynamic optimisation of households 
and firms, but incOlporates standard Keynesian features in the short run since it 
allows for imperfectly flexible wages and prices, adjustment costs for investment and 
labour hoarding. The QUEST model has been intensively used to analyse the 
macroeconomic effects of fiscal and monetary policy, tax and various other 
structural reforms in Europe. This model can be solved on a Digital Alpha 8200 (440 
MHz with 400 megabytes of RAM) in 1373 seconds or about 23 minutes. Slightly 
longer simulation times were reported on a Dell XPS R400 (Pentium II 400MHz) 
with 384 MB RAM. For documentation on the model and its properties see Werner 
and in 't Veld(1997). 
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7. CONCLUSION 

In this paper we have compared a traditional forward-looking algorithm (Fair
Taylor) with a Newton inner loop with Newstack ,a stacked Newton algorithm which 
exploits the sparseness and block structure of the Jacobian matrix and treats leads 
endogenously 

It is clear from these exercises that Newstack massively dominates the 
(Newton) Fair Taylor runs: Newstack is - in most of the scenarios - faster than FT and 
that advantage is increasingly sharply with tightened Type 2 convergence criteria. We 
also know that Newstack is accurate since it has low 'errors' relative to the pre-set 
convergence criteria and indeed we require tighter Type 2 convergence criteria to 
approximate that accuracy. 

This algorithm would also indicate great robustness: it would seem to be linear 
in the time dimension and (in iteration number) invariant to the dimension of the shock 
or the length of the simulation horizon. 
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Table 1. 
Solution Comparisons 

US G 5%T=60 

Iteration No Time-to-Solve [Seconds] 
Newstack 4 
252 
FTIII 87 
1,147 
FT EI 87 
1,512 
FT30 134 
2.448 

US G 5%T= 120 Iteration No 
Time-to-Solve 
Newstack 4 
484 
FT III 95 
6,882 
FT TO 173 
16,707 

US_G 10% T = 60 Iteration No 
Time-to-Solve 
Newstack 4 
323 
FTIII 110 
1,412 
FT EI 110 
1,771 
FT_TO 160 
2,720 

US_G 10% T = 120 Iteration No 
Time-to-Solve 
Newstack 4 
797 
FT III 149 
7,963 
FT EI 149 
10,240 
FT_TO 200 
14,074 

US MT5%T=60 Iteration No 
Time-to-Solve 
Newstack 3 
312 
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FT_III 42 
693 
FT EI 42 
834 
FT_TO 90 
1,853 

US_MT IO%T= 120 Iteration No 
Time-to-Solve 
Newstack 4 
655 
FTIII 39 
1,227 
FT EI 39 
1,423 
FT_TO 122 
4,534 

US_MT 10% T = 60 Iteration No 
Time-to-Solve 
Newstack 4 
352 
FTIII 65 
1,201 
FT EI 65 
1,475 
FT_TO 95 
1,956 
US_MT IO%T= 120 Iteration No 
Time-to-Solve 
Newstack 4 
774 
FT III 57 
1,259 
FT EI 57 
1,551 
FT TO 132 
4,914 

US_BT 5%T=60 Iteration No 
Time-to-Solve 
Newstack 3 
164 
FT III 4 
69 
FT EI 4 
83 
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US_BT 5%T= 120 Iteration No 
Time-to-Solve 
Newstack 3 
331 
FT_III 4 
137 
Fr_EI 4 
154 
Fr_TO 33 
1,241 

US_BT 1O%T=60 Iteration No 
Time-to-Solve 
Newstack 3 
268 
Fr_III 7 
138 
Fr EI 7 
142 
Fr30 35 
694 

US_BT lO%T= 120 Iteration No 
Time-to-Solve 
Newstack 3 
538 
FTIII 7 
198 
FT_EI 7 
253 
Fr_TO 49 
1,782 

Oil production (50%) T = 60 Iteration No 
Time-to-Solve 
Newstack 4 
197 
FrIll 27 
403 
Fr_EI 27 
485 
Fr_TO 87 
2,600 

Oil production (50%) T = 120 Iteration No 
Time-to-Solve 
Newstack 4 
384 
Fr_III 32 
934 
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FT EI 32 
1,108 
FT_TO 118 
2,899 

Oil production (100%) T = 60 Iteration No 
Time-to-So1ve 
Newstack 4 
353 
FT III 39 
700 
FT_EI 39 
703 
FT TO 90 
4,194 

Oil production (100%) T = 60 Iteration No 
Time-to-Solve 
Newstack 4 
770 
FT III 39 
1,300 
FT EI 39 
1,351 
FT_TO 140 
8,020 
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Table 2. 
Solution Times (Seconds) of NEWST ACK in TROLL 

Solution User 
No. Model Equations Periods Iterations Time Experience 

1. Faruqee et 56 180 4 1 A,C 
al. (1997) 

2. CAMOD: 92 50 5 3 B,C 
Mark III 

3. FRlGlobal: 161 100 7 7 D 
Canada 

4. CPAM 177 100 3 156 A,C 

5. FPS 185 100 6 244 A,C 

6. Bryant 236 214 26 118 A 
(1999) 

7. FRBIUS 280 200 5 245 A,C 
(1998) 

8. QPM 402 100 4 779 A,C 

9. MULTIMO 601 50 6 261 B,C 
D: Mark III 

10. Bayoumi et 625 300 7 2000 A,C 
al. (1998) 

11. DEMOD: 673 50 3 376 A 
Mark III 

50 80 19 10 A,C 
12. ICB: Mark 

III 

13. Quest 1031 280 4 1373 A,C 
(1998) 
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Notes on Modelers' Experiences: (A) Do not currently use first-order 
methods because the newer breed of Newton-based algorithms are 
extremely efficient and reliable; (B) Ocassionally use first-order and hybrid 
methods for highly nonlinear models but mainly use the newer breed of 
Newton-based algorithms because they work very reliably; (C) Have 
experienced lots of difficulties with first-order methods in cases where 
Newton-based algorithms work quite reliably; (D) Generally use a 
combination of first-order and second-order methods. 



CHAPTER 2 

FROM HERE TO ETERNITY: THE ROBUSTNESS OF MODEL 
SOLUTIONS TO IMPERFECT STARTING VALUES! 

Peter McAdam and Andrew Hughes Hallett 

1. THE GENERAL PROBLEM OF SELECTING STARTS 

It is rare that a model builder has no idea about possible starts. For example 
with empirical macro models, the parameters of the equations will be estimated from 
realised data. That makes it easier to guess good start values: (usually lagged 
historical values of the endogenous variables). This does not in itseifpreclude non
convergence. But if it does occur, it will usually be for other reasons - e.g. failing 
Blanchard-Kahn stability conditions, inappropriate normalisations and equation 
orderings, simultaneous equation bias, unstable feed backs, explosive calibrated 
policy rules, inappropriate dampening factors etc. 

Similarly, users will tend to know something of the logical structure of their 
model. For example, various parameter restrictions - e.g. that constant-returns 
production function parameters sum to one - and variable constraints - e.g. non 
negativity in unemployment and nominal interest rates etc - can guide their choice of 
starts. 

However the general problem of starts searches tend to be most acute in 
nonlinear models constructed from optimising behaviour; or in models with forward 
looking expectations terms. If such models are solved numerically there may be 
insufficient information to tie down first guesses: other than an uninformative zero 
solution? Nevertheless, even in estimated macro models (with historical lags) starts 
may be a problem; particularly with diagnostic simulations (such as stochastic 
simulations) or, for example, where users wish to test alternative dynamic paths to 
the steady state. This for example is quite a common problem in simulating large 
multi-country models (with Solow-type closures) where users may have to 
guesstimate or impose an artificial dynamic path to long run balanced growth. In 
such a case, even the historical starts may be so far from the implied dynamic path 
that the solution breaks down. Of course, one might want to also include certain 
mainly negative deterministic shocks or counter-factual historical tracking exercises 
that cause general solution problems. 

It is in this context that it is important to know something of the robustness 
of the standard model solution algorithms to imperfect or poorly chosen start values. 

! We are grateful to Peter Hollinger for TROLL support. The usual disclaimer applies. 
2 Although in some cases a base zero solution would be applicable - as with an impulse-response 

model. 
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That is a subject which has not been studied before. This paper provides a first 
analysis of the problem. 

2. GENERAL SOLUTION ALGORITHMS 

2.1 Standard Newton Techniques 

Consider the problem of solving a non-linear econometric model: 

i = 1, ... ,n (1) 

where YERn and zERm are real vectors containing the endogenous and exogenous 
(predetermined) parts of each equation respectively and where t;(.) are arbitrary 
real-valued functions. Assume for simplicity that the vector valued function 
representing the entire model, f(y,z)=O, has at least one real solution (y*) for the 
known or projected values of z. The Newton method for solving (1), given z, is 
based on a first order expansion about some trial solution value y(S): 

(2) 

where F = [Of / Oy t(o-ll is a matrix of partial derivatives evaluated at the current 

iteration. 

The convergence conditions for (2) can be summarised as follows (Ortega 
and Rheinboldt, 1970, p.3l2). Iff(·) is continuously differentiable over a convex set 
D containing y*, where f(y*,z)=O and F(y*) is non-singular, then there exists an open 
set C about y* such that (2) converges at least linearly from any y(O)EC. If, in 

addition, the Lipschitz condition IIF(y) - F(y*)11 s clly - y *11 holds for y E C and some 

c>O, the rate of convergence becomes quadratic. 

Each step of (2) is computationally expensive because the inversion of F is 
both laborious for large econometric systems and prevents us from exploiting the 
sparseness of F when solving for each new iterate. The method becomes particularly 
expensive if the convergent neighbourhood is very small (requiring good start 
values), or if F approaches singularity at or near y* . 

2.2 Modified Newton Methods 

There are three ways of reducing the computation per step of (2). They 
involve cheap ways of evaluating F and Fl, or obtaining Fl without inversion. 

(a) Numerical Derivative Evaluations 

The matrix F can be constructed using information from past iterates rather 
than by differentiation. Ortega and Rheinboldt (1970) suggest various schemes, but 
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to identify all the elements of F requires n initial iterations (where n is typically very 
large). Zero restrictions on F reduce the convergence rate and ultimately produce 
first order methods (Hughes Hallett, 1982). 

(b) Avoiding Repeated Matrix Inversions 

The solution to (2) could be obtained by solving a simultaneous equation by 
first order methods rather than by inverting F. Another method of avoiding repeated 
inversions is to re-evaluate F and hence p-I, every mth step. However, the rate of 
convergence then falls to (m+l)/m (Ortega and Rheinboldt, 1970, p.316). 

(c) Obtaining the Inverse Directly 

The matrix FI can be built up from information in the iterates themselves 
avoiding any inversions or derivative calculations, using updating schemes based on 
an arbitrary start. Examples are Broyden's rank one updating scheme and the 
Fletcher-Powell rank two method. Convergence is at least linear, and might be 
superlinear (Dennis and More, 1977). 

2.3 First Order Iterative Techniques 

First order iterative methods for solving (1) take the non-stationary form: 

(3) 

where the iteration matrix and forcin~ function G(s-I) and k", depend on the solution 
path y(s-J), ... ,y(1) and starting values y(). Convergence is achieved when 

for small values of't and e (we set e=.OI in what follows). These methods have 
linear convergence rates. 

Three simple versions of (3) are routinely used in econometrics: the Jacobi 
overrelaxation (JOR) method, the Gauss-Seidel (SOR) method, and the 
Fast-Gauss-Seidel (FGS) method. Imposing some normalisation, on (1) Yi=gi(Y,Z) 
for i= 1, ... ,n the JOR, SOR and FGS iterations are special cases of (3) where: 

JOR: G(s-I) = yB(s-l) +(I-y)I 

SOR: G(s-I) = (I _aLes) t (aU(S-I) +(I-a)I) (4) 

FGS: G(s-I) =S(I-aL(S-1I2)t(aU(S-I) +(I-a)I)+(I-S)I 

and B(s-I) = [8g / By ly(>-l) has upper and lower triangular submatrices uCs-1) 
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and L(s-I). The convergence of (3) to a solution y*, given an arbitrary start within a 
neighbourhood ofy*, then follows if p(G*)<1 where G* is G(s-I) evaluated at y* and 
p(.) denotes spectral radius (Ostrowski, 1966) i.e., if and only if the characteristic 
roots of B and (I-aLrl(aU+(l-a)I), respectively, are all less than unity in real part. 
The value of y which maximises the rate of convergence, together with the maximum 
value of y which permits convergence, have also been determined (Hughes Hallett, 
1984). 

2.4 Forward Looking (Rational Expectations) Models 

Many economic models now put a great deal of emphasis on modelling the 
behaviour of market agents who react anticipated future events, as well as current 
and past developments. This poses problems for solving the model. A conventional 
difference equation system can be written as 

(5) 

where Ut represents all strictly exogenous and random variables. Such a model can 
be solved recursively forward in time, t=1, ... ,T, since (at each t) Yt-I is 
predetermined. Hence Yt may be found conditional on Yo and given values of 
UI, ... ,\lt. In fact (5) takes the form of (1) for each value of 1. However, rational 
expectations models include lead terms to represent expected future developments: 

(6) 

where Yt+ilt = E(Yt+il.Gt), for j~O, is an expectation conditional on the information 
available at the start of period t. Each expectation in (6) is the same as the next 
period's forecast value obtained by solving the model conditional on the information 
set!4. Hence the expectations are linked forward in time and to solve (6) for each Yt 
in period 1 requires each Yt+ild=I, ... ,T-t and a terminal condition YT+llt. If AI=A-Co, 
(5) implies 

o 

Evidently (7) can be written as Ay = b where A is the block tridiagonal matrix; y is 

the stacked vector of endogenous variables conditioned on 0 1; and b is the stacked 
vector of terms on the right of (7). 

The solution of dynamic rational expectations models therefore takes 
exactly the same form as that for a conventional model. The differences are only 
that: 
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(i) the unknowns of different time periods will be determined 
simultaneously rather than recursively; 

(ii) the Jacobian matrix A has been replaced by the expanded matrix A; 
and 

(iii) the exogenous elements in b have been augmented by the terminal 
condition YT+III. Fisher, Holly and Hughes Hallett (1986) therefore use the same fIrst 
order iterative techniques as a cheap way of constructing numerical solutions to 
rational expectations models. 

The problem here is that (7) represents an extremely large equation system 
(given that we are stacking n equations across T time periods, 1,000 equations and 
upwards - e.g. 500 equations over 20 periods - is not unusual) and several 
modifIcations are necessary in order to keep the computational burden within 
reasonable bounds. And the crucial difference between (1) and (7) is that, whereas 
the ordering of the elements in y of (1) has no special signifIcance, the equations in 
(7) are ordered by time periods. Thus, in a conventional model when CI=O, solutions 

may be generated recursively forwards through the block recursive structure of A 
and the only relevant splittings are those in AI itself. But when CI';z!:O that block 

recursive structure is lost and we need to consider splitting of A over time periods 
as well as over equations within a given period. The three main possibilities are: 

(a) Splittings of A, element-by-element, without regard to its block 
structure. This defInes a family of simple fIrst-order iterations on (7) treated as one 
large equation system. 

(b) Splittings of A, element-by-element within each diagonal block, to 
defIne equation-by-equation iterations for each time period (solved sequentially 
forwards) with expectations temporarily fIxed: and a separate block-by-block 
splitting for the above diagonal sub-matrices to defIne the iterative steps which 
update those expectations terms. These splittings defIne a two-part iteration: an 
inner iteration which solves for the current and lagged variables of each period, and 
an outer iteration which updates the forward expectations terms. 

(c) Type (b) splittings in which the inner iterations are not taken to 
convergence at each outer loop step. This can be done by setting a substantially 
weaker convergence criterion on the inner loop, or by testing for convergence only 
on those variables for which forward looking expectations are formed. 
Computational savings are made because computation is not wasted in getting a full 
inner loop solution which is then going to be changed again by the values generated 
in the next outer loop step. 

Different specifIcations of the various iterative schemes which follow from 

the three types of splittings of A are considered by Fisher and Hughes Hallett 
(1988), and the associated convergence results are derived there. However three 
special cases appeared earlier in the literature. Fair and Taylor (1983) proposed a 
type (b) scheme, and Fisher et al (1986) showed how that proposal could be 
improved by introducing both incomplete inner iterations and extrapolated inner and 
outer iterations. Hall's (1985) suggestion can be classifIed as either a type (a) 
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scheme, or a type (c) scheme with a single inner step per outer loop step. Finally the 
multiple shooting method (Lipton et al (1982)) can be written as an expanded version 
of a type (a) scheme. Any of these iterations may be extrapolated in the same way as 
(4); and type (b) and (c) methods allow different extrapolations for the inner and 
outer loops. 

Other methods without an iterative base (e.g. the eigenvalue method of 
Blanchard and Khan (1980)) have also been proposed, but only iterative techniques 
have proved to be sufficiently robust and of sufficient generality for everyday use. 
The alternative is to work directly on (6), or to recast it as (5) with multiple lags. But 
nonlinear models cannot always be reformulated into the conventional recursive 
structure of (5), and it may not be cheap or easy to do that for linear systems either. 
Similarly it is not easy to check on the sensitivity of the solution to the terminal 
condition, or to introduce multiple leads or lags while retaining the 
splittingslaccelerations which maintain computational costs at reasonable levels, 
unless the solution fits into the framework of (7). But we can always work directly 
with (6), or its nonlinear equivalent. 

We do not consider variations in the terminal conditions in this paper; type 
3 iterations in Fair-Taylor terminology. Inner and outer loop iterations may be called 
type 1 and type 2 iterations respectively. 

2.5 The Algorithms used in this Study 

Newstack [NS] and OldStack [OS] 

These stacked algorithms are essentially a single loop Newton algorithm 
suitable for simulating models with consistent leads. The n time periods are 
"stacked" together and the model is solved consistently for its leads by solving 
multiple time periods simultaneously. 

Given a general non-linear model: 

Where ft is a vector of n non-linear dynamic equations and Yt and Xt are vectors of 
endogenous and exogenous variables. If we stack the model for all time periods -
namely from its historical to its lead positions: 
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where Zt+j=(Yt+j-1. Yt+j, Eo't+j+1). We solve this equation system by Newton-Raphson 
given a predetermined variable Yt-I and the terminal side condition Yt+T+I. 

For a large system of equations, the inversion of the Jacobian - F, being the 
matrix of first order derivatives of the same as the model - is not a trivial opemtion 
computationally, especially if the equations have to be started over many time 
periods as in (7). The Stacked algorithms makes use of the repetitive structure of 
this stacked system, which is block triangular with the blocks corresponding to the 
different time periods. By taking advantage of the sparsity within the single period 
blocks, the numerical and computational burden is significantly reduced by inverting 
the matrix by blocks (for Oldstack see Armstrong et al, 1995; for NewStack see 
Juillard et aI, 1998a, b). Comparing the two algorithms we have; 

Similarities 

1. They are both single loop Stacked Newton solution methods suitable for 
simulating models with consistent leads. The n time periods are "stacked" together 
and the model is solved consistently for its leads by solving multiple time periods 
simultaneously. 

2. They both take advantage of sparsity (i.e. zero elements) within the 
Jacobian and its associated factored blocks. 

Diffirences 

1. OLDST ACK does not use any a priori knowledge about the repetitive 
structure of the Jacobian and so solves the model as if it were backward looking but 
with separately coded equations for the leads. In fact it is often faster than 
NEWST ACK for repetitive solutions; but it can be much slower the first time, given 
that the information on the repetitive structure of the Jacobian is not saved from one 
simulation task to another.3 

The Fair Taylor algorithm with Gauss Seidel (GS) solving the inner or type 
I loop where expectations are fixed. 

The Fair Taylor algorithm with Newton solving the inner or type 1 loop 
where expectations are fixed. 

3 Although the algorithm can be made to retain infonnation on its repetitive structure in repeated 
simulations - see Poiro, 1995. 
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l. THE SIMULATIONS AND MODELS UNDER CONSIDERATION 

We use four models to test algorithm robustness to starting values. All of 
our test models are small relative to the most popular national or multi-national 
macro models. Small models were chosen in order to make our experiments more 
transparent But having said that there seems to be a trend amongst policy 
institutions to use such small analytical models , like the Dornbush Exchange rate 
model, for specialised policy analysis - see Fisher and Whitely (1997), 
Whitely(1997). And so whilst our choice of models is never going to be entirely 
representative they are certainly in the range of those popularly used, and possess 
variously forward leads4 and significant non-linearity. 

Our four test models are specified equation by equation in the appendix to 
this paper. They represent four different aspects of the typical econometric model: 

I. A forward Looking Inflation-Output Gap model. 5 

2. A linear forward looking Exchange Rate Overshooting model - a 
Dornbush model. 

3. A non-linear Growth model (Growth). 

4. A non-linear forward looking simulation model (FLSIM). 

In each case, our first step is to solve each model to produce a baseline or 
reference solution as a point of comparison for all later solutions and algorithm 
comparisons. We already know from Juillard et al (1988a) that Newstack, when it 
solves, is likely to be the most numerically accurate of all the algorithms we test. So 
we use that algorithm to establish the baseline solution for each model. In each case, 
too, we check the percentage errors from this baseline in the main lead variable (i.e. 
the one to which the other variables are most sensitive, and hence last lead variable 
to converge) when each of the other solution techniques was used. We do this 
because, given the initial jump onto the saddle path, this is the variable where errors 
are most likely to originate (poiro et al, 1996). If those percentage errors remain 
quite small the baseline solution is accepted as the correct solution - and the one as 
the central projection in the subsequent algorithm comparisons, given the possibility 
of multiple equilibria. However since the actual (analytic) solution was not known 
in any of these models, one arbitrary set of start values was maintained for each 
model solution in the subsequent exercises. The only exception was the model 
FLSIM, where there is a historical database from which lagged values of the 
historical values were used as starting values of the endogenous variables. That 
corresponds to common practice.6 

4 It is important to point out that it is mainly the degrees of simultaneity, non-linearity and the 
functional fonns (exponents, logarithms etc), and not specifically forward-looking components, that are 
important in the solution algorithm. For example under the Fair-Taylor (1983) algorithm the first solution 
stafe exogenises leads and is therefore equivalent to repeatedly solving a backward looking model. 

This model was taken from Laxton et ai, 1995. We thank Douglas Laxton for permission to use it but 
do not wish to implicate him in our conclusions. 

6 Were we solving a forward looking model into the future, the usual practice would be to use values 
projected from their historical trend. 
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Having done this preparatory work, our second step is to shock each model 
in turn with a standardised shock, typically a 1 % increase in a policy or exogenous 
variable. Each model is then resolved, using each algorithm in turn, using our 
chosen start values; and then again using a series of modifications to those start value 
for the endogenous variables; in this case by taking starts which are reduced (or 
increased) by 10%, in steps of 10%, to 90% below (or above) their original values in 
the same scenario. The performance of each algorithm on the given model can then 
be compared across the different shocks to the starts. In certain cases, we extend the 
variations in the starts to below 90% of their original values to trace out any further 
differences (sensitivities) in the algorithms. 

For all simulations, and across all models, we use a proportional 
convergence criterion of "[= 10-6 for the inner loop and "[= 10-12 for the outer one (type 
1 and type 2 loops respectively). These convergence tests are probably much tighter 
than is necessary, and they could certainly be loosened further for the inner loop of 
the Fair-Taylor type algorithms. Indeed Fisher et al (1986) and Fisher and Hughes 
Hallett (1988) have shown that incomplete inner iterations, obtained by putting a 
weaker convergence criterion on the inner loop iterations, are a necessary part of 
constructing a computationally efficient version of those algorithms. We have not 
pursued this theme further so the FT algorithms may be at a disadvantage to the 
Newton ones. Similarly we have not examined the possibility of accelerating these 
algorithms with SOR(a) or FGS(8) type relaxations in the inner loop. 

4. NUMERICAL SOLUTIONS AND COMPARISONS 

We define algorithm performance across this 'shocking' process as : 

Differences in simulation times 
Diffirences in iterations 
Diffirences in numerical accuracy 
Differences in numerical stability 
Diffirences in solution paths 
Available remedies for delinquent solution paths 

4.1 Algorithm Comparisons on the Output Gap Model 

This model has proved attractive since it implies that the Phillips-Curve 
relationship depends on excess demand (equation 1 in the appendix) and is thus non
linear in the output gap and forward-looking in its term structure. That generates 
significant amount of non-linearity in the monetary transmission mechanism. The 
model has 4 equations and one lead variable (in inflation) and one purely 
simultaneous block. 

Despite its complexity, it can be seen that as far as a starts problem is 
concerned this model provides no great problems: all algorithms perform alike and 
are not greatly affected by the start values chosen. In addition numerical accuracy is 



40 

not a problem. The worst percentage error relative to Newstack is of the order of 
10-1°. Finally the solution times and the number of iterations to reach a solution are 
effectively independent of the start values chosen in each algorithm. Furthermore we 
could not find any non-zero shock that caused any generalised break down . This 
suggests that under general conditions there may be no practical reason to expect one 
algorithm to perform any worse than another in the face of imperfect starts. And in 
terms of time taken, given that we have not exploited the remaining possibilities for 
accelerating the Fair-Taylor algorithms, the ranking of speed of convergence is NS 
or OS, FT -N, FT -GS. 

4.2 Algorithm Comparisons on the Dornbush Model 

This is a popular policy simulation model and has undergone many 
refinements. Being linear, we can directly check for signs of Blanchard-Kahn 
stability .Also being linear it will require no Newton damping. 

This model has eleven equations , three forward looking variables (in 
exchange rates and prices) and seven blocks: six recursive and one simultaneous. 
The convergence results show the Newton based models converge in one step, which 
is as expected since the model is linear. For the same reason, those algorithms are 
convergent irrespective of the start values chosen. FT -GS however had a 
convergence rate which decreased the further the starts were away from their original 
(reference) values: that is the smaller the start values in this case. However that 
problem was never so serious that FT -GS failed to converge. It just gets slower 
compared to Newton on linear models. 

4.3 Algorithm Comparisons on tbe Growth Model 

Here we found that all algorithms survive the shock process from 10% 
down to 90% below base. However, for even smaller ranges we found the Stacked 
Newton algorithms broke down. For example when multiplying the starts by 5xlO-5, 

OS failed although NS, FT_GS, and FT_N generated identical solutions to the 
baseline. More generally, the Newton methods are much more sensitive to badly 
chosen start values than FT -GS. Indeed the latter proved insensitive to that problem 
altogether. 

This raises the problem of how one handles starts failure in Newton 
systems. The generalised remedies to algorithm failure include the following: 

1. Re-normalisation of the equations. 
2. Re-ordering of the equations. 

3. Transforming the model (de-Log the equations etc). 
4. Chant;fng Step size (i.e. more damping) to avoid illegal solution 

paths. 

7 An illegal solution path is one requiring the algorithm to perform "illegal arithmetic" to evaluate a 
variable at some step along the way to the fmal solution (which won~, in itself, require illegal arithmetic). 
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5. Constraining the solution path to non-negative ranges. 
6. Applying looser convergence criteria. 

7. ControUing the number of times the Jacobian is recalculated in 
simulations. 

Notice that there is a natural division between these options: whilst options 3-6 can 
apply to anr algorithm or algorithm type, options 1-2 are purely of use in first order 
algorithms. And option 7 is one of many possible modifications of the Newton 
algorithm which can be used to reduce the computational burden of each step, 
described in Section 3. The advantage here is that such modifications also slow the 
Newton algorithms of rate convergence (Hughes Hallett, 1990) and hence make it 
less likely to step into an area of illegal arithmetic. 

The easiest remedy for nonconvergence is to change the internal loop 
relaxation (or damjing) parameter, y, in an attempt to avoid stepping into an area of 
illegal arithmetic. Reducing the relaxation factor will of course reduce the step 
length. In the previous exercise we had used starts reduced by factors of between 0.9 
to 0.1 below the reference solution and y=O.S. Reducing the relaxation factor to 
y=0.1 allowed all algorithms - including the Newton based Oldstack and Newstack 
methods - to retrieve the reference solution, although of course more iterations were 
necessary. Similarly for starts reduced by a factor of 10-5 below the reference 
solution and a relaxation parameter of y=0.1 all algorithms converged (where this 
was the point at which Newstack had previously failed to converge). Our next 
exercise was to reduce the starting values to close to zero - zero starts are frequently 
recommended when the final solution is unknown (see Young 1971). In this case 
neither the Oldstack, nor the Newstack-Newton algorithms would solve for any 
relaxation parameter, however small. On the other hand, none of the Fair-Taylor 
algorithms had any problems in this case. For example FT GS (and FT N) continued 
to find the solution without difficulty and for a very wide range of relaxation 
parameters. 

The question arises, why do the stacked Newton algorithms fail in this case? 
Each breakdown could be traced to K, the capital stock in equations 1 and 4, turning 
negative at some point along the iteration path. Although in principle it might have 
turned positive again at a later iteration, a negative capital stock has no meaning in 
economics and causes the algorithm to break down at that point since equation 1 then 
requires a negative number to be raised to a negative or fractional power; A was set 
equal to 0.33. Consequently, so long as the algorithm is restricted to real arithmetic, 
it necessarily breaks down at this step and cannot go on to a point at which K turned 
positive again. Notice that this breakdown is caused by the more rapid convergence 
speed, and hence longer step length, of the stacked Newton algorithms. Their 

llIega! arithmetic might involve taking the log or the root of a negative number, or inverting a function 
outside its domain, or raising a negative number to a fractional power. We have not considered the 
possibility of extending these algorithms into the complex domain. 

8 Transforming the model will change the numerical composition of the Jacobian but Newton solution 
methods are invariant to equation ordering and normalisation. 

9 i.e. in the case ofa Newton algorithm we replace (2) by y<') = y(y(1-1)_F·1f(y(I·1),z» + (l-y)y(1-1); and for 
the others we use (3) with 0( .. 1) = 1B(··I) + (l-y)I. 
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solution paths therefore overshoot to the extent that they stray into the area of illegal 
arithmetic. As a result, the breakdowns are not due to a singularity in the final 
solution path or at the solution (i.e. the system's Jacobian matrix becoming singular, 
temporarily or within a neighbourhood of the final solution). Nor is it a problem of 
divergence in the algorithm (because the starts are sufficiently far away from the 
solution as to lie outside the set C for which convergence is guaranteed). Either of 
the latter problems could also have prevented convergence, but equally they could 
have been fixed by experimenting with larger step sizes (larger values of the 
relaxation parameters) unless the solution was undefined because of singularity at the 
point of breakdown. That is not the case since the Fair-Taylor algorithms continued 
to find the solution without difficulty, and since larger step sizes (larger relaxation 
parameters) led to break downs just the same. 

This example therefore just shows how sensitive the Newton based 
algorithms may be to poorly chosen starts, leading to break down rather than 
divergence as such, even when a well defined solution exists. Other algorithms - in 
this example at least - do not have the same sensitivity and frequency of breakdowns. 

Can the Newton methods be rescued in this case? Since varying the step 
size is no longer an option, we are left with options 5 and 7 of our list above. First, 
option 5. To implement this, we constrained all endogenous variables (rather than 
just K) to be nonnegative in all the stacked Newton runs. This represents an "if, then 
else ... " loop: if any endogenous variable becomes negative, then we reset at a value 
in a positive neighbourhood of zero (arbitrarily chosen to be 10.9 here) subject to a 
maximum number of times that it can be reset: else do nothing. This in effect adds 
another nonlinear constraint to the solution path, if it is ever activated. We should 
therefore expect the modified algorithm to take rather more steps to convergence 
than in other cases (it does), but nonetheless to converge. 

This intervention successfully recovered the reference solution when either 
stacked Newton algorithm was used with the usual range of starts and the usual 
relaxation parameter value of y=0.5 (also if y<0.5). Nevertheless for larger values of 
y, or smaller values of the start values down to zero, the stacked Newton algorithms 
still ran into problems that the Fair-Taylor algorithms had never even hinted at. 
Once again the result of inappropriately chosen starts is not divergence as such, but a 
break down through getting into an area of illegal arithmetic. And it may be that 
such breakdowns cannot be avoided by imposing nonnegativity constraints because 
the latter may simply mean that the algorithm simply stops and "marks time" at those 
constrained zero values - being unable ever to get away from them again. Thus the 
problem for the user is that we may not know enough, a priori, about the final 
solution to be able to specify start values that are sufficiently close to that solution to 
avoid this problem of breakdown through illegal arithmetic, "marking time" or 
divergence - especially where we have to guess start values for endogenous variables 
which lie far into the future in a rational expectations model. The other problem is 
that economic models so frequently have this kind of nonlinear structure - i.e. 
variables to fractional powers in production functions, or potential output and wealth 
functions; or variables in log-linear functions - that we should expect to see this kind 
of sensitivity to ill chosen starts frequently with the Newton based algorithms. 
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However this still leaves us with the puzzle of why Stacked Newton 
methods fell into this hole when the first order methods (which are potentially un
robust in other dimensions - Juillard et ai, 1998b) did not. Once again the reason 
must be closely linked with step size. Whilst the Fair-Taylor methods process a 
great many small and computationally cheap steps, stacked Newton will take huge 
and computationally expensive ones and that means that - here at least - they can 
break down quite easily and irretrievably unless they can be stopped going down 
certain paths. Irretrievably in the sense that no parameter search will remedy the 
breakdown. 

As an further interesting experiment, we allowed the Jacobian fewer 
inversions (option 7). This may mean - at the possible loss of some accuracy or 
speed - that they were less likely to stray into illegal paths. However if we set it at 
just two inversions - and for unshocked starts - we still found that the model could 
not solved under Stacked Newton. This option was of no help, therefore. 

4.4 Algorithm Comparisons on the FLSIM Model 

Now let us consider the policy simulation model. 

This model : 

1: LOG(P) = LOG(p(-l))+A *LOG(GNP(-l))+ADD.P. 
2: LOG(MIP) = N*LOG(GNP)-G*RS+ADD.M, 
3: LOG(GNP) = D*LOG(ERlP)+ADD.GNP. 
4: RS = RW.RS+ JOO*(ER(l)-ER)/ER ... 

is clearly non-linear (given the price deflator in equations 2 and 3 and the exchange 
rate growth in the uncovered interest parity condition (UIP) in equation 4.) Although 
it is log-linear otherwise. 

Here we find that NS , OS and FT _N solve satisfactorily onto the control 
from the .9 to .1 shocks (see table). FT GS however fails at and below 0.5 of the 
usual lagged endogenous starts. The problem cannot be solved by damping 
parameter searches; nor incidentally can it be solved by non-negativity constraints. 
This is because - as we can infer from a successful iteration path (the first 24 outer
loop iterations) - the solution path goes negative. But if we impose a non-negativity 
constraint, the model diverges. 

What other options could be used to make this algorithm work for small 
start values? Out of our list in Section 4.3, we have only the following possibilities. 

1. Re-normalisation of the equations. 
2. Re-ordering of the equations. 
3. Transforming the model (de-Log the equations etc). 

Let us first try re-normalising. Presently the model has the following ordering 
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J.p 
2.GNP 
3.ER 
4. RS 

and an incidence matrix (see Appendix) which shows that P can be solved 
recursively with respect to a simultaneous block consisting of the other three 
endogenous variables. The only alternative normalisation is therefore: 

Normalisation A 
J.p 
2. RS 
3. GNP 
4. ER 

We found that normalisation A would not solve the model under the original start 
values. The original normalisation however worked under the original starts, but 
failed when we reduced the starts to 0.5 of their original size or lower. 

There remains the possibility of reordering the equations as they stand, 
rather than renormalising them. This is an option which has worked well in the past 
(Hughes Hallett and Fisher, 1990), and with a four equation model we have 24 
different reorderings to try. Solving all 24 orderings with the FT_GS algorithm 
produced an interesting result - of the 24 possible reorderings only 6 worked at starts 
down to 0.1 of their original size. 1O All of these 6 reorderings had something in 
common: they each solved the UIP equation (i.e. equation 4) flrst. Any ordering that 
placed the DIP below the flrst equation failed at very low starts. 

The exchange rate equation of course represents the only forward looking 
component in this model. It might be therefore that the structure of GS solutions in 
forward-looking models requires lead equations to be solved flrst or among the flrst. 
Clearly this result is open to further veriflcation, but it is a notable one. And it does 
support our earlier flnding that the best way to accelerate Fair-Taylor type algorithms 
is to conduct incomplete inner iterations, in which a loose convergence criterion is 
placed only on these variables which have forward expectations of variables 
appearing elsewhere in the model (Fisher et al 1986, Fisher and Hughes Hallett 
1998). We have not experimented with these or other (SOR type) accelerations of 
the inner or outer loop iterations, so the scope for making the Fair-Taylor algorithms 
more robust, or faster, has not been fully exploited. Nevertheless equation ordering 
would seem to be far more important for precluding illegal starts problems and 
accelerating convergence, than renormalisation. 

As a flnal option, we can transform the model. Retaining the original 
ordering, we can de-log the model as follows: 

10 But all of these successful six had their limit at 0.01 shocks .The other algorithms - NS, OS and 
FT _N - however could survive at 0.0 I and beyond. 



P = exp (LOG (P(-I»+A*LOG(GNP(-I»+ADD.P), 
GNP = exp«LOG(M/P)+G*RS-ADD.M)/n), 
er=p*exp«LOG(GNP)-ADD.GNP)/d), 
RS = RW.RS+100*(ER(1)-ER)IER, 
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Again we performed the same 0.9 to 0.1 shocks (see Table 5). When the model is 
de-logged, it becomes much more robust; FT _ GS can satisfactorily solve on to 
control (with relative errors in common with FT N at around e-04). This result 
accords with the common practice of first order modellers to normalise their models 
since in doing so they often preclude "illegal arithmetic" and this is what we found 
here. Although of course in so doing they can often "inappropriately" normalise 
their model and inject other errors into their solution procedure. For example this is 
what Poiro et al (1996) found when normalising the IMF's MUL TIMOD model. 

As a final exercise let us examine the case where we shock the starts up , 
considering both logged and de-logged model versions with the original ordering. 
Here we shock the starts equivalently by factors of 1.1 to 1.9 above base. We can see 
that shocking upwards is not so dramatic - the algorithms all track the control 
comfortably and FT _ GS does not break down. If we put the model into de-logged 
form (Table 6), a shock of up to 1.9 shock is accommodated although again - as with 
the down-starts - at a reasonable cost in terms of accuracy. 

The starts problem therefore - at least for FT _ GS - is asymmetric: whilst 
numerical accuracy and solution stability is not a problem for "up-starts" it very 
much is more acute for "down-starts". 

5. CONCLUSIONS 

This paper was a first look at a relatively neglected area of algorithm 
comparison. Our tests cannot be representative of all of the problems (or all of the 
solutions!) to imperfect starts across algorithms. But we can make a few broad 
points:-

(i) Given the small models that we have considered here, there is no reason 
to expect first order methods to be any less robust to imperfect starts than stacked 
Newton. 

(ii) Downsized starts seem more problematic than upsized starts. 
(iii) Knowledge of a model's internal structure can often used to preclude 

bad starts searches. 
(iv) The most common form of algorithm breakdown, and the most 

difficult to remedy, was illegal arithmetic. It was not divergence or singularity at 
some point in the solution path. 

(v) Inequality constraints would appear more useful for fixing breakdowns 
in Newton algorithms, but renormalisation or reordering work well for Fair-Taylor 
schemes. Experience suggests that these options may become more important on 
larger models, such as MULTIMOD, Quest or NIGEM. 

(vi) The superior speed of the Newton algorithms in a neighbourhood close 
to the final solution give them an advantage when the problem consists of a series of 
smallish variations around an existing solution - such as in "fine tuning" a certain 
policy strategy for example. But further away from that known solution, and when 
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the simulation horizon is quite long with forward looking expectations in particular, 
both types of algorithm can break down (or fail to converge). 



Table 1. Results from the Output Gap Model. 
No. of Outer Loop Iterations; and time taken in seconds to full convergence 
(in brackets). 

Algorithm: 
NS OS FT-GS FT-N 

Start Values 1.0 19 (0.66) 19 (0.64) 61 (10.Q) 61 (5.0) 
[factor reduction 0.9 19 (0.66) 19 (0.45) 61 (9.8) 61 (5.1) 
relative to base 0.5 19 (0.38) 19 (0.49) 61 (10.1) 61 (4.8) 
line starts]. 0.1 19 (0.33) 19 (0.46) 61 (10.3) 61 (4.5) 

Table 2. Results From The Dornbusch Model 
No. of outer loops iterations; and time taken in seconds to full convergence 
(in brackets). 

Algorithm: 
NS OS Ff-GS Ff-N 

Start Values 1.0 1 (0.9) 1 (0.92) 716 (136.8) 41 (2.4) 
[factor reduction 0.9 I (1.15) 1 (0.95) 739 (139.7) 41 (2.5) 
relative to base 0.8 1 (1.30) 1 (0.91) 750 (142.7) 41 (2.0) 
line starts]. 0.5 1 (0.9) I (0.96) 768 (132.5) 41 (1.9) 

0.1 1 (0.99) I (1.10) 786 (141.7) 41 (2.2) 
O.oI 1 (0.91) 1 (0.96) 790 (144.7) 41 (2.0) 

Table 3. Results from the Growth Model 
No. of outerloop iterations; and time taken in seconds to full convergence 
(in brackets). 

Algorithm: 
NS OS FT-GS Ff-N 

Start Values 1.0 44 (4.0) 44 (3.8) 112 (23.0) 37 (2.1) 
[factor reduction 0.9 44 (1.2) 44 (1.2) 112 (23.0) 37 (3.5) 
relative to base 0.8 44 (1.2) 44 (0.71) 112 (20.0) 37 (4.0) 
line starts]. 0.7 44 (1.4) 44 (0.74) 112 (18.0) 37(4.1) 

0.6 44 (1.2) 44 (0.80) 112 (22.0) 37 (4.1) 
0.5 45 (1.3) 44 (0.84) 1I2 (31.0) 37 (3.8) 
0.4 45 (1.2) 44 (0.90) 112 (28.0) 37 (3.9) 
0.3 46 (1.3) 45 (0.90) 113 (17.0) 37(4.1) 
0.2 46 (1.2) 45 (1.06) 113 (18.0) 37 (4.1) 
0.1 49 (4.3) 48 (1.41) 113 (21.0) 37 (4.2) 
5xlO-5 65 (3.6) 00 113 (20.0) 37 (4.1) 
lxlO-5 00 00 113 (20.0) 37 (4.5) 
lxlO-5 82 (6.9) 82 (7.6) 113 (20.0) 37 (4.3) 
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Table 4. The FLSIM Model 
No. of outerloop iterations; and time taken in seconds to full convergence 
(in brackets). 

NS OS FT-GS FT-N 
1.0 18 (0.5) 18 (0.60) 85 (26.17) 86 (4.9) 
0.9 21 (0.55) 21 (0.68) 85 (11.6) 86 (4.9) 
0.8 23 (0.55) 23 (0.68) 85 (11.9) 86 (4.9) 
0.7 24 (0.55) 24 (0.68) 85 (11.8) 86 (4.99) 
0.6 25 (0.54) 25 (0.66) 85 (11.6) 86 (5.4) 
0.5 25 (0.50) 25 (0.62) 00 86 (5.5) 
0.4 26 (0.50) 26 (0.60) 00 86 (5.5) 

Table 5. The FLSIM Model, in de-logged form 
No. of outerloop iterations; and time taken in seconds to full convergence 
(in brackets). 

NS OS FT-GS FT-N 
1.0 18 (.44) 18 (.55) 86 (6.08) 86 (4.7) 
0.9 22 (.90) 21 (.70) 86 (6.29) 86 (4.7) 
0.8 23 (.56) 23 (.69) 86 (6.4) 86 (4.9) 
0.7 25 (.56) 24 (.66) 86 (6.7) 86 (4.5) 
0.6 27 (.60) 25 (.70) 86 (6.9) 86 (5.13) 
0.5 30 (.65) 26 (.69) 86 (6.9) 86 (5.9) 
0.4 34 (.94) 28 (.92) 86 (7.05) 86 (4.9) 
0.3 37 (.95) 28 (.89) 86 (7.01) 86 (4.7) 
0.2 40 (1.01) 29 (.91) 86 (7.38) 86 (4.6) 
0.1 43 (1.06) 30 (.90) 86 (10.98) 86 (6.2) 

Table 6. The FLSIM Model; increasing the start values 
No. of outerloop iterations; and time taken in seconds to full convergence in 
brackets. 

NS OS FT-GS FT-N 
1.0 18 (.42) 18 (.57) 86 (14.3) 86 (4.9) 
1.1 21 (.45) 21 (.55) 86 (11.4) 86 (5.9) 
1.2 22 (.40) 22 (.53) 86 (11.2) 86 (6.7) 
1.3 22 (.40) 22 (.44) 86 (10.9) 86 (5.4) 
1.4 23 (.60) 23 (.59) 86 (10.6) 86 (5.2) 
1.5 23 (.58) 23 (.70) 86 (17.3) 86 (4.9) 
1.6 24 (.58) 24 (.70) 86 (11.8) 86 (4.7) 
1.7 24 (.54) 24 (.67) 86(11.9) 86 (5.8) 
1.8 24(.51) 24 (.63) 86 (11.9) 86 (5.6) 
1.9 24 (.49) 24 (.62) 86 (21.0) 86 (5.9) 
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APPENDIX MODEL DESCRIPTION 

Model One: An Inflation-OutPut Gao Model 

ENDOGENOUS: PDOT RR RS Y 
EXOGENOUS: EY G 

Equations: 

51 

I: PDOT = 0.4 14*PDOT(1)+(1-0.414)*PDOT(-I)+O.9 16*(G**2/(G-Y)-G)+ 
0.276*(G**2/(G-Y(-I»-G) 

2: RR = RS-0.414*PDOT(I)-(I-O.414)*PDOT(-I) 
3: RS = 3*PDOT+Y 
4: Y = 0.304*Y(-I)-0.098*RR+EY 

Horizon: 
Min Max 
-I I 
o 0 
o 0 
-I 0 

Symboltype 
ENDOGENOUS 
ENDOGENOUS 
ENDOGENOUS 
ENDOGENOUS 

Symbolname 
PDOT 
RR 
RS 
Y 

The model has I block, including I simultaneous block. 
The largest block has 4 equations and the next largest has O. 

