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I n t r o d u c t i o n t o t h e s e r i e s 

This series consists of a number of hitherto unpublished studies, which are 
introduced by the editors in the belief that they represent fresh contributions to 
economic science. 

The term 'economic analysis' as used in the title of the series has been adopted 
because it covers both the activities of the theoretical economist and the research 
worker. 

Although the analytical methods used by the various contributors are not the 
same, they are nevertheless conditioned by the common origin of their studies, 
namely theoretical problems encountered in practical research. Since for this 
reason, business cycle research and national accounting, research work on behalf of 
economic policy, and problems of planning are the main sources of the subjects 
dealt with, they necessarily determine the manner of approach adopted by the 
authors. Their methods tend to be 'practical' in the sense of not being too far 
remote from application to actual economic conditions. In addition they are quanti-
tative. 

It is the hope of the editors that the publication of these studies will help to 
stimulate the exchange of scientific information and to reinforce international 
cooperation in the field of economics. 

The Editors 
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PREFACE 

This book arose out of research done by the authors in the period 

between 1983 and 1987 whilst at the National Institute of Economic and 

Social Research. A number of things combined to impart the basic thrust 

of the research; partly the developments in formulating and estimating 

Rational Expectations Models, and partly actual developments in the UK 

economy itself. On the latter point, the sharp downturn in output, even 

more rapid falls in employment, and the large overappreciation of 

sterling, all posed new demands on empirical model builders. Many 

existing empirical models simply failed to account for these rapid 

changes in the aggregate economy since they did not have sufficiently 

volatile properties. Thus the developments in the Rational Expectations 

literature seen highly relevant to these phenomena, especially those 

developments emphasising the real consequences of a combination of 

inertia in certain markets coupled with fast moving - forward looking -

markets elsewhere. In many respects much of the research summarised in 

this volume recounts the problems in embedding this type of dynamic 

behaviour in a large scale macro economic model and our, possibly 

imperfect, resolution of them. We should emphasise that in this 

endeavour, we have not implanted many of the key behavioural features 

of, say, the seminal Dornbusch model of exchange rate overshooting. Our 

research has attempted to build on much of the spirit of this approach, 

but also attempts to provide robust econometric models of dynamic 

behaviour, aimed at outperforming alternative backward looking models, 

as judged by statistical criteria. This leads us to emphasise inertia 

in the real exchange rate, as well as the likely presence of forward 
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looking expectation formation among foreign exchange operators. We also 

stress the potential for forward looking behaviourin goods markets, and 

factor demands. Apart from the econometric issues which this work has 

entailed (and which we survey in in the first half of the book), there 

are quite considerable problems in implementing forward looking 

behaviour in a large scale macroeconomic model, if the model is to be 

used in a regular way for forecasting and policy simulation. The 

developments undertaken in this part of our research are summarised in 

the second half of the book. This shows, we hope, that though the 

problems are computationally formidable, manageable solutions are 

distinctly possible, which shed some light on how the British economy 

has behaved over the last decade. 

In our research endeavours over the last few years, our debts to 

other researchers at the National Institute and elsewhere have been 

numerous. Among our collègues we would like to single out particularly 

Andrew Britton, Simon Wren-Lewis, Andreas Drobny, Keith Cuthbertson, and 

Simon Brooks for their help. For collègues outside the National 

Institute we would like to thank Andrew Harvey and Andrew Hughes-Hallett 

for comments on earlier drafts of parts of the manuscript. We also 

extend thanks to David Currie for general encouragement, and also in his 

role as supervisor of Stephen Hall's thesis, which was the basis for 

part of chapter 6. 

In preparing the manuscript for the publishers, Patricia Facey made 

valiant efforts with early drafts. Latterly, Gillian Clisham has dealt 

with an increasingly difficult schedule of revisions and amendments with 

great cheerfulness. To both we are extremely grateful. 
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Lastly, the research reported here was part of a program of 

econometric research financed by the Macromodelling Consortium of the 

Economic and Social Research Council. We would like to express our 

thanks for this support. 
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Chapter 1 

DYNAMIC MODELLING AND RATIONAL EXPECTATIONS 

1. Introduction 

The link between dynamic modelling and expectation formation has 

occupied much of the economics profession for well over a decade. The 

clearest example of the linkage between the two lies in the 'deep 

structural1 approach associated with the Rational Expectations 

Hypothesis (REH). In this case the behaviour of agents is often 

described as the optimal outcome of an explicit dynamic program subject 

to costly adjustment. Then the hypothesis of rationally formed 

expectations is embedded in this program. In principle, such a model 

separates lags arising from the economic environment, and lags due to 

expectation formation, hence avoiding the strictures of the 'Lucas 

critique'. This approach is in contrast to models where these dynamics 

are compounded, implying that model reduced form parameters will change 

as e.g. policy stance and, hence, expectation formation, change. Policy 

evaluation by simulation techniques could well be invalid in such 

models. 

These propositions are, of course, very familiar. What is 

surprising perhaps is the limited degree to which empirical models have 

attempted to implement this distinction, and the purpose of this chapter 

is to explore some of the consequences of the conjuncture of lags and 

expectations, and provide illustrations using models of both the labour 

market and the foreign exchange market. As we suggest in later 

sections, our reasoning is that these examples are ones where extremely 
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variable behaviour is often manifest. While this property of 

variability has been associated with exchange rates in the 

'overshooting* literature for some time (starting with the seminal 

article by Dornbusch ( 1 9 7 6 ) ) , there is also a semblance of similar jumps 

in employment. We consider some of these points briefly now. 

An analysis of employment implying such sharp changes is relatively 

straightforward (see Henry ( 1 9 7 9 ) and Nickell ( 1 9 8 * 0 ) . For the 

continuous case, a simple version of the firm
1
s optimising problem is 

that it seeks to maximise the discounted functional 

J e ~
r ( t)

 [p(t) R (L, t) - w(t) L(t) - c (L(t) + 6L(t))] dt ( 1 ) 

where R(.) is the firm's real revenue function (dependent upon 

employment (L)), ρ is output price, w is a given wage rate, and c(.) is 

an adjustment cost function with the term in 6(t) representing 

voluntary quitting. The Euler equation in this case is 

p(t)RL = w(t) + (r + 6) c» - (L(t) + 6L) c"(t) (2) 

The general solution for an equation of this kind, together with its 

associated transversality condition is given in section 2. It shows 

that the path of employment depends upon a future weighted stream of 

expected values of the forcing variables; prices and wages in this case. 

But if, for illustrative purposes, these forcing variables are held 

constant, a stationary problem ensues. 

The interesting situation is, however, the non-stationary case 



Ch. 1: Dynamic Modelling 3 

where forcing variables are not constant. A special case of this is 

where a single change occurs in the forcing variables. This may be 

interpreted as a once-for-all change in expected future variables 

at Τ let us say. When this happens the new equilibrium for the firm is 

e.g. L* , produced by a fall in expected future prices, and given by a 

new equilibrium trajectory. Assuming employment is initially at L*, the 

subsequent movement of L(t) will be a change in employment which occurs 

immediately, before the change in forcing variables, moving along that 

unstable path guaranteed to place L(t) on the new saddlepath at t = T. 

This is not an immediate jump to the new saddlepath however, as there 

are costs of adjusting labour. 

The dynamic analysis of the foreign exchange market has typically 

used a related analytical framework to that given already for the case 

of employment. We may devote a few moments to its salient features here 

however, because it will be used later in our account of the foreign 

exchange modelling reported in section MB, and because this next model 

has additional features which may also be related to labour market 

behaviour. 

This analysis is usually couched in complete model terms, and takes 

a general form for the first order matrix case (see Blanchard and Kahn 

(1980) and Buiter (1982)). 

X X. 
t+1 = A t 

t
P
t+1_ 

(3) 
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where (Χ, ρ) is the state vector, Ζ the vector of forcing variables. X 

and ρ can be vectors (not necessarily of the same order), or in the 

simplest case, scalars. A and Ύ are suitably conformable matrices of 

coefficients. In this representation, X^ is a 'predetermined' variable 

in Blanchard/Kahn terminology. That is, it is a function only of 

variables known at time t. ρ on the other hand, is a 'non-

predetermined' variable, and can depend upon variables in the 

information set at time t+1 ( Ω ^ ) . Compared with our earlier example, 

the present one differs in a number of respects. The model is linear, 

although this in turn may be viewed as a linearisation of a non-linear 

model around a static or growing equilibrium path (see Tinsley (1971). 

The order of the model is an apparent difference only. High order 

single equations may be represented as matrix first order cases fairly 

readily (section 4A below gives an example for the employment case). As 

we have said, the present example is usually applied to the complete 

model case. Non-predetermined variables can be interpreted as embodying 

forward-looking behaviour, usually in financial markets where agents 

have rational expectations. Predetermined variables, on the other hand, 

are interpreted as 'backward-looking' variables, and these are often 

labour market variables. 

Much attention has centred on the solution of models such as (3). 

For the non-predetermined variables, transversality conditions are 

invoked which, together with the requisite initial conditions for the 

predetermined variables, provide a unique solution. This solution has 

the form 

4 
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- C 
-i-1 

(C 
21 

Y, + C 
22 2 yj EZ 

t+i 
(4) 

= 0 

t>o 

• B. 
12

 J
2
 C
2 2

} C 
-1 
22 

where A = C J C, and is the matrix of stable eigenvalues, the 

matrix of unstable eigenvalues. C is the matrix of associated 

eigenvectors. In deriving (4) we have decomposed Ύ conformably into 

and Ύ^. [See Buiter (1982) for further details on these solutions.] 

Later in this chapter we will describe the estimation of a model of 

the foreign exchange market, using a first order model such as that in 

(3) above. Models of employment are also described where the underlying 

dynamic equation is akin to the solutions for non-predetermined 

variables given in (4). Before proceeding to the estimation results, we 

describe some extensions to the dynamic analysis described so far, which 

will be relevant to the employment models we use. After that, section 3 

discusses some of the alternative estimation methods we use in 

estimating exchange rate and employment models. Finally, section 4 

presents econometric results when using these methods. 

2. General analysis of dynamic models 

The general analysis is provided in Hansen and Sargent (1980) and for 

convenience, we will relate the analysis to employment decisions in what 

follows. Clearly a similar analysis could equally be applied to other 

dynamic models. 
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Assuming the typical firm minimises 

Σ R
T
 { | (L. - L * )

2
 - L;HL. - [ D ( B ) L ]

T
[ D ( B ) L ] } 

t 2 t t t t t t 
(5) 

where R is the discount factor, L is taken to be an η χ 1 vector of 

employment - disaggregated by industry, or occupation, Η and A are η χ η 

m j 
matrices and are positive definite, and D(B) = ED^BJ where Β is the lag 

operator and each matrix is η χ η. In this formulation we have costs 

arising from employment being away from equilibrium, L*, which is 

defined further below, and other direct costs of employment given by the 

quadratic term L^HL^. Finally, the terms in the matrix polynomial D(B) 

are general formulations including adjustment costs of, if necessary, 

more than second order. 

In essence the solution proceeds by using certainty equivalence, 

replacing the unknown + i (i £ 1) [on which the dynamic employment 

equation will be shown to depend] with E^L*+^ where this is the linear 

least square forecast of L* +i based on information available at t. The 

deterministic Euler equation for the above problem is 

[(H - A) + D (RB~V D(B) ] Lfc = AL* 
(6) 

To solve (6), note first that the roots of 

det (H - A) + D(RB )' D(B) 0 
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come in pairs; thus if z Q is a root so is RZQ'. The matrix polynomial 

on the LHS of (6) may then be factorised in the form C(Rz
 1

)
f
 C(z), 

m < 
where C(z) = Σ C .z

J
 . 

J J 

Using this factorisation, the Euler equation is 

which in terms of the familiar backward solution using the stable root, 

forward solution using the unstable root, is 

Hansen and Sargent show that, given the feedback part of this equation, 

a tractible numerical procedure exists for obtaining the feed-forward 

part. 

One important illustration of an higher order model is the case 

where the decision rule for employment is second order in both the 

backward and feed-forward parts. A number of models producing such an 

equation may be cited. Among the most used are 

(i) the assumption of at least second-order adjustment costs; 

(ii) the assumption of separate labour markets, each characterised by a 

first order dynamic model. The aggregate labour. market may then be 

shown to be a second order one (Nickell (1984)). We briefly describe 

these two cases next. 

C (RB~
1
)» C(B) L = AL* ( 7 ) 

m 

(C. R JB~ J r 1 L* (8) 
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(1) Higher order adjustment costs 

In this case we seek to minimise 

(9) 

The Euler equation for this problem is 

H(B) L = aL*, where 

H(B) = £cR
2
 Β"

2
 - (b + 2c (1 + R) ) RB~

1
 + (a + b (1 + R) 

+ c (1 + i*R + R
2
)) - (b + 2c (1 + R)) Β + c B 2J (10) 

This may be factorised as 

H(B) = (1 - λ Β - λ2Β
2
)(1 - λ1 RB

 1
 - λ 2 R

2
B

 2
) 

where the (1 = 1, 2) terms may be determined by equating 

coefficients, i.e. 

X2 - - c 

RX1 (X2R - T) - - (b + 2c (1 + R)) R 

(1 + λ
 2
R + X 2

2
R

2
) = [a + b (1 + R) + c (1 + *JR + R

2
)] 

The employment equation may then be written 

(1 - λ Β - λ B
2
)L = (1 - λ RB'

1
 - A 2R

2
B"

2
)aL* (11) 

(2) Disaggregated Labour Markets 

The second example may be interpreted as a vector extension to (1) in 

discrete time, and arises from minimising the discounted cost of 

adjusting multiple 'quasi-fixed* factors over an infinite time horizon. 

8 
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The optimal decision rule (again allowing for the operation of suitable 

transversality conditions) is 

L = J, L +,ΣΛ (R J J
1
 [1 - R J J [1 - J J L* 

"t-1 i=0
 Wl

 "1 1 • ~t+i 
(12) 

where L , is the static equilibrium for the vector of quasi fixed 
~ t 

factors L , and R is the discount factor. If this is specialised to the 
~t 

case where there are two distinct types of labour, (so L= (L^, L^)) 

each with different adjustment costs, we obtain 

-
 J

1 
L
1t-1 

+ .|0 (R J,)
1
 (1 - R J,) (1 - J,) L

? f i 
L
2t 

L
2t-1 

We may aggregate by simply adding the two types of labour, i.e. 

, where i = ( 1 , 1 ) 

Γ 1 L _ 2 t J 

t 4i
T
J(1 - J, Β) £ 0 (R J,)

1 [ 1 " S J| 
Thus L 

where Β is the lag operator. 

Or 

] [ 1 - J,] L
f t +i 

L
2 V i 

| 1 - J, B|Lfc - i
T
 adj. [ 1 - J., Β] Ε (R J ^

1
 [ 1 - R J,] [1 - J} ] 

LSt + l 

As the model is second order, the determinental expression on the LHS is 

2 χ 2, so that we may write it 
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|1 - J, B| L t= (1 - (J,, . J 2 2) B + ( J n J 2 2- J 1 2 J 2 1) B
2
) L t 

in other words, the LHS is a second order autoregressive equation in 

aggregate employment (
L

t)» [See Nickell ( 198
1
* ) for an extended 

discussion of this case.] 

3. Estimation methods 

A. Estimating forward-looking models 

For the sake of illustration we take the case of employment in the 

discussion throughout this section. Extensions of similar analysis to 

other models, such as joint factor demands or dynamic portfolio models 

may readily be made, though we will not make those extensions here. 

Applications to other factor demands, wage formation and the demand for 

money, are presented in Chapter The sort of dynamic equation we have 

been considering in earlier sections can be written 

L
t «

 λ
1

 L
t-1

 + λ
2
 L
t-2

 + a E
t
 L
t +i

 + E
t (13) 

In this equation, Efc is the conditional expectations operator using 

information up to period t, and the h(i) are forward-weighting functions 

depending upon the roots (i = 1 , 2). Although (13) is a general 

second order form, obviously including as special cases the first order 

models such as those deployed for exchange rate models, it is limited to 

the finite horizon case, which is an important difference to the models 

previously described. We will invariably use this assumption of a 
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finite planning horizon when estimating dynamic equations in subsequent 

sections. 

The procedures we will be using in estimating equations of this 

sort are heavily dependent upon the Instrumental Variables (IV) 

estimators developed in Hansen and Sargent (1982). There are important 

differences of detail however, in that they use the explicit form for 

the optimal decision rule for the first-order infinite plan, whereas 

some of our examples are second-order and are for finite horizons. 

Moreover they use a version of the substitution method in identifying 

all model parameters, which, as will be clear below, we do not. In this 

sense our procedures are closer to the Errors in Variables (EV) 

techniques extensively discussed by Wickens (1982) and (1986). Below, 

we provide an outline of the general methods of estimating RE models, 

and then give details on the distinctive features of the methods used in 

obtaining our own empirical results. Apart from estimation of the 

optimal decision rule in the form given by (13), we also outline methods 

for estimating the stochastic form of the Euler equation, and provide 

illustrations using EV methods. 

(i) Optimal decision rule 

To establish the alternative estimation possibilities for the optimal 

decision rule, we first recall the Hansen and Sargent (1982) method for 

estimation of a first-order infinite time model. Again using an 

employment equation example, the relevant equation is 

XL, 
't-1 (14) 
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where is the full information set, δ is a parameter given by 

adjustment costs, Q is a forcing variable known by the econometrician, 

and afc is a technology shock unknown to the econometrician. Estimation 

by Hansen and Sargents
1
 IV methods, in general, means estimating an 

equation based on the reduced information set Λ̂ _. Thus 

an invertible MA process, and that the conditional expectation of Q 

given h is the least squares projection on the Xs, i.e. 

E t (Q t|A t) - Θ(Β) X t 

or Q t = Θ(Β) X t + u t 

where u and X are independent. Using these results, it is possible to 

write the optimal decision rule as a restricted equation for the 

dependent variable as a function of current and lagged X's, i.e. 

L t - XLt_} - (λ/δ) £ U R )
J
 Ε Q t + j| A t . S t . a* 

where S t = λ/δ £UR)
j
[E Q t + J| A t - Ε Q t + J| ß t L and 

a* = λ/δ 5UR)
J
 Ε a. . Ι Ω. 

t j ^ J ν 

The reduced information set Λ is dependent upon a set of current and 

lagged variables X = (X^, X t - 1» . . . ) t where X and a^ are independent. 

Further, we assume that X^ can be represented as 

Xt+1 -
 γ1(β) xt + et+i · V W · 0 (15) 
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XL. 
't-1 

+
 Π(Β) X t • S t • a* 

where 

-(λ/δ) [θ (Β) - XRB 

W R B ~
1 

-1 
9(AR)Y(ÀR) 

-1 
Υ(Β)] (16) 

Π(Β) 

and 

Ύ ( Β) 1 - Υ (Β). 

Equations (15) and (16) now constitute the model, and embody: 

(a) the feedback/feedforward restrictions of the optimal rule, and 

(b) they incorporate information on the autocovariance function of the 

X variables. 

Estimation of the model by non-linear methods may be based on the 

independence (orthogonality) conditions: 

and of the independence of X^ with both ufc and ef c. 

In the extension to this model which we are interested in, the 

steady-state equilibrium for the dependent variable is L*, which, for 

convenience, we are taking as the linear function 

where Zfc is a set of forcing variables and Γ a set of constant 

parameters. Then implementation of the Hansen-Sargent method could 

proceed by identifying an information set, say V, where 

E U S + a * ) t , X ) = 0 J ^ 0 

L*(t) = Γ' Ζ 

J(B) V t + ht 
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where h is independent of V. Again the full model would then be the 

explicit dynamic equation for employment together with the time series 

representation for the instrument set V^. 

As stressed earlier, the second order case does not readily permit 

explicit analytical solutions for the optimal decision rule, so that 

jointly embodying the feedback/forward restrictions and the 

autocovariance properties of the forcing variables becomes problematic. 

We therefore adopt simplified procedures in estimating forward versions 

of the employment equation. The first method we use is described now 

and this will be described as an Instrumental Variable method. (See 4 

ii below). This uses the finite form of the optimal decision rule (13), 

and applies the feedback/feedforward restrictions by numerical methods. 

Then the presence of forward expected forcing variables as regressor 

variables is handled by instrumental variables, treating the equation as 

an errors-in-variables case by replacing
 E

t

L
* + I

 Dv L
* + i

 in t ne 

employment equation. Since according to the REH 

't + i + η t + i 

the optimal decision rule is 

= λ Λ L, 1
u
t-1 

+ λ 
Ν 

+ aZ h(i) Γ'Ζ. 
t+i 

+ ßt + ε g
t
 e

t (17) 
i 

where gfc is a weighted sum of led values of nfc. Consequently this 

equation involves MA(N) error processes. Hayashi and Sims (1983) 

discuss forward filters which improve the efficiency of estimators of 
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this equation, though these are not applied here. The other feature of 

the model is the dépendance which exists between its feedback and 

feedforward terms. 

In our examples this non-linearity of the employment equation is 

dealt with by using iterative or non-linear estimation methods, and 

examples of each are given in Section 4. The iterative procedure is 

described in Hall (1984), and uses the Euler and closed form solution. 

If this is applied to the model given by equations (9)-(11) and equation 

(13) for example, the steps are: 

(a) From initial estimated values of the backward parameters using (if 

necessary) arbitrary values for the forward terms, the parameters of the 

Euler equation (10) are obtained by factorising. 

(b) For given values of the forcing variables (t = 1 ... T), and 

given L Q and L^, solve the deterministic from the Euler equation (10) 

over t = 1, T, using numerical procedures. The latter is necessary 

since t + 1 appears in the Euler equation. Call this solution 

(c) Perturb Z^ in the i
t n
 period (i = 1 ... k) giving and 

(2) 
recalculate L , giving L . Since from the closed form equation (13), 

* 
assuming L = 

t+i 

= Ύλ 
i 

(2) 

(2) 
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where is the weight of the i forward value of Z. Then other 

values of the forward weights are constructed in similar fashion, and 

the closed form of the employment equation is re-estimated using this 

computed forward convolution of the Ζ variables. The revised values for 

the parameters on the lagged dependent values are calculated, and the 

(2) next set of weights are recomputed using (b) and (c). The 

procedure is continued until convergence. An illustration of a second-

order employment model estimated using this iterative IV method is shown 

in Table 1 below (Section H). 

Alternatively a non-linear estimate of the employment equation can 

be made using instrumental variables, which for the finite case can be 

done using the principle of undetermined coefficients. (See Table 1' 

Section 4) 

The second method we report for which we give results, uses a 

vector autoregression model (VAR) for Z^, and in many ways is closer to 

the procedure used by Hansen and Sargent (see below on the point made 

about FIML). The VAR is, say, 

4 
X. = Σ A.X. . + h. 
t ι t-i t 

(18) 

where Xfc = [Z^, G^]. This set includes the forcing variables, but as 

the results in Table 2 below indicate, in addition, it also incorporates 

proxy measures of fiscal policy (BD) and monetary policy (CC), and 

variables affecting the supply of labour, real benefits (RBEN) and a 
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proxy for union power (UM). The estimates we provide are then based on 

a two-step estimation procedure. Predictions for the forcing variables 

over the planning period are determined as i
t h
 step forecasts 

conditional upon information available at (t-1) using the VAR model 

above. These predictions are treated as data, and enter the employment 

equation, which is then estimated by single equation methods. This 

alternative method is illustrated in Table 2 in Section 4 below which 

gives details of the VAR estimates. The results when this is used in 

estimating a dynamic employment model, are given in Table 3. 

Pagan (1984) shows that, contrary to the common assumption, the 

two-step estimation is asymptotically efficient as compared with the 

joint estimator of the complete model. However, the Least Squares 

estimate of the variance of regression coefficients is usually 

inconsistent except under the null hypothesis that the parameters are 

zero (the common case in other words). Compared with the IV estimator 

described earlier, the present one makes similar informational 

assumptions, albeit on a different instrument set. 

We end by noting that for the models we have used, two possible 

Full Information applications might be made. These are the application 

of the systems version of Wickens (1982) EV approach, and the full 

information version of the joint optimal decision rule and the VAR 

model. 

The former requires that
 E

t

z

t +i be replaced by actual Z t + i, but in 
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addition a (structural) equation for each Z^ +i (i = 0 ... N) be 

estimated simultaneously with the optimal decision rule. 

Although this does not directly substitute in the restricted 

reduced form predictions, Wickens argues that the resulting estimated 

model does embody rationality. This is because FIML replaces endogenous 

regressors by their restricted reduced form predictions in estimating 

the model. On convergence, the two procedures coincide. 

Note that the auxiliary equations for the (now jointly determined) 

Zs can include endogenous regressors, but not forward values. Wickens* 

example uses the reduced form for the equation for Z. Using reduced 

form equations for the Ζ variables, where the instrument set is 

predetermined, makes this method equivalent to our IV method. For this 

reason we have not pursued this. 

Similarly, a system estimator for the optimal decision rule 

together with the VAR model involves substituting for
 E
* t +k using the (k 

+ 1) period prediction of the VAR model, i.e. 

k + 1 
EX

 =
 A X 

t+k t-1 

(assuming the VAR only includes the forcing variables, otherwise a 

selection vector is required). 

The employment equation is then 

L
t

 =
 W l

 + A
2

L
t-2

 + a
f
 h ( k)

 *
k +1 e

'
X
t-1 

k 

(19) 

where e
1
 is a selection vector, and this employment equation may be 
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Nickeil (1984) reports one such FIML estimate, based on a finite 

horizon. The parameter estimates are almost identical to the two-stage 

estimates he reports, and so there seems little to be gained from 

pursuing this system approach in our case. 

(ii) Stochastic Euler equation 

Instrumental variable procedures are much less demanding in 

computational terms. Apart from the use of instrumental variables in 

estimating the decision rule noted earlier, they may also be used to 

estimate the stochastic Euler equation (see Kennan (1979) and Wickens 

(1986)). The essence of the procedure can be seen in the case of a 

single lead, single exogenous variable equation, 

Q
t •

 α E
t

 Q
t +1

 + 3 X
t
 + e

t 
(21) 

Then since by the REH, 

Q
t +1

 = Et Q
t +1

 + V i 

where u t +1 is the innovation in Q t +1 » substituting for
 E

t Q t +1

 in
 09) 

gives 

Q
t
 = a Q

t +i
 + 3 X

t
 + e

t -
 a u

t +i 
(22) 

which exhibits both a dependence between a regressor and the error term, 

and moving average error (MA(1)). The former is dealt with by using an 

IV estimator, and the latter, if ignored, produces inefficient 

jointly estimated with 

X<_ = ΣΑ. X v . + e. 
t ι t-i t 

(20) 
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estimators. Kennan (1979) describes a two-step estimation procedure 

which overcomes this, but this is not confirmed by our results (see 

section 4A(ii)). 

M. Empirical results 

We now move on to the discussion of empirical examples of the models 

described in earlier sections. These are confined to illustrations of 

labour market (employment) and exchange rate behaviour, and are 

described in sections A and B. 

A. Employment models 

(i) Some simplifying assumptions 

The emphasis here will be on employment (numbers employed), so an 

explicit treatment of hours worked, or utilisation of labour will not 

figure in the present exercise. [For a joint model of employment and 

hours see Hall, Henry, Payne and Wren-Lewis (1985).] Also, we will 

invariably invoke the simplifying assumption that adjustment costs on 

labour may be approximated by a quadratic cost function, although there 

are well known deficiencies in this assumption. Moreover, we will 

assume this function is defined over changes in employment AL, rather 

than the more theoretically valid hires and separations, treated as 

distinct elements, each affecting employment. Finally, and perhaps most 

importantly, we will effectively be treating the employment decision in 

isolation from other factor demands, simply to keep the present analysis 

tractable. 

There has been increasing attention focussed on the necessity of 

treating the labour market as a whole in a theoretically coherent way. 
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This is largely in reaction to the ad-hoc specifications adopted for 

wage equations in the Phillips curve literature. Most often, the 

recommendation amounts to joint models of employment and real wage 

determination. The approach adopted here is compatible with these 

views, although here we concentrate only upon labour demand equations. 

Estimating such single equations, of course, implies potential problems 

of consistency in estimation, where stochastic regressors - such as the 

real wage or real demand - appear. These problems are fairly easily 

dealt with in a single equation model by use of appropriate, consistent, 

estimation methods. 

We specialize the general model to the second-order case which is 

the case described in detail in section 2 above. Also there is 

considerable empirical evidence for the usefulness of this case (see, 

for example, Nickell (1984) and Henry and Wren-Lewis (1984).) 

Before proceeding to the discussion of empirical results, we may 

note that the main contending explanations of employment behaviour 

depend upon assumptions made about the firm
1
s environment. As we derive 

the optimal employment rule for a quadratic cost function, these 

assumptions are implicit, though a largely equivalent derivation can be 

based on optimising a net revenue function as in Nickell (1984). 

Essentially there are two issues here: the arguments of the desired 

level of employment in the long run (L*), and its functional form. On 

this later question we adopt an extreme simplification and assume linear 

forms throughout. This is equivalent to assuming that the underlying 

parameters are not identified, which, as they are identified only for 

the most basic form of technology in dynamic models of the sort we are 
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interested in, seems justified. Turning to the question of the 

determinants of L*, we may list the alternatives we pursue as follows. 

(a) Price-taking firms: 

In this case, with the (K,L,M) production function, the arguments of L* 

are the real wage, real material prices and the capital stock which we 

will assume is fixed, so we abstract from decisions about investment. 

In this model a time trend might enter as a proxy for exogenous 

technical progress. 

(b) Imperfectly competitive firms: 

Apart from the real price terms as in case (a), the level of real demand 

for goods is now an argument in L*. (See Layard and Nickell (1985), 

(1986).) Many empirical models of employment use the production 

function to substitute out the capital stock in terms of output in the 

optimal employment rule. This results in an employment equation 

dependent upon real prices and real output and, if output is treated as 

endogenous, and instrumented by variables which affect real demand, then 

this produces a model empirically indistinguishable from the former. 

(c) The demand constrained firm: 

In models of this sort, where the firm is constrained by lack of 

effective demand in the goods market, employment depends upon real 

output (assuming no Stockbuilding, so that sales and output are 

identical) and relative prices. A synthetic model which nests this 

alternative has employment depending upon real prices and output. The 

version depending upon relative prices may then be derived as a 

restriction on the coefficients of the real price terms. 
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The next section will discuss how forward-looking versions of the 

alternative equations obtained under (a) - (c) may be estimated, 

incorporating backward-forward restrictions. 

(ii) Employment models with forward expectations 

The objective in this section is to provide estimates of models which 

are based on the elements of theory described in the previous sections, 

with explicit forward expectations for forcing variables: real wages 

(w/p), real material prices (Pm) and real output (Q). Each model is 

estimated using non-linear methods, and details are provided as we 

proceed. For purposes of estimation, a finite planning horizon was 

imposed of five quarters, it being assumed that this was a reasonable 

horizon in practice and given that the weighting function on forward 

terms implied by the autoregressive parameter estimates appeared to 

decay relatively quickly. 

Optimal decision rule: single equation estimates 

Because it is the most general case we use the general non-competitive 

model, with exogenous technical progress and/or capital accumulation 

represented by a time trend. 

The equation we estimate may be written 

Lt • λ 0 + A
1

 L
t-1

 + X
2
 L
t-2

 + a

3 Λ + % Pmt + a
5

 Qt + V + Et 

where w
e
 is the weighted forward convolution of the real wage (over t=0, 

e e 
..4), and Pm and Q and defined similarly. 

Table 1 shows the results of estimating the model using iterative 

instrumental variable estimation on a successively simplified version of 

the model. The version dropping the expected real materials price 

(column (2)) is preferred among this set. The materials price is not 
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(1) (2) (3) 

0.102 -0.219 -0.196 
U (0.249) (0.597) (0.519) 

\ 1.327 1.370 1 .459 
(11.594) (12.219) (13.41) 

-0.417 -0.441 -0.495 
λ
2 (3.646) (3.860) (4.302) 

-0.0336 -0.03 
"3 (2.609) (2.381) 

0.009 
a
H (1.695) 

0.076 0.0877 0.0532 
α
5 (3.037) (3.603) (2.643) 

α
6 -0.0003 -0.0003 -0.0003 
Ό (2.769) (2.985) (2.916) 

se(10
2
) 0.349 0.351 0.362 

DW 2.144 2.171 2.21 
BP(16) 16.257 15.06 15.697 
ARCH 0.353 0.028 0.069 
CHOW 4.064 1 .074 1.815 
X (20) 40.22 10.857 18.726 

BP(1^) is the Box-Pierce statistic for a random correlogram distributed 
as χ with 16 degrees-of freedom. 
LM(4) is Lagrange multiplier statistic for fourth-order residual 
autocorrelation. 
ARCH is Engles

f
s test for autocorrelated squared residuals. 

CiJOW is the Chow test for parameter stability distributed as F. 
χ (20) is one-step forecast test distributed as χ with 20 degrees of 
freedom. 
Figures in parenthesis are t statistics. 
All equations estimated by instrumental variables, the instruments being 
the aggregate replacement ratio, current and lagged; working population, 
current and lagged; real government expenditure, current and lagged; 
world raw material priced relative to world manufacturing prices, 
current and lagged; the average personal, indirect and employers* tax 

Table 1. Employment equations with forward expected forcing variables: 

iterative estimates using instrumental variables 

Sample 1964Q2-1983Q4 
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λ
1
 λ

2 α
3 

α
4 α

5 
α
6 

se(10~
2
) DW 

1.359 -0.426 
(12.331) (3.824) 

-0.005 
(1.936) 

-0.287 
(0.787) 

0.014 
(2.82) 

-0.327Ο0""
3
) 

(3.32) 
0.350 2.144 

Optimal decision rule: two-step estimates 

The final example we use for the optimal decision rule is a two-step 

estimate, using a VAR model for real demand and the real wage. Unlike 

the VAR used in the Hansen-Sargent model, which uses lagged values of a 

set of forcing variables, our example introduces other variables into 

well determined, and there is considerable improvement in apparent 

paramater stability and one step forecast performance in moving from (1) 

to (2). Although these statistics do not measure absolute performance, 

in this case they are quite revealing. The model in column (1) for 

example has substantial forecast errors over the first two years of the 

recession, actually seriously underpredicting employment by 100-200 

thousand per quarter. The model in column (2) makes only one 

significant error, in the second quarter of 1979. 

Re-estimating the employment equation using non-linear instrumental 

variables, applying the method of undetermined coefficients produced 

very similar results to those listed in table 1. The two non-linear 

methods seem therefore to produce similar numerical results to a 

reasonably high degree of accuracy. (See Hall, Henry, Payne and Wren-

Lewis (1986) for a review of this latter technique.) For example, the 

non-linear instrumental variable estimate of the example shown in column 

(2) of table 1 was as follows when estimated over the same sample 

period. 

Table 1·. Non-Linear Estimate of Column 2 Table 1 
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Table 2. VAR Model for output and the real wage 
(variables in logs) (* signifies t>1, ** signifies t>2) 

Q BD WP ce BEN UM 

(i)Dependent variable Q 
Lag 
1 0.549** -1. 238* 0, .365** -0.029 

2 -0.054 2. 096* -ο , .386* 0 . 3 3 7 * * 

3 -0.081 -1 . 986* 0. .320* -0 . 3 1 0 * 

4 0.154 0. 268 -0. .096 0 . 1 3 7 * 

se(10"
1
) = 0.14; DW = 2 . 1 3 

(ii)Dependent variable 
Lag 
1 -0.002 

BD 

1 . 77** -0, .042* -0.006 

2 -0.018 -1 . -0, .08** 0.019 

3 0.039* 0. 71** -0. .054* -0.004 

4 0.019 -0. 222* 0, .005 -0.002 

se(10 ) = 0.027; DW = 1.896 

(iii)Dependent variable WP 
Lag 
1 -0, .196* -0. .307 0.66** -0.389** -0. .057* 0, .044* 

2 -0, .329** -0. ,266 -0.284* 0.139 0. .154** -0. ,023 

3 -0, .310* 1 . .799* 0.114 0.06 -0. .012 0. .051 

4 -0, .332* -1 . ,146* 0.052 -0.120* 0, .092* -0. ,013 

se(10~
1
) = 0.12; DW = 2.02 

(iv)Dependent variable CC 
Lag 
1 -0.785** 2.19* -0.077 1.069** 

2 0.239 -1.156 0.217 -0.579** 

3 0.036 -1.327 0.196 0.745** 

4 0.086 0.439 -0.205* -0.349** 

se (10 ) = 0.202; DW = 2.11 
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the model, with a 'semi-structural
1
 interpretation. Thus, as well as 

lagged output and the real wage, we include a measure of external 

competitiveness (CC), the cyclically adjusted budget deficit (BD), the 

level of unemployment benefit (ÜBEN) and a measure of union power (UM). 

The first two serve as indicators of the stance of monetary and fiscal 

policy respectively, and the latter two are exogenous influences upon 

the real wage. Each of these variables has figured in the extensive 

debate on the causes of UK employment, and for this reason we include 

them in our examples here. (For articles concerned in this debate, see 

HM Treasury (1985), Henry and Wren-Lewis (1984) and Nickell and Layard 

(1985).) 

The VAR model for output, the fiscal deficit, the real wage and 

competitiveness is shown in table 2. (RBEN and UM are assumed to be 

generated by AR(4) models.) Table 3 then gives the results of 

estimating the employment equation with expected values of the forcing 

variables given by η step predictions from the VAR model (n = 0, 

4). As with previous illustrations, there are well established 

dynamics, and evidence of effects from real demand and the real wage 

which accord with a-priori views. These latter are not significant at 

the 5 per cent level, though again the relative sizes of the two 

influences are similar to those found in the previous examples. 
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Table 3. Employment Equation: 2-step non-linear estimate using VAR 

predictions Sample 1964Q4-1983Q4 

λ
1 

λ
2 α

3 
α
4

 α
5 

α
6 

se(10~
2
) DW 

1 .526 

(14.303) 

-0.581 

(5.451) 

-0.014 

(1.799) 

0.096 0.014 

(0.296)(1.799) 

-Ο.209(1θ"
3
) 

(1.92) 

0.376 2.31 

Stochastic Euler Equation 

The final results are estimates of the stochastic Euler equation using 

the full set of forcing variables. It is estimated using the two-step 

procedure described in Kennan (1979). To estimate the model in this way 

we first estimate a version of the closed form of the model, 

where the forward convolution of future forcing variables is assumed to 

be representable by a vector of (current and lagged) exogenous variables 

(Xf c). Providing E(X t> Mfc) = 0, the estimates of λ. (i = 1, 2) are 

consistent. Then, using these estimates, the restricted form of the 

Euler equation is estimated in the form 

Since the current values of the forcing variables are endogenous, the 

model is estimated by IV. Y is the restricted sum of lagged and future 

employment levels, weighted by the first stage estimates for λ,̂  a n (j \^ 

Results are given in Table 4. 

L
t • W l

 + A
2

L
t - 2

 + B
'
X
t

 +
 "t ( 2 3 ) 

\ ·
 Ύ
0
 + Vt + Vat + V t + V + vt ( 2 l t ) 
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Table 4. Employment: Stochastic Euler Equation 

SAMPLE 196404-198304 (2-step estimates) 

Equation 
(26) L t λ

1 
λ
2 

se(10"
2
) DW 

1 .52 
(18.464) 

-0.567 
(6.475) 

0.274 2.167 

(27) Y t 
Ύ
ο 

Ύ
1 

Ύ Ύ 
2
 Τ

3 
Ύ
4 

se(10~
1
) DW 

27. 
(9. 

,42 -0.773 
,60) (5.901) 

0.256 1. 
(4.237) (4 

199 
.438) 

-0.399(10' 
(3.546) 

~
2
) 0.464 0.705 

Certain aspects of these results are interesting, though others are 

less attractive. On the positive side, it is evident that similar lag 

structures are identified in this version as in our earlier examples. 

Also the estimates on the forcing variables are of the correct sign and 

are well determined. On the negative side the equation is subject to 

powerful serial correlation. The review of this procedure noted the 

presence of a non-invertible MA process in this model, though in our 

case inspection of the residual correlogram strongly confirms an 

autoregressive error process. The problem then appears not only to be 

one of inefficient estimates, but possible misspecification also. Given 

these difficulties, these results are presented as initial ones of some 

interest, though overall our illustrations suggest that more plausible 

estimates of the rational model are obtained using the optimal decision 

rule. 
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Conclusions on Employment equations 

In this section we have estimated employment models with an explicit 

separation of expectations formation and lagged adjustment. Given some 

simplifying assumptions, alternative methods may be used to estimate 

this class of model, and these have been illustrated using aggregate 

data. Two conclusions emerge from this empirical work. Firstly, that 

plausible models of employment behaviour can be based on explicit 

forward-looking behaviour and, for the cases we have considered, these 

appear to perform favourably. Secondly, our results attribute an 

important statistical role to both real wage and real demand effects in 

the explanation of employment. This result appears to hold regardless 

of the procedures we have used in estimating the model. 

B. Forward-looking models of the exchange rate 

(i) Introduction and motivation 

We will not devote much attention to the theoretical underpinnings of 

exchange rate models. The relevant literature is enormous. Instead, we 

provide a simple theoretical basis for the class of models we estimate 

subsequently. As will be evident, there is a fairly close 

correspondence between this analysis and some of that used for the case 

of employment in the previous section. 

We begin from a simple cost function, which we suppose represents 

government aspirations (defining Ε to be the log of the exchange rate) 

C = I 1 (25) t=0 2 



Ch. 1 : Dynamic Modelling 31 

where Ε* is the exchange rate which the market would set in the absence 

of government intervention, or any form of adjustment costs. We further 

suppose an (inverse) intervention function 

E
t • 8 ( V 

represents government intervention, either through official financing 

flows on the foreign exchange market or through direct intervention in 

the markets. 

If we minimise this expression with respect to I over a finite time 

horizon, we get the following first-order conditions 

a g
f
(g(I t) - E*) + d g

,
(g(I t) - g^t--,)) -

 d
 e'(g(I t + 1) - g d t) ) = 0 

t = 0, ..., Τ - 1 (26) 

with a special form of this equation for T. 

Dividing through by g
f
, equation (26) will yield 

Ε - a E* • d (E + E. + 1) (27) 
t
 ÏÏ2d

 r
 a+2d

 t _1 t 1 

To make this model operational, we need to specify the determinants of 

E*. We postulate 

Log(E*t) = «(r Dt - r F t) * B(r D t., - r^.,) + •logiE,..,) ( 2 8) 

where EJ is the exchange rate which the market would set in the absence 
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of any government intervention or any form of adjustment costs. In (28) 

if Β = 0, α > 0, and φ = 1, then the equation is simply the open 

arbitrage equation. If -Β = α > 0 then it is a pure difference term in 

the real interest rate differential and it suggests an asset stock model 

in which assets fully adjust to a change in interest rates within the 

time period. Then substituting (28) into (27) gives 

E t = a [«<r Dt - r p t) • Bir^., - r^.,) • φ Ε ^ ] 
a+2d 

So Efc = a [a(rD(. - r F t) . B(r D t_ 1 - r ^ , ) ] 
a+2d 

+ φ(β+α) E. + _ d _ E. (29) 
a+2d

 Z 1
 a+2d 

Equation (29) offers an interesting general equation from which to begin 

estimation. If Β = 0, φ = 1, and d = 0, the equation reduces to the 

open arbitrage equation but if any of these restrictions are violated 

the simple open arbitrage model is rejected in preference for a more 

complex one. The coefficients on E f c +1 and E ^ should both be greater 

than or equal to zero and they should sum to close to unity. (If φ = 

1, then they sum to exactly unity.) The next section details how this 

equation may be estimated, and describes some results of so doing. 

(ii) Estimation and results 

The estimation will be carried out over the period 197303 to 198406 
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using monthly data. The exchange rate equation is estimated using the 

Wickens (1982) Errors in Variable technique described in section 3. To 

complete this an equation will also be specified for the interest rate 

differential so as to allow for the possible endogeneity of interest 

rates. Also equation (29) is specified in real terms, that is as a real 

exchange rate dependent upon real interest differentials. 

The Wickens technique allows us to use actual lead data as a 

measure of expected future variables. The outturns are then taken to be 

an estimate of expectations, where the data is subject to a white noise 

measurement error. The model is estimated by a systems estimation 

technique (either Three Stage Least Squares (3SLS) or Full Information 

Maximum likelihood (FIML) where an equation is specified for each of the 

expectations terms. These equations will generally be an unrestricted 

reduced form of the model. Specifying these reduced form equations for 

expectations corrects for the bias produced by the measurement error and 

the resulting estimates may be shown to be consistent. As the 

expectations equations do not exploit the structure of the model this 

technique will not generally be fully efficient. 

Before examining the system estimations a useful point of departure 

is provided by the results of estimating the model by OLS. These 

results are obviously inconsistent but we introduce them as a useful 

guide to the effect of the systems estimation. 
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OLS estimates (sample 197303-198406, monthly data) 

Ε = - 0.016 + 0.52 Ε + 0.48 Ε - 0.003 (rn. - r_.) 
Ζ
 (0.5) (18.0)

 Ζ 1
 (16.2)

 Ζ 1
 (4.1)

 ΌΖ
 *

Ζ 

+ 0.003 (r - r ) (30) 
(3.6)

 Dt 1 Ft 1 

le
2
 « 0.014 DW = 2.6 SEE = 0.010 R

2
 = 0.994 

This is a well-fitting equation but it violates many of the main 

conditions of (29). For example, if φ = 1 then as (a+b) > b (for a, b 

> 0), the coefficient on E t +1 must be greater than the coefficient on 

E f c_ 1. This is not true of equation (30). Also this parameter on the 

current interest rate term is significant but carries the wrong sign. 

This is a common finding in exchange rate equations (see Hall (1987)), 

so the OLS estimates seem to reject the general theory used in deriving 

this model. 

Happily this need not be the end of the story. There are at least 

two main problems with the OLS results; the first, highlighted by 

Haache and Townend (1981) and Hall (1983), is that interest rates are 

endogenous and so are subject to simultaneous equation bias. The second 

problem is that the expected exchange rate term cannot validly be 

modelled simply by using the actual future exchange rate. In order to 

cope with both these problems a three equation model has been estimated 

using both 3SLS and then FIML where both the forward exchange rate and 

the interest rate differential are specified as endogenous in addition 

to the exchange rate. The expected exchange rate equation will not be 

reported since, within the Wickens estimation framework, this equation 

has no structural significance. 

31 
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For our purpose the interest rate equation is not the prime concern 

so a specific conceptual model is not developed for it. Instead a 

fairly simple specification will be used which makes interest rates a 

function of the endogenous exchange rate, two lagged dependent variables 

and two terms in the annual rate of domestic inflation (ΔΡ^). The 

lagged dependent variables may be thought of as correcting a non-white 

noise error process induced by missing explanatory variables. On this 

interpretation, part of the equation is a simple time series model of 

interest rate movements. If we view the exchange rate term as a 

government reaction term, i.e. the famous 'leaning into the wind
1 

policy, then we would expect a negative coefficient. The sign of this 

effect becomes ambiguous, however, if we interpret the term as a market 

response to the overall expected return of assets. 

The results for the unrestricted model are reported in table 5; 

the picture presented for the exchange rate equation is now radically 

different. In the 3SLS estimates the term on the future exchange rate 

is now much larger than the lagged exchange rate, as equation (29) would 

suggest. The two parameters still sum closely to unity, and the current 

real interest rate terms are now positive but not significant. The real 

interest rate equation is fairly well determined with correctly signed 

parameters. The FIML estimates are perhaps even more satisfactory than 

the 3SLS estimates. The expected exchange rate term has an even larger 

parameter, while the interest rates are now both correctly signed and 

significant. 
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Table 6 shows the effect of imposing the restriction that the 

coefficients on the expected future and the lagged exchange rate terms 

sum to unity. 

Table 5. The unrestricted exchange rate and interest rate equation 

SAMPLE 197303-198406, monthly 

Independent Dependent Independent Dependent 

variable variable Efc variable variable ( r
D -

 r
l 

3SLS FIML 3SLS FIML 

Constant -0.04 
(1,2) 

-0.05 
(1.1) 

Constant 0.34 
(1.2) 

0.48 
(1.1) 

Et-! 0.35 
(5.7) 

0.22 
(7.2) 

( Et- Et-i } -21.8 
(1.7) 

-1.8 
(0.21) 

E
t +1 

0.65 
(10.2) 

0.79 
(26.8) 

-51.2 
(5.0) 

-56.2 
(4 .3) 

( P
D - V t 0.0005 

(0 .3) 

0.0024 
(2.1) 

APt-1 48.0 
(4.6) 

51.6 
(3.8) 

( r
D - Vt-1 -0.0009 

' (0.6) 
-0.0031 
(2.7) 

( r
D -

 r
F>t-1 

( r
D - Vt-2 

0.96 
(13.2) 

0.006 
(0.08) 

0.96 
(10.8) 

-0.03 
(0.4) 

Ze
2
 = 0.019 le

2
 = 0.0286 Ze

2
 = 170.1 Ze

2
 = 85.6 

DW = 2.3 DW = 1.96 DW = 1.93 DW = 1.9 

3SLS Minimand =36.6 

Log likelihood function = 515.6 
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Table 6. Imposing the unit restriction on the model 

SAMPLE 197303-198406, monthly 

Independent Dependent Independent Dependent 
variable variable E

t 
variable variable (r^ 

3SLS FIML 3SLS FIML 

Constant -0.0009 
(0.82) 

0.0013 
(1.3) 

Constant 0.34 
(1.2) 

0.49 

α 0.38 
(6.5) 

0.246 
(8.2) 

( Et - Et- 1 ) -21.9 
1
 (1.7) 

-2.5 
(0 .3) 

( r
D - V t -0.00009 

(0.06) 
0.0024 

(2 .3) 

-51 .4 
(5.0) 

-56.2 
(4 .3) 

( r
D - V t - 1 -0.0003 

(0.8) 
-0.0029 
(1 .3) 

Û Pt-1 48.2 
(4.1) 

° - 9 6 

Z
 (13-2) 

51 .1 
(3.8) 

0.958 
(11.0) 

(rn - r_). 9 0.007 -0.029 
U
 *

 Z
~

d
 (0.1) (0.4) 

Ze
2
 = 0.017 Ze

2
 = 0.0267 Ze

2
 = 170.1 Ze

2
 = 184.6 

DW = 2.3 DW = 2.0 DW = 1.93 DW = 1.9 

3SLS Minimand = 38.66 Log likelihood 
function = 514.8 

A likelihood ratio test of the imposed restriction in Table 6 gives a 

test statistic of 1.6 (the 95 per cent significance level for the Chi Sq 

(1) distribution is 3.4), so the restriction is easily accepted by the 

data. The Table 6 results differ from those in Table 5 with respect to 

the interest rate effects, the FIML estimates now look much more like a 

difference term. A further restriction on the model was therefore 

imposed to see if the interest rate effect could be re-parameterised as 
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a difference term. These results are reported in Table 7. 

Table 7. A restricted interest rate effect 

SAMPLE 197303-198406, monthly 

Independent Dependent 
variable variable Ε 

3SLS FIML 

Constant -0.0001 
(0.1) 

-0.0002 
(0.2) 

α 0.41 
(7.4) 

0.242 
(8.7) 

( r
D - V t -

 ( r
D 

- r F). 0.0002 
F z 1

 (0.1) 
0.0042 

(3.9) 

Ze
2
 = 0.017 

DW = 2.4 
Ze

2
 = 0.031 

DW = 2.03 

Independent 
variable 

Dependent 
variable (r_ r ) 

u t u 

3SLS FIML 

Constant 0.32 
(13 .3) 

0.56 
(1.9) 

-23.2 
(1.9) 

-0 . 3 
(0.04) 

A p
t 

-46.4 
(4.6) 

-48.0 
(3.9) 

A P
t-1 42.9 

(4.2) 
41 .7 
( 3 . 3 ) 

( r
D - Vt-1 0.93 

(13 .3) 
0.91 

(11.5) 

( r
D - Vt-2 

0.01 
(0.17) 

-0.02 
(0 .3) 

Ze = 172.6 Ze
2
 = 191 .9 

DW = 1.9 DW = 1.82 
3SLS Minimand = 43.08 Log likelihood 

function = 512.7 
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The likelihood ratio test of this restriction against the model in Table 

6 is 4.2 which would reject the restriction. The likelihood ratio test 

of both restrictions jointly (the model in Table 7 as a restricted 

version of Table 5) is 5.8, which is just within the critical limit of 

5.99. It would seem, therefore, that we can comfortably accept the 

restriction that the parameters on the expected and lagged exchange rate 

term sum to one. The interest rate terms, however, may not form a 

simple difference. One problem with both the models outlined in Tables 

5 and 6 is that although the current interest rate term is positive, the 

net effect is negative and so an increase in interest rates will lower 

the exchange rate. This is not the case for the restricted model in 

Table 7. To accept the model set out in Table 6 would therefore be to 

reject the underlying theory. However, one explanation of the results 

is that stocks adjust to a new equilibrium level but they take more than 

a month to do it. In order to allow for this possibility a slightly 

more general restriction was included; this took the form: 

B(rD - r F ) t • Φ( Γ 0 - rF)t_, - (B . 0)(rß - r^,,. 

The assumption in this equation being that adjustment may be spread over 

two months but the whole term represents an exact difference equation 

nonetheless. Applying this restriction produced a likelihood ratio test 

statistic of the restriction (against the model in Table 6) of 1.8, 

which is easily accepted. The full set of results is presented in Table 

8. 

It is interesting that throughout this set of regressions the FIML 

results have been uniformly more acceptable than the 3SLS results. On 
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the basis of the FIML results we can conclusively reject the simple open 

arbitrage equation on two grounds; first the results indicate that 

stocks of assets will reach an equilibrium even in the presence of a 

non-zero interest rate differential. Second, there is a significant 

effect from the lagged exchange rate so that the exchange rate will not 

move by discrete jumps but will follow a more gradual path. 

Table 8. The preferred, fully restricted model 

SAMPLE 197303-198406, monthly 

Independent Dependent 
variable variable Efc 

Independent Dependent 
variable variable ( R

D - V t 

3SLS FIML 3SLS FIML 

Constant -0.0001 
(0.1) 

-0.0002 
(0.2) 

Constant 0.35 
(1.2) 

0.49 
(1.6) 

α 0.42 
(7.5) 

0.265 
(9.4) 

( E
t " 

E. ) -20.94 
t _1

 (1.6) 
1 .0 

(0.1) 

Β 0.00015 
(0.1) 

0.003659 
(3.5) 

A P
t 

-51.82 -
(1.6) 

52.6 
(0.1) 

Φ -0.00053 
(0.3) 

-0.003657 
(3.0) 

A P
t-1 

47.82 
(4.6) 

47.1 
(3.6) 

( R
D -

r_). 0.95 0.93 
*
 Ί

(13.0) (10.5) 

(
'D -

r_). 0.0004 
F Z

'
2
 (0.06) 

-0.03 
(0.3) 

Ze
2
 = 0.0166 Ze

2
 » 0.028 

DW = 2.5 DW = 2.1 
Ze

2
 = 170.2 

DW = 1 .92 
Ze

2
 = 192.1 

DW = 1.86 

3SLS Minimand » 40.15 Log likelihood 
function = 513.9 
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Independent Dependent 
variable variable Ε 

3SLS FIML 
Constant 0.0017 0.0015 

(1.4) (0.9) 

α 0.40 0.19 
(6.8) (6.5) 

8 -0.0008 0.0044 
(0.5) (3.9) 

Φ 0.0006 -0.0041 
(0.4) (3.2) 

LXM 0.016 0.016 
(2.2) (1.95) 

Independent Dependent 
variable variable (r - r ) 

Constant 
3SLS 

0.184 
(0.7) 

FIML 
0.44 
(1.6) 

( Et- Et-i> -43.3 
(3.9) 

-10.56 

(1.3) 

A P
t 

-44.0 
(4.4) 

-48.8 
(4.1) 

A P
t-1 

43.0 
(4.4) 

43.9 
(3.6) 

( r
D - Vt-1 0.98 

(14.0) 
0.93 

(11.1) 

( r
D - Vt-2 0.03 

(0.5) 

-0.01 

(0.2) 

Ze = 0.015 Ze = 0.032 Ze = 189.9 Ze = 176.89 
DW = 2.3 DW = 1.89 DW = 1.92 DW = 1.88 

3SLS Minimand = 45.7 Log likelihood 
function = 523.242 

So far this analysis has been based around equation (29) which 

assumed that asset markets were sufficiently flexible that they would 

completely dominate exchange rate movements. This assumption will now 

be relaxed and possible effects from trade movements will be 

investigated. A common approach for this purpose would include the 

current balance in the exchange rate equation, but, largely due to 

problems in obtaining data for invisibles on a monthly basis, we include 

a term in the ratio of exports to imports. 

By following the same nesting down procedure as outlined earlier, a 

model similar to that presented in Table 8 can be obtained, the new 

version now including a term in the ratio of exports to imports (LXM). 

This model is shown in Table 9. 

Table 9. A full restricted version with trade effects 

SAMPLE 197303-198406, monthly 
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The addition of LXM has produced a dramatic increase in the log 

likelihood function, the parameter on LXM in the exchange rate equation 

is correctly signed with a t-value of close to 2 for both the 3SLS and 

FIML results. The coefficient on the change in the exchange rate in the 

interest rate equation has now taken its expected negative sign in the 

FIML results. It is interesting that despite the obvious improvement in 

the likelihood function the 3SLS minimand has risen. This is caused by 

the addition of LXM to the instrument set in the 3SLS estimation 

process. 

