
Indi visibilities 



Contributions to Economics 

Christoph M. Schneider 
Research and Development 
Management: 
From the Soviet Union to Russia 
1994. ISBN 3-7908-0757-5 

Bernhard BohmlLionello F. Punzo 
(Eds.) 
Economic Performance 
1994. ISBN 3-7908-0811-3 

Lars Olof PerssonlUlf Wiberg 
Microregional Fragmentation 
1995. ISBN 3-7908-0855-5 

Ernesto FellilFurio C. Rosati! 
Giovanni Tria (Eds.) 
The Service Sector: 
Productivity and Growth 
1995. ISBN 3-7908-0875-X 

Giuseppe Munda 
Multicriteria Evaluation 
in Fuzzy Environment 
1995. ISBN 3-7908-0892-X 

Giovanni Galizzi! 
Luciano Venturini (Eds.) 
Economics of Innovation: 
The Case of Food Industry 
1996. ISBN 3-7908-0911-X 

David T. Johnson 
Poverty, Inequality and Social 
Welfare in Australia 
1996. ISBN 3-7908-0942-X 

Rongxing Guo 
Border-Regional Economics 
1996. ISBN 3-7908-0943-8 

Oliver Fratzscher 
The Political Economy of Trade 
Integration 
1996. ISBN 3-7908-0945-4 

Ulrich Landwehr 
Industrial Mobility and Public Policy 
1996. ISBN 3-7908-0949-7 

Arnold PicotlEkkehard Schlicht (Eds.) 
Firms, Markets, and Contracts 
1996. COIT. 2nd printing 1997. 
ISBN 3-7908-0947-0 

Thorsten Wichmann 
Agricultural Technical Progress and 
the Development of a Dual Economy 
1997. ISBN 3-7908-0960-8 

Ulrich Woitek 
Business Cycles 
1997. ISBN 3-7908-0997-7 

Michael Carlberg 
International Economic Growth 
1997. ISBN 3-7908-0995-0 

Massimo Filippini 
Elements of the Swiss Market for 
Electricity 
1997. ISBN 3-7908-0996-9 

Giuseppe Gaburro (Ed.) 
Ethics and Economics 
1997. ISBN 3-7908-0986-1 

Frank HosterlHeinz Welsch! 
Christoph Bohringer 
CO2 Abatement and Economic 
Structural Change in the European 
Internal Market 
1997. ISBN 3-7908-1020-7 

Christian M. Hafner 
Nonlinear Time Series Analysis 
with Applications to Foreign 
Exchange Rate Volatility 
1997. ISBN 3-7908-1041-X 

Sardar M.N. Islam 
Mathematical Economics of 
Multi-Level Optimisation 
1998. ISBN 3-7908-1050-9 

Sven-Morten Mentzel 
Real Exchange Rate Movements 
1998. ISBN 3-7908-1081-9 

Lei Delsen!Eelke de Jong (Eds.) 
The German and Dutch Economies 
1998. ISBN 3-7908-1064-9 

Mark Weder 
Business Cycle Models with 
Indeterminacy 
1998. ISBN 3-7908-1078-9 

Tor R!1ldseth (Ed.) 
Models for Multispecies Management 
1998. ISBN 3-7908-1001-0 

Michael Carlberg 
Intertemporal Macroeconomics 
1998. ISBN 3-7908-1096-7 

Sabine Spangenberg 
The Institutionalised Transformation 
of the East German Economy 
1998. ISBN 3-7908-1103-3 



Hagen Bobzin 

Indi visibilities 
Microeconomic Theory with Respect to 
Indivisible Goods and Factors 

With 116 Figures 

Physica-Verlag 
A Springer-Verlag Company 



Series Editors 
Werner A. Muller 
Martina Bihn 

Author 
Dr. Hagen Bobzin 
FB Wirtschaftswissenschaften 
Universitiit - Gesamthochschule Siegen 
HOlderlinstr. 3 
D-57068 Siegen, Gennany 

ISBN-13:978-3-7908-1123-0 
DOl: 10.1007/978-3-642-47030-1 

Cataloging-in-Publication Data applied for 
Die Deutsche Bibliothek - CIP-Einheitsaufnahme 

e-ISBN-13:978-3-642-47030-1 

Bobzin, Hagen: Indivisibilities: microeconomic theory with respect to indivisible goods and fac­
tors I Hagen Bobzin. - Heidelberg: Physica-Verl., 1998 

(Contributions to economics) 

This work is subject to copyright. All rights are reserved, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, reci­
tation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. 
Duplication of this publication or parts thereof is permitted only under the provisions of the 
German Copyright Law of September 9, 1965, in its current version, and permission for use 
must always be obtained from Physica-Verlag. Violations are liable for prosecution under the 
German Copyright Law. 

© Physica-Verlag Heidelberg 1998 

The use of general descriptive names, registered names, trademarks, etc. in this publication does 
not imply, even in the absence of a specific statement, that such names are exempt from the 
relevant protective laws and regulations and therefore free for general use. 

Softcover Design: Erich Kirchner, Heidelberg 

SPIN 10679364 88/2202-5 4 3 2 I 0 - Printed on acid-free paper 



Preface 

The analysis of this volume represents an attempt to apply modern mathematical 
techniques to the problems arising from large and significant indivisibilities. While 
the classical microeconomic theory refers to assumptions about the convexity 
of production sets and consumer preferences, this book directs the attention to 
indivisible commodities. It investigates the influence of the assumed indivisibilities 
of factors and goods on the results of the microeconomic theory of the firm, the 
theory of the household and market theory. 

In order to quantify the relationships between economic variables and among 
economic actors the theory is founded on convex analysis. Hence, many results 
heavily depend on the approximation of integer sets by their convex hull. As far as 
possible numerous figures are provided to develop the reader's geometric intuition. 

My intention is to continue with FRANK's (1969) beginnings of a general, 
systematic and rigorous analysis of the problems of indivisibilities. The advantage 
of the formalized way chosen is that the numerous and detailed properties of the 
economic relationships can be deduced on the basis of very few assumptions. It is 
not surprising that at least within the market theory the most important assumption 
concerning indivisible goods is that at least one commodity is perfectly divisible. 

The author's largest debt is to Professor Dr. Walter BUHR, UniversiHit­
Gesamthochschule Siegen (University of Siegen). He provided guidance, 
suggestions and encouragement at nearly every step along the way. Professor Dr. 
Andreas PFINGSTEN, Westfalische Wilhelms-Universitat Munster (University of 
Munster), was also very helpful in providing detailed comments and suggestions 
on my dissertation. 

Further thanks are due to Dr. Thomas CHRISTIAANS, whose comments led to 
many improvements of the work. The present manuscript is the translated version 
of the German dissertation. Gudrun BARK was especially helpful in reading and 
correcting the materials not only in German but also in English. 

Siegen 
February 1998 

Hagen BOBZIN 
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Chapter I. 

Microeconomic Theory with Respect 
to Indivisibilities 

Indivisible goods and factors constitute a subject of economic theory associated 
with a series of unsolved problems. Even advanced works on microeconomic theory 
like VARIAN (1992) or JEHLE (1991) refrain from the consideration of indivisible 
goods and factors to provide a structure for the analysis where relatively simple 
mathematical methods can be applied. The Handbook of Mathematical Economics 
also does not contain any approach treating explicitly the integer problem. While 
GREEN, HELLER (1981) present the instrument of convex analysis with respect 
to economic applications in the first chapter, a corresponding work dealing with 
the indivisibility of goods and factors is missing. Even in BROWN (1991), who 
introduces an equilibrium analysis with nonconvex technologies in Chapter 36, the 
problem of indivisibility is merely of minor importance. 

However, The New Palgrave: A Dictionary of Economics I contains an explicit 
article on indivisibilities written by BAUMOL. Apart from some hints on integer 
programming2, the author cites only one work which explicitly deals with analyzing 
indivisibilities. In this book, which was already published in 1969, FRANK, as the 
first economist, presented a comprehensive analysis of the importance of indivisible 
goods in production theory. His approach identifies the problem of indivisibility 
with goods which are only available at integer amounts. 

While FRANK explicitly picks up the problem of indivisibility, there is a wealth 
of approaches including only indirectly the problem of indivisible goods and factors. 
For example, ROSEN (1974) describes markets for a class of indivisible goods which 
can be distinguished by certain features. At the same time it is assumed that there 
is a sufficiently large number of these differentiated goods such that the choice of 
characteristics may vary continuously. 

Although ROSEN does not pursue the aim to describe a market for a 

lSee EATWELL, MILGATE, NEWMAN (1987). 
2The mentioned approaches to integer programming of GOMORY (1965) and GOMORY, BAUMOL 

(1960) will not be important until Chapter V (oCthe book). 
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few indivisible goods, his procedure clarifies various aspects in dealing with 
indivisibilities. If the solutions to optimization problems are subject to certain 
integer constraints, then the analytical effort ascertaining an optimal solution rises 
considerably in relation to "well behaved" convex problems. The alternative 
determination of "rounded results" ignoring the required integer values may lead 
to considerable errors. Hence, the decision to solve a simple but incorrect problem 
or an exact but costly problem depends on the return of the additional effort.3 At 
the same time we expect that the return tends to depend on the relative size of the 
indivisible goods. The difference between the production of 100000 or 100001 
cars is of little significance for an automobile company, whereas a household faces 
considerable consequences depending on whether it has got a car or not.4 

If, like VIETORISZ (1963), we concentrate on all-or-northing decisions or on 
investments where we have to decide on production levels, location, and timing, 
then the problem of nonconvexities is not only a mathematical curiosity but it plays 
a rather considerable role in daily economic practice. However, microeconomic 
theory frequently ignores the problem of indivisible goods and factors in view 
of the easier analytical instruments. In particular, such favorable properties as 
continuity, convexity, or differentiability of functions justify this procedure as long 
as phenomena like indivisibilities are only of minor importance.5 However, when 
indivisibilities have great importance, then we usually have to refrain from making 
use of the above advantages. The analysis does not only get a new look but also 
leads to modified results. 

For example, suitable assumptions assure in economic bibliography an exact 
duality between the firm's production function and the cost function. Accordingly, 
each "well behaved" production function is associated with a unique cost function, 
from which we can infer back to the production function in a unique way. If we 
now give up the assumption of divisible goods and factors or the corresponding 
assumptions of convexity, then the exact one-to-one relation between the above 
functions is no longer valid. In view of suitable approximations it can now be 
examined to what extent the relationship is abolished. In Chapter III the difference 
to the traditional analysis by the modified behavior of the factor demand becomes 
most apparent. Chapter IV also indicates that many results of traditional theory 
are repudiated under consideration of indivisibilities. Because the existence of 
general equilibria bases crucially on corresponding assumptions of convexity -
hence divisible goods - an existence proof considering indivisible goods only 
succeeds under very restrictive assumptions. Thus, the analysis concentrates on the 
question of how large the fault is when the requirement of integer values is ignored. 
If no general equilibrium exists, then these faults yield a measure of the importance 
of the indivisibility of goods. 

The analysis refers to microeconomic issues, where the consideration of 

3Considering the mathematical difficulties, KOOPMANS, BECKMANN (1957) suggest commencing 
the analysis with extremely simplified economic problems until more realistic questions are investigated. 

4 A similar characterization of indivisible goods is given by BAUMOL (1987). 
5DIEWERT (1986) ignores completely the problem of indivisible goods and factors, although the 

analysis of welfare effects is based on large and significant investments in infrastructure. 
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indivisibilities involves two aspects. On the one hand many basic results remain 
unchanged; thus, they are independent of the assumptions concerning the divisibility 
of goods and factors. For example, each firm's profit maximizing activity has to be 
technically efficient, no matter whether goods and factors are perfectly divisible or 
not (Proposition 11.10). On the other hand numerous results are no longer valid 
so that it has to be questioned whether these statements are simply inappropriate, 
whether they can be superseded by more general results, or whether completely new 
phenomena must be taken into account. For divisible goods a utility maximizing 
household can choose a commodity bundle balancing its budget, whereas there 
need not be such a commodity bundle for indivisible goods. Moreover, the 
assumption of differentiable (single-valued or vector-valued) demand functions 
must be abandoned. But in the more general approach with (multi-valued) demand 
correspondences the statement remains valid that a household tends to demand less 
of a commodity if the corresponding price increases. 

A new phenomenon is added in form of excess capacities for indivisible goods.6 

Anyone, who buys an (indivisible) car to drive one hour per day, owns a car 
being unused 23 hours per day and, therefore, yielding no utility during this time. 
Moreover, the transport capacity of the car for four or more people is usually 
not exhausted. Conversely, each single trip for an individual person requires the 
availability of the whole capacity of the car. 

Analytically, the assumption that at least one good - for example money - is 
perfectly divisible will be of crucial importance. In this case three cases must be 
distinguished: (1) All goods are divisible. (2) At least one commodity is divisible. 
(3) All goods are indivisible. As will be shown, the first two cases are more closely 
related to each other under many analytical aspects than the second and the third 
case. Empirically, the second case ought to be relevant. 

Figure 1.1 sketches the procedure of the book, where the boxes with the dotted 
lines emphasize the minor importance of these aspects within the presented analysis. 
Beginning with the description of households and firms, Chapter II introduces the 
fundamentals of treating indivisible goods and factors within the framework of 
the theory of individual economic agents. At the same time the instrument of 
the convex hull is introduced, which serves as a replacement for nonconvex sets.? 
Correspondingly, Appendix A introduces basic concepts of convex analysis. 

Chapter III concentrates firstly on the theory of the firm and deals with dual 
relations in microeconomic theory. The firm's production structure introduced in 
Chapter II is now compared to a cost structure allowing an equivalent representation 
of firm's production technology. In this way, the used duality schemes highlight 

61f the supply of an indivisible good has excess capacities, then it may be interpreted as a public 
good as long as no consumer can be excluded from the consumption of this good. KLEINDORFER, 

SERTEL (1994) refer to prisons or incinerator plants as an example for indivisible public goods, where 
one of several communities must supply the (locally unwanted) good. The other communities must not 
be excluded from using the good, but they must contribute to its costs. This aspect of a public good is 
not taken into account throughout this book. 

7 Analogous to BAUMOL (1987, p. 795), the problem of indivisible goods is associated immediately 
with integer programming. Chapter V discusses the relationship of the chosen approach with integer 
programming in more detail. 
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dual relations in microeconomic theory (Chapter III) 

: -expenaltlire-s-truc~ - -: 
cost structure , 

ture of the house- : , 
of the firm : hold : L ___________________ I 

theory of individual economic agents ~ 

preference structure 
(Chapter II) 

production struc-
of the household ture of the firm 

, theory of market equilibrium (Chapter IV) 
r--------- ---------1 , , 

exchange economy : production economy: , , , , 
L ___________________ I 

Figure 1.1: Organization of the book 

various aspects of optimal activities. The numerous relations in Section IIL2 are 
summarized in Figures IIL29 and II1.37, the former being based on the works of 
SHEPHARD (1953). An example stressing the indivisibility of factors will be given 
accompanying the two Sections III. 1 and III.2. The graphical representations do not 
only serve to illustrate the analytical results but also as a comparison of the findings 
gained in Sections III.l and IIL2. The parallel derived Appendices D.l and D.2 
refer chiefly to ROCKAFELLAR (1972) and introduce the analytical framework of 
the presented duality theory. 

Finally, Chapter III turns again to the theory of households, where the 
preparation of Chapter VI is concentrated on the various aspects of market equilibria 
rather than the symmetric treatment regarding the theory of the firm. The derived 
properties of the demand for commodities are used in Chapter IV to answer the 
question concerning the existence of general exchange equilibria.8 At this point 
the fixed-point theorems presented in Appendix C.2 will be important. The closing 
sections on the existence of equilibria in production economies and on alternative 
criteria for optimal market results serve more as an outlook than as a comprehensive 
treatment of the respective question. 

8 At this point no price mechanisms are discussed. For pricing rules on markets, where many 
persons try to attain a solitary good (auctions) or where a single good is supplied by different producers 
(impositions), see for example GOTH (1995). 



Chapter II. 

Microeconomic Foundations 

1 Axiomatic Characterization of Individual 
Economic Agents 

1.1 The Preferences of a Household 

In an economy composed of many economic agents two groups of individual 
economic decision units may be stressed: households and firms. The theory of the 
household deals with the question how to satisfy the household's needs, whereas the 
theory of the firm concentrates on the production of new goods. 

Before an answer can be given to the question of how households and firms 
behave "best possibly" at any time, we have to discuss what alternatives exist and 
what effects the single actions have. While the household adapts its preference 
structure, the firm must take technical correlations into account, i.e. the production 
structure. 

If the outcome of an action is known, then the question is raised as to which of 
the feasible possibilities should be taken. It is assumed that households try to satisfy 
their needs in the best possible way. In contrast, firms are supposed to pursue the 
goal of profit maximization. The analysis begins with a description of the needs of a 
household by the preference structure. Afterwards the firm's production technology 
is examined. 

A household pursuing the goal of utility maximization must be capable of 
comparing different commodity bundles, which satisfy its needs in different ways. 
The result of this comparison reflects the household's preferences. Provided two 
commodity bundles are comparable, then one of the two commodity bundles is 
preferred to the other or both commodity bundles are of equal utility. 

To technically record the preferences of a household, we assume firstly that 
each commodity bundle consists of n commodities x = (XI, .•. , xn) T. Thus, each 
commodity bundle is an element in the commodity space X. If nd out of the n goods 
are divisible and if, accordingly, the other goods are indivisible, then the commodity 
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space is abbreviated to 

(11.1) 

Correspondingly, it is supposed that indivisible goods can appear only in 
nonnegative integer units. In particular, the commodity space X contains the origin 
x = O. If, for example, the graphical analysis supposes a commodity space with 
two goods, then three cases may occur. 

1. X = 114 x 1R+ if there are two divisible goods, 

2. X = 1R+ x Z+ if there is one divisible and one indivisible good l , and 

3. X = Z+ x Z+ if there are two indivisible goods. 

To technically describe the household's preferences, we make use of a binary 
relation ""'. We understand by a binary relation ""' in a set X a relation which 
exists between each two elements of the set X or which does not exist. In the 
presented case the binary relation,,", specifies all ordered pairs of commodity bundles 
(x, x') such that the person concerned 2 prefers the commodity bundle x to x' or 
is indifferent to the two commodity bundles. Such a binary relation is called a 
preference relation. The preference relation ""' is nothing more than a subset in 
the Cartesian product X x X, i.e. ""' C X x X. If the person associates a utility 
level with a commodity bundle x, which is at least as large as the utility of the 
commodity bundle x', then the pair (x, x') is an element in the preference relation 
""" i.e. (x, x') E """ and more intuitively, we write x ""' x'. 

According to the preference relation """ a person is indifferent to two commodity 
bundles x and x' if both x ""' x' and x' ""' x are true. The indifference is denoted 
by x - x'. If the person prefers the commodity bundle x to x', then we write 
x> x'. This relation is valid if and only if x""' x' and .... (x' ""' x) are true.3 

The preference relation ""' C X x X is called a preference ordering on X if 
it has the following properties:4 

[0>1] Reflexivity: Two identical commodity bundles cannot be of different value. 

Vx EX: x""' x 

[0>2] Completeness: The household is capable of comparing all of the commodity 
bundles x, x' E X which are different, so that at least one of the relations 
x ""' x' or x' ""' x is true. 

v x, x' EX: x * x' ==> [x ""' x' or x' ""' x] . 
------------------------

lCf. MAS-COLELL, WHINSTON, GREEN (1995, p. 19). 
2Households and persons are considered as being equal, by which it is assumed that households 

consist of an individual person. 
3Ihe negation of a statement is abbreviated to ~. 

For a technical description of individual preferences see BOSSERT, STEHLING (1990, Chapter 2). 
4 A reflexive and transitive binary relation R on a set X is called a reflexive quasi-ordering on X. 

If each two different elements in X are comparable so that (x. x') E R or (x', x) E R, then a 
reflexive quasi-ordering on X is called a reflexive ordering on X. Cf. BRONSTEIN, SEMENDJAJEW 
(1987, pp. 547-549). 
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[3>3] Transitivity: By a comparison in pairs the household is capable of arranging 
the commodity bundles x, x', x" E X in a unique order of nonincreasing 
values. 

v x, x', x" EX: [x ~ x' and x' ~ XII] ===} X ~ x". 

If the preference relation ~ is complete for all x, x' E X one and only one of the 
following three statements is true:5 (i) x >- x', (ii) x' >- x or (iii) x - x'. Thus, 
x ~ x' holds true if and only if either x >- x' or x - x' is true. Analogously, 
the statements ....,(x ~ x') and x' >- x are equivalent to each other. 

In addition to the properties of a preference ordering, further premises on the 
preferences are made.6 

[3>4] Continuity: A preference ordering ~ (on the commodity space X) is said to 
be continuous if the level sets {x E XI x' ~ x} and {x E XI x ~ x'} are 
closed for every commodity bundle x' E X. 
All continuous preference orderings are denoted by the set TI. 

By Theorem A.S, p. 287, closedness of the level sets {x E XI x' ~ x} holds if and 
only if the limit xO of a sequence {XV} of commodity bundles with x' ~ XV always 
implies x' ~ xO. Analogously, the preference sets 7 

/P(X') := {x E XI x ~ x'} 

are closed if and only if 

If the graph of the preference ordering, graph ~, summarizes all ordered pairs of 
commodity bundles which the preference ordering consists of, 

then closedness of the graph is equivalent to the continuity of the preference 
ordering.s Hence, the set graph ~ C X x X is closed if and only if the 
limit (xlO , x20) of the sequence {(xlv, x2v)} with xlv ~ x2v always implies 
xlO~x20. 9 

SCf. BOSSERT, STEHLING (1990, p. 16, Theorem 2.1.5). 
6As shown by DEBREU (1959, pp. 56-59), the properties [9'1]-[9'4] guarantee that there is a utility 

function u being continuous in X. This outcome holds true even for the case in which all of the goods are 
indivisible. To prove this astonishing result, DEBREU refers to Defmition C.5, p. 307, and in particular 
to the definition of continuous (single-valued) mappings. 

7Note that the preference set 9'(x) also contains those commodity bundles which are indifferent to 
x. A linguistically more accurate distinction between the set I x E XI x ~ x'} and the "better set" 
I x E XI x > x'} is not taken into consideration here. 

8Cf. NIKAIDO (1968, p. 239 f.). 
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Before going into the next assumption, the following notation is introduced with 
respect to the comparison of two vectors. Given two vectors x = (XI, ... , xn) T and 
y = (YI, ... , Yn)T in the n-dimensional Euclidean space JRn, then 

x>y {::::=} Xj> Yj j = 1, ... , n; 

x~y {::::=} Xj ~ Yj j= 1, ... , n; 

x~y {::::=} [x ~ y and x '* y]. 

A vector x with x > 0 is said to be positive. The vector x ~ 0 is called semi­
positive and it is called nonnegative if x ~ O. 

[9'5] Monotonicity: A preference ordering is said to be monotone if the utility of 
a commodity bundle does not diminish for increasing quantities of goods. 

"Ix, x' EX: x ~ x' ==} x ~ x' 

We speak of a strongly monotone preference ordering, even if there is a 
higher value. 

v x, x' EX: x ~ x' {::::=} x >- x' 

The set of all strongly monotone continuous preference orderings is denoted 
by TIsmo. 

The following assumption of convex preference orderings has a series of analytical 
advantages, but it is a contradiction of the assumption of indivisible goods. To what 
extent the advantages of convex preference sets can be transferred to the case of 
indivisible goods will be discussed at a later stage. 

[9'6] Convexity: A preference ordering is called strictly convex if for two 
arbitrary commodity bundles x, x' E X 

x - x', x'* x' {::::=} Ax + (1 - A)X' >- X V A E ]0, 1[. 

For convex preference orderings only the convexity of the preference sets 
:P(x) is required 

x', x" E :P(x) {::::=} Ax' + (I - A)X" E :P(x) V A E [0, 1]. 

The set of all strictly convex continuous preference orderings is denoted by 
TIseo. Similarly, ~ E TIeo denotes a convex continuous preference ordering 
of the person concerned. 

Within the framework of this book it suffices to specify the household's preferences 
:P by a family of preference sets (:p(x) I x E X), where this family is called 
the preference structure. Obviously, different households may possess different 
preferences. Accordingly, the preferences 9'a of household a are described by the 
preference structure (9'a(x)1 x EX). 
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If a person has to make an individual decision on choosing a commodity bundle 
over a certain subset C in the commodity space X, then the subsequently defined 
maximal and best elements will be important. 

With respect to the preference ordering ll= an element x of a set C C X is 
called a maximal element of C if C does not contain any alternative commodity 
bundle which takes preference over X. 10 

~XEC: x>x 

Concerning the preference ordering ll=, the element x is called a best element of C 
if it is at least as good as every other commodity bundle in C. 

VXEC: Xll=X 

If the person's preference ordering ll= is complete, the distinction between maximal 
and best elements becomes obsolete. 

~XEC: x>x 

<==> ~XEC: --.(x ll= x) 

<==> Vx E C: x ll= x 

Even if the preference relation ll= is incomplete, the set of best elements DB (C, ll=) 
is also contained in the set of maximal elements D M (C, ll=). 

x E DB(C, ll=) <==> x ll= x Vx E C 

<==> ~ x E C with --'(x ll= x) 

=? ~XEC with x>x =? xEDM(C,ll=) 

The reverse conclusion DM(C, ll=) C DB(C, ll=) is not admissible without the 
preference relation ll= being complete. 11 In this first case the demand is chosen 
from best elements. If there are no best elements, then we try to make a choice 
from maximal elements - if they exist. The next theorem explains the existence of 
maximal elements. 

Proposition 11.1 12 Given a reflexive and transitive preference relation ll= on the 
commodity space X. If C C X consists of finitely many elements, then the set of 
maximal elements DM(C, ll=) is not empty. 

IOCf. BOSSERT, STEHLING (1990, p. 31 ff.). 
11 If, for instance, x ~ i <==> x > i, then there could be commodity bundles x' and x" which 

cannot be compared with each other, i.e. neither x' ~ x" nor x" ~ x' is true. Thus, the conclusion 

~x E C: x >- x' ==> Vx E C: x' ~ x 

is wrong with respect to the commodity bundle x". 
12Cf. BOSSERT, STEHLING (1990, p. 33, Theorem 2.1.13). 

As shown by the proof, this proposition especially holds if the examined binary relation R is transitive 
and irreftexive, i.e. ~(xRx) for all x EX. 
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An example, in which the explicit distinction between maximal and best elements 
with respect to a binary relation becomes clear, is given by the criterion of PARETO 

efficiency. A comparison of alternative allocations in the sense of PARETO will be 
discussed in Section IV.3.2.1. 

1.2 The Production Technology of a Firm 

While the household's choice of a commodity bundle depends on its preferences, 
the firm's production depends on the underlying production technology. This 
technology describes how to transform factors (or inputs) into commodities (or 
outputs). Usually, each firm will have an alternative production technology, which 
can also change in time, for example, as a result of technical progress. 

Analogous to the description of preferences by the preference structure, the 
purpose of this section is to describe a given technology with the help of a 
production structure. This production structure must embrace all of the production 
processes which can be carried out within the firm. A production process is 
understood as being the transformation of an input vector v = (VI, ... , vrn) T into 
an output vector x = (XI, ... , xn) T. 

It is again assumed that merely nd of the n examined goods are divisible. Thus, 
according to (11.1) each output vector x is a point in the commodity space X:= 
IR~ x Z~-nd. This commodity space consists of all admissible commodity bundles 
satisfying the required integer constraints. 

The production possibility set P(v) is the collection of all commodity bundles 
x capable of being produced (in each period with the given technology) by using the 
factors v. 

P(v) := {x E XI x is producible by v } 

Analogous to the commodity space, the setting of the factor space must take the 
indivisibility of certain production factors into account. If merely md out of the m 

inputs are divisible, then the factor space 

(11.2) 

contains all input vectors v satisfying the integer constraints. 
The formal assignment of the set of commodity bundles producible by inputs v 

results from the following definition of the output correspondence. 

Definition n.l13 The multi-valued mapping P: V -+ '.l3(X) assigns each input 
vector v in the factor space V to precisely one production possibility set P(v) E 

'.l3(X), v 1-+ P(v), and is called the output correspondence. 

For a more exact formal description of the production correspondence we have to 
establish the domain and the range of P. The domain of the output correspondence 

13For the basics on multi-valued mappings, see Appendix C.2. 
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P is given by 

and the range is l4 

DomP = {v E VI3x E X: x E P(v)} 

= {v E VI P(v) *- 0} 

Range P = {x E XI 3 v E V: x E P(v)}. 

11 

Apart from the definitions of a production possibility set and an output 
correspondence, the concepts of both the production structure and the activity turn 
out to be helpful for the description of a firm. 

If the production technology l5 P is specified by a family (P(v) I v E V) of 
production possibility sets satisfying the following Axioms [Pl]-[P6] and possibly 
[P7] and [P8], then this family is called a production structure. 

Considering the following axioms, each (admissible) input output combination 
(v, x) E V x X is called a possible process or a possible activity if it is compatible 
with a given technology, i.e. x E P(v). The graph of this technology is the union 
of all possible activities. 16 

graph P:= {(v, x)1 v E V, X E P(v)} 

All possible activities (v, x), feasible with respect to restrictions of the form x ~ x 
(commodity commitments) and v ~ v (factor constraints), are called attainable 
activities. 17 

The following axioms establish requirements which must be satisfied by a family 
(P(v) I v E V) to be accepted as production technology. Considering the formal 
treatment of production correspondences, the choice of axioms is mainly subject to 
economic plausibility. 

[PIa] Possibility of Inaction: Each input vector can be used to produce a "zero 
output".18 

"Iv E V: 0 E P(v) 

14Cf. FARE (1988, pp. 17-18). 
15Each production technology T is assigned to an output correspondence PT. For a given technology 

we may identify P with both the production technology and the output correspondence. 
Note that production technologies can be equipped with different premises satisfying "more or less 
plausible" criteria. Cf. also SHEPHARD (1953, p. 13). 

16The set of all possible processes is often described by the production set 

Y := {Y E IRn+m I Y is a possible activity} 

where the components of a netput vector y represent an input if Yi < 0 or an output if Yi > O. For a 
production set Y similar axioms can be formulated as for the output correspondence. 
Cf. e.g. TAKAYAMA (1990, p. 51 ff.) and Section IV3.!' 

I7Cf. FRANK (1969, p. 4). McFADDEN calls graph P the production possibility set of the firm and 
P(v) the producible output set. Cf. McFADDEN (1978, p. 6 f.). 

18Suppose all of the inputs would be thrown away. Cf. TAKAYAMA (1990, p. 52). 
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[PIb] No Land of Cockaigne: No positive output can be produced without any 
inputs. 

v x E X \ {O}: x ¢ P(O) 

Axiom [PI] implies on the one hand P(O) = (OJ since 

Vv E V: 0 E P(v) ==? 0 E P(O) 

VX~O: x¢ P(O) ==? v=O requires x=O, 

and on the other hand [V v E V: P(v) =1= 0] since x = 0 is always contained in 
P(v). Accordingly, the domain of the output correspondence is 

Dom P = (v E VI P(v) =1= 0} = V. 

[P2] Attainability of Each Production: 19 For each commodity bundle x E X 
an input vector v E V exists such that the activity (v, x) is a possible 
process. 

Vx E X, 3v E V: x E P(v) 

This axiom does not say that each input vector v is in reality feasible, but that 
the technology allows the production of each output combination x providing there 
are sufficiently large quantities of factors. Obviously, there are physical processes 
which do not allow each output and, therefore, are no possible activities. For 
instance, a mass cannot be speeded up to more than the velocity of light. These 
problems can be avoided by defining an appropriate commodity space X.20 

[P3] Disposability of Inputs:21 If the commodity bundle x E X can be 
produced by an input vector v E V, then a larger input vector v E V 
is also sufficient for the production of x, P(v) c P(v). 

Vv, v E V, v ~ v : x E P(v) ==? x E P(v). 

19For the different notations, see PFINGSTEN (1989, p. 165) and BOL (1974, p. 92). 
2oCf. BOL (1974, p. 104). 
21Cf. PFINGSTEN (1989, p. 165) and FARE (1988, p. 6). This axiom implies at the same time the 

statement: 

'Iv, v E V, V ~ v: x ¢ P(v) => x ¢ P(v). 

Frequently, in the literature on this subject a weaker form of [P3] (Disposability of Inputs) appears, which 
relates to the perfect divisibility of factors. 

'Iv E lR~, VA ~ I: P(v) c P(Av) 

If all factors are divisible, then [P3] (Strong Disposability) implies the weaker form of [P3] (Weak 
Disposability) but not the converse. This statement becomes apparent when bearing in mind that only 
some inputs vary in [P3], but in the weaker form all of the inputs are proportionally increased. Cf. 
TAKAYAMA (1990, p. 52). 
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Axiom [P3] expresses the idea that 
available inputs could remain idle or could 
even be thrown away without disturbing 
the production process. Phenomena of 
congestion are thus explicitly ruled out. 
The assumption that an arbitrary number 
of machines can be installed in a factory 
building without disturbing the production 
process is not very realistic, but it is enough 
for the following explanations. 

x 

o 

13 

VI v The figure opposite illustrates the graph 
of a production technology by the shaded 
area with a divisible product x and a divisible 
factor v. The way of illustration is adapted Figure 11.1: Disposability of inputs (1) 

from TURGOT's law of returns. 
Due to x E P(v l ), an augmentation of the input from vI to v2 implies the 

relation x E P(v2) or equivalently P(v l ) C P(v2), where both production 
possibility sets correspond to the bold vertical lines. The transfer to the case of an 
indivisible good and an indivisible factor is discussed in Figures 11.7 and 11.9. 

[P4] Disposability of Outputs: If a commodity bundle x E X can be 
produced by the inputs v E V, then each commodity vector x E X, 
which is not larger than x for any component, can be produced by using v. 

"Ix, x E X, X ~ x : x E P(v) =:} x E P(v) . 

As in [P3] (Disposability of Inputs) 
previously, [P4] is influenced by the idea 
that an arbitrary amount of the produced 
goods could be thrown away. Using the 
example in Figure 11.1, the figure opposite 
with xl E P( ii) illustrates the implication 
x2 E P(ii). 

In the presented form Axioms [P3] and 
[P4] may be applied to the case of indivisible 
goods and factors without any problems. 
Furthermore, with perfectly divisible goods 
and factors the two axioms serve for the 

x 

Xl 

o jj v 

characterization of boundary points of an 
input requirement set. Before elucidating Figure 11.2: Disposability of outputs (I) 

this aspect, it is useful to introduce two more assumptions. 

[P5] Boundedness or impossibility of arbitrary abundance: The outputs x 
cannot be increased arbitrarily at held fixed inputs v E V. 

"Iv E V : P(v) is bounded. 
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Regarding nonnegative quantities of output, this requirement on a production 
technology can technically be described as follows: the axiom requires that an 
(open) ball of finite radius r > 0 can be defined, for example, centered at the 
origin such that all of the commodity bundles producible by v lie within this ball. 
Thus, using the Euclidean distance, the inequality IIxll < r must hold for all 
x E P(v). 

In view of the optimization problems which have to be solved, the closedness of 
the level sets P(v) will be very important. 

[P6] Closedness:22 If a sequence of possible activities (VV, XV) converges to the 
limit (vo, xo), then this limit is possible, too. When applied to the output 
correspondence, this means23 

P: V ~ 'lJ(X) is a closed mapping of V into X. 

By Theorem C.6, p. 308, the output correspondence P is said to be closed in V if 
at each point vo E V the following condition is satisfied: for any two sequences 
{VV} C V and {XV} C X it is 

VV ~ yO, XV ~ xO, XV E P(VV) ==> xO E P(vo). 

x 

v 

Figure 11.3: Closedness of the graph 
graph P 

With regard to economic aspects there is 
almost nothing to say against this implica­
tion. Essentially, the closedness means that 
all boundary points of the graph depicted 
in Figure 11.3 are part of the graph. Thus, 
XO E P(vo) represents the limit (vo, xo) of 
the illustrated sequence of possible activities 
(VV, XV). 

The closedness is equivalent to the 
assumption that the graph of the output cor­
respondence graph P is closed. Analogous to 
[P6], we have 

(VV, XV) ~ (vo, xo), (VV, XV) E graph P 

==> (vo, xo) E graph P. 

Thus, the level sets P(v) must be closed for all v E V (Theorem C.8, p. 309). 
Since each subset in 1R.~ is compact if and only if it is closed and bounded, we 
have24 

"Iv E V: P(v) is compact. 
-----------------------

22McFADDEN (1978, p. 7), calls production technologies satisfying Axioms [PI] and [P6] input 
regular. 

23Each continuous correspondence is upper semi-continuous (Defmition c.s, p. 307) and each 
upper semi-continuous correspondence is itself closed (Theorem C.7, p. 309). For many applications 
the c10sedness of a correspondence is enough. Semi-continuous correspondences will be of crucial 
importance in Chapter IV. 

24See Appendix A.4. p. 287. 
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Correspondences with this property are frequently said to be compact-valued.25 

By taking into account that the solutions to optimization problems usually lie in 
the boundary of the feasible region, the importance of closed sets will be apparent. 
The closedness of the feasible region guarantees that these optimal solutions are 
admissible. 

Topologically, [P6] requires that each production possibility set P(v) contains 
all of its boundary points. Technically, a point x lies in the boundary CJP(v) of the 
set P(v) if each open ball centered at x contains a point in P(v) and a point i E IRm 

with i tI. P(v). 26 If there is an open ball centered at x exclusively consisting of 
points in P(v), then x belongs to the interior int P(v) of the set P(v). Therefore, 
no boundary point belongs to the interior of the set P(v) and each closed set P(v) 
can be divided into 

P(v) = CJP(v) U int P(v) with CJP(v) n int P(v) = 0. 

The distinction between inner points and 
boundary points turns out to be insignificant, 
as soon as the analysis includes a particular 
indivisible good.27 As illustrated by point B 
in Figure II.4, in this case P(v) = CJP(v). 

Looking back at Axioms [P3] (Dispos­
ability of Inputs) and [P4] (Disposability 
of Outputs), two features can be seen with 
respect to divisible goods. 

In order to describe efficient activities it 
is important to know what properties hold 
for a possible activity (v, x) lying in the 
boundary of the set P(v). If a reduction of 
the inputs from v to v yields 

x> 0, x E CJP(v) ==> x tI. P(v), 

A 

o 

Figure 11.4: The boundary of a 
production possibility set 

then it is not possible that the boundaries of both sets P(v) and P(v) touch each 
other in the positive orthant. While [P3] (Disposability of Inputs) merely requires 
P(v) C P(v), additionally, we now have CJP(v) n IR~l\ n P(v) = 0 for all 
v ~ v. Activities featuring the above property will be discussed later with respect 
to the concept of input efficiency. 

25Cf. HILDENBRAND, KIRMAN (1988, p. 272). 
26See Appendix A.2. 

The definition at once implies 0 E 8P(v) since each open neighborhood of x = 0 contains 0 E P(v) 
and a point i < 0 with i tt P(v). Similarly, all commodity bundles lying on the coordinate axes 
belong to the boundary 8P(v). 

27Even convex sets need not have inner points. For example, each point on a line in R2 is at the same 
time a boundary point of this line. 
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The other feature applies to [P4] (Dis­
posability of Outputs). For divisible goods 
this axiom excludes a backward bending 
boundary of the production possibility set 
ap(v) over the region x > O. Therefore, 
the case illustrated by commodity bundle i in 
Figure 11.5 must not occur. The importance 
of this remark will be evident when bearing 
in mind that each hyperplane tangent to the 
set P(v) at a point x> 0 is determined by 
nonnegative commodity prices. 

Figure 11.5: Disposability of outputs (2) 

Frequently, further premises are made 
requiring the divisibility of goods and 
factors. 28 

[P7] Convexity: For perfectly divisible goods the production possibility set 
P(v) is convex for all v E V. 

Vi, x E P(v), V A E [0, I]: Ai + (I - A)X E P(v) 

Besides the convexity of level sets, there is the quasi-concavity of the output 
correspondence whose importance will become clear afterwards. 

CPS] Quasi-concavity: For perfectly divisible factors the output correspon­
dence P is quasi-concave in V. 

'Iv, v E V, V A E [0, 1]: P(v) n P(v) C P(AV + (1 - A)V) 

The premises [P6]-[P8] are rather technical than economic properties and serve for 
the mathematical handling of production technologies. 

Note that the presented technology deals only with the static deterministic case. 
The randomization and dynamization of the theory desired by EICHHORN (1975) 
has been at least carried out with respect to a dynamic theory by SHEPHARD, FARE 

(1980). 

28Cf. TAKAYAMA (1990, p. 54). 
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2 Theory of the Firm 

2.1 Inverse Representation of the Production Technology 

Having used a family (P( v) I v E V) of production possibility sets to represent 
a firm's production technology, it seems plausible to compare this production 
structure with a household's preference structure (9)(x)1 x EX). 

A preference set 9>(x) consists of commodity bundles which at least generate 
the result (i.e. the utility) x, whereas a production possibility set P(v) consists of 
those commodity bundles which can be produced by using the inputs v.29 Hence, 
the question arises whether a family equivalent to (P(v)1 v E V) exists such that the 
members consist of elements which are sufficient to produce at least a certain result 
(i.e. the output x). 

Up until now each vector of inputs v E V is mapped into a set P(v) C X 
containing all commodity bundles producible by v. This assignment ensues from the 
output correspondence P and is depicted in the following figure by vi 1-+ P(vl ) 

and v2 1-+ P(v2). The inverse assignment collects all input vectors which are 
sufficient to produce a given commodity bundle x. 

factor space V commodity space X 

Figure 11.6: Comparison of the input correspondence L and the output 
correspondence P 

The input requirement set indicates those input vectors v permitting the 
production of the commodity bundle x (per period at a given technology). 

L(x) := {v E VI v permits the production ofx} 

DefinitionII.2 Theinputco"espondence L: X -+ '.p(V) assignspreciselyone 

29Technically, the difference can be stressed by the origin x = O. Except for 9'(0) no preference set 
contains the origin. In contrast, the origin belongs to every production possibility set; see [PIa]. 
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input requirement set L(x) E S:P(V) to each commodity bundle x E X. i.e. 
x 1-+ L(x). 

The domain of L is a subset in the commodity space X; it is given by 

Dom L = {x E XI 3v E V: v E L(x)} = {x E XI L(x) "* 0} . 

Analogously, the range is a subset in the factor space V. 

RangeL={VE VI3xEX: vEL(x)}. 

Figure 2.1 shows the representative associations xl 1-+ L(xl) and x2 1-+ L(x2). 

Although this figure suggests that the production technology is described in two 
absolutely different ways, both forms of representation can be transformed into each 
other. 

The equivalence of the representation of a production technology by an output 
correspondence P (Definition 11.1) and an input correspondence L can be justified 
by the following statement: "The inputs v allow the production of the outputs x if 
and only if x is producible by v." This statement, apparently lacking in content, is in 
opposition to a technical equivalence requiring for all possible activities (v. x) E 
V x X 30 

(11.3) 
v E L(x) 

or L(x) = {vi x E P(v)} 

<==> x E P(v) 

<==> P(v) = {xl v E L(x)}. 

The set of all possible activities is given by3l 

graphL:= {(v. x)1 x E X, v E L(x)}. 

Since both graphs graph P and graph L represent the same set of possible processes, 
we can abbreviate them to 

(11.4 ) GR := graph P = graph L . 

In order to clarify this, a technology is presented. which includes the 
transformation of a particular indivisible factor v into a particular indivisible good 
x. Accordingly, each possible activity (v. x) is an element of the cross product 
V x X = Z+ x Z+. The set of all possible processes is given by GR = {( v, x) I v E 
V, x E P(v)}; it is illustrated in Figure IL? by the marked points. For the activity 
(ii. i) we have both i E P(ii) and ii E L(i). The figure shows, moreover, the 
production possibility set P( ii) and the later required convex hull conv P( ii) beside 
the vertical axis. Analogously, the input requirement set L(i) and its convex hull 
conv L(i) can be read below the horizontal axis. 

If the production structure (P(v)1 v E V) satisfies Axioms [PI]-[P6] and 
possibly Axioms [P?] and [P8], then completely equivalent properties [Ll ]-[L8] can 

30The equivalence relation (11.3) cannot be transferred to the later used convex hulls of pry) and L(x). 
The implication x E conv pry) ==} v E conv L(x) is as false as its inversion. 

31Cf. OPITZ (1971. p. 242). 
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x x x 

,...., x ';:' ,..... 
it ';:' ...... ;> Q.., c 
0 
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0 11 v 

• v 
convL(x) 

--__________ +-:. v 

L(x) 

Figure 11.7: The graph of a production technology 

be given for the family (L(x)1 x E X). At the same time the economic interpretation 
transmits to the alternative axioms. Before going into the equivalence (Proposition 
11.2), a list of the alternative axioms is given. 

[LIa] Possibility of Inaction: L(O) = V 

[LIb] No Land of Cockaigne: "Ix E X \ {O}: 0 ¢ L(x) 

[L2] Attainability of Each Production: V x EX: L(x) =/; 0 

[L3] Disposability ofInputs: "Iv, v E V, v;!! v: v E L(x) ==> v E L(x) 

[U] Disposability of Outputs: V x, i EX, X ~ i: v E L(x) ==> v E L(i) 

[L5] Boundedness: IIxvll --+ 00: n:1 L(xV) = 0 

[L6] Closedness: The input correspondence L is closed in X. 

[L7] Convexity: Given divisible factors, the input requirement sets L(x) are 
convex for all x EX. 

[L8] Quasi-Concavity: Given divisible outputs, the input correspondence L is 
quasi-concave in X. 
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Proposition 11.2 The output correspondence P satisfies Axioms [PI]-[P6] if and 
only if the input correspondence L satisfies Axioms [L I ]-[L6]. For divisible goods 
andfactors the proposition can be extended by Axioms [P7] and [LS] as well as [PS] 
and [L7]. 

This can be proved as follows: 
[PIa] ¢::::::> [LIa]: Each arbitrary input vector v E V permits the production 

of the commodity bundle x = O. 
L(x)CV 

Vv E V: 0 E P(v) ¢::::::> Vv E V: v E L(O) ¢::::::> L(O) = V 

[Plb] ¢::::::> [LIb]: The production of each commodity bundle x ~ 0 requires 
at least one positive input, i.e. v ~ 0 . 

v x E X \ {O}: x ¢ P(O) ¢::::::> Vx E X \ {O}: 0 ¢ L(x) 

[P2] ¢::::::> [L2]: The technology assures that there is an input vector v E V 
for each commodity bundle x E X such that x is producible by v. 

Vx EX, 3v E V: x E P(v) 
(11.3) 

¢::::::> Vx EX, 3v E V: v E L(x) 

Thus, the domain of the input correspondence L is 

Dom L = {x E XI L(x) '* 0} = X. 

[P3] ¢::::::> [L3]: If an input vector v E V suffices for the production of the 
commodity bundle x EX, then each input vector v ~ v is indeed sufficient 

for the production of x. Thus, for all v, v E 

v2 rt L(x) V with v ~ v we have 
V2 • 

(II.3) 

o VI 

V E L(x) ¢::::::> X E P(v) 

IP3) 
x E P(v) =::} 

(II.3) 
v E L(x). ¢::::::> 

[L2] (Attainability of Each Production) 
immediately implies two properties of the 
input requirement sets. On the one hand the 
sets L(x) are not bounded. On the other hand 
[L3] prevents a backward bending boundary 

Figure 11.8: Disposability of inputs (2) aL(x) of an input requirement set L(x) for 
divisible factors. Analogous to Figure 11.5, 

the case shown in Figure II.S may not appear.32 

[P4] ¢::::::> [L4]: If an input vector v E V permits the production of the 
commodity bundle x EX, then each commodity bundle i ~ x is also 
producible. Thus, for all v E V and for all x, i E X with x ~ i we have 

(II. 3) IP4) (II.3) 
v E L(x) ¢::::::> x E P(v) =::} i E P(v) ¢::::::> v E L(i). 

32For phenomena of congestion, where an increasing factor input implies a decreasing output, see 
FARE (1980b) and FARE, GROSSKOPF(l983). 
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[P5] <==> [L5]: For the necessary part as well as for the sufficient part we give 
a proof of contradiction. 

1. If P(v) is not bounded for a v E V, then there is a sequence {XV} C 

P(v) with IIxvll ~ 00. Thus, v E L(xV) holds for all v such that 
v E n:t L(xV) contradicts [L5]. 

2. Supposing there is a v with v E n:t L(xV) for IIxvlI ~ 00 then in 
contradiction to the boundedness of the set P(v) for all v E IN the result is 
v E L(xV) <==> XV E P(v). 

[P6] <==> [L6]: By Theorem C.6, p. 308, the input correspondence L is said to 
be closed in X if 

results for any two sequences {XV} C X and {VV} C V with the limits xO and 
vO respectively. With that the equivalence of [P6] and [L6] at once ensues from 
XV E P(VV) <==> VV E L(xV) and xO E P(vo) <==> vO E L(xo). 

The input correspondence L is closed in X if and only if the graph of the input 
correspondence graph L = {(v, x)1 x E X, v E L(x)} is closed. Thus, the level 
sets must be closed, too. 

Vx EX: L(x) is closed. 

Since the input requirement sets L(x) are not bounded by [L3] (Disposability of 
Inputs), the input correspondence cannot be upper semi-continuous in the sense of 
Definition C.5, p. 307.33 

Supposing again the divisibility of inputs and outputs, the subsequent axioms 
can be established: 

[P8] <==> [L 7]: The input correspondence L is convex-valued if and only if the 
following condition is satisfied for each x EX: 34 

Vv, v E L(x), V A E [0, 1]: AV + (1 - A)V E L(x). 

By Theorem 11.6, p. 78, the input correspondence L is convex-valued if and only if 
the inverse output correspondence P is quasi-concave in V. 

[P7] <==> [L8]: We speak of a quasi-concave input correspondence L if it fulfills 
the following condition: 

Vi, x E X, V A E [0, 1]: L(i) n L(x) c L(Ai + (1 - A)X). 

33This remark is important to prevent linguistic confusion. Some authors define the upper semi­
continuity of a correspondence in the sense of a closed correspondence of BERGE. Indeed, the basic 
idea of closed level sets is not affected. Cf. SHEPHARD (1953, p. 299) or EICHHORN, SHEPHARD, 
STEHLING (1979, p. 334) and contrast it to DEBREU (1982, p. 698 f.) 

34Following SHEPHARD (1970, p. II), the condition of a convex-valued input correspondence gets a 
further economic meaning if we take a dynamic production technology as basis. If A and 1 - A are the 
fractions of a unit period with the (possibly indivisible) input vectors v and v, then (AV + (1 - A)V, x) 
can be interpreted as an activity of a "temporally divisible" technology. 
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Again, the equivalence of [P7] and [L8] results from Theorem 11.6. 
After Proposition 11.2 has been proved, another result can be delivered, which 

merely emphasizes the consistency of the argumentation. The domains and the 
ranges of the input or output correspondence satisfy35 

DomP=RangeL={VEVI3xEX: vEL(x)}=V, 

DomL = Range P = {x E XI3v E V: x E P(v)} = X. 

The first equation says that there is no admissible input vector v which does not 
belong to at least one input requirement set L(x). Analogously, each commodity 
bundle x belongs to at least one production possibility set P(v) in accordance with 
the second equation. 

Another postscript refers to the disposability of inputs and outputs. 
Summarizing Axioms [P3] and [P4] - or, equivalently, Axioms [L3] and [L4] - the 
following equivalent property with respect to the graph of the examined production 
technology ensues. 

(11.5) V (v, x), (Y, i) E V x X, (-v, x) ~ (-Y, i) : 

x 

ltj' 
C· • ~ °D 
000 

o jj jj v 

Figure 11.9: Disposability of inputs and 
outputs 

(v, x) E GR ==> (Y, i) E GR 

As in Figure 11.7, Figure 11.9 also 
describes the case of an indivisible 
input v and an indivisible output x, 
i.e. V x X = Z+ x Z+. Each 
possible activity (v, x) E GR is 
marked by a dot. Starting at point A 
with the possible activity (ii, x), [P3] 
(Disposability of Inputs) says that the 
activity (ii, x) marked by point B is 
possible. Analogously, even (ii, x) 
or correspondingly point C describes 
a possible activity in accordance with 
[P4] (Disposability of Outputs). The 
combination of the two statements in 
(11.5) implies (ii, x) or point D to be a 
further possible activity. 

Finally, an assumption on convexity 
tightening Axioms [P7] and [L 7] has to be stressed. Apart from convex level sets, 
which have been required up to now, some authors also call for the convexity of the 
graph GR of a production technology. 36 

[TI] Convexity: Given divisible goods and factors, the graph GR of the 
production technology is convex. 

V (v, x), (Y, i) E GR, V)" E [0, 1]: )..(v, x) + (1 - )..)(Y, i) E GR 

35Cf. e.g. SHEPHARD (1953, p. 298). 
36Cf. e.g. TAKAYAMA (1990, p. 54) or ALIPRANTIS, BROWN, BURKINSHAW (1989, p. 69). 
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Both Assumptions [P7] (Convexity of Production Possibility Sets) and [L 7] 
(Convexity of Input Requirement Sets) are necessary (but not sufficient) for the 
convexity of the graph. If we insert v = v = v in [Tl], [P7] can be obtained: 

(v, Ax + (1 - >")i) E OR V>.. E [0, 1] 

<===} Ax + (1 - >")i E P(v) V>" E [0, 1] . 

Analogously, Axiom [L 7] results from x = i = x : 

>..v+ (1- >..)v E L(x) V>" E [0, 1]. 

As illustrated by Figures II.I and 11.2, the reverse conclusion from convex input 
requirement sets and convex production possibility sets to the convexity of the graph 
OR is not allowed. 

Furthermore, [PIa] (Possibility of Inaction), i.e. (v, i) = (0,0), gives 

(11.6) (v, x) E OR ==> >..(v, x) E OR V>" E [0, 1]. 

As shown below, this condition is only compatible with nonincreasing returns to 
scale. 

2.2 Treatment of Indivisible Goods and Factors 

2.2.1 The Concept of Convex Hulls 

The consideration of indivisible goods is explicitly reflected by the setting of the 
commodity space X in accordance with (1I.1). Analogously, indivisible production 
factors are recorded by the factor space V according to (II.2). For the subsequent 
expositions it is useful to extend each of the two spaces to the entire respective 
Euclidean space. 

and 

A vector x E X satisfying the integer constraints - i.e. satisfying x E X - is 
called an output vector or commodity bundle. Analogously, a vector v E V is 
said to be an input vector if and only if it satisfies the integer constraints, v E V. 
Setting 

v ¢ V : P(v) = 0, 

a generalized production correspondence, P: V -+ I.lJ(X) results, assigning an 
empty production possibility set to each inadmissible input vector v ¢ V. In the 
same way 

x ¢ X: L(x) = 0 

yields a generalized input correspondence, L: X -+ I.lJ(V). No input vector 
v E V suffices to produce the vector x ¢ X. The advantage of an easier analytical 
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usage of the extended correspondences is in opposition to the disadvantage that 
the generalized correspondences are no longer inverse to each other. Thus, the 
meaning of Proposition 11.2 can only be partially transferred to the generalized 
correspondences. 

The next step asks what results of the convex analysis remain unchanged when 
indivisible goods and factors are taken into account. If the production possibility 
sets or the input requirement sets are not convex, then surrogates for these sets 
serving as links to convex analysis are needed. The surrogates must be chosen such 
that the reverse conclusion to the original sets is still possible. 

For this purpose we now introduce the concept of the convex hull. 37 The 
convex hull of a production possibility set is denoted by conv P(v) and describes the 
smallest convex set in X containing P(v) c X; see Figure 11.17, p. 31. Thereupon 
the output correspondence P: V ~ SfJ(X) induces a synthetic convex-valued 
correspondence38 

convP: V ~ SfJ(X) 

substituting each level set P(v) by its convex hull conv P(v). Under [P7] 
(Convexity) the distinction between the production possibility set and its convex 
hull becomes obsolete. In this case of divisible goods 

conv P(v) = P(v). 

Analogously, conv L(x) c V denotes the convex hull of the input requirement set 
L(x) C V, and the input correspondence L: X ~ SfJ(V) induces a convex­
valued correspondence 

convL: X ~ SfJ(V) 

assigning each vector x E X to the convex hull of the input requirement set L(x). 
Again, [L 7] (Convexity) implies for divisible production factors 

convL(x) = L(x). 

Not forgetting that conv P(v) denotes the smallest convex set containing P(v), 
we can now give a representation of each single point in conv P(v). Each point can 
be expressed as a convex combination of points in P(v) and, moreover, by Theorem 
B.3, p. 292, the union of all convex combination of points in P(v) equals the convex 
hull conv P(v), i.e.: 

(11.7) conv P(v) = { t AiXil xi E P(v), 

Ai~O (i=l, ... ,r), LAi=l, r=I,2, ... }. 
i=1 

37Cf. FRANK (1969, p. 127). For the concept of convex hull see also Appendix B.2. 
38Note that conv0 = 0. 
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Theorem BA (CARA THEODORY), p. 293, 
affords infonnation about the expression 
of a point x E conv P(v) as a convex 
combination of points in P(v), namely 
how many points at the most are required 
to describe x; cf. the figure opposite. 
Regarding the n-dimensional commodity 
space X = IRn the theorem says that each 
point x E conv P(v) can be expressed as a 
convex combination of n + 1 not necessarily 
distinct points in P(v), 

n 

X = I)'.iXi with Xi E P(v), l E An+l. 

i=O 

For the sake of brevity, A n+ I denotes the 
n-dimensional unit simplex according to 
(B.5), p. 292. 

Figure 11.10: Inner and outer 
representation of the convex hull 
conv P(v) 

n 

l=(AO,AI, ... ,An)TEAn+1 :{=:=} [Ai~O(i=O,I, ... ,n), LAi=1J 

i=O 
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Figure 11.10 illustrates for n = 2 the expression of the point x E convP(v) 
with the help of three points xl = 0, x2 and x3 in P(v) without explicitly giving the 
values of Ai (i = 1,2,3). 

The "inner representation" of a convex hull by inner points may be reflected with 
"outer representations." For instance, conv P(v) may be interpreted as intersection 
of all convex sets containing p(v) .39 In particular, the outer representation of 
a closed convex set by Theorem B.ll, p. 297, will be in the focus of duality 
theory. Accordingly, a closed convex set conv P(v) corresponds to the intersection 
of all closed convex half-spaces containing conv P(v). Figure 11.10 illustrates this 
statement using the example of some supporting hyperplanes at point x3. 

Among the properties of the convex hull40 it must be particularly emphasized 
at this point that the convex hull conv P(v) of a compact production possibility set 
P(v) is compact, too. Using the theorem of KREIN-MILMAN, conv P(v) can be 
described as a convex hull of the set C of its extreme points.41 

(II.8) conv P(v) = convC 

Consequently, a point x E conv P(v) is called an extreme point of the set 
conv P(v) if the set conv P(v) \ {x} is convex or - equivalently - if it is not possible 

39This definition may be found e.g. in NIKAIDO (1975, p. ISS). 
40See Appendix B.2. 
41Cf. ROCKAFELLAR (1972, p. 167, Corollary IS.5.1). At the same time (II.S) implies that the set 

conv P(v) must contain at least one extreme point. 
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to express x as a convex combination of two points in conv P(v) distinct from x.42 

).xl + (1 - A)X2 = X, A E [0, 1], xl, x2 E convP(v) ==} xl = x2 = x 

Accordingly, the points xl = 0, x2, and x3 in Figure 11.10 denote three of the five 
extreme points. 