Block Size Eqn Var 

I 4 I PDOT 
2 RR 
3 RS 
4 Y 

Variable Used Unlagged in Equations 

PDOT I 
RR 
RS 
Y 

3 
2 
2 
I 

4 
3 
3 4 



52 

Model Two - The Dornbush Model 

ENDOGENOUS: EX P PC PCF PCGP PCGPF PF R RF Y YF 
EXOGENOUS: G M MF UE UP UPF UR URF UY UYF 
PARAMETER: A10 AlU A20 A2U A30 A3U A40 A4U A50 A5U A60 
A6U A70 A7U 
Equations: 

1: Y = -A4U*(P-EX-PF)-A5U*(R-P(1)+P)+G+UY 
2: EX = EX(1)-(R-RF+UE) 
3: P = P(-1)+PC(-1)-PC(-2)+AlU*Y(-1)+A2U*(Y(-1)-Y(-2»+UP 
4: PF = PF(-1)+PCF(-1)-PCF(-2)+A10*YF(-1)+A20*(YF(-I)-YF(-2»+UPF 
5: PC = A3U*P+(1-A3U)*(pF+EX) 
6: PCF = A30*PF+(I-A30)*(P-EX) 
7: YF = -A40*(pF+EX-P)-A50*(RF-PF(1)+PF)+G+UYF 
8: R = A6U*Y-A7U*(M-P)+UR 
9: RF = A60*YF-A70*(MF-PF)+URF 
10: PCGP = PC-PC(-l) 
11: PCGPF = PCF-PCF(-l) 

Horizon: 
Min Max Symboltype Symbolname 
o 1 ENDOGENOUS EX 
-1 1 ENDOGENOUS P 
-2 0 ENDOGENOUS PC 
-2 0 ENDOGENOUS PCF 
o 0 ENDOGENOUS PCGP 
o 0 ENDOGENOUS PCGPF 
-1 1 ENDOGENOUS PF 
o 0 ENDOGENOUS R 
o 0 ENDOGENOUS RF 
-2 0 ENDOGENOUS Y 
-2 0 ENDOGENOUS YF 

The model has 7 blocks, including 1 simultaneous block. 
The largest block has 5 equations and the next largest has 1. 

Block Size Eqn Var 
1 1 3 P 
2 1 4 PF 
3 5 1 Y 

2 EX 
7 YF 
8 R 
9 RF 

4 1 5 PC 
5 1 6 PCF 
6 1 10 PCGP 
7 1 11 PCGPF 
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Variable Used Unlagged in 
Equations 

EX 1 2 5 6 7 
P I 3 5 6 7 8 
PC 5 10 
PCF 6 11 
PCGP 10 
PCGPF 11 
PF 1 4 5 6 7 9 
R I 2 8 
RF 2 7 9 
Y 1 8 
YF 7 9 
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Model Three - A Small Growth Model (SGMl 
MOD COM Small Growth Model 
ENDOGENOUS: C K X Y Z 
EXOGENOUS: SHK 
PARAMETER: A BETA DELTA ROH SIGMA TAO 
FUNCTION: LOG 
Equations: 

I: C**(-TAO) = BETA*A*K**(A-I)*X(l)+BETA*DELTA*Y(1) 
2: X=C**(-TAO)*Z 
3: Y=C**(-TAO) 
4: K = Z*K(-I)**A-C+DELTA*K(-I) 
5: LOG(Z) = ROH*LOG(Z(-I»+SIGMA*SHK 

Horizon: 
Min Max 
o 0 
-I 0 
o 1 
o 1 
-I 0 

Symboltype 
ENDOGENOUS 
ENDOGENOUS 
ENDOGENOUS 
ENDOGENOUS 
ENDOGENOUS 

Symbolname 
C 
K 
X 
Y 
Z 

The model has 4 blocks, including 1 simulatenous block. 
The largest block has 2 equations and the next largest has 1. 

Block Size Eqn Var 
1 1 5 Z 
2 2 1 C 

4 K 
3 2 X 
4 3 Y 



Model Four - A Forward Looking Simulation Model (FLSIMl 

ENDOGENOUS: ER GNP P RS 
EXOGENOUS: ADD.GNP ADD.M ADD.P M RW.RS 
COEFFICIENT: A D G N 
FUNCTION: EXP LOG 

Equations: 

1: LOG(P) = LOG(P(-I»+A*LOG(GNP(-I»+ADD.P, 
2: LOG(MIP) = N*LOG(GNP)-G*RS+ADD.M, 
3: LOG(GNP) = D*LOG(ERIP)+ADD.GNP, 
4: RS = RW.RS+100*(ER(I)-ER)IER,; 

Horizon: 
Min Max Symboltype Symbolname 
o 1 ENDOGENOUS ER 
-1 0 ENDOGENOUS GNP 
-1 0 ENDOGENOUS P 
o 0 ENDOGENOUS RS 

The model has 2 blocks, including 1 simultaneous block. 
The largest block has 3 equations and the next largest has 1. 

Block Size Eqn Var 

1 1 
2 3 

1 
2 
3 
4 

P 
GNP 
ER 
RS 

Variable Used Unlagged in Equations 

ER 3 4 
GNP 2 3 
P 1 2 3 
RS 2 4 
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CHAPTERJ 

ACCELERATING NON LINEAR 
PERFECT FORESIGHT MODEL SOLUTION 

BY EXPLOITING THE STEADY STATE LINEARIZATION 

Gary S. Anderson 

1. A NON-LINEAR EXTENSION OF THE ANDERSON-MOORE 
TECHNIQUE 

1.1 General Model Specification 

Consider the model 

h(J.:t_~, Xt-T-!--!, ••• , Xl-I-g-I> Xt-.-o) = 0 
t- :::: 0, ... ,00 

(1) 

Wherex. e9tL and h:9t L(Hl+e) ~ 9t L . We want to determine the solutions to 

Equation 1 with initial conditions 

satisfying 

lim ;Ct = ;1:+ . 
t .. ~x, 

{2} 

(3) 

This paper shows how to adapt the methods of (Anderson & Moore,1985) 
to determine the existence, and local uniqueness of the solution to Equation 1. 

1.2 Asymptotic Linearization 

If h were linear, we could immediately apply the methods of (Anderson & 
Moore, 1985) to detennine the existence and uniqueness of a perfect foresight 
solution and to compute the solution. Since h is non-linear, we will compute 
approximate solutions to system 1 by using the nonlinear h constraints in Equation 1 
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for the initial part of the trajectory, and using a system of linear constraints which 
reflect the asymptotic properties of the system for the remainder of the trajectory. 

This technique can be thought of as a generalization of the approach used 
by Fair-Taylor (Fair & Taylor, 1983). This paper describes a procedure which, 
unlike the Fair-Taylor approach, allows the solution to lie in the stable subspace of a 
linear system characterizing the asymptotic properties of the nonlinear system. 

The steady state value x* satisfies 

h(:r", ... , :~n = 0 (4) 

11 

h{Xl_r~ "'! X1+1;I) ~ E H.:l~. (Xt.;.! - x") (5) 
i:::····:-

Near the steady state, the linear first-order Taylor expansion of h about x* 
provides a good approximation to the function h. 

The technique presented in (Anderson & Moore, 1985) can determine the 
existence and uniqueness of perfect foresight solutions near the steady state of linear 
models. The asymptotic analysis of the linear model determines convergence 
properties before burdensome calculations of the nonlinear solutions. That stability 
analysis produces a matrix, Q, which restricts values of the endogenous variables to 
the stable subspace of the linearized system. 

For trajectories which approach a steady state, one can ultimately replace 
the non-linear system with the constraints codified in the matrix Q. 

.. 
:rT-f1} .... :1' 

(6) 

Consequently, for solutions which converge to the steady state, we can, in 
principal, compute solutions to whatever accuracy required by increasing the 
magnitude ofT. 
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1.3 Relationship to Traditional Approach Using Fixed Points 

The more traditional Fair-Taylor approach also increases T to increase 
accuracy, but it imposes Equation 7 

[ 

'.. l'~ : ;""1'+1 -.. I 
I . : 

: i 
:J·~T'I'O··· x~ I .. 

=0 (7) 

instead of equation 6. 

Since Equation 6 more accurately characterizes the dynamics of the 
nonlinear system near the steady state the approach described in this paper converges 
more quickly. It will be convenient to normalize the Q matrix so that there is the 
negative of the identity matrix in the rightmost block. (Anderson & Moore, 1985) 
shows that such a normalization exists for models which have uniquely convergent 

(8) 

-Bu-_I I 
-Bo I 

saddle points paths from arbitrary initial conditions. 

Thus, the traditional approach of setting the end of the trajectory to the 
steady state would be equivalent to zeroing out the left half of the normalized Q 
matrix. Using AIM to Restrict the end of the trajectory to the asymptotic stable linear 
subspace provides a better approximation of the asymptotic behavior of the non 
linear function. This improvement in the approximation is reflected in the length of 
the trajectory needed to achieve a given level of accuracy for the values at the 
beginning of the trajectory. In order to achieve a specific number of significant digits 
in the computation of the points near the beginning of the trajectory, setting the end 
of the trajectory equal to a specific constant would force us to compute a longer 
solution path than adopting our approach of restricting the solution to the asymptotic 
linear space. 
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2. TWO NON-LINEAR EXAMPLES 

2.1 A Money Demand Model 

Consider the three equation non-linear system 

I. rnt . ,:) 1 ( . (PH.!. - 1't) n - "" It ·t· /.1 11 P ·t· 
Pt. ]It 

Tnt - mt··1 = 1(111.(···1 - p) + OSt 

81. = ASI ... ·1(1 - St··.I) 

(9) 

(IO) 

(II) 

Where L=3;t=I,8 =1, and O~A.,a.<O,~<O,p>O;y<Oand ~>O 

exogenously given. This example augments a simple forward looking money 
demand function (Equation 9) and a money supply rule (Equation 10) with an easy to 
manipulate and much studied nonlinear function, the quadratic map (Equation 11). 
Including the quadratic map provides a convenient way to study the impact of model 
parameters on asymptotic behavior. The parameter A. in the quadratic map provides a 
simple nonlinear function that can generate fixed points, limit cycles, and chaotic 
invariant sets, but this paper will study values of A. associated with fixed points. 

The points m* = ~ - ~p* = m *exp -(a.+JlIn(p)) , where s* = 0 or s* = i..~l , 

are fixed points for the system. We can linearize the system and investigate the 
dynamics of the system near either steady state. 

We want to investigate the model with initial conditions 

Po =1>0 

So = So 

and terminal conditions 

. [m.t ] [m~r,.] lim Pt ..... P 
~-+:x: '" 

8t S 
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Applying the methods of (Anderson & Moore, 1985) near the fixed point, 
the state space transition matrix is 

[ 
(1 + "I) 0 

A=. ~ $:# 
m··/fI" ~, 

o 0 

-6A(2,s'" - 1) ] 

.... )..(2.~* .... 1) 

Which has three non zero eigenvalues, (1 + y), 1..(1- 25*) ,and Pit . 

The first two eigenvalues are smaller than one in magnitude provided: 

-2<y <0 

and 

s*= {
o and II..I < 1 

¥ and 1<1..<3 

The last eigenvalue has magnitude bigger than one since * < 0 . 

The Q matrix of constmints imposing the saddle point property consists of 
two auxiliary initial conditions and one unstable left eigenvector if 0 < A. < 1 or 1 < A. 
<3 

[ ... {l+ 1) 0 0 1 0 ~61 Q= 0 0 ).(28' ···1) 0 0 
() 0 0 .•. (-.. ~ + ill+t!:··2;jl.~·l ... nI·!8-.·i·elf···!ltil.\+~·2Jil.*·i 1 (MAn ... ·)) W'{3SA( I··.· Ij 

[ 1+1 
0 6). - 21~ ).s· -I. 0 

~J N (n"l' 0 0 -] Q ::: :';1:+/,. 
0 0 0 (2) 

== [BI ... 1] (13) 
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2.2 Boucekkine's Non Linear Example 

Boucekkine (Boucekkine, 1995) presents the following example nonlinear 
model. For t >0 

OJ> (I". z/ .... 51h:/XI;t' :::: 0 

() 15Yl,H I .t. ~'. a· - 0 2<: ····0 . -- ':)J; 1 t . \) .... 
Yl,t .. 

YUl5 
:l,t 

Y2 iH - 3--Wt ... :~ = 0 
, l~l,t-J 

() 7~Yl.t-1 . 1 2~ 0 
X2.t - • a--"t" . OJ "" 

Y2,t 
II X2,t···l 0 

YUH - C--Y:l.l "" 
. . Y2.tH 

fIJ! = 1 

Solving for fixed point solutions 

provided y ~ satisfies 

... 1 'WI = . 
co r::;,;;.!., 

Xl = ;,0. c1 

• 1 •. "''3J;14.~ 
;r.2 = -1.25 + ,t065;:n 50.-"·- yl 

" 0.184·488 
Y2::::: ~ 

50. It 

,., ·1 ;I 
"w,. n·l}· mr Z _... 2a 

50. /I; 

(l4) 

(15) 

(16) 

(17) 

(IS) 

(19) 

b 5.42042cyi (--.5. + 16.2(U850.v ,,<!it1 111yt 
·yl - r' "" O. (20) 

.i. \050. + 1!l 
Fixing a, b, and c produces a version of the mode whose asymptotic 

behavior depends only on d. In the text that follows, 

{a .... -3 b .... ~ c .... ~}. , 2' 2 
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Figure I graphs solutions for 20 as a function of d. Note that for values of d 
between 0.0700073 and 0:38472 YI is complex valued. This paper will analyze model 
solutions over the range of d for which the solutions for YI are real valued. 

eLyl] 

1 

Figure 1: Yl Solutions versus d with {a -+ -3, b -+ t ' c -+ f} 

In constructing the transition matrix, the AIM algorithm discovers 4 
auxiliary initial conditions. Figure 2 graphs the magnitude of the second and third 
largest eigenvalues as a function of d. The model will have locally unique 
convergent solutions when there are exactly two eigenvalues with magnitudes bigger 
than one. When the second largest eigenvalue has a magnitude less than one, there 
are multiple solutions converging to the steady state. When the third largest 
eigenvalue has a magnitude greater than one, there are no solutions converging to the 
steady state. 

J _ 5 

:1/ 

0.5 ~ 
yl 

Cr)mpl.EolX 
Valued 

~J. 
Convergellt 

0.2 0.4 0.6 O.H 

Mul tj.ple i"ot'l).l 
Convergent. 

Explosive 
solutions 

1 

Figure 2: Magnitude of Second and Third Largest Eigenvalues versus d 

Table I displays the eigenvalues for the asymptotic linearization when 
d = 1.0. Since there are 4 roots with magnitudes larger than one and 4 auxiliary 
initial conditions, there are no solutions converging to the fixed point from arbitrary 
initial starting points. 
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Fixed Point {I., 3.68403,1.14926,4.38784,1.37162, 16.5978} 
Eigenvalues {2.12643, -0.345383 -1.01957 i, 1.21433, -

0.345383 + 1.01957 i} 
Magnitudes {2.12643 1.07649, 1.21433, 1.07649} 

Table I: Solution characteristics for d=I.O 

Table 2 displays the eigenvalues for the asymptotic linearization when d = 
0.05. Since there are 4 auxiliaty initial conditions and only one eigenvalue with 
magnitude greater than one, there are multiple solutions converging to the fixed 
point 

Fixed Point {I., 3.68403,0.412629,3.04066, 1.37162} 
Eigenvalues {1.91557, -0.0795795 -0.402948 i, 0.893593, -

0.0795795 +0.402948 i} 
Magnitudes {1.91557, 0.410731, 0.893593, 0.410731} 

Table 2: Solution characteristics for d=O.05 

Table 3 displays the eigenvalues for the asymptotic linearization when 
d = 0.5. Since there are 4 auxiliary initial conditions and two eigenvalues with 
magnitude greater than one, so long as the auxiliary initial conditions and the 
eigenvectors associated with the two roots with magnitudes greater than one are 
linearly independent, there are unique solutions converging to the steady state from 
arbitrary initial conditions. 

Fixed Point {I., 3.68403,1.53089,5.08577,1.37162, 16.9694} 
Eigenvalues {1.99626, -0.216796 - 0.743478 i, 1.08733, -

0.216796 + 0.743478 i} 
Magnitudes {1.99626, 0.774441,1.08733, 0.774441} 

Table 3: Solution characteristics for d=O.5 

Table 4 presents the Q and normalized Q matrices. 

Appendix B provides additional detail describing the transition matrix and 
the auxiliary initial conditions. 
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Components of the Algorithm for Computing the Convergent 
Path 

One can apply Newton's Algorithm to compute the solution to the non 
linear system Equations 1-3. With 

Yt "". 

X ... r 1 
z(T} :::: : 

:/:"",;,1 j 
X·n·6-1 

a:Ttll 

Equations 1-3 become 

N(z(T), U} :::: 

r [XT t'l 
.1:-1 X_I 

h(Yl) 
h(Y2) 

(21) 

(22) 

for AiM 

forFP (23) 

Figures 3 and 4 present pseudo code describing the algorithms for 
analyzing the steady state and computing the convergent path. 

3.1 Improved Model Diagnostics 

It is possible to choose the parameters of the model and initial conditions so 
that the number of time periods to convergence is arbitrarily large. 



begin 
if ~ succeedsQ (xStar:= computeFixedPoint (h, xGuessFP » 
then failcomment: unable to compute fixed point 
else H := linearize(h, xStar ) 
if ~hasSaddlePointPropertyQ (Q := andersonMoore(H» 
then failcomment: no saddle point property at this fixed point 
else 
if ~hasConvergedQ(xPath := 

convergentPath (xHistory ; h; Q ; T MIN ; T MAX » 
then failcomment: path has yet to converge 
else success (xPath ) 
!1 
!1 
!1 
end 

Figure 3: Nonlinear Extension of Anderson-Moore Algorithm: Initial Setup 

begin 
T :=TMIN 

67 

xPathOld:= solveNonLinearSystem(xHistory ; h; Q; TMIN ; xGuessPath) 
T :=T+~T 
xPathNew := solveNonLinearSystem(xHistory, h, Q, T) 
while (xPathOld -:t:. xPathNew) 1\ (T ~ TMAX) do 
xPathOid := xPathNew 
T:=T+~T 

xPathNew:= solveNonLinearSystem (xHistory, h, Q, T) od 
end 

Figure 4: Nonlinear Extension of Anderson-Moore Algorithm: convergentPath 

Thus, for some parameter settings, procedures which depends on failure to 
converge will have trouble determining the appropriateness of the asymptotic 
stability conditions. The asymptotic linearization approach provides this information 
near the beginning of computation before undertaking many costly computations 
leading to uncertain results. 

3.1.1 Computational Results 

The approach of this paper focuses computational resources on computing 
saddle point paths for models which have saddle point paths. The analysis of the 
previous section indicates that the money demand model will have convergent 

perfect foresight paths to the s = 0 fixed point for 0 < A < 1 and to the s = "'~1 for 1 < 

A < 3. There is no need to attempt solutions for models with values of A outside this 
range. 



68 

The analysis of the previous section indicates that the Boucekkine model 
will have convergent perfect foresight paths for 0.38472 < d < 0.843407. There is 
no need to attempt solutions for models with values of d outside this range. 

3.1 Improved Initial Path Guess 

The Newton iteration requires an initial guess, zo(1). Define 

(24) 

The z*(~o) represent solutions to Equation 21 using l' non linear time 
periods before applying asymptotic constraint o. Using iterative techniques to get a 
solution for z*(T, 0), T> l' will require an initial guess zO(1) 

3.2.1 Steady State Bootstrap 

The traditional approach augments the shorter solution trajectory ZO (t') 

with the fixed point values. 

3.2.2 Aim Bootstrap 

z*(Tl; [0 1]>1 
XTt'+J 

XTo+2 (25) 

Alternatively, one could augment the shorter solution trajectory ZO (t') with 
values consistent with the asymptotic behavior of the non linear system near the 
fixed point 

(26) 

with 
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(27) 

Where BJ comes from the first few rows of if of equation 12. 

Appendix A presents equations describing the AIM bootstrap applied to the 
Money Demand Model. 

3.2.3 Computational Results 

Using BJ reduces the number of Newton steps required to compute a path of 
given horizon length whether or not using Q for the asymptotic constraint Figure 5 
and 6 show the number of newton steps needed to move from the initial guess to the 
solution for each horizon length. The line labeled "FP Initialization" shows the 
number of steps required when setting the entire initial path guess to the fixed point 
values. The line labeled "Q Initialization" shows the number of steps required when 
setting the initial path guess to the result of applying the BJ matrix to the initial 
conditions given in equation 2. The line labeled "FP Extension" shows the number of 
steps required when applying the Steady State Bootstrap to the solution from a 
horizon on period shorter. The line labeled "Q Extension" shows the number of steps 
required when applying the AIM Bootstrap to the solution from a horizon one period 
shorter. The "Q Extension" and "Q Initialization" lines show the number of Newton 
steps required to solve equation 24 with 0 = Q. The "FP Extension" and "FP 
Initialization" lines show the number of Newton steps required to solve equation 24 
with 0 =[ 0 I J. These results are typical for applying the two initial path guess 
strategies to the two models. 

The AIM Bootstrap minimizes the number of Newton steps for finding the 
z·(~, 0) for both models. Figure 5 presents computational results for the Money 
Demand Model. For example, Figure 5 indicates that at a horizon of 5 periods, 
initializing the path to the steady state lead to 13 newton steps. Initializing the path 
to the solution obtained by applying the asymptotic linearization to the initial 
conditions alone lead to 7 Newton steps. Extending the 4 period solution by adding 
one period of fixed point values leads to 5 Newton steps. Using AIM to augment the 
4 period solution leads to 3 Newton Steps. 

Figure 6 presents computational results for the Boucekkine Model. Figure 6 
indicates that at a horizon of 7 periods, initializing the path to the steady state lead to 
5 newton steps. Initializing the path to the solution obtained by applying the 
asymptotic linearization to the initial conditions alone lead to 4 Newton steps. 
Extending the 6 period solution by adding one period of fixed point values leads to 3 
Newton steps. Using AIM to augment the 6 period solution leads to 3 Newton Steps. 
Extending the path using the Fixed Point Bootstrap or the AIM Bootstrap lead to the 
same number of Newton steps. The next section will show that the AIM Bootstrap 
dominates since the "FP" algorithms require more iterations to converge to the same 
accuracy than the "Q" algorithms. 
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Shorter Computation Horizon for Given Computation Error 

When solving models with the saddle point property near the steady state, 
the two approaches compute equivalent paths. However, using Q improves the 
tradeoff between computation horizon and solution accuracy. For a given level of 
precision, the asymptotic linearization approach obtains the solution with a shorter 
computation horizon. At any given computation horizon, the asymptotic 
linearization approach computes a more accurate solution. 

This paper defines numerical convergence for the algorithms using a 
measure of relative error. The algorithms terminate when 

!lD1'(;:r ..... :;;)11 :5 rnI!Dl':i;~1 

Dr = {{l., 1., 1.} 
{1., O.2iH,4, 0.65:nl, 0.1 !J66:~, 0.72906, O.058!·J:l} 

Hell "" ,/(t.1'() 

x - x = Slkz"(T) - S~I;!··I(T) 

Money Demand Model 
Boucekkine Model 

with S,/,) "'" [rnL 0] and S2k'" [Ird, 0] 

Where Slk and S2k are chosen to select comparable parts of the state vector. 

If m = 10 - k then larger components of Dx have k significant 
digits(Numerical Algorithms Group, 1995). The numerical calculation for this paper 
set k "" 8. 

3.3.1 Computational Results 

Table 5 presents some computational results for the Money Demand Model. 
The last column demonstrates the equivalence between the convergent solution paths 
obtained by 

J.5 
~J) j"Tlitl'·'" t' r ... "--.4J..~".a 1.0;' 

~ '''~'''''''''''''~~'''''''''''''''410-'''''' 
10 \ Initialization 

<) L.......l.'--".ls..w.<UJ5~ ......... --.:-":l (I---:":lS=-----::'20· 

Figure 5: Newton Steps as Function of Horizon Length for Various Initial 
Guesses for Money Demand Model 
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J" 

10 
;<;'f/ Ir'it-iali,ouo'l(J!' 

~:;~ .. in" -- , 
5 Ill- .. • ...... *& , 

.. t 

Figure 6: Newton Steps as Function of Horizon Length for Various Initial 
Guesses for Boucekkine Model 

using the asymptotic linearization and those obtained using the traditional fixed point 
constraint. The computations using Q and using FP each used a convergence 

tolerance of 10 - 8. The II . 112 difference between the initial portions of the 

trajectories are also within the supplied convergence tolerance of 10 -8. 

A. Fixed Point Largest Convergence II XQ -
EVai Q FP 

X FP II 
1.5 0.467,0.693,0.333 0.5 11 22 2.17835 

10-9 

1.9 0.242,0.359,0.474 0.1 10 19 4.45944 
10-9 

2.3 0.0957,0.142,0.565 -0.3 9 18 2.43792 
10-9 

Table 5: Asymptotic Linearization and Fixed Point Solution Characteristics 

The following figures employ two measures of error to characterize the rate 
of convergence of the two algorithms: approximation error and change in path error. 

The approximation error is II D(Slk(T )x-now - S2k(T *)x converged) II 2. The change in 

path error is IID(Slk(T + l)xnext- S2k(T) Xnow) II 2· 

The top half of Figure 7 reports the variation in approximation error as a 
function of the computation horizon when A. = 1.5. For any given horizon, the 
approximation error is always about 6 times larger when using the fixed point instead 
of the asymptotic linearization. The bottom half of Figure 7 emphasizes this point by 
reporting the variation in approximation rescaled so that the initial approximation 
errors are the same. 

Without prior knowledge of the convergent solution, algorithms rely on the 
change in the solution path to determine convergence. Figure 8 reports the variation 
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in the change in path error as a function of the computation horizon when A. = 1.5. 
The asymptotic linearization algorithm would signal convergence before the fixed 
point algorithm. The accuracy of the solution does not suffer since the aggregate 
errors are so much less for any given computation horizon. 

Figure 9 reports the variation in approximation error as a function of the 
computation horizon when A. = 1.9. Again, for any given horizon, the approximation 
error is always significantly less when using the asymptotic linearization. 

Figure 10 reports the variation in the change in approximation error as a 
function of the computation horizon when A. = 1.9. The asymptotic linearization 
algorithm would signal convergence before the fixed point algorithm. 

Figure 11 reports the variation in approximation error as a function of the 
computation horizon when A. = 2.3. For any given horizon, the approximation error is 
always significantly less when using the asymptotic linearization. 

0.005 
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0.003 
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Q Errors Unsealed 

FP 

.J.sing Q 
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0.001 \~ 

' ........ 
O~~--~+j~~·1-0~)--~1~5~~~20 
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FP 

Q 

Or---~~~--~~--------
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Figure 7: Approximation Error as Function of T for A. = 1.5. 
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Figure 8: Change in Path Error as Function of T for A. = 1.5. 
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Figure 9: Approximation Error as Function of T for A. = 1.9. 
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Figure 11 reports the variation in approximation error as a function of the 
computation horizon when A. = 2.3. For any given horizon, the approximation error is 
always significantly less when using the asymptotic linearization. 

Figure 12 reports the variation in the change in approximation error as a 
function of the computation horizon when A. = 2.3. The asymptotic linearization 
algorithm would signal convergence before the fixed point algorithm. 

Figure 13 presents a density plot comparing the number of horizons 
required for convergence for the two algorithms as a function of the initial 
conditions. Since 1110 and So depend only on initial conditions they will not vary as 
the horizon length, To, changes, but Po will depend on the future values and the 
terminal conditions and will vary with the horizon length. The asymptotic 
linearization converges faster than the fixed point for all initial conditions. 

Figures 14 - 16 present some computational results for the Boucekkine 
Model. Figure 14 reports the approximation error while Figure 15 reports the 
variation in the change in approximation error as a function of the computation 
horizon when d = 0.5 For any given horizon, the approximation error is always 
significantly less when using the asymptotic linearization. The asymptotic 
linearization algorithm would signal convergence before the fixed point algorithm. 
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The accuracy of the solution does not suffer since the aggregate errors are so much 
less for any given computation horizon. 

Figure 16 presents a graph comparing the number of horizons required for 
convergence for the two algorithms as a function of the initial conditions for w. The 
asymptotic linearization converges faster than the fixed point for aU initial 
conditions. 

4. CONCLUSIONS 

Linearizing non linear models about their steady state makes it possible to 
use the Anderson-Moore Algorithm(AIM) to investigate their saddle point properties 
and to efficiently compute their solutions. Using AIM to check the long run 
dynamics of non linear models avoids many of the burdensome computations 
associated with alternative methods for verifYing the saddle point property. In 
addition, for models that have the saddle point property, AIM provides a set of 
terminal conditions for solving the non linear model that work better than the 
traditional approach of setting the end of the trajectory to the steady state values. 
Furthermore, the asymptotic linear constraints can also generate initial conditions for 
the solution path that are better than initializing the solution path to the steady state 
values. Using the improved asymptotic constraints typically halves the 
computational burden associated with solving the nonlinear problem. 
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Figure 13: Horizon Length as a Function of Initial Conditions 
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A AIM Bootstrap Example 

For T 0= 0 we can use Equation 12 to compute ~ 0, ~ 1 for arbitrary initial 
conditions: 

[< .. "j' m ... j - x. i 
~ '-:\1:" : 

Xu '" 81 (p" I .. ' P ) 1 
(s"I-.s*}j 

Since the eigenvalues of B_1 are (1 + Y ) and A. (I - 2s*) the bootstrap path 
ultimately converges to the steady state. The bootstrap path approximation to the non 
linear solution improves as the solution approaches the steady state. 

For T 0= 1 after substituting the initial conditions and the AIM bootstrap 
path, we must fmd rna; Po; So satisfying the system 

(H··f';>· emo .... ..;.. ,i.\l" p(p .. -/1j(2 .. •· .. l'I$!I 

1 .. "7110 ) 'J 1 ( m+i::'In;)) 'Pf!. m·U-:·\·(J}c,J···fj,x·· P·f·2i l),.,,)) ........ ('J ····n + ogt - .... p Of!, P +- ...;;.:....:,~. ~------;....::.;~=;.....:;=-~;;;..;..~ 

Po [10 

····"TiL.l .... ''iif''-.l + ''(IL + rno .... 6so ;::: 0 

-(8"'1)..) + ·~ ... 1).. + '''0 ~~. 0 
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B Transition Matrix Details 

r, e 
~ 
~ 

OJ ;J • II to 

~ 

~ r, 
• C 
8 
~ 

P 

• & c 
l'to 

~ 

iI i l' 

··C.$;8m,l{l: ~ ~ 

··I}.iItII.e'yt~lL: 

,. ~ ., 
c 

u ~ , 

IJ il 
o 
o 
o 
G 

• 
·.·H~5Jtd!~ 

~ Q 

~ . 
(i Ii 

~~1Ii0A;, 

~.lUiU1Uol) 

I).! .. ~,J(~ 

~ 
o 
~ 

• 

3 
a 
• , 
3 
a 
• t 
.\. 
o 
~ 

o 
~ 
ij 

~ 
o 
3 
a 
• '11lFrltfOt:t.m::J·~~Stt.2 ;:I:Jh\\':l~·l ... ", 

-!. 
.:.~~.!.an ... ' ~J.V1114:l"5. +:!'.1m,!1iJ}r·J•·M 

ij 

;t . .;.:,,;,::,. ¥t.aau-;~::: ~/:s. ""7t~t;l{t; - :.":'oi! 

• s. 
o 
o 

0' »1 
~ ; 
e; . ; 
u 1 
~ ; 
0; 
0; 
01 
~ ; 
d 
0; 
o i 
to! (; f!: 

J. 01 
~ t.; 

r,; 
I).ltt-:o;.:<r. O.ot)1.: J-~.; It:. :i . .:-~.:f::~'1!'i':~··' ~J 

·'~~If ··l~ ~i 
·~~rml!~di tI! 
- fi.~;!:4i rt~li~ ~ : 

\S'f7t 
~ UWo_ 

u, ~; 

-tiJ.Mlt?H:~1.; ,,1 ~ j 

• ~-n 

~ ",,,!!: 

Table 6: State Space TTansltion Mattix 



85 

Table 7: Auxiliary Initial Conditions Dimension 



PART TWO 

RATIONAL EXPECTATIONS AND LEARNING 



CHAPTER 4 

MODIFYING THE RATIONAL EXPECTATIONS ASSUMPTION 
IN A LARGE WORLD MODEL 

Stephen Hall and Steven Symansky 

1. INTRODUCTION 

Many of the large econometric models in use around the world have 
introduced rational expectations(RE) as their main operating assumption over the last 
ten years, largely because of the issues raised by Lucas(l976). These include the Fair 
model, Minford's Liverpool model, the quarterly models of the National Institute of 
Economic and Social Research, the London Business School and HM Treasury 
model in the UK, Multimod at the IMF, the Global Econometric Model (GEM) and a 
number of others. A considerable amount of effort has been spent in the academic 
literature on attempting to test the relevance of the RE assumption in the real world, 
we will not attempt to survey this literature here, a good introduction is the book by 
Pesaran(l987). This literature has not found overwhelming support for the RE 
assumption, but on the whole it has not fared too badly. We want however to make a 
clear distinction between these tests and the implementation of RE in an econometric 
model. Most of the standard tests of RE are attempting to test if agents use all 
available information in an efficient way. The model under study is usually not either 
complete or detailed and so forcing variables are often generated through 
unrestricted V ARs or in some other, non-structural. way such as instrumental 
variable estimation. These tests may then be viewed as a test of a weak form of 
rational expectations. When the large econometric models make the RE assumption 
they are imposing a much stronger assumption, one which we feel is of a quite 
different nature. They are assuming that agents actually use that particular model to 
form their expectations. That is, to take an example, agents have full knowledge of 
the London Business School model; they believe it to be the true model of the 
economy and that they use it to form full model consistent expectations. Such an 
assumption has never been tested before it has been imposed on a model. 

In this paper we propose a test of the relevance of this strong form of the RE 
assumption in a large econometric model (note this is not a test of the relevance of 
RE on the part of real world agents). If the model fails such a test the question then 
arises as to what should replace the full RE assumption The alternative used in this 
paper is an expectations rule based on the learning literature. Some researchers have 
already begun to adopt this course; see Hall and Garratt(l992a, 1992b) or Barrell, 
Caporale, Hall and Garratt(1993). This has been partly motivated by the widespread 
realisation that the introduction of RE into the large forecasting models has made 
them almost unusable in a forecasting context. We will examine this option by 
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introducing learning-based expectations into a single country sector of MUL TIMOD 
and assessing how important the economic implications of the present RE 
assumption are. Learning based purely on past information is in a sense the opposite 
extreme to RE as it is essentially abandoning all the future information contained in 
the structure of the model. So this option represents a move from a complete belief in 
the structure of MUL TIMOD to a total lack of belief in its structure. We therefore 
propose a form of learning which incorporates the structure of the model as one 
element in the learning rule but which has other element which allow the relaxation 
of the total belief assumption of full RE. 

The plan of the paper is as follows: Section 2 will briefly discuss the 
implications of the RE assumption in a large model and the way learning has so far 
been implemented. Section 3 will outline the test for RE in a model and the way the 
standard learning rules can be modified to include information about the structure of 
the model. Section 4 will then introduce some standard learning procedures into 
MUL TIMOD to asses the economic importance of the various alternative 
assumptions. Section 5 will apply the test of rationality to MULTIMOD. Section 6 
will then illustrate the effect of introducing the modified expectations assumption 
which mixes both RE and learning into MUL TIMOD and section 7 will conclude. 

2. RATIONAL EXPECTATIONS (RE) AND LEARNING 

The implications of RE in an econometric model have been discussed 
widely but it is worth restating the basic principals here as the test proposed in the 
next section will rest on a precise understanding of the implications of implementing 
RE in a complete model. 

State the model we are using as 

(1) 

where n is the parameter vector. In obvious notation. The expectations variables 
have been treated in various ways over the years. Adaptive expectations and its 
generalization to extrapolative expectations generally sets up some explicit model of 
expectations formation of the form, 

(2) 

This may be specified either explicitly in the model or perhaps more usually an 
implicit rule of this type is used to substitute the expectations out of the structural 
equations (1). Expectations then simply disappear into the dynamics of the model. 
Under RE we replace this assumption with the following one, 

(3) 

where the future values for Y are given by the models own forecast, (3) can of course 
be rewritten in final form as, 
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In this case, where g represents the fully restricted final form of the 
structural model implied by (1) and (3). If our macro models were fully specified 
[that is to say, if the processes generating X were made explicit] then we could 
further simplify (4) to give, 

(5) 

This is simply a restricted form of (2) where the restrictions implicit in the function h 
come from the full structural model (I) and the expectations assumption (3). The 
advantages of (5) over the unrestricted expectations rule (2) is that any regime 
change which is implemented in (I) will automatically be reflected in the RE 
expectations rule (5) where as (2) will be unaffected by the regime change and so 
will be misspecified. This is, of course, the Lucas(1976) point that a model which 
relies on extrapolative, fixed parameter, rules will not be structurally stable in the 
face of regime changes. 

Given the obvious presence of policy regime changes in the real world the 
Lucas critique provided considerable motivation for modellers to incorporate the 
rational expectations rule (3) or (4) into their models. It has long been recognized 
however that this involves a very strong assumption about both the degree of 
knowledge which agents have and the way they process it. An alternative, less 
stringent assumption which has received increasing attention in the theoretical 
literature and some recent attention in applied work is learning. Essentially the 
problem with (2) as an expectations model is that the coefficients of the expectations 
process are fixed. So, when a regime change occurs there is no way for the 
expectations mechanism to adjust to this change. This will, in general, lead to the 
possibility that the expectations rule will make systematic errors and be quite 
untenable as an appropriate rule for an intelligent agent to use. This has lead to the 
learning literature where agents specify an expectations rule such as (2) but then 
proceed to revise and learn about the parameters of the system so that (2) then takes 
on the general form of, 

(6) 

In this model the parameters change over time, and agents form a view of these 
parameters based on the current information set. Variants of this learning procedure 
have been examined by Bray(1983), Bray and Kreps(l984), Bray and Savin(l986), 
Evans(1983, 1985, 1986a 1 986b), Woodford(1990), Townsend(l978, 1983) and 
Marcet and Sargent(l988, 1989a, 1989b) amongst others and a recent survey may be 
found in Evans and Honkapoiga(1992). Marcet and Sargent(l988) summarize much 
of the main results of this literature, the concept of learning is characterized as a 
mapping in the parameter space, ~~t-l = S(~t_l~_2)' where, if this mapping achieves 

a fixed point, learning has ceased. This fixed point is referred to as an expectations 
equilibria (or E-equilibria) and it can be demonstrated under fairly weak assumptions 
that this equilibria is actually a RE equilibrium. So the learning approach has the 
attraction that it does not require the stringent informational assumptions of the full 
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RE assumption, but also that it is able to cope with regime changes and will not 
generally produce implausible expectations rules. 

In small models it is fairly easy to specify learning rules which are adequate 
and uncontroversial as the full reduced form of the system can be used as a suitable 
specification. In large econometric models this is not possible and a restricted 
information set must be used simply because of the size of the unrestricted reduced 
form. This raises two questions. First how should we choose this restricted equation 
and how crucial is this choice to the final model properties? Second, how can we 
allow this restricted model to allow us the flexibility of analysing a broad range of 
policy questions? One of the great advantages of the RE model is that it uses the 
fully restricted reduced form of the model so that all exogenous processes are part of 
the expectations process. The model is therefore adequate to investigate the effect of 
changes in any future exogenous variable. Take, for example, a proposed future tax 
change, this will have immediate impact effects in the RE model. The learning model 
can be specified to deal with this if the announcement of future tax policies is 
included in the information set of the learning rule, but this has to be done explicitly. 
We cannot put all possible variables into the learning rule because there are too 
many and we cannot anticipate all future simulation needs. So the restricted 
information set of the learning rule represents a limitation on the practical usefulness 
of the model. 

We therefore have a conflict of objectives. RE gives the sophistication of 
model properties that we want for many purposes; but it does so at the cost of what 
may appear an unreasonable informational assumption. Learning has a much more 
intuitively appealing informational base, but it does not offer the flexibility and 
richness of analysis which is sometimes required. In the next section we address this 
conflict by proposing the following methodology: first, test the RE assumption 
within the context of a large model. If it is found to be a reasonable assumption, 
supported by the data, then we may stay with the established RE procedures. Second, 
if as we suspect, RE is found to be an unrealistic assumption then the expectation 
rule may be augmented to allow for both rational components and for learning. This 
allows a much more complete analysis of future expectations, credibility, and speed 
of learning effects than either pure backward looking learning or pure RE. 

The next section will address the question of how to perform such a test. 

3. A TEST FOR RE IN A MODEL 

The standard approach of testing the RE assumption in many settings is to 
take some measure of the expectation of a series, such as the forward exchange rate 
as a measure of the expected future spot rate, and then to see if any information 
available in the information set is able to add explanatory power. Under the RE 
assumption all available information should be analysed in the most efficient 
possible way, so nothing in the information set can add any extra explanatory power 
over the RE expectation itseIf(see for example Hoderick(l987). We propose to 
proceed in exactly the same fashion. 
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Equation (5) is the fully restricted reduced form forecast of the model, 
based only on information available at time t. We set up the null hypothesis that h is 
the true RE forecast of Yt+! and therefore the expectations error should be a white 
noise innovation which is impossible to predict from the available information set. 
This may be tested simply by estimating a model of the following form, 

(8) 

Under the null hypothesis, that we have the true model and agents know and 
use this model we expect B=O and the coefficient on h to be unity. If however we do 
not have the true model, or if there is some real world departure from rationality, 
then this may be captured in the model by some of the parameters in the B vector 
being non-zero. This is an expliCit test of the restrictions imposed in the h 
formulation. 

One complication is that for most econometric models we cannot solve the 
model for the formulation h in (5), but ouly for g in the same equation, as the model 
driving the exogenous process is not generally made explicit. But remember that h in 
(5) is simply equal to the models own conditional forecast based on information up 
to t, from (4). Hence, in place of h in (5) we could simply use YHilt-l That is the 
model's own forecast ofY in t+i constructed only from information available at t. 

We propose constructing a time series of forecasts from a given model and 
using these in a formal test such as (7). This test is however a rather weak one as we 
are limiting the way the information set is being used rather severely; the alternative 
to the RE assumption is a simple fixed parameter extrapolative rule and we know 
that if the data period has contained important regime changes this rule may not 
perform well. We also propose setting up a more general form of this test where the 
alternative is an explicit learning model. This would have the form of, 

(9) 

If a test such as (8) rejects the RE assumption, how should we then proceed 
to deal with expectations in the model. Our suggestion is to work directly with the 
information set which has proved to be superior in our formal testing. That is, if both 
parts of (8) hold some explanatory power then we should use both of them in the 
model to form expectations. In effect (8) will become the expectations generating 
equation in the model. This would then nest the standard RE solution within it as a 
special case. It would however modify the jump properties of the simple RE model if 
the estimation found the non RE parts of the model to be important. It would also 
retain the basic property of the RE model that a change in any future exogenous 
variable would potentially have a big impact on the present. 

We need a way to estimate the time varying parameters in (8) and to 
simulate them in the full model solution if that should prove necessary. We will use 
the Kalman Filter for both purposes, following Cuthbertson Hall and Taylor(1992). 
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Let 
Yt = B'Zt + &t 

be the measurement equation, where Yt is a measured variable, Zt is the state 
vector of unobserved variables, B is a vector of parameters, and &t - NID(O,r J. The 
state equation is then given as: 

Zt = 'P Zt-I + \II (11) 

where 'P are parameters and \11- NID(O,Qt). Qt is sometimes referred to as a 
set of hyper parameters. 

The appropriate Kalman filter prediction equations are then given by 
defining z"t as the best estimate of Zt based on information up to 1, and Pt as the 
covariance matrix of the estimate Z"b and stating: 

(12) 

and 

(13) 

Once the current observation on Yt becomes available, we can update these 
estimates using the following equations: 

(14) 

and 

(15) 

Equations (12)-(15) then represent jointly the Kalman filter equations. 

If we then define the one-step-ahead prediction errors as, 

- ..". Vt - Yt -u Z~t-I 

then the concentrated log likelihood function can be shown to be proportional to 
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(17) 

where t = B'Ptlt-1B+Bt and N=T -k, where k is the number of periods needed to derive 
estimates of the state vector; that is, the likelihood function can be expressed as a 
function of the one-step-ahead prediction errors, suitably weighted. This allows us 
the estimate the hyper parameters and to derive standard likelihood function-based 
test procedures for the tests outlined in (8). 

4. LEARNING IN MUL TIMOn 

In this section we examine two questions; what is the quantitative effect of 
replacing the RE assumption with learning in MUL TIMOD?l And, how sensitive 
will the results are to the choice of the learning rule? We address these questions by 
taking a representative country block from the model and conducting our 
experiments on this prototype country in isolation from the rest of the model. This 
simplifies the computational burden of the following experiments at the cost of 
cutting of some of the feedbacks which would come from the rest of the world in 
response to a domestic shock. As these responses are relatively small and constant 
across the different experiments, we do not believe that this simplification will have 
a qualitative effect on the results to be reported. 

In MUL TIMOD the exchange rate is approximately determined by a 
standard open arbitrage equation under rational expectations, and that the expected 
exchange rate is taken as the next periods actual model solution for the exchange 
rate. In our experiments with learning we have replaced this assumption with an 
explicit learning rule for the expected exchange rate.2 This rule takes the following 
form. 

(18) 

where E is the log of the exchange rate; RP is the log of the domestic to US price 
ratio (in domestic currency); and r and rUs are the French and US short term interest 
rates respectively. This equation was estimated using annual data over the period 
1966-1993 using the Kalman Filter and this provided estimates of Q and P ( the 
covariance matrix of the state equations and the uncertainty of the initial parameter 
estimates).3 The follOwing diagnostics describe the properties of the one-step-ahead 

1 For a detailed description of MULTI MOD see Masson et al (1990). 

2 In MUL TIMOD there are several expected variables that are detennined using RE, such as expected 
income, the expected short term interest rate and expected prices. In this paper we have only focused on 
the exchange rate. 
3 Data of a higher frequency would have provided better estimates, we have chosen to restrict the data 
frequency to that used by MULTIMOD to ensure compatibility with the model. 



96 

residuals,4 Skewness=0.03, Kurtosis=-1.6, BJ=4.0, BP(l)=0.03, BP(4)=6.9, 
BP(8)=9.6. 