So a number of conclusions emerge from these monthly estimates of 

an exchange rate equation estimated using the Wickens IV technique. The 

model rejects the open arbitrage condition in three important ways. It 

finds a significant role for the lagged exchange rate, suggesting that 

the exchange rate cannot jump sufficiently freely to meet the open 

arbitrage condition. Secondly, it finds that asset stocks seem to reach 

an equilibrium before the interest rate differential is removed, so that 

a non-zero differential does not lead to a constantly changing exchange 

rate. Finally, it finds a significant role for the trade balance in 

exchange rate determination, thereby rejecting the assumption that in 

the short run asset markets completely dominate exchange rate 

determination. Next, we consider the problems of estimating the model 

using quarterly data, with the view that a quarterly exchange rate model 

may be derived suitable for use in a quarterly macroeconometric model. 

[A fuller illustration of this is provided in Chapter 4]. 
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A quarterly model 

The larger sample which is afforded by monthly data is very important 

when systems estimation, such as FIML, is being used. So it is of 

interest to establish what effects re-estimating the model using 

quarterly data has. 

The set of quarterly results presented below are for an identical 

model to that presented in table 8 except that the two period lag on the 

interest rates was found to be unnecessary in the case of quarterly 

data. This is not surprising; if monthly data suggests that asset 

stocks achieve equilibrium in two months, we would expect quarterly data 

to suggest equilibrium in one quarter. The likelihood ratio test of the 

zero parameter restriction on the second lagged interest rate term for 

quarterly data is 0.8. Table 10 presents a set of quarterly results for 

the model; only FIML results are reported. 

These results are very similar to those of table 8. The effect of 

interest rates on the exchange rate is correctly signed and significant. 

As we might expect, with quarterly data the effect of the lagged 

exchange rate has fallen in magnitude and it is marginally 

insignificant. However, the earlier conclusions seem to be born out by 

this quarterly model. 

The final set of results in table 11 present a quarterly version of 

table 9 which includes the ratio of exports to imports. 

13 
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Table 10. The quarterly model (FIML estimates) 
SAMPLE 19701-1984Q2 

Independent 
variable 

Dependent 
variable E. 

Constant 0.0004 
(0.06) 

0.1 

(1.3) 

0.009 
(2.5) 

Independent Dependent 
variable variable (r_ V t 

Constant 

(E E
t-1

} 

ΔΡ. 

ΔΡ 
t-1 

( P
D -

 r
F

}
t-1 

( r
D - Vt-2 

0.8 
( 1 . 0 ) 

7 .5 
(0.69) 

- 1 3 . 5 
(2 .8 ) 

0 
(0) 

0.85 
( 7 . 7 ) 

- 0 . 2 3 
( 2 . 1 ) 

Ze = 0.08 Ze =270.4 
AW = 2.1 DW = 1.7 

Log likelihood function = 78.2 

Table 11. A quarterly model with trade effects (FIML) 
SAMPLE 197201 - 198402 

Independent 
variable 

Dependent 
variable Ê . 

Independent Dependent 
variable variable (rD - r F ) t 

Constant 0.0016 
(0.26) 

Constant 0.65 
(0.6) 

α 0.215 
(3.2) 

( Et - E t - i } 41 .9 
(4.4) 

ί 0.010 

(4.3) 
A Pt -14.6 

(2.5) 

LXM 0.101 

(3.3) 

A Pt-1 

( rD - PF}t-1 

( rD - rF>t-2 

0.0 
(-) 

0.82 
(6.6) 

0.32 
(-2.45) 

Ze
2
 = 0.06 

DW =2.4 
Ze = 4.21 
DW = 1 .8 

Log likelihood function = 83.84 

α 

Β 
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The addition of trade effects to the exchange rate equation has 

again had a marked effect on the value of the log likelihood function. 

It has also produced a general rise in the t-values associated with the 

exchange rate equation. 

The results for the quarterly model therefore confirm the picture 

presented by the earlier monthly model. The open arbitrage equation is 

again rejected on three counts: the presence of a significant effect 

from trade, the lagged exchange rate and the lagged interest 

differential. 

Conclusions on Exchange Rate equations 

So to conclude this section we note that the simple open arbitrage 

equation which lies at the heart of many current exchange rate models is 

significantly rejected by both monthly and quarterly data on a number of 

counts in favour of a richer and more complex model. In Chapter 4 we 

will consider other applications of some of these ideas to exchange rate 

modelling. 



Chapter 2 

DYNAMIC MODELLING AND COINTEGRATION 

47 

1. Introduction 

Prior to the development of cointegration theory and the recent work on 

estimation using non-stationary variables, the main thrust of 

econometric and statistical theory had developed within a stationary 

framework. The vast majority of variables which are of interest to the 

applied economist are obviously non-stationary. Econometricians have 

taken a variety of approaches to dealing with this conflict; at the 

simplest level many early practitioners simply ignored the stationarity 

requirement. This practice led to a substantial literature dealing with 

the 'spurious regression
1
 problem which culminated in the Box-Jenkins 

approach to modelling which used only stationary variables. In turn the 

reaction to this approach was the view that important information could 

be lost by pre-filtering data to render it stationary and that the long-

run properties of the data, in particular, was being completely ignored. 

This reaction developed into the dynamic modelling approach which is 

often encapsulated in the error correction model. This approach uses a 

mixture of stationary and non-stationary variables in the same equation 

and has proved a powerful tool although its foundations in statistical 

theory have always been weak. 

The concept of cointegration provides a firmer theoretical 

foundation for dynamic modelling, in addition to giving a number of new 

insights into the long-run properties of data. This makes this new body 

of theory important to both applied econometricians and theoretical 

statisticians. 
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2. Stationärity 

A key concept underlying this chapter is the idea of stationarity, so it 

seems appropriate to give a basic account of this before proceeding. A 

detailed mathematical exposition of the underlying theory may be found 

in Jazwinski (1970). Let (x̂ ., teT) be a stochastic process, then we 

define strict stationarity (or stationarity in the strict sense) to hold 

when the process has the same probability law as the process (
x

t + i» 

teT) for any ieT. So if P(.) defines the joint density function, 

strict stationarity implies that 

P(x ..., χ ) = P(x ..., χ ) (1) 

t
1 h t

1
 1 V 1 

In fact for most applications this definition is unnecessarily 

restrictive and all that is required is weak stationarity (wide sense or 

co-variance stationarity). A series is said to be weakly stationary if 

it has finite second moments and the mean value of the series and its 
2 

correlation function are time invariant. So E(xfc) < <» for all teT; 

this in turn implies that the mean value, correlation and co-variance 

functions exist. 

The properties of a weakly stationary [we will henceforth say 

simply stationary*] series and a non-stationary series are quite 

different. A stationary series will have a well-determined mean which 

will not vary greatly with the sampling period; moreover it will tend 

to constantly return to its mean value and fluctuations around this mean 

will have a broadly constant amptitude. A non-stationary series on the 

other hand will exhibit a time varying mean and we can not in general 

properly use the term mean without referring to some particular time 
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period. 

The simplest example of a non-stationary process is the random 

walk. 

2 

x t = x t -1 + efc where _ ΙΝ(0, σ ) (2) 

So that if x Q = 0 

t 

x, = Σ e. (3) 
Z
 i = 1

 1 

2 
The variance of χ is ta and this becomes indefinitely large as t 00. 

It is also clear that the concept of a mean value for has no meaning. 

In fact if at some point x^ = C then the expected time until x^ again 

returns to C is infinite. 

3, The background to cointegration theory 

A detailed account of the development of the ideas leading up to the 

introduction of the concept of cointegration may be found in Hendry and 

Morgan (1986) and Hendry (1986). The pitfalls of using non-stationary 

data have been known for a considerable period of time: Jevons (1884) 

and Hooker (1901) both show that they are aware of the spurious 

correlation which can occur when trended data is being used. The first 

formal analysis of the problem, that we are aware of, is Yule (1926) who 

constructed a number of experiments to show that standard theory worked 

well in the case of stationary variables but could give highly 

misleading results when variables were non-stationary. 
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Despite this clear analysis of the problems implied by non-

stationary data econometricians proceeded to carry out research based on 

conventional techniques which assumed stationarity but applied this to 

trended economic variables. A good example is the development of the 

literature on consumption functions including Kuznets (1942), Haavelmo 

(1947), Davis (1952), Brown (1952), Evans (1969) and Hendry (1973). 

This work centred around regressions of the level of consumption on the 

level of income, two obviously non-stationary variables. 

Partly as a reaction to this widespread disregard for conventional 

theory, Box and Jenkins (1970) proposed a system of modelling which 

involved pre-filtering all data to render it stationary before 

proceeding to estimate or identify a suitable model structure. Granger 

and Newbold (1974) re-emphasised the warnings of Yule concerning the use 

of non-stationary data; they coined the term ' spurious' regression for 

the results obtained by using two trended variables in a regression when 

the variables were actually unrelated. An interesting point raised by 

this paper, in the light of the recent cointegration literature, is that 

they noticed that the 'spurious' regressions were typically 

characterised by a very low Durbin-Watson statistic. 

An alternative strand of research to the approach of Box and 

Jenkins was founded on the work of Sargan (1964) and Phillips (1957). 

This approach to dynamic modelling using the Error Correction 

formulation, is distinguished by a mixture of both stationary and non-

stationary terms in the regression equation. The non-stationary 
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(levels) terms are interpreted as determining the long-run equilibrium 

relationship exhibited by the data. The dependant variable is, however, 

typically a stationary first difference term and sufficient other 

difference terms are included in the equation to produce a white noise 

stationary error process. Subsequent developments in this area have 

been made by Davidson et al (1978), Hendry and von Ungern-Sternberg 

(1980), Hendry and Mizon (1978) and Currie (1981). 

A further major contribution in setting the scene for the 

introduction of the cointegration literature came from researchers 

working on serial correlation and the properties of test statistics, 

when data is a random walk. Important contributions in this area 

include Fuller (1976), Dickey and Fuller (1979) and (1981), Evans and 

Savin (1981), Nelson and Kang (1981), Nelson and Plosser (1982), and 

Sargan and Bhargava (1983). This literature has produced a more 

detailed understanding of the properties of regression with non-

stationary variables and the distribution of various test statistics 

under the assumption that the data is generated by random walk 

processes. It has also proposed a number of tests of the random walk 

hypothesis which have proved useful. 

M. Integrated variables and cointegration 

The concept of integrated series was introduced into econometrics in 

Granger (1980) and (1981); the basic idea had been in use in the 

electrical and hydraulic engineering literature for some time. This 

basic idea is that the order of integration of a series is given by the 

number of times the series must be differenced in order to produce a 
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stationary series. So if we consider the simple random walk model (2), 

differencing this series once will produce a stationary variable, = 

ε^. This implies that the series generated by (2) is integrated of 

order one. A more formal definition may be stated thus. A series, x^, 

is said to be integrated of order d (denoted xfc _ 1(d)) if it is a 

series which has a stationary, invertible, non-deterministic ARMA 

representation after differencing d times. 

The importance of this definition lies in the Granger (1981) proof 

that in general if we take a linear combination of two series, each 

integrated at a different level, then the resulting series will be 

integrated at the highest of the two orders of integration. So suppose 

where xfc _ I(dx), Y _ I(dy) then in general Zfc = I (max (dx, dy)). This 

is demonstrated by noting that the spectrum of Ζ is 

where r(w) is the cross spectrum between χ and y which has the property 

that |r(w)| ύ f (w).f (w). Now when w is small we are considering the 
χ y 

low frequencies of the spectrum and for small w 

Z
t « b x

t
 + c Y

t 
(4) 

(5) 

f^(w) = A.jW 
-2dx 

fy(w) = A 2w 
-2dy 

(6) 

and so the term with the largest d. will dominate. This need not always 
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be the case of course, and it is the exceptions to this general rule 

which allow the case of cointegration. However, when this rule does 

hold it illustrates the problem of estimation using variables which are 

not 1(0). In this case the error term itself will generally be 

integrated at the highest order of any of the variables in the 

regression. So the error term will be non-stationary, it will have no 

properly defined mean or variance, and the basic assumption of OLS is 

violated. 

The important exception to this rule is where the low frequency (or 

trend) components of the spectrums of two or more variables exactly 

offset each other to give a stationary Ζ series. This is the case of a 

set of cointegrating variables. The basic idea is that if, in the long 

run, two or more series move closely together, even though the series 

themselves are trended, the difference between them is constant. We may 

regard these series as defining a long-run equilibrium relationship and, 

as the difference between them is stationary, the error term in a 

regression will have well defined first and second moments. So 

traditional OLS regression becomes feasible in this case. The term 

equilibrium has many meanings in economics and its use in the 

cointegration literature is rather different from most definitions of 

equilibrium. Within the cointegration literature all that is meant by 

equilibrium is that it is an observed relationship which has, on 

average, been maintained by a set of variables for a long period. It 

implies none of the usual theoretical implications of market clearing or 

full employment and neither does it imply that the system is at rest. 
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Cointegration may be formally defined as follows: the components 

of the vector X̂ . are said to be cointegrated of order d, b (denoted Xfc _ 

(I(d,b)) if: 

i) all components of X̂ . are 1(d) 

and 

ii) there exists a vector a(* 0 ) so that 

Ζ = α
1
 Xfc „ I(d - b), b > 0; 

the vector α is then called the cointegrating vector. 

An important implication of this definition is that if we have two 

variables which are integrated at different orders of integration then 

these two series cannot possibly be cointegrated. This is an 

intuitively clear result; it would be very strange to propose a 

relationship between an 1(0) series and an 1(1) series. The 1(0) series 

would have a constant mean while the mean of the 1(1) would go to 

infinity and so the error between them would be expected to become 

infinitely large. It is however possible to have a mixture of different 

order series when there are three or more series under consideration. 

In this case a subset of the higher order series must cointegrate 

to the order of the low order series. For example suppose Y „ 1 ( 1 ) , X _ 

1(2) and W - 1 ( 2 ) , then if 
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V » a X t + c W T _ 1(2 - 1) (7) 

and Z t - e V + f ï 1(1 - 1) (8) 

then X and W . (I (2, 1)) and V and Y « (1(1, 1)) and Zfc . 1(0). 

Clearly many such combinations are possible and an example of one will 

be given later in the chapter. 

Perhaps the most important result using this definition of 

cointegration is the Granger Representation theorem (Granger (1983)). 

This theorem states that if a set of variables are cointegrated (d = 1 , 

b = 1) then there exists a valid error-correction representation of the 

data. So if Xfc is an Ν χ 1 vector such that X^ _ (1, 1) and α is the 

cointegrating vector then the following general ECM model may be derived 

where Z, = ot
f
X. 

where A(L) is a finite order polynomial with A(0) = I N and d(L) is a 

finite order lag polynomial. 

Equation (9) is a regression model containing only stationary 

variables and so the usual stationery regression theory applies. This 

provides a complete theoretical basis for the ECM model when the levels 

terms cointegrate. The Granger Representation theorem also demonstrates 

that if the data generation process is an equation such as (9) then X 

t t 

A(L) (1 - L) X t = - γ·ζ. 
t-1 

(9) 
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must be a cointegrated set of variables. The practical implications of 

this for dynamic modelling are profound: in order for an error-

correction model to be immune from the spurious regression problem it 

must contain a set of levels terms which cointegrate to give a 

stationary error term. The danger with dynamic estimation is that the 

very richness of the dynamic structure may make the residual process 

appear to be white noise in a small sample when in fact the levels terms 

do not cointegrate and so the true residual process must be non-

stationary. 

There are a number of other, more minor, implications which follow 

from a set of variables being cointegrated; first if Xfc and Y are 

cointegrated then because Yfc and Y ^ will be cointegrated for any i, Xfc 

and a Y t -i

 +
 Wfc (where Wfc ~ I ( 0 ) ) will be cointegrated. Second, if Xfc 

and Yfc are cointegrated and 1(1) then either Xfc must Granger cause Yfc or 

Y must Granger cause X^ or both of these statements is true. This 

follows essentially from the existence of the ECM model which suggests 

that, at the very least, the lagged value of the variables must enter 

one determining equation. Finally it is interesting to note that if Xfc 

and Yfc are a pair of prices from two efficient speculative markets 

without adjustment costs then they cannot be cointegrated. This follows 

from the fact that if they were cointegrated then one would Granger 

cause the other and so it could be used to forecast the other price. 

5. Estimating the cointegrating vector 

One approach to estimating the cointegrating vector would be to work 

with (9), the ECM representation of the data. This however is not an 
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easy procedure to implement properly as it must be remembered that (9) 

is a complete system of equations determining all the elements of X^. 

Further, there is the cross-equation restriction that the same 

parameters should occur in the levels parts of all the equations. So it 

would need to be estimated as a full system subject to this non-linear 

constraint. In fact consistent estimates may be achieved much more 

easily following a suggestion made by Granger and Engle (1985) which 

relies on two theorems given in Stock (1985). These theorems use the 

concept of the order of a sequence which may be defined as follows: 

Definition: The sequence (bn) is at most of order η
λ
 denoted 0(η

λ
) if 

and only if for some real number Δ, 0 < Δ <
 0 0
, there exists a finite 

integer Ν such that for all η £ Ν, | η
 λ
 b^ | < Δ. 

The suggestion is simply that the static model may be estimated by OLS 

to give consistent estimates of the cointegrating vector. Stock (1984) 

in his theorem 2 demonstrates that under very weak assumptions 

Τ
1
"

6
 (α- a) + 0 δ > 0 (10) 

which demonstrates that α , the OLS estimates of the cointegrating 

vector, are consistent estimates of a. A more surprising result is 

that in theorem 4 Stock demonstrates that the order of convergence of 

the OLS estimates is 0(T
1
); this contrasts with standard estimation in 

the stationary case where the order of convergence is 0(T*). This means 

that the OLS estimates in the non-stationary case converge on 
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their true parameter values much faster than in the stationary case. 

This property is sometimes referred to as 'super consistency'. However, 

offsetting this rapid convergence to the true parameter values is a 

result based on Stocks' theorem 1 which shows that there is a small 

sample bias present in the OLS estimator and that the limiting 

distribution is non-normal with a non-zero mean. Banerjee et al (1986) 

suggest that this small sample bias may be important in some cases and 

2 
they show that for certain simple models the bias is related to 1 - R 

2 
of the regression, so that a very high R is associated with very little 

bias. 

It is important to note that the proof of the consistency of the 

OLS estimator does not require the assumption that the RHS variables are 

uncorrelated with the error term. In fact any of the variables may be 

used as the dependent variable in the regression and the estimates 

remain consistent. This means that problems do not arise when we have 

endogenous RHS variables or when these variables are measured with 

error. The reason for this may be seen quite easily at an intuitive 

level, the error process in the regression is 1(0) while the variables 

are 1(1) (or higher) so the means of the variables are time-dependent 

and will go to infinity. In effect what happens is that the growth in 

the means of the variables swamp the error process. This may be seen 

graphically in the following simple diagram. 
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In A we present a scatter of data points and two regression lines, Y = 

αΧ + c1 and Χ = $Y + c^. The regression lines are different because of 

the well-known property of OLS that α * \. Now if the data is 
P 

stationary and we increase the number of observations nothing 

significant will change in diagram A: the scatter of points will become 

more dense, that is all. However, if the data is non-stationary then 

increasing the number of observations will have the effect of spreading 

the diagram over a larger area, and because the error term is stationary 

the variance of the errors will be constant. This is illustrated in B; 

it is obvious that the two regression lines will be forced closer 

together and as the number of observations becomes infinite the two 

regression lines become identical so that α = \. This also explains 
2 

the importance of a high R in ensuring that the small sample bias is 
2 

unimportant. When the R = 1 , i.e. the equation is a perfect fit, α =» 

\ even in the stationary case. In the non-stationary case the goodness 
P 

of fit determines how effective the trended nature of the data is at 
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swamping the constant variance error term. 

Granger and Engle (1985) demonstrate that once OLS has been used to 

estimate the cointegrating vector then the other parameters of the Error 

Correction Model may be consistently estimated by imposing the first-

stage estimates of the cointegrating vector on a second-stage ECM. This 

is done simply by including the residuals from the first-stage 

regression in a general ECM. This procedure is sometimes referred to as 

the two-step Granger and Engle estimation procedure. They also 

demonstrate that the OLS standard errors obtained at the second stage 

are consistent estimates of the true standard errors. 

The advantages of the two-step procedure are that it allows us to 

make use of the super convergence properties of the first-stage 

estimates and that at the first stage it is possible to test that the 

vector of variables properly cointegrates. Thus we are sure that the 

full ECM model is not a spurious regression. 

6 . Testing for cointegration 

Much of the early applications of cointegration (e.g. Granger and Weiss 

(1983) or Hall and Brooks (1985)) was hampered by the difficulty of 

testing for cointegration between a set of variables. The early 

practice was to rely on an informal inspection of the correlogram of the 

error process. If the correlogram quickly approaches zero and then 

remains close to zero the error process would be judged stationary. The 

problem here is obviously how to define quickly and that no form of 

statistical rigour could be brought to bear on the question. Granger 

and Engle (1985) proposed a range of seven possible tests which may be 
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used for cointegration testing; these tests are related to, or stem 

from, the unit root literature mentioned above but their use in this 

case is more complex. The situation is that we have an OLS estimate of 

the cointegrating vector α and we may define the OLS residuals from the 

cointegrating regression as 

Z t - i x - ( 1 1 ) 

Now suppose Zfc follows an AR(1) process so that 

Z t * PZ t_, (12) 

then cointegration would imply that ρ < 1 which suggests the null 

hypothesis that ρ = 1 and the test that the error process is a random 

walk. The Dickey-Fuller test and the use of the Durbin-Watson statistic 

proposed by Sargan and Bhargava (1983) can both be used to test this 

hypothesis. There is however a further complication: if α were known 

then we could simply use the standard tables from Dickey and Fuller 

(1981) for example to test the relevant hypothesis. When α is not 

known, the problem is much more complex, under the null hypothesis that 

ρ = 1 we cannot estimate a in an unbiased way. Because OLS will seek-

to produce minimum squared residuals this will mean that the Dickey-

Fuller tables will tend to reject the null too often. So we have to 

construct tables of critical values for each data generation process 

individually under the null hypothesis. Granger and Engle present some 

sample calculations of critical values for some simple models. We will 

discuss the three of their proposed test procedures which have been most 
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commonly used. These are defined below. 

The Dickey-Fuller (DF) test: 

Perform the regression ΔΖ^ = (2̂  Ζ ^ + then under the null that ρ = 

1, 0 1 = 0 , if ρ < 1, 0 1 < 0 so we perform a t-test to test whether 

is significantly less than zero. The t-statistic on 0̂  is the DF 

statistic. 

The Augmented Dickey-Fuller (ADF) test: 

Ρ 
Perform the regression LZ^ = 01 Z ^ + Σ Ί Γ Δ Ζ ^ + again under the 

null that ρ = 1 , = 0 and if ρ < 1, 0^ < 0 so we again use the t-test 

to test that is significantly less than zero. The t-statistic on 0̂  

is the ADF statistic. 

The Cointegrating Regression Durbin-Watson (CRDW) test: 

The Durbin-Watson from the cointegrating regression may be used to test 

the null that ρ = 1. Under this hypothesis the CRDW = 0 and so we seek 

a value of the CRDW which is high enough to reject the proposal that it 

actually is zero. 

The following table gives the critical values which have been 

derived for the 2- and 3-variable case by Monte Carlo approximation: 
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Table 1 . Critical values for tests of cointegration Table 1 . 

5% 1 0 * 

2 variable case 

CRDW . 511 .386 . 3 2 2 

DF - 4 . 0 7 - 3 . 3 7 - 3 . 0 3 

ADF - 3 . 7 7 - 3 . 1 7 - 2 . 8 4 

3 variable case 

CRDW . 488 . 3 6 7 . 3 0 8 

ADR - 3 . 8 9 - 3 . 1 3 - 2 . 8 2 

Source : 2-variable case: Granger and Engle ( 1 9 8 5 ) . 

3-variable case: thanks are due to Professor Granger 

for permission to report these results. 

It is clear that the critical values do not change enormously as we move 

from a 2-variable model to a 3-variable model. Nonetheless in the 

application given below we will be working outside of the strict limits 

of these tables and so we must exert caution in the interpretation of 

these critical values. 

Maximum likelihood estimation of the cointegrating vector 

There are a number of drawbacks to the procedure outlined above; testing 

the model for cointegration is difficult given that the distribution of 

the test statistics varies with each model. Practical experience 

suggests that the tests often have fairly low power. A more fundamental 

problem however is that the above procedure makes the assumption that 

the cointegrating vector is unique. In general if we have a set of Ν 

1(1) variables then there may exist r cointegrating vectors between the 
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variables where r = N-1. If we restate equation (9), the general ECM 

model as 

where Β is now an Ν χ Ν matrix of cointegrating vectors. Then r, the 

number of distinct cointegrating vectors will be given by the rank of B. 

Given that at most r = N-1 we see immediately that Β is singular. Where 

the cointegrating vector is unique, r = 1, all the rows of Β are linear 

combinations of each other. 

We therefore need a procedure to estimate all the cointegrating 

vectors which exist between a set of variables and to test for the 

number of distinct cointegrating vectors which exist. Johansen (1987) 

has proposed a method which gives maximum likelihood estimates of B, the 

full cointegrating matrix and also produces a likelihood ratio test 

statistic for the maximum number of distinct cointegrating vectors in 

the matrix. 

Johansen sets his analysis within a slightly different framework to 

that used above, so we begin by defining the general polynomial 

distributed lag (PDL) form of the model as 

A(L)(1 - L ) X t = - Y ' B X t_ 1 + c i a ^ t (13) 

IL X t-1 + + π, X k t-k + ε t 
(14) 

where X is a vector of Ν variables of interest; and ε̂ . is an I ID Ν 

dimensional vector with zero mean and variance matrix Ω. Within this 
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framework the long run, or cointegrating matrix is given by 

I - Π 1 - Π 2 ... n k = Π (15) 

and so the rank of Π, r, defines the number of distinct cointegrating 

vectors. Now we define two matrices α, β both of which are Ν χ r such 

that 

Π = α 8 ' 

and so the rows of β form the r distinct cointegrating vectors. 

Johansen then demonstrates the following Theorem. 

Theorem : The maximum likelihood estimates of the space spanned by β is 

the space spanned by the r canonical variâtes corresponding to the r 

largest squared canonical correlations between the residuals of Xf c_k and 

AX t corrected for the effect of the lagged differences of the X 

process. The likelihood ratio test statistic for the hypothesis that 

there are at most r cointegrating vectors is 

Ν 
- 2 InQ = - Τ Σ ln(1 - λ . ) (16) 

i=r+1
 1 

where λ , ... λ „ are the Ν - r smallest squared canonical 
r+1 Ν 

correlations. Johansen then goes on to demonstrate the consistency of 

the maximum likelihood estimates and, more importantly, he shows that 

the likelihood ratio test has an exact distribution which is a function 
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of a Ν - r Brownian motion. This means that a set of exact critical 

values can be tabulated which will be correct for all models. 

In order to implement this Theorem we begin by reparameterising 

(U) into the following ECM model. 

Γ. = I + Π + ... Π. ; i = 1 ... Κ 

The equilibrium matrix Π is now clearly identified as Γ^. 

Johansen
1
s suggested procedure begins by regressing ΔΧ^ on the 

lagged differences of ΔΧ. and defining a set of residuals R . Then 
u οχ» 

regressing X^_k on the lagged residuals and defining a further set of 

residuals, Rk f c. The likelihood function, in terms of αβ and Ω, is then 

proportional to 

A X
t •

 Γ
1
 A x
t-1

 + + r
k-i

 A X
t-k+i

 + r
k

 x
t-k

 + £
t (17) 

where 

L(o 3 Ω) = |Ω|~
Τ /2
 EXP i~J^*ot

 + α e , R

k t
) f 

Ω
"

1 ( R
ot

 + α R
k t

) ] (18) 

If 3 were fixed we can maximise over α and Ω by a regression of R ^ on 

- 3
1
R k t which gives 

a(B) = - S o k ί(ί'S kk β ) "
1 

(19) 
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and 

°
( ί)

 =
S
o o -

S
o k

 ί ( ί
'

S

k k
e )
"

1 ί , S
k o 

where S. . = T"
1 l R R» i,j = Ο,Κ 

ij t=1
 xt

 J
fc 

(20) 

and so the likelihood function may be reduced to minimising 

I
 S
o o "

 S
ok *

(
*

, S
k k *

r 1
*

, S
k o l 

(21) 

and it may be shown that (21) will be minimised when 

(22) 

attains a minimum. 

We now define a diagonal matrix D which consists of the ordered 

eigenvalues λ. > ...> λ of S. S
 1

S . with respect to S, . , That is 0
 1 ρ ko oo ok

 K
 kk 

λj satisfies 

I AS., - S. S ~
1
S 1 = 0 1

 kk ko oo ok
1 

and define Ε to be the corresponding matrix of eigenvectors so that 

S, . Ε D - S, S ~
1
S , Ε 

kk ko oo ok 

where we normalise Ε such that E
f
S k kE = I. 
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The maximum likelihood estimator of 3 is now given by the first r 

rows of E, that is, the first r eigenvectors of S, S
 1

S . with respect 
'
 δ

 ko oo ok
 F 

to S · These are the canonical variâtes and the corresponding 

eigenvalues are the squared canonical correlation of with respect to 

R^. These eigenvalues may then be used in the test proposed in (16) to 

test either for the existence of a cointegrating vector r = 1 , or for 

the number of cointegrating vectors Ν > r > 1. 

An application to the UK wage data 

Using this concept of cointegration to construct an aggregate model of 

wage determination is particularly apt as the earliest examples of the 

application of ECM models in econometrics were applied to this sector 

(see Sargan (1964)). The early models involved only level terms in real 

wages and a trend representing target real wages. More recent models 

have also included elements from the Phillips curve literature with the 

level of unemployment also entering the formulation (see Hall, Henry and 

Trinder (1983), and Chapter 4). 

Before proceeding to test the sets of variables for cointegration 

it is sensible to establish the properties of the individual series. 

Much of the theory of cointegration has been developed for the case 

where all the series are 1(1). Higher orders are of course possible and 

are allowed for under the general definition of cointegration given 

above. Complications arise, however, when the series are integrated of 

different orders (e.g. one series might be 1(1) and another 1(2)); the 

two series cannot then be co-integrated. In this section we will be 

concerned with five series; these are: LW: the log of wages; LP: the 



Ch. 2: Cointegration 69 

log of the consumer price index; LPROD: the log of aggregate 

productivity, UPC: the percentage unemployment rate; and LAVH: the log 

of average weekly hours worked. 

In order to test the level of integration of these variables the 

Dickey-Fuller (DF) and an Augmented Dickey-Fuller (ADF) test will be 

used. These are both t tests and rely on rejecting the hypothesis that 

the series is a random walk in favour of stationarity; this requires a 

negative and significant test statistic. Table 2 reports the DF and ADF 

statistics for the five series and their first differences. 

Table 2. The time series properties of the variables 

TEST 
Variable DF ADF 
LW 10.9 2.6 
LP 14.5 1.9 
LPROD 3.8 3.3 
LAVH -0.3 -0.5 
UPC 5.2 1.8 
ALW -3.5 -1.4 
ALP -1.4 -0.9 
ΔLPROD -8.0 -2.4 
ΔLAVΗ -11.3 -4.6 
Δ UPC -2.4 -2.5 
LW-LP 2.6 2.2 
A(LW-LP) -8.5 -3.6 

First if we consider the levels of the five variables it is quite 

obvious that none of them are stationary processes. Four of the 

variables actually have positive test statistics and the one negative 

one (LAVH) is highly insignificant. The next five rows in the table are 

the first difference of the variables, of these ΔLPROD, ΔLAVH and AUPC 

are negative and significant on both tests. So we may conclude that as 

differencing once produces stationarity these series are 1(1). The two 

remaining series ALW and ALP are not significant on both tests so it is 
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not possible to reject the hypothesis that they are a random walk in 

first difference. This indicates that both LW and LP are probably 1(2). 

In the case of three or more variables it is possible to have a subset 

of the variables which are integrated at a higher order than the 

remaining variables and still have a valid cointegrating vector if the 

sub-set of variables together is integrated at the same order as the 

remaining variables. In this case the remaining two rows of table 2 

show that the real wage (LW-LP) is 1(1) even though both LW and LP 

separately are 1(2). It is therefore possible that all the variables 

could form a cointegrating set. 

The original Sargan wage bargaining model suggested that real wages 

would grow steadily along a simple trend, which was interpreted as the 

desired or target real wage growth of the union sector. There are two 

problems with this simple original formulation from the point of view of 

this paper. The first is simply that as the final wage equation is 

explaining nominal wages then in order to set up a full cointegrating 

vector of variables we should relax the unit coefficient on prices. The 

second problem arises from the definition of cointegration, given above, 

that the variables must be non-deterministic. A time trend is clearly 

deterministic and must strictly fall outside the definition of 

cointegration. It is however worth noting that this is also true of the 

constant, which is invariably included in the cointegrating regression. 

There are other reasons also for abandoning the use of a simple trend in 

this equation, in particular the existence of the long-term rise in real 

wages is widely associated with the long-term growth in productivity. 

So it may be preferable to use aggregate productivity rather than a 
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simple time trend for this reason also. 

The basic Sargan model using smoothed productivity (LPRODS) instead 

of a time trend may be tested as a cointegrating vector in the following 

regression 

LW = -5.49 +0.99 LP + 1.1 LPRODS (23) 

CRDW =0.24 DF = -1.7 ADF = -2.6 R
2
 = 0.9972 

RCO: 0.86 0.72 0.52 0.35 0.18 0.04 0.08 

-0.20 -0.27 -0.29 -0 .32 -0.34 

Sample 1963Q4-1984Q4. 

RCO is the residual correlogram. 

On the basis of the CRDW, the DF, and the ADF test statistics we 

are unable to reject the assumption that equation (23), the simple 

Sargan model, represents a non cointegrating vector of level terms. 

If we go on to add the percentage level of unemployment to the 

vector of variables we can test whether incorporating this element of 

Phillips curve effect produces a set of cointegrating variables. The 

relevant cointegrating equation is then 

LW = - 5.6 + 1.03 LP + 1.07 LPRODS - 0.72 UPC (24) 

CRDW = 0.28 DF = -2.12 ADF = -3.O R
2
 = 0.9974 

RCO: 0.85 0.70 0.49 0.29 0.10 -O.O6 -0.18 

- 0 . 3 1 -0.37 -0.39 -0.41 -O.43 
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All the parameter values of this regression have reasonable values 

and are correctly signed. However, the CRDW and the DF statistic are 

well below their critical value, although they have risen considerably 

from equation ( 2 3 ) . Again, we cannot reject the hypothesis that these 

variables are not a cointegrated vector. 

There is, however, another term which often appears in the 

specification of aggregate wage equations in the UK. This term is the 

log of average hours worked. The reason for its inclusion is due to the 

way the aggregate wage data is generated. The way this is often done is 

to take total wages and salaries for the UK as a whole from the National 

Accounts and divide this number by the product of employment and hours 

to give the average hourly wage. This means that a change in hours 

worked will have a direct effect on the measured wage if total wages and 

salaries do not move enough to offset it. As many workers are salaried 

rather than paid hourly this may well be the case. Another effect is 

that if overtime hours are paid at a different rate than basic hours, 

then marginal changes in hours incur overtime payments so the weighting 

pattern of basic and overtime wage rates will vary with hours worked. 

Some researchers have tried to remove this effect by making an ad hoc 

adjustment to wages for hours worked. A more successful practice is 

simply to include hours as one of the explanatory variables. Equation 

(25) presents a cointegrating regression which includes such a term in 

hours. 
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Excluded variable 
LP LPRODS UPC 

CRDW 0.05 0.339 0 64 
DF -0.68 -2.648 -3.66 
ADF -1.43 -1.378 -2.14 
R 0.9502 0.9968 0.9990 
RCO 1 0.96 0.82 0.68 

2 0.92 0.73 0.47 
3 0.86 0.64 0.22 
4 0.78 0.55 0.06 
5 0.72 0.57 0.14 
6 0.65 0.52 0.13 
7 0.58 0.46 0.14 
8 0.50 0.40 0.16 
9 0.41 0.31 0.13 
10 0 .32 0.25 0.11 
11 0.23 0.23 0.20 
12 0.13 0.17 0.16 

LW = 2.88 + 1.02 LP + 0.93 LPRODS - 0.61 UPC - 1.79 LAVH (25) 

CRDW =0.74 DF = -4.07 ADF = -2.88 R
2
 = 0.9993 

RCO: 0.63 0.39 0.09 -0.1 -0.03 -0.06 -0.05 

-0.04 -0.06 -0.05 -0.06 -0.02 

where LAVH is the log of average hours. 

The CRDW test now rejects the hypothesis of non cointegration 

decisively, as does the DF test; the ADF test statistic has actually 

fallen slightly compared with (24): it is still fairly high although it 

is not able to reject non cointegration. The residual correlogram also 

would strongly suggest a stationary error process. It would seem 

reasonable to conclude that the five variables in (25) constitute a co-

integrating vector. By comparing (25) with (24) we know that the 

inclusion of LAVH is necessary, but any of the others might be excluded 

at this stage and cointegration still retained. In order to test this, 

each of the three variables (LP, LPRODS and UPC) were dropped, one at a 

time, and cointegration tests were performed. These are reported in 

table 3. In all cases the test statistics are considerably lower than 

Table 3- Testing for the exclusion of three of the variables 
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in equation (25) and the residual correlograms do not strongly suggest 

stationarity. However, the exclusion of both LPRODS and UPC are both 

suggested by the CRDW test (at the 5 per cent level). Given the 

uncertainty surrounding the Granger and Engle critical values for this 

model there may be a strong argument for relying more heavily on the 

informal evidence of the correlogram. So in order to estimate a valid 

ECM model of UK wage determination, we include the full cointegrating 

vector in the levels part of the model. That is to say, we must include 

the level of wages, prices, unemployment, productivity and average hours 

to achieve a stationary error process. 

Before going on to look at the second stage equation there is a 

further complication which needs to be considered. Equation (25) is a 

valid cointegrating regression involving five variables. In general, 

however, we would not expect it to be unique. It would have been quite 

in order to have used any of the four independent variables in (25) as 

the dependent variable in a regression. However, given the properties 

of OLS, the resulting equilibrium relationship implied by the regression 

would not normally be identical to (25). It is important therefore to 

know just how different the implied equilibrium relationship given by 

the different inversions of (25) would be. This question is 

investigated in table 4 below, which shows the various inversions of 

equation (25); the table actually shows the various regressions 

2 
rearranged so that LW is on the LHS for ease of comparison. R is the 

standard statistic associated with the regression. 
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Estimating the equation in its different inversions produces 

different estimates of the equilibrium parameters, as we would expect. 

The interpretation of this divergence is not entirely satisfactory at 

present; in the light of Stock (1985) theorem 3, which establishes that 

the estimates of the cointegrating regression are consistent but subject 

to a small sample bias, we would assume that the various estimates in 

table 4 are all estimating the same cointegrating vector and that the 

divergences are simply due to small sample bias. The properties of the 

OLS estimator are not well understood when the cointegrating vector is 

not unique, in this case it is possible to get estimates of differing 

cointegrating vectors in different inversions. It is possible to 

investigate this by using the Johansen estimator and test procedure. We 

would conjecture that even when the cointegrating vector is not unique, 

estimation by OLS is only likely to detect the cointegrating vector with 

minimum variance. It is not likely therefore to detect distinct 

cointegrating vectors. In the light of these problems, we will continue 

the estimation on the basis of the equation normalised on LW as this 

2 
gave the highest R . 

Table 4. The effects on the equilibrium relationship of changing the 

dependent variable n . 

—
c
 Coefficients 

Dependent Constant LP LPRODS UPC LAVH R
2 

variable 

LW 2.88 1.02 0.93 -0. 61 -1 . 79 0.9993 

LP 2.79 1.03 0.88 -0. 73 -1 . 78 0.9988 

UPC 1.74 1.20 0.85 -3. 52 -1 . 65 0.8508 

LAVH 6.89 1 .01 0.86 -0. 57 -2. 64 0.8096 

LPRODS 2.28 0.966 1.21 -0. 56 -1 . 66 0.9746 
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Now having achieved a suitable specification of the cointegrating 

equation we can proceed to the second stage of the Granger and Engle 

procedure. If we define Ζ to be the derived residual from equation (25) 

we may then include these residuals in a standard ECM model. In our 

case a fairly simple search procedure produced the following equation 

ALW = -0.007 + 1.04 EDP - 1.18 A
2
UPC - 0.98 ALAVH (26) 

(1.4) (6.0) (1.4) "
Ί
 (8.6) 

+ 0.22 ALW - 0.26 Ζ 
(2.9) ~

d
 ( 3 .3 ) 

IV estimates 

DW = 1.99 BP(16) = 23.7 SEE = 0.01285 

CHISQ(12) = 2 .3 CHOW(64,12) = 0.22 

Data period: 1965Q3-1984Q3. 

Instrumental variable estimation has been used, following the suggestion 

of McCallum (1976), to allow for the simultaneity in expected future 

inflation (EDP). Some noteworthy features of this equation are the near 

unit coefficient on prices and the good out of sample forecasting 

performance described by the CHOW and CHISQ statistics (derived from 

this model when estimated without the last 12 observations). BP(16) is 

the Box-Pierce test for a random correlogram. 

In order to get some idea of how influential the two-step 

estimation procedure has been it seems sensible to relax the restriction 

implied by the cointegration regression and estimate a free ECM 

equation. Exactly the same dynamic specification as equation (26) has 

been used, to give 
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ALW = 1.02 + 1.1 EDP - 1.3 A
2
UPC - 1.01 Δ LAVH 

(1.5) (2.2) (1.5) "
Ί
 (7.3) 

(27) 

+ 0.23 ALW_ - 0.28 LW 
(2.6) ~

d
 (2.1) 

+ 0.29 LP 
(2.2) 

-1 
-0.14 UPC 
(0.6) 

-1 
- 0.55 LAVH 
(2.0) 

-1 

+ 0.21 LPRODS 
-1 

(2.6) 

IV estimates 

DW = 2.03 BP(16) = 24.9 SEE = 0.01298 

CHISQ02) = 65.5 CHOW(60,12) = 6.5 

Data period: 1965Q3-1984Q3. 

The implications of this regression are somewhat different to (25) and 

(26). This equation would suggest dropping the level of unemployment 

altogether, even though table 2 showed that this had a major effect on 

the properties of the cointegrating regression. It is also interesting 

to note that the out of sample stability tests indicate considerable 

parameter instability for this equation. The coefficient on expected 

price inflation is also considerably larger than unity, suggesting that 

this equation does not exhibit derivative homogeneity in prices. If the 

object of this exercise were simply to carry out a normal estimation 

process, an obvious move at this stage would be to combine the levels 

terms in wages and prices into a real wage term. This restriction was 

easily accepted by the data and produced a large improvement in the 

parameter stability tests (CHISQ02) = 7.9, CHOW(60,12) = 0.75). 

However, the coefficient on expected price inflation fell to 0.82 and 

the level of unemployment remained insignificant. Finally, let us 

consider the static long-run solution to the model (27) 
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LW = 3.64 + 1.03 LP + 0.75 LPRODS - 0.50 UPC - 1.96 LAVH (28) 

If we interpret the parameters in table 4 as limiting bounds on the 

equilibrium sub-space then the coefficients on LP, LPRODS and LAVH all 

lie within this space, but the coefficient on unemployment is just 

outside the range suggested by table 4. 

In conclusion, while the concept of cointegration is clearly an 

important theoretical underpinning to the error correction model there 

are still a number of problems surrounding its practical application; 

the critical values and small sample performance of many of the tests 

are unknown for a wide range of models, and informed inspection of the 

correlogram may still be an important tool. The interpretation of the 

equilibrium relationship when it is not unique also presents some 

problems. Nevertheless in the example presented here the two-stage 

procedure seems to perform well and to offer a number of insights into 

the data in terms of the time series properties of the variables both in 

isolation and in combination. 

Cointegration and Dynamic Homogeneity 

In an important paper Currie (1981) considered some of the long-run 

properties of dynamic models which arise from the general polynomial 

distributed lag form of dynamic modelling. He pointed out that if the 

long-run properties of a model were to be invariant to the rate of 

growth of the steady state equilibrium, then a particular non-linear 

restriction on the parameters was implied. This restriction could be 

tested and, in the case of a single equation error correction model, it 
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involved only a simple linear constraint on the parameters. 

Hall and Drobny (1986) point out the implication of this analysis 

for the two step cointegration procedure which has been outlined above. 

They demonstrate that a possible conflict may arise between the long run 

solution of the first and second stage if a complex non-linear 

constraint is not imposed on the equation. In order to illustrate these 

propositions, we use a general formulation of a dynamic model, and 

relate this to the error correction model. An example based on the wage 

model used above concludes the section. 

Long-run properties 

Consider the long-run relationship between a set of variables which are 

all integrated of order 1(1); that is, the variables are stationary only 

after first differencing. If, on the other hand, stationarity is 

achieved by taking a linear combination of the variables expressed in 

levels form, then the variables are said to cointegrate. A crucial 

property of cointegrated variables is that they can be represented by an 

ECM. The Engle and Granger two-step estimation procedure builds on this 

notion. The first stage of the procedure is to estimate the following 

levels regression: 

where Y and all the X. 's are 1(1) variables, and U is an unobservable 

cointegration, then the a. (i=o K) coefficients are treated as 

ι » 
long-run parameters defining the equilibrium or long-run relationship 

Κ 

1 = 1 
(29) 

stochastic term. If equation (29) passes the usual tests for 
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between Y and the X^s. Further, successful cointegration of (29) 

implies that must be a stationary variable ( 1 ( 0 ) ) . The residuals 

from (29) are therefore also 1 ( 0 ) , and represent (stationary) deviations 

from the equilibrium relationship. The second stage of the procedure 

takes these residuals lagged one period ( V ^ ) and enters them into a 

typical dynamic equation such as: 

Ah - B0 V , <V Yt - J
 +
 / > A W + 0 V t-1 + et 

J=1 1=1 

(30) 

where is a white noise residual error. Notice that all variables in 

(30) are by construction 1 ( 0 ) . The close similarity between (30) and 

traditional ECM equations should be clear. The two types of equations 

are identical except that the residuals from (29) included in equation 

(30) replace the levels or error-correction part of the usual model. 

The long-run solution to equation (30) is (following Currie) 

Υ - α 0 • Σ α.Χ. • 0"
1
[(1 Ë B j ) Aï - É ΔΧ. f B j. - B Q] 

1=1 J=1 1=1 J=1 

(3D 

where ΔΥ = ΔΥ and ΔΧ. . = ΔΧ. in steady state, 
t/ it j ι 

The analysis below is motivated by considering the difference in 

the long-run solutions implied by equations (31) and (29). Engle and 

Granger*s elaboration of the two step procedure is based on considering 

1 ( 1 ) variables with zero mean drift. The assumption of zero mean drift 

implies that the expected values of the first differences of the 

variables in steady states are zero. Under this assumption the expected 
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value of the last term of equation (3) becomes B q in steady state, which 

may also be set equal to zero to give complete consistency between 

equations (29) and (31). 

However restricting the analysis to processes with zero mean drift 

does tend to reduce the applicability of the two step procedure. It is 

quite obvious that many economic series exhibit persistent trend like 

behaviour. "Over the last century, most economic variables have changed 

radically in mean and often in variance so that their first two moments 

are far from constant" (Hendry, 1986 page 201). It is precisely such 

variables which would be ruled out by the zero mean drift assumption. 

If however we relax this assumption then the last term in equation (31 ) 

will not generally be zero and so an obvious conflict may result in the 

implied steady state behaviour between (29) and ( 3 1 ) . If the final term 

in equation ( 31 ) equals zero, the equation is said to exhibit derivative 

homogenity. This may occur either because the first differences of the 

data have zero means or because the equation obeys a set of non-linear 

parameter restrictions which exactly set this last term to zero. The 

simple condition that this term is zero is a necessary condition for 

consistency between (29) and ( 31 ) but it is not sufficient. This is 

because there are many combinations of parameters and rates of growth of 

the variables which will set this term equal to zero while violating the 

levels equation. Equation (29), however, constrains the rates of growth 

of the variables to be in a fixed relationship. By taking the first 

difference of (29) we get: 

Κ 
Δ Y = 

i = 1 
l α. ΔΧ i 

(32) 
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To obtain consistency between (29) and (30) the rates of growth in 

steady state in (30) must obey the restriction implied by ( 3 2 ) . The 

appropriate restriction can then be derived in the following way. From 

( 3 2 ) , we may rewrite the last term in (31 ) as 

Ν Κ Κ Ν 

( 1 " S V · ΣΛ " W , ^ = "η ( 3 3 > 

J=1 1 = 1 1 = 1 J=1 0 

If we define: 

Ν Ν 
(1 - I B j> - Γ 0 and I B j. = Γ. 

J=1 J=1 

we may write (33) as 

Κ 
Σ 

i = 1 ~
 A A A

 0 

Equation (34) is then the general restriction which must hold for (29) 

and (30) to be consistent. 

Σ (Γ0α. - Γ.) ΔΧ. = Β (3Ό 

Equation (3^) is a highly non-linear restriction involving the 

steady state values, ΔΧ.̂ , which are unknown. There are however special 

cases of (3*0 which may be expressed as a linear restriction and which 

may be easily tested. The most natural case is to consider 

(Γ0α. - Γ Α) = 0 (1-1, ..., Κ) (35) 

and BQ = 0 . 

This may be tested by defining LZ^ = <*iAXi and estimating the following 

equation: 
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Ν Κ 
Δ Υ. = Σ (ΒΤΔΥ,_ . + Σ Ω ΔΖ.. .) + 0 Υ. , + ε. 

t τ_ι J t-j . _Λ iJ it-J t-1 t 

J—1 1—1 

(36) 

Ν 
The constraint that (Γ η - £ Ω . ) = 0 for all i is then equivalent to 

0
 J-1

 lJ 

(35). This is the restriction suggested by Hall and Drobny (1987) to 

obtain consistency between (29) and (30) above. Below is an example 

using and testing the restriction in (36). 

A more restricted, but still relevant special case is where the 

rates of growth of all the variables are equal in equilibrium. This 

might be the case for a nominal price system for example. In this case 

ΔΧ^ = Π for all i and so when B Q = 0, (3*0 becomes 

Κ 
I (Γα. - Γ ) = 0 , or 

i = 1 
(37) 

(38) 
Κ Κ 

Γï . \ ai ".î Γ, 
1=1 ι=1 

Κ 
If we now define ΔΖ. = Π £ α., and again estimate an equation such as 

1
 i=1

 1 

Κ Ν 
(36), then the constraint that r « Σ I Ω is equivalent to (38). 

0
 i=1 J=1

 lJ 

An Example 

In this section we provide a short example illustrating the imposition 

of derivative homogeneity on a wage equation estimated using the two-

step procedure. The example extends the a wage model presented 
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earlier. We did not address the question above of whether the series in 

fact exhibit zero mean drift. This question is investigated in the 

following table which reports the value of the constant from a fourth 

order autoregression of the first differences of the five variables 

entering the model. The constant should be insignificantly different 

from zero if the variable exhibits zero mean drift. In addition to the 

value of the constant we also present the Lagrange Multiplier test for 

serial correlation in the residuals of first, second and fourth orders 

(LM(1), LM(2), LM(4) respectively). 

Table 5. Testing the zero mean drift assumption 

Dependent Constant LM(1) LM(2) LM(4) 
Variable (t statistics 

in parentheses) 

ALW 0. ,013 (3.2) 4.0 4.3 4.6 

ALP 0. .004 (2.0) 0.02 0.06 1.4 

ALPRODS 0. ,001 (2.8) 0.8 0.9 4.0 

AUPC 0. ,0004 (1.7) 0.3 0.5 2.4 

Δ LAV H -0, ,0002 (0.1) 0.1 0.1 0.2 

Among the five variables considered in this table only LAVH is 

arguably not a zero mean series. LW, LP and LPR0DS are almost certainly 
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not zero mean series; this is of course hardly a surprising result as 

all three series show well defined long term trend like behaviour. 

The first stage, cointegrating regression is the same as that used 

in Hall (1986) although the sample period is different. The results are 

as follows: 

LW = 8.7 + 1.04 LP + 0.96 LPRODS - 0.75 UPC - 1.80 LAVH (39) 

Data period: 1967Q1-1986Q2 

CRDW = 0.77 DF = 4.33 ADF = 2.63 R2 = 0.9992 

RCO: 0.62 0.40 0.12 -0.05 0.04 0.02 

-0.02 -0.05 -0.07 -0.06 0.06 0.01 

We now proceed to transform the RHS variables of (39) by multiplying 

each of them by their coefficient. So let, for example, 

LP
T
 = LP χ 1.04 

This transformation has the effect of making all the coefficients 

in a cointegrating regression, when carried out with the transformed 

variables, equal unity. 

The following, unrestricted dynamic regression was then estimated 

with the transformed first difference terms: 
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ALW = 0.02 + 0.14 ALW + 0.47 ALP
T
 + 2.3 AUPC^ 

(3.3) (1.8)
 Z

"
d
 (3.3) (2.8)

 t _1 

-1.38 ALPRODS
1
 • 0.51 ALAVH

T
 - 0.29 RES (40) 

t / r, r\ \ ^ / h Λ \ t~" I (2.0) ° (7.9)
 u

 (4.0) 

DW = 1.9 LM(8) = 10.9 LM(1) = 0.18 

BP(16) = 2.70 SEE = 0.012 R
2
 = 0.71 

where RES is the residual from equation (39). 

The constraint that (Γ Λ - J Ω. τ) = 0 for all i would imply that 
0
 J-1

 lJ 

the coefficients on each of the first difference terms should be set 

equal to the sum of the coefficients on the ALW terms and that the 

constant should equal zero. Clearly the t-statisties for each term in 

(40) taken in isolation suggest rejection of the hypothesis. However 

the appropriate test is a joint test to see if all the constraints can 

be imposed at once as shown by equation (36) of section 2. This is 

accomplished by creating a new variable defined as 

S = ALW - ALP
T
 - AUPC

T
 - ALPRODS^ - ALAVH

T 

and then estimating a general regression of the form 

S = α (L)S. Λ + α. ( L ) Δ A LW. + a0(L)AALP
T
. + a0(L)AAUPC

T
. 

ο t-1 1 t 2 t 3 t 

a.(L)AALPR0DS
T
 + (WDAALAVH

7
 + β RES 

t j t t-1 
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where α̂ (ί,) is a lag polynomial. This equation now imposes the value 

of (1 - I<XQ) on all the long-run first difference terms. 

These sets of restrictions were applied to the variables included 

in (40), yielding the following restricted version of the dynamic 

equation (arrived at after a conventional testing down procedure)^
1
): 

S = 0.51 S. - 0.28 AALW - 0.54 AALP
T
 - 0 .37 AALAVH

7 

(4.3)
 t _1

 (4.2)
 t _1

 (3.2)
 Z

 (6 .3 )
 Z 

-0.44 AALPR0DS
T
 - 0.31 RES (41) 

(2.8)
 Ζ

 ( 3 . 9 Γ
 1 

DW = 2.0 LM(8) = 13.9 LM(1) = 0.23 

BP (16) = 22.6 SEE = 0 . 0 1 3 R
2
 = 0.520 

Equation (41) imposed five restrictions on (40): that the constant 

is zero and that the sum of the coefficients on each of the four 

independent variables equals the sum of the coefficients on the 

dependent variables. The F-test of the restricted equation (41) against 

equation (40) is F(5,72) = 2.16, which does not reject the restriction 

(1) The general equation included 4 lags on all the variables 

Τ 
(including AAUPC where the coefficients on all the lags were 

insignificant). 
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at the 5% level. Equation (41) is therefore completely consistent with 

the cointegrating regression (39), and thus the long run solution to 

(41) is (39). The long run dynamic implications of (41) are also 

consistent with it. This is not true of equation (40). The long run 

solution to (40) will vary with the steady-state rate of growth of wages 

and prices, which directly contradicts the equilibrium equation (39). 



Chapter 3 

1. Introduction 

This chapter considers material which is rather different from that in 

the other chapters and will explore the estimation and application of 

disequilibrium modelling techniques. The example of the labour market 

used in Section 4, however, will extend material used in Chapter 1 to 

the disequilibrium case. 

The concept of equilibrium is obviously an important one in 

economics but it is not entirely unambiguous. Equilibrium is sometimes 

taken to mean that demand is equal to supply (in all markets if more 

than one market is being considered); an alternative definition is that 

the economic system is
 f
at rest

1
 and so there are no forces tending to 

bring about change. These two definitions are not identical, we can for 

example consider the equilibrium position for a monopolist who fixes a 

market price subject to a known demand curve. The system has no 

tendency to move and is in equilibrium in the second sense but clearly 

demand does not equal supply and the first definition of equilibrium is 

inappropriate. This concept of an equilibrium which is defined by an 

absence of change is fundamental to much of the theoretical literature 

on disequilibrium or temporary equilibrium which has grown out of the 

work of Clower (1965) and Leijonhufvud (1968). 

In its most fundamental form we can model a market with the 

DISEQUILIBRIUM MODELS 

Ö9 
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following two equations 

1t (1) 

2t 
(2) 

Equation (1) is a demand curve, which relates demand for any good to its 

real price (P ), a set of other factors Ζ , which may be a vector, and 
t u 

U*lt a stochastic error term. Equation (2) similarly relates supply to 

the price of the good, a set of other factors and an error term u*2t. 

The coefficient vectors B1 and are such that the model is identified. 