For every extreme point x of conv P(v) the reverse conclusion gives x E 

P(v) such that at least some points of the production possibility set can be 
reconstructed.43 

t X2 JI-'--_____ _.... 

convP(v) 

, 
Xl o 

Figure 11.11: Extreme points versus 

The extreme points of a set conv P(v) 
associated with the inner representation of 
these sets are opposite the exposed points, 
which give a statement similar to (11.8) 
with respect to an outer representation of 
conv P(v). A vector x is called an exposed 
point of conv P(v) if there is a nontrivial44 

supporting hyperplane H with conv P(v) n 
H = {x}. Each exposed point is also an 
extreme point, but the reverse conclusion 
does not hold; see the points marked by 
vectors in the figure opposite. Provided the 
segment corresponds to a quarter of a circle, 
then the criterion of exposed points cannot 

exposed points be fulfilled. The two points are, however, 
extreme points. Let C' be the set of all exposed points of conv P(v), then analogous 
to (11.8) for the closure of the convex hu1l45 of C' 

(11.9) conv P(v) = cl(convC'). 

As the closure of the set convC' - according to the definition of the convex hull - is 
the smallest of all closed sets containing convC', both sets convC' and cl(convC') 
can differ at the most by their boundary points. In the case of Figure 11.11 both sets 
convC' and conv P(v) differ exactly by the two marked exposed points. 

With regard to the convex hull of an input requirement set L(x) the preceding 
statements have to be modified since conv L(x) is unbounded. A priori, closedness 
of the input requirement set does no longer entail the closedness of its convex hull.46 

The following explanations serve to solve this problem. 
For the moment the input requirement set L(x) is interpreted as set of vectors 

and directions. A vector U E IRm has a direction in L(x) if and only if 

(11.10) Vv E L(x), V A ~ 0 : v + AU E L(x). 

42Cf. LEICHTWEISS (1980, p. 35). 
43Cf. ROCKAFELLAR (1972, p. 165, Corollary 18.3.1). 
44 A supporting hyperplane H of a set C is said to be nontrivial when C is not entirely contained in 

the supporting hyperplane, C t H. Otherwise C could not uniquely be assigned to one of the two 
half-spaces generated by H. 

45Cf. ROCKAFELLAR (1972, p. 168, Theorem 18.7). 
46 An easy counterexample is given in Appendix B.2, Figure B.I. 



2 Theory of the Firm 27 

Figure II.l2 shows two vectors vi and v2. However, u denotes a vector with a 
direction in L(x). The set of all vectors with these directions is called a recession 
cone 0+ L(x).47 

(11.11) 0+ L(x) := {u E m.ml v + AU E L(x) V A ~ 0, "Iv E L(x)} 

If the i-th input is perfectly divisible, then according to [L3] (Disposability ofInputs) 
the i-th unit vector e; denotes a vector with a direction in L(x), see Figure 11.12. 
If all of the inputs are divisible (and if they are used as a positive amount), then 
the recession cone satisfies 0+ L(x) = m.~. Finally, (11.1 0) and (ILl 1 ) can be 
combined to L(x) + 0+ L(x) taking into account the free disposability of inputs. 
Since the free disposability of inputs implies that v + u with u E 0+ L(x) is also 
an admissible input vector for each input vector v E L(x), this set is called the 
free disposal hul1.48 

Keeping that in mind, a representation of the convex hull convL(x) equivalent 
to (11.7) turns out to be as follows: a point v is an element of convL(x) if and only 
if it can be expressed as a convex combination of the form 

k k 

(11.12) V = I>jV j + L AjUj , 
j=1 j=k+1 

LAj = I, Aj ~ 0 (j = 1, ... , r), 
j=1 

where v j are points in L(x) and uj are arbitrary vectors with directions in L(x), i.e. 
uj E O+L(x). Figure 11.12 shows the example v = Ihv' + Ihv2 + AIUI with 

ul = el . 

Theorem B.4 (CARA THEODORY), p. 293, 
looks slightly different, i.e.: a point v in the 
m-dimensional factor space V = m.m is an 
element of the set convL(x) if and only if 
it can be expressed as a convex combination 
of m + 1 not necessarily distinct points and 
directions in L(x). 

An expression of conv L(x) analogous to 
(11.8) at once leads to the recognition that 

L(x) 

o 
extreme points are not enough to represent, 
for instance, convex cones. As a result 
of this, the concept of an extreme ray is 
introduced. A closed half-line h = {v + 
Aul A ~ 0, U E m.m \ (O}} in the convex Figure ~I.l2: Graphical representation 

set conv L(x) is called an extreme ray of of a pomt v E cony L(x) by 11.12 

conv L(x) if the set conv L(x) \ h is convex and if the vertex v of h is an extreme 
point of conv L(x).49 The direction of u is also called an extreme direction. 

Due to conv L(x) C m.~, conv L(x) contains no line such that the following 

47 A nonempty closed convex set C C JR" is bounded if and only if the recession cone 0+ C consists 
of the zero vector as singleton. 

48Cf. McFADDEN (1978, p. 8). The notation L(x) = L(x) + 0+ L(x) only stresses the partition of 
the input requirement set into vectors and directions. 

49Cf. LEICHTWEISS (1980, p. 39). 



28 Chapter II. Microeconomic Foundations 

representation theorem can be given:50 let convL(x) be a closed set and let C be the 
set of all extreme points and extreme directions of cony L(x). Then 

(II. 13) convL(x) = convC. 

Analogous to exposed points of a convex set, exposed directions can be defined. 
A vector u has an exposed direction in convL(x) when the closed half-line 
h = {v + Aul A ~ 0, u E IRm \ (On can be described by a nontrivial supporting 
hyperplane H of convL(x) such that h = H n convL(x) . Again, each extreme 
direction is an exposed direction where the reverse conclusion is still not admissible. 
If C' meets the set of all exposed points and directions, then according to (11.9) 

convL(x) = cl(convC') 

provided cony L(x) is closed. 
For the sets cony P(v) and cony L(x) two properties are of importance whose 

meanings become clear later, especially, in dealing with gauges. 
First of all, we know by the definition of the convex hull that all points on the 

segment between the origin x = 0 and a commodity bundle x E P(v) are 
elements of the convex hull of P(v) . 

(II. 14) v E V and x E P(v) => Ax E convP(v) \:f A E [0, I] 

Concerning divisible goods the conclusion holds good even for P(v). This case is 
described as a weak disposability of outputs.51 

o Xt 

Figure 11.13: Star hull, star C, of the set 
C 

Statement (1I.14) may now be generalized by 
defining the star hull of a set C C IRn. 

(11.l5) starC:= {Axl x E C, A E [0, I]} 

The star hull of the set C depicted in Figure 
11.13 results from adding the set D, i.e. 
star C = CUD. The set C is said to be star­
shaped if C = star C. Since each convex 
set containing the origin is star-shaped, the 
convex hulls of the production possibility 
sets are star-shaped for all input vectors v E 

V. 

cony P(v) = star (conv P(v») 

The aureoled hull or haloed hull of a set C C IRn is defined analogous to the 
star hull, 

(11.16) aur C := {Axl x E C, A ~ I} . 

50Cf. ROCKAFELLAR (1972. p. 166. Theorem 18.5). 
5tCf. FARE (1988 . p. 6). 
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Accordingly, Figure II.14 indicates aur C = 
CUD. Analogous to star-shaped sets, the 
set C is said to be aureoled if it meets 
the relation C = aur C. Considering [L3] 
(Disposability of Inputs), the recession cone 
of cony L(x) is given by 0+ (conv L(x») = 
IR~ for all x E X so that the convex hulls 
of the input requirement sets are aureoled for 
all commodity bundles x E X. 52 

convL(x) = aur (convL(x») 

In particular, analogous to (II. 14) 

v E L(x) ::=} A.v E cony L(x) V A ~ 1 . 
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Figure 11.14: Aureoled hull, aur C, of 
the set C 

Considering divisible factors this property even holds true for L(x), and it is called 
a weak disposability of factors. 53 

With regard to economic aspects the boundary points of the two convex hulls 
convP(v) and convL(x) turn out to be important. As already mentioned, the 
convex hull of a closed bounded set is closed as well as bounded such that each 
boundary point x E a(conv P(v») belongs to cony P(v). Although the convex 
hull of a closed but unbounded set need not be closed, it is correct to presuppose the 
closedness of the sets convL(x) under Axioms [L3] (Disposability of Inputs) and 
[L6] (Closedness). A proof of this hypothesis is given in Section 4.2, Proposition 
II.14. With that the boundary points v E a( cony L(x») are also contained in the 
set cony L(x). 

The structure of the sets examined in (II. IS) or (II. 16) permits criteria for when a 
point is a boundary point of the respective set. For the convex hull of the production 
possibility set the criterion following (11.15) is 

x E convP(v), Ax rf- convP(v) VA> 1 ::=} x E a(convP(v»). 

In accordance with Figure IUS each ray through the origin with a direction in IR~ 
determines a boundary point of the convex hull cony P(v), calculating point i which 
is furthest away from the origin x = 0 on the examined ray. 54 

It would be sensible to modify the criterion according to (11.16) for the convex 
hull of the input requirement set. 

v E convL(x) , A.v rf- convL(x) VA < 1 ::=} v E a(convL(x») 

52The recession cone 0+ (cony L(x») yields for each Yector v E cony L(x) and for each direction 

U E 0+ (cony L(x») the relation v + AU E conY L(x) for all A ~ O. 

In particular, for x'" 0 with v'" 0 E convL(O) weobtain aur(conYL(O») = IR';'. 
53Cf. FARE (1988, p. 9). 
54The determined boundary point may coincide with the origin itself if x = 0 is the only point 

possible on the ray concerned. 
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a(convP(v») 

o 

Figure IU5: Boundary points of the 
convex hull cony P(v) 

a(convL(x)) 
VI 

Figure n. 16: Boundary points of the 
convex hull cony L(x) 
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Thus, a point v is a boundary point of the 
set cony L(x) if there is no other point v E 
conv L(x) which lies on this ray through the 
origin and v and which is closer to the origin 
v = 0, see Figure 11.16. Conversely, each 
ray through the origin with a direction in IR~ 
is suitable to determine one of the boundary 
points. 

Neither criteria suffice to express the 
entire boundary of the respective underlying 
set. The areas marked in bold in Figures 
II.l5 and 11.16 contain boundary points on 
common rays through the origin. However, 
only points are indicated which lie furthest 
away from the origin x = 0 (Figure 
11.15) or which lie closest to the origin 
v = 0 (Figure 11.16). Corresponding 
phenomena may appear when the boundary 
of the sets cony P(v) or conv L(x) are 
backward bending; see Figure 11.18. As 
subsequently shown, this behavior may be 
ignored. Intuitively, boundary points lying 
on the same ray through the origin cause no 
problems when inefficient points55 are not 
considered. In particular, the points marked 
in bold on the axes in Figures 11.15 and 11.16 
will not matter in economic analysis. 

Transferring the statement of Axiom [P4] 
(Disposability of Outputs) to the convex hull 
cony P(v) gives 

Proposition 11.3 For each input vector v E V we have under [PIa] (Possibility 
of Inaction) and [P4] (Disposability of Outputs) with respect to the convex hull of 
P(v): 

'v'X,XEX+, x~x: xEconvP(v) ==} xEconvP(v). 

Proof: Supposing x E convP(v), then each vector X E X+ with x ~ x can 
be expressed as a convex combination of the form 

(11.17) 
n 

X = L (Jje1Txej + (In+l O + (In+2X with 
j=l 

n+2 

L(Jj= I, (Jj~O , 
j=l 

where ej (j = I, ... , n) are the unit vectors; see Figure 11.17. Furthermore, 
according to Theorem B.4 (CARATHEODORY) there are n + I vectors Xi, which 

55For the concept of efficiency. see Section 2.4.1. 
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need not necessarily be distinct, such that the following convex linear combination 
holds: 

(11.18) 
n 

X = LAiXi 
i=O 

In Figure 11.17 the vectors Xi are 
represented by x J , x2, and x3. 

Due to 0 E P(v) according to 
[PIa], it remains to be shown that 
eJTxej can also be expressed as a 
convex combination of points in 
P(v) . In this case (11.17) can be 
completely rewritten into a convex 
linear combination of points in 
P(v) . 

With respect to Axiom [P4] we 
obtain 

with Xi E P(v), A. E An+J 

~2 

• . • 
_ . 

X2 
_______ -,x 

· I . .. ~ I 

• A • I • 
oX I 

• · I 
0 x, ~ I 

c·_ { JT il . - 0 } Sj'- max e x l - , ... , n (j = 1, ... , n), 
I 

then eJT X ~ ~ j such that the required convex combinations for j = 1, ... , n are 
found : 

3JL j E [0, 1] : eJTxej = JL jO + (1 - JL j)~jej ==> eJTxej E conv P(v) ; 

see again Figure 11.17. • 

Applied to the case of indivisible factors and analogous to Proposition 11.3 is 

Proposition 11.4 According to [L3] (Disposability of Inputs) for each commodity 
bundle x E X with respect to the convex hull of L(x): 

'VV,VEV+, V~V: vEconvL(x) ==> vEconvL(x). 

Proof: According to the explanations on (11.16), based on [L3] the following 
recession cone of convL(x) with x E X ensues: 

O+(convL(x)) = IR~. 
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Thus, the unit vectors ei with i = I, . .. , m are vectors with directions in convL(x). 
Hence, according to (II.12) each vector v ~ v has got a convex combination 

m 

v= v+ LAiei, 
i=1 

closing the proof. • 

Ai~O (i= I , .. . ,m) 

As shown above, Axiom [P4] (Disposability of Outputs) implies that the 
boundary of P(v) is not allowed to bend backward for divisible goods; see Figure 
II.S. The same argument is valid with respect to the boundary of the convex hull 
a(convP(v»). In view of Proposition 11.3 the case x ~ x with x E P(v) and 
x ¢ conv P(v) is excluded; see the left hand part of Figure II.lS. However, [P4] 
does not require each commodity bundle x E X with x E conv P(v) to describe 
an admissible activity (v, x), too; see point A in Figure II.lS. 

x ¢ cony P(v) 
x E cony P(v) 

a( cony P(v») 
~ 

A 

convP(v) 

~------------------~-- XI 

li2 v2 ¢ cony L(x) 

~COnYL(X) 

i 
convL(x) 

B 

a(conyL(x») 
O~------------------~ Vl 

Figure II.lS: Properties of the convex hull 

If (v , x) E V x X is a possible activity, then according to Proposition 11.4 each 
vector v E IR~ with v ~ v must be an element of the convex hull of L(x) . Again 
the reverse conclusion that each pair (v, x) E V x X with v E convL(x) is a 
possible process is not allowed without further assumptions. This case is illustrated 
by point B in Figure II.lS. 

2.2.2 The Assumption of Integer Convexity 

The next section is dedicated to the problem that the convex huH may contain integer 
points which are not possible activities. Examples are shown in Figure 1I.1S by the 
points A and B. To allow the conclusion from the convex hull of a set - for instance 
conv P(v) - to the original set - i.e. P(v) - we require a weaker form of convexity 
for indivisible goods. 
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[P7a] Integer convexity:56 

"Iv E V: P(v) is integer convex. 

For a given input vector v we speak of an integer convex production possibility set 
if the following condition is satisfied: 

x E conv P(v) and x EX=::::} x E P(v) 

Each vector x in the convex hull of P(v) fulfilling the integer constraints, x EX, 
describes, together with the held fixed input vector v, a possible activity (v, x). 
Thus, cases as illustrated by point A in Figure IU8 are ruled out by assumption. 
In order to derive another important conclusion in connection with Proposition 11.3, 
we now define 

Deimition 11.3 Given the commodity space X = IR~ x Z~-nd with nd divisible 
goods, the completed fractions of the indivisible goods can be determined by 
the residual vector x<l := X - LxJ if we define the operation x -+ LxJ := 

(Lxd, ... , LXnJ)T by 

Lx.J = J Ix. 

J {greatest integer not greater than x j} 

for 1 ~ j ~ nd 

for nd < j ~ n. 

With the aid of this definition the following statements can be noted. 

1. For each commodity bundle x E X it is LxJ = x or equivalently x<l = o. 
2. By Axioms [PIa] (Possibility of Inaction), [P4] (Disposability of Outputs), 

and [P7a] (Integer Convexity) 

(11.19) x E conv P(v) =::::} LxJ E P(v) 

holds true for each input vector v E V. The proof calls for scrutinizing 
an arbitrary point x E conv P(v). Due to LxJ ~ x, Proposition 11.3 
yields the relation LxJ E conv P(v). Furthermore, since, by definition, LxJ 
satisfies even the integer constraints, we have LxJ E P(v) from [P7a]. 

3. Under the same conditions we can conclude unequivocally from conv P(v) to 
P(v). 

(11.20) conv P(v) n X = P(v) 

For the proof of this statement an arbitrary input vector v E V is held fixed 
such that two cases must be examined: 

• x E P(v) =::::} [x E conv P(v), x E X] =::::} x E conv P(v) n X; 

56Cf. FRANK (1969, p. 34). 
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(II.19) 
• x E conv P(v), x EX=:::} x = LxJ E conv P(v) =:::} x E P(v). 

The conception of integer convexity can also be applied without difficulty to the 
input requirement sets. For indivisible production factors [L 7] (Convexity) is 
modified to 

[L7a] Integer Convexity: 

Vx EX: L(x) is integer convex. 

As before, we speak: of an integer convex input requirement set L(x) for a given 
commodity bundle x E X if 

v E convL(x) and v E V =:::} V E L(x). 

Every vector v in the convex hull of L(x) together with the examined commodity 
bundle x constitutes a possible activity (v, x) if v satisfies the integer constraints, 
v E V. Therefore, cases such as point B in Figure 11.18 are not allowed to appear. 
Analogous to the procedure in [P7a] (Integer Convexity), we now define 

Det"'nition 11.4 Let V = IR~d X Z~-md be the factor space with md divisible 
inputs. Then the fractions of indivisible factors which are lacking compared to the 
next larger input vector can be determined by the residual vector yI>:= r v 1 - v if 
theoperation v~ fvl:= (rvIl, ... , rVml)T isdejinedby57 

rVil = {Vi 
{smallest integer not smaller than Vi} 

Again three statements can be noted with this definition. 

for 1 ;li i;li md 

for md < i;li m. 

1. r v 1 = v or equivalently yI> = 0 for every input vector v E V . 

2. By [L3] (Disposability of Inputs) and [L 7a] (Integer Convexity)58 

(11.21) v E convL(x) ==} rvl E L(x) 

holds for each commodity bundle x EX. Supposing, v E conv L(x) 
then due to rvl ~ v, Proposition 11.4 yields rvl E convL(x). Since, by 
definition, r v 1 also satisfies the integer constraints, (11.21) is given by [L 7a]. 

3. Under the same conditions we can conclude unequivocally from the convex 
hull convL(x) to L(x). 

conv L(x) n V = L(x) 

For the proof of this statement an arbitrary commodity bundle x E X is 
held fixed so that two cases must be inspected: 

57MoORE (1987) examines a production function of the form x = f(lvJ). In this case the residual 
vector v":= V - Lv J can be interpreted as a vector of excess capacities. 

58For empirical tests on the extent of excess capacities in chemical industry, see LIEBERMAN (1989). 
Among others the author investigates a model of MANNE (1967) that assumes a demand growing in time 
where the examined firm is required to meet total demand. At the same time the capacity can only be 
extended in discrete steps. 
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• vEL(x) ===} [v E convL(x) , VEV] ===} vEconvL(x)nV; 
(11.21) 

• V E convL(x), v E V ===} v = fv1 E convL(x) ===} v E L(x). 

Analogous to the properties of integer convexity, [P7a] and [L7a] , we now 
suppose 

[Tla] Integer Convexity of the Graph: 

(v, x) E convGR and (v, x) E V x X ===} (v, x) E GR 

Proposition II.S Given [L3] (Disposability of Inputs), [L4] (Disposability of 
Outputs), and [Tla] (Integer Convexity), then for each vector (v, x) in the convex 
hull of the graph GR a possible activity Uv1, LxJ) can be determined by calculating 
LxJ and fv1 corresponding to the Definitions II.3 and II.4. 

(v, x) E convGR ===} Uv1, LxJ) E GR 

Proof: A sketch of the proof is illustrated in Figure 11.19; it consists of a 
combination of the Propositions 11.4 and 11.3. 

Since (f v 1, Lx J ) E V X X always satisfies the integer constraints, the 
implication Uv1, LxJ) E cony GR ===} (fv1, LxJ) E GR holds according to 
[Tla]. Thus, it remains to be shown that (v,x) E convGR ===} (fv1, LxJ) E 
convGR. 
If (v, x) E cony GR, then by Theorem B.4 (CARATHEODORY) there are no more 
than m + n + 1 possible activities such that 

m+n 
(v, x) = L ().'vvv, AvXV) with (VV, XV) E GR, A E A m+n+'. 

v=O 

From Proposition 11.459 

VV E cony L(xV) ===} yV E cony L(xV) ===} (yV, XV) E cony GR 

holds for all yV ~ VV. Thus, for point (Y, x) with y ~ v it will not be at all 
difficult to set a convex combination which consists of points (VV, XV) supplemented 
by (arbitrarily many) points (yV, XV). The implication 

v ~ y: (v, x) E convGR ===} (Y, x) E convGR 

holds true especially for y = f v 1. Analogously, Proposition 11.3 ensues 

XV E cony P(VV) ===} XV E cony P(VV) ===} (VV, XV) E cony GR 

for all 0 ~ XV ~ XV. As before, the points (VV, XV) can be supplemented by 
(arbitrarily many) points (VV, XV) such that a convex combination for (v, x) with 
o ~ x ~ x exists. The implication 

x~x~O: (v,x)EconvGR ===} (v,x)EconvGR 

59The reverse conclusion (v. x) E cony GR ~ v E cony L(x) is not admissible. For instance. 
L(x) = '" holds for all x ¢ X and therefore cony L(x) = '" . 
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holds good especially for x = lxJ. Summarizing we get Proposition U.5 or 

( - v , x) ~ (-v, x) , x ~ 0: (v, x) E convGR ===} (v, x) E convGR. • 

x 

i 

lij ..... •. ~.! •. . . ... • 

D 
x~------------~;-----~r-------~lJ 

o ii riilii 

Figure 11.19: Integer convexity of the graph 

The graphical rep­
resentation of the idea 
of the proof can be 
seen in Figure U.19, 
where point A is in­
ferred from point E. 
The convex hull of the 
examined graph GR is 
marked by the shad­
owed area. The initial 
point A corresponds 
to a non integer point 
(ii, i) E convGR; it 
can be expressed as a 
convex combination of 
the points <:1, <:2, and 
<:3. Moving each of 
these points one unit to 

the right, the same convex combination yields point B with (ii, i) . Now point 
C can be ascertained with a suitable convex combination of A and B so that the 
integer constraint to v is fulfilled, (r iil ,i) E conv GR. Consequently, point D 
with (r iil ,0) E GR ensues from point C. Finally, point E can be constructed 
from points C and D such that ( r iil, l i J) E GR . 

Disregarding the trouble in determining convex hulls, the operations P(v)-+ 
conv P(v) or L(x) -+ conv L(x) provide a useful tool implying only a minor loss 
of information under the presented assumptions. In particular, the extreme points of 
convex hulls - such as point <:1 in Figure 11.19 - satisfy the integer constraints and 
they belong to the original sets. Under the assumption of integer convex sets the 
original sets can even be completely reconstructed from the respective convex hull. 
The disadvantages unavoidably associated with the surrogate of the convex hull 
are outweighed by the remarkably greater advantages in handling convex sets. In 
particular, closed, bounded, star-shaped, or aureoled convex sets will be important 
for the following economic analysis. 

2.3 Special Production Technologies 

2.3.1 Scale Economies 

The description of scale economies begins with some expositIOns on the 
homogeneity of correspondences underlying the criterion of the homogeneity of 
functions. The exact definitions of the used terms of convex analysis are introduced 
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in Appendix B. Moreover, Appendices C.I and C.2 contain explanations of the 
concepts of a function as single-valued mapping and of a correspondence as multi­
valued mapping. 

Commencing with the scalar multiplication >"C = {>"xl x E C} of a set C c 
lRn by a scalar >.., then for each scalar >.."* 0 we get the equivalence relation 

x E >"C <=} x/>" E C. 

The scalar multiplication suggests examining 
sets of a certain structure. A set C is called a 
cone60 when all >.. > 0 lead to >"C C C, 
i.e. 

X E C, >.. > 0 =::} h E C. 

Point 0 is called the vertex of the cone and 
does not need to belong to C by the presented 
definition. 

I(x) 

These cones are opposite to the class of 
linearly homogeneous functions61 since the 
epigraph, epif, of a linearly homogeneous 
function f with 

x 

f(h) = Vex) Y>.. >0 
Figure II.20: Linear homogeneity of a 

function 

is a cone; see Figure 11.20. 
Now the transference of the idea of linearly homogeneous functions to an output 

correspondence P or an input correspondence L causes no difficulties if all goods 
and factors are divisible. By a scalar multiplication of a production possibility set 

>..P(v) := {hi x E P(v)} 

we get as previously for >.. > 0 

X E >"P(v) <=} x/>.. E P(v). 

Thus, it seems reasonable to introduce a criterion of homogeneity of the following 
form. 

Definition II.S (Homogeneity)62 Suppose all of the goods andfactors are peifectly 
divisible, then an output correspondence P is called 

subhomogeneous if 
homogeneous of degree 1 if 
superhomogeneous if 

60Cf. ROCKAFELLAR (1972. p. 13). 
61 See Appendix c.1. 
62Cf. for this section FARE (1988, p. 149). 

Yv E V, Y >.. ~ I: P(h) C >"P(v); 

Yv E V, Y>.. > 0: >"P(v) = P(h); 

Yv E V, Y >.. ~ I: >..P(v) C P(h). 

For divisible goods the commodity space is X = IR':-. Divisible production factors similarly imply 
V = IR';' with respect to the factor space. 
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In this definition the criteria of subhomogeneity as well as superhomogeneity can 
equivalently be rewritten into 

P is subhomogeneous if 

P is superhomogeneous if 

Vv E V, V /L E ]0, 1]: /LP(v) c P(/Lv); 

Vv E V, V /L E ]0, 1]: P(/Lv) C /LP(v). 

p 

o v 

Figure 11.21: Linear homogeneity of an 
output correspondence 

In particular, the case of a linearly ho­
mogeneous output correspondence may be 
identified with a cone; see Figure 11.21. If the 
proportionate variation of all inputs implies 
a proportionate change of all outputs by the 
same factor or if more precisely 

x E P(v) {::=:} Ax E P(h) 

holds for all A > 0, then we speak of 
constant returns to scale. 

The output correspondence P is said 
to be superhomogeneous if every possible 
process (v, x) can be multiplied by a scalar 
A ?; 1 such that the resulting activity 
(Ax, h) is again possible. 

x E P(v) ==} Ax E P(h) V A ?; 1 

Similarly, in accordance with (11.4) for a superhomogeneous output correspondence 
P the graph GR of the production technology concerned must be an aureoled set as 
defined by (11.16),63 i.e. GR = aur GR . 

When the phenomenon of a proportionate increase of all factors associated with 
an overproportionate increase of the outputs is indicated by the term increasing 
returns to scale, then the superhomogeneity of the output correspondence P 
corresponds to non decreasing returns to scale. Conversely, there are nonincreasing 
returns to scale if the production technology is sUbhomogeneous. We speak 
of a sUbhomogeneous output correspondence P if each possible activity can be 
multiplied by a scalar /L E ]0, 1] such that there again results a possible process 
(/LV, /Lx). 

x E P(v) ==} /LX E P(/Lv) V /L E ]0, I] 

Thus, the output correspondence P is subhomogeneous when in accordance with 
(11.15) the graph of the production technology GR is a star-shaped set, GR = 
star GR .64 Looking at (11.6) makes it clear that a convex graph GR is only 
compatible with nonincreasing returns to scale.65 In Figure 11.22 the scalar is set 

63Tthis statement can be illustrated by the parabola x = v2 ! 
64This statement can be illustrated by a square root x = v 1/2 . 

65 Analogous to DEBREU (1959, p. 40 f.), the existence of scale economies is indicated at this point as 
a global property of a production technology. 
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to J.L = 1/2 purely as an example. 

1/2 P(ii) c P (ii/2) c P(ii) 

The treatment of the criterion of homogeneity with respect to the inverse input 
correspondence L ensues analogously. 

Definition 11.6 Supposing that all of the goods and factors are divisible, then an 
input correspondence L is called 

sUbhomogeneous if 
homogeneous of degree 1 if 
superhomogeneous if 

Vx E X, V)" ~ 1: L(h) c )"L(x); 

Vx E X, V)" > 0: ).,L(x) = L(h); 

Vx E X, V)" ~ 1: ).,L(x) C L(h). 

Again there are equivalent criteria for the subhomogeneity as well as for the super­
homogeneity. 

L is sUbhomogeneous if 

L is superhomogeneous if 

Vx E X, V J.L E ]0, 1]: J.LL(x) C L(J.Lx); 

Vx E X, V J.L E ]0, 1]: L(J.Lx) C J.LL(x). 

Proposition 11.6 The output correspondence P is subhomogeneous, homogeneous 
of degree 1, or superhomogeneous if an only if the input correspondence L is 
subhomogeneous, homogeneous of degree 1, or superhomogeneous respectively. 

Proof: Provided that )., ~ 1 and that Pis subhomogeneous, 1!J... P(v) C P(v I).,), 
then 

L(h) = {vi h E P(v)} 

= {vi x EllA P(v)} 

C {vi x E P(v/).,)} 

= {).,vl x E P(v)} 

= )"L(x) 

subhomogeneity 

with v:= vi)" 

Consequently, the subhomogeneity of L results from the subhomogeneity of P. The 
remaining proof is given by analogous arguments. • 

As already mentioned, Figure 11.22 illustrates the case of a sUbhomogeneous 
output correspondence and the case of a sUbhomogeneous input correspondence. 
Concerning the input requirement sets L(x), the scalar )., = 1/2 results in 

L(x) c 1/2 L(x) c L(xI2). 

The presented criterion of homogeneity should not be mixed up with the degree 
of homogeneity. A function f: JRn ~ [-00, +00] is homogeneous of degree 
r if ).,r f(x) = f(h) holds good for each x and for each )., > O. If we apply 
the analogous criterion to correspondences, then the output correspondence P is 
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P(v) 

v/2 V v 

~ 

~ 

~ 

L(x) 

L(x/2) 

v 
v 
v 

Figure 11.22: Subhomogeneity of a production technology 
homogeneous of degree r =1= 0 if and only if the input correspondence L is 
homogeneous of degree 1/,.66 

Ar P(v) = P(>..v) {=::} A l/r L(x) = L(Ax) 

A comparison to Proposition 11.6 shows that the subhomogeneity or the 
superhomogeneity of a correspondence must be strictly distinguished from the 
degree of homogeneity of this correspondence.67 

The treatment of the phenomenon of constant returns to scale in view of 
indivisible goods and factors immediately implies that not all of the possible 
activities (v, x) E GR can be multiplied by an arbitrary scalar A > 0 such 
that the outcome A(V, x) does not violate integer constraints. Even a possible 
proportionate increase of all inputs with A v E V does not imply that AX is an 
admissible commodity bundle, Ax ¢ X as well. Conversely, scalars exist for 
which the described problem cannot appear. If (v, x) fulfills the integer constraints, 
then, for instance, 2(v, x) cannot violate these restrictions. Thus, for a possible 
activity (v, x) E GR we speak of a possible change of the production level by 
the factor A if 

(v, x) E V x X, A > 0 ===} A(V, x) E V x X. 

After these preliminary remarks we can now establish criteria for the different forms 
of scale economies where the attention is directed to possible enlargements of the 
production level. 

66Cf. EICHHORN (1978, p. 218 ff.). 
671f for example the output correspondence P is homogeneous of degree , > 1. then the inverse 

input correspondence L is homogeneous of degree 1/, < 1, although both correspondences are not 
sUbhomogeneous. 
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Definition 11.7 68 Let (v, x) E GR be a possible activity. 
(a) The activity (v, x) generates decreasing economies to scale if every enlargement 
of the production level yields69 

V)... > 1: )...(v,x) i convGR. 

(b) The actIVIty (v, x) generates increasing returns to scale if every possible 
increase of the production level implies a possible activity, i.e. 

V)... > 1: )...(v, x) E V x X ==:} )...(v, x) E GR, 

and if for at least one possible increase of the production level (5: > 1) there is a 
possible activity (v,x) E GR with (-v,i) ~ 5:(-v, x). 

(c) Accordingly, the activity (v, x) generates constant returns to scale if every 
possible increase of the production level ()... > 1) implies a possible activity, but if 
there are no increasing returns to scale. 

For an idea of this definition we can refer to the production function x = L 413 L u J J . 
The indivisible output x is produced by an indivisible input u. As the last unit of 
the production factor becomes useless when only fractions of it are available, the 
productive part of the used quantity of the input u amounts to the greatest integer 
L u J not greater than u. Similarly, the maximal quantity of output 4f3 L u J may include 
unfinished and, therefore, unusable commodity units. Thus, x denotes the number 
of finished commodity units. 

As gathered from Figure 11.23, the convex hull of the graph 

GR= {(U,X)IXEZ+, x~ L4hLuJJ} 
is an (integer) convex cone with the origin (u, x) = (0,0). The bold dots are 
associated with quantities of input corresponding to multiples of 3, whereas the 
quantities of output are multiples of 4. Since no possible activity lies above the ray 
through the origin, the activities marked by bold dots obey constant returns to scale. 

Similarly, we can identify increasing returns to scale. Starting with the activities 
marked by 0, each possible variation of the production level generates a possible 
activity lying in the adjoined ray through the origin and the points 0. The smaller 
one of the two mentioned activities (u, x) = (2,2) generates increasing returns 
to scale since the greater activity (u, x) = (4,4) is dominated by (u, x) = 
(3,4); 70 thus, a doubling of the outputs can be realized by an underproportionate 
enlargement of inputs. 

Before continuing the analysis, it is helpful to stress some aspects of scale 
economies. Constant returns to scale seem to be a plausible assumption on 

68Cf. FRANK (1969, p. 43) or FARE (1988, p. lSI). 
691n particular, all possible increases of the production level imply AX ~ P(Av). A graphical 

representation of this definition results from point A in Figure n.22. 
7oFor the concept of technical efficiency of an activity, see Section 2.4.1. 

Furthermore, EDWARDS, STARR (1987) discuss at this point specialization effects, where the 
indivisibility of workers imposes an upper bound on the degree of specialization. Although specialization 
and cooperation of individual people as a cause for increasing returns to scale is emphasized in the 
literature on the division of labor (see e.g. GROENEWEGEN (1987)), the associated phenomenon 
conjured up by indivisible persons usually remains unmentioned. 
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production technologies if we assume that each possible activity may be copied.?1 
This idea rules out at least decreasing returns to scale and is compatible with 
indivisible goods and factors. However, the reverse that each possible activity 
may be divided into activities of the same size turns out to be a fallacy regarding 
indivisible goods and factors . 

Supposing again for divis-
ible goods and factors that the x 

production level for all possi-
ble activities may be increased 12 
and decreased arbitrarily, then 
even increasing returns to 
scale are excluded. Never­
theless, indivisible goods or 
factors become unusable by a 
physical division. 

8 

4 

o 
3 6 9 

The criterion of increas­
ing returns to scale loses its 
meaning when it is applied 
to inefficient activities (the 
concept of efficiency will be Figure 11.23: Integer constant returns to scale 

u 

introduced in Section 2.4.1). At this point it may be enough to examine the activity 
(v, x) = (2, 1), which is inefficient because a larger output can be produced by the 
same input. This activity satisfies the technical requirements of increasing returns to 
scale, but the waste of an additional output unit with respect to the activity concerned 
is the reason for this. Each copy of this activity leads to a corresponding copy of the 
ignored output unit such that, technically, there must be increasing returns to scale. 

The described phenomenon does even not apply to the activity (v, x) = (2,2) 
marked by O. As shown by Figure 11.23, no possible activity with the same output 
can be carried out at smaller inputs or permits a larger output at constant inputs. 
Both criteria are only satisfied because the activities marked by bold dots cannot 
be arbitrarily divided. Accordingly, goods and factors which are not arbitrarily 
divisible can be one source of increasing returns to scale.72 On the one hand an 
overproportionate increase of the outputs can be achieved by joining the excess 
capacities; see activities?3 (v, x) = (2,2) and (u, x) = (4,5). On the other 
hand an underproportionate increase of the inputs is sufficient for doubling the 
outputs; see activities (v, x) = (2, 2) and (v, x) = (3,4). 

71Cf. SILVESTRE (\987. p. 81). 
72KooPMANS (\957. p. 152) states: "I have not found one example of increasing returns to scale 

where there is not some indivisible commodity in the surrounding circumstances." 
However. VARIAN (1992. p. 15) offers a further determinant of increasing returns to scale. For example. 
doubling the quantity of steel in producing oil pipes by increasing the diameter of the pipe results in an 
overproportionate enlargement of the volume of a pipe. Thus. we speak of scale economies of the third 
dimension. 

73The convention introduced in Definition 11.3 reflects the problem at hand more accurately. 
Multiplication of the activity (v. x) = (3 . 4) by A = 2/3 leads to A(V. x) = (2,8/3), with 
the completed fraction of the last unit of the indivisible good given by X4 = X - LxJ = 2/3 . 
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Although each possible activity can theoretically be repeated exactly, it is useful 
with respect to scarce resources to also permit decreasing returns to scale. Although 
a production technology may exhibit constant returns to scale when all of the inputs 
are increased, it is, however, usual to speak of nonconstant returns to scale with 
regard to the variable inputs. For instance, the production function f(VI, V2, V3) = 

V~l V~2 V~3 with al +a2 +a3 = 1 and with an indivisible V3 obeys integer constant 
returns to scale. However, it is not be at all difficult to speak of decreasing returns 
toscalefor f(VI,V2,1)=v~lv~2 with al+a2<1. 74 

2.3.2 Additivity of a Production Technology 

In the preceding expositions we compared activities which differ only by a positive 
constant factor of their production level. Both activities (v, x) and (AV, AX) lie on 
the same ray through the origin. The idea that the resulting activity is composed 
of two independent activities - for instance (2v,2x) = (v, x) + (v, x) - is now 
stated more precisely by the assumption 

[T2] Additivity: The production technology is additive. 

A production technology is called additive if the sum of two activities (v, x) and 
(v, i), which can be carried out separately, is again possible. 

(v,x), (v,i) E GR => (v+v), (x+i)) E GR 

As long as this assumption refers to two processes which are each viable on their 
own, there is no dissent.75 But, additivity requires that each integer multiple (integer 
increases to scale) of a possible activity is possible as well. 

v (v, x) E GR, V k E Z+ : (kv, kx) E GR 

With that, Assumption [T2l (Additivity) immediately excludes decreasing returns 
to scale if all of the relevant production factors are included in the technology. 
Furthermore, additivity together with the possibility of inaction (v, x) = (0,0) E 

GR implies conv GR to be a cone; see Figure II.23. While the union of two 
observed activities to a particular process causes no difficulties, the assumption 
of the possibility to reproduce an activity arbitrarily often makes clear that the 
additivity of a production technology does not consider factor constraints. 

However, scarce resources like the factor land are frequently not taken into 
account when describing a production technology just because the production 
factors are not available in an arbitrary quantity. This confusion of technology -
in the sense of knowledge of feasible production methods - and factor constraints 
leads to different interpretations of a production technology. Since it usually seems 
to be impossible to duplicate a firm exactly, the assumption of additivity is often 
evaded. Two fundamental reasons can be offered for this. 

74Por instance, V3 may be the number of blocks of a power station. 
75Look for example at the case of two countries before and after taking up trade. 
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1. The firm's production technology cannot be completely specified. 

2. Scarce resources prevent from repeating production processes. Here even 
the knowledge of production methods represented by skilled workers can be 
understood as a scarce resource. 

Form the point of view of the second argument we have the following interpretation 
of additivity: understanding the sum of activities of individual firms as a process of 
an industry sector, the assumption of additivity means that in this sector prevails free 
market entry.16 This interpretation does not refer to the free disposable knowledge 
of feasible production methods, which is in principle free, but it directs the attention 
to the restrictions subjected to each additional firm. Neither scarce resources nor 
bounded opportunities of sales prevent market entry. 

The criterion [1'2] of an additive production technology implies 

x E X, v E L(x) } - L( -) 
- X - L(-) ===> v + v E x + X XE , VE x 

for the corresponding input correspondence or more generally77 

Since the sum of two input requirement sets is defined by 78 

we can summarize this relation by 

Def"mition 11.8 79 An input correspondence L is called superadditive if it has the 
following property. 

with xi E X (i = 1, ... , k) 

Provided the existence of an input vector 

is guaranteed for a superadditive input correspondence L, then we speak of strict 
superadditivity . 

76Cf. FRANK (1969, p. 15). 
77 A mapping, being additive as well as homogeneous of degree I, is said to be linear. Cf. BERGE 

(1963, p. 133). EICHHORN (1978, p. 195) shows that each linear function f: JR" -+ JRm is detennined 
by a unique m x n-matrix A, f(x) = Ax . 

78See Appendix B. 
79The thought of superadditivity becomes comprehensible when we consider that an input 

correspondence L is said to be additive if it fulfills the functional equation L(xl) + L(x2) = L(xl + x2) 
for all Xl, x2 E X. Cf. EICHHORN (1978, p. 217). 
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Accordingly, arbitrary activities of a superadditive input correspondence can be 
combined in the sense of addition to a possible activity. Furthermore, the notation 
L(x l )+L(x2) C L(XI+x2) states that there may bean input vector v E L(xl+x2) 
not belonging to L(x I) + L(x2). If such an input vector v exists, then it must have at 
least one smaller component than all of the input vectors vI + v2 with vI E L(xl) 
and v2 E L(x2) since the opposite case is excluded by [L2] (Attainability of 
Each Production). If two different activities can be integrated in a particular activity 
permitting the production of the same outputs at smaller inputs, then we also speak 
of a synergy effect.8o The assumption of strict superadditivity says that such a 
synergy effect emerges for each arbitrary combination of possible activities. 

Analogous to the superaddi-
tivity of the input correspondence 
L, the superadditivity of the 
output correspondences P results 
from [T2] (Additivity). 

with vi E V (i = 1, ... , k) 

A graphical representation of a 
superadditive output correspon-
dence P is given by Figure II.24,8 I c· 
where for the sake of simplicity Xl 
two divisible goods XI and X2 

are supposed. If we carry the 
production possibility set P(vl ) Figure II. 24: Superadditivity of the output 
tangentially to the set P(v2) correspondence P 

rotated by 1800 , then a region 
marked by OABC results. 

If P(vl ) + P(v2) = P(vl + v2) = OABC holds exactly, then additivity 
results as a special case of a superadditive output correspondence P. Furthermore, 
if there is the possible output combination above ABC, then there is a further 
synergy effect82 and we speak of a superadditive output correspondence P. Strict 
superadditivity requires the transformation curve corresponding to P(v l + v2) to lie 
completely above ABC; see the dotted line. 

A further conclusion from [T2] (Additivity) is drawn from Proposition II.S. 

(v, x), (v, i) E conv GR =} (rvl, LxJ), (rvl, LiJ) E GR Proposition II.5 

=} (rvl + fvl, LxJ + LiJ) E GR Assumption [T2] 

80Cf. HAMPDEN-TuRNER (1970, p. 190). 
81 An equivalent representation is used in the theory of international trade to deduce the common 

transformation curve from the transformation curves of two countries. Cf. e.g. S [EBERT (1994, p. 160). 
82 A reason for such a synergy effect has been described in Figure 11.23 by the activity (v, x) = (2,2). 
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The question whether (r v + v1, Lx + iJ) E GR is also satisfied is answered by 
the following proposition. This supposition is interesting since it takes two effects 
into account. On the one hand the sum of completed fractions of a commodity j 
exceeds unity, xj + xj = x j - Lx jJ + x j - Lxd ?; 1. The advantage of combining 
the two activities is reflected with regard to good j by the inequality Lx j + x jJ ?; 

Lx jJ + Lx jJ. On the other hand it is possible that the sum of the "missing capacities" 
with regard to factor i is larger than one, vi + Vi = rVi1 - Vi + rVi1 - Vi ?; 1. 
Probably, the combination of both activities gets by with a lower quantity of input, 
rVi + vil ;a rVi1 + rVi1. 83 

Proposition 11.7 (Joint Production and Use) Under the assumptions of Proposi­
tion //.5 and under [T2] (Additivity) the elements (v, x) and (v, i) in the convex 
hull of the graph GR of the production technology satisfy 

(rv + v1, Lx + iJ) E GR . 

Proof: Let (v, x) and (v, i) be two points in the convex hull of the graph GR, then 
by Theorem B.4 (CARATHEODORY), p. 293, there are, respectively, m + n + 1 

possible activities such that 

m+n 

(v, x) = L(AvVV , AvXV) 
v=O 

m+n 

(v, i) = L (i. IL vlL , i.ILXIL) with (vIL , xIL ) E GR, i E A m+n+] . 

IL=O 

The addition of both equations is carried out under consideration of [T2], i.e. 

(v, x) E GR => (v, i) E GR with (v, i) := (2v, 2x). 

This yields a convex combination 

m+n m+n 

(v + v, x + i) = L(~ yV, ~ iV) + L(~ yIL, ~ ilL), 
v=O IL=O 

where the sum of the nonnegative coefficients is 1. 

Taking (v + v), (x + i») E conv GR into consideration, we obtain the possible 
activity (rv + v1, Lx + iJ) E GR in accordance with Proposition 11.5. • 

Regarding Proposition 11.7, two remarks are necessary. 

83The production technology must allow such a combination. For example. the excess capacities of 
two parallel operating shipyards do not complement each other without further assumptions. 
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1. As mentioned above, [1'2] (Additivity) excludes decreasing returns to scale. 

2. However, increasing returns to scale are usually inconsistent with the 
assumption of an integer convex graph GR. For divisible goods and factors a 
convex graph even excludes increasing returns to scale. 

However, Proposition 11.7 suggests allowing locally the phenomenon of increasing 
returns to scale even in the case of a production technology with integer constant 
returns to scale. Not only the mutual provision of excess capacities84, but also the 
capability of completing large projects by the combination of separate activities 
comprises the potential of increasing returns to scale.85 

2.3.3 Factor Constraints 

The previous explanations leave factor constraints out of consideration. But usually 
all of the relevant production factors will be available to the firm in limited 
quantities. As shown by the subsequent arguments, the main properties of a 
production technology remain unaffected even after introducing factor constraints. 

Denoting the maximal available quantity of factor i by hi> 0 (i = 1, ... ,m), 
a restricted factor space Vb C V results, where 

Vb = {v E VI P(v) =/:- 0, v ~ b} = {v E VI v ~ b} . 

According to [P3] (Disposability ofInputs) the greatest set of all feasible commodity 
vectors is given by P(b) with P(v) c P(b) for all v E Vb. Noting [P5] 
(Boundedness) this set is also bounded, and together with [P6] (Closedness) P(b) 
is not only closed but also compact. Consequently, [P2] (Attainability of Each 
Production) can only be maintained when the commodity space X is understood 
as a subset in P(b). 

The factor space Vb is restricted to the factor constraints Vi ~ hi (i = 1, ___ , m) 
and yields the output correspondence86 

with Vb = {v E VI v ~ b}_ 

Besides the (compact) domain Dom P = Vb we obtain the (compact) range 
Xb := Range P = P(b) under consideration of P(v) = P(v) c P(b) for all 
v E Vb-

As before, the sets L(x) = {v E Vbl x E P(v)} determine the inverse (input) 

correspondence L of P for all x E Xb- Due to Xb = P(b) or, equivalently, b E 

L(x) for all x E Xb, we get the domain Dom L = {x E Xbl L(x) =/:- 0} = Xb 
of the input correspondence 

with Xb = P(b). 

84The example of a building contractor using a crane in several separately undertaken building projects 
has already been mentioned. 

85 KANEMOTO (1990) refers to the exchange and the joint use of indivisible goods as a reason for the 
spatial concentration of economic activities by the firm's choice of location. 

86Cf. BAUMOL, PANZAR, WILLIG (1982, p. 52). 
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Analogously, it can be shown for the range of 1: Range L = Dom P = Vb. Given 
the inverse correspondences P: Vb --+ s:JJ(Xb) and L: Xb --+ s:JJ(Vb), the graph 

OR := {(v, x)1 v E Vb, X E Pcv)} 

indicates the collection of all attainable activities under the given factor constraints 
b. All established axioms can be transferred to this case by superseding the factor 
space V and the commodity space X by Vb and Xb respectively. The new input 
requirement sets L(x) are to be determined as the intersection of the original input 
requirement sets L(x) and the restricted factor space Vb, L(x) = L(x) n Vb so that 
each input requirement set with L(x) C {vi 0 ~ v ~ b} is bounded. Axiom [P2] 
(Attainability of Each Production) now states that each commodity bundle in Xb is 
in fact producible. Moreover, Axiom [LS] (Boundedness), which is usually hard to 
interpret, is easier to grasp since L(x) = 0 for all x ¢ Pcb). 

We refer to the next example to illustrate the above implications of factor 
constraints for the modified output correspondence P and the inverse input 
correspondence L. Supposing that the examined firm is confronted by a factor 
space bounded by factor constraints Vb = {v E V I v ~ b}, then the n-dimensional 
restricted commodity space Xb = P(b) includes all output vectors producible by 
utilizing all of the available factor quantities b. If the outputs x j (j = 1, ... , n) 
are indivisible building projects with x j = x j or x j = 0, where each project x j 
excludes the realization of all the remaining projects at the factor constraints b, then 
the production possibility setS7 is 

For two alternatives with x = G~) we would correspondingly have Pcb) 

{ (~), (~), (~)}. The set of all feasible projects is opposite to the following input 
requirement sets for j = 1, ... , n. 

L(e1Tx e j ) = {v E Vbl v suffices for the production of alternative j} 

2.4 Optimal Activities 

2.4.1 Technically Efficient Production 

The two Axioms [P3] (Disposability of Inputs) and [P4] (Disposability of Outputs) 
are based on the idea that not only factors but also goods can be wasted without 
impairing the production process. In both cases resources are destroyed and 
therefore withheld from alternatively possible uses. Before it can be settled how 
to discipline firms which use unnecessary amounts of scarce resources, we have to 
explain what is meant by a waste of resources. 

A firm with the order to produce a given commodity bundle x E X does 
not waste any inputs if for a given production technology a certain output cannot 

87 A good survey of problems where the feasible solutions must be binary (0-1 variables) is given, for 
example, by PADBERG (1979). 
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be produced with less than the chosen quantities of inputs. Technically, an input 
vector v in the input requirement set L(x) fulfills this criterion of technical input 
efficiency if there is no input vector v ~ v also being sufficient to produce the 
commodity bundle x. 88 All input vectors satisfying the criterion of input efficiency 
are collected in the set Eff L(x) C L(x) with89 

ff 
\

{VI v E L(x), v ~ v =} V ~ L(x)} 
E L(x):= o 

for x E X 

for x ~ X 

and the elements of Eff L(x) are said to be input efficient. In the same way, an 
activity (v, x) is said to be input efficient if it meets the relation v E Eff L(x). In 
particular, Eff L(O) = {O} ensues from x = O. A firm which does not produce 
anything is not allowed to use any inputs. 

Figure 11.25 illustrates an input re-
quirement set L(x) including a divisible 
production factor I and an indivisible 
production factor 2. All of the input efficient 
vectors in Eff L(x) C L(x) are marked 
by bold dots. For these input vectors there 
are no alternative input vectors lying "left 
below" the respective input efficient point; 
see point A. 

Analogous to the input efficiency with 
held fixed inputs v, all output vectors x 
reflect a waste of goods (within the firm) if 

V2 

5 

4 

3 

2 

o 

• 

B o 
A --------------.--
I 

at least one output can be increased without . ... 
increasing the inputs. Again all commodity FIgure 11.25: TechnIcal mput effiCIency 
vectors x, satisfying this criterion of technical output efficiency for a given input 
vector v, are gathered in the set Eff P(v) C P(v) with 

ff 
\

{XI x E P(v), i;;:: x =} i ~ P(v)} 
E P(v):= o 

for v E V 

for v ~ V. 

An activity (v, x) is said to be output efficient if x E Eff P(v). 
The theory of the firm often supposes that firms produce only one commodity 

x E X with X C IR+ In this case Eff P(v) can be rewritten as 

x E Eff P(v) {:=::::} f(v):= max {xl x E P(v)} = max {xl v E L(x)} , 

where the function f: V ~ X denotes a production function. Both the 
existence and the properties of a production function will be discussed later in more 
detail. Furthermore, the set of all input vectors producing precisely the output x is 

88 SHEPHARD (1953, p. 12) assumes furthermore the boundedness of the set of efficient input vector 
since no output vector can be efficiently produced by an infinitely large input vector. In this sense the 
COBB-DOUGLAS production function describes only a restricted production technology. For a broader 
discussion, see FARE (1972, 1980a). 

89 Apart from this efficient subset in L(x) FARE defines other subsets with weaker efficiency properties. 
Cf. FARE (1988, p. 11). 
As long as we assume divisible factors, efficient input vectors will always lie in the boundary 8L(x) of 
the examined input requirement set L(x), Eff L(x) c 8L(x) c L(x). Cf. SHEPHARD (1953, p. 15). 
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called an isoquant.90 

Isoq(x) := (vi x E P(v), x> x =} X ¢ P(v)} 

= (vi v E L(x), x> x =} v ¢ L(x)} 

Although Isoq(x) and Eff L(x) are subsets in the factor space V, the isoquant is 
closer related to the set Eff P(v) C X. An activity (v, x) yields an input vector 
v E Isoq(x) if and only if the activity is output efficient, i.e. x E Eff P(v). 

For various reasons both concepts of efficiency may lead to different results. Not 
all of the output efficient activities (v, x) are input efficient at the same time et vice 
versa. 

1. If we suppose a LEONTIEF production function x = min {VI, V2} with two 
divisible production factors, then each point on the right-angled isoquant 
except at the kink point is not input efficient. Conversely, each activity 
(VI, V2, x) is output efficient if (VI, V2) is an input vector on the isoquant 
Isoq(x). 

2. For the case of an indivisible factor and a perfectly divisible good x E IR+ 
we offer the example of an input requirement set L(x) = {v E zt I v'j v~ ~ 
x} with cr, f3 E ~. First of all, it is to be noted that the input vector 
v = G) is input efficient for i = 0.5. 

v E Eff L(i) = {vi v E L(i), v S v =} V ¢ L(i)} 

Conversely, the quantity i = 0.5 is not output efficient for v = (i) 
because x = 1 > i = 0.5 excludes i to be an element of 

EffP(v) = {xlxEIR+, i>x =} i¢ P(v)}, 

where the production possibility set is given by P(v) = {XI 0 ~ x ~ v'jv~}. 
Thus, the activity (VI, V2, i) = (1, 1, 0.5) is input efficient, but not output 
efficient. However, the activity (VI, V2, x) = (1, 1, 1) is input efficient as 
well as output efficient. 

Summing up the criteria of input and output efficiency, a possible activity (v, x) is 
called technically efficient if it is both input and output efficient. 

EffGR := {(v, x)1 (v, x) E GR, (-v, i) ~ (-v, x) =} (v, i) ¢ GR} 

In particular, the possibility of inaction (v, x) = (0,0) is technically efficient.91 

90Besides this definition in VARIAN (1992) alternative definitions are given in FARE (1988). 
91 It is frequently supposed that a set of efficient activities can be described by a function t. Similar to 

the production function f. the implicit function t with 

t(v, x) = 0 <==> (v, x) E EffGR 

is called the transformation function. For given factor stocks v the graph of the transformation function 
is known as the transformation curve. 
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The search for an appropriate measure for the efficiency of an activity (v, x) 
begins with a look at physics. First of all, it should not be forgotten that each 
machine absorbs more power92 than it delivers because losses by friction, air 
resistance, heating, and so on arise. The extent of the losses is measured by the 
(dimensionless) efficiency. 

(II.22a) 
._ delivered power 

efficiency 11 
.- supplied power 

If supply and emission of power do not need the same time, then it can be more 
useful to express the efficiency as a ratio of two kinds of work. 

(II.22b) ffi . useful work 
e clency 11 := I k 

tota wor 

Due to unavoidable losses, the efficiency is always smaller than one; 11 < 1 . 
In this sense AFRIAT (1972) suggests using 11 = il/(v) as a measure for 

the output efficiency of a carried out activity (v, i), where /(v) indicates the 
maximal amount of the good producible by the input vector V. All of the following 
expositions are founded on this concept. The trouble in defining a unique efficiency 
measure results from the observation that the input vector v or the output vector 
x yields no unified measures for the supplied or emitted power. After introducing 
prices this problem can be handled more easily. 

Beginning with a measure of input efficiency of an activity (v, x), the function 
111: V x X -+ [0, +00], which is not exactly specified for the moment, is 
accepted as an efficiency measure for the input correspondence L if it satisfies 
the following conditions.93 

[Ell] The inequality I1I(V, x) ~ 1 holds if and only if the activity (v, x) is 
possible, v E L(x). 

[EI2] The equation I1I(V, x) = 1 holds if and only if the activity (v, x) is input 
efficient v E Eff L(x). 

[EI3] For v, AV E L(x) with A> 0 we have I1I(AV, x) = II).. I1I(V, x). 

[EI4] Given v, v E L(x) and v ~ v yields I1I(V, x) < I1I(V, x). 

[EI5] Given v E L(x) and v ¢ Eff L(x), I1I(V, x) should relate v to an V E 
Eff L(x). 94 

92 Power is defined as work per required time. The units of work are measured in joule and the units of 
power are measured in watt. 

93Cf. BOL (1983, p. 119 f.) or BOL (1986, p. 382). 
94RUSSELL (1985, p. 123) presents a theorem whose assumptions suffice for [EIS] to be implied by 

[EI2], [EI3], and [EI4]. 
RUSSELL (1987, p. 212) discusses a further requirement which states that two "comparable" activities 
(v, x) and (v, i) should have the same efficiency degree 7/1 (v, x) = 7/1 (v, i). The activities (v. x) 
and (v. i) are said to be comparable if two vectors 1 and p. exist besides the unit matrix I such that 
v = 1 TIv. i = p. TIx, and L(i) = (vi v = 1 TIv, v E L(x)} hold good. 
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Since all of the five conditions except the third can be interpreted without any 
difficulties, we need only to mention the property of homogeneity [EB]. Doubling 
the quantities of an input vector v, [EB] requires that the resulting input vector 2v 
is indicated to be half efficient. This property of the efficiency measure '11 is useful 
with respect to the efficiency '1 according to (11.22a) or (II.22b) provided the input 
vectors v or )., v are interpreted as supplied power at a constant delivered power x. 

In a first approach FARE, LOVELL (1978) follow FARRELL (1957) and define a 
(radial) measure of technical input efficiency :Fi: V x X \ to} ~ [0, +00] with 

(11.23) <r' ) Imin{)"~OI).,VEL(X)} 
J'I(V, x := 

+00 

for v E L(x) 

for v ¢ L(x), 

V2 

v 

--lI'-'~------~ VI 

o 

which is called FARRELL's input efficiency 
measure; this measure will be used later 
in a slightly modified form as the input 
distance function tl(V, x) = 1/:Fi(v, x). 
If :Fi(v, x) = X > 0, then in 
accordance with Figure 11.26 FARRELL'S 
measure corresponds to the distance ratio 

:Fi(v, x) = IIvll/llvll 

with v = X v , where the input vectors 
v and v lie on the same ray through the 
origin.95 

Before going into the properties of this 
measure with regard to the requirements 
[EIl]-[EI5], we can establish analogous 

conditions for measuring the output efficiency of an activity (v, x). A function 
'10: X x V ~ [0, +00] is accepted as an efficiency measure for the output 
correspondence P if it has the following properties.96 

Figure 11.26: FARRELL'S input 

efficiency measure 

[EOl] The inequality '1o(x, v) ~ 1 holds if and only if the activity (v, x) is 
possible, x E P(v). 