In order to asses the sensitivity of our results to the specification of this 
equation we also considered three simplifications of this general learning rule. 

rule 2: which contained only the time varying constant. 
rule 3: which contained a time varying constant and a lagged dependent 
variable. 
rule 4: which contained the time varying constant, the lagged dependent 
variable and the interest rate differential. 

The initial experiment carried out was a simulation involving a reduction in 
the money supply of 10% for 60 periods (years). Under RE the expected result is that 
in the long run the price level will fall by 10%, the nominal exchange rate will rise 
by 10% and there will be no real consequences. In the short run we would expect the 
exchange rate to initially overshoot its long run equilibrium that is it would rise by 
more than 10% and then fall over time. 

Figure 1 reports the change in the exchange rate from base for the rational 
model and for the four variants with learning. The long run equilibrium for all five 
simulations is nearly identical (given the size of the dynamic fluctuations) but the 
response of the model over the first 25 years is quite different. Under RE we see the 
expected overshoot in the exchange rate followed by a fairly rapidly damped cycle 
back to the long run equilibrium. In all cases the learning models have a much 
smaller initial change in the exchange rate but then show a much slower, and in some 
cases more erratic movement towards the equilibrium. So both the immediate impact 
and the medium term solution to the model are significantly affected by the 
introduction of learning. 

It is interesting to note that the exchange rate response under the general 
rule tended to move the least amount, took longer to reach equilibrium and exhibited 
less cycling. This appears to be the result of the relative price term and is not 
necessarily a general result. The learning coefficient on the relative price term has 
the 'wrong' sign5 in the base at this point in time, and this tends to depreciate rather 
than appreciate the exchange rate6 However, over time the coefficient changes sign. 
In general the inclusion of this variable in the learning rule tends to damp the 
exchange rate movement in this scenario. 

4 BJ is the Bera-Jarque test for normality, distributed as "1. 2 (2) and BP(I) is the Box-Pierse test for serial 

correlation distributed as "1.2 (i) . 

5 The notion ofthe 'wrong' sign is a little difficult here as we are dealing with a complete reduced form of 
the system and so we can not unambiguously sign any of the parameters. None the less we acknowledge 
the intuitive problem which exists here. we report these results as intellectually honest, but recognise that 
in a practical policy analysis we may wish to intervene here. 
6 Since the learning properties are not independent oftime and the estimated relative price tends to change 
sign over the estimation period. Ifwe had started the estimation during a period with the 'correct' sign, the 
exchange rate change would likely have been larger. This illustrates a general property oflearning models, 
that the short rune response of the system will vary with the current state of the learning process. 
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Given that the model under all the learning rules still achieves the same 
equilibrium, it is to be expected that the learning procedures have all reached an 
expectations equilibria by the end of the period. This is confirmed by examining the 
change in the parameters for the learning rules which in all cases have stabilised by 
the end. The absolute change can however give a misleading impression as to the 
relative importance of the changes in the parameters as it does not take any account 
of the scaling of the variable which the parameter is affecting. We propose the 
following decomposition to illustrate the relative importance of the changes in the 
parameters. If the expectations rule is 

Yf = BtXt (19) 

and in the simulation this becomes 

(20) 

then by construction 

(21) 

Thus the total change in expectations may be divided into two parts; the change in 
the variables scaled by the new parameters, and the change in the parameters scaled 
by the base values of the variables. [This is not a unique decomposition but other 
alternatives give very similar answers.] Consequently it is appropriate to scale the 
change in the parameters by the value of the variables in each period. Figure 2 shows 
the scaled changes in the parameters. The importance of the change in three of the 
parameters is of a similar magnitude in the long run with the total effect explaining 
slightly more than half the total change in the expected exchange rate. 

Figure 3,4 and 5 show the response of the rest of the economy (in terms of 
the change in the price level, GOP and interest rates) to the assumption about 
expectations formation in the exchange rate sector. Broadly the picture is as 
expected; the long run solution to the model is unaffected by the various 
assumptions about expectations formation and interestingly enough the immediate 
impact effect is also very similar. The real difference lies in the adjustment path. 
Here we see much longer lasting temporary effects on both real activities and prices. 
Under RE the real GOP effect is less than 0.5% after about 10 years while the 
general learning model takes about three times as long to reach this point. A very 
similar picture is also true for the price level. It should be remembered that learning 
only replaced RE in the formation of exchange rate expectations. The differences in 
output, prices and GOP would have been likely greater iflearning replaced RE for all 
of the forward looking variables. 
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Figures 6 and 7 show a similar set of experiments for a fiscal policy change. 
Figure 6 shows the change in the exchange rate as a result of a fiscal stimulus equal 
to 5% of GDP. The impact effect of the learning models and the RE model are again 
quite different and this difference persists over the first 10 years of the simulation. 
In the longer run the two forms of expectations formation provides broadly similar 
results with the exception that the learning models tend to be somewhat more 
volatile. The various learning rules also yield a very similar path for the exchange 
rate, confirming that the choice of specification of these rules does not strongly 
affect the model's properties, at least when learning is only applied to the exchange 
rate. Note that the sharp movement at the end of the simulation period under RE is 
the result of the terminal condition which has been imposed on the model. This 
jump is not economically meaningful. 7 

Figure 7 shows the GDP response in the model and here the different 
expectations assumptions yield a remarkably similar profile, although the short run 
composition of GDP is altered somewhat under learning and rational expectations 
due to the very different exchange rate profile and hence different trade and 
investment patterns. 

Figure 8 shows the change in the scaled parameters in the learning rule, this 
again confirms that an expectations equilibrium has been reached as the parameters 
have clearly converged on constant values. 

The broad conclusions of these two sets of experiments are that learning 
converges on the RE solution fairly convincingly but that fairly substantial 
deviations exist in both the short and medium term between the implications of RE 
and learning. As expected the initial movement of the exchange rate under learning 
is much more moderate than under RE but often the response of the learning models 
are more dynamically complex and also more volatile. This can delay the approach 
to equilibrium considerably, perhaps from 10 years under RE to 30 years under 
learning, and it can give rise to substantially different economic consequences over 
this period. 

7 In general, most MUL TIMOD simulations involve changes in the endpoint. However this was not done 
in this experiment, but it has little quantitative effects on the results. 
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5. APPLYING THE TEST TO MULTIMOD 

In this section we apply the testing procedure outlined in section (3) above. 
We can consider testing the RE hypothesis at two levels, the weak and strong form. 
The weak form test would be effectively testing the presence of RE in the real world 
but would not make the assumption that agents use a particular model to form their 
expectations. The strong form test would follow (8) in testing the validity of the 
hypothesis that expectations ore formed using a particular model. 

A WEAK FORM TEST 

We begin by asking the question, how relevant is RE to the real world? We 
address this in the following equation, 

(22) 

This equation is a transformation of the open arbitrage equation which imposes the 
unit coefficient on the interest rate term and breaks the expected exchange rate term 
into two parts, a rational expectation term and a learning term. If the weak RE 
assumption is correct, we should expect bl=1 and b2=0. If however there is 
information contained in the learning rule which is useful in explaining the 
determination of the exchange rate - over and above that contained in the next 
period's outcome - then we would expect b2 to be non-zero. The RE term is defined 
as the next periods actual exchange rate, which is instrumented in the test to allow 
for the measurement error bias generated under RE (following Wickens(1982». The 
learning expectations term is derived as the forecast of the general time varying 
parameter rule. Note that these two procedures use the information sets in a very 
different way; the RE term is instrumented using the whole sample information, so at 
any point it contains information about the future, but it is constrained to use a 
constant parameterisation. The learning rule at any point in time uses only past 
information as the parameters are not influenced by future out turns for the exchange 
rate but the parameterisation is more flexible as the parameters are allowed to change 
over time. The instrumenting system for the RE expectations was a fourth order 
VARin the exchange rate and interest rate differentials, Given that we only have 
some 29 annual observations to work with this was felt to give a reasonable balance 
between consistency and efficiency. This test then produced the following results,8 

Et -(rf -rus) = 0.42E~ +0.59Er+l 
(2.6) (3.7) 

ARCH(l) = 0.01 LM(I) = 2.1 LM(4) = 5.5 

BJ(2) = 0.49 RESET(4) = 2.0 

8 't' statistics in parenthesis, based on Newey-West cOITected standard errors. 

(23) 
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This equation shows that both bl and b2 are significantly different from zero and that 
the slightly larger weight is on the learning expectations term. So this suggests that 
even the weak form of RE can be rejected in this instance. 

THE STRONG FORM TEST 

In order to implement the strong form test we need to produce a series of 
one-step-ahead forecasts of the exchange rate under full model consistent 
expectations. This amounts to a series of 'pure model' forecasts starting in successive 
periods. In principal all the future values for the exogenous variables should be 
generated endogenously using time series processes and the equations residuals 
should be set to zero. In practice it is often not wise to set the models residuals to 
zero as the historical behaviour of the models residuals may be a long way from 
white noise. If so the model's forecast can be substantially improved by generating 
residuals for the forecast period from a set of simple auto-regressive rules (these 
might be as simple as an average over the past or they are more complex time series 
models). The error terms in MUL TIMOD are not even approximately white noise for 
several reasons; MUL TIMOD was intended to be used in policy analysis and not for 
forecasting. The auto-regressive errors were not explicitly added into the model and 
constants were omitted and lumped into the error terms. In addition there have been 
the usual revisions to the historical data. Our initial intention therefore was to 
generate a series of one step ahead forecast from the model under full RE where both 
the exogenous variables and the residuals from the model equations were generated 
from a set of simple time series rules. In practice this turned out not to be feasible as 
the model failed to solve for a number of periods when this full set of rules was 
included. RE models have not been used for forecasting since practitioners have 
found that the forecasts are very poor, especially in terms of the first period forecast 
which is most heavily influenced by the RE jumping property. A backward looking 
model generally provides small short term forecast errors which tend to build up 
over time. With an RE model all the future movements in variables (including the 
forecast errors) affect the first forecast period. We believe that it would have been 
possible to implement this procedure fully by searching for rules that were suitably 
stable but the time and resource constraint limited the scope of this search and a full 
set of satisfactory rules could not be obtained. The procedure we adopted therefore 
was to set a small but key group of residuals to those needed to actually generate the 
true outcome. This probably has the effect of biassing the test in favour of the RE 
assumption as we are providing it with data which was not available at the time. A 
further limitation of the test is that the sample for the test was limited by the length 
of the MULTIMOD data base which only allows us to run the model from 1975, so 
that the test could only be carried out over the period 1975-1992. We therefore 
perform the formal test in the light of the likely bias towards RE and the relatively 
small sample available. The equivalent strong form RE test (22) is then, 



Et -(rf -rUS) = 0.15Effl +0.87E~+1 

(5.2) (0.8) 

ARCH(1) = 1.0 LM(1) = 5.4 LM(4) = 6.1 

BJ(2) = 0.6 RESET(4) = 2.0 
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(24) 

Despite the bias in the infonnational assumption used to generate the full RE 
solution this test finds that the strong form assumption is significantly rejected and 
that the weight on the RE term is not significantly different from zero. 

A COMPARISON OF THE TWO 

In (23) we rejected the weak form of the RE assumption. This makes it 
unlikely that we would actually accept the strong form of the RE assumption. It is 
however possible that the strong form expectations series contains the same 
infonnation as the weak form series. That is if only some agents are fully rational but 
they actually do use this model to form their expectations then we might expect to 
find that b l in (23) was identical to that in (24). In other words, although we have 
rejected the assumption that all agents are fully rational we might not reject the 
assumption that the forward looking part of the expectations process is actually well 
modelled by a particular model. This can be tested formally by asking if the two 
estimates of b] significantly different from each other. Because of the limitations 
surrounding the MUL TIMOD RE forecasts and since the two estimates are so 
different, the fonnal test is unnecessary. 

6. MODIFYING THE EXPECTATIONS RULE 

In this section we will consider how the modified eX1>ectations rule can be 
incorporated into an econometric model. As in the testing case, there is basically two 
possible approaches resting on the two assumptions of weak and strong RE. If we 
make the strong assumption, that agents do indeed use this model to form 
expectations then we have a direct estimate from (23) of the relative weights that 
agents place on the RE and learning terms in (8). We can then incorporate this 
mixture of RE and learning quite simply by using (8) directly as an equation in the 
model which generates the expectations variables. (8) can be given a slightly 
different interpretation by reparameterising it as follows, 

(25) 

where (1- OStlt_l (L) = B*_I (L). This then weights together two parts, the standard 

RE solution given by h and the learning expectation given by the time varying 
parameter model. 

If the tests in section 5 suggests that the strong form of the RE assumption 
is not valid then clearly we would want to give the RE assumption a much lower 
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weight. We can do this by taking the estimated weight from (8) but there is however 
a further complication which rests in the fact that h is the reduced form of the model 
(I) while the expectations rule is taken to be (3) under RE. lfwe replace (3) with (8) 
this will actually change h. There are three ways to proceed. The fIrst is to use the 
following algorithm to build up a solution, for the period t... T. First set 1=0. 

Then 1. set r = I, solve the model for periods j=t+I .. .T, and defIne yRE as 
the solution and set it equal to h. 

Next 2. set r = r·, the estimated value. Then with h(YRE) fIxed, solve 
the model for periods j=t+1... T. 

3. Step 2 gives the solution for period t+1. lft+I=T stop; otherwise set 1=1+ I 
and go to 1. 

Second, a much easier alternative is to solve the model with the new 
expectations rule in it, although this will not be a true reflection of the dynamics of 
the rationality test because h will be modifIed by the new learning rule. 

A third and fmal alternative is to recognize that the learning rule should be 
part of the model structure once we have rejected the simple RE assumption; but that 
it should have a different weighting pattern from that derived in (8). The way to 
estimate this weighting pattern is to derive a time series of forward model solutions 
based on an arbitrary r and then to estimate an equation of the form of (8) to derive 
a new value for r , and then to iterate over this procedure to convergence. 

In general our preferred procedure is to use (8) to test the RE assumption 
and then to use the fmal of the three options above to estimate a parameter based on 
a combination of learning and model consistent expectations. However given that 
our test of the strong form RE assumption gave virtually an insignifIcant weight to 
the RE term there is little interest in performing simulations which would only 
replicate those of section 4. To illustrate the effect of the mixed rule on the models 
simulation properties we therefore performed a simulation based on the weak form 
parameter weightings given in (22), that is 0.6 on the learning term and 0.4 on the 
RE term. The equivalent simulation on monetary policy to fIgure I was then carried 
out under this mixture of RE and learning assumptions. The effect on the exchange 
rate is shown in Figure 9, under this mixed assumption the initial jump in the 
exchange rate is almost twice what it was under pure learning and the model reaches 
approximately the right level of the exchange rate almost as rapidly as under RE. It is 
however much more volatile and the cycles in the system take much longer to damp 
down to the full long run equilibrium. Again the medium term (say 10 years) 
implications of the model under this mixed assumption are very different from the 
full RE model. 
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7. CONCLUSIONS 

This paper has argued that the RE assumption is an extreme and umealistic 
one when it is applied to the context of a large econometric model. We have 
proposed a test of this assumption in a full model context and illustIated that one 
major model does not meet this test. We have then gone on to propose an 
expectations rule which mixes learning and model consistent expectations so that we 
make use of the restrictions on the full information set implied by the large model 
but we do not fully accept the rigour of these restrictions. We illustrate the effect of 
this new style learning rule with a range of simulation exercises. 
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CHAPTERS 

BOUNDEDLY VERSUS PROCEDURALLY RATIONAL 
EXPECTATIONS 

Scott Moss and Esther-Mirjam Sent 

Some economists who have relied on the rational expectations hypothesis 
are now seeking to demonstrate that rational expectations equilibria can emerge in 
models with agents who are artificially intelligent. They typically model agents' 
intelligence through the use of genetic algorithms. However, these algorithms 
misrepresent current understanding of human cognition as well as well-known and 
long-standing evidence from business history and the history of technology. This 
paper implements a well-validated representation of human cognition in SDML, a 
logic-based programming language that is optimised for representations of 
interactions among agents. Within that software environment, a model of a transition 
economy is developed with three production sectors and a household sector. The 
numerical outputs from that model are broadly in accord with the statistical evidence 
from the Russian economy. The model itself is developed explicitly to incorporate 
qualitatively specified characteristics of entrepreneurial behaviour in that economy. 
Unlike conventional economic models, transactions are negotiated and effected 
explicitly - there are no unspecified or under-specified "IIUU.kets". 

BOUNDEDLY RATIONAL EXPECTATIONS 

Adaptive expectations models contain an asymmetry in the sense that in 
those models econometricians, who are presumed to be fully knowledgeable, 
forecast better than agents, who are presumed to rely on mechanistic backward
looking extrapolative rules. One explanation for the rise of rational expectations 
economics is that it eliminates this asymmetry by placing econometricians and 
agents on an equal footing (see Sent (1998) for further explanations). Hence, rational 
and consistent expectations in macroeconometric models are often justified on the 
grounds that it would be wrong to assume that econometric modelers were smarter 
than the agents who make the decisions that generate the time-series data used to 
specify and estimate the model. If those agents are really as smart as the 
econometricians, and if the econometricians' model of the economy is correct, then 
the agents will also have specified the correct model of the economy and it will be 
the same as that of the econometricians. 

One consequence of this line of reasoning is that, if all agents know the 
correct (econometricians') model of the economy, they therefore have the same 
model. By using this model to form their expectations, they must all have the same 
expectations and there is nothing analytically to distinguish one agent from another. 
The point can be put in two ways. Either there is a single representative agent or 
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agents are homogeneous. This consequence is not only logical, but also desirable 
from the perspective of rational expectations economics. The reason is that many 
rational expectations models seek to derive macro results from general equilibrium 
models. Yet, the Sonnenschein (1972), Mantel (1976) and Debreu (1974) results 
illustrate the precarious nature of this endeavour. It shows that under standard 
assumptions on the individual consumers, such as strict convexity and monotonicity 
of preferences, so that each agent is characterised by textbook indifference curves 
and a positive bundle of endowments of all goods, we can derive an excess demand 
curve for each individual. Summing over all individuals, of whom it is assumed that 
there are only a finite number, gives the excess demand curve for society as a whole. 
Under certain not-very-restrictive conditions, three properties will carry over from 
the individual's excess demand curve to the aggregate demand curve: continuity, a 
value of total excess demand equal to zero at aU prices, and excess demand being 
homogeneous of degree zero. However, these three properties tum out to be the only 
properties that carry over from the individual to the aggregate demand function. In 
particular, the Weak Axiom of Revealed Preference (WARP) may not be satisfied at 
the aggregate level. Yet, if we are to obtain uniqueness and stability of equilibria, 
some such restrictions must be imposed. Now, if the behaviour of the economy could 
be represented as that of a representative agent or a number of identical agents, the 
situation might be saved, since textbook individual excess demand functions do have 
unique and stable equilibria (Kinnan (1972) and Sent (1998) for further discussions 
of this). 

One rational expectations economist who has openly worried about such 
consequences of the rational expectations assumption is Thomas Sargent. For him, 
one undesirable consequence is the no-trade theorem for rational expectations 
models, which indicates that even if homogenous agents have different information, 
they will still not be willing to trade with each other. Consider a purely speculative 
market, meaning that the aggregate monetary gain is zero and that insurance plays no 
role. When it is common knowledge that traders are risk averse, rational, have the 
same prior, and that the market clears, then it is also common knowledge that a 
trader's expectation of monetary gain, based on given information, must be positive 
in order for that trader to be willing to trade. In other words, if one agent has 
information that induces willingness to trade at the current asset price, then other 
rational agents would be unwilling to trade with that agent, because they realise that 
that agent must have superior information. The equilibrium market price fully 
reveals everybody's private information at zero trades for all traders. According to 
Sargent (1993, p. 113): "The remarkable no-trade outcome works the rational 
expectations hypothesis very hard." 

Sargent further discovered that rational expectations models are unable to 
place agents and econometricians on an equal footing. When implemented 
numerically or econometrically, rational expectations models impute more 
knowledge to the agents within the model (who use the equilibrium probability 
distributions in evaluating their Euler equations) than is possessed by an 
econometrician (who faces estimation and inference problems that the agents in the 
model have somehow solved). The reason is that close scrutiny of the justification of 
error terms reveals that identification and estimation of the models require the 
econometrician to know less than the agents. Whereas agents' decision rules are 
exact (non-stochastic) functions of the information they possess, the econometrician 
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must resort to some device to convert the exact equations delivered by economic 
theory into inexact (stochastic) equations susceptible to econometric analysis, 
Sargent (1993, p. 21) therefore acknowledges: "The idea of rational expectations is 
... sometimes said to embody the idea that economists and the agents they are 
modeling should be placed on an equal footing .... These ways of explaining things 
are suggestive, but misleading." 

In an attempt to solve these problems, Sargent has joined the ranks of 
economists who are using algorithms from artificial intelligence and artificial life 
programs to represent heterogeneous agents. Sargent (1993, pp. 2-3) justifies this 
move as follows: 

I intetpret a proposal to build models with boundedly 'rational agents' as a 
call to retreat from the second piece of rational expectations (mutual consistence of 
expectations) by expelling rational agents from our model environments and 
replacing them with 'artificially intelligent' agents who behave like econometricians. 
These 'econometricians' theorize, estimate and adapt in attempting to learn about 
probability distributions which, under rational expectations, they already know. 

In particular, Sargent seeks to demonstrate that it is not necessary to impose 
mutual consistency of expectations on all agents in order to get simulation results 
that approximate the rational expectations outcomes. He suggests that, in general, 
rational expectations equilibria can emerge from computational models in which 
"heterogeneous" agents develop models endogenously. Therefore, Sargent remains 
unwilling to relinquish rational expectations completely. Instead, he tries to reinforce 
rational expectations by focusing on convergence to this equilibrium (Marcel and 
Sargent 1992, p. 140; Sargent 1993, p. 133). Furthermore, he seeks to solve some of 
the problems associated with rational expectations such as multiple equilibria and 
no-trade theorems (1993, pp. 25, 133-134). Moreover, he desires to deal with some 
discrepanCies in rational expectations (1993, p. 27). Finally, he hopes algorithms 
from artificial intelligence and artificial life could assist in the computation of 
equilibria (1993, pp. 106, 152). 

Though inspired by the algorithms from artificial intelligence and artificial 
life developed by researchers associated with the Santa Fe institute, Sargent adopted 
a restricted intetpretation of these algorithms as a result of his reluctance to 
relinquish expectations. Rather than using algorithms to think about populations as 
endorsed by many Santa Fe scientists, Sargent saw them as models of the neurons of 
an individual's brain (1993, p. 76). Rather than relinquishing the notion of an 
equilibrium as advocated by many Santa Fe researchers, he focused on convergence 
to equilibrium (1993, p. 153; Marimon and others 1990, p. 372). 

There is nothing in the assumption of heterogeneous agents or artificial 
intelligence or artificial life to make convergence to equilibrium an obvious or, even 
more emphatically, a necessary outcome. Palmer, Arthur, Holland, LeBaron, and 
Tayler 1994, for example, did not find convergence to rational expectations in their 
first model of an artificial stock market. They conjectured that in on-off situations 
that are never going to happen again or in complicated situations where the agents 
have to do a lot of computing, establishing convergence to rational expectations 
requires loading almost impossible conditions onto these agents. Whereas prices in 
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Sargent's experiments fluctuate around the fundamental value, Palmer et al. obseIVe 
speculative bubbles and crashes. Whereas markets in Sargent's simulations settle 
down to a stationary state, Palmer et al. find that their markets do not do this. 

In a later paper (Arthur et al, 1996) however, the same authors found that 
essentially the same model will converge to rational expectations equilibrium 
provided that learning takes place at a rate which is sufficiently slow. Faster rates of 
learning generate a market regime in which psychological behaviour emerges, there 
are significant deviations from the rational expectations benchmark, and statistical 
"signatures" of real financial markets are obseIVed. 

Darley and Kaufman fmd two similar regimes in dynamic non-cooperative 
games in which agents learn from more or less local interaction with their 
neighbours. States resembling rational expectations equilibria (with shared agent 
perceptions) arise when prediction is easy (because each agent looks at the behaviour 
of a small number of neighbours so there is not much feedback) but not when 
prediction is difficult (because each agent notices the behaviour of a lot of other 
agents and, so there is a lot of feedback). When the model does not generate rational 
expectations equilibria marketed by mutually consistent models or perceptions, then 
the output is meta-stable in the sense that it is marked by periods of stasis 
interspersed with periods of turbulence. 

Slow learning and local learning seemingly can support convergence of 
mutually consistent expectations. Both entail limited inputs of information to the 
learning process. This result is consistent with the fmdings of Moss and his 
colleagues in a number of simulation studies (Moss et al, 1998, for example) that 
local learning in a stable and relatively simple environment leads to agents to hold 
very similar or identical models of the environment and appropriate actions for 
achieving their aspirations. However, environments can sometimes become too 
complicated for the agents' conventional models to provide guides to action and then 
some exceptional means must be found to limit and focus the information presented 
to decision-makers. 

We have now seen that the use of a particular range of artificial intelligence 
algorithms, those associated with Holland classifiers, can be used to represent agents 
who learn to specify mutually consistent mental models of their environments but 
who need not do so. In order to choose among these models, we require some 
criteria. The criteria of Sargent and his colleagues appears to be convergence to 
rational expectations equilibrium. We infer this criterion from Sargent's own 
methods. In several published works, Sargent tweaks the standard classifiers to 
establish optimisation and convergence. l For example, he imposes the same 
classifier systems on every agent of a given type. Hence, despite the claim that 
artificial intelligence algorithms allow the incorporation of heterogeneous agents, 
Sargent's models retain a high degree of homogeneity. Moreover, instead of 
adopting classifiers to model markets, he simulates single agents by the interaction of 
two autonomous classifiers. This leaves him with the awkward corollary that his 
agents make virtual bids (to themselves?) and transactions (with themselves?) to gain 
control of their own actions. Finally, rather than using genetic algorithms to provide 

1 Sargent (1993), Marimon et a1 (1990). 
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the environmental flexibility that other artificial intelligence techniques lack, Sargent 
diminishes their role. In fact, Marimon, McGrattan, and Sargent (1990, p. 358) 
acknowledge: "More standard Holland algoritluns were fIrst tried without much 
success, prompting us to produce the modifted algoritlun." 

We conclude that the representations of cognition used by Sargent are 
arbitrary in the sense that there is no reason independent of his own models to devise 
and use such representations. They are certainly motivated by a wish to give his 
models an appearance of plausibility but there is no effort to demonstrate either that 
these representations are descriptively accurate or that the models in which they are 
incorporated yield outputs which are empirically verifIed. The only criterion seems 
to be that the model outputs should conform to the predictions of rational
expectations theory which, Sargent admits, rests on representations of cognition that 
are implausible in the extreme. 

These analyses are sometimes seen as part of a bounded-rationality research 
program. However, Herbert Simon, the inventor of the notion of bounded rationality, 
would certainly reject the Sargent view. Sent, 1997, describes the difference between 
the Sargent and Simon approaches to representations of cognition as one that turns 
on the descriptive accuracy of the representation of cognition as behaviour. Whereas 
Sargent justifIes the use of genetic algoritluns to represent cognition on their 
effective parallelism in computation, Simon argues that cognition depends on serial 
symbol processing. In effect, Sargent appeals to current views of the physiological 
basis of all mental activity while Simon appeals to experimental evidence about the 
epiphenomena of decision-making and learning as observed by experimental 
psychologists. Furthermore, whereas Sargent sees bounded rationality as a means for 
strengthening mainstream economics, Simon seeks to develop an alternative to 
mainstream economics through bounded rationality. 

Though Simon was the originator of the bounded rationality concept, he 
was not in complete control of it. Recognising this, Simon wrote in a letter to Sargent 
on 11 July 1995: "I could complain and say: 'I invented it and have a right to decide 
how it should be defIned,' but as 1 failed to apply for trademark rights, 1 guess 1 have 
no standing in court." However, we would like to present some arguments to the jury 
in the remainder of this paper. Our defence is based on the criticism that Sargent
type results are generated by computational models with unknown analytical 
properties. Moreover, the learning procedures assumed for agents are arbitrary in the 
sense that there is no reason to believe that actual decision makers learn in a manner 
that is described by those assumptions. Building on this criticism, our defence further 
presents an alternative approach. The difference between the approaches outlined in 
this introduction and our proposal is important for economists if either (a) the two 
approaches imply different theoretical and modeling structures yielding different 
relationships between actions such as policy measures, on the one hand, and the 
consequences of those actions, on the other, or (b) one approach more usefully 
supports policy analyses than does the other. In the remainder of this paper, we 
consider only the second of these criteria. 
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Procedurally rational expectations 

Although the phrase "bounded rationality" was originated by Herbert 
Simon, it has been taken over by more conventional economists and redefined to 
cohere with mainstream economic theory. For Simon, bounded rationality involves 
limited information-processing and computational capacities. For the more 
conventional economist Williamson (1975), in contrast, bounded rationality implies 
limited access to information. The difference is that, for Simon, bounded rationality 
entails the availability of more information than can be taken into account by 
decision makers while for economists such as Williamson bounded rationality entails 
the paucity of information which is therefore a constraint in optimisation procedures. 
Whereas Williamson is reluctant to accept the notion of satisficing, mainly because 
he thinks it would denote irrational behaviour, Simon himself considers satisficing to 
be a direct implication of bounded rationality. 

The effect of redefinitions of bounded rationality such as Williamson's is to 
leave in tact the underlying precept of mainstream economic theory that agent 
behaviour can be represented by some constrained optimisation algorithm. The 
compulsion of economists to adhere to constrained optimisation as the defining 
characteristic of human behaviour is also manifest in, for example, Sargent's 
specification of artificially intelligent agents. The genetic algorithms and classifier 
systems he employs to represent behaviour are different but remain optimising 
algorithms that arguably misspecify the nature of human cognition. 

Genetic algorithms and classifier systems 

Classifier systems are parallel, message-passing, rule-based systems that 
model their environments by activating appropriate clusters of rules. This structure 
allows them to model complicated, changing environments, to interpret the internal 
states of agents in the theory so that the agents seem to progressively "model" their 
world, to make agents able to build up behavioural repertoires that include chains of 
actions that are initiated long before the agent obtains the reward, and to make agents 
able to develop the capacity to plan future actions on the basis of their expectations 
of what the consequences of those actions will be. In particular, classifier systems 
have two especially desirable efficiency properties. First, they do not impose heavy 
memory requirements on the system. Second, much of the information processing 
can be carried out in parallel. 

In classifier systems, the agent is modeled as a collection of basic cognitive 
units, called classifiers. In contrast to standard economic theory, there are no 
consistency requirements on the classifiers of which an agent is comprised. In fact, 
there are some advantages to the notion of an agent as a bundle of possibly 
inconsistent behavioural propensities. First, requiring consistency imposes great 
computational costs on the system, as it entails a lot of internal structure and frequent 
consistency checking amongst different structural components. Second, since the 
world is always more complicated that our personal experience, maintaining 
consistency in an agent's behavioural or conceptual system almost necessarily 
requires a reduction in the agent's range of possible action, in particular in response 
to novel situations. Finally, evidence seems to suggest that we humans do in fact 
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maintain overlapping and inconsistent conceptual systems and associated 
behavioural propensities. 

An agent that maintains inconsistent behavioural propensities has to have 
some mechanism that determined on which of these propensities it would actually 
act. This is where competition enters the stage. There might be more than one winner 
of the competition at any given time, and as a result a cluster of rules could react to 
external situations. The competition mechanism in classifier systems depends on a 
number that is associated with each of the agent's classifiers, its strength, which 
registers the "memory" of how well the classifier has served in the past in the agent's 
quest for reward. A classifier's strength is modified over time by one of the system's 
learning algorithms. 

A classifier system adapts or learns through the application of two well
defined machine learning algorithms. The first one, the bucket brigade algorithm, 
changes classifier strengths by identifying actions that lead to rewards - not just 
those that produce reward directly, but also those that "set the stage." It changes the 
strength associated with each classifier with experience in two ways. First, any 
classifiers whose action is implemented pass some of their strength to their 
immediate predecessors. Second, the strength of classifiers whose action is 
implemented when the agent receives an externally specified reward is increased as a 
function of the reward received. The system can be started off with a set of totally 
random classifiers. And then, as the environment reinforces certain behaviours and 
as the bucket brigade does its work, the classifiers organise themselves into coherent 
sequences that produce at least a semblance of the desired behaviour. 

Even if the bucket-brigade credit assignment algorithm works perfectly, it 
could only rank the rules already present. By itself, it can only lead the system into 
highly optimised mediocrity. Two mechanisms are required to carry out the 
operation of replacing old classifiers with new ones. The first determines when 
replacements take place. It has to recognise situations in which the agent "needs" 
new classifiers. The second type of mechanism constructs new classifiers, which 
would probably improve the prospect for the agent to obtain a reward. This is a job 
for the genetic algorithm, which explores the immense space of possible new 
classifiers. Genetic algorithms carry out a subtle search for tested, above-average 
"building blocks" and build new classifiers by combining parts of existing high
strength classifiers. The idea is that useful classifiers work because they are 
composed of good building blocks, either in the features of the world that trigger 
them or in the actions they recommend. Trying out new combinations of these 
building blocks is more likely to produce useful new classifiers than is any kind of 
random search through the space of possible classifiers. 

The genetic algorithm solves the problem of how to set the dial of 
rationality. The needle can be put at zero initially and then the genetic algorithm 
decides through mutation and recombination how far up the dial it goes. By adding 
the genetic algorithm as a third layer on top of the bucket brigade and the basic rule
based system, an adaptive agent not only learns from experience but can also be 
spontaneous and creative. 
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Classifier systems have been applied to economics in several ways. Instead 
of assuming that agents are perfectly rational, they can be modelled with classifier 
systems and learn from experience like real economic agents. Instead of modeling 
the economy as a Walrasian general equilibrium, societies of classifier systems can 
organise a set of interacting economic agents into an economy. 

The argument that these implementations of genetic algorithms and 
classifier systems misspecify human cognition starts from the implication from 
cognitive science that cognition takes the form of exploitation of what we know and 
a highly directed exploration of our environment that is focused by our knowledge. 
This inference follows from the distinction in cognitive science between procedural 
and declarative knowledge (see, e.g., Anderson, 1993). 

Procedural and declarative knowledge 

Procedural knowledge is knowledge about how to do something and this 
knowledge is held by individuals in a way that does not allow it to be communicated 
directly to other individuals. Declarative knowledge is knowledge of what is true and 
can be communicated directly to other individuals. For example, an Englishman may 
have both procedural and declarative knowledge about the game of cricket. He can 
explain the rules of the game and describe or show a novice how to stand at the 
wicket or where to stand if he is to playoff-stump or what to do if he is the wicket
keeper or the necessity of keeping the bowling arm straight at the elbow. All of this 
knowledge is declarative. To hit the ball successfully and place it where the batsman 
wants the ball to land or to spin-bowl so that the ball hits the ground and bounces so 
as to hit the wicket without coming into the range of the bat require abilities that can 
only be attained by practice. However well a person might know the rules and be 
able to describe the practices of cricket, that person will not be able actually to play 
cricket without acquiring substantial procedural knowledge. 

Independently, this same distinction has been made by historians of 
business, the organisation and technological change who demonstrate its relevance to 
these areas of economic activity. For example, Edith Penrose (1959) calls the two 
types of knowledge objective and subjective in her seminal analysis of the direction 
of the growth of the firm. Yet, her differentiation between the two is couched in the 
same terms as Anderson's (1993) discussion of the difference between procedural 
and declarative knowledge. Similar distinctions - though not quite so explicit as in 
Penrose - are found in Chandler's (1975) work on the development of 
organisational structures and Rosenberg's (1975, 1980) discussions of the 
determinants of the direction of technical change. 

Since we cannot know everything, a reasonable assumption is that the 
declarative knowledge we do have comes from the activities in which we engage. 
How we use this declarative knowledge follows from our experience and, to the 
extent that experience is necessary to use declarative knowledge effectively, its use is 
governed by procedural knowledge. In other words, we start from what we know and 
develop new ideas and perceptions only by extending our experience. 

Genetic algorithms and classifier systems, by contrast, search the whole of 
the environmental information-space random1y and, if well constructed, evenly at the 
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outset and concentrate increasingly on the parts of the infonnation space that yield 
the best results. In the language of the field, genetic algorithms explore the search 
space and then exploit the subspaces described by classifiers that yield the greatest 
fitnesses. For cognitive scientists, human cognition takes the fonn of exploitation of 
what we know and a highly directed exploration that is focused by our procedural 
knowledge. 

The difference has significant implications for economics. Either agents are 
global optimisers in which case genetic algorithms and classifiers can be used to 
represent that optimisation in conditions of constrained infonnation-processing and 
computational capacities or they can at best exploit their existing procedural and 
declarative knowledge in the hope of gaining some local (though possibly large) 
improvement in their circumstances. Hence, the assumption of global optimisation 
can evidently support the construction of models with no concern for the procedures 
by means of which agents actually go about collecting declarative knowledge and 
then developing their procedural knowledge. 

Implications for representations of cognition 

Much of the work in the development of computational cognitive science 
stems from Simon's work and, in particular, Newell and Simon (1972). The later 
work in cognitive science, focused as we shall see on computer software 
architectures to represent cognitive processes, informs the approach taken here. 

'- Indeed, Simon himself is critical of genetic algorithms and classifier 
systems to represent cognitive processes. 

In his distinction between substantive and procedural rationality, Simon 
(1976) stresses the importance of the procedural aspects of cognitive behaviour that 
are left out by genetic algorithms and classifiers. Procedural rationality concerns the 
choice or development of procedures for making decisions when the decision maker 
has effectively limited capacities to process infonnation and calculate appropriate 
outcomes. Certainly, procedural rationality entails satisficing. Our concern here is to 
find a representation of satisficing that uses artificial intelligence and supports 
models of decision making in a macroeconomic environment. 

The particular representation reported in this paper is drawn from several 
cognitive theories that have been implemented as computer software architectures 
designed to replicate data from psychological experiments. These architectures are 
Soar (Laird et al, 1987) and ACT-R (Anderson, 1993). Both of these architectures 
are based on the concept of a problem-space architecture that itself is a tree structure 
of goals and subgoals. The original specification of this goal and subgoal structure 
was developed by Newell and Simon (1972) as a planning algorithm. The sort of 
situation in which it might be used in the Newell-Simon version was planning a trip 
from an office at MIT to an office at Berkeley. If the goal were to make thatjoumey, 
a subgoal would be to fly from the nearest airport to MIT to the nearest airport to 
Berkeley. The subgoal of making that flight would be to get from the MIT office to 
the airport, which would be undertaken by (say) car or taxi. To take the car would 
entail the subgoal of getting from the MIT office to the car by walking. 
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A classic problem on which to test artificial-intelligence algorithms is the 
Tower of Hanoi problem. This involves moving a set of discs of graded size from 
one peg to another, using a third peg as an intermediate step. The five-disc Tower of 
Hanoi problem is illustrated below. The discs can be moved one at a time and it is 
not permitted to place a larger on a smaller disc. The problem-space architecture for 
this problem, as specified by Simon (1975) is to specify a subgoal of getting the top 
four discs onto peg B so that the largest disk and be placed on peg C and then to 
execute the next subgoal of moving the four discs on peg B to peg C. That move 
entails a subgoal of moving the top three discs to peg A so that the remaining disc 
cam be placed on the largest disc that is already on peg C. There is then a similar 
subgoal to get the three-disc tower onto peg A, and so on. Anderson (1993) 
developed a program in ACT -R to learn to solve the Tower of Hanoi problem and 
compared the results of that program with the results of experiments with human 
subjects. He found that the students did indeed learn to use a goal stack in the same 
way as ACT -R. The actual movements of the discs and the setting of goals and 
subgoals were accomplished in ACT -R by production (if-then) rules, see Figure 1. 

A n c A B c 

Figure 1: The Tower of Hanoi Problem 

Three points about the ACT -R representation of cognition are relevant here. 
The first is that the results obtained from ACT -R programs can be compared with the 
results of psychological experiments to verify the accuracy of a program as a 
representation of cognitive behaviour in particular circumstances. Secondly, ACT-R 
is an encoding of an underlying theory of cognition. Thirdly, the representation of 
the problem-space architecture as rules for moving up and down the goal tree and the 
rules for performing tasks to achieve each goal can, in principle, be obtained by the 
standard knowledge-elicitation techniques used for building expert systems. 

Taking the first two of these points together, we have a means of encoding 
procedural knowledge about how agents learn that is informed and justified by a 
particular theoretical structure and discipline that is independent of the domain of 
application in economics or the management sciences. Discussions or arguments 
about the appropriateness of that particular encoding are not likely to be influenced 
by the results desired for economics models. The third point allows us to develop 
independent evidence to support a particular encoding of agents' procedural and 
declarative knowledge. 

As mentioned before, we believe that the difference between models such as 
Sargent's and ours is important if one approach more usefully supports policy 
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analyses than does the other. Therefore, we will report a pilot model of a transition 
economy in the remainder of this paper. This model will be used to investigate the 
characteristics of procedures for learning and decision making that are validated in 
relation to cognitive science and verified in relation to economic time-series data. 
These procedures take for granted bounded rationality in the sense of Simon. These 
limitations preclude the assumption of optimising behaviour. Encoding the process 
of goal formation, learning and declarative knowledge about the environment in a 
manner that corresponds to encodings in the cognitive sciences, we are able to 
determine whether procedures for forming expectations and perceptions about the 
environment are rational in the sense that action based on those perceptions is 
increasingly likely or, in any case, not less likely to further the attainment of agents' 
goals. 

An emerging-market model 

The model reported here was developed to capture certain stylized 
descriptions of the commercial environment faced by newly- privatised and state
owned enterprises in the Russian Federation. One such fact of particular importance 
is the sharp increase in inter-enterprise arrears that was not being repaid during the 
first half of 1992 - an episode known as "the arrears crisis". As shown by Alfandari 
and Schaffer (1995), the volume of arrears peaked in the summer of 1992 at some 23 
per cent of Russian GNP. The volume of arrears soon subsided to an average of 
about 5% for the period after 1992. Some experts find this figure to be not out of line 
with what is a normal amount of overdue trade credit by international standards. A 
straightforward statistical comparison, however, can be misleading because 
enterprise arrears in Russia represent a different type of economic relation. In many 
cases the credit is forced, bears negative real interest and has no fixed repayment 
period or agreed repayment schedule. To a degree, these peculiar features were 
conditioned by the shortage of working capital, a drastic fall in demand and other 
economic consequences of a government's attempt to put an end to the regime of soft 
budget constraints by lifting price control and removing state subsidies to producers. 
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Source: The Monthly Bulletin of the Working Centre on Economic Reform 
of the Government of the Russian Federation, no., June 1995, p. 2. 

Moss and Kuznetsova (1996) argue that the evolution of the arrears crisis 
provides a clear example of how enterprises cope with situations characterised by 
significant uncertainty. In the Russian case, enterprises were forced to adopt a 
survival strategy giving priority to existing, recognised constraints. There was no 
possibility to maximise anything in the framework of those constraints. Indeed, the 
scale of the accumulated debt and its persistence suggest that debt reduction was not 
a high priority. For one thing, both the liquid assets of enterprises and their debts 
have been growing simultaneously. The debt became an element of enterprises' 
survival strategy and was instrumental in prolonging the existence of a business 
environment to which they were accustomed, i.e., one governed by soft budget
constraints. Because the accumulated bad debt grew out of proportion on the national 
scale and became commonplace in all industrial sectors, this important business 
indicator ceased to be seen as a symptom of poor management efficiency. By the 
autumn of 1992,95% of enterprises had bad debts enough to be proclaimed bankrupt 
on legal grounds. Debt performance had become separated from the business 
performance of a firm. 

The Russian arrears crisis provides us with sufficiently clear stylized facts 
that we can use to assess whether the outputs from simulations conform to those 
facts or not. The stylized facts we want to capture, in addition to the arrears 
increases, are a high average and widely fluctuating rate of price inflation and 
volatile but trendless outputs. The point is to capture these stylized facts using a 
credible and validated specification of the processes agents use to develop their own 
models of their environments. 

The modelling language 

The model reported here was implemented in SDML, a strictly declarative 
modeling language that corresponds to strongly grounded autoepistemic logic 
(SGAL) (Edmonds et al (1996), Moss et al (1997). This means that any model that 
runs under SDML is formally sound and consistent with respect to the axioms and 
rules of inference of SGAL. Consequently, models written in SDML can entail 
qualitative as well as numerical relationships without loss of formal clarity and 
rigour. This is an important issue that is taken up in some detail below. 

SDML has a number of object-oriented features that make it particularly 
useful for modelling cognition along the lines described at the start. The particular 
object-oriented features supporting the model reported here are the type (or class) 
hierarchy and the container hierarchy. 

The type hierarchy is similar to the class hierarchy of, say, C++ but whereas 
C++ has simple inheritance (each class inherits the methods and instances of one 
superclass), SDML has multiple inheritance. The basic inheritance class is 
reproduced as Figure 3 from Moss et. al. (1998). 
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The user adds further subtypes, in particular, subtypes of Object, Agent and 
SDML's predefined Agent sUbtypes. The type Agent is distinguished from Object in 
that it has rulebases associated with it. The number of such rulebases varies with the 
time levels defined by the user. Time levels are discussed in several contexts below. 

Agent is the principal type of interest here. Models are specified in terms of 
instances of agents but these will not normally be instances of the type Agent but of 
a user-defined subtype of Agent or one of its predefined subtypes (or of more than 
one of these). Clause definitions and rules are specified in types and are inherited 
from them by their instances. In this way, the rules for a number of identical agents 
can be defined in a shared type. Similarly, agents who are not identical may 
nevertheless share certain rules by means of a common supertype. 

Abstract supertypes such as ParallelCompositeAgent or LoopingAgent add 
particular functionality to agents. The instances of every subtype of CompositeAgent 
can contain other agents (its subagents). Instances of subtypes of 
ParallelCompositeAgent contain subagents the rulebases of whom fire in parallel. 
Instances inheriting from type SerialCompositeAgent fire their rulebases in a 
previously specified order. LoopingAgents loop over time periods and there can be 
an arbitrary number of such time levels. 

Finally, any agent can contain an instance of a subtype of type Meta-agent 
Meta-agents can assert statements to, and retrieve statements from, their containers' 
rulebases in the same way that all agents assert to and retrieve from databases. The 
main difference is that meta-agents can only write rules to and read rules from their 
containers' rulebases whereas they and all other agents can read and write statements 
conforming to any previously defined clause definition when these statements are 
held on databases. Meta-agents are used to devise the sort of agent routines discussed 
by Nelson and Winter (1982) but to do so as a result of some representation of 
cognitive activity. These routines represent procedures that are the best the agents 
and their meta agents have so far found in their attempt to meet their current 
aspirations. 