These two equations are common to all forms of market analyses, the 

various approaches differing in their assumptions about what is observed 

and how the real price is determined. A full equilibrium approach, for 

example, would assume that Dfc = Sfc = Qfc (where Qfc is observed), and 

that the real price is determined simply where D = S . An assumption 

l> t 
of imperfect competition often amounts to assuming that the market is 

dominated by a monopolist (monopsonist) and that therefore we only 

observe points on the Demand (Supply) Curve, i.e. in the monopoly case 

Dfc = and the supply curve is unobservable. The distinguishing 

feature of the discrete disequilibrium approach is the assumption that 

the observed quantity actually being traded will always be on the short 

side of the market, that is 

The justification for this approach is based on the notion of voluntary 

exchange, a demand or supply curve may be thought of as defining the 

maximum amount of a good which will be exchanged voluntarily at a given 

Q t = Min(Dt, S t) ( 3 ) 
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price. If someone is offered a smaller quantity than he demands at a 

given price, he will generally accept this trade as profitable, but an 

individual will not generally purchase a larger quantity than indicated 

by his demand curve. 

In order to close the disequilibrium model it is necessary to make 

some assumption about the determination of prices. The usual assumption 

which is made is that 

so that if demand is greater than supply the real price will rise and if 

it is less than supply the price will fall. Equations (1)-(^) then 

constitute a full statement of the single market disequilibrium model. 

Over time the real price will tend to adjust to the market clearing 

price and the speed at which it does this is governed by Ύ. If Ύ 

becomes very large the disequilibrium model will move very quickly 

towards equilibrium. If Ύ is small then disequilibrium will persist 

for a considerable time. One of the advantages of using an empirical 

model based on (1)-(4) therefore is that the estimate of Ύ will give us 

an indication of how closely the model approximates a market clearing 

model. 

In this chapter we will be concerned with describing and estimating 

explicit disequilibrium models. For the single market, these, in 

essence, will convey two things. Firstly, they estimate the underlying 

demand and supply functions together with a price adjustment equation 

P
t •

 P
t-1 -

 Y ( D
t - V + V ¾ > 0 (1) 
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for that market. Secondly, they allow for discrete switches to take 

place in the regime - be it a demand or supply constraint in that 

market. The advantages of such an explicit recognition of 

disequilibrium to more informal notions of disequilibrium are obvious. 

One is that it is possible to place rival views about equilibrating/non-

equilibrating models within a general disequilibrium model and test for 

the presence of discrete regime changes and the speed of adjustment. 

Furthermore, incorporating discrete switches in regime is an advance 

over the sort of modelling which simply introduces an activity variable 

into a behavioural equation, attributing to this the characteristics of 

a non-Walrasian function with spillover. The limitations of this 

latter, very widespread, practice is that it leaves unspecified the 

analytics of spillover effects between markets, and hence cannot be used 

as a test of them. It also assumes, by implication, that a particular 

regime is in force throughout the sample period, and again, does not 

test this key assumption. Thus the use of measured output as an 

additional variable in a Walrasian labour-demand equation entails that a 

goods market constraint is in force throughout the sample. A two-market 

disequilibrium model in contrast could adjudicate on the realism of this 

assumption, (An account of the multi-market case with explicit 

rationing is given in section 2B). 

In the remainder of this chapter we describe some of the analytics 

of the disequilibrium approach (section 2) and outline some estimation 

procedures (section 3). Then in section 4 we describe the application 

of some of these concepts and techniques to the labour market using the 

UK as our example. 
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2. Disequilibrium models 

A. The single market 

To start with we look at the simplest case, that of disequilibrium in a 

single market. The extension of the multiple markets is described 

later. 

While the theoretical literature on disequilibrium models has grown 

very quickly over the last 15 years, examples with empirical 

applications of the approach have been sporadic. The reason for this 

lies in the difficulty of actually estimating a model of the form (1)-

(4) where we do not know
 f
a priori

1
 whether an observation Q̂ . should be 

assigned to the demand curve or the supply curve. The paper which 

founded the work on empirical applications is Fair and Jaffee (1972); 

this paper considered a model like (1)-(4) except that (4), the price 

equation, was assumed to hold exactly. This meant that the direction of 

price movements could be used as an exact guide as to whether the 

observation was on the demand or supply curve. To see what this entails 

we can rewrite (4), if U = 0, as 
3t 

Now when Dfc < S t, Q t - S t • (Dfc - St> - Sfc + - ΔΡ. 

So that when D < S we can write (1) and (2) as 

1t 

2
P
t

 + B
2

Z
t
 +

 7
 A P

t
 + u

; 2t 
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Similarly when S t < D t> Q t » Dfc + Dfc - S t 

Q = D + — ΔΡ , 
t Ύ t' 

Thus the model is 

Q
t -

e
i

p
t
 + B

i
z
t * 7

A P
t
 + u

it 

Q
t » *2

P
t
 + B

2
Z
t
 + U

2t 

These two sets of equations can be re-expressed as one by defining two 

new variables 

ΔΡ if ΔΡ > 0 
t x> 

0 otherwise 

A P FC if Δ Ρ < 0 

0 otherwise 

Using these conventions the whole model can be estimated by instrumental 

1 2 
variables (to allow for the endogeneity of P̂ ., APfc and ΔΡ^.), i.e. by 

estimating, 

Q
t -

a
i

p
t
 + B

i
z
t
 + 7 A P i + u

n 

Q
t -

 a
2

p
t
 + B

2
Z
t
 +
 \

 Û P
t
 + u

2 f 
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This solution to the switching problem is undoubtedly very elegant but 

it rests on two crucial assumptions; the first is that U = 0 and the 
j t 

second that nothing other than (D^ - S^) affects the real price. Both 

of these assumptions are unlikely to be realistic and it is for this 

reason that the Fair-Jaffee approach has been used to only a limited 

extent. An alternative approach to the Fair-Jaffee technique was 

proposed by Maddala and Nelson (1974) who were able to derive the 

appropriate density function for a model such as (1)-(4). This made it 

possible to carry out maximum likelihood estimation of such models, and 

it is this approach which has formed the basis of most empirical 

applications and is one which we will use here. A survey of much of 

this literature may be found in Quandt (1982); we will provide a 

detailed account of the derivation of the likelihood function in section 

3 below. 

Given the extreme complexity of the full switching likelihood 

function, it is perhaps not surprising that alternative methods have 

been suggested for estimating disequilibrium models. The main 

alternative is discussed and applied to the labour market by Andrews 

and Nickell (1986). Its genesis can be seen partly as a response to the 

difficulty of full maximum likelihood estimation, and partly in response 

to the assumption of the discrete switching model that the whole market 

could be treated as a homogeneous unit. This alternative approach views 

the aggregate market as being composed of many sub-markets, each of 

which may be in disequilibrium. The aggregate market then contains 

elements, some of which are demand constrained and some of which are 

supply constrained. In constrast the single aggregate switching model 
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assumes that all parts of the market are either demand constrained or 

supply constrained at one time, while the disaggregated approach allows 

sub-sections of the market to be in different regimes. 

It is perhaps worth noting that the assumption in the aggregate 

switching model that there is a homogenous market is common to many 

widely used modelling approaches, of both the competitive and non-

competitive types. It might also be argued that if aggregation has such 

important consequences then perhaps the answer is to model the 

disaggregated sub-markets in isolation. 

To compare the disaggregated disequilibrium model with the 

aggregate model, let us briefly consider the labour market case. In the 

disaggregated labour market assume there are Ν separate markets, but 

also that there is a uniform wage. The i
t h
 market demand and supply of 

labour is then 

= Χ·α + U + U. (i = 1 , N) 

n
s
 = Z'B • V + V. 
ι ι 

where X and Ζ are sets of regressor variables including the real wage, U 

and V are white noise error terms, and U\, V\ are independently 

distributed between i. Aggregate employment is given by summing across 

markets in excess supply (i ε U) and those in excess demand (i e C), 

i .e. 
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η - Σ (Χ'α + U + U.) + Σ (Ζ'β + V + V. ) 
t
 ΐεϋ

 1
 ieC

 1 

= λ Ν(Χ'α + U + f 2) + (1 - λ) Ν(Ζ'β
 +
 V + f ) 

λ is the proportion of markets in excess supply, f ? = Σ U. (AN)
 1 

H Ιεϋ
 1 

and f^ = Σ V. ((1 - λ)Ν) , where Ν is the number of markets and is 
5
 ieC

 1 

'large'. Assuming the errors are bivariate normal, with zero mean and 

parameters (σ^, σ^, p)» then the model of employment can be written 

n t = (Χ'α + U) - g(ΥΎ + η; (5) 

where g is a function of ΥΎ + η which, in turn, is 

ΥΎ + η = Χ'α - Ζ'β + U- V 

2 2
 1

Â 
and where = Ν(σ^ + ~ 20^0^?) 

(see Andrews and Nickeil, 1986 for full details). Then equation (5) may 

be reinterpretated as the aggregate demand for labour (which is the 

first term on the RHS) and a function g(.). One of the appealing 

features of this model is that if g(.) is zero, the model reduces to the 

equilibrium model. On the other hand if - which concerns the 

variability of disequilibrium across markets - is zero, then (5) is 

similar to the disequilibrium model reviewed earlier, in that it implies 

a demand side determination of employment during times of excess supply 

and contra. However, although this model appears to incorporate the 

discrete switching model as a special case, such a conclusion is 

unwarranted for several reasons. Firstly, the disaggregated model just 

described implicitly assumes a fixed allocation of disequilibria across 
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markets which is constant throughout the sample. The parameter λ is 

fixed in other words. This assumption can be relaxed somewhat if a time 

series of λ is known, but this adds little to the model. Thus regime 

changes which are such an important characteristic of the discrete 

switching model, do not occur in the present case. Secondly, the 

specification of the price adjustment model does not arise naturally in 

this model, unlike the case of the discrete switching model, and ad hoc 

formulations are used. Finally, although it is often the case that 

estimating the discrete switching model poses considerable difficulty, 

the present model if anything appears more difficult. Particular 

difficulty arises with the estimation of the crucial parameter, 

which is a pity, given its potential role in selecting between 

alternative disequilibrium formations. (See Andrews and Nickell, op. 

cit. for an example illustrating the problems in identifying this term.) 

B. Multi-market disequilibrium 

The theoretical literature on disequilibrium has stressed the 

interactions between markets; this is sometimes referred to as 

1 spillover* effects from one market to another. So, for example, if 

individuals are constrained in their supply of labour in the labour 

market then this will be reflected in the goods market by an effect from 

their income limiting the demand for goods. The empirical literature 

has concentrated to a large extent on single market models, where the 

implicit assumption is that other markets in the system are not allowed 

to switch regime. This is clearly a very serious limitation and in this 

section we will discuss the extension of the single market switching 

model to the two market case. Within this limited framework, the 
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Clower/Leijonhufved, dual decision hypothesis for the single time period 

is fully confronted (see for example Gourieroux et al, 1980). For the 

two agents involved in the model, households and firms, we distinguish 

Walrasian and fixed-price equilibria. These latter arise when one or 

both agents face a non-Walrasian constraint in at least one market: 

goods or labour. Thus the Walrasian program for the consumer is the 

solution to 

Max U (M/p, C, L) where C = consumption 

L = labour supply 

M/p = real money balances 

subject to the constraint 

pC + M = wL + Π + Mo w wages 

Π = distributed profits 

Mo = initial money 

balances. 

The alternative program results from introducing a further constraint 

pC + M = wL + Π + Mo, where L £ L 

Here L is an additional constraint, produced, for example, by excess 

supply in the labour market. In the Walrasian case, consumption is 

C
w
 (p, w) 

and in the constrained case, we have instead 

C
C
 (p, w, L) 

In general terms then we can invoke a dependence of decisions in one 

market upon transactions in the other; these are spillover effects. 
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Hence, we may define the constrained decisions (see Gourieroux et al, 

op. cit.), where the goods market is market 1, and labour is market 2, 

as 

a] Q 2 + 61 (p, w) 

ß 1 Q 2 + λ1 (ρ, w) 

α
2
 Q

1
 + δ

2
 ( ρ

'
 W) 

l
2
 Q

1
 + λ

2
 ( ρ

'
 W) 

These equations express the general idea of constrained demand and 

supplies. Thus the first equation, for example, defines a case where 

the demand for goods is constrained on the labour market by Q^. The 

coefficient then indicates the spillover effect from one market to 

the other. Four regimes of fixed price equilibria are then possible 

(1) Repressed inflation 

S
1 ' •

 Q
1 " 

6, S 2 
+ λ

1 

S
2 " '

 Q
2 * 

ß
2
 S
1 

+ λ
2 

D
1 " 

1 D
1 " 

( 1 - α ι6 2) 

D
2 • 

1 
(δ 2 + a 2 λ 

D
2 • 

( 1 - a ^ ) 
(δ 2 + a 2 λ 
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(2) Classical unemployment 

D
1 

= «1 D
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(3) Keynesian unemployment 
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(H) Underconsumption 

S, = β, s 2 • λ, 

D 2 = a 2 D, + δ 2 

D^ = ( 7 ^ ) ( V 2 + V 

S
2
 =
 ( i ^ )

L L
2 .

 ß
2

S

1

) 

The important thing to emphasise about these formulations is that they 

and 
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are representations of fixed price equilibria for the unit period. In 

this, essentially static, framework a meaningful reduced form to the 

model occurs if the model is 'coherent
1
 (Gourieroux et al, op. cit.). 

This means that the model, which is globally non-linear, but piecewise 

linear, may yield determinable comparative static results for changes in 

exogenous variables (contained in the λ (.), δ (.) functions in the 

equations above). Gourieroux et. al. show that in the two-market case 

these coherency conditions are equivalent to local stability conditions 

for quantity adjustment. 

The trouble with these models lies in their static formulation. 

The solutions considered so far are described as 'temporary equilibrium 

with quantity rationing' (Muellbauer and Portes, 1978), and the system 

is thought of as being at rest (i.e. in equilibrium in that sense) 

although markets do not clear. There are two ways in which this feature 

may be amended. First, as for the single market case, a set of price 

adjustment equations is appended to the model, i.e. 

ΔΡ - Ύ [<D - S), Ζ : U ] (6) 

Ρ is a vector of prices, Ύ a matrix of adjustment coefficients, (D - S) 

a vector of excess demand terms, Ζ is a set of variables independently 

affecting P, and is a vector of error terms. It might be noted in 

passing that this is invariably the form in which the single market 

model is estimated. It is an ad hoc formulation however, though it 

might be observed that pretty well all dynamic models (explicitly 

disequilibrium or otherwise) use something like this. The voluminous 
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Phillips Curve literature is but one case in point. At a more 

fundamental level dynamic issues are concerned in the micro foundations 

of inter-temporal household and firms decisions when faced by these 

additional constraints. Muellbauer and Portes (op. cit.) for example 

introduce inventories into firms
1
 behaviour, attributing to these a 

buffer stock role. The given constraint Q 1 in the goods market is then 

a perceived sales constraint. If this is in error, unexpected sales can 

be met from stocks. It is also not hard to see that the role of the 

buffer stock is to enable the firm to learn (converge onto) the correct 

sales constraint. The rigorous development of such a joint model with 

inter-temporal optimising in the light of quantity constraints is 

extremely difficult, and has not yet been achieved. 

3. Estimation methods 

We next outline maximum likelihood methods of estimating the 

disequilibrium model, and these are the techniques used in the empirical 

examples later. For this, we revert to the single market case, since 

our empirical examples will be exclusively single market ones. Let the 

model be 

1t 
+ U. 

1t 

2t 2t 

a 3(D t - S t) + Ρ 

Min(Dfc, S t) 

a(t)Pt + B(t) 

t-1 
+ b 

3t 
+ a 

3t 
(7) 
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In this model t>1t, b ^ , b^ t are linear functions of exogenous variables 

with coefficients to be estimated, and we have adopted this convention 

to simplify the subsequent notation. 

σ
2
 0 0 

0 σ
2
 0 

Ό 0 σ
2 

Assuming the observations are independent, the log likelihood function 

is 

Assume ( U u, U 2 t, U ) Ν | 0, | 

Σ In h(Qt, Ρ ) where 

h ( Qf Pt) • Jqt

 g ( Df V Pt 
and g(D , Q f cl Pfc) is given by 

)dD 1Q *(Qf V VdSt 

(1 +
 a
3^

a
2 "

 a

1

0 t
(

t
)))

 e x
P 

(2Π)3/20ι a^ 0 

[l(U1t'U2t'V| 

2 
σ 0 0 

2 
0 σ 2 0 

0 0 σ. 

2t 

' 3 t 

(8) 

(9) 

= J(t) exp (-]_ Ε ) say. 

Now E(t) - ̂  <Dt - ̂  - b u )
2
 + ̂  (S t - a 2P t- b 2 t)

2
 . 

2 1 

1 

+ ^ (Pt"a3Dt + a

3 V
p t - r b 3 t ) i 
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For the first integral, replace S by Q , then E(t) becomes 

7* ( W Î - V 2 + i ( q f a ^ ' 2 t 

1
 2 

1 2 
— (P -a D +a 0 -P -b ) 
02

 Kr
t 3 t 3 t t-1

 ü
3 t
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Vt + 2 A2tDt + A3t 

1 a
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where A, = ρ + 3 
1 O

D
 -4 1 ? 

. . _L (a,?} + b1 4. ) - (P + aQQ. - P. , - b Q. ) A^t p 1 t 1t p t j t t-1 3t 

1 3 

A 
Ι 1

 1 

». - ρ it it t 2 t 2t 
3t 2 

J. (P + a Q - Ρ - b _ )
2 

ρ t 3 t t-1 3t 
0
E
-

3 

A
1

D
t
 + 2 A

2t
D
t
 + A

3t =
 A
1

( D
t
 +
 ^ t

) 2 + B
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A
1
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1 

So the first integral of (8) is 

J(t) f" exp [-
 A
1 (D. +

 A
2t)< 

J Q
t ~~2 A. 

Β 1t] dD^ 

J(t) exp ( -
 1

2 B U ) exp [- ^1_ (D.. +
 A
2 t )2 ] 

105 
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Putting χ = A^ (D +
 A
2t, . . . 

1 t - τ — ) , this integral may be written as 
A
1 

J(t) exp (- pu) (;^(Qt + J2t } exp ( - ^ ) j_ dx 

= J(t) exp (- ΓΒ14.)Α^ [1 - Φ(1 )] ( 2 Π ) * 
D 11 ι It 

where 114_ = (Q. +
 A
2t). 

1t 1 t -η-

For the second integral of (8), replace Dfc by Qfc. Then E(t) becomes 

^<ννί-ν2 + i ( v a

2

p

t - v 2 + 

1
 2 

i ( Pt- a3 Q t + a

3V
P t - r b3t ) 2 

" \ S T + 2 A5t St + A6t 

2 
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1
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A
4 

where B_. = A,. - A
2
 δ . 

2t 6t
 A

5t =
 A
4A 6 . A2 

5t 
A
4
 A

4 



Ch. 3: Disequilibrium Models 107 

So this integral is given by 

J(t) f°° exp [- % (S. + St)2
 - ̂ 2t] dS. JQt 2

 r
 A 4 2

 Z 

= J(t) exp ( - U0.) f" exp [-
 A
4 (S. •

 A
5t)

2
] dS. 

J Qt 2
 t

 A 4 * 

Putting χ = A^ (S + 5t), the integral is 
A 

1 1 
J(t) exp (- g B 2 t) A^ [1 - Φίΐ^)] (2Π)* 

where 1_ = Ajf (Q +
 A
5t). 

2 t 4 fc 

Thus h(Qt, P t) = 

J(t)(2n)

1^£^lt (1.φ(1 )) + A < i - .U l t> 

A*
 U

 A* 
A
1

 A
H 

(10) 

Assuming the observations are independent, the likelihood function is 

Τ 
L = Σ In h(Q , Ρ ), wnere Τ is the sample size, 

t t t 

Two extensions to this basic model may be mentioned. These are, 

firstly, the multi-market case and secondly, the presence of lagged 

endogenous variables. The first is discussed in Gourieroux et al (1980) 

and in Quandt (1983), though we also refer to a somewhat simpler 

approach by Maddala and Chandra (1983). The second is discussed by 

Laffont and Monfort (1979). 



108 S.G. Hall and S.G.B Henry 

(i) Multimarket disequilibria 

A typical model may be written (see Quandt, 1983) 

Y
1 « V + U

1 

Y 2 = α 2Ζ + U 2 

Min(Y r Y 2) 

Z
1 «

 a
3

Y + U
3 

Z
2 » V + U

H 

Min(Z1f Z 2) 

The Min condition determines the observed value of the dependent 

variable in the i ^ market which goes into the functions in the j
t h 

market, and contra. The four possible regimes for this model are given 

by the convex cones, 

'
 ( Y
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Z
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Each regime implies a linear mapping of U (the error vector) onto the 

vector of dependent variables V = (Υ , Υ , Ζ , Ζ ). Thus, for example 

— 

1 0 
"

a
i 

0 Y
1 

U
1 

0 1 0 Y
2 

U
2 

0 1 0 zi U
3 

0 0 1 Z
2 

or A 1 γ = U, 

is the regime given by C above. The general mapping of U onto V is 

and 

(11) 
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The derivation of the required density function for the multi-

market model above then proceeds by extension to the single market case 

already discussed. Thus under C i the pdf of V is 

I det (Α.) I g (Α. V) 

where the pdf of U is defined as g (U). Hence the joint density 

function for the unobserved variables (Y, Z) is 

h (Υ, Ζ) = / ... / I det (A^ g ( Α Γ ν Ί) I dY 2 dZ 2 + ... + 

Y 2 > Y 

z 2 > Ζ 

* I ... S det (A4) g (A^, V^) dY1 dZ1 

Y 1 > Y 

Ζ > Ζ 

i.e. the integral evaluated under C , Ch. (See Quandt, 1983) 

f = Σ Α Ι (12) 

where I = 1 if V ε C., 
ι 

= 0 otherwise. 

As noted earlier, Gourieroux et al (1980) derive conditions under which 

this function is coherent, i.e. essentially the conditions under which 

the function f is one to one, so that, given a pdf for U, the pdf of V 

is defined. 
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In this expression V· (Y, Y 2, Z, Z 2) ; = (Y, Y 2, Z-, Z), 

(Y Z 2) and VjJ = ( Y r Y, Z y Z). 

Note that the extension of the model can allow for price adjustment, in 

a way that we have described earlier for the single market case. 

However, as the existing formulation makes clear, the multimarket case 

is highly complex, and likely to be very expensive to compute. For 

example, Τ observations require the calculation of 4T double integrals 

per evaluation, and given that numerical approximations must be used for 

these models, this puts severe limits on the size of the model which 

might be estimated. Goldfeld and Quandt (1980) suggest a two-market or 

possibly a three-market model is the maximum feasible size. (See Artus 

and Muet (1983) for an empirical illustration of a model with several 

regimes.) 

(ii) Lagged endogenous variables 

Problems arise in the disequilibrium model if the demand and supply 

incorporate lagged dependent variables, such as 

Since with the operation of the Min condition Qfc = Min (D, S) only the 

exchanged quantity Qfc is observed, implying that the lagged endogenous 

variables are non-observable. Lafont and Monfort (1979) discuss 

conditions under which such a model might be estimated. It should be 

+ U. 

(13) 
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emphasised that this situation does not arise in the next section 

however where we use dynamic equations for the labour market in an 

empirical application. There the employment decision is subject to lags 

due to adjustment costs on actual employment (net employment in fact, 

though that does not affect this point). In consequence, actual lagged 

employment appears as a regressor variable, and this is observable. 

4 . The specification and estimation of a disequilibrium model of the 

labour market 

The rest of this chapter brings together some of the points already 

discussed in an application of the disequilibrium model for the single 

market to the case of the UK labour market. This section first 

discusses the detailed specification of the demand and supply of labour, 

and later sections provide results. The model of labour demand in 

chapter 1 which uses forward-looking expectation formation, is again 

used here, to provide comparison of the rival estimation methods for 

this equation. 

(i) The model 

It is fair to say that most, if not all, estimated disequilibrium models 

of the labour market are based on a simple static neoclassical model of 

both demand and supply. Apart from the Min condition, the only 

difference from the standard model is the inclusion of the level of 

output in the demand function. A typical example would be 
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E
D
 - a Q + a] (W/P)

1
 + a 2Q + a t + U D 

(14) 

3 0 + 3 1 (W/P) + ß 2B + 3 3P + U s 

In this model, (W/P)
1
 is the real product wage, Q the level of the 

output, (W/P) the real consumption wage, Β the replacement ratio, Ρ the 

population of working age and t is a time trend. (For a recent example 

of such a model used in a disequilibrium study, see Smyth, 1983 . ) 

(a) The determinants of the demand for labour 

The role of Q in the demand function is evidently to incorporate an 

element of dual-decision behaviour, since in this model it represents 

the quantity constraint in the goods market. It is of course possible 

to introduce output into a profit maximising employment rule without 

assuming quantity constraints. For example, Rosen and Quandt (1978) use 

the production function to substitute out the capital stock in the 

marginal productivity of labour equation. This is not a very 

satisfactory procedure, to fully implement the dual decision hypothesis 

two markets, with quantity rationing being possible in each, are 

required. We will not follow this procedure due to the difficulty in 

providing aggregate demand and supply models of the goods market. So 

what we use is in the nature of second best procedures. We simply note; 

firstly, if the goods market is in excess demand so that the supply of 

goods is not constrained, this implies that profit maximising leads to 

the first order condition for labour 
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f- ((W7P)\ Pm/P, ...) 

where (W/P)
f
 is the real wage, Pm/P the real price of raw material 

imports, and we are assuming a two factor production function dependent 

on labour and raw materials (capital services could be separable for 

instance). 

Alternatively, if the goods market is in excess supply, a sales 

constraint operates on the firm, and its factor demand for labour 

parallels those produced by the familiar cost minimising subject to a 

sales constraint, so 

in this case, where Q is perceived sales (since we ignore inventories, 

we equate this with output). 

As a statistical procedure we will use a composite function of the form 

which nests the unconstrained case (Q = 0, W/P = Pm/P 4 0) and the 

constrained case (Q 4 0, W/P = - Pm/P). But in this formulation, regime 

switching in the goods market within the sample period is ruled out, so 

that for example the finding of a significant effect on Q implies a 

sales constraint (possibly of a varying form) holding throughout the 

sample. The demand function we take is 

E
D
 = f 2 (W/Pm, Q) 

f. (W/P, Pm/P, Q) 
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E
t •

 α
0
 + a

1
 ( W / P )

t
 + a

2
Q
t

+ a
3

t + a
^
 E
t-1

 +
 *5

 E
t-2 

+ a 6 (Pm/p)t (15) 

where 

(1) Labour input is measured by numbers employed, so the hours 

dimension is ignored. (See Hall, Henry, Payne and Wren-Lewis, 1985 for 

this extension however.) 

(2) Implicitly, the model assumes a production function dependent upon 

the capital stock, labour input (employment) and raw material inputs 

(including energy). In all subsequent discussion we will assume that 

the labour/materials decision is made independently of the optimal 

decision by the firm regarding its capital input. Capital is thus taken 

to be predetermined, and is represented in the empirical applications 

reported below by a time-trend. 

(3) Lags appear in the equation because we assume there are quadratic 

costs of changing employment. As we described in Chapter 1, such an 

assumption implies that forward expected values of price terms (assuming 

inter-temporal profit maximising subject to a technology constraint) 

occur in the optimal decision rule, i.e. (ignoring error terms, and 

taking the first order case for simplicity). 

E t = (Ύ 0 λ ) "
1
 E t_ 1 • Ύ 1 t (λ)"*"

1
 (Y,t +1 g (.)) (16) 

where λ is the unstable root, Ύ is a vector of parameters depending 

upon underlying cost structures, and g (.) are the relevant forcing 

terms including real price and output terms. 
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If the g (.) are exogenous to the firm's employment decision, and 

representable by a time-series model, say by vector AR (η) process, then 

the forward terms in g (.) may be substituted out in terms of lagged g
f
s 

and the resulting equation may be efficiently estimated if the implied 

restrictions in the reduced form equation are applied. In our 

application with lagged output, we will assume that substitution has 

been effected, though we will not attempt to apply restrictions in 

estimation. (The resulting equations may at best be only consistent.) 

Q 
(4) The role of expected output Q needs further clarification. The 

interpretation placed on it here is that it represents an output (or 

more properly a sales) constraint operating in the goods market. A 

separate model for output is then required. 

Applying the substitution method using a complete dynamic 

macromodel, assuming forward expectations, is computationally 

formidable, a problem we have discussed extensively in chapter 1. So 

here again we use the method described in that chapter which essentially 

replace the unknown future expectations by generated or predicted values 

derived in turn by a first stage estimation procedure. 

As before, in the present application we assume that agents use a 

subset of variables from which to produce expected values of output, and 

we again assume that the employment decision depends on expected 

variables over a four quarter planning horizon. To repeat, for 

convenience, what we described in chapter 1, we assume equations for the 

expected regressor variables Q, of the form 
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«t • triy z t + \ ^ 

where is taken to be a set of variables considered by the typical 

agent to be important in influencing aggregate activity. These are 

assumed to be the real adjusted fiscal deficit (BD) and competitiveness 

(C). Since lagged values of Ζ occur in (17), we need equations for Ζ to 

produce sufficient future leads of Q. These in turn are taken to be 
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The model to be estimated is then the employment equation (15) and the 

VAR model (18) for the expected regressor variables. 

When estimating the employment equation the backward/forward 

restriction as implied by the optimising theory are applied. In these 

examples we again use the numerical procedure which is outlined in 

chapter 1. 

(b) Inter-temporal theory of the household, and the determinants of the 

supply of labour 

Labour supply is taken to be 

. . . & é Ë _ , . . . . 

... ο ι Λ_ , • ... 

... d 1 pBD t_, • ... 
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Apart from the real consumption wage and the working population (W/P and 

POP respectively), other variables used in the supply function are 

( 1 ) BN. This is the real value of unemployment benefits. It enters 

here separately, though sometimes the replacement ratio (benefits 

relative to net income in work) is used. In our specification this 

would hold if B 1 = - ß 2. (See Andrews, 1 9 8 3 . ) 

(2) UP. Union power is often incorporated in a supply function to 

proxy possible effects of unions on restricting entry (e.g. closed shop 

arrangements). In real wage equations with a bargaining interpretation 

the role of the union is to exact a monopoly price (real wage). Again 

this would have negative effects on the supply of workers in the union 

sector. More generally it produces an upward shift in supply implying 

higher real wages in aggregate at given employment (if the increase in 

the union wage exceeds the decrease in the non-unionised wage, suitably 

weighted by employment proportions in the two sectors). 

( 3 ) RRI. The real interest rate enters via the inter-temporal supply 

of labour analysis suggested by Lucas and Barro. Here an increase in 

the real interest rate increases current work effort and decreases 

future effort. That is to say, the discounted value of future output 

foregone (by increased future effort) is reduced as the real interest 

rate rises. This enhances future leisure relative to current. 

There may be lags in supply of labour due to, for example, loss of 

seniority rights, imperfect capital markets, and so on. We allow for up 
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to two lags to provide a fairly rich dynamic specification. 

(ii) Disequilibrium estimate of the model 

In full, the labour market model we estimate is 
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(W/P)^ = α (W/P)t 
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In these equations (W/P)
1
 is the demand price of labour, given by gross 

earnings per employee plus employer taxes deflated by producer prices. 

The variable Q is expected output (= expected sales), described 

earlier. Real raw materials and energy prices in real terms are given 

by Pm/p. Finally, the remaining variable in the demand equation is time 

(T). The supply function includes the supply price of labour (the net 

level of earnings per worker deflated by the price of consumer goods), 

the real level of unemployment benefit (BN), the working population 

(POP), a measure of union strength (UP) and the real interest rate 

(RRI). In the last equation, NTAX is employers' tax as a proportion of 

employees' income, and IP is an incomes policy variable reported by 

Whitley. (This is described in Whitley, 1983.) 

Table 1 presents the results for various forms of the model given 

in equation (20). In the results for the demand function, expected 
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Table 1. Estimates of the Disequilibrium Model 
Sample 1965Q4 ~ 1982Q4 

Parameter Spcfn.d) (2) (3) (4) (5) 

0.14 0.14 0.164 0.095 0.300 
u (0.8) (0.91) (1.13) 0.74) (2.008) 

A
1 

-0.0012 0.012 0.002 -0.02 -0.002 
1 (0.07) (1.02) (0.194) (1.90) (0.245) 

A
P 

0.06 0.037 0.063 0.047 0.047 
D (4.85) (4.77) (5.33) (6.00) (4.17) 

A
3 -0.003 -0.00004 -0.0003 +0.000 -0.0003 
3 (3.0) (0.5) (4.54) (0.79) (4.18) 

1.63 1 .56 1 .603 1.578 1.514 
(128.5) (53.34) (69.73) (36.42) (175.72) 
-0.72 -0.61 -0.0069 -0.009 -

5 (21.1) (15.1) (17.32) (43.29) (18.34) 

- - 0.0069 -0.009 -
0 (1.447) (1.76) 

B n 
-0.06 -0 .31 -0.058 -0.286 -1.334 

U (0.4) (1.5) (0.71) (1.24) (14.6) 

B1 
0.08 0.08 0.081 0.085 0.049 

1 (4.7) (3.7) (4.81) (4.32) (2.32) 
B9 -0.04 -0.04 -0.043 -0.041 -0.041 
I. (4.6) (1.87) (4.24) (2.08) (4.03) 

1.12 1.18 1 .125 1.179 1 .318 
3 (27.3) (21.56) (59.302) (15.749) (14.51) 

B
ü -0.18 -0.19 -0.18 -0.191 -0.363 

(16.1) (5.7) (12.78) (6.26) (10.21 ) 

B
5 : 

— — 

: -0.137 

B
6 

B
7 - - - - -

c n 
0.029 0.03 0.0278 0.03 0.030 

U (6.3) (6.3) (6.33) (6.46) (6.46) 
C
1 * 0.22 0.24 0.217 0.253 0.219 
1 (1.43) (1.93) (1.738) (2.01) (1.929) 

c p -0.07 -0.104 -0.08 -0.119 -0.044 
2 (0.2) (0.32) (0.24) (0.369) (0.149) 

c, -0.65 0.647 -0.65 -0.64 -0.653 
3 (3.58) (3.5) (3.57) (3.557) (3.69) 

0.0068 0.007 0.007 0.007 0.007 
(5.17) (5.2) (5.15) (5.21) (5.05) 

Log L.F. 626.35 625.71 627.34 626.84 626.43 

Odd numbered columns use lagged output as a regressor. The remainder 

use the VAR model. 
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Table 1 (cont) 

A
o 

A
1 

A
2 

A
3 

A , 

A
5 

A
6 

B
0 

B
1 

B
2 

B
3 

B
5 

B
6 

B
7 

C
0 

C
1 * 

C
2 

C
3 

Log L.F 

Spcfn.(6) (7) (8) (9) (10) 

0.141 0.177 0.173 0.308 0.179 
(1.02) (1.14) (1.08) (2.2) (1.3) 
-0.006 0.0017 -0.014 -0.001 -0.006 
(0.056) (0.014) (1.0) (0.1) (0.6) 
0.028 0.051 0.037 0.05 0 .028 
(4.60) (4.2) (4.5) (4.0) (4.4) 
-0.0001 -0.0003 -0.0001 -0.0003 -0.0001 
(1.57) (3.9) (0.6) (4.0) (1.7) 
1 .52 1.637 1.58 1.48 1.49 

(75.48) (117.2) (182.7) (149.0) (85.0) 
-0.579 -0.724 -0.64 -0.60 -0.55 

(31.1) (21.1) (20.25) (18.7) (23.5) 

-1.24 1.137 -0.94 -3.4 -3.78 
(19.96) (4.2) (3.1) (20.5) (63.7) 
0.045 0.085 0.07 -0.06 -0.059 
(2.17) (4.8) (3.1) (2.9) (3.0) 
-0.043 -0.035 -0.035 -0.045 -0.04 
(3.95) (3.16) (2.8) (4.3) (4.0) 
1.303 0.957 0.989 1.84 1.91 

(59.44) (66.21) (36.2) (71.8) (68.7) 
-0.36 -0.299 -0.305 -0.008 -0.01 
(9.89) (13.15) (11.8) (0.5) (0.8) 
-0.15 - - - -
(2.74) 

- -0.095 0.067 - -
(0.5) (0.3) 
0.367 0.141 

(2.3) (5.9) 

0 .028 0.029 0 .028 0.03 0.03 
(6.4) (6.5) (5.9) (6.7) (6.7) 
0.226 0 .28 0.25 0.107 0.11 
(1.9) (2.0) (1.5) (1.7) (1.8) 
-0.045 -0.09 -0.06 -0.03 -0.03 
(0.15) (0.29) (0.2) (0.7) (0.7) 
-0.648 -0.66 -0.62 -0.66 -0.67 
(3.6) (3.6) (3.Ό (3.7) (3.7) 
0.007 0.0067 0.0068 0.007 0.0067 
(5.42) (5.17) (5.2) (5.6) (5.7) 

626.86 632.25 630.45 625.3 625.63 

* The t statistic for the variable is constructed on the null hypothesis 
that ]_ = 0, i.e. C = », which implies a full clearing model. 

Parameter 
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output is proxied either by lagged output [in equations (1), (3), (5), 

(7) and (9)] or by the expected convolution of predicted output derived 

from the VAR model. In all versions of the model certain general 

features pertain: the estimated effect of demand is similar, the 

parameters in the supply functions are quite close to each other, and 

are correctly signed and generally significant. The differences between 

the alternative models mainly involve the demand equation. In column 

(1) which uses lagged output, the real wage is completely insignificant, 

while in column (2) it has a t-statistic of only 1.02 and column (4) 

1.9. So this is not a particularly good result for this model; the 

lagged output version of the model might well be entertained as the 

preferred version - it generally has the largest likelihood - and it 

estimates that the real wage effect in the demand function is not 

significantly different from zero. 

The estimated wage adjustment equation shows a great deal of 

uniformity between all the alternative specifications in table 1. Two 

things stand out: first there is no evidence from these results that 

union density has any effect on the speed of real wage adjustment. 

Second, the incomes policy variable is uniformly correctly signed and 

significant, suggesting that incomes policy does have effects on wage 

changes. The t-statistic on is constructed to test the null 

hypothesis ^ = 0, which implies C.
 s
 ». Under this null hypothesis 

the disequilibrium model tends towards becoming a market clearing model. 

The Cj parameter is always correctly signed but it is not sufficiently 

well determined to reject, convincingly, the market clearing hypothesis. 

Finally, the regular appearance of a well-determined constant in this 
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equation reflects the growth in real wages over the period. 

The remaining columns show further refinements on the first two. 

Columns (3) and (4) enter a real raw material and energy price term in 

the demand function (A^ in equations (1,5)) and columns (5) and (6) 

enter the real interest rate effect in the supply function. 

Of these results, columns (3) and (4) display the disconcerting 

property that materials and labour inputs are substitutes in column (3) 

but complements in (4)! Other researchers find similar problems: 

Beenstock and Warburton (1984) have a substitution relation here, but in 

Layard and Nickell (1985) materials and energy were complementary 

factors in production. Overall, the model in column (4) is probably 

preferable, since among other things, the real wage effect on demand is 

quite well determined and correctly signed. In both equations (5) and 

(6) the real interest rate gets the wrong sign, implying increases in 

the real interest rate decrease current work effort. Moreover, the real 

wage effect in the demand function is again incorrectly signed in both 

equations. 

In columns (7) and (8), the wrongly signed real interest rate is 

dropped, and two lags on employment are used in the supply functions. 

The second of these is correctly signed and significant. The results 

here are relatively unaffected by the use of lagged output or the VAR 

output series to proxy expected output. Finally, columns (9) and (10) 

revert to the static form of the supply function, and illustrate the use 

of an alternate measure of union pushfulness. This is the measure of 



Ch. 3: Disequilibrium Models 123 

the union mark-up as reported in Layard and Nickell (1985) in place of 

the union density variable used in our earlier regressions. It will be 

seen that this variable also does not appear to have a significant 

influence upon labour supply in the results in column (9) (which uses 

lagged output in the demand function) and in column (10) (using the VAR 

expected output series). 

Overall, however, there is a considerable measure of uniformity 

between these alternative specifications, and many of the important 

parameters are well determined and correctly signed, indicating that the 

disequilibrium approach can produce meaningful estimates, a conclusion 

at odds with recent results such as Stenius and Viren (1984). Their 

rather sceptical note on the disequilibrium approach was based on the 

lack of robustness of the Rosen and Quandt (1978) study. What we have 

endeavoured to show is that, suitably elaborated, results that compare 

with other market studies may be obtained using the disequilibrium 

approach. The results we report do suggest an important role for a 

labour demand constraint over the latter part of the 1970s and early 

1980s. This is true of most of the models we report in table 1. To 

pursue this point further, we report (in table 2) our preferred version 

of the model. 

The choice of equations from table 1 to be used as the preferred 

model is not straightforward. Overall, the highest log likelihood 

function is given by column (7). However this model has an incorrectly 

signed wage effect in the demand curve and one of the lags in the supply 

function is insignificant. We considered the most suitable model for 
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Table 2. The preferred model and a test of its stablity 

SAMPLE 1964(4)-1982(4) 1 964(4 )-1 980(4 ) 

Parameter 1 2 

A
o 0.072 

(0.5) 
-0.44 
(1.1) 

A
1 -0.014 

(2.9) 
-0.018 
(3.2) 

A
2 0.042 

(5.8) 
0.068 
(3.7) 

A
i| 1.588 

(119.0) 
1.637 

(308.0) 

S -0.630 
(21.0) 

-0.510 
(7.4) 

A
6 -0.007 

(1.6) 
-0.013 
(2.3) 

B
0 -2.87 

(1.9) 
-0.187 
(0.8) 

B
1 

0.083 
(4.0) 

0.092 
(4.9) 

B
2 

-0.041 
(4.8) 

-0.048 
(8.8) 

B
3 

1.179 
(26.0) 

1.153 
(28.8) 

B
4 

-0.188 
(14.5) 

-0.187 
(17.9) 

C
0 0.029 

(6.9) 
0.028 
(5.8) 

C
1 

0.223 
(2.21) 

1 .124 
(3.5) 

C
3 

-0.651 
(3.6) 
0.007 
(5.7) 

-0.556 
(2.7) 
0.005 
(4.2) 

log likelihood function 626.68 559.459 
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simplification to be that represented by column (4), which has the most 

well determined wage effect on demand as well as a fairly well 

determined effect of real material prices. We removed the effect of 

unionisation from this model (C^) and the insignificant time trend (A^) 

to give our preferred model, presented in column (1) of table 2. 

This model is clearly very similar to the others presented in table 

1. The long-run elasticity of demand with respect to expected output is 

almost exactly unity while with respect to the real wage it is - 0 . 3 3 · 

All the coefficients in the supply function and real wage adjustment 

equation are correctly signed and significant. 

The question of the stability of our results to the chosen sample 

period is, of course, crucial. Conventional forecasting tests are not 

defined for a system estimation technique such as used here, so as a 

simple second-best procedure we have reestimated our preferred model 

without the last eight observations. This is presented in column (2) of 

table 2. It should be emphasised that this test is in fact a very 

demanding one as these eight observations are the main period of demand 

side dominance. They are also a period in which the time series 

behaviour of employment altered markedly. Given this, the parameters 

seem quite satisfactorily stable. 

Figure 1 shows the ex post forecasts of the preferred model with 

its implied allocation between demand and supply constraints. It is 

clear from this that for much of the period (1964-82), the model 
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Figure 1. Comparison of Labour Demand and Supply 
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suggests that demand and supply of labour were fairly close. This is 

consistent with the labour market being approximately in equilibrium. 

The period 1980-82 however is characterised by a very large fall in 

actual employment, which, according to our estimates, is largely 

explained by a fall in the demand for labour, so that this period is 

characterised as one of large scale excess supply. 

To test whether the labour market is in equilibrium or not it is 

necessary to nest the equilibrium within the disequilibrium model and 

use an appropriate test statistic, such as a likelihood ratio test, to 

adjudicate between them. As Monfort (1983) points out, in the case 

where the price adjustment equation is stochastic, which is the case we 

deal with, two problems in hypothesis testing (including the hypothesis 

of equilibrium versus disequilibrium) arise. These are that the 

parameters ... C N in our adjustment equation, other than that on the 

excess demand term, and the variance of the error on the price 

adjustment term are not identified under the equilibrium hypothesis (C^ 

= + » ) . If the identification question is dealt with by the 

reparameterisation = 1/C^, = 1 /C^ etc., then the likelihood 

function is not differentiable in the region of H Q, as it is not defined 

here for < 0 (see Monfort p. 76). 

In spite of these general problems in testing equilibrium versus 

disequilibrium models, we present an estimate of an equilibrium model 

below for comparison with our earlier results. This takes the 

specification of the demand and supply functions used in column (1) of 
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table 1, using lagged output as the expected sales proxy in the demand 

function. The supply function is postulated to depend on the real 

consumption wage, real benefits, the working population and union 

density. The conventional method of estimating this model would be to 

solve the demand and supply equations for a pair of reduced form 

equations for employment and the real wage. The disadvantage of this 

approach is that if, as in this case, the model is over-identified, the 

structural parameters are not recoverable. So the apparently good 

reduced form estimates could hide the failure of one of the structural 

equations. We will therefore estimate the model in structural form, 

making an allowance for the endogeneity of real wages. The model then 

comprises demand and supply functions, and the reduced form real wage 

equation 

(W/P)t = D 0 • D lY
e

H • D2t • D 3E t. 1 . D ME t. 2 + . 

+ D ?UP t (21) 

This is a somewhat unfamiliar representation of the model under the 

full equilibrium assumption. It may be recognised as equivalent to the 

estimation of two structural equations, for demand and supply, where the 

real wage (a regressor variable in the structural equations) is also 

stochastic. The orthodox treatment of this case is to use instrumental 

variable (IV) estimation to recover consistent parameter estimates. In 

this context, the real wage equation above may be seen as an 

instrumenting equation. Estimating the three equations, demand, supply 

and the real wage, by a system method (3SLS or FIML) is then similar to 

an IV estimate of the demand and supply function using 
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the predetermined variables on the RHS of the real wage equation as 

instruments.^ The results for this model (the demand and supply 

functions from (1) in Table 1, and equation (21)) are shown in table 3. 

Table 3. Equilibrium model 

SAMPLE 1964Q4-1982Q4 

Demand A_ A, A 0 A„ kc A, SEE DW 
ο ] £ 2 2 

0 . 61 -0 .03 0 .03 1 .17 -0 .30 0 . 005 0 . 0043 1 .84 

( 3 . 0 ) ( 3 . 3 ) ( 2 . 9 ) 0 0 . 9 ) (2 .5) (0 .9) 

Supply B Q ΒΊ B 2 B 3 B^ 

5 . 8 - 0 . 0 0 8 3 - 0 . 6 5 - 0 . 2 2 0 . 0 1 2 0 . 0 1 9 0 . 0 9 

( 5 . 3 ) ( 0 . 8 ) 1 .2 ( 0 . 8 ) ( 0 . 1 6 ) 

Real D D D 2 D D || D D D 
wage 

1 7 . 6 - 0 . 4 0 . 0 0 9 4 . 2 - 2 . 8 - 0 . 0 8 3 . 5 0 . 4 0 . 0 2 7 1 . 1 2 

( 4 . 7 ) ( 3 . 1 M 5 . 4 ) ( 4 . 7 ) ( 3 . 8 ) ( 0 . 8 ) ( 3 . 8 ) ( 2 . 6 ) 

As the results show, the demand equation fares reasonably well, 

with most parameters quite well determined, though not as well as in the 

disequilibrium case. The supply function performs badly however. This 

evidence makes it clear 

(1) If the model were exactly identified then the structural 

coefficients could be obtained directly from reduced form estimates of 

employment and the real wage. 
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why for this specification the disequilibrium model is superior. The 

latter part of the period has a sharp decrease in actual employment 

produced by demand constraints, and an equilibrium formulation means the 

supply (or at least this supply) function cannot cope. Its performance 

over the earlier part of the period is also much worse. 

To conclude this chapter we should stress again some themes which 

have recurred throughout our account of the disequilibrium approach. 

One which we have emphasised is the considerable difficulty in applying 

the disequilibrium hypothesis in a way which adequately captures the 

dual decisions hypothesis. Moreover, we have also noted the poor 

quality of many previous empirical applications of disequilibrium models 

even when applied to single markets, with implied spillover effects. 

Nonetheless we consider that the results provided in the last section of 

this chapter give an insight into the role of demand and supply effects 

in the UK labour market. Beginning from a new classical equilibrium 

approach based on optimal inter-temporal behaviour by firms and 

households, extended to allow for non-market clearing, there is 

considerable evidence that meaningful estimates of the disequilibrium 

model may be obtained. Our results also indicate that the sharp falls 

in employment after 1979 were due to a rapid fall in labour demand. 

Thus, in the world hypothesised in our model with many new classical 

attributes, the high levels of unemployment since 1979 are attributed to 

deficient demand. 
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MACRO MODELS 

1. Introduction 

In this book we are generally concerned with the estimation and use of 

structural macro-econometric models. The term structural is important 

here as it explicitly excludes the, non theoretical, time series models 

of the vector auto regressive (VAR) type. A structural model, in our 

use of the term, is a formalization of some theoretical view of how the 

economy functions. The individual equations can then be given causal 

interpretation and the model represents a testable version of the 

underlying theory. Given this definition of a model it is possible to 

classify most structural models according to the theory which they 

represent. 

All structural models may be thought of as representing a set of 

markets which together describe the macro economy. In the very broadest 

sense we can describe almost all models within the following set of 

equations. 

X? = f (P , X
D
, X

s
, X , Z) 

xf - g (Ρ, X
D
, X

S
. Χ . Ζ) 

x A = h (Ρ, X
D
, X

S
, Χ , Ζ) 

Ρ Α = j (Ρ , X
D
, X

S
, Χ , Ζ) 

i = 1 . . . Ν 

That is, the economy is made up of Ν markets with endogenous 

variables X ,, i = 1 . . . N, and each market has a demand X
D
, and a supply 
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X . The actual quantity traded, X, is a function of prices P, the 

endogenous variables Z, and the demand, supply and quantity traded in 

all markets. Different classes of models are then produced by imposing 

broad restriction on this very general structure. 

By far the most important class of model, at least in terms of its 

popularity, is the income-expenditure model. It is often thought of as 

the implementation of conventional Keynesian theoretical views. In this 

model the assumption is generally made that the demand side of the model 

is dominant, so that X = X
D
. The supply side of many of the markets 

are then virtually ignored, and prices are set on a fairly
 f
ad hoc

1
 cost 

mark up basis. To be more specific, total output in such a model is 

generally determined by total demand which, in turn, is determined by 

summing the components of aggregate expenditures, consumption, 

investment, stockbuilding, etc. The central, expenditure, part of the 

model then determines the real components of the economy, and it is 

around this central structure that additional sectors determining prices 

and monetary aggregates may be added. Most of the large forecasting 

models follow this general structure and although the largest may 

involve several thousand variables the conceptual approach is common. 

Other classes of models include equilibrium models, supply-side 

models, disequilibrium models and bargaining models. All of these 

may, at least in part, be seen as attempts to relax the restrictive 

assumption of demand side dominance of the income expenditure model, and 

to cope with the question of how prices are actually determined within 

the system. 

1 32 
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An equilibrium model, for example, makes the general assumption 

that markets continuously clear so X = X * X , and prices are set so 

that market clearing occurs. In order to deal with the regular 

fluctuations which actually occur in real variables, such models often 

distinguish between the actual value of a variable and its equilibrium 

value, and simply postulate that the two come together quickly. While 

the assumption of continuous market clearing may be viewed as an extreme 

one, a major advantage of this approach is that it does offer a sound 

theoretical foundation for the determination of prices within the model. 

It is worth distinguishing the idea of a 'supply side
1
 model from 

the model just discussed given the increasing attention now paid to 

supply side factors. The concept of a supply side model, however, has 

no clearly defined meaning, we might use the natural analogue to a 

demand side definition which would be that all markets are assumed to be 

determined on the supply side. But models which are given the name 

'supply side' do not generally make such an extreme assumption. Instead 

the term is generally taken to mean that the supply side of the market 

has some important influence in the determination of the quantities 

actually traded. In practice this often means that an unusually large 

role is played by relative price effects in expenditure equations, 

without the model being explicitly formed in terms of demand or supply 

functions with full market clearing. 

In a bargaining model the demand and supply functions become 

boundaries or constraints on the region of possible trade, and prices 



134 S.G. Hall and S.G.B Henry 

and traded quantities are set within this region by some, largely 

unspecified, bargaining system. This approach produces fairly rich 

equation specifications for both quantity and price determination as 

demand and supply factors may enter the model equations. 

Prices are also seen as being determined by the bargaining process 

and so, at least conceptually, pricing behaviour has a better foundation 

in this model than in the income-expenditure model. The general form of 

the model does however mean that the final equation can sometimes be 

observationally equivalent to both the supply side models and to the 

competitive models. 

Disequilibrium models were discussed at length in Chapter 3 and, in 

terms of our present discussion, the class of complete disequilibrium 

macro models would be a multi-market analogue of the single market 

disequilibrium case. Both demand and supply are defined in this model, 

and trading takes place at the minimum of the two, with prices adjusting 

possibly extremely slowly to clear the market. There are, however, very 

few examples applying the disequilibrium approach to complete macro 

models. 

In the context of this brief review of the alternative approaches 

which may be taken in estimating a macro econometric model, the model 

described in the rest of this chapter is firmly within the income-

expenditure class. We have generally adopted the practice of completing 

a major re-estimation of the macro model each year. Model 8 
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(first used in November 1985) introduced widespread forward looking 

behaviour into the model. Model 9 (first used in November 1986) made 

substantial changes to pricing behaviour, the exchange rate and 

consumption. This chapter then presents the key behavioural parts of 

the macro model, and in the main will concentrate on Model 8 since this 

is most widely represented in the subsequent chapters. Important 

changes which lead to Model 9 will be noted in the text as we proceed. 

Also, it is unecessary to detail all equations from each of the two 

models, so only the important equations are discussed here. A full 

listing is given in National Institute (1985) for Model 8 and National 

Institute (1986) for Model 9. 

In the rest of this chapter we will outline the basis of the 

consumption equations, company sector expenditures on employment, 

stocks, and investment, the trade equations, wages, prices and the 

exchange rate, and finally provide some notes on the monetary sector. 

In some equations, forward looking behaviour is an important 

characteristic, and these examples are based on the ideas and apply the 

techniques discussed in Chapter 1. Other examples embody two stage 

estimation procedures for error correction models, and the general 

properties of these estimation methods were extensively described in 

Chapter 2. 

2, The key equations in the macro model 

We will now give a detailed account of the income-expenditure model 

which forms the main vehicle for the illustration given in this book, 
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the National Institute's aggregate quarterly model of the UK economy. 

A. The model in outline 

The model can be thought of as explaining the components of the standard 

national income, expenditure and output identities in constant and 

current prices. GDP is built up from the expenditure side of the 

accounts with all variables expressed in real (i.e. constant price) 

terms. 

Thus GDP at factor cost can be expressed as 

QGDP = QTFS + QDS - QM - QAFC 

where 

QTFS = QCE + QDK + QEX + QPAC 

QTFS is total final sales 

QDS is Stockbuilding 

QM is imports of goods and services 

QAFC is adjustment to factor cost 

QCE is consumers' expenditure 

QDK is gross fixed investment 

QEX is exports of goods and services 

and QPAC is general government expenditure on goods and services. 

All variables are measured quarterly at 1980 prices and data is 

seasonally adjusted. A superior rule denotes an exogenous variable. 

There are therefore five categories of expenditure to be determined 
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endogenously: QDS, QM, QCE, QDK and QEX. Of these, consumers' 

expenditure is the largest and is disaggregated into expenditure on 

durables and on non-durables. The model of consumer expenditure is 

described later in Section B. 

Total investment is divided into nine categories of which four are 

endogenous and determined by behavioural equations in the model. The 

first of these is investment in private dwellings, determined by a 

demand function for housing. The equation for net investment in 

manufacturing (inclusive of leasing) will be discussed in section C. It 

assumes that the investment decision depends upon the lagged capital 

stock, retirements and expected future output. The capital stock and 

retirements series differ from the CSO annual data, being adjusted to 

imply similar movements in the capital output ratio as the CBI series on 

capacity utilisation. The distribution, financial and business services 

sector adopts a similar approach in determining investment, but without 

the adjustment to the capital stock and retirements made in the 

manufacturing sector. The final endogenous category, investment in the 

rest of industry, is a distributed lag equation dependent on output and 

a time trend. 

The third of the five endogenous components of the expenditure GDP 

identity to be described subsequently is stockbuilding. In the model 

this is divided into three sub-components: manufacturing, distributive 

trades and the rest. Each of these categories is expressed as a 

function of expected future output, with lagged adjustment. 
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Leaving aside the adjustment to factor cost since we will not be 

providing details on this in the present chapter, the expenditure 

identities above are completed by the explanation of the trade balance. 

Some categories are treated as exogenous. We will concentrate on 

describing the equations which are explained by demand functions with 

activity and relative price variables as the main arguments. 

The explanation of expenditures in the economy has required the 

introduction of five groups of further endogenous variables. They are: 

(i) incomes 

(ii) output and capacity utilisation 

(iii) monetary aggregates and interest rates 

(iv) prices 

(v) the rate of exchange. 

Incomes from employment are derived by multiplication of average 

hours and employment by the wage rate. The wage rate plays a crucial 

role in the model as it is also a major determinant of prices. The wage 

equation described in detail below (see section D) emphasises the role 

of real earnings targets and unemployment as determinants of wage 

inflation. 

The remaining categories of income are also endogenous in the 

model, but are not discussed further in subsequent sections. Rents are 

related to the change in GDP at market prices; income from self-

employment (after stock appreciation) is related to average earnings of 
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employees and gross trading profits of companies after tax and stock 

appreciation; property incomes are related to interest rates and each 

sector's holdings of financial assets; and net profits are determined as 

the difference between income GDP and the sum of income from employment 

and income from rent and self-employment. Gross profits include, in 

addition, stock appreciation. The direct tax model determines income 

after tax; adding current grants gives personal sector disposable 

income. 