[E02] The equation '1o(x, v) = 1 holds if and only if the activity (v, x) is output 
efficient, x E Eff P(v). 

[E03] Given x, Ax E P(v) with )., > 0 yields '10(Ax, v) = ).,'1o(x, v). 

[E04] For x, i E P(v) and x ~ i we have '1o(x, v) > '1o(i, v). 

[E05] Given x E P(v) and x ¢ Eff P(v), '1o(x, v) should relate x to an 
i E Eff P(v). 

95The idea of ascertaining efficient input vectors by rays through the origin has already been introduced 
in the explanations of Figure 11.16, p. 30. The rays through the origin also served for the detennination 
of boundary points of the input requirement sets. 

96Cf. BOL (1983, p. 120). 
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A comparison to [Ell ]-[EI5] shows that the requirements [EO 1]-[E05] indicate 
similar economic facts. Nevertheless, [E03] now requires that the efficiency 
measure '10 is homogeneous of degree 1 in x. Multiplication of the outputs (or 
the delivered power) by the factor A at constant inputs (or supplied power) changes 
the efficiency degree by the same factor. 

Analogously, we call the function :Fo: X \ to} x V -+ [0, +00] with 

(11 .24) :Fo(x, v) := !min (A ~ 01 X/A E P(v)} for X E P(v) 
+00 for x ¢ P(v) 

FARRELL's output efficiency measure.97 This measure will be seen later 
in a modified form as an output distance function to(x, v) = :Fo(x, v). A 
description analogous to Figure 11.26 has been omitted. For x = x/ :Fo(x, v) the 
corresponding distance ratio becomes :Fo(x , v) = IIxll/llxll . 

The relationship between FARRELL's 
efficiency measures becomes evident when 
we suppose a linearly homogeneous output 
correspondence P as in Figure 11.27. 
Then by Proposition 11.6 the inverse input 
correspondence L is linearly homogeneous 
such that Av E L(x) <==> x E P(Av) <==> 
X/A E P(v). Starting at FARRELL'S input 
efficiency measure, we gain from this 

:F[(v, x) = min (A ~ 01 Av E L(x)} 

= min (A ~ 01 X/A E P(v)} 

= :Fo(x, v) 

x 

p 

o 
ii 

Figure 11.27: Comparison of 
for a possible activity (v, x) E OR with FARRELL'S efficiency measures 
x '* O. In this case both efficiency measures 

v 

associate the activity (v, x) with the same efficiency degree.98 As shown by Figure 
11.27, the correspondence can be expressed as distance ratios referring to the marked 
activity (v, i). The two efficiency measures yield 

v i 
:F[(v , i) = -:: = -;: = :Fo(i, v) 

v x 

or, equivalently, v/i = v/x. 
The weakness of FARRELL's input efficiency measure can be clarified at once 

by two examples where the analogous problems can also be observed with respect 
to the output efficiency. Referring to perfectly divisible production factors, the 
measure at hand fails again for a LEONTIEF production function. For instance, 
for two production factors the function :F[ associates each point on a right-angled 

97Cf. FARE. LOVELL (1978. p. 153). 
The idea of ascertaining output efficient commodity bundles by rays through the origin corresponds to 
the idea of representing boundary points of the production possibility set by rays through the origin. See 
the remarks to Figure 11.13. 

98 Under similar conditions FARE (1988. p. 37) derives the inverse relation between the input distance 
function I{ and the output distance function 10. i.e. I[(V. x) = Ijlo(x. v). 
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isoquant with unity, although an input vector can only be efficient if it is marked by 
the kink point of the isoquant. The second example refers to indivisible production 
factors. In contrast to [EI2] even the inefficient input vector, according to point B 
in Figure 11.25, is associated with unity by FARRELL'S measure. Also point C in 
Figure 11.28 seems to be input efficient. 99 

Both problems result from the fact that the radial efficiency measure J:j does 
not compare the input vector v concerned to all the input vectors v ~ v. 
An efficiency measure avoiding the above difficulties is suggested by FARE and 
LOVELL. Assuming an input vector v E L(x), each input vector v with 
o ~ v ~ v can be expressed as v = ()..IVI, ... , AmVm)T with Ai E [0,1] (i = 
1, ... , m). If k denotes the number of positive coefficients Ai, then the function 
:R: V x X \ {OJ ~ [0, +00] with 

._ {min {I/kL:1 Ail (AI VI, ... , AmVm).T_E L(x), 
:R(v, x).- Ai E [0, 1] (l - 1, ... , m)} 

+00 

for v E L(x) 

for v ¢ L(x) 

is called RUSSELL'S input efficiency measure; this function satisfies the premises 
[EI1]-[EI5].100 Since RUSSELL'S efficiency measure always considers the case 
k=m with Ai=A (i=I, ... ,m), wehave :R(v,x)~J:j(v,x). 

The treatment of the efficiency term with respect to the convex hull of an input 
requirement set L(x) takes place by 

Definition 11.9 101 Given a commodity bundle x EX, an input vector v E L(x) 
is called an input efficient with respect to the convex hull convL(x) if there is no 
vector v E convL(x) with v:s v. The set of all input vectors which are efficient 
with respect to the convex hull of L(x) is denoted by Eff (conv L(x)). 

Both FARRELL'S and RUSSELL'S efficiency measure lose part of their 
importance when the input requirement set L(x) is substituted by its convex hull 
conv L(x). At least three reasons for this shortcoming can be given. 

1. Efficient points need not lie in the boundary of the convex hull; see point A 
in Figure 11.28. 

2. Not every point lying on the boundary of conv L(x) is an efficient input vector; 
see point D in Figure 11.28, which is not integer. 102 

99FARE (1975) gives similar examples. However, the reason why FARRELL'S efficiency measure is of 
great importance is that many shortcomings cannot arise when besides input efficiency the cost efficiency 
introduced at a later stage is required, too. 

lOOFor the proof, see FARE, LOVELL (1978, p. 158 ff.). Furthermore, a detailed discussion of the 
presented efficiency measures is given by FARE, GROSSKOPF, LOVELL (1994). Moreover, ZIESCHANG 
(1984) suggests a combination of both efficiency measures 9? and :Fr. 

lOlCf. FRANK (1969, p. 45). 
102The marked lines do not correspond to a cut through the production surface GR. FRANK (1969, 

p. 54) calls them iso-metric lines. 
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3. Only under the additional 
assumption [L 7 a] (Integer Con­
vexity) we can rule out that an 
input vector v E V with v E 

conv L(x) and v ¢ L(x) is 
declared to be input efficient; 
see point B in Figure 11.18, 
p. 32. 
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.c . 

OL-------------------~Vl Conversely, neither measures of 
input efficiency become absolutely 
useless so that they are still very 
important within the analysis. Figure 11.28: Input efficiency with respect to 

convL(x) 

1. An inefficient input vector v E L(x) never becomes an efficient vector 
by forming the convex hull conv L(x). For instance, FARRELL's efficiency 
measure yields 

:F{(v, x) = min (A. ~ 01 A.v E L(x)} ~ min {A. ~ 01 A.v E convL(x)}. 

2. Not all efficient input vectors v E L(x) with :F{(v, x) = 1 are declared 
to be inefficient after the transference to the convex hull cony L(X) .I03 At 
least the (input efficient) extreme points of cony L(x) are also declared to be 
input efficient. If v denotes an extreme point of conv L(x), then the relation 
v ¢ convL(x) holds for all V:5 v. (Otherwise [L3] (Disposability of 
Inputs) would imply a contradiction.) With that it ensues for the extreme 
point v E L(x) : 

.??(v, x) = :F{(v, x) = 1 . 

Remember the fact that convL(x) contains at least one extreme point. 

3. If FARRELL'S efficiency measure :F{(v, x) is related to the set convL(x), then 
a vector v = :F{(v, x)v is generated which can be expressed by (11.13), 
p. 28, as a convex combination of extreme points and extreme directions in 
convL(x). 

4. Another reason to retain FARRELL's efficiency measure becomes apparent 
after the concept of cost efficiency has been introduced. 104 

Definition 11.9 can be transferred without difficulty to the output efficiency yielding 
analogous implications. 

103Convex input requirement sets yield v E Eff L(x) ==> J=i(v, x) = I in every case. 
I04See the remarks to Figure 11.31. 
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Definition 11.10 Let v be an admissible input vector; v E V. A commodity bundle 
x E P(v) is said to be output efficient with respect to the convex hull conv P(v) 
if there is no vector x E conv P(v) with x ~ x. The set of all commodity 
bundles which are efficient with respect to the convex hull of P(v) are denoted by 
Eff (conv P(v)). 

x 

o v 

Figure 11.29: Efficiency with respect to 

the convex hull of the graph GR 

If points 0, A, B, and C in the figure opposite 
illustrate efficient activities, then there is no 
possible activity lying left above the points 
concerned (see point B). Moreover, A' is 
an output efficient but not an input efficient 
activity; the output x cannot be increased, 
whereas the input v can be reduced by one 
unit. At the same time point B illustrates 
that efficient activities, i.e. activities being 
output as well as input efficient, can lie in 
the interior of the convex hull of the graph 
GR without any problems. For this reason 
we define further: 

Definition 11.11 105 An activity (v, x) E GR is called technically efficient with 
respect to cony GR if the production technology satisfies 

(-v, x) ~ (-v, x) ¢::::::} (v, x) ¢ convGR . 

Proposition 11.8 Under [L3] (Disposabijity of Inputs) and [L4] (Disposabijity of 
Outputs) all of the extreme points (ve , xe) of cony GR with xe > 0 are efficient 
with respect to conv GR. 106 

Proof: The assumption that the extreme point (ve , xe ) would not be efficient with 
respect to cony GR causes a contradiction, as it implies the existence of a point 
(v, x) EconvGR with (-v,x)~(_ve,xe). Putting ~v:=ve_v~O and 
~x := x - xe ~ 0, it follows for A > 0 

(-v, x) = (_ve, xe) + (~v, ~x) ~ (_ve, xe) 

~ (_ve , xe ) - A(~V, ~x) =: (-Vi, x'). 

Because of xe > 0 the inequality xe - A~X = x' ~ 0 is fulfilled for sufficiently 
small A > O. As it has been shown in the proof of Proposition 11.5 under Axioms 
[L3] and [L4], we get (V',X') E convGR. Thus, (ve,xe) can be expressed 

105ef. FRANK (1969, p. 43). 

I06Extreme points (v', x') not satisfying x' > 0 can also be efficient with respect to conv GR. 
However, in this case there are also counterexamples. For instance, both activities (v. XI. 0) and 
(v , O. x2) in Figure 11.11, p. 26, can never be efficient with respect to conv GR. 



2 Theory of the Firm 57 

as a convex combination of the two points (v, i) and (Vi, x') contradicting the 
assumption that (Ve , xe ) is an extreme point of conv GR. • 

Proposition 11.9 No activity (v, x) E GR obeying increasing returns to scale can 
be efficient with respect to conv GR. 

Proof: Supposing (v, x) E GR obeys increasing returns to scale, there is a 
possible increase of the production level ~ > 1 and an activity (v, i) E GR 
such that (-v, i) ;:: ~(-v, x). Together with the possibility of inaction (0,0) E 

GR we get the convex combination 

(1 - I/~)(-O, 0) + I/~(-v, i) ;:: (-v, x). 

Since the left hand side is an element of conv GR, the process (v, x) cannot be 
efficient with respect to conv GR. • 

The initial point for the discussion of technically efficient production was the 
unnecessary waste of scarce resources. Having discussed what is meant by input 
efficient or output efficient production and how to measure the degree of efficiency, 
the question remains as to what incentives exist for a firm to produce efficiently. 

The answer is evident. Each firm not producing input efficiently is punished by 
avoidable factor costs provided the factor prices q are positive. Conversely, the firm 
fails to realize revenues from sale at positive commodity prices p provided it does 
not produce output efficiently. Both forms of punishment prevent it from realizing 
a profit maximum. The categories of technical efficiency are now completed by 
economic terms of efficiency referring to cost and revenue. 

For instance, a firm producing a .--------------------, 
single good x by using the factors v V2 

may realize a set of data of the form 
(x, v, p, q), where the commodity 
price p and the factor prices q are 
established by the market. Hence, 
the realized costs c = qTv face 
the minimal costs c(q, x) resulting at 
given factor prices q (and given tech-
nology) from the production of the 
amount X. While FARRELL's input 
efficiency measure generates a point 0 A B VI 

Vi = :FI (v, x) . v so that the degree 
of efficiency can be interpreted as . . 
distance ratio :FI(v, x) = IIv'll/llvll, figure 11.30: Efficiency measures 

the ratio c(q, x);C gives a measure of the cost efficiency of an activity (v, x). 107 

1(17 Cf. A FRIAT (1972. p. 582). The idea of using the ratio c(ij. x)/c as a measure of cost efficiency 
becomes clearer when we remember that the measure of input efficiency xiI (v) was defined at the 
beginning. where I denotes the production function. Take into consideration that. similar to FARRELL'S 

input efficiency measure (11.23). the measure of cost efficiency gives no information to the output 
efficiency of the carried out activity (v. x). 
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As shown by Figure 11.30, both efficiency measures usually imply different 
results, i.e. 

J:i(v -) = IIv'll IIv"11l = OA = c(q, x) 
I , x IIvll =/; IIvll OB qTv · 

In actual fact, not all of the input efficient activities like (v', x) are cost efficient 
at given factor prices q at the same time. However, input efficiency is a necessary 
condition for an activity (v" , x) to be cost efficient. For instance, c(q, x) /qT v" = 1 
with (v", x) E OR implies the condition :F,(V", x) = I . Analogously, output 
efficiency and technical efficiency can be compared to both revenue efficiency and 
profit efficiency. 

The concluding expositions deal with an important special case, where a slightly 
modified form of FARRELL's input efficiency measure equals the measure of cost 
efficiency. First of all, the function :F, defined by (11.23) is modified to 

(11.25) 
co !min {A ~ 01 Av E convL(x)} F, (v,x):= 

+00 
for v E L(x) 

for v ¢ L(x). 

This radial measure also scales each admissible input vector v E L(x) along 
the ray through the origin and v whereby now a boundary point of the convex hull 
conv L(x) is generated. According to (11.13), p. 28 each of these boundary points 
can be expressed as a convex combination of extreme points and extreme directions 
of conv L(x). Furthermore, the extreme points of conv L(x) are admissible input 
vectors in L(x) . Thus, the admissible input vector v is put into relation to a convex 
combination of input vectors which are also admissible. 

o 
A B VI 

Figure 11.31 illustrates the example of 
an input requirement set containing the 
admissible input vectors v', v" , and V, where 
v' and v" denote two extreme points of the 
set convL(x). Both inputs VI and V2 are 
indivisible. 

The inadmissible point v in the boundary 
of convL(x) results from v = F,CO(v, x) v. 
The adjoined movement takes place along 
the marked ray through the origin. 

Now if a factor price vector q normal 
to conv{ v', v"} is given for the measure 
of cost efficiency c(q, x) /qTv, then both 

Figure 11.31 : The modified FARRELL's measures yield the same result with respect 
efficiency measure to the efficiency of the input vector v: 

Whereas the original measure :F, assesses the input vector v to be input efficient, 
the newly defined measure :F,co says that the vector concerned is not efficient with 
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respect to convL(x). Thereby the degree of efficiency adjusts the admissible input 
vectors Vi and v". Moreover, if v were admissible, then it would be efficient with 
respect to conv L(x), but it is merely cost efficient for a price vector of the form Aq 
(A > 0). An exact analysis of the relationship between the cost function c(q, x) 
and the input distance function t/(v, x) analogous to J?(v, x) or :Fr(v, x) will be 
discussed later in Section 111.2.108 

The next section deals with the description of optimal activities in the sense of 
profit maximization and serves essentially as transition to Chapter III of this book. 
At the same time technical efficiency (in its different aspects) is proven to be a 
necessary condition for a profit maximum. Moreover, an activity (v, x) E GR 
must be technically efficient with respect to conv GR to be capable of guaranteeing 
a profit maximum. Furthermore, those activities which exhibit increasing returns to 
scale (Proposition 11.9) are ruled out as potential candidates for a profit maximum. 

2.4.2 Determination of Optimal Activities 

(a) Representation of Convex Sets by Functions Before the problem of profit 
maximization can be discussed we have to make some preparations. AIl of the 
preliminary remarks apply to an arbitrary set C C IRn, which will be substituted 
later, for instance, by input requirement sets. Apart from special regularized 
sets, which are closely related to the set C, we present functions serving for the 
representation of the set C. Fundamental outcomes of optimization problems with 
the feasible region C are given by Theorems 11.1 to 11.3. 

Besides the affine hull of the set C 

and the convex hull 

convc=I~AixilxiEC, Ai~O (i=I, ... ,m), ~Ai=I' m=I,2, ... ) 

three other not necessarily convex sets are important for the analysis. These are the 
aureoled hull aur C and the star-shaped huIl star C introduced by (11.16) and (11.15) 
on p. 28 respectively, and the projection conelO9 defined by 

(11.26) cone C := {Axl x E C, A ~ O} . 

108 See definition (111.81), p. 152, where 

t[(v, x) ;: 1/t(vlconvL(x» = max (A> 01 vIA E convL(x)) 

is set for an admissible commodity bundle x EX. 
I09The projection cone, cone C, is also called the cone generated by the set C. This cone contains the 

vertex 0 and thus it has to be distinguished from the cone K(C):= cone C \ (OJ which is also needed; 
see p. 153 ff. If C is a convex set not containing the origin, then K(C) = (Axl x E C, A > OJ denotes 
the smallest convex cone containing C; Cf. ROCKAFELLAR (1972, p. 14, CoroJlary 2.6.3). 
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A graphical representation of this cone results from laying Figures II.13 and II.14, 
p. 29 on top of each other, as cone C = star C U aur C . 

Apart from the projection cone we have already defined the recession cone by 

(II . II) o+C = {Y E IRn l x + AY E C V A ~ 0, "Ix E C} . 

This cone contains all directions y such that a ray with one of these directions 
starting at any point of C is contained entirely in c. IIO 

After introducing some regularizations of the set C, we are now faced with the 
problem of describing the set C and the inferred sets by functions. Furthermore, we 
present implications resulting for sets with certain properties. The convexity of a set 
will be of crucial importance in this. 

In fact the easiest representation of a set C C IRn results from the indicator 
function 8(-IC): IRn -+ [0, +00] with lll 

8(xIC) := 1° 
+00 

for x E C 

for x ¢ C. 

This function distinguishes points in IRn only by the criterion as to whether the 
respective point is contained in C or not. 

XI 

Figure [1.32: lllustration of the support 

function of a set C 

function . 

The support function a(·IC): IRn -+ 
[ -00, +00] of the set C is defined by 112 

a(yIC) := sup {yT xl x E C} . 

Using this function, we try to describe 
the set C by supporting hyperplanes, where 
y is normal to the respective plain. As shown 
by the figure opposite, this intension only 
partially succeeds for nonconvex sets. In the 
case of a closed convex set C the support 
function generates a system of half-spaces 
that permits a complete "outer representa­
tion" of the examined set according to the 
remarks of Figure II. 10, p. 25, and in contrast 
to the "inner representation" by the indicator 

The support function as a solution to a maximization problem can immediately 
be viewed in the light of the problem of revenue maximization as revenue function 
with given inputs, where C must be identified with the production possibility set. 

I tOTwo important cases have been mentioned. If all of the goods and factors are divisible, then on the 
one hand it is 0+ Ply) = (OJ for a nonempty closed convex production possibility set. On the other 
hand the recession cone of an input requirement set is 0+ L(x) = IR';' . 

III We have to distinguish between the indicator function 8 (·1 C) and the characteristic function X (·1 C). 

{
I forxEC 

x(xIC):= 0 
for x 'I. C. 

112For the properties of support functions, see Appendix 0.2.1. 
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Similarly, the cost function is discussed as a reciprocal support function of an input 
requirement set, where the addition "reciprocal" now indicates that a minimization 
problem is to be investigated. 

Like FARRELL's efficiency measures, the 
gauge y(-I C): 1Rn --+ [0, +00] of a non­
empty set C is defined by 113 

y(xIC) := inf {A ~ 01 x E AC} . 

The idea of this function is to move a point 
x E C along the ray through the origin and 
x until achieving a boundary point i E ac ; 
see the figure opposite. 

Even input distance functions are merely ac 
partially suitable for the complete represen-
tation of a set. Nevertheless, we can show 
that the gauge Y('I C) generates a unique Figure 11.33: Representation of the 
representation of the boundary ac of the set input distance function of a set C 
C if the examined set is closed and star-
shaped and if it has the origin in its interior, 0 E int C : 

ac = {xl y(xIC) = I}. 

Since none of the relevant production possibility sets or input requirement sets 
satisfies the above conditions, we can make only little use of this representation 
of the boundary of a set. 114 

As shown by the duality theory, the two problems underlying the support 
function and the gauge function and, therefore, their solutions are inseparably 
related to each other. For example, the input efficiency of an activity turns out 
to be a necessary condition for this activity to realize a cost minimum. 

To avoid linguistic confusion, we have to stress the difference between gauges 
and distance functions. The concept of the (German) "Distanzfunktion" goes back 
to MINKOWSKI and is therefore frequently called MINKOWSKI function. 115 As 
usual in mathematical bibliography, ROCKAFELLAR calls this function a gauge. 
However, the economic literature on this subject mostly follows SHEPHARD (1953), 
who speaks of the distance or deflation function. I 16 This usage does not take into 
consideration that mathematicians have already reserved the term distance function 
as a synonym for the metric. I 17 

The (Euclidean) distance d( ·, C) : 1Rn --+ 1R+ is defined by 

d(x, C) := inf{lIx - xIII x E C}; 

113For the properties of gauges, see Appendix 0.2.2. 
114See the remarks on Figures IU5 and 11.16, p. 30. 
IISCf. e.g. WETS (1976, p. 22). 
116SHEPHARD (1953, p. 13) refers to the German genuine sources. 
117See for example ROCKAFELLAR (1972, p. 28). 
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it will be of minor importance in the analysis. For instance, Chapter IV presents 
an e-equilibrium deriving points which do not exceed a given distance e from the 
demand set; see Proposition IY.13, p. 240. 

No matter whether a minimum or a maximum is required the treated programs 
can be characterized as follows: 118 given the extended real-valued objective 
function f: X 4- [-00, +00] with the domain X C IRn , the minimum of 
f over the feasible region C C X is to be determined. Thus, we seek for a point 
x such that 

(11.27) 
x E C, f(x) ~ f(x) Yx E C 

or x E C, f(x) = inf {f(x) I x E C}. 

In short this problem is written 

(11.28) min {f(x) I x E C} or min f(x). 
xeC 

Each point in the feasible region x E C is said to be feasible. A point x satisfying 
condition (11.27) is called an optimal solution or solution to the program. If a 
solution exists at all, then the solution need not necessarily be unique. Let x be 
a solution to the program, then j == f(x) is called the optimal value of the 
program. 
Since it cannot be guaranteed that a point x E C exists which satisfies the 
condition (11.27) or that the optimal value f(x) is finite, the problem (11.28) can 
be formulated more generally as 

(11.29) inf{f(x)1 x E C} or inf f(x). 
xeC 

When looking for the greatest lower bound - that is a value j fulfilling f ~ f(x) 

for all x E C - four cases may appear. 

1. For C = 13 we declare inf {f(x) I x E C} = +00. If the set of feasible 
solutions is empty, then the "impossibility of a smallest value of the objective 
function" is indicated by associating the smallest value of the objective 
function with the value +00. This case may especially occur when C is 
implicitly given. 

2. If C =f: 13 and ifthe finite infimum inf{f(x)1 x E C} is attained at a point 
x E C, then we write 

j = f(x) = min {f(x) I x E C} = inf {f(x)1 x E C} , 

and x = arg min {f(x)1 x E C} is an optimal solution to the programs. A 
program with this property is said to be feasible. 

3. If C =f: 13 and if the finite infimum inf{f(x)1 x E C} is attained at no 
point x E C, then there is no optimal solution to the program and we call 
j = inf {f(x) I x E C} alternatively the optimal value to the program (11.29). 

118ef. BLUM, OTTLI (1975, p. 1 f.). 
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4. If C '* 0 and if the objective function is not bounded below in the feasible 
region C, inf {f(x) I x E C} = -00, then there is no optimal solution. 

As far as possible optimal solutions to the treated programs are marked by a hat -
for instance x. The following theorems prove the existence of optimal solutions and 
their properties. 

Theorem 11.1 (WEIERSTRASS) 119 Provided the function f: X --+ lR is 
continuous on its compact domain X C lRn, then f is bounded in X and 

min {f(x)1 x E X} and max {f(x) I x E X} 

exist. 

Thus, if the set C in Figure 11.32 is bounded and closed, i.e. compact, then the 
support function is a(yIC) = max {yT xl x E C} . 

The next theorem confirms the supposition of Figure 1I.32 that the optimal value 
to a program is independent of the fact whether it is based on the feasible region 
C or its convex hull convC. Take into consideration that extended real-valued 
convex functions are continuous in the relative interior of its effective domain so 
that WEIERSTRASS's Theorem can be applied if the effective domain is a subset in 
the feasible region C. 

Theorem 11.2 120 Let f: lRn --+ [-00,+00] beaconvexfunctionandlet Cc 
lRn be an arbitrary set of points. Then 

sup {f(x)1 x E convC} = sup {f(x) I x E C}, 

where the first supremum is achieved only if the second more restrictive supremum 
is achieved. For a concave function g: X --+ [-00, +00] we have by analogy 

inf {g(x)1 x E convC} = inf {g(x)1 x E C}. 

Whereas WEIERSTRASS'S Theorem makes a statement on the existence of an 
optimal value, the two following theorems give information at which points the 
corresponding optimal solutions can be found. 

Theorem 11.3 121 Let f: lRn --+ [-00, +00] be a convex function and let C be 
a closed convex set in the effective domain Dom f containing no line. l22 If the 
supremum of f is achieved relative to C, then it is achieved at an extreme point of 
C. 

ll9Cf. DALLMANN, ELSTER (1991a, p. 263, Theorem 15.16). 
120Cf. ROCKAFELLAR (1972, p. 343, Theorem 32.2). 
12l Cf. ROCKAFELLAR (1972, p. 344, CoroJlary 32.3.1). 
122 A nonempty closed convex set containing no line has at least one extreme point; see ROCKAFELLAR 

(1972. p. 167, CoroJlary 18.5.3). 



64 Chapter II. Microeconomic Foundations 

The relationship to Theorem 11.2 becomes apparent when we take (11.8), p. 25, into 
account. By the theorem of KREIN-MILMAN the convex hull of the extreme points 
of a set C equals convC. The issue of Theorem 11.3 may be stated more precisely 
with respect to the level of the optimal value as follows: 

Theorem 11.4123 Let f: IR n ~ [-00, +00] be a convex function and let C be 
a compact convex set in the relative interior of the effective domain rint(Dom f). 
Then the supremum of f over C is finite and it is attained at an extreme point of C. 

Summarizing, the statements of Theorems ILl to 11.4 can be revealed by the example 
of Figure 11.32. Since the function y T x with the effective domain IRn is continuous 
in each set C C IRn for given y, an optimal value max {yTxl x E C} exists 
according to Theorem ILl (WEIERSTRASS). In accordance with Theorem 11.2 the 
same outcome results when the set C is replaced with its convex hull convC. If 
convC is closed, then the maximum is achieved by Theorem 11.3 at an extreme point 
of convC. Moreover, the optimal solution is finite by Theorem 11.4 since convC is 
bounded. 

(b) Profit Maximization In contrast to goods and factors the prices are not 
subject to any restrictions with respect to phenomena of indivisibility. The setting 
of the two spaces of commodity prices and factor prices 

Pp = IR~ and Q = IR~ 

thus considers only non negativity constraints. 124 Under the assumption of 
competitive markets all commodity prices p E Pp as well as all factor prices 
q E Q are given from the point of view of an individual firm. Thus, the examined 
firm has no power to influence any price. If the firm as quantity adjuster pursues the 
goal of profit maximization pT x - q Tv, then it must solve the problem125 

(11.30) 

where only possible activities (v, x) E GR are allowed to be optimal solutions. 
Without specifying the properties of the profit function rr in more detail each optimal 
solution to the problem, if it exists at all, is characterized by 

Proposition 11.10 126 If P T X - q T V ~ P Ti - q TV holds for all possible activities 
(v, x) E GR with a given commodity price vector p > 0 and a given factor price 
vector q > 0, then (v, i) E GR is a technically efficient activity. 

l23Cf. ROCKAFELLAR (1972, p. 344, Corollary 32.3.2). 
124We dispense with aspects of a smallest unit of money or negative prices, for example, for produced 

garbage. 
i25Cf. DIEWERT (1982, p. 537). 

We go later into the cost minimization and the revenue maximization as necessarily to be solved 
subproblems of profit maximization. 

126Cf. TAKAYAMA (1990, p. 56). 
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Proof: Suppose the process (v, i) is not efficient, then there is a possible activity 
(v, x) with (-v, x) ~ (-v, i) such that the strict inequality pTx - qTv > pTi_ 
q Tv results for positive prices. • 

If the problem of profit maximization has an optimal solution, then the optimal 
solution must be a technically efficient activity even when no assumptions on the 
production technology are made. 

Afterwards two crucial questions must be answered: (1) When is the existence 
of a profit maximizing activity (v, i) E GR guaranteed and what properties do 
these activities have? The answer is especially examined with respect to given 
prices such that the firm behaves as a quantity adjuster. (2) As by Proposition 11.10 
only technically efficient processes are of importance for the realization of a profit 
maximum, the question arises conversely as to which of the technically efficient 
activities yield a profit maximum at suitable prices (q, p).127 If the production 
technology is characterized by nonconvexities, then we can identify technically 
efficient activities which are not profit maximizing for any price vector (q, p). 

Proposition 11.11 Efficient activities (v, x) E GR which are not efficient with 
respect to the convex hull of the graph conv GR can never lead to a profit maximum 
at positive prices. 128 

Proof: If the activity (v, x) E GR is not efficient with respect to conv GR, then 
there is a point (v, i) E conv GR with (-v, i) ~ (-v, x) such that 

holds for positive prices q > 0 and p > O. By Theorem BA (CARA THEO­
DORY), p. 293, (v, i) can be expressed as a convex combination of no more than 
n + m + 1 possible activities (vi, xi) E GR. Thus, according to Corollary BA.3, 
at least one of these activities must satisfy 

such that (v, x) cannot be profit maximizing. • 

Since by Proposition 11.9 no activity with increasing returns to scale is efficient with 
respect to conv GR, Proposition 11.11 eliminates these activities to be a potential 
candidate for realizing a profit maximum. Note that this result only refers to the 
production technology as a restriction. In spite of increasing returns to scale, a 
profit maximum may be realized if we have to consider additional factor constraints 
or constraints regarding markets. 

127 SCARF (1981a) describes the starting point for this problem as follows: "The primary consequences 
of the convexity assumption is the existence of a vector of prices which supports an arbitrary efficient 
production plan." FRANK (1969, p. 70) discusses assumptions which also assure the existence of such 
a price vector for indivisible goods and factors. If, for example, indivisible factors can be substituted 
by divisible factors, then excess capacities caused by indivisibilities can be avoided by appropriate 
adjustment processes. 

128 Such an activity is illustrated by point B in Figure II.29, p. 56. 
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The analysis of profit maximization begins with the objective function 
w-: lR m x lR n -+ lR which is at given prices 

w-(x, v):= pTx - qTv. 

This linear function is a hyperplane in lRm+n despite the fact that the quantities of 
outputs as well as inputs can possibly be subject to integer constraints. Therefore, 
the objective function w- is both convex and concave. 129 Theorem 11.2 yields for this 
function regarding the set of points GR C lRm x lRn the relation 

sup {pTx - qTvl (v, x) E GR} = sup {pTx - qTvl (v, x) E convGR}, 

where the second supremum is attained only when the first more restrictive 
supremum is attained. Due to GR C V x X C lR~ x lR~, conv GR cannot 
contain a line. If conv GR is closed, then Theorem 11.3 says: if the supremum of 
w- is attained relative to conv GR at all,130 then it is attained at an extreme point 
of conv GR. As gathered from the explanations on the convex hull of a setl3l , 

every extreme point (Y, i) E convGR is a possible activity (Y, i) E GR. 
Furthermore, every profit maximizing extreme point (Y, i) with positive prices 
(q, p) must be efficient with respect to conv GR (Proposition 11.11 ).132 

As the profit maximization takes place subject to the production technology 
GR, the preceding remarks suggest the examination of two subproblems of profit 
maximization. Accordingly the profit maximization regarding outputs adapts to 
the production technology (L(x)1 x E X). The profit maximization regarding 
inputs, however, refers to the equivalent representation of the production technology 
(P(v)1 v E V). While the first procedure yields the cost function as an interim result, 
the second procedure yields the revenue function in particular. 

(c) Subproblems of Profit Maximization 
(aa) Cost Minimization Under [L2] (Attainability of Each Production) the set of 
feasible solutions for a given commodity bundle x E X is 

M (x) := {(v, x) E GR I x = xl 
= {(v, x) E V x XI v E L(x)}. 

Thus, the problem of profit maximization (11.30) can be rewritten as 

Jro(p,q,x) = sup{pTx-qTvl (v, x) E M(x)} 

=pTx - inf{qTvl v E L(x)}. 

129See Appendix C.I, Definition C.2. 
130 A priori does not need to be a finite profit maximum for any given commodity bundle x. This case 

emerges for example for a substitutionable COBB-DoUGLAS production function when a factor price is 
set to zero. But if we suppose that the set of efficient input vectors is bounded (see footnote 88), then the 
profit maximum must be finite. Thus, in Figure 11.29, p. 56, points 0, A, and C are possible candidates 
for a profit maximum. 

131 See Section 2.2 (a). 
132 As shown by Proposition II. 9, this requirement holds at least for all extreme points (v". x') with 

x' > O. 
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In the literature on this point the function 1'(0, indicating the maximal profit at a 
given vector x and given prices, is frequently called the restricted profit function or 
output conditional profit function). 133 The problem is to find those input vectors 
v E L(x) minimizing the factor costs for a given commodity bundle x. Thus, 
the restricted problem of profit maximization can be converted into the following 
equivalent problem of cost minimization: 134 

c( q, x) = inf{ q T vi v E L(x)} . 

The cost function c for a given commodity bundle x is called the factor price 
minimal cost function and each cost minimizing input vector v is at the same 
time an optimal solution to the restricted problem of profit maximization. Using 
c(q, x)/q T vas a measure for cost efficiency of the activity (v, x), each input vector 
v solving the problem of cost minimization is cost efficient, i.e. c(q, x)/q Tv = 1 . 
More properties of cost minimizing input vectors are discussed and compared in 
Section 111.2. Intuitively, even at this point it can be stressed that each cost efficient 
activity (v, x) must be input efficient in the sense of FARRELL, J:i(v, x) = 1; see 
the remarks on Figure 11.31, p. 58. 

Applying again Theorem 11.2 yields 

Provided an optimal solution exists, then there is also an integer optimal solution 
V. For if the concave objective function W"o(v) = q T V attains its infimum, then 
the infimum is attained at an (integer) extreme point of convL(x). Remember that 
convL(x) is a closed convex subset in the domain IRm of w"o and that it does not 
contain a line (because convL(x) C IR~ ) so that the requirements of Theorem 
11.3 are satisfied. 

Analogous to Proposition 11.10, an input vector v E L(x) only realizes 
minimal costs at positive factor prices q > 0 if v is not only input efficient but 
also efficient with respect to conv L(x).135 A firm violating this necessary condition 
of cost minimization is punished by avoidable costs at positive factor prices q > O. 
For each input vector v which is not efficient with respect to conv L(x) there is a 
vector v E conv L(x) with v s v and q Tv < q Tv. Analogous to the proof of 
Proposition 11.10, apart from the vector v there must be an input vector V E L(x) 
which is associated with lower costs than v. Although point A in Figure 11.28, p. 55, 
is input efficient, there are activities - such as point B - incurring lower costs. 

l33ef. VARIAN (1992, p. 26) or FARE (1988, p. 99). 
134The structure of the problem does not change very much when the finn is subject to additional factor 

constraints V = Iv E VI v ;::i! b}. In this case we look for the cost minimum of the set of possible 
activities. 

inf{qT vi v E L(i), v E V} = inf{qTvl v E L(i) nv} 

135 As mentioned above, the support function u( ·Iconv L(x» corresponds to an "outer representation" of 
the set conv L(x) by supporting hyperplanes. The resulting set of optimal solutions reflects the boundary 
of the closed set conv L(x) and it contains especially those input vectors which are said to be efficient 
with respect to conv L(x). 
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This outcome will be of central importance in Chapter III. In particular, 
indivisible production factors imply nonconvex input requirement sets L(x), which 
are regularly replaced with their convex hull convL(x). Within the framework of 
duality theory we can establish operations which are equivalent to the operation 
L(x) ~ conv L(x) and which imply far-reaching properties of optimal activities. 

Among other things we derive a result which can be outlined as follows: if the 
factor prices may vary arbitrarily, then under the introduced assumptions on the 
production technology there is a factor price vector q for each input vector v which 
is efficient with respect to conv L(x) such that v solves the corresponding problem of 
cost minimization. In this case we are quite right to presuppose in the explanations 
of Figure 11.31, p. 58, a vector offactor prices q normal to conv{v', v"}. 

Finally, among all cost minimizing activities we have to filter out those activities 
which guarantee the maximal profit for a varying commodity bundle x EX. 

rr(p, q) = sup {pTx - c(q, x)1 x E Xl 
Functions of this type will be discussed later under the concept of convex 

conjugate functions. 136 

Considering indivisible goods and factors the function of this optimization 
problem does not need to be continuous in the outputs x. Hence, difficulties 
arise which can be illustrated by a simple example. Figure 11.34137 supposes a 
single-product firm producing the output x by a perfectly divisible factor VI and 
an indivisible factor V2. To keep the example easy, we assume a price demand 
function such that the drawn parabola reflects the firm's revenue r. The costs of the 
first factor depending on the output quantity corresponds to the ray through origin 
qlvl· 

r 

o i 
x 

Considering the second indi­
visible factor, the step function 
indicates total costs ql VI + 
q2 V2 in producing the output 
x. From the point of view of 
determining profit maximizing 
outputs we usually investigate 
the necessary condition that 
marginal revenue must equal 
marginal cost. The result 
implies the output i. But the 
maximal profit is realized at 
the output x where the total 
costs make a jump. 

Figure II.34: Profit maximization 
(bb) Revenue Maximiza­

tion In what follows, the prob­
lem of revenue maximization 

can be treated completely analogous to cost minimization. Given an input vector 

136If the cost function c(q, .) is proper, convex, and closed in x, then 

c(q. x) = sup {pT x -1T(p, q)1 p E pp}. 

137 A similar example is given by BREMS (1952, p. 583). 
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V E V, we get the subsequent set of feasible solutions: 

M(v) := {(v, x) E GRI v = v} 

= {(v, x) E V x XI x E P(V)}. 

With that the problem of profit maximization (11.30) can be rewritten as 

1l'/(p, q, v) = sup {pT X - q Tvl (v, x) E M(v)} 

= sup {pTxl x E P(V)} - qTV. 

69 

As before, the function 1l' / indicating the maximal profit at a given vector v and 
given prices (q, p) is also called restricted profit function or input conditional 
profit function). The equivalent problem of revenue maximization is nowJ38 

r(p, v) = sup {pTxl x E P(v)} , 

and in this case Theorem 11.2 yields 

sup {pTxl x E P(v)} = sup {pTxl x E convP(v)}. 

Since conv P(v) is compact, Theorem II.1 (WEIERSTRASS) can be applied. 

r(p, v) = max {p T xl x E conv P(v)} 

According to Theorem 11.3, the maximum is attained at an extreme point i of 
conv P(v) such that i E P(v) is satisfied. Again, the maximal profit results from 
a parametric variation of the input vector v. 

1l'(p, q) = sup {r(p, v) - qTvl v E V} 

At this point we refrain from aspects of the output efficiency. If (v, i, q, p) denotes 
observed data, then the measure of revenue efficiency r(p, v)/pTi does not need 
any further explanations. Finally it should be mentioned that, for the case of a 
single-product firm with a given price of the good p, the problems of revenue 
maximization and output maximization are equivalent at given inputs v. The optimal 
solutions to both problems are equal. 

r(p, v) = p/(v) = p sup (xl x E conv P(v)} 

The next section deals with the properties of production functions which, in this 
case, are denoted by /. 

2.4.3 Optimal Activities in the Production of One Good 

This section draws the attention to firms producing a particular good x. In this case 
the commodity space is 

l38ef. EICHHORN, SHEPHARD, STEHLING (1979, p. 344). 
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If the examined commodity is perfectly divisible, then X = IR+. In the case of an 
indivisible good we put X = Il+. As already mentioned, the production function 
indicates the maximal output of a single-product firm when using the inputs v for 
production. The question when such a production function exists can be answered 
as follows: 

Proposition 11.12 For each output correspondence P: V ~ '.l3(X) of a single­
product firm fulfilling Axioms [PIa] (Possibility of Inaction), [P5] (Boundedness) 
and [P6] (Closedness) a real-valuedfunction f: V ~ X exists with 

fey) := max {xl x E P(v)} , 

which is called a production function. 

Proof: Under Axioms [PIa], [P5] and [P6] the production possibility sets are 
nonempty and compact for all v E V. By Theorem ILl (WEIERSTRASS) the 
continuous objective function ¢ with ¢(x) = x attains its maximum over P(v) 
for every v E V. As P(v) eX, we have fey) ~ 0 for all v E V. • 

Alternatively, the production function can be deduced from the inverse input 
correspondence L. Because of x E P(v) {:::::::} v E L(x), we have 

fey) = max {xl v E L(x)}. 

Moreover, Theorem 11.2 yields for the convex objective function ¢ 

fey) = max {xl x E P(v)} = max {xl x E convP(v)} with v E V. 

By Theorem 11.4, the maximum is achieved at an extreme point of conv P(Y) since 
conv P (v) c IR+ is a nonempty compact convex set for each input vector v E V . 

The generalized output correspondence139 P: V ~ '.l3(X) with P(v) = 0 
for all v 1:- V induces a generalized production function f: V ~ [-00, +00] 
with 

fey) = sup {xl x E P(v)}. 

In this definition we especially set fey) = -00 if v is no admissible input vector, 
i.e. v 1:- V. If the production function f yields x = feY), then the activity 
(v, x) is output efficient. Given the output x, the set of all output efficient activities 
is indicated by the isoquant Isoq(x) = {vi fey) = x}. Considering all inefficient 
activities with fey) > x, the input requirement set L(x) = {vi fey) ~ x} 
arises. Corresponding to the expositions, this implicitly contains the condition that 
the input requirement sets are composed of admissible input vectors v E V. 

Analogous to the production possibility sets inducing a production function, 
the production function f conversely induces level sets of the form Pt(v) = 

139The generalized output correspondence with V = R m has been introduced in Section 2.2. 
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{x E XI f(v) ~ x} for all v E V. From the conclusions for an arbitrary input 
vector v E V 

() - p ( ) - f() - { } [P4) -a x E 'v <==> x ~ v :<==> x ~ max xl x E P(v) <==> x E P(v) 

(b) x E P(v) ==> max {xl x E P(v)} ~ x :<==> f(v) ~ x ==> X E P,(v) 

the statement 

(11.31 ) P,(v) = P(v) Vv E V 

results for the level sets and the production possibility sets. Therefore, we gain by 
Axioms [PIa], [P4], [PS], and [P6] the important relationl40 

(11.32) v x E X, Vv E V: x E P(v) <==> x ~ f(v). 

Even for an indivisible good the production function f: V ~ X is equivalent to 
the output correspondence P: V ~ s,p(X) and the inverse input correspondence 
L: X ~ s,p(V) respectively. 

Apart from the proof of the existence of a production function the subsequent 
proposition on the properties of production functions can be noted, where V and 
X C IR+ are the factor space and the commodity space respectively. 

Proposition 11.13 An output correspondence P: V ~ s,p(X) with the level 
sets P(v) = {xl x ~ f(v), x E X} satisfies Axioms [Pl]-[P6] if and only if the 
production function f with f(v) = max {xl x E P(v)} satisfies the following five 
conditions: 

[Fl] f(O) = 0 

[F2] f(v)isfiniteforeveryvE V (f: V~ Xisareal-valuedfunction.) 

[F3] Vy, v E V: [Y ~ v <==> f(y) ~ f(v)] (f increases monotonically.) 

[F4] f is upper semi-continuous on V. 

[FS] 3 {VV} c V: f(vV ) ~ 00 . 

Proof: The proposition can be proved by five equivalence relations. 
[Fl] <==> [PI] (Possibility ofInaction and No Land of Cockaigne) 
For v = 0 we obtain 

f(O) = max {xl x E P(O)} = 0 <==> P(O) = [0, f(O)] = {OJ. 

[F2] <==> [PS] (Boundedness) 
If P(v) is bounded [PS] for all v E V, then f(v) = max {xl x E P(v)} must be 
finite [F2]. If f(v) is finite for all v E V, then P(v) = {xl x ~ f(v), x E X} is 
not only bounded above but also bounded below because of P(v) eX. 
[F3] <==> [P3] (Disposability of Inputs) 

I40Cf. FARE (1988, p. 24) or SHEPHARD (1953, p. 2\). 
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For the input vectors V, v E V with v ~ v we have by [P3] P(v) c P(v) 
and, therefore, f(v) ~ f(v) or [F3]. The reverse conclusion immediately results 
from the definition of P(v) for f(v) ~ f(v). 

P(v) = (xl x ~ f(v), x E X} 

c (xl x ~ f(v), x E X} = P(v) 

!(v) 
[F4] <=> [P6] (Closedness) 

x 

Ji 
By Theorem C.2, p. 30 I, the production 
function f is upper semi-continuous if and 
only if the hypograph 

hypo f:= {(v, /L) E IRn x IRI /L ~ f(v)} 

is closed in IRn+l. Note that the c10sedness 
of the hypograph, shown as a gray area in 
Figure 11.35, is satisfied, provided at point 
jj where f jumps all points between A and 
B are elements of the hypograph. This 

o ii v 

hypo! 

condition is fulfilled if the functional value 
Figure 11.35: Upper semi-continuity of f( jj) equals the upper point B. 
a production function By [F2] IRn can be replaced in the defini­

tion with the effective domain Dom f = V 
so that hypof := {(v, /L) E V x IRI /L ~ f(v)}. 

However, the output correspondence P is closed if its graph 

GR = {(v, x)1 v E V, x E P(v)} 

is closed. By (11.32) we can write equivalently GR = {(v, x) E V x XI x ~ f(v)}. 
Consequently, the c10sedness of the graph GR at once results according to Theorem 
A.I, p. 283 (from the c10sedness of the hypograph hypo f) since 

hypo f n (V x X) = GR . 

The reverse conclusion is more complicated. The c10sedness of the output 
correspondence P is equivalent to the c10sedness of the input correspondence L. 
Thus, the input requirement sets L(x) are closed for all x E X. However, 
the closed ness of the production function f is given if and only if the sets 
{v E IRn l /L ~ f(v)} are closed for all /L E IR (Theorem C.2, p. 301). Provided 
a divisible commodity exists, 

for /L ~ 0 

for /L > 0 

completes the proof since the c10sedness of the input requirement sets L(/L) passes 
on to the sets (v E IRnl /L ~ f(v)}. An indivisible good x E X = Z+ however 
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implies the relation L(J.L) = 0 for J.L f/. X. If r J.L 1 again denotes the smallest 
integer not smaller than J.L, then the following equation holds for J.L > 0 because 
of r J.Ll E X 

{v E VI J.L ~ I(v)} = {v E VI rJ.Ll ~ I(v)} = L(rJ.Ll). 

So we can apply the case of divisible outputs; see Figure II.36, left hand part. 
[FS] <===? [P2] (Attainability of Each Production)141 
If no sequence of input vectors {VV} exists such that l(vV) -+ +00, then in 
contradiction to [P2] there is a quantity x which is not producible, x > I(v) 
for all v E V. Regarding [P4] (Disposability of Outputs) the conclusion from 
[FS] to [P2] ensues: if the output correspondence P is defined by P(v) = 
{xl x ~ I(v), x E X}, then X, x E P(v) for all i, x E X with x ~ x ~ I(v) . 

• 
Figure 11.36 depicts the graphs 

of two production functions x = 
II (v) and x = h(v) for an 
indivisible good x satisfying con­
ditions [F1]-[FS]. The left hand 
part assumes a perfectly divisi­
ble production factor v, whereas 
the right hand part assumes an 
indivisible production factor. In 
particular, the points of jumps 

!I (v) 

--a 

o 

h(v) 

• • 
• 

v o 

in the left hand graph can be Figure 11.36: Graph of special production 
used to get an idea of the upper functions 
semi-continuity of a production 
function. 

• 

• 

v 

As the three following properties are based on the fundamental assumption of 
divisible production factors, we dispense with a detailed discussion. 

1. The production function I is quasi-concave if and only if the output 
correspondence P is quasi-concave; see Theorem II.5 in the mathematical 
appendix of this section. 

2. The assumption that the output correspondence P is concave in the factor 
space V is equivalent to the assumption that the production function I is 
concave in V.142 

3. If the output correspondence P: V -+ lR is not only closed but also 

141Since f(v") is bounded for all v" E V, the limit f(v") ..... +00 can be fulfilled only for 
IIv"11 ..... +00. 

142Theorem C.l, p. 300, contains a criterion for the concavity of the production function f. Similarly, 
the output correspondence P is said to be concave in V if it satisfies the criterion A P(v1) + (I -
A)P{V2)CP().vl+(l-A)V2) for all v1,V2 EV andforall AE[O,I]. 
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continuous143 with P(v)"* 0 for all v E V, then a continuous production 
function f exists such that f(v) E P(v) is satisfied for every V. l44 

Finally, the problem of profit maximization is given. 145 

Jl'(p, q) = sup {px - qTvl x;§; f(v)} 

The corresponding problem of cost minimization for a held fixed quantity of good 
x IS 

c(q, x) = inf{ q T vi x ;§; f(v)} . 

As already mentioned, the problem of revenue maximization and the problem of 
output maximization have the same optimal solutions at given inputs v and a given 
positive commodity price p > O. 

r(p, v) = sup {pxl x E convP(v)} 

<===> pf(v) = psup{xl x E convP(v)} 

The problem of profit maximization with regard to the output 

sup {px - c(q, x)1 x E X} 

faces the equivalent problem of profit maximization with regard to inputs 

sup {pf(v) - qTvl v E V}. 

143 As noted above, each continuous correspondence is upper semi-continuous (Definition C.s, p. 307) 
and each upper semi-continuous correspondence is itself closed (Theorem C.7, p. 309). 

144This statement is a product of the Maximum Theorem (Theorem C.14, p. 311), where we have to 
put x = ¢(x), f(v) = 1/I(v), and lI1(v) = Ix E P(v)1 x = f(V)}. 

145 A detailed discussion of the given optimization problems may be found, for example, in 
BLACKORBY, PRIMONT, RUSSEL (1978) or DIEWERT (1982). 
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3 Summary 

A household, trying to satisfy its needs as well as possible, adapts its preferences 
for the choice of commodity bundles which it can buy. These preferences are 
represented by preference orderings satisfying Axioms [9>1]-[9>3] and possibly 
[9>4]-[9'6]. The preference orderings in tum detennine families of preference sets 
(9)(x) I x E X), which are called preference structures. Since each household 
may have different preferences, each household must be associated with a separate 
preference structure. 

In the theory of the finn the production depends on its respective technology. 
This production technology can be described by a family of sets (P( v) I v E V), 
where this family is called a production structure if each of its members fulfills 
certain conditions, namely Axioms [PI]-[P6]. Each member of the family is called 
a production possibility set; it contains all of the commodity bundles which are 
producible by a given input vector. An input-output combination included by one 
member of the family is, therefore, technically feasible and is called a possible 
activity. Technically, the production technology is represented by a multi-valued 
mapping, namely the output correspondence. 

The inverse mapping is called an input correspondence. As before, the 
production technology is represented by a family of sets (L(x)1 x E X), although 
now, the members of the family collect all input vectors allowing the production 
of the respective commodity bundle. This family of input requirement sets is 
equivalent to the family of production possibility sets and is subject to Axioms [L 1]­
[L6], which are equivalent to [PI]-[P6] (Proposition 11.2). 

In order to keep a simple structure for the examined sets even under 
consideration of indivisible goods and factors, we introduce the surrogate of the 
convex hull after the description of production technologies. Each of the examined 
sets of points is associated with the smallest convex set containing the respective 
set. Among the various possibilities to represent convex hulls one particular fonn 
stands out. Using CARATHEODORY'S Theorem it is possible to express each point 
of the convex hull as a convex combination of a small number of points contained 
in the original set. In partiCUlar, we can take advantage of the fact that the extreme 
points of the convex hull belong to the genuine set. The convex hull gets further 
structural properties by the assumption of integer convexity. Under this assumption 
there is an one-to-one relationship between the generating set and its convex hull. 
Finally, it is shown how the "relevant" boundary points of the convex set concerned 
at least are determined by rays through the origin. 

In the class of special production technologies the technologies with certain 
properties of homogeneity stand out. They give an answer to the question as to 
how the outcome of production varies when the production level changes. Although 
an activity with indivisible goods and factors cannot be multiplied by an arbitrary 
scalar, the idea of increasing, constant, or decreasing returns to scale remains the 
same. Apart from the total factor variation along a ray through the origin we can 
furthennore analyze the question concerning what outcomes result when different 
activities are combined additively. In particular, the joint use of indivisible factors 
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as well as the joint production of indivisible goods hold the potential of increasing 
returns to scale. Finally, we deduce outcomes which result from the consideration 
of factor constraints in addition to the pure production technology. 

Having presented the instruments for the representation of production 
technologies, we now seek for those activities satisfying certain optimality 
conditions. The criterion of technically efficient production indicates those activities 
which do not unnecessarily waste resources either as inputs or outputs. To describe 
the extent of the waste, different measures of technical efficiency of an activity are 
introduced. Beginning with the notion that boundary points in particular satisfy 
the criterion of technical efficiency, rays through the origin serve again as an initial 
point. The meaning of the efficiency measures is reduced by the transition to the 
convex hulls, but they do not lose all of their importance so that we keep on working 
with them. 

The introduction of prices enables the assessment ofa possible activity (v, x) E 

GR with respect to its cost or revenue efficiency. For example, the degree of 
cost efficiency of an activity (v, x) is determined by a comparison to a convex 
combination of activities which are input efficient as well as cost efficient with 
respect to the same output x. With this in mind we can now discuss the goal of 
profit maximization concerning the restriction of a given production technology, 
remembering that a profit maximizing firm necessarily also pursues two subgoals. 
A profit maximum can be realized only if the corresponding commodity bundle is 
produced at minimal costs. The latter goal has not been successful if the firm wastes 
inputs, where the punishment is an avoidable cost. Again no profit maximum can be 
achieved if the firm wastes outputs by not selling these quantities. The shortcoming 
of the goal of revenue maximization at given inputs excludes a profit maximum. The 
concluding section is dedicated to a special case where the inspected firm produces 
a particular commodity. 



4 Appendix 

4.1 The Concept of Quasi-Concavity 

Definition 11.12 146 The function f: X --+ JR is said to be quasi-concave in a 
convex subset X ofJRn if for arbitrary x, i E X 

f( (1 - )..)x + )..i) ~ min {f(x) , f(i)} V)" E [0, 1] . 

The function g: X --+ JR is called quasi-convex in X if - g is quasi-concave in 
X, i.e. ifforarbitrary x, i EX 

g( (1 - )..)x + )..i) ~ max {g(x), g(i)} V)..E[O,I]. 

The importance of quasi-concavity of a function results from the following: 

Theorem 11.5 147 The level sets r+(y) = {x E XI f(x) ~ y} are convex for all 
y E JR if and only if the function f is quasi-concave on X. 
The level sets L(y) = {x E XI g(x) ~ y} are convexforall y E JR ifandonly 
if the function g is quasi-convex in X. 

Proof: The necessary part requires that the level sets r + (y) are convex for all y E 
JR. Ifweset y=min{f(x),f(i)} forarbitrary X,iEX, then X,iEr+(y). 
On the basis of the supposed convexity of r + (y) it follows h + (1 - )..)i E r + (y) 
for all ).. E [0, 1]. Thus, 

f(h + (1 - )")i) ~ y = min {f(x), f(i)} 

must hold such that f is quasi-concave in X. 
The sufficient part goes on the principle that f is quasi-concave in X. For an 
arbitrary YEJR weget f(x)~y and f(i)~y forall X,iEr+(y). From 
the quasi-concavity of f it is found that f(h+ (1- )..)i) ~ min {f(x), f(i)} ~ Y 
for all ).. E [0, 1]. On the basis of the definition of r+(y) it is found that 
h + (1 - )..)i E r+(y) for all ).. E [0, 1] and, therefore, r+(y) is convex 
for all y E JR . 
The transference of the proof to convex level sets L (y) and a quasi-convex function 
g becomes superfluous if we take into account that - g is quasi-concave in X. • 

Definition 11.13 Let X be a convex subset in JRn• The correspondence F: X--+ 
~(Y) with Y C JRm is said to be quasi-concave l48 iffor arbitrary x, i E X 

F(x) n F(i) c F(h + (1 - )..)i) V)..E[O,I]. 

146Cf. TAKAYAMA (1990, p. 113). 
147Cf. CHIANG (1984, p. 391) and SHEPHARD (1953, p. 297), who, however, has a mistake in the 

second part of the theorem. The following proof is taken from SHEPHARD. Remember that f can only 
be quasi-concave in X if X is a convex subset in lR". Thus, for instance, the case X = Z+ x lR+ C lR2 

is ruled out. 
148The criterion of a quasi-concave correspondence F should not be confused with the concavity. The 

correspondence F is called concave in X if it satisfies the criterion AF(xl) + (1- A)F(x2) C F(AxI + 
(1 - A)X2) for all Xl, x2 E X and for all A E [0, 1]. 
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Defining the inverse correspondence F of 1+ of Theorem 11.5 by using a function 
f: X ~ JR., where F(x):= (y E JR.I f(x) ~ y}, the quasi-concavity of the 
function f is equivalent to the quasi-concavity of the correspondence F. We obtain 

F(x) n F(i) C F(Ax + (1 - A)i) 

<===? (YI f(x) ~ y and f(i) ~ y} C {YI f(AX + (1 - A)i) ~ y} 

<===? min (f(x) , f(i)} ~ f(Ax + (1 - A)i) 

for all A E [0,1]. The relation between the inverse correspondences 1+ and F 
induced by Theorem 11.5 can be generalized to the following: 

Theorem ll.6 Let F-I be the inverse correspondence of F: X ~ ~(Y). Then 
the correspondence F is quasi-concave in X if and only if F-1 (y) is convex for all 
y E Y. 

Proof: The correspondences F and F-1 are said to be inverse to each other if they 
satisfy the following equivalence relation: 

Y E F(x) <===? x E F-1 (y). 