We will use the type and container hierarchies to put together a model in 
which enterprises learn about each other in the course of finding enterprise routines 
that support their goals and aspirations. 
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The type hierarchy defined for the Russian transition model is reproduced in 
Figure 4 and the container hierarchy in Figure 5 and Figure 6. The type symbols in 
boldface in Figure 4 are user defined. 

All of the common features of agents that engage in transactions are 
implemented in the TradingAgent type. In the main, type TradingAgent defines 
clauses that are used to effect transactions. These clauses include "Order Placed With 
<ProductGroup> <fradingAgent> <Number>" and "Order Received From 
<ProductGroup> <fradingAgent> <Number>". The symbol <Type> indicates an 
instance of that type. Ifa household (say household-18) decides to purchase 12 units 
of com from a farm (say farm-3), it would write "Order Received From com 
household-I8 12" to the database offarm-3. At the same time, it would write to its 
own database "Order Placed With corn farm-3 12". Similarly, if farm-3 decided to 
accept the order, it would write to the database of household-18 "Purchased From 
com farm-3 1.305 12" where the price is 1.395 and the quantity 12 units of com. In 
order to remember the sale itself, farm-3 would write to its own database "saleTo 
com household-181.305 12". In this way the transaction would have been proposed 
and agreed by all of the different types of agent using the same language. However, 
households and enterprises behave differently in a number of ways in the model so 
that those clause definitions and rules that govern the behaviour of each of these 
subtypes of trading agents separately are implemented in their respective types. 

In order to understand the nature of the subtypes of CompositeAgent and of 
LoopingAgent, it is necessary also to consider the container hierarchy of the model. 
The outennost container is debtArrearsModel, an instance of type 
ArrearsInflationModel. The type ArrearsInflationModel is a subtype of 
LoopingAgent from which it inherits all of the rules and clause definitions required 
to enable the model to loop over the time levels defined for instances of 
ArrearsInf1ationModel in the computational model. Type ArrearsInf1ationModel is 
also a subtype of type SerialCompositeAgent from which it inherits the rules and 
clause definitions to support subagents who fire their rules in a sequence determined 
by the agent. In this case, the agent environment fires its rules before the agent 
economy. The agent environment fires its rules once at each date. It is a simple agent 
the function of which is to introduce representations of environmental changes such 
as natural disasters into the simulations. 
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Figure 4: Hierarchy of agent types 

The agent economy is an instance of type Economy that itself is a subtype 
of ParallelCompositeAgent and of LoopingAgent. As an instance of 
ParallelCompositeAgent, it contains agents who fire their rules effectively in 
parallel. This is an important feature in a model that represents transactions as the 
outcomes of communication among agents and where communication is represented 
by the assertion of clauses to the databases of other agents or some other database 
that is common to both. Since the agents are active at the same time, we have to 
represent the fact that a communication can be received only after it is sent. This 
means, in terms of any computational model, that an agent can retrieve any message 
written by another agent only at a time period subsequent to the period in which it 
was written. So, in order to effect a transaction, agent-l will assert an order for goods 
to the database of agent-2 at time t; agent-2 will retrieve that assertion at time t+ 1 
and 
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assert its acceptance of the offer to the database of agent-I. This acceptance 
will be 

retrieved by agent-l and time t+2 and the agreement to transact has been 
concluded. 

In this model, transactions take place each date but the negotiations required 
to effect them we now see will take more than a single time period. For this reason, 
several communication cycles are allowed each date. The clauses shared by instances 
of TradingAgent include, for example, "purchased from" and "sold to", each of 
which has arguments to identify the product, the price, the amount and the trading 
partner. 

Instances of type Enterprise represent cognitive agents. In this model, 
cognition takes the form of the building of mental models that are used to create 
rules for guiding the decisions of the entelprise. These decision rules are what 
Nelson and Winter (1992) call "routines". 

enterprise-n 

elaoorationCycle 

meta@enterprise-n 

Figure 6: The enterprise container structure 

The building and assessment of the mental models are undertaken by 
subagents of the enterprises. These subagents are instances of type EnterpriseMeta 
that is a subtype of Meta-agent. Meta-agents can use the rulebases of their containers 
and other subagents of their containers as databases. In this model, each instance 
inheriting from type Enterprise contains a meta-agent of type EnterpriseMeta. All 
instances of EnterpriseMeta build mental models in a procedure derived from 
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computational cognitive science. This involves identifying goals and subgoals and 
the tasks needed to achieve those goals over a number of time periods called 
elaboration cycles. One of the tasks to be completed in this process is the writing of 
decision rules to the rulebase of the containing enterprise. For this reason, type 
EnterpriseMeta is itself a subtype of LoopingAgent as well as MetaAgent and it 
loops over time level elaborationCycle. The articulation of instance of type 
Enterprise, expanded from Figure 5, is given in Figure 6. 

The model setup 

In order to capture the essential elements of the position of Russian 
enterprises, we assume the decision variables of the enterprises to be planned output, 
output price, the wage rate, the offer of employment, orders placed with suppliers 
and payments to creditors. In addition, the enterprises choose the suppliers with 
whom they place their orders and the customers whose orders they will fill in whole 
or in part. Each enterprise notes at each date whether its suppliers have filled the 
orders placed with them and whether its customers have paid for the goods 
previously supplied to them. These notes take the form of endorsements attached to 
the enterprises records of its customers and suppliers. Orders are allocated among 
known suppliers in proportion to their records of reliability. Sales are allocated first 
to orders from known customers with the best records of payment. In effect, each 
enterprise builds up models of the enterprises with which it trades. 

These endorsements are also used by enterprises to formulate views about 
which other firms are the most successful. It is natural to assume that those suppliers 
who are best at supplying orders and those customers who pay most quickly are also 
the strongest enterprises. On this basis, enterprises take into account any observable 
information they have about these trading partners and assume that their behaviour is 
highly functional. In the model reported here, the only information that one agent can 
observe about an enterprise is the output prices it sets, its employment of labour and 
information arising from the transactions in which they engage (supplies, orders and 
payments). Thus, if one enterprise observes its best trading partners lowering (or 
raising) prices, it will assume that to lower (or raise) prices increases the values of 
goal variables and, so, will conjecture a model to that effect. 

The goals of the enterprises are sales volume and cash. There is no attempt 
at optimisation of these values but, rather, the agents seek strategies that will increase 
the value of one or the other of these goals. In the present setup, neither is given 
pride of place. In the event that changing the value of one decision variable is 
expected to increase the value of one goal value and diminish the other, then the 
action that is considered most likely to have the anticipated outcome will dominate 
the decision. If the agent has more confidence that the goal value diminution will 
occur then she will change the decision variable value to reduce or prevent the 
diminution. If she has more confidence that the other goal value will be increased, 
then she will change the value of the decision variable in the appropriate direction. 

The pre-defined intermediate variables observed by the enterprises are their 
own purchases, their own sales, their current stocks of real goods (inputs and unsold 
outputs), their current financial asset holdings (only cash, so far), and the wage bill 
(the product of the wage rate paid and employment by the enterprise). 
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The wage bill is the only intennediate variable to be calculated from other 
variables observed by the enterprise. It gets this special treatment because we assume 
that it is paid in the same period as the employment it covers. This assumption itself 
seems appropriate because of the relatively insignificant incidence of delayed wage 
payments and also because, in inflationary conditions, the impact of delayed wage 
payments is much the same as offering a lower wage rate. A rather more elaborate 
setup would be required directly to capture the effects of wage arrears. If such a 
model were thought likely to be useful, it would be a straightforward extension of the 
model reported here. 

In general tenns, the setup reported here was devised only to capture a 
coarse-grained account of the development of Russian enterprises and to demonstrate 
how our modelling techniques perfonn on problems relating to the emergence of 
new markets and market institutions. 

Results 

Our first simulation setup included a specification of the input-output 
relations and the inclusion as model variables of inter-enterprise debts as well as 
payments and the usual economic variables of employment, prices, wage rates, 
production decisions, actual outputs and sales. The Russian experience is of steady, 
even rising, employment, rapidly rising prices, growing debt and declining output 
and sales. 
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Figure 7: Total employment (simulated) 

We have run the setup for 73 periods. What we get is not too dissimilar to 
what we observe. Employment, for example, does not show any dramatic changes at 
all although, reflecting variations in production activities over the whole of the 
simulation, it has not been stable. The time path of employment is given in Figure 7. 
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In production we observed a collapse after an initial surge (probably due to 
initial simulation conditions) but starting from date 7 production trends varied from 
sector to sector. The production of corn remained remarkably stable because corn has 
at least one relatively stable source of demand in the form of households. The 
production of both spades and iron shows considerable oscillation but it develops 
accordingly with the picture of unit sales that demonstrates a certain cyclical pattern. 
Series for production is shown in Figure 8 and for unit sales in Figure 9. 

A key result in the development of the simulation setup was the price series. 
The series, reproduced as Figure 10, now reflects the stylized facts of the Russian 
experience. However, earlier models generated trendless, though moderately volatile, 
price series. The achievement of the price series of Figure 10 was obtained by 
specifying credible information sources. 
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Figure 8: Sectoral production (simulated) 
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The goals of the enterprises are sales volume and cash. The numerical 
controls are price, wage rate, employment, input demands and debt payments. In 
addition, each enterprise has to determine the allocation of its orders for inputs and 
the allocation of its debt repayments. 

Agent cognition is represented by a process of model building that has more 
in common with the cognitive sciences than with genetic algorithms and classifiers 
as used by Sargent and others in the economics community. The modelling strategy 
of each enterprise in the simulation model is to formulate its own models relating 
selected control variables to at least one goal variable. Initially, following Moss 
(1995), control variables and goal variables were combined at random and the 
control variable was either increased or decreased with equal probability. There was 
a standard generate-and-test procedure so that enterprises kept those of their models 
that yielded improved goal variable values and abandoned those that did not. Agents 
kept track of how good their models were by a process of endorsement first 
suggested by Cohen (1995) and implemented by Moss. In general terms, models 
were endorsed as successful at a date when they were used to formulate an action 
undertaken in the same period that a goal variable value was improved. They were 
endorsed as being unsuccessful when the goal value was not improved. Models that 
were usually successful or usually unsuccessful were endorsed as such. This would 
happen when four of the five most recent applications of a model earned the 
successful or unsuccessful endorsements, respectively. Collections of endorsements 
mapped into numerical values with positive endorsements increasing overall 
endorsement values and negative endorsements reducing overall endorsement values. 
The probability of applying a model is proportional to its overall endorsement value. 
Models with negative overall endorsement values are abandoned. 
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Enterprises also endorsed other agents as being reliable or unreliable 
suppliers, reliable or unreliable debtors and so on. The resulting overall endorsement 
values attaching to these other agents were used to detennine suppliers and, when 
orders exceeded stocks of outputs, the order in which to allocate outputs to 
customers. In this way, stable trading relationships were established among agents in 
the model. 

An important feature of this model was the absence of any deus ex machina. 
There was no auctioneer, no bulletin board on which to post prices, supplies or 
demands for all agents to see. All infonnation was communicated directly by one 
agent to another. Learning and expectations about the behaviour of other agents and 
the system as a whole resulted from an explicit cognitive mechanism that gains its 
credibility from disciplines outside economics. Procedural rationality entails the 
selection of information when more is available than an agent can process. It also 
involves identifying relations from that data without relying on it being correct in 
some fundamental sense. If the relationships suggest actions tl.at improve on an 
agent's present position, then they constitute a good model. Otherwise, the model 
needs to be abandoned or revised. An important means of understanding for humans 
is the forming of analogies. The analogy in the simulation environment reported here 
took the fonn of applying behaviour by agents who appear to be successful to one's 
own behaviour. If, for example, we know that the farmer to whom we sell our spades 
pays her bills immediately and is raising the price of corn, then she must be doing 
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well enough to pay her bills so we will try raising the price of our spades in order to 
do well ourselves. 

What did not work (i.e., did not conform to the stylized facts) in the 
simulation experiments that led to this model was random generation and testing. 
Classifiers rely on a generate-and-test algorithm, too, but on a much larger scale 
since a population of models would be generated, mutated, crossed-over and tested at 
each date rather than just the one model selected by the agent in our simulations. We 
know that such models can yield outputs that converge towards rational-expectations 
equilibria. This issue of the relationship between simulation outputs and rational 
expectations equilibrium is clearly of some importance to economists. It is, therefore, 
addressed in the following section. 

Model validation and verification 

The validation of a computer program is the process of applying formal 
methods to ensure that a program design will achieve what is expected of it in 
appropriate conditions and, in particular, will not get into a confused or illegal state. 
If a program runs without error in any computer progranuning language, then that 
program is consistent and sound relative to that language. That is, the program does 
not generate or entail mutually contradictory statements and it does not generate 
statements that the language does not support. Consequently, program validation 
entails ascertaining that the program is consistent and sound relative to a formal 
statement of the properties of the programming language. 

In this section, we argue that validation should be an important issue in the 
specification of economic models in general and economic cognition in particular. 
Two aspects of validation are considered: validation with respect to logical 
formalisms and validation with respect to cognitive theories. 

Logical validation 

The virtue of validating the consistency and soundness of a model relative 
to a logical formalism is that it removes ambiguity from the specified relationships 
comprising the model. The particular formalisms that economists rely on are 
mathematical systems that are well-suited to optimising functions subject to well
specified constraints. Such mathematical bases are inappropriate for the model above 
because of its strong reliance on qualitatively defined variables such as endorsements 
and because there is no element of optimisation in the model. Nonetheless, the model 
is consistent and sound relative to at least one logical formalism (and, though 
unproved, probably many such formalisms). 

The logical formalism under which the transition model is consistent and 
sound is a fragment of strongly grounded autoepistemic logic (FOSGAL). The proof 
of the consistency and soundness of the model relative to FOSGAL runs as follows: 

If a programming language corresponds to a logical formalism, then any 
program viewed as a set of statements or sentences that runs in that language will 
necessarily be sound and consistent relative to that logical formalism. One such 
language, implemented precisely to capture this feature of programs, is SDML which 
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corresponds to FOSGAL. This particular logical formalism of SOML has emerged as 
one that supports the kind of multi-agent, strictly declarative modelling favoured by 
the SOML user community. It is by no means the only possible or appropriate logical 
formalism for modelling organisations. Indeed, the choice of logical formalisms for 
different classes of problems is already a fruitful field of enquiry in the artificial 
intelligence literature. A natural extension of the work described in this paper is the 
explication of the properties of appropriate logics to underpin a language of 
discourse for the management and economic sciences. 

In SDML, and therefore in the model reported here, each agent is defined 
on a rulebase and database for each period of time. EvelY rule in the rulebases and 
evelY clause asserted to the databases is sound and consistent relative to strongly 
grounded autoepistemic logic. If any were not, then the model would not run and 
inconsistency error would be reported. 

FOSGAL emerged as a good logical basis for modelling agent behaviour 
and interaction because of its encoding of negative knowledge. Such encodings are 
well- recognised to be difficult simply because it is not possible in practice to store 
all the facts that are not true. For this reason, SDML follows the conventional 
practice of storing only positive knowledge and dealing with negation by allowing 
rules that have 'not inferred' operators in their antecedents. 

SDML was designed principally as a forward-chaining language because 
drawing inferences from a set of beliefs and facts and then remembering those 
inferences by asserting them to a database seemed a more natural representation of 
agent reasoning than backward chaining, in which the implication is stated and then 
the antecedents evaluated to see if the assertion can be justified. In order to perform 
forward chaining efficiently, SOML will fire rules but keep track of any assumptions 
it had to make on the way. This helps to minimise any back-tracking to tty 
alternative assumptions in the more commonly occurring situations. Thus SOML 
sometimes needs to make inferences from its own lack of inference of certain facts, 
just as in SGAL one can infer from one's own lack of belief. 

Theoretical validation 

The position we have now reached is that a model written in SOML is 
consistent and sound relative to a particular formal logic that is well-suited to the 
development of computational models involving interaction among agents that takes 
the form of direct communication of information. Genetic algorithm and classifier 
representations of agents are doubtless consistent and sound relative to the 
mathematics underlying these representations. Hence, we have two, alternative 
representations of cognition that have equal claim to logical rigour. How then do we 
choose between them? 

It seems likely that the appeal of genetic algorithms to economists such as 
Sargent is that they are optimising algorithms. However, not all problems are well 
conditioned to be optimised using genetic algorithms in general and Holland 
classifiers in particular. In fact, Sargent (1993) and Marimon et al (1990) imposed 
many restrictions on standard genetic algorithms. Rather than using the standard one
point crossover reproduction mechanism, he included a two-point method of 
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recombination. Rather than adopting classifiers to model nuukets, he simulated 
single agents by the interaction of two autonomous classifier systems. Rather than 
using genetic algorithms to provide the environmental flexibility that traditional 
artificial intelligence techniques lacked, he diminished their role. Hence, he moved 
away from standard interpretations of classifier systems in his desire to salvage 
methodological individualism and neoclassical equilibrium. First, standard genetic 
algorithm methods differed from methodological individualism in that they 
simultaneously involved a parallel search involving hundreds or thousands of points 
in the search space. Second, convergence to a globally suboptimal result was a major 
concern with genetic algorithms. 

We are not aware of any independent argument that Holland classifiers are 
accurate representations of human cognition. In fact, as discussed before, Simon 
(1993) opposes this interpretation. Hence, their main virtue seems to be that, under 
some circumstances at least, computational models representing agents as Holland
type classifiers yield outputs that converge over simulated time towards rational 
expectations equilibria. 

To find that a result can be achieved in a variety of different ways and, in 
particular, using a variety of distinct approaches is a standard means in the natural 
and mathematical sciences of building confidence in the result. The fact that genetic 
algorithms can be used to generate rational expectations equilibria in computational 
models thus enhances confidence in the importance of the rational expectations 
hypothesis. If the attempt to generate the same result with different techniques 
sometimes leads to the intended result and sometimes does not, then the failure can 
itself lead to a deepening of our understanding of the phenomena under investigation. 
One possibility is that a number of different approaches to the investigation yield a 
similar set of conditions under which the original result can be expected. In this way, 
we begin to identify the conditions of application of, in this case, the rational 
expectations hypothesis. 

One such development looks to be emerging from the papers by Arthur et. 
01. (1996) and by Darley and Kaufman (1997) as cited earlier. These papers follow 
Sargent in relying on classifiers to represent key aspects of cognition. A 
complementary approach in the investigation of the conditions in which we might 
expect rational expectations equilibria to arise is suggested by computational 
cognitive science. Both Soar and ACT -R offer points of departure for this approach. 
Although we do not yet have complete results. we can exhibit the key features of and 
some early results from an implementation of key ideas from cognitive science into 
the transition model reported above. 

The core concept drawn from both Soar and ACT -R (and originally from 
Newell and Simon, 1972) is the problem-space architecture (PSA). The PSA rests on 
the experimentally verified idea that, in undertaking complex decisions, we engage 
in a process of sub-goaling. What is involved here is readily seen from the PSA 
devised for a new version of the model reported in Section O. 
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Figure 11: Transition enterprise problem-space architecture 

The label of each problem space in Figure 11 indicates a task to be 
completed. The top-level task (decideAction) that must be completed at each date is 
to decide what actions to take. Examples of the actions to be decided upon are price 
levels, wage rate, planned output, input demands and how much of current cash 
resources to payout. Actions are predicated upon goals so that, before deciding on 
an action, the agent must determine what the action is meant to achieve. In this 
model, aspiration levels are set for the various goal variables and this is done on the 
basis of the enterprise's observation of its own performance. Once the goals are 
defined, it is necessary to translate perceptions of the environment into some action. 
Since these perceptions are represented by mental models of the agents, an 
appropriate model must be selected. The selection will be from existing models and 
new models. The existing models are evaluated as they are used and the evaluations 
are remembered as endorsements. New models are defined on the basis of 
observations of the behaviour of the most successful (best endorsed) of the 
enterprise's trading partners. Consequently, the performance of these trading partners 
must be observed and evaluated. 

Declarative knowledge is composed of facts that can be retrieved from one 
database or another by the agent and some relationships encoded as mental models. 
Procedural knowledge is composed of the means of mapping models into rules of 
action. There is also some common knowledge such as the impossibility of 
increasing outputs without increasing inputs that is declarative in the sense that 
agents could in principle communicate such knowledge to one another. Such 
knowledge is encoded as models that cannot be eliminated from the databases of an 
agent. 

Models (apart from the common-knowledge models) and the memory of 
trading relations can be retrieved by agents with a probability related to their 
importance and the length of time since they were last retrieved. The scheme used to 
determine the probability of retrieval at need is taken from Anderson (1993). In 
particular, the odds in favour of retrieval are 
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Latf 
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where the tj are the lags since the jth prior retrieval of the endorsement; d is a 
positive parameter determining the half-life of the influence of a prior retrieval on 
current retrieval. The value of a is determined in the simulation model by the 
endorsement values of models and the agents. 

One virtue of this formula is its consistency with experimental data about 
memory. The choice of the d and a parameters is not determined by that 
experimental literature. Setting those values is an empirical issue to be considered 
presently. The precise specification of the PSA is also an empirical issue. In terms of 
validation, however, it seems much more robust to develop representations of 
cognition that, like this one, can be assessed on a basis that is independent of the 
application rather than to assess an arbitrary representation of cognition on the basis 
of its convergence to a rational expectations equilibrium. 

Verification 

While the PSA specified above conforms to similar models developed for 
social simulations (see, for example, Ye and Carley, 1995; Moss et aI, 1998), we 
have not yet sought independent evidence of its descriptive accuracy. The source of 
such evidence would naturally come from knowledge-elicitation exercises with 
enterprise managers in the Russian Federation. Such an exercise would also inform 
our assumptions about goals and goal-conflict resolution. 

Parameterising the model is computationally expensive and requires reliable 
data series. Previous models produced by the Centre for Policy Modeling have been 
parameterised using genetic programming algorithms. These extend genetic 
algorithms by representing data as tree structures that are subject to mutation and 
cross-over at points where usable programs result. Edmonds and Moss, 1997, report 
this technique in detail. The fitness functions are typically related inversely to root 
mean-squared errors and are also biased in favour of parameters that look reasonable 
to domain experts. In this way, we not only get results from application to hold-out 
data sets that are at least as good as ordinary regression methods applied to the same 
data but also results that reflect at the same time-domain expertise. 

Conclusion 

A necessary but not sufficient condition for simulation models to converge 
towards a rational expectations equilibrium is that agent perceptions converge so that 
mean expectations are close to model outcomes. The Sargent research programme 
seeks to demonstrate that non-homogeneous agents who search the whole possibility 
space will converge on perceptions that are effectively consistent with the outputs of 
the system model. The transition models described in this paper generate 
convergence in behaviour - specifically in price-setting behaviour - by local 
exploitation of declarative knowledge. These models were not implemented with 
rational expectations equilibria in mind. They were implemented to demonstrate that 
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models that are well-validated with respect to both formal logics and independent 
theoretical structures relating to learning and decision making also lead to verifiably 
accurate model outputs. 

We conjecture that any cognitive behaviour that entails the convergence of 
individuals' perceptions while these perceptions are changed when systematically 
wrong will also entail convergence towards expectations that are not wrong in any 
biased way. If so, then ultimate convergence towards a rational expectations 
equilibrium or something similar is a weak condition in the absence of structural 
change in the economy. However, the process of learning by global search and the 
process of learning by local exploitation might well yield very different results in 
relation to the effects of economic and social policies that are intended to effect 
particular structural changes. Before implementing policies based on either of these 
approaches, it would be important to look for reasons to believe in one or the other. 
Validation with respect to formalisms - mathematics or predicate or propositional 
logics - ensures rigour in the sense of a lack of ambiguity in specifications and 
implementations of models. Validation with respect to independent, experimentally 
or otherwise verifiable theories gives us confidence that our own models are better 
than just data-mining. We can see no reason to have confidence in the encoding of 
human cognition as genetic algorithms and classifiers simply because the resulting 
models converge to something that is not too different from conventional rational
expectations-type results. This scepticism stems from the absence of any independent 
reason to believe that agents learn by global search and the plethora of evidence that 
they learn by local exploitation of declarative knowledge conditioned by their 
procedural knowledge. Since procedural knowledge can only be acquired by 
experience, the identification and use of declarative knowledge must always be 
based on the experience of what the agent has done and this is itself an inherently 
local processing of declarative knowledge. 

Experience indicates that economists are unlikely to be influenced by the 
very different style of process-centred disciplines such as cognitive science. 
Nonetheless, we have shown the feasibility of implementing models using concepts 
that have arisen independently in analyses of business history, the economic history 
of technical change and in the cognitive sciences to explain with empirical 
verification how learning and decision making actually take place. 
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CHAPTER 6 

INSTRUMENT RULES, INFLATION FORECAST RULES AND 
OPTIMAL CONTROL RULES WHEN EXPECTATIONS ARE 

RATIONAL 

Sean Holly and Paul Turner 

1. INTRODUCTION 

Over the last decade, as a number of industrialised countries! have gone 
over to the use of explicit inflation targets, there has been a resurgence of interest in 
the use of feedback rules to characterise monetary policy. In this paper we consider 
how the type of rule suggested by the methods of optimal control can be derived 
when the model we have of an economy is non-linear and the model contains 
forward-looking expectations. Although the literature in this area is voluminous, 
there is still considerable interest in seeking computational improvements to existing 
algorithms2 and in deriving methods that can be applied to the highly non-linear, and 
analytically intractable, dynamic, stochastic general eqUilibrium models that have 
grown out of the original real business cycle methodology. Although the methods we 
describe in this paper could be applied to this class of model, we confine our 
attention here to non-linear models more in the Cowles Foundation tradition.3 One 
approach to the problem of dealing with non-linear, rational expectations models is 
to apply direct methods such as the Penalty Function method of Holly and Zarrop 
(1983), or the extended path methods associated with Anderson, Fair and Taylor 
used for solution and estimation, or for computing time consistent solutions (see 
Hall, 1986). The disadvantage of this approach, in the context of this paper, is that 
the solutions are in open-loop form; there is no explicit control rule that can be 
compared directly to other forms of rule existing in the literature. 

There is also another reason for concentrating on the derivation of an 
explicit control rule. A striking feature of the way in which the inflation-targeting 
regime is operated concerns the use of an inflation forecast. Because it is believed 
that changes in monetary policy take some time to appear in changes to the rate of 
inflation, the monetary policy stance, it is argued, should be set with respect to the 
expected inflation rate 18 months to two years ahead (Svensson, 1997a, 1997b, 
Haldane, 1998). To quote Svensson (1998): 

! Since 1990 New Zealand, Canada, UK, Sweden, Finland, Australia and Spain have adopted explicit 
targets for the rate of inflation. 
2 For recent contributions see Sims (1996), Anderson (1998), and Amman and Kendrick (1998). 

3 At this stage in their evolution dynamic stochastic general equilibrium models do not have too lUuch to 
say about the policy problem of inflation targeting in a world in which monetary impUlses tske some time 
to show up in the rate of inflation. 
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In order to implement inflation targeting efficiently, an inflation
targeting central bank must have a forward-looking perspective, 
and must construct conditional inflation forecasts in order to 
decide upon the current instrument setting. 

The above operating procedure implies that all relevant information is used 
in conducting monetary policy. It also implies that there is no explicit instrument 
rule; that is, the current instrument setting is not a prescribed explicit function of 
current information. Nevertheless, the procedure results in an endogenous reaction 
function, which expresses the instrument as a function of the relevant information. 
The reaction function will, in general, not be a Taylor-type rule (where a Taylor-type 
rule denotes a reaction function rule that is a linear function of current inflation and 
output only), except in the special case when current inflation and output are 
sufficient statistics for the state of the economy. Typically, it will depend on much 
more information; indeed on anything affecting the central bank's conditional 
inflation forecast. Especially for an open economy, the reaction function will also 
depend on foreign variables, for instance foreign inflation, output and interest rates, 
since these have domestic effects. (Svensson, 1998, pp 1-2) 

Rudebusch and Svensson (1998) provide considerable evidence that what 
they call instrument rules such as the Taylor rule and its many variants4 are very 
inefficient compared to what they call targeting rules. An instrument rule in the 
spirit of Taylor can be written for the instrument X, as a function of current or lagged 
deviations of targets from their desired path: 

(1.1) 

while the targeting rule would be: 

(1.2) 

So while under an instrument rule, the instrument, X, only responds to 
current or lagged information, the targeting rule looks forward. The choice of i and j 
is then largely an empirical matter. Rudebusch and Svensson also solve for the 
optimal feedback rule, where the instruments feed off the lagged state, minimising a 
loss function quadratic in deviations of targets from desired paths. Obviously the 
optimal rule dominates all other rules.5 

Given the clear advantages of the forward-looking targeting rule over the 
backward looking instrument rule, at first glance the superiority of the optimal 
feedback rule may appear odd. In fact, the terminology is misleading because in the 
standard linear, quadratic gaussian case, the optimal rule contains both forward
looking and backward looking elements. There are certain conditions under which 

4 The use of feedback or instrument rules in economic policymaking was originally proposed by Tustin 
(1953) and Phillips (1954). For recent applications see Westaway (1986) and Blake and Westaway (1996). 
The inefficiency of instrument rules, compared to target rules, was also noted by Ghosh et al (1987), 
Chapter 10. 

5 For applications to a simple output-inflation model of the UK similar to that of Rude busch and Svensson 
see Bean (1998) and Holly and Turner (1998). 
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the feedback component of the optimal rule becomes a constant function of the 
lagged state, but even in this case there will still remain a forward-looking element 
that comes through the so-called tracking gain of the control rule (Holly and Corker, 
1984). This of course quite separate from the forward-looking element that arises 
when private agents formulate expectations rationally. 

In principle there are clear advantages to having monetary policy expressed 
as a rule - at least formally- since in a forward-looking world building credibility 
through the transparency of the decision-making process, may make the process of 
inflation targeting more effective. What we propose to do in this paper is to describe 
some methods for computing the 'optimal' control rule using dynamic programming 
while also allowing expectations to be forward-looking. For this to be entirely 
convincing as a feasible solution we must assume that there is a sufficient 
commitment technology in place to prevent the issue of time inconsistency raising its 
head. Given that Central Bank independence is an important element in the conduct 
of inflation control, it seems unlikely that the Central Bank would play hard and fast 
with the expectations of the pUblic.6 Added to which the dynamic programming 
solution is straightforward to calculate and provides a natural benchmark against 
which to compare other 'handcrafted' rules of the instrument or targeting variety. 

In this paper we bring together a number of approaches to the design of 
feedback rules for inflation targeting. We adopt a stochastic linearisation approach7 

(Kim et at, 1975, Holly et al,1978 andZarrop et at, 1979) in order to produce a linear 
reduced form version of CUSUM (the Cambridge University Small UK Model). We 
use the method of Christodolakis (1987) in order to take into account the presence of 
forward-looking expectations. We then solve for the dynamic programming optimal 
control rule and use the method of Amman(l996) in order to ensure that the 
saddlepoint features of a forward looking uncovered interest parity condition are 
satisfied along with the dynamic programming solution. We then explore how these 
methods perform when there are shocks to the economy that drive the inflation rate 
away from its desired path. 

2. mEMEmOD 

In this section we describe the steps we go through in order to (1) linearise a 
non-linear rational expectations model, (2) estimate a reduced form, (3) convert it 
into state space form and (4) compute the optimal control solution while satisfying 
the saddlepoint requirements of the rational expectations solution. 

2.1 The Unearisation 

Assume we can write our non-linear model as: 

Fi(Y, YII'···,y , Xt, x I'···' x) =0 I - t-s 1- 1-
(2.1) 

i= I,m,; t= 1, T 

6 See Blinder (1997) for an academic's perspective on the US monetary policymaking process. 

7 What we do has many similarities to the balanced realisation method of Maciejowski, and Vines (1984) 
with the difference that they fit a low order polynomial to the impulse response function for a 
deterministic shock whereas we fit a regression model to a series generated by a white noise process. 
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There are m endogenous variables, y, with a maximum lag of s and a maximum of r 
lagged values of n exogenous variables, x. We can expand (2.1) about some initial 
path to give: 

~[~l- . ~[~l- . L.. Yt-J + L.. xt- J 
j=O Bt t _ j j=O BXt_j 0 

i = l, .. ,m,. t = 1, .. ,T. 

The perturbations to the initial path are defined as: 

Yt =Yt -YOt, xt=xt-XOt 

i =l, .. ,T. 

(2.2) 

(2.3) 

In general (2.2) is time-varying. However, we want to obtain an 
approximation to this time-varying representation. We will also only be interested in 
some subset of the endogenous variables, the targets and a subset of the exogenous 
variables, among which will be the policy instnunents .. We can write this 
representation in vector polynomial form in the lag operator L, as: 

(2.4) 

In order to derive a constant coefficient, linear representation we do the 
following. We perturb the chosen instnunent by a discrete white noise sequence. 
The use of a white noise sequence is one way of making sure that we obtain a good 
estimate of the relationship between the target and the instrument. The white noise 
sequence, since it contains all frequencies, will excite all of the dynamic modes of 
the non-linear system (Hannan, 1971, Zarrop, 1981). We then obtain a time series for 
each of the targets which in general will not be a white noise process because of the 
dynamic structure of the model being perturbed. 

We can then write the relationship between a perturbed instnunent and a 
perturbed target as a rational function: 

_ a.JL}_ 
Y ti := f3i (L) Xti 

i= l,n,j= I,m. 

We could estimate the relationship between the each instnunent and each 
target separately. However, it is equally convenient to perturb each of the 
instnunents at the same time using a sequence of iid random disturbances and then 
estimate by ordinary least squares the reduced form. The estimated reduced form is: 

(2.5) 
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2.2 Allowing for Rational Expectations 

Since the non-linear model may contain forward-looking expectations we 
need to take this into account when linearising. To do this we follow the approach of 
Christodolakis (1987). This involves first 'exogenising' any equations involving 
jump variables and then perturbing the jump variables with a white noise sequence in 
the same way that the set of policy instruments is perturbed.8 Once we have 
approximated the relationship between the targets and the instruments augmented by 
the endogenous jump variables, we can write the linearisation as: 

(2.6) 

Where now the jump variables appear on the left hand side, and Yt+1 is the vector of 
expected endogenous variables. Since Ao is no longer an identity matrix, we invert 
Ao and multiply through to obtain the reduced form. 

(2.7) 

2.3 State Space Form 

The state vector is simply defined as: 

(2.8) 

and the state transition matrix: 

where: 

°1 °2 Os °2 ... Or °1 II 

I 0 0 0 0 

0 I 

A= 0: , B= ,D= 

0 I 

0 

0 0 0 0 I 0 0 0 

z is a f=nx(s+r-l) dimensional vector, x is an m-dimensional vector. The transition 
matrix A is fxf, B is fxm, D is fxf, 

Since the state space form contains forward-looking expectations, and in 
general D is not invertible, we could follow the approach of Blanchard and Kahn 

8 If wished other exogenous, non-instrument variables can be perturbed and included in the linearisation 
also. 
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(1980), Sims (1996), Amman and Kendrick (1998), Anderson (1998), among others, 
and solve explicitly for the rational expectations solution. Instead we follow the 
suggestion of Amman and Kendrick (1992) and solve for the saddlepoint path 
iteratively using the extended path methods of Anderson (1979), Fair and Taylor 
(1983) and Fisher et al(1986). We rewrite the state transition equation as: 

(2.9) 

The vector e subsumes the expected values, and in general could also include any 
other 'exogenous' variables. 

2.4 The Optimal Control Solution 

To solve for the optimal control rule we define a loss function for the 
monetary authorities in terms of the state variables and the control or instrument 
variables, x. 

n 

L t = 1I2~)zt -z~),Q(Zt -z~)+(Xt -x~)'N(xt -x~) (2.10) 
t=O 

where the superscript defines desired values for the state variables and the policy 
instruments. Q is a symmetric, semi-positive definite fxf matrix, and N is a 
symmetric mxm positive definite matrix. 

To minimise (2.10) subject to the state transition equation (2.9) we can 
apply the well-known method of dynamic programming to compute a optimal 
control rule of the form: 

(2.11) 

where Kt (t = 1, '" , T) are a sequence of feedback control matrices and kt (t = 1, ... 
T) represents what is known as the tracking gain in the control literature. These are 
solved for recursively by first solving the period T problem to obtain a solution for 
Xr conditional on Xr-l. This is used to write a value function for period T which 
depends on Xr-l and which in turn forms part of the objective function for the period 
T -1 problem. Using this procedure, along with the terminal conditions Hr = Q and kr 
= hr = QZd r we can solve for the sequence of feedback control matrices and tracking 
gains as: 

Kr = -(N+B'HrBr1(B'HrA) 
kr = -(N+B'HrBrlB'(HrCer-hr -Nxdr) 
Hr-l = Q + (A+BKr)'Hr(A+BKr) 
hr-l = kr-l + (A+BKr),(hr-HrCer + Nxdr) 

(2. 12. a) 
(2. 12.b) 
(2. 12.c) 
(2.12.d) 

These are solved recursively to obtain the control rule: Note that the 
feedback gains, Ki , for i = l...T, depend only on the (constant) matrices of the 
transition equation and the loss function. The feedback part of the control rule then 
feeds only off the lagged state vector Zt-l. By contrast the tracking gains, vary over 
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time depending upon the current and future values of the exogenous variables and 
expectations in the vector e. This is the feedforward part of the control rule. 

2.5 Incorporating Rational Expectations 

The solution in (2.12) is the well known regulator problem for a non
rational expectational model. However, in the vector e, which appears in the 
recursion for the tracking gain, we have an expectation of the state in the next period. 

There is a large class of methods for solving this problem. However, there is 
in principle a difficulty with the computation of an optimal control solution in this 
case because of the time inconsistency problem first identified by Kydland and 
Prescott (1977). However, if we are willing to accept that there is a sufficient 
commitment to ensure that reneging is rules out (Holly and Hughes Hallett, 1989), 
we can use the extended path methods of Anderson (1979), Fair and Taylor (1983) 
and Fisher et al (1986), in the following procedure (Amman and Kendrick (1992): 

Step I: For initial assumptions about the expected path for the expectational 
state, Zt+j, j =1,T-I, and a terminal condition for T, compute the feedback and 
tracking gains. Store the feedback gains. 

Step 2: Update the vectors Ei+1Zt+i, for i =I,T, where j is an iteration 
counter, using Ej+l Zt+i = A EJzt+i + (I-Ay+l Zt+i, for i =1,T, where A is the relaxation 
factor (Fisher et ai, 1986). 

Step 3: Recompute the tracking gain matrices. 
Step 4: Test whether: IP+I Zt+i - i+1Zt+i I <8, for i =1, T, where 8 is an 

arbitrarily small convergence criteria. If not true go to step 2. 
Step 5: Stop. 

This will compute a control rule for an expectationally consistent path. 

3. AN APPLICATION 

In this section we provide an application to the UK. We use a small non
linear model of the UK economy in order to generate a linearisation and then use the 
linearisation to examine a policy question in which the Bank of England uses the 
short term interest rate in order to pursue a target path for the rate of inflation. 
Expectations are forward looking in the foreign exchange rate market so the effective 
exchange rate is determined by an uncovered interest parity condition. The expected 
change in the exchange rate is equal to the risk adjusted interest rate differential. 

3.1 The Cambridge University Small UK Model (CUSUM) 

The model we use for the experiments is CUSUM a small, quarterly model 
of the UK economy which has been developed as a vehicle for exploring 
asymmetries over the business cycle (see Arden et al (1998) for an example). 
However, in this paper we confine ourselves to a symmetric version of the model. It 
has 15 behavioural equations, some 79 technical relationships and identities, and 8 
exogenous variables. The profusion of technical relationships and identities arises 
from the need to link the income and expenditure accounts, model the balance of 
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payments and the public sector borrowing requirement and generate sectoral flows. 
It has been kept small by working at the highest level of aggregation possible. The 
model has the following important features: 

• The supply side is captured by a cost function approach to the determination 
of output, prices and employment. (See Arden et al, 1997.) 

• The Cobb-Douglas, constant returns to scale form of the production 
function ensures that the share of labour income in national income is 
constant in the long run. 

• The growth rate of the economy is endogenous through the capital 
accumulation process. 

• Investment depends on Tobin's Q. But an important distinction is drawn 
between average and marginal Q. In imperfectly competitive markets the 
difference between the two depends on the present discounted value of the 
marginal revenue product of capital. 

• There is nominal inertia in prices and wages. Presently there is no forward
looking element in wage and price setting. 

• There are a number of forward expectations variables: - the expected 
effective exchange rate, the expected price of equity, the expected long term 
interest rate, expected personal sector income and personal sector real 
wealth. The exchange rate, the price of equity and long term interest rates 
(the inverse of bond prices) are jump variables. However, for the 
application in this paper we only assume rational expectations in the foreign 
exchange rate market. 

3.2 The Linearised Model 

The linearisation was obtained by passing white noise through both the 
short term interest rate and the (exogenised) exchange rate for 92 periods and storing 
the effect of these stochastic perturbations on inflation (RPIX) = n, and output 
growth = g. In order to smooth the use of the interest rate, r, as an instrument we also 
included as an endogenous variable, the first difference of the interest rate, Ar. The 
vector y in (2.4) is now y' = (n, g, eer, Ar). We then estimated distributed lag model 
of inflation and output growth on the interest rate and the exchange rate, eer, with 
five lags in inflation and output growth, and eight I the interest rate and the exchange 
rate. We use an uncovered interest parity condition that the expected change in the 
exchange rate is equal to the interest rate differential between the domestic interest 
rate and the overseas interest rate, rw. We also want to allow for the possibility of 
independent shocks to inflation and output growth. So the vector of exogenous 
variables, is now defined as e' = (eert+\,rwt , SlII,Sgt), where the last two elements are 
designed to allow for shocks to inflation and output growth, and eert+l is the expected 
exchange rate. This means our linearisation takes the structural form: 

(3.1) 

where: 
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Ao = 0 0 1 0 ,DI = 1 -1 0 0 ,BI = 1 

0001 0000 1 

and B2( 4 )=-1. This then produces a 39 dimensioned state vector. 

3.3 Some D1ustrative Simulations 

The state space is of quite a high order, however, it is not out of line with 
the annual models in Bean(1998) and Holly and Turner (1998) which suggest that it 
takes some time for interest rate changes to affect the rate of inflation. For the 
purposes of the simulations in this section we attach a weight on inflation in the loss 
function twenty times that on output growth and on the change in the interest rate. 
The weight on inflation is four times that on the level of the interest rate. If we sum 
the coefficients in the feedback gain, K, for the first period we have: 

rt = 0.3411tt_1 + 0.1361tt_2+ 0.OOO3Yt_1 + 0.0649Ct_1 -O.007Ct_2 -O.060Mt_1 (3.2) 

So, in annual terms, the feedback rule is very simple. 

One of the perceived drawbacks of a feedback rule is that it appears to be 
invariant to changes in expected shocks to the economy emanating from exogenous 
variables. For example, if there is a well founded expectation that there will be a 
downturn in world economic activity or that energy prices will rise sharply in the 
near future, a feedback rule will not produce a change in monetary policy until the 
effects of the exogenous events show up in the lagged state vector. While it is true 
that the feedback rule only works off the lagged state, it is not true that the optimal 
control rule is not forward-looking and capable of responding in anticipation of 
future shocks. This forward-looking role is provided by the tracking gain, the second 
part of the control rule. 

In this section we report some simulations designed to illustrate the 
forward-looking nature of the optimal control rule. We are particularly interested in 
the relative roles of the feedback and tracking gains when shocks to inflation are 
anticipated and when they are not. However, there is a complication because the 
expected exchange rate appears in the tracking gain when expectations are rational. 
In order to disentangle the forward looking part of the control rule from the forward
looking exchange rate, we first examine a version of the model in which the 
exchange rate does not appear. 
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We examine two types of shock. First there is an unanticipated shock to the 
initial state. Inflation turns out to be 5 percentage points higher than expected. In the 
absence of any monetary response the effect on the path for inflation relative to the 
base inflation rate, is shown in Figure 1. There is considerable persistence in the 
inflation rate. When the optimal control rule is used the path for inflation in Figure I 
does return to base more quickly, but much of the inflationary spurt is unavoidable, 
even though interest rates are raised by 5 percentage points. Note, that there is no 
forward-looking element to the interest rate jump (Figure 2). Once the shock occurs 
there is nothing else to anticipate. 

The second shock we consider is an anticipated shock to inflation. This time 
the inflation rate is expected to receive a 2 percentage point shock in each of periods 
3 and four, so the shock is expected (with certainty) to occur in 6 months time. In 
this case the forward looking nature of the optimal control rule becomes clear. In 
Table I we show the response of inflation and interest rates to the expected shock. 
Because of the tracking gain component of the optimal control rule, interest rates 
jump immediately in response to the expected rise in inflation. Once the shock has 
passed, the tracking gain term drops back to zero. 

Table 1 . 

................................................... ~~.~!!~~ ......... ~~!.~~~~! .. ~~~ ........ .!.~~~~~ .. ~.~ ... . 
Initial State 0 0 0 

I 
2 
3 
4 
5 
6 
7 
8 

0.00 
0.00 
2.00 
3.83 
3.88 
4.16 
3.59 
2.84 

3.33 3.33 
6.20 3.07 
5.79 2.76 
5.34 1.27 
4.56 0.00 
3.97 0.00 
3.44 0.00 
3.02 0.00 

In Figures 7 onwards we show the effect of re-introducing the exchange 
rate. Once we have an additional channel by which interest rates affect the rate of 
inflation we obtain a considerable increase in the ability to offset even the 
unanticipated shock. The monetary contraction triggers an immediate jump in the 
exchange rate which bears down on inflation. However, this is also associated with 
larger, and more volatile, output losses. In Figure 8 we show the interest rate 
outcome. What is particularly striking is that the tracking gain contribution is 
negative. This is because the tracking gain includes a term in the expected exchange 
rate. Essentially the tracking gain leans against the jump in the exchange rate and 
provides a measure of the extent to which monetary policy would have to be tighter 
in order to achieve the same inflation path without the help of the exchange rate 
appreciation. 

In Figures 11 to 14 we show the outcome when the inflation shock is 
anticipated. The inclusion of the exchange rate channel enhances the effectiveness of 
monetary policy considerably. As before, the forward-looking part of the control rule 



157 

triggers a monetary tightening in anticipation of the future shock. This actually 
reduces inflation prior to the shock as the exchange rate appreciates. 