Having built up GDP from expenditures it is then divided amongst 

the output sectors of the economy, with implications for productivity, 

capacity utilisation, employment and unemployment. Sectoral output 

is determined by a form of input-output matrix although we will not be 

emphasising this in our later discussions, as it is a fairly 

conventional translation of expenditure into output. 

As described in chapter 1, employment is a part of the model where 

expected future variables play an important role. In this case expected 

future output is identified as a determinant of all categories of 

employment, and the expected future real wage is a determinant of 

manufacturing employment. Changes in unemployment then depend upon 

changes in employment, with important differences depending upon the 

division between employment changes in manufacturing or non-

manufacturing, and demographic changes to the work force. 

Turning to the monetary sector, this is a set of demand equations 
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for financial assets and an equation which determines the term structure 

of interest rates. The net acquisition of financial assets by each 

sector is determined in the 'income-expenditure' section of the model. 

The public sector deficit must be financed by borrowing from the other 

sectors: by sales of debt to the non-bank private sector, by issuing 

currency, by borrowing from the domestic banking systems, and by 

borrowing from the overseas sector. The model equations are demand 

equations which determine the stock of government debt and currency held 

by the non-bank private sector. (Bank lending to the public sector is a 

residual item). Equations for bank lending to various sub-categories of 

the private sector enable £M3 to be determined from the assets side of 

the banking system. The demand for narrow money (M1) depends on 

expected prices, income and interest rates, using a buffer stock model. 

The final items of note in the model are then prices and the 

exchange rate. The price equations are of a mark up variety, where cost 

items are labour and material costs. Export and import prices depend 

both upon domestic and overseas prices. The model is completed by the 

exchange rate equation the form of which was discussed in Chapter 1. 

This is a model of the real exchange rate, dependent in part upon the 

forward expected exchange rate assumed to be formed rationally. 

We next turn to an account of the more important behavioural parts 

of the model, beginning with the consumption sector. 

In presenting the econometric results, the following summary 
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statistics will be used: 

SEE is the standard error of the regression 

ρ 
R is the familiar R squared 

LM(r)is the Lagrange Multiplier test for r t n order residual 

auto correlation 

DW is the Durbin Watson test of auto correlated residuals 

BP(n)is the Box Pierce residual correlogram statistic distributed 

ρ 
at χ (n) with η degrees of freedom 

Figures in parentheses are 't' statistics 

B. Consumer expenditure 

Total consumer expenditure (QCE) is disaggregated into non durable 

(QCND) and durable consumption expenditure (QDURABLE). 

In Model 8 non-durable consumption is determined as a distributed 

lag on real personal disposable income (QRDY). In addition it is 

hypothesised that consumption decisions are affected by households plan 

both to hold a share of their wealth as financial assets, and to try to 

maintain a constant ratio of such financial wealth to real income. 

Inflation effects will then tend to decrease non-durable consumption. 

Model 9 has a consumption function for non durables which is rather 

different. This is the one quoted below. In this model the level of 

non-durable expenditure is assumed to be dependent upon the form of 



S.G. Hall and S.G.B Henry 1 42 

income, real financial wealth, and the distribution of income. The 

argument for the first term, the form of income, is that the propensity 

to consume is likely to be higher out of transfer payments than out of 

disposable income. Hence income is distinguished as real disposable 

income (QRDY) and current grants (CG). To allow for an income 

distribution effect we introduce a proxy variable, the ratio of tax 

payments at the standard rate to those at higher rates. This ratio is 

defined by the variable URT. 

The equation is estimated by instrumental variables (IV) using a 

two step procedure as described in Chapter 2. The econometric results 

for the equation are shown as (1) below. 

Δ In QCND = 0.003 - 0.149 ΔΙη QCND - 0.3^7 Δ In QRDY 
Z
 (2.8) (1.4)

 t _1
 (5.3) (1) 

+0.144 Δ In QRDY - 0.3^5 ν 
(2.8) *~

Ί
 (3.1)

 t _1 

where ν - In QCND - [1.609 + 0.777 In QRDY + 0.045 (FAPER/CPI) 

+86.21. CG/CPI/QRDY + 0.096 URT] 

SEE = 0.007, LM(4) = 3.94, DW = 1.96. 

Instruments: lagged prices, other personal incomes and further lags on 

variables in (1). 

In this equation FAPER is financial acquisitions by the personal 

sector, and CPI is the consumer price index. 
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Generally speaking the equation is quite successful, with well 

determined effects which accord with a-priori conventions, including the 

long-run or equilibrium effect given by the ν term which in turn is 

obtained from a first stage equation. 

The durable consumption equation is rather more straightforward, 

and so can be dealt with briefly. It is a demand equation dependent 

upon disposable income and various changes in hire-purchase regulations. 

We also find an anticipations effect due to pre announced tax changes in 

the budgets of 1968, 1973 and 1979. The equation for Model 9 is shown 

by (2). (Model 8 had a very similar form and is not discussed 

separately). 

In QDURABLE = -3.25 + 0.533 In QDURABLE + 0.857 Δ In QRDY 
(2.9) (5.5)

 t -1
 (3.4) 

+0.519 Δ In QRDY +0.674 In QRDY (2) 
(2.1)

 t _1
 (3.9) 

-0.003 DHP + l ai Di 
(4.9) 

SEE = 0.0392 , LM(4) = 2.3- , R
2
 = 0.98 

In this equation DHP is a Hire Purchase dummy, and Di are the dummy 

variables to allow for the effects of anticipated tax changes. 

C. Company sector expenditures 

This section deals with the modelling of expenditure in employment, 

Stockbuilding and investment by the typical firm. It introduces forward 

looking behaviour into the sector as a whole, again based on the 
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concepts discussed earlier in Chapter 1. 

(i) Employment 

The model we use is a labour demand model based on intertemporal profit-

maximising with a production function dependent on labour, raw materials 

and fuel inputs. Implicitly we assume an adjustment cost function 

depending on changes in employment. These costs include the location 

and hiring of new workers as well as their costs in on-the-job training 

(measured in terms of possible output foregone). Disengagements involve 

redundancy payments and other legal costs. One limitation with this 

cost function is that it assumes costs are incurred for net changes in 

employment only. Clearly this is a simplification, since the firm 

incurs adjustment costs from both hiring and firing, so that adjustment 

costs are non-zero when new hires equal disengagements. 

For the present, however, we will simply state the typical dynamic 

equation concerned, which is of the form 

N
t •

 λ
Λ - 1

 +
 *2

N
t-2

 +
 Ç"li«t+i> 

Iu 2 i((w/p)^ + 1) * 5u3i<(pm/p)'+1> (3) 

In this equation, Q
e
 is expected output, (w/p)

e
 is the expected real 

product wage, and (pm/p) is the expected real price of materials and 

fuel. The second order autoregressive dynamics may be justified by 
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assuming the equation aggregates over different labour types, or over 

straight-time and overtime working. Equations of this form are 

estimated for three sectors of the economy: manufacturing, mainly public 

and other private, and the preferred results are reported in table 1. 

(ii) Stockbuilding 

An approach similar to that described for employment is used in 

obtaining a decision rule for the firm's optimal stockholding assuming 

that stocks are held as a buffer (see Hall, Henry and Wren-Lewis, 1985). 

For brevity we simply note that the optimal decision rule for 

inventories is of the form 

00 

S
t • Vt-1

 + X
2

S
t-2 U ^ i

5 

where the are functions of the parameters and λ^, and S* is 

S*= τ,ίΓ-Π),. x 2ï t 

where R-Π is the real interest rate and Y is sales. Finally, we need 

to allow for the possibility that stock plans may not be precisely 

fulfilled. In particular, if sales differ from their expected level, 

involuntary changes in finished goods stocks may occur. This suggests a 

final equation of the form 



146 S.G. Hall and S.G.B Henry 

00 

2 t-2 
i=0

 1 1 Z t+j 
(4) 

Again results for sectoral stocks equations are shown in table 2. 

(iii) Investment 

A similar approach, based on the presence of adjustment costs, was 

adopted for the investment equations. Again the typical firm is 

postulated to undertake an optimal decision over time with respect to 

its investment plans. Allowing for adjustment costs related to changes 

in the capital stock implies that equal changes in gross investment (I) 

and retirements (R) incur no adjustment cost as net investment is zero. 

Rather than assume this, an objective function is taken which penalises 

movements from the desired capital stock (ΔΚ), and changes in gross 

investment (ΔΙ). Thus we assume the firm minimises 

where d is a discount factor, and K* is a function of expected output 

(Q ). To proceed with implementing this approach we assume that 

retirements are exogenous and that the investment decision is separable 

from other expenditure decisions. Both assumptions are made in the 

interests of deriving relatively simple dynamic equations. Optimising 

produces a fairly complex relationship between the capital stock and 

retirements, and again to ease econometric estimation, a simpler version 
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where Θ(.) is a polynomial in the lag operator (L), to be determined by 

the data. The λ ̂  (i=1 , 2) are parameters derived from the assumed 

quadratic costs of adjustment. Furthermore, forward terms in expected 

output occur in the equation as the desired capital stock is assumed to 

depend on this. The parameter $ allows the desired capital/output 

ratio to vary through time reflecting technical progress. 

Cost of capital terms of a simple variety were included in the 

original specification, but these were found to be insignificant. The 

complete results are shown in table 3. 

Table 1. Sectoral employment equations (N^) 

Sample 1964 11-1983 IV, quarterly 

Sector Constant Ν Ί N f c_ 2 Q
e
 (w/p)

e
 Time BP(16) DW SEE 

Manufac- 0.188 -2.67 0.122 0.103 21.46 2.31 0.003 
turing (5.8) (6.1) 

Mainly -0.131 1.36-0.382 0.029 - 18.40 2.09 0.004 
public (2.337) (12.40)(3.542)(2.34) 

Other -0.449 0.974 0.015 -0.0004 9.358 1.59 0.008 
private (0.831) (26.825) (2.344) (1.709) 

was taken of the form 

V R t • (V l ) Kt - 1 + A2 Kt-2- 6 ( L ) Û Rt 

+ (a+ßt)(1-A 1L
_ 1
-A 2L"

2
)"

1
Q® 

(5) 
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Table 2. Sectoral stocks equations (S^) 

SAMPLE 1 964 I--1983 I, quarterly 

Sector Constant S
t-1 

S
t - 2 Q

e 
SRLD R

2 
BP(16) DW SEE 

Manufac- 3 1 . 6 1 .40 -0.52 3 7 . 3 2 7 6 . 7 0.99 8 .73 2.0 288.8 
turing (0.6) (14.8) (5.8) (4.9) (2.5) 

Rest -1362.5 0.786 - 51 .6 - 1 6 3 . 6 0.99 2 2 . 3 2.0 1 8 1 . 9 
( 2 . 7 ) (15.7) (4.0) ( 2 . 3 ) 

Distri- -2559.0 1 .34 -0.44 39.9 225.0 0.99 19.4 2.0 1 7 4 . 9 
bution (2 .6 ) ( 1 1 . 6 ) ( 4 . 1 ) ( 3 . 3 ) ( 2 . 7 ) 

SRLD is a stock relief dummy variable, equal to unity between 1974 and 

1981 and zero elsewhere. 

Table 3. Sectoral investment equations (I-R)^ 

SAMPLE 1966 1-1983 IV, quarterly - manufacturing 

SAMPLE 1970 1-1983 IV, quarterly - distribution 

K
t-1

 K
t-2 Q

e ( a)
 K t_ 3 AR A R t -1 Δ\_2

 à n

t - 3

 S EE
 BP(16) DW 

Distribution 

0.844 -0.850 9.76 0.094 -0.92 -0.66 73.0 12.46 2.3 
(11.5) (11.7) (1.9)0.8) (2.1) (1.5) 

Manufacturing 

0.605 -0.236 11.2 0.032 -0.376-0.98 -0.39 -0.06 -0.07 64.5 12.81 1.9 
(5.0) (1.0) (3.2M2.4) (3.1)(20.2) (2.9) (1.6) (1.7) 
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4 

expected output and t is an time trend. The parameters in the table are 

estimated value of α and β. 

D. Wages, Prices and the Exchange Rate 

(i) Wages 

There is a single aggregate wage equation in the model, and it is 

clearly a crucial relationship in determining the overall properties of 

the model. We briefly comment next on both the form of the equation 

used in the model and on the estimation methods applied to it. 

The wage equation used in both Model 8 and 9 has a similar basis 

since in each real wage resistance plays an important role in wage 

behaviour, this being modified by variations in labour market 

conditions however. In Model 8, the level of real wages is influenced 

in an important way by a time trend representing workers real wage 

aspirations. In Model 9 this trend is replaced by a smoothed 

productivity variable. Since the version in Model 9 is a generalisation 

of that in Model 8, we will concentrate on the later version of the wage 

equation in the remainder of this section. In general terms, the wage 

equation is of the form (in logs) 

α(L)Δ Wfc = ß ( L U Z t + δ (Ε/Ρ - 6V) t-1 t + 1 
+
 n, t 

( 6 ) 

In this equation, W is average wages, Ε is average earnings, and Ρ 

the consumer price index, with the usual conventions that ΔΖ and V are 

sets of variables which determine the rate of change of wages and the 

(a) This term is estimated in the form of Iy«Qf. « (α+ßt) where Q
e
 is 

0 
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level of real earnings respectively. The elements of these vectors will 

occupy the rest of our present discussion. The part which we draw 

attention to however, is that (6) above is a fairly general model, which 

contains a number of alternatives within it. Thus if the V vector 

includes a proxy for union power, a measure of income out of work (e.g. 

the average level of real unemployment benefit) the capital-labour ratio 

and the level of real import prices, then this part of (6) alone gives 

the model of real earnings levels popularised by Layard and Nickell 

(1986), (which in turn incorporates the model used by Minford ( 1 9 8 3 ) ) . 

Such models of the level of real earnings can then be imbedded in wage 

inflation models like (6) using the two-stage estimation for error 

correction models described earlier in Chapter 2. 

In arriving at the preferred form of (6), we adopted a catholic 

interpretation of the components in ΔΖ and V, and proceeded to test for 

statistical evidence favouring their inclusion. The main results of 

this exercise are reported in Hall and Henry (1987a and 1987b). In V we 

allowed a potential influence from a proxy union power (given by the 

union markup as estimated by Layard and Nickell (1986)), real 

unemployment benefits, unemployment, real import prices, tax rates (both 

employer taxes and direct taxes), productivity as measured either by the 

capital-labour ratio or output per head, and real company profits. In 

ΔΖ we allowed effects from changes in unemployment and productivity. 

By testing among these alternatives the resulting, quite parsimonious, 

model for wage inflation was obtained, using IV estimation. 
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Δ In WA GERA TE = 0.00158 + 0.985 Δ In CPI 
(0.45) (6.9) 

t+1 

- 0 .937 
(6.9) 

Δ In AVHMF - 0.306 RES 
Z
 (4.2) 

t-1 
(7) 

- 1 .272 (AUPC - AUPC ) 
(1.9)

 1 1 t _3 

+ 0.233 Δ In WAGERATE 
(3.0) 

- 0.089 Δ In WAGERATE 

( 1 . 3 ) 

IV; SEE = 0.012; DW = 1 .97 

where UPC = UNEMP/( UNEMP + EMP), and UNEMP is the level of 

unemployment, EMP is level of employment. In turn RES is defined as 

RES = [In (AVEARN/CPI) - (- 1.049 + 1.103 In PRODS 

- 0.859 In AVHMF - 0.495 UPC)] 

which is the equilibrium term dependant upon average earnings 

(AVEARN), prices (CPI), smoothed productivity (PRODS), average hours 

(AVHMF) and unemployment. The smoothed productivity variable is 

PRODS = ΣΙη (21500 * 0GDP/EMP) _ /8 

where OGDP is the output measure of GDP. 

Additional Instruments used were lagged wages, hours and unemployment. 

7 

i=0 
t-i 

In this equation price inflation expectations are assumed to be 

formed rationally, and the procedures for estimating such an equation 

are noted below. The variable in average hours (AVHMF) acts as a 
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cyclical correction to the average earnings series used in the equation. 

Before commenting on the estimation of the equation we may also note 

that many of the variables which have been proposed as potential 

determinants of real earnings have been eliminated by our empirical 

search in obtaining (7) above. In particular we decisively find against 

the use of the capital-labour ratio as Layard and Nickell (1986) 

advocate. Also, we find the evidence to be against including profits 

(as recommended by Caruth and Oswald (1987)), and real import prices, 

proxies for union power and the level of real income out of work (as 

recommended by Layard and Nickell (1986) and by Minford ((1983)). 

Details of the empirical tests underlying the derivation of this are 

given in Hall and Henry (1987a and 1987b), which suggest that although 

(7) is a relatively sparse formulation, it is a preferred one on 

statistical grounds to more elaborate models. 

Finally we may note that in estimating (7), two issues which have 

already been extensively discussed, were involved. The first is that, 

as is evident, (7) was estimated as a two-step error correction model. 

The first step cointegration exercise was then used to derive the 

preferred specification against alternative models of real earnings 

levels. The second issue concerns expectations modelling. Here we 

assume rationally formed expectations, and estimate (7) by replacing 

expected inflation by actual future inflation, dealing with the 

resulting dependence between equation error and regressor variables by 

instrumental variables. 
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(ii) Prices 

The price equations in Model 8 and 9 have a similar form, in that they 

are standard mark-up equations on labour and material costs, with 

allowance for productivity and taxes. The consumer and wholesale price 

equations (CPI, and PWMF respectively) are the two major price equations 

in the model, though import and export prices also have an important 

role to play in influencing model properties. We will only be 

discussing the CPI and PWMF equations here though, taking the equations 

in Model 9, and comparing these with those in Model 8. 

In both cases the CPI and PWMF equations are estimated using a two 

stage estimation procedure used elsewhere, separately identifying the 

level or equilibrium part of the equation before identifying its 

dynamics. The estimated price equations are shown next. 

Δ In CPI. = 0.0035 + 0.1587 Δ In CPI.. 
t t-1 

(2.7) (2.1) 

+0.076 Δ In [(WS + EC + NIS)/EMP] 
(1.9) 

(8) 

+0.509 Δ In PWMF + 0.067 Δ In PWMF 
(9.1)

 Z
 (1.4) 

t-4 

+0.004 AC0MPTAX - 0.266 RES. 

/ -> h \ t / l i t N (3.4)
 υ

 (4.1) 
t-1 

0LS 0.86 ; SEE = 0.0054 ; DW = 1.8 LM(8) = 3.65 
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In this equation WS is total wages and salaries, EC is total 

receipts from employers contributions and NIS receipts from the National 

Insurance Surcharge. EMP is total employment. The other variable in 

the equations is an average rate of indirect tax (COMPTAX), defined as 

the sum of (weighted) average VAT rate and other customs and excise 

duties, i.e. 

COMPTAX = (VATRATE . SVAT4) + (OCERATE . S0CE4), where 

SVAT4 = ZSVAr ./4, S0CE4 = ZSOCE^. ./4 

i -o
 w

 i -o
 t _1 

and SVAT is the share of consumers expenditure subject to VAT, and SOCE 

the share of consumers expenditure subject to customs and excise duties. 

The average rates of VAT and customs and excise duties are taken to be 

exogenous. The levels or equilibrium part of the equation is RES, 

which in turn is given by 

RES = In CPI -[ 1.345 + 0.571 In PWMF 

+ 0.345 In (WS + EC + NIS)/EMP 

- 0.091 L0EM8 + 0,007 COMPTAX ] 

where LE0M8 is an eight quarter moving average of labour productivity in 

the manufacturing sector. 

Turning to the wholesale price equation, (PWMF), the estimate for this 

is as follows. 
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Δ In PWMF = 0.443 Δ In PWMF 
(3.8) 

t-1 

+ Σ a.Δ In PM, 
i t-i (9) 

+ Σ b. Δ In UNLC, 
t-i i 

- 0.0480 [-1 + 0.244 In (PWMF / UNLC) 
(0.5) 

t-1 

+ 0.0226 In ( PWMF ) ] 't-1 
100 PMGEO / EFFRAT 

2SLS ; SEE = 0.00955 ; DW = 1.7. 

In this equation UNLC is the unit labour cost variable. The PWMF 

equation is also an error correction model, with dynamic effects given 

by an Almon lag on import prices (PM) and labour costs. The weights for 

these two terms were Σ ai = 0.285, and Σbi = 0.216. 

One interesting feature of this pair of equations is that import 

price changes affect consumer prices only indirectly via their effect on 

wholesale prices, which then feed into consumer prices. This induces a 

degree of sluggishness in the response of domestic prices to changes in 

foreign prices, such sluggishness explaining in part why UK price 

inflation was slow to decrease in the 1981-1985 period. Earlier models 

of the CPI (notably NI model 8) were more responsive to import price 

variables, though these were rejected in favour of the version described 

by (8) and (9) above. 

(iii) The Exchange Rate 

Much of the background to this, and the estimation procedures have been 

discussed in Chapter 1, so we will be discussing only a few 



156 S.G. Hall and S.G.B Henry 

additional points here. 

The general form of equation used for estimating the real exchange 

rate is 

In E t = αο + In E ^ + a 2 In E^ +1 + a^rd-rf ) fc 

+ a. (rd-rf). h + a. In ( X/Mt ) + a. In (
X
/M) . 

μ Ζ
'

μ
 * Χ/Μ

 0 C 

where Ε is the real exchange rate, (rd-rf) the real interest 

χ 
differential (short rates) and /M the trade balance. The equation 

includes as special cases: 

(a) a, = a„ = a_ = a, = 0, and α_ = a_ = 1 gives the uncovered 

1 *4 D 0 d. j 

interest parity condition arising from perfect capital mobility. 

(b)
 α

5
 =
 0, = -a^, the equation yields a flow model of capital 

mobility, so that Δ(rd-rf) produces permanent changes in the flow of 

international capital. 

(c) = 0, = -a^ produces a stock view of capital movements, 

so Δ(rd-rf) yield transitory capital flows, but no change in steady 

state levels. 

We have already discussed how such an equation may be estimated by 

Wickens (1982) method for dealing with unobserved expectations of next 

Q 

periods real exchange rate ( E ^ ) using Full Information estimation 
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methods. The preferred equation estimated in this way, is reproduced as 

(10), which includes a difference in the trade balance. 

(10.3) 

σ= 0.005, Dw = 2.09 

Equation (10) gives a preponderant weight on the forward exchange rate 

(it actually approximates 0.7) making the initial part of the solution 

dependent upon the timing of the solution period. Experimentation 

however, shows that this dependence is not severe, as we illustrate in 

Chapter 5. 

E. The Trade Balance 

Although the model provides for disaggregated import and export 

equations (manufacturing, food and basic goods, and services) we will be 

concentrating upon the equations for manufactures in this section. 

Apart from their intrinsic importance, the equations for manufactures 

provide concepts and results which are common to other sectors. Where 

necessary we will refer to important differences which occur between the 

sectors. 

(10) 

The equation for exports of manufactures as it appears in Model 9 

is shown below. 
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In QXGMA = 3.55 + 0.735 In WTM - 0 .333 In PRPEX5, 
(4.8) (3 .6)

 C
 (3.7) 

t-1 (11) 

- 0.391 ln WTM 
(1.7) 

t-1 
+ 0.206 ln QXGMA 
(1.8) 

t-1 
+ 0.218 ln QXGMA 
(2.4) 

t-2 

0.96 SEE = 0.0484 LM(8) = 7.5 DW = 2.1 

The equation is interpreted as a demand equation dependent upon an 

activity variable, world trade (WTM), and a relative price variable, 

(PRPEX5). Two things are important to note in assessing this equation. 

The first is the apparantly low values for the estimated elasticities in 

the equation. For WTM the long run elasticity is 0.59 while that for 

the relative price term is -0.58. The second thing to note is that this 

is a common finding. For example similar orders of magnitude were 

obtained in the export of manufacturing equations used in Model 8 

estimated with a shorter data set. Also, as Anderton and Dunnett 

(1987) reveal, other UK models have similar results. The respective 

elasticities in the equation used by the London Business School for 

instance are 0.58 (world trade) and -0 .33 (relative prices) (see 

Anderton and Dunnett (1987)). 

Although the activity elasticities tend to similar orders of 

magnitude for other categories of exports in the model, their response 

to relative prices is rather different. Thus exports of services have a 

price elasticity of -1.4, whereas for exports of food and basic goods it 

is zero. 

Turning now to the imports of manufacturing equation, this is also 

R
2
 -
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represented by a demand function, this time dependent upon domestic 

expenditures, import prices relative to domestic prices of manufactured 

goods, and a specialisation index. 

The estimated equation is 

Δ In QMMF = - 0.287 - 0.245 Δ In QMMF 

(2.6) (2.4) 

- 0.515 Δ In QMMF 
(4.3)

 Z
~

d 

+ 1.630 Δ In QTFE2 + 1.009 Δ In QTFE2 t_ 2 

(5.0) (2.7) 

- 0.271 Δ In RELP 

(1.0)
 t -1 

+ 0 . 532 Δ In RELP (12) 

(2.1)
 W 

+ 0.197 In (OMF/OGDP) 
(1.5)

 Z 

7 
+ 0.328 Σ In (WTM / WIP) ./8 

(2.5)i=0
 t _1 

- 0.171 [In QMMF. 5 + In RELP 

(2.7)
 t -i Z

~* 

- In QTFE2
t

_
3

] 

R2 = 0.41, SEE = 0.042, DW = 2.2, LM(8) = 7.77. 

In this equation imports of manufactures (QMMF) are determined by 

weighted domestic expenditures (defined further below), relative prices 

(RELP), the ratio of manufactures to GDP (the output measure, hence 

OGDP) and a specialisation index WTM/WIP where WTM is world trade in 

manufactures and WIP is world industrial production. The weighted 

domestic expenditure variables is QTFE2 which in turn is defined as 

QTFE2 = QCE + QDST + QEX + 0.33 QPAC, 
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where QCE is aggregate consumption, QDST is total Stockbuilding, QEX is 

exports excluding oil exports and QPAC is current spending by 

government. This definition embodies judgements (based on input-output 

weights) of differential import propensities between different 

categories of expenditure. Thus current spending by government has an 

import propensity of one-third and the import propensity of investment 

spending is set at zero. The remaining variables are then defined in 

the following way. RELP is a tariff adjusted unit value index of 

manufacturers imports in sterling deflated by the wholesale price index. 

The specialisation index has already been defined. We may also note 

that it represents a move to growing world specialisation in production, 

as the ratio of world trade rises relative to production. 

In terms of overall properties, the import equation is constrained 

to produce unit elasticities with respect to demand and relative prices 

in the long run. Again in comparison with other import equations in the 

model the price elasticities are not representative. Imports of other 

goods for example have a price elasticity of -0.2, whereas for imports 

of services it is zero. 

F. The Monetary Sector 

(i ) An overview 

The monetary sector of the model seeks to explain some of the main 

financial transactions between the sectors of the economy. Starting 

with the public sector the public sector's borrowing requirement is by 
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definition financed by bank lending to the public sector, by debt sales 

to the private sector, by issuing currency and by borrowing from the 

overseas sector, the latter being treated as exogenous. The PSBR is 

determined by the income and expenditure sectors of the model. 

Behavioural equations for the banking sector are designed to leave bank 

lending to the public sector as a residual item. Debt sales to the non-

bank private sector are given by equations for the stock of national 

savings and the stock of other public sector debt which depend upon 

relative interest rates and wealth. The change in currency is given by 

an equation dependent upon the consumption expenditure. These 

categories are treated as demand determined. 

The identity for the change in the broad money supply (sterling M3) 

introduces only one further element to be explained - bank lending to 

the private sector - as the remaining small elements in the identity are 

exogenous. 

Bank lending to the private sector is divided into six components, 

of which bank lending to other financial institutions, loans for house 

purchase and the Issue Department's transactions in commercial bills and 

bank purchases of new issues, are given by rules of thumb or treated as 

exogenous. Bank lending to the personal and company sectors are given 

by behavioural equations. 

In the equation for bank lending to the personal sector, this is 

assumed to be a demand equation, dependent on interest rates, real 
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disposable income, and the change in the net acquisition of financial 

assets by the personal sector, used here to proxy changes in personal 

wealth. Bank lending to industrial and commercial companies is a 

transactions demand equation. It depends on real output with a 

significant effect from the real borrowing requirement of this sector. 

There is also an effect from relative interest rates, including foreign 

rates, which are included to capture switching between domestic and 

foreign sources of borrowing. 

There are two other demand equations in the model, the demand for 

currency which is a simple distributed lag on total consumers
1 

expenditure, and the demand equation for narrow money (M1), embodying 

forward-looking behaviour and buffer stock behaviour. 

(ii) Some selected equations. 

(a) The demand for narrow money (M1) 

The equation for the narrow money aggregate (M1) also incorporates 

forward-looking behaviour in its planned magnitudes. Moreover, it is 

explicitly based on the 'buffer stock
1
 approach to the demand for money 

which, in essence, sees overall demand as comprising two components: a 

planned and an unplanned component. The latter is assumed to depend on 

unanticipated movements in nominal income, and interest rates. 

More specifically, we assume the agent minimises the cost function. 

C t = ZD
t
(a Q(M-M*)

2
 + a i( A M )

2
) t 
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where M* is the long-run demand for money and D is the discount factor. 

As described in Chapter 1 the first-order condition for this is 

, ( 1 + D + a) L
2
 a M* (1 5 L+ - )Mt = - - M t -1 

where a =
 a

0

/
a 1·

 A
 forward solution is derived in familiar fashion by 

factorising the LHS of this equation. We assume the long-run demand for 

money is given by 

M* = C QP + C Y-C r 

where Ρ is the price level, Y disposable income, and r is the interest 

rate. The demand for money then is equal to 

M = M
P

 + M
U 

where M
p
 is given as the solution to the above cost-minimisation 

exercise and M
u
 is the unanticipated component dependent upon 

innovations in prices, output and interest rates. The model in full is 

then 

00 

+ ( 1-λ1)(1-λ1D) Z(A1D)
S
(M* + s) 

s 

with M* as given above, and the P, Y, R processes given by the time 

ser i es repr esentat i ons, 
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P=u(L)Pt+Vt 

With Ρ
Θ
=Ρ , and similarly for Y

e
 and R

e
. The result when the 

backward/forward restrictions is applied is given in table 4. 

Table 4. Buffer stock model M1 

Constant M Y
e
 P

e
 R

e
 (P-P

e
) (Y-Y

e
) (R-R

e
) SEE DW 

-0.05 0.83 0.046 0.04 -0.019 0.57 0.28 0.065 1.44 2.4 

(1.1) (20.8) (3.2) (3.4) (4.7) (2.4) (3.0) (4.1) 

(b) Bank Lending equations 

The final item concerns the econometric results for bank lending, and 

here we will emphasise bank lending to industrial and commercial 

companies (ICC). The results will be those in Model 8, interest in bank 

lending equations per se having declined given the problems in 

accounting for movements in sterling M3, and its virtual demise as a 

target in governmental monetary policy in the UK. 

The approach taken here is detailed in Cuthbertson (1985). The 

general form of the model is 

e^L) QBL = 82(L) QGDP + G ^ D R + e^L) (ICCBR/P) 

where QBL is the real level of bank lending to ICCS, QGDP is real GDP, R 
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is a vector of interest rates to be described below, and ICCBR/P is the 

real level of the borrowing requirement of ICC
f
s. 

As is evident, the model is a fairly eclectic model involving 

transactions, precautionary and risk aversion elements from the 

literature on asset demands. Thus the level of output in the equation 

signifies that bank advances are substitutes for money held for 

transactions purposes, and thus will depend upon the level of turnover 

in the firm (proxied by output). Similarly precautionary elements are 

introduced via relative interest rates effects. Such effects are 

allowed here using bank lending rate relative to the local authority 

interest rate (RBL - RLA), and, because ICCs may borrow in foreign 

markets, a representative interest rate is included in the equation 

(actually the 3 month euro dollar rate REU). Finally "buffer stock" 

type factors in the demand for lending are proxied by including the net 

borrowing requirement of ICC in the equation. 

The estimated equation used in Model 8 is given next, and as is 

clear it is estimated as an error correction form of equation. 

A.lnQBL = 0.069 + 0.86 à In QBL + 0.99 Δ1η QBL 
4 t

 (3.8) (9.9)
 ά t -1

 (9.3)
 Z 6 

+ 0.15 àh In QGDP - 0.06 In (QBL/QGDP) ü 

(2.0)
 t

 (3.6) * 

- 0.001 Δ RBL - 0.002 Δ RBL + 0.008 (RLA - RBL) 
(0.7)

 W
 (3.0)

 t _ î?
 (2.9)

 t 

+ 0.001 (RLA - RBL) - 0.0001 ΔREU. 
(0.5)

 Z
'

d
 (0.3)

 W 

+ 0.0003 A(ICCBR/p) + 0.0002 Δ (ICCBR/p) 
(1.9)

 Z
 (2.0)

 d w 
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R
2
 = 0.95, SEE = 0.0143, LM(4) = 4.2 

Generally the equation performs fairly well, with coefficients 

which accord with a-priori conventions. As is usual in such equations 

however, there is some lack of precision in some of the interest rate 

effects, and in particular, the results suggest little influence from 

overseas interest rates. 

3. Conclusions 

This chapter has reviewed some of the considerations which led to the 

econometric specifications used in recent forms of the National 

Institute model. It has also provided a representative set of 

econometric results for some of the major items in those models, with 

the aim of imparting the flavour of the model, without providing all of 

the results concerned. In subsequent chapters we will be providing 

extensive accounts of the properties of these models when they are used 

in simulation (deterministic and stochastic), dynamic tracking and 

optimal control exercises. 
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1. Introduction 

This chapter considers problems involved in the solution of a large non-

linear model. This topic falls naturally into two sections: first, the 

solution of conventional non-linear models without any forward-looking 

expectations terms, and second the special problems posed when we 

introduce rational expectations into a large non-linear model. 

When considering the solution of traditional backward-looking 

models it might be thought that there are no outstanding problems of any 

great interest. It is true that a battery of solution techniques have 

been evolved which have been used very successfully for many years. 

However, while we have a set of analytical results for the performance 

of these techniques in a linear framework no great attention has been 

paid to the possible complications which might arise in the context of a 

non-linear model. The second part of this chapter considers some of 

these problems and conducts some experiments to investigate the effect 

of re-ordering and re-normalising a large non-linear model. 

The final part of this chapter considers the solution of a non-

linear model with consistent forward-looking expectations. A new 

solution technique is proposed and tested. The problem of terminal 

conditions is then described and finally a number of illustrations of 

dynamic experiments on the models are reported. 
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2. Solving large non-linear models 

The large economic models which are currently used for forecasting are 

typically both highly simultaneous and non-linear. Because of the 

complexity of the models an analytical technique for solving them is 

quite impractical. It is common practice therefore to resort to a 

numerical algorithm for model solving. Of the two main categories of 

algorithms, the Newton and Gauss-Seidel methods, Gauss-Seidel has been 

almost universally adopted for application to large models. This is 

because it is computationally easier and convergence to a solution is 

almost invariably much faster. A disadvantage of the Gauss-Seidel 

method, which has not been widely recognised by model builders, however, 

is that for a non-linear model it does not converge on the nearest 

solution from the initial starting point but it converges on a solution 

which is defined by the normalisation and ordering of the equations in 

the solution procedure. A non-linear model will in general exhibit 

multiple solutions and so when such a model is solved by Gauss-Seidel, 

care must be taken to ensure either that the solution is in fact unique 

or that if it is not, then the model is converging on a 'desired* 

solution. 

This section will first outline the Gauss-Seidel solution technique 

and indicate how this technique fixes the achieved solution to a 

specific one in the multiple solution case. The final part of the 

section will report on an exercise carried out to investigate the 

importance of ordering and normalisation in the National Institute's 

macro economic model. 
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A. The Gauss-Seidel solution technique 

We first state an η equation linear model in the following notation 

0 = Α. Υ. + Β. X. , i = 1, ... ,n (1) 
1 1 1 1 

so that there are η endogenous variables (Y), m exogenous or 

predetermined variables (X), and A^, B^ are suitably dimensioned 

vectors. If η is large and the model is highly simultaneous, it will be 

hard to solve this sytem analytically. The Gauss-Seidel method proceeds 

by first assigning starting values to the Y vector. In practice these 

are often the actual values of the Ys in the previous quarter. The 

method uses these values to solve the equations, one equation at a time. 

After each equation is solved the solution value is used to replace the 

initial guess for that variable in the Y vector. So if Ϋ is the initial 

guess and Y* is the new value, for any equation 

Y * = A Y * + A Ϋ + B χ (2) 

Κ = 1, ..., J-1 

M = J+l, ..., n. 

When the whole model has been solved a check is made according to some 

convergence criteria on |Yi - Y*|; if the two estimates of each Y are 

satisfactorily close a solution to the model has been found, if not then 

the Y* are redefined as Y and the process is repeated for another 

iteration. A more complete exposition of the Gauss-Seidel method may be 

found in Faddeev and Fadeeva (1963); an early example of its 

application to econometric models is Norman (1967). 
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In the linear case described above we know that if a solution 

exists it is unique and that a solution will exist if all the equations 

are linearly independent. The Gauss-Seidel technique in practice is not 

guaranteed to find such a solution even when it exists and is unique. 

The crucial factors in the success of the Gauss-Seidel approach are the 

order in which the equations are solved (this is referred to as the 

ordering of the model) and the normalisation of the equations. 

There are a number of variants on the basic Gauss-Seidel technique 

which have received attention recently. (A good survey of the recent 

literature may be found in Hughes-Hallett (1981)). If we restate (1) in 

a more compact form as 

AY = Β (3) 

Then the iteration procedure may be characterised as 

Y = GY + C (4) 

with some arbitrary Y°. The various iteration procedures may be nested 

within this framework by varying the construction of G and C. If we 

define A = (P-Q) then G = Ρ
 1
Q and C = P~

1
B. The way the A matrix is 

split determines the exact form of the iteration procedure. The 

simplest procedure is the Jacobi iteration which defines 

A
ij

 l f i =J
 (5) 

0 i * J 

The Gauss-Seidel iteration is produced by setting 

Ρ = (D-E) 

where D = A
ij if i = J and Ε = i-A if i < j -A 4j if i < 

0 if i > if i * J 0 if i > J (6) 
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The successive overrelaxation iterative method is defined by 

Ρ = - D(I - aD 
-1 

E) (7) 
α 

where D and Ε are defined above. 

A particularly important variant on these techniques allows for the 

incorporation of a damping factor in the following way 

When this is applied to the Gauss-Seidel iteration (6), the resulting 

technique is often called fast Gauss-Seidel. The importance of this 

development is that while (4) can only be shown to converge if the 

spectral radius of G < 1 (see Young, 1971), (8) can be shown to converge 

on the much weaker assumption that the real parts of the eigenvalues of 

G are all greater (Ύ<0) or less (Ύ>0) than one (see Hughes-Hallett, 

1981). 

To make some of these ideas a little clearer, Figure 1 gives a 

simple two-dimensional example of the Gauss-Seidel technique. 

Ï(GY 
(S) 

+ Ο + (1 - Ï)Y
S 

(8) 

Figure 1. 
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In Figure 1 an initial value is assigned to of x^ and of x̂  . The 

A A 
first equation is then solved for x̂  using x^; this yields x̂  (at point 

g 

A). This value is used to solve the second equation to yield x^ (at 
g 

point B). The new value of x^ is then used to solve the first equation 
g 

again and this finds x̂  at point C. The solution procedure then 

converges in the direction of the arrows towards the solution. But if 

the equations had been arbitrarily normalised in the reverse way so that 

from point A equation 2 had been solved first for x^ the algorithm would 

have moved away from the solution towards Ä and would have diverged 

indefinitely. 

So far all that has been said is simply the well-known properties 

of Gauss-Seidel when applied to linear models. In the case of non-

linear models the Gauss-Seidel algorithm also has the property of 

selecting one solution as defined by the model normalisation to the 

exclusion of other, even nearer, solutions. This is again easy to 

appreciate by the use of a two-dimensional diagram (Figure 2). 

Figure 2. 
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The first point which is made evident by Figure 2 is that as soon as any 

equation in a model becomes non-linear the possibility exists of there 

being no solutions, a unique solution, or multiple solutions. The type 

of non-linearity displayed in Figure 2 is a mixture of linear and log-

linear equations which is a typical occurrence in the large models. 

If the initial starting point for the Gauss-Seidel technique is 

point A in Figure 2 and the normalisation is equation 1 solved for x 1, 

then the convergence will be towards solution even though there is a 

closer solution S^. If the normalisation is reversed, the algorithm 

will converge on S^ from any starting point between Ŝ  and S^. A 

normalisation which converges on Ŝ  will converge from anywhere between 

S 2 and S(| and from any point between and Q, but it will diverge if 

the starting point is between S^ and R. So there are some starting 

points which make a particular solution unattainable for any 

normalisation. (At R one normalisation converges to S^, the other 

diverges.) 

In a model which exhibits the possibility of multiple solutions 

this property of Gauss-Seidel of fixing on one solution is highly 

desirable. It means that when we carry out simulations of the model we 

are unlikely to reach different solutions in different time periods; it 

also means that when we shock the model we will almost certainly track 

changes in a solution rather than jump from one solution to another, 

which would give meaningless results. 

Gauss-Seidel is therefore a useful technique for practical model 
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use as it provides a high probability of yielding one model solution 

even in the case where multiple solutions exist. Its main disadvantage, 

however, is that by 'locking* on one solution it actually hides the 

existence of all other possible solutions. This means that if model 

users do not conduct a fairly systematic search for other solutions, 

then the solution used in forecasting may be an arbitrary one given by 

the particular ordering and normalisation chosen. 

In general terms there are three broad categories of possible 

solutions. First the solution, even in a non-linear model, may be 

unique. Second, other solutions may be found, but they may be 

economically meaningless. Third, there may be more than one solution 

which could be taken as a viable economic solution to the model. Of 

these three it is only the final possibility which presents any serious 

problems to the model user. If there are a number of model solutions 

within what might be termed the 'reasonable* solution domain, then it is 

important that the model user is aware of this fact and that a conscious 

choice has been made as to which solution should be chosen by the Gauss-

Seidel algorithm. If such a choice has to be made, a sensible procedure 

would be to choose that solution which produces the best tracking 

performance for the model over its estimation period. 

This section has examined the broad properties of Gauss-Seidel as a 

solution technique. It has raised certain questions about model 

ordering and model solution which ideally should be investigated before 

any model is used for forecasting. The next section reports on 
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illustrations of these questions using the National Institute's economic 

model. The important question is not simply whether more than one 

solution exists (given the geometry of the model this is almost 

certainly the case), but if there exists another solution which is 

achievable from a given starting point, is this solution a rival to the 

first one? 

B. Reordering the National Institute's Model 

Given the proof that Gauss-Seidel will converge if the spectral radius 

of G is less than unity, the ordering of an equation in a linear system 

only affects the speed of convergence. In the case of a non-linear 

system there is no general convergence proof and it is possible that 

some orderings could either diverge or even move towards different 

solutions in the case where multiple solutions exist. The effect of a 

large-scale reordering of a big non-linear model is not therefore well 

understood. Will the speed of convergence simply deteriorate as 

different orderings are tried or may divergent orderings or* even 

multiple solutions be discovered? As a way of investigating these 

questions a computer program was written to investigate the effect of 

reordering the National Institute's Model. The solution program sets up 

a vector which defines the ordering to be used to solve the model, and a 

central 'computed GOTO' statement controls the order in which each 

equation is called in the model coding. This means that large numbers 

of orderings can be searched in a single computer job. However, the 

large number of equations in the macro model means that it is quite 

impossible to try all possible orderings. [There are 274 variables in 
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the National Institute model]. In fact not all equations are treated as 

separate entities but some blocks of equations are so closely related 

(e.g. the GDP Identities) that, for ordering purposes, they are treated 

as a single unit. Nonetheless, there are 131 separate ordering units, 

most of which are in fact single equations. This produces 6.944 times 
21 9 

10 possible orderings. If it took seven seconds of computer time to 

search each ordering, a complete check on all the orderings would take 

211 
something of the order of 2.7 times 10 computer years. Given the 

enormous number of possible orderings, a complete search is thus totally 

infeasible. The search pattern of the orderings used must be explained 

at some length, partly to define the limits of the search which has been 

undertaken, and partly to show how the search has been focused around 

the ordering normally used in forecasting and model simulations. It is 

desirable that the search should be based around the normal model 

ordering, to investigate the effects of making small or local changes to 

that ordering. 

The ordering search takes the normal ordering pattern as its 

starting place. It picks the first equation and moves this equation 

down the ordering one equation at a time until the equation reaches the 

last position. In addition, after each ordering is tried the exact 

reverse ordering is also tried. After the first equation reaches the 

end, the process is repeated with the second equation and so on until 

all equations have been shuffled. For the purposes of this search a 

multiple solution is defined as a solution in which any variable differs 

from the base solution by 2.5 per cent. This is a fairly large margin, 
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but even the normal convergence criteria of 0.02 per cent can give rise 

to solutions which differ by nearly 1 per cent. For this part of the 

search, divergence of an ordering is defined as non-convergence after 50 

iterations of Gauss-Seidel. This does not mean that the ordering may 

not converge eventually, but allowing the iteration limit to go above 50 

would greatly reduce the number of orderings which it is possible to 

search. [Below, we report on an extended search of some divergent 

orderings.] 

The shuffling procedure just defined has been applied to the 

National Institute's economic model, involving some 34,322 different 

orderings. Of these 15,764 orderings failed to converge within the 50 

Gauss-Seidel iteration limit. The remaining 18,558 orderings all 

converged on the same solution. An investigation of the speed of 

convergence was also undertaken, and this revealed that the normal 

model ordering took thirteen Gauss-Seidel iterations to converge while 

the fastest ordering converged in seven Gauss-Seidel iterations. 

While it is impossible to assert that reordering the model cannot 

locate an alternate solution, other than the basic one, the above 

investigation covered a wide range of alternatives, and suggests very 

strongly that reordering does not produce a different solution. 

Finally, we are left with the problem of the divergent orderings. 

It is possible that these orderings are simply divergent orderings. It 

is also possible that they are actually converging very slowly to the 
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same solution, or that they are converging on a different solution 

sufficiently far away to be unattainable within the iteration limit. It 

is obviously not practical to examine all the divergent orderings over 

an infinite number of iterations. An ordering which appears divergent 

may well ultimately converge, so an open verdict must be returned on any 

ordering which cannot be shown to converge. Nonetheless, some of the 

divergent orderings were subjected to a more extensive search which 

involved up to 900 Gauss-Seidel iterations. This revealed that of the 

first 130 divergent orderings found in the initial search, all 

eventually converged on the same basic solution, so that none of them 

were truly divergent. 

An alternate, or perhaps complementary, line of approach is to 

investigate the effects of changing the initial starting point on the 

final solution. In a complex model such as the National Institute's 

this is not, however, simple. For example, if all the endogenous 

variables were given an initial value of 1 0 , then the model itself would 

fail to run simply because 10 would be an absurd value for some of the 

variables. The approach we have adopted is a more serious alternative, 

and this scales the starting values of the endogenous variables. That 

is to say, normally the last quarter's value is taken as the starting 

value for the current quarter's solution. In the alternative solution 

this value is multiplied by a scaling factor which effectively moves the 

starting value along a ray projected from the origin. It was discovered 

that the model would run with a scaling factor within the range of 0.5-

1.5; outside this band the model failed. Starting values were chosen 

over this range in steps of 0.25 and, in addition, a number of orderings 
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were tried in combination with these starting values. Once again all 

combinations of starting values and orderings which were tried 

eventually converged on the same basic solution. 

The ordering of a large model is clearly crucial to its rate of 

convergence and the efficient use of a Gauss-Seidel type solution 

procedure. It does however seem that the reordering of a model is 

unlikely either to locate a second solution or to prevent the ultimate 

convergence of the solution procedure. 

C. Renormalising the National Institute's Model 

The problem of the normalisation of the equations of a large model is 

not such a difficult one as that of reordering in most cases. This is 

simply because most models have a quite definite natural normalisation 

in the sense that there is a clear dependent variable in each equation. 

Indeed, given the sparseness of many of the equations, re-normalising a 

model can be very difficult indeed. Nonetheless, as an illustration of 

how this might be done, a sub-block of the National Insitute's Model 7 

equations were re-normalised. The block consisted of the following four 

equations, in schematic form: 

where Ε is the effective exchange rate, PWMF is wholesale prices, PM is 

import prices, M is the value of imports and X are the other elements 

in each equation. 

Ε = f(PWMF, X ) 

PWMF = g(PM, X p W MF ) 

PM = h(M, X p M) 

M = i(E, X M) 
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These four equations were re-normalised so that: 

PWMF 

PM 

f"
1
 (E, X E) 

g"
1
 (PWMF, X 

PWMF 

M h 
-1 

(PM, X p M) 

Ε 
.-1 

(M, X M) i 

The model was then solved with these four equations replacing the 

original four. Under this condition the model diverged and eventually 

failed. So, as we would expect from the earlier arguments, re-

normalising the model has a profound effect, actually rendering the 

solution procedure unworkable. 

3. Solving non-linear models with consistent and rational expectations 

Following the seminal paper by Lucas (1976), it has become increasingly 

evident that one major weakness in conventional macro models lies in the 

modelling of expectations. As Currie (1985) has pointed out, when we 

model the economy we are faced with a problem which is almost unknown in 

the natural sciences; that the individual elements of the economy are 

actually intelligent agents, able to alter their modes of behaviour if 

they expect a change in the economic climate (either government policy 

or some exogenous external shock). This important feature of the real 

world cannot, in principle, be modelled by relying solely on backward-

looking behaviour (of the adaptive expectations type for example). 

Instead we must explicitly identify the informed nature of expectations 

about the future. Earlier chapters have described how this problem may 

be confronted when estimating dynamic equations. In this section, we 

turn to the allied problem of deriving model solutions with rational, or 

model consistent, expectations. 
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Formally, when we assume rational expectations in a large model, 

this implies that the expected outcome and the model's forecast of that 

outcome coincide. Such an assumption renders the solution techniques 

outlined in the previous section inoperable and a new set of solution 

procedures have to be developed. We describe some solution procedures 

below. Then the problem of terminal conditions will be considered, and 

a number of practical alternatives will be explored. 

A. Rational expectations and non-linear models 

Before embarking on the details of model simulation and solution, there 

is an important conceptual problem which must be considered. The 

theoretical literature on rational expectations has concentrated almost 

entirely on small linear models. Within this framework it is accepted, 

almost without real consideration, that a rational individual will be 

interested in forming an estimate of the expected values of all relevant 

variables. That is to say, he will use an unbiased estimate of the 

conditional mean of the probability distribution. Now as the 

deterministic forecast of a linear model with normally distributed error 

processes coincides with the conditional mean of the probability 

distribution of the model, the deterministic model solution may be used 

to convey this assumption. Unfortunately this is not the case for a 

non-linear model. The deterministic forecast of a stochastic non-linear 

model is not the mean of the probability distribution of the model. If 

the model represents a non-linear mapping from the error terms to the 

endogenous variables then the deterministic forecast may have no well-

defined place on the probability distribution. This train of reasoning 

leads us towards carrying out stochastic simulations to estimate the 
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mean forecast of the model. There is, however, a further complication. 

The expected values of a non-linear model do not comprise a single 

coherent forecast, in the sense that the implicit, or explicit, non-

linear identities in the model will not be maintained by the expected 

values. Thus the expected real exchange rate will not equal the 

expected nominal exchange rate deflated by the expected relative price. 

The empirical rational expectations macro models which exist at 

present are not fully rational as described above. Possibly a more 

descriptive term would be to describe them as consistent expectations 

models. These models are solved on the basis that all plans are made 

using values of future variables which are consistent with the model's 

solution (see e.g. the Liverpool model. Minford et al (1984)). The 

relationship between this procedure and the assumption of rational 

expectations is perhaps tenuous. 

These problems are perhaps most easily presented by stating a 

general non-linear model in the following form. Let 

Y t = f(Y., Y
e

y X k, Β, Ω) (9) 

i = 0, t , j = t+1, ..., Τ , k = 0, ..., Τ 

where Y is a set of Ν endogenous variables, with Y^ being lagged 

Q 
endogenous, and Y^ future expected endogenous variables. X is a set of 

M exogenous variables, Β is the full parameter set of the model and Ω 

is the variance-covariance matrix of all stochastic terms in the model 

(both parameters and error terms). In traditional macromodels the terms 



Ch. 5: Model Solutions 183 

e in Xy the future expected endogenous variables, may be viewed as 

having been substituted out of the model by some explicit sub-model. So 

if 

i = 0, t , j = t+1, ..., Τ , k = 0, ..., T. 

where Ύ are parameters and φ is a covariance matrix of stochastic 

terms, then we may substitute this function into equation (9) to 

eliminate the future terms in endogenous variables. The model may then 

be solved in the traditional way. However, this procedure fails to 

explicitly identify the expectations formation procedure so there is a 

loss of estimation efficiency. Further, if, due to some regime change, 

there is a shift in either the functional form of (10) or its 

parameters, then as these parameters are lost in the combined reduced 

form, all the parameters of the backward-looking model may change. 

However, if we deal explicitly with equations (9) and (10), any change 

in expectations formations mechanism is isolated in (10) and the 

structure of (9) will be invariant to this form of structural change. 

Perhaps the simplest form of solution to this problem would be to 

derive an explicit model for expectations formation (10), and then use a 

complete structural model in the form of (9) and (10) together. 

Certainly if we had a good idea of how expectations are actually formed 

the ideal situation would consist of explicit models of expectations 

formation. However, in the absence of such information, a second best 

assumption is often taken to be the rational expectations hypothesis. 

Under this assumption it is assumed that expectations will coincide with 

Υ
Θ 

J 
= g(Y., X k, Ύ, φ) (10) 
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the actual model forecast. According to this assumption, 

Yh = f ( V Yje' V *> Ω ) (11) 

h = i, ..., Τ , i = 0, ..., h , j = h+1, ..., Τ , k = 0, ..., Τ 

In fact most implementations on large models do not fully conform to 

(11) as the solution is carried out in a deterministic fashion so that 

Ω is ignored. As already stressed, in the case of a non-linear model 

the deterministic forecast will differ from the mean (or expected value) 

of the model's density function. So under the REH assumption the usual 

procedure is to define 

h - 1, ..., Τ , i = 0, . . . , h , j - h+1, . . . , T , k = 1 , ...,T 

We will call an explicit expectations mechanism such as (10) an 

expectations model solution, a deterministic model solution such as (12) 

a consistent solution, and a stochastic solution such as (11) a fully 

rational solution. 

Carrying out a specific explicit expectations model solution 

involves no special problems, the standard model solution programs are 

quite able to cope with these models. The problems raised by consistent 

solution, however, have been the subject of much recent attention in the 

literature, and we will describe some of these next. 

B. Consistent solutions 

There are a number of techniques used for solving models with consistent 

expectations. The first to be used widely was the Fair (1979), 

Anderson (1979) iterative technique. A more recent approach using 

optimal control is the Holly and Zarrop (1983) penalty function method. 

(12) 
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An approach from the engineering literature is the multiple shooting 

technique (Lipton et al., 1 9 8 2 ) . Finally there is the iterative 

technique outlined in Hall ( 1 9 8 5 ) . All these techniques address the 

same problem, although the relationship between them is not always 

clear. This section will show how they can all be viewed as special 

cases of the Hall approach, each being a particularly efficient 

technique in certain circumstances. 

For this we will discuss the problem of model solution within an 

explicitly linear framework. This is done simply so that matrix 

notation may be used, and none of the conclusions to be drawn are 

dependent on the assumption of linearity. 

We begin by stating a general linear deterministic simultaneous 

model as 

where a(L) and ß(L) are matrix lag polynomials, Y is a vector of Ν 

endogenous variables and X is a vector of M exogenous variables. Now if 

we want to solve this model over a fixed time period, 1 ... T, we may 

restate the solution problem in a more explicit framework as 

where Ζ is a suitable set of initial and terminal conditions. 

It is worth actually writing out in full the lefthand side of (14) 

a(L)Yt = ß(L)X ( 1 3 ) 

ΑΥ' - BX» + CZ' (14) 
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a(L
 1
),a(L~

2
) 

a(L) α a U "
1
) 

a(L ), a(L) α 

a(L
3
) 

α(^) 

a(L ) 

« ( I f " - " ) 

(15) 

If the full A matrix is actually lower triangular, having only zeros 

above the leading diagonal, then the model contains no consistent 

expectation terms, and it may be solved in the usual way, one period at 

a time. However, when the upper triangle is not empty, one of the 

special approaches mentioned earlier must be employed. 

The approach outlined in Hall (1985) is simply to deal directly 

with the equation system set out in (14) and (15). So we may normalise 

the model by defining A = D - Ε (see section 2A), and then use any of 

the standard iterative techniques (Gauss-Seidel, Fast Gauss-Seidel, 

etc.) to solve the model. 

Both the Fair-Anderson and the penalty function techniques make use 

of a separate split in the A matrix, before the normalisation procedure 

is made. Both techniques begin by defining A = (P - U), where Ρ is the 

principal diagonal and all the lower triangular elements of A and U are 

minus the upper triangular elements of A. We can then rewrite (14) as 
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ΡΥ' = UY
f
 + ΒΧ' + CZ' (16) 

This isolates all the lead terms and they can then be treated 

separately. This is done by defining a new vector, Y
e
, where in 

solution Y
e
 = Y by consistency. The model may then be stated 

PY» = UY
e
» + ΒΧ' + CZ' (17) 

Q 

The Fair-Anderson procedure begins by setting arbitrary values for Υ , 

solving (17), as a model without consistent expectations, and then 

9 
updating the estimate of Y with the solution values. This procedure 

Q 

iterates until Y = Y . 