If F is quasi-concave in X, then for arbitrary x, i E X and for all A E [0, 1] it 
ensues 

[a] [F(x) n F(i) C F(Ax + (1 - A)i)] 

[b] <===? [Y E F(x), Y E F(i) => y E F(Ax + (1 - A)i)] 

[c] <===? [x E F-1 (y), i E F-1 (y) => AX + (1 - A)i E F-1 (y)] . 

The level sets F-1 (y) are convex at least at the points y examined in [b]. Suppose 
another point y E Y exists at which F-1 (y) is not convex. Then there must 
be two vectors x E F-1 (y) and i E F-1 (y) and a A E [0, 1] such that 
Ax + (1 - A)i ¢ F-1 (y). Due to y E F(x) and y E F(i), a contradiction of 
the presumed quasi-concavity of F results by y ¢ F(Ax + (1 - A)i). 

The quasi-concavity of F yields convex level sets F-I (y) for all y E Y. 
Supposing that F-1 (y) is convex for all y E Y, we have as before [c] <===? 

[b] <===? [a] for arbitrary A E [0, 1]. The proof is complete if we can show that 
there is no pair of points x, i E X which is not included by [c] and which leads 
to F(x) n F(i) rt. F(Ax + (1 - A)i). 

In the case that there are two of these points x, i E X and a A E [0, 1], then 

F(x) n F(i) rt. F(Ax + (1 - A)i) 

=> 3y E Y: [Y E F(x), y E F(i) => y ¢ F(Ax+ (1- A)i)] 

<===? 3y E Y: [x E F-1(y), i E F-1(y) => Ax+ (1- A)i ¢ F-1(y)] 

implies a contradiction of the assumed convexity of F- 1 (y) for all y E Y. • 



4 Appendix 79 

4.2 Closedness of the Convex Hull of Input Requirement Sets 

Proposition 11.14 149 If positive real numbers k; (i = 1, ... , m) exist for each 
input vector v in an input requirement set L(x) c V such that v:= V + k;e; is 
also an element in L(x), then the convex hull conv L(x) c IR~ is closed under 
[L6] (Closedness), too. 

Before going into the proof, it is worthwhile making some remarks on the 
significance of this proposition. 

1. The required property of the input correspondence L is particularly given 
when [L3] (Disposability of Inputs) holds good. 

2. The transference of the proposition to a closed [9>4] preference set 9>(x) 
causes no problems. In particular, the property required by Proposition 
11.14 is satisfied with respect to the preference structure 9> when [9'5] 
(Monotonicity) holds. 

3. In the examined optimization problems each feasible region is usually 
substituted by its convex hull. Since optimal solutions usually lie in the 
boundary of this convex hull, the closedness of the convex hull is fundamental 
to the existence of a feasible optimal solution. ISO 

4. The convex hull of a bounded closed (i.e. compact) set C C IRm is also 
compact, but the convex hull of an unbounded closed set C does not need to 
be closed. 151 The special structure of the examined sets permits us of closing 
this gap. 

By Theorem A.S the convex hull of the input requirement set conv L(x) c IRm 

is closed if we can show that the limits of all convergent sequences of points in 
convL(x) are again contained in convL(x). 

Proof: Assuming a convergent sequence of points {vV} C conv L(x) with limit 
yO, we have to show that this implies vO E convL(x). By Theorem B.4 (CARA­
THEODORY), p. 293, each element vV can be expressed as a convex combination of 
no more than m+ 1 points in L(x). Without requiring the aj to be distinct, we obtain 

m 

vV = L:>jaj with aj E L(x), P E Am+l. 

j=O 

Because of PEA m+ I , it follows that Ill. v II ~ 1, i.e. the sequence of 
points {P} = {(AO'"'' A~)T} is bounded. Thus, by Theorem A.4 (BOLZANO­
WEIERSTRASS), p. 286, a convergent subsequence {Pkl } exists whose sequences 
of components satisfy A ~kl -+ A ~ (j = 0, ... , m). 

149Proposition and a sketch of the proof can be found in STARR (1969). 
150See Theorems 11.2 and 11.3. 
151 See the remarks on Figure B.1. 
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Each point l. Vkl is associated with a tuple (a~kl , ... , a~1 ), where the sequences 

of points {a~kl} (j = 0, ... , m) may be bounded or not. For the further procedure 
the subscripts of the bounded and unbounded sequences are collected in 11 and h 
respectively. 

Because subsequences of convergent sequences have the same limit, by 
recursive procedure we can detennine convergent subsequences {Pk2} and {a~k2} 
with j E h 

The other bounded sequences {a ~kl } with j E h are marked by the fact that 

there is a point a~kl for every c > 0 such that lIa~kl II !?; c. Thus, the sequence 

of numbers {lIa~kl II} has a divergent subsequence {lIa~k211} with limit +00, that is 

lIa~k211 ~ 00. 

By renaming the sequences {Pk2}, {a~k2} (j = 0, ... , m) we gain 

AV ~ A~ 
] ] 

a V ~ a~ 
] ] 

lIajll ~ 00 

j=O, ... ,m, 

j E 11, 

jE h. 

Since L(x) is closed by [L6], a~ E L(x) must be satisfied for all j E 11. Since 
the sequence of points {vV} = {L1=1 Aja]} converges by assumption, A ~ = 0 
must hold for j E h. 152 Now, in the limit case Lje]1 A ~ = 1 follows from 

Lj=o A~ = 1. 
Considering now L(x) C 1R~, each point of the sequence {vV} can be 

expressed as 

Vv = '" A~a~ + '" A~a~ > '" A~a~ ~]] ~]]=~]r 
jell jeh jelt 

The limit on the left has been denoted by vo. If we put v:= L jell A ~a~ for the 
limit on the right, then V°!?; v where v E convL(x). 153 The proof is completed 
if it is possible to replace a~ (j E 11) with point b j such that the residuum 

lim '" A ~a~ = vo - V ~ 0 
v--+oo~ ] ] -

jeh 

vanishes. Put b j := a~ + vo - V (j E 1d with b j !?; a~, then 

(11.33) vo = LA~bj, 
jell 

where vo E conv L(x) provided the b j can be expressed as convex combinations 
of points in L(x). 

152If Ai ~ 0 and ai ~ +00, then nothing is said about the limit limv->oo Aiai' Take Ai = 

ljv and a~ = v2ln(l+ljv) as an illustration. Using L'HOPITAL'srule it can be shown that Ai ~ 0, 
J d V. aj ~ +00, an A ja j ~ I . 

IS3The proof would have been completed at this point if limv->oo LjEh Aiai = 0 or, equivalently, 

v = vO could be guaranteed. 
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a~~+J.i2e2. • 
dj 

b· • J 

In the case of vO = v with bj = a~ 
there is nothing more to say since a~ E L(x) 

is already satisfied. In the case of vO ~ v 
with b j ~ a~ we can make use of the 
assumption that there are positive numbers ki 

(i = 1, ... , m) for each a~ E L(x) such 

that a~ + kiei E L(x). Thus, from the 
ki we can recursively derive arbitrarily large 
numbers JLi such that JLi > m(bij - a?) 
(i = 1, ... , m), see the figure opposite. This 
results in 

aO 
j a~ + J.ile1 

o 

Figure II.37: Proof of Proposition II.14 

i=1 

with 

Considering a~ + JLiei E L(x), the next convex combination for each j E i l 

(1I.34) 
m 

with 0 < & := L Cli < I 
i=1 

yields a point d j E conv L(x). It follows by rearranging (1I.34) 

d j = a~ + l/a(b j - a~) 

{=::} b j = &d j + (1 - &)a~. 

Thus, the b j can also be expressed as a convex combination of points of the input 
requirement set L(x), b j E convL(x), and the proof is complete. • 



Chapter III. 

Microeconomic Theory of 
Individual Agents 

1 The Cost Structure of a Firm 

1.1 Dual Statements in the Theory of a Firm 

The notion of duality is used differently and is often misleading.! Usually, the 
attention is drawn to certain symmetry properties of statements or optimization 
problems. For example, we can formulate in accordance with mathematical logic 
the subsequent duality principle for the statements A and B which are either "true" 
or "false": if the word "and" is exchanged everywhere with the word "or" in the 
two semantically equivalent statements H! and Hz which are only composed of 
the functional words "and", "or", and "not", then the resulting dual statements Hi 
and Hi are semantically equivalent, too. z When the text stresses this dual view 
of different statements, then such a substitution principle is intended bearing the 
symmetry properties in mind.3 

The duality theory of mathematical programming deals with pairs of programs. 
An explicit rule always assigns a minimum problem P to a maximum problem P* 
(or a maximum problem to a minimum problem). If the dual program P* can be 
associated with a further dual program P** such that P** equals the primal program 
P, then we speak of a symmetric pair (P, P*) of dual programs.4 Whereas the 
variables of the primal program are taken from a certain space, the dual variables 

I See NEWMAN (1987b, p. 925), for more expositions. 
2To illustrate the duality principle - from HI ¢=> H2 it ensues Ht ¢=> Hi - we can make use 

of DE MORGAN's laws: 

not (A and B) ¢=> (not A) or (not B) 

not (A or B) ¢=> (not A) and (not B) 

3 In particular, Theorem 0.5, p. 320, emphasizes the dual view of different statements. 
4Cf. BLUM, bTTLl (1975, pp. 113-114). 
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are assigned to the corresponding dual space. The intent of duality theory is to prove 
two statements for pairs of dual programs, which are then called duality theorems. 5 

(l) If one of the two problems has an optimal solution, then the other one also has 
an optimal solution and the optimal values of both objective functions are the same. 
(2) A necessary and sufficient condition for both programs to have a solution is that 
both programs have feasible points. 

The presented analysis directs the attention to the (dual) matching of quantities 
and prices. In doing so the introduced duality schemes should not be mixed up 
with pairs of dual programs. The duality schemes stress dual aspects of associated 
functions, whereas the underlying optimization problems are not dual programs.6 

The three presented duality schemes can be distinguished as follows: 
(a) The first approach uses support functions and may be interpreted as a special 

case of the approaches (b) and (c). In doing so the treated functions only depend 
on dual variables. For a given commodity bundle i an input requirement set L(i) 
corresponds to a subset in the primal factor space V, i.e. it embraces input vectors 
v, whereas the cost function c(q, i) depends on factor prices or dual variables q. 

(b) Regarding the duality of conjugate functions, ROCKAFELLAR has 
introduced the concept of the FENCHEL transform into the field of convex analysis 
whereby a function f is related to a so called conjugate function g. Without exactly 
defining conjugate functions at this point, the examined pairs of conjugate functions 
correspond to the "best" pairs of functions (f, g) satisfying the following YOUNG­
FENCHEL inequality:7 

Vx, Vy. 

Transferring this to economic theory, f(v-rIL(i» indicates the smallest quantity 
Vr of factor r such that Vr together with the other inputs v-r allows the production 
of a given commodity bundle i; see the right hand part of Figure III. 1 with r = 2. 
The conjugate function c(·, i) describes, however, the minimal factor costs in units 
of factor r. 8 The normalized cost function c ( ., i) depends on the dual variables 
q-r where q-r is a vector of normalized factor prices without the normalized price 
qr = 1 of input r. For the representation of conjugate duality we especially have to 
emphasize the works of JORGENSON, LAU (1974) and NEWMAN (1987b).9 

(c) The duality of polar gauges has been introduced into economic theory by 
SHEPHARD (1953). In contrast to (b), the theory of polar functions deals with 
"best" pairs (f, g) fulfilling MAHLER'S inequality 10, i.e. an inequality of the form 

f(x)· g(y) ~ xTy Vx, Vy. 

SBoth statements adjust the duality theorems to dual linear programs. 
6The presented properties virtually serve as requirements for the duality theory of mathematical 

programming. 
7For the YOUNG-FENCHEL inequalities, see (D.2a) and (D.2b), p. 317. 
8The corresponding YOUNG-FENCHEL inequality is 

-/(v-rIL(i» + c(q-r, i) ~ (q-r)T(v-r) Vv-r , Vq-r. 

9LAU (1974) contains further implications on econometric applications and further applications of 
this duality theory. 

\OSee inequality (D.lS), p. 335. 
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In this statement the role of the function f is adopted by the input distance function 
tl(', i), which depends on the inputs v. The input distance function faces the cost 
function c(·, i); it depends on factor prices q and corresponds to the (reciprocally) 
polar gauge function g.1l For a given commodity bundle i the cost function c(·, i) 
is associated with the input distance function tIL i), which is a suitable measure 
for the efficiency of an input vector v. A more detailed treatment of polar gauges 
is given in SHEPHARD (1953), who concentrates on single-product firms, and 
JACOBSEN (1970), who investigates multi-product firms. A lucid representation 
of SHEPHARD'S duality theorem can be taken from JACOBSEN (1972). 

The fundamental source for the basics of the duality of conjugate and polar 
functions is ROCKAFELLAR (1972). At the same time the transference of the results 
of convex analysis to microeconomic theory is determined by several aspects: 

(a) The two theories of convex analysis conform to convex functions. However, 
economic theory often deals with concave functions. The change of sign 
corresponding to this observation is awkward, but it is accepted to assure, for 
example, nonnegative prices. 

(b) The theory of polar sets and functions is founded on convex sets containing 
the origin, so they are star-shaped. The firm's production structure (L(x)1 x E X) 
however consists of (convex) input requirement sets which - except for the special 
case 0 E L(O) - do not contain the origin. The necessary switch-over to 
(aureoled) input requirement sets involves greater problems than one would suspect. 

(c) While the functions used in convex analysis usually refer to an unique convex 
set C C IRm , economic theory deals with (convex) level sets like L(x) themselves 
depending on the parameters x. The question arises how the cost function reacts to 
a variation of the outputs x and, therefore, to a change of the input requirement sets 
L(x). 

(d) Finally, we have to answer the crucial question as to what results are 
affected or not when the underlying sets are not convex. In dealing with indivisible 
production factors with nonconvex input requirement sets L(x) we use the already 
presented surrogate of the convex hull conv L(x). This causes a certain loss of 
information, but many of the main results do not alter. Whereas the results on 
efficiency measuring using a (one-dimensional) ray through the origin may change 
dramatically by the transition from L(x) to conv L(x), we do not observe a similar 
effect regarding the cost function with the m - I-dimensional objective function 
qTv. 

The following sections deal with diverse operations regarding sets and functions. 
For instance, the operation C ~ convC assigns the convex hull convC to the 
set C. In this sense the symbols "0" and "*" are reserved for indicating certain 
operations. Both symbols must be strictly distinguished with regard to whether 
it appears as a superscript (e.g. C ~ CO) or as a subscript (e.g. C ~ Co). All 
notations in dealing with functional symbols (e.g. f = g or c(·, x» are taken from 
Appendix C.1. 

llBy Corollary III.IS.l. p. 164, the inequality ([(v, ii)· c(q. ii) ~ qTv is only fulfilled for certain 
pairs of points (q, v). 
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Before going into alternative derivations of the finn's cost structure, it is 
worthwhile contrasting the working of the duality schemes used in Sections III.I 
and III.2. Section III .I refers to the usage of conjugate functions, while Section 
111.2 concentrates on dealing with polar gauges. 

A comparison of both methods is given in Figure III. I ; I 2 it refers to various 
possibilities for describing a (convex) input requirement set L(x) by functions. The 
left hand part of the figure is based on the input distance function 

(111.1 ) t/(v, x) = sup (A ~ 01 v E AL(x)}, 

which has already been introduced in the discussion of efficiency measuring. 
As shown by this figure, t/(v, x) detennines the greatest A such that the given 
commodity bundle x is producible by the inputs v = v / A . 

In the theory of conjugate functions this fonn of the total factor variation (along 
a ray through the origin) is compared to a partial factor variation, shown by the right 
hand part of the figure. The boundary of the input requirement set L(x) is now 
indicated by the solutions to the problem 

(111.2) 

Figure III. I : Total versus partial factor variation 

The left hand part of Figure III. I shows an input vector (~~) such that A = I 
sol ves (III.l). For A > I each input vector (~~) / A is not included in the input 
requirement set L(x). The same input vector can be detennined in the right hand 
part of Figure III. I for the given input VI such that V2 solves the problem (III.2). Not 
each vector e~) with V2 < V2 belongs to L(x). 

Both methods are especially suitable for the representation of convex input 
requirement sets but they get into difficulties when certain factors are only available 
as integer units. Two problems are shown in Figure III.2 for the partial factor 
variation. Again, the two figures illustrate the input vector (~~). Certainly, this 

12This comparison is picked up again in Figure 111.36, p. 181. 
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vector cannot be input efficient in the left hand representation. A similar problem 
has already been discussed in view of FARRELL's input efficiency measure. 

V2 

t 
V2 JI' 

1-J • e L(x) 

ii2 1-- • e ii2 1--
I 

L(x) 

,-
I I 
I '" I 

0 iii 
, 
VI 

0 iii 

Figure III.2: The case of an indivisible production factor 

The right hand graph includes admissible values for VI - see for instance iiI -
such that there are no amounts of the second input satisfying (~) E L(x). In these 
cases we put inf {vrl v E L(x)} = +00. 

As long as convex input requirement sets are presupposed, we can understand 
the next theorem as a partial factor variation. 

Theorem 111.1 13 Let C be a convex subset in JRn+l . Then the function I, defined 
by 

(111.3) l(xIC) := inf {IL I (;) E C}, 

is convex in JRn• 

A comparison to problem (111.2) shows how to describe the boundary of a convex 
input requirement set L(x) C JRm by a convex function 1(·IL(x».14 Take into 
account that the m - 1 variables, which the function 1('IL(x» depends on, are 
collected by v-r , i.e. the r-th component must be removed from the input vector v. 

If because of indivisible factors the input requirement set is not convex, then 
the function resulting from (III.2) will not be convex, either. Until now it has been 
suggested replacing the input requirement set L(x) by its convex hull convL(x). 
The question arises as to what the effects of this procedure have on the boundary 
function which is to be determined. 

The convex hull of a nonconvex function I (with a nonconvex epigraph epif) 
is denoted by conv I and it is given by Theorem 111.1 for C = conv(epif). 

l3Cf. ROCKAFELLAR (1972, p. 33). 
14The case of the single-product finn with f('IL(x» corresponds to the isoquant at an output level x. 
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Therefore, conv f equals the greatest convex function satisfying15 

(IlIA) convf ~ f. 

An example for this operation is shown 
in Figure IlI.3. The underlying input 
requirement set L(x) is given by the left hand 
part of Figure 111.2. After the corresponding 
function f (·1 L(x» has been determined, the 
gray shadowed epigraph epif('IL(x» can 
also be marked. The function conv fCIL(x» 
results from the convex hull of the epigraph 
conv(epif(·IL(x») with the help of (111.3). 

epi/(·IL(x» 

o 
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Given an arbitrary set C C lRn+1, two 
functions conv fCIC) and f(·lconvC) must 
be distinguished a priori. As shown by the 
following proposition, this differentiation is 
superfluous. Figure III.3: Derivation of the function 

conv/CIL(x») 

Proposition 111.1 For each set C C lRn+1 with f('1 C) > -00 we have 

conv f(-IC) = fClconvC). 

Proof: In order to avoid terms of the form -00 + 00 in the subsequent 
calculations, we assume a set C with fCIC) > -00. Thus, the two appearing 
summations are unambiguous. In particular this assumption does not restrict the 
analysis for input requirement sets with L(x) C lR~. 
By Theorem BA (CARATHEODORY) each point (:) E conv(epif('IC») can be 
expressed as a convex combination of no more than n+2 points in epif( ·IC). Thus, 
the unit simplex A n+2 includes a vector A. = (Ao, ... , An+l) T such that 

with (:) E epif(·IC). 

On the basis of the definition of the epigraph of a function the relation (~) E 

epifCIC) is satisfied if and only if /-Li ~ f(xiIC). With respect to the index 
i = 0, ... , n+ I we get 

cony f(xIC) 

= inf {ILl (:) E conv(epif('IC»)} 

= inf {/-LI (f~::i) = (:). (:) E epifCIC)} for one A. E A n+2 

= inf I L Ai/-Ld L AiXi = X, ILi ~ f(xil C)} 

= inf/LA;j(xiIC)1 LAiXi = x}. 

1Sef. also FRENK, DlAS, GROMlCHO (1994, p. 154ff.). 
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As each point (;) E convC can also be expressed as a convex combination of no 
more than n + 2 points in C, it ensues analogously 

f(xlconvC) = inf {ILl (;) E convc} 

= inf {ILl (E~::) = (:). (:) E C} 

= inf {LAiILil LAiXi = x, (:) E C} 

= inf{LA;/(xiIC)1 LAiXi = xl· 

The proof closes with a comparison of the results. • 

for one lEA n+2 

Technically, Proposition 111.1 offers a possibility of regularizing nonconvex 
functions. In the case of a (nonconvex) input requirement set L(x) the function 
f(·IL(x» is superseded by the greatest convex function convf(·IL(x» = 
f(·lconvL(x» which satisfies the inequality convf(·IL(x»;§ f(·IL(x». Note 
that the difficulties. described in Figure III.2, are not removed by the regularization. 

Two properties of the input requirement sets make it easier to handle the 
(extended real-valued) function defined by (III.2). On the one hand all input 
requirement sets are subsets in IR~ such that 

inf {v,1 v E L(x)} ~ o. 

On the other hand the infimum is attained under [L6] (Closedness) only if the 
infimum ii, is finite, O;§ ii, < +00. In this case the examined input vector 
satisfies the relation v E L(x), where the r-th component of the input vector 
corresponds to the calculated infimum, v, = ii, . 

1.2 Determination of the Normalized Cost Function 

In what follows, the spaces of primal (quantity) variables and of dual (price) 
variables are denoted by V and a2 respectively. Both spaces can be specified by 

V = IRm- 1 = a2 , 

as according to the preliminary remarks we are dealing with, for example, input 
vectors which are denoted by v-' and whose r-th component are missing. The 
analysis is founded on an input correspondence L: X ~ '.}J(V), where an input 
requirement set L(x) c V denotes the set of all input vectors v E V allowing 
the production of the commodity bundle x. In contrast to V = IRm- l , we call 
V C IR~ the factor space, where the integer constraints are already taken into 
account. 
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The commodity space is denoted by X C IR+, which contains nd divisible outputs 
analogous to factor space. 

When a production technology satisfies Axioms [Ll]-[L8], then certain properties 
of the function defined by (111.5) result. Since these properties form the basis of the 
subsequent analysis, we now give an examination of the central facts. 

Regardless of the divisibility or indivisibility of inputs we define analogous 
to Theorem 111.1 the following nonnegative function f('IL(x)): V ~ [0, +00] 
with 

(111.5) f(v-rIL(x)) := inf{vrl v E L(x)} , 

where v-r is the input vector v = (VI, ... , vm ) T without the r-th component. Given 
the other factor quantities, we seek for the smallest factor quantity Vr permitting us 
for producing x. Setting without loss of generality r = m, then v = (V;J . 

(111.5) cannot guarantee the existence of a minimum. If there is no Vr which 
permits the production of x at the given remaining inputs, then by definition 

(111.6) f(v-rIL(x)) = inf 10 = +00. 

This convention symbolically indicates that not all of the activities (v, x) are 
possible. Despite an infinitely large quantity of factor r the commodity bundle x 
is not producible by using the other held fixed inputs v-r. The case described in 
(111.6) emerges especially for the following constellations: 

• If at least one component of v-r is negative or if v-r violates integer 
constraints, then no Vr E IR exists such that v E V would be feasible. The 
impossibility of producing the given commodity bundle x E X is reflected 
by the functional value f(v-rIL(x)) = +00 . 

• If independent of Vr the inputs v-r are not enough to produce the given 
commodity bundle x EX, then no Vr E IR exists such that v E L(x) 
would be feasible. Again the functional value is f(v-rIL(x)) = +00. 

• Letting x be no admissible output vector, x ¢ X, then L(x) = 10 and 
f( '110) == +00. In this case an improper function f(-IIO) results. 

The nonnegative function f('IL(x)) ~ 0 is thus defined on the entire range V 
and, above all, nowhere in V does it achieve the value -00. Moreover, if x is an 
admissible commodity bundle, then under [L2] (Attainability of Each Production) 
the function f('1 L(x)) achieves a finite value for at least one point, i.e., the function 
is properl6. The reason results from [L2] 

x EX==> L(x) '* 10 

16For the criterion of proper, n-proper, and improper functions, see Appendix C.l. 



90 Chapter Ill. Microeconomic Theory of Individual Agents 

so that there is at least one input vector (v::) E L(x) C V having a finite 
quantity of factor r. Thus, the inspected (nonnegative) function has at least one 
finite functional value f(v-'IL(x»;;;! V,. 

To grasp the economic meaning of the function f(·IL(x», we suppose for 
a given admissible commodity bundle x E X that the nonempty [L2] input 
requirement set L(x) is a closed subset in 1R~ by [L6]. Then each finite functional 
value f(v-'IL(x» yields an input vector of the form17 

(I1I.7) (f(V-~~~(X») E L(x). 

As shown in the right hand part of Figure 111.1 for perfectly divisible factors, 
f(·IL(x» describes the boundary of the input requirement set L(x). This result 
will be stated more precisely at a later stage by Proposition 111.3 since under [L3] 
(Disposability of Inputs) it is 

L(x) = epif(·IL(x». 

For indivisible factors we get analogous to Figure I1I.3 

convL(x) = epif(·lconvL(x». 

In this case the graph of f( ·IL(x» indicates the (nonvertical) boundary of L(x) or 
convL(x). The functional values of f(·IL(x» are measured in units offactor r. 

The subsequent example graphically illustrates the correlation between an input 
requirement set L(x), the function f(·IL(x», and the epigraph epif(-IL(x»; see 
Figure IlIA. Later we go into the convex biconjugate function f**(·IL(x». Note 
that in the case of the example the supposed input requirement set contradicts Axiom 
[L3] (Disposability of Inputs).18 

Example: The starting point is an input requirement set for the admissible output 
level x 

(111.8) Ii 1m} or VI = VI or VI = VI 

for VI = v~ , 

where by Figure IlIA it is supposed that v~ > v~ > 0 and v~ > V~' > v; > 
o. The naming of the factor quantities reflects the well-founded supposition that 
the quantity V~' will be irrelevant for the later determination of the cost function. 
Hence, in accordance with (IIl.5) the function f(·IL(x»: V ~ [0, +00] with 
V = {v;, vt, vn is 

(111.9) f(VIIL(x» = inf {v21 (~) E L(x)} 

{

VI 

= v~ 
+00 

for VI = V; or VI = V~' 
for VI = v~ 
otherwise. 

17No finite functional value j(v-rIL(x» can contradict any integer constraint even when the factor Vr 
is indivisible. 

18Thus. we cannot rule out afterwards the case of a negative factor price ql < o. 
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In addition to this function Figure IlIA represents its epigraph 

epif( ·IL(x» = { (~) E V x lRl V2 ~ f( VIIL(X»} . 

Finally, we get for the effective domain of the function f(·IL(x» 

Dom f(vtlL(x)) = {vi, v~', vn = v. 

V2 f(·IL(i» +00 · · · I' 

· · · 
v' 2 · · · v' 2 

. . 
v" 2 · v" 2 . 

'" VI ... VI 
0 v' V~' v" 

,. 
0 v' vt v" I I I I 

input requirement set L(i) function f(-IL(i» 

V2 r*(·IL(i» +00 
0 

)1' ) 

v' v' 

~ 
2 2 

v" v" 2 2 

... VI '" VI 
0 v' V~' v" 0 v' v" v" I I I I I 

epigraph epif(·IL(i» convex biconjugate function r*(·IL(i» 

Figure rn.4: Graphical representation of the example 

In order to determine the factor costs incurred by the production of the commodity 
bundle x, we fix a vector of nominal factor prices q E Q, where 

Q =lR~ 

denotes the space of the (nonnegative) factor price vectors in contrast to ~ = 
lRm- l . By normalizingl9 the r-th factor price to unity (qjqr) a vector of relative 
factor prices q-r E ~ results. For r = m we get qjqr = (q~'). Thus, 
with respect to a price vector, the notation q-r indicates two operations: the r-th 

19Remember at this point that only the functional for detennining the minimal costs implies a 
normalization of the factor price concerned. 
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component of the price vector q is not removed until it is normalized to unity. 
Consequently, the remaining components hold qir = q;/qr with i "* r. 

The minimal costs are measured in units of factor r; they are given by20 

inf {(q-r)T (v-r) + f(v-rIL(x»1 v-r E V}. 

With that the theory of conjugate functions in Section D.1 offers two starting points 
which differ with respect to the signs of the included parameters. First of all, the 
convex FENCHEL transform 

can be examined, where in the course of further calculations nonpositive vectors 
q-r = _q-r ~ 0 arise. This (mathematically unproblematic) case can still be 
avoided by choosing the second alternative approach so that q-r can further be 
interpreted as a vector of nonnegative factor prices. For this purpose the function21 

g(·IL(x» = - f(·IL(x» is examined instead of f(·IL(x». Since f(·IL(x» 
is proper for each commodity bundle x E X, the function g(-IL(x» must be 
n-proper for each commodity bundle, i.e. for all x E X 

g(·IL(x» < +00 

and g(v-rIL(x» is finite for v-r E V. 
(111.10) 

With the above function g the concave FENCHEL transform now generates a 
function g*(·IL(x»: ~ -+ [-00,+00] with 

(111.11) g*(q-rIL(x» := inf {(q-r)T (v-r) - g(v-rIL(x»1 v-r E V} , 

where g*(·IL(x» is the minimal cost of producing the commodity bundle x 
measured in units of factor r. Finally, the outcome 

(III. 12) 

will be important at a later stage. 
Hence, for a given production technology represented by the input 

correspondence L or the production structure (L(x)1 x E X) we write for the 
(normalized) cost function 

(111.13) 

In correspondence with Theorem D.2, p. 316, the cost function c(·, x) as a concave 
conjugate function of g(·IL(x» is n-proper if and only if g(·IL(x» is n-proper 
according to (111.10). In this case 

c(·, x) < +00 
(111.14) 

and c(q-r, x) is finite for q-r E ~ 

20 While the calculation of the functional value f(v-rIL(x)) is carried out at given v-r - that is in the 
sense of a partial factor variation - we now vary v-r parametrically, where the adjoined optimal quantity 
of factor r - i.e. f(v-rIL(x)) - must be taken into account. 

218y Theorem 111.1 the proper function f(·IL(x)) is convex if L(x) is a nonempty convex subset in 
the factor space V. In this case g(·IL(x)) = - f(·IL(x)) < +00 is an n-proper concave function. 
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holds for all x EX. Moreover, Theorem D.2 states that the cost function c(·, x) 
is a closed22 concave function. In the relevant case of an n-proper cost function we 
thus have by Theorem C.2, p. 301, 

(III.l5) cl (hypo c(·, x») = hypo c(., x) or, equivalently, cl c(·, x) = c(·, x). 

The criterion of concavity is analogously defined by 

(111.16) conv(hypoc(., x») = hypoc(·, x). 

Before giving an example, it has to be noted that the results do not depend on the 
assumption as to whether the underlying input requirement set L(x) is convex or 
not. 

Proposition m.2 Under the conditions of Proposition /1.14 the normalized cost 
function c(·, x), viewed as the concave conjugate function g* (·1 L(x», equals the 
concave conjugate function g* (·Iconv L(x». 

c(·, x) == g*(·IL(x» = g*(·lconvL(x» 

Proof: For an inadmissible vector x ¢ X it is L(x) = conv L(x) = 0 and 
nothing remains to be shown. The cost function is improper; 

c(·, x) == g.(·10) == +00. 

In order to reduce the notation for the rest of the proof, we disregard the input 
requirement set L(x) C JRm • Instead we inspect analogous to Theorem 111.1 
a nonempty set C c JR+, whose convex hull convC is closed. Furthermore, 
the effort can be reduced by carrying out the proof for the convex FENCHEL 
transform.23 Instead of the pair of n-proper functions g(·1 L(x» and g( ·Iconv L(x» 
the following pair of proper functions is examined: 

fl (x) = inf {ILl (;) E C} ~ 0, 

h(x) = inf {ILl (;) E convC} ~ o. 

In the sense of Proposition III.2 it is now proved that the adjoined convex conjugate 
functions 

(III. 17a) 

(III. 17b) 

Jj(y) = sup {yTx - h(x)1 x E JRn-l} , 

/i(y) = sup {yTx - h(x)1 x E JRn-l} 

22For the criterion of a closed function, see Appendix C.I. As stressed on p. 304, we need not 
distinguish between the criterion of upper semi-continuity and the criterion of closedness for an n-proper 
concave functions. 

23Ifthe set C is identified with an input requirement set, then the switch-over to the concave FENCHEL 
transform is tediously long since we have set - f(·jL(x» = g(·jL(x». In view of (111.12) we can 
avoid this effort. 
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satisfy It = Ii· 
First of all, remember that C c convC implies the inequality II ~ h. 

Transferred to convex conjugate functions we obtain It ~ Ii. Finally, it must be 
shown that the strict inequality 

(111.18) R (y) < Ii (y) 

is not satisfied at any point y. At point y = y the problem (III. 17a) yields 

(III. 19) 

This inequality also holds for all (;) E convC since by Theorem B.4 (CARA­

THEODORY) each (;) E convC can be expressed as 

n 

(;) = LAi(;) with (;) E C, l E N+I . 

i=O 

From (111.19) 

(i=O, ... ,n) 

ensues for each of the (;) such that 

n n 

(III.20) R(y) = LAdi(Y) ~ LAi(yTxi - JLi) = yTx - JL. 
i=O i=O 

holds for each (;) E convC. Analogous to (III. 19), we obtain from (III. 17b) 

v(;) E convC. 

The strict inequality (111.18) implies analogously 

v (;) E convC. 

This inequality can only be satisfied when the infimum h is finite for at least one 
point. Otherwise we have II == h == +00 and therefore 

h == +00 ==> Ii == -00 ==> Ii == -00 (because of Ii ~ Ii)· 

Because of h ~ 0 the case h(x) = -00 does not need to be inspected.24 

Assuming a finite infimum at point i there must be an optimal jl with respect to the 

24 If the set C allows the functional value h (x) = -00. then 

h(x) = -00 ~ fi == +00 and Ii == +00 (because of (111.20) for JL --+ -00). 
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c10sedness of convC so that the infimum is achieved, (Z) E convC with hex) = 
[J.. The contradiction 

yTx - [J. = fi(y) > it(y) ~ yTx - [J. 

rules out the case It(y) < fi(Y) for all y E JRn-\ . 

The proof is complete when we take into account that the convex hull of an input 
requirement set conv L(x) is closed under the assumptions of Proposition 11.14. • 

c(-, x) 

o 

Figure 111.5: Nonnalized cost function 
C(-. x) 

Considering (III. 9) we obtain 

The example shown in Figure I1I.4 can 
now be continued with respect to Proposition 
111.2 without knowing the convex hull of the 
input requirement set. 

Example: To avoid confusion, the 
normalized price of the first production 
factor q,]' with r = 2 is denoted by q\ within 
the example. The price of factor 2 is set to 
one, q2 = 1. 
For the input requirement set L(i) according 
to (IlI.S), the following cost function results 
corresponding to the concave conjugate 
function g.(·IL(x»: 

c(q\, i) == g.(qdL(x» 

= inf{q\v\ - [- f(vdL(i»]1 VI E JR} . 

& I m 1 lor VI = VI or VI = VI 

for VI = v~ . 
otherwise 

Due to v;" > v;, the input V~' is ruled out as a solution to the problem of cost 
minimization. 

(I1I.21) 

results in accordance with Figure IlI.5. 

for ql ~ iit 
for ql ~ ql 

V' - v" 
with ql := _2 __ 2 

V;' - V; 

Thus , the graph of the normalized cost function c( ·, i) consists of a kink point 
and two half-lines. Finally, we have to note that the gray emphasized hypograph 
hypo E(· , x) is closed and convex by the relations (III. 15) and (III. 16) respectively. 

The normalized cost function c(', x) at once yields some basic statements. 

• As mentioned above, each inadmissible vector x ¢ X with the empty input 
requirement set L(x) = 0 and hence g( ' 10) = - f( ' 10) == -00 implies 
an improper function g.( '10) == c(-, x) == +00. 
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If an activity (v, x) with given inputs v-r and a given commodity bundle 
x E X is impossible in the sense of the production technology independent 
of the used quantity of factor r, f(v-r IL(x)) = +00, then v-r with 
g(v-rIL(x)) = -00 is ruled out as solution to the problem of cost 
minimization. Infinitely high costs are in no case optimal. 

• Given an admissible commodity bundle x E X the following can be stated: 

- By Theorem D.2 the normalized cost function c(·, x) is n-proper 
since by [L2] (Attainability of Bach Production) the genuine function 
g(·IL(x))isn-properforall XEX ; see (111.14). 

- Because of g(·IL(x)) ~ 0 and v-r ~ 0 we get nonnegative factor 
costs c( q-r, x) ~ 0, provided only nonnegative factor prices q-r ~ 
o are admissible. 

- From a negative factor price, i.e. q-r 1,. 0, the functional value 
c( q-r, x) = -00 results since by [L3] (Disposability of Inputs) the 
costs can be reduced permanently by enlarging more and more the factor 
quantity with the negative factor price.25 

- Summarizing the last two points gives for the effective domain of the 
normalized cost function 

(111.22) n-Domc(·, x) = 1R~-1 . 

1.3 Reconstruction of the Production Structure 

The previous explanations may be summarized as follows: beginning with the pro­

L(x)-----:1t 

~?t -f('IL(x» == 

epif('IL(x» .j 
g(·IL(x» 

~ 
n. x) - g. CIL(x» 

~ 
g •• (·IL(x» 

? 

duction structure (L(x)1 x EX), 
(111.5) introduces a function 
f('IL(x)) serving for the 
representation of certain boundary 
points of an input requirement set 
L(x). In doing so it turns out to be 
helpful to continue with the function 
g(·IL(x)) = - f(·IL(x)). Finally, 
the function g('IL(x)) has been 
assigned by the concave FENCHEL 
transform to a concave conjugate 
function g.(·IL(x)), which indicates 
the minimal factor costs incurred 

Figure 111.6: Reconstruction of the production 
by the production of the commodity 

structure (L(x)1 x E X) 
bundle x in units of factor r. Thus, 

we write for the normalized cost function c(·, x) == g.(·IL(x)). 
Now we can give an idea of the following expositions. If the cost function 

c(·, x) can be deduced from the (boundary) function f('IL(x)), in what way is it 
then possible to infer f('IL(x)) from c(·, x)? As shown by the outline opposite, 

25The apparent contradiction to Figure III.S results from the supposed input requirement set L(x) by 
(111.8). The quantity of factor I cannot arbitrarily be augmented for a negative factor price ql. 
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for this purpose we apply the same operation to the function g*(·IL(x» as we did 
before to the function g(·1 L(x». By (111.23) the result g** (·1 L(x» is closely related 
to the genuine function g(·IL(x», where the degree of deviation can be assessed 
by means of the adjoined hypograph. If the result is - f( 'IL(x» = g(·IL(x» = 
g**(·IL(x», then under certain assumptions the production structure (L(x)1 x E 

X) can be completely reconstructed from the cost function c(-, x) == g.(·IL(x», 
i.e. epif('IL(x» = L(x); see Proposition III.3, p. 99. 

The next step examines the second concave FENCHEL transform. This 
operation generates an n-proper closed concave function which is called the concave 
biconjugatefunction g**(·IL(x»: V ~ [-00, +00]. 

(III.23) 

The YOUNG-FENCHEL inequality (D.lb), p. 317, yields analogously to (D.2b) 

g**(·IL(x» i;; g(-IL(x». 

The second concave FENCHEL transform associates an arbitrary function g(-IL(x» 
with the smallest concave function g ** (·1 L(x» so that 

(111.24a) hypog.*(·IL(x» = cI{conv[hypog('IL(x»]}, 

where the hypograph ofthe function g( ·IL(x» is defined by 

hypog('IL(x» := {(v:,r) E lRml Vr ~ g(v-rIL(X»} . 

In view of g(·IL(x» = - f('IL(x» this statement is graphically illustrated by 
the convex biconjugate function j** (·1 L(x» in Figure 1II.4, i.e. 

(111.24b) epij**('IL(x» = cl {conv[epif(·IL(x»]}, 

where the epigraph of the function f('IL(x» is defined by 

epif('IL(x» := {(v::) E lRml Vr i;; f(v-rIL(X»} . 

Concerning duality theory, the question arises as to when g**(·IL(x» and 
g('IL(x» describe the same functional relation. If both functions contain the 
same information, then it is irrelevant whether the analysis underlies the function 
g('IL(x» or the concave conjugate function g.(·IL(x». In this case each function 
can be derived from the other one without any loss of information. If the functions 
g**(·IL(x» and g(·IL(x» differ, then we have to reformulate the question; the 
pair g*(·IL(x» and g**(·IL(x» describes the same information, but the original 
function g('1 L(x» cannot be reconstructed. Now we must find out what information 
is lost and under what assumptions this information can be ignored. 

Since each function is unambiguously associated with a hypograph,26 it seems 
reasonable to suspect that 

(III.25) g(-IL(x» = g •• (·IL(x» 

26 An analogous argument holds for the epigraph with respect to (I1I.24b). 
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holds if by (111.24a) the hypographs of both functions are equal. In order to 
guarantee that both hypographs are nonempty, it suffices by Theorem D.2, p. 316, to 
suppose an n-proper function g(·IL(x».27 In view of (III.24a) the hypographs are 
equal if the forming of the convex hull and the closure operation keep the hypo graph 
hypo g ( ·1 L (x» unchanged. 

The forming of the convex hull may be ignored if hypog(·IL(x» is convex 
and this case is given by definition when the function g('IL(x)) is concave. This 
conclusion is confirmed by Theorem D.2, i.e. 

g**(·IL(x» = clg(-IL(x» 

holds for an arbitrary concave function g(-IL(x».28 Note that the replacement of 
an input requirement set L(x) by its convex hull convL(x) guarantees according to 
Theorem 111.1 the concavity of the function g( ·lconvL(x» (or the convexity of the 
function f(·lconvL(x))). 

Moreover, the closure operation may be neglected in (111.24a) if the set 
conv( hypo g(-I L(x») concerned is closed. This case is given when the concave 
function g(·IL(x» is closed; see Appendix c.l. Thus, if we suppose an n-proper 
closed concave function g(·IL(x», then (111.24a) is satisfied. Moreover, Corollary 
D.3.1 (FENCHEL, MOREAU), p. 318, confirms that (111.25) is fulfilled if and only if 
g('1 L(x» satisfies the three properties mentioned. 

The justification for supposing an n-proper closed (and furthermore concave) 
function g('IL(x» results from the corresponding assumptions on a production 
technology. For an admissible commodity bundle x E X [L2] (Attainability 
of Each Production) implies a nonempty input requirement set L(x). Thus, the 
function 

(111.5) g(v-rIL(x» = - inf {vrl v E L(x)} 

is n-proper since by [L2] at least one input vector v = C:,') E L(x) exists 
containing a (finite) quantity of factor Vr such that (v, x) is a possible activity. 
By Proposition 111.3 the closedness of the function g(-IL(x» = - f('IL(x» 
results mainly from [L6], i.e. the closedness of the input requirement set L(x). 

Analogously, the concavity of the function g(·1 L(x» requires a convex input 
requirement set L(x). 

Concerning (111.26a), the equation (III.24b) can be put into concrete form by 
considering the relationship between the input requirement set L(x), the describing 
function f(-IL(x», and its epigraph epif(-IL(x», i.e. 

! 
L(x) ~ f('IL(x» ~ epif(-IL(x» ~ L(x). 

27By Theorem D.2 g.(·IL(x» is n-proper if and only if g(·IL(x» has this property. The same 
argument can be transferred to g •• (·IL(x» and g.(·IL(x». In accordance with (IIL6) for x <t X 
we have g(·IL(x»:; -00 where hypog(·IL(x» = 0 and c1(conv0) = 0. 

28Theorem D.2 holds for improper functions, too. This case is given when x is not an admissible 
commodity bundle x <t X with L(x) = 0. We obtain g •• (·IL(x»:; +00 :; c1g(·IL(x». The 
relevant case of an admissible commodity bundle x E X with cI g( 'IL(x» < +00 or more exactly 
c1g(·IL(x»;§ 0 is described by (IIL5). 



1 The Cost Structure of a Firm 99 

Proposition m.3 Let x E X be an admissible commodity bundle. If the inputs 
are perfectly divisible,29 then under [L2] (Attainability of Each Production), [L3] 
(Disposability of Inputs) and [L6] (Closedness) we obtain 

L(x) = epif(-IL(x». 

Proof: According to [L2] the input requirement set L(x) is not empty for all 
x EX. Each input vector v E V can be expressed as v = C::). If vr solves 
the problem inf {vr ~ 01 v E L(x)} for a given vector v-r , then by definition of 
the epigraph (vv~') E epif('IL(x» holds for all input vectors of the form (v:,') 
with Vr ~ vr • By [L6] closedness of the input requirement set L(x) implies 
C;") E L(x). Hence, under [L3] (Disposability of Inputs) (v:,') E L(x) is also 

fulfilled, provided that Vr ~ vr and that factor r is divisible.3D Thus, each vector 
v which belongs to one and only one of the sets L(x) and epif(-I L(x» implies a 
contradiction. • 

Under the assumptions of Proposition 111.3 the closedness of the describing function 
f(-I L(x» at once results from the closedness of the epigraph epif(-I L(x» = L(x) 
since f (·1 L(x» is proper for each commodity bundle x E X and therefore3l 

cl f('IL(x» = f(-IL(x» ¢==} cl [epif(-IL(x»] = epif(-IL(x». 

Although this equivalence relation will not usually occur for indivisible factors -
see Figures 111.2 and 111.3 - Proposition 111.3 can be modified as follows: (Note that 
under [L7] (Convexity) the equation L(x) = convL(x) is satisfied.) 

CoroUary 111.3.1 Provided x E X is an admissible commodity bundle. Then 
under [L2] (Attainability of Each Production), [L3] (Disposability of Inputs) and 
[L6] (Closedness) we have 

convL(x) = epif(-lconvL(x». 

Proof: Because of [L2] the input requirement sets L(x) and, therefore, their convex 
hulls convL(x) are not empty for every x E X. By Proposition II.14 it is known 
that convL(x) is closed under [L6] (Closedness) and [L3] (Disposability ofInputs). 
Moreover, considering Proposition 11.4, [L3] yields 

"Iv, v E IR~, v ~ v : v E convL(x) ====} v E convL(x) 

for the convex hull of L(x). Thus, the proof can be completed analogous to Propo­
sition 111.3. • 

29Por the proof it is enough to assume one perfectly divisible factor r. 
30Comparing the two subgraphs of Pigure IIl.2 for r = 2, the condition that at least factor r must be 

divisible becomes evident. The condition is satisfied in the right hand part, whereas the left hand graph 
violates it. 

31See p. 303. The same argument can be transferred to the function g(·IL(x)) as g(·IL(x)) is n-proper 
for each commodity bundle x E X and therefore 

clg(·IL(x)) = g(·IL(x)) <=> cl[hypog(-IL(x))] = hypog(-IL(x)). 
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Corollary 111.3.1 includes the case of nonconvex input requirement sets and 
especially the case of indivisible production factors. Furthermore, the limit case 
of convex input requirement sets is considered, where we have to presume perfect 
divisibility of all factors. 

First of all, we suppose convex input requirement sets by [L 7] so that reverting 
to Theorem 111.1 a convex function f(·IL(x)) (or a concave function g(·IL(x») 
ensues. Moreover, Corollary D.3.1 (FENCHEL, MOREAU), p. 318, implies 

(111.26a) 
f(-IL(x)) = j**(·IL(x» = - g(·IL(x)) = -g**(-IL(x» 

epif(·IL(x» = epij**(·IL(x» = L(x) 

for a proper function f( ·IL(x» (or an n-proper function g( ·IL(x) ». For indivisible 
factors the requirement of convexity of the inspected function f (or of the concavity 
of the corresponding function g) is assured by replacing the input requirement sets 
L(x) in accordance with Corollary 111.3.1 by their convex hulls conv L(x). Since 
g* (·IL(x» = g*(-Iconv L(x)) is satisfied by Proposition III.2, it is well-founded to 
suppose g**(·IL(x» = g**(-lconvL(x)) and we have 

(III.26b) 
f(·lconvL(x)) = j**(·lconvL(x» = -g(·lconvL(x» = -g**(·IL(x» 

epif(·lconvL(x» = epij**(·IL(x» = convL(x). 

V2 

Figure III.7: Representation of the 

FENCHEL transform 

and by (III.5) the required function is 

Before going into the explicit derivation of 
the factor demand, the previous issues can 
be illustrated for the example of a simple 
production technology. 

Example: For the sake of clarity we 
omit an explicit consideration of indivisible 
goods as in the first example. Moreover, to 
avoid confusion within the calculation, the 
factor price qt' with r = 2 is denoted within 
the example by ql. The partial results are 
summarized by Figure III.B. 

For a fixed amount of the good x > 0 
we suppose the input requirement set 

L(x) = {(~) E 1R~1 VI V2 ~ x} 

f(vIIL(x» = inf {V2 ~ 01 (~~) E L(x)} = {~~ for VI > 0 
for VI ~ o. 

Before the cost function can be calculated we have to carry out the change of sign 
as shown in Figure III. 7, g (·1 L(x» = - f (·1 L(x». This function is depicted 
as well in Quadrant N of Figure III.B; here it describes the initial point A of the 
representation. The tangent drawn in Figure III. 7 has been denoted in Figure III.B 
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II 
L).g(·IL(x» 

ql 

_______________ ql 

I 

til E L).g(vdL(x» 

{:=:} 

VI E L).C(tll, x) 

c(· , x)1 ___ ~_:__--~--~---+_,_--_:__-....,....-.... L).c(. ,x) 
'e :V2 :VI .... hg(vdvd 

III 

I 
I 

-C.' ----------------

g(·IL(x» 

g(vdL(x» = - j(vdL(x» 
= g •• (vdL(x» 

Figure 111.8: A strictly convex input requirement set 

IV 

by hg(vIivd. Note that the downward directed ordinate shows not only g('IL(x)) 
but also -V2. 

The detennination of the nonnalized cost function c(·, x) with the concave 
FENCHEL transfonn 

C(ql, x) == g.(qIiL(x)) = inf {ql VI - g(vIiL(x))1 VI E JR} 

merely yields an optimal solution if ql ~ 0 is presupposed. Therefore, in Figure 
III. 7 it is assumed tIl > O. Since no VI ;§ 0 can be an optimal solution, the 
optimal amount of input VI can be detennined by differentiating ql VI +xjv\ with 
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respect to VI if we assume a positive factor price iiI. 32 The result 

is depicted in Quadrant I of Figure IIl.B. 
In this case the optimal value of the objective function is 1/1 VI -X/VI = 2.;q;i. 

For ql < 0 the optimal amount of input VI = +00 results, hence the optimal 
value of the objective function is ql VI - x/ VI = -00. Summarizing, we get the 
normalized cost function depicted in Quadrant II, 

for ql ~ 0 
for ql < O. 

As this function indicates the minimal factor costs in units of factor 2, the "ordinate" 
of Quadrant II depicts not only c(·, x) but also V2. 

By the second concave FENCHEL transform 

the original function g(·IL(x» is reconstructed from the normalized cost function 
c(·, x) == g.(·IL(x». Again ql < 0 cannot be an optimal solution. The 
minimization of ql VI + 2jfi;X with respect to ql at a given VI > 0 generates 
again the result described by Quadrant I: 

VI - q"lI/2xl /2 = 0 ==} 1/1 = x/(vd . 

With that the optimal value of the objective function is 1/1 VI - 21/:/2xl/2 = -X/VI. 
For VI ~ 0 the optimal factor price is 1/1 = +00 since g(·IL(x» is bounded 
above. Summarizing, both results yield the initial function of Quadrant IV 

g •• (vIIL(x» = g(vIIL(x» = - f(vIIL(x» = {-X/VI 
-00 

for VI > 0 
for VI ~ 0 

Before going into further aspects of Figure IIl.B, we have to concentrate on more 
analytical preparations. Furthermore, it must be taken into account that the example 
applies to a strictly convex input requirement set. However, the example of Figure 
Ill. 12, p. 114, supposes indivisible factors. 

1.4 Properties of Factor Demand 

1.4.1 Convex Input Requirement Sets 

An input vector v E V is chosen if v is sufficient for the production of the given 
commodity bundle x E X and if, at the same time, it minimizes the factor costs 
arising from the production of x at given factor prices. Denoting fCIL(x» the 

32Second order optimum conditions for the determination of a minimum are omitted. For ql = 0 
the minimum is not attained. As an alternative we may set g. (OIL(i» = O. 
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smallest quantity of factor r which is sufficient to produce the commodity bundle x 
with the given remaining inputs v-r, the quantities of factors v-r are chosen if v-r 
solves the problem of cost minimization 

at given (normalized) factor prices q-r. Since a solution to this problem 
does not need to be unique, we define the factor demand correspondence33 
D(., x): ~ ~ '.P(V). The set D(q-r, x) contains all of the input vectors v-r 
which minimize the factor costs in (III. 1 1) for a given technology, given the factor 
prices (q~') and the output x. 

The next section deals with the properties of the demand correspondence 
D. As gathered from Section l.4.3, we derive, for instance, a generalization of 
SHEPHARD'S Lemma. Even at this point it can be noted that independent of the 
factor prices q-r the set of cost minimizing input vectors D(q-r, x) is empty, 
provided an inadmissible vector x ¢ X is given. In contrast, it can be assumed 
for each commodity bundle x E X that the set D(q-r, x) includes at least one 
cost minimizing input vector v-r at positive factor prices q-r > o. In addition 
to this supposition the analysis states more precisely the correlation between the 
normalized factor prices q-r and the cost minimizing input vectors y-r. 

Again the function f(·IL(x)), which serves for the description of certain 
boundary points of an input requirement set L(x), is used as an initial point. 
Provided an admissible commodity bundle x E X is held fixed, the n-proper 
function g(·IL(x)) == - f( ·IL(x)) results by the above discussed change of sign. 
If we can further assure that the function g(·IL(x)) is concave, then regarding 
Corollary D.5.2, p. 320, important properties result for each element of the set of 
cost minimizing input vectors D(q-r, x). 

The concavity of g(·IL(x)) is given by Theorem III. I, p. 86, if either convex 
input requirement sets L(x) are considered or if the input requirement sets, including 
indivisible factors, are substituted by their convex hulls convL(x).34 Moreover, 
under the assumptions of Proposition III.3, p. 99, (or Corollary III.3.l) we can 
presume the closedness of the function g(·IL(x)). 

The statement that an input vector y-r solves the problem of cost minimization 
(III.ll), y-r E D(q-r, x), is reflected by the following three equivalent 
conditions (III.27a)-(III.27c). For a given factor price vector q-r and an n-proper 
concave function g(·IL(x)) Corollary D.S.2 says that 

(III.27a) (q-r) T (v-r) _ g(v-rIL(x)) achieves the infimum at v-r = y-r 

holds if and only if 

(III.27b) 

33In this section we refrain from calling a multi-valued mapping r: X ~ qJ(Y) a correspondence 
only if r(x)"* 0 is satisfied for all x E X. 

34Remember at this point that L(x) = conv L(x) for a convex input requirement set. 
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Take into consideration that the two functional values of g(-IL(x» and the 
costs c(-, x) == g.(-IL(x» are measured in units of factor T. An exemplary 
representation of this equivalence relation can be taken from Figure 111.9, point A. 
Both conditions are equivalent to the statement that q-r is a supergradient of the 
function g(-IL(x» at point v-r. According to Definition D.2, p. 318, the factor 
price vector q-r is called a supergradient of the concave function g(·IL(x» at 
point v-r if it fulfills 

Vv-r E V . 

The relation to (I1I.27a) can be shown by rearranging this inequality 

If the term in brackets achieves its infimum at point v-r , then by definition it equals 
g.(v-rIL(x» and it follows (III.27b). 

Before continuing with the analysis, we give a hint for the classification of 
supergradients. Supposing the function g('1 L(x» is concave and differentiable35 

at a point v-r, then the unique supergradient q-r by Theorem D.4, p. 319, equals 
the gradient 

Y'g(v-rIL(x» = (:~i (y-rIL(X»)i=l ..... m . 

,# 

Conversely, we can conclude from the existence of a gradient at point y-r that the 
supergradient is unique. 

h 

o 

g(-IL(x) ) 

Resuming Figure 111.7, the graphical 
representation in Figure III.9 describes a 
further special case for a concave and 
differentiable function g(-IL(x» since the 
number of production factors is restricted to 
two. Thus, v-r = (VI) holds for T = 2. 
In this case the unique supergradient q-r = 
(/11) at point VI equals not only the gradient 
Y'g(vIIL(i» but also the derivative 

ql = ddg (vIIL(i». 
VI 

As mentioned above, both statements 
Figure III.9: Representation of a (111.27a) and (III.27b) are equivalent to the 
unique supergradient condition that ql is a supergradient of the 

function g(-I L(i» at point VI. 
Before going into the construction of the vector (-11), it must be noted that a 

supergradient does not need to be unique at all. If the concave function g (·1 L(i» 
has a kink point such as point A of Figure 111.10, then each vector of the marked cone 
corresponds to a supergradient. In this case all of the supergradients of g(·IL(x» 

35The assumption of differentiability of g(·IL(x)) and c(·, x) is discussed later in more detail. 
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at point y-r are collected in the (closed and convex) set t.g(y-rIL(x)) and we call 
this set the superdifferential of g CI L(x)) at point y-r. 

Now the statements (III.27a) and (111.27b) can be extended with regard to the 
superdifferential t.gCIL(x)) by the equivalent condition 

(1II.27c) 

To emphasize the used notation, we write 

in the case of a unique supergradient q-r, which equals the gradient V'g(y-rIL(x)). 
To complete the construction principle of Figure 111.9, scrutinize an optimal 

input vector y-r. If we set for the infimum in (1II.27a) 

a := g(y-rIL(x)) _ (q-r) T (y-r) = const., 

then an affine function results, 

which can be used in the inequality for the supergradient. 

In particular, corresponding to point A in Figure 111.9, the equation g(y-rIL(x)) = 
h(y-r) holds at point y-r. With regard to a graphical representation of the 
supergradient q-r the rearrangement 

turns out to be useful. Thus, the graph of the function h is a hyperplane H in IRm 

with the normal vector (-f'). The equation g(y-rIL(x)) = h(y-r) now states 
that the hyperplane H is tangent to the hypograph of the function g (·1 L(x)) at point 

(g(V-~~~(X») so that 

In view of (g(V-~~~(X))) = (ht;~r») we reach a graphical representation of the 

supergradient q-r E t.g(y-rIL(x)) since the normal vector (-f) is especially 

normal at point (h~;~rJ While Figure III.9 has a unique supergradient q] at point A, 
the superdifferential at point A of Figure 111.10 corresponds to a convex cone. 

The second part of Corollary D.5.2 states that dually to (1I1.27a)-(1II.27c) three 
more conditions are equivalent to each other. These equivalence relations refer to 
the cost function c(·, x) = g*CIL(x)) and to the concave conjugate function 
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g •• (·1 L(x» by (III.23), where the conditions which are sufficient for g •• (·1 L(x» = 
g(·IL(x» are picked up in (1II.2S).To assure that the conditions of an n-proper 
function g( 'IL(x» are satisfied, we have to assume at this point again an admissible 
commodity bundle x EX. 36 

(1II.27d) 

(111.27e) 

(111.27f) 

(q-r)T (v-r) _ g.(q-rIL(x» attains the infimum at q-r = q-r 

g •• (v-rIL(x» + g.(q-rIL(x» = (q-r)T (v-r) 

v-r E .6.g.(q-r IL(x» 

The assumed closedness of the function g('IL(x» implies especially the equation 
cl g(v-rIL(x» = g(v-rIL(x». Hence, by Corollary 0.5.2, all of the six conditions 
(1II.27a)-(1II.27c) and (1II.27d)-(1I1.27f) are equivalent. Each pair (q-r, v-r) 
satisfying the above six conditions is called a pair of dual points. 