4. DISCUSSION AND CONCLUSIONS 

We have sought to show in this paper that a properly specified control rule 
derived by the method of dynamic programming has both a forward and a backward 
looking dimension. The feedback part of the rule responds to the lagged state, but the 
forward-looking tracking gain allows monetary policy to respond in anticipation of 
future shocks. 

Clearly the approach of this paper encompasses the instrument rules 
approach. For a given loss function the feedback rule derived by dynamic 
programming will always dominate any arbitrary, handcrafted rule. Moreover, we 
describe a computationally simple method for calculating the feedback rule under 
rational expectations. 

Our approach also addresses in a straightforward way the concerns of 
Svensson and others that monetary policy needs a forward-looking dimension. If it is 
felt that there is information about appertaining to the future path for inflation over 
and above that captured by the lagged state then the approach of this paper allows 
that information to be reflected in the current stance of monetary policy. For 
example, in this paper we have been working at the quarterly frequency. So the 
feedback part of the control rule responds to information three months old. However, 
there is usually a plethora of information available at monthly frequencies which can 
provide information about the current state. By including this information in the 
calculation of the tracking gain, the stance of monetary policy can be made 
consistent with all relevant information. 

Needless to say there are numerous other issues that one would wish to take 
into account in the design of policy. It is well understood that rules which are 
optimal for one model may not be very robust across other models. However, given 
the ease with which the methods of this paper can be applied,9 calculating optimal 
policies across a suite of models should be feasible. 
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The effect on inflation of an unanticipated shock to inflation. No exchange rate 
channel. 

6,-------------------------. 

2 

o 

Full interest rate 
response 

forward looking 
response 

·1+-~-~~~~-~~~~.........i 
94 95 96 97 98 99 00 01 

Figure 2. Interest rate. 
The interest rate response to an unanticipated shock to iIiflation. No exchange rate 
channel. 

0.2 .,----____________________ ~ 

-0.4 

-0.6 

-O.8+-~-~-~_~_~~~--.-' 
94 95 96 97 98 99 00 01 

Figure 3. Output growth. 
Effect on output growth of monetary response to unanticipated shock to inflation. No 
exchange rate channel. 



162 

5,---------------------------

3 

2 

no interest rate 
response 

95 96 97 98 99 00 01 

Figure 4. Inflation. 
Response of inflation to an anticipated shock to inflation rate 6 months ahead. With 
and without monetary response. No exchange rate channel. 

8,---------------------------, 

o 

-2+-~~~~~~~--~~~~~._i 
94 95 96 97 98 99 00 01 

Figure 5. Interest rate. 
The optimal response of the interest rate to an anticipated shock to inflation rate 6 
months ahead. No exchange rate channel. 

0.2,---------------, 

0.0 

-0.2 

-0.4 

"()6 

..().8 

-1.0+-_~~~_~~~_~~~.....,....l 
94 95 96 97 98 99 00 01 

Figure 6. Output growth. 



6,-------------------------, 

5 .. /\\ 

3 

2 

1 interest rate 
response 

no interest rate 
response .... 
..... 

.......... 

............. _--. 
o~~~~~~~~~~~~ 

94 95 96 97 98 99 00 01 

Figure 7. Inflation. 

163 

Inflation response to an unanticipated inflation shock. With and without a monetary 
response. Exchange rate channe1. 
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channe1. 

1.0.,-______ -,-______________ --, 

0.5 

-1.5 

-2.0-l:c~,.........."....~..,._.~~_.__~~~--I 
94 95 96 97 98 99 DO 01 

Figure 9. Output growth. 
Response of output growth to monetary response to an unanticipated inflation shock. 
Exchange rate channe1. 



164 

20,.--------------

15 

10 

o~~~~-~-_~~~~~~ 
94 95 96 97 98 99 00 01 

Figure 10. Exchange rate. 
Response of exchange rate to monetary response to an unanticipated inflation shock. 

6r--------------. 

4 
no interest rate 
response 

95 96 97 98 99 00 01 

Figure 11. Inflation. 
Inflation response to an anticipated inflation shock. With and without a monetary 
response. Exchange rate channel. 

4r--------------. 

3 

full interest rate 
2 response 

forward looking 
o response 

·1 

·2+-_~_-~-__ ~ __ ~~ 
94 95 96 97 98 99 00 01 

Figure 12. Interest rate. 
Optimal interest rate response to an unanticipated inflation shock. Exchange rate 
channe1. 



165 

-2.0+--~~~~~~~~~~,...,.......I 
94 95 96 97 98 99 00 01 

Figure 13. Output growth. 
Response of output growth to monetary response to an unanticipated inflation shock. 
Exchange rate channel. 

~r-----------------------' 

15 

10 

5 

o~~~~~~~~~~~~ 
94 95 96 97 98 99 00 01 

Figure 14. Exchange rate. 
Response of exchange rate to monetary response to an anticipated inflation shock. 



PART THREE 

MACRODYNAMICS 



CHAPTER 7 

ASYMPTOTIC HIERARCHIES IN AN ECONOMIC MODEL 

Cuong Le Van and Pierre Malgrangel 

INTRODUCTION 

The dynamic specification of the various equations of an economic model 
and the numerical results associated with their estimation imply varying sluggishness 
of the different variables involved. This feature has extremely important outcomes 
on the dynamic evolution of the macroeconomic system. This problem is generally 
studied through the computation of the eigenvalues of the system under review, 
approximated by its linear-stationary state space correspondent. The dynamical 
behavior of some variables is mainly described in the short to medium run by their 
autoregressive structure. More generally, this is the well-known problem of 
assignment of eigenvalues to variables (see for instance Kuh et al (1985), Malgrange 
(1989), or Schoonbeek (1984)). One can also study the system in terms of blocks. 
The relevant concept is that of "near decomposability" investigated by depth by 
Ando et al (1963) for linear systems. They showed that, if the system is 
undecomposable, but can be decomposed into blocks with links between blocks 
"weak" relatively to links within blocks, then each block behaves, up to a certain 
horizon TI, "almost" independently of each other. Furthermore, after Tl and before 
T2, each block can be described by one representative variable, the behaviour of 
which is driven by the largest eigenvalue of the block. At last, after T2, all variables 
of the model are driven by the largest eigenvalue. 

In the present contribution, we undertake a methodological investigation on 
the asymptotic, long run, time hierarchies which are implicit in a given 
macroeconomic model. The proposed technique aims at analysing the strong trends 
of the system, leaving aside short run fluctuations. We show that the time hierarchies 
between the endogenous variables, reflecting their "convergence speed", can be 
determined in a simple way through the computation of the eigenvalues and 
eigenvectors of the system and, in many cases, are independent of initial conditions. 

The first section develops the methodology, which is applied in the second 
section to a quarterly RBC like small model of the French economy. 

I We are most grateful to Michel Juillard for his help in interpreting the numerical computations done with 
the software DYNARE, see Juillard (1996). 
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L METHODOLOGY 

We first develop the case of a traditional backward-looking model, before 
dealing with the case of a forward-looking system, which is not fundamentally 
different. 

1.1. The case of a purely backward-looking model 

Starting from a given macroeconomic model possessing a well-defined 
steady-state growth path, it is standard to transfonn it into a stationary model 
evolving around a constant equilibrium steady state, by an adequate change of 
variables (division of each variable of the model by its (constant) growth trend, i.e. 
putting variables in "intensive form"). Then, by linearization around its steady state, 
and by a standard redefinition of the variables of the system, we can write it in tenns 
of a model in state space form. 

Let us then consider the following linear stationary model: 

Xt = Axt-l + BZt, (I) 

where x is the n-vector of endogenous state variables and z the p-vector of the 
exogenous shocks of the model. We will write, for the moment, 1lt = BZt, of the same 
dimension n as x. 

Let us assume that the matrix A is diagonalizable and that (I-A) is 
invertible. We will suppose that the greatest eigenvalue of A is less than one in 
modulus and real and that A), ... , i.... verify: 

1>1i....1>1i....-ll>· .. >IA11· 

Then one has: 

A=PAP-1 (2) 

where P is the matrix of (right) eigenvectors, and A=(AJ, a is a diagonal matrix of the 
n eigenvalues. 

Corresponding to the assumption that u t = U, for every t, the system (1) 

has a unique long teon x : 

(3) 

Let us suppose that the system is at equilibrium at t = -I, and consider a temporary 
shock 110 at date O. 

The dynamics of x around x , are given by: 

xo -x=uo-u (4) 



171 

for t ~ 1. (5) 

We will consider variables Xi for which xi :t:. O. 

Definition 

An endogenous variables Xi is said to converge more quickly to its steady 
state than an endogenous variables xi if there exists T such that for every ~T, 

(6) 

In other words, we are concerned with the comparison of the relative distances to the 
steady state of the different variables of the system. 

Let us define y t = x t - x, V 0 = uo - u and Q = p.1 (matrix of left 

eigenvectors). 

The explicitation of (4)-(5) yields: 

for t ~ 1 (7) 

Let us consider a "pure" temporary shock on the mth component ofvo: 

v~ :t:. 0 and v~ = 0 for k:t:. m 

Then (7) becomes: 

(8) 

Hence the asymptotic behaviour ofyi;t is given by the expression: 

(9) 

Assume Clnm:t:.D. Then from our definition - formula (6) - and from the 
assumption made on the eigenvalues 0,,1. ... , An), under a shock on urn, Xi will 
converge more quickly (relatively to its steady state) than xl iff 

(10) 
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Properties 

(i) The hierarchy is indeed independent of the magnitude of the shock v:;' , 
but may depend on the component itself, m, of the shock vector. However, in the 
case where the property qruc*O holds true for every k (i.e. n1l1 left eigenvector strictly 
different from zero), then the hierarchy will be independent of the component of Vo 
also, and is easily computed from the components of the right eigenvector associated 
with A.". 

(ii) The case 'lnm=0 for some m means that the weight of A." is null when we 
consider a shock on v:;'. In that case formula (8) shows that the relevant eigenvalue 

governing the asymptotic response of the system is the greatest one in modulus, A\, 
for which qlm~. 

(iii) Considering back the form (1), the argument for the study of structural 
shocks z must be transposed from Q to Q B. In other words, we have simply to 
consider the components of the vector qnB. 

(iv) Symmetrically, other variables of interest linked to the model, by static 
or dynamic relations can be ordered in the hierarchy. Indeed, let a variable Yh write 
(in reduced-linearized-difference form): 

h "'" . Y t = L..J c j (L)y; with Cj (L) a lag polynomial. 

Then, by application of (9), we have: 

(11) 

1.2 The case of a forward-looking model 

It is straightforward to extend our previous argumentation to the case of a 
model containing forward-looking variables and admitting a Blanchard-Kahn 
representation, that is of the form (see Blanchard and Kahn (1980»: 

where y is now the m-vector of non-predetermined variables, x is the (n-m)-vector of 
predetermined variables, and v is the vector of exogenous shocks. System (12) is 
completely determined as soon as we know yo. Again, let us suppose that Yt and Xt 
are expressed as differences with respect to the steady state values. Let us assume 
that the system (12) verifies the Blanchard-Kahn condition, i.e. admits m eigenvalues 
with modulus strictly larger than one, and n-m eigenvalues with modulus less than 
one. In that case system (12) possesses a stable manifold. 
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Under a regularity condition on the stable manifold, there exists a unique Yo 
= Rxl + S vo, where R and S are matrices depending on A, such that system (12) 
with (x..I, Yo) as initial conditions will converge to the steady state. Moreover for Q1, 
one has Yt = Rxt-I, and (12) becomes, with some matrix B depending on A: 

Furthermore, the eigenvalues of B are the stable eigenvalues of A (for more 
details see e.g. Boucekkine and Le Van (1996)). 

We are formally back to the case of a purely backward-looking model. 

IL NUMERICAL ILLUSTRATION 

The previous methodology has been applied to a quarterly RBC like small 
model of the French economy called PLM (for more details see Lafargue et al (1992) 
or Laffargue (1995)). The main 13 equations of this model, written in intensive 
form, are given in the following Table 1: 

(M1) 
(M2) 
(M3) 
(M4) 
(M5) 
(M6) 
(M7) 
(M8) 
(M9) 
(MlO) 
(Mll) 
(M12) 
(M13) 

TABLE 1: MAIN EQUA nONS OF THE CORE MODEL PLM 

In(L) = a.ln(L*)+(l-a.)ln(L(-l)) 
Q = (~(K(-1)/gr"'+~V"rl/"'+AI2g1K(-1)+ \) 
I =}(-(~g)}(-l) 
Q = V+S-S(-l)/g 
P = (1tIr)P(+ 1)(1+112/111gV(+ 1)/S) 
Pd+211P A g If}( -1) = (n/r)(j.lPd(+ 1)+111 P(+ 1) (~(~+P'(g(L(+1)/K"'ll-I/"') 
C-"/Pd = y(r/n)C(+ 1r"/Pd(+ 1) 
Pd = (a P (1-0") +(1-a)p*(I-,,))I/(l-,,) 

V = a(p/Pdr"(C+I+G)+X 
M = (1-a)(p*/Pdr'(C+I+G) 
X=Xo y*XI(p/p*t2 

U = r(U(-l)/gn)+P*M-PX+N) 
r = ~o(U/nPX)-U*)4>I+r* 

Let us describe briefly the equations: 

The model aims at describing a small open economy under imperfect 
competition on both labor and goods markets. We suppose that the economy evolves 
around a well defined steady state growth path (with g, growth index of quantities, n, 
growth index of prices, and no trend on labor). As explained above, equations are 
written in intensive form so that the reference path becomes a steady state, constant 
through time. The first equation formalizes a dynamical behavior of employment L 
consistent with the insider-outsider theory, as presented for instance in Blanchard 
and Summers (1986). L* is the long run employment level. The technology is 
supposed to be of the constant return to scale CES type with quadratic adjustment 
costs on capital }( -eq M2. The depreciation rate of capital is Il, eq M3. The 
inventories S are built up from the cumulation of the difference between output Q 
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and sales V, eq M4. The global intertemporal optimisation of production factors, 
prices and inventories, leads both to an optimal choice of the inventories-sales ratio, 
function of inflation P( + l)fP and real interest rate rht, eq M5, and an optimal choice 
of technique (L(+l)/K, as shown in eq M6. Eq. M7 results from the standard 
intertemporal substitution of consumption based on an isoelastic utility function. 
This consumption demand, as well as all final demands, is shared between the home
produced aggregate good and the imported good in relation to their relative price 
P fP*, with a constant elasticity of substitution. The price of the aggregate demand, 
Pd, is itself computed by the conventional duality property. Hence the four 
equations M8 to MIL The cumulation of net nominal foreign debt U obtains 
through the sum of trade balance (P* M - P X) and net nominal -exogenous- transfers 
N, eq M12. At last, eq M13 formalizes the idea that -nominal- interest rate 
differential (r-r*) increases with the debt-exports ratio. 

This model, put in linear stationary fonn, includes six variables forwarded: 
C, I, L, P, Pd, V, four variables predetermined: K, L, S, U, and four static variables: 
M, Q, r, X. However, the forward variables are not independent. L(+l) and Pd(+l) 
can be substituted in equations M6 and M7 by their expressions, given respectively 
by the equations Ml and M8 forwarded. V may be also expressed as a function of 
the only endogenous variables, P, C, I, and various exogenous. Then forwarded, V 
can be eliminated of equation M5. At this stage there is the problem of the 
equilibrium value of U which is zero. We then express U by its value in function of r 
in equation M13 and put it in equation MI2. Hence the system admits a Blanchard
Kahn representation of the form (12), with 3 non predetermined variables, C, I, P, 
and the 4 predetermined variables K, L, rand S. 

Computed around its steady state, the values of the 7 roots of the system 
are: 

(.843, .942, .950, .977, 1.025, 1.068, 1.209). 

Hence, the system contains as many stable roots as there are predetermined 
variables. In other words, the Blanchard-Kahn condition holds true. 

If we take the right eigenvector associated with the greatest stable root .977, 

compute the expressions Ipin lxii, and normalize the first component to 1, we find 

the following values: 

Variable: K L r S 
Eigenvector Component: 1 0 .080 4.553 

C 
2.854 

I 
.287 

P 
2.537 

It can be verified that all the components of the left eigenvector associated with the 
root .977 are different from O. 

We can also compute the asymptotical component of the other variables 
from formula (11). 

Hence in response to any temporary shock, the asymptotic relative 
hierarchy is: labour L, the quickest variable, interest rate r, output Q, investment I, 
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sales V, capital K, demand price Pd, exports X, output price P, inventories S, 
consumption C, and the slowest, imports M. 

The graphs I and II illustrate the dynamic reaction after 100 periods of 
selected variables to a temporary shock on productivity and public expenditures 
respectively. 
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CHAPTERS 

COMPUTATIONAL ME mODS FOR MACRO POLICY 
ANALYSIS: HALL AND TAYLOR'S MODEL IN DUALI 

P Ruben Mercado and David A Kendrick 

1. INTRODUCTION 

This, and its sibling paper (Mercado and Kendrick (1997c», provide a 
practical introduction to macroeconomic policy analysis methods and show how to 
obtain in DUALI deterministic and stochastic control solutions with standard and 
rational expectations models. In the sibling paper we focus on models with rational 
expectations and forward variables. In this paper we confine ourselves to standard 
models without forward variables. 

The analysis of the general properties of dynamic economic systems is a 
complex task, facilitated by the application of some theoretical results and relatively 
simple simulation techniques. Dynamic optimal policy analysis is more demanding, 
usually requiring specialized software. DUALI! is an optimal control software 
which is able to generate deterministic and stochastic simulation environments and to 
compute, among other things, the optimal feedback rule and the implied optimal 
paths for target variables and policy tools. 

Our general goals here are: 

a) to introduce the use of some concepts for the analysis of dynamic 
properties of economic systems 

b) to introduce the use of DUALI to perform deterministic and stochastic 
dynamic optimal policy analysis. 

As an illustration of solution concepts and computational techniques, we 
use a linearized version of Robert Hall and John Taylor's open economy-flexible 
exchange rate model. 2 

2. HALL AND TAYLOR'S OPEN ECONOMY MODEL 

This is a twelve-equation nonlinear dynamic model for an open economy 
with flexible exchange rates which generates interesting and realistic patterns of 
macroeconomic behavior. 

! Amman and Kendrick (1996) and (1997b). 

2 Hall and Taylor (1993). Though its building blocks are developed throughout the book, the whole model 
is presented only in MACROSOL YE, the software accompanying Hall and Taylor's book. 
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Hall and Taylor's model contains the equations, variables and parameters 
listed below. Equations i-v and ix-x can be seen as a standard IS-LM-Open 
Economy sub-model for aggregate demand. Equations vi-viii define an 
"expectations augmented" Phillips Curve, that is, aggregate supply. Finally, 
equations xi and xii are definitions for the government deficit and the unemployment 
rate. The parameters are taken from the 1993 edition of the Hall and Taylor text. 
They explain that the parameters were chosen in such a way as to provide consistent 
numerical values so as to give a sense of the magnitudes involved. 

The model is dynamic - all variables without subscripts correspond to time 
"1", those with a "-I" subscript correspond to "t-I", and so on. Also the model is 
nonlinear - nonlinearities appear in equations v, viii, ix and x. Its dynamic behavior 
displays the "natural rate" property: nominal shocks may affect real variables in the 
short-run, but not in the long run. 

Equations 

i) GDP identity Y =C+I+G+X 

ii) Disposable Income yd = (l-t)Y 

iii) Consumption C = a+byd 

iv) Investment = e -dR 

v) Money Demand M/P=kY-hR 

vi) Expected Inflation reo = (l re.) + 13 re·2 

vii) Inflation Rate re = reo + f {(Y.) - YN) / YN} 

viii) Price Level P = p_) (1 + re) 

ix) Real Exchange Rate EP/Pw = q +vR 

x) Net Exports X = g - mY - n E P / Pw 

xi) Government Deficit Gd = G - tY 

xii) Unemployment Rate U = UN - ~{(Y - YN) / YN } 

Parameters 

a = 220; b = 0.7754; d = 2000; e = 1000; f = 0.8; g = 600; h = 1000; 
k = 0.1583; m = 0.1; n = 100; q = 0.75; t = 0.1875; v = 5; (l =0.4; 13 =0.2; 
~ = 0.33; 



Endogenous Variables 

C: Consumption 
E: Nominal Exchange Rate 
Gd : Government Deficit 
I: Investment 
P: Domestic Price Level 
R: Real Interest Rate 
U: Unemployment Rate 
X: Net Exports 
Y: GDP 
yd : Disposable Income 
1t: Inflation Rate 
1te : Expected Inflation 

Policy Variables 

G: Government Expenditure 
M : Money Stock 

Exogenous Variables 

Pw : Foreign Price Level 
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UN : "Natural" Rate of Unemployment 
YN :Potential GDP 

To make use of theoretical results from the analysis of dynamic systems and 
from the optimal control literature, and to be able to perform policy analysis with 
DUALI, we need to obtain the state-space representation of Hall and Taylor's model, 
that is, to transform the model into a system of first order difference equations. To 
do this, we first linearize the model, then obtain its reduce form representation, and 
finally transform the reduce form into the state-space form. 

Detailed steps to transform Hall and Taylor's nonlinear model into its state
space representation are in Mercado and Kendrick (1997a). The linearization 
technique chosen is a variant of the Johansen's method, in which all the variables in 
the model are expressed as percent deviations from the model's steady-state solution. 
Without loss of generality, and to make the analytical and computational work 
easier, the original twelve-endogenous variables model was collapsed into a four
endogenous variables model involving (1) GDP, the real interest rate, the nominal 
exchange rate and the price level as endogenous variables, (2) the money supply and 
government expenditure as policy variables, and (3) potential GDP and foreign 
prices as exogenous variables. 

The state-space representation of Hall and Taylor's model when collapsed 
into a four-endogenous variables model in which all the variables are percent 
deviations from the steady-state is given below.3, 4 

3 The steady-state solution for Hall and Taylor's original nonlinear model in levels is: Y = 6000, R = 

O.OS, plev = I and E = 1. These steady-state values correspond to the following values for policy and 
exogenous variables: M = 900, G = 1200, YN = 6000 and plevw = 1. Since in the linearized state-space 
representation all variables are in percent deviations, their steady-state values are all zeroes. 
4 In Hall and Taylor'S model, the policy variables contemporaneously affect the model's endogenous 
variables, and this is also true for its "state-space" representation. In order to obtain a proper state-state 
representation, that is, one in which the control variables also appear with one lag. we have to assume that 
there is one lag of delay between a policy decision and its implementation (see Kendrick (1981), p. 10). 
Then, we can substitute M.,· for M , and G.,· for G·. We will also assume that the exogenous variables 
YN· and plevw· affect the system with one lag instead of contemporaneously. Expressing the model in 
this way, we can make use of many results from the optimal control literature, which works with models 
with one-lag controls. Also, the DUm software works in this way. 
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y" = AllY".1 + AI3 plev".1 + AJ7 xlplev".1 + AUI xllplev".1 + Bl1M".1 + BI2 G".I+ 
CllYN".1 + C12 plevw".1 (1.1) 

R" = A2I Y".I+ A23 plev".1 + A27 xlplev".I+ A2.11 xllplev".1 + B2IM".1 + B22 G".I + 
C2IYN".1 + C22 plevw".1 (1.2) 

plev" = A31 Y".I+ A33 plev".1 + A37 xlplev".1 + A3.11 xllplev".1 + C31 YN".I (1.3) 

E" = AnY".1 + ~3 plev".1 + ~7 xlplev".1 + ~II xllplev".1 + B4IM".1 + B42 G".I + 
C41 YN".I+ C42 plevw".1 (1.4) 

xlY" = Y".I 

xlplev" = plev".1 

xlE" = E".I 

xllY" = xlY".1 

xllR" = xlR".1 

xllplev" = xlplev".1 

xllE" = xlE".1 

where: 

Endogenous Variables 

y" = GDP 
R" = Real Interest Rate 
plev" = Domestic Price Level 

Policy Variables 

M" = Money Stock 
G* = Government Expenditure 
E" = Nominal Exchange Rate 
Exogenous Variables 
p1evw" = foreign Price Level 
YN" = Potential GDP 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

where the remaining "xl..." and "xll ... " variables come from the re-labeling of the 
endogenous variables with lags greater than one, and where: 

All = -0.346, AI3 = -0.606, AJ7 = 0.087, AUI = 0.087, 
A21 = 7.811, A23 = 13.669, A27 = -1.953, A2.1l = -1.953, 
A31 = 0.800, A33 = 1.400, A37 = -0.200, A3.l1 = -0.200, 
~1= 1.154, ~3 = 2.019, ~7 = -0.288, ~.ll = -0.288, 

BII = 0.433, B12 = 0.231, B21 = -9.763, B22 = 4.386, 
B41 = -2.442, B42 = 1.097, 

CIl = 0.346, CIZ = 0.000, C21 -7.811, C22 0.000, 
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C31 = -0.800, C41 = -1.154, C42 = 1.000. 

In matrix notation, the state-space representation of Hall and Taylor's 
model can be written as: 

x = A x..1 + B ILl + C Z.I (1.13) 

where x is an augmented state vector defined as: 

x=[~ l (1.14) 

where: 

y. 

x= 
R* 

(1.15) XL=X_I XLL=X_2 
plev • 

E· 

u=[M.:I]. 
G_I z=[p:::J, 

(1.16) 

and where: 

-0.346 0 -0.606 0 0 0 0.087 0 0 0 0.087 0 

7.811 0 13.669 0 0 0 -1.953 0 0 0 -1.953 0 
0.8 0 1.4 0 0 0 -0.2 0 0 0 -0.2 0 

1.154 0 2.019 0 0 0 -0.288 0 0 0 -0.288 0 

1 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 
A= (1.17) 

0 0 I 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 
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0.433 0.231 0.346 0 

-9.763 4.386 -7.811 0 

0 0 -0.8 0 

-2.442 1.097 -1.154 1 

0 0 0 0 

0 0 0 0 
B= C= (1.18) 

0 0 
, 

0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

l. INTRODUCTION TO DYNAMIC ANALYSIS METHODS 

Before perfonning optimal policy experiments with a given model, it is 
useful to analyze its basic dynamic behavior. Here, we will introduce the most 
common theoretical results and simulation procedures to that end. 

l.a Eigenvalues: Computation and Use 

The eigenvalues of matrix A convey useful infonnation about the dynamic 
properties of the model. 5 They can be easily computed with specialized software 
such as Matlab, Mathematica, etc. 

Let's assume that the model has a steady-state. Then, depending on the 
magnitude of those eigenvalues, the system will be stable, unstable, or it will display 
the saddle-point property: 

.. if they all lie within the unit circle,6 the model is globally stable. It will 
converge to its steady-state from any initial conditions 

.. if they all lie outside the unit circle, the model is dynamically unstable. 
Unless it starts from the steady-state itself, it will diverge from it for any other set of 
initial conditions 

.. if some lie within the unit circle, while others lie outside the unit circle, 
the steady-state is a saddle point. The system will converge towards the steady-state 
from some initial conditions, and will diverge from other. 

5 For an extended treatment of the analysis of dynamic systems related to economics, see Chiang (1984), 
and Azariadis (1993). 

6 If the eigenvalues are complex numbers, this means that their modulus is smaller than 1. If they are real 
number, it means that their absolute value is smaller than one. 
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The speed of convergence or divergence is also detennined by the 
magnitude of the eigenvalues. For instance, a modulus smaller than one but near one 
will indicate a slow adjustment towards the steady-state, while a modulus near zero 
will imply a faster convergence. A modulus greater than one but near one will 
indicate that anticipated changes in exogenous variables that will take place in the 
future can have large effects today. Finally, the presence of complex eigenvalues 
will imply cyclical behavior for some or all of the system variables. 

For the linearized version of Hall and Taylor's model, we have the 
following eigenvalues: 7 

AI = 0.68431+0.4042i 
A2 = 0.68431-0.4042i 
A3 = -0.31663 
A4 = 0.002 

AS to A 12 = all near zero 

There are two complex eigenvalues, with modulus less than one. The 
remaining eigenvalues are all real and smaller than one in absolute value. Thus, Hall 
and Taylor's linearized model is stable and has cyclical behavior. That is, its 
convergence toward the steady-state will be in the form of damped oscillations. 

3.b Dynamic Paths 

In the following it is important to distinguish between two ways of 
describing the steady state solution of the model. The first is the steady state levels. 
For example the steady state levels for the Hall and Taylor model are 

Y =6000 
R= 0.05 
plev = 1 
E=l 

i.e. 6000 billion or 6 trillion dollars 
i.e. 5 percent 
i.e. a price index of 100 
i.e. a nominal exchange rate index of 100 

This values come from a solution in which the policy variables are set to 

M == 900 
G == 1200 

i.e. a money stock of 900 billion 
i.e. government expenditures of 1200 billion 

and of exogenous variables of 

YN == 6000 
plevw == 1 

i.e. a potential GDP of 6 trillion dollars 
i.e. a foreign price level index of 100 

7 There are many software packages capable of computing eigenvalues. These were computed with 
Matlab (see the Appendix). 
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The second way is the steady state in percentage deviations from the steady 
state levels. Thus in the model in use here all the variables are in percentage 
deviations from steady state levels, so the steady state solution to that model will 
sometimes be zero meaning that those values are at their steady state levels. For 
example in time period one we may obtain a solution of 0.04 which means that Y is 
4 percent above its steady state level so it is at 6024. Then in the long run the values 
ofY may return to 0.00 meaning that it is zero percent above its steady state level so 
it is at 6000. (Notice that 0.04 does not mean "a 4% increase with respect to the 
previous period".) To learn more about this way of representing a model see 
Mercado and Kendrick (1997a). 

This can be confusing since a statement that the steady state solution of the 
model for GDP was zero means that GDP is at a steady state level of 6000 billion, 
i.e. 6 trillion dollars. 

With this background, the next step in the analysis of the model is to 
visualize its dynamic evolution for given changes in policy variables, as a way of 
detecting implausible patterns ofbehavior.8•9 The graphs below shows the results of 
two experiments: a one time and permanent 10% increase in the money suPRly (M) 
and a one time and permanent 10% increase in government expenditure (G).I Thus 
in the fIrst experiment M is set to 0.1 for all time periods. This can be thought of as 
the money stock increasing from its steady state value to a level ten percent higher in 
the fIrst time period and then remaining at that level throughout the run. This has the 
effect of giving a shock to the economy in the first time period and the effects of this 
shock then dissipate slowly over time. The same is true for G in the second 
experiment, i.e. it has a value of 0.1 in all time periods. This means that it increases 
from it steady state level by 10 percent in the fIrst time period and then stays at that 
level throughout the run. In the engineering literature these types of policy changes 
are sometimes called "step" functions because the policy steps up from one level to 
another and remains at that higher level. 

In the following graphs the percent deviations from steady-state values are 
on the vertical axes (e.g.: a value of 0.02 means 2% above steady-state) and the time 
periods on the horizontal axes. Since all variables (endogenous, policy and 
exogenous) are in percent deviations, their steady-state solution values in the model 
are all zeroes. 

8 These simulations can be easily implemented in software with standard simulation capabilities, such as, 
for example, GAMS (see Mercado, Kendrick and Amman (1997), and Mercado and Kendrick (1997a». 
Though DU AU is a software oriented toward deterministic and stochastic control applications, it can also 
handle standard simulations. To do so, set to zero the weighls on the state variables (W matrix) and set to 
the maximum possible value the weights on the controls (Lambda matrix). Then, define the desired path 
for the controls as equal to the policy change to be introduced, and solve as a Deterministic QLP problem 
(see Amman and Kendrick (1996), Chapter 1). Simulations of shocks to the exogenous variables and to 
the initial values for the endogenous variables can be implemented in an analogous way. 
9 To run these simulations, use program htduaOl.dui (making the appropriate changes. See the 
"Description" section in the "Data" menu). 

10 To simplifY the notation, from now on we will not use the" * "on the model's variables, but it should 
be clear that we will still be making reference to percent deviations from baseline. 
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As expected, the increase in M causes a significant drop in R and thus an 
increase in Y during the first periods. The value of -1 in the graph for the real interest 
rate means that R has fallen by 100% (Le. from, say, 5% to 2.5%), while the value of 
0.04 on the vertical axes of the GDP graph means that Y went up by 4% in the first 
quarter from say 6000 to 6024. However, in the long-run, the real variables (Y and 
R) come back to their steady-state values, while nominal variables experience 
permanent changes (plev increases 10%, the same amount as M, while E decreases 
10%) of equal magnitude to the change in M. Thus the price level is ten percent 
higher at the end of the experiment than at the beginning, moving from an index 
level of say 140 to 154. Also, the exchange rate is ten percent lower, changing from 
say 120 yen per dollar to 108 yen per dollar. 

The increase in G has a smaller effect on Y, which is also neutral in the 
long-run. However, there is a strong impact on R, which after five periods increases 
by more than 100% with respect to its previous steady-state value, due to the 
crowding-out effect of government expenditure on private expenditure. Meanwhile, 
plev and E both increase and then stabilize on a new and higher steady-state value 
(around 6% higher for plev and almost 20% higher for E). 
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3.c Dynamic Controllability: Computation and Use 

Once we have studied the dynamic properties of the model, the next step is 
analyze its controllability, that is, the power of the available policy tools to drive the 
system towards pre-specified desired paths. Jan Tinbergenll established the 
conditions for static controllability. In order to hit a number "n" of targets, we need 
at least an equal number of independent policy instruments. However, this condition 
can be overcome in a dynamic context.12 

We may start by asking if it is possible to transfer the system from any 
given state at time "0" to any other state at time "0 + t" through a suitable choice of 
values of the policy tools. This is the condition of dynamic controllability. For a 
system to be dynamically controllable, it has to be true that: 

(2.1) 

where "m" is the number of target variables, where "1" (the time horizon) is greater 
than "m", where: 

(2.2) 

and where A and B are respectively the state and control matrices of the model, and 
S is a matrix to select, from the set of state variables, those that will be the targets of 
policy. That is: 

sz=y (2.3) 

where Z is the vector of state variables and Y is the vector of target variables. 

For the state-state representation of Hall and Taylor's model, we know that 
A is a (12 x l2) matrix. However, 8 out of the 12 state variables are in fact lagged 
endogenous variables re-defined for convenience. Thus, for instance, we may be 
interested in controlling 4 variables only (Y, R, plev and E), or even a smaller subset. 
Assuming that we want to control all the four variables, we will have: 

~l (2.4) 

Thus, the dynamic controllability condition is: 

II See Tinbergen (1956). 

12 See Hughes Hallett (1989) who makes the point that it may be easier to control just the targets of 
policy rather than the whole model. 
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(2.5) 

which is effectively met by the linearized Hall and Taylor's model (see Appendix 
A.2). 

There are many more theoretical results in connection with the 
controllability properties of a system in both deterministic and stochastic settings. 
The one presented here is one of the most intuitive and relatively easy to check. 13 

4. INTRODUCTION TO OPTIMAL POLICY ANALYSIS METHODS WITH 
DUALI 

In the previous section, we presented the responses of Hall and Taylor's 
model to changes in the policy variables. Optimal policy analysis is interested in a 
sort of "reverse" analysis. It begins by posing this question: how should policy 
variables be set in order for the target variables to follow pre-specified paths?14 

The most popular way of stating this problem is as a Quadratic Linear 
Problem (QLP). In formal terms, the problem is expressed as one of finding the 

controls (u) ~o to minimize a quadratic "tracking" criterion function J of the form: 

+±~([Xt -xn'Wt [Xt -xn+[ut -un'At[Ut -u~l)} (3.1) 

subject, as a constraint, to the state-state representation of the economic model: 

Xt = A Xt-I + BUt_I + C Zt_1 + fit-I (3.2) 

where E is the expectation operator, x# and u# are desired paths for the state and 
controls variables respectively, Wand A are weighting matrices for states and 
controls respectively, E is a vector of random disturbances, and where all the other 
variables were defined above. 

The quadratic nature of the criterion function implies that deviations above 
and below target are penalized equally, and that large deviations are more than 

13 For example, there are also uniqueness, stabilizability and instrument stability conditions for a dynamic 
system when it is put, as we will see below, within a control framework. For an introductory presentation 
of these conditions, see Tumovsky (1977) and Holly and Hughes Hallett (1989). For an advanced 
treatment, see Aoki (1976). 
14 For an introductory presentation of optimal control for economic models, see Tumovsky (1977). For a 
more advanced treatment, see Chow (1975), Holly and Hughes Hallett (1989), and Kendrick (1981). 
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proportionally penalized than small deviations. This particular form of the criterion 
function is not the only possible one, but is the most popular.15 

The way in which we treat uncertainty has important implications for the 
solution methods of this problem, as well as on the simulation techniques. If we 
completely ignore the presence of uncertainty - which may arise, for example, from 
additive noise, parameter uncertainty or measurement error - we are left with a 
deterministic control problem. If we account for some or all of the possible forms of 
uncertainty, we face a stochastic control problem. 

The solution of deterministic or stochastic control problems, even when 
they are of the Quadratic Linear form, quickly becomes very involved. Thus, to 
make our task feasible, we have to rely on computational methods and specialized 
software. 

DUALI is a specialized software that can receive as inputs the desired 
paths for target and control variables, weighting matrices, and the state-space 
representation of the economic model with or without its stochastic specifications, 
and which is able to generate sophisticated simulation environments and to compute, 
among other things, the optimal feedback rule and the solution paths for states and 
controls. I 6 

In what follows, we will use DUALI to perform deterministic and stochastic 
experiments with the state-space representation of Hall and Taylor's model. We will 
assume that the policy goal is to stabilize Y, R, plev and E around steady-state values 
(that is, around zero). High and equal weightsl7 wilI be put on stabilizing Y and 
plev, lower and equal on R and E, and even lower and equal on the policy variables 
M and G. Neither the desired paths nor the weighting matrices (shown below) will 
vary with time. 

15 For a discussion of the properties of different criterion functions, see Blanchard and Fischer (1989), 
Chapter I!. 
16 See Amman and Kendrick (1996) and (1997b). 

17 There is a conceptual difference between "weights" and "priorities" which arises when the variables of 
interest are in levels and also expressed in different units of measurement. For instance, if GDP is 
measured in dollars and prices are measured by an arbitrary price index, equal weights on these two 
variables will probably imply different policy priorities and vice versa. Since all variables in the state
space representation of Hall and Taylor's model are in percent deviations from steady-state, weighs and 
priorities can be considered as equivalent within certain limits. However, it should be clear that, for 
example, an interest rate 50% below steady-state values is something feasible, while a level of GDP 50% 
below steady-state is not. In such a case, there is not an analogy between weights and priorities. See Park 
(1997). 
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4.a Deterministic Control 

In this section, we will ignore all possible sources of uncertainty. Assume, 
for example, that the economy is going through a recession provoked by a temporary 
adverse shock to net exports which causes Y to be 4% below its steady-state value. 
Given the weight structure adopted in the previous section, what would be the 
optimal paths for government expenditure (G) and the money supply (M) in order to 
bring the economy back to its steady-state? How do the optimal paths for the state 
variables compare against what would be the autonomous response of the system to 
that kind of shock? 

To implement this experiment in DUALI, we have to 

(1) set the problem complexity to deterministic, 
(2) set all the desired paths for states and controls equal to zero, 
(3) impose the corresponding weights on states and controls as indicated 
above, 
(4) set an initial value for Y equal to -0.04, and 
(5) chose the option "Solve: QLP" or "Solve:QLP Print".18 

To obtain the autonomous path of the system, we have to proceed in an 
analogous way as we did in the previous section to simulate the effects of changes in 
policy variables. That is, we have to 

(1) impose zero weights on the state variables, 
(2) place high and equal weights on the controls and, 
(3) as above, set an initial value for Y equal to -0.04. 

The results for the main four state variables are shown in Figure 2.19 

18 See Amman and Kendrick (1996), Chapter 1. Use the program htduaOl.dui. 
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Figure 2. Autonomous Solution Versus Optimal Control Solution: State Variables. 

The optimal solution paths for the states outperform the autonomous 
responses of the system for all the four target variables. This is true even for GDP 
where the optimal output stays closer to the desired path of zero than does the 
autonomous output path over most of the period covered by the model. This comes 
as no surprise, though it may not always be the case. Indeed, remember that the 
optimal solutions are obtained from the minimization of an overall loss function. On 
some occasions, depending on the weight structure, it may be better to do worse than 
the autonomous response for some targets in order to obtain more valuable gains 
from others. 

Why does the autonomous path of the economy display the observed 
behavior? Here is how Hall and Taylor explain it: 

"With real GDP below potential GDP after the drop in net exports, the price 
level will begin to fall. Finns have found that the demand for their products has 
fallen off and they will start to cut their prices ( ... ). The lower price level causes the 
interest rate to fall. 20 With a lower interest rate, investment spending and net exports 

19 To run this simulations, use program htduaO l.dui (making the appropriate changes. See the 
"Description" section in the "Data" menu). 
20 Since less money is demanded by people for transactions purposes. See Hall and Taylor (1993), 
Chapter 8.3. 
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will increase.21 The increase in investment and net exports will tend to offset the 
original decline in net exports. This process of gradual price adjustment will 
continue as long as real GDP is below potential GDP."n 

policy variables 
0.07 .---------------, 
0.06 
0.05 
0.04 

0.03 

0.02 
0.01 

o '- .>.-7-.. ,...,..~. ~---
-0.01 

o 2 4 6 8 10 12 14 

l--M ....... Gl 

Figure 3. Autonomous Solution Versus Optimal Control Solution: Policy Variables 

What explains the obseIVed optimal path of the four variables of interest? 
Y was brought up very quickly, going from 4% below steady-state to 3% above 
steady-state, to then decay slowly to its steady-state value. This performance can be 
attributed to the more than 6% increase in G that can be obseIVed in the policy 
variables' graph in Figure 3. Meanwhile, R experiences almost no variation when 
compared to the big drop - almost 35% - implied by the autonomous behavior of the 
system. This happens in the optimal control solution because, the increase in G puts 
an upward pressure on the interest rate, thus keeping it from falling. Finally, the 
nominal exchange rate has to go up to compensate for the fall in prices, given that 
the real interest rate does not change much. 

We can also see that monetary policy plays a minor role when compared 
with fiscal policy. 23 Even though we put the same weights on both variables, 
government expenditure appears to be more effective to bring the economy out of its 
recession given the weight structure we put on the target variables. 

The kind of optimal control experiments done above lend themselves well 
to tradeoff analysis. A curve of this sort is known as the policy frontier.24 For 
instance, we may want to depict the trade-off between the standard deviations of Y 
and plev in Hall and Taylor's model when, as above, Y is shocked by a negative 4% 
in period zero. To obtain the corresponding policy frontier, we vary the relative 

21 Since the price level falls much less than the real interest rate during the first periods of the adjustment, 
the nominal exchange rate has to fall too, as can be derived from equation "ix" in the original Hall and 
Taylor'S model. This implies that the real exchange rate will fall, then causing net exports (see equation 
"x") to raise. 

22 Hall and Taylor (1993), page 232. 

23 Notice that the optimal values for the policy variables are computed for periods 0 to 14 only. Given that 
we are working with a state.space representation of the model, policy variables can only influence the next 
period state variables. That is, the controls at period 0 are chosen, with a feedback-rule, as a function of 
~od 0 states, but they determine period I states, and so on. See Kendrick (1981). 

See Hall and Taylor (1993), Chapter 18. 
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weights on Y and plev, perform one simulation for each weight combination and 
compute the corresponding standard deviations. The results of six experiments, 
keeping the same weights on the remaining states and controls as in the above 
simulation, are shown in Table 1 and Figure 4?5 

Table 1. Weights and Tradeoff. 

E_xperiment 
1 
2 
3 
4 
5 
6 

a; 
~ 
I-
E 
0 

-= 11\ c 
. 2 
. ~ 
:>0 ... 

0 
> 

Weight on Y Weight on plev SID (y) SID (Plev) 
100 0 0.0479 0.0500 
80 20 0.0489 0.0466 
60 40 0.0499 0.0440 
40 60 0.0509 0.0419 
20 80 0.0520 0.0401 
0 100 0.0531 0.0386 

Policy Frontier for Y and plev 

0.065 

0.06 

0.055 

•• • 0.05 • • • 
0.045 

0.04 

0.035 

0.035 0.04 0.045 0.05 0.055 0.06 0.065 

plev Deviations from Target (STD error) 

Figure 4. Policy Frontier for Y and plev. 

The policy frontier for Y and plev is clearly shown in the graph above, 
where each diamond represents the result of an experiment. The higher the weight 
on Y relative to that of plev, the lower its standard deviation, and vice versa. The 
flatness of the curve indicates that it is easier to achieve a reduction in the percent 
deviation from target for plev than for Y. Of course, shape and location of this 
particular policy frontier are conditional on the weight structure imposed on the other 
variables. For example, if we increase the weight on the policy variables, the policy 
frontier will shift up and to the right, farther away from the origin (the (0,0) point of 

25 To run these simulations, use program htduaO l.dui, changing the weights on Y and plev. 
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zero deviations for Y and plev). This will be due to the more restricted possibilities 
for actively using the policy variables to reach the targets for Yand plev. 

4.b Stochastic Control 

In this section, we will begin to take uncertainty into account. Indeed, 
macroeconomic models are only empirical approximations to reality. Thus, we have 
to consider that there are random shocks frequently hitting the economy (additive 
uncertainty), that the model parameters are just estimated values with associates 
variances and covariances (multiplicative uncertainty), and that the actual values of 
the model's variables and initial conditions are never known with certainty 
(measurement error).26 

Stochastic control methods artificially generate a dynamic stochastic 
environment through random shocks generation. They use specific procedures for 
choosing the optimal values for each period policy variables: Certainty Equivalence 
(CE) when only additive uncertainty is considered, Open Loop Feedback (OLF) 
when parameter uncertainty is considered with passive learning, and DUAL when 
parameter uncertainty is considered and there is active learning. Also, there are 
specific mechanisms of projection-updating of parameters and variables. Thus these 
methods allow us to perform sophisticated simulations. 

In what follows, we will perform experiments incorporating some forms of 
additive and parameter uncertainty into Hall and Taylor's model. We will proceed in 
two steps. First, we will analyze the differences in qualitative behavior of the policy 
variables when different procedures for choosing their optimal values are used 
(specifically, (CE) versus (OLF». This will be done at first in an environment in 
which there is no updating of parameter estimates. Second, we will compare the 
quantitative performances of CE and OLF using Monte Carlo procedures and 
including passive learning with Kalman filters for updating parameter estimates. 