The penalty function method proceeds in a similar fashion to 

Q 
achieve consistency by viewing the variables Y as control variables and 

minimising a function Ω = Σ (Y - Y e ) 2 using standard optimal control 

Q 
algorithms. This function has a minimum when Y = Y and consistency is 

achieved. 

The advantage of both these techniques is that the actual model 

solution procedure is reduced to a period-by-period problem without any 

consistent expectation terms entering. The added cost of this is 

obviously the extra iteration procedure in the Fair-Anderson technique, 

and the cost of the optimal control exercise in the case of the penalty 

function approach. In effect, both very sensible procedures to adopt, 

providing the upper triangle of A is very sparse. As A becomes more 

dense, the saving remains much the same, while the costs can rise 
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enormously. 

The relationship between (15) and the multiple shooting techniques 

is a little less obvious; any of the above techniques would proceed by 

normalising the model on the principle diagonal and proceeding from 

there. The multiple shooting technique however normalises the model on 

any lead terms first. In terms of (15) this is rather like moving any 

rows with non-zero upper triangle elements down the model until the non-

zero elements are on the diagonal. The model is then normalised on this 

new leading diagonal. This leads to some variables being determined 

twice. The initial period variables are then chosen so as to make the 

terminal values of the endogenous variables conform with the terminal 

conditions. 

A simple example makes this more clear. Suppose we have an 

equation 

E
t «

 E
f ι

 + a X
t 

(18) 

We renormalise this equation to give 

E
t+1 -

 E
t -

 a X
t (19) 

This equation can now be used to solve the whole path of E t > given E Q 

and Xfc. So Ε^ is chosen so that E T, the terminal value, is equal to the 

terminal condition. 
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The advantage of the multiple shooting technique is that it 

emphasises the importance of model normalisation and suggests ways in 

which the normalisation can be improved. The disadvantage is that it is 

only very special cases where renormalisation is actually possible. If 

a single equation can be renormalised as a single unit, as in the case 

of (18), then the approach is quite straightforward. However, most 

cases would involve renormalising whole blocks of the model and this 

would not generally be feasible. An employment equation which includes 

expected output cannot be renormalised as a single unit for example. 

Examples 

Little attention has been paid to the solution of non-linear models on 

the basis of fully rational expectations as we defined them above. Fair 

(1984) mentions the problem, and points out that the expectations 

variables must be updated using stochastic simulations, to give an 

estimate of the expectation of the model, rather than deterministic 

model solutions. To recap, there are three types of solution: an 

expectations model solution, where an extrapolative model of 

expectations formation is used, a consistent solution based on the 

model's deterministic solution, and a rational solution which uses the 

stochastic expectations of the variables. 

Table 1 provides a comparative example of all three solution 

procedures on a version of NIESR Model 8 which contains sixteen future 

expected variables. These variables occur in the three Stockbuilding 

and three employment equations. For the expectations model solution 

simple fourth-order auto-regression equations were used. Expectations 
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under this assumption are therefore formed from a simple univariate time 

series model. 

The three solutions methods provide quite different sets of 

results, as we would expect, although they are all reasonably close to 

the actual path of the economy. Purely on a basis of tracking 

performance there does not seem to be a strong argument for preferring 

one procedure over another. 

Table 1. The three model solution procedure 

QCE Actuals 1 2 3 

8102 34383 34544 34550 34985 
8103 34297 34526 34548 35006 
8104 34421 34584 3461 2 34698 
8201 34263 34509 34526 34678 
8202 34605 34499 34552 34958 
8203 34949 34928 35402 35393 
8204 35573 35137 35302 35389 
8301 35505 35452 35682 35795 

QDK 

8102 8818 8973 8977 9133 
8103 8846 8866 8868 9028 
8104 9001 8872 8873 9022 
8201 9443 9289 9292 9513 
8202 9220 9178 9181 9452 
8203 9600 9407 9412 9716 
8204 9643 9427 9436 9751 
8301 9985 10067 10066 10378 
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Table 1 (cont) 

191 

QEX Actuals 1 2 3 

8102 15279 15385 15385 15370 
8103 15659 15743 15743 15744 
8104 15824 15540 15540 15546 
8201 15701 15507 15507 15528 
8202 15948 15695 15695 15694 
8203 15246 15729 15727 15786 
8204 15768 15746 15743 15819 
8301 15777 15918 15911 16008 

QM 

8102 13378 13644 13685 13911 
8103 14807 13613 13647 14019 
8104 1 4475 13461 13465 13751 
8201 14357 13925 13933 14273 
8202 14793 13868 13940 14410 
8203 14187 14333 14486 14984 
8204 14227 14522 14745 15157 
8301 14686 14704 14849 15273 

UNEMP 

8102 2417 2501 2486 2515 
8103 2555 2760 2720 2768 
8104 2629 3074 3037 3093 
8201 2688 3249 3197 3247 
8202 2773 3363 3262 3295 
8203 2866 3358 3188 3196 
8204 2949 3382 3116 3098 
8301 3026 3372 3063 3015 

QGDP 

8102 48406 48365 48462 48684 
8103 48297 48880 48927 49233 
8104 49207 49125 49119 49270 
8201 49593 49305 49323 49592 
8202 49668 49587 49699 50062 
8203 49397 49868 50075 50421 
8204 50724 50285 50551 50742 
8301 51923 51816 51854 52031 

CPI 

8102 110.2 108.2 108.2 104.1 
8103 113.0 111.3 111.3 107.1 
8104 115.5 114.0 114.0 111.8 
8201 118.7 116.1 116.2 114.0 
8202 120.2 116.0 116.2 110.5 
8203 121.8 116.8 117.1 111.6 
8204 123.4 117.1 117.8 114.7 
8301 125.5 116.8 117.9 115.2 
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Table 1 (cont) 

1) The expectations model solution 

2) The consistent expectations solution 

3) The rational expectations solution 

QCE = Real Consumers Expenditure QDM = Real Investment 

QEX = Real exports QM = Real Imports 

UNEMP = Unemployment CPI = Consumer Price Index 

C. Specifying terminal conditions for a model with consistent 

expectations 

Before it is possible to solve a model which involves future 

expectations in a consistent way, a suitable set of terminal conditions 

must be supplied. There has for some time been confusion over the 

distinction between terminal conditions and transversality conditions, 

with some researchers suggesting that the two are formally equivalent. 

We will argue here that in fact this analogy is false and that in 

practice terminal conditions can have no choice theoretic backing but 

must ultimately be *ad hoc*. 

The proper analogy for an empirical macro model appears to be that 

we may interpret terminal conditions as transversality conditions if we 

were to solve the model over an infinite horizon. This is obviously 

impractical. 
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A better interpretation of the terminal conditions is that they 

should force the model solution to be on the infinite time horizon 

solution path at period Τ (where Τ is the finite solution period). So 

if we define Y to be the solution path of the model solved over an 

infinite time horizon subject to a set of transversality conditions,then 

if we solve the model over the finite period 1, ..., Τ subject to Y T = 

? T, the finite solution Υ
1
, i = 1,..., T, will be equal to the infinite 

time solution path for the first Τ periods. So we may achieve part of 

the infinite time horizon solution path without solving the model to 

infinity. 

The obvious difficulty here is that we cannot know what Ϋ is until 

an infinite model solution has been achieved. However, bearing in mind 

this interpretation of the terminal conditions, we are able to make a 

more precise interpretation of the various suggestions which have been 

made. In particular the Minford and Matthews (1978) suggestion that 

equilibrium values should be used, is based on the idea that they are 

using a market clearing model which quickly moves towards its 

equilibrium. So after a few time periods it is assumed the infinite 

time solution path should be the steady-state equilibrium. Similarly 

the Holly and Beenstock (1980) suggestion of projecting constant growth 

rates as a terminal condition may be seen as suggesting that the 

infinite time solution path is characterised by steady growth rates. 

The Fair (1979) idea of testing the terminal condition by extending the 

solution period, until no significant change occurs in the early part of 

the solution period, may also be seen as a way of fixing the terminal 
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conditions on the infinite time solution path. 

In the Institute model we have four optional forms for the terminal 

condition. These are: 

1) Setting the terminal conditions to exogenous data values. 

2) Setting the terminal conditions so that they lie on the previous 

year's growth path. 

3) Setting the terminal conditions so that the levels of the variables 

are projected flat. 

4) Setting the terminal conditions to project a constant rate of 

growth from the final quarter of the solution period. 

Table 2 gives details of model solutions carried out under the four 

different options. It would seem that the form of the terminal 

conditions can have quite important consequences for the overall 

solution path. Although, as Fair suggests, the early parts of the run 

are not substantially affected by the form of end point condition 

selected. 

The picture is rather different when a forward-looking exchange 

rate equation is added to the model. (See Chapter 1 for an account of 

this model). In this case it proved almost impossible to solve the 

model except with fixed terminal conditions. It now seems that it may 

not, in practice, be possible to solve a model with certain forms of 

forward-looking equations with anything other than a fixed terminal 

condition. The reason for this may be seen if we set out a linear model 

using matrix notation as 
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AY
1
 = BX + U 

where Y is a stacked vector of Ν endogenous variables for Τ periods 

(Y i ; L...Y i T, i = 1,...,N), A is an NT χ NT matrix of parameters, X is a 

similar stacked vector of MT exogenous variables and Β is a similar NT χ 

MT vector of parameters. If Ŷ , includes a suitable set of terminal 

conditions then the model may be solved to give 

Υ· = A
_ 1
BX + A~

1
U 

if A is non-singular. This means that the rows of A must not be linear 

combinations of each other. However, with many rational equations such 

linear combinations may easily be created. To take a simple example 

suppose we have an equation 

Ε.. = Ε.. „ 
t t+1 BX. (20) 

and we use the terminal condition 

E
T
 = E

T-1 

In matrix notation we may express these two equations as 

(21) 

- - - — 

1 -1 E
T-1 

Β 

-1 1 
.

Ε
τ _ 

0 

Clearly the A matrix here is singular, and so (21) will not provide a 

suitably strong condition to allow a solution. It is also true that for 

equations like (20) the Fair suggestion of extending the solution 

horizon becomes unworkable. We can express (20) as 
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T-1 
for any T>t, 

so that no matter how far in the future the terminal date occurs, its 

effect on will not decline. Equations such as (20) with unit forward 

roots are unfortunately not uncommon in exchange rate and pricing theory 

generally. 

D. The use of models in forecasting 

Forecasting with an econometric model is widely regarded as something 

akin to art, and mechanical forecasts given by the unadulterated dynamic 

solution of an estimated econometric model are not attempted. Such 

mechanical solutions are, typically, the preserve of textbook accounts 

of predicting with an econometric model. Practical forecasting, it is 

often urged, must eschew mere mechanical procedures. According to Klein 

'It is performance in repeated forecasting of a wide spectrum of 

economic magnitudes that really puts econometric methods to the supreme 

test, and elaborate forecasting procedures have to be employed in order 

to meet this challenge.
1
 (Klein, 1983, p. 165; our emphasis added). 

The sort of elaboration - in effect augmenting the dynamic solution of a 

model - which Klein refers to is well known. It includes correction for 

systematic behaviour in single equation residuals, data revisions, 

actual and anticipated changes in legislation, and non-modelled effects 

such as those of the miners
1
 strike. All of these examples suggest that 

the pure mechanical solution of a model could be improved by 

intervention. 

The intention of this section is to construct a counter-argument to 
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this view. We will argue that a model which is itself a good 

representation of the data can be used to produce acceptable purely 

mechanical forecasts. In support of this claim we will use the National 

Institute's Models 6 and 8 to recreate a set of recent forecasts 

abstracting from all 'ad hoc' model intervention. We will use exactly 

the same values for the exogenous variables as were used in the 

production of the published forecasts. The objective is to see how 

reasonable the resulting forecasts would have been if we had simply 

relied on the model in the production of the forecast. 

There are a number of points of interest in this exercise. First, 

given that Wallis (1984) has shown that the NIESR model is one of the 

most clearly data coherent models of those in use in the UK, it is of 

interest to see if the model can meet such a challenge in a satisfactory 

manner. Second, in Wallis (op. cit.) a start has been made in terms of 

considering the effects of removing 'ad hoc' adjustments from models 

used for a published forecast. This section extends this work by 

considering the exercise for a succession of published forecasts. 

Finally, we make a number of points about the construction of the model-

based forecasts which are of some importance. 

(a) Model intervention and published forecasts 

At the present time all the published forecasts in the UK which are 

model-based are produced with a considerable degree of intervention. 

Perhaps the most often cited justification for model intervention is the 

problem caused by data revision. Data is continually being revised, and 
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it is quite impossible to continually re-estimate a large model on the 

latest set of data. So in general, while a model will have an expected 

value of zero for its error term on its estimated data set, this need 

not be true with respect to a more recent revised data set. 

Furthermore, there may be a reason for intervention owing to ancillary 

information which, though not part of the model, is related to variables 

in the model. The most common example here is survey and anticipations 

data; investment intentions, for example, are widely used. Both of 

these broad types of intervention are extensively practised, are 

defensible procedures and, the evidence shows, improve actual 

forecasting performance (Klein, 1983 , p. 1 6 6 ) . 

Less justified, but equally widely practised, are subjectively 

based interventions. Among such interventions are those made to ensure 

a particular outcome for an endogenous variable because this is thought 

more 'acceptable
1
. Although such intervention may be made on grounds of 

hunch (or probably with an eye on what other forecasters are producing), 

one subtle justification for this might be that econometric models are 

invariably estimated by single equation methods. Thus dynamic model 

solutions may be altered in the belief that the model is misspecified, 

and, in particular, does not allow for possible inter-equation effects. 

Whilst the former set of interventions may be regarded as 

justifiable, and the latter less so, the important point about 

interventions of either sort is their bearing upon the possibility of 

treating forecasts as a test (possibly the ultimate test) of the realism 

of a model. Again according to Klein, ex-ante forecast performance is 
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the 'bottom line of applied econometrics' in that 'econometric models 

are unfailingly judged by their predictive ability in genuine forecast 

situations'. Indeed he goes on to argue that an 'acceptable' 

forecasting performance is a sine-qua-non of an econometric model, if 

this is to be taken seriously for use in evaluating policy alternatives 

and assessing underlying theory (Klein, 1983, p. 164). Two absolutely 

crucial things are evident from this. The first is that if forecast 

performance can be used to test anything, it is the forecasting activity 

as a whole including the solution to the model, residual and other 

interventions, and exogenous variable forecasts. This prompts the 

question of how forecasts may be used to gauge the reliability of the 

model as such (and the economic theories on which it is based). As a 

qualification to the present discussion, it is important to recognise 

the multiple activity involved in the use of econometric models. Models 

are used to produce forecasts. But, because they are structural models 

based on behavioural propositions about economic agents, they are also 

used to provide insights into the responses of the economy to policy 

changes and other shocks. Ideally, there would be a close 

correspondence between these two activities; a good model would not 

only forecast accurately, but would give reliable information about the 

consequences of policy changes. In the present, far from perfect, state 

of econometric modelling things are more complicated. At one extreme, 

it is possible that a model based on weak theoretical/behavioural 

propositions, could nonetheless forecast tolerably well, with the 

judicious use of interventions in that model's dynamic solution. In 

this case it would be a mistake to infer, from the forecasting record 
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alone, that the model offered reliable guidance on the effects of 

changes in economic policy for example, or on the response of the 

economy to shocks. 

(b) Model based forecasts 

So far we have mentioned 'model based' without defining precisely what 

this term means. Consider a general statement of a non-linear model 

where Y is a set of contemporary and lagged values of endogenous 

variables, X is a set of known exogenous variables, Θ is a set of 

parameters assumed also to be known and e is a set of single equation 

error terms assumed to be normally distributed N(0, Σ) (where Σ is the 

covariance matrix of the error terms). 

Within the context of equation (22) it is not entirely clear what 

the pure model based forecast is. We distinguish three alternatives and 

the later numerical work will present parallel results for all three. 

These are: 

(i) The zero residual deterministic forecast 

This is given simply by taking the estimation assumption of a zero mean 

residual and ignoring the existence of the covariance matrix of the 

error terms. This form of solution is defined by 

F (Y, Χ, Θ, e) = 0 (22) 

F (Y, Χ, Θ, 0) = 0 (23) 
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(ii) The constant residual deterministic forecast 

We argued in section 2 that, if only because of data revisions, the 

actual expected value of the equation error terms will not be zero. 

Given this, it seems that (23) is actually a rather naive concept of a 

pure model solution as it ignores the fact that the error process is an 

integral part of the model. Given this fact, we propose, as our second 

mode of model solution, a structure where the error terms are set at 

their average value for the last eight quarters of the available data. 

This is still a very simple rule, and more complex ones are clearly 

possible, but it has the advantage of adjusting the scaling of the model 

to the latest data revisions. Formally we express this mode as 

where the initial period of the solution is 1. 

(iii) The stochastic solution 

The last two solution modes have ignored the fact that the error terms 

are not known with certainty. If the model were linear this would not 

be a damaging omission as the deterministic forecast of either (21) or 

(22) would coincide with the model's expected value under a suitable 

assumption about the mean of e. In the case of a non-linear model this 

will no longer generally be true. The deterministic model solution has 

no well defined location on the density function of the endogenous 

variables. As argued in Wallis (1985) and Hall (1984) the deterministic 

F(Y, X, 0, e) = 0, (24) 

ê = i Σ 
8
 i-0 

i (25) 
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model solution may be quite misleading as a guide to the location of the 

centre of the density function. The third solution mode uses stochastic 

simulation (described in chapter 6) to calculate an estimate of the 

expected value of the model, conditional on the error terms being 

distributed as N(e, Σ ) where e is defined in (25). So we may express 

this as 

E [F (Y, Χ, Θ, ν) = ο] , ν - Ν (ê, Σ) (26) 

where Ε is the mathematical expectation operator. 

Along with an estimate of the mean of the model's density function, 

stochastic simulations also provide an estimate of the higher moments of 

the distribution. These are not without interest in their own right, 

but they are not the central issue here, and we will not report 

estimates of the variance or other moments. From the point of view of 

this section, the central interest of the stochastic runs is that we 

know the mean of the density function to be a good measure of location, 

even in the case of highly skewed distributions. If the mean is close 

to the deterministic runs, this shows that using the, much simpler, 

deterministic solution method does not sacrifice any important 

information. However, if we find this not to be the case then the 

argument for deterministic model runs may be considerably weakened. 

(c) Practical details of the model solutions 

The published forecasts which are analysed here are the August 1983 and 

November February and May, 1985 forecasts. The first of these is 

reported, because it is possible to compare forecasts with outturns. 
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The remaining examples all are based on a model with rational 

expectation formation. 

In implementing the various solution modes (i), (ii) and (iii) 

above, a number of practical details must be dealt with, and explained. 

The solutions presented in the next section will be true ex-ante 

solutions in that they are based on the actual forecasts of the 

exogenous processes (X) which were used to produce the forecast 

published in the National Institute Economic Review. The relevant 

published forecast will also be presented with each set of solutions for 

comparative purposes. Where specific adjustments were made because of 

some special, well defined, factor, such as the miners
1
 strike, we have 

maintained the treatment used in the published forecast even where this 

turned out to be quite wrong. All other 'ad hoc' model interventions 

have been removed and substituted with the error processes generated by 

(i), (ii) and (iii). Where endogenous sections of the model were 

exogenised in the published forecast we have re-endogenised the relevant 

sections in our model based runs. We recognise that some researchers 

might argue that such interventions represent policy choices of the 

government. Nonetheless, whenever there is any doubt at all about the 

underlying motive of the forecaster, we have chosen to treat the 

intervention as 'ad hoc' and to remove it. 

Finally, we note some of the details of the various stochastic 

runs. The error terms used in the generation of the stochastic 

replication have been drawn from a multivariate normal distribution with 
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mean e (defined in (25)). They have been constructed using the McCarthy 

algorithm which takes a vector of univariate normal random numbers (in 

this case generated by the Box-Mueller algorithm), and transforms them 

into a vector of multivariate random shocks which asymptotically 

approximate the model's true error covariance matrix. Further details 

of these techniques may be found in Chapter 6. 

(d) Numerical results 

Overview 

In evaluating the results in tables 3~6 one is faced with the problem 

that there is no unambiguous and simple way of describing them. No 

summary statistic exists which shows closeness, nor is there any 

objective test of reasonableness. Any evaluation must therefore be 

somewhat subjective. Nonetheless, we believe that the overwhelming 

conclusion which the detailed results suggest is that any of the three 

definitions of mechanical model solutions could easily have been 

presented as an acceptable forecast. The important feature we would 

stress here is that, when used in a reasonably pure form, the model has 

not produced any sets of numbers which could immediately be dismissed as 

absurd. This result contrasts strongly with the more generally held 

view, set out earlier, that large models, when used mechanically, 

produce obviously unacceptable forecasts. And it supports the finding 

of Wallis (1984) that the use of a common set of exogenous variables 

with mechanical residual adjustments produced comparatively little 

change in the NIESR published forecast. This result was not found to be 

true of any of the other UK modelling group forecasts examined by the 
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Macroeconomic Modelling Bureau. 

Two things seem to follow from this. The first is that these 

published forecasts seem, in a relative sense, to be less dependent upon 

particular forms of intervention (residual and otherwise) and more 

dependent upon its econometric model. The second point concerns the 

usefulness of mechanical versus judgemental forecast comparisons. It is 

widely believed not only that a variety of interventions are an 

indispensible part of producing a 'good' forecast, but that the forecast 

itself is much better as a result. McNees (1975) for example compared 

the forecast performance of 'mechanical' forecasts produced by Fair with 

non-mechanical large model forecasts, and found decisively in favour of 

the non-mechanical approach. These comparisons seem fraught with 

problems, not least being that the models themselves differ from each 

other, so the comparisons are not merely between mechanical and non-

mechanical methods of forecasting. It would seem necessary, at least, 

to conduct the exercise with mechanical and non-mechanical ex ante 

solutions of the same model as we have done. The performance of each 

may then be evaluated ex post once sufficient time has elapsed. 

August 1983 

We are particularly interested in an analysis of a forecast made in 

August 1983 since this allows full comparison with data outturns over 

the entire forecast period. This forecast was made using a previous 

vintage of the National Institute's model, [Model 6, described in 

Britton (ed.) (1983)]. 
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The results in table 3 make the same assumptions as in the 

published forecast for policy settings and exogenous variables. 

Qualitatively the results are broadly similar, in that we conclude that 

all three model runs produce 'sensible
1
 answers. (It should be noted 

that the need to use the 1975 price-based data means that the 'actuals' 

must be derived by scaling the last available 1975 based data by the 

growth rates obtained from the 1980 based data.) 

Broadly speaking, the results suggest that if the model had been 

run without subjective intervention, then the overall shape of the 

forecast would have changed to give somewhat higher output and lower 

inflation. As can be seen, this accords well with what actually 

transpired. 

All three model runs produce higher GDP forecasts than that 

originally published, the constant residual case (ii) producing an end 

of period value of 111.3· For the stochastic case the figure was 111.8 

and the zero residual simulation is the most optimistic at 114.6. All 

model runs are closer to the outturn than the published forecast. 

Turning to total consumption, all three runs perform well and track 

the increases that occurred. On the trade side, the export profiles are 

broadly similar, whereas the rise in imports, not captured by the 

published forecast, is tracked reasonably well by the automatic residual 

and stochastic runs. 
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Ch. 5: Model Solutions 2 1 3 

The forecasts of unemployment and employment are one area where 

there are noticable differences between the forecasts. The poor 

unemployment forecast is attributable to errors in forecasts of 

exogenous labour supply however, not to errors in the model forecast of 

employment. 

Moving on to prices, we can see that the model captures the 

slowdown in the rate of inflation rather better than the published 

forecasts. There is, however, an important exchange rate effect at work 

here, with all mechanical forecasts for the effective exchange rate (the 

model exchange rate equations) being noticeably overpredictions, 

producing lower wages and prices in these runs. 

A qualification to the comparison of forecasts with outturns is in 

order. Such comparison, never easy, is especially difficult for 1984. 

Since one can hardly have expected the model to have predicted the 

effects of the miners' dispute, which lasted throughout the year, a 

fairer comparison than that between the forecast and events as affected 

by the strike is that between the forecasts and what events would have 

been if the strike had not happened. But, since no exact estimates of 

the effects of the strike are possible, we have not attempted to adjust 

the outturns in the tables. It should also be borne in mind that the 

forecast published in August 1983 was conditional on 'unchanged 

policies'; since policies subsequently did change, it is not strictly 

appropriate to compare the forecast directly with what actually 

happened. 
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Despite these caveats we conclude that the mechanical model runs 

(i), (ii) and (iii) are also vindicated in an ex post sense: they are, 

if anything, closer to what actually happend than the published 

forecast. 

November 1985, February and May 1986 Forecasts 

Model 8, unlike the previous example, incorporates a range of 

expectations variables and is solved using consistent expectations and 

in this section we use these as the basis of a comparative exercise such 

as described above. Again in this exercise, all exogenous variables 

have the same values as used in the published forecast, and all residual 

adjustments have been removed and replaced either with zero residuals or 

with the average residual over the last eight data periods. The model 

has then been used in a purely mechanical fashion to reproduce the 

forecast. The resulting differences are shown in tables 4, 5 and 6. 
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mechanical model forecast 

Output GDP 
(1980=100) 

Annual inflation 
(CPI) 

1985 IV 

1986 IV 

1987 IV 

1988 IV 

1989 IV 

1990 IV 

M 

109.4 

110.2 

112.1 

113.7 

115.5 

118.0 

Ρ 

111.2 

112.4 

113.9 

113.9 

116.6 

118.2 

M 

4.7 

0 

4.5 

8.1 

11.8 

16.6 

Ρ 

4.7 

3.8 

3.1 

3.Ί 

4.8 

Employment 
(millions) 

Consumption 
(£ billion, 1980) 

1985 IV 

1986 IV 

1987 IV 

1988 IV 

1989 IV 

1990 IV 

M 

21 .42 

21 .52 

21 .71 

21 .91 

22.17 

22.58 

Ρ 

21 .37 

21 .43 

21 .47 

21 .58 

21 .61 

21 .64 

M 

37.5 

38.5 

39.3 

39.9 

40.4 

41 .0 

Ρ 

37.5 

38.5 

39.1 

39.7 

40.3 

40.8 

Note: Μ is the mechanical model solution; Ρ is the published forecast. 

Table 4. A comparison between the published November 1985 forecast and 
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Table 5. A comparison between the published February 1986 forecast and 

a mechanical model forecast 

Output GDP Annual inflation 
(1980=100) (CPI) 

M Ρ M Ρ 

1985 IV 110.9 110.9 4.7 4.7 

1986 I 111.3 111.8 2.4 3.2 

1986 II 112.1 111.4 2.7 3.6 

1986III 112.7 112.0 1 . 3 3.7 

1986 IV 112.2 112.2 7.1 4.2 

1987 I 112.8 112.3 12.7 4.9 

1987 II 113.9 113.2 17.0 5.5 

1987III 114.7 1 1 3.9 18.4 4.8 

1987 IV 114.8 114.5 18.3 3.7 

1 988 I 115.1 114.8 16.9 3.2 

Employment 
(millions) (£ 

Consumption 
billion, 1980) 

M Ρ M Ρ 

1985 IV 21 .38 21 .23 37.5 37.5 

1986 I 21 .52 21.25 37.8 37.8 

1986 II 21 .61 21 .29 38.2 38.1 

1986III 21 .72 21.37 38.6 38 .3 

1986 IV 21 .80 21 .41 38.9 38.4 

1987 I 21 .89 21 .40 38.9 38.5 

1987 II 22.01 21 .46 38.9 38.7 

1987III 22.16 21 .56 39.0 38.9 

1987 IV 22.25 21 .60 39.1 39.2 

1988 I 22 .3^ 21 .65 39.1 39.4 

Note: M is the mechanical model solution; Ρ is the published forecast. 
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Table 6 . A comparison between the published May forecast and a 

mechanical model forecast 

Output 
(1980= 

GDP 
100) 

Annual inflation 
(CPI) 

M Ρ M Ρ 

1986 I 111.5 111.5 4.4 4.4 

1986 II 112.8 111.8 4.2 4.7 

1986III 113.7 112.4 2.9 4.2 

1986 IV 113.7 112.9 1.2 3.1 

1987 I 114.2 1 1 3.0 0.7 3.3 

1987 II 114.9 1 1 3.8 0.7 3.1 

1987III 115.6 114.4 1.3 3.5 

1987 IV 116.0 115.0 1 .0 3.2 

1988 I 116.4 115.4 2.8 3.1 

Employment 
(millions) (£ 

Consumption 
billion, 1980) 

M Ρ M Ρ 

1986 I 21 .48 21 .35 38.0 38.0 

1986 II 21 .61 21 .42 38.5 38.5 

1986III 21 .75 21 .50 38.9 38.8 

1986 IV 21 .85 21 .55 39.4 39.1 

1987 I 21.96 21 .57 39.6 39.3 

1987 II 22.09 21 .65 40.0 39.6 

1987III 22.23 21 .76 40.4 39.8 

1987 IV 22.33 21.82 40.8 10.1 

1988 I 22.44 21 .89 41.0 10.1 

Note: M is the mechanical model solution; Ρ is the published forecast. 

There is clearly a close correspondence on the real side between 

the published forecast and the mechanical forecast in all three tables. 



218 S.G. Hall and S.G.B Henry 

The forecast for inflation in the November and February published 

forecasts differs substantially from the model solution. This is 

primarily because the terminal condition used in these model runs was 

causing a substantial devaluation in the exchange rate beyond what was 

actually known to have occurred. 

Conclusions 

It is quite widely believed that macroeconomic models cannot be used for 

forecasting except with a substantial additional element of judgement. 

This view may derive from experience of models which, without 

'judgemental
1
 intervention by the user do indeed produce forecasts which 

seem totally implausible (or even fail to produce solutions at all). 

This exercise has shown that this is far from being true of the 

Institute's model. Forecasts produced by 'mechanical' operation of that 

model are shown to be plausible and, indeed, not very different from 

those actually published by the Institute. 

This being true, one can begin to use forecasting performance as a 

test of the model as such, as well as a test of the judgement of the 

forecasters who use it (although even in a mechanical forecast much 

depends on the forecasts of exogenous variables like world trade or 

policy changes). Assessment of forecasting performance can be made only 

when a long run of outturn data is available for statistical analysis. 

Here we have presented one example of a mechanical forecast as it might 

have been made in August 1983 set alongside the outturn figures up to 

the beginning of 1985. No firm conclusions can be drawn from this 
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single instance. All one can say is that, on this occasion, a 

mechanical forecast using the Institute's model would have been not only 

(ex ante) a 'plausible' forecast, but even, in some respects at least, 

(ex post) a reasonably accurate one. 
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STOCHASTIC ANALYSIS IN NON-LINEAR MODELS 
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1. Introduction 

By their very nature even large models are stochastic, simply because no 

description of the world can ever be so complete that the models fit the 

data perfectly. So the full specification of any general econometric 

model must include a set of error terms attached to equations which are 

not actually identities. For a linear model, as long as the error terms 

are normally distributed with zero mean, the stochastic part of the 

model has few practical consequences. Ignoring the error terms 

completely gives a deterministic forecast which is identical to the mean 

forecast of the stochastic model, and which is optimal on almost any 

criterion. However, as soon as the model becomes non-linear this is no 

longer the case. There is then no general analytical relationship 

between the deterministic solution and the solution to the full 

stochastic model. This section will explore the consequences of the 

stochastic nature of large models both from an analytical standpoint, 

and with the aid of stochastic simulations. 

Stochastic simulation is a numerical technique which allows us to 

investigate the uncertainty which is inevitably associated with any 

large econometric model. Because such models are generally non-linear 

and highly complex, an analytical investigation of the effects and 

importance of their stochastic nature is impossible. Stochastic 

simulations bypass the analytical problems by simply performing large 
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numbers of model simulations. Each simulation differs from the others 

because of the addition of a set of shocks to the model. These shocks 

may be added to the equations, the parameters, or even the exogenous 

variables. All the simulations are collated, and it is then possible to 

calculate a range of statistics from the simulated data such as the 

mean, the standard deviation, and the higher moments. As the number of 

simulations becomes large these estimates should provide a good guide to 

the performance of the model. 

This chapter is divided into four main parts: section 2 will deal 

with the general background of stochastic simulation, describing some of 

the techniques and giving some new analytical results about the 

relationship between a deterministic model forecast and its underlying 

density function. Section 3 will use the techniques of stochastic 

simulation on two of the National Institute's models (6 and 7) under a 

variety of assumptions about the models' stochastic processes. Section 

4 will use some of the results of section 2 to test whether the model 

falls within an important class of bijective functions, defined in 

section 2. Finally, section 5 will consider the problem of calculating 

the moments of the simulation properties of a model. A new algorithm 

for performing this calculation will be presented and illustrated. 

2. A general background 

A. The importance of the stochastic nature of models 

Any behavioural equation of a macro model is by its very nature 

stochastic. The equation will not fit its data set perfectly and it can 
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provide only a partial explanation of the past. There will always 

therefore be some degree of uncertainty about the general specification 

of the equation, the actual values of its parameters and the importance 

of any error term. Typically, when an econometric model is used either 

for forecasting or simulation the stochastic nature of the model will be 

ignored. All the error terms will be set, at least initially, to zero, 

and the parameter estimates will be taken as known with certainty. It 

is natural to ask what the standard error of the deterministic forecast 

is, and stochastic simulation can provide this answer. However, a much 

more important problem lies in the meaning of the deterministic forecast 

itself. It is well known that if the model is non-linear then the mean 

of the forecast will differ from the deterministic solution value. It 

has recently been pointed out (Hall (1984) and Wallis (1984)) that for 

some types of non-linearities, the deterministic forecast may be quite 

meaningless and highly misleading as to the model's true forecast. A 

simple example can demonstrate this. 

Let Υ = αΧ + u (1) 

W = $Y + ν, and 

where u, ν are stochastic error processes, α, 8 are parameters, and X, 

Y, W, Ζ are variables. The reduced form solution is 

Ζ = Y.W 

Ζ = 3 α
2
Χ

2
 + 2αΒ Xu + αΧν + ßu

2
 + uv (2) 

W = αβΧ + i3u + ν 

Y = αΧ + u (3) 

(4) 

The equations for Y and W are simple linear equations, so assuming E(u) 
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= E(v) = 0, the expected value of Y and W will be equal to the 

deterministic model forecast. This is not true for Ζ however, as the 

term in u
2
 will be positive no matter what sign u takes. So the 

deterministic forecast, which sets u
2
 = 0 will be an extreme point on 

the probability distribution of the term u
2
. Any error at all will 

make u
2
 > 0 and so the deterministic forecast is a highly biased and 

misleading indication of the stochastic model forecast. 

It will be shown below that there are three broad classes of 

models. First, there are linear models, the deterministic forecast of 

which is equal to the mean of the stochastic linear model, also all 

endogenous variables will be normally distributed around this point 

(assuming normal error processes). Second, there are non-linear models 

which represent a bijective mapping from the error terms onto the 

endogenous variables. A bijective mapping is a unique one-to-one 

mapping in both the function and its inverse. (The quadratic term 

discussed above is not bijective as its inverse is not a one-to-one 

function.) The deterministic forecast of such a model can be shown to 

be the median of a generally skewed probability distribution. In this 

case the median, the mode and the mean of the probability density 

functions of the model are different. Forecasting the median seems a 

reasonable option especially considering some undesirable properties of 

the mean and the mode, discussed below. Finally, the third category is 

a non-linear model which is non-bijective. In this case the 

deterministic forecast has no well defined place on the probability 

density functions of the model. It can even lie at some highly 
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unrepresentative extreme point, as shown by our illustration above. 

The example given above shows that a fairly simple form of non-

linearity, which certainly exists in most large models, can give rise to 

non-bijective terms in the reduced form. So without considerable work 

to define and investigate the shape of the probability function of such 

models, there is great difficulty in interpreting their deterministic 

properties. Stochastic simulations are useful therefore in defining and 

quantifying the uncertainty associated with a model forecast or 

simulation. But far more important, they allow us to have a firm basis 

for interpreting the results of a deterministic model run. If we know 

that the deterministic forecast is close to the mean value, and that the 

probability distribution is near to being normal, then the model may be 

used in the conventional way with some confidence. Until we have that 

information a serious problem of interpretation exists. 

B. A decomposition of the errors and some technical details 

By slightly extending the analysis of the decomposition of forecasting 

errors presented by Bianchi and Calzolari (1982) we may set up a formal 

framework for analysing the forecasting errors of a large macro-model. 

Let the general economic model be: 

Y = Y(X, A, U) (5) 

in usual notation. It is useful to then define the deterministic model 

forecast as 
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Y = Y(X, A, 0) (6) 

where Y is the functional form estimated, and A is the estimated set of 

coefficients. Now by definition the model's error may be written as Y-

Y. We may now define: 

Y = Y(X, A, 0) (7) 

as the forecast of Y, given by the true parameters when the true 

functional form is known, but the exogenous variables are estimated. In 

turn, 

Y = Y(X, A, 0) (8) 

is the forecast of Y given by the true parameters, but using the 

estimated functional form and the estimated exogenous variables, and 

Y* = Y(X, A, 0) (9) 

is the forecast produced by the true model structure and parameters and 

with the true exogenous variables. So we may write 

Υ - Υ = Υ - Υ + Υ - Ϋ + Ϋ - Υ * + Υ * - Υ = [Υ(Χ,Α,Ο) - Υ(Χ,Α,Ο)] (10a) 

+ [Υ(Χ,Α,Ο) - Υ(Χ,Α,Ο)] (10b) 

+ [Υ(Χ,Α,Ο) - Υ(Χ,Α,Ο)] (10c) 

+ [Υ(Χ,Α,Ο) - Y(X,A,U)] (10d) 
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The overall error term is therefore divided into four parts. The first 

considers the error caused by incorrect parameter estimates, the second 

by misspecified functional form, the third by incorrectly forecast 

exogenous variables, and the fourth gives the contribution of the true 

error term of the model. This decomposition is carried out in terms of 

actual errors rather than variances. This means that the question of 

covariances between the four components does not arise. Nonetheless, a 

practical application of this formula would encounter some problems in 

distinguishing between the components, particularly the error due to 

incorrect parameters and functional misspecification. The formula does, 

however, provide a useful framework for considering these four 

components of model error, and for examining what model users actually 

do in practice. 

In calculating the model variance we essentially set the first 

three terms to zero, and look only at the fourth term. The forecasting 

variance of the model is usually calculated on the basis of known 

exogenous variables and the assumption of a correctly specified 

structural form. It therefore comprises the first and last terms. An 

overall estimate of the reliability of a model's forecast should 

properly contain terms one, two and four, while the estimate of the 

reliability of a forecasting group should contain all four terms. It 

would be possible to add a fifth term to allow for deliberate model 

intervention on the part of the forecasters, a fairly common practice, 

but this may be subsumed into the X - X term by considering some of the 

Xs to be the intercept adjustment variables. 
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There is in fact some conceptual overlap between terms (10a) and 

(10b) in that the parameter estimates and the functional form are 

closely interrelated. However, by distinguishing the two we are able to 

isolate an important omission in much of the work on stochastic 

parameters. This is that the vast majority of the parameters of any 

macro model are not estimated but are arbitrarily set to zero. By 

shocking only the estimated parameters of the model, we implicitly 

relegate the zero restrictions to be part of the functional form which 

is assumed to be correct. The error decomposition presented above 

allows us to reintroduce these restrictions at a later stage along with 

the possibility of other more general functional misspecification. 

Structural errors and additive errors 

Despite the fact that most large models are non-linear, they are 

generally estimated by single equation linear techniques, typically OLS. 

This is done by subjecting the variables to various transformations, 

e.g. by taking the log of a variable. When the equations are coded into 

the computer, the dependent variable is transformed back into the 

original variable. This means that a random error added to the end of 

such an equation will not play the same role, or have the same 

properties as the estimation residual. An example will make this clear. 

If an equation of the form 

Alog(Y) = aAlog(X) + U 

is estimated, then this will be coded as 

Y = EXP(log Y + aAlog(X) + B) + A (11) 

where A will be an added residual used for shocking the equation and Β 
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will be an error term, normally set to zero, which will represent the 

estimation error term. 

The National Institute's model is coded in precisely the form shown 

above with both an A and Β residual explicitly in the equation. Of 

course other forms of non-linearity are treated analogously. It is 

possible therefore to apply random shocks to either the A or the Β 

residuals. Intuitively the Β or structural residuals are more 

appealing, but this depends really on the estimation assumption of 

normality, and there is no general reason to expect the Β residual to be 

normally distributed rather than the A. 

Univariate and multivariate residual shocks 

The distinction between structural (B) and additive (A) residuals has 

been made above, but when we apply shocks to either of these sets of 

residuals we must also decide whether these shocks are to be univariate 

or multivariate ones. Univariate shocks are simply random normally 

distributed shocks which have a given variance but are completely 

independent of each other. Multivariate shocks will also generally be 

normally distributed with a given variance, but they will also have some 

covariance structure between the individual shocks. In its simplest 

form we might allow for the fact that the error terms of different 

equations have some non-zero covariances. As an extension we might also 

allow for covariance of the error term over different time periods. 

The main argument for considering the covariances of the error 
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terms in a model which has been estimated by OLS (which assumes the zero 

covariance in the equation error terms) is that we know the estimation 

assumptions are not actually fulfilled. Our equation must be subject 

either to simultaneous equation bias, or to omitted variable bias, or 

both, and the covariance structure of the error terms will contain a 

great deal of information on this misspecif ication. For example, if 

current income was incorrectly omitted from the consumption function, 

then the covariance of the error term in the consumption equation and 

the other income generating equations should pick up this omission. 

There are currently three main techniques used to generate additive 

residual shocks which follow the covariance structure of the error terms 

of the whole model. Only one of these techniques can be used for large 

models however. The simplest technique is the Mariano and Brown (1981) 

approach. They use observed residuals from an Ν period model run to 

carry out Ν static, one period, replications. This limits the number of 

replications to thirty or forty at the most as well as only allowing the 

calculation of the one quarter ahead static error bounds. A more useful 

technique is Nagar (1969). This uses an estimate of the full covariance 

structure of the model to apply shocks to the residuals. The problem 

here is that the covariance matrix must be estimated from observed 

residuals, so that there must be more data points available than 

equation residuals. This will not generally be the case for a large 

model and so the initial covariance matrix cannot be defined. The 

final, and more useful, technique is the McCarthy (1972) algorithm. 

This approach generates a vector of shocks by using the formula, 
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S = Τ
 4
 r U 

where S is the vector of random shocks, r is a 1 χ Τ vector of random 

numbers which are distributed N(0,1), and U is a Τ χ M matrix of 

disturbances from Τ observations of M true structural equations. 

This technique, therefore, only requires a set of equation errors 

over Τ periods. Τ may be any length, although the properties of S only 

tend to those of the true structural errors as Τ tends to infinity. 

This then gives an asymptotic estimate of the true covariance matrix. 

The McCarthy technique has also been extended to take account of serial 

correlation in the error terms, although this extension will not be used 

here. 

Handling parameter uncertainty 

As noted above, the variance of the forecast errors is made up from two 

sources; the variances of the true error term (U), and the parameter 

uncertainty, represented by the covariance matrix of the parameters. In 

stochastic simulation exercises it is relatively easy to take account of 

the variance of U, but it is extremely difficult to make proper 

allowance for the variance of A when the model is large. It is, of 

course, easy to shock the parameters by applying normal random shocks 

within the parameters
1
 estimated standard error. This procedure is, 

however, not satisfactory, as it ignores the covariances between the 

parameters in an equation as well as the covariances of parameters 

across different equations. When these covariances are ignored there is 
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a significant possibility that all the shocks in an equation may be 

applied in the same direction, causing the dependent variable to change 

by an enormous amount, possibly even changing sign. This need happen to 

only one equation for the model to fail to solve. Making allowance for 

the parameter covariance is therefore vital as this will mean that, on 

average, if one parameter fails then another will move in a compensating 

fashion so that the level of the dependent variable is maintained within 

'sensible' bounds. 

There are three main techniques used to deal with the problem of 

stochastic parameters, none of them being entirely satisfactory. These 

techniques are: 

(i) Stochastic simulation and re-estimation (see Schink, 1971) 

This technique involves adding random shocks to the error term of the 

model to generate new values for the endogenous variables. These new 

values are then used to re-estimate the entire model, and carry out a 

forecast run. This process is then repeated many times so that the 

forecast errors can be calculated. This technique is almost completely 

satisfactory in the sense that it generates sets of parameter values 

which take full account of the covariances between the parameters 

themselves, and between the parameters and the error terms. The 

disadvantage is, of course, that it is almost infeasible to consider 500 

or 1000 replications of this technique for a large model. 

(ii) Monte Carlo on coefficients (see Cooper and Fischer, 1974) 

This involves applying shocks to the parameters as well as to the random 
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errors of each equation. The disadvantage here is that in the case of a 

large model, where system estimation techniques are impractical, it is 

very hard, if not impossible, to carry out the necessary decomposition 

of the parameter covariance matrix. The normal technique used here when 

dealing with a large model is simply to ignore the cross equation 

covariances, and deal only with the within equation covariance of the 

parameters. This clearly represents an important loss of information. 

(iii) Analytical simulation of coefficients (see Bianchi and Calzolari, 

1980) 

This technique involves an analytical formula for parameter uncertainty, 

which involves the partial derivative of the parameters with respect to 

the endogenous variables. These partial derivatives are evaluated by 

using finite differences which involves many model simulations. The 

analytical formula also involves an estimate of the variance/covariance 

matrix of the parameters. 

It seems that the only feasible method in the case of a large model 

is to use procedure (ii) and follow the assumption of Cooper and Fisher 

(1974), Fair (1980), and Haitovsky and Wallace (1972), and assume that 

the cross equation covariances are all zero. It is recognised that this 

is an undesirable assumption, but there seems no practical alternative. 

Antithetic errors 

Stochastic simulations are a special application of the general 

technique of Monte Carlo experimentation, and ,in many cases a 

considerable improvement in the efficiency of the estimates of 



231 S.G. Hall and S.G.B Henry 

parameters of interest can be achieved by employing one of the variance 

reduction techniques. The main approach used here is the application of 

antithetic errors. This simply means that the sets of residual shocks 

are generated in pairs, the second of each pair having the same value as 

the first, but the opposite sign. The advantage of doing this can be 

illustrated by considering a simple linear model expressed in reduced 

form. 

Υ = Ϋ + AU 

where Y is the deterministic value of the endogenous variable Y, U is an 

error term ~N(0, σ), and A is a reduced form coefficient. We would 

normally perform stochastic simulation by choosing many values of U, 

calculating Y for each value of U then calculating the mean and variance 

of Y. Consider the choice of two error terms U and U^, then 

Y = Y + (AU + AU2)/2 

as E(U ) = E(U ) = 0, then Ε(Υ) = Ε(Ϋ) 

and VAR(Y) = A(VAR(U ) + VAR(U ) + 2C0V(U , U )) 

Now generally the errors are generated independently so the C0V(U1, U^) 

= 0, but if we set U^ = -U^ we produce a perfect negative correlation 

between U^ and U1 which substantially reduces the variance of our 

estimate of Y. Calzolari (1980) compares the efficiency of the 

estimates using standard independent errors and antithetic errors, and 

shows that the use of antithetic errors could produce estimates with the 

same accuracy as between 500 and 50,000 times as many model replications 

with non-antithetic errors. 
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The use of antithetic errors can also provide exact information 

about the type of model which is being investigated. For example, a 

frequent question is whether the model is linear. In this case, if we 

apply one pair of antithetic errors we can answer this question exactly, 

as in the case of a linear model we have 

Υ = Ϋ + (AU1 + AU2)/2 

which implies Υ = Ϋ + U^A - A)/2 = Ϋ 

A linear model will produce a mean value from one pair of antithetic 

shocks which exactly equals the deterministic forecast. There is 

therefore no need to carry out statistical tests; if Υ * Ϋ after one 

pair of antithetic shocks, the model is non-linear. 

C. Interpreting the deterministic solution 

When we are faced with the problem of having to choose a single point 

forecast from a skewed probability distribution there is no single point 

on the distribution which should be chosen in all circumstances. 

Instead, the optimal predictor will depend on the specific loss function 

of the forecaster (see Dunham and Jackson, 1921). For example, with a 

quadratic loss function, 

Ν 

S = Σ (χ - a . )
2
 (12) 

1
 i = 1

 1 

where a^ i = 1, ..., Ν is a set of real numbers then Ŝ  may be 

minimised with respect to χ by setting χ equal to the arithmetic mean of 

the a.. 
ι 
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In a forecasting context if χ is a point forecast and the a^ are all 

possible outcomes, then the optimal forecast is the mean of the 

probability distribution of the a i. 

The quadratic loss function is perhaps the most immediately 

appealing choice but it is by no means the only one. A clear 

alternative is to minimise the absolute error of the forecast. So that 

Ν 
S = Σ I (χ - a ) j ( 13 ) 

i = 1 

This function will take a minimum value when χ is equal to the median of 

the distribution of a.. 
ι 

Both loss functions (12) and (13) consider the whole range of 

possible errors. A more restrictive loss function might be to maximise 

the probability of picking the correct value, i.e. 

S 3 = - I Max PR ( x - a . ) = 0 I (14) 

This function will be minimised when χ is set equal to the mode of the 

a. . 
ι 

Clearly in the case of a normal distribution all three loss 

functions will deliver the same point estimate. The final function (S^) 

is in general unappealing, as it gives no weight to the shape of the 

density function and, in a highly perverse case, could lead to extreme 
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boundary forecasts. When considering the other two functions it may be 

argued that it is desirable to penalise large errors with a 

proportionately greater weight than small errors, so at first sight we 

might prefer the quadratic function. 

There is, however, one highly undesirable property of the mean 

which makes it difficult to present as a coherent forecast. This is 

that the mean forecast of the model is likely to violate any non-linear 

identities in the model. We can see quite easily that linear identities 

will hold in the mean forecast as 

So any relationships which involve deriving a variable from the product 

of two other endogenous variables, which are not independent of each 

other, will not hold in expected values. This is not a trivial problem 

as most large macro models have many such identities. In particular the 

nominal value of a variable is often derived as the product of the real 

quantity of the variable and its price. In general we would not expect 

the price of a good to be independent of the quantity traded. The co-

variance of the two will be non-zero, so we should not expect the mean 

value of a good to be equal to the mean quantity multiplied by the mean 

Ε(Σχ.) = ΣΕ(χ.) (15) 

But we know that 

E(XY) = E(X).E(Y) + COV(XY) (16) 
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price. Such relationships abound in any model and we will describe this 

problem as one of model coherency. 

The concept of coherency may be defined more precisely in the 

following terms; suppose a model consists of M endogenous variables , 

Ν exogenous variables X^, L error terms (L < M) and a parameter 

vector 0 so that endogenous variables which are generated by identities 

do not have error terms. So we may write the model as L behavioural 

equations and M-L identities 

f. (Y, X, 0) = U. i - 1 L 

f (Y, X, 0) = 0 j = L+1,...,M 

A particular vector Y is said to be coherent if there exists a vector U 

such that 

f (Y, X, 0) = U. i = 1 , ...,L 

f (Y, X, 0) = 0 j = L+1,...,M 

Note that in general if Y is the vector of mean values of Y, no vector 

of error terms will exist which are capable of satisfying this. 

There are, of course, a number of alternatives which could be used 

to derive a coherent forecast based on the expected values of the model. 

One would derive the expected values of the behavioural equations and 

then calculate any identities on the basis of these values. There are 
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two objections to this: first if the identity feeds back into the 

model, then the value calculated will not be the same as the value used 

in the model. Second, if we report the means because our loss function 

is quadratic, then to impose the identities is to behave sub-optimally. 

This point raises the second major objection to requiring coherency; it 

may be that rather than abandon the mean forecast we should actually 

abandon the coherency requirement. Part of the popular appeal of large 

models among forecasters is that they ensure that a large number of 

accounting identities are simultaneously observed. This may, however, 

be a mistake if the forecaster is simply interested in minimising his 

squared forecast error. However, if a forecasting group places some 

weight on the coherency of its forecast, then it may well be that the 

use of mean forecasts is too simplistic. 

The importance of non-linearities in large econometric models 

should not be underestimated. The interpretation of the stochastic 

nature of the endogenous variable is rendered particularly difficult by 

this problem. While we appear to have a good deal of information about 

the density function of the error terms of the model, the only 

information usually available on the endogenous variables is the 

deterministic forecast. Generally we have no way of even knowing where 

the deterministic solution lies on the density function. 

For the univariate case a number of results can be established 

using the following theorem (see Hoel, 1 9 6 2 , page 3 8 3 ) . 
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Theorem 1 

If the continuous variables χ., x̂ » ...» x k possess the frequency 

function f(xy x2» ···> * k) and the transformed variables u i = u i(x 1> 

x 2, x k) , i = 1, 2, k yield a one-to-one transformation of the 

two coordinate systems, the frequency function of the u
f
s will be given 

by the formula 

g(u.., u 2, 

where 

1 

Ul 

u k) = f(x r x 2, x k)|j| 

3u1 3u1 

3 X
1
 3 X

K 

... H 

3x, 3x k 

and where the x
f
s on the right are replaced by their values in terms of 

the u's by solving the relations ^ = u ^ x ^ x 2 > x k) for the x's. 

For brevity throughout the rest of this book we will refer to a 

function which satisfies the above conditions as a bijective function. 

If 

Y = g(x, U) where U - N(0, σ) (17) 

and the frequency distribution of U is f(u\), then for a bijective 
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function the frequency distribution of Y is given by 

h(Y) = f(U) ̂  (18) 

The mode of this distribution is given as the maximum of the frequency 

function, so 

Now if U is the mode of the distribution of U, then 

f
f
(U) = 0 (20) 

But unless = 0, equation (19) will not be zero at U, which implies 

that the mode of Y is at some value other than y = g(x + U). If the 

second derivative = 0, then the function g must be linear. 

It is extremely difficult to prove anything about the properties of 

the identities when using the mode but it seems likely that, at least, 

the non-linear identities will not hold for the mode of the variables. 

The above result may be generalised quite easily to the multivariate 

case although there will then be special cases where the mode and the 

deterministic solution coincide. The argument that we should actually 

report the most likely forecast of the model (i.e. the mode of the 

distribution) is clearly appealing. It does, however, have the major 

practical disadvantage that the mode is computationally almost 

impossible to locate. 

* j I > . [ f . ( u ) S . S . , ( l l ) £ j . S i . 0 (19) 
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So far we have argued that in the case of non-linear models the 

deterministic forecast is neither the mean nor the mode of the 

probability distribution. It has not yet been made clear if the 

deterministic forecast has any well defined place on the probability 

distribution. In fact, in the univariate case, the deterministic 

forecast can generally be associated with the median of the 

distribution. If we again take the model (17) and assuming g is 

bijective, define U to be the median of U such that 

f(U) dU = j (21) 

Now if we evaluate 

\ \
 = f ( X

'
U _)

 h ( ï ) d ï . J ° e h ( Y ) ^ d U (22) 

=
 J-. tdU* 

) dU = \ 

So y = f(x, U), is the median of the distribution of y. As U = 0 for 

the assumed error process of the model this implies that Y is the 

deterministic forecast. 

This result cannot however be carried over into the multivariate 

case directly as there is no generally accepted idea of a multivariate 

median. It is necessary therefore to define a generalisation of the 

median concept to the multivariate case. The basic idea of the median 

point is that it is a point which divides the density function into 

regions of equal area. In the univariate case half the area of the 
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density function lies on each side of the median. The natural extension 

Ν -
of this is that a point in R (Y^ ... Y^) is a median if all the areas 

under the following integrals of the density functions are equal to —-L 
2

N 

Γλ-Γλ *<ν··ν
 dv - - d Y i - φ 

...f_N h(Y r..Y N) dY^.dY, 

! (23) 

J î - i i h(Y r..Y N) dYN...dY1 - - 1 

1 Ν 2 

Ν 
This effectively divides up the multivariate density function into 2 

segments of equal area. 

This definition is not in fact new as it may be shown to be 

equivalent to that proposed in Kendall and Stuart (1969) and Haldane 

(1948). 

"The extension of the median to the multivariate case is not 

entirely straightforward. The median of a univariate distribution 

is usually taken to be a pair of values each being the median of 

one univariate marginal distribution." 

' (Kendall and Stuart, 1969, page 39) 

Ν 
Because there are 2 segments defined by the integrals above, this 
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means that 2N 

ΓΥ f + °° f + °° 

J - L U J . h ( Y r - V d
V "

d Y
i i = 1 2» 

2
N
 1 1 

2 * 2N 2 (24) 

So the above definition simply locates the vector of Marginal Medians. 

If we now assume that the error process of the model ... is 

made up of a set of independently distributed errors with median values 

U 1 ... Ujy, such that for any i 

Ü. 

1
 f(U.)dU. = \- f(U.)dU. = \ (25) 

1 

Then it is possible to show that Y = h(XU), the vector of endogenous 

variables given by the model solution with median error term values, is 

a multivariate median in the sense defined above, if the mapping h is 

bijective. This can be shown by evaluating these integrals at Y 

=i- 1 „ - - - i - N » h ( ï r - -Vl J l d V-- d U i 

J7[ " . . . 
δ ϊ
1
 δ ϊ

Ν 

241) 

where 

... 
δ ϊ
1
 δ ϊ

Ν 
(26) 



Ch. 6: Stochastic Non-Linear Models 245 

[V..fUN 

J —00 J — 00 

'N r(u1...uN)|j|"
1|j|<iV--dUi 

and as the U. are independent 

i2...j
U
_N fcydu, 

Ν 

A similar process will allow the evaluation of all the other 2 -1 

conditions, which then demonstrates that the deterministic model 

solution using the median values of the error term maps onto a point 

which is a multivariate extension of the concept of a median point. 