Finally, Corollary 0.5.2 offers a statement collecting all pairs of dual points, 
where the attention is directed to the conditions (1II.27c) and (1II.27f). Since the 
supposed function g('1 L(x» is n-proper, concave, and closed, the superdifferentials 
.6.g(·IL(x»: V ~ 1.P«(,2) and .6.g.(·IL(x»: (,2 ~ I.P(V) are inverse to each 
other. 

In particular, (111.27b) and (1II.27e) reflect the symmetry of the FENCHEL transform 
by Corollary 0.3.1 (FENCHEL, MOREAU), p. 31S, with convex input requirement 
sets. 

(1I1.2S) g(·IL(x» = g •• (·IL(x» 

A comparison of (111.27a) and (111.27f) shows (again for convex input requirement 
sets), that for a given technology the superdifferential.6.g.(·IL(x» is nothing else 
than the factor demand correspondence D ( " x) . 

(111.29) .6.g. (·1 L(x» == .6.c(·, x) = DC x) 

In this way a factor vector v-r , solving the problem of cost minimization v-r E 

D(q-r, x), describes a supergradient of the normalized cost function c(" x) at 
point q-r and this relation is fulfilled if and only if the factor price vector q-r is a 
supergradient of the (concave) function g(·IL(x» at point v-r. 

For the superdifferential .6.g(·1 L(x»: V ~ I.P( (,2) of an n-proper concave 
function g('1 L(x» the following properties can be noted, which analogously hold 
for the normalized cost function c(·, x) and which are illustrated by the subsequent 

36For this result of Corollary D.5.2 the findings of Theorem D.2, p. 316, are crucial. Accordingly, we 
may assume an n-proper closed concave function g.(·IL(x» for the commodity bundle x EX. 



1 The Cost Structure of a Firm 

example.37 

v-r ¢ n-Domg(·IL(x» 

v-r E rint(n-Domg(·IL(x») 

v-r E int(n-Domg(·IL(x») 

~ ~g(v-rIL(x» = 0; 

~ ~g(v-rIL(x» =1= 0; 

<==> ~g(v-rIL(x» =1= 0 and bounded. 
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As explained above, the concave function g(·IL(x» has a uniquely determined 
supergradient ~g(v-rIL(x» = {q-r} at point v-r if and only if the function is 
differentiable at the inspected point and has therefore the gradient Vg(v-rIL(x» = 
q-r .38 

Regarding the cost function c(·, x), which has by (III.22) the effective domain 
n-Domc(·, x) = IR+- I , we get 

(1II.30a) q-r ¢ IR+- I ~ ~c(q-r, x) = 0; 

(III.30b) q-r E IR~+I <==> ~c(q-r, x) =1= 0 and bounded. 

As long as q-r contains a negative factor price, none of the input vectors is chosen, 
D(q-r, x) = 0. 

Example: Figure III 10 illustrates a superdifferential ~g( ·IL(x» with a kinked 
isoquant f(·IL(x» for two factors, where the attention is directed to the later used 
convex hull of the input requirement set L(x) in (IlI8). Considering the change of 
sign f(·IL(x» = -g(·IL(x», the figure is based on the function 

for QI < VI ;;; ih 
for iii ;;; VI ;;; VI 
otherwise 

with the constants ai, a2, bl, b2 and bl > b2 > 0 as well as al < a2 < O. The 
effective domain 

n-Domg(·IL(x» = ]QI' vd 
clarifies the fact that the hypograph hypo g( ·IL(x» is not closed and, therefore, that 
the production technology does not fulfill Axiom [L6] (Closedness). Moreover, 
[L3] (Disposability of Inputs) is not satisfied. Ignoring the superscripts -r with 
regard to the normalized factor price ql"r with r = 2 the following superdifferential 
emerges: 

~g(vdL(i» = 

11.1 

{bd 
{ql E IRI b2 ~ ql ~ bd 
{b21 
(ql E IRI ql < b21 
11.1 

37Cf. ROCKAFELLAR(l972, p. 217, Theorem 23.4). 

for VI ~ 1!1 
for 1!1 < VI < VI 

for VI = VI 

for VI < VI < VI 

for VI = VI 

for VI> VI. 

For an (m - I)-dimensional convex set n-Domg(·IL(x» c Rm- I we do not need to distinguish 
between the interior and the relative interior by (8.4). 

rint (n-Domg(·IL(x») = int (n-Domg(·IL(x») 

38See Theorem D.4, p. 319. 
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- 00 

Figure III.l 0: Representation of the superdifferential ~g( · 1 L(i» 

Figure III. 10 shows the nonempty bounded superdifferential at point iii as a 
cone generated by the vectors (-tl ) and (-tl At point ~I there is no supergradient, 
i.e. ~g(~1 IL(i» = 0 . At each other point VI in the interval ]~I ' VI [ the function 
g( ·1 L(i» is differentiable. The corresponding superdifferentials consist of a unique 
element, namely the gradient or the derivative dg(vdL(i»/dvl. Because vertical 
hyperplanes with ql --+ -00 cannot be expressed as affine functions, the 
nonempty, but unbounded superdifferentiaP9 at point VI, can only be indicated 
by the cone between (-t2) and (+;"') . Furthermore, at this point it turns out that 
under [L3] (DisposabjJity of Inputs)negative factor prices do not lead to any cost 
minimizing solution. In the example at hand each negative factor price ql < 0 
implies the optimal input VI = VI . If the function g(-IL(i», which corresponds 
to the input requirement set L(i), satisfies Axiom [L3], then the factor VI could be 
arbitrarily enlarged and the problem 

inf/qivi - g(vdL(i»1 VI E IR} 

would have no solution for ql < o. 

39Since VI lies on the boundary of the effective domain n-Domg( ·IL(x», a priori nothing is known 
on the superdifferential L\g(vil L(x». 
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1.4.2 Consideration of Indivisible Production Factors 

The results of the previous section are mainly based on the assumption of convex 
input requirement sets and, therefore, on divisible inputs. In particular, the identity 
of the superdifferential of the cost function and the factor demand correspondence, 
L':.c(·, x) = DC x), as given in (III.29), is no longer valid in view of indivisible 
factors. A vector v-r solving the problem of cost minimization is not necessarily 
an integer; see point A in Figure 111.11. Such a vector is ruled out for deriving the 
factor demand. 

As before, we try to clarify the problem by replacing the input requirement 
sets L(x) with their convex hulls. Consequently, g(·lconvL(x» is an n-proper 
closed concave function under the premises of Corollary 111.3 .1. By Corollary D.3.1 
(FENCHEL, MOREAU), p. 318, we obtain 

(III.3l) - fClconvL(x» = g(·lconvL(x» by definition 

= g •• (·lconvL(x» because of Corollary D.3.l 

= g •• (·IL(x» because of Proposition 111.2 

with respect to Proposition III.2. Concerning Proposition III.2 for an admissible 
commodity bundle x EX, the six equivalent conditions are 

(III.32a) (q-r) T (v-r ) _ g(v-rlconvL(x» achieves the infimum at v-r = y-r; 

(111.32b) g(y-rlconvL(x» + g.(q-rIL(x» = (q-r)T (y-r); 

(111.32c) q-r E L':.g(y-rlconvL(x»; 

and their duals are 

(111.32d) 

(III.32e) 

(III.32f) 

(q-r)T (y-r) _ g.(q-rIL(x» achieves the infimum at q-r = q-r; 

g**(y-rIL(x» + g*(q-rIL(x» = (q-r)T (y-r); 

y-r E L':.g*(q-rIL(x». 

As discussed above, contrary to (111.27a) not all of the vectors y-r can be interpreted 
as input vectors. The inverse superdifferentials 

also include those pairs of dual points (q-r, v-r ), where v-r does not satisfy the 
required integer constraints; see point A in Figure III.II. 

When the operation L(x) ~ conv L(x) generates pairs of dual points 
(q-r, v-r ) so that the corresponding vectors v-r cannot be interpreted as input 
vectors, then the following question must be asked: what conditions are sufficient to 
filter out the set of optimal input vectors of the set of optimal vectors L':.c( q-r, x) ? 
See points B\ and B2 in Figure 111.11. 
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First of all, we can note the following property of an optimal vector y-r E 

~c(q-r, x). The (nonpositive) functional value g(y-rlconvL(x» is finite40 so that 

( (A VIA-r L( ») E convL(x) 
-g v-r conv x) 

holds for a closed set convL(x). However, an optimal vector y-r is an admissible 
input vector only if y-r, completed by the component -g(y-rlconvL(x», is an 
element in the factor space V. 

A E V ( y-r ) 
- g(v-rlconv L(x» 

Under [L 7a] (Integer Convexity) both conditions suggest 

conv L(x) n V = L(x) 

so that the factor demand correspondence D(., x) can be filtered out of the 
superdifferential ~c(·, x). The results of the following analysis can be taken from 
(III.35) and from the summary on p. 113. 

First of all, keep in mind that 

(111.33) DC x) c ~c(·, x) 

has to be satisfied since the problem of cost minimization is independent of the fact 
whether it is based on the input requirement set L(x) or its convex hull conv L(x). 
Conversely, an optimal vector y-r E ~c(q-r, x) implies a vector of factor 
quantities demanded y-r E D(q-r, x) if 

( y-r ) 
A E convL(x) n v. 

- g(v-rlconv L(x» 

In this relation Axiom [L 7a] (Integer Convexity) guarantees that all of these vectors 
can indeed be interpreted as an input vector, i.e. 

(III.34) A E L(x). ( y-r ) 
- g(v-rlconv L(x» 

This relation can only be satisfied if y-r does not violate any integer constraints. Let 
v-r denote the subspace in the factor space V containing the input vectors v-r, then 
the above relation 

yields all of the vectors fulfilling (111.34). 

40The relations (III.32b) and (III.32e) yield g •• (v-'lconvL(x)) = g(v-'lconvL(x)), where 
g •• (v-rlconvL(x)) is finite by (III.32d). Furthermore, g(v-'lconvL(x)) = -00 would contradict 
(III.32c). 
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In view of Proposition III. 1 

- g(v-rlconv L(x)) = f(v-rlconvL(x)) = cony f(v-rIL(x)) 

results in a statement equivalent to (I1I.34). 

( ~-r ) E L(x) 
cony f(v-rIL(x)) 

Because of (111.7) and (I1I.4), i.e. 

convfCIL(x));§ fCIL(x)), 
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the preceding relation is satisfied by the definition of fCIL(x)) if and only if the 
relation convf(v-rIL(x)) = f(v-rIL(x)) holds at point v-r. When there is a cost 
minimizing input vector, then it is subject to the following equivalence relation:41 

(111.35) v-r E D(q-r, x) ¢::=> { 
v-r E DoC(q-r, x) n V-r } 

f(v-rIL(x)) = convf(v-rIL(x)) 

Finally, we have to show whether (I1I.35) describes at least one cost minimizing 
input vector v-r for each commodity bundle x E X and for each price vector 
q-r > O. In order to prove D( q-r, x) "* 0, first of all 

(I1I.36) 

must hold, where it can be supposed that the closed convex 
DoC( q- r, x) is not empty for q-r > 0 according to (I1I.30b). 

superdifferential 

The idea of proving (I1I.36) is that the ~-------------, 
vectors v-r E DoC( q-r, x) determine 

all the points (f(v-rl;:~vL(X))) of an exposed 
face42 of the set convL(x). The following 
proposition, which states that each face of 
cony L(x) and in particular each exposed 
face of cony L(x) contains at least one point 
v E L(x), must be taken into account. 
Thus, as described by Figure 111.11 for two 
factors with r = 2, a nontrivial supporting 
hyperplane H of cony L(x) is needed such 
that 

(111.37) 

v-r E DoC(q-r, x) ¢::=> 

( v-r ) 
E H n convL(x). 

f(v-rlconv L(x)) 

• • 

• • 
A, 

o 
ll.c( i( r, x ) 

Figure III. I I : Representation of an 
exposed face of cony L(x) 

41 For perfectly divisible inputs the right hand side of the equivalence relation reduces to ,,-r E 

L.\C(q-r. x); see (III.29). 
42Each exposed face of a convex set C is a face of C. Without defining the tenn face of C it is enough 

to know the following statement: exposed faces of C are exactly those sets which can be expressed in the 
fonn C n H, where H is a nontrivial supporting hyperplane of C. Cf. ROCKAFELLAR (1972, p. 163). 
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The next proposition now follows for each (exposed) face: 

Proposition llI.4 43 Let L(x) be a set of points and let C' be a nonempty face of 
the convex hull cony L(x). Then C' = cony L(x)', where L(x)' consists of those 
points in L(x) which belong to C'. 

Since C' is nonempty, L(x)' C L(x) must contain at least one point, too. 
According to the derivation of the equivalence relation (III.35), each of these points 
with 

(111.38) ( v-r ) 
E L(x)' c C' 

f(v-rlconvL(x» 

satisfies f(v-rlconvL(x» = f(v-rIL(x» and yields (111.36). Now the required 
hyperplane H can be detennined as follows: the equivalence of (111.32b) and 
(III.32t) states that 

(111.39) -C-r ) q V ( A_r)T( -r ) 
C q ,x = 1 f(v-rlconvL(x» 

holds for all v-r E ~c(q-r, x). The nonempty convex set ~c(q-r, x) yields 

Thus, (III.39) must hold in the fonn 

-c-r ) _ q ~ iVi ( A_r)T( "A -r ) 
C q ,x - 1 f(E Aivirlconv L(x» . 

Furthennore, each single point vir satisfies the equation (111.39) so that 

-C-r ) q ~ iVi ( A_r)T( "A -r ) 
C q ,x = 1 E A;!(virlconv L(x» . 

The resulting equation 

(III.40) f(E AivirlconvL(x» = E A;!(virlconvL(x» 

with vir E ~c(q-r, x), Ai ~ 0, L Ai = 1 

says that f('lconvL(x» is a (partially) affine function in the set ~c(q-r, x). Ifwe 
substitute f('lconvL(x» by an affine function h which equals f('lconvL(x» in 

43Cf. ROCKAFELLAR(l972, p. 165, Theorem 18.3). 
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~c(q-r, x), then44 

represents a hyperplane H in lRm. This hyperplane is a (nontriviaI45) supporting 
hyperplane of the set conv L(x) since firstly the convexity of f( ·Iconv L(x)) implies 

and secondly each point (f(V-'I;~~VL(X») with v-r E ~c(q-r, x) is a common point 
of Hand convL(x); see ( 11.37). 
Conversely, each point (h~V-~'») E H n conv L(x) satisfies (111.39) so that v- r 

determines a point in ~c(q-r, x). With 

the supporting hyperplane H, required for (III.37), is found. Thus, at least one point 
satisfies (111.38), which moreover assures that (111.36) is valid. 

Summary: For each output vector x E X and for each factor price vector 
q-r > 0 an input vector v-r E V-r exists solving the problem of cost 
minimization; see points BJ and B2 in Figure 111.11. The permissible and cost 
minimizing activity is 

Accordingly, the quantItIes of inputs demanded can be deduced without the 
convexity of the input requirement set L(x) from a given (concave) cost function 
c(-, x) provided L(x) is integer convex. Without [L7a] (Integer Convexity) the 
existence of a cost minimizing input vector v E L(x) is not guaranteed but not 
all of the points (f(V-~~~(X») E convL(x) n V with v-r E ~c(q-r, x) have to 
be possible activities v E L(x). Such a case is illustrated by point B in the right 
hand part of Figure 11.18, p. 32. 

44Each vector y-r E tJ.c( q-r, x) detennines a pair of dual points (q-', y-r) such that furthennore 
q-r E tJ.g(y-rlconvL(x» is satisfied. At the same time the supergradient q-r denotes a subgradient 
of the function !(y-rlconv L(x», i.e. _q-r E a!(y-rlconv L(x». Thus, by (D.3) we have the same 
support function 

h(v-r, y-r) = !(y-rlconvL(x» _ (q-r)T (v-r _ y-r) 

foreach y-r E tJ.c(q-r, x) , where c(q-r,x) = (q-r)T(y-r)+!(y-rlconvL(x» must be taken 

into account. 
45 A supporting hyperplane H of cony L(x) is said to be nontrivial if cony L(x) rt H. This relation 

is fulfilled in every case since cony L(x) is m-dimensional and H is an m - I-dimensional hyperplane. 



114 Chapter III. Microeconomic Theory of Individual Agents 

Example: Finally, we again fall back upon the example in Figure IlI.4, where the 
input requirement set 

(11141) L(i) = {(~) E Z~I (~) ~ (~) or (~) ~ (~)} 

has been modified so that it suffices Axiom [L2] (Attainability of Each Production); 
see Quadrant N in Figure III. 12.46 

II I 

ql E 6.g(vdL(i» 

c(ql. i) 

= ql v~ + v2--~~'" 
········1··················· . 

c(·. i) 
~~----~--~+-~~----*-------~--4-------~~- VI 

c.A
:: Vi v" v" ",'" ,I I :1 ",' 

. : /' h ( I ") 
: ~ ".'" •••••• g VI VI 

-V2 ----~--------;'a,;·:~E}---E}-
I ••••• :, B" 
I •••••• ",' 

,., ........ : .... ",'" 
I •••••••••••••••• -C I ",' 

I ,I ... 

---------- -V2 ---~-~II 0 
~~ 

"L(i)" 

g('IL(i)) • 

III IV 

Figure III. 12: Derivation of the cost function c(·. i) from the function g('IL(i)) 

Again the nonnalized price q"l' of the first input (with r = 2) is denoted by ql 
within the example. Now we have to detennine the smallest amount of factor 2 

46Since V2 ~ 0 in Quadrant IV corresponds to the downward reflected input requirement set, L(x) 
is put in quotation marks. 
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which suffices for the production of the output x at the given amount of input 1.47 

The concluding change of signs yields 

(111.42) g(vdL(x)) = - inf {V21 t;) E L(X)} 

{

-VI 

= -V~ 
-00 

for VI = v; or VI = vt 
for VI ~ v~ and VI E Z+ 
otherwise, 

with the graph of this function being depicted in Quadrant IV by points of the form 
0. 

Now the question can be answered what factor price must prevail such that a 
certain quantity off actor 1 is chosen. According to the inequality for a supergradient 
on p. 104, the input v; is chosen if the appropriately chosen factor price ql satisfies 
the inequality 

In view of (III. 42) we have g( v; IL(x)) = -v; so that two inequalities result: 

ql v; + v; ~ ql VI + v; 

qlv; + v; ~ qlvl + v~ 
for VI = v; or VI = V~/; 

for VI ~ v~ and VI E Z+. 

The first inequality only requires the factor price ql to be nonnegative. The second 
inequality induces the strongest restriction on VI = v~. Hence, the quantity v; is 
chosen when the factor price ql holds 

(111.43) 
V' - v" q > _2 __ 2 _. q-

1=" I -. I· 
VI - VI 

This property is symbolically indicated by 6.g(v; IL(x)) = {qd ql ~ qd although 
in the strict sense the superdifferential 6.g(·1 L(x)) is only defined for a convex 
function g(·IL(x)); see Quadrant I of Figure III.12. 

At point V~' the analogous inequalities 

ql vt + v; ~ ql VI + v; for VI = v; or VI = V~' 

qlvt + v; ~ qlvl + v~ for VI ~ v~ and VI E Z+ 

yield a contradiction.48 Thus, there is no price ql at which the quantity V~' is chosen, 
6.g(v~/IL(x)) = 0. Finally, one has to examine at which factor prices the quantity 
v~ is chosen. The necessary condition is now 

47 See (111.9), p. 90. 
48Because of v'I < v'{, the first inequality implies a negative factor price ql < O. Hence the 

second inequality cannot be satisfied for v I = v~. 
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o v',' 
I 

Figure 111.13: Hypograph of the 
function g (-I L(x)) 

Quadrant I of Figure III.12,49 

(111.44) 

Without investigating the resulting inequali­
ties in more detail, for the factor price q~ the 
rearrangement 

g(vIIL(i)) ~ g(v~IL(i)) - q~v;' + q;'vi 

=: hg(vd v;') 

yields an affine function h g ( ·1 v;') touching 
the hypograph of the function g(-IL(i)) as 
depicted in Figure III. 13 at point v;' or more 
precisely at point B". The remarks on Figure 
III. 9, p. 104, have shown that the implied 
price vector (-il,) is normal to the graph of 
the function hg(-Iv;') . 
Ignoring the relevant points VI ~ v;', 
we get the correspondence depicted in 

for VI = v; 
for VI = v~ 
for VI > v~ and VI E Z+ 
otherwise. 

The connection between the four quadrants in Figure III. 12 is explained afterwards 
in more detail. 

Starting with the modified cost function e(-, i) in accordance with (III.21) 

Iqlv; + v; for ql ~ ql 
e(ql, i) = ql v;' + v~ for 0 ~ ql ~ ql 

-00 for ql < 0 , 
(III.4S) 

we now have to calculate the superdifferential !le(-, i). By (III.33) this 
superdifferential includes all quantities of factor 1 solving the problem of cost 
minimization for a given factor price ql. Analogous to the previous procedure, the 
representation is now given by Figure III. 14. This figure is also explained in more 
detail later. 

Figure III.5 suggests inspecting the factor price ql = ql given by (III.43) in 
more detail. Each factor quantity VI denotes a supergradient at point ql if VI satisfies 

Considering the cost function (III.45) as depicted in Quadrant II of Figures III. 12 
and III. 14 respectively, it ensues 

for 
for 
for 

49 An alternative possibility of representation has already been presented in Figure III . I o. 
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II A 

C(ql, x) 
= ql v~ + V~ __ ....L.:~ 

A' B' 

I 

VI E t..C(ql, x) 

<==* 
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ql E t..g(vIlconvL(x» 

c(· ,x)~ ____ ~---":'t-::-~_~*-_~-ir.:-~~C_' ___ -.:t..CC , x) 

vi' v.t v:~ V2 

, 
I : I 

" I : I - - - - v2 - - - - ~ - - - - r ---;;B-" -----C" 
: I' 

: .............. -v~' ········1········: 

: ---------- -v; ---- :A" ~ 
g .. (vIlL(x» = g(vIlconvL(x» 

g('IL(x» 

III IV 

Figure III. 14: Reconstruction of the concave biconjugate function g •• (. I L(x)) from 
the cost function c(· , x) 

In the case of iii ~ ql we get 

(111.46) 

and this inequality is satisfied for all VI ~ v;. If we consider iiI v; + v~ = 
iiI v~ + v~ according to (lIL2I), then it follows analogously for the second case 
with 0 ~ ql ~ iiI 

This inequality is satisfied for all VI ~ v~. Since a negative factor price ql < 0 
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generates no further restrictions with respect to a supergradient, we obtain 

by summarizing the superdifferential. A representation of the superdifferential 
analogous to Figure III. 1 0 is omitted at this point. 

For a factor price q~ > iiI a unique supergradient VI = v~ results directly 
from the above inequality (III.46). Thus, the cost function (III.21) is differentiable 
at this point (Theorem DA). 

Accordingly, dc(q~, X)/dqI = v~ holds for 0 < q~ < qI. The derived 
superdifferential 

{V~ } 

(VI I V~ ~ VI ~ vn 
t..C(qI, x) = {vn 

{vIi VI ~ vn 
o 

is again depicted in Quadrant I (Figure III. 14 ). 

for qI > qI 

for qI = ql 
for qI > qI > 0 

for qI = 0 

otherwise 

Supposing the input requirement set L(x) is integer convex with respect to the 
factor space V = Z~, then by (III.35) 

A -( - -) V-2 {' '" "} uC qI, X n = VI' VI ' VI with V-2 = Z+. 

The demand set b(qI, x) consists of two elements v~ and v~ since 

is chosen; 

is not chosen; 

is chosen. 

see points A" and B" in Figures III. 12 or III.14. 
Finally, we derive the concave biconjugate function g •• (·IL(x» from the cost 

function c(', x) by (III.45) as illustrated in Quadrant IV of Figure III.14. This 
function denotes the smallest concave function with g •• (·IL(x» ~ g(·IL(x». 
Moreover, g •• (-IL(x» = g(·lconvL(x» holds. Thus, -g •• (·IL(x» is the 
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non vertical boundary of the convex hull of the input requirement set L(x). 

(111.47) g •• (vIIL(x)) = inf{qlvl - C(ql, x)1 ql E JR} 

qlV; + v; for iii ~ ql 

)) [a] " ;,' (..,,-( qlV~ + v~ for 0 ~ ql ;;; iii 
ql ElR 

-00 for ql < 0 

[b] . f { ql (VI - Vii) - v; for iii ~ ql } = m n n for 0 ;;; ql ~ iii qlElR ql (VI - VI) - v2 

r for VI < v; 

[c] = iii (VI - v;) - v; for v; ;;; VI ;;; v~ 

-v~ for v~ < VI 

By the transition from [a] to [b] it is considered that no ql < 0 can solve the 
problem. All three cases in [c] result from the following observations: 
For VI < v; the upper part of [b] is unbounded below (ql -+ +00). 
For VI > v~ both parts of[b] are bounded. Each of the optimal values forql give 
iii (VI - v;) - v~ for the upper part of [b] and - v~ for the lower part. Regarding 
the definition of iii, ql = 0 turns out to be an optimal solution with the functional 
value -v~. 
Even for v; ~ VI ~ v;' both parts of [b] are finite. Due to v; ~ VI, we choose 
the smallest possible value of ql in the upper part of [b]. Analogously, as v~ ~ VI 

we choose the highest possible value of ql in the lower part of [b]. Calculation 
shows that the optimal solution iii gives the same value of the objective function in 
both cases. 

In particular, we have 

for VI = vi: g •• (vi IL(x» = -v~ 

and for VI = v~: g •• (vi'IL(x» = -v~. 

1.4.3 The Results under the Assumption of Differentiability 

The following expositions begin with the inverse superdifferentials. 

(1II.48) q-r E ~g(y-rlconvL(x» {:=:} y-r E ~c(q-r, x) 

The relation on the right hand holds good when the vector y-r solves the problem of 
cost minimization at given normalized factor prices q-r. Moreover, if y-r satisfies 
the integer constraints, then it is a cost minimizing input vector. For convex input 
requirement sets with L(x) = conv L(x) the superdifferential of the cost function 
equals the factor demand correspondence: 

y-r E ~c(q-r, x) {:=:} y-r E D(q-r, x). 

The superdifferential on the left of (111.48) notes the inverse relation: the given 
vector y-r yields a cost minimum if the factor prices q-r prevail. In view 
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of g('lconvL(x)) = - fClconvL(x)) an equivalent sub differential can be 
established: 

q-r E ~g(y-rlconvL(x)) <===} _q-r E af(y-rlconvL(x)). 

Analogous to the preceding graphical representations, the price vector (q~') is 
normal to the hyperplane H tangent to the convex hull of the input requirement 
set L(x) at the point (f(v-rl::~VL(X)))' 

For each pair of dual points (q-', y-r) which satisfies the equivalence relation 
(IIIA8) Theorem DA, p. 319, states: If the function f('IL(x)) is differentiable at 
point y-r and if the cost function c(', x) is differentiable at point q-r, then 

(IIIA9) _q-r = \/ f(y-rIL(x)) <===} y-r = \/c(q-r, x) . 

The right hand equation of this equivalence relation is known as SHEPHARD's 
Lemma: the partial derivative of the normed cost function with respect to the price 
of factor i yields the quantity of this factor demanded. 

v. = ac (qA-r x) 
I a -r ' qi 

(111.50a) i=l, ... ,m;i*r 

The left hand side of (111.49) is the so called HICKS-ALLEN relation. The relative 
price qi' of factor i or the relation of nominal prices qi/ q, (i = 1, ... , m; i * r) 
equals the marginal rate of (technical) substitution at the optimum. 

(1II.50b) 
A a+ 
~i = __ 1 (y-rIL(x)) 
q, aVi 

i = 1, ... , m; i * r 

At the same time the (strict) convexity of f (·1 L(x)) assures that each marginal rate 
of substitution a fCIL(x)) / aVi is a nondecreasing (increasing) function in Vi. 

Provided the production structure (L(x) 1 x E X) consists exclusively of closed 
convex input requirement sets, then the generalized HICKS-ALLEN relation q-r E 

~g(y-rIL(x)) and the generalized HOTELLING-SHEPHARD Lemma of the form 
y-r E V(q-', x) are logically equivalent. 

A comparison to SHEPHARD's Theorem (Proposition 111.19, p. 164) shows that 
(111.50a) can again be found in the demand functions (1II.100a). But the HICKS­
ALLEN condition (1II.50b) does not correspond to SHEPHARD's dual price demand 
functions (1II.100b). This reflects the main difference between the duality schemes 
presented in the introduction of this section. While (III.50a) and (1II.50b) or 
(IIIA9) result from the duality of conjugate functions, (III. 1 OOa) and (III. 1 OOb) are 
implications of the duality of polar gauges. 

To answer the question when the requirements of equivalence relation (IIIA9) 
are fulfilled we revert to the concept of an exposed point.5o A point x in the convex 
set C c IRn has been called an exposed point of C when a nontrivial supporting 
hyperplane5! H exists such that en H = {x}. 

50For the distinction between extreme points and exposed points, see Figure 11.11, p. 26. 
51 See Appendix B. If a set C C IR 3 consists of a solitary point, then this point is not said to be an 

exposed point. 
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Now, an implication of Theorem DA is noted by 

Corollary D.4.152 Let k: lRn ----+ [-00, +00] be an n-proper concave function. 
A point G) is an exposed point of the (closed convex) set hypo k* c lRn+1 if and 
only If a point x exists at which the function k is differentiable with Vk(x) = y. 
Each of these exposed points is a point of the form (k.~Y»)' 

The assumptions of this corollary hold especially for the function g(-Iconv L(x», 
the cost function c(-, x) == g*(·IL(x», and the function g**(·IL(x». As an 
example we now discuss the relation between exposed points of the convex hull 
of a nonempty input requirement set conv L(x) and the differentiability of the 
cost function C(-, x). In view of the corollary we have to replace the function 
k with the cost function c(·, x) == g*(-IL(x» and the hypograph hypok* by 
hypog**(·IL(x». Regarding g**(-IL(x» = g('lconvL(x», we may refer 
to point E" in Figure III.13 as an example for an exposed point of the set 
hypo g** (-I L(x». 

As already mentioned, the normalized cost function c(·, x) corresponds to an 
n-proper concave function on (2 = lRm- l . Thus, the corollary says that a point 
C~') is an exposed point of the hypograph hypo g**(·IL(x» if and only if a factor 
price vector q-r exists at which the cost function c(-, x) is differentiable, i.e. 

Vc(q-r, x) = v-r. 

Like point E" in Figure 111.13 each of these exposed points is of the special form 
(g .. (V~~;L(X») which by (111.31) can be rewritten as 

( v-r ) 
E convL(x). 

f(v-rlconv L(x» 

Since each exposed point of convL(x) is at the same time an extreme point of this 
convex hull, we have furthermore 

( v-r ) E L(x). 
f(v-rlconv L(x» 

As shown in the derivation of (III.35), this relation can only be satisfied under the 
condition f(v-rIL(x» = f(v-rlconvL(x». Hence, we conclude 

( v-r ) 
E L(x). 

f(v-rIL(x» 

If the cost function is differentiable at a point q-r, then the gradient v-r yields an 
admissible input vector in the input requirement set L(x) at this point together with 
f(v-rl L(x». For the case of indivisible production factors a graphical illustration 
of this statement ensues from the two exposed points A" and E" in Quadrant IV of 
Figure 111.14. Point E" with the coordinates (f(vl~Li») is also explicitly marked in 

Figure III. 13. 

52Cf. ROCKAFELLAR (1972, p. 243, Corollary 25.1.2). The lemma has been transferred to n-proper 
concave functions. 
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Similarly, Figure IIU5 includes the 
cost function C(-, x) of Quadrant II. The 
construction of the vector (-Iv;,) by the 
derivative of the cost function at point q~, i.e. 
dc(q~, x)/dql = v~, is known from Figure 
111.9, p. 104. 

Figure III. IS: Differentiability of the 
cost function c(-, i) 

For strictly convex (and closed) input 
requirement sets each point of the form 
(f(V-:~~(X») E L(x) is an exposed point of 
the input requirement set L(x). In this case 
we can show that the cost function C(-, x) 
is differentiable in the entire interior of its 
effective domain int ( n-Dom C(-, x)) - i.e. 
for every price vector q-' > O. Thus, each 
superdifferential 

~c(q-',x) with q-'Eint(n-Domc(.,x))=1R~~1 

is not empty and contains no more than one - i.e. one - point. 

1.5 Summary 

1.5.1 Graphical Representation of the Results 

This section explains the theoretical results and their connection using four figures. 
Again we distinguish between three cases with respect to the input requirement sets. 

l. Figure III.8, p. WI, illustrates the case of a strictly convex input requirement 
set, provided the differentiability of the two conjugate functions. 

2. The convex input requirement set in Figure 111.16, p. 125, has a sectional 
linear boundary with kink points. 

3. The case of indivisible production factors is shown in Figures III.I2 and 
III. 14. 

All of the figures illustrate the same facts in the respective quadrants. 

1. Quadrant IV serves as an initial point and illustrates the given input 
requirement set L(x). Remember that 

g(v-'IL(x)) = - j(v-'IL(x)) = - inf (v,lv E L(x)} 

so g(-I L(x)) is measured in units of factor r . 

2. Similarly, Quadrant II contains the graph of the corresponding normalized 
cost function 

Remember again, that c(·, x) is measured in units of factor r. 



1 The Cost Structure of a Firm 123 

3. Quadrant I presents the linkage between the concave conjugate functions and 
illustrates the superdifferentials of both functions. 

4. Quadrant III merely serves for the reflection, where the levels are reflected 
absolutely. 

Examples: Since it is only necessary to distinguish between two inputs v, and 
V2, the normalized price q)"' of the first factor is denoted by q, in the mentioned 
figures. 

1. Strictly convex input requirement sets: Given two inputs with r = 2 and 
the output quantity i, the six equivalent relations (III.27a)-(III.27t) for the pair of 
dual points (q" vd are 

(111.51a) 

(111.51b) 

(111.51c) 

(111.51d) 

(111.51e) 

(III.51f) 

q, v, - g(vdL(i» achieves the infimum at v, = v,; 
g(vdL(i» + c(q" i) = q,v,; 

q, = Vg(v,IL(i»; 
v, q, - c(q" i) achieves the infimum at q, = q,; 

g •• (v,1 L(i» + c(q" i) = q, v, ; 
v, = Vc(q, , i). 

The first three conditions are reflected by the tangent point in Quadrant IV of 
Figure III.B, where (III.51 a) is explicitly shown in Figure III. 7, p. 100. For the cost 
minimizing input V, (III.51a) evokes by definition c(q" i) = q, v, - g(v,IL(i» 
and, therefore, (III.51 b). If V2 denotes the smallest amount of factor 2 which suffices 
for the production of the output i at the given input v" then - V2 = g (v,1 L(i». 
Now we can linearizeS3 the function g(·1 L(i» at point v" 

hg(v,lvd := -V2 + q, (v, - vd, 

where the gradient q, follows from (III.51c). Due to (III.51b) we have at the same 
time 

That concludes the discussion of the point of tangency in Quadrant N of Figure III.B 
and we can tum to the equivalent tangent point in Quadrant II, which is essentially 
characterized by the conditions (III.51d)-(III.51t). 

Analogously, the cost function c(·, i) is linearized at point q,. Considering 
c = c(q" i), the gradient V, in (III.51t) yields the function 

53The linearization of the function g(·IL(i» at point VI is given in detail by (0.3) hg(v!ivd = 
g(v!iL(i» + Vg(v!iL(i»(VI - vd· 
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For ql = 0 (III.5le) implies 

The inverse superdifferentials llg(·1 L(i» and llc(·, i) reflect the inverse functions 
by (III.5lc) and (III.5lf) 

(111.52) 

see Quadrant I of Figure III. 8. 
Given the n-proper concave closed function g(·IL(i», the symmetry of the 

FENCHEL transform (FENCHEL, MOREAU) is expressed as 

g**(·IL(i» = g(·IL(i». 

Finally, it has to be mentioned that the point (g(V fl(x») is an exposed point of the 
hypograph hypo g('1 L(i» if and only if the cost function c(·, i) is differentiable at 
ql. The supposed differentiability of both functions over the interior of its effective 
domain is reflected by the fact that the demand function in (III.52) is invertible. 

2. Convex input requirement sets: Figure III. 16 abandons the assumption of a 
strictly convex input requirement set. The set L(i) now corresponds to a polehydral 
convex set. The concave conjugate cost function of the resulting polehydral function 
g('IL(i» = - f('IL(i» is again apolehydral function. 54 

As before, the six equivalent conditions for a pair of dual points are illustrated 
by (ql, vd. The (unique) linearization of the function g(-IL(i» at point VI is again 
denoted by hg(vlIvd. Similarly, a (nonunique) support function he(qJ!qd of the 
cost function c(·, i) at point ql can be marked in Quadrant II. 

In contrast to the expositions on a strictly convex input requirement set, the cost 
function is not differentiable at point ql. The superdifferentialllc( ql , i) includes all 
factor quantities VI lying between the points A and B. At the same time it becomes 
evident that the point (g(vlfl(X)) cannot be an exposed point of L(i). 

Conversely, the differentiability of the function g('1 L(i» at point VI with 

llg(vJ!L(i» = {Vg(vIIL(i))} and Vg(vIIL(i» = ddg (vIIL(i» = ql, 
VI 

implies that (ecill.X») is an exposed point of the hypograph hypoc(., i). The 

statement that a point of the form (e( qi.x») is an exposed point of hypo c(·, i) if and 
only if there is a factor quantity VI at which the function g('IL(i» is differentiable 
(et vice versa) is even more clearly emphasized in the case of indivisible factors. 

Finally, it has to be mentioned that 

g(·IL(i» = g**(-IL(i» 

54The statement is valid for all polehydral concave functions, see ROCKAFELLAR (1972. p. 173. 
Theorem 19.2). 
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holds again for the n-proper closed concave function g(·IL(i». The inverse 
superdifferentials 

can be taken from Quadrant 1. In particular, the vertical line segment clarifies that 
the factor demand correspondence DC i) == ~c(" i) yields no demand function. 
For different factor prices ql the same input VI can be optimal in the sense of cost 
minimization. 

II 

;:(', x) 

III 

Llg(·IL(x» 

ql 

g(·IL(x» 

I 

ql E Llg(vdL(x) 

<=* 

VI E Llc(ql. x) 

........ 

g(vdL(x» = - j(vdL(x» 
= g •• (vdL(x» 

Llc(· • x) 

IV 

Figure 111.16: Convex input requirement set 
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3. Indivisible production factors: Because the function g (·1 L(x)) is not convex 
for indivisible inputs, it is 

g(·IL(x))"* g**(·IL(x)) 

so that the graphical representation is split into the two Figures III. 12 on p. 114 
and III. 14 on p. 117. First of alJ, the normalized cost function is constructed by the 
function g(·1 L(x)), where Quadrant IV of Figure III. 12 shows the functional values 
of (III.42) by points of the form 0. The corresponding superdifferential (III.44) is 
shown by Quadrant I. The construction of the affine function 

hg(vllvn = -2 + q~(vi - v~), 

where 2 = g(v~IL(x)), has already been discussed in Figure III. 13; it touches 
the hypograph hypog(·IL(x)) at point B" and generates the pair of dual points 
(q~, v~). The corresponding point A on the cost function has the coordinates 
( _(~) _)), where the construction principle can be folJowed by the dotted lines. 

c qt.X 

Varying the nonnegative factor price ql ~ 0, each point of the cost function 
(III.45) can be derived geometrically in an analogous way. 

The inverse derivation of the function g**(·IL(x)) by the normalized cost 
function c(·, x) is ilJustrated by Figure III. 14. Now the support function 

hc(qilqd = v~' + vt (ql - ql) 

corresponds to the pair of dual points (ql, v~'). The resulting function g**( ·IL(x)) 
is described by the line segments A" B" C". We get the n-proper concave closed 
function 

g**(·IL(x)) = g(·lconvL(x)), 

denoting the smalJest concave function with g** (·1 L(x)) ~ g(·1 L(x)). The 
inverse superdifferentials (Quadrant I of Figure III. 14 ) 

VI E l::!..C(ql' x) <==> ql E l::!..g( vilconv Lex)) 

again form the link between both concave conjugate functions. 
The cost function is differentiable except at points C and B for alJ factor prices 

ql > O. Each point in the line BC is assigned to the exposed point B" in cony L(x). 
Conversely, the exposed point B" implies the existence of a factor price q~ at which 
the cost function is differentiable· see line B' C'. 

Analogously, the half-line lit: and the exposed point A" are assigned to each 
other by the vertical line starting in A'; see point D. 

Dually, each point in the line A"B", at which the function g**(·IL(x)) is 
differentiable, leads to A' B' to the exposed point B of the hypograph hypo c(·, x) 

via the supergradients according. Similarly, point C and half-line Jii?!t are linked. 

Given the factor price ql with l::!..C(ql' x) ~ A' B', we have as mentioned 
above 

-( - -) '77 {' '" "} l::!..c ql, X n ILJ+ = vI' VI ,VI . 
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Consequently, the input vt is ruled out for the factor demand since a comparison of 
the corresponding functional values for vt in Figures II!.l2 and II!.l4 shows 

-V2 = g(v~/lconvL(i)) > g(v~/IL(i)) = -v;. 

The equality, however, results for the inputs v; and v~ according to points A" and 
B" respectively. The demand set is 

D(ql, i) = {v;, vn . 
1.5.2 Results with Respect to the Output Correspondence 

The previous expositions suppose the production structure (L(x)1 x E X) where the 
input requirement set L(x) is described by a function 

f(v-rIL(x)) = inf{vrl v E L(x)}. 

According to the concave FENCHEL transform this function induces the normalized 
cost function 

Furthermore, various properties of factor demand have been presented. 
We get similar statements when scrutinizing the production structure (P(v) 1 v E 

V) instead of the equivalent production structure (L(x)1 x E X), where now each 
member of the family P(v) denotes a production possibility set. Assuming n goods 
the spaces of primal (quantity) variables and dual (price) variables are now denoted 
by X and ~ respectively: 

X= IRn- 1 = ~. 

Supposing an admissible input vector v E V and a vector of normalized 
commodity prices (P~t), the n-proper (concave) function gpCIP(v)): X -+ 
[0, +oo[ U {-oo} with55 

gp(x-kIP(v)):= sup {xkl x E P(v)} 

generates a proper (and convex) function fpC 1 P(v)) = - gp('1 P(v)). Moreover, 
the convex FENCHEL transform generates the convex conjugate function 

indicating the the normalized revenue r in units of good k, 

r(-, v) == fpCIP(v)). 

Analogous to the factor demand correspondence D ( " x), the supply 
correspondence .5(-, v): ~ -+ 1.l3(x) includes all of the commodity bundles 

55Por the unusual domain sup f2j = -00 must be taken into account. 
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solving the problem of revenue maxImIzation depending on the normalized 
commodity prices p-k at given factor quantities v. 

Assuming that all goods are divisible and that the production possibility sets 
are subject to Axiom [P7] (Convexity), then the supply correspondence S(., v) 
and the subdifferential of the revenue function ar(·, v) are equivalent. If the 
boundary function fp(·1 P(v» is not only proper and convex but also closed, then 
the relationship to the revenue function r(·, v) by Theorem 0.5, p. 320, is indicated 
by six equivalent statements: 

(p-k) T (x-k) _ fp(x-kl P(v» achieves the revenue maximum at x-k = x-k; 

f(x-kl P(v» + r(p-k, v) = (p-k) T (x-k); 

q-k E afp(x-kIP(v»; 

(p-k)T (x-k) _ r(p-k, v) achieves the supremum at p-k = p-k; 

fj;*(x-kl P(v» + r(p-k, v) = (p-k) T (x-k); 

x-k E S(p-k, v). 

In particular, the convex biconjugate function fj;* (·1 P(v» satisfies 

Each pair of points (p-k, x-k) satisfying the six mentioned conditions is called 
a pair of dual points, where Corollary 0.5.1, p. 320, emphasizes the following 
inverse relation: 

If the boundary function fp('IP(v» and the revenue function r(·, v) are 
differentiable at points x-k and p-k respectively, then Corollary 0.5.1 says with 
respect to the gradients:56 

The right hand equation reflects the HICKS-ALLEN condition since for a pair of 
dual points (p-k, x-k) the commodity price ratios p j/ fJk = Pjk equal the respective 
negative marginal rate of transformation - ag p(x-k 1 P(v» / aXjk. In contrast, the left 
hand equation corresponds to the HOTELLING-SHEPHARD Lemma. A commodity 
bundle x-k is supplied if it equals the gradient of the revenue function at point 
p-k. Corollary 0.5.1 states that both relations are equivalent for a pair of dual 
points (p-k, x-k). Thus, the commodity bundle x-k maximizes the revenue if and 
only if the commodity price vector p-k corresponds to the negative marginal rate 
of transformation -Vgp(x-kIP(v». The presented relations can be extended to 

56The differentiability of the revenue function r(·, v) at point p-k again implies a unique subgradient, 
S(p-k, v) = ar(p-k. v) = {W(p-k, v)} . 
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arbitrary goods j and r with j, r * k by dividing the adjoined equations by each 
other. 

Xj = 
Xr 

or (A_k ) -p v 
OPj , 

or (A-k ) 
-0 P ,v 

Pr 

Pj 
fir = 

JORGENSON, LAU (1974) present analogous results with respect to the graph GR 
of a production technology. There the subdifferential of the profit function faces the 
inverse correspondence of profit maximizing production plans. 

Technically, the convex conjugate function of the cost function c by (1I1.l3), 
p. 92 yields the profit function 1r} with 

Analogously, the revenue function r faces the profit function 1r2 in the sense of a 
concave conjugate function: 

The only difference between the two profit functions is that in 1r} the price of the r­
th input and in 1r2 the price of the k-th outputs is set to one. The technical properties 
of these two profit functions are omitted at this point. 

2 Alternative Representation of the Firm's Cost 
Structure 

2.1 The Cost Function 

2.1.1 Properties ofthe Cost Function 

The former expositions of conjugate functions are now followed by the analysis of 
polar functions. As already noted by Figure 111.1, p. 85, the analysis differs by way 
of factor variation. Whereas the previously treated theory of conjugate functions is 
based on a partial factor variation, now a total factor variation is examined. With 
the alternative representation of input requirement sets further aspects result for the 
representation of a production structure and the appropriate cost structure of a firm. 

The object of the next sections is to derive the relations shown in Figure 111.29, 
p. 172. As a wealth of analytical results will be derived, it is recommended keeping 
this figure at hand as it virtually serves as a "map" for the further proceedings. 
The corresponding graphical representation can be found in Figure 111.30, p. 174.57 
Beginning with the easiest representation of an input requirement set by an indicator 
function Q(·IL(x», all of the main properties of the corresponding cost function 

57For aspects of single-product firms. see Figure 111.25, p. 167. 
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c(·. x) as the support function of the input requirement set can be derived (Proposi­
tion 111.7) using the knowledge on concave conjugate functions from above. If the 
cost function is known, then for each member of the production structure (L(x) I x E 

X) the reverse conclusion indicates an approximate input requirement set which 
contains all of the essential properties of the genuine input requirement set. 

The expositions in Section 2.1 on the relation between the cost function c(·, x) 
and the indicator function Q('IL(x» are followed by the proof that the normalized 
cost function c(·, x) of Section 1.2 equals the cost function c(-, x) despite of 
the different ways of construction. The ensuing Section 2.2 introduces the input 
distance function t[ with respect to measuring the technical efficiency of activities. 
This function has properties similar to the cost function (Proposition III. 13). 

Furthermore, by definition of polar input requirement sets Lo(x) (composed 
of factor price vectors) the production structure (L(x)1 x E X) is compared to a 
family (Lo(x)1 x E X), which can be interpreted as a cost structure. As an input 
requirement set each polar input requirement set can be represented by the cost 
function and the input distance function, where both functions exchange their roles 
(Corollary 111.16.1). This dual representation of the production structure as cost 
structure is gathered from Section 2.3, where SHEPHARD's Theorem (Proposition 
111.19) notes the direct relation between the cost function and the input distance 
function as a crucial issue. 

For the subsequent analysis it is useful to replace the factor space V = IR~d X 

Z~-md as well as the space of the factor prices Q = IR~ with 

V = IRm = Q 

On the one hand this makes it easier to handle convex subsets in IRm. On the other 
hand the analytical effort for the explicit consideration of nonnegativity constraints 
is reduced. As already mentioned, a vector v E V is said to be an input vector 
if, moreover, v E V holds. Remember that input requirement sets consist only 
of input vectors, L(x) C V. Also, for the sake of simplification, the commodity 
space X = IR~ x Z~-nd and the space of commodity prices Pp = IR~ are 
superseded by 

x = IRn = pp. 
Again x E X denotes a commodity bundle if and only if x E X is satisfied. 
Each vector x ¢ X evokes an empty input requirement set, L(x) = 0 . 

The analysis begins with the perhaps easiest representation of an input 
requirement set L(x) by the (reciprocal) indicator function58 Q: V x X ~ 
[-00,0] with 

Q(vIL(x» := {o 
-00 

for v E L(x) 

for v ¢ L(x). 

58The indicator function Q(·IC), the support function u('IC), and the gauge Y('IC) in Appendix 0.2 
face in the following sections the reciprocal indicator function Q (·1 C), the reciprocal support function 
u('IC) and the reciprocal gauge Y('IC) respectively. More appealing we omit the addition reciprocal 
unless ambiguity would result. 
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Accordingly, the indicator function Q distinguishes the vectors v only by the 
criterion whether they belong to the given input requirement set L(x) or not.59 In 
this way the whole production structure of a firm (L(x)1 x E X) can be described 
by the indicator function Q. 

Without going into more details on Axioms [L3] (Disposability of Inputs) and 
[L5] (Boundedness) the indicator function can be characterized as follows: 

Proposition 111.5 The indicator function Q of an input requirement set L(x) has the 
following properties: 

1. Given the commodity bundle x = 0 or the input vector v = 0 we have 

Q(vIL(O» = 0 'rIv E V 

Q(OIL(x» = 0 'rIx EX \ {O} 

see [LIa]; 

see [Lib]. 

2. Thefunction Q( 'IL(x» is n-proper if and only ifx is a commodity bundle; see 
[L2] (Attainability of Each Production) with x EX{=:::} L(x) *- 0 . 
The impossibility of producing outputs x f/. X is reflected by L(x) = 0 or, 
equivalently, by Q(·IL(x» = -00. 

3. If Q(·IL(x» is n-proper, then Q**(-IL(x» = Q(·I c1(convL(x»); see The­
oremD.2. 

4. The function Q(·I L(x» is closed if and only if the inspected input requirement 
set L(x) is closed; see [L6] (Closedness). 

5. Thefunction Q( ·IL(x» is convex ifand only if the inspected input requirement 
set L(x) is convex; see [L7] (Convexity). 

6. IfQ(-IL(x» is n-proper; closed, and convex, then Q**(-IL(x» = Q('IL(x» , 
see Theorem D.3 (FENCHEL, MOREAU). 

Apart from the representation of a firm's production structure (L(x)1 x E X) by the 
indicator function Q we now seek for a function which represents the corresponding 
cost structure of the examined firm. For this purpose we define the (reciprocal) 
supportfunction60 rp(·IL(x»: Q -+ [-00, +00] with 

(111.53) rp(qIL(x»:= inf{qTvl v E L(x)}. 

This function indicates the minimal factor costs incurred by producing the given 
vector x. In the case of x E X under [L2] (Attainability of Each Production) 
we speak of a commodity bundle with a nonempty input requirement set L(x). 
As before, the impossibility of producing outputs x f/. X is reflected by an 
empty input requirement set L(x) = 0 or, equivalently, by infinitely large costs 
rp( '10) == +00. For a given production technology L and a given x 

c(·, x) == rp(·IL(x» 

59 A graphical representation of the modified indicator function Q( 'IL(x)) + 1 is given by Figure III.23, 
p.156. 

60See Definition 0.3, p. 323. 
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is called the factor price minimal cost function. It faces the nonnalized cost 
function c(·, x) by (111.13) or (111.11), p. 92. As shown by a later comparison, both 
functions can be transfonned into each other. 

For a given production technology L the variation of x and, therefore, the 
variation of the input requirement set L(x) generates an extended real-valued 
function c: Q x X -+ [-00, +00] which is called the minimal cost function 
of the input correspondence L. The adjoined factor demand correspondence 
D: Q x X -+ ~ (V) indicates all input vectors solving the problem of cost 
minimization at given factor prices q E Q and given quantities x E X. 61 

(111.54 ) D(q, x) = {vlvEL(x), qTv=c(q,x)} 

Since the linear objective function q T V is both convex and concave, Theorem 11.2 
yields 

(111.55) c(-, x) == rp(-IL(x» = rp(·lconvL(x». 

It makes no difference whether the cost function is detennined by a nonconvex 
input requirement set or its convex hull.62 This result does not transmit to the 
factor demand correspondence. However, Theorem 11.3 states that the infimum 
is attained at an extreme point of conv L(x) if it is attained at all. At least these 
extreme points belong to L(x) and, therefore, to the set of input vectors demanded 
D(q, x).63 The next proposition notes not only the relation between the indicator 
function of an input requirement set Q( ·IL(x» and the corresponding cost function 
c(-, x) == rp(-IL(x» but it also detennines a series of properties of the cost function. 

Proposition 111.6 The indicator function Q (·1 C) and the support function rp(·1 C) of 
a closed convex set C C V are concave conjugate to each other. 

Proof: The definitions of the indicator function Q as well as the support function rp 
immediately give 

Q*(qIC) = inf {qT v - Q(vIC)1 v E V} 
= inf{qTvl v E C} 

= rp(qIC) 

61 As will be shown, D(q. x) = 0 holds for q ¢ Q or x ¢ X; see (111.58). 
62The cost function even remains the same when the inspected input requirement set L(x) is not closed. 

By the second separation theorem (Theorem B.IO, p. 296), we obtain 

c(·. x):; rp(·IL(x» = rp(·lcI(convL(x») = rp(·lrint(convL(x»). 

63The definition of the correspondence D(·, x) allows a more precise formulation of this statement. 

D(q. x) = Ivl v E L(x). qTv = c(q,x)} = Ivl v E convL(x), qTv = c(q, x)} n L(x) 



2 Alternative Representation of the Firm's Cost Structure 133 

for each q E Q. Analogous to Theorem D.8, p. 324, the second part of the proof 
results from 

<p*(·IC) = Q**(·IC) 

= clQ(·IC) 

= Q(·I cl C) 

= QCIC) 

because of <pC I C) = Q* CI C) 

convexity of C and Theorem D.2 

closedness of C. • 
If the premises of Proposition I1.14 are satisfied, then the convex hull of an input 
requirement set convL(x) fulfills the requirements of Proposition III.6. In view of 
(I1L55) we get 

(I1L56) c(·, x) = Q*(·lconvL(x)) and c*(-, x) = QClconvL(x)) 

with respect to the input requirement set L(x). No matter whether single goods or 
factors are indivisible, many characteristics of a cost function are not affected. 

Proposition 111.7 The cost function c essentially has the following properties with 
regard to factor prices q: 
For a given x E X the cost function c(·, x) is 1. linearly homogeneous, 2. 
closed (and, therefore, lower semi-continuous), 3. concave, 4. superadditive, i.e. 

(I1L57) c(q + q, x) ~ c(q, x) + c(q, x) 

and 5. nondecreasing in factor prices q. Moreover; the cost function c(-, x) is 
6. n-proper if and only ifx is a commodity bundle, x E X; and it is finally 7. 
continuous in rint (n-Dom c(·, x)) = IR~+ for each commodity bundle x EX. 

Proof: By (I1L56) the cost function c(·, x), understood as a linearly homogeneous 
support function of the input requirement set L(x), corresponds to the concave 
conjugate function of the indicator function Q( ·Iconv L(x)). Thus, by Theorem D.2, 
p. 316, the cost function is closed and concave for each x EX. Moreover, the 
same theorem states that c(-, x) is n-proper if and only if QCIL(x)) is n-proper. The 
latter property is given if and only if a commodity bundle x E X or equivalently 
L(x) *" 0 is presumed (Proposition I1L5). The concavity of the cost function 
directly implies three more properties. The linearly homogeneous cost function 
is by Theorem CA, p. 304, concave in q if and only if it is superadditive in q. 
Interpreting q in (I1I.57) as change ~q ~ 0, then c(·, x) is nondecreasing in q. 
Finally, every concave function is continuous in the relative interior of its effective 
domain n-Dom c(-, x). With respect to the functional values of the extended real­
valued cost function it can be noted that 

(III.58) 

c(·, x) == +00 

c(q, x) = -00 

c(q, x) ~ 0 

for x ¢ X; 

for x E X and q to; 
for x E X and q ~ 0 . 
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Thus, the effective domain of the cost function is 

n-Dom c(', x) = Q for a given commodity bundle x EX. • 

From the linear homogeneity of the cost function the immediate result is that the 
factor demand correspondence is the homogeneity of degree O. 

D(Aq, x) = {vi v E L(x), (Aq) T v = C(Aq, x)} 

= {vi v E L(x), AqTV = AC(q, x)} 

= D(q, x) 

Already at this point we can note further properties of factor demand. 

Proposition 111.8 Let L(x) be a nonempty closed convex set and q be a point in Q. 
Then at point q the superdifferential of the cost function flc(·, x) consists of points 
at which the the linear function q T V achieves its minimum over L(x). 

(111.59) 

Proof: Plug g = Q(·IL(x)) in Corollary D.5.2, p. 320. This leads to g* = 
Q* (-I L(x)) = !p(·1 L(x)) (Proposition 111.6). As the support function !p(-I L(x)) == 
c(·, x) is closed (Proposition II1.7), (111.59) ensues from Corollary D.5.2. • 

If the input requirement set examined in Proposition II1.8 is not convex, then L(x) 
has to be replaced with its (closed) convex hull. In this case the factor demand 
correspondence D(·, x) equals no longer the superdifferential of the cost function 
flce-, x). On the contrary we have at point q 

D(q, x) = flc(q, x) n L(x). 

Provided the cost function is differentiable at q, the superdifferentialflc(q, x) has 
precisely one supergradient64 corresponding to the gradient 

Vc(q, x) = (:;; (q, X)) ._ . 
1-1. .... m 

Thus, the vector v solves the problem of cost minimization if and only if 

v = Vc(q, x). 

This property is called SHEPHARD'S Lemma.65 

Looking back at Corollary DA.l, p. 121, keep in mind that indivisible factors 
are consistent with the differentiability of the cost function at least over some 
regions. By using the two concave conjugate functions Q(·lconvL(x)) and c(., x) 
the corollary states that C) is an exposed point of the hypograph 

hypo Q(-Iconv L(x)) = { C) E IRm+11 JL ~ Q(vlconv L(x)) } 

64ef. FARE, PRIMONT (1986, 1990). 
65See Proposition I1I.19. 
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if and only if there is a factor price 
vector q at which the cost function 
c(·, x) is differentiable - see points A 
and B in Figure III.l7. All of these 
exposed points are then a point of the 
form 

Accordingly, factor prices (~~) exist 
for the (only exposed) points A and 
B of the above figure, at which the 
cost function c(·, x) is differentiable. 
Conversely, the differentiability of 
the cost function at a point (~~) is 
associated with one of the two Joints 
A or B. 