4.b.l Qualitative comparison between CE and OLF: control without 
parameter updating 

Some years ago, William Brainard27 showed that, for a static model, the 
existence of parameter uncertainty causes the optimal policy variables to be used in a 
more conservative way as compared to the case of no parameter uncertainty. 
However, this finding could not be completely translated into a dynamic setting. The 
existence of dynamics implies considerable changes, and at the same time opens new 
possibilities for policy management. 

The procedure for choosing the controls in the presence of parameter 
uncertainty (OLF) differs from the standard deterministic QLP procedure or its 

26 See Kendrick (1981). 

27 See Brainard (1969). 
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"certainty equivalent" (CE).28 Some analytical results have been provided by 
Franklin Shupp29 in connection with the qualitative behavior of the policy variables 
when the OLF procedure is used in a model with one state and one control. He 
found that when uncertainty concerns the control parameters only, Brainard's result 
still holds: a more conservative use of the controls will be the optimal policy. 
However, he also found that the reverse is true when the uncertainty is in the state 
parameters only. Finally, he found that when uncertainty is in both the control and 
the state parameters, no general results can be obtained. 

There are not straightforward theoretical results for the case of models with 
several states and controls. To illustrate some possible outcomes, and to show a first 
contrast between patterns of behavior generated by CE and OLF procedures, we will 
perform an experiment with Hall and Taylor's model. As in the previous section, we 
will assume that Y is 4% below its steady-state value at time zero and we will keep 
the same weight structure and desired paths. We will also assume that there is 
uncertainty in connection with six out of the parameters in the B matrix, and that the 
standard deviation of each of these parameters is equal to 20%. The vector of the 
initial values of uncertain parameters (THO), the matrix that indicates which 
parameters in the model are treated as uncertain (lTHN), and the variance-covariance 
matrix of uncertain parameters (SITTO) will be as follows: 

b ll = 0.433 1 1 

b 12 = 0.231 I 1 2 

b 21 = -9.763 2 1 
THO = ITHN= 

b 22 = 4.386 
, 

1 2 2 
(3.4) 

b41 = -2.442 1 4 1 

b42 = 1.097 I 4 2 

0.00749 

0.00213 

SITTO= 
3.81264 

0.76947 

0.23853 

0.04813 

All three matrices will remain constant during the simulation. The elements 
in SITTO are computed by taking 20% of the corresponding element in THO and then 
squaring the result. Thus, for the bll coefficient this is 

28 See Kendrick (1981). CE presupposes additive uncertainty only, while QLP is deterministic (no 
uncertainty). However, the presence of additive uncertainty does not affect the form of the solution 
procedure for choosing the optimal controls (of course, it implies a different simulation method in order to 
~~nerate additive uncertainty). In this sense, QLP and CE are equivalent. 

See Shupp (1976). 
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[(0.2) (0.433)]2 = 0.00749. 

To carry out the experiment, we will select the following DUALI options: 
complexity: stochastic without measurement error; model size: 6 uncertain 
parameters; Monte Carlo runs: 1; options stochastic: read in random terms, but set 
them (i.e. the XSIS) all equal to zero.30 

The graphs below show the results for both the CE31 solution obtained with 
"Solve: QLP" and the OLF solution obtained with "Solve: OLF". 32 

0.005 
real Interest rate (R) 

0..03 
GOP (V) 

a 0..02 ~ o..Q1 
-0.005 0. a.·· ... 

-0.0.1 -O.Q1 . 
-0.02 

-0.0.15 
-0.03 

-0.02 -0.04 
0. 2 4 6 8 10. 12 14 a 2 4 6 8 10. 12 14 

!···· ... OO=--CE ! I·······OO=--CEI 

0..03 0..005 
price level (plev) 

0..025 0. 

0..02 -0.005 

0..0.15 -0.0.1 

0..0.1 -0.0.15 
-0.02 

0..005 -0.025 
a -0.03 

-0..005 -0.035 
0. 2 4 6 8 10. 12 14 0. 2 4 6 8 10. 12 14 

I·· .. ···Q.F--CE I I .. · .. ··OO=--CEI 

30 See Amman and Kendrick (1996), Chapter 2. 

31 Since the only disturbance is the off-steady state initial Y value (equal to -0..0.4), the CE solution and 
the deterministic solution are completely equivalent. 
32 To run these simulations, use program htduao.l.dui for the CE procedure (making the appropriate 
changes as described in the "Description" section in the "Data" menu) and, for the OLF procedure, use 
program htduao.2.dui. 
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Figure 5, CE versus OLF: State and Control Variables, 

Qualitatively, the patterns of behavior for both the state and policy variables 
appear quite similar under the two methods, though overall results are worse in the 
OLF case. This is not surprising, since the "quasi-deterministic" environment within 
which we performed the experiment does not allow the exploitation of the 
knowledge of the variance-covariance parnmeter matrix through a learning process_ 33 

In fact, the interest of this experiment resides in the comparison between the 
behavior of the policy variables across different procedures. 

As can be seen in the graphs above, the use of government expenditure is 
slightly "more cautious" with the OLF procedure and for the first periods. This 
seems to be in line with the Brainard-Shupp results mentioned before. However, the 
reverse is true for the case of the money supply, which is used "more aggressively" 
with OLF. Thus, we can see how going from a univariate to a multivariate setting 
may have important consequences, as is also the case of a change from static to 
dynamic models. 

It is interesting to explore the consequences of increasing the level of 
uncertainty of the model parameters corresponding to one of the policy variables. 
For example, we double the standard deviation of the parameters corresponding to 
government expenditure (parameters bl2, ~2 and bd from 20% to 40%. Then, the 
SIITO matrix becomes: 

0.00749 

0.00853 

SIITO= 
3.81264 

(3.5) 
3.07791 

0.23853 

0.19254 

33 This point will become more clear in the next section, when we compare CE versus OLF across Monte 
Carlo simulations with a projection-updating mechanism 
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The graphs below contrast the behavior of the policy variables for this 
experimene4 (named OLF-B) against their behavior showed by the same variables in 
the experiment analyzed above (named, as above, OLF). 
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Figure 6. OLF-B versus OLF : Policy Variables. 

As one could expect, the increase in the relative uncertainty of government 
expenditure parameters induces a more cautious use of that policy. At the same time 
the money supply, now with a relatively lower associated uncertainty, is used more 
actively. Though these findings seem plausible, they do not reflect any theoretical 
result, since such results are not yet available for this kind of problem. As with the 
previous experiments, we could perhaps find different results for a different model. 

4.b.2 Quantitative Performance Comparison between CE and OLF: 
Control with Parameter Updating 

We will now move towards a more complex stochastic environment. As in 
the previous section, we will assume that some of the model parameters are 
uncertain, but now we will also assume that the model is constantly shocked by 
additive noise, that the true model is not known to the policy maker, and also that a 
passive-learning process takes place. We will perform several Monte Carlo runs for 
each of the procedures (CE and OLF).35 

The general structure of each Monte Carlo run will be as follows. At time 
zero, a vector of model parameters will be drawn from a normal distribution whose 
mean and variances are those of matrices THO and smo. Then, at each time "t", 
we will have: 

1) random generation of a vector of an additive shocks 
2) computation of the optimal controls for periods t to N (terminal period) 

34 To run this experiment, use program htdua02.dui, introducing the corresponding changes in the SITTO 
matrix. 

35 See Amman and Kendrick (1996), Chapter 4. 
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3) propagation of the system one period forward (from period t to period 
t+ I) applying the vector of controls (for period t only) computed in step 2. 
4) projection-updating of next period parameters and variance-covariance 
matrix 

For choosing the optimal control at each period (step 2) we will use either a 
Certainty Equivalence (CE) procedure or, alternatively, an Open Loop Feedback 
procedure (OLF). For the projection-updating mechanism (step 4) we will use a 
Kalman filter. 

Thus, each Monte Carlo run begins with a vector of parameter estimates 
which is different from their "true" value. Using this parameter vector, the policy 
maker computes (with a CE or an OLF procedure) the optimal values of the controls, 
and then she "applies" those values corresponding to time "1" only. However, the 
response of the economic system (its forward movement from time "t "to time "t+ I") 
will be generated by "the computer" using the "true" parameter values which are 
unknown to the policy maker. Then, at period "t+1" a new observation is made of 
the state vector, which is used to compute updated parameter estimates with a 
Kalman filter. After a number of time periods, the sequence of updated estimates 
will hopefully begin to converge to their "true" value. 

As in the previous section, we will assume that there is uncertainty in 
connection with six out of the parameters in the B matrix, and that the standard 
deviation of each of these parameters is equal to 20%. Then, matrices TIIO, SITTO 
and ITHN will be the same as in Eq. 3.5. We will also assume that GDP (y) and the 
price level (Plev) are hit by additive shocks of 2% the standard deviation, while the 
real interest rate (R) and the nominal exchange rate (E) experience shocks of 5% of 
their standard deviations. Thus, the variance-covariance matrix of additive noises 
(Q), will be as follows: 36 

36 We want the shocks to affect contemporaneous variables only, and not their lagged values. However, if 
we set to zero the elements of the Q matrix corresponding to lagged variables, DUALI will give us an 
error me~sage. That is why we set those elements equal to the minimum possible value (0.000000001). 
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0.0025 

o.om 
0.0025 

0.1(-9) 

Q= 

0.1(-9) 

(3.6) 

The results of 100 Monte Carlo runs are shown in the table below. 37 

CE OLF 
Average Criterion Value 5.60 5.59 
Runs with Lowest Criterion 47 53 

The Open Loop Feedback procedure does slightly better than the Certainty 
Equivalence, not only in connection with the average criterion value, but also in 
tenns of the number of Monte Carlo runs with the lowest criterion. As can be seen 
in the graph below, where each diamond represents the value of the criterion 
function for one Monte Carlo run, most of the diamonds are close to the 45 degree 
line, indicating a similar perfonnance for both procedures. There are no significant 
outliers that could be introducing a bias in the computed average criterion values. 

37 To run this simulation, use program htdua03.dui (see the "Description" section in the "Data" menu). 
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Figure 7. Scatter Diagram. 

These results are against what one would intuitively expect, since in the 
presence of parameter uncertainty OLF should do better than CEo However, we 
have to mention that there are no theoretical results yet developed in connection with 
the relative performance of CE versus OLF. This experiment results are conditioned 
on the model structure, its parameter and parameter variances values, and may well 
change (in any direction) in a different context.38 

5. EXTENSIONS 

We presented here some basic approaches for analyzing properties of 
dynamic economic systems and for performing optimal policy analysis in 
deterministic and stochastic environments with passive learning. The next natural 
step would be to continue our sequence of experiments making use of active learning 
methods (DUAL), that is, not only using the policy variables to control the 
economic system but also to gain information about its structure as discussed in 
Kendrick (1981). Also, with suitable modifications, the analysis and experiments 
could be implemented using rational expectations models instead of the standard 
models used here as in discussed in the sibling to this paper, i.e. Mercado and 
Kendrick (l997c). 

38 See Amman and Kendrick (l997a). Working with a different model, they fmd a better performance for 
OLF with respect to CEo 



Appendix 

AI) Matlab Program to Compute Eigenvalues 

% Computes the eigenvalues for the A matrix for 
% the linearized version of Hall and Taylor's (1993) 
% macroeconomic model. 

echo on; 
clear; 

A = [ -0.346 0 -0.606 0 0 0 0.087 0 0 0 0.0870; .. . 
7.811 0 13.669 0 0 0 -1.953 0 0 0 -1.953 0 ; .. . 
0.8 0 1.4 0 0 0 -0.2 0 0 0 -0.2 0; ... 
1.154 0 2.019 0 0 0 -0.288 0 0 0 -0.288 0; ... 
100000000000; .. . 
010000000000; .. . 
001000000000; .. . 
000100000000; .. . 
000010000000; .. . 
000001000000; .. . 
000000100000; .. . 
000000010000] 

lambda = eig(A) 

A2) TSP Program to Compute Dynamic Controllabity Conditions 

? Computes dynamic controllability for both the full 
? state vector and a subset of target variables for 
? the linearized version of Hall and Taylor's (1993) 
? macroeconomic model. 

load (nrow= 12, ncol= 12, type=general) A; 
-0.346 0 -0.606 0 0 0 0.087 0 0 0 0.087 
7.811 0 13.669 0 0 0 -1.953 0 0 0 -1.953 

0.8 0 1.4 0 0 0 -0.2 0 0 0 -0.2 
1.154 0 2.019 0 0 0 -0.288 0 0 0 -0.288 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
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0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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AIlB; 

load (nrow=12, ncol=2,type=general) B; 
0.4330.231 
-9.7634.386 

o 0 
-2.442 1.097 

o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 

load (nrow=4, ncol=12, type=general) S; 
I 0 0 0 0 0 
0 I 0 0 0 0 
0 0 I 0 0 0 
0 0 0 I 0 0 

print A, B, S; 

mat AB = A*B; 
mat A2B = (A**2)*B; 
mat A3B = (A**3)*B; 
mat A4B = (A**4)*B; 
mat A5B = (A**5)*B; 
mat A6B = (A**6)*B; 
mat A7B = (A**7)*B; 
mat A8B = (A**8)*B; 
mat A9B = (A **9)*B; 
mat AlOB = (A ** lO)*B; 
mat AIlB = (A**ll)*B; 

0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 

mmake P B, AB, A2B, A3B, A4B,A5B,A6B,A7B,A8B,A9B,AlOB, 

mat G = rank(p); print G; 

matRI = S*B; 
mat R2 = S*A*B; 
mat R3 = S*(A**2)*B; 
mat R4 = S*(A**3)*B; 

mmake R RI, R2, R3, R4; 
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mat M = rank(R); print M; 

end; 
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CHAPTER 9 

THE DYNAMIC ANALYSIS OF FORWARD-LOOKING MODELS1 

Michel Juillard 

This paper discusses the computation and interpretation of eigenvalues of 
fonvard-Iooking models. It expands results already present in Blanchard and Kahn 
(1980) to the case where there are singularities in the dynamics of the model. 
Anderson and Moore (1985) had proposed an iterative procedure based on 
successive singular value and QR decompositions. We introduce here a direct 
application of generalized eigenvalue methods? Finally, the paper presents an 
application of this methodology to discuss monetary policy rules in the framework of 
Fuhrer and Moore (1995) model. 

1. EIGENVALUES AND DYNAMIC PROPERTIES OF A MODEL 

For linear models, it is well known that their dynamical properties are 
nicely summarized by the eigenvalues of the transition matrix of the system. For 
non-linear models, it is always possible to linearize them around some reference state 
(stationary or steady state, for example). The eigenvalues of the resulting linear 
model let us then characterize the dynamical properties of the original non-linear 
model locally, in the neighbourhood of the reference trajectory. 

We will therefore pursue the discussion only for linear models. 
Furthermore, as any linear dynamical model of order greater than one can be 
transformed into a larger model of order one through the addition of suitable 
auxiliary variables and equations, we will only discuss linear dynamical models of 
order one. 

Once it is established that the model has a reference state, the eigenvalues 
inform us of three aspects of the model dynamics: 

• whether this reference state is stable; 
• whether, after a shock away from the reference state of a stable model, 

the system goes back to the stationary state in a monotonic manner or 
with damped cycles; 

• what is the speed of convergence back to stationary state. 

1 I thank Douglas Laxton and Pierre Malgrange for many suggestions in the preparation of this paper. I 
remain however sole responsible for any remaining errors. 

2 See Klein (1997) and Sims (1997) for other applications of generalized eigenvalues methods to 
rational expectations models. 
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At this point. it is necessary to make a distinction between traditional. 
backward looking, models and models with explicit expectations. In backward
looking models, shocks will only affect the future trajectory of the variables. In 
forward-looking models. the expectation of future shocks will alter agents' behavior 
and shocks will modify the trajectory of the variables before and after they occur. 

In what follows. we will briefly discuss the eigenvalues of a backward 
looking model. then tum to forward-looking models. 

1.1 Backward-looking Models 

We consider models of the form 

t = 10, .... 00 

where y is the vector of endogenous variables and x a vector of exogenous 
variables.3 A and B are matrices of parameters. Because of formal resemblance with 
the state-space model representation one sometimes refers to A as the transition 
matrix. 

When the exogenous variables have constant value. x t = x, a stationary 

state exists for this model if and only if (I-A) is non-singular. Let y be this 

stationary state: 

Given initial conditions y to • the final form of the model is 

I-I 
Y =Aly +"'AI-i-IBx· 

t 10 £..J I 

i=to 

Let's imagine a single shock away from stationary state in period t': 

x t =x 

x t =x+Ax!, 

t*t' 
t = t' 

In this case. the deviation of stationary state. Ay t = Y t - Y is described by: 

AYI =0 

Ay t = A I-t'-I Ax t ' 

t <t' 

t~t' 

3 We could also consider lagged values of same exogenous variables, but it would only complicate the 
presentation without adding anything. 
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Obviously, this system will converge back to stationary state if and only if 
all the eigenvalues of A are inside the unit circle, so as limt_.",At = O. 

It is also evident that the shock will have effects only at the time of the 
shock and thereafter, but that there will be no anticipation of it. The nature of the 
response to this shock depends on the shock itself, ~Xt" and on the eigenvalues of A. 

To see how, let's consider the Jordan decomposition of matrix A: 

A = C-1JC 

When matrix A is nondefective, the matrix P = C-I contains its eigenvectors 
that make a basis for Rn and the vector B~xt' can be expressed as a linear 
combination of these eigenvectors. 

where y is the vector of coefficients of B~Xf expressed in basis P. 

of A. 
The shock response is therefore function of some or all of the eigenvalues 

n 
_ ~ ,t-I'-I P 
- ~A.i Yi i 

i=1 

Whether the dynamics of the model depends on eigenvalue Ai is determined by 
whether eigenvector Pi contributes to ~Xt" 

A real positive eigenvalue generates a monotonic component to the 
trajectory of yt, a real negative eigenvalue generates saw like oscillations changing 
sign every period and a pair of complex eigenvalues make for sinusoidal damped 
cycles, as long as their modulus is smaller than one. 

The speed of convergence depends on the eigenvalue with the largest 
modulus. For example, half of the shock effect generated through the leading 
eigenvalue will have dissipated in k periods: 

1.2 Purely Forward-looking Models 

In the previous model, agents react in adaptive manner to previous events 
and the variables at time t depends on their value at time t-1. We can however use 
the same type of model to represent anticipatory behavior where agents react to what 
they expect future events will be. If we assume perfect foresight, variables at time t 
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will depend on their value at time t+ 1. We can just use the previous model 
backwards: 

In such a model, the past has no influence on the future: there is no inertia. 
Expected future shocks have effects on the present until they are realized, but none 
thereafter. Let's assume, as in the previous section, that the exogenous variables Xt 

are constant through time, except for a shock in period t'. As before, the equilibrium 
position is 

As the shock is fully anticipated, the system will immediately go back to 
equilibrium after it. For the periods before the shock, the trajectory of the system is 
given by 

Ily t = A 1-1'-1 Bllxl' t ~ t' 

IlYI = 0 t> t' 

If we consider that the future shock has not always been known, but that it 
is learned at some date to previous to its realization at date t' and that the system was 
in equilibrium until then, then the variables y will show a discrete jump at date to: 

Ily 1 = 0 

IlYt = At-I'-IBIlx I· 

IlYI = 0 

t < to 

to ~ t ~ t' 

t'< t 

Note that once the future shock is known, the trajectory is always the same, 
independently of when the shock has been known. In particular, if the shock is 
unexpected (to = t') the agents will instantaneously react in such a way as to bring 
back the system in equilibrium in the next period (t'+ 1). 

In the above formula, t-t'-1 is always negative. Therefore, if the eigenvalues 
of A are larger than one in modulus, the anticipatory reaction will be smaller the 
further away in the future the shock is expected. On the contrary, if some roots of A 
are smaller than one, the anticipatory reaction will be larger and larger as the shock 
is further away in the future, which is obviously not a stable characteristic. The 
conditions for stability are reversed in the forward-looking and in the backward
looking case. 

1.3 Backward and Forward-looking Models 

In forward-looking models, the behavioral equations take into account 
agents' expectations about the future values of some of the variables. In the spirit of 
rational expectation models, we assume that agents' expectations are model 
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consistent. In the detenninistic set up, which is used in this paper, it is equivalent to 
perfect foresight models. 

In complete models with both backward and forward dynamics, inertia and 
anticipatory mechanisms discussed above are at work. 

A generic structural form of such a model, limited to one period forward 
and one period backward, 4 is: 

The dynamics of variables Yt depend here on adjustment mechanisms 
transmitted through lagged variables Yt-I and on expectations about the future 
expressed by Yt+I. In most models, only some variables will appear with lag, we will 
note them as the subvector y*, or with lead, noted y**. Of course a given variable 
can be common to both subvectors or not appear in either set. In the latter case, we 
will call it a static variable, as it will not affect the dynamics of the model. 

To study the dynamics of such a model, it is helpful to rewrite it as a system 
of difference equations of the ftrst order. As it is shown in Appendix A. this model 
can easily be rearranged in the form 

where 

and y* represents the variables in y actually present in the model at lag t-I and y**, 
the variables present in the model at lead t+ l. 

Again, for a given level of the exogenous variables, a unique stationary state 
exists if (D-E) is non-singular: 

The eigenvalues of the above system, "-i, must satisfy A.iDxi = EXi. It is a 
generalized eigenvalue problem (see, for example, Golub and Van Loah, 1989, ch. 
7.7). When D is not singular, A.i is simply eigenvalue of A = D-IE, as in the previous 
section. When D is singular, the effective dynamical order is less than the order of D 
and E. It is the case, when one uses forward variables that are linked through static 
relationships elsewhere in the model. This redundant use of forward variables is 
very frequent in macroeconometric models, as it permits a much clearer writing of 
structural relationships. 

4 There is no loss of generality in considering only second order difference models can be written in 
lower order difference form with the introduction of auxiliary variables. 
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A deeper understanding of the problem is obtained from the generalized real 
Schur decomposition (Golub and Van Loan, 1989, p. 396): if D and E are in RDXIl 
then there exist orthogonal matrices Q and Z such that Q'EZ = S and Q'DZ = T are 
upper triangular. Then the generalized eigenvalues are defined as A.i = S;/I'ii. If for 
some i, T ii = Sii = 0, then any complex number is a generalized eigenvalue. 
Otherwise, T ii = 0 and Sij ::F- 0 corresponds to an infmite eigenValue. 

When D is singular, some of the T ii will be equal to zero and will 
correspond to infinite eigenvalues. Remember now from the previous section that 
eigenvalues larger than one control the anticipatory reactions to a future shock. An 
infinite eigenvalue describes an instantaneous anticipatory reaction, as a null 
eigenvalue describes an instantaneous adjustment towards the future. Neither of 
them affects the dynamics of the model. 

In light of the previous development, the Blanchard and Kahn (1980) 
condition for the existence and unicity of trajectory in such model must be expressed 
as the equality between the number of eigenvalues larger than one in modulus and 
the number of independent forward variables.5 Alternatively, when compared to the 
number of forward variables appearing in the model, infmite eigenvalues should be 
counted with the eigenvalues larger than one in modulus. 

Furthermore, even when matrix D is singular, it is possible, using the 
generalized Schur form, to rewrite the model in canonical form (see Appendix B). 

k 

Zt+1 =Azt + LBCj)Xt+1 
j=O 

where k is the dimension of the null space ofD. This transformation is possible for 
all models with a unique equilibrium and for models with unit roots in the dynamics. 
We can then proceed to the discussion of stability conditions as in the previous cases. 

As this model is a mixture of backward and forward-looking processes, it is 
necessary to partition the model to put them in evidence. Following Blanchard and 
Kahn (1980) we use a Jordan decomposition of matrix A: 

A= C-1JC 

where matrix J contains on its main diagonal the eigenvalues of A in 
increasing order. Let's also consider the following partition of vector 

Zt = lY;-I' Y ~ 'J where Y;-I represents the predetermined variables in ~ (the ones 

with an initial condition) and Y;· , the forward-looking variables (with a terminal 
condition). Matrix A is also partitioned accordingly: 

5 There is a numerical accuracy problem in deciding how small a 8jj must be considered as null. Note 
that this does not affect the evaluation of the Blanchard and Kahn condition as for each eigenvalue that we 
consider immite we reduce the number of independent forward variables by one. 
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where JI contains the eigenvalues of A smaller than 1 in modulus and h the 
eigenvalues larger6 than 1. In addition, the two blocks in the first column of C 

corresponds to the predetermined variables y;-I and the second column to the 

forward-looking variables y;.. Let's also define 

As Blanchard and Khan (1980) have shown there exists a unique solution path for 
this model if and only if there are as many forward-looking variables as there are 
eigenvalues larger than one in modulus and sub-matrix PI I is invertible. 

Several cases should be considered here, depending on the horizon of the 
simulation and the date of learning of the future shock. The simplest case 
mathematically is when the future shock has always been known since the beginning 
of times (to~-OO) and the simulation has an infinite horizon. Next, we consider the 
case where the shock is learned a finite number of periods before its realization, but 
the simulation still has an infinite horizon. Finally, we discuss what happens with a 
finite simulation horizon. 

1.3.1 Shock always known and infinite simulation horizon 

The shock ~Xt' occurs in period t' and the trajectory for ~y; and ~y;* is7 

t:s; t' 
i=O 

k 
A" P "'Jt-t'-k-IC B A .. uy t = - 22 L..J 2 2. (i) OAt' 

i=O 

k 
A· P '" t-t'-kc uYt = - IIL..J JI I.B(i)~t' t > t' 

i=O 

k 
A" P "'Jt-t'-k-1C B A 
UY t = - 22 L..J I I. (i)uXt' 

i=O 

6 As we are going to use this decomposition to discuss stability, we exclude the case of eigenvalues 
equal to one which would obviously preclude stability. 

7 The derivation of these properties is available from the author upon request. 
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In this case, the trajectory of the system before the shock is only driven by 
the eigenvalues larger than one and by the eigenvalues smaller than one after the 
shock. 

1.3.2 The future shock is learned sometime before its realization and there 
is an infinite simulation horizon 

Let's assume as before that the shock Axt, occurs in period t', but now it is 
only known at period to. Until then the system was at equilibrium. The trajectory is 
then 

k 
Ml P J t-to+lp-Ip "'Jto-t'-k-IC B A 

t = 11 I 11 12 ~ 2 2. (i)ilXt' 
i=O 

k 
M2 P J t-top-Ip "'Jto-t'-k-IC B A 

t = 21 I II 12~ 2 2. (i)ilX!, 

k 

Ay; = -P12LJi-t'-kC2.B(i)tlxt, +Mlt t;S;t' 
i=O 
k 

Ay;-" = -P22LJ~-t'-k-1C2.B(i)tlxt' +M2 t 

i=O 
k 

Ay; = -PIILJ:-t'-kCI.B(i)tlxt, +Mlt t> t' 
i=O 
k 

Ay;" = -P2ILJ:-t'-kCI.B(i)tlxt, +M2 t 

i=O 

The terms MIt and M2t express the jump in behavior when the future shock is known 
and its consequences in following periods because of inertia. 

One case see from the above formulas that as the interval between the news 
of the future shock and its realization increases, one tends towards the trajectory of 
the first case. At the date when the shock is learned, there is a sudden anticipatory 
reaction, which will have consequences in future periods. 

1.3.3 The future shock is learned some time before its realization and the 
simulation horizon is finite 

In practical work, it is not possible to compute a simulation on an infinite 
horizon. We assume here that we constrain the system to be back to equilibrium in 
period T, the trajectories are then as follows: 
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k 

MI - (p Jt-tO+1 P Jt-T+lp-Ip JT-tO)MP ""Jto-t'-k-I C B A 
t - II I - 12 2 22 21 I 12L,., 2 2. (i) LlX t, 

i=O 
k 

M2 - (p Jt-to p Jt-T+lp-Ip JT-tO)MP ""Jto-t'-k-I C B A 
t - 21 I - 22 2 22 21 I 12 L,., 2 2. (i) LlXt , 

i=O 

NI - [p Jt-T+I _(p J!-to+1 _p Jt-T+lp-Ip JT-tO)MP Jto-T] 
t - 12 2 II I 12 2 22 21 I 12 2 

k 

P -Ip ""Jt'-to-kC B Au 
22 21 L,., I I. (i)ilAt' 

i=O 

N2 - [p J t- T (p Jt-to p Jt-Tp-Ip JT-tO)MP Jto-T] t - 22 2 - 21 I - 22 2 22 21 I 12 2 

k 

P -Ip ""Jt'-to-kC B Au 
22 21 L,., I I. (i)ilAt' 

i=O 
k 

Il.y; = -P12 L J~-t'-kC2.B(i)!l.xt' + MIt - NIt 

i=O 
k 

Il.y~. = -P22LJ~-t'-k-IC2.B(i)ll.xt' +M2 t -N2 t 

i=O 
k 

Il.y; = -Pll L J;-t'-kCI.B(i)ll.x t, + MIt - NIt 

i=O 
k 

Il.y;* = -P2ILJ:-t'-k-lCI.B(i)ll.xt' +M2 t -N2t 

i=O 

to < t:5: t' 

t'<t:5:T 

The basic mechanisms is still at work: eigenvalues with modulus larger than 
one determines the anticipatory dynamics in the system between the time the shock 
is realized and eigenvalues with modulus smaller than one dictates the inertia after 
the shock. In addition fixing initial conditions and terminal conditions to be at the 
stationary state influence now the dynamics. Close examination of the above 
formulas reveals that this influence decreases with the delay between the news and 
the realization of the shock (t'-to) and with the horizon of simulation after the shock 
(T -t'). 

In the following section, I apply this methodology to discuss the dynamic 
properties of a simple monetary policy model with various policy rules. 

2. THE FUHRER-MOORE MODEL 

Fuhrer and Moore (1995) suggest a simple structural model on a quarterly 
basis to discuss monetary policy and provide the following estimation. The output 
gap between actual and potential output, Y t , depends on its past values and long-

term interest rate, Ph lagged one period. 
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Yt =.008 + 1.34Yt_1 -.372Yt_2 -.36Pt_1 

The persistence of inflation in the economy is explained through the 
existence of overlapping nominal contracts. By assumption, these contracts remain 
in effect four quarters. The aggregate log price index in quarter 1, Ph is a weighted 
average of the log contract prices, Xt, which were negotiated in the current and the 
previous three periods: 

3 

Pt = ""rx . £...J 1 t-1 

i=O 

with weights 

fo = .3715 fl = .2905 f2 = .2095 f3 = .1285 

The index of real contract prices, Vb is given by 

3 

v t = Lfi(Xt- i -Pt-i) 
i=O 

Agents negotiate nominal contract prices so that the current real contract 
price is equal to the average expected in the future and adjusted for excess demand 
conditions: 

3 

Xt -Pt = L fiE t(v t+i+.008Yt+J 
i=O 

The relation between the long-term and the short-term rates of interest is 
given by the intertemporal arbitrage condition where one assumes that the bond 
duration is 40 quarters. 

where rt is the short-term nominal rate of interest and 1ft is the annual rate of 
inflation. 

A monetary policy rule closes the model by representing the way monetary 
authorities set the short-term interest rate in reaction to changes in inflation and 
output gap. In the following section, the dynamic properties of the model are studied 
for various policy rules. For each type of rule, the eigenvalues of the model are 
computed and stability is discussed. 
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2.1 The Policy Rule Estimated by Fuhrer and Moore 

In their article, Fuhrer and Moore provide also the estimated parameters of 
the policy rule followed by the Federal Reserve Bank: 

It contains an interest smoothing mechanism and represents a lean against 
the wind policy as it raises short term nominal interest rate when inflation or the 
output gap is above target. The eigenvalues of this model are reported in the table 
below. 

Table 1. Eigenvalues of the Model with the Estimated Rule.8 

Real Imaginary Magnitude Period 
-2.010 2.492 3.201 2.8 
1.145 0.000 1.145 
1.000 0.000 1.000 
0.956 0.141 0.967 42.9 
0.862 0.000 0.862 
0.063 0.627 0.630 4.3 

-0.269 0.364 0.452 2.8 
0.393 0.000 0.393 

-0.196 0.243 0.312 2.8 

In addition to the four eigenvalues larger than one reported in Table 1, there 
are four inflnite eigenvalues that make eight eigenvalues with a modulus larger than 
one. As there are eight forward variables 

(v 1+1 v 1+2 V 1+3 Yt+1 YI+2 YI+3 7t1+1 Pt+I)' the condition of Blanchard and 

Kahn is verifled: there is a unique stable trajectory. The presence of a unit root in 
the system means that the price variables do not go back to their original level, as it 
is inflation which is controlled for in the policy rule, not the price level. 

2.2 The Taylor Rule 

Monetary authorities modify the interest rate so as to bring back the 
economy to targeted inflation, paying attention to the output gap: 

where 7t; is the observed inflation rate over the previous four quarters, 1t, 

the target inflation rate, and p, an "equilibrium" real interest rate compatible with 

the steady state.9 

8 Only one ofthe two conjugate complex eigenvalues is reported in the table. 
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Table 2. Eigenvalues of the Model with a Taylor Rule. 

Real Imaginary Magnitude Period 
-2.010 2.492 3.201 2.8 
1.090 0.051 1.091 133.6 
1.000 0.000 1.000 
0.895 0.088 0.899 64.1 

-0.269 0.364 0.452 2.8 
0.396 0.000 0.396 

-0.196 0.243 0.312 2.8 

In addition to the ones reported in Table 2, there are four infinite eigenvalues that 
make eight eigenvalues with a modulus larger than one. As before there are eight 
forward variables and the condition of Blanchard and Kahn is verified. 

The rule estimated by Fuhrer and Moore and the Taylor rules differ only by 
the form of the function of reaction to inflation and the output gap. The former 
supposes a richer dynamical response with more parameters. If we compare the size 
of the eigenvalue immediately below one, one can see that with the Taylor rule it is 
smaller, lA.d = .899, than with the estimated rule, lA.d = .967. As this eigenvalue 
controls the speed of return to equilibrium after a shock, one can conclude that the 
Taylor rule, which implies a stronger reaction to inflation, generates a faster return to 
steady state than the estimated rule. 

2.3 Constant Nominal Interest Rate 

What will be the behavior of the model, if the monetary authorities keep the 
nominal interest rate constant without considerations for inflation or real output? In 
this case the monetary rule is simply to set the nominal interest rate exogenous. 

Table 3. Eigenvalues of a Model with a Constant Nominal Interest Rate. 

Real Imaginary Magnitude Period 
-2.010 2.492 3.201 2.8 
1.147 0.000 1.147 
1.000 0.000 1.000 
0.984 0.137 0.993 45.4 
0.857 0.000 0.857 
0.269 0.363 0.452 2.8 
0.393 0.000 0.393 

-0.196 0.243 0.312 2.8 

9 As the model is linear in its variables, its dynamic properties do not depend on the value of the target 
variables. Therefore they have been set for zero for the computation ofthe eigenvalues. 
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The model still has four infinite eigenvalues, but, as Table 3 indicates, there 
are only three other eigenvalues with modulus larger than one. With four 
independent forward-looking variables, the Blanchard-Kahn condition is not met. 
There are more forward-looking variables than eigenvalues outside the uirit circle, 
therefore there is an infinity of stable trajectories. One possible intetpretation of this 
result is to consider that a pegged interest rate policy does not anchor agent's 
expectations regarding future inflation. 

2.4 Constant Long Term Real Rate 

For the sake of argument, one can go one step further and imagine that the 
monetary authorities somehow manage to keep the long-term interest rate constant. 
Then, there is no more feedback of the monetary conditions on the real economy. 

Table 4. Eigenvalues of a Model with a Constant Long-term Real Interest Rate 

Real Imaginary Magnitude Period 
-2.010 2.492 3.202 2.8 
l.000 0.000 l.000 
l.000 0.000 l.000 
l.000 0.000 l.000 
0.947 0.000 0.947 

-0.269 0.364 0.452 2.8 
0.393 0.000 0.393 

-0.196 0.243 0.312 2.8 

Table 4 reports only two eigenvalues are larger than one, for three 
independent forward-looking variables and four redundancies. As with a constant 
nominal interest rate, there is an infinity of stable trajectories. In addition, because 
of the separation between the real and nominal spheres, there are now three uirit roots 
in the nominal variables. 

3. CONCLUSION 

In this paper, we use generalized eigenvalues to solve perfect foresight 
linear models. This approach delivers direct solutions even when there are 
singularities in the dynamics, an occurrence very frequent in applied work. In 
addition, it provides us with algorithms, which can be readily implemented10 in 
simulation programs. 

As was illustrated with the discussion of various monetary rules, looking at 
eigenvalues permits a broad characterization of the dynamics of a given model 
before resorting to actual simulation. 

10 The methodology described in this paper is used to compute eigenvalues in TROLL and DYNARE 
(Juillard, 1996). 
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APPENDIX A: THE STATE SPACE REPRESENTATION 

In order to compute the eigenvalues of a model, it has first to be put in state 
space form. Let's consider the following model in structural form: 

In general, not all variables appear at all leads or lags. Furthermore, some 
variables are static, meaning that they do not appear with leads or lags. These 
variables do not matter for the dynamic of the system and can be eliminated in the 
following manner. 

Each equation of the original model can be normalized so as to have a 
different variable with a coefficient of one. It is possible to obtain such a 
renormalization of the model by premultiplying the system by the inverse of the 
matrix of coefficients on current variables, Fo, 

In the above system, static variables do not appear in the determination of 
dynamic variables. It is therefore possible to eliminate the equations pertaining to 
static variables. The selection of rows of the above system can be obtained by pre
multiplying the system with an appropriate rectangular matrix made of null and unit 
vectors and noted K. 

To assume the state space representation, the model must be put in the 
following form: 

with x~ = lY;-1 , y;*'J, y;* contains all the variables appearing with a lead and 

y;-I ,all the variables appearing with a lag. 

Having built the vector of state variables, the coefficient matrices are 
defined as 

where G and H are made of unit vectors corresponding to the current variables in Zt+1 
and Zt, respectively. Finally, M and N are the coefficients of the auxiliary equations 
specifying that some elements of Zt+1 are equal to elements of Zt. This is the case 
when a variable appears in the model both with a lead and a lag. 
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APPENDIX B: TRANSFORMATION OF A MODEL Wlm 
REDUNDANCIES 

Let's consider the following model with forward-looking variables, written 
in space-state form: 

According to the generalized Schur decomposition of the pencil <D, E>, it 
is always possible to find two orthogonal matrices Q and Z such that 

D = QTZ' and E = QSZ' 

where S and T are triangular matrices. The generalized eigenvalues, A.i = S/T ii, 
satisfy 

where Ii and ri are left, respectively right, generalized eigenvectors ofD and E. 

Consider the generalized Schur decomposition of the model: 

QTZ'YHI = QSZ'Yt + BXt 
TZ'YHI = SZ'Yt + Q'Bxt 

If the D matrix is singular, there are some zeros on the diagonal of T. It is 
always possible to rearrange the system so as to put the zero diagonal elements on 
the bottom rows ofT (see Golub and Van Loan, 1989, 7.7.5). We obtain 

[ TJI TI2 ][z; ] = [SII S12 ][z; ] +[Q; ] Bx o T ,Y t+1 0 S ,Y t ' t 
22 Z2 22 Z2 Q2 

where TIl is a triangular matrix with non-zero elements on the diagonal and T 22 with 
zeros on the diagonal. SII and S22 are also triangular. 

The second part of the system has k equations, corresponding to a null space 
of dimension k for D: 

As long as S22 is not singular, one can write: 

00 . 

Z2'Yt = - L(sziT22r SziQ2'Bx t+ i 

i=O 
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however, as S;~T22 is a matrix of order k with only zeros on the main diagonal, 

(S;iT22 r = 0 for all~. The singularity of D implies that the second part of the 

system can be solved independently of the first one: 

k-I . 

Z2'Yt =-:L(S;1T22YS;1Q2' BX t+i 
i=O 

There exist k static relationships between the state variables. Therefore, the 
dynamical order of the model is less than the dimension of the state system. 

With the partial solution for ~ 'yt, and therefore for Z2 'yt+I, it is possible to 
rewrite the original model in an equivalent form and to solve it for Yt+! : 

and 

Yt+1 = ZITill (SI1ZI'+SI2Z2')Yt + ZITillQI'Bxt +(ZITIIITI2 -Z2)' 

k-I . 

:L (S;1T22 r S;iQ2 'BXt+i+1 
i=O 

So, even when matrix D is singular, it is possible to write the model in the 
canonical form: 

with 

k-I 

Yt+1 =AYt + LB(i)Xt+i 
i=O 

A = ZI TIll (SI1ZI'+SI2Z2 ') 

B(o) = ZI TIIIQI' B 

B(i) = (ZI TIIITI2 -Z2 )(S;iT2SS;~Q2'B i = O, ... ,k-l 

This demonstration relies on the condition that S22 is non-singular. This 
excludes only degenerate cases: a model where S22 is singular does not have a unique 
equilibrium and this indeterminacy is not the result of a unit root in the dynamics. 
This results from the fact that if S22 is singular, so is (T -S) and the equation of the 
equilibrium, 
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(T-S)Zy= Q'Bx 

has an infinity of solutions. I I 

II In the case of a unit root, on the contrary, Sjj = Tii * O. 
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CHAPTER 10 

THE LONG RUN IN MACRO-ECONOMIC MODELS: A GUIDE1 

Peter McAdam 

I. INTRODUCTION 

Despite their relative fall from grace (Whitely, 1997) macro models still 
remain a common tool for policy makers in judging the relative desirability of 
various policy interventions and regimes. For example much of the work geared 
towards analysing monetary union in Europe (for example Hughes Hallett and 
McAdam, 199830 b, Masson and Turtleboom, 1997) has been guided by the use of 
such models - both in policy and academic circles. Yet, there still remains much 
scepticism about their use given their relatively poor forecasting record and the 
confusion regarding the interpretation of the long run features of these models. 
Often, particularly among non-modellers, there is misunderstanding as to why for 
example increases in government expenditure or technical progress may not have 
long run implications for real variables. The purpose of this paper is to elucidate the 
long run properties of models, which are well, if implicitly, known by modelling 
teams but obscure to those outside the field. 

We discuss therefore why modellers incorporate explicit long run properties 
into their models and the consequences and trade-offs such practises bring. The 
paper is organised as follows: in Section 2 we sketch the reasons why modellers are 
interested in solving their models over a long run; in Section 3 we define the 
algebraic concept of the long run; in Section 4 we specify the key decisions in 
constructing the extended base on which a model operates and discuss these in 
relation to an encompassing model in Section 5. Section 6 offers conclusions? 

2. mE REASONS FOR MODELLING THE LONG RUN 

The reasons for specific attention to the long run may be roughly 
categorised as follows: 

I With the usual disclaimer, I'm very grateful to Andy Dickerson, Andrew Hughes Hallett, Werner Roeger 
and Jan in 't Veld for helpful comments and suggestions. 

2 Throughout this paper, I use the terms 'steady state' and 'long IUn' interchangeably. To illustrate, the 
long IUn of the model presented later in the text would involve either collapsing its dynamics (solving for 
the steady state version) or solving the full dynamic model over an extended simulation horizon (Ioog 
IUD); the two methods need not be equivalent. However though model builders may not keep a separate 
steady-state version they will be aware of and refine its long IUD properties of their full model; hence the 
words highlight the same objective. 
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(1) Often modellers seek to contribute to the policy debate. Thus models are 
geared towards examination both of the immediate and long run 
consequences of alternative scenarios - e.g. whether chosen policy 
innovations pennanently affect growth or foreign indebtedness or exchange 
rates etc. Indeed a model which, say, does not incorporate the Government 
Budget constraint, reaction functions to maintain fiscal solvency, 
homogeneity restrictions or various identities would generate what might be 
regarded as fundamentally unsound policy advice. In that respect, 
modellers' attention to long run concerns have made clear the inherent 
instability of permanent bond finance, the need to finance higher steady 
state debt via a trade surplus, or the inability to target real interest rates etc. 

(2) Examining the long run can often be a good diagnostic device. For example, 
models which are stable and plausible over a "short" horizon may not 
exhibit such properties over a longer run. Possible instabilities in the model 
might be drowned out in short run but not so in the long run; this may 
necessarily limit their relevance for short-run examination but will 
invalidate their long run use. For example, Wallis and Whitely (1987) found 
difficulty solving the steady state version of the City University Business 
School model which required, amongst other things, changes in the long run 
deficit financing pattern and a re-modelling of the production function. 
Similarly, Masson (1987) reports that, when constructing the steady state of 
MiniMod, finding the 'correct' marginal propensity to consume out of 
wealth was crucial to building a stable steady state version. 

Solving and constructing a model's steady state can illuminate 
inconsistencies, as would be the case if various homogeneity restrictions do 
not hold. For example, lack of price homogeneity would imply that money 
has real long-term effects - a proposition that the model-builder might not 
support or intend. 

(3) This concentration on long run issues itself reflects dissatiifaction with 
older models which typically focused on short run or demand features. 
Brayton et al. (1997) discuss the greater concentration on the supply side of 
the Federal Reserve's models after events like the first oil shock and the 
'breakdown' of the Phillips curve (see also Whitely, 1997). This refocus has 
prompted more work on theoretical foundations such as microeconomic life 
cycle features, a greater awareness of policy issues/closures and the 
inclusion of Rational Expectations to avoid systematic errors in agents' 
forecasts etc. 

(4) The derivation of a model's long run characteristics facilitates comparison 
between other models, smaller (or single) equation studies or economic 
theory in general. This is particularly so if that comparison is over certain 
key parameters; for example one might expect models to have long run unit 
elasticities in their money demand-income and their consumption-wealth 
relationships. Models, which generated non-standard results, would 
therefore be forced to explain and rationalise those differences. For 
example, in deriving the long run of the Bank Of England's small Monetary 
Model, Currie (1982) comments on the fact that in the long run, money 
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demand depends positively on long run inflation (rather than negatively as 
theory implies) and that the demand for public sector debt is inconsistent 
with a long-run stock/flow equilibrium. 

(5) The construction of a model's steady state facilitates the setting of terminal 
conditions for the full dynamic model. The model is shocked and the 
resulting long run path of the jump variables is examined. Subsequent 
simulations can then be set with the 'correct' terminal conditions in place. 