The loss functions outlined in equations (12)-(11) gave no weight 

to the coherency of the forecast. Functions S^ will yield an optimal 

forecast of the median points of the distribution which will 

automatically be internally consistent. The quadratic function will, 

however, violate internal consistency and so it may be unacceptable for 

some purposes. The quadratic function can, however, be modified to 

explicitly take account of the desire on the part of the forecaster for 

internal consistency, in the following way 

S, 
i-1 

Ν 
Σ (χ - a . )

2
 + flD 

_ 1 1 

(27) 

where D 1 if χ is not internally consistent, 

D 0 if χ is internally consistent, 

the cost of being inconsistent. 
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This function is no longer continuous and so simple analytical 

techniques cannot be used. If, however, we set D = 1 and minimise S^ 

(as ΩΟ is simply a constant and drops out of the optimisation) the 

solution value for χ will be the mean value of a. and we can evaluate S., 
ι 4 

to give S*. Now if we choose χ so that it is internally consistent (one 

point is the median forecast), we can evaluate S^ at this point to yield 

Sjj. Clearly for some Ω sufficiently large S^ < S* and an internally 

consistent forecast is the result of the quadratic loss function. 

However, as the median forecast is not the only internally consistent 

forecast of the model, S^ may not be a true minimum. A similar argument 

may be made with respect to the loss function of equation (14) (S^). 

The case for reporting the conditional mean of a non-linear model 

seems to be very weak. It rests on the assumption of a quadratic loss 

function which either gives no weight to the internal consistency of a 

forecast, or gives a weight of sufficiently small size that it does not 

affect the optimal solution. Such a situation is not impossible of 

course, but we would take the view that most forecast producers (as well 

as forecast consumers) put a relatively high weight on the internal 

consistency of the forecast. It may well be argued that the 

deterministic model forecast is generally the optimal choice when a 

point forecast has to be made. However, when dealing with skewed 

density functions, no single point estimate can ever convey very much 

detail about the underlying density function. 
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3. An application of stochastic simulation 

A. A brief survey 

Table 1 gives summary details of a number of studies of stochastic 

simulation conducted over the last 15 years. The first important 

feature to note is the steady increase in the number of replications 

being used. Before 1975 the largest number of replications was 300 but 

most studies used much less, typically 50 or fewer. Since 1975 the 

number of replications has increased dramatically, partly due to the 

development of more efficient computers. But this development is also 

due to a growing awareness among researchers that very large numbers of 

replications are required before results become reliable. This has been 

paralleled by a growing use of variance reduction techniques, in 

particular antithetic errors. It is also worth noting that apart from 

two early studies on fairly small models (Muench, 1974 and Cooper and 

Fischer, 1974) only two researchers have applied shocks to the 

coefficients of a large econometric model (Hall, 1984 and Fair, 1984). 

As an illustration of the importance of a large sample in this type 

of work Figure 1 shows the distribution of numbers produced by one of 

the standard normal random number generators. A sample of 500 random 

numbers is far from being a satisfactory sample; it is not until the 

sample size is expanded to close to 10,000 that the distribution begins 

to look normal. Clearly the fact that such large samples are needed to 

produce good estimates of the underlying probability distribution in 

such a simple case, indicates that the model runs involving less than 

500 replications are highly unreliable. 
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Table 1. A Survey of Some of the Existing Studies 

Authors Model(s) Number of Estimation Dynamic Number Number Method 
behavioural Technique or of Time of Repl-
equations Static Periods ications 

Nagar 
(1969) 

Brookings 
(U.S.) 

112 OLS Dyn. 38 20 Nagar 

Sowey 
(1973) 

Australian 
Reserve 
Bank 1 

24 OLS Dyn. 
and 
Stat. 

31 20 McCarthy 

Fitz-
gerald 
(1973) 

National 
Income 
Forecasting 
7 (Aust) 

14 OLS Dyn. 13 80 Nagar 

Bianchi 
Calzo-
lari 

G. Fua 
(Italy) 

18 OLS Dyn. 
and 
Stat. 

15 100 
200 
10,000 

McCarthy 

Bianchi 
and 
Calzo-
lari 
(1980) 

Klein-
Goldberger 
revised (US) 

16 2SLS Single 1 
Period 

200,000 Nagar 

Fair 
(1980) 

Fair (US) 29 2SLS Dyn. 15 1,000 Nagar 

Fair 
(1984) 

Fair (US) 
ARUS 
VARIUS 
VAR2US 
LINUS 

108 
10 
5 
5 
12 

Various Dyn. 8 approx Nagar 
250 each 

Hall 
(1984) 

NIESR 
MODEL 7 

88 OLS IV Dyn. 8 1,000 McCarthy 

Corker 
Ellis & 
Holly 

LBS MODEL 155 OLS IV Dyn. 
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Table 1. (cont) 

249 

Authors Model(s) Number of Estimation Dynamic Number Number Method 
behavioural Technique or of Time of Repl-
equations Static Periods ications 

Green, 
Lieben-
berg & 
Hirsch 
(1972) 

O.B.E. (US) 56 2SLS 
and OLS 

Dyn. 100 50 McCarthy 
(up to T-1) 

Fromm, 
Klein 
and 
Schink 
(1972) 

Brookings 
(US) 

118 OLS Dyn. 100 50 McCarthy 
(up to T-1) 

Evans, 
Klein 
& Saito 
(1972) 

Wharton 
(US) 

47 2SKS Dyn. 100 50 McCarthy 
(up to T-1) 

Cooper 
and 
Fischer 
(1972) 

a) FRB-MIT 
Penn 

b) St. Louis 
US 

a) 66 

b) 5 

a) OLS 

b) OLS 

DYn. 52 10,20 McCarthy 

Cooper 
and 
Fischer 
(1974) 

St. Louis 
(US) 

5 OLS Dyn. 68 20 McCarthy 

Muench a) FRB-MIT 
Rolnick (US) 
Wallace b) Michigan 
& Weiler (US) 

a) 75 a) OLS Dyn. a)12 3000 Naive 

Calso-
lari 
(1980) 

Klein-
Goldberger 
revised (US) 

16 2SLS Dyn. 1, 6 
and 9 

1,000 
1,000 

Nagar 

Fisher NIESR 
& Salmon 
Salmon LBS 
(1983) 

86 

155 

OLS IV 

OLS 

Dyn. 

Dyn. 

8 

8 

500 

250 

McCarthy 

McCarthy 

Notes : 
1) MR - model residuals SD structural disturbances 
2) Bianchi et al (1976) and (1980) and Calzolari (1980) used annual 

modes, all the others were quarterly 
3) Muench et al (1974), Cooper and Fischer (1974), Fair (1984) and 

Hall (1984) shocked the coefficients as well as disturbances. Fair 
(1980), Bianchi and Calzolari (1980) did this in some of their 
experiments. 

Source : Fisher & Salmon (1983) 
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Figure 1. 

500 1000 
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Β. Some results 

This section will use two versions of the National Instituted non-

linear macro model to illustrate the type of information which may be 

provided by stochastic simulation. The two versions are Models 6 and 7, 

both being similar sized quarterly forecasting models. 

Sections (i) and (ii) will present estimates of the model standard error 

(derived from 10(d), the additive error term) and the forecasting 

standard error (derived from 10(d) and 10(a) the uncertain parameter 

term). These two sections will differ in that section (i) will apply 

univariate shocks to the estimated (B) structural residuals, while 

section (ii) will apply multivariate shocks to the additive (A) 

residuals. Section (iii) will then look at the question of structural 

misspecification (10(b)) using multivariate shocks applied to the 

structural residuals (B). Finally, section (iv) will show the effect of 

making automatic residual adjustments on the forecasting standard error 

to offset any simple misspecifications in the equation. 

(i) Stochastic simulation under the estimation assumptions 

This section will present two sets of stochastic simulation results, one 

for an estimate of the model error term and one for the forecasting 

error term, under the set of assumptions which lie behind the single 

equation estimation of the model. These assumptions are, that the 

structural residuals (B in equation (11)) are normally distributed with 

zero mean and a variance given by the estimation equation, and that 

there is zero covariance between the residuals of different equations. 

As the equations are coded there is also an assumption of zero serial 
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correlation in the errors. Most equations are actually estimated on the 

assumption of no serial correlation in the error terms and LM and 

Durbin-Watson statistics are used to support this assumption. 

Occasionally, however, an equation will be estimated explicitly on the 

basis of an auto-regressive error process, but the coded version of the 

equation will be a transformed version of this equation which will not 

exhibit autocorrelation. 

The first set of results provides an estimate of the model error 

term under this set of assumptions by carrying out 1000 simulations of 

the model, adding univariate normal errors to the structural residuals 

of each behavioural equation. In all the simulations presented in this 

section the individual replications are actually constructed as 

antithetic pairs of replications. This simply means that an initial 

replication is carried out using a vector of random shocks. The next 

replication does not generate a new random vector but takes the same 

random vector and reverses the sign of each element. The replication is 

then carried out on the basis of this altered set of shocks. So the 

1000 replications actually consist of 500 symmetric pairs. The 

advantage of doing the simulations this way is that because the shocks 

are symmetric a much more efficient estimate of the deviation of the 

deterministic and mean forecast is achieved. 

The simulations have been carried out in a dynamic forecast mode, 

over the period 1984 I to 1986 I, using the National Institute's 

February 1984 forecast as a base. This means that the deterministic 

forecast of the model would be the result reported in the February 1984 
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Table 2. An Estimate of the Model Error Term under the Estimation 
Assumption 

Quarter Consumption
1 

Exports
1 

Imports
1 
Output

1 
ACPI

2 
Effective 

exchange rate 

1 0.011 0.015 0.032 0.015 1.7 0.05 

2 0.012 0.015 0.032 0.016 2.0 0.08 

3 0.014 0.015 0.031 0.017 2.7 0.09 

4 0.016 0.017 0.032 0.018 3.9 0.09 

5 0.017 0.021 0.031 0.019 3.9 0.09 

6 0.021 0.023 0.032 0.019 4.8 0.10 

7 0.020 0.027 0.033 0.020 5.2 0.16 

8 0.027 0.029 0.036 0.020 5.7 0.19 

9 0.029 0.033 0.036 0.020 6.6 0.20 

1 = Standard error/mean value of the variable. 
2 = Standard error of the percentage rate of inflation. 
Deviation of Mean and Deterministic solution values 

D < 1 , Number of variables (N) = 139 
1 < D < 5 , "

 11
 = 3 8 

5 < D < 10, " " = 8 
10 < D , " " = 4 
D = the absolute percentage deviation of the mean from the deterministic 
value after eight quarters. 

Table 3. The Forecasting Error on the Estimation Assumption 

Quarter Consumption
1 

Exports
1 

Imports
1 
Output

1 
CPI

2 
Effective 

exchange rate 

1 0.011 0.015 0.036 0.016 1.8 0.05 

2 0.012 0.015 0.036 0.018 2.2 0.08 

3 0.014 0.016 0.035 0.019 2.8 0.10 

4 0.017 0.020 0.036 0.020 4.0 0.11 

5 0.018 0.023 0.034 0.032 4.2 0.12 

6 0.023 0.028 0.036 0.022 5.2 0.15 

7 0.023 0.032 0.037 0.023 5.9 0.19 

8 0.031 0.045 0.044 0.032 6.7 0.23 

9 0.034 0.04 0.044 0.024 8.0 0.25 

1 = Standard error/mean value of the variable. 
2 = Standard error of the percentage rate of inflation. 

D < 1 Ν = 1 134 5 < D < 10, Ν = 12 
1 < D < 5 N = 5 37 1 0 < D , Ν = 6 
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National Institute Economie Review. This has been done by using a 

1
 POSTMORT

1
 stochastic simulation option, which is available within the 

National Instituted solution program NIMODEL. In this mode the program 

calculates a set of equation residuals which cause the model to 

reproduce exactly either an historical base or, in this case, a specific 

forecast base. The stochastic shocks are then applied in addition to 

the 'POSTMORT
1
 residuals. The reason for doing this is that in the case 

of a non-linear model its general properties (i.e. simulation 

properties, dynamic multipliers, variance, deviation, etc.) will vary 

with the level of the exogenous variables. So in assessing such model 

properties it is important to assess them around a relevant base. The 

ideal base for a model which is used in forecasting would seem to be a 

recent forecast. 

This first set of results is reported in table 2. All the 

variables in the main table show the standard error in each quarter 

divided by the mean value of the variable, except for the inflation term 

(ACPI) which gives the standard error of the percentage inflation rate. 

The first four terms are real consumption, real exports, real imports 

and real output. The lower part of the table shows how the means of the 

variables have been affected relative to their deterministic values. 

This shows that the mean values of the vast majority of variables (139) 

have hardly changed from the deterministic values, some 38 variables 

have been changed by the stochastic simulation by between 1 and 5 per 

cent, only eight variables have been affected by 5 to 10 per cent and 

four variables have been affected by more than 10 per cent, after eight 

quarters. Typically, the variables which have been subject to large 
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deviations are those variables which have unusually large variances due 

to the fact that they are the difference of two other variables. A 

typical example is the visible balance which in the eighth quarter has a 

standard error which is 2.8 times the value of the visible balance 

itself. This variable is one of the four in the highest category and it 

illustrates the difficulty of using the deviation of the mean from the 

deterministic value as a guide to the importance of non-linearity in the 

model. Such deviations are also a product of the size of the standard 

error. 

Turning now to the standard errors of the variables themselves we 

can see that there is an obvious tendency for the standard errors to 

grow over time, as one would expect in a dynamic simulation of this 

type. Also, as one might expect, the model has much smaller standard 

errors with respect to the real sectors than the nominal. The standard 

error on consumption varies from 1.1 per cent in the first quarter to 

2.9 per cent after nine quarters, for example, while the standard error 

of the exchange rate equation varies from 5 per cent in the first 

quarter to 20 per cent after nine quarters. 

We will now move on to consider the standard error of the model 

forecasts, which includes the effect of parameter uncertainty. For this 

simulation exactly the same set of standard errors has been used to 

shock the structural equation residuals as in table 2, but in addition 

the estimated parameters of the model have also been shocked in 

accordance with their single equation variance-covariance matrices. 

This is equivalent to an assumption of a block diagonal variance-
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covariance matrix for the model parameters as a whole. Table 3 presents 

the results of this exercise. 

In fact it was necessary to exclude the parameters of a small 

number of the behavioural equations from the simulation, as the 

numerical techniques for generating the random shocks subject to the 

covariance matrix actually failed for these equations. Table 3 presents 

the results of this exercise. As expected, including parameter 

uncertainty always increases the estimated standard errors of the model. 

In the one quarter ahead forecast, the standard error generally rises by 

between 10 and 20 per cent, but the divergence grows over the simulation 

period so that by the eighth quarter it is substantially higher. 

Throughout this section a standard set of results will be reported for 

each set of stochastic simulations (as in Table 2). But an extra set of 

results are reported in table 4. These variables are only reported for 

this simulation, as the proportional changes between variable standard 

errors is fairly constant over the different simulations. This table 

contains variables with some of the largest proportional standard errors 

found in the model, and these variables raise an interesting question in 

the definition of the model itself. Typically these are variables which 

are derived as the difference of two or more other model variables (e.g. 

unemployment, the visible balance, or the PSBR). Often the 'primary
1 

variables have quite respectable standard errors. Table 3 shows that 

even after nine quarters the standard error on both exports and imports 

is less than 5 per cent. But when the 'secondary' variables figuring in 

table 4 are derived by identity, the resulting standard error is very 
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large, as in the case of the current balance. We could easily specify 

the model without these 'secondary
1
 variables and this would have the 

effect of producing much lower overall standard errors as well as 

removing the variables which have large percentage deviations. So when 

cross-model comparisons are being carried out it is important to take 

into account this area of ambiguity in the 'secondary' variables. 

Table 4. Some additional estimates for the forecasting error on 

the estimation assumptions 

Variable Investment
1
 Unemployment

1 

Q 

Visible1 

balance 
Money

1 

(M1) 
PSBR

1 
CPI 
(level) 

1 0.007 0.031 3.01 0.031 .25 0 017 

2 0.012 0.054 4.98 0.054 .38 0.020 

3 0.015 0.061 2.75 0.074 .46 0.026 

4 0.016 0.062 2.16 0.095 .37 0.038 

5 0.015 0.068 3.03 0.117 .50 0.042 

6 0.014 0.071 2.85 0.142 .49 0.059 

7 0 . 0 1 3 0.071 3.75 0.165 .50 0.069 

8 0.014 0.072 3.01 0.190 .46 0.089 

9 0.015 0.077 6.04 0.215 .82 0.109 

A general point 

this section is 

of interest 

that often 

which 

the 

applies to 

standard 

all the 

errors 

simulations in 

do not rise 

monotonically. In table 2 the consumption standard error actually falls 

in quarter seven. In table 3 it fails to rise in this quarter, and 

indeed throughout all the reported simulations, this variable behaves in 

this fashion at this point. This cannot simply be ascribed to small 

sample bias, partly because 1000 replications is quite a large sample, 
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partly because it occurs repeatedly in different simulations, and partly 

because the result has been noted by other researchers (see Corker, 

Ellis and Holly (1983)). Hendry (1984) has demonstrated that the 

standard error need not increase monotonically, as there is a term in 

the formulae for the model standard error which reaches a maximum and 

which then may decline. If this non-monotonicity is stronger than the 

rest of the formulae, then the total standard error can indeed behave as 

it does in the simulations. 

(ii) An alternative to the estimation assumption. 

This section will relax the assumption made in section (i) that the 

covariances of the equation residuals are zero. The McCarthy algorithm 

will be used to carry out two stochastic simulations to estimate the 

model standard error and the forecasting standard error. As pointed out 

in the introduction, this section will concentrate on the additive or A 

residuals. This really amounts to the assumption that, regardless of 

the way the equations are estimated, the error terms are normal in the 

coded form of the equation. In fact we have very little information to 

support either the assumption made in section (i) or this section. 

There seems no strong a priori reason, for example, to expect the error 

term in a consumption function estimated in Δ logarithmic form to be 

normal as opposed to the equation estimated in pure levels. 

Apart from the assumption about the covariance of the residual terms, 

the simulations reported here differ in one other important respect. In 

section (i) the only equations to which residual shocks were applied 

were the estimated equations, which therefore, had estimated standard 

errors. There are, however, some equations in the model, such as the 
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tax sector, which are not estimated because we have independent 

information on the relevant parameter values, e.g. tax rates, but which 

do not fit perfectly. In this section we extend the application of 

residual shocks to these equations also, and apply shocks to all the 

equations in the model which have non-zero residuals in a single 

equation residual solution of the whole model. 

Table 5 reports the results of the estimates of the model's 

standard errors produced by these assumptions. The first impression is 

that the overall results of this exercise are remarkably close to those 

of table 2, given that they are derived by a totally different 

procedure. The estimate of the consumption standard error is slightly 

lower than table 2, while those of exports, imports and output are 

slightly higher. There is no strong a priori expectation as to which 

way the change should go, i.e. whether taking account of the covariances 

of the error terms should increase or reduce the overall size of the 

standard errors. Generally there seems to be a slight increase in the 

standard errors, as shown by the summary of deviations presented in 

table 5. The number of variables which have deviated by less than 1 per 

cent has fallen, while the number of variables in the higher categories 

has risen. 

Table 6 presents a set of estimates for the forecasting standard 

error based on the same assumption about error process as above. As in 

the previous section, the introduction of parameter uncertainty has the 

expected effect of increasing the standard errors. Once again the 

effect in the first quarter is very small but it grows over time, so 
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Non Zero Covariance in the Error terms 

Quarter Consumption 1 Exports
1 

Imports 
1
 Output

1 
ACPI

2 
Effective 

exchange rate 

1 0.013 0.018 0.037 0.013 1 .1 0.05 

2 0.014 0.018 0.039 0.017 1 .9 0.08 

3 0.015 0.021 0.044 0.021 2.9 0.10 

4 0.016 0.027 0.042 0.025 4.0 0.11 

5 0.017 0.030 0.044 0.026 4.4 0.14 

6 0.020 0.032 0.045 0.026 4.8 0.16 

7 0.019 0.034 0.043 0.026 4.9 0.19 

8 0.025 0.040 0.045 0.025 5.5 0.20 

9 0.025 0.044 0.042 0.023 6.2 0.22 

1 = Standard error/mean value of the variable. 
2 - Standard error of the percentage rate of inflation. 
Deviation of Mean and Deterministic solution values 

D < 1 , Number ι of variables (N) = 155 
1 < D < 5 , " " » 55 
5 < D < 10, " 7 
10 < D » « = I2 

Table 6. The Forecasting Error under the Assumption ι of Non Zero 
Covariance in the Error terms 

Quarter Consumption 1 Exports
1 

Imports 
1
 Output

1 
ACPI

2 
Effective 

exchange rate 

1 0.008 0.019 0.031 0.014 1.2 0.05 

2 0.011 0.020 0.036 0.017 2.1 0.07 

3 0.014 0.029 0.043 0.022 3.1 0.09 

4 0.017 0.029 0.045 0.028 4 .3 0.10 

5 0.021 0.031 0.050 0.029 5.0 0.11 

6 0.025 0.031 0.050 0.029 5.8 0.46 

7 0.027 0.032 0.046 0.027 6.2 0.16 

8 0.034 0.038 0.048 0.025 6.9 0.19 

9 0.037 0.042 0.047 0.024 7.5 0.22 

1 = Standard error/mean value of the variable. 
2 = Standard error of the percentage rate of inflation. 

D < 1, Ν = 129. 5 < D < 10, Ν = 7 
1 < D < 5, Ν = 44. 10 < D , Ν = 9 

Table 5. An Estimate of the Model Error Term under the Assumption of 
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that by the end of the period the standard errors are considerably 

larger. 

(iii) An estimate of the degree of misspecification of the model 

This section will look at how important is model misspecification in 

determining the overall errors in a forecast. This concept is 

summarised in equation 10(b). There is no generally accepted way of 

evaluating this part of the error process. Fair (1980) uses a set of 

out-of-estimation sample, single quarter, forecasts to derive an 

estimate of functional misspecification. We will use a different, but 

related, technique here. The McCarthy technique used in section (ii) 

takes an observed set of single equation residuals from within the 

estimation period, and uses this to generate an estimate of the model 

standard error. A formal proof of this is provided in McCarthy (1972). 

If the same procedure is applied to a set of single equation residuals 

taken from outside the estimation sample, the algorithm will yield an 

estimate of the model standard error taking account of the basic error 

term 10(d), the effect of the uncertain parameter estimates 10(a), and 

the function misspecification 10(b). The National Institute Model 6 was 

used for this exercise, since this has more data from the outside 

estimation sample. Two sets of stochastic simulations were produced, 

one using the within estimation sample, the other using residuals from 

outside the estimation sample. 

The interpretation of this procedure is not entirely 

straightforward; in a formal sense we are setting up the hypothesis 
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that the model is stable, and not subject to functional misspecification 

of a serious nature. We then see if the model's performance outside its 

data sample is so much worse than within it, that we can reject this 

assumption. The important point to note is that a failure to reject the 

hypothesis does not, in itself, imply that the model is well specified. 

If the model were completely misspecified in a given sector, say because 

two variables were closely colinear in the estimation period, then if 

this colinearity continued into the test period, we could not expect to 

detect this misspecification. The technique should, however, be useful 

in two ways. First it should give a better guide to the actual standard 

error of the forecast of the model, conditional on the correct set of 

exogenous variables. Second it should point out areas of specific 

weakness in the model. This information may be used in two ways. 

Either it can be used to focus attention on a part of the model with a 

view to improving it, or it may be used as a guide to constructing other 

sectors of the model. An example of this is where theory suggests that 

a variable might enter an equation, such as real money balances in the 

consumption function, but the model has a number of definitions of money 

available, M1 or M3, say. If we know that the sector of the model which 

generates M3 is subject to a greater degree of misspecification, we 

might, in the absence of strong statistical evidence to the contrary, be 

well advised to use M1 in the equation. 

Table 7 presents a set of estimates based on the McCarthy algorithm 

for Model 6, where the equation residuals have been taken from the 

period 1979 I to 1980 IV, which is within the estimation period of the 
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Table ι 7. Within Estimation Sample Estimates of the Model Error for 

Model 6 

Quarter Consumption
1 

Exports
1 

Imports
1 

Output
1 

CPI
1 

Effective 
exchange rate 

1 0.014 0.040 0.046 0.019 0.007 0.031 

2 0 .016 0.042 0.045 0 .023 0.016 0.045 

3 0.016 0.045 0.044 0.025 0.023 0.061 

4 0.018 0.047 0.046 0.026 0.028 0.078 

5 0.028 0.044 0.042 0.029 0 .032 0.082 

6 0.029 0.048 0.040 0.030 0.035 0.083 

7 0.029 0.053 0.038 0.032 0.036 0.086 

8 0.031 0.050 0.037 0.031 0.037 0.090 

9 0.034 0.053 0.033 0.033 0.038 0.092 

1 = Standard error/mean value of the variable. 

Deviation of Mean and Deterministic solution values 

D < 1 , Ν = 137 

1 < D < 5 , Ν = 18 

5 < D < 10, Ν = 5 

10 < D » Ν = 12 

regressions. On the whole, the picture is fairly similar to that 

presented in table 5 for Model 7 except perhaps for the exchange rate. 

The explanation for this discrepancy would seem to lie in the relatively 
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erratic behaviour of trade flows during the 1980s, which causes a much 

larger standard error in the visible balance in the simulation for table 

5 than for table 7. The summary of deviations is fairly similar to 

table 5, with only a very small number of variables showing more than 5 

per cent deviation. 

Table 8 now presents an identical simulation to table 7 except that 

the single equation residuals used in the McCarthy algorithm have been 

drawn from outside the model's estimation period. The single equation 

residuals in this case have been taken for the period 1981 I to 1983 II. 

We must, of course, remember that both the simulations presented in this 

section rely on a relatively small set of residuals, so that the problem 

of small sample bias is more acute here than elsewhere in the chapter. 

Considering the table 8 simulation as a whole, the standard errors were 

generally increased quite considerably. This is demonstrated by the 

summary of deviation in Table 8. The majority of variables deviated by 

between 1 and 5 per cent and 32 variables deviated from their 

deterministic value by over 10 per cent. Of the variables shown in the 

tables only exports present the anomaly of a sharp fall in standard 

error out of estimation sample, as opposed to within sample. Among the 

other variables, consumption, output and the CPI show almost unchanged 

standard errors, while imports and the effective exchange rate show 

marked increases in standard errors. The lower part of table 8 gives a 

set of summary statistics which are akin to the single equation 

2 
forecasting χ statistic (here calculated with nine degrees of 

freedom). They are simply the ratio of out of sample 
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Quarter Consumption
1 

Exports
1 

Imports
1 
Output

1 
ACPI

1 
Effective 

exchange rate 

1 0.010 0.017 0.057 0.026 0.007 0.058 

2 0.017 0.018 0.055 0.029 0.013 0.076 

3 0.019 0.018 0.056 0.030 0.017 0.108 

4 0.025 0.026 0.056 0.032 0.024 0.136 

5 0.027 0.030 0.054 0.034 0.027 0.153 

6 0.030 0.039 0.054 0.035 0,034 0.176 

7 0.026 0.042 0.055 0.034 0.038 0.189 

8 0.029 0.046 0.056 0.031 0.048 0.211 

9 0.027 0.049 0.056 0.030 0.055 0.216 

Deviation of Mean and Deterministic solution values 

D < 
1 < D < 
5 < D < 
10 < D 

1 , Number of variables 
5 , " 
10, " 

tt 

(N) = 39 
« = 72 
» = 29 
" = 32 

Comparison of the sum of the ratio of the 
of estimation sample runs 

variances for the in and out 

Consumption Exports Imports Output CPI Effective 
exchange rate 

0 8.5 4.5 15.7 11.9 9.4 29.4 

0 = Σ σ.,-the sum of the ratios of the variances for each variable in 

i5 

table 6 and 5. 

Table 8. Out of Estimation Sample Estimates of the Forecasting Error of 
Model 
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variable variance to within sample variable variance summed over nine 

quarters. This indicates the possibility of specification error in the 

imports sector and strongly suggests some instability in the exchange 

rate sector. Care must be taken not to associate these statistics with 

individual equations, however. In the case of the effective exchange 

rate the increased variance comes almost wholly from an increase in the 

variance of the balance of goods and services, which is one of its 

arguments. In turn the increase in the variance of the balance of goods 

and services is given by the increase in the variance of imports. 

On the whole it seems that there is relatively little evidence for 

general misspecification of the functional form of the model, although 

this technique does point to the imports sector of the model as being 

relatively weak. It does suggest, however, that on the whole 

forecasting errors due to functional form misspecification are 

comparatively small. 

(iv) The effect of model intervention on forecasting error 

When models are used in practical forecasting they are virtually never 

used without some direct intervention in the model by the forecaster. 

This question was extensively discussed in Chapter 5. But, to re-

iterate the main point, there are two reasons for intervention. The 

first is that the data itself is often revised between the time of 

producing the forecast and estimating the equations. These revisions 

often take the form of a systematic move up or down in the recent past 

data. Given that it is not possible, for practical reasons, to re-

estimate the whole model each time a data series is revised, the usual 
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practice is to make an intercept adjustment in any equation which seems 

to be consistently failing to track the data. The second justification 

for direct intervention is that the modeller has information available 

from outside the estimation data set which may suggest some functional 

misspecification. This data may simply be more recent (out of 

estimation sample) data, or it may be other extraneous information which 

is not modelled within the equation. This extra information may again 

be incorporated within the model, in the simpler cases, as an intercept 

adjustment. The effect of such adjustments should be to reduce the size 

of the model forecasting standard error. 

This section will consider the effect of making residual adjustments 

for the first of these two reasons only: to offset a recent run of bad 

residuals over the past. Corker, Ellis and Holly ( 1 9 8 3 ) consider a more 

broad approach to residuals which also includes some elements of the 

second reason given above. By concentrating on the first reason for 

residual adjustments, we are concentrating on the model's properties 

rather than making an additional allowance for the skill of the 

forecaster. This gives an estimate of the model's forecasting standard 

error on the assumption that there are no structural changes in the 

economy. In practical forecasting applications, the residuals applied 

due to extraneous information would be expected to reduce the overall 

standard error further. However, if a structural change occurs during 

the forecast period this would obviously raise the standard error of the 

forecast, even if some ad hoc residual adjustments were made in an 

attempt to offset this. 
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Some authors have taken the presence of runs of errors in single 

equations as a sign of serial correlation in the error terms (Fisher and 

Salmon, 1983, for example), and the original McCarthy paper suggested a 

procedure which would allow the construction of serially correlated 

error processes. We have not chosen to use this approach. The earlier 

arguments for model intervention suggested that where equations have 

been estimated without any apparent serial correlation, but show 

serially correlated errors using forecasting data (that is, a data set 

of a different vintage to the estimation data set) the cause may not be 

serially correlated errors but an inappropriate intercept adjustment. 

The proposed technique here is to reproduce the second simulation 

presented in section (ii), except that an automatic intercept adjustment 

will be made to ensure that the single equation residuals used in the 

McCarthy algorithm actually have a mean of zero. This approach is much 

more in keeping with the practice of forecasters, and should provide a 

closer estimate of the actual standard error of published forecasts. 

The results of this procedure are reported in table 9. The intuitive 

expectation for table 9 is that the standard error should be reduced, 

and this is generally the case, but there are variables which provide 

quite striking exceptions. The reason for this is twofold: first, in 

the table the standard errors are expressed as percentages of means. If 

the intercept adjustment is substantial then the mean can change 

substantially, and this may affect the numbers presented. The second 

reason is that the table reports the forecasting standard error and this 

is not itself a constant - it will vary with the solution values of the 
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model variables. To make an intercept adjustment is equivalent, 

therefore, to making a change which actually alters the forecasting 

standard error itself. 

Table 9. The forecasting error with intercept adjustment 

Quarter Consumption
1 

Exports
1 

Imports
1 

Output
1 

ACPI
2 2 

Effective 
exchange rate 

1 0.008 0.017 .029 0.012 1 .2 .005 

2 0.011 0.017 .035 0.016 2.0 .007 

3 0.013 0.019 .041 0.020 3.2 .009 

4 0.016 0.025 .043 0.025 1.3 .010 

5 0.020 0.029 .045 0.026 5.0 .011 

6 0.023 0.028 .045 0.027 5.9 .12 

7 0.027 0.033 .042 0.025 6.3 .16 

8 0.032 0.038 .046 0.024 7.1 .18 

9 0.036 0.044 .046 0.023 8.0 .21 

1 = Standard error/mean value of the variable. 

2 = Standard error of the percentage rate of inflation. 

Conclusion 

The results presented in this section may be broadly considered in two 

parts corresponding to the first and second moments of the probability 

distribution. With regard to the first moment, it is clear that most of 
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the variables have mean values which are very close to their 

deterministic values; where the per cent deviation is large, this is 

almost always associated with the variables which have very large 

variances, such as the rate of inflation or the visible balance. If a 

forecast is being presented along with its standard errors, there seems 

little point in discriminating between the deterministic forecast and 

the model expectation. However, where a point forecast is presented on 

its own (the usual case), then the difference between the mean forecast 

and the deterministic forecast might well be regarded as a cause for 

concern. For example, in the multivariate additive simulation without 

stochastic parameters (table 5), the mean level of manufacturing output 

is 1 per cent higher after nine quarters than the deterministic value. 

In a statistical sense these are not significantly different, given the 

estimate of the standard error, but it is often differences of such a 

magnitude which distinguish different forecasting groups. 

As for the second moment, the different techniques used suggest a 

good degree of uniformity as to the estimated size of model and 

forecasting standard errors. Parameter uncertainty has been shown to 

have relatively little effect in the first quarter but this factor grows 

in importance quite rapidly in a dynamic simulation. It is clear, 

therefore, that to ignore the stochastic nature of the parameters leads 

to a very large understatement of the forecasting standard error after 

the first few quarters of the simulation. 
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4 . Testing if a non-linear model is bijective 

In section 2 we established that if a model represents a bijective 

mapping from the error terms onto the endogenous variables then we can 

associate the deterministic model forecast with the median of the 

models* density function. If the model does not satisfy this condition 

then nothing can be said, in general, about the relationship between the 

deterministic forecast and the density function. This section will 

address two questions. First we will outline and demonstrate a testing 

procedure which will determine whether or not a model satisfies the 

condition of being a bijective mapping. Second, for the case of a model 

shown not to be bijective, we will perform a large number of stochastic 

simulations in an attempt to identify the complete shape of the density 

function. 

A. Testing for bijectivity 

The procedure outlined here for testing if a model is bijective, 

involves carrying out a set of stochastic simulations using only 

stochastic shocks to the error terms. The simulations are performed 

using antithetic errors. Because the use of antithetic errors produces 

a perfectly symmetric set of error terms, if the model is bijective, 

then from Theorem 1 the distribution of the endogenous variables will be 

perfectly symmetric around the deterministic forecast. So an equal 

number of observations will lie below the deterministic forecast as 

above it. If this is found not to be the case then the model is shown 

not to be bijective. This is not a statistical test which isaccurate 

only to some probability level. It is an absolute test in the sense 
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that if the model fails then we know, with certainty, that it is not a 

bijective model. 

Using the stochastic simulations reported in section 3, table 5, 

the following sets of results have been derived. (See tables 10 and 11. 

The results for only two variables will be reported as these are fairly 

typical of the overall results.) The first important feature of the 

results is that it is not possible to make general statements about the 

bijectivity of the model as a whole. Some variables are clearly 

bijective all the time, others are not bijective at all and most 

variables are bijective for the first few quarters of the run and then 

become non-bijective as some crucial lagged endogenous variable works 

its way into the density function calculation. This is not surprising 

and a simple example may make this clear. Suppose, 

In the first period of the model solution, when all lagged values are 

predetermined, the final form equation for X is simply (29), and so the 

function is bijective. In the second period of the solution the lagged 

values become stochastic themselves, and so the final form equation for 

Y = + Β, Ζ + U. (28) 

(29) 

22 
(30) 
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Table 10. The distribution for consumption 

Quarter 
Below deterministic 

value 
Above deterministic 

value 

1 500 500 
2 500 500 
3 500 500 
4 516 484 
5 500 500 
6 500 500 
7 500 500 
8 515 485 

Table 10 gives the distribution for consumption. This is a very 

peculiar result. It suggests that for the first three quarters the 

median and the deterministic forecast coincide, but in the fourth 

quarter the median is slightly less than the deterministic value. For 

the next three quarters they are again identical but in the eighth 

quarter the two diverge in a similar fashion to the fourth quarter. 

This result seems to be due to the treatment of tax allowances in the 

model. These allowances are uprated in line with inflation once every 

four quarters. The allowances have a strong effect on real disposable 

income, which is one of the main arguments of the consumption function. 

This multiplicative uprating seems to be sufficiently non-linear to make 

the model mapping no longer truly bijective. We may confirm this by 

exogenising the tax allowances in the model and reproducing the 

stochastic simulation. When this was done the fourth quarter anomaly 

disappeared. 

As the second term is squared in (30), the density function of is no 

longer a bijective mapping. As we move further into a model run the 

chances that the model mapping will become non-bijective increases. 
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Perhaps a more typical pattern is exhibited by the investment 

sector of the model. Here the model is actually linear for the first 

quarter, so that the estimate of the density function is perfectly 

symmetric. In the second quarter non-linear lagged terms remove the 

linearity, but there is no divergence between the median and the 

deterministic point until the fifth quarter of the simulation is 

reached. Once the median and deterministic values diverge they remain 

apart. The results for this variable are reported below. 

Table 11. The distribution for investment 

Quarter 
Below deterministic 

value 
Above deterministic 

value 

1 500 500 
2 500 500 
3 500 500 
4 500 500 
5 406 594 
6 485 515 
7 452 532 
8 508 492 

The conclusion to be drawn here is quite unambiguous: the model does 

not represent a wholly bijective mapping with respect to all the 

endogenous variables. It is not therefore possible to associate the 

deterministic forecast of the model with median values of the density 

function. 

B. Estimating the total density function 

The crucial question which must be addressed is the interpretion of the 

deterministic forecast now that we know the model is not bijective. An 

attempt will be made to answer this question by looking at the shape of 
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the density function around the area of the deterministic forecast. If 

we were simply interested in how skewed the density function was, we 

could address this problem by simply calculating the higher moments of 

the distribution. But this would tell us nothing about the location of 

the deterministic forecast on the density function. In order to gain 

some insight into the problem a large number of stochastic replications 

(6,000) of the model forecast have been done, and the results have been 

collated in the form of histograms. 

Figure 2 shows the histograms for consumption over the eight 

quarters of the simulation. The deterministic value actually lies on 

the boundary between columns 10 and 11; there is a slight suggestion 

that the distribution is skewed so that the mode actually lies inside 

column 11. Column 11 is the mode in quarters 2, 3» 1, 6 and 7. 

The steady growth over time of the variance of the distribution is 

quite obvious, but there is no obvious increase in skewness. It seems 

clear from the figure that while the distribution is not actually 

normal, it is very close to normal and that there is no evidence of the 

distribution being very skewed. 

Perhaps a more typical variable is Investment. We know from table 

11 that the model seems to be bijective for the first four quarters but 

that it then loses this property. This causes no obvious sign of extra 

skewness in the density functions which are shown in Figure 3. In the 

first quarter, the distribution is symmetric, suggesting that the 

asymptotic density function is actually normal. This is no longer true 
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from the second quarter onwards. However, in this case it does not seem 

to be clear in which direction the distribution is skewed. 

The mapping from the error terms to the endogenous variables is 

clearly not always bijective; this is established by the two tables 

above. The failure of this condition seems to be of very small 

numerical importance, however, as the density functions are clearly not 

heavily skewed. If the failure of the bijective condition were 

important, then we would expect to see very one-sided distributions as 

in the case of equation (2). As we do not find this, it seems 

reasonable to conclude that the deterministic forecast of the model 

either actually is the median of the density function, or is very close 

to it. 

Conclusion 

It seems likely that large models in general, and certainly the National 

Institute's Model 7, do not fully lie within the class of functions 

which allow us to associate the deterministic forecast with the median 

of the distribution. However, this failure seems to be of minor 

empirical importance, and for practical purposes it seems that the 

deterministic forecast of a model is very close to the median of the 

distribution. 

5. Estimating the uncertainty of a model's simulation properties 

A. Introduction 

From the point of view of economic policy formation, the main interest 

in any macro model lies in its simulation properties. It is these 

properties which determine the policy prescriptions which are given by 



Ch. 6: Stochastic Non-Linear Models 279 

the model, no matter whether a simple set of policy alternatives are 

examined or if a more complex analysis involving optimal control is 

used. When evaluating a large model an important aspect of its 

properties, which is often ignored, is the density function of the 

simulation effects. To say that the deterministic effect of a rise in 

government expenditure is to raise GDP is of little use until we are 

able to say what the margin of error surrounding this estimate is. 

The original work in this area was undertaken by Fair (1980) and 

the approach is summarised in Fair (1984). This section will begin by 

outlining the analytical approach he adopted and it will then go on to 

discuss his proposed procedure. The section will conclude with an 

alternative procedure. It will then give an example of this technique 

using the National Institute's Model 7. 

B. An analytical framework 

Let Y be the set of i endogenous variables in a general non-linear 

model, X be a set of η exogenous variables, Ω represents the 

variance-covariance matrix of all stochastic elements in the model 

(error terms and parameters), and Β is a vector of parameter estimates. 

It is then possible to state the model in reduced form as 

Y. 
it 

Y. 
it 

(Ω, Β, X) ( 3 D 

The deterministic model solution would be given by ignoring the 

stochastic parts of the model as, 
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Conventional stochastic simulation techniques allow us to estimate the 

expected value of the endogenous variables conditional on an estimate of 

the variance-covariance matrix. 

γ
η
 = Y

it
 ( Ω

'
 Β
'
 χ) 

A model simulation exercise consists in solving the model for some base 

set of exogenous values (X
1
), and then comparing this with another 

solution carried out on the basis of a different set of exogenous 
2 

/ariables (X ). So the deterministic simulation will be 

(33) 

d
it -

 Y
it

 ( Β
'
 χ 2)

 -
 Y
it

 ( Β
'
 χ 1) (34) 

and similarly the expected value effect of the simulation will be 

d
it

 = Y
it

 ( Ω
'
 Β
'
 χ 2)

 "
 Y
it

 ( Ω
'
 Β
'
 χ 1) (35) 

In order to assess the uncertainty of a model's simulation 

properties we need to investigate the probability density function of 

d^.
 As

 with conventional stochastic simulations, if the model is non-

linear we will generally expect d ^ to differ from d^. Also it is 

clear that when we are dealing with non-linear models, the variance of 

d i t will depend on both the stochastic parameters and the stochastic 

error terms. It is only in the case of a linear model that the variance 

of d is due only to parameter uncertainty. This point can be 
ι x> 

4 -
 Y
it

 ( Β
·
 x) (32) 
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easily appreciated by referring back to the simple model of section 2 . 

The reduced form equation for W, a linear part of the model, is 

W = a B X + B U + V (36) 

A simulation on X would give 

dW = αΒ (X
2
 - X

1
) (37) 

The error terms U, V drop out, and the density function of dW is due 

solely to the stochastic nature of α and B. However, the situation is 

different for Z, the reduced form equation here is 

Ζ = Bot
2
 Χ

2
 + 2αΒ Χ U + aXV + BU

2
 + UV (38) 

So 

dZ = Ba
2
 [ ( X

2
)

2
 - (X

1
)

2
] • 2aBU(X

2
 - X

1
 ) 

+ aV (X
2
 - X

1
) (39) 

Here both the second and third term include the stochastic variables U 

and V so the density function of dZ depends in part on the density 

function of U and V. Fair suggests that the stochastic error terms in 

e D 
the model may be ignored if Y i t, is close to and he carries out his 

simulations using only stochastic shocks to the parameters. This 

process will, however, yield a biased estimate of the standard error of 

d® t as the part of the variance due to the error terms of the model will 

be missing. 
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(i) The Fair stochastic simulation procedure 

The procedure outlined below is set out in Fair (1980) and it makes full 

allowance for the stochastic error terms of the model. The applications 

reported in Fair (op.cit.) however, make a simplifying assumption which 

removed the error terms from the calculation. The procedure is as 

follows: 

1. Given the covariance matrix of the parameters, draw a set of random 

parameters from the distribution (B*). 

2. Using the set of parameters B* and a set of base exogenous 

variables X
1
, perform a set of stochastic simulations using the 

covariance matrix of the error terms to derive Υ , the expected 

outcome of the model conditional on B* and X
1
. 

3 . Using the same set of parameters B* and a new set of exogenous 

2 
variables X , perform another set of stochastic simulations, again 

~2e 
using the same covariance matrix of residuals and derive Y the 

2 
expected outcome of the model conditional on B* and X . 

4. Compute dJ = Y 2 e - Y 1 e. 

5. Repeat steps 1 through 4, J times, where J is the desired number of 

trials. 

6. Given the J values of d compute the mean and variance of d. 

This process in effect nests two separate stochastic simulations within 

a larger stochastic simulation. If J = 1000 and the stochastic 

simulation at stages 2 and 3 are both 1000 replications, the algorithm 

would require 2,000,000 model solutions. Because this represents an 

enormous burden of computation, Fair actually dropped the stochastic 

simulations at stages 2 and 3 in his applied work. For the trials, Fair 
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used his own model, and reported eight individual simulations exercises 

using 250 replications for each of the eight simulations. 

(ii) An alternative procedure 

The Fair technique outlined above makes it almost impossible to take 

full account of the stochastic error processes of the model. This 

section puts forward a simpler, more efficient technique which would 

allow for the full effects of both stochastic parameters and the error 

terms. The procedure is as follows: 

1. Given the covariance matrices of the parameters and the error 

terms, draw a set of random parameters B* and a set of residuals 

U*. 

2. Using the set of parameters and errors (B*, U*), solve the model 

for a base set of exogenous variables X
1
 to give Υ

1
, the outcome of 

the model conditional on B*, U* and x\ 

3 . Using the same set of parameters and errors (B*, U*), solve the 

2 ~2 
model for a simulation set of exogenous variables X to give Υ , 

2 
the outcome of the model conditional on B*, U* and X . 

4. Compute dJ = Y 2 - Y1. 

5. Repeat steps 1 through 4, J times, when J is the desired number of 

trials. 

6. Given the J values of d, compute the mean and variance of d. 

This represents an enormous improvement on computational efficiency as 

there are no 'inner loops'; using this procedure it becomes quite 

feasible to carry out a full set of simulations on even quite large 

models. 
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(iii) An example of the proposed technique 

This section will report on a set of five simulation studies carried out 

on the National Institute's Model 7. The simulations have all been 

carried out on the basis of a multivariate set of shocks applied to the 

equation error term derived by using the McCarthy (1972) algorithm and a 

set of parameter shocks derived from the actual estimated parameter 

covariance matrix. One thousand replications were performed in the 

simulations in antithetic pairs. The simulations were carried out over 

the period 19842-19861 using the November 1984 National Institute 

forecast as a base. The five simulation changes were (1) an increase of 

£400 million (1980 prices) to current government expenditure, (2) a one 

percentage point decrease in the real UK interest rate (defined in terms 

of the Treasury bill rate and domestic wholesale prices), (3) a one 

percentage point reduction in the standard rate of income tax, (4) a one 

percentage point reduction in the rate of VAT and (5) an increase of 10 

index points to the dollar price index (1980=100) of UK oil exports. We 

will not discuss the base simulation properties of the model in any 

detail here, these are all standard NIESR simulations and a detailed 

discussion of the model's simulation properties may be found in Henry 

and Johns (1985). 

Each of the five following tables reports the 8 quarter path of 

results for one of the simulations mentioned above. The table reports 

the mean simulation effect on the main model variables followed by the 

standard error of the effect divided by the mean changes in brackets. 

The following variables are reported in the tables: 
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QGDP Real Gross Domestic Product (Expenditure) at factor cost (1980 

prices £M) 

CPI Consumer Price Index (1980=100) 

QCE Real Consumers
1
 Expenditure (1980 prices £M) 

QDK Total Real Fixed Investment (1980 prices £M) 

QEX Total Real Exports (1980 prices £M) 

QM Total Real Imports (1980 prices £M) 

UNEMP Total UK Unemployment (thousands) 

EFFRAT Sterling Effective Exchange Rate (1980=100) 

VISBAL Balance of Visible Trade (£M) 

Table 12 shows the effect of an increase of £400M (1980 prices) in 

current government expenditure within the model. Output quickly rises 

as does consumption, exports, imports and the price level; the visible 

balance, the exchange rate and unemployment all fall. In all cases but 

investment the changes over the whole period are much larger than one 

standard error. If the standard error divided by the mean (in brackets) 

is unity, the standard error is equal to the change in the variable. A 

figure of less than half implies a simulation change more than twice the 

size of the standard error, and so on. This table indicates that we can 

have considerable confidence in both the sign and the approximate size 

of the predicted effect of a change in government consumption. As is 

typical of dynamic models, the size of the standard error grows over 

time, but even after eight quarters the standard errors are considerably 

less than the simulation change in the case of most variables. Finally, 

the difference between the deterministic simulation and the mean effect 

was very small indeed, far smaller than was discovered in Hall (1985) 
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Q QGDP CPI QCE 

1 359.9 (0.015) 0.04 (0.290) 42.8 (0.151) 

2 429.8 (0.083) 0.71 (0.083) 162.0 (0.191) 

3 449.9 (0.051) 0.60 (0.265) 147.3 (0.221) 

4 442.1 (0.100) 1.79 (0.179) 153.8 (0.463) 

5 472.2 (0.138) 2.09 (0.233) 256.0 (0.398) 

6 476.1 (0.180) 2.82 (0.220) 248.4 (0.501) 

7 486.7 (0 .235) 3.58 (0.225) 251 .2 (0.677) 

8 505.6 (0.275) 4.28 (0 .237) 254.4 (0.743) 

Q QDK QEX QM 

1 11.6 (0.043) 4.42 (0.320) 77.9 (0.052) 

2 15.4 (0.225) 18.56 (0.352) 166.9 (0.087) 

3 31.9 (0.211) 40.47 (0.415) 200.3 (0.087) 

4 22.6 (0.475) 68.52 (0.464) 219.2 (0.160) 

5 8.5 (1.735) 95.02 (0.498) 263.9 (0.199) 

6 -0.8 (22.681) 130.67 (0.499) 269.9 (0.255) 

7 -10.9 (2.216) 164.43 (0.516 277.8 (0 .310) 

8 -9.7 (2.500) 192.58 (0.549) 284.1 (0.393) 

Q UNEMP EFFRAT VISBAL 

1 -154.6 (0.003) -0.39 (0.283) -123.5 (0.122) 

2 -160.3 (0.007) -1.30 (0.283) -304.7 (0.195) 

3 -168.9 (0.015) -2.28 (0 . 3 1 1 ) -415.1 (0.292) 

4 -175.4 (0.023) -2.79 (0.357) -454.3 (0.445) 

5 -178.4 (0.032) -3.06 (0.380) -503.0 (0.476) 

6 -183.4 (0.048) -3.52 (0.367) -522.2 (0.644) 

7 -188.5 (0.068) -3.57 (0.393) -484.8 (0.768) 

8 -193.5 (0.093) -3.65 (0.452) -492.6 (1.007) 

Table 12. An Increase of £400 million to Current Government Expenditure 
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Q QGDP CPI QCE 

1 -8.5 (0.349) 0.03 (0.137) -39.9 (0.139) 

2 -1.4 (5.571) 0.09 (0.253) -78.5 (0.108) 

3 13.2 (1.013) 0.16 (0.505) -84.5 (0.149) 

4 24.4 (0.870) 0.25 (0.720) -94.8 (0.185) 

5 34.3 (0.896) 0.35 (0.827) -102.0 (0.242) 

6 45.3 (0.999) 0.48 (0.911) -110.6 (0.303) 

7 57.8 (1.080) 0.64 (0.971) -115.4 (0.377) 

8 72.7 (1.155) 0.83 (0.999) -118.6 (0.457) 

Q QDK QEX QM 

1 1 .28 (0.0935) 3.9 (0.126) -17.3 (0.140) 

2 15.20 (0.288) 9.3 (0.313) -34.7 (0.117) 

3 23.25 (0.259) 17.0 (0.538) -36.2 (0.171) 

4 26.39 (0.275) 28.5 (0.664) -37.6 (0.255) 

5 25.38 (0.361) 43.4 (0.728) -37.5 (0.416) 

6 22.74 (0.552) 62.4 (0.801) -37.6 (0.611) 

7 18.32 (0.903) 84.4 (0.856) -35.6 (0.912) 

8 14.11 (1.457) 108.5 (0.904) -32.4 (1.324) 

Q UNEMP EFFRAT VISBAL 

1 -0.84 (0.180) -0.34 (0.083) 0.67 (9.444) 

2 -1.72 (0.428) -0.54 (0.374) 16.14 (1.133) 

3 -2.06 (0.884) -0.77 (0.617) 8.93 (5.457) 

4 -2.76 (1.0b1) -1.04 (0.735) -0.41 (191.787) 

5 -3.90 (1.048) -1.31 (0.795) -11.65 (9.540) 

6 -5.56 (0.994) -1.59 (0.849) -21.52 (7.385) 

7 -7.60 (0.974) -1.84 (0.878) -29.49 (6.743) 

8 -10.02 (1.001) -2.12 (0.895) -53.76 (5.270) 

Table 13. A One Percentage Point Reduction in UK Real Interest Rates 
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Income Tax 

Q QGDP CPI QCE 

1 15.17 (0.143) 0.003 (0.581) 34.2 (0.141) 

2 26.00 (0.126) 0.02 (0.612) 58.6 (0.106) 

3 27.34 (0.170) 0.04 (0.619) 57.6 (0.128) 

4 34.17 (0.188) 0.08 (0.626) 70.4 (0.120) 

5 37.13 (0.220) 0.12 (0.584) 72.9 (0.142) 

6 42.58 (0.260) 0.17 (0.565) 78.9 (0.160) 

7 49.66 (0.287) 0.23 (0.565) 86.1 (0.175) 

8 54.79 (0.324) 0.29 (0.551) 88.8 (0.198) 

Q QDK QEX QM 

1 0.60 (0.184) 0.73 (0.384) 14.5 (0.144) 

2 -0.62 (1.143) 2.62 (0.449) 27.4 (0.106) 

3 -1.57 (1.027) 5.27 (0.535) 30.4 (0.121) 

4 -1.66 (1.584) 8.75 (0.569) 38.0 (0 .123) 

5 -1.17 (3.177) 12.84 (0.567) 41.7 (0.148) 

6 -0.74 (6.232) 17.89 (0.596) 46.5 (0.167) 

7 1.03 (5.041) 23.28 (0.613) 52.2 (0.189) 

8 1.79 (3.250) 28.64 (0 .63D 55.8 (0.213) 

Q UNEMP EFFRAT VISBAL 

1 0.26 (0.257) -0.06 (0.341) -22.6 (0.186) 

2 -0.32 (1.331) -0.17 (0.372) -46.6 (0.228) 

3 -1.94 (0.577) -0.25 (0.448) -56.2 (0.356) 

4 -3.47 (0.509) -0.32 (0.467) -70.5 (0.387) 

5 -4.99 (0.488) -0.38 (0.449) -77.6 (0.484) 

6 -6.32 (0.486) -0.43 (0.491) -87.0 (0.621) 

7 -7.55 (0.491) -0.47 (0.491) -94.8 (0.598) 

8 -8.86 (0.503) -0.52 (0.504) -104.5 (0.829) 

Table 14. A One Percentage Point Reduction in the Standard Rate of 
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Q QGDP CPI QCE 

1 22.3 (0.455) -0.72 (0.009) 48.1 (0.472) 

2 36.6 (0.486) -0.80 (0.029) 70.0 (0.520) 

3 36.9 (0.691) -0.83 (0.059) 59.6 (0.820) 

4 46.2 (0.773) -0.96 (0.091) 72.3 (0.917) 

5 46.4 (0.791) -1.07 (0.13D 60.9 (1.022) 

6 50 .2 (0.806) - 1.17 (0.160) 57.7 (1.150) 

7 57.4 (0.794) -1.25 (0.187) 61.3 (1.185) 

8 60.8 (0.823) - 1 , 3 2 (0.230) 78.0 (1.199) 

Q QDK QEX QM 

1 1 .27 ( 0 . 3 1 1 ) 1.6 (0.469) 20.7 (0.465) 

2 2.80 (0.358) 7.6 (0.368) 36.3 (0.470) 

3 3.90 (0.433) 13.8 (0.416) 38.7 (0.635) 

4 6.39 (0.431) 20 .1 (0.519) 48.3 (0.712) 

5 9 .23 (0.422) 27.4 (0.582) 48.3 (0.747) 

6 1 1 .90 (0.418) 35.0 (0.621) 50.5 (0.790) 

7 16.60 (0.387) 42.4 (0.655) 56.4 (0.791) 

8 17.74 (0.408) 49 .1 (0.703) 60.3 (0.780) 

Q UNEMP EFFRAT VISBAL 

1 0.32 (0.596) -0.14 (0.445) -35.2 (0.444) 

2 -0.67 (1.040) -0.29 (0.552) -64.9 (0.495) 

3 -2.93 (0.715) -0.30 (0.824) -69.9 (0.693) 

4 -4.89 (0.757) -0.29 (1.235) -83.5 (0.901) 

5 -6.99 (0.816) -0.30 (1.451) -85.8 (0.985) 

6 -8.60 (0.852) -0.28 (1.650) -89.5 (1.015) 

7 -9.75 (0.887) -0.29 (1.775) -99.1 (1.060) 

8 -10.75 (0.922) -0.29 (1.928) -109.3 (1.264) 

Table 15. A One Percentage Point Reduction in the Rate of VAT 
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Q QGDP CP I QCE 

1 -33.1 (0.309) -0.23 (0.271) 22.9 (0.388) 

2 -65.0 (0.385) -0.73 (0.296) 20.7 (1.357) 

3 -92.8 (0.449) -1.14 (0.333) -7.6 (6.791) 

4 -118.2 (0.503) -1.46 (0.350) -24.6 (3.127) 

5 -152.7 (0.511) -1.78 (0.355) -50.8 (1.965) 

6 -197.7 (0.498) -2.16 (0.369) -54.6 (2.105) 

7 -239.9 (0.503) -2.61 (0.390) -49.2 (2.667) 

8 -269.6 (0.530) -3.10 (0.399) -50.4 (3.034) 

Q QDK QEX QM 

1 0.89 (2.011) -33.1 (0.260) 8.6 (0.258) 

2 9.30 (0.546) -76.2 (0.296) -5.8 (2.247) 

3 22.59 (0.447) -119.8 (0.319) -34.8 (0.752) 

4 38.53 (0.426) -169.3 (0.325) -59.8 (0.729) 

5 55.72 (0.418) -222.9 (0.328) -85.4 (0.689) 

6 61.34 (0.453) -280.2 (0.343) -102.4 (0.688) 

7 56.81 (0.510) -329.2 (0.364) -117.4 (0.711) 

8 48.91 (0.624) -360.4 (0.387) -130.5 (0.761) 

Q UNEMP EFFRAT VISBAL 

1 3.03 (0.295) 2.99 (0.236) 487.0 (0.151) 

2 5.89 (0.360) 4.50 (0.261) 592.6 (0.238) 

3 7.75 (0.417) 5.05 (0.284) 634.3 (0.298) 

4 10.64 (0.445) 5.26 (0.295) 632.0 (0.364) 

5 15.30 (0.482) 5 .31 (0.303) 620.6 (0.459) 

6 22.78 (0.499) 5.43 (0.331) 619.8 (0.594) 

7 32.10 (0.500) 5.46 (0.361) 601.9 (0.705) 

8 41 .05 (0.506) 5.55 (0.377) 598.0 (0.784) 

Table 1 6 . An Increase in UK Oil Export Prices in Dollar Terms 
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for the base forecast. 