Q (·Iconv L(x» 

o 
convL(x) 

Figure III. 17: The criterion of differentiability 

of a cost function 

The properties of the cost function regarding a possible variation of the goods x 
can be characterized as follows , where in particular the first three implications are 
not affected considering indivisible goods. 

Proposition 111.9 The cost junction c has the following properties with respect to a 
variation of outputs x. 

1. For two commodity bundles x , x E X with x ~ x we have c(-, x) ~ 
c(-, x). 

2. For each sequence {XV} C X with IIxvlI ~ +00 and q > 0 we have 
c(q, XV) ~ +00 . 

3. By (1I1.62b) the cost function c it subadditive in x if and only if the input 
correspondence L is superadditive. 

4. The cost function c is convex in x for all q > 0 if according to [T 1] the 
graph of the technology is convex. 

5. If in accordance with [L6) the input correspondence L is closed, then the cost 
function c is lower semi-continuous in X for a given q > 0 . 

Proof: Given any two commodity bundles x, X E X with x ~ x, it is66 

(III.60) L(x) c L(x) 

<===> rp( · IL(x) ~ rp(-IL(x» 

<===> c(-,x)~c(·,x). 

[L4) (Disposability of Outputs) 

The second property results from a proof of contradiction. Let us examine a 
sequence {XV} C X with IIxvlI ~ +00. Supposing lim inf c(q, XV) < +00, 

V"'" +00 

66The technical proof of this proposition will be adduced below by (I1I.68). 
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then a subsequence {XVi} with IIxvili --* +00 and lim c(q, XVi) = CO < +00 
V-++OO 

exists. Thus, the corresponding sequence {VVk} of cost minimizing input vectors 
is bounded because of q > 0 so that there is an input vector v with v ~ VVi 

and therefore v E L(XVk) for all Vk; see [L3] (Disposability of Inputs). The 
contradiction to [L5] (Boundedness) completes the proof. 

Referring to the third property, the following equation for all x, X E X is 
premised 

(III.61) 
ql(·IL(x) + L(x» = ql('IL(x» + ql('IL(x» 

= c(', x) + c(', x). 

Thus, a superadditive input correspondence67 satisfies for all commodity bundles 
x, X E X the following equivalence relation. 

(III.62a) L(x) + L(x) c L(x + x) 

{:::=> ql('IL(x» + ql(·IL(x» ~ ql(·IL(x + x» 

(III.62b) 
{:::=> c(', x) + c(', x) ~ c(·, x + x) 

superadditivity 

see (III.60) and (III.61) 

subadditivity 

We can show by [Tl], p. 22, that the convexity of graph GR implies a convex input 
correspondence68 with the property 

(111.63) J...L(x) + (1 - J...)L(x) C L(Ax + (1 - J...)x) J... E [0, I], 

Therefore, the proof of the convexity of the cost function c is omitted, since inputs 
as well as outputs must be divisible. For a given factor price vector q > 0 we 
obtain 

(III.64) J...c(q, x) + (1 - J...)c(q, x) ~ c(q, Ax + (1 - J...)x). 

Given a q > 0, the lower semi-continuity of the cost function c(q, .) holds if the 
subsequent criterion is met. 

liminf c(q, XV) = c(q, xo) 
Xll----i>XO 

As shown by SHEPHARD,69 this condition can be derived from the c10sedness of the 
input correspondence, i.e. 

At this point we can dispense with the proof. • 

67 See Definition II.8. p. 44. 
68For the proof, see SHEPHARD (1953, p. 91 f.). An input correspondence L with property 

(III.63) is said to be convex. Convex correspondences have to be distinguished from convex-valued 
correspondences. The later has only convex level sets. See Section 11.4.1. 

69See SHEPHARD (1953, p. 88 ff.). 
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To classify the lower semi-continuity of a cost function, two aspects are helpful. 
On the one hand each proper lower semi-continuous function achieves its minimum 
over a compact subset in its effective domain.7o On the other hand it seems 
reasonable to suspect that stronger properties of the input correspondence are 
connected with stronger properties of the cost function. For example, if the inverse 
output correspondence P of L is continuous, then the Maximum Theorem 71 yields 
a revenue function r(p, v) = sup {p T xl x E P(v)} , which is continuous at v. 
In this the correspondence P is said to be continuous on V if it is both lower and 
upper semi-continuous and compact-valued. Moreover, each upper semi-continuous 
correspondence is closed by Theorem C.7, p. 309; see [P6] (Closedness). 

Since the input correspondence L has no compact level sets L(x), it cannot be 
continuous on X. Consequently, the Maximum Theorem cannot be applied with 
regard to the cost function c(q, .). The Maximum Theorem is not even enough 
to derive the upper semi-continuity of the demand correspondence D(q, .) by 
(111.54). Proving the existence of competitive equilibria, this property of demand 
correspondences will be of major importance in Chapter IV. 

Proposition III.9 is followed by further remarks referring to the third and fourth 
property. While the subadditivity of the cost function is closely related to economies 
of scale and economies of scope, which might be caused by indivisibilities, the 
convexity of the cost function more likely reflects diseconomies of scale. The 
transference of the criterion of convexity to an indivisible commodity x results from 
(III.67) and is illustrated by Figure 111.19. 

With respect to the subadditivity of a cost function by (111.62b) there are two 
special cases to be stressed. On the one hand cost advantages may result by 
expanding the firm's product range (economies of scope). On the other hand the 
phenomenon of the natural monopoly can now be included. 

Starting with the firm's product range x = (XI, ••• , Xr , 0, ... , O)T the vector 
i = (0, ... ,0, Xr+I,"" xn)T denotes an extension of this range. If for a given 
technology it is more expensive to produce the commodity bundles x and i by two 
separate processes instead of joining them, then we speak of economies of scope.72 

c(·, x) + c(·, i) ~ c(·, x + i) 

Thus, the easiest condition for the existence of economies of scope is given for two 
goods, c(·, XI, 0) + c(·, 0, X2) ~ c(·, XI, X2). Looking back at Proposition 11.7, 
indivisible goods and factors can especially be indicated as the origin of these cost 
advantages. The mutual provision of capacities not used by the single activities 
permits a joint production at lower costs.13 

70Cf. BERGE (1963, p. 76, Theorem 2). 
71 See Theorem C.l4, p. 311. 
72A more general formulation of this phenomenon may be found in BAUMOL, PANZAR, WILLIG 

(1982, p. 71 f.), to which also FARE (1986) refers. 
73 As before, the effects can be clarified by the example of a building contractor. For example, each 

building project can only be carried out with the aid of a crane. The capacity of a single crane, however, 
suffices to serve for three projects. Given suitable excess capacities, two cranes could already be enough 
to undertake seven building projects. 
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Given the strict superadditivity 74 of the input correspondence, a stronger form 
of the third property in Proposition III.9 can be established, which reflects the case 
of a natural monopoly. The existence of an input vector v E L(x + i) with V:5 v 
for all v E L(x) + L(i) implies 

inf {q T vi v E L(x)} + inf {q T vi v E L(i)} 

> q Tv ~ inf{ q T vi v E L(x + i)} 
{:::::::} c(q, x) + c(q, i) > c(q, x + i) 

for all factor price vectors q > o. The cost function is said to be strictly 
subadditive in the outputs x in the interior of the factor price space Q, i.e. 
int Q = 1R.~+. Interpreting xi as output vector of a firm in an industry, then this 
industry is called a natural monopoly if the cost function of the examined industry 
is subadditive in the entire region.75 

The condition for a natural monopoly is not only closely related to the existence of 
economies of scope but also to the economies of scale a firm may enjoy.16 First of 
all, the analysis of economies of scope refers to the notion of total factor variation. 
Since the multiplication of an activity (v, x) by a scalar ).. > 0 causes no problems 
for indivisible goods and factors, Proposition III. I 0 serves as the initial point for the 
following analysis: 

Proposition ill.tO Given perfectly divisible goods and factors, we have three 
implications for a linearly homogeneous, superhomogeneous, or subhomogeneous 77 

input correspondence L with closed convex input requirement sets. 

(III.65a) 

(II1.65b) 

(III.65c) 

)"L(x) = L(h) V)" > 0 ==> )..c(·, x) = c(·, h) V).. > 0 

)..L(x) C L(h) V).. ~ 1 ==> )..c(·, x) ~ c(·, Ax) V).. ~ 1 

AL(x) 2 L(Ax) VA ~ 1 ==> )..c(·, x) ;§! c(·, Ax) V)" ~ I 

74 See again Definition II.8, p. 44. 
7sCf. BAUMOL, PANZAR, WILLIG (1982, p. 17}. 
76Besides economies to scale and economies of scope BAUMOL (1987) stresses fixed and sunk cost as 

implications of indivisibilities. In Chapter V there are some bibliographical references which take sunk 
cost as a reason for barriers of market entry into account. 

77 See Definition II.6, p. 39. 
The proposition holds similarly for an input correspondence which is homogeneous of degree r. In this 
case we can show that the cost function is homogeneous of degree r in the outputs x, too, where r < I 
implies increasing returns to scale. Applying EULER'S Theorem gives 

/Ln ;k(q,x) 
Sex) = I/r = c(q, x) --- Xj ax' j=l } 

a plausible measure for the degree of scale economies if the cost function is differentiable. Further 
expositions can be taken from BAUMOL, PANZAR, WILLIG (1982, p. 50) as well as FARE, GROSSKOPF, 
LOVELL (1986, p. 178). 
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Proof: First of all, it has to be noted that the linearly homogeneous reciprocal 
support function (and therefore the cost function) has the following property for 
all >.. > 0, x E X and q E Q. 

(111.66) >"cp(qIL(x» = cp(>..q IL(x» 

= inf{ (>..q) T vi v E L(x)} 

= inf{qTvl vi>" E L(x)} 

= cp(q I>..L(x» 

For example, we have with respect to (111.65b) 

>"L(x) c L(h) ==} >"cp(q IL(x» = cp(q I>..L(x» e; cp(q IL(h». • 

Regarding a single-product firm strict economies of scale in (III.65b) correspond to 
falling average costs along the ray through the origin >..x. 

c(·, x) c(·, >..x) 
-- > -'---'-

x >..x 
v>.. e; 1 

Similarly, we speak in (111.65c) (i.e. increasing average costs) of strict diseconomies 
of scale. The criterion for economies of scope derived from a total factor variation 
now faces a criterion, that is a priori not connected with any special form of factor 
variation. 

An example illustrates that despite integer returns to scale by Definition 11.7 it 
is quite useful to speak at least locally of economies of scale.18 

Example: Assuming a divisible output quantity x, a LEONTIEF production 
function x = min {VI I aI, v21 a2l is scrutinized, where it is also assumed that the 
first factor is divisible and that the second factor is only available at integer units. 
At the same time the constant input coefficients al and a2 describe the capacity of 
each factor, i.e. v21a2 is the maximal output using the input V2. If, for instance, 
x = vllal < v21a2, then the indivisible second factor has excess capacities. Full 
employment of both factors results in constant average costs.79 

c(·,x) c(·,h) 
= x >..x 

The rest of the (technically efficient) activities (VI, V2, x) not exploiting the 

78The question whether it is tautological to put economies to scale down to the indivisibility of 
production factors is disregarded at this point; see CHAMBERLIN (1947/48, p. 236 f.) as weJl as 
McLEOD, HAHN (1949). In the above discussion, CHAMBERLIN supports the thesis that the divisibility 
of all production factors rules out both economies and diseconomies of scale. In particular, the conclusion 
this would at once result in an economy without firms assuming perfect competition (CHAMBERLIN 

(1947/48, p. 229» seems to be of doubtful value without consideration of factor constraints. 
79Remember that marginal costs aC(ql, Q2, x)/ax are not defined at the points of jumps. In 

WILLIAMSON (1966) these points are approximated by vertical lines. Finally, within a graphical analysis 
the determination of the welfare maximizing capacity foJlows - that is V2 - where the demand for 
the good concerned is held fixed. Although the supposed production technology generates integer 
constant returns to scale, it is shown that the firm will usually operate with losses in the long-term 
welfare optimum. KUMAGAI (1962) also refers to welfare theoretical arguments to assess indivisible 
investments. 
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V2 C(QI,Q2,X)/X 

)1'-

"\~~ :/C 
:/B 

/A A' B' C' 

... VI ... X 
0 0 

Figure III.18: Average costs with an indivisible input 

capacities of the indivisible factors generates decreasing average costs over the 
interval L V2J ~ V2 ~ r v21 . 80 The left hand part of Figure III.l8 illustrates 
the examined fonn of factor variation. Accordingly, the right hand part shows 
the appropriate development of average costs. Points A, B, and C reflect full 
employment of both factors and correspond to points A', B' , and C' with constant 
average costs. 

The presented phenomenon can be generalized for more than two production 
factors as the so called harmonic law.81 For a LEONTIEF production function 

x = min {Vdail i = 1, ... , m} 

all of the production factors are used up to their capacity provided x = vd ai is 
satisfied for all i = 1, ... , m. The average cost achieves its minimum whenever 
the output is a common multiple of the input coefficients of all indivisible factors. 
If the input coefficients of the indivisible inputs are a2 = 3, a3 = 4 and a4 = 6 for 
a divisible factor 1, then the minimal average costs are attained at the "harmonic" 
output quantities 12, 24, 36 .... All the other output quantities are associated with 
excess capacities.82 At this point we refrain from a graphical representation of the 
average costs. Similar to Figure III. 18 the average cost curve jumps when at least 
one of the indivisible factors has to be augmented by one unit. The extent of the 
jumps is not least determined by what factor (2, 3 or 4) is raised and how many 
inputs are to be raised; at x = 6 the amounts V2, and V4 are augmented by one unit. 
Moreover, the jumps abate with rising outputs as shown in Figure III.I8. 83 

80A similar example is presented in BREMS (1963/64). MATTHES (1996) describes an analogous 
phenomenon of indivisibility with respect to the calculation of telecommunication network charges. 
There the indivisibility is artificially introduced by checking telephone calls at discrete time intervals. 
As in WILSON (1993, especially Section 2.4) this problem is usually ignored. 

slef. BREMS (1952, p. 580). The idea of the harmonic law has already been described in ROBINSON 
(1931, p. 33) and SCHNEIDER (1934, p. 83 If.). 

82 SCAZZIERI (1993, p. 120 If.) describes the analogous problem in time coordination of indivisible 
working steps. 

83If the price of the good at hand is a small amount above minimal average cost, then the maximal 
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Besides the subadditivity of the cost function, Proposition 111.9 yields a 
condition for the convexity of the cost function in commodities x, where perfectly 
divisible goods and factors are presumed. Supposing a firm produces a particular 
indivisible good x E Z+, then the following criterion of an "integer convex" cost 
function at positive factor prices q > 0 can be established:84 

(111.67) 
c(q, 1) > c(q, 0) and 

c(q, x+ 2) - c(q, x+ 1) ~ c(q, x+ 1) - c(q, x) 

The left hand part of Figure 111.19 illustrates this assumption for c(q,O) = O. 
Following (III. 64 ) for A = 1/2 the rearrangement of the second inequality leads to 

1/2 c(q, i + 2) + 1/2 c(q, i) ~ c(q, i + 1) = c(q, 1/2 (i + 2) + 1/2 i). 

c(q, x) x 

i+2 ,convUi+ 2) 

i+l cony Ui + 1) 

x convUx) 

x v 
0 Vi v" VIII o i i+li+2 

Figure 111.19: Criterion of an integer convex cost function 

Considering various interim findings, we obtain similar to (III.62a) 

1/2 c(q, i + 2) + 1/2 c(q, i) 

= l/2cp(qlconvL(i+2») + l/2cp(qlconvL(i») 

= cp( qll/2 cony L(i + 2») + cp( qll/2 cony L(i») 

= cp( qll/2 cony L(i + 2) + 1/2 cony L(i») 

~ cp( qlconv L(i + 1») 

=c(q,i+l). 

Thus, according to (111.60) 

l/2convL(x + 2) + l/2convL(x) C convL(x + 1) 

see (111.55) 

see (III.66) 

see (III. 61 ) 

by assumption 

average profit is attained respectively with a harmonic output quantity. In the intervals between losses as 
well as profits per unit may occur. 

84Cf. e.g. KANEKO, YAMAMOTO (l986, p. 122). 
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provides a necessary and sufficient criterion that the cost function c is integer 
convex. This condition is illustrated in the right hand part of Figure III. 19 supposing 
a solitary input v. Referring to the marked quantities v', v" and VIII, the implication 

liz VIII + liz v' ~ v" =:} liz VIII + liz v' e convL(i + 1) 

has already been noted by Proposition 114, p. 31. 

2.1.2 Reconstruction of the Production Structure 

If the finn's cost function is known, then the question arises as to what infonnation 
on the production structure (L(x)1 x e X) is included in the cost function. The 
subsequent proposition describes the reconstruction of an element of the examined 
family of input requirement sets. A graphical representation of the construction 
principle is shown by Figure 11.32, p. 60. 

Proposition 111.11 85 Each closed convex input requirement set L(x) can be 
expressed as a system of inequalities given by the cost function. 

L(x) = n {vi qTv ~ c(q, x)} 

qeQ 

= {vlqTv~c(q,x) 'Iqe Q} 

Proof: Provided L(x) is a closed convex input requirement set, then the system of 
inequalities in Proposition 11111 entails 

{vlqTv~c(q,x) 'Iqe Q} 
= {vi inf{qTv-c(q,x)lqe Q} ~O} 
= {vi c.(v, x) ~ O} 

= {vi e(vIL(x» ~ O} 

= L(x) 

by definition 

see (III.56) 

with L(x) = cl(convL(x» 

by definition 

Recall at this point the favorable choice of functional values for the cost function by 
(III.58). • 

By Proposition 11111 the following equivalence relation immediately results for two 
closed convex input requirement sets86 

(III.68) c(·, x) ~ c(·, x) {:=::} L(x) c L(x) 

85The proposition corresponds to Corollary D.7.l, p. 323. 
86See also (D.6), p. 324. Generally, two closed and convex sets C and D fulfill the equivalence relation 

C CD{:=} cp(·IC) ~ cp(·ID). 

Moreover, [U] (Disposability of Outputs) states x ~ i ==? L(x) c L(i). 



2 Alternative Representation of the Finn's Cost Structure 143 

since the left hand inequality implies 

{vi qTv ~ c(q, x) Vq E Q} C {vi qTv ~ c(q, x) Vq E Q} (necessary part), 

and from the right hand inclusion ensues 

(sufficient part). 

If the input requirement set L(x) is not convex, then 

is called an outer approximation of the input requirement set. 87 Observing Theorem 
D.2 

e**(·lconvL(x» = cle(·lconvL(x» = e(·lcl(convL(x») 

we obtain 

Lo(x) = {vi qTv ~ q>(qIL(x» Vq E Q} with c(·, x) == q>(·IL(x» 

= {vi inf{qTv-q>(qlconvL(x»lqE Q} ~O} by (III.55) 

= {vi q>.(vlconvL(x» ~ O} 

= {vi e**(vlconvL(x» ~ O} 

= {vi e(vl cl(convL(x») ~ O} 

by definition 

by q>(·lconvL(x» 

= e* (·Iconv L(x» 

Theorem D.2. 

Thus, the outer approximation Lo(x) denotes nothing more than the closure of the 
convex hull of the input requirement set concerned,88 

Lo(x) = cl (convL(x»). 

Under the assumptions of Proposition 11.14 the convex hull of an input requirement 
set is closed such that 

Lo(x) = convL(x). 

Stipulating for the integer convexity of the input requirement sets by [L 7a], the 
knowledge of the outer approximation Lo(x) is quite enough since the only 
observable market results are points which belong to Lo (x) as well as to L(x) = 
Lo (x) n V. With regard to the cost function (111.55)89 

c(·, x) == q>(·IL(x» } 
co(., x) == q>(.ILo(x» ==} c(·, x) = co(', x) 

87Cf. DIEWERT (1982, p. 544) withholding the subsequent correlation. 
88Cf. MAS-COLELL, WHINSTON, GREEN (1995, p. 78). 
89Cf. McFADDEN (1978, p. 22). 
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follows. Supposing a finn to produce a solitary good x, then a similar result can be 
offered with respect to the production function90 

/(v) = max {xl v E L(x}} . 

The adjoined cost function iS91 

c(q, x) =inf{qTvlvEL(x)} 

= inf{qTvl /(v) ~ x} 

and, therefore, it satisfies the premises of Propositions Ill.7 and 1II.9. If the cost 
function is known, then an approximate production function /0 can be established. 

/o(v) :=sup{xlqTv~c(q,x) VqE Q} 
= sup {xl v E Lo(x}} 

Thus, / = /0 holds provided the input requirement set is closed and convex, 
L(x) = Lo(X). 92 Even if this assumption is not valid as in the case of an 
indivisible production factor, the observable market data (v, x, q) will not allow 
the differentiation between the two functions / and /0.93 If the profit maximizing 
finn knows its particular production technology, then we have at least to presume 
/ (v) = /0 (v) for the factor quantities v demanded. 

2.1.3 Comparison of the Derived Cost Functions 

In the preceding sections two cost functions were derived from apparently 
independent concepts. On the one hand the concave FENCHEL transfonn generates 
by (III. B) the nonnalizedcost function c(., x); (!2 ~ [-00, +00] with 

c(q-r, x) == g.(q-rIL(x» = inf { (q-r) T (v-r) - g(v-rIL(x»1 v-r E V} . 

On the other hand this definition faces the usual cost function c(·, x); Q ~ 
[-00, +00] in (111.55). 

c(q, x) == cp(qIL(x» = inf{ q T vi v E L(x)} 

The difference between these two functions comes about by the diverse spaces of 
factor price vectors, (!2 = lRm- 1 and Q = lRm. Both cost functions have the 
common property that their derivation does not depend on the fact whether it is 
based on the input requirement set L(x) or on its convex hull convL(x); see Prop­
osition 111.2 and Theorem 11.2, p. 63. Moreover, the following section proves that 
both cost functions are equivalent.94 

9OPor the definition of a production function, see Proposition 1I.12. 
91This representation has been introduced in SHEPHARD (1953) and picked up in UZAWA (1964). 
92Purther statements of this form may be found in BLACKORBY, PRIMONT, RUSSEL (1978). 
93Cf. DIEWERT(1982, p. 544). 
94A similar proposition with respect to convex profit functions may be found in JORGENSON, LAU 

(1974, p. 193). 
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As shown by Proposition II1.12, p. 147, the cost function c(·, x) denotes 
the smallest linearly homogeneous concave function generated by the modified 
normalized cost function c(·, x) + Q(qrl1 ).95 Since Proposition III. 14 comprehends 
a similar relation between the input distance function introduced below and the 
indicator function of an input requirement set, the expositions begin with an 
arbitrary concave function g, which, for the sake of a better distinction from the 
outputs x, depends on the variables y. The convex hypograph hypo g = {(~) E 

lRn x lRl (t ~ g(y)} of a concave function g can be associated with a unique 
smallest convex cone K containing the vertex 0 E lRn+\ which is defined by 
K = {A~I A ~ 0, ~ E hypo g} with ~ = (~). Supposing now analogous to (III.3), 
p.86, 

(III.69) key) = sup {{tl (~) E K} , 

k is called the smallest linearly homoge­
neous concave function generated by the 
(concave) function g since k is the smallest 
of all linearly homogeneous functions h 

fulfilling h(O) ~ ° and h ~ g. 
Figure m.20 shows this construction 

principle for a concave function g. The 
hypo graph hypo g corresponds to the set 
below g, whereas the cone K is enclosed by 
the rays through the origin, which are marked 
by k. 

Recursive substitution yields 

g k 

key) = 

sup {{tl (~) E {A~I A ~ 0, ~ E hypog}}. 

Figure III.20: The smallest linearly 
homogeneous concave function k 

generated by the function g. 

In this function we have to distinguish the 
case A = ° from the case A > 0. For an n-proper function g (with hypo g *' 0) 
A = ° results in k\ (y) := sup {{tl (~) EO} and therefore 

(III.70a) k\ (y) = Q(yIO) := {o for y = 0 
-00 for y *' O. 

If A > 0, then by y = AY and (t = AIL it ensues 

(III.70b) k2(y) := sup {{tl (~) E {A(X) I A > 0, IL ~ g(y)} } 

= sup{{tl A > 0, (t/A ~ g(Y/A)} 

= sup {Ag(Y/A)1 A > O}. 

95 Appendix D.2.1 introduces the concept of the greatest linearly homogeneous function k generated 
by the (convex) function f. Similarly, we define at this point the smallest linearly homogeneous concave 
function generated by the (concave) function g. 
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By k(y) = sup{k1(y),k2(y)} both relations (1II.70a) and (111.70b) evoke the 
smallest linearly homogeneous concave function k generated by g, i.e. 

(III. 71) k(y) = sup {Ag(Y/A) 
A~O e(yIO) 

for A> O} 
for A = 0 . 

If g(O) < 0 holds at point y = 0, then the optimal A in (1II.70b) is A = 0 so 
that (111.70a) must be applied instead of (1II.70b). According to Figure 111.20 that is 
k(O) = O. Actually for g(O) = 0 we have k(O) = O. Nevertheless, g(O) > 0 
implies the relation k(O) = +00. 96 

Equation (111.71) is again picked up in Proposition 111.14. There, Figure 111.23 
also provides a graphical representation of the transferred results. If we derive the 
smallest linearly homogeneous concave function generated by the normalized cost 
function c(', x), then it turns out that the presented concept is not very helpful at 
this point. As shown by Quadrant II in Figure 111.12, p. 114, the normalized cost 
function c(', x) intersects the ordinate as a positive value provided factor r is used 
in the production at a positive amount, c(q-r, x) > 0 for q-r = O. 

But if we define the concave function 

(111.72) for A = 1 
for A =1= 1, 

with x denoting an admissible commodity bundle with respect to an n-proper 
cost function c(', x), then the function g generates the following smallest linearly 
homogeneous concave function k.97 

(111.73) 
for A > 0 
for A = 0 
for A < 0 

The additional variable A will adopt the role of the nominal factor price qr 
afterwards. The purpose of the following explanations is to prove the close 
relationship between the function k defined by (111.73) and the cost function c(·, x). 
In doing this we fall back upon the construction principle of the function c(', x) as 
a support function of the input requirement set L(x). 

Before we go into the concave form of Corollary 0.9.1 using Proposition 111.12 
it has to be noted that according to (111.73) the closure of the concave function k is 
given by98 

(111.74) 

for A > 0 
for A = 0 

for A < 0, 

provided c(', x) is an n-properclosed concave function with 0 E n-Domc(·, x). 

96In the last case the definition of the smallest linearly homogeneous concave function k generated by 
g remains without any economic meaning. 

97Take into consideration that log (q-r Il.. 1) = l.c(q-r Il.. x). 
98The proof of this statement may be found in ROCKAFELLAR (1972. p. 67. Corollary 8.5.2). 
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Propositionill.12 Letting c(·, x): C2 -+ [-00, +00] be the normalized cost 
function for a commodity bundle x E X, then the function c(·, x): Q -+ 
[-00, +00] with 

(III.75) 

for A> 0 
for 1..=0 

for 1..< O. 

is equivalent to the support function of the set C C V with 

Due to C = convL(x), c(·, x) can be understood as the corresponding cost 
function. 

Proof: First of all, it is shown that the function defined by (111.75) is the support 
function of the set C concerned. The ensuing expositions prove that the set C equals 
the convex hull of the input requirement set L(x) so that (III.75) determines the cost 
function c(·, x) indeed.99 

Analogous to (111.72), we define the function g(q-r, A) := c(q-r, x) + Q(All). 
Because by Proposition III.7 the normalized cost function c(·, x) is n-proper, closed, 
and concavefor each commodity bundle x E X and as Q(All) has these properties 
as well, the function g must be n-proper, closed, and concave, too. Thus, g meets 
all requirements of the concave version of Theorem D.9. 1OO At the same time by 
(III.73) the function k denotes the smallest linearly homogeneous concave function 
generated by g. For the closure clk a comparison of (111.74) and (III.75) implies 
cl k = c(·, x). 101 The concave version of Theorem D.9 says that cl k is the support 
function of the set {(v:')1 g.(v-r , IL) !l:; o}. By rearranging 

g.(v-r , IL) = inf {(q-r)T (v-r) + AIL - g(q-r, 1..)1 q-r E C2, I.E lR} 

= inf {(q-r)T (v-r) + AIL - c(q-r, x) - Q(All)1 q-r E C2, I.E lR} 

= inf {(q-r) T (v-r ) + IL - c(q-r, x)1 q-r E C2 } 

= IL + c.(v-r , x) 

the first part of the proof is completed since 

If the function c(·, x) defined by (III.75) is identical to the support function 
q; of the set C, c(·, x) ;: q;('1 C), then (III.55) permits us for calling this 

99In Figure III.36, p. 181, Proposition III.12 is again picked up and interpreted geometrically. 
looTheorem D.9 and its concave version may be found on p. 327. 

For x ~ X we get c(·. x) = +00. In this economic irrelevant case the cost function c(·. x) = +00 
does not coincide with the function defined by (III.75). 

101 Corresponding to this relation [C4] says that the cost function c(·. x) is closed. 
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function a cost function if we can show that C = convL(x). Considering 
f(·IL(x)) = -g(·IL(x)) defined by (111.5), p. 89, we get c*(·, x) = g**(·IL(x)) 
in accordance with (III. 13). Using Corollary III.3.1, p. 99, yields the required 
relation 

convL(x) = epif(·lconvL(x)) 

= epij**(·IL(x)) 

= {(V~')I /1-!1; j**(v-'IL(x))} 

because of (III.26b) 

by definition 

= {(V~')I /1-!1; -g**(v-'IL(x))} 

= {(V~') 1 /1- !1; -c* (v-', x)} = c. • 
After the cost function c(·, x) has been deduced from the normalized cost function 
c(·, x) by Proposition 111.12, the question arises concerning the dimensions of the 
used variables. First of all, it is noticeable that both reciprocal support functions 

(111.76a) c((q~'), x) = cp((q~')IC) 
= in£{ (q-,)T (v-') + )../1-1 r~') E C} [units of vr ] 

(III.76b) c(q, x) = cp(qlconvL(x)) 

= in£{qTvl v E convL(x)} [$] 

suggest the relation q = (q~'). At the same time the new variable).. introduced 
in (III.75) must be dimensionless. The resulting contradiction can be eliminated by 
multiplying the linearly homogeneous function k of the proof by a factor price qr of 
dimension [$ /units of v,] at point ).. = 1. 

q,k( q-', 1) = k(q,q-', q,) 

With that the m nominal factor prices q = (q,:,-') with [$/units of Vi] result from 

the m - 1 relative factor prices q-' with [units of v, /units of Vi]. Thus, regarding 
the cost functions we have at point ).. = 1 

c(q, x) = k(q,q-', q,) = q,c(q-', x). 

Alternatively, it can be supposed that the quantity of factor r is measured in money 
units [$]. Now for nominal factor prices q-' the normalized cost function (111.11) is 
also measured in money units. After introducing the dimensionless variable).. with 
q = (q~') we obtain 

for all ).. > o. Because of economic aspects the first variant is subsequently 
preferred. 

Finally, with regard to factor demand the deduced results can be compared. 
Specifically for differentiability of the two cost functions, the equivalence of 
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SHEPHARD's Lemma arises in the form of (I1I.SOa) and (I1I.I00a)102 as follows: 
for a positive nominal price q, > 0 of factor r and the relative prices of the other 
factors qi'=q;jq, (i= 1, ... ,m, i*r) wegainthechosenquantityoffactor 
i with i * r from 

(111.77) 
~ ac ac _, aqi' ac _, 
Vi = -a (q, x) = q,' a -, (q ,x)· -a- = a _, (q ,x). 

qi qi qi qi 

The quantity of factor r demanded results from 

~ ac _, '" ac , aqi' 
V, = a-(q,x) = c(q- ,x) +q, ~ a -,(q- ,x)· -a-

~ ~ ~ ~ 

= c(q-', x) - L viqi' 

= g.(q-'IL(x» - (q-,)T (v-') 

= f(v-'IL(x» 

note (I1I.77) 

since qi' = q;jq, 

by definition 

since (I1I.27b) 

As expected, by SHEPHARD's Lemma the two cost functions lead to the same factor 
demand. 

Example: To conclude, the example on p. 114 ft., where the explanations are based 
on the input requirement setlO3 

(111.41) 

is again picked up. According to (III.45), the normalized cost function c(" i) is 
now 

I qi'V~ + v; 
c(qi', i) = qi'vr + v~ 

-00 

for ql' ~ qi' 
for 0 ~ qi' ~ qi' 
for qi' < O. 

with 
__ , v; - v~ 

ql := v" - v' ' 
I I 

where the superscript -r (with r = 2) stresses that it is a normalized price. From 
now on we have to distinguish explicitly the relative factor price q"l' == q"l2 := 

q\ / q2 from the nominal factor price q\. Consequently, the price defined by (III.43) 
is denoted iiI'. 

To derive the cost function c(·, i), we have to calculate the function cl k 
according to (III. 74) using Proposition III. 12: 

102See p. 120 as well as p. 164. 
103 A graphical discussion of the following relations is given in Figure 111.34, p. 179. 
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(111.78) 

lAC (qlr /A, i) 
clk(qlr,A)= ~mAC(qlr/A,i) 

-00 

for A> 0 

for A = 0 

for A < 0 

A (Cqlr /A) . V'l + v;) 

A ((qlr / A) . v~ + vD 

for 

for 

A>O 

A>O 

and qlr /A ~ iilr 

and o < qlr / A ~ iilr 

lim A ((q!' / A) . v; + v;) 
),iO 

for A=O and q!' > 0 

lim A ((O/A)' v~ + vD 
),iO 

for A=O and qlr = 0 

-00 

qlrv; + AV; 

qlr v'( + AV~ 
qlrv'l 

o 
-00 

for A>O 

for A>O 

for A=O 

for A=O 

for A<O 

for A<O or qlr < 0 

and qlr fA ~ iilr 

and o < qlr / A ~ iilr 

and qlr > 0 

and qlr = 0 

or qlr < O. 

Proposition III. 12 states that this function equals the cost function c(·, i) namely 
c(·, i) = cl k. If we calculate the cost function for the underlying input requirement 
set L(i) using (IlI.53), then 

(III.79) C(ql, q2, i) == CP(qlo q2IL(i)) 

= inf{qlVI +q2V21 (~) E L(i)} 

ql v; + q2V; 

ql v~ + q2v~ 
q2v~ 

qlV; 

o 
-00 

for q2 > 0, ql > 0 and qt!q2 ~ iilr > 0 

for q2 > 0, ql > 0 and ql/q2 ~ iilr 

for q2 > 0, ql = 0 

for q2 = 0, ql > 0 

for q2 = 0, ql = 0 

for q2 < 0 or ql < O. 

Proposition III. 12 is confirmed by the example when comparing (III. 78) and (III. 79). 
For q'}r /). = q} and q2 =). the equation c(q}, q2, i) = cl k(q}, q2) ensues. 

The previous expositions introduce the relationship between the cost function 
c(·, x) and two more functions. On the one hand the cost function c(', x) as the 
support function of the input requirement set L(x) equals the concave conjugate 
function of the indicator function Q(-lconvL(x» (Proposition 111.6). On the other 
hand the cost function c(', x) corresponds to the closure of the smallest linearly 
homogeneous concave function k generated by the (modified) normalized cost 
function c(·, x) + Q().Il) (Proposition IIU2). With that the previous analysis is 
mainly characterized by the duality relations of conjugate functions. 
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The next section compares the cost function c(·, x) with a "gauge", where the 
relationship between the two functions is called the polarity of gauge functions. 
Before going into this property, we have to introduce the concept of gauges. In 
doing this the input distance function can be interpreted under certain assumptions 
as a measure for the input efficiency. 

2.2 The Input Distance Function 

Before going into the case of indivisible factors it turns out to be helpful first of all 
to suppose convex input requirement sets with divisible factors . However, each of 
the considered commodity bundles x E X may involve indivisible outputs. 

The (reciprocal) gauge function 1/I( ' IL(x»: 17 --+ [0, +00] U {-oo} of a 
nonempty convex input requirement set is defined byl04 

(1II.80) 1/I(vIL(x» := sup (A ~ 01 v E AL(x)}. 

For a given production technology L we also write 

1[( ' , x) = 1/I(-IL(x» , 

where the function 1[(-, x) with a given commodity bundle x E X is called the 
restricted input distance function (factor input minimal cost function or deflation 
function) . Varying the vector x and, therefore, the input requirement set L(x) results 
in a function 1[: 17 x X --+ [0, +00] U {-oo}, which is called the input distance 
function of the input correspondence L. 
Intuitively, the concept of the input distance 
function can be understood when stipulating 
that there is a positive optimal solution ~ > 
o for (III.80). Under this assumption, 
(III .80) can be rewritten as 

I[(V , x) = max (A> 01 viA E L(x)} . 

Thus, given the commodity bundle x, the 
input distance function provides a measure of 
how much the input vector v must be shrunk 0 VI 

along a ray through the origin and v so that 
the resulting input vector is efficient with 
respect to the input requirement set L(x). Figure III.21: Input distance function 

For I[(V, x) > 1 there is a smaller input 
vector which also permits the production of the commodity bundle x. A functional 
value t[(v, x) < 1 means that the input vector v is insufficient for the production 
of the commodity bundle x. In accordance with (11.23) a comparison to FARRELL's 

104 See Definition D.4, p. 329. ZIESCHANG (1983) discusses how to transfer this concept of total factor 
variation to a partial factor variation. 
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input efficiency measure yields 105 

1 
t[(v, x) = <r( ) for v E L(x) . 

.r[ v, x 

According to Figure 111.21 the tenn distance function can be justified if we express 
the input efficient vector v as v = v / t [( v, x) so that the value of the input distance 
function denotes the distance ratio, 106 

t[(v, x) = IIvll/IlVIl. 
This fonn of the gauge follows the original definition of MINKOWSKI and it is used 
by SHEPHARD, who stipulates the existence of a vector v.107 If t[(v, x) = 1, 
the input vector lies in the boundary of the input requirement set, v E oL(x). For 
perfectly divisible inputs as well as for convex and closed input requirement sets this 
criterion establishes a necessary and sufficient condition for an efficient utilization 
of factors if the boundary of the input requirement set equals the set of all input 
vectors which are input efficient, oL(x) = Eff L(x). An alternative representation 
of the input distance function is shown in Figure III.23 which is more suitable for 
a direct interpretation of (III. 80) since the input requirement set L(x) can be scaled 
directly. 

Having pointed out the economic meaning of the input distance function as a 
measure for the input efficiency of an activity (v, x), the question now arises as 
to how to overcome the case of indivisible production factors. Again we try to 
replace nonconvex input requirement sets with their convex hull convL(x). Note 
that usually 1/I(vIL(x)) '* 1/I(vlconvL(x)) will hold. But if we define the input 
distance function t[ with respect to the convex hull of an input requirement set, then 
we can write furthennore 

(111.81) t[(-, x) == 1/I('lconvL(x)), 

where conv L(x) = L(x) has to be taken into account for convex input 
requirement sets. 

Therefore, we run into difficulties which have been discussed in detail in Section 
2.4.1. It can be ruled out that an efficient input vector becomes an efficient input 
vector by the operation L(x) ~ conv L(x), but not every efficient input vector 
v yields t[(v, x) = 1 for the value of the input distance function; see point A 
in Figure 11.28, p. 55. Nevertheless, it turns out that such a vector always lies in 
the interior of the convex hull conv L(x). This results in two implications. First 
of all, there must be input efficient vectors corresponding to the extreme points of 
convL(x). Hence, secondly it follows that not all of these extreme points can lead 
to higher costs than v. Thus, efficient input vectors exist which pennit a cheaper 
production of the commodity bundle x in comparison with v so that efficient input 
vectors as v may be disregarded without losing too much infonnation. 

A second problem has been treated, too. Not all vectors v with t[(v, x) = 
1 can be interpreted as input vector v E V. Thus, the criterion t[(v, x) = 1 

105In contrast to FARRELL'S measure of input efficiency, the input distance function also includes the 
cases v If. L(x). 

I06In DEBREU (1951) the ratio IIvll/llvll is called the coefficient of resource utilization. 
107Cf. SHEPHARD (1953, p. 65 ff.). 
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is neither necessary nor sufficient for an efficient use of inputs. Not all efficient 
input vectors v lie in the boundary of the (closed) convex hull convL(x) and not 
all points v E o(convL(x» describe an efficient input vector. However, [L7a] 
(Integer Convexity) permits the conclusion from tl(V, x) = 1 and v E V to an 
efficient input vector v E L(x) provided conv L(x) is a closed set. In particular, 
the extreme points of conv L(x) denote efficient input vectors, at which the input 
distance function takes the value 1. 

The main properties of the input distance function l08 are noted by the next 
proposition. Remember that the input vector v = 0 is not included in the 
corresponding input requirement set L(x) for any commodity bundle x E X \ {OJ ; 
see Axiom [LIb]. 

Proposition 111.13 Let L(x) be a nonempty subset in 11 with 0 ¢ cl L(x). Then 
the input distance function tl(', x) has the following properties: 

1. Thefunction tl(', x) is n-proper, -00 ~ tl(', x) < +00 Vv E 11. 
2. Thefunction tl(', x) is linearly homogeneous, 109 AtI(V, x) = tl(AV, x) 

VA> O. Furthermore, it is tl(', x) == 1/r('IL(x» = A1/r('IAL(x» VA> O. 

3. We have tl(V, x) = 0 if and only if v = O. 
The inequality tl(V, x) > 0 is satisfied if and only if v E cone L(x) \ {OJ. 
Thus, the effective domain is n-Domtl(', x) = cone L(x). 

4. If L(x) is closed and if tl(V, x) ~ 0, then the supremum is attained, 
tl(V, x) = max {A ~ 01 v E AL(x)} . 

5. If L(x) is closed, then tl(', x) is lower semi-continuous on cone L(x). 

6. For convex L(x) the function tl(', x) is concave and therefore superadditive. 

VV, v E 11 

7. If intL(x) *0, thentl(·,x)iscontinuouson cone (intL(x»). 

The third property describes the effective domain of the input distance function by 
the projection cone cone L(x). This set denotes according to (11.26), p. 59, the cone 
generated by the input requirement set L(x): 

cone L(x) := {Avi v E L(x), A ~ O} C 1R~. 

Under [L3] (Disposability of Inputs) together with the recession cone 0+ L(x) = 
1R~ introduced in (11.11), p. 27, the closure results from 11 0 

cl ( cone L(x») = cone L(x) U 0+ L(x) = 1R~. 

108See Theorem 0.11, p. 330. 
109 An output correspondence P is homogeneous of degree r > 0 if and only if the input distance 

function 1[ is homogeneous of degree -1/ r in x. Cf. JACOBSEN (1970, p. 762). 
lloCf. ROCKAFELLAR(1972, p. 78, Theorem 9.6). 
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L(x) 

v; - - - - - - - - - - -
o 

Since the two sets cone L(x) and 
cl ( cone L(x)) can differ at the most by 
their relative boundary points, III the input 
distance function is at least defined for all 
posItIve input vectors v > 0, i.e. in 
rint ( cone L(x)). But if an input vector v 
lies in the boundary of 1R~ and if it has at 
least one zero component, then it may occur 
that the input distance function t [( v, x) takes 
the value -00. While the input distance 
function takes a finite value for all positive 
input vectors and for all input vectors in 
the vertical line in Figure m.22, each input 

Figure 111.22: The effective domain of vector in the horizontal line (except the 
the input distance function origin) is mapped to the value -00. The 

reason for this is the minimum amount v2 
of the second factor required for the production of the output X.112 Not only the 
LEONTIEF production function but also the COBB-DOUGLAS production function 
may be cited as examples. 

To exclude in future the special case t[(O, x) = 0, it is easier to define the 
cone 

K(L(x)):= coneL(x) \ (OJ . 

Accordingly, K(L(x)) = (hi v E L(x), A> O} holds true, if the input 
requirement set L(x) does not contain the origin v = O. Thus, all commodity 
bundles are permissible except x = 0 . 

In view of the closure of the n-proper concave input distance function t [( " x) 
which will be required later now 

(111.82) t[(v, x) = cl tl(V, x) > 0 "Iv E 1R~+. 

follows for each commodity bundle x E X\ {OJ : 113 Consequently, the region 1R~+ 
results from the observation"4 

rint ( n-Dom t[(-, x)) = rint ( cone L(x)) = rint ( cl(cone L(x») = 1R~+. 
Like the cost function c( ' , x), the input distance function tl(', x) is also closely 

related to the indicator function Q(·IL(x». This relationship is reflected by Propo­
sition m.14 and afterwards it will be explained graphically by Figure m.23. 

Proposition 111.14 The input distance function tl(-' x) of a nonempty convex 
input requirement set L(x) is the smallest linearly homogeneous concave function 
generated by the modified indicatorfunction g = Q(-IL(x» + l. 

IllSee Equation (B.3), p. 291. 
I 12Thus, the second factor is called essential for the production. 
I J3See Theorem C.3, p. 304. 
I 14Equation (B.3), p. 291, especially means rint(cl C) = rint C. 
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Proof: For each commodity bundle x E X a nonempty input requirement set 
L(x) exists, i.e. Q(-IL(x» ¥ -00. We have to substitute L(x) by its convex hull 
conv L(x) for a nonconvex input requirement set. Using 

AQ(VjAIL(x» = Q(vjAIL(x» = Q(VIAL(x» for A> 0 

the smallest linearly homogeneous concave function generated by g = Q (,1 L(x» + 
1 according to (111.71) is l15 

k( ) { Q(VIAL(X» + A for A> O} v = sup 
A~O Q(vIO) for A = 0 

= sup {Q(VIAL(x» + AI A ~ O} 

= sup {AI A ~ 0, Q(VIAL(x» = O} 

= sup {A ~ 01 v E AL(x)}. 

with Q(·IL(x» ¥ -00 

Finally, we obtain 

k(v) = y,(vIL(x» E t[(v, x), 

where all of the x E X and v E V are admissible. • 

Before continuing the examination of the input distance function, we have to stress 
a special case. The input requirement set L(x) contains the origin v = 0 solely 
for the commodity bundle x = 0 so that g(O) = Q(OIL(O» + 1 > O. This case 
leads to t[(O,O) = +00 or more generally116 

1+00 
t[(v,O) = 

-00 

for v E lR~ 

for v ¢ lR~. 

Finally, we give a graphical representation of the input distance function where the 
construction conforms to Proposition III.14.117 While the left hand part of Figure 
III.23 illustrates the input distance function of an input requirement set L(x) for 
a commodity bundle x E X \ {O}, the right hand part illustrates the limit case 
for the commodity bundle x = O. Moreover, the modified indicator function 
Q('IL(x» + 1 can be taken from the subgraphs. In particular, the left hand part 
is useful to illustrate the described scaling of the input requirement set AL(x) by 
AQ('IL(x» + A. 

With respect to the concave version of Theorem D.9, p. 327, we can now 
introduce the concept of a polar input requirement set Lo(x). The set Lo(x) 
defined by Proposition III. 15 is also called the factor price requirement set. This set 
includes those factor price vectors q such that the factor costs q T V do not fall short 

115 At this point it has to be noted that for a commodity bundle x '" 0 and a given input vector v the 
case). = +00 cannot result at any time. 

116The smallest linearly homogeneous concave function k generated by a concave function g has been 
designed especially for g(O) ~ o. 

ll7ef. also Figure 0.4, p. 337. 
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------~~~~------~v 
L(x) 

_oc/I(v, x) [ 

Q(vIL(x» + 1 

Q(vIL(O» + 1 

------'od------------.- v 
L(O) 

Figure III.23: Alternative graphical representation of the input distance function 

of unity for any input vector v permitting the production of the given commodity 
bundle x. As clarified by the graphical expositions, the set Lo(x) plays the same 
role with respect to the cost structure as the input requirement set L(x) with respect 
to the production structure. 

The support function of the set Lo (x) is sometimes called a price minimal cost 
function and in accordance with (III.S3) it is defined by 

(III.83) 

Equivalent to (11180) the gauge of the set Lo(x) is given by 

(11184) 

Proposition ID.IS For every nonempty convex set L(x) the closure of the input 
distance function t/(-, x) equals the supportfunction qJ(·ILo(x» of the set 

(III.8S) 

where the closed and convex set Lo(x) is called the (reciprocaUy) 1 IS polar input 
requirement set. 

Proof: If the input distance function t/(-, x) of a nonempty convex input 
requirement set L(x) is the smallest linearly homogeneous concave function 
generated by g = e(·IL(x» + 1, then the concave version of Theorem D.9, 
p. 327, states that the closure of the input distance function clt/(·, x) equals the 

118 Provided there is no risk for confusion, we speak of polar input requirement sets. 



2 Alternative Representation of the Firm's Cost Structure 157 

support function of the set {qI8*(q)~O}. From 8*=Q*(-IL(x»-1 itfollows 

{ql 8*(q) ~ O} = {ql Q*(qIL(x» ~ l} 

(III. 86) 

or, equivalently, 1 19 

(I1I.87) 

= {ql inf {qTv - Q(vIL(x»1 v E V} ~ I} 
= {ql in£{ q T vi v E L(x)} ~ l} 
= {ql qTv ~ 1 "Iv E L(x)} = Lo(x) 

c1t/(·, x) == c11j!('IL(x» = cp(-ILo(x». 

Suppose an arbitrary set C C lRm in Proposition IIU5. Then (D.11) yields 
the equivalence relation 0 rt c1(convC) ¢=:::::> Co * 0. If 0 E cl(convC), 
we obtain 1j!(OIC) = +00 and, therefore, c11j!(·IC) == +00. 120 Because 
of c11j!(-IC) = cp(-10) == +00 this case is perfectly consistent, but it can be 
eliminated by allowing only for commodity bundles with x E X \ {O} so that 
o rt c1(convL(x» and Lo(x) * 0. • 

According to (111.82), Proposition 111.15 implies that the input distance function 
t/(-, x) equals the support function cp of the polar input requirement set Lo(x) for 
every commodity bundle x E X \ {O} : 

If all of the vectors v E V are admissible, then the support function cp( ·ILo(x» = 
c1 t / (', x) yields a system of inequalities which permits analogous to Proposition 
111.11 a representation of the polar input requirement set equivalent to (111.85). 

(111.88) Lo(x) = {ql qTv ~ cp(vILo(x» "Iv E V} 

= n {ql qTv ~ c1t/(v, x)} 
VEV 

Hence, the family (L(x) I x E X) of input requirement sets, which is also called the 
production structure, faces a family (Lo (x) I x E X). While an input requirement set 
L(x) contains all of the input vectors v permitting the production of the output x, 
the polar input requirement set Lo(x) is a collection of factor price vectors q which 
at least imply the costs q Tv = 1 at the production of x. Thus, we are quite right to 
call the family (Lo(x)1 x E X) a cost structure. l2l 

2.3 Dual Representation of the Production Structure as Cost 
Structure 

The symmetry between the production structure and the corresponding cost 
structure can be explained by holding a commodity bundle x E X fixed. Now 

119Sased on SHEPHARD (1953) this result is frequently called SHEPHARD'S duality theorem - see for 
example JACOBSEN (1974) - although this is emphatically rejected by SHEPHARD (l974a). 

120See the remarks on Definition C.4, p. 302. 
121 For a discussion of the properties of this cost structure, see SHEPHARD (1953, p. 96 ff.). 
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an input requirement set L(x) faces its polar set Lo(x). The two sets are associated 
with a support function ({J and a gauge 1/1 respectively. The next section discusses 
conditions so that the symmetry of the presented relations may be summarized in 
the following figure. 122 The economic meaning of the marked gauge and support 
function will be stressed in Figure 111.29. 

(1II.80) (111.92a) 

y,('IL(x» = rpCILo(x» 

Corollary 111.16.1 

(1II.98a), (1II.98b) 

Corollary 1II.18.1 

(Ill. 92b) (111.84) 

y,(·ILo(x» = rpCIL(x» 

Corollary 1II.16.1 

Figure 111.24: Duality relations in the sense of SHEPHARD (1) 

First of all, the input requirement set L(x) in Proposition III.lS is substituted by 
Lo (x). The resulting bipolar set consists of input vectors and is defined by123 

(1I1.89a) 

(III. 89b) 

Loo(x):= {vi qTv ~ 1 'v'q E Lo(x)} 

= {vi Q.(vILo(x)) ~ I} 

= {vi ({J(vILo(x» ~ I} 

= {vi c11/1(vIL(x» ~ I} 

like (III.8S) 

analogous to (111.86) 

Proposition 111.6 

by (III.87). 

This set yields a relation equivalent to (III.87), c11/1(·ILo(x)) = ((J(-ILoo(x)), and 
analogous to (II1.88) it is now Loo(x) = {vlqTv~({J(vILoo(x») 'v'qE Q}. On 
the basis of the second separation theorem124 we may set ({J(·ILoo(x)) = ((J('IL(x» 

122See also Figure D.3, p. 336. The symmetry of dual relations is stressed in particular by HANOCH 

(1978), who deals with the case of single-product firms. 
123The remarks on Theorem D.l4, p. 333, yield L(x) c Loo(x). 
124The Bipolar Theorem (Theorem D.14, p. 333) states L(x) c Loo(x) such that <p(-IL(x» ~ 

<p( ·ILoo (x». Assuming that <p( 'IL(x» > <p('ILoa (x» holds at a point, then there must be aYE L(x) 
with qTy> <p(-ILoo(x». Thus, by the second separation theorem (Theorem B.IO, p. 296) there is a 
hyperplane separating point y and set Loo (x) properly. The contradiction to L(x) cLoD (x) completes 
the proof. 
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with regard to the support function. Thus, it not only follows 

(III. 89c) 

but also 

(111.90) cl1/!('ILo(x)) = ql(·IL(x». 

As the bipolar set Loo(x) consists of input vectors, it seems reasonable to examine 
its relation to the input requirement set L(x). A major outcome follows from the 
assumption that L(x) is a closed convex set not including the origin v = O. 
Moreover, if according to Figure 11.14, p. 29, the set L(x) is aureoled125 L(x) = 
aur L(x), then by Corollary D.14.1, p. 333, 

(111.91) Loo(x) = L(x). 

In this case (111.89a) and (III.89c) describe the input requirement set L(x) by a 
system of tangent hyperplanes, where the construction principle is given by Figure 
11.32, p. 60. However, (III.89b) conforms to rays through the origin. If the boundary 
point v in Figure 111.21 is known, then 1/!(vIL(x)) = 1. Thus, each point on the 
ray through the origin and v, which is further away from the origin than v, is an 
element of the input requirement set L(x). 

Before making use of (III.91) we offer further results. 

Proposition m.16 126 Given an arbitrary set L(x) C V, we have 

1/!(qILo(x» = ql(qIL(x)) 

1/!(vILoo (x)) = ql(vILo(x» 

v q E K(Lo(x)); 

Vv E K(Loo(x)). 

Proof: For every given q E K(Lo(x» we may presume a positive J... in the 
subsequent rearrangement (Proposition 111.13). 

1/!(qILo(x)) = sup {A ~ 01 q/A E Lo(x)} 

=sup{A~OI (q/A)Tv~ 1 VVE L(x)} 

=sup{A~OlqTv~A VVEL(x)} 

= inf{qTvl v E L(x)} 

= ql( ql L(x» 

125 As has been mentioned, this condition corresponds to Axiom [L3] (Disposability of Inputs) for 
divisible goods. 
Under the above conditions the outer approximation of the input requirement set satisfies furthermore 
LQ(x) = L(x); see p. 143. 

126ef. NEWMAN (l987c, p. 486, Proposition 5). Although NEWMAN explicitly rules out Lo(x) = 0 
with Loo(x) = IRm regarding the second implication no contradiction results, 1/I('IIRm) = qJ('10) == 
+00. 
NEWMAN points out furthermore that Proposition 111.16 can be extended to all q E Q (and analogously 
to all v E V) if none of the supporting hyperplanes of L(x) contains the origin, i.e. q *- 0 ==} 

qJ(qIL(x» == c(q, x) *- O. Since in the actual case both sets L(x) and Lo(x) will never fulfill this 
condition at the same time, we can dispense with a more detailed discussion of the implication. See the 
remarks on Figure 111.33. 
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The same reckoning can be done with regard to l/!(vILoo(x» for all v E K(Loo(x» . 

• 
The following corollary of Proposition 111.16 stipulates the equivalence Loo(x) = 
L(x). It characterizes the cost function c(·, x) as well as the input distance function 
tl(-' x) as support functions and gauges respectively. 

Corollary m.l6.l 127 Let L(x) be a nonempty input requirement set satisfying the 
premises of(1/1.91). Then the relation between the gauge l/! of the set Lo(x) and the 
supportfunction rp of L(x) - i.e. the costfunction c(·, x) - is given by 

l/!(·ILo(x» = rp(·IL(x» == c(·, x) Yq E K(Lo(x». 

Dually, the support function rp of the polar input requirement set Lo (x) equals the 
gauge l/! of the input requirement set L(x) - i.e. the input distance function tl(-' x). 

rp(·ILo(x» = l/!('IL(x» == tl(', x) Yv E K(L(x» 

Proof: Supposing a commodity bundle x E X \ to}, the input requirement 
set L(x) is not empty [L2] and closed [L6]. If needed, L(x) must be replaced 
with its convex hull, where [L3] (Disposability of Inputs) assures the closedness 
of convL(x). Further, Axiom [L3] implies L(x) = aur L(x). We also have 
o rf. L(x) [Lib] and, therefore, Lo(x) *" "'. In view of (III.91), we get 
L(x) = Loo(x) *" "'. The rest follows from Proposition 111.16. • 

The statements III.15 and III. 16 can be summarized with regard to (III.91). 

Proposition m.l7 Suppose the input requirement sets L(x) satisfy (/I1.9l). Then 
each member of the production structure (L(x) I x E X \ to}) faces an equivalent 
member of the cost structure (Lo (x) I x E X \ to}). 

(III.92a) 

(III.92b) 

L(x) = {vi tl(V, x) ~ I} 

Lo(x) = {ql c(q, x) ~ 1} 

Proof: The representation of the polar input requirement set Lo (x) has already been 
proved implicitly by Proposition 111.15. The rearrangement (111.86) only requires 
the substitution c(·, x) = Q.(·IL(x» by (III.56), where L(x) must be convex 
according to (III.91). 128 

If Loo (x) = L(x), (111.89b) induces an analogous representation of the input 
requirement set, L(x) = {vi cl l/!(v, x) ~ I}. Therefore, it remains to be shown 

127 See Corollary 0.15.1. 
128 JACOBSEN (1972. p. 461) emphasizes the relation 

Q(qILo(x» = qi.(qILo(x» = {~oo for c(q. x) ~ 1 

for c(q. x) < 1. 

Without comprehending the proof in JACOBSEN this result follows from Proposition 1Il.6. 
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that c11{t(v, x) can be substituted by 1{t(v, x) in the case at hand. Considering the 
above presented results, we have for all v E K(L(x)) 

1{t(vIL(x)) = rp(vILo(x)) 

= cl1{t(vIL(x)) 

because of Proposition 111.16 

because of (I1I.87). 

Due to L(x) C K (L(x)) this transformation is especially valid for all v E L(x) 
and it ensues L(x) = {vl1{t(v, x) ~ I} or (111.92a). • 

Up until now the analysis has concentrated on the various interpretations of 
the cost function and the input distance function. For instance, Corollary 111.16.1 
stresses that the cost function c (. , x) corresponds not only to the support function 
rp of the input requirement set L(x) but also to the gauge 1{t of the polar input 
requirement set Lo(x). Hence, the presented results yield the "vertical" relations 
in Figure 111.24. 