The inclusion of Rational Expectations (RE) itself has contributed towards a better 
understanding and modelling of the long run. RE models tend to advance the effect 
of long run shocks - since lead variables jump onto the saddle path which thereafter 
move the model to the equilibrium - and so it is important for RE models to have 
more sensible and identifiable long run properties than, say, backward looking 
models. To ensure a unique solution we know that models with forward looking 
variables - if in linear difference form - should have as many unstable roots (i.e. 
eigenvalues with roots outside the unit circle) as lead variables (Blanchard and Kahn, 
1980). Moreover, a variable's terminal condition should be its steady state solution 
with the convergence to that steady state governed by the stable root of the system or 
equation. On a large (highly disaggregated) non-linear model however, it might not 
be possible to derive the analytical solution for the lead variables and steady state. In 
this case, arbitrary terminal conditions may be a substitute and the model solved over 
a sufficiently long horizon that the nature and specification of the terminal conditions 
do not unduly affect the initial jump in the lead variables.3 

3. THE CONCEPT OF THE LONG RUN 

In this Section, we review some well-known stability properties for single 
and multi equation models. Consider the general auto-regressive distributed lag 
(ADL) equation: 

(1) 

Where A and B are finite polynomials in the lag operator L: 

I J 

A(L) = 1- ~:>'iLi and B(L) = LyjLi. 
i=1 j=O 

and Vt are well-behaved residuals. 

3 However the popular Fair-Taylor (1983) algorithm provides a way of solving for the 'true' terminal 
conditions by iteratively extending the simulation horizon. A Type I iterative layer solves the model for 
fixed expectations terms and a second layer equates the expectations variables and the solution from the 
first layer. After these layers, the solution period is extended for a set period and solved. If the percentage 
difference between the latest solution and the previous one within the same solution period is below a 
prescribed tolerance then this solution procedure (or Type III iteration) is building up the true terminal 
conditions and solving the model consistently. The conditions for the last layer of iterations to converge, 
such that terminal conditions do not unduly affect the current solution, are given in Fisher and Hughes 
Hallett (1988). 



230 

Hendry et al. (1984) provide a nwnber of testable restrictions on the ADL 
fonnat to retrieve various economically meaningful relationships such as leading 
indicators. common factors and error correction mechanisms (ECM) etc. Considering 
the ECM in itself.4 equation (1) can be rearranged as a difference equation: 

where. 

p q 

A(L) = 1-LC1jLj • B(L) = LyjLj 
i=1 j=O 

i=1 j=O i=1 

with the restriction. 

I 

(1-L C1 j):;f:O. 
i=1 

The parameter 131 is the estimate of the long run elasticity between Y and X (given 

logarithmic specifications) and will be unity if there is a long run proportionate 
growth rate between the variables. 

The Static State equilibriwn (where AYt = AXt = 0 )5 yields (for 

logarithmic-form models): 

By contrast. the Steady State equilibriwn (where AYt = AXt = g) yields 

Y = ([B(L) -A(L)]g) I (1-7t)+131X 

Using the same type of analysis. we can examine a full structural model: 

4 The ECM has proved particularly popular since it generates a statistically meaningful regression 
(ensuring common orders of integration) and also explicitly defines long run relationships between 
variables and their short run dynamics. 
5 Notice of course that models defmed purely in difference terms have no long run solution since the roots 
lie on the unit circle. 
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where Y represents endogenous elements, X policy variables, E other exogenous 
factors and V a vector of residuals. From this, we can derive the final form: 

where the stability of the final form requires that the roots of the polynomial A(L) 
matrix lie within the unit circle. Stacking this yields: 

Now let 1t) = A ; 1t2 = B; 1t 3 = C . In full matrix form. this equation becomes 

Y) 1t2 0 0 0 o X) 1t3 0 0 0 

1t)1t2 0 0 o 1t)1t3 0 0 

= 0 0+0 

I 

+ 

o 0 0 0 V) 

000 

o 0 
o 

o 

1t) I VT 

i.e. a model whose backward substitution to an arbitrnry start yields: 

1-) 1-) 1-) 

YI = 1t:Yo + L 1tI1t2X t _ j + L 1tI1t3EI_ j + L 1tIVI_ j 

j=O j=O j=O 

From this, we can derive key multiplier relationships: 

The Impact Multiplier is: 
OY 
_I -1t ax - 2 

I 

ffYI +j j The Interim Multiplier is: --= 1t)1t2 axl 

The Dynamic multipliers, the total impact of a unit step change in a policy 
variable after T periods, are: 

±ayi~ . 
~=I ax jl 
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For stability purposes, consider the interim multiplier. As j ..... 00, 'ltl ..... 0 
(of course, if this condition was not satisfied, history would have a cumulatively 
increasing effect on the present). Thus, stability may be redefined as: 
limj-_~<x> 'It/'lt2 = 0 . Cumulating this is equivalent to 

this latter form being the final or long run multiplier. However, most models are non
linear to varying degrees and so yield no analytic reduced form solution since the 
multipliers are base and perturbation dependent. Other than linearising the model and 
examining its eigenvalue structure (see for example McAdam,1998b) checking for 
the stability, reliability and consistency of models requires forward simulation and 
the setting up of an extended base, which is examined in the next Section. 

4. SETTING UP THE LONG RUN 

A number of important decisions have to be made before the long run of a 
model can be constructed. These may be roughly categorised as in Table I. 

4.1 Closures 

The closures for the labour and goods market are particularly important in 
generating different long run responses to shocks although they will be dealt with 
briefly here since their specification is entirely model specific. It is clear, however, 
that models incorporating goods markets with imperfect competition (i.e. P > MC; 
increasing returns to scale) will behave differently in the long run from competitive 
models (i.e. P = MC; constant returns to scale technology). For example, if a steady 
state mark up (over marginal costs) exists then steady state economic activity will be 
below that for a perfectly competitive economy. The same is true for labour market 
specifications; for example, fiscal injections have most impact under pure Keynesian 
closures (such as fixed nominal wages) since they imply an infinitely elastic labour 
supply passing on all of the demand expansion onto employment Classical closures 
however equilibrate wages to their market clearing 'full employment' level whilst 
other closures such as sticky wages, mark-up, bargaining or real wage resistance 
have intermediate impacts. In our core model presented in Section 5 we apply a 
hybrid model which replicates staggered contracts in the short run. 
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TABLE ONE: Long Run Model Decision Map 

Section Sub-Section Options 
Closures Labour Competitive 

Market Keynesian 
Sticky Wages 
Real Wage 
Resistance 
Exog.Labour 
Supply 
Bargaining 
Hybrid 

Goods Market Competitive 
Imperfect 
Competition 
Hybrid 

Economic Population 
Growth Growth 

Migration 
Technical Harrod Neutral 
Progress Hicks Neutral 

Solow Neutral 
Technology CES 

Cobb-Douglas 
Leontief 

Time Horizon Short-term Exogenous Choice 
Long-term General Closures 

Policy Rules Fiscal Solvency Rule 
Balanced Finance 

Monetary Monetary Base 
Exchange Rate 
Inflation Targets 

Terminal General Growth or 
Conditions Differences 

Consumption 
Exchange Trade 
Rate Balance! Assets 

4.2 Economic Growth 

The 'natural' rate of economic growth (g) is equal to the rate of growth of 
the effective labour force6 (n) plus the rate of increase in technical progress ( a. ). For 
example, if the labour force is growing at n and producing a. then a full employment 
(or constant unemployment) equilibrium would require real output growth to equal 

6 The labour-force growth rate can be disaggregated into domestic and migration-induced components 
although migration specifications are more often found in General Equilibrium than traditional macro
models. 
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(n + a). All other (domestic) real variables grow at this rate. Since both n and a 
can be considered exogenous (and subject to off-model calibration) solving for a 
model's long run real growth rate is relatively straightforward. 7 Indeed, there are 
only three fundamental rates governing the long run of a model: n, a and 1.1. (the 

rate of growth of the money supply). Thus, to ensure unique (exponential) growth 
rates for all real and nominal magnitudes we have: 

(l+g)::::(l+n)(l+a) (2) 

(3) 

where II is core inflation. 

Moreover the technical progress element, a, can be modelled as Harrod-, 
Hicks- or Solow-Neutral. Harrod-Neutral technical progress implies a constant 
capital to output ratio (hence labour augmenting), Hicks-Neutral (a constant capital
to-labour ratio) and Solow-Neutral is where growth points in the steady state are 
defined along a constant labour-output ratio (and hence capital augmenting). 

Solving for the long run requires post-historical simulation and so the 
construction of an extended base; this involves forecasts of key variables - e.g. 
output growth, population, factor prices - as well as policy-mix assumptions made 
explicit. Subsequently forecasts can be made or inferred for all endogenous variables 
conditional on assumptions about technical progress and growth in population and 
the monetary base. The residuals fit the behavioural and identity equations given 
these assumptions. This represents an extended simulation base - though it does not 
necessarily imply that the model exhibits well-defined long run properties such as 
financial neutrality or fiscal solvency since these depend on other factors such as the 
stability of the model, the specification of the individual equations, policy reaction 
functions, the level of disaggregation in the price/wage equations and so on .8 

4.3 Technology 

The choice of production function is not crucial to the long run of the model 
since, whatever the choice, steady state output usually coincides with full, potential 
or 'natural rate' output. Production functions tend to be Cobb-Douglas, Leontief, or 
Constant Elasticity of Substitution (CES): 

7 Policy interventions will not therefore affect the rate of steady state economic growth unless they affect 
technical progress, popUlation growth and the rate of time preference. Of course, prior to the steady state, 
policy can affect the (growth) dynamics towards equilibrium. Policy however can affect the steady state 
level of output mainly from the choice of public debt holdings. 
8 Long run properties can also be examined with reference to a model's parameterisation - see Deleau et al 
(1981) and Malgrange (1983). The actual method of solving for the steady state will not be dealt with here 
but is achieved solving the model with standard iterative techniques with the steady state values as the 
starting guesses (Murphy, 1990). Having solved for the steady state, there involves the interesting issue of 
how one interpolates between the medium term projections imposed or forecasted from the dynamic 
model and this new steady state solution. Usually one imposes some (partial) convergence of national 
PPP-measured GDP per capita (the Solow unconditional convergence hypothesis) relative to, say, the US 
and then either a linear or a logarithmic interpolation. Usually if the current growth of an economy is large 
relative to trend one chooses the former. 
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(4) 

where: Y is output; A, a, b and p are constants; and AN and AK are labour and 
capital augmenting technical progress respectively. Invariably, we assume b = 1-a 
(constant returns). The elasticity of substitution between capital and labour is given 
by O'=(I+p)-I, O'~o. The special cases p=O (0'=1) and p=-I (0'=00) 
retrieve Cobb Douglas and Leontief forms respectively. The marginal productivity 
terms for labour and capital are: 

Given perfectly competitive behaviour (which might be expected to hold in 
the long run) these equate respectively to the real wage and the opportunity cost of 
capital. 

Technical progress can modelled as either embodied or disembodied. In the 
latter, technology enters as a constant while in the former it is captured by a time 
trend in the production function (although this often causes problems in generating 
long run balanced growth in capital and labour see Wallis and Whitely (1987». 

4.4 Policy Assumptions 

The methodology on policy rules9 stems mainly from that of optimal control 
theory. Given a dynamic linear reduced form, 

(5) 

where the explanatory variables are lagged dependent variables, exogenous policy 
instruments and other exogenous variables, and an additively separate quadratic loss 
function: 

T 

L=tL [Yt'QYYt+x\Qxxt] (6) 

where y = (Y - y d ), X = (X - Xd), and yd and Xd are the desired values for 
targets and instruments respectively. Qy and Qx are diagonal penalty cost matrices 
(cross-variable deviations being usually unpunished) and are, respectively, 
symmetric positive semi-definite and symmetric positive definite implying that Qy 
might incorporate some zero penalty costs on target deviations in contrast to Qx. 

9 For a more detailed discussion of how these policy rules may be computed, and their design, see Hughes 
Hallett (1989). 
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Substitution of model (5) into the loss function (6) and differentiating with 
respect to the instrument set yields an optimal feedback rule of the following general 
form: 

where, removing time subscripts, 

F and T are, respectively, the feedback and feed forward gain. Whilst the feedback 
gain is time invariant but recursive - being related to (known) model parameters and 
all penalty weights - the feed forward gain is time varying but forward looking -
being related to present and future trends in the exogenous and bliss values. Thus 
policy interventions may be sequentially updated depending on the out-turn path for 
exogenous elements. 

A distinction may be drawn between policy types. Open Loop rules - e.g. a 
fixed money supply growth - involve policies calculated at time t for periods t to t + i 
(i > 0). Alternatively, Closed Loop rules (as illustrated above) take the form of 
feedback rules sequentially updated in the light of unanticipated shocks and/or 
changes in the expected out-turn for exogenous variables. Of those rules which are of 
a feedback form we can identify three policy types: proportional, integral and 
derivative: 

Proportional: X = 4>(yd - V), 4> > 0 (7) 

Integral: AX = 4>(yd - V), 4> > 0 (8) 

Derivative: X = -4>d Y, 4> > 0 (9) 

A proportional policy rule as in (7) links instrument interventions 
contemporaneously to target failures. However unless 4> = 00 or the rule is 

supplemented by a term in the steady state instrument value (Xss), target failures -

i.e. (yd - Y):;t: 0 - continue in the steady state.lO An integral control rule as in (8) 
relates policy interventions to both contemporaneous and past policy failures and 
achieves stabilisation with the higher 4>, the more rapid the convergence. Finally, in 
a derivative policy rule (9) policy interventions respond purely to the rate of change 

10 An example of which would be the Taylor rule. There, interest rate react to return the economy to 
targeted inflation conditional on an output gap target: rt = ltt' + r_bar + 6 (ltt' -x_bar) + (1 - 6) Y,Pt 
where ltt' is the observed inflation rate over the previous year, , x_bar the target inflation rate, and r _bar, 
an "equilibrium" real interest rate compatible with the steady state. This therefore is an example of a 
Proportional Rule. 



237 

of the target. Such a rule again is not guaranteed to meet the final target since it is not 
specified. 

The choice of such rules (commonly employed in tax and monetary reaction 
functions) have a direct bearing on the long run. For example an integral control rule 
ensures convergence to the target with the speed of convergence to that target given 
by the feedback behaviour from the rest of the model. 

4.5 Monetary Policy 

A number of interesting issues arise with monetary policy. For example the 
long run equilibrium of an economy is invariant to the price level; to remove this 
'indeterminacy of the price level' outcome, monetary policy usually ties down the 
long run price level by, for example, reaction functions from nominal interest rates to 
other nominal targets such as inflation, monetary base or bilateral exchange rates. In 
the latter case inflation will be anchored by the monetary growth rate of the 
exchange rate hegemon. Similarly, it will not be possible to move nominal interest 
rates to target real rates since it again leaves the price level indeterminate. I I 
Moreover leaving nominal interest rates as a policy instrument causes a number of 
problems in that it is inconsistent with the Uncovered Interest Parity (UlP) 
relationship and the construction of the yield curve. 

4.6 Fiscal Policy 

In the long run we would wish fiscal balances to be on a solvent or non
explosive trajectory since otherwise any policy advice derived thereof would not 
itself prove sustainable. 12 Strictly speaking, solvency implies that the outstanding 
present debt is less than or equal to the present value of the future expected deficits. 
More formally, the conventional public accounting identity in continuous time can 
be written as: 

(10) 

where S = (g + h - t) is the primary surplus, g is govermnent expenditures, h is 

transfers, t is tax revenues, r is the discount rate, b is debt and m is the rate of 
growth of the monetary base. In discrete time, this can be expressed as: 

(11) 

Furthermore standard manipulation yields, 

(12) 

II This is not strictly speaking true in a simulation since with appropriately chosen terminal conditions for 
the price level nominal interest targeting may be convergent. 
12 There is also the question of ensuring a convergent solution generally. Although with terminal 
conditions elsewhere many models will solve with unsustainable fiscal closures (Smith and Wallis, 1994) 
but yield no economically meaningful content. 
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Where k is the growth rate. If we solve (11) forward in the usual manner (setting 
A~ = 0 for simplicity), we obtain: 

ct) i i 

b t = - LStil (l+rt_)-ISt+I+i +limi-+co Stll (l+rt+j)-lbt+l+i (13) 
i=O j=O j=O 

where Et denote expectations of future variables conditioned on the infonnation set 
available at time t. Thus, we see that that discounted debt must be at least equal to 
terminal period debt and the discounted sum of (non-interest) balances. 

If we transform the above into discounted debt, with a discount factor 
projected back to the base period: 

i 

qi = II (l+rj)-I, q-I = 1 
j=O 

we can write (13) in discounted terms: 

co 

b t = - L St[qt+i I qt-dSt+I+i + limi-+co St[qt+i I qt-dbt+l+i 
i=O 

(13') 

The terminal (or No Ponzi) condition that we impose on (13') to derive the 
solvency constraint is that the terminal debt term (or its expectation) goes to zero: 

and hence 
co 

b t =-LSt[qt+i Iqt-dSt+l+i 
i=O 

(14) 

(13") 

So solvency implies (13") that the discounted sum of primary deficits equals 
the initial debt given this terminal condition. With finite horizons, this simply means 
that public debt in the terminal period is zero; in infinite horizons, the debt must 
ultimately be serviced either by present and/or future primary surpluses and 
monetary creation. 

Notice two things. First, in (14) we usually discard the inequality sign since 
we rule out the case of super solvency whereby, in the limit, Governments become 
net creditors. Second, note that this definition of solvency applies only to a 
dynamically efficient economy. If an economy is dynamically inefficient with 
growth rates exceeding real interest rates (Le. k> r) in (12), then the debt would 
forever roll over without the question of solvency arising.13 

13 Dynamic inefficiency implies that the capital stock is greater than its golden rule level, which 
maximises steady state consumption per capita, and so the resource allocation is Pareto sub-optimal. 
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Fiscal solvency therefore requires more than the mere specification of the 
financing identity. Usually models specify government expenditure and transfers as 
exogenous; whilst tax rules are in integral control fonn and preclude debt explosions 
which are quite necessary since, in the long run, (r - k) > 0.14 The method of 
financing fiscal innovations is thus an important element in setting up the long run. 
Monetary finance implies that monetary expansion accommodates the fiscal one 
leaving nominal interest rates constant. Under bond finance, monetary policy is not 
affected and so interest rates rise with increased debt. Invariably in the long run we 

assume balanced finance (i.e. f,ss = rhss ) such that the ratio of bonds to money is a 
constant in the steady state (i.e. portfolio balance).15 

4.7 Time Horizon 

The time horizon cannot be explicitly divided into a short, medium and long 
run in anything other than a model-specific way but there are qualitative ways in 
which we can differentiate time horizons. In the short run, certain variables - for 
example foreign interest rates, world oil prices, population growth, environmental 
and resource constraints - which might well normally be modelled can be 
legitimately considered exogenous over a short-tenn forecasting horizon. In 
collapsing a larger model into one suitable for forecasting purposes, the user has to 
isolate those variables to be exogenized. There is some cross-over in this: for 
example modellers may wish to use long run models, but in the short run to 
exogenize endogenous reactions such as the fiscal solvency rule to examine cases 
where necessary fiscal adjustments are postponed; see for example Smith and Wallis 
(1995). 

Moreover, models designed for forecasting may not be suitable for policy 
analysis - for example short run models may not incorporate policy closures rules 
such as those required to preclude fiscal insolvency, or pay much regard to issues 
such as long run balanced debt finance of policy, financial neutrality etc. Indeed, 
there may be a trade-off between a model's theoretical specifications and its 
forecasting abilities - the implication being that forecasting should be done with 
small models or cheap time series methods and long run analysis with theoretically 
well specified (though often highly aggregated) macro-models (Wren-Lewis, 
1993).16 There is no consensus; whilst many model builders claim their models as 
purely policy oriented (e.g. Masson et al., 1990,Roeger and In't Veld,1997), others 

Therefore, the solvency question is predicated on the condition (r - k) > o. Such a condition seems 
generally consistent with historical data, although there are clearly specific periods for which this 
condition did not hold. For example, in the 1970s many industrialised countries experienced negative real 
rates (and hence k> r) which made the debt easier to service whilst positive and high real rates (k < r) in 
the 1980s complicated solvency. 
14 This will hold and would also be the case for a permanent bond finance government expansion. 

15 We preclude a permanent increase in bond-financed government expenditures since the debtlgdp ratio 
would rise without limit requiring an ever increasing build up offoreign liability (as well as positive trade 
surpluses) which would be incompatible with stock equilibrium. It would also imply an infinite 
awx:eciation of the nominal exchange rate given an uncovered interest parity formulation. 
I Similarly it is well known that price and wage homogeneity is less likely to hold in highly 
disaggregated (and hence more forecasting-type) models with the result that it tends to underestimate the 
monetary transmission mechanism compared to, say, smaller and theoretically tighter models or reduced
forms. 
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highlight both their forecasting record and theoretical modernity (e.g. Brayton et al., 
1997). 

Dividing a model up, we might say that the short run is characterised by 
degrees of price and wage inflexibility: output is demand determined; incomplete 
stock adjustment; departures from long run growth; unemployment and output away 
from full utilisation rates; and the model possibly used for forecasting whilst the long 
run is characterised by: balanced growth; balanced finance of government debt; price 
and wage flexibility; flows fully adjusted to stocks; unemployment and output at 
'normal' capacity rates; output supply determined; and the model used extensively 
for policy analysis. 

4.8 Terminal Conditions 

Terminal conditions tend to be set rather arbitrarily - at a constant value (of 
the prior period): 

(15) 

at a constant growth rate: 

(16) 

or imposed in some way consistent with the priors of the model builder and/or the 
model's steady state: 

(17) 

An example of the latter is often embodied in the treatment of the exchange 
rate. Despite its limited empirical support (see Messe and Rogoff, 1983) exchange 
rates are popularly modelled as uncovered interest parity (UIP) meaning the expected 
appreciation of the dollar exchange rate is set equal to the short-term interest 
differential in favour of the dollar; this is often modified to include a term in either 
net foreign assets (NF A) or current account to gdp ratios which proxy a risk 
premia: 1 7 

(18) 

This equation (being forward looking) still however needs a terminal 
condition to ensure a unique solution; and an arbitrary terminal condition like 

17 The VIP equation caused - at least initially - persistent solution problems since we have a unit root in 
the forward expectation when we should have a root outside the unit circle to provide saddIe-path stability 
(see, for example, Fisher, 1992). This precludes a unique solution unless the roots ofthe rest of the model 
are such as to provide sufficient feedback to obtain an overall solution - although equally endogeneity of 
either nominal interest rates or a risk premia element specified to tie down the terminal value of the 
exchange rate provides a stable solution to this equation and alters the system root away from unity. Often 
however it is still the case that the system root may be close to unity one, requiring a long solution 
horizon. 
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constant growth might be 'unsatisfactory' if it implies counter-intuitive movements 
in the exchange rate and trade variables. The typical constant growth terminal 
condition therefore is usually supplemented with a term in NF A deviations (from 
base). 

Solving (IS) for the first period: 

T T 

ERo = ERT + L(rl -rl*) + LqNFA1 

1=0 1=0 

This defines the exchange rate's initial jump defined by its terminal value 
and the sums of present and future interest rate differentials and net foreign asset 
ratios. After this initial jump the exchange rate evolves as 

for a given terminal condition 

Notice, therefore, that modelling exchange rates as modified uncovered interest 
parity implies: 

(i) The exchange rate jumps in response to any change in exogenous 
instruments with that change sufficient to clear any effect on net foreign assets 
brought about by the shock. 

(ii) The uncovered interest parity formulation implies that monetary policy 
has no long run output effect since nominal interest rates converge on those of the 
'large' country - otherwise there would be constant expectations of currency 
movements which would be inconsistent with a long run steady state solution; a 
permanent interest rate would imply an infinite and hence explosive appreciation. 

In this case therefore the choice and specification of terminal condition has 
a direct bearing on the model's steady state since it produces asset equilibrium in the 
long run (the NF A ratio stabilising). 

5. A PROTOTYPE MODEL 

Here we sketch out a small core (annual) macro-model (taken from 
McAdam,199Sa) which mirrors the principle elements in a larger one. Its long run is 
supply determined, but the staggered contracts and rational expectations cause dis
equilibrium and overshooting results in the short run. Besides its (12 out of 22) 
identities this model has standard features - classical optimality in Investment, standard 
Consumption (as an ECM) and money demand formulations, a simple interest parity 
and term structure, basic trade equations and integral control policy rules - and so is 
intended as an uncontroversial approximation to larger models such as the European 
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Commission's Quest, the IMFs Multimod or the Federal Reserve's MCM. A 
parameterisation of the model is beyond the scope and motivation of this paper. 
Generally, the model is theory led - e.g. the Investment optimality closures -with the 
exception of two equations (s.4, s.5) which are simple pressure-of-demand indicators. 

Aggregate Demand 

S.l 

Y = C+I+Go +(X-M) 
S.2 

L\c = Co +cI (wealth I cLI -c2RLR +c3L\(y(1- TX» 
S.3 

L\l(d =s«MPKPy )/PK - UCOC) 
S.4 

L\ld = I!(Y -Y *) 

S.5 

L\wages= 

a l +a2II~+1 +a3IIt_1 +a4(y-y*)-a5(w-p-pr)t-1 

S.6 

WEALTH = 

Li<i>JjWEALTHt+i +<i>2Y(I-TX)+K+B+Mo +NFA.E 

Aggregate Supply 

S.7 

Y = production function ~ MPL, MPK 
S.8 

1= K +(15 -l)K_I 
S.9 

UCOC = (RL+8- IIe)(l-f(TX» 
S.10 

PK = zP + (1- z)ER. PIM 
S.11 

Py = jP-(l- j)ER.PIM 
S.12 

P = n(W IMPL)+(l-n)ER.PIM 

Policy Sector 

S.13 

L\B+L\M = (G-n+RLt_IBt_1 
S.14 

L\TX = f(DEBT I GDP, DEFICIT I GDP, 9 TX ) 



S.15 

~S= 

f(MONET ARY BASE, EXCHANGE RATES, 

Y - yd , rr - rrd , eRS ) 

Demand For Liquidity and Overseas Sector 

S.16 
CA/Y= 

L\NFA/Y = «XPX - IM.PIM) + RS··.NFAH)/Y 
S.17 

ER = ERl+I +(RS-RS**)+qNFA 
S.IS 

I-I 
RL I 100 = (IT (I + RSl+i 1100)1/1)-1 

t=O 

S.19 

md Ip= 

Po + PlY + P2Y H + P3 (md I P)t-I - P4RS - PSRSt- 1 

S.20 

im = SlY -S2 (er.pim I p) 
S.21 

L\x = ~I~·· +~2 (ep ** I p) +~3L\(er.impim/p) 
S.22 

rIr = rl- rre 
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Notation: Capital letters symbolise variables in levels and lower-case 
variables in logarithms; starred (double starred) indicates full capacity (foreign) 
values; we omit time subscripts except lags and leads. Otherwise obvious notation 
applies: RL and RS are the long-term and short-term interest rates respectively; TX 

is the aggregate tax rate; Id is labour demand; <P2 (<P2 < I) is the parameter for 

labour's share from the production function (<PI incorporates the (r+p+n) 
discount factors); UCOC is the user cost of capital; ER is the exchange rate; I = term 
structure length. The subscript 0 represents exogenous. 

Equation S.I defines goods market equilibrium. We have already discussed 
matters relating to the UIP formulation (S.17) and production functions (S.7). The 
tax and nominal interest rate (S.14; S.15) equations are of integral control type and 
achieve their specified targets. Equations S.lO to S.12 define respectively the 
investment and value-added deflator and the output price. We omit the 'other' 
country. 

5.1 Consumption 

The modelling of consumption reflects the Blanchard (1985) model 
whereby a single representative consumer maximises expected discounted utility 
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subject to the constraint that the present value of consumption is less than or equal to 
the initial stock of human and non-human wealth and faces (in the perpetual youth 
variant) a constant probability of death. Human or labour wealth is simply the 
present value of disposable income discounted over time by the real equilibrium 
interest rate (r), the (constant) probability of death (p ) and population growth (n): 

00 

Labour Wealth = f Zte-(r+p+n)tdt (19) 

t~O 

where Zt = (Yt - Tt ) . Given a utility function with constant relative risk aversion, 

optimal consumption is proportional to wealth by a proportionality factor, a, 
determined by the three discount factors, the rate of time preference (tp) and the 
degree of relative risk aversion, viz: 

Consumption = a(r,p,n, tp)Total Wealth (20) 

where Total Wealth is the sum oflabour and asset wealth, 

Total Wealth = Labour Wealth + (K + B + M + NF A) 

Asset wealth incorporates the capital stock value (K) and holdings of 
government bonds (B), high-powered money (M) and net foreign assets (NF A). We 
have therefore incomplete Ricardian Equivalence; human wealth is constrained to 
cover future tax liabilities, however, since human wealth is discounted at a rate 
greater than the real interest rate (because of positive death probability and 
population growth rates) the proposition does not fully hold. IS 

Furthermore, consumption (see equation S.2) is often modelled as an ECM 
ensuring that wealth and consumption are homogenous of degree one. In the medium 
term, consumption is also affected by disposable income (reflecting liquidity 
constraint considerations) and perhaps other demographic, banking and structural 
factors embodied in constant or dummy terms. In the long run we see the 
wealth/consumption ratio is determined by the real interest rate: 

c = % + wealth- 'PI (RLR) (21) 

where 'Po = Co / cl and 'PI = c2 / c l . Thus shocks to human wealth only have a 
transitory effect on consumption since it has a long-run co-integrating relationship 
with wealth, with their ratio determined by the real interest rate. Hence consumption 
follows a life-cycle approach in that current income need not necessarily drive 
current spending decisions. 

18 P is the constant probability of death and (lip) effectively the horizon index. For p>O(p=O), we have 
finite (infinite) horizons for consumers. Ricardian Equivalence holds for p=O since consumers will live 
long enough to meet the implied future increase in taxes from previous debt issues. 



245 

5.2 Investment 

The neo-classical model of investment derives investment demand from the 
firm's optimisation problem. We assume entrepreneurs maximise their profit 
function which is revenue (output times price) minus labour costs (real wage times 
labour) minus capital costs (the "user cost of capital" times capital). 

The user cost of capital, rK, represents the various costs to holding a unit of 
capital made up of three components: a foregone interest rate for the equivalent cash 
sum (usually proxied by the long term interest rate, RL ), a depreciation rate (given 
that existing capital must be replaced and repaired), 0, the fact that the capital stock 
price might be changing (and so incurring capital losses for the entrepreneur) and the 
effects of taxation on capital holdings. In other words, 

Maximisation of the profit function with respect to Capital yields the First 
Order Conditions: 

Hence Investment expenditures will continue up until the point that the price 
adjusted marginal product of capital equals the price adjusted user cost of capital ; 
when the marginal product is above (below) its user costs there is a positive 
(negative) increment to the capital stock: 

In the (static) steady state, 

&=0, 

and given the law of motion for the capital stock : 

1= K+(B-l)K_l 

we can derive the steady state optimal investment/capital ratio (given by the rate of 
depreciation ): 

ISS 

-=0 
KSS 

If we further assume growth in both technical progress and popUlation (i.e. 
capital and output both growth at this rate) then the optimal steady state ratio 
incorporates these two further elements : 
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ISS 
Kss :::B+gTP +gpop 

5.3 Money Demand and Supply 

Money Demand comes from the quantity-theory identity M::: aPY where a 
is the inverse of the velocity of money and represents its opportunity cost typically 
proxied by interest rates (RS) : 

(22) 

Typically money demand functions are of the following ADL form:19 

(md Ip)t ::: 

~o +~IYt +~2Yt-1 +~3(md Ip)t_1 -~4RSt -~5RSt_1 

The Static long run solution is: 

(md Ip)sS ::: 

(1- ~3)-I[~O +(~I + ~2)YSS - (~4 + ~5)RSss] = (mS I p)ss 

In the steady state, therefore, money demand equals money supply, output 
reverts to its natural rate and interest rates equate money demand and supply and 
fulfil the Uncovered interest parity equation. The long-run demand for real balances 
therefore is invariant to the inflation rate. Moreover, the equilibrium or steady state 
price level can be solved as: 

(23) 

If (1-~3)-1(~1 +~2)=1, then this implies that real money demand was 
homogenous of degree one in real income - i.e. financial neutrality. Solving for the 
steady state equilibrium we differentiate (23) with respect to time and (given zero 
long run growth in the rate variables) we retrieve equation (3). 

Short run nominal interest rates form part of an integral control rule around 
some nominal target but in the long term are determined by the VIP equation (and 
hence by the 'Large Country' monetary policy ).We have a conventional term 
structure for long run nominal rates (S.18). In the steady state long run nominal rates 
converge on short rates after a lag determined by the length of the term structure: 

19 Variables are in natura1logaritbms except nominal interest rates since that would impose an unrealistic 
constant elasticity. Price homogeneity is imposed as above in order that the demand for money becomes 
the demand for real money balances. Interest rates are rationalised as the (opportunity) cost of holding real 
money balances but if the interest rate is a policy variable this equation may be reformulated with inflation 
acting as a substitute or supplement to interest rates. 
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(24) 

The real interest rate (r1r) is given by (8.22) - in the long run ne converges 
on core or steady state n, essentially derived out as in (3).20 Essentially therefore 
the rIr is exogenous since it depends on nominal rates - set by large country monetary 
policy - and monetary base and economic growth both exogenously determined. 

5.4 Labour Markets 

We see that wage adjustments are sluggish on over-lapping contracts 
reasoning. The specification for wages implies imperfect adjustment to labour 
market equilibrium and expected inflation: 

(24) 

where n is inflation rate in consumption prices, PR a long run productivity trend 
and Y· is full capacity output. Thus wages are a function of labour market dis
equilibrium, the real product wage and are assumed to adjust imperfectly to inflation. 
The interpretation of these parameters is straightforward: reducing a),a2,a40raS 
would increase market sensitivity by increasing market responsiveness to demand 
conditions, labour market dis-equilibria or conditions in the labour market itself. A 
fall in a2 (a4) implies greater real (nominal) wage rigidity. 

If a2 = (1- a3) - as they would be if expectations were a weighted average 
of rational and backward looking components - then we could cancel the wage and 
price inflation terms which would be growing at the same rate. If output reverted to 
its 'natural' rate then we would expect the real product wage to equal the 
productivity terms and whatever structural factors are embodied in the intercept. 

5.5 Trade Variables 

The Current Account equation (8.16) is of particular interest If in the steady 
state LlNF A = g, then (8.16) can be re-expressed as: 

«XtPXt -MtPIMt)+r;·NFAt_I)/Yt = 
(NF A / Y).«g - r) / (1 + g» 

(25) 

This implies that steady state debtor countries (e.g. NF ASS / ySS < 0 ) must 

run a positive trade surplus and vice versa; given that gSS - rSs < 0 and the stock of 

20 Inflationary expectations may be set in a model consistent manner or as some weighted ,sum of 
backward and consistent components. 
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NF A to income is a constant. 21 This has implications for fiscal policy; for example a 
permanent debt/income expansion increases consumption in the short run (through 
normal Keynesian channels) but - if financed by increases in foreign indebtedness -
implies lower steady state consumption as the trade balance moves inevitably into 
surplus. 22 

Imports depend on domestic output and the relative price of domestic and 
import prices - the equilibrium of which is simply the replacement of the steady state 
value for each variable in the equation. Exports react to foreign imports, the gap 
between foreign and domestic prices and the change in the deflated value of imports. 
In the long run we would expect exports and imports to grow at a common rate (for 

<I> 1 = 1) and the price ratios to be constant in the steady state - the long run 
equilibrium for export demand ensures that imports respond to the foreign/domestic 
price ratio, a constant in the steady state. 

6. CONCLUSIONS 

This paper has attempted to briefly survey and motivate the incorporation of 
long run elements into macro economic models. We have suggested that, inter alia, 
modellers are interested in the long run for reasons of theory (for example, to ensure 
sustainable policy closures and tighter theoretical foundations) and also for 
algorithmic convenience (for example, in setting and resolving appropriate terminal 
conditions). We have ignored many related issues such as cointegration analysis in 
macro models and numerical issues in solving for the steady state etc but have 
suggested other more dominant themes common to supply-driven macro models. 

These themes may be roughly listed as: 

• Balanced Growth 

• Balanced Public Finance 

• Homogeneity Restrictions 
For example in prices, wages, money demand, constant returns technology etc. 

• Money Neutrality 

• Sustainable Policy Feedback Rules 
This implies not only that their parameterisation leads to robust and stable feedbacks 
but also that base fiscal projections are internally consistent. 

• Long Run Vertical Phillips Curves 

21 This also depends on how and if the tenninal condition on the exchange rate handles net foreign assets. 
Typically in macro models the roots associated with net foreign assets and the nominal exchange rates 
tend to be just stable implying that these are the variables driving the length of the model's steady state 
simulation horizon. 
22 This also implies a steady state depreciation ofthe exchange rate to produce the trade surplus. 
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Construction of a steady state model from a larger dynamic one yields 
several obvious benefits in terms of being numerically more straightforward to 
simulate ,providing appropriate terminal conditions for lead variables as well as 
forcing model builders to consider their overall model structure and its theoretical 
coherence. Indeed an "appropriate" long run specification is crucial to understand the 
full policy and stock-flow implications of certain permanent shocks .This is where 
such improvements have enriched our analysis over earlier mainly demand-driven 
models or simple text book flow tools like the Mundell-Fleming IS-LM-BP 
framework. 

The trade-off that such practises bring might be that models with a large 
emphasis on theoretical and long run coherence might have a poor forecasting 
record. This is often of course to the immediate financial disadvantage of private
sector modelling groups who depend on the commercial saleability of their model. 23 

It could well be argued however that forecasting could be done relatively cheaply 
with small reduced form models or time series approaches leaving polifl analysis in 
the hands of models with some explicit theoretical long run foundation.2 
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CHAPTER 11 

THE SENSITMTY OF SOLUTIONS TO TERMINAL 
CONDITIONS: SIMULATING PERMANENT SHOCKS WITH 

QUESTnl 

Werner Roeger and Jan in't Veld 

1. INTRODUCTION 

In applied economic modelling work one is often interested in the long run 
effects of certain policy measures. An example of this is the evaluation of the 
potential benefits of certain structural economic reforms, such as changes in taxation 
or the removal of trade barriers, on output and employment. Another example is the 
long run impact of monetary shocks on the price level, which constitutes a simple 
test of money neutrality in a model. 

From a purely technical point of view, simulating permanent shocks is a 
rather straightforward exercise in non-forward-Iooking models. In recent years 
though, the macroeconomic profession has moved away from such models and 
started to analyse policy issues by formulating models where economic agents solve 
intertemporal decision problems based on rational forward looking expectations. 
Analysing long run effects of policy changes with these types of models is more 
difficult. Typically an algorithm for solving a forward looking model requires it to be 
reformulated as a two-point boundary-value problem, with not only the initial 
conditions for the predetermined state variables, but also the terminal conditions for 
the jumping variables specified. Any solution is subject to these two sets of 
conditions. Determining the initial conditions is of course simple; they are known 
from history and moreover they are invariant to policy shocks. As regards the 
terminal conditions however, the situation is different as these depend on the nature 
and the size of the shock. In this paper we look at the nature of terminal conditions 
and their role in model solution. Terminal conditions are intimately linked to long 
run properties of the model and can most usefully be exploited if the model attains a 
steady state. We therefore will restrict our discussion to models with long run steady 
states. 

Our discussion proceeds as follows. First, we present the steady state and 
solution of a simple linear model with forward looking expectations. This allows us 
to illustrate the problems in a more rigorous fashion and link it to the 
macroeconomic literature, which deals with the linear case nearly exclusively. We 
restrict our discussion to well-behaved models, i.e. models which are stable and 
which do not allow multiple solutions. This leaves us with two types of dynamic 

ITbe views expressed in this paper are those of the authors and should not be attributed to the European 
Commission. 
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models, namely models with and without unit roots.2 Since unit roots play a crucial 
role in macroeconomic time series and there exist various economic models 
generating unit root properties (e.g. models of endogenous growth, insider outsider 
models, some open economy models with infinitely lived consumers and interest 
parity etc.) we will briefly discuss methods of solving these models as well. This 
section is followed by a discussion of numerical methods in the non-linear case and 
the importance of terminal conditions is demonstrated in this context. We discuss 
three different strategies in which macromodellers often deal with terminal 
conditions in practice. We conduct a sensitivity analysis and compare the simulation 
results of these three strategies by applying them to a medium-sized macro model. 
We illustrate the differences by considering three different permanent shocks and 
show how the simulation results compare for each of these shocks. 

2. LINEAR EXAMPLE: MODEL OF A SMALL OPEN ECONOMY 

The early theoretical literature about forward looking expectations has 
evolved mainly within a framework of small linear models. In the linear case one can 
derive a closed-form solution of the model and analyse conditions of stability and 
uniqueness of the solutions. It is therefore most illustrative to start our discussion 
with a small linear model. Consider the following simple model of a small open 
economy. There is a representative agent who maximises the intertemporal utility 
function over consumption C t 

1 
f3 = 1+8 

(1) 

where 8 is the rate of time preference, subject to net foreign asset constraint 

(2) 

where Ft is the net foreign asset position of the economy, and Yt is an exogenous 

income stream. The goods produced in the domestic economy are perfect substitutes 
for goods produced abroad, thus purchasing power parity holds and interest rates are 
equal to a constant world rate up to a risk premium which depends negatively on net 
foreign assets 

a~O. (3) 

The first order conditions of this maximisation problem yield the familiar 
Euler equation for consumption 

(4) 

2 Under unit roots we understand the presence of eigenvalues equal to one, i.e. a systems property and not 
a property of the system due to unit roots in exogenous variables. 
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In order to ensure that a steady state exists for all values of a , the rate of 

time preference is assumed to be equal to the world interest rate (e = r *). In addition 
the transversality condition 

(5) 

holds, which rules out explosive paths. 

The static steady state values of the endogenous variables (F*, C*) are 
given as a solution to the following system of equations 

-(r* -aF*)F* =Y-C* (6a) 

13(l+r* -aF*) = 1 (6b) 

If a > 0, net foreign assets are zero in the steady state and consumption 
equals current income. An indetenninacy arises if a = 0, becaUse equation (6b) can 

no longer be used to solve for F*. As will be shown below, this indeterminacy is 
more apparent than real, however, it complicates the solution. 

The dynamic solution of this model can easily be analysed if we consider a 
linear approximation as follows 

(7) 

with initial condition Ft=o = Fo. 

In an influential paper, Blanchard and Kahn (1980) have stated the 
conditions under which a non-explosive and unique solution exists. There are two 
requirements, the predetermined variables must have a stable backward solution for 
given values of the jumping variables, while the jumping variables must have a 
stable forward solution, for given initial conditions. This is the case, since there exist 
eigenvalues with AI < 1 and A2 > 1 if a> O. In the absence of a risk premium 

effect (a=O), the system exhibits unit root behaviour (AI = 1) for consumption. The 

consequences of this will become clear when we look at the solution of this system. 
As shown by Blanchard and Kahn, the solution can be represented as follows 
(Solution 1) 

co 

Ft =AIFt_1 +Yt- I +(I+r* -AI)LA2i-IEt_IYt+i_1 
i=O 

(8a) 
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«> 

Ct =(I+r· -A,I)Ft +(1+r· -A,I)~:>-;i-IEtYt+i 
i=O 

(8b) 

for given value Fo. In our discussion we will assume that we are interested in a 
solution for t in the interval between I and T. Equation (8a) clearly shows that the 
unit root or the indeterminacy of the steady state solution only means that the steady 
state will depend on the initial condition, i.e. the system exhibits hysteresis. 3 

For the discussion of the non-linear case it is useful to write the solution in a 
slightly different way. Define the present value of discounted future income between 
period t and t' as 

t' 

EtHt.t, = LA,-;i-IEt_1Yt+i_1 (9) 
i=O 

Using this definition, the dynamics of the system between period I and T 
can be characterized as follows (Solution 2) 

(lOa) 

(lOb) 

with AT = T - t and for a given value of the initial condition Fo and the terminal 

condition HT+1.«>. The terminal condition summarises the present value of future 

expected income after period T. From the point of view of model solution, 
formulation (lOa, lOb) has two interesting properties. First, conditional on the 
selection of the terminal condition, the model can be solved in a standard backward 
looking fashion. Second, the impact of the terminal condition on the solution is 

discounted by the term A,-;I:!.T. This implies that the impact of the terminal condition 

on the solution at date t can be arbitrarily small if the solution horizon (T) is chosen 
large enough. 

3. SOLUTION IN THE NON-LINEAR CASE 

From the last section it is clear that in the linear case, a solution of a 
forward looking model can easily be obtained for standard time series 
representations of exogenous variables. Unfortunately, in the non-linear case a 
closed form solution does generally not exist for forward looking models. However, 

3 It will generally be possible to obtain a solution in that case as well, by properly transforming the model 
such that the unit root is eliminated. This means one can use the fact that though there is a unit root in the 
system, endogenous variables will nevertheless be cointegrated. This means that it is possible to solve the 
system for ratios of endogenous variables and then transform this solution back to levels. In the example 

given above one can define f, = FJCt and solve for the dynamic evolution of the net asset to 

consumption ratio. This ratio has a forward looking solution and no unit root. 
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a non-linear model can be brought into a form which resembles (10) and standard 
numerical solution techniques, developed for the solution of standard backward 
looking models, can be applied after choosing values for the terminal condition. 
Two broad classes of solution methods are used in macro modelling practice. The 
first stacks the system of equations and then solves the stacked model, while the 
second applies iterative methods. 