Table 13 shows the results for a one percentage point reduction in 

the UK real interest rate. In this case we see that the impact effect 

on most of the variables is fairly well determined, but by the end of 

the eight quarters most variables have a standard error equal to the 

simulation effect. There is therefore considerable uncertainty as to 

the sign of change which would occur in most of the model variables 

eight quarters after the start of the simulation. 

Table 14 gives the result for a change in the standard rate of 

income tax. In this case the model's simulation properties are quite 

well determined, the increase in output, even after eight quarters, is 

much larger than its standard error for example. An interesting result 

holds for unemployment where the impact effect over the first two 

quarters is highly uncertain, but the longer term effect is much better 

determined. 

Tables 15 and 16 present a similar picture to table 14 with 

comparatively well-determined simulation effects over the whole eight 

quarters. 

Conclusions 

This section has proposed and implemented a new technique for assessing 

the simulation properties of large non-linear econometric models. This 

allows the calculation of the mean and variance of the effect of a 
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policy simulation in a large model. The results obtained using the 

National Institute's Model 7 broadly confirm the intuitive belief that 

we can have much greater confidence in the simulation properties of our 

models than in their ability to produce base forecasts. The policy 

implications here are that much of the value of large structural models 

lies in their use as a tool for policy simulations and analysis rather 

than as a simple forecasting apparatus. 
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OPTIMAL CONTROL AND DYNAMIC ANALYSIS OF MACRO ECONOMIC MODELS 

293 

1. Introduction 

In this chapter we bring together some of the elements of empirical 

dynamic modelling described in earlier chapters, and consider issues 

raised by the interpretation of entire model properties. The techniques 

used will be exclusively concerned with optimal properties of these 

models, so will concentrate on the use of optimal control techniques. 

We eschew the use of simulation techniques, though extensive model 

exercises on National Institute models using simulation methods are 

reported in Britton (1986). General issues in simulation methodology 

with empirical results derived from selected vintages of the National 

Institute model were, of course, reviewed in chapter 5 earlier. For the 

related investigation of the policy properties of these models however, 

an optimal control formulation offers a considerable advantage in 

rendering the policy framework explicit. Not that we necessarily 

interpret the resulting policy implications in a normative way. Rather 

we will emphasise the use of simple but plausible objective functions, 

often capable of reparameterisation, so that sensitivity exercises can 

be conducted (see section 4 below). The general approach therefore is 

to use optimal methods as a way of conducting investigations into the 

dynamic properties of large non-linear models. 

The chapter is organised as follows. Section 2 outlines linear 

theory for the finite horizon, comments on the presence of uncertainty 

in linear optimisation, and on the problems in deriving solutions in the 
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presence of rational expectations. Following our earlier practice, this 

survey of the linear case is provided as a basis from which the non-

linear case can be judged. The problems in analysing non-linear models 

is the subject matter of section 3. Empirical examples using versions 

X
k+1 -

 A X
k
 + B

V
 k

 -
 0 τ

· 

X(0) = X Q 

(1) 

where X is a set of state variables, and U a set of controls. The cost 

function to be minimised is 

T-1 
J = XJ S X T • Σ q k [Χ' Q y U ' R 1^] (2) 

Where the weighting matrices Q, R and S are given, symmetric matrices, 

with Q and S assumed non-negative definite, and R is positive definite. 

Deriving the optimal trajectory by the use of the discrete maximum 

principle we define the Hamiltonian 

(3) 

2 , Linear theory of optimal control: an overview of the finite case 

A. Optimal closed loop feedback rules 

The most obvious, possibly the standard, case in economics is that of 

the linear regulator which produces linear feedback rules. It takes the 

underlying model in the discrete linear form as the following, (perhaps 

after transformation into first order case), 

of the complete National Institute model are presented in section 

Conclusions are provided in the final section. 
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The first-order conditions for optimality require 

(a) 

and (c) 

a H
k 

3 H
k 

( B ) 3Ü7 - 0 

k 

together with the terminal condition 

(4) 

Equations (a) and (b) yield 

X, = AX, - BR~
1
 Β

1
 λ, ^ 

k+1 k k+1 
(5) 

while from (c) 

x
k •

 Q X
k
 + λ

'
 A
k+1 

(6) 

These equations define the optimum open loop control. To identify the 

appropriate closed loop control, we set 

λ, = P. X. 
k k k 

(7) 

which when substituted into (5) and (6) above gives 

X, . = AX, - BR~
1
 B

f
 Ρ, . X, . 

k+1 k k+1 k+1 

Ρ, X, = QX, + A
1
 P. ^ X, . 

k k k k+1 k+1 

(8) 

These equations imply that 
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Ρ - Q - Α' [Ρ 

for Χ, * 0. 
k 

,-1 
k+1 

+ B R 
-1 

Β'] 
-1 

A = 0 (9) 

This matrix Riccati difference equation may be solved backwards through 

time [from k = Τ to 0], and these pre-computed 'gain* functions used to 

derive the optimal closed loop control 

B. Uncertainty in the linear case 

If we consider the model outlined in (1) uncertainty will generally 

enter the model in two possible ways: the addition of an error term 

with a well defined probability distribution; and because the parameter 

matrix (A) is only an estimate of the true parameter matrix. If the 

model is non-linear there is also the general problem of misspecified 

functional form; when we assume linearity this reduces to the problem 

of the incorrect imposition of zero parameters which may be treated as 

an example of the case of uncertain parameters. The case of additive 

errors is particularly easy to deal with and so it will be discussed 

first. 

Additive error processes 

We may restate (1) to include an additive error term quite simply as 

(10) 
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The vector of error terms has mean zero, covariance matrix ω and is 

serially uncorrelated. The criterion function (2) must make an 

allowance for the stochastic term in (11) and the usual assumption is 

that agents wish to minimise the expected value of (2). Thus the 

problem is to find U^, k = 1, ..., Τ which will minimize E(J) subject to 

(11). 

For this case where (11), the model, is linear, and J, the 

objective function, is quadratic, then an important theorem applies. 

This is the certainty-equivalence theorem which establishes that under 

these conditions (together with the assumption the Ε(ε,ε') and χ are 

indépendant) the expected value of the random term can be used, and the 

problem solved as if it were deterministic. So we may set the error 

terms to zero and proceed as outlined for the deterministic case above. 

When either the objective function is non-quadratic or the model is 

non-linear a more complex procedure must be used. The general approach 

here is to use a non-linear approximation method (an example of this 

approach using a macro model of the UK may be found in Bray, 1975). 

This relies on forming a Taylor expansion of the system around some 

nominal path The general choice of nominal path is usually the 

X, . = A X, + BU, + ε, k = 0, ..., Τ 
k+1 k k k (11) 

X(0) = X Q 

where E(e ) = 0, E U R , ε£) - ω 

and E(ε , ε . ) = 0 k * j. 
κ j 
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The effect of this procedure is to stabilise the solution path 

around the deterministic solution path ; this may be seen either as 

an advantage or a disadvantage. It clearly produces results which are 

easy to interpret and understand within the context of the deterministic 

solution. However, it also severely limits the effects of uncertainty 

on the solution if the functions are highly non-linear. One alternative 

which may go some way to meeting this criticism would be to recalculate 

the set of Taylor expansions around the new solution U
1
 and then 

recalculate a new optimum. This procedure could in principle iterate 

until the control variables converge on a fixed point. 

Multiplicative uncertainty 

The model remains essentially that set out in (11) except that now the 

parameter matrices (A, B) are viewed as simply estimates of the true but 

unknown parameter matrices. At this stage it is also useful to 

introduce the notion of active and passive learning within the optimal 

control framework. In essence passive learning simply means that as we 

deterministic optimal path. The procedure then forms a second-order 

Taylor series expansion of the objective function on a first-order 

expansion of the model equations. This then produces a quadratic-linear 

problem which may be solved deterministically under the certainty-

equivalence theorem. The solution then yields a general feedback rule 

of the form 

< - ΐ
 +

 \
 [

< - ί
] + h

k 
(12) 
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move through time we receive new data about the system and so we can 

produce better estimates of the parameters of the system. Active 

learning not only includes the use of new data for re-estimation but it 

also involves deliberately perturbing the system so that we can gain 

information in order to better control the system in the future. In 

engineering applications active learning is clearly an important and 

useful approach; we can imagine running a power station for a few weeks 

in a highly erratic fashion so as to completely learn the parameters of 

the system and to achieve much better control from then on. In 

macroeconomics active learning is of much less interest partly because 

the time lags between conducting an experiment and getting the new 

information are long and partly because the costs of making such 

experiments are far larger. We will not therefore discuss active 

learning further here, the interested reader is referred to Kendrick 

(1981). 

The derivation of the feedback rule when the parameters of the 

system are uncertain proceeds from the dynamic programming principle of 

optimality. This states that the optimal path from period Τ - j to .T 

will consist of the optimal policy for the period Τ - j and then the 

optimal path from Τ - (j - 1) to T. This means that we can build up the 

optimal path from the final period backwards through time, adding each 

period's optimal plan to the existing optimal path. In order to state 

the principle more formally it is useful to introduce the concept of the 

cost-to-go. The cost-to-go is simply the value of the objective 

function evaluated from a time period to T. The notation is generally 

set up in the following way: let C be the cost-to-go with T - i 
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remaining periods. So given our objective function (2) 

c T_ T = c 0 = > ^ s x T ( 1 3 ) 

C
T-(T -1 ) »

 C
1 " *

 X
T

 S X
T

 +
 * "T -1

 [ X
T - 1

 Q X
T - 1

 + U
T-!

 R U
T - 1

] 

and C,.. - ̂  X· SX T • k| { "
1
 * q k [X· Q X j< . U' R U k] 

Now, as we are dealing with a stochastic problem, let the expected cost-

to-go be written as V\ = EC(i). The principle of optimality then states 

that if C* is the optimal cost-to-go for the remaining i periods then 

C* +1 may be stated as follows 

C* + 1 - Min X· S X T * k m r2 \ u * \ [Xk \-

Min VF, q k [Xk Q X k + U k R U k] + Cf ) , OU) 

k = T-(i-1) 

We may then state the optimal expected cost-to-go at period Τ - j as 

V = Min Ε {... "
i n
 E( J

1
" E (C,., | «

T
'

1
) | Ω

Τ
'

2
} ... | ̂  } U

j U T_ 2 u T -1 

(15) 

where ftJ is the mean and covariance (σ) of the unknown elements. This 

expression may be solved in a series of steps, starting with the middle 

expression working outwards. This amounts to solving the expression for 

the last period and then working backwards through time one period at a 
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time. 

So we begin by solving 

V* = {Jin m ^ ι jji-i) ( 1 6 ) 

that is the expected cost-to-go in the last period of the solution. Now 

substituting the objective function (2) into this expression gives 

V* = E(fc X.J, S X T) (17) 

where we now drop the term Ω for notational simplicity and we take 

expectations to give 

V* = \ X», E(S)XT (18) 

Now we assume that the optimal cost-to-go is a quadratic function of the 

state of the system given by 

V* = V + \ k T X T (19) 

and so by inspection of (19) and (18) we see that 

k T = E(S) = S. 

Consider the solution for the period T-1 given this result for period T, 
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V* = Min^ Ε {fc q T_ 1 (X·, Q X T_ 1 + R U ^ ) + V*} (20) 

so that the optimal cost-to-go at period T-1 is the minimum for the 

control at T-1 and the optimal cost-to-go for the final period. We may 

now substitute equation (17) into this expression to get 

Vf = Min^ Ε [ι& q T -1 ( X ^ Q X ^ + R + ̂ X J S Χ χ| (21) 

At this point it is helpful to write this expression out in terms solely 

of U T_ 1 and X by using the system equation (1). This will give an 

equation of the form 

Vf = Min 
1 V , {* Vi C X

T-1 • Vi D U
T-1

 +
 *

 U
T-1

 L U
T-1 

* 4-1
 F ε

τ-ι 
X
T-1

 G ε
τ-ι 

U
T - 1

H V i (22) 

where 

C = q Q + A'kA 

D = A' kB 

L = q + Β'kB 
Κ 

F = k 

G = A'k 

H = B'k 

If we take the expectation with respect to all the parameter vectors 
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and the error terms ε, we obtain 

ν
ι
 =

 î ? ^ [ *
 Χ

τ-1
 E ( C) X

T-1
 + X

T-1
 E ( D ) U

T - 1
 +
 *

 U
T-1

 E ( L ) U
T - I 

+ ̂  E[e',_1 F ε τ_ 1]] (23) 

We may now minimise equation (23) with respect to U,^ to give 

X^_1 E(D) + U ^ E C D = 0 (24) 

and so the feedback rule may be stated as 

U
T-1 • τ V i 

where Τ = - ( E U
1
) "

1
 E(D))

1
 (25) 

In order to evaluate Τ we must first evaluate k (the Riccati matrix); 

we develop a recursion formula for k in each period by substituting the 

feedback rule (25) back into equation (23) and then expressing this 

equation solely in terms of so that 

V
* "

 14 X
T-1

 K
T-1

 X
T-1

 + V
T-1 

where 

k T -1 = E(C) - E(D) (E(L T_ 1)"
1
 E(D))» (26) 

(27) V , =
1
4 Ε ( ε τ_ 1 F e ^ ) 
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Equation (26) then forms the Riccati equation for k, and the right-hand 

side of (26) may be expanded in terms of k and this then yields kT_(J. 

In general therefore it is seen to be a difference equation in k, given 

k
T-j '

 k
T-j-1

 m a
^
 be c a l c u l a t e d

*
 T ne

 terminal condition for this 

recursion is = k = S from (19) and so the whole time path of k may be 

calculated. The whole problem may therefore be solved by first solving 

the Ricatti matrix k backwards through time and then using this to 

derive the feedback rule Τ in (25) which yields the solution to the 

problem. 

If this problem had not involved stochastic parameters, then 

equation (24) would not have involved any expectations terms and so we 

see a simple demonstration of the certainty-equivalence rule that the 

solution is not affected by a stochastic error term in the quadratic 

linear case. The reader should note that while equations such as (24) 

and (25) appear to be simple linear equations in expectations variables 

the solution given by these equations may be very different to the 

deterministic model solution. This arises because of the fact that the 

expectation of the product of two matrices is not the product of the 

expectation. So, for example, 

E(D) = E(A'kB) * E(A') . E(k) . E(B) (28) 

and so the deterministic value of D = A'kB * E(D). In fact evaluating 

the expectation of products of matrices is not conceptually difficult as 

all the necessary information is contained in the covariance matrices of 

the parameters. The numerical calculation in (28) is of course complex 

but modern computers can easily deal with this problem. But where the 
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variance's of A and Β have to be estimated, and A and Β do not have well 

defined higher moments, these calculations may be extremely difficult. 

C. Rational expectations and the optimal control of linear models 

Following the discussion of rational solutions for the general linear 

model in chapter 5 (réf.), the equivalent analysis in the case of a 

system subject to control is as follows. The model under rational 

expectations is now extended to allow for control variables, W, thus 

Z
t+1

 Z
t (29) 

x
e = A

 χ
 + B W

t
 + e

t t
X
t+1

 X
t t t 

where ζ is the (n-m) vector of predetermined, and x
e
 an m vector of non-

predetermined variables as before. We assume that the non-predetermined 

variables are rationally expected variables, where the expectation is 

formed in period t. Define the vector of all elements Y f c +1 = (
z

t+-|> 

»1.1 >· 

As discussed in section Β above, for the kinds of policy design 

problem we concentrate upon, the deterministic solution is sufficient. 

Providing certainty equivalence holds, the deterministic optimal rule is 

optimal for the stochastic case also. Thus to derive the controls for 

the deterministic case let ε = 0 in (29) above, and also set çX^+i = 

x f c + 1. We then seek to minimise the quadratic cost function 

V = \ Σ R
1
 (Y' Q Y + 2Y» UW + W» G W) (30) 

Subject to ( 1 1 ) above, both ε = 0 and x f c +1 = t

x
® + 1, where R is a 

discount factor, and Q, U and G are constant matrices, Q and G are also 
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assumed to be symmetric. Again the solution may be obtained using the 

maximum principle. So let 

H k - \ R
k
 (Y- Q Y, * 2Y k U W (< + W' G W k) • λ'+, (Αϊ (< . BW k) 

where λ is the vector of co-state variables. Again, first-order 

conditions are 

(a) 3h\ 

9λ 

(c) 

k+1 

3Y, 

*k+1 ' 

This condition yields the model under dynamic control 

t + 1 

t + 1 

where Κ 

where 

A - BG~
1
 U

f
, - BG~

1
 Β' 

UG~
1
 U' - Q, R - A' + UG~

1
 Β' 

R λ. The boundary conditions are the zn initial conditions 

.-t 
z(0) = P9(0) = 0, and the transversality condition Lim R Ρ = 0. 

The solution may be put into a familiar form, by associating the 

co-state variables with the predetermined and non-predetermined 

variables (see Currie and Levine, 1985). So if, p' = (P^, Pp where P1 

is associated with z, and ^ s associated with x, then we can operate 

3 H
k 

and 
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as if the model were an augmented RE model, with η predetermined 

variables (z
1
, P£) and η non-predetermined ones (Pj, x

f
) . 

Currie and Levine (op. cit.) show that if Κ in the dynamic system 

under optimal control above satisfies the saddle-point property (n 

eigenvalues have real parts > 1, η eigenvalues with real parts < 1), 

then according to the transversality condition 

( 3 D 

where Ν =
 M

2 1 '
 w n e re M is t ne

 matrix of left eigenvectors of k, with 

its last η rows associated with the unstable roots. From ( 3 1 ) and the 

condition 3H /8w = 0 , the optimal rule may be expressed as 

(32) 

where D = (D , D g) = G~
1
 (U

1 1
 - B

1
^ - U

2
' - N g l , B

2
' - B

2
' ^ 2 - U

2 f 

N^^)»
 a n

d where we have used a partition of the vectors Β and U
f
, and 

the Ν matrix, to be conformable with (z
?
, P^)

1
. Notice that we are 

qualifying the nature of this solution. A fuller discussion of this is 

postponed until the next chapter. For the present, this 'optimal' rule 

may be described as the optimal time consistent policy. 

P
1 - Ν

 Z 

[
P
2_ 

Ζ 

W = D 
2 
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Turning now to the stochastic case we seek to minimise E(V) where Ε 

is the expected value of V, subject to the stochastic form of the 

dynamic system (29). We have discussed the circumstances when the 

resulting optimal feedback rule is the optimal rule for the stochastic 

case. Further discussion of the nature of the properties of this 

dynamic solution subject to feedback is postponed to chapter 8, which 

discusses macro policy and time inconsistency. The results for the 

optimal rule for the deterministic and the stochastic case are shown to 

have an important bearing on the analysis of time inconsistency. 

3. Optimal control solutions using non-linear models 

A. The control problem 

In the non-linear discrete case many of the underlying ideas reviewed in 

the linear case carry over, with the obvious difference that now 

numerical techniques are needed to derive the required optimal 

solutions. The general ideas are that with the non-linear system and 

cost function 

X k +1 - f(Xk, V k) (33) 

V • [ e k °V k ) ] I k

k
 +Υ Φ

 ( v ν k : q ) (31) 

The first order conditions for obtaining the set of optimal controls are 
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(b) 

and (c) 
\ ax, 

k 
( 3 5 ) 

where H k is now φ(.) + λ^ +1 f(.), and φ(.) and f(.) are defined in ( 3 3 ) 

and ( 3 4 ) above. With the end-point conditions, implementation of these 

steps [(a), (b) and (c)] result in a discrete non-linear, two-point 

boundary value problem. This must be solved, in general, by numerical 

or iterative techniques, and the rest of this section reviews some of 

the problems and the procedures in implementing these. 

B. Practical computation 

For the purposes of this review of numerical procedures we do not state 

the necessary end-point conditions to the optimising problem, but 

concentrate on the problem produced by the non-linearity of the system. 

In its most general form, the finite optimising problem may be 

represented as unconstrained non-linear optimisation, by substituting 

the system equations ( 3 3 ) into the cost function ( 3 4 ) . Then without 

loss in generality we may restate the problem as the simple non-dynamic 

optimisation of the non-linear function, i.e. 

Min Y = M(C) 

where C is now taken to be the vector of all control variables, but over 

all time periods, i.e. C = (U} f u < r) w n er e U is the vector of 
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control variables. In such a form, the problem becomes a familiar one 

of minimising an unconstrained non-linear function, although the 

dimensionality of this may be considerable (depending as it does on the 

size of the model and the length of optimisation interval). 

All the many methods of solving a minimisation problem such as this 

proceed along a broadly similar set of steps and may all be classified 

under the general heading of hill climbing algorithms. From an initial, 

and arbitrary, guess of the optimal solution C*, say c\ they attempt to 

1 2 Ν 
construct a sequence of vectors C , C , C such that at every point 

on the sequence M(CJ) < M(CJ"1) and as Ν + », C N C*. 

The broad steps of achieving this sequence may be outlined as 

follows: 

1) set an arbitrary initial value for C
1
; 

2) determine a direction of movement for C
1
 which will decrease the 

value of MtC
1
); 

3) determine a step length to change C
1
 by and evaluate the objective 

function of C
l + 1

; 

4) examine some termination criteria; if it is fulfilled, stop. If 

it is not fulfilled, set i = i+1 and repeat the procedure from 

stage 2. 

A usual criteria for termination would be that M(C
i 1
) - M(C

i
) < ε 

where ε is some small tolerance. Because of the possibility of the 
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algorithm 'jamming' at some non-optimal point we might also examine 

to see that both of these are close to zero. 

Among the hill climbing algorithms by far the most important group 

are those which base the optimisation procedure on the calculation of 

derivatives of the objective function. These algorithms are 

collectively known as gradient methods and they include the Newton 

method, Davidson-Fletcher-Powell, Steepest Descent, Gauss, and Quadratic 

Hill Climbing, among many others. The non-gradient, or derivative free 

methods, are generally of most use when the function to be minimised is 

extremely irregular. This class includes the Powell algorithm, the non-

linear Simplex method and Grid Search methods among others. 

(i) Gradient methods 

Given a current value C* the gradient methods all proceed by 

constructing a sequence where 

M v C
1
 - S Ν δ ) < M C C

1
) (36) 

3M 
3 C
K 

, f or Κ = 1 , Τ . J 

3Μ
 1

 .\<Μ 1 
O R L 3 C , J L a cJ 
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so that C
l +1
 = C

1
 - S Ν δ, 

where S is the step length (a scalar), δ is a vector of first partial 

derivatives of M with respect to the control variables, so 

& "aT 1 

The construction of Ν is the feature which characterises the various 

gradient methods. The definition is considered below. As for the 

evaluation of both first and second derivatives, these may be done 

either analytically or numerically. For analytical calculation the 

actual formulae for the derivatives must be coded into the computer 

program. In the case of large models this formulae is often impossible 

to calculate analytically as the expression will involve differentiation 

with respect to the whole model. In practice it is often satisfactory 

to use numerical approximation to the derivatives, so that 

3M M ( C l ... ( C K+ A ) ... C T x J) - UK, . . . C T x J) ( 3 7) 

3 C K * Δ 

where Δ is a suitably small number. This is a 'one-sided' derivative 

calculation. Improved accuracy can be achieved, at extra cost, by using 

a two-sided approximation. In choosing Δ two factors should be borne 

in mind: an accurate derivative requires a small Δ but, if the model 

is being solved iteratively, there will be some inaccuracy in the model 

solution itself so Δ must not become so small that the model inaccuracy 

significantly affects the calculation of (37). 
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(a) The Newton method 

The Newton (sometimes called Newton-Raphson) method is perhaps the most 

fundamental of the gradient methods. Many other methods are 

developments of it, or approximations to it, and are often called quasi-

Newton methods. The Newton method makes use of the matrix of second 

derivatives of the objective function with respect to the control 

variables (the hessian matrix) to set the step size. So in this case 

- 1 
(38) 

Ν = 
2 

a^M 
3 C 3 C 

and S = 1 . If the function M were quadratic the Newton step procedure 

would reach the optimum point in one iteration. In essence the 

algorithm works by making a series of local quadratic approximations of 

M, solving this problem and then recomputing the approximation. 

In order to give some intuitive understanding of the procedure 

consider the one control variable case where the minimum is given by C* 

and the initial value is C
1
. At the optimum point we know that the 

3M 
derivative - ^ = 0 = 6 * . We can approximate the second derivative by 

(39) 
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In the case of a quadratic function the second derivative is 

constant and (17) will be accurate for all values of and C^. If the 

derivative at C
1
 is 6̂  then we know that 

δ
* -

 δ
1 2 

f = 6
d
 (40) 

C* - C 

and rearranging this with δ* = 0 gives 

(b) Method of steepest descent 

At the current point C*, the direction which will improve the objective 

function most rapidly, is given simply by the vector of first 

derivatives, 6. The method of steepest descent therefore sets Ν equal 

to the identity matrix (or minus the identity matrix if the problem is 

one of maximisation). The important choice therefore becomes the 

determination of the step size. In this case some variant of the Armijo 

(1966) step procedure is generally used. This works as follows. A 

succession of steps are generated using 

S. 
ι i - 0, 

where λ is some given maximum step size and Β is a constant, 0 < Β < 1. 

Some form of grid search may then be used over these step sizes to check 
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for the best step size at each iteration. 

The method of steepest descent avoids the costly computation of the 

hessian matrix but its disadvantage is that convergence can often be 

slow and there are well-known examples where the algorithm will not 

reach a maximum. 

(c) Method of Quadratic Hill Climbing 

The method of Quadratic Hill Climbing (Goldfeld et al, 1966) is a slight 

extension of the standard Newton algorithm to include a variable step 

size. This may improve the performance of the algorithm when the 

function is non-concave or far from close to quadratic. 

(ii) The Quasi-Newton methods 

In order to calculate the hessian matrix required by the Newton method 

either an expensive numerical procedure must be repeated at each 

iteration or the analytical second derivatives must be calculated and 

supplied. The Quasi-Newton methods are a family of algorithms which 

avoid this necessity by calculating an approximation to the hessian 

matrix, continually updating this and improving this approximation. 

From (40) we can see that 

-1 

acac 
(41) 

i 
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so by comparing the parameter estimates and the derivatives at two 

succeeding iterations we can estimate the hessian at the last iteration. 

This may be compared with the estimate using E i and then some correction 

based on the error can be made so that 

Ei +1 -
Βι+«<Βι·Α> (*2) 

The precise form of the correction determines the form of the Quasi-

Newton algorithm under consideration. One of the most common algorithms 

in this class is the Davidson-Fletcher-Powell method. Himmelblau (1972) 

presents a number of correction formulae. 

(iii) Derivative-free techniques 

Generally speaking optimisation techniques which employ derivatives are 

faster and more reliable when the function being maximised is well 

behaved. The derivative-free techniques are recommended for highly non-

linear functions or functions which are subject to discontinuities. In 

principle the reason for this is simple to understand: the gradient-

based techniques work by examining the first and second derivatives at a 

single point, and drawing an inference about the whole surface based on 

some simple regularity conditions. When a function is either 

discontinuous or highly non-linear the information given at a single 

point can be very misleading. The derivative-free techniques generally 

derive their working information by examining a larger area around a 

current point on a surface, and so they are less likely to draw very 

fragile inferences about the shape of the surface being climbed. 
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The two widely used algorithms in this class are the conjugate 

gradient method of Powell (1964) and the non-linear Simplex method 

suggested by Spendley, Hext and Himsworth (1962). The Powell technique 

works essentially by carrying out a set of linear searches in orthogonal 

pairs and deriving a direction of movement from this information. The 

Simplex technique constructs a simplex around some initial point and 

evaluates the objective function at the vertices of the simplex. It 

then uses this information to derive its direction of movement. 

(iv) Inequality-constrained optimisation 

If, in addition to the constraints provided by the model, the 

optimisation is also subject to a set of inequality constraints, the 

problem becomes much more difficult. There are basically two approaches 

to dealing with this problem: the first involves adapting the objective 

function so as to penalise any violations of the constraint; the second 

adapts the optimisation algorithm. 

When the objective function is adapted the technique is generally 

known as a barrier method. The idea is to define a barrier function 

which heavily penalises violation of the constraint but has a near-zero 

effect when the constraint is satisfied. Suppose we have the following 

set of inequality constraints 

G(C) £ 0 (43) 

Then we create a set of barrier functions such as 
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B[G(C)] (44) 

where B[G(C)] is near zero for G(C) £ 0 and is large for B[G(C)] < 0. 

A typical function might be 

B.[G(C)] = - Ύ ln[G.(C)] 

where Ύ is a suitably chosen weighting factor. 

The disadvantages of this technique are first, that a good barrier 

function should be highly non-linear and so will make the optimisation 

more difficult. Second if the unconstrained optimum were near or on the 

constraint the barrier function will tend to distort the final solution. 

If a barrier function is to be used it is often advisable to experiment 

with dropping all or some of the terms to check which constraints would 

be actually violated in unconstrained optimisation. 

The other approach to inequality constraints is to adapt the 

direction finding procedure so that the algorithm does not move in 

directions which violate the inequality constraints. This amounts to 

deriving an (M, 6) pair in such a way that it will not cause steps out 

of the feasible region. Algorithms which implement such procedures are 

collectively termed methods of feasible direction, and a detailed survey 

of these techniques may be found in Polak (1972). A typical procedure 

would be to derive the gradient vector and then calculate the 

derivatives of any close inequality constraints. A linear-programming 
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problem may then be formed which maximises the change in the objective 

function, given from the gradient vector, subject to not violating the 

constraints. 

M. Optimal control exercises using complete macro models 

A. Introduction 

The rest of this chapter is mainly devoted to describing the results of 

applying optimal control methods to large scale non-linear econometric 

models. The aim is to illustrate the use of optimal control in 

analysing the policy implications of models, not the derivation of 

normative policy rules per sé. To this end, we invariably set the 

optimising problem up as a regulator problem, the main features of 

which, for the linear and non-linear case, were reviewed in sections 2 

and 3. This invariably entails the use of quadratic-type cost functions 

for the optimisation. In our applications this does not yield the 

familiar advantages for such an assumption when used in conjunction with 

linear models - namely the derivation of linear control rules. In our 

examples, however, the use of these quadratic cost functions may be 

justified in terms of their relevance to the particular problem 

investigated. For example, below we illustrate the calculation of a 

dynamic non-accelerating inflation rate of unemployment [the NAIRU] 

using optimal control methods. The relevance of a quadratic cost 

function to this is clear, it makes the derivation and interpretation of 

the resulting dynamic solution particularly easy. 

The rest of the section describes the results of a number of 
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diverse applications of control theory to macro models, designed to 

illustrate a number of issues raised in earlier parts of the chapter. 

First, we illustrate the use of optimal control in the analysis of the 

policy properties of estimated macro models (section (ii)), and section 

(iii) illustrates the problem of model uncertainty using optimal 

control. (Section (C) in Chapter 8 shows the results of optimal policy 

analysis in a model using rational expectations, in deriving optimal 

time consistent policies.) 

B. Policy trade-offs in optimal control exercises 

There are a variety of techniques for studying the dynamic policy 

properties of an econometric model, the most common being simulations 

where deviations of endogenous variables from historical or base paths 

are computed following a change in a policy instrument like government 

spending, or tax rates, The deviations in the endogenous variables are 

then attributable to the change in the instrument, and illustrations of 

the policy implications derivable from models were given in chapter 5. 

In this chapter, we will use optimal control analysis to provide an 

alternative evaluation of the policy properties of dynamic econometric 

models. Though the policy implications of the models are given by the 

estimated properties of that model, optimal control analysis enables a 

more sophisticated policy design to be derived, as compared with the 

less formal analysis provided by simulation exercises. In this section 

we provide two illustrations of these techniques, both concerned with 

policy trade-offs. 
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(i) An optimal interpretation of the Phillips Curve 

The optimising exercises are conducted by treating the full National 

Institute model as a set of known deterministic constraints which define 

the set of feasible, or possible, values which policy instruments and 

objective variables may take (see Brooks, Henry and Karakitsos (1983)). 

The optimisations are also deterministic, and conducted over a six year 

horizon, this period being taken as a period sufficiently long that its 

further extension will make no appreciable difference to the recommended 

initial policy. For these optimal control exercises the objectives are 

price inflation (ΔΡ) and unemployment (U), although we also use 

intermediate objectives like the current balance of the balance of 

payments and the PSBR. The policy instruments are the average rate of 

indirect tax (tp), the standard rate of income tax (t) and the level of 

general government consumption of goods and services (G). The objective 

function is of the form: 

where Y is the set of objective variables, X the set of policy 

instruments and * indicates a desired value. Several things have to be 

noted about this form of objective function. Firstly, concentration on 

inflation and unemployment objectives provides a reasonable 

representation of macro economic priorities in many developed economies. 

Secondly, it ignores discounting. This would be a serious weakness in 

long-run analysis, but here it is a convenient simplification. Thirdly, 

we include the levels and rates of change of the policy instruments in 

the objective function. This reflects the emphasis of the present 

J = ΣίαΛΥ - Y*)f + a0(X - (45) 
t 
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exercise on optimal stabilisation policies. It may be that these 

instruments are important for other aspects of economic policy not 

considered here; the relevance of income tax rates to questions of 

income distribution is one obvious example. Penalising the movement of 

instruments from their historic levels is a general recognition that 

other policy - apart from stabilisation - matters. We also incorporate 

a penalty on the rate of change of each policy instrument on the grounds 

that changes in policy involve direct administrative costs in 

themselves. 

To produce the optimising runs, a base run is needed. In an 

informal way, this is described as a 'do nothing* case, i.e. a 

simulation of the model over the planning horizon where the designated 

policy instruments are not actively used to achieve an optimal outturn. 

In order to derive this base run, the model is solved over the period 

1978Q2-1984Q1, with the policy instruments fixed at their average value 

for the period. The instruments involved and their base run values are: 

tp - the tax rate of consumers
1
 expenditure. Average value taken as 15 

per cent. 

t = the standard rate of income tax. Average value taken as 30 per 

cent. 

G = public authorities
1
 consumption. Average value taken as £6,000 

million (1975 prices). 

The base solution then is the solution given these values for the policy 



Ch. 7 : Optimal Control 323 

instruments, with all exogenous variables taking their historical values 

for the period 1978Q2-1983Q1, and taking forecast values for all 

subsequent quarters, using the May 1983 National Institute forecast. 

Control runs are then generated by optimising the given objective 

function, by active use of the three policy instruments (tp, t, G). The 

resulting values for the endogenous variables in the model, including 

price inflation, unemployment, and the current balance, measured as 

deviations from the base run, can then be attributed to the changes in 

the policy instruments (also measured from their base run values). 

Apart from tp, t, and G, all other variables which might be policy 

determined are held at their base run values. In particular it is 

assumed that monetary policy ensures that nominal interest rates are 

kept at their actual values. 

The relative weights on objectives and instruments are given 

numerical values as shown in the table below. Later we conduct 

sensitivity analysis, which explores the consequences of changing these 

weights in a specified way. The final items in the specification of the 

objective function are the 'desired* values of instruments and 

objectives. For the instruments we assume that the desired levels of 

these variables are the same as in the base - or
 f
do nothing* - run; 

hence penalising movement of policy instruments away from their historic 

average value. The desired values of objective variables are chosen as 

follows: for unemployment a level of 500,000; for the current balance 

a desired value of zero is taken. For further sensitivity analysis see 
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Henry, Karakitsos and Savage (1982). 

Table 1. Specification of the objective function 

Variable Definition Desired value Weight 

U UK unemployed (
f
000s) 500,000 

-4 
0.5x10 

ΔΡ Consumer price inflation 0 1 .0 

CB Current balance (£ million) 0 

tp Tax rate of consumers' expenditure 15» 0.9 

t The standard rate of income tax 30% 0.35 

G Public authorities' consumption 6,000 £ 1975, _ ο 

million 0.1x10
 J 

AG - 0 0.1x10~
3 

At - 0 50.0
( 1) 

Atp - 0 300.0
( 1) 

(1) In the second quarter of each year this 

ensure tax changes occur annually. 

weight is decreased to 

The control exercises reported use the cumulative values of the 

current balance in the objective function. This may be interpreted as a 

concern with the terminal state of the optimising problem. On this 

interpretation policy is directed at inflation and unemployment 

objectives, but without the cumulative current balances seriously moving 

further from their historical values over the period. The risk of 

pursuing domestic objectives by building up problems for subsequent 

periods is then minimised. 



Ch. 7: Optimal Control 325 

The possibility of costless improvements 

Under this heading we discuss two possible fiscal manoeuvres which may 

produce an output expansion without significant inflation cost and note 

some empirical evidence bearing on this issue. The policies involved 

are a reduction in the rate of income tax and a reduction in the rate of 

indirect tax. 

Income tax cuts 

The 'free lunch' possibility based on reductions in personal income 

taxes has been widely discussed (Corden, 1981). A central assumption is 

that wage inflation depends on the discrepancy between the value of 

actual and desired net real wages. On this assumption, an income tax 

reduction, while demand expansionary through familiar channels 

(increasing net real incomes and expenditures), may reduce wage demands 

and, hence, inflation. Output expands and price inflation may or may 

not increase depending upon the net effect of several factors: the 

effect on prices of a declining exchange rate, the effects on wage 

settlements of the tightening labour market, and the countervailing 

effect on wage bargains of the increase in the average retention ratio 

(the ratio of net to gross wages). If the last mentioned effect is 

sufficiently large, then the inflationary effects of the expansion in 

demand may be offset by the increase in net wages compared to their 

desired or target value. 

Indirect tax changes 

The underlying analysis of this problem can be illustrated by using an 
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orthodox aggregate demand model for the open economy with wage-price 

interactions. Initially monetary accommodation is assumed. Then a 

decrease in the level of indirect taxes will initially decrease price 

inflation, but this initial change in prices is echoed by feedback from 

the price inflation effect on wage inflation and from wage inflation to 

price inflation. Decreases in domestic inflation (with overseas 

inflation constant) will lead to appreciations in the exchange rate, 

tending to amplify the effects of the initial tax change. Meanwhile on 

the real side, increases in real incomes and real balance effects will 

encourage expenditure, leading to increases in output and employment. 

These expansionary influences will be moderated, or offset, by the 

effects of falling unemployment and a worsening trade balance on the 

rate of inflation. The overall quantitative results will depend upon 

the strength of certain key relationships; the unemployment effect on 

wage inflation, the size of the inflation loss term in the consumption 

function, and so on. Allowing the money supply to adapt as activity 

changes to ensure that nominal interest rates remain unchanged, will 

imply that the real interest rate changes as price inflation varies. 

Increases in real interest rates will lead to decreased aggregate 

expenditure and appreciations in the exchange rate, while decreases in 

real interest rates have the opposite effect. The eventual quantitative 

outcome for unemployment and price inflation could be that each will 

move in the same direction, or in a more familiar inverse way, depending 

on the magnitudes of the influences noted above. 
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The optimal solutions 

These possibilities in the responses of the estimated model are now 

explored in an optimal control exercise. These use the objective 

function described in Table 1, using the National Institute Model 7 as 

the set of non-linear constants in the optimisation. The instruments 

are the fiscal instruments tp, t, and G defined earlier, and the 

exercise is conducted over the period 1978Q2-1984Q1, although to 

economise on detail only annual results of the optimisation are 

reported. This version of the model is a 'backward
1
 looking one in the 

sense that explicit rational expectations are not assumed. Expected 

future variables where they enter the model are proxied by lagged actual 

values. 

Table 2. Optimal solution using the objective function from table 1. 

Variable 
Year 1 2 3 4 5 6 Average 

U 11 -79 -178 -212 -213 -300 -162 

ΔΡ 0.49 -0.88 -0.16 0.92 0.3
1
* 0.03 0.12 

CB 76 -18 -164 -111 -48 -216 -80 

ΔΥ -0.16 0.70 1.40 1 .20 1 .00 1.90 1 .00 

PSBR -328 236 3^5 -102 87 656 149 

ER 0.41 0.25 -0.52 -1.10 -1.80 -2.80 -0.92 

tp 1.20 -0.96 -1.10 -0.08 -1.00 -1.70 -0.62 

t 1.70 1.70 1.90 2.70 3.20 2.30 2.30 

G 22 195 285 263 248 383 233 

(for definitions see overleaf) 
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Definitions: 

(1) All figures are annual averages. 

(2) Y and ER are given as percentage changes from the base; all other 

variables are given as absolute changes from the base. 

U Unemployment, UK, thousands. 

Ρ Rate of consumer price inflation. 

CB Current balance. 

Y Rate of growth of GDP (expenditure estimate) at factor cost, 1975 

prices. 

PSBR Public sector borrowing requirement. 

ER Sterling effective exchange rate. 

tp Tax rate on consumers
1
 expenditure. 

t Standard rate of income tax. 

G Public authority consumption, 1975 prices. 

The results shown in table 2 indicate that a significant decrease 

in unemployment is possible with very little change in the general rate 

of price inflation over the control period using a judicious mixture of 

expenditure and tax changes. This result suggests that when policy is 

optimally calibrated, the implied trade-off between price inflation and 

unemployment is quite shallow. A note of caution is required however in 

this interpretation. The trade-off we describe is between two 

variables, but other variables enter the objective function, and these 

will change during the optimisation. The ceteris paribus interpretation 

we give of the (P, U) trade-off is not strictly valid therefore, though 

multi-dimensional trade offs would be cumbersome. But to continue in 

the vein of the previous exercise, we next investigate the effects of 

altering the relative weight on unemployment in the objective function 

(table 3), first by a decrease of 100 per cent from the value in that 

table and then an increase of 100 per cent (table 4). The results of 

this exercise are shown in tables 3 and 4, and indeed show that the 
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Variable 
Year 1 2 3 4 5 6 Average 

U 62 1 1 3 145 163 173 2 1 2 145 

Ρ - 0 . 6 1 -0 .68 -0 .68 -0.60 - 0 . 5 6 -0.62 -0.62 

CB 6.60 53 66 21 2 . 2 0 97 41 

Y - 0 . 5 1 - 0 . 7 4 -0 .86 - 0 . 8 7 -0 .86 - 1 . 2 0 -0.84 

PSBR 117 1 1 - 1 0 8 -91 -51 -200 -54 

ER 0.02 0.69 1 .80 2.90 4.00 5 .20 2.40 

tp - 1 . 3 0 - 0 . 9 3 -0.50 - 0 . 2 1 -0.05 0 . 1 3 -0.48 

t 0.28 - 0 . 0 2 - 0 . 2 6 - 0 . 4 7 - 0 . 5 7 - 0 . 3 0 - 0 . 2 2 

G - 1 3 2 - 1 8 9 -207 -203 -199 -249 -197 

Definitions as table 2 . 

Table 4 . 100 per cent increase in the weight on unemployment 

Variable 
Year 1 2 3 4 5 6 Average 

U -104 - 1 7 8 - 2 2 1 -245 -262 - 3 1 7 - 2 2 1 

Ρ 0.90 1 . 1 0 1 . 1 0 0.94 0.88 0.99 0.98 

CB - 1 6 -88 - 1 0 1 - 2 6 0.80 - 1 5 8 -65 

Y 0.85 1 . 2 0 1 .30 1 .30 1 .30 1 .70 1 . 3 0 

PSBR - 1 8 6 - 3 1 158 120 42 284 64 

ER -0.07 - 1 . 1 0 • -2.80 - 4 . 3 0 -5.90 -7.60 - 3 . 60 

tp 2 . 2 0 1.50 0.82 0 .37 0.15 - 0 . 1 2 0.82 

t -0.51 -0.04 0.34 0.72 1 .00 0.64 0.36 

G 219 290 310 304 305 377 301 

implied trade-off is fairly shallow. (At least this appears true in the 

region of solution values embraced by the results in the three tables.) 

Roughly speaking, what this calculation shows is that a fall in 

unemployment of 200,000 produces an additional 1 per cent inflation on 

average over the six year period of the exercise. 

Table 3 . 100 per cent decrease in the weight on unemployment 
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(ii) An optimal version of the NAIRU 

A related concept to that of the Natural Rate of Unemployment which has 

gained increasing currency in policy debate, especially in the UK, is 

the Non-Accelerating Inflation Rate of Unemployment (NAIRU). In most 

applications this is taken to be the non-accelerating solution to an 

estimated labour market model, and below we note how this concept may be 

applied to the relevant equations of a version of the National Institute 

model. However, our main argument in this section is implicitly a 

general critique of the analysis of macro economic behaviour using the 

NAIRU. [See for example the special issue of Economica (1986) for 

numerous examples of this.] Our argument is essentially very simple: 

the NAIRU analysis is firstly couched in long-run steady states (i.e. 

non-accelerating states) and so suppresses dynamic features of models 

which may be long-lasting. Secondly, concentration on the labour market 

is at best a partial analysis, which ignores substantial influences from 

other sectors of the economy. These include sectors such as the 

overseas sector and exchange rate, and for an economy with the degree of 

openness which the UK has, their suppression is obviously a serious 

limitation. These limitations, we suggest, are too high a price to pay 

for the advantages of simplicity and the relative ease of interpretation 

which such NAIRU analysis affords. 

Below we remedy these defects by illustrating the calculation of 

NAIRUs for complete macro models with full allowance for the model's 

dynamics. These will use National Institute Model 8, a model with 
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extensive forward-looking behaviour. Two illustrations are then made: 

one where backward-formed expectations are applied in the model, and one 

with forward-looking rational expectations. 

(a) Backward-formed expectations 

Chapter 5 describes how the model may be operated with expectations 

formed using autoregressive equations for expected variables. In this 

mode, we then calculate the NAIRU implied by the model by formulating an 

optimal control problem, using central government current expenditure on 

goods and services as the sole policy instrument, and the unweighted 

objective function 

T
 2 

W = Σ (AlnCPI - φ)* 
1
 Z 

where CPI = the consumer price index, and φ is some pre-set value for 

this. The optimising problem is then the (conceptually if not 

computationally) simple one-objective/one-instrument problem, which we 

can solve uniquely. The optimisation is subject to the deterministic 

form of the whole model over the time interval 1979Q1-1983Q4. In these 

experiments φ is taken to be 10$ and 5% per annum in two separate 

optimisations, and can be used to investigate the quantitative nature of 

the trade-off between constant inflation and average unemployment 

levels. In all the model simulations we report, expectations are 

assumed to be formed using predictions from single equation, backward-

looking, time-series models for expected variables. Also the solutions 

are each ex-post, using actual values for all exogenous variables, 
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including policy variables, with the exception of current government 

expenditure. The results are shown in Figure 1. 

What the chart shows is that the NAIRU calculated as the fully-

dynamic solution to an entire open economy macro-model has two 

characteristics. Firstly, for a given level of inflation, the NAIRU 

fluctuates considerably, varying from just under one million to over 

three million. Secondly, it reveals a trade-off which persists over the 

period, in that the NAIRU for φ = 5» is everywhere in excess of that 

for a higher rate of inflation (φ = 10»). However, the absolute amount 

of the difference between the two varies over time. We next discuss the 

rationale for these two features. 

The time-varying NAIRU 

For each of the target rates of inflation the calculated NAIRU increased 

rapidly after a fall in 1980. There are then steady increases in the 

NAIRU, even for a 10» constant inflation target. A large part of the 

explanation for this lies in the nature of the dynamic solution used. 

Essentially, this takes unemployment as a proximate determinant of 

inflation, and in turn treats government expenditure as the instrument 

for effecting changes in unemployment. Other deflationary techniques 

are not allowed in the scenario. These include monetary policy, for 

example, high interest rates with high exchange rate, and other, more 

efficient, fiscal methods of reducing inflation (for example, decreases 

in indirect taxes). Thus the limitation of the present exercise is that 

it does not seek the optimal policy mix which would stabilise inflation 
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at minimum cost in terms of unemployment (as was done for Model 7 in 

section (a) above), but uses only one instrument which operates on 

inflation only via the Phillips Curve effect in the wage equation. 

Both solutions - for φ = 5% and 10» - show a similar profile over 

the solution period. The general reasoning behind these profiles is the 

same for each case. Thus in the first two years of the period, the 

NAIRU values radically differ from the actual values of unemployment. 

Initially, with inflation so high following the public sector pay 

explosion and the 1979 budget VAT increases, unemployment is rapidly 

increased over the actual value to decrease inflation (which was 13.5 in 

1979 and 17.9 in 1980 as measured by the RPI). The large appreciation 

of the exchange rate introduced a substantial deflationary impulse in 

1980, so the NAIRU is calculated to fall towards actual levels, with the 

previous high levels of unemployment feeding into lower wage increases, 

after a lag. In 1981 the calculated values of the NAIRU again jump 

above actual levels (in spite of the fact that these were now rising), 

as inflation proved slow to decrease even after the large appreciation 

in the £. For the rest of the period actual and NAIRU values broadly 

move in line suggesting that, on average, unemployment has been 

maintained at a level consistent with inflation somewhat below 5». 

The inflation-unemployment trade-off 

Finally, we may note what the results of our experiments show for the 

inflation-unemployment trade-off. As Figure 1 illustrates, there is 

evidence of such a trade-off, and this is not a short-run (in real 
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time) phenomenon. That is, to achieve a 5% reduction in average 

inflation, with the same inflationary shocks impinging upon the dynamic 

model solution, it appears necessary to raise unemployment by between 

200,000-400,000, on average. Clearly, this will not always be true. 

Thus in the early part of the solution, very much larger increases in 

unemployment are required; in 1979Q4 for example this is of the order 

of 700,000. Given the variation in the actual level of inflation over 

the period, and the non-linearity of the model, these differences are to 

be expected. 

(b) The NAIRU with rational expectations 

Recomputing the NAIRU using rational forward-looking expectations 

formation and full consistent solutions also yields an interprétable 

evidence of a time-varying NAIRU. Thus in Figure 2 we depict a solution 

for the NAIRU derived from Model 8 with rational expectations, also 

obtained by employing optimal control. In the case depicted φ is equal 

to 10$ per annum. Comparing this result to that shown for φ = 10$ in 

Figure 1, the results using rational expectations show a similar, but 

more volatile, pattern. The increase in unemployment occurs instantly 

in the present run, in full anticipation of the need to offset future 

increases in the rate of inflation. This instant increase is successful 

in the sense that subsequently unemployment is lowered by a noticeable 

amount compared with the backward-looking solution, and this is done 

earlier - by the second quarter of 1980, compared to the low achieved in 

Figure 1 which occurs in 1981Q3. Again, the NAIRU rebounds more rapidly 

subsequently, indicating the greater volatility we expect from the model 
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Figure 1. Comparison of NAIRU and actual unemployment 
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Figure 2. NAIRU for model 8 
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operated in a rational mode. 

(c) Allowing for uncertainty in optimal control exercises on non-linear 

models 

There are two quite different approaches to the modelling and analysis 

of uncertainty in contemporary economics; the first of these is what 

might be termed 'econometric
1
 uncertainty, that is modelling uncertainty 

by allowing for uncertain parameter values, additive error terms and for 

the possibility that variables are measured with error. This was 

commented on in section 2(ii). The second approach is that of state 

uncertainty which derives largely from the work of Arrow and Debreu, 

which depicts uncertainty as a number of possible contingent states of 

nature. 

Earlier we outlined the effects of econometric uncertainty in 

formulating optimal control rules using linear models. If on the other 

hand we model uncertainty within the framework of state uncertainty a 

problem which arises in optimal control analysis, in principle at least, 

is the specification of the objective function. Consider the problem 

from the point of view of a goverment formulating its welfare function; 

it is then appropriate to maximise its expected welfare as long as 

certain conditions are satisfied (see von Neumann and Morgenstern 

(1947); Luce and Raiffa (1957), chapter 2; Hey (1979), chapter 4). 

These conditions are (i) ordering of alternative outcomes, (ii) 

applicability of the probability rule, (iii) continuity, (iv) 

substitutability, (v) transitivity and (vi) monotonicity. Condition (i) 

says that the government should be able to rank any two scenarios 
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unambiguously. Condition (ii) rules out a government deriving pleasure 

from the act of gambling on particular views of the world. Conditions 

(iii) and (iv) combined correspond to independence of irrelevant 

alternatives. Condition (v) may be violated due to the complexities 

caused by the multi-dimensional nature of economic welfare, although 

most decision makers would be prepared to re-appraise their preferences 

when such inconsistencies are pointed out. Condition (vi) rules out any 

psychological interaction between the alternative views on the economy 

and the corresponding probabilities. 

Under these conditions we may formalise the government's welfare 

function as: 

Max W = L π W (Y
S
) (46) 

s=l s s 

where π is the probability of state s occurring. 

In the rest of this section we provide an illustration of this form 

of uncertainty in optimal control analysis. It concentrates solely on 

uncertainty as to the true model of the economy. To this end the 

econometric uncertainty reviewed above, which is always inherent in an 

econometric model, has been ignored, and we concentrate on uncertainty 

as to which model is the 'correct' characterisation of the economy. Two 

deterministic models are taken, one characterising broadly Keynesian 

views and the other being broadly monetarist. Each of these models will 

represent one possible state of nature, they will then be combined 
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through an objective function of the von Neumann-Morgenstern type to 

yield a single optimal control problem which will give an economic 

policy which is optimal under conditions of uncertainty as to the true 

model. 

To keep this exercise within manageable proportions, we take 

simplified numerical models, not fully estimated econometric ones. The 

value of the present exercise then lies partly in the gross behaviour of 

the two models, and partly in its value as an example of how actual 

policy formulation could be carried out were enough resources to be made 

available to repeat the procedure using large scale econometric models. 

Although the parameters of the models are not estimated, nonetheless 

they, and lagged values of endogenous variables before t = 1, have been 

chosen so that the models will roughly approximate the state of the UK 

economy in 1975. 
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The Models: 

KEYNESIAN MODEL MONETARIST MODEL 

Initial values have to be ascribed to Y Q and ÂP Q, the values used 

correspond to actual 1974 figures. Y Q = 100,000 and AP Q = 17. The 

only remaining factor which needs to be specified in order to subject 

these models to an optimal control algorithm is the objective function 

and which variables are control variables. The control variables are 
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where: Yfc = Expenditure, = Consumption, Ifc = Investment, Gfc » 

Government expenditure, M = Nominal money stock, P
fc
 = a price index, 

5 
= Labour demand, Lfc = Labour supply, AMfc = the percentage change in Mfc, 

APfc = the percentage change in Ρ , and r = the rate of interest. 
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taken to be government expenditure and the percentage change in the 

money supply. The objective function to be maximised is identical for 

both models, and is 

Max W = Σ
Τ
 (ΔΡ

2
 + ((U - 1.0). 2.5)

2
) (47) 

i = 1 

This postulates what are taken to be plausible properties: that zero 

inflation and a one per cent level of unemployment are desired by the 

policymaker. Also it assumes that high inflation rates (say over 10 per 

cent) are more acceptable than unemployment rates of a similar 

magnitude. 

The only differences between the two models are in terms of the way 

money enters the model in equations (ii) and (v). Despite the 

predominant similarities of the two models there is no reason to expect 

them to have the same long-run characteristics. These long-run 

properties may be examined on the assumption of fixed control variables. 

The Keynesian model yields the following first-order difference equation 

for national income 

Y
t " l+c4„b 12"12 
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+ a
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+ G
-
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where f(Y ) is the relationship between prices and lagged income 

through the Phillips' Curve. Specifically 
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When unemployment is above d^» th
e
 natural rate, f(Yfc ) is negative, 

implying that the rate of inflation is falling. In other words the 

economy will tend to move towards the natural rate of employment. The 

only stable equilibrium will be at the unemployment rate d ^ with zero 

inflation. This long-run equilibrium point is the point towards which 

the economy will move, but this may not be attainable if the model 

exhibits a constraint such as a liquidity trap. If unemployment is 

above d ^ then it will be reduced by rising real money supply causing a 

fall in the rate of interest. But the rate of interest cannot fall 

below zero so there is a maximum possible level of investment i.e. b ^ . 