The next expositions serve for the derivation of a direct relation between both 
gauges 1{t of the input requirement set L(x) = Loo(x) and of the polar input 
requirement set Lo(x). Transferred to the cost function c(·, x) = 1{t(-ILo(x)) and 
to the input distance function t/ (., x) = 1{t( ·IL(x)) the result is noted by Corollary 
111.18.1. In order to analyze the relationship between the two mentioned gauges 
1{t(-1 L(x)) and 1{t(-ILo(x)), first of all, we introduce the concept of a (reciprocally) 
polar gauge. 

The definition (111.93) can be justified with respect to (111.85) by fixing a /L > 0 
such that the polar sets L(x) and Lo(x) hold the following equivalence relation: 

qTV~/L VVEL(x) {::::::::} q//LELo(x). 

The left hand side may be multiplied by an arbitrary A > 0 . 

A(q//L)TV ~ A 

{::::::::} ( q/ /L ) T V ~ A 

"Iv E L(x), V A > 0 

"Iv E L(x), V A > 0 

(put v = AV) 

If we substitute A by the greatest positive possible A, i.e. \29 

1{t(vIL(x)) = sup {A ~ 01 v E AL(x)} "Iv E n-Dom 1{t(vIL(x)) \ {O}, 

then 

V V E n-Dom 1{t(vl L(x)) \ {O}. 

Similar to Definition D.6, p. 334, we can now switch to the dual view. If we 
assume an n-proper (reciprocal) gauge k = 1{t(·IL(x)) instead of /L130 then 
the (reciprocaUy) polar gauge ko denotes the greatest nonnegative admissible /L 
depending on q. 

(I1I.93) ko(q) := sup {/L ~ 01 qT v ~ /Lk(v) "Iv E n-Domk \ {O}} 

129The unwanted case A = 1/t(vIL(x)) = 0 cannot occur by Proposition III.l3 or Theorem 0.11 for 
H,O. 

l30First of all. it turns out to be useful to scrutinize the function k instead of the gauge 1/t(·IL(x)). 
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As shown by Proposition IIU8, ko is also a gauge so that the bipolar gauge is given 
by 

The properties of these functions require some remarks. 

1. According to Proposition III. 13, an n-proper gauge k with the effective 
domain n-Dom k "* '" is supposed. 

2. To avoid polar gauges ko which are not n-proper,13\ we have to impose the 
effective domain n-Domk without the origin v = 0 instead of v E V. 

3. If O>qTv forall vEn-Domk\{O}, then ko(q) =-00. 

Analogous to (D.15) MAHLER's inequality remains the same. 

"Iv E n-Domk\ {OJ, Vq E n-Domko \ {OJ 

Bear in mind according to Proposition III. 13 that the effective domain of the gauge 
1/1 ( ·1 L(x)) is given by n-Dom 1/1 ( ·1 L(x)) = cone L(x). \32 

Proposition 111.18 Let L(x) be a non empty convex set with the gauge 1/1 ( ·1 L(x)). 
Then the polar set Lo(x) of L(x) yields the polar gauge 

(III.94a) 1/Io(qIL(x)) = 1/I(qILo(x)) Vq E K(Lo(x)). 

The bipolar gauge can be determined by the bipolar set Loo (x). 

(III.94b) 1/Ioo(vIL(x)) = 1/I(vILoo(x)) "Iv E K(Loo(x)). 

Proof: Ifthe set L(x) is nonempty, then 1/I(vIL(x)) > 0 for at least one v. From 
q = 0 it now ensues 1/10 (OIL(x)) = O. For IL > 0 (with q"* 0) the constraint 
in (III.93) can be rewritten as follows, where K(L(x)) = {hi v E L(x), A> O} 
must be taken into account: 

qTv ~ 1L1/I(vIL(x)) 

(q/IL)T(AV) ~ 1/I(AvIL(x)) 

(q/IL)Tv ~ 1/I(vIL(x)) 

"Iv E K(L(x)) 

"Iv E L(x), V A> 0 

V v E L(x) (linear homogeneity) 

Furthermore, due to v E L(x) ===> 1/I(vIL(x)) ~ 1 we get 

"Iv E L(x). 

l3IEach v rf- n-Domk with k(v) = -00 would induce an improper function k,(q) = +00. 

Analogously, k(O) = 0 implies the polar gauge ko ;: +00 . 

132Thus, we have K(L(x» = cone L(x) \ to} = n-Dom 1/r('IL(x» \ to}. 
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The last condition is equivalent to q/ IL E Lo(x) or q E ILLo(x). Thus, (111.93) 
ensues 

%(qIL(x» = sUP{IL ~ 01 q E ILLo(x)} 

= o/(qILo(x» 

for IL > 0 with respect to (III.84). Because of IL > 0 for all q E K(Lo(x» 
(Proposition 111.13) the proof is complete. The second part of Proposition III.18 
merely consists of applying the first part to the polar set 

%(vILo(x» = sup (IL ~ 01 qT v ~ ILo/(qILo(x» V q E K(Lo(x»} 

= sup (IL ~ 01 qT v ~ IL%(qIL(x» V q E K(Lo(x»} 

=: %o(vIL(x». 

Replacing L(x) by Lo(x) in (III.94a) implies (111.94b). 

Vv E K(Loo(x» • 

Given a nonempty input requirement set L(x) fulfilling (111.91), the following 
symmetrybetweenthegauges k=o/(·IL(x» and h=%(·IL(x» holds.133 

ho(v) = koo(v) = k(v) 

ko(q) = h(q) = hoo(q) 

Vv E K(L(x», 

Vq E K(Lo(x». 

Under the same condition - i.e. L(x) = Loo (x) - Proposition III.18 gives 

(III.95) %o(vIL(x» = o/(vIL(x» Vv E K(L(x». 

Now Proposition 111.16 can be rewritten as 

%(qIL(x» = lP(qIL(x» Vq E K(Lo(x» by (111.94a) 

o/(vIL(x» = lP(vILo(x» Vv E K(L(x» by (111.94b) and (III.95). 

At the same time the duality of the input distance function O/(·IL(x» == tI(-' x) 
and the cost function %(·IL(x» == c(-, x) with\34 

(III. 96a) 
c(q, x) = sup (A ~ 01 q T v ~ AtI(V, x) Vv E K(L(x»} V q E K(Lo(x» 

(111.96b) 

tI(V, x) =sup{IL~OlqTv~ILc(q,x) VqE K(Lo(x»} VVE K(L(x» 

may be summarized as follows:'35 

133See Corollary 0.16.1 (Gauge Duality), p. 335. 
134See McFADDEN (1978, p. 28). Furthermore, we have c(O, x) = 0 and t[(O, x) = o. 

Under the above conditions two equivalent systems of equations face each other. 

c(q, x) == lp(qIL(x» = lpo(qILo(x» = 1/Fo(qIL(x» = 1/F(qILo(x» 

t[(v, x) == 1/F(vIL(x» = 1/Fo(vILo(x» = lp(vILo(x» = lpo(vIL(x» 

135See Corollary 0.16.2, p. 335. 
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CoroUary ill.IS.1 Let L(x) be a nonempty input requirement set satisfying the 
premises of(1II.91). Then the input distance junction t[(·, x) and the cost junction 
c(', x) are polar to each other andjulfill MAHLER's inequality 

(III.97) q T V ~ c(q, x) t[(v, x) Vq E K(Lo(x», Vv E K(L(x». 

If the vectors v and q fulfill the inequality (111.97) for a given commodity bundle 
x E X \ {OJ, then (q, v) is called a pair of polar points. 

Whereas McFADDEN discusses (1II.96a) and (1II.96b), it turns out to be more 
favorable regarding Proposition III. 19 to express the two equations as follows:B6 

(III.98a) 

(III.98b) 

c(q, x) = inf{qTvl t[(v, x) ~ I} 
t[(v, x) = inf{qTvl c(q, x) ~ I} 

Vq E K(Lo(x» 

Vv E K(L(x» 

Both pairs of equations (111.96a), (1II.96b) and (111.98a), (111.98b) are equivalent. 
For if the nonempty input requirement set L(x) satisfies condition (111.91), then, 
considering Proposition 111.17, it is 

c(q, x) = to(qIL(x» 

= q.>(qIL(x» 

yields (111.96a) by t[(·, x) == tCIL(x» 

= inf{qTvl v E L(x)} yields (111.98a) by (111.92a). 

The same argument with respect to the input distance function t[(·, x) relates 
(III.96b) and (III.98b), where now (III.92b) must be taken into account. 

Proposition ill.19 (SHEPHARD'S Theorem) 137 For a pair of polar points (q, v), 
to satisfy (III. 97)for a given commodity bundle x E X \ {OJ as an equation138 

(111.99) ( ~ ) (~ ) ~T~ 
C q, X t[ v, x = q v, 

it is necessary and sufficient that the input vector v solves the problem of cost 
minimization for a given factor price vector q E K (Lo (x» or dually that q is 
an optimal solution to (III. 83)fora given vector v E K(L(x». 

Provided the junctions are differentiable, the KUHN-TuCKER conditions yield 
two systems of equations which are dual to each other for an optimal pair of polar 
points (q, v) with qTv = 1 : 

(III.I00a) 

(1I1.l00b) 

ac ~ ~ 
-a (q,x) = Vi 

qi 
at[ ~ ~ 
-a (v, x) = qi 

Vi 

i = 1, ... , m 

i = 1, ... , m. 

136This fonn of representation is taken from SHEPHARD (1953, p. 159). The duality of (III.98a) and 
(III.98b) does not depend on assumptions on properties of homogeneity of the production technology as 
suggested by DIEWERT(1974). Cf. SHEPHARD (1974a). 

l37Cf. SHEPHARD (1953, p. 171). 
1381n DEATON (1979) this equation serves as a starting point for the derivation of indices to measure 

the change of the utility level. See AHLHEIM. ROSE (1992. Chapter 9), for further remarks. 
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Whereas (111.100a) indicates the system of factor demand functions, (III.100b) is 
the system of inverse factor demand functions. 

Proof: If the nonempty input requirement set L(x) is convex, then for a given factor 
price vector q E K(Lo(x)) (111.98a) is a convex program139 

(P) c(q, x) = inf{qTvll - tl(V, x) ~ O}, 

where the constraint II = 1 - tIC x) is defined on the nonempty convex set 
Dom II = cone L(x).I40 Here we have to rule out the commodity bundle x = 0 
since tl (v, 0) == +00. Note that cone L(x) has at least one relatively interior point 
v satisfying II (v) < 0 or tl(V, x) > 1. Thus, v fulfills SLATER's conditionsl41 

so that the following KUHN-TuCKER conditions are necessary and sufficient for 
(Y, j,) to be a saddlepoint of the LAGRANGEan <I> or, equivalently, for v to solve 
problem (P) or problem (111.98a) for q = q. 

The LAGRANGEan function 

with the LAGRANGEan multiplier A implies the following KUHN-TuCKER 
conditions: 142 

[a] 

[b] \Iv E coneL(x), 

where in [b] the following property of the sub gradient must be taken into account: 

<1>1 (Y, j,) = min {<I>I (v, j,)1 v E cone L(x)} ¢=::} 0 E av<l>l (Y, j,). 

Thus, the LAGRANGEan function <1>1 (', j,) attains its minimum at point y if and only 
if 0 is a subgradient of the convex function <1>1 (', j,) at point y. 

If we take into account that the objective function lo(v) = qT v is defined on 
IRm, then 

rint(Dom 10) n rint(Dom II) = IR.m n rint ( cone L(x)) * 0 

and, therefore, 143 

119 At the same time q E K(Lo(x» '" cone Lo(x) \ (OJ rules out c(q. x) = 0 contradicting (1I1.99). 
140By Proposition III. 13 the effective domain of the (n-proper) input distance function I[ (-. x) satisfies 

n-Dom 1[('. x) = cone L(x). Thus, the (proper) function II holds Dom!l = cone L(x). 
141Cf. BLUM, OTTU (1975, p. 63, p. 69 (Theorem 8), and p. 71 (Theorem 12». 
142Cf. BLUM, OTTU (1975, p. 63) and also ROCKAFELLAR (1972, p. 281, Theorem 28.3). 
143With the aid of ROCKAFELLAR (1972, p. 223, Theorem 23.8) we obtain the following equation for 

the subdifferential of the LAGRANGEan function <I>(v, l.) = lo(v) + Al fl (v) + ... + An In (v), 

a" <I> (v, l.) = olo(v) + Al 011 (V) + ... + Anoln(v) Vv, 

provided the functions 10 and Ii are proper and convex and the convex sets rint(Dom Ii) (i = 0 .... , n) 
have a point in common. MITITELU (1994, p. 217) presents KUHN-TuCKER conditions already taking 
this result into account. 
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In the last terml44 a(iiTv) = {q} can immediately be substituted so that145 

o E [Iq} + j, a( -t/(v, x»] <===> q E L~t/(v, x). 

Due to q * 0 it follows j, > 0 and therefore t/(v, x) = 1; see [a]. Thus, q 
denotes an optimal solution to 

(III.83) 

since each alternative price vector q with t/(v, x) < 1 is inadmissible by (III.8S), 
q ¢ Lo(x). At the same time it is <1>1 (v, j,) = c(q, x) = qTv, i.e. the linear 
function qT v achieves its minimum over L(x) at V. Hence, by Proposition III.8 each 
cost minimizing input vector v provides a supergradient of the cost function 

V E 6c(q, x) 

or a gradient y = Vc(q, x) according to (III.I00a) provided the cost function is 
differentiable. l46 The results t/(v, x) = 1 and c(q, x) = qTv commonly imply 
(111.99). Dually, (III.99) can also be derived by the convex program 

t/(v, x) = inf {qTvll - c(q, x) ~ O}. 

The LAGRANGEan function <l>2(q, f..L) = qTv + f..L(1 - c(q, x») then gives 
c(q, x) = 1 and t/(v, x) = qTv as well as q E 6t/(v, x). 

Presuming differentiability of the input distance function at point v and of the 
cost function at point q, the two mentioned LAGRANGEan functions satisfy at the 
optimum 

<1>1 (v, j,) = c(q, x) = qT V = j,(Vt/(v, x») T y 

<l>2(q, jl) = t/(v, x) = qTy = jl(Vc(q, x») T q 

with q = j, Vt/(v, x), 

with v = jl Vc(q, x). 

Now with respect to an interpretation of the LAGRANGE multipliers A and f..L we 
can make use of EULER's Theorem. The linear homogeneity of the input distance 
function (and analogously the cost function) implies t/(v, x) = 1 = (Vt/(v, x») TV. 
With that the results 

c(q, x) = qTv = j" t/(v, x) = 1, v = Vc(q, x) with q E K(Lo(x» 

are reflected by the following equivalent results. 

( ~ ) ~T~ ~ (~ ) 1 ~ V (~ ) t/ v, X = q v = f..L, c q, x = , q = t/ v, X with v E K(L(x». • 

144Given the linear function fo(v) = 'IT v, the subdifferential afo(v) = I'll is equivalent to the 
gradient V fo(v) = q. 

14SThe subdifferential af(x) of a convex function f at point x and the superdifferential ~(- f(x» of 
the concave function -fat point x satisfy the relation -af(x) = ~(- f(x». 

146ln economic bibliography the outcome of Proposition III.8 is frequently described as a result of the 
more general envelope theorem. Apart from the more general objective functions, the envelope theorem 
takes into account additional parameter variations regarding the restrictions. Cf. e.g. TAKAYAMA (1990, 
p. 138). 
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Following BLACKORBY, PRIMONT, RUSSEL (1978), we now give a schematic 
representation of the duality theory with regard to a firm producing a solitary 
good x. 147 The construction of the graph adjusts Figure III.24, p. 158, where a 
transference of the technical correlations to the case of a single-product firm is 
omitted. With that we only have to concern ourselves about the meaning of the 
function z. 

First of all, the polar production 
function z is defined analogous to a f(v) = x z(q) = x 

production function f. 

f(v) := sup {x E XI v E L(x)} 

z(q) := inf{x E XI q E Lo(x)} 

While f (v) is the greatest output x 
producible by inputs v, z(q) denotes 
the smallest output leading to factor 
costs not lower than unity, q T V ~ 

c(q, x) = I 

1, at fixed factor prices q. Given Figure III.25: Duality relations in a single­
the impositions of (III.92b), we have product firm 
q E Lo(x) {::::::::> c(q, x) ~ 1 so that 
the polar production function can be rewritten as 

z(q) = inf{x E XI c(q, x) ~ I}. 

Thus, the cost function c(q, x) must take at least the value 1. For a comparison to 
the usual definition of the indirect production function z it is convenient to refer to a 
further representation using the definition of the polar input requirement set Lo (x). 

(III. 101) z(q) = infIx E XI qTv ~ 1 Vv E L(x)} 

The polar production function faces the indirect production function Z.148 

z(q, A) := sup {f(v)1 qTv ~ A} 

=sup{xEXlqTv~A, vEL(x)} 
(III. 102) 

The indirect production function indicates the maximal admissible output x which 
is producible at given factor prices q such that the factor costs q T v do not pass the 
value A. Considering the cost function, this constraint is satisfied if c (q, x) ~ A. 
Thus, in contrast to the polar production function z the indirect production function 
Z can be written as 

z(q, A) = sup {x E XI c(q, x) ~ A} . 

147DIEWERT (1974) and BLACKORBY, PRIMO NT, RUSSEL (1978, p. 39) discuss results regarding the 
household's preferences. 

148The transference of the indirect production function to indirect output correspondences for multi­
product firms is presented in SHEPHARD (1974b) and is discussed in full by FARE (1988). The indirect 
output correspondence IP: Q x R+ -+ '.p(X) is defined by 

IP(q, A) := {xl c(q, x) lfi A}. 
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The dual view of both problems (111.101) and (III.W2) is illustrated in the left 
hand part of Figure 111.26, where the construction of both problems at once gives 
Z(-. 1) ~ z. Whereas the orientation in direction to the origin corresponds to the 
problem (111.101), (III. 102) reflects a movement which is directed away from the 
origin. 

The right hand graph in Figure I1I.26 shows that (111.101) and (111.102) may 
lead to different results. The example is constructed for two indivisible production 
factors such that point A with x = 1 is assigned to problem (111.102) for A = 1. 
At the same time point B with x = 2 corresponds to the result in (111.101). 

qTv = c(q, 3) = c(q,4) 

2· 

1· A 

e" 4 

e"' 3 

~--------------~~VI O~--------------~~VI 

Figure 111.26: Dual representation of optimal input vectors 

The question as to when the problems (I1I.W 1) and (II1.W2) have the same 
result, can be answered intuitively as follows: both problems must be associated 
with the same minimal costs. Therefore as shown by points A and B in Figure 
III.26, the "right" A must be fixed in (111.102). But even such a A does not guarantee 
that the results (III. WI) and (II1.W2) are equal. As shown by the upper isocost 
line in the right hand part of Figure 111.26, (III. WI) with x = 3 would give one 
of the points C' or e"'. However, (111.102) yields point e" with x = 4. For 
perfectly divisible goods and factors this case can be ruled out by stipulating that 
the two diverse isoquants may not touch each other. Transferred to the case of 
indivisible goods and factors it is required that the convex hulls of two diverse input 
requirement sets have no boundary points in common. 149 

Proposition ill.20 Suppose the outputs x and i satisfyl50 

x> i ==> convL(x) C int(convL(i»). 

149Por this reason BLACKORBY, PRIMONT, RUSSEL (1978, p. 15) require the strict quasi-concavity of 
their underlying utility function u, i.e. for arbitrary A E [0, 1) 

u(x) > u(i) => u(Ax + (l - A)i) > u(i). 

150More severely, Proposition III.9 requires c(" x) > c(" x) for all x> x; see also Theorem D.7. 
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Then, for the values of the polar production function and the indirect production 
function to be equal, z(q) = z(q, 1) = x, it is necessary and sufficient that the 
factor prices q are normalized such that c( q, x) = 1. 151 

Proof: The necessary part directly follows from the definitions of the functions z 
andzbecause z(q) = z(q,l) = x means qTv ~ 1 forall v E L(x) and 
qTv ~ 1 for at least one v E L(x). Thus, c(q, x) = qTv = 1. 

In the sufficient part we stipulate c (q, x) = 1. Hence, H (q, 1) = 
{vi q Tv = I} denotes a (nontrivial) supporting hyperplane of the set conv L(x), 
I.e. 

[aJ 

[bJ 

v v E conv L(x) 

for one v E conv L(x). 

Because the hyperplane H(q, 1) separates each point v fulfilling condition [bJ 
from the set conv L(x) properly, v may not lie in the interior of the inspected 
(m-dimensional) set, v 1:. int (convL(x)). 152 By assumption, for such an input 
vector v the condition x> x implies v 1:. convL(x). Thus, x is the smallest of 
all outputs x fulfilling [aJ and [bJ. In particular, [bJ yields z(q) = X. 
If the input vector lies in the boundary of conv L(x), then by imposition x < x 
implies v E int (convL(x)). Contrary to [aJ H(q,1) cannot be a supporting 
hyperplane of the set conv L(x). With that x is the largest of all outputs x satisfying 
[aJ and [bJ. In particular, [aJ leads to z(q, 1) = x. • 
Proposition 111.20 can also be viewed in reverse order for a given factor price vector 
q. If the cost function c(q, .) is continuous at x and if c(q, .) takes all values 
between 0 and C > 1, then there must be an output level x with c(q, x) = 1. 
In this case the pair (q, x) fulfills l53 

inf{x E XI c(q, x) ~ I} = z(q) = x = z(q, 1) = sup {x E XI c(q, x) ~ I}. 

2.4 Summary 

2.4.1 Schematic Construction of Duality Theory 

The three following figures are constructed similarly to Figure 111.24 each 
emphasizing different aspects. Figure m.27 draws the attention to a nonempty 
closed convex input requirement set L(x) not containing the origin v = O. 
Hence, a commodity bundle x E X \ {OJ must be presumed. If the examined 
input requirement set is not convex, then the basic statements for the convex hull 
conv L(x) as a substitute for L(x) remain unchanged, particularly as this set is closed 
under the assumptions of Proposition 11.14. 

151 Considering the homogeneity of degree 0 of the indirect production function z in q and A, the 
mentioned equivalence relation can be written in the form Z(q/A) = z(q. A) = x <==> c(q. x) = A. 

IS2Cf. ROCKAFELLAR (1972, p. 100, Theorem 11.6). 
IS3This outcome is confirmed by BLACKORBY, PRIMONT, RUSSEL (1978, p. 379, Theorem A.IO). 
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y,(vIL(x» = inf{qTvl rp(qIL(x» ~ q v E K(L(x» 

Figure III.27: Gauge and support function of the input requirement set L(x) 

The input requirement set is associated with two functions. The support function 
((J(·IL(x» depends on the factor prices q and indicates the minimal factor costs 
occurring at the production of the given commodity bundle x; therefore, it is 
called the cost function. However, the gauge y,(·IL(x» serves as a measure for 
the efficiency of an input vector v. If y,(vIL(x» = 1, then no alternative 
input vector lies in the ray through the origin and v being closer to the origin. 
Thus, v lies in the boundary of the input requirement set L(x) and there is a 
hyperplane H(q, a) separating the point v and the set L(x) properly. At the same 
time ({J(qIL(x» = a denotes the distance between the origin v = 0 and this 
hyperplane. Scaling the factor prices q suitably, the relation between the support 
function ({J( ·IL(x» and the gauge 1/t(·IL(x» can now be justified by normalizing a 
tounity,i.e. ((J(q/>"IL(x» = a/>" = 1. However,thisprocedureisonlyadmissible 
if the corresponding hyperplane H(q, a) does not contain the origin, i.e. a > O. 
All of these supporting hyperplanes of an input requirement set L(x) are determined 
by a perpendicular vector q of factor prices so that it seems to be reasonable to define 
the polar input requirement set Lo(x) as follows: 
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rp(vILc(x»:= inf{qTvl q E Lo(x)} 

Lo(x) = (ql qTv ~ rp(vILo(x» Vv E V} 
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Figure I1I.28: Gauge and support function of the polar input requirement set Lo (x) 

This set collects all factor price vectors which guarantee that the factor costs q TV 

do not fall below unity in the production of the commodity bundle x. Each input 
requirement set can be assigned to such a polar input requirement set so that the 
production structure (L(x)1 x E X) faces a family (Lo(x)1 x E X), which is called 
the cost structure. For each commodity bundle x E X \ {OJ it can be shown that 
the set Lo(x) as well as the input requirement set itself are nonempty, closed, and 
convex and do not contain the origin q = O. Thus, it seems reasonable to associate 
the polar input requirement set Lo(x) with the support function qJ('ILo(x» and the 
gauge 1/1 ( ·ILo(x». Figure I1I.28 differs from Figure 111.27 only by the fact that the 
input requirement set contains input vectors, L(x) C 11, and that the polar input 
requirement set consists of factor price vectors, Lo(x) C Q. 

The close relation between Figures m.27 and I1I.28 results in several facts. On 
the basis of the subsequently given relations both figures may be placed on top of 
each other so that Figure I1I.29 ensues, which is equivalent to Figure 111.24, p. 158. 

To stress the symmetry L(x) +± Lo(x) , bear in mind that the bipolar input 
requirement set 
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Figure III.29: Duality relations in the sense of SHEPHARD (2) 
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corresponds to the set which has been suggested as a replacement for the input 
requirement set assuming that L(x) is not convex, i.e. Loo(x) = cl (conv L(x)). In 
particular, a nonempty closed convex input requirement set L(x) not containing the 
origin fulfills 

Loo(x) = L(x) 

provided [L3] (Disposability of Inputs) holds. While the cost function c(-, x) is 
defined in the sense of a support function f{J of the input requirement set L(x), this 
function can now be interpreted as the gauge 1{1 of the polar input requirement set 
Lo(x), 

c(·, x) == f{J(·IL(x» = 1{I(·ILo(x». 

If 1{I(qILo (x)) = 1, then the (normalized) factor price vector q lies in the 
boundary aLo(x) of the polar input requirement set Lo(x).154 For all input vectors 
v E L(x) we have q T V ~ I and for at least one input vector v the minimal costs 
c(q, x) = q Tv = 1 are attained. 

154McFADDEN calls the boundary of the polar input requirement set Lo(x) the factor price frontier. 
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Analogously, the input distance function tl(', x), which is defined as the gauge 
1/1 of the set L(x), can be interpreted as a support function ({J of the polar set La (x), 

tl(', x) == 1/I('IL(x)) = ((J(·ILa(x)). 

Finally, the direct relationship c(-, x) ? tl (-, x) between the cost function 
and the input distance function is characterized by MAHLER's inequality. 

Vq E K(Lo(x)), Vv E K(L(x)) 

If for a pair of polar points ('I, v) the equation c(q, x) tl(vIL(x)) = 'lTV holds, 
then 'I lies in the boundary of the polar input requirement set, 'I E 8Lo(x) , and 
v lies in the boundary of the input requirement set, v E 8L(x). Note that the 
equation requires a pair of polar points ('I, v) at which neither the cost function nor 
the input distance function takes the value zero. This restriction is satisfied if 'I and 
v are contained in the respective given cones K(Lo(x)) and K(L(x)). These cones 
are explained in more detail in the following graphical discussion. 

2.4.2 Graphical Representation of the Results 

(a) Convex Input Requirement Sets First of all, analogous to Section 1.5.1, 
the graphical comparison of an input requirement set L(x) and its polar set Lo (x) 
takes place for the case of two divisible production factors VI and V2. Whereas this 
case presumes a strictly convex input requirement set without loss of generality, 
the consideration of indivisible production factors implies a nonconvex input 
requirement set. This case is inspected separately and conforms to the example 
underlying the Figures 1II.12 (p. 114) and 1II.14 (p. 117). Moreover, Figure III.36 
(p. 181) demonstrates how the results of Figures III. 12 or III. 14 are connected with 
the results of Figures III.34 (p. 179) or 111.35 (p. 180). In this case the factor demand 
correspondences will serve as a link. 

Figure III.30 illustrates the geometrical derivation 155 of the polar input 
requirement set La(x) (Quadrant III) from the given input requirement set L(x) 
(Quadrant I). First of all, an arbitrary point lying on the boundary of the set L(x) 
is picked out, v E 8L(x). Thus, a hyperplane H(q, a) exists which separates the 
input vector v and the input requirement set properly; see AN. At the same time 
the distance between the origin v = 0 and these hyperplanes denotes the minimal 
costs c(q, x) = qTv = a. Using the linear homogeneity of the cost function in the 
factor prices, a can be normalized to one, c(q, x) = 1, where 'I is set to q/a. If 
an isocost curve like AN intersects the ordinate (point A), then c(q) = Q2V2 = 1 . 
The corresponding hyperbola is depicted in Quadrant II and particularly contains 
point B. Analogously, we get the relation c(q) = ql VI = 1 for each point in 
the horizontal line (point A'). Quadrant IV shows the adjoined hyperbola, where 
point B' can be found. With the points Band B' both factor prices, which determine 

\55Similar representations may be found for example in DARROUGH, SOUTHEY (1977) or SGRO 
(1986). The relation to SHEPHARD'S Theorem (Proposition III.l9) is emphasized in FARE (1984). 
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II 

, 
'c 

q2 ~~-----------+--------~~----------~------~~ 

III IV 

Figure III.30: Geometrical derivation of the polar input requirement set Lo (x) 

the hyperplane H (it, 1), are known. In virtue of this, the first point of the polar set 
Lo(x) is found. 

Since the input vector v solves the corresponding problem of cost minimization 
inf (itTvl v E L(x)} , it ensues tl(V, x) = 1 ; see SHEPHARD'S Theorem (Prop­
osition 111.19). Thus, it lies in the boundary of the polar input requirement set, 
it E iJLo(x). Each alternative boundary point of the set L(x) generates a further 
boundary point of the set Lo(x), until eventually Lo(x) is completely determined; 
see for instance v and ij. The reconstruction of the set L(x) = Loo(x) is carried 
out in the same way. The supporting hyperplane CC' implies points D and D', 
which both yield the initial point v. 

In particular, the various forms of describing an input requirement set L(x) 
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are now plausible. 156 The presented construction of a single point corresponds to 
expression (III.89a), p. 158, 

L(x) = {vi qTv ~ 1 Vq E Lo(x)}. 

The hyperplane AA' yields one of the inequalities in 

L(x) = n {vlqTv~c(q,x)}. 
qeQ 

Finally, the ray starting in v can be associated with the following equivalent fonn of 
representation in (III.92a), p. 160. 

L(x) = {vi t[(v, x) ~ I} 

The construction principle 
presented by Figure III. 30 
immediately yields further 
properties indicating the 
relationship between the sets 
L(x) and Lo(x). 

(1) If two commodity bundles 
x and i with x ~ i are 
examined, then by [L4] (Dispos­
ability of Outputs) L(x) c L(i). 

" ~::::~ 
o VI 

\~LO(i) 
~o(X) 

o 

From that follows the relation 157 Figure III.31: Geometry of polar sets (1) 

shown by Figure III.31, Lo(x) 2 
Lo(i). On the one hand L(x) is further away from the origin than L(i), i.e. 
by (III.68) c(·, x) ~ c(-, i). On the other hand Lo(x) lies closer to the origin 
than Lo(i) such that t[(·, x) ~ t[(·, i), with respect to Proposition III.19, 
results. These outcomes are noted by the figure opposite without deriving them 
geometrically according to Figure III.30. 

(2) The stronger the boundary aL(x) is curved, the weaker the boundary aLo (x) 
is curved and vice versa. An extreme case is already visible in Figure III.30. If 
the line AA' is the (not curved) boundary of an input requirement set, then the 
construction principle implies a right-angled set aLo(x) with vertex q. Another 
example is illustrated by the input vector v and the corresponding factor price vector 
q. If aL(x) were curved more strongly, then at the same price ratio a cost minimizing 
input vector like v would result. The corresponding factor price vector q must lie 
in the same ray through the origin as q - but closer to the origin. The stronger 
curvature of aL(x) yields a weaker curvature of aLo(x). 

To provide a technical argument for this behavior of curvature, we suppose that 
the boundary aL(x) can be given by the implicit function f(v, x) = 1, which is 
differentiable at v. If the input vector v solves the problem of cost minimization, 
then the marginal rate of substitution MRS between the factors VI and V2 equals the 

IS6See Figure 111.29. The polar input requirement set satisfies analogous relations. 
157See Appendix 0.2.3. 
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factor price ratio. 

MRS(v) := af(v, x)/aVI = _ dV21 = ql 
af(v, X)/ aV2 dVI v=v q2 

Now with the (positive) elas-
ticity of substitutionl58 

we can give a measure for the 
curvature of the implicit function 
f(', x) at point v. 

If an increase of the factor 

c B 

o VI 0 

f(',x) = I Z(',x) = I 

price ratios ql / q2 by one percent Figure III.32: Geometry of polar sets (2) 
implies a relative large increase of 
the factor intensity V2/VI, then the 
function f(', x) is not curved very strongly and vice versa; see the left hand part 
of the figure opposite. If the analogous function z(q, x) = 1 corresponds to the 
boundary of the set Lo(x), then the elasticity 

yields a measure for the curvature of the function z(·, x). In view of Figure 111.25 
not only the notation but also the relation between the functions f and z gives rise 
to the suspicion that '1v = 1/ '1q. 159 Without going into more detail at this point, 
we refer to Figure 111.32 where the cases A, B, C and D are linked. In case A the 
corresponding elasticities are '1v = +00 and '1q = 0 . 

(3) In the discussion of polar gauges the two cones K(L(x)) = {J.'vl v E L(x), 
J.' > O} and K(Lo(x)) = {)..ql q E Lo(x), ).. > O} were repeatedly established as 
feasible regions. The two cones have a geometric meaningl60 when examining the 
behavior of the two sets L(x) and Lo(x) in the boundary ofJR~. 

As stressed by McFADDEN (1978), we have to distinguish between three cases 
which have different effects on the cone concerned. 

1. The set L(x) touches an axis asymptotically if and only if the polar set Lo (x) 
touches the other axis asymptotically; see Figure III.33. If L(x) touches 
both axes asymptotically as in the case of the COBB-DOUGLAS production 
function, then K(L(x)) = JR~+ and K(Lo(x)) = JR~+. 

1S8Cf. VARIAN (1992, p. 13). 
159 A detailed proof for the validity of this relation may be found in McFADDEN (1978, p. 41 If.). 
160 A similar discussion is given by DIEWERT (1971). 
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2. The set L(x) is tangent 
to an axis if and only if 
the polar set Lo(x) touches 
a parallel of the other 
axis asymptotically et vice 
versa; see Figure 111.33. 
If L(x) is tangent to both 
axes, then K(L(x)) = 
IR~ \ {OJ and Lo(x) touch 
both axes asymptotically, 
i.e. K(Lo(x» = IR~+. 

V2 tangent 

o 

Figure III.33: Geometry of polar sets (3) 
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3. The set L(x) touches an axis (not tangentially) if and only if the polar set 
Lo (x) touches a parallel of the other axis (not tangentially) and falls short of 
it. 
The opposite case is given by Figure I1I.35. The set Lo(x) touches both axes 
and L(x) touches the vertical line through A or the horizontal line through B. 
The corresponding cone now satisfies K(L(x» = IR~+ and K(Lo(x» = 
IR~ \ {OJ. 

Whenever a supporting hyperplane H(q, a) of the set L(x) contains the origin, then 
Aq ft K(Lo(x» for all A> O. Actually, the same fact is valid with regard to the 
polar set Lo(x). Both implications reflect the assumptions on the equation (111.99) 
in SHEPHARD's Theorem (Proposition III.19). 

(b) Consideration of Indivisible Production Factors For the concluding 
graphical discussion of indivisible production factors it is convenient to pick up 
again the example of Section 2.1.3.161 

Example: The input requirement set 

(I1I.41) L(x) = { (~) E Z~I (~) ~ (~) or (~) ~ (~)} 

is shown in Quadrant I of Figure III.34. Denning the factor price ratio given by 
points A and B 

(111.43) 
--r v; - v2 
ql := v" - v' = VI ' 

I I 

the corresponding cost function is 

161 See p. 114 ff. and p. 149 ff. 
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qlv'l + q2V; 

qlvr + q2v~ 
q2V~ 

qlv; 

o 
-00 

for q2 > 0, ql > 0 and qI/ q2 ~ qir > 0 

for q2 > 0, ql > 0 and qI/q2 ~ qir 

for q2 > 0, ql = 0 

for q2 = 0, ql > 0 

for q2 = 0, ql = 0 

for q2 < 0 or ql < O. 

Quadrant III contains the isocost curve C(ql, q2, x) = 1, in which the points A', 
B' and C' can be found. At the same time these points are the extreme points of the 
polar set Lo(x) = {ql C(ql, q2, x) ~ I}. According to Figure II1.30, Quadrants II 
and IV contain the hyperbolas VI = %1 and V2 = 1/q2 respectively. The 
presented geometrical construction principle yields point B' for each point in the 
line AB. In this the marked distance ratios imply the relation iii' = qJ/q2 = iiz/ii l 
for the ray through the origin and B'. Point A is, however, compatible with each 
price ratio in line B'C'. Similarly, point B is mapped into the line A' B'. Each 
point on the horizontal line through B is cost minimizing if and only if q lies on the 
q2-axis to the left of A', i.e. especially ql = O. 

After the polar input requirement set Lo(x) has been deduced, now the bipolar 
set Loo(x) = conyL(x) can be constructed by using the reverse conclusion. Take 
into consideration, according to Quadrant I in Figure III.35, that the approximate 
input requirement set conyL(x) is aureoled by [L3] (Disposability of Inputs) and 
closed by Proposition II. 14. 

cony L(x) = aUf (cony L(x») and cony L(x) = c1 (cony L(X») 

The construction principle is now known and needs no further explanation. The 
line 1 = ql VI + q2v2 supports the set Lo (x) at point B' and generates the boundary 
point (VI, V2) of the bipolar set LooCi) = conyL(x). 

The representation of the convex hull cony L(x) is effected by two functions. 
While the input distance function tl( (~~), x) = 1 implicitly indicates the entire 
boundary of the set cony L(x), the vertical area, starting at point A on the function 
f( vllcony L(x» = inf {v21 t~) E cony L(x)}, is ignored.162 Considering 

f('lconyL(x» = -g**(·IL(x», we obtainl63 

{
+oo 

f(vIlconyL(x» = v; - iii'(vl - v;) 
v" 2 

for VI < v; 
for v; ~ VI ~ v~ 

for v~ < VI 

from the concave biconjugate function g**(·IL(x» in (IIIA7). 
This function indicates the nonvertical boundary of cony L(x) and is depicted 

in Quadrant I of Figures II1.35 and 111.36. For v; ~ VI ~ v~ the function 
f(-lconyL(x» is a straightline between A = (v;, v;) and B = (v~, v~). 

162 A comparison of both construction principles may be found in Figure IlI.I, p. 85. 
163See (III.26b), p. 100. 
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L(i) 

---- r------- ------

III 

A- B'G' 
B- A'B' 
AB_ 8' 

IV 

Figure III.34: Geometrical derivation of the isocost curve c(q), q2, x) = I 

The example, underlying the Figures III. 34 and III. 35 as well as III. 12 and III. 14, 
can now be completed. According to Sections III. 1 and III.2 the concluding Figure 
III.36 contains a mixed form of the presented duality schemes. Note that we have 
to distinguish the relative factor price q"lr = q) / q2 (with r = 2) from the nominal 
factor price q). 

Analogous to Figure III.34, the representation of the isocost curve c(q), q2, x) 
= 1 occurs in Quadrant III of Figure III.36 by the curve A' B' C'. The super­
differential 6.c(-, x) of the normalized cost function c(-, x), which includes the 
demand correspondence D(-, x) regarding factor 1, is depicted in Quadrant IV)64 

164A similar fonn of representation is chosen in EATON , LEMCHE (1992). where the attention is 
directed to the commodity supply of a multi-product finn. 
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VI = I 
V2 ~ I 
V;=v. 

.---------i - -+--+-1 0' cony L (x) 
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D' 

112 V" _ = ...1. 
V" I 

VI E M (q ,]r, x) 

¢=> 

q']r E t. g(vdconvL(x» 

IV 

Figure 111.35: Geometrical derivation of the approximate input requirement set 

This correspondence has been derived geometrically in Figure 111.14 and is depicted 
in Quadrant 1. 

Starting at point 0 (with given VI = I) in Quadrant I, the geometric linkage 
of Quadrants I, III and IV can be expressed as follows: while the solution to the 
problem in£{ v21 C) E cony L(x) } results in point 0 111 , sup (A ~ 01 C) E 

Aconv L(x)} yields point D by dividing the coordinates of point 0 by the optimal 
A. Since both points are usually associated with different ratios of factor prices, it 
is supposed that both problems generate the same optimal point D. Thus, instead of 
the initial point 0 we presume alternative starting points such that the analysis can 
continue with point D. 

As can be seen from the remarks on Figure 111.12, p. 114, each point on the 
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I 

convL(i) 

VI E M (q'l', x) 

<==> 
qi' E L'>. g(vdconv L (x» 

IV 

Figure 111.36: Comparison of the duality schemes 

line AB (i.e. in particular point D) is linked with point B' on the isocost curve 
c(ql, q2, i) = l. 

At the same time each point on the line A B is mapped into a point of the 
superdifferential t>.c(q)r, i) (i.e. in particular D -+ D'), which, if it is applicable, 
indicates the demand for VI at a normalized price q)r of this factor. Since the 
superdifferentiaI depends on the normalized factor price q)r, point D' cannot 
directly be transferred to Quadrant III. In spite of that, point D" with q2 = 1 
resultsin ql=q)r, thatis c(ql,q2,i)=c(q")r,i) in view of the values of the 
two cost functions. 

Thus, point B' faces point D". As shown in Proposition III.12, both points 
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satisfy the equation 

c(qi r , A, i) = Ac(qi r / A, i) or C(ql, q2, i) = q2C(ql / q2, i). 

The determination of the adjoined A, holding C(ql' q2, i) = 1. corresponds to the 
depicted movement on the ray through the origin and the points B' and D". 

Since the described method can be followed in the reverse order, we get the 
association AB ~ B'. The associations A ~ A' B' and B ~ B'C' are 
derived analogously. 

For the sake of completeness Quadrant II describes the counterpart of 
Quadrant IV. The difference is that the inverse superdifferentials for k = 1 (instead 
ofr = 2) 

are depicted regarding the polar set Lo(i). The normalization of the first input to 
VI = 1 should be understood as an interim finding. Now each point in the line B' C' 
is again mapped into point A via the intermediate point 0' with VI = 1. Similarly. 
0" serves as intermediate step for the association B ~ A' B'. Each point of the 
segment AB can be determined in the same way. for instance, by B' ~ D'" ~ 
o ~ D. Note that the cost function c(" i) is differentiable at each point in the 
curve A' B'C' except at the points A', B', and C'. Again the differentiability of the 
cost function c(', i) assures that an integer exposed point of conv L(i) - i.e. A or B 
- is attained. 

2.4.3 Results with Respect to the Output Correspondence 

The concluding remarks apply to the production structure (P(v)1 v E V). which 
is equivalent to (L(x)1 x E X). The main difference in the form of the analysis 
becomes apparent as follows: whereas an (aureoled) input requirement set L(x) 
does not contain the origin v = 0 for any commodity bundle x E X \ {O}. 
[PIa] (Possibility of Inaction) guarantees the origin x = 0 to be an element of the 
(star-shaped) production possibility set P(v). Moreover, [P5] (Boundedness) and 
[P6] (Closedness) state that the sets P(v) are compact for all input vectors v E V. 
165 Under these conditions the representation of a production possibility set P(v) 
by its support function a(·1 P(v» or its gauge yCI P(v» is much easier than the 
characterization of an input requirement set L(x) by the reciprocal support function 
«pC I L(x» or the reciprocal gauge 1/ICIL(x». Thus. a more detailed explanation of 
the duality relations as shown in Figure 1II.37 can be omitted at this point. 166 Figure 
1II.37 is nothing more than an adequate transference of the issues in Figure D.3. 
p.336. 

The support function a(·IP(v» indicates the maximal revenue which can be 
obtained at a given input vector v E V and commodity pricesl67 p E Pp . Thus. 

165If P(v) is compact. then the convex hull conv P(v) is compact, too. 
166However, Figure 111.37 requires a convex set P(v). 
167Economically, a vector p E Pp with Pp:= IRn should be called a commodity bundle only if it is 

nonnegative. 
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P"(v) = (pi pTx ~ 1 Vx E P(v)} 

P(v) = (xl pTx ~ 1 Vp E P"(v)} 

: a(pIP(v»:=sup{pTxlxE P(v)} I 
~ ;; I P(v) = (xI pTx ~ a(pIP(v» Vp E pp} I 

~ ..... ~ ..... 
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pTx 
r(p, v) = sup -(-) 

x*O to x, V 

pTx 
to(x, v) = sup -(--) 

p*O r p, v 

Figure III.37: Duality relations regarding revenues 

a(·1 P(v» is also called the revenue function r(·, v). 

rep, v) ;: a(pi P(v» = sup {p T xl x E P(v)} 

In the reverse conclusion the revenue function yields a system of inequalities which 
is suitable for the determination of the approximate production possibility set. 

cl(convP(v») = n {xlpTx~r(p,v)} 
pepp 

The gauge Y('IP(v» measures to what extent a commodity bundle x E P(v) 
can be increased along a ray through the origin such that the resulting commodity 
bundle remains producible by the input vector v E V. The function y(-IP(v» is 
now called the output distance function toc-. v). 

to(x, v) ;: y(xIP(v»:= inf{.l.. ~ 01 x E .l..P(v)} 

If the production possibility set is closed and convex, then the reverse conclusion 
yields 

P(v) = {xl to(x, v) ~ I} . 
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The polar set po (v) of P(v) contains all the commodity price vectors p which assure 
that the revenues p T X do not pass unity for any commodity bundle x producible by 
v. 

PO(v) = {pI pTx ~ 1 "Ix E P(v)} 

As before, the family (pO(v)1 v E V) can be interpreted as a revenue structure. 
Since the set P(v) contains the origin x = 0, its convex hull is star-shaped, i.e. 
conv P(v) = star (conv P(v»). With that the bipolar set is 

poe (v) = cl (conv P(v») = {xl p T x ~ 1 V P E po (v)} . 

Regarding the support function a and the gauge y of the bipolar set poo, it iS168 

If the production possibility set P(v) is convex, then the revenue function r(-, v) 
can be interpreted as the gauge of the polar set PO(v). At the same time the output 
distance function to(" v) may be viewed as the support function of the polar set. 169 

r(·, v) == a('IP(v» = y(-IPO(v» 

to(-, v) == Y('IP(v» = a(·IPO(v» 

Therefore, r(·, v) and to(-, v) are polar gauges170 fulfilling MAHLER's inequality 
(D.18), p. 335. 

Vp, "Ix 

For a pair of polar points (p, x) this inequality is satisfied as an equation if and 
only if x solves the problem of revenue maximization for a given price vector p and 
if dually p solves the problem sup {pTxl p E pO (v) }. Under differentiability we 
obtain the supply of goods x = V'r(p, v) or dually p = V'to(x, v). 

To sum up, four families of sets are available to describe different aspects of 
the representation of firms; see Figure III.38. First of all, Chapter II introduces the 
equivalent representation of a production technology by the production structures 
(P(v)1 v E V) and (L(x)1 x E X). While P(v) indicates all commodity bundles x 
producible by inputs v, the input requirement set L(x) includes all input vectors v 
which are sufficient for the production of the outputs x. The inverse relation between 
both production structures is reflected by the equivalence relation 

168See Theorem 0.15, p. 334. 
169See Corollary 0.15.1, p. 334. 

x E P(v) <==> v E L(x). 

FARE, PRIMONT (1994) present further duality relations. For example, we can define an indirect distance 
function 

Ito(X, qjC):= inf {AI x E AP(v), qTv::i! c}, 
v.A 

where in contrast to the output distance function to ( " v) the factor prices q and the cost C but not the 
factor quantities v are given exogenously. 

170See Theorem 0.16, p. 335. 
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Figure 111.38: Theory of the firm 
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In Chapter III we concentrate on the comparison of the production structure 
(L(x)1 x E X) and the cost structure (Lo(x)1 x E X). Each input requirement set 
L(x) is associated with a polar set Lo(x)including all of the factor price vectors q 
which at least imply costs q T v ~ 1 for the given commodity bundle x. If we apply 
the same operation as in L(x) ~ Lo(x) to the polar set, Lo(x) ~ Loo(x) , then 
we get the bipolar set Loo(x). Under certain conditions this set equals the original 
input requirement set, L(x) = Loo(x). But for indivisible inputs it merely yields 
the approximation Loo(x) = cl (convL(x)). 

Afterwards we went briefly into the analogous comparison of the production 
structure (P(v)1 v E V) and the revenue structure (po(v)1 v E V). Now the set P(v) 
faces a polar production possibility set PO(v). As before. the operation P(v) ~ 
Po (v) can also be applied to the polar set, PO(v) ~ POO(v). Again, in the 
case of indivisible outputs the bipolar set poO(v) serves as an approximation of the 
genuine set POO(v) = cl(convP(v)). 
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3 Optimal Activities in the Theory of the Household 

3.1 Demand for Commodities 

3.1.1 The Expenditure Structure of a Household 

Having introduced the dual representation of the production structure (L(x) I x E X) 
by a cost structure (Lo(x)1 x E X) into the theory of the firm, we have now to 
consider an appropriate representation of a household. 

A comparison of the household's preference structure (J>(x) I x E X) to the 
firm's production structure (L(x) I x E X) suggests that the technical results of 
the cost theory can be transferred adequately to the theory of households. Each 
result, shown in Figure 111.29, now faces a counterpart in expenditure theory, where 
(~(x)1 x E X) represents the expenditure structure of the household at hand.171 

This supposition is confirmed when it is possible to derive the following 
statements from Axioms [J>I]-[9'6] which correspond to the Axioms [Ll]-[L4] 
as well as [L6] and [L 7] on an input correspondence L on p. 19. 

1. No commodity bundle is worse than x = 0, i.e. J>(O) = X . 
Each commodity bundle x ~ 0 is preferred to x = O. 

'V x E X \ {O}: 0 ¢ J>(x) 

2. Each preference set J>(x) contains a commodity bundle, namely x. 

'V x EX: J>(x) =1= VI 

3. If a commodity bundle x' yields at least the utility level of x, then this relation 
is true for each commodity bundle x" which is at least as large as x'. 

"lx', x" E X, x' ~ x": x' E J>(x) ==? x" E J>(x) 

4. If a commodity bundle x yields at least the utility level of x', then x is at least 
as good as each commodity bundle x", which is not greater than x'. 

"lx', x" E X, x' ~ x": x E J>(X') ==? x E J>(X") 

5. Axiom [L5] has no direct counterpart in the theory of the household. This 
apparent deficit will be discussed later in more detail. 

6. The preference sets J>(x) are closed for every commodity bundle x E X 

7. The preference sets J>(x) are convex for every commodity bundle x E X. 

Since the subsequent analysis does not direct the attention to the derivation of the 
household's expenditure structure according to Figure III.29, we can dispense with 
the proof of Propositions 1-7. 

171 Analogous to polar input requirement sets Lo(x), the polar preference sets ~ (x) are defined by 
~(x):= {pi pTi ~ 1 Vi E 9'(x)j. 
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first of all that Axiom [L5] 
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Ilxvll -+ 00: n L(xV) = 0 
v=1 
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has no influence on the analysis of the 
firm's cost structure. Thus, the analogous 
assumption ........... .. ..... .. .. .... ..... Ix") 

00 

(III. 103) IIxv II -+ 00: n 9>(XV) = 0, 
v=1 

would have no consequence for the house­
hold's expenditure structure, even if it is 
fulfilled. 

o 

Figure III.39: Counterexample for 
Assumption (1II.103) 

To give a reason why (III. 1 03) does not need to be satisfied, we define the inverse 
correspondence of 9> with the level sets {x E XI x' ~ x}, i.e. 

x' E {x E XI x ~ XII} = 9>(X") ¢:=} x" E {x E XI x' ~ x} . 

Looking back at Proposition 11.2, p. 20172, compact level sets {x E XI x' ~ x} 
result if (111.103) is valid. As it is not difficult to define preference orderings 
contradicting this implication, (III. 103) does not need to be satisfied, too; see Figure 
1II.39. The relation i ~ XV holds for all v such that the set {x E XI i ~ x} is 
bounded. 

Although (III. 103) is of no importance for the theory of the household, similar 
statements will be important. For instance, Proposition 1II.22 proves for a compact 
subset C in the commodity space X that nXEC [C n 9>(x)] "* 0, i.e. each such set 
C contains a commodity bundle demanded by the household. Whereas a compact 
set C considers only sequences of commodity bundles with IIxvll ~ C < 00, 
Propositions 111.28 and III.29 deal with a closed but unbounded set C. Proposition 
111.28 yields a relation of the form nXEC [C n 9>(x)] = 0, i.e. the household does 
not demand any commodity bundle in C. Proposition III.29 notes an analogous 
implication of the form IIxvll -+ 00, which also results from the transition from 
a bounded to an unbounded set C. That means that the quantity of goods demanded 
becomes infinitely large if the household is allowed to choose a commodity bundle 
in a bounded set C. 

3.1.2 The Individual Demand for Goods 

In the previously introduced theory of the firm we dispense with the question as to 
how to aggregate the factor demand or the supply of goods of individual firms to 
a market demand and a market supply respectively. In particular, how the firms' 
sector reacts regarding price changes on single markets was ignored. 

172See there the equivalence relation [P5] ¢=> [L5]. 
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However, the properties of aggregate commodity demand or aggregate excess 
demand of the households' sector will be of crucial importance with respect to the 
discussion of competitive equilibria. In the preparatory analysis we establish the 
properties of the individual commodity demand, where the explicit analysis of the 
household's expenditure structure analogous to the firm's cost structure recedes into 
the background. 

Having presented the main properties of the individual and the aggregate 
demand for goods of the households in the subsequent sections, Chapter IV deals 
with the answer to the central question as to 

what conditions suffice for the existence of a commodity price vector!73 
P E Pp such that the aggregate excess demand vanishes on all of the n 
commodity markets. 

The answer is founded basically on fixed-point theorems and refers in particular to 
the fixed-point theorems of BROUWER and of KAKUTANI.!74 With that the further 
procedure is characterized by the question as to what assumptions on the preferences 
of individual households have to be made such that the aggregate demand satisfies 
the requirement of the respective fixed-point theorem. But before going into the 
individual commodity demand, we have to establish the framework of the analysis. 

The examined economy embraces a set A of persons, where each person a E 

A possesses his particular preference ordering ~a. For the sake of simplicity it 
is assumed that the preference orderings of all persons are defined on the same 
commodity space 

Suppose again that only nd out of the n goods are divisible. Moreover, the examined 
economy has a total commodity endowment W A EX, where the analysis only 
considers those goods occurring as a positive quantity, W A > O. The total 
endowment W A is composed of the individual endowments Wa of all households. 

WA:= L Wa 

aEA 

To avoid an unnecessary restriction to the analysis, the endowments Wa E IR~ 

need not necessarily be integer. This associates the notion that a person may by 
all means own fractions of an indivisible good. Conversely, it is assumed that 
each unit of an indivisible good can only be consumed by an individual person. If 
different persons own fractions of an indivisible commodity unit, then no household 
can benefit from these fractions. While the case Wa fJ. X is admissible, each 

173The commodity price space has already been defined by Pp = R~. 
174 Appendix C.3 contains apart from the fixed-point theorems of BROUWER (Theorem C.IS, p. 312) 

and of KAKUTANI (Theorem C.16, p. 313) a fixed-point theorem of DEBREU, GALE, NIKAIDO (The­
orem C.I?, p. 314). As gathered from UZAWA (1962) and HEUSER (1992), all of the theorems are 
equivalent. 
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household will choose only consumable (integer) commodity bundles x EX. 175 

As in the theory of the firm before, the distinction between a point x E IR+ and a 
commodity bundle x E X will accompany the whole analysis. 

If the persons are alIowed to use their endowments Wa for the exchange of goods 
owned by other persons, then the result of the exchange processes can be described 
by an alIocation. First of alI, an allocation 1( with 

assigns each person a to a point Xa E IR+. With that we agree on the folIowing 
notation for an alternative alIocation it: 

Given everybody'S individual endowments W a, an alIocation 1( is calIed feasible 
if LaEA Xa ~ W A. Note that one feasible alIocation is already known from the 
endowments of the households (Wa)aEA. At the same time it becomes evident that 
even feasible alIocations are not subject to the integer constraints Xa EX. This 
requirement will be integrated in the later defined WALRAsian alIocation. 

Keeping these preliminary remarks in mind, the individual commodity demand 
Da of a household a results from the subsequent calculus. Each person chooses 
with respect to his preferences the best of alI commodity bundles he can buy. The 
person concerned is capable of buying each commodity bundle x E X which does 
not exceed the value of the endowment p T Wa for a given commodity price vector 
p E pp. To debar nobody from trading, it is supposed that each person owns a 
positive quantity of some good, Wa;:: 0 . 

Before the budget set B(p, wa ) is defined, it is helpful for further analysis to 
colIect all points x E IR+ which do not exceed the value of the endowment Wa at 
prices p in the set 

As long as we assume goods to be divisible, each vector x E G(p, wa ) can be 
interpreted as an admissible commodity bundle x EX. For indivisible goods 
the set G(p, W a ) even includes such points which do not belong to the commodity 
space X. See Figure I1I.40 showing the case of a divisible good 1 and an indivisible 
good 2. 

The budget set 

B(p, w a ) := G(p, w a) n X 

gets rid of this deficit. It contains alI commodity bundles person a can buy with the 
initial endowment Wa at given prices p. In Figure I1I.40 these commodity bundles 
are marked by bold sections. 

175 Because aspects of time are not taken into account, the household cannot use the acquired fractions 
of an indivisible good for future exchanges. 



190 Chapter III. Microeconomic Theory of Individual Agents 

For the commodity demand of person a 
with the preference ordering ~a merely those 
commodity bundles x E X are considered 
whose utility is at least as large as that of 
each alternative commodity bundle x E X 
the person can buy.176 Hence, the set of 
commodity bundles Da(p, wa ) , demanded 
by person a at prices p, is 

Da(p, wa ) := {xl x E B(p, Wa ), 

x ~a X Vx E B(p, waH, 

where the subscript a indicates that each 
Figure IIIAO: The budget constraint of person may possess different preferences. 
a household As will be shown, each demand set is not 

empty for positive price vectors p > o. 
Consequently, DaC w a ): IR~+ -+ ~(X) may be called the individual demand 
correspondence l ?? of person a having the preference ordering ~a and the initial 
endowment Wa. This correspondence immediately results in 

Proposition 111.21 The individual demand correspondence DaC wa ) is homoge­
neous of degree 0 in prices p. 

Proof: If all prices are multiplied by the same factor A > 0, then the budget set does 
not change. 

VA> 0 

Since the preference ordering does not change for varying A - this fact is called the 
absence of money illusion - the examined person demands the same commodity 
bundles for each price vector AP with A > o. 

VA >0 _ 

In the sense of a dimensionless scaling, the homogeneity of degree 0 of the demand 
correspondence D a (-, wa ) permits the division of each price P j (j = I, ... , n) of a 
price vector p (see Figure I1I.4I) by the sum of the single prices without changing 
the demand set Da(p, wa ) . 