The first method has been proposed by Hall (1995), Laffarque (1990), then 
developed by Boucekkine (1995) and Juillard (1996), and can be most easily 
explained in terms of solution 2 in the previous section. Let a non-linear dynamic 
model with forward looking expectations be given by 

(11) 

with initial condition Yo and a transversality condition. Here, Yt (rud) and Xt (kxl) are 
vectors of endogenous and exogenous variables respectively, ft is a vector of n 
nonlinear dynamic equations. This model can be represented in a way similar to 
(lOa,lOb) by stacking this system for T+l periods. Of course, the presence of 
predetermined state variables Yt-I and forward looking expectations (jumping 
variables) Etyt+1 introduces simultaneity across time periods, therefore we write the 
model as follows 

(12) 

with initial condition Yo and terminal condition YT+1 where Zt=(Yt-\, Yt. Etyt+I). This 
formulation resembles closely a standard non-linear system of difference equations, 
analogous to equations (lOa) and (lOb). Thus this stacked system of equations can 
be solved simultaneously for the vector z=[z\, ... ,ZT] by Newton-Raphson subject to 
the predetermined variable Yo and the terminal condition YT+I. 4 

The basic Fair-Taylor (1983) algorithm deals with the simultaneity problem 
by breaking it into parts and then relies on an iterative scheme to achieve 
convergence. In the Type I iterations, values for the expectations variables are taken 
as given and the model is solved period by period by conventional solution methods 
conditional on these predetermined expectations. Fair and Taylor suggest a Gauss
Seidel algorithm but in principle other algorithms could be used. In the Type II 
iterations these expectations variables are then updated by the solution values 
derived in the first stage and the process is repeated until the expectational variables 

4 Since T must be chosen large enough such that the solution is close to a steady state in period T, F(.) 
becomes very large. Since most of the off diagonal elements in this system are zero, sparse matrix 
techniques can be applied in order to save computer memory. 
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are consistent with the model solution. 5 With unknown terminal conditions, Type III 
iterations are then needed to test whether extending the simulation horizon affects 
the solution (the "extended path" method). This involves extending the simulation 
horizon by one period at the time till no change occurs anymore and the solution has 
converged. 

4. TERMINAL CONDITIONS 

The discussion so far has shown that the additional complication for the 
solution of forward looking models can be reduced to selecting appropriate tenninal 
conditions. They must be chosen for the expectational variables beyond the 
simulation horizon to tie down the solution path of the model to approximate the 
unique saddle path. Choosing the terminal condition analytically is genemlly 
impossible in the non-linear case. However, one can exploit the steady state 
properties of the stable solution. This property tells us that values of the forward 
looking variables must be close to their steady state solution if T is large enough. 
Thus, the terminal condition can simply be selected by calculating the steady state 
solution in a "static simulation".6 The correct strategy is therefore to calculate first 
the steady state solution of a permanent shock and impose this as a tenninal 
condition. 

In practice, however, macromodelers have often resorted to other methods 
when simulating permanent shocks. It is most common among the profession to 
'ignore' the issue in the sense that one assumes in a simulation of a permanent shock 
that there is no change in the terminal conditions. Others attempt to exploit certain 
properties of the steady state and impose these as terminal conditions. The example 
we will consider below is that of constant growth rates in the steady state. Our 
analysis will be conducted under the assumption that the model can be formulated in 
efficiency units and reaches a steady state growth path in the long run. Of course, the 
methods discussed can also be applied to the level of the variables, but it would 
slighdy complicate the notation. 

Method 1: Equilibrium solution of model (Terminal Condition in 
Levels- TCL) 

The theoretically correct approach is to use the equilibrium values as 
terminal conditions. These can be derived from an equilibrium steady state 
counterpart of the dynamic model. Prior to simulating the dynamic model (11), the 
equilibrium counterpart to the dynamic model is calculated, i.e. a system is set up 
which gives the long run solution of Yt to any vector x* of exogenous variables, 

5 There exist several variants of this algorithm which use incomplete inner iterations (so-called 
accelerated Fair-Taylor algorithms). Solutions of the inner loop are updated with every outer loop and 
therefore the convergence criteria for the inner loop are set looser relative to the outer rational 
expectations loop. This incomplete inner iterations methodology avoids unnecessary calculations but is 
basically a variant of the Fair-Taylor method (see Fisher (1992». 
6 Note that this is only possible in the absence of unit rools. In the presence of a unit rool there exist a 
muhiplicity of solutions. As seen above a stable solution exists but it can no longer be expressed 
independently from the initial condition and therefore we cannot use the (static) equilibrium counterpart of 
the dynamic model to calculate values for the terminal condition. But note that a solution can be obtained 
by transforming the model into ratios (see footnote 2). 
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where x* denotes the long run level of the exogenous variables. Let this system be 
given by 

s 
f (y*,x*) = 0 (13) 

and let y* be the long run solution for Yt. To give an example, suppose the vector Yt 
can be split into I predetermined state variables and m jumping variables contained in 
the vectors y\ and yit and let the dynamic model be represented by 

(14) 

Now define n = [ ~ ~]. The steady state version of this model would be given by 

(15) 

Using this detour it is possible to calculate the long run solution implied by 
a given dynamic model by running a simple simulation of the model f( .. ) in order to 
calculate y* for the long run values x* of the exogenous variables. The dynamic 
simulation can then be computed by imposing the solution values yi* from this static 
model on the terminal conditions YT+I. 

This method, which is used by e.g. Minford et al. (1979) and Masson et al. 
(1990), certainly has the advantage that the solution procedure is theoretically 
consistent. However, it has the disadvantage that the solution method becomes very 
cumbersome and requires the maintenance of two models which should be identical 
up to the dynamic specification. When such an equilibrium counterpart of a dynamic 
model is available, this is clearly the optimal strategy, but in practice it can be 
laborious to derive a steady state counterpart of the model. 

Method 2: Initial Baseline Values (No Terminal Condition - NTC) 

This approach, supported by Fair and Taylor in their original 1983 paper but 
equally applicable to the stacked time method, suggests that any arbitrary condition 
can be used as long as it is far enough into the future not to affect the period of 
interest. For example, one could use the initial set of values for the expectations 
variables from the baseline and assume that imposing these as terminal conditions 
will not affect the solution. To verify stability of the model, this could then be tested 
in Type III iterations. 

This is obviously a theoretically incorrect way of dealing with the problem. 
However, it could be justified in practice as it is unlikely that the tenninal condition 
will have a big impact on the solution at the beginning of the simulation. We have 
seen in the previous section that the effect of the tenninal condition on the solution at 
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period t is discounted by ')..-/,T (')..2>1) , therefore one would expect that choosing an 

incorrect value should not affect the solution very much, at least for dates far enough 
from the terminal date.7 Therefore, if it is possible to run simulations over a long 
enough horizon, it is likely that the solution reaches a steady state at some point 
before it then departs from the steady state as the (incorrect) terminal condition 
exerts its influence on the solution. If one ignores the solution after the model has 
reached the steady state, then nothing would be lost by applying this method. In that 
regard a comparison of this solution method with theoretically more adequate 
methods is instructive since it will illustrate whether, and over which time horizon, 
this solution might be close to the correct solution. The big advantage of this method 
is of course its simplicity. However, the computational costs can be excessive, since 
applying this method may require very long simulation horizons in order to obtain 
reliable results over the adjustment period, as models often exhibit protracted 
adjustment lags towards a new steady state. 

Method 3: Constant Growth Rates Condition (Terminal Condition in 
Differences - TCD) 

This third method consists of exploiting certain properties of the steady 
state solution for the defInition of the jumping variables. Knowing that the model 
reaches a steady state implies a certain knowledge about the change of variables 
between two successive periods. If the system is formulated in efficiency units, for 

example, then we know that in the steady state, the percentage change of y~ is equal 
to zero for any shock and any steady state reached by the model solution.8 If we 

defIne a new vector of jumping variables y~ = y~ - y~_1 , then ytl = 0 if we choose 
T large enough such that the model reaches a steady state in period T. In terms of 
the example given above, this amounts to the following speciftcation. 

(16) 

Notice that in this system of equations, the variable yf+1 is the jumping 

variable, while y~ has now become a predetermined state variable. Thus the model 
can be reformulated such that the terminal conditions are invariant to the policy 
shock. This seems to be the most elegant solution. There is only a small cost 
associated with it, namely the model must be extended by adding m equations 

defIning the vector y~. 

7 Conditions for this to happen in general were given in Fisher and Hughes Hallett (1998). 

g This holds for QUEST n which is formulated in efficiency units. However, this method also works if all 

variables are specified in levels. In that case the vector Y~+1 contains the values of the steady state growth 

rate of the jumping variables. 
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5. SENSITIVITY ANALYSIS 

In order to illustrate the differences between these three alternative methods 
we compare their results when they are applied to a macro economic model. As 
shown above, the effect of the terminal condition depends crucially on the size of the 
eigenvalues. To add some realism to our analysis, we want to illustrate the three 
methods by applying them to a medium scale macroeconomic model, rather than a 
small theoretical model as often used in the literature. We use a smaller experimental 
version of the Commission's QUEST II model, which consists of two regions, 
namely the US and EUIS. The behavioural equations in the model are based on 
microeconomic principles of intertemporal optimising behaviour of households and 
firms and the supply side of the economy is modelled explicitly via a neoclassical 
production function. This feature of the model assures that its long run behaviour 
resembles closely the standard neoclassical growth model. There are two major 
departures from the neo-classical model in the long run. Because firms are not 
perfectly competitive but can charge IIlIllX-UPS over marginal costs, the long run 
level of economic activity will be lower than that predicted from a model with 
perfect competition. Also, the model economy will not reach a steady state 
equilibrium with full employment because of important frictions and imperfect 
competition in the labour market. To capture these labour IIlIllXet imperfections, a 
bargaining framework is used to characterise the interaction between firms and 
workers. The short run behaviour of the model economy will be influenced by 
standard Keynesian features since the model allows for imperfectly flexible wages 
and prices, as well as adjustment costs for labour and investment. 9 

The QUEST model contains several forward looking variables. The 
uncovered interest parity condition has a lead in the exchange rate, the Fisher 
equation contains a lead in prices, and the long term interest rate is determined by a 
term structure relationship to short term interest rates. Moreover, the model assumes 
overlapping wage contracts with a duration of 4 quarters which gives rise to three 
leads in wages. Human wealth, or life cycle income, appears with a lead in the model 
as it is represented by the current and expected future net income stream. \0 Finally, 
the shadow price of capital, or Tobin's Q, reflects the present discounted value of the 
marginal revenue from investment and forms the sixth forward looking variable in 
the model. Each of these variables require a terminal condition to be specified in 
simulations. 

The qualitative nature of the solution is similar to what we would obtain by 
running the complete model. The simulation results therefore are representative in 
terms of the speed of adjustment as well as the impact on the endogenous variables 
in QUEST II under money supply targetting. The simulations were run with a 
horizon of more than 100 years. It should be stressed, as will be seen below, that it is 

9 The model is described in some detail in Roeger and in't Veld (1997). The full QUEST model contains 
almost 1000 equations and simulations are run on a RSl6000 workstation, with a simulation horizon of70 
years. The smaller version used here contains 101 equations and can be run over a longer horizon on a PC. 
It is therefore more suitable for illustrating the alternative methods of simulating permanent shocks. The 
simulations presented here were run on a Pentium with 32 megabytes of RAM. 
10 A life cycle hypothesis is adopted for consumption. As shown, for example, by Buiter (1988), 
consumption is not a random walk in that case. Thus the model does not contain a unit root. 
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generally not necessary to run simulations over that time horizon. It is done here to 
be on the safe side in ensuring that the model had reached a steady state solution. 

The solution method used to simulate the model is the Laffarque
Boucekkine-Juillard (LBJ) algorithm, as implemented in the Portable TROLL 
software system by Hollinger (1996). All simulations were started in the year 2000 
and run over 110 years. We consider three different permanent shocks and illustrate 
the effects of the terminal condition for each of these shocks. The types of policy 
shocks we are considering are a permanent increase in total factor productivity (TFP) 
of 1 per cent, a permanent increase in the money supply of 1 per cent and a 
permanent reduction in government purchases as a share of GOP of 1 per cent, 
combined with a reduction in the debt to GOP ratio by 10 percentage points. The 
focus here is not so much on the economic interpretation of these shocks but more on 
the technical aspects of the model solution and we have opted for this wide spectrum 
of shocks to show the robustness of the alternative strategies to a broad spectrum of 
policy interventions. 

Technology-Shock: 

Charts La and I.b give the results of a permanent shock to TFP of 1 per 
cent of GOP. In terms of model properties a technology shock has a multiplier of 
1.67 per cent, i.e. the steady state solution of the equilibrium counterpart of the 
model gives a 1.67 per cent increase in GOP. It can be seen from Chart La that the 
path of GOP when a constant growth rate assumption is imposed as terminal 
condition (TCO) is identical to that when the steady state level is substituted as 
terminal condition (TCL). Both reach the steady state value of 1.67. On the other 
hand, the solution under NTC (ignoring the terminal condition) reveals a severe 
endpoint problem. The good news, however, is that even under NTC the solution 
does not depart significantly from the correct solution for around one half of the 
simulation horizon and approaches the steady state. What is also clear from these 
charts is that it takes the economy about 3 years to complete 75 per cent of the 
adjustment (Chart I.b). This is an interesting feature in the light of some recent 
discussion in the RBC literature on the typical adjustment of GDP (see e.g. Cogley 
and Nason (1995». 

Money-Shock: 

A permanent increase in the money supply should lead to a proportional 
increase in the price level and have no real effects in the model in the long run. 
Charts 2.a to 2.d give the results for GOP and the price level of a permanent increase 
in the money supply of 1 per cent. It is clear that also in this case the solution does 
not differ significantly under TCL and TCO. Again, there is an endpoint problem 
with the baseline values are used as terminal conditions (NTC) which, however, does 
not have a severe influence on the first 50 years of the simulation. Again the steady 
state solution is reached like with TCL and TCO and the solution only departs after 
50 years from the steady state. 

With respect to model properties, this solution shows that money is neutral 
in the long run, with the increase in the money supply leading to a proportional 
increase in the price level. But monetary policy can have a strong short run impact 
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with a short run multiplier of money on GDP of close to one (Chart 2.b). It takes 
about 2 years for 75 per cent of the price level adjustment to be completed (Chart 
2.d). 

Fiscal-Shock: 

As shown in Chart 3, the three methods yield similar results for fiscal 
shocks compared to the two previous experiments. It is, however, visible that it takes 
the model longer to reach the long run solution (3.a) and there seems to be some 
small endpoint problems also associated with the solution methods TCL and TCD. It 
is interesting to notice that TCD does best in this case. We attribute this to the fact 
that the discrepancy between the steady state solution and the solution value from the 
dynamic simulation is larger if the tenninal conditions are fonnulated in levels 
instead of first differences. It can also be seen that the solution under NTC deviates 
from TCL and TCD already after 10 years. Thus it is not generally true that NTC 
replicates the correct solution over one half of the simulation horizon. 

This experiment also shows the typical adjustment of QUEST II in the case 
of a fiscal shock. Under monetuy targeting, the short run fiscal multiplier is vety 
small and the negative output effect of a fiscal contraction would disappear within 
the first five years. The negative short run effects could be reduced further by a 
slightly more expansionaty monetal)' policy (i.e. inflation targetting) and/or a 
reduction in distortionaty taxes. I I It can also be seen that the long run GDP effects 
of a cut in government purchases and a reduction in the debt stock are rather modest. 
Notice, however, that this experiment consists of reducing lump sum taxes of 
households, thus the increase is mainly in private consumption In other work on the 
long run effects of fiscal policy we found that a cut in government expenditure of the 
same order of magnitude would lead to an increase in GDP of 0.35 per cent (and of 
employment by 0.82 per cent) if it would be accompanied by a reduction in labour 
taxes and it would lead to a GDP-effect of 1.3 per cent (but no sizeable employment 
effect) if it would be accompanied by a reduction in corporate taxes (Roeger and In 't 
Veld (l997b». 

The last simulation shows the potential dangers associated with ignoring the 
tenninal condition problem. The small model used here can be simulated over more 
than 100 years, but for larger models, like e.g. the full QUEST II model, one is 
constrained by the memoty capacity of the computer. When simulations are run over 
shorter horizons the end-point problem associated with the NTC method becomes 
much more acute. To illustrate this we have repeated the above scenario of a fiscal 
consolidation but simulated it over a much shorter horizon of 50 years. For 
comparison the "correct" solution (TCD simulated over more than 100 years) is 
included in the charts, as is the NTC solution simulated over the long time horizon. 
The NTC50 method already deviates from the other solution paths in the first years 
of the simulation, while the end-point distortion renders the results over the last 25 
years useless (chart 4.a). As can be seen from Chart 4.b, even the short run results 
are affected by the end-point problem. The TCD method gives much better results 

II On the other hand, in the case of nominal interest rate targeting the fiscal multiplier could also be 
larger. See, for example W Roeger and J in't Veld (1997a). 
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over a 50 years simulation horizon, with the short run results close to the longer TCD 
solution. However, even now there is a small price to pay for imposing terminal 
conditions too early, as the TCD50 solution does not reach the correct steady state 
solution at the end of the simulation (0.075 as compared to 0.097). This clearly 
indicates that 50 years is not enough to achieve a new steady state equilibrium and a 
longer simulation horizon is required. 

6, CONCLUSION 

In this paper we have shown the importance of the terminal condition in 
Simulating models with forward looking expectations and considered ways 
macro modelers deal with them in practice. It is clear that terminal conditions 
influence the solution of forward looking dynamic models. Despite the fact that it is 
theoretically incorrect, the often applied strategy of ignoring the problem and 
assuming it will not affect the solution too much, seems to work reasonably well 
over an extended simulation horizon and could be applied if there is enough 
computer memory available to allow for such long simulations. In practice though 
this is often not the case. Although the bias may not seem a serious problem in the 
case of the technology shock and the monetary shock, the fiscal shock, which 
involves a longer adjustment to a new steady state, clearly indicates that model 
simulations over shorter horizons can give misleading results if changes in the 
terminal conditions are not taken into account. Exploiting steady state properties like 
constant growth rates can approximate the correct solution method of imposing 
equilibrium values quite well. Our simulation results show that this method is both 
easy to impose on an existing model and seems to have the most reasonable 
properties. 
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CHAPTER 12 

SOLVING LARGE SCALE MODELS UNDER ALTERNATIVE 
POLICY CLOSURES: THE MSG2 MULTI-COUNTRY MODEL 

Warwick J McKibbin! 

1. INTRODUCTION 

This paper explores a number of issues in the design and use of the MSG2 
multi-country model for policy simulation analysis. A brief overview of the MSG2 
model is presented in Section 2. The use of large scale models with rational 
expectations such as the MSG2 model has required the development of new 
numerical algorithms. The solution algorithm that is used to solve the MSG2 model, 
as well as several other multi-country models including the G-Cubed model (see 
McKibbin and Wilcoxen (1995)), is summarized in Section 3. In Sections 4 and 5 the 
impact of alternative assumptions about fiscal and monetary closure rules are 
explored in more detail. In particular the standard assumptions used in the MSG2 
model of a incremental interest payments rule for fiscal are compared to other 
assumptions frequently used in other global models such as a debt targeting rule and 
a fiscal conservatism rule. In addition, rules for monetary policy such as a fixed 
stock of money rule, a nominal income rule and an inflation target are compared. 
Both sets of policy closure assumptions are compared focusing on Australia but the 
insights generalize across the other countries in the model. It is shown that these 
assumptions can have some important implications for both the long run and short 
run impacts of fiscal and monetary policy. A summary is presented in Section 6. 

2. AN OVERVIEW OF THE MSG2 MULTI-COUNTRY MODEL 

Full documentation of the MSG2 model and an analysis of its properties 
and tracking performance can be found in McKibbin and Sachs (1991). The model 
has undergone a number of changes since that earlier version and information on the 
latest model can be found on the world wide web at http://WWW.MSGPL.COM.AU 
A summary of the key features of the model are presented in table 1 and the 
coverage of the model is listed in table 2. The version used in this paper is the "Asia 
model" version 421 (see McKibbin (1996)). 

The MSG2 multi-country model is a fully specified dynamic intertemporal 
general equilibrium model (DIGEM) with careful treatment of stock-flow relations 
such as the cumulation of investment into capital stocks and the cumulation of fiscal 
deficits into net asset stocks. Both the short run demand and supply sides of the 

I The views expressed are those of the authors and should not be interpreted as reflecting the views of the 
trustees. officers or other staff of the Brookings Institution, or the Australian National University. 
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major economies are incorporated. In the long run, supply is determined by 
neoclassical growth theoty. The model incorporates a nwnber of financial marlcets 
such as share markets and marlcets for short and long bonds in each of the industrial 
regions where prices are determined by intertempoml arbitrage relations as well as 
long run sustainability conditions on fiscal deficits and current account positions. In 
addition, the assumption of rational expectations in these financial markets as well as 
some forward looking behavior in real spending decisions means the effects of 
anticipated policy changes are well handled by this model. The regimes that are 
included in the model are explicitly modeled and since we use a structural model 
with rational expectations, the model is essentially immune from the Lucas (1974) 
Critique. The model version in this paper has regionallcountty coverage for the 
United States, Japan, Germany, the United States, Japan, Germany, the United 
Kingdom, the rest of the EMS (denoted REMS)/ Australia, the Rest of the OECO 
(denoted ROECD),3 non-oil developing countries (denoted LDCS),4 high income 
Asia,5 other Asia,6 oil exporting countries (denoted OPEC),7 and eastern European 
economies including the former Soviet Union.s 

It is important to note that investment and conswnption behavior is modeled 
as a weighted average of intertempoml optimizing behavior (with rational 
expectations of the future path of the global economy), and backward looking 
behavior based on current income. Thus expected changes in policy and changes in 
future stocks of assets leads to an initial (although quite damped) response of 
households and firms. Investment is based on the cost of adjustment approach of 
Lucas (1967) and Treadway (1969) which yields a model with investment partially 
determined by Tobin's q, along the lines of the work of Hayashi (1982). A full 
derivation of the model can be found in McKibbin and Sachs (1991). 

Apart from the shocks and underlying model structure, the results also 
depend on the asswnptions about fiscal and monetaty closure, or more specifically 
the fiscal and monetaty regimes in place in each economy. In this paper, policy 
closure assumptions are changed in the Australian module with a given set of 
plausible fiscal and monetaty closure assumptions in other countries. For example, 
in all other countries, fiscal policy is assumed to be implemented such that all 
governments maintain a fixed share of government spending to GOP and adjust taxes 
to service any changes in debt (the incremental interest payments rule discussed 
below). The fiscal deficit adjusts endogenously to any changes in real activity or 
interest rates. The details of the alternative policy closures in Australia as discussed 
in the next Section. 

2 This block consists of Belgium, Denmark, Ireland, Italy and Luxembourg. 

3 This group of countries consists of Austria, Canada, Finland, Iceland, New Zealand, Norway, Portugal, 
Spain, Sweden and Switzerland 

4 Non-Oil Developing countries are based on the grouping in the IMF Direction of Trade Statistics less 
countries explicitly modelled as noted elsewhere. 
5 This group consists of Hong Kong, Korea, Singapore, Taiwan. 

6 This group consists of China, Indonesia, Malaysia, Philippines and Thailand, 

7 Oil exporting countries are based on the grouping in the IMF Direction of Trade Statistics. 

8 These countries are Bulgaria, Czechoslovakia, Eastern Germany, Hungary, Poland, Romania, 
Yugoslavia, and the former USSR. 
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Table 1. 
Main Features of the MSG2 Model 

• both the demand and supply side of the major economies are explicitly 
modelled; 

• demand equations are based on a combination of intertemporal optimizing 
behavior and liquidity constrained behavior; 

• the supply side takes explicit account of imported intermediate goods 
especially the role of imported capital goods in investment in economies; 

• major flows such as physical investment, fiscal deficits and current 
account imbalances cumulate into stocks of capital, government debt and 
net external debt which in turn change the composition and level of 
national wealth over time. 

• Wealth adjustment determines stock equilibrium in the long run but also 
feeds back into short-run economic conditions through forward-looking 
share markets, bond markets and foreign exchange markets. 

• Asset markets are linked globally through the high international mobility 
of capital. 

Table 2. 
Regional Coverage of the MSG2 Model Used in this Paper 

Regions (preceded by country code) 

Structural 
(U) 
(1) 
(G) 
(K) 
(E) 
(A) 
(R) 
(H) 
(Z) 

(version 421) 

United States 
Japan 

Germany 
United Kingdom 

Rest of the EMS (denoted REMS) 
Australia 

Rest of the OECD (denoted ROECD) 
High Income Asia 

Other Asia 

Non-Structural 
(0) oil exporting countries (denoted OPEC) 

non-oil developing countries (denoted LDCs) 
eastern European economies and the former Soviet Union (denoted 

EFSU). 

(L) 
(B) 
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one good in each countIy/region. 

3. mE MSG2 SOLUTION ALGORITHM 

The MSG2 model (as well as the G-Cubed Model) is solved using software 
developed by McKibbin (1987) for solving large models with rational expectations 
on a personal computer.9 The model version in this paper has approximately 1300 
equations in its current form with 26 costate variables. To describe the solution 
procedure we begin by observing that from a mathematical standpoint, the MSG2 
model is a system of simultaneous equations which can be written in the form: 

(1) 

(2) 

(3) 

where Z is a vector of endogenous variables, S is a vector of state variables, C is a 
vector of co-state variables, X is a vector of exogenous variables, and F, G and H are 
vector functions. The first step in constructing the baseline is to use numerical 
differentiation to linearize (1) though (3) around the model's database (which is for 
1987). We then transform the model into its minimal state space representation by 
using (1) to find a set of equations fO that allow us to eliminate Z from (2) and (3): 

The linearized model is then in the form: 

(4) 

(5) 

dSt+1 = (I +Gzfs+Gs}dSt + {Gzfc+GddCt + (Gzfx+Gx)dXt (6) 

dCt+l = {1+Hzfc+HddCt + {Hzfs+Hs)dSt + (Hzfx+Hx)dXt (7) 

The eigenvalues of this system of equations are then calculated to ensure 
that the condition for saddle-point stability is satisfied (that is, that the number of 
eigenvalues outside the unit circle are equal to the number of costate variables). 
Following that we compute the model's stable manifold as follows. For convenience, 
define f: 

9 For a more detailed description of the algorithm, see Appendix C of McKibbin and Sachs (1991). The 
software developed for solving this model has been written in the GAUSS programming language. 
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(8) 

Using r we can rewrite (7) to give dCt in tenns of the other variables: 

(9) 

Substituting (9) into (6) gives: 

dSt+1 = (I+Gzfs+Gs-r{Hzfs+Hs})dSt + (Gzfc+Gc)rdCt+1 
(10) 

+ (Gzfx+Gx-r(Hzfx+Hx)hIXt 

Applying (9) recursively and using (10) allows us to find an expression for 
the stable manifold for the costate variables in tenns of changes in current state 
variables and all current and future changes in the exogenous variables. The 
expression will have the following fonn: 

T 

dCt = Cl> dSt + L 8jdXj + n dCT (11) 
j=t 

where Cl>, 8;, and n are matrices of constants. We evaluate Cl>, 8 j , and n 
numerically; in general, their closed-fonn expressions will be quite complicated. 
Once this is found the model can be solved quickly and easily for different 
experiments because the new values of the costate variables can be calculated simply 
by evaluating (II). These values can then be inserted into (I) to calculate the other 
endogenous variables. 

The algorithm also allows for calculation of time consistent close loop 
optimal policy rules although these are not discussed in this paper.IO 

4. ALTERNATIVE FISCAL AND MONETARY CLOSURE ASSUMPTIONS 

In this Section, the role of the fiscal and monetary closure assumptions are 
explored in some detail. A number of alternative closures are possible including a 
full range of optimization assumptions for fiscal and monetary policy following the 
large literature on the design of optimal fiscal and monetary regimes. lI Indeed the 
model used in this paper has contributed to that literature both from the point of view 
of a single country or region (Argy et al (1989) ) as well as from a global 
perspective (Henderson and McKibbin (1993), McKibbin and Sachs (1988,1991). In 
this paper rather than focus on optimal rules as in the above studies, the focus is on 
the impact of simple rules for fiscal and monetary policy on the model properties. In 
particular three alternative fiscal regimes are considered and what these mean for the 
impact of changes in monetary policy in the model. 

10 See McKibbin (1987) for an overview of the optimization algorithm. 
11 

See for example Bryant Hooper Mann (1993) and Brandsma and Hughes Hallett (1989) and Kydland 
and Prescott (1977). 



278 

i) Fiscal Regimes 

Consider the budget constraint facing a government summarized in 
equation (12). 

(12) 

DEFN is the fiscal deficit; G is total government spending on goods and 
services as well as infrastructure investment (which is included in the MSG2 model 
but unchanged for all simulations below); T is total tax revenue from income taxes, 
corporate taxes, import duties etc; i is the nominal interest rate and B is the stock of 
government debt. The last term (iB) is therefore the interest payment on outstanding 
government debt. 

In the MSG2 model, variables are expressed in per efficiency units. In the 
above expression assuming lower case letters are upper case variables expressed in 
per efficiency labor units (Le. g=GN) and adjusting the deficit for the inflation 
component of interest payments on the debt we get the following equation: 

defit = gt -it +rt bt (13) 

where r is the real interest rate defined as the nominal interest rate (i) less expected 
inflation (rt = it - tIIt+l)' Note that this expression has adjusted each variable in 
equation (1) by deflating by GDP plus it has subtracted the inflation component of 
interest payments on government debt. 

The link between debt and the fiscal deficit is the familiar relationship 

(14) 

To convert this to the same units as above it can be shown that given b=BN 
and assuming a population plus productivity growth rate equal to n, that: 

(15) 

Thus debt (relative to GDP) in the MSG2 model evolves according to the budget 
constraint: 

Imposing the condition that debt has finite value 

lim bte -(r,-n}t = 0 
t~<X) 

(16) 

(17) 
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we can rewrite equation (16) as the intertemporal budget constraint of the 
government: 

00 

bo = J (t.-g. ) e-{r-nJods 

o 

(18) 

Equation (18) shows that the value of debt (relative to GOP) in period 0 is 
equal to the integral of the future stream of tax revenue less the future stream of 
government spending. 

What is required to impose this intertemporal budget constraint in any 
model is a reaction function for either some component of spending or taxes such 
that (18) is satisfied. 

The regimes considered in this paper are dealt with in greater detail in 
Bryant and Long(l996a,1996b) and the reader is referred to those papers for an 
analysis of the steady state and dynamic implications of each regime. In this Section 
I summarize the regimes. 

The first regime considered is the regime used in the MSG2 model which is 
referred to in Bryant and Long (1996a) as the incremental interest payments rule 
(lIP). In the following notation a superscript b refers to the baseline value of a 
variable. Thus rIb is the baseline value if r in period t. This rule is shown in equation 
(19): 

(19) 

In this rule a lump sum tax (t) is adjusted to any changes in the interest 
servicing costs relative to baseline during simulation. 

From the above summary of the government budget constraint it can be 
seen that assuming t=rb in equation (16) gives: 

(20) 

or in the steady state when db/dt=O, we have: 

(21) 

Thus in an economy in which taxes only cover interest costs of the debt, the 
steady state stock of debt to GOP in the case of the lIP rule is dependent on the 
steady state level of government spending adjusted by the underlying real growth 
rate. In terms of the simulations below any change in government spending will lead 
to a permanent change in the ration of debt to GOP. In the MSG2 model the long run 
growth rate of population plus labor augmenting technical change is 3% thus a 2 
percent of GOP reduction in government spending will eventually reduce 
government debt by approximately 66% (=100*2/.03) 
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The second rule is the closure rule assumed in a number of models such as 
the IMF MUL TIMOO model. This is referred to as the debt targeting rule. 

(22) 

The instrument in this rule is the income tax rate (t) rather than tax revenues relative 
to GOP (t). The current tax rate (t) is set equal to the previous period tax rate plus 
two terms. The first term in the gap between the actual debt at the end of period t less 
the desired debt at the end of period t. Targeted variables are indicated by a T 
superscript. Note that in this particular implementation we assume that the targeted 
debt is equal to the baseline debt. The second term is the derivative feedback term, 
that is the change in the gap between the actual and desired stocks of debt. This last 
term is also the fiscal deficit plus the term nb when there is underlying real growth in 
the economy. In the simulations below I assume the same values for a) (= 0.04) and 
a2 (=0.3) as Bryant and Long (l996a). In this rule any changes in the economy that 
change the fiscal deficit in the short run have not effect on the long run stock of 
government debt relative to GOP. 

The third rule shown in equation (23) is strict fiscal conservatism in which 
the government is assumed to hit a desired debt stock exactly in every period. This is 
equivalent to equation (22) with very large feedback coefficients. 

bt=bl (23) 

ii) Monetary Regimes 

Monetary policy in this model is assumed to be implemented with a 
feedback rule for interest rates on some target variable (either the stock money 
relative to target, the level of nominal income relative to target, or the rate of 
inflation relative to target). In this paper we take an extreme value for each feedback 
coefficient such that the target variables are targeted exactly. An alternative approach 
is either to use an arbitrary coefficient to capture partial adjustment or one can 
calculate an "optimal" feedback coefficient such that some objective function written 
in terms of ultimate target variables is maximized (see McKibbin (1993». In that 
earlier paper the "optimal" degree of adjustment for a monetary target rule, given the 
historically estimate variance covariance matrix of shocks, was found to be exact 
targeting on money. 

The three monetary regimes use in this paper are summarized in equations 
(24) through (26). Take equation (24) for example. This has that the short term 
nominal interest rate (i) equal to the baseline nominal interest rate (ib) plus a 
coefficient times the gap between the actual stock of money (M) and the target stock 
of money <MtT). 

The money target is: 



The Nominal income (or nominal GDP) target is: 

Inflation target is: 

it = if + ~3 (nt -n{) 
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(24) 

(25) 

(26) 

5. THE CONSEQUENCES OF FISCAL AND MONETARY CLOSURES 

The results for each of the simulation are contained in Figures I through 10. 
For each policy change there are three sets of graphs (with an additional set of graphs 
for the fiscal shift, discussed below). All variables are expressed as deviations from 
what otherwise would have occurred along the baseline of the model. The deviation 
units differ across variables. GDP, employment, output price, nominal effective 
exchange rate and real effective exchange rate are expressed as percentage deviation 
from baseline. Inflation, short term nominal interest rates, short term real interest rate 
and (where they are presented) real and nominal rate of return on ten year bonds are 
all expressed as percentage point deviation from baseline. Thus a value of 1 is a 100 
basis point rise in the variable. The fiscal deficit, government debt stock, current 
account balance and trade balance are all expressed as percent of baseline GDP 
deviation from base. 

A. The Consequences of the Fiscal Regime for Changes in Monetary 
Policy 

i) Reduction in the targeted price level by 2% 

The first simulation is a reduction in the targeted level of prices by 2%. This 
is implemented by reducing the nominal anchor. In this simulation it is assumed that 
the money supply is the nominal anchor and it is reduced by 2% immediately in 
1996. Over time the price level falls to the desired level 2 percent lower than that 
which would otherwise have been. Figures I through 3 contain the results for this 
scenario under the three assumptions for fiscal policy outlined above. In the Figures, 
the "rB rule" is the incremental interest payment rule (lIP rule); "B target" is the debt 
targeting rule and "B fixed" is the fiscal conservatism rule. 

In understanding the results for monetary policy it is useful to first focus on 
the overall adjustment for all three regimes and then focus on the differences 
between regimes. In doing this it is helpful to first analyse the lIP regime ("rb rule" 
in the Figures) because this the standard fiscal regime in the MSG2 model and is 
most comparable to other studies with this model. 

The outcome for prices can be seen in the bottom right hand panel of Figure 
1. Prices fall (relative to baseline) by 0.8 percent during 1996 and gradually reach 
the new desired level by the year 2000. The policy is implemented by raising short 
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tenn nominal interest rates (Figure 3) such that the new target path for money is 
achieved exactly. The result of the rise in interest rates with sticky wages is to 
sharply raise real interest rates (Figure 3). This appreciates the exchange rate in both 
real and nominal terms as foreign financial capital flows into the Australian economy 
attracted by higher real and nominal rates of return. Higher real interest rates dampen 
private investment directly through a higher cost of funds and also through a 
tightening of short run liquidity constraints on firms and households. In addition, the 
rise in the real exchange rate dampens foreign demand for Australian exports. Each 
factor acts to temporarily reduce GOP. The fall in aggregate demand reduces prices. 
In addition the appreciation of the exchange rate lowers the cost of imported 
consumption goods as well as the cost on imported intermediate goods which further 
reduces inflation (defined in terms of the consumer price index) temporarily. With 
sticky nominal wages the fall in aggregate demand and rise in the real wage reduces 
employment proportionately more than the fall in GOP. 

The impact of the shock on the balance of payments can be considered in a 
number of ways. This is also where the fiscal policy assumptions are more important. 
One way to think through the adjustment process is through the expected theoretical 
effects on exports and imports which depend on their price and income elasticities. 
The fall in aggregate demand in Australia should reduce the demand for imports 
directly. On the other hand the stronger real exchange rate should raise the demand 
for imports since imported goods become relatively cheaper in Australian dollars. On 
the export side the effect is clearer. The stronger real exchange rate (i.e. the higher 
the relative price of Australian goods to foreign goods) tends to lower the demand 
for exports and there are no foreign income effects from the Australia policy change. 
Thus exports should fall. These factors taken together imply that the results for the 
trade balance are ambiguous in theory. 

An alternative, equally valid but nonetheless useful, way of thinking 
through the adjustment process is to realize that the current account adjustment will 
be determined by the shifts in public and private saving and investment in Australia. 
On the investment side we have assumed that public infrastructure investment 
spending is constant. Private investment spending falls slightly because of the 
temporary rise in real interest rates (which raises the real interest rate on 10 year 
bonds) and the slowdown in economic activity which reduces expected future output 
in the near term as well as tightening cash flow of firms. Public saving tends to fall 
since government spending is fixed and the slowdown in economic activity tends to 
reduce tax revenue thus increasing the budget deficit all other things unchanged. 
Private saving tends to fall as well as some households attempt to smooth 
consumption as income falls temporarily. Therefore the effect on the current account 
is also ambiguous from this approach (as expected given they are two sides of the 
same story). The key insight is that it is clearer how the fiscal regime can be 
important when thinking through the saving/investment channel. This is through the 
effect of the fiscal regime on the response of public saving. 

Indeed now consider the differences in results across the fiscal regimes. The 
results for real GOP do not differ much across these versions of the fiscal regimes. 
The key point from examining the differences in GOP are that the fiscal 
conservatism rule leads to a larger output loss in the short run since the tendency to 
run a budget deficit as revenues fall leads to a rise in tax rates so as to keep 
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government debt unchanged. Thus the monetary contraction is accompanied by an 
endogenous fiscal contraction, relative to the other fiscal regimes. In the other 
regimes, in the short run, fiscal policy is allowed to be counter cyclical. 

Greater differences can be found in the adjustment of fiscal and trade 
deficits. From Figure 2 it is clear that the incremental interest payments rule (lIP) 
allows a larger fiscal deficit to emerge than the other rules in the short run. The debt 
target rule allows a short run increase in the fiscal deficit however this rule returns 
the debt to the baseline level whereas the government debt is permanently higher 
under the lIP rule. The implication of this is that the fiscal deficit that emerges under 
the debt target rule must be reversed by running a fiscal surplus during the period 
shown which dampens economic activity during that phase of adjustment. The fiscal 
conservatism rule shows the assumption that the fiscal deficit and the stock of 
government debt remain unchanged at baseline. 

The impacts on the trade balance are quite different under the different 
fiscal regimes. Under the lIP rule the trade balance deteriorates because public 
saving falls relative to the regime of fiscal conservatism. Indeed the trade balance 
improves under the fiscal conservatism rule because public saving is unchanged and 
the fall in private investment is larger than the fall in private saving. These results 
are interesting although the magnitudes of the differences are relatively small. 

The effect on financial prices are more different than the real effects of the 
alternative regimes. In particular we find an interesting result in the case of the strict 
fiscal conservative rule. In this case note that the nominal interest rate does not 
change. This is because we have held the supply of bonds fixed as well as assuming 
that domestic and foreign bonds a perfect substitutes (i.e. uncovered interest rate 
parity holds). Thus with a fixed supply of bonds and an infinitely elastic demand for 
bonds, the domestic price of bonds (i.e. the inverse of the nominal interest rate) 
cannot change. This implies through the interest parity condition that the nominal 
exchange rate jumps to its long run value of a 2% nominal appreciation instantly. 
The implication from the money demand function is that the nominal transaction 
variable (in this case nominal GDP) must fall by exactly the fall in the money 
supply. The other implication of this rapid adjustment of nominal asset prices is that 
with sticky wages, the fluctuations in prices are manifested in changes in real 
interest rates and real exchange rates rather than in nominal interest rates and 
nominal exchange rates. 

A final point to note is that there is a small long run depreciation of the real 
exchange rate in the case of the lIP rule because the earlier build of domestic 
government debt translates into a small build up of foreign debt which need to be 
serviced in the long run. This is achieved by having slightly higher exports relative 
to imports as compared to the baseline. Thus the in the long run there is a real 
depreciation relative to baseline. This effect is absent from the other two regimes 
that target debt stocks because the long run stock of government and foreign debt 
returns to baseline. 



284 

ii) Reduction in the Targeted Inflation rate of 1% 

The results for a change in policy that is a permanent reduction in the 
targeted rate of inflation of 1 % are shown next in Figures 4 though 6. The adjustment 
process is similar to that for the change in the price level target however several 
points stand out. Firstly, the real GOP and employment reductions are larger (when 
re-scaled to the initial period change in inflation) and remain below baseline for 
longer in the case of the inflation target. As expected, prices continue to fall by 1% 
per year which differs from the first simulation in which prices converged to a new 
lower level. In addition the changes in fiscal deficits, government debt and current 
account adjustment is more spread out for the inflation shock. 

The other major differences can be seen in the financial prices in Figure 6. 
The permanent fall in the targeted rate of inflation and therefore a fall in the expected 
rate of inflation. has the effect of reducing the nominal interest rate in 1996 
compared to the rise in nominal interest rates under the price level target. Indeed as 
we found above, the rule of strict fiscal conservatism causes nominal interest rates to 
adjust immediately to there new long run value which in this case is a faU of 1% 
immediately rather than returning exactly to baseline as for the price level shock. 

b) The Consequences for Fiscal policy of the Monetary and Fiscal 
Regimes 

This Section explores the impact of a fiscal contraction of 2 percent of 
baseline GOP that is unanticipated and permanent under a range of assumptions 
about fiscal and monetaJy regimes. In Figures 7 through 10 results for four regimes 
are presented. The lIP regime (labeled "rB rule" in the Figures) is assumed for fiscal 
policy under the monetaJy target, nominal income target and inflation target regimes. 
In addition these Figures contain the money target regime under both the lIP fiscal 
regime as well as the government debt targeting regime. In the case where the fiscal 
regime is the debt stock target, it is also assumed that the targeted stock of debt to 
GOP falls by 20% of GOP when the contraction in fiscal spending is announced. 

The difference between results in Figures 7 through 10 stand out more than 
in the earlier Figures. That is the monetary and fiscal regimes appear to be important 
for the impact of fiscal policy. The fiscal contraction is implemented when 
announced rather than phased in over time. A phasing in would be preferable in this 
model in order to smooth the adjustment costs in the process of resource 
reallocation .. A sharp fiscal shock is chosen to make the adjustment clear. 

Consider the standard MSG2 closure in which the lIP fiscal regime and 
money target rule operates. The cut in government spending reduces aggregate 
demand in the Australian economy. The expected increase in public saving (Figure 
8) reduces real interest rates and depreciates the real and nominal exchange rates. 
The movement in financial prices acts to stimulate private investment and net 
exports but this is insufficient in the short run to offset the direct negative effects of 
the spending cuts on GOP. The reduction in 10 year bond rates are smaller than the 
reduction for a comparable (defined in terms of GOP) cut in US fiscal deficits (see 
McKibbin and Bagnoli (1993» because Australia is small in global capital markets 
and the rise in government saving has negligible effects on world interest rates and 
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therefore only temporary effects on Australian real interest rates. Given the 
assumption of an open capital market, the real interest rate in Australia eventually 
returns to the world real interest rate. This also happens for a U.S. fiscal 
consolidation except that the world interest rate does not remain unchanged in the 
U.S. case. 

The fall in aggregate demand in Australia tends to reduce prices but the 
exchange rate appreciation tends to raise the price of imported intermediate inputs as 
well as imported final goods so that prices actually rise. 

Now consider the role of the monetary regimes in changing this basic 
adjustment story. As inflation rises through the exchange rate depreciation, the 
inflation target regime implies a monetary contraction. This worsens the loss in real 
GOP and employment because the fiscal contraction is accompanied by a monetary 
contraction. The movement in nominal interest rates in Figure 9 show that a policy 
of unchanged nominal interest rates is consistent with an inflation target. However in 
the other regimes which have less GOP loss and less loss in employment the nominal 
interest rate is allowed to fall by up to 120 basis point in the case of a nominal 
income target. Thus if the goal of the policy regime is in smoothing output as well as 
inflation fluctuations an appropriate policy response to the fiscal adjustment would 
be to lower nominal interest rates by between 70 and 120 basis points in 1996 and 
then gradually reverse this through 1997 onwards. This type of response is induced 
by a nominal income targeting regime but not by a pure inflation targeting regime. 

Figures 7 through 9 also give an indication of the role of the fiscal regimes. 
The money target can be compared under both the lIP rule and the bond target rule in 
these Figures. The initial output effects under both fiscal rules are similar although 
by 1998 the debt target rule becomes more expansionary. This is because the 
contraction in government spending begins to be offset by a tax cut as the ratio of 
debt to GOP levels out at the new desired level of 20% below baseline. Under the UP 
rule the level of debt to GOP continues to fall until it reaches approximately 40% of 
GOP below what otherwise would have been. This can be seen clearly in Figure 8. 

5. CONCLUSION 

This paper has presented the model solution technique and considered the 
interdependence of monetary and fiscal closure rules using a global simulation model 
although focussing in particular on the Australian economy. It is found that for a 
policy shift in either fiscal or monetary policy, the fiscal and monetary closure rule 
in place can have important implications for the outcomes of the policy shift. In the 
case of monetary policy, the real consequences of the monetary shock appear to be 
less sensitive than the financial market reactions. Indeed it is shown that with perfect 
international capital mobility and extreme fiscal conservatism, the short term 
nominal interest rate is determined independently of the price level target of the 
monetary authority but is dependent on the inflation target. 

The nature of the monetary closure rule in place during a substantial fiscal 
consolidation is shown to be important. Indeed the results suggest that a strict 
inflation target is likely to lead to excessive output losses relative to a rule that 
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targets nominal income when there is a significant fiscal consolidation in the 
Australian economy. 
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Figure 1: Consequences of a 1 percent Reduction in the Target Rate of 
Inflation 
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Figure 2: Consequences of a 1 percent Reduction in the Target Rate of 
Inflation 
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Figure 3: Consequences of a Permanent 2% of GDP Reduction in 
Government Spending on Goods and Services 
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Figure 4: Consequences of a Permanent 2% of GDP Reduction in 
Government Spending on Goods and Services 
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