This may not be sufficient to cure unemployment. So in general when M 

and G are fixed arbitrarily the economy will move towards a long-run 

equilibrium point of zero inflation and d ^ unemployment, but this point 

may not be attainable for any given level G. 

The most important determinant of the long-run equilibrium is, of 

course, the two control variables M and G. If the optimal control 

vectors (M* and G*) are substituted into the model, then the long-run 

equilibrium occurs with zero inflation and unemployment equal to d^. 

The possibility of a liquidity trap equilibrium with unemployment above 

d.|2 i
s
 removed, as government expenditure can ensure sufficient demand. 

An interesting point however is that the objective function yields a 

maximum at 1 per cent unemployment while the model has a long-run 

equilibrium at d which is specified as 1.8 per cent. So the optimal 
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control vector will depend, at least in part, on the time horizon taken. 

If a long time horizon is taken, then the vertical Phillip's Curve is 

the relevant constraint and the best attainable point will be 

unemployment equal to d^. If, on the other hand, an extremely short 

time horizon is taken, then the relevant constraint will be the short 

run, negatively sloped, Phillips Curve. The resulting optimal solution 

may then be found by solving the following programming problem 

W = (ΔΡ)
2
 + [(U-1) 2.5]

2
 + λ(ΔΡ + In (γ—)) (50) 

which yields the following first order conditions 

2P + λ = 0 

2 [(U-1) 2.5] 2.5 + jj λ = 0 

ΔΡ + in (ã^) = 0 

with an optimal unemployment inflation mix of U = 1.1%, ΔΡ = 0.5%. 

A parallel analysis for the monetarist model then takes the dynamic 

equations for output from the monetarist case, i.e. 
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In this case with M. and G. over time we can define a constant 

ω = a 21 + a 21 - b 22 °21 
tN-1 

t 

and the long run level of income is 

Υ = Αω 

where A = {[1 - a2 2/(1 + c 2 2 b 2 2) ] [1 + c 2 2 b ^ ] } "
1 

This long run level of income depends only upon ω, and inflation is 

zero if M is constant. 

Because the model exhibits long-run money neutrality it is possible 

to determine the long-run inflation rate and unemployment rate 

separately. It is therefore quite possible to attain the maximum point 

of the objective function (u = 1$, ΔΡ = 0). A simple long-run rule for 

achieving this would be to set ΔΜ = 0 and adjust G so as to generate 

full employment over a number of periods. The low real money supply 

would, in the short term, reduce consumption and investment if the 

initial position is one with positive inflation. This fall in demand 

can, however, be offset by high levels of government expenditure. This 

policy would be similar to Friedman
1
s concept of a monetary rule and it 

would certainly be optimal in the long run. If the economy starts out 

of equilibrium however, there is no reason why this policy should be 

optimal during the adjustment period before the long-run equilibrium is 

reached. Indeed even within the monetarist model it may be optimal to 
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have a varying rate of growth of the money supply until equilibrium is 

reached. The zero money supply growth rule would yield the long-run 

equilibrium eventually but an actual fall in the money supply in the 

first few years of the policy might yield a faster adjustment process. 

Numerical results of the optimal control exercise 

The two models are first optimised separately so that the appropriate 

policies can be found if the true model of the economy was known to be 

one of the two models. The solution interval is taken to be ten 

periods. First, the results for the Keynesian model are shown in table 

5. 

Table 5. The optimisation of the 'Keynesian
1
 model 

Period Y(£M) U(J) ΔΡ($) G(£M) ΔΜ($) 

1 100,822 5.0 15.9 15,800 10.7 

2 101 ,071 4.7 15.0 15,770 11.4 

3 101,320 4.4 14.1 15,975 11.36 

4 101,574 4.13 13.27 16,170 11.44 

5 101,833 3.8 12.52 16,350 11.95 

6 102,100 3.5 11.85 16,500 11.87 

7 102,383 3.17 11.28 16,640 11.79 

8 102,689 2.8 10.84 16,800 12.23 

9 103,036 2.4 10.55 16,950 12.16 

10 103,469 1.88 10.5 17,160 4.4 
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The optimal policy for the Keynesian model yields steadily falling paths 

for both unemployment and inflation. The model is clearly converging on 

its long-run equilibrium but it is doing so fairly slowly. It is seen 

to be optimal to sustain a fairly high level of unemployment in the 

early years in order to bring down the rate of inflation more quickly. 

The same exercise is conducted for the monetarist model, and the 

results of this are shown next (table 6). 

Table 6. The optimisation of the 'monetarist' model 

Period Y(£M) U(J) ΔΡ(Ϊ) G(£M) ΔΜ($ 

1 104,309 0.89 7.4 19,230 -2.1 

2 104,239 0.97 2.6 18,220 -2.1 

3 104,210 1.01 0.3 18,785 -2.0 

4 104,251 0.96 -0.16 19,100 -0.6 

5 104,251 0.96 -0.22 19,150 -0.2 

6 104,244 0.97 -0.05 19,150 0.10 

7 104,259 0.95 0.02 19,150 0.10 

8 104,277 0.93 0.05 19,150 0.09 

9 104,289 0.92 0.01 19,150 -0.03 

10 104,290 0.92 0.02 19,150 0.03 

Contrasting the optimal path of the Keynesian model with this path it is 
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immediately obvious that the monetarist model converges to its long-run 

equilibrium much more quickly. High government expenditure quickly 

generates low unemployment levels, while a fall in the money supply 

quickly brings about a reduction in the inflation rate. The model can 

be regarded as having reached its long-run equilibrium within the first 

four years. From the fifth year a monetary rule of the Friedman variety 

seems to be optimal, but it is not an optimal policy during the approach 

to equilibrium. 

The next question which is posed is what would be the effect of 

implementing one of these policy sets if the policy makers were 

incorrect in their choice of the model? This may now be answered by 

carrying out simulations of each model with the control variables 

generated by the other model. Table 7 shows the policy derived from the 

monetarist model, incorrectly applied to the Keynesian model. 

Table 7. The Keynesian model with the 'monetarist
1
 control variables 

Period Y(£M) U(» Δ Ρ ( « G(£M) ΔΜ(£! 

1 104,335 0.86 17.7 19,230 -2.1 

2 104,918 0.50 19.0 18,220 -2.1 

3 105,116 0.50 20.2 18,785 -2.0 

4 104,692 0.50 21.5 19,100 -0.6 

5 103,490 1.8 21.5 19,150 -0.2 

6 101,664 4.0 20.7 19,150 0.10 

7 99,350 6.7 19.4 19,150 0.10 

8 96,613 9.9 17.7 19,150 0.09 

9 93,526 13.5 15.6 19,150 -0.03 

10 90,178 17.3 13.4 19,150 +0.03 
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The striking thing about this set of results is that for the first four 

or five years the results of this policy might well be considered 

preferable to the optimal Keynesian one. In the first period for 

example unemployment is reduced from 5 per cent to 0.86 per cent at the 

cost of less than 2 per cent extra inflation. By the end of the period 

however the desirability of the Keynesian policy becomes apparent as 

inflation is still over 1 3 per cent and unemployment is at 17 per cent. 

In fact as both G and M are being held constant the model is in effect 

performing a huge loop back towards its long-run equilibrium. As long 

as ΔΡ is positive, unemployment will continue to rise. Once ΔΡ becomes 

negative unemployment will fall until the long-run equilibrium is 

reached. This illustrates two important points: first that even though 

a Keynesian model of this type may have a stable long-run equilibrium it 

may take a very long time to reach it, and secondly that Friedman's 

constant ΔΜ rule can be highly sub-optimal in a non-monetarist model. 

Now consider the effect on the economy if the Keynesian plan were 

implemented when the monetarist model was the true one. Results for 

this are shown in table 8 . 
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Period Y(£M) U(J) ΔΡ(ί) G(£M) ΔΜ(ί) 

1 100,797 5.0 13.9 15,800 10.7 

2 100,799 5.0 12.65 15,770 11.4 

3 100,879 5.0 12.00 15,975 11.36 

4 101,045 4.8 11 .72 16,170 11.44 

5 101,276 4.5 11 .84 16,350 11.95 

6 101,557 4.2 11 .85 16,500 11.87 

7 101 ,848 3.8 11.82 16,640 11 .79 

8 102,141 3.5 12.0 16,800 12.23 

9 102,469 3.0 12.1 16,950 12.16 

10 102,859 2.6 8.2 17,160 4.4 

In this solution steadily rising levels of G reduce the level of 

unemployment, while decreases to the money supply gradually reduce 

inflation. The Keynesian policy thus works quite well within the 

monetarist model. It is, of course, vastly inferior to the monetarist 

control path but a government bringing about this effect might well be 

considered successful. It is apparent that it would not be disastrous 

to make planning decisions on the basis of the Keynesian model, even if 

this were the inappropriate model. 

The problem facing the economic planner is however a profound one; 

Table 8. The 'monetarist' model with the Keynesian control variables 
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whichever model he bases his economic policy on, he runs the potential 

risk of generating a sub-optimal path for the economy. If he plans on 

the basis of the monetarist model he runs the risk of an immense 

economic depression if the Keynesian model is the true one. If, on the 

other hand, the Keynesian model is used for economic planning then the 

economy may still perform way below potential if the monetarist model is 

the true one. This problem of model uncertainty is an ideal one for the 

application of the state uncertainty case outlined earlier. In order to 

resolve this problem we maximise the following objective function 

Subject to the state equations given by both economic models, and Π Μ 

are the respective probabilities of Keynesian and the 'monetarist* 

models representing the true state of nature. The superscripts Κ and M 

refer to the two models. This problem has been solved on the assumption 

of equal probability weighting between the two models, that is Π κ = Π Μ 

= 0.5. The following table gives the resulting solution. 

Max W = (52) 
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Table 9. Solutions with uncertain states: 

(a) The 'Keynesian
1
 model with the state uncertain optimal control path 

Period YUM) U(%) ΔΡ(ί) GUM) ΔΜ(*) 

1 101,901 3.7 16.0 16,850 2.3 

2 102,201 3.4 15.6 16,570 2.3 

3 102,660 2.8 15.2 17,255 2.3 

4 102,579 2.9 14.7 17,350 2.3 

5 102,700 2.8 14.2 17,950 2.3 

6 102,672 2.8 13.8 18,330 2.3 

7 102,684 2.8 13.3 18,870 2.3 

8 102,519 3.0 12.8 19,250 -1.3 

9 102,798 2.7 12.4 20,400 -0.7 

10 103,146 2.3 12.1 21,450 0.0 

(b) The 'monetarist* model with the state uncertain optimal control 

path 

Period YUM) U(« ΔΡ(ί) GUM) ΔΜ(ί) 

1 101,876 3.7 9.6 16,850 2.3 

2 101 ,643 4.0 5.9 16,370 2.3 

3 101,795 3.8 4.1 17,255 2.3 

4 101,756 3.9 3.2 17,350 2.3 

5 102,243 3.3 2.7 17,950 2.3 

6 102,828 2.6 2.5 18,330 2.3 

7 103,638 1.6 2.4 18,870 2.3 

8 104,410 0.7 0.5 19,250 -1.3 

9 105,752 0.5 -0.1 20,400 -0.7 

10 107,418 0.5 0.0 21,450 0.0 
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In the tables, neither result would be as good as the one generated by 

the optimal control path for each individual model, which is, of course, 

to be expected. But the possibility of a disastrous result, such as the 

one yielded by the
 1
Keynesian* model when the optimal 'monetarist* path 

was applied to it, is eliminated. No matter which of the two models 

were in fact truly representative of the real world the outcome of the 

optimal control trajectory would be acceptable. 

In the Keynesian world unemployment is maintained at a reasonably 

low level while inflation is being gradually reduced. If the monetarist 

model were true, unemployment would initially rise and then decline over 

the rest of the period while inflation would be virtually eliminated by 

the end of the period. It is interesting to note that this * uncertainty 

optimal* policy tends to use the constant money growth rule of the 

monetarists while also adopting the active fiscal policy of the 

Keynesians! 

Conclusion 

Uncertainty over which is the most appropriate model for policy 

formulation poses a serious problem. It has been argued that the 

solution to this problem may not be found by the use of empirical 

testing and that, indeed, the appropriate model may even change over 

time. A technique for formulating policies under the existence of this 

kind of state of nature uncertainty has been developed and applied to 

the two simple models so that an economic policy may be formulated which 

allows for this uncertainty. The technique proposed is an extremely 

general one being able to deal with problems with many states of nature; 
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in fact the only practical limits to its range of applications is in 

terms of the computer hardware available. The weakness of the work 

presented here lies primarily in the two models themselves. The models 

presented must be seen as purely an illustration of the proposed 

approach to policy formulation rather than a definitive set of policy 

tools. 
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Ί. Introduction 

This chapter will survey some of the important ingredients in the 'time-

inconsistency
1
 debate which has attended the publication of the original 

article by Kydland and Prescott (1977). To its authors, and indeed to 

many commentators on this issue subsequently, the time-inconsistency 

proposition was interpreted as a decisive argument against the use of 

control theory in the design of economic policy. With rational 

expectations, policies which are optimal at one point of time may cease 

to be so later when the optimisation is recalculated. It is this 

property, it is argued, which makes the design of policy in the case of 

government facing an informed private sector different in kind from the 

case of policy design with a controller against nature. We will 

highlight very important qualifications that have been made to this 

proposition, qualifications which support the existence of optimal time-

consistent policies in rational expectations models. These include the 

extensions of the analysis to reputational equilibria (Barro and Gordon 

(1983a), (1983b), Currie and Levine (1985), and Backus and Driffell, 

(1986)) and the re-evaluation of the principle of optimality involved in 

the derivation of policy rules (Hall (1987), Cohen and Michel (1986) 

and Hughes-Hallett (1986)). This discussion will occupy sections 2 and 

3 below. These applications will all concentrate on linear models, 

where analytical results are obtainable. In section 4 we provide a 

further interpretation of time consistency based on Hall (1987), and 

follow this with a quantitative analysis of the issue of time 

THE ISSUE OF TIME INCONSISTENCY IN MACRO POLICY 
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inconsistency using a version of the National Institute macro 

econometric model. As the model is non-linear, the analysis in this 

latter passage is entirely numerical, but is an important addition to 

the theoretical discussion of the earlier sections, in that it utilises 

an econometric model. 

The material is organised as follows. The next two sections are 

devoted to an introductory account of concepts used in the time-

inconsistency debate. Section 4 then widens the class of models to 

incorporate a more familiar intertemporal optimal control form of policy 

design. Section 5 is then largely concerned with the non-linear 

econometric example. 

2 . Game theory; some basic concepts 

The time inconsistency literature is a particular application of game 

theory. As such, many of the basic concepts used are best explained in 

a more general framework, and in this section we will give a brief 

account of the main ideas behind game theory. A more complete 

exposition may be found in Intriligator (1971). Two primary sources of 

particular importance are Luce and Raiffa (1957) and von Neumann and 

Morgenstern (1947). 

In the discussion of control theory and optimisation in chapter 7, 

the implicit assumption was made that there was one decision maker whose 

preferences were represented by the objective function, and that the 

economy generally could be viewed as a purely mechanical set of 
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constraints. This description is, in fact, a rather poor representation 

of economic behaviour since many decision makers are involved in most 

economic activities, and the objectives of the decision makers will 

generally conflict to a greater or lesser extent. Game theory is the 

extension of conventional optimisation theory to the case of multiple 

decision makers. The generalisation to two or more decision makers, or 

players, considerably complicates the problem, as one player's welfare 

not only depends on his decision and the equations of the system, but 

also on the decision made by the other player. In its most general form 

the multiplayer game will not yield a unique stable solution and so much 

of game theory has involved defining particular types of games which are 

tractable. Games can be classified by the nature of the payoff 

function; a zero sum game, a constant difference game or a non-zero sum 

game. They may be classified by the number of players, a two-player 

game or an η-player game. They may also be classified by the number of 

strategies each player may adopt, which may be either finite or 

infinite. Finally they may be classified by the amount of negotiation 

before play is initiated, and may be a cooperative game if coalitions 

between players are allowed, or non-cooperative games. 

The most widely explored game is the two-person zero sum game; in 

this game there are only two players and the set-up of the game is such 

that each player is competing for a larger share of a total but fixed 

payout. Even in such a simple game, the possibility arises that no 

unique solution exists, and locating a solution, assuming one exists, 

may be analytically very difficult. 
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The analysis may be extended to allow for uncertainty in the 

response of one player to the other, to allow for non-zero sum 

situations and to allow for cooperation between groups of players when 

there are three or more players. We will not pursue these elaborations 

here as the essential point which we require is evident, that even in a 

simple game the assumption made about the other player's behaviour is 

critical. It is this assumption which is crucial to understanding the 

time inconsistency debate and so we will now outline a general framework 

for the types of assumption which are commonly made. 

Suppose we consider two individuals who have a respective set of 

1 2 
decision variables χ , χ and each individual welfare is a function of 

his own decision and the decision of the other individual, i.e. 

We are dealing with a non-cooperative game so that each individual 

selfishly maximises his own welfare regardless of the effect on the 

other individual, subject only to any constraints which we assume have 

already been substituted into the objective function. The richness of 

the game arises from the inclusion of terms in the other player's 

discretionary variables in the first player's utility function. These 

terms are not, of course, exogenous to the actions of the player, as the 

other player may alter his behaviour in response to a move by the first 

player. Because each player's strategy depends on the strategy of the 

other player, we cannot use standard optimisation techniques to solve 

such a problem. In fact, the normal solution procedure is an iterative 

l U x
1
, x

2
) and U 2(x\ χ

2
) * 
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one but we will not pursue that here. We can however characterise 

various types of solution. The general solution given when both players 

optimise subject to the optimal strategy of the other player is given by 

1 2 
the Nash solution. It may be characterised by a pair of points (x.T, x.T) Ν Ν 

which have the property that 

V v x
N }

 -
 U1 ( V X

N
} a 1 11 

1 2 1 2 
and U 2(x N, x N) > u*2(xN, x i) all i 

2 1 
This states that given that player 2 implements xN» player 1 prefers x^ 

to any other permissible choice of x
1
 open to him, and similarly given 

1 2 
that player 1 implements x N> player 2 prefers x N to any other 

permissible choice of x^. 

To solve a problem for the full Nash solution is difficult, and 

often may not be analytically tractable. So two restricted forms of 

solution have been evolved which do not have the full optimising 

consistency of the Nash solution but which have the advantage of being 

much easier to solve. The first of these is the Cournot solution. This 

is defined as the solution which occurs when each player forms some 

expectation about the behaviour of the other player, and optimises 

subject to that expectation. In general this solution will differ from 

the Nash solution if the expectation about the other player's action 

differs from his finally chosen action. This solution may be 

1 2 
characterised by a pair of points (x^, X Q ) such that 
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and U 0(x
1
, x

2
) > U0(x^f x

2
) ail i 

2 O C 2 O 1 

where X Q , X q is player 2 and player 1 's expectation of the other 

player's action respectively. 

The second form of restricted solution is the Stackelberg game. In 

this game there is a clear leader and follower. The leader announces 

some action and the follower optimises subject to that announcement. 

The leader then optimises subject to the optimal behaviour of the 

1 2 
follower. This may be characterised as a pair of points (xs> x s) such 

that 

U 1 ( V Φ * V V Xs } a 11 1 

and VAx\, x 2) < U9(x^f xf) all i 
2 o s 2 ο ι ^ 

where player 1 is the leader and X q is the announced policy. Player 2 

plans on the basis of X q even though it is not an optimal policy for 

player 1. 

In terms of the time inconsistency debate discussed below, the two 

important cases are the Nash and the Stackelberg game. The Stackelberg 

game gives rise to time inconsistency and may be thought of as the case 

where the government announces an economic policy, following which 

private sector agents then optimise subject to this announcement. 

However, the policy is not in fact optimal when the time comes to 

implement it. If the game can be reformulated as a Nash game, the time 

inconsistency problem disappears. 
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3. The initial analysis of time inconsistency 

The quintessential analysis emphasising the Natural Rate basis to the 

issue of time inconsistency is that provided in Barro and Gordon (op. 

cit.). This starts from the suggestion that systematic monetary policy 

does not affect real variables, but nonetheless there appears to be 

countercyclical monetary policy directed at influencing real variables 

such as unemployment (see Barro and Gordon, 1983a). This apparent 

'irrationality
1
 in policy formation is then explained in terms of the 

temporary exploitation of inflation surprises by the government. The 

basic ingredients of the explanation is a Lucas-type aggregate supply 

determination of real activity, and an emphasis on long-run equilibrium 

states. To some extent the first, and more especially the second of 

these very limiting features are avoided in the models in section 4. 

The essentials of the Barro-Gordon (BG) model, it will be recalled, 

are as follows. Proxy aggregate activity by the Lucas-type unemployment 

function, i.e. 

U t - u£ + o(irt - π®), α > 0. (1) 

where inflation surprises produce movement in unemployment away from the 

natural rate U
n
. The policymaker's objective function is 

Z t - a(Ut - ku£)
2
 + b ( T T t )

2
, a, b > 0 (2) 

Assuming k < 1 indicates distortions from the efficiency level of the 

natural rate due to external effects. The policymaker is assumed to 
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have control of changes in the money supply, which in turn is assumed to 

determine inflation. Hence ττ is treated, in effect, as the policy 

instrument in the exercise. The intertemporal cost function for the 

policy problem is 

Min Σ E(Z(1 + r )
- t
 | Ω ) (3) 

U t t-0 

where (1 + r) is the discount factor and r is assumed to be constant. 

Expectations are modelled by requiring that the policymaker minimises 

(3) in period t, by selecting π̂ . given the information set Ω ^ . 

Private sector agents also form their expectations of π (ττ̂ ) using the 

same information set
 ß

t_<|* Moreover, they are assumed to know that the 

irt which the government choose emerges from the minimisation of ( 3 ) . 

This feature establishes the nature of rationality in the model. The 

policy problem may then be simplified by assuming that ir^ and future 

expected inflation
 7r

t_^» are independent (thus eliminating questions of 

reputation and credibility, though these are a major topic of subsequent 

sections to this chapter), so that (3) may be taken to be a simple one-

period problem, namely the minimisation of
 E

(
z

t |
 Ω
^_-|)· Simple 

dynamics can be introduced by allowing for persistence in the supply 

function, thus (1) becomes 

U
t
 = A U

t-1
 + ( 1 " λ ) Κ + V 0 < λ < 1 (ί|) 

where Κ is the constant value the natural rate of unemployment tends to, 

and c t an independently distributed error with zero mean. 

The solution to this elementary problem can be thought of as 
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postulating a reaction function for inflation expectations 

< =
 h e ( £

W 
(5) 

and establishing a fixed point. Thus TÎ^ = h (
ß

t_1) is a solution to 

e e the policymaker's cost minimisation exercise, given that = h ( Ω ^ ) 

in turn determines expected inflation. To locate the solution, the 

single-period cost function after substituting for (4) and (5) is 

minimised, i.e. 

Min Z t = a J(1 - k)[\u"_1 + (1 - λ)Κ + e t] 

- a ( , t - h
e
( V l]

2

+ b ( , t )
2 

The first-order condition is 

aa (- a U t - h
e
(fit_(|)) + (1 - k)[Xu"_ 1 + (1 - λ)Κ] 

allowing for Ε(ε | ^^_^) = 0 . As the private sector knows is 

selected in this way, - h
e
(.) = 0. Hence they must form their 

expected inflation as 

= ^ (1 - k) [λΐ£ Λ + (1 - λ)Κ] 
t-1 

or irf = π = (1 - k) Ε U? = π 
t t b tH t 

(6) 
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as the fixed point equilibrium is given as the selection of which 

coincides with ir̂ . Equation (6) is then a Nash-type equilibrium to 

this simple game between the policymaker and rational private sector 

agents. 

To establish some terminology which we use subsequently, we will 

describe the solution given by (6) as a discretionary equilibrium. 

Although these terms are not particularly meaningful in this one-period 

case, this policy is defined as sub-optimal but time-consistent. These 

terms are fully explained in the more relevant multi-period cases in 

section 4 below, but the flavour of their usage can be gleaned from the 

present very limited exercise. To illustrate this, note that the 

equilibrium in (6) will imply that = 0 is inconsistent, and 

therefore will not occur. (Since > 0 will generally be adopted by 

the government, the expectation of zero inflation will be inconsistent 

with this choice.) The equilibrium value of π from (6) can then be 

contrasted with a fixed rule for inflation of the form 

V
h(8
t-,

)=0
-

 ( 7) 

which can arise where the policy problem is that of our previous 

analysis, which required the selection of a rate of inflation equal to 

expected inflation. Equation (7) however produces the same unemployment 

level (U
n
, the natural rate) but a lower inflation rate than the 

equilibrium solution. Hence (6) is sub-optimal. But in (7) the 

policymaker has potential for deviating from the rule -
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expanding the money supply, raising inflation, producing an inflation 

surprise and a temporary decrease in unemployment. The rule is thus 

optimal but time-inconsistent. 

Before proceeding with more elaborate formulations of policy games, 

the general idea of reputational equilibria can be given by a simple 

extension of this model. There is, in the example already reviewed, an 

incentive for the policymaker to renege on the policy rule. It is 

suggested that the rule may nevertheless be made credible when the 

potential loss of the policymaker's reputation balances his temptation 

to cheat. This extension explicitly introduces multi-period 

considerations into the simplified scheme described so far. The 

essential mechanism is that the cost of cheating today is the effect 

this higher current rate of inflation has upon expected future inflation 

rates. Assume there are two possibilities (see Barro and Gordon, 

1983b). If
 1 T

t _ 1 =
 π

^_ι
 t n en

 Private agents expect the government to 

conform to the policy rule, but if *
 t h ey e x

P
e ct t ne 

government to adopt the discretionary policy. Hence, in the first case 

the government follows the rule, and validates expectations, so 

maintaining its reputation. In the second case, the government cheats 

in period t, so next period's expected inflation is the discretionary 

value (call this
 π
^+<|)· But, as shown earlier, actual and expected π 

will coincide. Hence in period t+2 the private sector expects the value 

for π as given by the rule (call this
 π
* + 2 ^ * Credibility is restored 

by period 2, and the loss produced by renegeing on the policy rule in 

period 2, is the expected present value of the 
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relative cost (
z

t + 1 ~
 z
\+i ) » equal to the cost function evaluated under 

discretion less that evaluated under the rule (which will be positive). 

Whether the policymaker is induced to renege depends on the balance 

between the current period gain in cheating, E(Z* - Z^) where is the 

cost function evaluated under the cheating policy, versus the expected 

discounted loss produced by the revision in expected inflation for the 

t+1 period. In full the relevant criterion is 

V - E(Z* - Z t) - qE(Zt + 1 - Z*+ 1) 

where q is the real discount rate. For V < 0 the policymaker opts for 

the rule, otherwise he cheats. But if V > 0, then the private sector 

will know that it is in the government's interest to renege on the 

policy rule. 

^. The linear structurally dynamic case 

The conclusion of the previous section was that consistent optimal 

policies may be induced, provided the policymaker values reputation 

sufficiently. The analysis was couched in terms of a familiar Natural 

Rate model, and the model was not structurally dynamic, so lagged 

adjustment was not explicitly incorporated in behavioural equations for 

example. This section outlines results from linear models which remedy 

this limitation in the earlier analysis and, what is an added advantage 

from our point of view, it describes the implications of time-

inconsistency in an explicit optimal control analysis of policy choice. 
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The basic ideas can be established fairly readily using the optimal time 

consistent feedback rule derived for the general linear model with 

rational expectations from chapter 7. Recall that for the deterministic 

form of the model 

- -

V i = A 

e 
t

X
t + 1_ 

• Β Ï • Ï (8) 

Hfc = >4 Σ R (Υ' Q Y + 2 Y' U W + W G W ) (9) 

where Y f c +1 - ( z t + 1. tX t + 1> * . 

The optimal control rule may be written in closed form as (see equation 

(32) Chapter 7) 

(10) 

By certainty equivalence this rule also satisfies the stochastic case, 

when additive error is included in (8) above (see Levine (1984)). 

What this example illustrates is the time dependency of the optimal 

time consistent solution. That is, the optimal rule (10) recomputed at 

a later date (say t = η instead of t = 0) implies that the sum of 

backward terms be evaluated over a new interval, namely (n, t) instead 

where fcx«+1 = x f c + 1. and V t = 0, and we optimise the welfare function 
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of (0, t). It is this feature which suggests that the rule may lead to 

time inconsistency. This arises because the optimal rule sets the co-

state variable P2(t) = 0 for t = 0, when the program is evaluated over 

the interval (0, t), but p2(t) * 0 for t > 0. However, re-optimisation 

at t = n, leads to the co-state being set at zero for the initial period 

of this new program, i.e. p(n) = 0, η * 0, thereby showing that the 

policymaker has reneged on the original policy setting (see Currie and 

Levine (1985)). 

In the remainder of this section we note some further analysis of 

time inconsistency in the structurally dynamic case, before proceeding 

to our own derivation and implementation of an optimal policy for a 

dynamic non-linear macro model. 

A. The closed loop Stackelberg 

The optimal rule (10) may be interpreted as a closed loop Stackelberg 

solution in the sense that it incorporates the private sector's 

responses to policy changes when it (the government) formulates its 

policy. Currie and Levine (op. cit.), for example, illustrate this 

interpretation by taking an alternative optimal policy rule 

The solution for the non-predetermined variables given this rule may 

then be interpreted as the private sector's reaction function. In turn, 

the policy optimisation problem may be recast as optimising the function 

where P. 
2t+1 
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W in ( 9 ) above, but now incorporating the private sector's reaction 

function linking the X vector to the co-state variables (p1 and p^), the 

predetermined variables (Z), and the government's policy rule. The 

optimal policy rule which now follows is identical to that previously 

obtained. 

B. Nash solutions 

An alternative to the closed-loop Stackelberg, which may be time 

inconsistent, is the set of Nash policies (closed and open loop), among 

which time consistent policies are obtainable. Nash policies may be 

derived in the framework we use here, by assuming the private sector no 

longer believes the government's policy announcements. The private 

sector reaction function then depends upon their assessment of the true 

rule (replacing actual values in the previous case with the private 

sector's expectations of these). As neither player in this game, the 

government nor the private sector, have knowledge of the other's 

reaction function, the equilibrium which is obtained is of the Nash 

type. But since by assumption the government optimises, knowing that 

the private sector's decision about X feeds back into the dynamic 

behaviour of the system, the resulting policy is a closed loop one. 

Time consistent policies are established within the set of closed loop 

Nash solutions by, e.g., Cohen and Michel ( 1 9 8 6 ) . Time consistent 

policies in the open-loop Nash solution, which takes the X values as 

given and defines optimal policies subject to these, may also be 

obtained (Buiter ( 1 9 8 3 ) ) . A result related to the discussion in section 

3 is the perfect cheating solution (Miller and Salmon ( 1 9 8 2 ) ) . In this 
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solution the policy which is announced is of the form implied by the 

optimal rule given in chapter 7 

but assumes the government re-optimises in each time period, which again 

entails that P2(t) = 0 for each t. If (11) above is believed, it is 

optimal and time consistent (since the government plans not to follow 

announced policy throughout). But if the announcement is not believed, 

then, without credibility, the government ceases to be a Stackelberg 

leader. A time-consistent Nash solution then becomes the only available 

alternative, and this may be considerably inferior to the Stackelberg 

solution. If the Nash solution is considerably inferior, the 

policymaker must weigh the gains from renegeing with the potential 

losses due to loss of credibility and the establishment of a Nash 

solution. Intuitively the evaluation of the alternatives are similar to 

the discussion of reputations in the static Natural Rate model in 

section 3. The welfare gains from the successful renegeing of policy 

can be obtained by evaluating W(t) before and after renegeing. This is 

compared to the potential welfare loss sustained if the attempt at 

renegeing is unsuccessful, which is given by welfare under the 

Stackelberg solutions minus welfare under the Nash. 

Our own approach elaborates on the time-consistency of closed loop 

Nash solutions, and takes the sub-game perfect Nash solution where the 

private sector disbelieves the government's policy announcements, so 

their expectations do not depend on these announcements. We show how 

W(t) = D 
Z(t) 

P2(t) (11) 
L 
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this can provide time-consistent policies also. 

5. Time inconsistency in a large scale non-linear model 

We provide an alternate argument that the Kydland-Prescott conclusion is 

misleading, which will be intimately concerned with the form of 

optimisation for rational expectations models. This section, unlike the 

previous ones, will consider the non-linear case. It is also suggested 

that the concept of time consistency is identical to the formal 

principle of optimality which underlies Bellman's equation and 

therefore, that a properly formulated optimal policy must be time 

consistent. This echoes in part the analysis for the single non-

predetermined case advanced by Cohen and Michel ( 1 9 8 6 ) . 

Before giving the full model analysis, the gist of the argument is 

presented in a simple theoretical framework similar to that used by 

Kydland and Prescott. The National Institute's macro Model 7 will then 

be used to provide an illustration and numerical confirmation of the 

theoretical propositions. This necessitates the adaptation of the model 

to take account of rational expectations, specifically to allow 

expectations of real disposable income to enter the consumption 

function. The model amended in this way is then used in control 

exercises which illustrate the nature and importance of time 

inconsistency in a large macro non-linear econometric model. 

A. Time consistency and the principle of optimality 

So far we have operated with fairly general definitions of time 

consistency. For the next argument however, it is easier if we use 
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precisely the same formulation as Kydland and Prescott. Time 

consistency was defined by Kydland and Prescott within the following 

framework. (The notation conforms with their original paper.) 

Let π = (π^ ... π^) be a sequence of policies for period 1 to Τ 

and let χ = (x1 ... x T) be a corresponding sequence for economic agents' 

decisions. A general social welfare, or objective, function is 

specified as 

S(x1 ... x T, TT -j ... π τ) (12) 

Further agents' decisions in t depend upon all policy decisions and 

their past decisions. 

x t = xt(x-| ...
 X

t-1»
 π

ι ···
 π
Τ^ t = 1 ... Τ (13) 

A time consistent policy is defined in the following way: 

Ά policy ΤΓ is consistent if, for each time period t, maximises 

(12), taking as given previous decisions, x^f ... x t -1 and that 

future policy decisions (π^ for S>t) are similarly selected.' 

This definition is quite clear, but just to paraphrase it, if ττ° is the 

vector of planned policies at time 0 then if the problem is resolved at 

a later date (t) given that TTQ . . . ττ^_ 1 have occurred, the new optimal 

* 0 0 
policy ττ£ . . . T T t will be the same as T r t ...π τ if the policies are time 

consistent. 
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Contrast this with the definition of the principle of optimality 

stated in Bellman (1957) (repeated in Intriligator (1971)): 

'An Optimal Policy has the property that, whatever the initial 

state and decision [ie. controls] are, the remaining decisions must 

constitute an optimal policy with regard to the state resulting 

from the first decision.
1 

This definition of the principle of optimality is clearly identical to 

the time consistent definition. It would seem therefore that an optimal 

policy which satisfies the principle of optimality must be time 

consistent, when the principle of optimality applies. 

B. A reconciliation 

The conclusion that the principle of optimality implies time consistency 

is clearly at variance with Kydland and Prescott's demonstration of an 

optimal but time inconsistent policy. In order to disclose the source 

of the inconsistency a generalisation of their two period model is made. 

The results obtained are easily generalised to the η period case. 

The welfare function is still 

S(x 1f x 2, ττ<|, π 2) 

where 

x 1 = Χ 1(π 1 , ^ 2 ) 

x
2
 =
 *2^

χ
1'

 π
1

 9 π
2 ' 1

π
2^ 

(14) 

(15) 

(16) 

where 1
π
2 is the announced policy in period 1 to be implemented in 

period 2. In this model in period 1 agents have no knowledge of the 
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true policy plans for period 2, but only know the policy makers' 

announced plans, where in this general framework there is no restriction 

on policy makers to announce their true plans. 

In order to derive the Kydland and Prescott result we impose the 

constraint : 

A 

and maximising S in period 

6S 6X 2 + 6S + 6S 6X1 

6x 2 <5π2 6π 2 δχ^ δπ 2 

Now if the constraint ir2 = 

respect to π 2, we get 

•j π 2 is relaxed and we again maximise S with 

OS δΧ 2 + ÖS = 0 (19) 

δχ 2 δττ2 6ττ2 

The two equations are different assuming the third term in (17) is non-

zero, so the optimal policy is shown to be time inconsistent. In this 

form the result clearly depends upon imposing the constraint (16) in the 

first case but not in the second. In effect all that is being said is 

that the relaxation of a binding constraint has produced a better 

optimal solution in the second period. In general it is always true 

that the removal of a binding constraint will have this effect. 

In order to derive a time consistent policy, all that needs to be 

done is to treat the constraint (16) in a consistent fashion. Either it 

must be on in both periods, or it must be off in both periods. The case 

(18) 0 

1 with respect to ττ2 

(17) 
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where the constraint is imposed in both periods is trivial, but where it 

is off in both periods an interesting third first-order condition 

emerges. 

Maximisation of (13), (14), (15) without constraint (16) with 

respect to π 1, 1 π 2, π 2 gives 

The first two equations now reveal a time consistent optimal path 

for π1 and π 2· The third equation measures the effect the government 

may have through pure announcement effects. In a multiperiod model the 

A 
partial derivatives δχ«/δjirK would be expected to be a function of the 

A 
government's credibility. So if in earlier periods J T T k had not turned 

out to be equal to π κ (J<K), the effect would be to reduce the value of 

δχΜ/δΝπ£ (where N>K, N<L<M). In the limit, if all δ χ ^ δ ^ = 0, the 

government would have no credibility and therefore its announced 

policies would have no effect on actual behaviour. 

This framework not only yields time consistent policies, but it 

also yields a set of policies which optimally exploit the ability of the 

policy maker to influence events by announcing future policies which it 

does not intend to carry out. By definition these policies are optimal 

and must therefore be as good as, if not better than, any fixed rule. 

6S + δχ1 6S + 6x 2 6S = 0 

δπ^ δπ-| δχ-j δπ^ δχ 2 

6S + δχ 2 öS = 0 

δττ2 δ 2 δ*2 

öS δχ-j + ÔS δ χ 2 + öS δχ2 δχ 1 _ ^ 

δχ^ δ ^ 2 δ χ 2

 δ
ι

π
2
 δ χ

2 ^
Χ
1
 δ π

2 

(22) 

(21) 

(20) 



374 S.G. Hall and S.G.B Henry 

An alternative way of thinking of the solution to the time 

inconsistency problem lies in considering the conditions under which it 

is known that the principle of optimality fails. Typically, now 

considering only a linear system, if we write the model as 

Y
f
 = MX' + Z. 

Y is a vector of Ν endogenous variables for all time periods T, 

X is a matrix of M control variables for Τ periods, M is a matrix of 

parameters, and Ζ is a vector of exogenous factors. 

If M is a lower block triangular matrix then the model will be 

strictly causal in nature which simply means that there are 

contemparaneous effects and lagged effects but the future does not 

affect the past. 

When a model is solved assuming fully model-consistent 

expectations, this introduces terms in M which mean that it is no longer 

block triangular. Under this condition the principle of optimality is 

known not to hold. But the rational expectations hypothesis has never 

been interpreted literally as being complete and perfect foresight (ie. 

that agents actually know the future). What is hypothesised is that 

agents use the available information in the best way, to predict the 

future, including the use of the relevant economic model. This does not 

mean that future events actually influence the past, but only that the 

expectation of future events conditional on the best use of current 

information influence events. In terms of equations (19)-(22), ττ2 is 

not in the information set of individuals in period 1 ; all that they 

have available is ^ 2 - the announced policy. So it is easily seen 

Υ - (Υ 1 Ί... Y 1 N, *21·'·
 Y
2N ... Y T 1. . . Y T N) , 
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that making the simplifying assumption that π 2 = · | Τ τ 2, and substituting 

actual future policy, destroys the block triangular nature of the model, 

and it is this feature of the solution procedure which induces time 

inconsistency. 

This is an unreasonable assumption to make however. If such 

information were available, there would have been no need for the 

rational expectations hypothesis. 

The next section will outline an optimisation procedure which 

maintains the block triangularity of the model, allowing for 

expectations to be formed rationally. This may be viewed as something 

of a compromise between the solution outlined in equations (19) to (22), 

which is impracticable, and the solution which arises when setting 

expectations equal to the actual outcome and carrying out a simple 

optimisation procedure. 

C. Rational and consistent expectations 

So far it has been tacitly assumed that consistent expectations are 

rational, but we need to be more precise in our use of these terms, so 

in our subsequent discussion we will use the following definitions. An 

expectation is said to be consistent if the expected outcome is equal to 

the actual outcome in any given situation. More specifically, in a 

model context, an expectation is consistent if it is equal to the 

solution of the model, regardless of the setting of the control 

variables. An expectation will be defined as rational if it is equal to 

the actual outcome of the model when control variables are set in an 
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optimal fashion. Clearly, therefore, a rational expectation must be 

consistent, but a consistent expectation may not always be rational. An 

example makes this easier to understand. If we state a government 

objective function and a set of control variables, then the result of 

optimising the model subject to an announced objective function will 

yield a set of rational expectations. A model can, however, be solved 

for an arbitrary non-optimal set of control variables on the basis of 

consistent expectations. But these expectations will not be rational, 

as they are not based on the optimal set of control variables. 

The relevance of this distinction to the time inconsistency debate 

is that if expectations are truly rational, then the individuals who 

form the expectations will do so by optimising the government's 

objective function subject to the model in each of the future time 

periods. So when the government comes to formulate its own plans, those 

plans will not affect expectations. If the government announces a 

future policy which will actually be abandoned, then individuals will be 

able to calculate this and, on the rational expectations assumption, 

expect only what will actually happen. This rational model can be 

described in the following way. Maximise 

S(x<|, x 2, (23) 

where 

x 1 = χ Ί(π 1, Ε(π2)) 

χ 2 = χ 2(χ 1, π 1, π 2) 

(24) 

(25) 

Now Ε(π 2) i S derived by individuals optimising S in period 2 

themselves; it follows, therefore, that in period 1, δΕ(π 2)/δπ ? = 0. 
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That is, whatever the government says in period 1 that it will do in 

period 2 has no effect on expectations because individuals know what it 

will really do. 

The first order conditions for this problem are: 

This is again a time-consistent optimal solution; indeed, the 

solution is the same as (19) and (20). This demonstrates that the time 

inconsistency result is not the product of the rational expectations 

hypothesis, but rather it is the result of the assumption that 

individuals naively believe that the government will actually implement 

its announced policies even when they do not plan to do so. The optimal 

solution characterised by (25) and (26) is, of course, a special case of 

(19), (20) and (21) where both δχ-,/δ^ = 0 and δ χ ^ δ ^ = 0. In this 

case we have an example where people's expectations are correct, yet 

time inconsistency does not arise. 

This type of solution may be interpreted in game theoretic terms 

with non-co-operative behaviour as a Nash equilibrium and is formally 

identical to that proposed by Buiter (1984), and described in Currie and 

Levine (1985). This is the 'subgame perfect* solution to the problem of 

time inconsistency. It essentially solves the problem of time 

φS + δχ1 φS + δχ 2 φS β 

δπ^ δπ^ δχ-j δπ^ δχ 2 

(26) 

(27) 
6S + δχ 2 φS s 

δπ 2 δπ 2 δχ 2 
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inconsistency by assigning such a high degree of rationality to 

individuals that they give no weight to the government's announced 

policies in their decision making. 

The solution outlined in equations (19) to (21) is formally a 

Stackelberg (leader-follower) game solution where time consistency is 

produced by allowing the leader to choose a perfect cheating solution 

(see Hughes-Hallett and Rees (1983) and Miller and Salmon (op.cit.)). 

As argued above, the Stackelberg model is almost certainly a more 

accurate representation of the real world. But to properly implement 

the Stackelberg solution we must provide a complete model of 

expectations so that the perfect cheating solution becomes a time 

consistent option. Given the impracticality of this task, the next 

section will suggest a way of finding the Nash subgame perfect solution 

for a large non-linear model. This solution may be viewed as a special 

case of the Stackelberg perfect cheating model where no weight is given 

to the government's announced policies by private decision-makers. 

D. An empirical example using an estimated model 

In this section the National Institute's Model 7 is amended to introduce 

forward expections into its consumption sector. Consumption expenditure 

is dependent, among other things, upon expected income over the next 

three quarters. The solution techniques outlined earlier are then used 

in an optimal control framework to derive the optimal level of 

government expenditure over eight quarters, given an objective function 

involving unemployment and inflation. The process is then repeated, 
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each time dropping the first quarter of the run. This should produce a 

set of time inconsistent optimal solutions on the basis of consistent 

expectations. Expected output will then be derived rationally as the 

solution to a separate optimisation procedure and a time consistent 

optimal solution will be found. 

The National Institute's Model 7 has been augmented by using two 

equations for durable and non-durable consumption which have terms in 

expected real disposable income. These equations have been estimated by 

using an explicit expectations series which was constructed using the 

National Institute's own ex ante forecasts of real output growth (see 

Hall, Henry and Wren-Lewis ( 1 9 8 4 ) for further details). 

The results for durable consumption were: (in logs) 

Estimation period 1966 Q1 - 1983 Q2 (figures in parenthesis are t-

statistics) 

CD = Real durable consumption; Y
e
 = Expected real disposable income. 

In turn, the results for non-durable consumption were, (in logs) 

CD = - 3 . 7 8 + 0 . 6 3 CD + 1 .4 Y^ -
Z
 ( 2 . 8 ) ( 6 . 5 )

 t -1
 ( 1 . 9 )

 Z 

DW = 1 . 5 R
2
 = 0 . 9 5 SE = 0 . 0 5 8 

( 2 8 ) 
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CND = 0.24 + 0.69 CND + 0.13 CND - 0.13 IL 
t
 (1.4) (5.6)

 t _1
 (1.3) (4.7)

 l 

+ 0.06 Y® - 0.36 Y® + 0.46 Y
e
 (29) 

(0.5)
 Z
 (1.4Γ ( 2 . 2 Γ 

DW = 1.9 R
2
 = 0.99 SE = 0.008 

Estimation period 1966 Q1 - 1983 Q2 

CND = Real non-durable consumption; IL = A^LOGtCPI)W/Y, i.e. the 

inflation loss on real wealth relative to income, where W is real 

wealth. 

The baseline optimisation run was carried out over the period 1981 

Q3 - 1983 Q2 using a POST MORT optimisation mode. 

The results of this optimisation are shown in the tables below. 

Table 1 shows the actual level of government expenditure in the first 

row and the second row shows the solution value of the optimisation 

problem over all eight quarters. Each of the next rows shows changes in 

the control path when the problem is resolved using subsequent quarters 

as the initial starting values. The optimal paths from the earlier runs 

are incorporated in the quarters before the starts of the later runs as 

initial conditions. The importance of time inconsistency is illustrated 

in this table most dramatically by the optimal level of government 

expenditure in the eighth quarter in row 2 and row 9. When the 

optimisation is carried out for the whole period the solution for the 

final quarter is 14800.1 . But when the optimisation is for the last 

quarter only, with the time-inconsistent optimal path implemented before 



Ch. 8 : Time Inconsistency 381 

Table 1. An example of a time-inconsistent optimal path based on 
consistent expectations 

NIESR Model 7 

£m 1980 prices 

Quarter 1 2 3 4 5 6 7 8 

Actual 12245.0 12046.0 12171 .0 12175.0 12183.0 12413.0 12662.0 12493.0 
base 
government 
expenditure 

Optimal 13025.7 12885.1 12865.1 13495.0 14250.2 14705.3 15000.3 14800.1 
values for 
full time 
period 

Starting - 12883.8 12863.9 13493.7 14248.7 14706.8 15001.8 14801.6 
2nd 
quarter 

Starting - - 12863.9 13493-7 14248.7 14706.8 15001.8 14801.6 
3rd 
quarter 

Starting - 13493-7 14248.7 14706.8 15366.4 15161.3 
4th 
quarter 

Starting - 14084.5 14873-1 15366.4 15161.3 
5th 
quarter 

Starting - - - - - 14693-6 16173-0 15957.1 
6th 
quarter 

Starting - - - - - - 16387-9 16606.7 
7th 
quarter 

Starting - - - - - - - 16605.1 
8th 
quarter 
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this, the solution changes to 16605.1. The time-inconsistent optimal 

path is defined by the diagonal elements of table 1 ; this is the best 

the government can do if it is willing to renege on its announced 

policies and if people, nonetheless, continue to believe in these 

announced policies. 

If we now turn to the fully rational case defined earlier it is 

evident that the solution technique is not so simple. To the 

government's control exercise, individuals' expectations are now given 

as an exogenous input. These expectations are, however, formed by 

individuals carrying out the government's optimisation exercise and 

these expectations must be consistent with the plans finally reached by 

the government. So the problem is to choose an exogenous set of 

expectations which will yield an optimal government path which will 

actually fulfil these expectations. 

In terms of the equations for our simple example the relevant 

optimisation problem is presented as equations (22) to (24), and the 

first order condition of this problem ((25) and (26)) will yield the 

general solution 

i.e. the optimal government policy is a function of what people expect 

it to do in period 2. The solution to the first order condition 

represented as (21) and (22) will produce a mapping from individuals' 

expectations into the optimal government policy. On the assumption that 

i r f = ί 1 ( Ε ( π 2 ) ) 

TTJ = f 2 ( E ( i r 2 ) ) 

(30) 

(3D 
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this mapping has a fixed point, the rational expectation which people 

should hold will be π 2 such that ττ| = π 2 = f 2( T r 2) , ie. the fixed point 

of the mapping. 

The problem of locating this fixed point for a large econometric 

model is far from trivial. The algorithm we employ for finding this 

solution involves the following steps: 

(1) Set an arbitrary set of expectations Y 1. 

(2) Optimise the model with respect to the objective function subject 

to the set of exogenous expectations, giving values Y. 

(3) If the values of Y produced by the optimal control variables are 

e e ~ 
sufficiently close to Y then stop. If not, then set Y 2 = Y and go 

back to (2). 

Stages (2) and (3) are repeated until convergence is achieved and a 

fixed point for (3D and (32) is found. 

Applying this algorithm to the entire econometric model using the 

objective function specified in (30), gave the fully rational solution 

for government expenditure shown in table 2. 

This optimal solution is now time consistent as there are no gains 

to be made by governments announcing incorrect policies for the future, 

as these will not be believed. 

One interpretation which may be placed on the two sets of results 



384 S.G. Hall and S.G.B Henry 

presented in tables 1 and 2 is that they represent two extremes. In 

table 1 expectations are set equal to announced government policy. In 

table 2 expectations are arrived at in a way which takes absolutely no 

account of announced policy, but instead uses information about the 

Table 2. An example of a time-consistent optimal path based on rational 
expectations 

NIESR Model 7 

£m 1980 prices 

Quarter 1 2 3 4 5 6 7 8 

Optimal 215001.1 11971.9 12001.0 13532.7 14730.3 13144.0 16108.4 16466.9 
government 
expenditure 

model and its objective function only. It would seem reasonable that a 

rational individual (using the term rational in a more general sense 

now) would use all the information in the best possible way and so both 

sets of information should be used. It is possible to consider a 

further alternative using an expectation formation mechanism based on a 

weighted average of the announced policy and the separately derived 

'rational' policy. The weights might even vary over time so that when 

governments have been seen to stick to their announced policies for a 

reasonably long period, individuals would assign a high weight to the 

announced policy. When a government has recently reneged an announced 

policy, a high weight may be assigned to the rationally formed 

expectation. Such a scheme is particularly appealing as the costs 

involved in forming a truly rational expectation (as defined above) are 

clearly much higher than the costs of simply believing the government's 
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announced policy. 

6. Conclusions 

We have reviewed some of the time-inconsistency literature in this 

chapter, and have suggested a number of conclusions. In summary it has 

been shown that time inconsistency is not the inevitable consequence of 

using rational expectations in a model. Rather it is the consequence of 

the assumption that people believe the announced government policy will 

be carried out. Time consistent optimal policies can be derived 

formally by splitting the government's actions into an announced policy 

and a true (non-announced) policy. Time consistent optimal policies can 

also be derived in the special case where expectations are formed 

rationally by individuals optimising the model and the known objective 

function (the sub-game perfect Nash solution) and therefore giving zero 

weight to the announced policy plan in their expectations formation 

procedure. This chapter has then demonstrated a technique for locating 

the second of these solutions for the case of a large non-linear model. 
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APPENDIX 411 

Maximising the log-likelihood function 

The analytical derivation of the log likelihood function for a 

disequilibrium model has been well known for some time. The practical 

maximisation of such a function is not a straightforward task however 

and a number of studies have failed at this stage. Even if we make the 

assumption that the likelihood function is not unbounded (and Quandt, 

1982 has shown that this need not be a valid assumption), the function 

may still exhibit both discontinuities and multiple maxima. Under such 

conditions no algorithm, as far as we are aware, will guarantee to find 

the global maximum and in practice the discontinuities can cause many 

algorithms to fail at a point which is not even a local maxima. 

The program for estimating disequilibrium models which we have 

developed tries to cope with these problems in two ways. First, there 

are five separate optimisation algorithms available as well as a number 

of combinations of the five algorithms. Second, when the chosen 

optimisation procedure has finished the program carries out a series of 

grid searches around the solution point. Examining one parameter at a 

time it searches to see the effect of either increasing or decreasing 

the parameter value on the log likelihood function. A series of graphs 

are then produced to show the shape of the function around the chosen 

point. 

The five methods of optimisation used are: the Powell (1964) 

conjugate directions method which does not need to calculate derivatives 

of the function at all; a Quasi-Newton algorithm which calculates 



412 S.G. Hall and S.G.B Henry 

numerical derivaties; a Quasi-Newton algorithm which requires a set of 

analytical first derivatives only; a version of the Zoutendijk method 

of feasible direction (see Polak 1972); and a non-linear simplex method 

(Neider and Mead, 1965) which is relatively inefficient but is robust to 

function inaccuracies and discontinuities. There are also a number of 

options for iterating between these routines, using the solution values 

from one routine as the starting value for another. In general we would 

expect the Quasi-Newton methods to be the most efficient techniques for 

a well behaved function. But in the face of local maxima or 

discontinuities these techniques can go badly wrong as, in essence, they 

use the information available at one point of a function plane to infer 

something about a wide region of that plane. The less efficient simplex 

and method of feasible directions techniques tend to draw less 

information from the current point, but instead proceed with a process 

of sets of line searches which are more likely to find ways around a 

nearby discontinuity or local maxima. A sensible general procedure 

would seem to be to use the simplex technique to generate a set of 

starting values for one of the Quasi-Newton approaches. We would 

generally expect the derivative based optimisation routines to get 

closer to a maximum than non-derivative algorithms, once the starting 

point was sufficiently close to the maxima for the derivatives to be 

meaningful. 

The grid search around the solution point has a number of uses; 

first, it is a useful check on the reliability of the solution point, 

such an investigation can never confirm that a point is definitely 

either a global or local maxima, but it can often show that a point is 
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not a global maxima by indicating a move which would improve the 

function value. Passing a simple grid search test is therefore a 

necessary, though not sufficient, condition for a maximum. The second 

use is where an optimisation algorithm has failed due to a 

discontinuity; in this case simple graphs may suggest a new starting 

value for a key variable on the correct side of the discontinuity. If a 

function is very difficult to maximise it is even possible to carry out 

a manual iteration procedure based in part on the information provided 

by the grid search. 

In practical estimation, before any of the optimisation algorithms 

were implemented, a set of OLS regressions were performed on the general 

model after the data sample had been split according to the direction of 

movement of the de-trended real wage. These regressions provided a 

sensibly scaled set of parameters as starting values for the maximum 

likelihood estimates. In practice it is important to have good 

estimates of all the parameters; if even one parameter is given an 

unrealistic value the likelihood function may be a very long way from 

its optimal value. Bearing this point in mind a +1 -1 dummy was 

constructed and used as a proxy for excess supply and demand in the wage 

adjustment equation. This allowed the full version of the wage 

adjustment equation to be estimated by OLS with a suitable scaling 

procedure applied to the parameter on the dummy. These OLS results then 

constituted the starting values for the optimisation procedure. 

The most successful optimisation strategy then proved to be 
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maximising the function using the simplex method first, and then using 

the Quasi-Newton method with analytical gradients to finish the 

procedure. Typically the second step produced only small changes in 

parameter values although the log likelihood function increased by about 

5 or 6. 

Finally we might usefully comment on the evaluation of the 

likelihood function. Relatively little empirical work has been done on 

disequilibrium models so far and one result of this is that any 

researcher is unlikely to have more than one program available to carry 

out the estimation. This means that it is impossible to check the 

implementation of that program against another performing substantially 

the same task. Consequently there will always be a significant area of 

doubt as to the correct evaluation of the disequilibrium likelihood 

function itself. We found that two checks were especially useful in 

validating the likelihood function. The first was to derive estimates 

of the covariance matrix of the parameters in two ways: from a 

numerically estimated Hessian matrix and from a Hessian matrix 

constructed from analytical derivatives. If these two are not fairly 

close it indicates that the numerical derivatives are substantially 

different from the analytical derivatives at the solution point. This 

may indicate an error either in the coding of the function evaluation or 

the derivative evaluation. The second check involves using a set of 

starting values derived from OLS estimation which therefore produces a 

set of estimates which actually do fit fairly well. Given that this 

likelihood function, like any other, is simply minimising a weighted and 
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transformed set of model errors, we would not expect the optimisation 

process to move to a substantially worse fitting model. If this happens 

in optimisation then this strongly suggests an error in the likelihood 

function evaluation. Our program includes simple analysis of the 

model's predictions over its estimation period which allows an easy 

check on overall model fit. In the early stages of program testing both 

of these procedures proved useful in locating errors in implementation. 