In this way the set of scrutinized price vectors Pp = IR~ can be restricted to the 
price simplex 

n 

~ := {p E IR~ I L p j = 1 } 
j=l 

176Commodity bundles with this property have been defined as maximal elements. 
177 A correspondence r: X -+ '+l (Y) assigns each element of the set X to a nonempty subset in Y. 
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as it is depicted in Figure I1I.41 for the 
case of three goods. Since the anal­
ysis has to distinguish positive price 
vectors from price vectors containing 
at least one zero component, for the 
sake of brevity we use 

rint ~ =~ n JR~+ 
(relative) interior of ~ 

a~ =~ \ JR~+ 

(relative) boundary of ~. 

P2 

o 

Figure 111.41: Price simplex f:l. 

3.1.3 The Aggregate Excess Demand 

191 

The homogeneity of degree 0 of the individual demand correspondences passes 
directly on to the aggregate demand correspondencel78 15: rint ~ -+ I.lJ(X) 
with 

15(p) := L Da(p, wa ) . 

aeA 

Since the aggregate excess demand correspondence Z: rint ~ -+ I.lJ (JRn ) with 

Z(p):= 15(p) - WA 

is only expanded by the constant total endowment W A, Z must also be homogeneous 
of degree 0 in prices. 

At this point two aspects must be stressed, which refer to the emergence of 
the aggregate excess demand. On the one hand each person individually decides 
which commodity bundle he chooses. In this way all exchange processes are based 
on decentralized decisions. On the other hand the households maximize their 
utility without knowing the demand of other persons or contemplating their wishes. 
Thus, it is supposed that the individuals do not cooperate. The coordination of the 
exchange plans results from market prices. By valuating their initial endowments 
at market prices, the agents only react to changes of commodity prices instead of 
affecting each other by a direct exchange of goods. 179 

The coordination of particular exchange plans is successful when the commodity 
prices po provided by the market cause individual exchange plans, which themselves 
lead to a feasible allocation of goods *0. We speak of a WALRASian equilibrium or 

178For the addition of sets, see Appendix B. 
l7gef. ALIPRANTIS, BROWN, BURKINSHAW (1989, p. 52). 
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a competitive equilibrium (*0, pO) with free disposability of goods (free disposal 
equilibrium) when first each person a E A is associated with an (integer) commodity 
bundle x~ E X which he demands at commodity prices pO E tl , 

x~ E Da(pO, wa ) for each person a E A, 

and second if the resulting WALRASian allocation *0 E x X is feasible, 
aeA 

ZO = ~::>~ -WA ~ 0 with pO E tl and poTzo = O. 
aeA 

Accordingly, a WALRAsian equilibrium requires that there is no excess demand for 
any good, ZO E Z(pO) with ZO ~ O. 

The question of the existence of an exchange equilibrium can now be stated 
more precisely as follows: 

f 

In the examined economy ($ each person a E A is characterized by a 
continuous preference ordering ~a E n and an initial endowment 
Wa E lR+. What conditions must be fulfilled by this exchange 
economy - interpreted as mapping ($: A ~ n x lR+ - so that there 
is a vector of commodity prices pO at which an equilibrium prevails. 
In doing so, the described WALRAsian equilibrium in its strict sense 
requires on the one hand that each person may carry out his exchange 
plans and on the other hand that the aggregate excess demand must 
vanish on all commodity markets,180 0 E Z(pO). 

x 

Some answers to this question are 
discussed in detail by Propositions IV.6 to 
IV. 13. The proof of each proposition refers 
to Corollary C.15.1 and Theorem C.17, 
which themselves result from the already 
mentioned fixed-point theorems. 

The easiest case of a fixed-point of the 
function f is shown in Figure 111.42. The 
continuous function f: C ~ C must 
intersect the diagonal at at least one point. 
At this fixed-point we have XO = f(xO). 
Thus, it immediately becomes clear that 
the existence of a fixed-point depends on 

Figure IIl.42: Fixed-point whether the function f is continuous or 
jumps. With respect to the existence of a fixed-point of the form 0 E Z(pO) the 
assumptions, which will be introduced later, especially intend to avoid unwanted 
jumps of the demand correspondence DaC wa ) and the aggregate excess demand 
Z. The concept of upper semi-continuity of the correspondence Z will play the role 
of the continuity of the function f. 

In view of the premises of Theorem C.17 (DEBREU, GALE, NIKAIDO), p. 314 
the structure of the further analysis up to the discussion of exchange equilibria can 

180With that the value of the excess demand at once results in poT Zo = poTO = O. 
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be justified in the following way. The theorem requires a closed convex subset 
S in the price simplex t::... Ideally the set S would also include all of the price 
vectors p, i.e. S = t::... Moreover, Theorem C.17 presumes a correspondence 
IJI: S -+ I.l3 (JRn) which to all intents and purposes is identified by the aggregate 
excess demand correspondence Z. The answer to the question as to whether a price 
vector with 0 E Z (p) exists, stipulates four properties of the correspondence 
1JI. 181 

1. The sets lJI(p) are nonempty and convex for all PES; 

2. The correspondence IJI is closed; 

3. The correspondence IJI is bounded. Thus, there is a ball K C JRn such that 
lJI(p) C K for each PES; 

4. pTz~O holdsgoodforeach PES andeach zEIJI(p). 

Actually, the greatest trouble in transferring these properties to the correspondence 
Z result from point 1. As will be shown, Z(p) = "" holds for each price vector 
p lying in the boundary of the price simplex t::.. and therefore containing at least 
one zero component. Moreover, the sets Z(p) are not necessarily convex when the 
analysis concerns indivisible goods. 

First of all, the problem of nonconvex sets Z(p) is not taken into account, 
whereas the examination is subdivided into positive price vectors p E rint t::.. and 
price vectors containing at least one zero component, pEat::... Remember that 
the set rint t::.. is convex but not closed as required by Theorem C.17 for the set 
S. Further, remember that merely continuous preference orderings are assumed 
for positive price vectors p E rint t::..; see Section 3.2.1. The treatment of price 
vectors having zero components, pEat::.., however, stipulates the additional 
assumption of monotone preference orderings; see Sections 3.2.2. 

Regarding the four premises the subsequently derived results can be classified 
as follows: 

on 1. Proposition III.23: the sets Z (p) are not empty for all p E rint t::.. . 
Proposition 111.28: the sets Z(p) are empty for all pEat::... 

on 2. Proposition 111.27: the correspondence Z is upper semi-continuous and, 
therefore, closed in rint t::.. provided there is at least one divisible good. 
The preliminary remarks are subdivided into two cases. While Corollary 
111.25.1 assumes exclusively divisible goods, Corollary III.25.3 assumes at 
least one perfectly divisible good. 

on 3. Corollary III.29.1: if a sequence {pV} of positive price vectors tends to a 
price vector pEat::.. containing a zero component, then the condition 
iJzvlI -+ 00 is valid for each sequence {ZV} with ZV E Z(pV). Thus, the 
correspondence Z cannot be bounded. 

181 If point 3 is satisfied, then the c10sedness of the correspondence IjI (point 2) is equivalent to the 
upper semi-continuity of this correspondence by Theorem C.S, p. 309. Moreover, Theorem C.lO, p. 309, 
affords a criterion to prove the upper semi-continuity of the correspondence 1jI. 
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on 4. Since each person balances his budget constraint p T Xa ~ P T W a , the total 
economy satisfies 

(III. 104) pTZ ~ 0 forall p E rintD. and for all Z E Z(p). 

Obviously, the mentioned properties of the correspondence Z are not enough to 
apply Theorem C.17 (DEBREU, GALE, NIKAIDO), p. 314. Nevertheless, the 
main implications are established so that Chapter IV can immediately go into the 
existence of equilibrium commodity prices. 182 

3.2 Special Preference Orderings 

3.2.1 Implications of the Continuity of Preference Orderings 

(a) Perfectly Divisible Goods Regarding the mathematical proof of the 
existence of a competitive equilibrium, we require technical properties of the 
individual demand correspondence, which are also of economic importance. 
Without going into the technically necessary properties, it is shown that each person 
demands some commodity bundle at positive commodity prices. Moreover, an 
arbitrary amount cannot be chosen at positive prices. If positive prices change 
marginally, then the behavior of agents does not make any arbitrary jumps. "Small" 
price variations usually imply "small" reactions of a person. If some goods have a 
zero price so that the use of these goods is not subject to any restrictions, then the 
agents' behavior changes suddenly. 

Proposition 111.22 183 If ""a is a continuous preference ordering in the commodity 
space X, then each nonempty compact subset C in X has at least one best element. 
Moreover; the set of best elements DB(C, ,,"a) is compact. 

Proof: With the aid of the preference sets ~(x) for each x E C the set of best 
elements DB(C, ,,"a) is given by 

DB(C,,,"a) = n[cn~(x)]. 
xeC 

On the basis of the assumption of a continuous preference ordering the preference 
sets are closed. Thus, the hypothesis of a compact set C implies a bounded and 
closed - i.e. compact - set of best elements, where C n ~(x) c C. 
Finally, we have to show that DB(C, ,,"a) consists of at least one element. For this 
purpose we inspect an arbitrary but finite set of points {xl, ... , xJ.L} in C. The 
reflexivity of the preference ordering yields XV E ~(XV). The transitivity of the 

182Readers who are not interested in the technical details of Sections 3.2.1 and 3.2.2 are recommended 
to skip these two sections. However. Figures 111.44. 111.47. and 111.48 should be taken into account to get 
a feeling for the treatment of indivisible goods. 

183Cf. HILDENBRAND. KIRMAN (1988. p. 62. Proposition 2.1). 
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preference ordering assures that each finite set of points in C has a best element; see 
Proposition 11.1, p. 9. If x/L is a best element of the set {Xl, ... , x/L}, then 

/L 
x/L E n [cn ~(Xv)] * 0. 

v=1 

Considering the results in Appendix AA, it ensues DB(C, ~a) * 0 from the 
"finite intersection property". • 

Proposition 111.23 The demand set Da(p, wa ) is not empty and compact for 
positive prices p > 0 provided the preference ordering ~a is continuous. 

Proof: Even if a person holds no initial endowment, Wa = 0, the budget set is 
not empty, 0 E B(p, wa). Furthermore, the budget set B(p, wa) = G(p, wa)nX 
is closed and bounded - i.e. compact - for positive prices p > 0 . 
In view of the next steps it is useful to rewrite the demand set as follows: 

Da(p, wa) = (xl x E B(p, wa), x ~a X Vx E B(p, wa)} 

= n (xl x E B(p, wa ), x ~a x} 
xeB(p.w.) 

= n [B(p, wa ) n ~(x)]. 
xeB(p.w.) 

Thus, the demand set Da(p, wa ) equals the set of best elements DB(B(p, wa ), ~a ) 
with respect to the budget set B(p, wa ) . 

• Proof of the compactness of Da(p, wa ) for p > 0 : 
Because of the assumption of a continuous preference ordering the set 

.r-:;(x) := B(p, wa ) n ~(x) = X n G(p, wa) n 9'(x) 

is closed. Moreover, 9!(x) is a bounded subset in the compact set G(p, wa ). Thus, 
Da(p, wa ) is as well compact since Da(p, wa ) is the intersection of closed sets, all 
of which are contained in G(p, wa ) . 

• Proof that Da(p, wa ) is not empty for p> 0: 
Since we seek for the best elements in a nonempty compact budget set B(p, wa ) at 
positive prices p > 0, Da(p, wa ) cannot be empty by Proposition 111.22. • 

The individual demand correspondence Dah wa ): rint ~ ~ I,Jl(X) maps, 
therefore, each positive price vector p E rint ~ into a nonempty (and compact) 
demand set, Da(p, wa ) eX. 

Because of the assumption of convex preferences the next proposition refers to 
economies in which all goods are divisible, X = lR~. Continuity of the preference 
ordering is not required at this point. 

Proposition 111.24 Given a convex preference ordering ~a, all of the demand sets 
Da(p, wa ) are convex. Moreover, the aggregate demand correspondence 15 and the 
aggregate excess demand correspondence Z are convex-valued, too. 
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Proof: Under the assumption of convex preferences the set Da(p, wa) results from 
the intersection of a family of convex sets and is, therefore, convex itself. 
The correspondence 15 is called convex-valued if 15(p) is convex for all p. As the 
sum of sets is convex,l84 the convexity of Da(p, wa) at once implies convex valued 
correspondences 15 and Z. • 

One important implication of continuity of a preference ordering is given by 

Proposition 111.25 185 Let {pV} be a sequence of price vectors whose limit po 
satisfies pOTwa > O. If the relation XV E Da(PV, wa) holds for a sequence {XV} 
of commodity vectors with limit xO, then xO E Da(Po, wa ) provided the preference 
ordering is continuous and all of the goods are divisible. 

Proof: Without indivisible goods - that is for n = nd - the commodity space is 
X = IR~ and, therefore, G(p, wa ) = B(p, wa ). Considering the individual 
demand correspondence 

Da(p , wa)= n [G(p,wa)n~(x)], 
ieG(p.w.) 

we obtain pvTxv ~ pvTwa for each v because of XV E G(pV, wa ). Calculating 
the limit 

entails xO E G(po, wa ) . 

Thus, it remains to be shown that each x E G(po, wa ) implies the relation 
xO ;loa X so that xO E Da(Po, wa) is satisfied. For this purpose we have to 
distinguish the following cases: 

(a) If pOTx < pOT wa and, therefore, 
x E G(pO, wa ), then the sequence {XV} 
with XV = x and sufficiently large v fulfills 
pvTx = pvTxv < pvTwa . Due to XV E 

Da(PV, wa) the relation XV;loa XV arises 
for these v. Now from the continuity of 
the preference ordering it ensues xO ;loa 
X . Summarizing, we get the implication 
illustrated in Figure I1I.43: 

pvTx < pvT Wa ==> X°;loa X. 

(b) In contrast to (a), we now examine 
those points x satisfying pOTx = pOTwa. 

Figure I1I.43: Proof of Proposition We require a sequence {XV} of commodity 

III.2S bundles converging to x and whose elements 
satisfy pOTxv < pOTwa . Considering (a), X°;loa XV holds for each v so that the 
continuity of the preference ordering yields the needed result X°;loa X. Because 

184See Appendix B. 
185See HEUSER (1992. p. 626 f.) . 
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of the assumption pOTx = pOT Wa > 0 we have x <!: 0 such that the sequence we 
are looking for can be established without difficulties for perfectly divisible goods. 
Take, for example, {(1 - l/v)X}. • 

Corollary m.25.1 186 If a person's initial endowment satisfies Wa <!: 0, the 
individual demand correspondence Dah wa ) is closed for every price vector p> 
o. 

Proof: For Wa <!: 0 and p > 0 we have pTwa > O. By Theorem C.6, p. 308, 
the closedness of Da (·, wa ) at point p immediately results from Proposition 111.25 . 

• 
(b) Indivisible Goods 

Corollary 111.25.2 Proposition III.25 remains also valid under consideration of 
indivisible goods (nd ~ n) as long as at least one divisible good (nd ii; 1) exists 
which has a positive quantity within the vector xO and whose price is positive at 
limit pO. 

Proof: The proof is analogous to Proposition III.25. Nevertheless, each element 
of the sequence of points {XU} now fulfills XU E G(pV, wa ) n X, where the 
commodity space is given by X = 1R~ x Z~-nd. The limit calculation now yields 
xO E G(po, wa ) and xO EX. Regarding the two cases to be distinguished, 
G(p, wa ) must be replaced with the budget set B(p, wa ). 

By Proposition 111.25 at least one good is divisible and leaves its mark on the 
vector xO in a positive amount. Furthermore, without loss of generality it can be 
supposed that the first good satisfies this assumption. In part (b) of the proof the 
needed sequence {XV} can be specified by XU = ((1 - l/v)XI, X2, ... , xn) T where 
XV E X = 1R~ x Z~-nd is taken into account. The inequality 

OT-v 0(1 1/ )- 0- 0-p X = PI - v XI + P2X2 + ... + Pnxn 
0- 0- 0- OT- OT < PIXI + P2X2 + ... + Pnxn = P X = P Wa 

is always satisfied provided p? > 0 and XI > O. • 

Corollary 111.25.3 If a person's initial endowment satisfies Wa <!: 0, then the 
individual demand correspondence DaC wa ) is closed for every price vector p > 
o even under consideration of indivisible goods (nd ~ n) provided at least one 
divisible good (nd ii; 1) exists which has a positive amount within the vector xO. 

186As stressed by BARTEN, BOHM (1982, p. 397), empirical studies of consumers' behavior give 
reason to the conjecture that consumers possess no transitive preferences. Although Proposition III.23 
is not based on this assumption, one can show that the result of Corollary III.25.1 are not affected for a 
continuous preference relation under relatively weak assumptions. See SONNENSCHEIN (1971). 
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The proof is analogous to Corollary 111.25.1. 
The two preceding corollaries are based one the assumption that at least one 

divisible good exists that is chosen as a positive quantity. As soon as this assumption 
is dropped, we can construct examples with the demand correspondence no longer 
being closed. Thus, without the existence of a divisible good (nd = 0) the 
conclusion in Corollary 111.25.2 breaks down. 

• 

• 

o 

Figure III.44: Counterexample for 
Corollary III.2S.3 

out by the following assumption: 

Figure III.44 illustrates an example 
yielding xO ¢ Da(Po, wa ) contrary to 
Corollary III.25.2. The case of of two 
indivisible goods starts at a noninteger initial 
endowment Wa. Besides the sequence of 
output vectors {XV} with XV = xO there 
is a sequence of price vectors {pV} with 
pV ~ pO by assumption. If x is preferred 
to the commodity bundle xO, X >a xO, 
then we obtain Da(Po, wa ) = {x} and 
xO ¢ Da(Po, wa ) at the limit, although 
xO E Da(PV, wa ) is satisfied for all v. The 
demand jumps from xO to x at point pO. 

As these jumps contradict the premises of 
the used fixed-point theorems they are ruled 

Assumption 1 (BROOME) 187 The examined economy has at least one perfectly 
divisible good (nd ?; 1) desired by each person as a positive quantity. 

Note that this assumption can only be fulfilled if each person holds an initial 
endowment with positive value, p TWa > 0 . 

The next propositions follow from Corollary III.25.2 and note local properties 
of the individual demand correspondence and the aggregate excess demand 
correspondence. 

Proposition m.26 Provided a continuous preference ordering, the individual 
demand correspondence DaC wa ): rint.6. ~ ~(X) is upper semi-continuous 
at each point p > 0 if Assumption 1 (nd ?; 1) holds. 

Proof: Since by Proposition III.23 the demand set Da(p, wa ) is compact for each 
p > 0 we have to show by Theorem e.9, p. 309, that for each sequence of price 
vectors {pV} with limit pO > 0 and for each sequence {XV} with XV E Da(PV, wa ) 

a convergent subsequence {XVt} exists whose limit xO belongs to Da(Po, wa ). 

(a) For Wa = 0 the sets are G(pV, wa ) = G(po, wa ) = {OJ. Together with 
(OJ E X we also have Da(PV, wa ) = Da(Po, wa ) = {OJ. Although Assumption 1 
(nd ?; 1) is not fulfilled, we can offer the sequence of commodity bundles {XV} with 

187 Authors supposing a sole divisible good usually speak of money. Cf. e.g. QUINZII (1984) or 
SVENSSON (1991). 
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XV = 0 whose limit holds 0 E Da(Po, Wa ). 188 

(b) For Wa ~ 0 it suffices to examine sequences of positive price vectors {pV} so 
that the limit pO is itself positive. At the same time pOT Wa > 0 arises, which is 
needed to use Proposition 111.25 or Corollary III.25.2. Due to XV E Da(PV, wa ) 

the budget restriction pvT XV ;i! pvTwa is satisfied for all elements of the sequence. 
If we choose a positive number ot and an index vO such that the inequality 

0< ot ;i! pj for all j = 1, ... , n and v ~ vO, 

holds for each single price, then 

pvTW 
or O;i!xj;i! __ a 

ot 
(j = 1, ... , n) 

for all v ~ yO. As the sequence {pvTwa } converges and is, therefore, bounded, 
each sequence of components {xj} (j = 1, ... , n) and the sequence of points {XV} 
itself must be bounded, too. Thus, the sequence of output vectors {XV} includes a 
convergent subsequence {XVt} whose limit xO belongs to Da(po, wa ) by Corollary 
II1.25.2 since Assumption 1 (nd ~ 1) holds and a continuous preference ordering 
has been supposed. The price of the divisible good is positive in all cases as pO > o . 
• 
Because of the following Proposition III.2B the set Da(p, wa ) is empty for a 
monotone preference ordering as long as the price vector p has a zero component. 
Therefore, the question on the upper semi-continuity of the individual demand 
correspondence Da (·, wa ) at point p does not need to be investigated. 
The main local property for applying the fixed-point theorems is given by 

Proposition m.27 For continuous preference orderings of all persons the 
aggregate demand correspondence fj: rint!l ~ I.P(X) and the aggregate excess 
demand correspondence Z: rint!l ~ I.P (JRn) are upper semi-continuous and 
compact-valuedfor every p > 0, if Assumption 1 (nd ~ 1) holds. 

Proof: Supposing continuous preference orderings, by Proposition III.23 the sets 
Da(p, wa ) are compact at p > o. Thusl89 

D(p) = L Da(p, wa ) 

aeA 

is also compact for each p > o. The same argument holds for Z(p). 
In order to prove the upper semi-continuity of D at each p > 0 according to Theorem 
C.9, p. 309, it remains to be shown that for each seiuence of price vectors {pV} 
with limit pO and for each sequence {i"} with i" E D(pV) there is a convergent 

188Thus, the jump from i to xO described by Figure 111.44 may not occur. 
189See Appendix B.2, in particular p. 294. 
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subsequence {i"k} whose limit XO belongs to D(po). Every sequence {i"} can be 
expressed as 

X" = L x~ with X" E D(pV) 
aeA 

and x~ E Da(PV, wa ) (for all a E A). 

Using the convergent subsequences detennined in the proof of Corollary III.25.2, a 
subsequence {i"k} results with 

For Wa ~ 0 and p > 0 the inequality p TWa> 0 in Proposition III.25 holds for 
each person. In accordance with Corollary 111.25.2 Assumption 1 (nd ~ 1) assures 
that the limit x~ = lim X~k belongs to Da(po, wa ). We obtain 

Vk~OO 

With that the aggregate demand correspondence D is upper semi-continuous and 
compact-valued for each p > O. The same ar!ument is valid for the aggregate 
excess demand correspondence Z with Z(p) = D(p) - WA. • 

Finally, the subsequent global properties of the examined correspondences must 
be noted: 190 

• The individual demand correspondences DaL wa ) of all persons a E A, 
the aggregate demand correspondence D, and the aggregate excess demand 
correspondence Z are upper semi-continuous in the relative interior of the 
price simplex rint 6. 

• For convex preference orderings the above mentioned correspondences are 
convex-valued. 

(c) Graphical Explanations At this point it seems to be worthwhile to go into 
the concept of the upper semi-continuity of an individual demand correspondence 
in more detail. 

In Figure 111.46 we refer to the graphically representable case of a divisible good 
1 and an indivisible good 2 for an idea of the upper semi-continuity of a demand 
correspondence. But, first of all, we discuss with the help of Figure III.45 the upper 
semi-continuity confonning to the technical Definition C.5, p. 307. 

A correspondence r: X ~ l.P(Y) is said to be upper semi-continuous or 
upper semi-continuous at point xO E X C IRn if it makes no "explosive" jumps for 
small changes of its arguments xO. This notion of an "explosive" jump is illustrated 
by the expositions of Figure 111.45. 

1905y Definition C.5, p. 307, a correspondence r: X --+ '.p(Y) is called upper semi-continuous in 
X if it is upper semi-continuous at x for all x E X and if r(x) is compact for all x E X. 
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Technically, the problem can be ruled out as 
follows: 191 for each open set V containing 
f(xo) a neighborhood U of xO must exist 
such that f(x) C V also holds for each 
x in the neighborhood U. Accordingly, there 
is an "explosive jump" if each neighborhood 
U(xo) contains an x with f(x) ~ V but 
f(xo) c V. The correspondence virtually 
jumps out of V. 

y 

v{ 

201 

,II~ ..... 

----it/ 
x 

This case is shown in Figure III.45 at 
point xO E X C JR. Although r(xo) c 
V is satisfied, each neighborhood of xO 

contains an x with f(x) ~ V . Note that 
the criterion of upper semi-continuity allows Figure 111.45: On the criterion of upper 
"imploding" jumps as at point xl. semi-continuity of a correspondence r 

Theorem C.9, p. 309, states that there is an equivalent criterion of upper semi­
continuity at point xO for a compact-valued correspondence. Accordingly, for a 
sequence {XV} with XV -+ xO and for each sequence {yV} with yV E r(XV) there 
must be a convergent subsequence {yVt} such that yVt -+ yO E f(xo) holds. 
Figure III.45 illustrates this criterion by a sequence {XV} converging from the left 
hand side to xO . A sequence {yV} with yV E f(xV) converging to l now violates 
the criterion l E r(xo). See point C = (xo, l) with l ¢ f(xo). 

With regard to .---..:..' ----..:....-..:....:.......:...------'-----''---'---'-------, 

economic aspects 
Figure III.46 serves 
as a reference situation. 
The two initial points 
Xl and x2 are supposed 
to be best elements 
with respect to the price 
vectors pI and p2, where 
the price vectors are 
described by two budget 
lines containing the 
initial endowment Wa. 

lf Da(pl, wa ) = {xl} 
and Da(p2, wa) = {x2} 

hold, then it remains 
to be settled what 
behavior of the demand 
correspondence may 

Figure 1II.46: Upper semi-continuity of a demand 
correspondence 

occur for continuous changes of the price vector from pI to p2 without violating the 
requirements of upper semi-continuity. 

First of all, it is striking that the demand correspondence must jump from X2 = 1 
to X2 = 2 for at least one price vector (for instance, at p'). Technically, it cannot 

191This criterion is given in Definition c.s. 
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be ruled out that the correspondence concerned includes commodity bundles with 
X2 = 1 and X2 = 2 at diverse price vectors. Suppose in the inspected cone between 
pi and p2 one and only one jump at point p' emerges, then a demand correspondence 
for alternative price vectors between pi and p2 results, which is similar to the bold 
marked sections in Figure 111.47. Furthermore, not only x' but also x" must be an 
element in Da(p', wa ) presuming the upper semi-continuity. 

PCC 

2~--~--~----------~----------------~ 

1~~~~r-------------------~--------~ 

XI o~----~--~--------------~------~--~~~ 5 10 15 20 25 30 

Figure I1I.47: Price consumption curve 

The proof is offered assuming Da(p', wa ) = {x'}, i.e. x" ¢ Da(p', wa ). 

Because each neighborhood U(p') contains a price vector P with Da(p, wa ) rt. 
V, the demand correspondence cannot be upper semi-continuous. Similarly, 
we can show that the demand correspondence must not have any further "holes", 
i.e. for instance, no commodity bundle must be missing over the segment xix'. 
Technically, this statement is included in Theorem C.7. Accordingly, each upper 
semi-continuous correspondence is closed and, therefore, it has a closed graph. 

Figure III.47 illustrates the demand correspondence analogous to a price 
consumption curve. Beginning with an initial endowment (Wla, W2a) = (1, 4) we 
have derived a price consumption curve PCC on the basis of a CES utility function 
U(XI, X2) = (XI' + x2"' )-'. '92 If we suppose that X2 can only appear at integer 

192The result has been computed by MAmEMATICA". Generally. the optimum conditions of the 
LAGRANGEan function L(xi. X2. A) = (Xli + xli )-1 + A(PI wla + P2w2a - Pixi - P2X2) yield 
a price consumption cUlVe of the implicit form ~/.xi = -(X2 - W2a)/(XI - Wla)' Note that the 
symmetry of the price consumption cUlVe only appears to vanish because of the chosen scaled part of the 
commodity space. 
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units, then the resulting demand correspondence Dah wa) can be represented by 
the bold segments. 

3.2.2 Implications of the Monotooicity of Preference Orderings 

(a) Introduction of Additional Assumptions Before going into the proof of 
the existence of competitive equilibria, we have to investigate how the individual 
demand correspondences behave when the examined price vectors have zero 
components. To assure that the value of the initial endowment is positive at each 
price vector p E ~ for every person a E A, we establish the following 

Assumption 2 Every person a E A has a positive initial endowment, Wa > O. 

As long as positive price vectors p are supposed, we can dispense with this very 
restrictive assumption. In this case the value of an initial endowment W a ~ 0 is 
always positive, p TWa > 0 . 

If one of the examined price vectors p has a zero component, then we can 
construct examples based on the indivisibility of a commodity, which evoke a certain 
misbehavior of the demand correspondence. At point p "a jump to infinity" virtually 
emerges, which is possible as the budget set B(p, wa ) is unbounded. 

The problem is illustrated in Figure 
1II.48 by two goods (n = 2) with the 
divisible good 1 (nd = 1) and the indivisible 
good 2. If the sequence of price vectors 
{pV} = {(PI' p2)} converges to a limit 
(PI, h) = (0, h), then a horizontal 
budget line results. The corresponding 
budget set is unbounded. At the same time 
it is assumed that the examined person a 
prefers his initial endowment Wa to every 
commodity bundle in the horizontal rayl93 
starting at the commodity bundle i, i.e. 

(III. 105) Wa >a i + Ae l VA >0. 

o 

Figure III.48: Noncontinuity of the 
For a strongly monotone preference ordering correspondence Da (·, wa ) 

Wa cannot be a best element in the limit case since x >a Wa. Although the 
sequence {pV} converges to p, at which the limit is pT Wa > 0 and Wa E 
Da(PV, wa) holds for all v, Wa E Da(p, wa) does not result as suggested 
by Proposition 1II.25. The jump from Da(PV, wa) = {wa} to a point with 
an infinitely large quantity of the first good, XI = +00, becomes possible by 
the unboundedness of the budget set B(p, wa ). Since no commodity bundle G~) 
satisfies the relation XI = +00, none of them is chosen Da(p, wa) = 0. 

The reason for the "misbehavior" of the demand correspondence Da(·, wa ) 

results from the assumption (111.105). Thus, we have a reason for the subsequent 
assumption, which states that each person prefers a commodity bundle x to each 

193 As before, e1 denotes the unit vector with 1 as the first component. 
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commodity bundle i when the first commodity bundle is augmented by a sufficiently 
large amount of the divisible good XI. 

Assumption 3 194 For all persons a E A and all commodity bundles x, i E X 
there is a positive number)" such that x + )"el ~a i. 

Geometrically, this assumption excludes that the distance between two indifferent 
commodity bundles can become arbitrarily large when these commodity bundles lie 
in a line parallel to the axis of the divisible good. Accordingly, the boundary of the 
convex hull of an arbitrary preference set must cross the entire commodity space X. 

(b) Price Vectors with Zero Components The subsequent propositions 
describe the behavior of persons of the examined economy when the price of a 
good falls to zero given strongly monotone preference orderings. The main result 
is that the aggregate excess demand tends to infinity for at least one good. Since no 
commodity bundle has an infinitely large component X j = +00, the demand set 
is empty, Da(p, wa ) = 13. 

Proposition ID.28 Provided that the continuous preference ordering of a person 
a E A is strongly monotone and that the price vector p has at least one zero 
component so that p E all., then the demand set is empty. 

Vp E all. 

Proof: Suppose Da(p, wa ) contains the commodity bundle x, where without loss 
of generality it is supposed that PI = O. Then each commodity bundle i with 
XI> XI and Xj = Xj (j *' 1) satisfies pTx = pTi ~ pTwa or i E B(p, wa ). 

Due to x E Da(p, wa ) we get x ~a i in contradiction to i >a x because of 
the strongly monotone preference ordering. • 

Proposition ID.29 195 Suppose the continuous preference ordering of person a is 
strongly monotone (~a E TIsmo) and a sequence of price vectors {pV} with pV > 0 
converges to a price vector p E all. including at least one zero component. Under 
Assumptions 1 (nd ~ 1) and 2 (wa > 0) each sequence of commodity bundles 
{XV} with XV E Da(PV, wa ) satisfies the relation IIxvll -+ 00 if the preference 
ordering fulfills Assumption 3. 

Proof: Assumption 2 (wa > 0) implies pT Wa > O. 

194BROOME (1972. p. 228). Technically. this assumption holds for the origin x = 0, too. We 
get )..e1 ~a i when).. is chosen sufficiently large. Those implications can be avoided by alternative 
assumptions but these assumptions are associated with a considerably more extensive technical setting. 
SVENSSON (1991) describes a market with m houses and the divisible good money. If each person can 
own one house at the most then Assumption 3 means that the loss of each house may be compensated by 
a sufficiently large amount of money. 

195Cf. HILDENBRAND, KIRMAN (1988. pp. 93 and 95). 
As shown by the proof. Assumptions I and 3 are not required for convex preference orderings. 
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The proposition says that the sequence {XV} satisfies the condition IIxv II --+ 

00 under certain premises. l96 Thus, if under the same conditions we suppose the 
existence of a bounded subsequence {XVl}. then a contradiction must result since in 
this case a finite number c > 0 exists such that IIXVllI < c is valid for all Vk. In 
the sense of a proof of contradiction it is now supposed that an arbitrary sequence 
of points {XV} with XV E Da(PV, wa) contains a bounded subsequence {XVk}. 

(a) First of all, we assume that all goods are divisible (nd = n): since each 
bounded sequence {XVk} contains a convergent subsequence {XVh} whose limit is 
denoted by i, the relation i E Da(p, wa) must be satisfied because of pTwa > 0 
by Proposition 111.25. But this implication contradicts Proposition 111.28. Thus, we 
have Ilxvll --+ 00. 

(b) Considering indivisible goods with at least one divisible good (Assumption 
I, nd ~ 1), we need a case distinction: (aa) if the price of the divisible good in p is 
positive, then the same result as in (a) follows from using Corollary 111.25.2. 

(bb) Without loss of generality it is supposed that the first good is divisible and 
that the sequence {pV} converges to a limit p with PI = O. If the subsequence 
{X"k} is bounded, then there is a convergent subsequence {X"h} with XVh --+ i and 
p"h --+ p. 

The procedure within the rest of the proof 
is illustrated by Figure 111.49. For each 
commodity bundle x < Wa with Wa > 0 
(Assumption 2) a positive A * exists such that 
x + A *e l >-a i (Assumption 3). Because 
of x E G(p, wa ) n X for all p we get 
x + Ae l E G(p, wa ) n X for all A > 0 
so that x + A *el E G(pVh, wa) n X must be 
fulfilled for sufficiently large Vh. 

On the basis of the closedness of 
preference sets (assumption of a contin­
uous preference ordering) there is an e­
neighborhood of the point i such that 

o 

Figure III.49: Proof of Proposition 

III.29 

For sufficiently high Vh the relations XVh E U,(i) and x + A *e l E G(p"h, wa) 
must be satisfied. This contradicts the hypothesis XVh E Da(pVh, wa). Again, we 
obtain IIx"1I --+ 00. • 

Corollary 111.29.1 197 Suppose the premises of Proposition /11.29 hold for each 
person a E A and the sequence of price vectors {pV} with pV > 0 converges 
to a price vector pEat.. Then we have for each sequence of aggregate excess 
demand vectors {zV} with ZV E Z(pV) the relation IIz"1I --+ 00 . 

1961f a given sequence has -00 or +00 as sole cluster point, then it is called divergent with limit -00 

or +00. See Appendix A.3. 
197Cf. HILDENBRAND, KIRMAN (1988, p. 97). 
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Proof: Due to Z(p) = D(p)-WA with D(p) = L Da(p, wa ) the proposition 
aEA 

at once follows from Proposition 111.29. • 

(c) WALRAS' Law 

Proposition m.30 (WALRAS' Law) Suppose all persons a e A possess strongly 
monotone continuous preference orderings and there is at least one divisible good. 
Then the value of aggregate excess demand is zero, p T (XA - W A) = p T Z = 0, for 
every price vector p > 0 and every vector XA e D(p). 

Proof: If there is at least one divisible good, then each person a e A with a strongly 
monotone preference ordering satisfies the budget constraint 

because the divisibility of a good guarantees the existence of an x ~ x for each x 
holding p T x < P T Wa , where x satisfies the budget constraint, too. On the basis 
of strongly monotone preference orderings it is x >-a X so that x cannot be a best 
element. 
The summation of individual budget constraints yields p T XA = P TWA for all 
xAeD(p) or pTz=O forall zeZ(p). • 

Corollary Ill.30.1 (Free Goods) 198 Suppose each person possesses a strongly 
monotone preference ordering and there is at least one divisible good. If po is a 
WALRASian equilibrium and if there is an excess supply of good j, zj < 0, then 
the price of this free good is zero, pj = O. 

Pi 

o A 

Figure III.50: Free good 

Proof: Within a WALRAsian equilibrium 

(l(0, pO) with ZO = LX~ - WA ~ 0 and 
aEA 

zj < 0, each positive price pj of good j 
contradicts WALRAS' law, i.e. poT ZO = 0 
for all ZO e Z(pO). • 

The case of a free good can be ruled out 
with respect to a WALRASian equilibrium 
when everyone of the examined exchange 
economy has strongly monotone preference 
orderings. 
Hence, the situation illustrated by point A in 
Figure 111.50 may not occur. Every excess 
supply of commodity j being however large 

is cleared if the positive price p j is small enough. 

Corollary m.30.2 If(l(°, pO) is a WALRASian equilibrium with strongly monotone 
preference orderings, then pO > 0 and ZO = 0 with ZO e Z(pO) hold. 

198YARIAN (1992. p. 318). 
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Proof: Because of the strongly monotone preference orderings each price P'j = 0 
yields a positive excess demand for good j, z'j > 0, which is inconsistent with 
the assumption of a WALRAsian equilibrium. 

However, by Corollary 111.30.1 an excess supply z'j < 0 yields P'j = o. 
But at this price strong monotonicity of the preference orderings implies z'j > 0 
contradicting the presumed excess supply. • 

If (KO, pO) is a WALRAsian eqUilibrium, then Corollary 111.30.2 means that on 
all markets the aggregate demand curve x jA must have a point in common with the 
aggregate supply curve W jA; see Figure 111.50. We have to take two aspects into 
account. On the one hand the aggregate demand W jA always fulfills the integer 
constraint by assumption. On the other hand the curve of aggregate demand x jA 

jumps when good j is indivisible. Although an aggregate demand x jA can be 
determined for each price p j, there does not need to be any price P'j so that the 
supply W jA meets the demand x jA. However, each price vector pO > 0 describes 
a competitive eqUilibrium (KO, pO) in the reverse conclusion of Corollary III.30.2 if 
there is a ZO = XA - WA = 0 with ZO E Z(pO). 

3.3 Summary 

Because the first two sections of Chapter III concentrate on the analysis of the 
firm's cost structure, in the third section the analysis of the household's expenditure 
structure may recede into the background. Instead of this we derive properties of 
the aggregate excess demand from the individual commodity demand, which are of 
crucial importance for the existence proof of exchange equilibria. 

For this purpose we introduce an exchange economy which first of all consists 
of a set of persons. Each person pursues utility maximization without cooperating 
with other persons. After a person has valuated his initial endowment at market 
prices, he knows all of the consumption bundles he can buy with respect to a 
corresponding supply of his initial endowment. If each household individually 
chooses a utility maximizing commodity bundle that it can buy, then the following 
question is asked. When the individual exchange plans are made on the basis of 
market prices, what market prices assure that aggregate demand meets aggregate 
supply on all commodity markets? Before this question can be answered, it must 
be settled whether some market prices are able to remove the aggregate excess 
demand on all commodity markets at all. The analysis in Chapter IV will show 
that especially the consideration of indivisible goods can exclude the existence of 
equilibrium prices, but does not have to. 

The premises for the existence of equilibrium commodity prices involve a series 
of properties of the aggregate excess demand implied by certain properties of the 
individual preference orderings. Under this aspect Sections 3.2.1 and 3.2.2 present 
implications of continuous as well as strongly monotone preference orderings. 

The crucial problem considering indivisible goods is that the individual 
commodity demand and therefore the aggregate excess demand can jump when the 
market prices change marginally. To avoid these jumps being of arbitrary form 
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two assumptions are introduced. Assumption 1 (BROOME) requires the existence 
of at least one divisible good desired by each person in a positive amount. This 
assumption suffices for positive prices to rule out explosive jumps of the individual 
commodity demand as described in Section 3.2.1(c). Assumption 3 prevents virtual 
"jumps to infinity". If the price of a good continually falls to zero, then we can 
construct examples as in Figure 111.48, which imply the following phenomenon. 
For each positive price of the commodity at hand a certain finite quantity of this 
good is chosen. As soon as this price has fallen to zero, an infinitely large demand 
is the consequence. This jump to infinity should not be mixed up with a monotonic 
increase of a commodity demand with a falling commodity price. 



Chapter IV. 

Theory of Market Equilibria 

1 The Problem of General Equilibria 

1.1 Approaches to Treating Indivisible Goods 

In every economy it is necessary to know who can dispose of what quantities of 
goods and for what purpose. The examination of these problems assumes that the 
property rights of goods are exerted personally by individual persons, i.e. common 
property is ruled out. 

Given a property distribution of the commodity stocks among the persons of 
the economy, each economic agent is allowed to exchange his endowment against 
property rights of other amounts of goods, where at the same time no agent can be 
forced to exchange. The distinction between consumer goods and production factors 
indicates how each individual agent can put his initial endowment to its intended 
purpose of either consumption or production. A good is not only chosen to be 
consumed but also to be used in the production of new goods. Only the production 
of new goods permits future consumption. 

Conversely, a supply of goods on a market merely happens because not all 
initial endowments satisfy the needs of the person concerned. To gain a "better" 
commodity bundle, one must offer a supply such that there is another economic 
agent with compatible wishes, who agrees to the supply. 

With the described processes there are three fundamental questions: 1 

1. What will be the outcome of the implied decisions? 

2. What outcomes are desirable? 

3. What allocative mechanisms are appropriate for achieving desirable 
outcomes? 

The presented text deals particularly with the question of the existence of general 
equilibria, where the main emphasis lies on the aspect of the indivisibility of goods. 

I See VARIAN (1992, p. 314). 
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To avoid additional problems resulting from the indivisibility of some production 
factors, the production processes are not taken into consideration. The existence of 
an equilibrium serves not only as a precondition for the calculation of an equilibrium 
but it often gives hints of algorithms to calculate the equilibria. 

The first approach to a pure exchange economy excludes the production of 
goods. This simplified abstraction of a production economy can be justified by 
avoiding the additional problems in describing production processes. Moreover, 
there can only be satisfactory answers regarding a production economy if suitable 
answers are available with respect to an exchange economy. In particular, in view 
of the indivisibility of consumption goods and production factors does seem useful 
to rule out problems of production for the moment. 

The examination of equilibria in exchange economies has to distinguish between 
two concepts, the competitive eqUilibrium and the core. Both concepts can be 
described as follows: the exchange economy includes a set of persons each of whom 
holds a commodity bundle as an initial endowment. These initial endowments 
can be used for trade, where it is supposed that each person possesses a well 
defined preference ordering on the set of all commodity bundles. The result of 
the exchange is indicated by an allocation 1(, which describes the reallocation of the 
initial endowments between persons. 

A competitive equilibrium (1(0, pO) consists of two components, a system 
of commodity prices pO, at which the aggregate supply of each good meets the 
aggregate demand for this good, and a commodity allocation 1(0 resulting from 
trade at the system of commodity prices. More precisely, the equilibrium allocation 
associates each person with a commodity bundle such that no person can buy a 
preferred commodity bundle with respect to the value of his initial endowment. 

An allocation 1(C belongs to the core of the exchange economy if there is no 
coalition of market participants which is able to improve the allocation 1(c to their 
advantage. In other words, there must be no group of persons ignoring the other 
market participants so that each member of the group can realize a more favorable 
result than by the allocation 1(c. 

While the concept of a competitive equilibrium is only useful when supposing 
perfect competition, the concept of the core does not depend on this assumption. 
This difference is reflected among other things by the fact that supply and demand 
are coordinated in the competitive equilibrium by market prices, while the concept 
of the core ignores the price mechanism and relies upon the direct exchange 
between the market participants. In particular, the core can be investigated when the 
exchange economy only consists of a few persons. The relationship of competitive 
equilibria (1(0, pO) to those allocations 1(c lying in the core can intuitively be 
comprehended by understanding money and prices as a help to make trade easier. In 
this case it is expected that each competitive equilibrium lies in the core. Conversely, 
not all of the allocations in the core can be transmuted by an appropriate price system 
into a competitive equilibrium. 

The examination of the core is not the most important factor when proving the 
existence of competitive equilibria. But if it can be shown that the core is empty, 
then we can stop looking for an (exact) competitive equilibrium. 
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In the relevant literature on this point there are different approaches dealing 
with the existence of competitive equilibria.2 The way chosen here concentrates 
on applying the fixed-point theorems of BROUWER and of KAKUTANI. However, 
DEBREU (1982) basically distinguishes between three ways. 

(1) The simultaneous optimization approach examines a social system, where 
the m participants are collected in the set A.3 Each agent a E A is associated with a 
set B: of a priori admissible actions Xa. If m - 1 agents have made their decisions, 
then Ba C B: indicates the resulting (nonempty) set of feasible actions. In this 
case it turns out to be more favorable to examine the set Ba(x) with x:= (Xa)aeA 

instead of Ba(x-a) with x-a := (xkheA. Agent a chooses a best element over 
k*a 

Ba(x) with respect to his preferences which are represented by a utility function 
ua(x) == Ua(Xa, x-a). The set of best elements for agent a is denoted by Da(x) C 
Ba(x). If each agent receives a best element x~ E Da(xO), then the allocation 
XO = (X~)aeA E x B: is an equilibrium since no agent can improve his situation 

aeA 
by choosing an alternative action. There is an equilibrium for the social system 
(B:,ua,Ba)aeA if the mapping D:= x Da has a fixed-point, i.e. 

aeA 

(2) Concentrating - as in the presented analysis of exchange economies - on the 
excess demand Z of the aggregate economy, then the question of the existence of an 
equilibrium can be reformulated as follows: each person owns an initial endowment 
which is valuated at alternative price vectors p. Depending on the initial endowment 
and the respective price vector a set of commodity bundles results that the person 
concerned can buy. The person can choose an arbitrary commodity bundle within 
this budget set. He will only choose best commodity bundles with respect to his 
preferences. These utility maximizing commodity bundles generate an individual 
excess demand correspondence Za, which, corresponding to the discourse, depends 
on the commodity prices, the respective initial endowment, and the individual 
preferences. With that an equilibrium exists if there is a price vector po for the 
aggregate excess demand Z:= LaeA Za such that each excess demand vanishes. 
Thus, for given initial endowments and given individual preferences we have to 
prove the validity of the following relation: 

(3) In large economies with a very large number of persons, whose individual 
influence on the total economy can be ignored, a further procedure can be offered 
which refers to the use of fixed-point theorems. Without going into the instruments 
of measure theory in more detail the problem can be stated in the following way.4 

2See DEBREU (1982. p. 697 f.). 
3 A sketch of this approach is presented at the treatment of production economies (Section 3.1). 

There. the market is interpreted as agent choosing a price vector such that the value of excess demand is 
maximized. 

4Cf. DEBREU (1982) and in particular KIRMAN (1981). 
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The nonempty set A is the set of economic agents. By IL we define an 
appropriate measure so that each (nonempty) coalition A j C A is associated 
with a number IL(A j), which can be interpreted as a share of A j of the whole set 
A.s Since the set A consists of an infinite number of persons, it is furthermore 
required that no coalition A j consisting of finitely many persons has a positive 
weight, IL(A j) = O. In particular, individual persons must not have any influence. 
Ifmoreover IL(A) = 1 holds, then IL is called an (atomless) probability measure. 

A price vector pO and the allocation 1(0 = (X~)aeA are called an equilibrium 
when almost all agents receive a best element and when the "means of supply and 
demand" are equal. Here "almost all" means that the set of all persons who receive 
no best element with respect to their preferences, their initial endowment W a , and 
the price vector pO is a set of measure zero. As the initial endowments of all 
persons determine the aggregate supply, LaeA x~ = LaeA Wa must be valid in 
a WALRAsian equilibrium. For finitely many agents this equivalence of aggregate 
demand and aggregate supply can be rewritten as 

1",0 1 ", 
#A ~xa = #A ~ Wa· 

aeA aeA 

Similarly, the mean values of aggregate demand and aggregate supply must be equal 
even for infinitely many persons.6 

Again we seek for properties of the aggregate excess demand Z so that the existence 
of a fixed-point assures the existence of a price vector pO at which 0 E Z(pO) 
holds. 

Further analytical approaches to prove the existence of general equilibria are 
omitted. However, a more recent direction of theory must not be neglected which 
has been developed in particular by the influence of SCARF. 

SCARF (1967) and SHAPLEY, SCARF (1974) discuss a class of markets for an 
indivisible good - for instance houses - whose core is not empty. The examined 
market includes an infinite number of persons, each of whom has one unit of the 
indivisible good. Assuming that no person can utilize more than one unit of the 
good at hand and that there is no other exchange, then the only consequence by 

5For finitely many agents we could use the measure /L(A j ) = #Aj/#A for a coalition Aj C A. 
6The transition between the equations can be justified as follows: for an infinite number of persons 

both sides of the first equation can be estimated by partitioning A into n pairwise disjoint sets A j with 

Uj=l Aj = A and Ej=l /L(Aj) = /L(A). 

Afterwards the approximated sum 

with aj E Aj 

is calculated for each of these partitions. Intuitively, we can imagine the next step as a continually 
"refined" partition so that a sequence (SO) of approximated sums emerges whose limit S is denoted by 
S := fAxo (a)d/L if it exists at all. Cf. DALLMANN, ELSTER (I991a, pp. 455-457). 



1 The Problem of General Equilibria 213 

market activities is a reallocation of the indivisible commodity units between the 
persons. Within the framework of game theory7 it is now shown what assumptions 
suffice for the existence of a feasible market result that cannot be improved by any 
coalition of market participants. Moreover, a procedure is described as to how to 
calculate competitive prices so that the market result lies in the core of the market. 

A main extension to the analysis of indivisible goods results by adding a 
divisible good to the exchange economy. Now the problem is to ascertain a 
reallocation of indivisible commodity units considering offsets with the divisible 
good so that no coalition of market participants can improve the result of the 
reallocation. As shown by QUINZII (1984), we can establish conditions assuring 
a nonempty core of this exchange economy.s Moreover, the assumptions under 
which the set of all allocations in the core of the exchange economy equals the set 
of all competitive equilibrium allocations is shown.9 In this case for each allocation 
in the core there is a price vector, which jointly form a competitive equilibrium. 

Alternative to QUINZII, the approach of SHAPLEY, SCARF is also extended by 
a divisible good in SVENSSON (1984). As before, every person consumes exactly 
one unit of the indivisible good. But in contrast to QUINZII it is assumed that each 
person can own fractions of the indivisible commodity units before trade, i.e. the 
property rights are supposed to be divisible. Again we can establish conditions so 
that there is a competitive equilibrium. \0 

The extension of the approach of SHAPLEY and SCARF has been continued with 
reference to further properties of allocations apart from the proof of the existence of 
a competitive equilibrium. For example, SVENSSON (1983) and MASKIN (1987) 
provide conditions so that there is a fair allocation. We speak of a fair allocation 
if the allocation is PARETO efficient and if no person envies another person his 
commodity bundle. 11 TADENUMA, THOMSON (1991) examine within the same 
model the consistency of an allocation. A fair allocation is said to be consistent 
if each coalition owns resources so that in turn this assignment constitutes a fair 
allocation within the examined coalition. 12 

If there is a competitive equilibrium, then there is the immediate question as 
to how the equilibrium prices are determined. Provided fixed-point theorems and 
theorems which guarantee the existence of equilibrium prices are equivalent to 
each other, then each numerical procedure for computing equilibrium prices must 
at the same time be an algorithm for computing fixed-points. A class of efficient 
algorithms of combinatory nature for determining approximate equilibria is given 
by SCARF (1982). 

The calculation of equilibria is also discussed in KEHOE (1991). As discussed 
above, economic equilibria are usually solutions to fixed-point problems and not 

7The examined market is modelled as balanced n-person game. 
BCf. QUINZII (1984, p. 44, Theorem 1). 
9 See QUINZII (1984, p. 54, Theorem 3). For existence and calculation of equilibria on the described 

market, see also KANEKO, YAMAMOTO (1986). 
lOCf. SVENSSON (1984, p. 380, Theorem 2). 
1 1 For the concept of absence of envy and alternative approaches to fairness, see VARIAN (1974). 
12 ALKAN, DEMANGLE, GALE (1991) offer further aspects on fair allocations of indivisible goods. In 

particular, the assumption of an equal number of persons and objects is eliminated. 
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to problems of the convex programming, so two problems basically occur: on the 
one hand equilibria are often difficult to calculate and on the other hand there can 
be more than one equilibrium. These and further aspects are discussed by KEHOE 
without emphasizing explicitly the indivisibility of goods and factors. 

The presented approach concerning the examination of equilibria in exchange 
economies with indivisible goods corresponds to that of BROOME (1972). For 
a finite number of both persons and goods it is proved that there is an allocation 
which must not arbitrarily differ from an exact equilibrium. The proof is founded 
mainly on the assumption that there is at least one divisible good. The derived 
allocation must be called a quasi-equilibrium for two reasons. (1) The allocation 
is only approximately feasible, i.e. the aggregate demand may exceed the total 
endowment of the economy even if not arbitrarily. (2) Not all agents prefer the 
allocated commodity bundle to all the others the person concerned could buy. Both 
errors may be ignored the more persons there are in the economy. 

An alternative approach to the description of an exchange economy with 
exclusively indivisible goods is presented in DIERKER (1971) with respect to 
HENRY (1970). As before, it is shown that there is a price vector and a 
corresponding allocation such that the budget constraint is satisfied for each person. 
If each person chooses an optimal commodity bundle, then the aggregate excess 
demand of the derived planned-price allocation is bounded. Again asymptotic 
properties can be established for an increasing number of persons. The difference 
with BROOME (1972) is that we treat the examination without any divisible good 
within a modified analytical framework. 

Finally, we draw attention to a theory investigating the existence of equilibria 
with reference to measure theory. The previous approaches of SCARF (1967), 
DIERKER (1971) and BROOME (1972) assume finitely many persons and finitely 
many goods. According to OSTROy!3 these so called small-square economies 
are opposite to large-square economies with an infinite number of persons and an 
infinite number of goods.!4 The idealized representation by infinitely many persons 
as continuum is based on AUMANN (1964). He proves conditions with respect to 
an exchange economy with a continuum of persons and (finitely many) divisible 
goods so that the core of the economy equals the set of equilibria. AUMANN (1966) 
gives conditions assuring a nonempty core. The transference of these outcomes to 
exchange economies with a continuum of persons concerning indivisible goods was 
made by MAS-COLELL. 

MAS-COLELL (1975) distinguishes between two classes of goods. Apart from 
at least one homogeneous good he examines (infinitely many) differentiated goods 
which can only be consumed at integer units. Each differentiated good can be 
specified by characteristics. The infinitely many consumers possess continuous 
preferences with respect to these characteristics.!5 As before, AUMANN and MAS­
COLELL show when the core of the examined exchange economy equals the set 

I30STROY (1984) investigates the existence of WALRAsian equilibria in large-square economies. 
14Cf. also ALIPRANTIS (1995, Chapter 3). 
15The idea of identifying goods with their characteristics has already been picked up in ROSEN (1974). 
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of equilibria and furthermore when it is not empty. The explicit consideration of 
(finitely many) indivisible goods besides at least one divisible good may be found 
in MAS-COLELL (1977). Apart from the existence of equilibria (Theorem 1) in an 
exchange economy with a continuum of persons the attention is now directed to the 
determinateness of equilibria (Theorem 3). The author himself describes his result 
as follows: H[ ... J i.e., the existence of a dense set of economies having a finite 
number of equilibria each one of which is 'stable' (i.e., not very sensitive) under 
perturbations of the economy."16 

KHAN, YAMAZAKI (1981) also examine exchange economies with a continuum 
of persons and finitely many indivisible goods beside a divisible good. Their 
assumptions establish a nonempty core of the underlying exchange economy, but 
they do not necessarily assure the existence of a competitive equilibrium. 

DUNZ (1992) deals with an approach following closely MAS-COLELL (1975). 
However, the assumption of the existence of a homogeneous good is eliminated. 
The model with an infinite number of indivisible goods and an infinite number of 
consumers supposes that each person has one indivisible good, and preferences with 
respect to the indivisible goods. Like SHAPLEY, SCARF (1974) it is supposed that 
each person consumes exactly one indivisible good so that DUNZ's approach is so 
to speak the "large-square" version of SHAPLEY and SCARF. Although DUNZ is 
not able to prove an equilibrium distribution, he presents a result on the existence 
of a quasi-equilibrium distribution which is not basically weaker. An equilibrium 
distribution is characterized by three criteria. (1) The households' share of the total 
population that is endowed with a certain type of house before trade equals the 
share of households which want to own this type of house. (2) The households' 
share of the total population, living in a certain subregion, corresponds to the 
share of this region to the total region. (3) All but the most households obtain 
the most preferred house they can buy at the given price function. As opposed to 
an equilibrium distribution, the third point is weakened in a quasi-equilibrium as 
follows: everybody receives a house so that there is no preferred house that costs 
less. 

ROSEN (1974), like MAS-COLELL (1975), also examines a market for a large 
number of differentiated goods but without referring to measure theory. The model 
of a production economy describes each good by finitely many characteristics, 
where these attributes determine an implicit or hedonistic price of the good. 
Moreover, each person possesses a preference ordering over the shape of the features 
of all goods. The indivisibility of goods is overcome by the assumption that there 
are sufficiently many goods so that the choice between different shapes of the 
characteristics can be varied continuously. Correspondingly, it is supposed that 
production technology allows a supply with continuously variable properties of the 
goods. Thus, the market for differentiated goods is in fact transformed into a market 
for "perfectly divisible characteristics", for which the question of the existence of a 
competitive equilibrium can be answered. To calculate the competitive equilibrium 
we can refer for example to a simulation model in L UK (1993). This model is based 

16MAS-COLELL (1977, p. 444). 
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on a class of fixed-point algorithms in SCARF (1982) and supposes a continuum of 
persons. 

1.2 Graphical Representation of Simple Exchange Economies 

By an exchange economy we understand a set A of persons each holding an initial 
endowment Wa = (Wla, ... , wna)T (a E A) exchangeable for other amounts of 
goods. Each individual agrees to an exchange of goods provided this exchange 
improves its utility, i.e. the person at hand prefers the new commodity bundle 
Xa = (Xla, ... ,xna)T to his initialendowmentwa • 

In order that trade takes place, the individual exchange plans of all agents must 
be compatible with each other. Commodities supplied by one individual must be 
chosen by the other one. Both agents must agree to the relation at which they 
exchange their goods. 

Without defining the used concepts accurately at this point the problem to be 
examined can be illustrated graphically (Figure IV. 1 ) for two persons and two 
goods by an EDGEWORTH box. Both persons own an initial endowment WI = 
(WII, w2dT and W2 = (WI2, W22)T respectively, which sum up to the total 
endowment WA = (WIA, W2A)T of the economy (initial point AI). The first person 
- centered at the origin 0 1 - prefers all commodity bundles lying in the preference 
set above the indifference curve [I. Similarly, the second person - centered at 

0 2 
XI2~~~--~------------~r.---------------------, 

~----------------------------~--~--~ __ XII 
0 1 

.... o(f-------- WII -------l)o~~WI2 

.... O(f----------WIA-------~ 

Figure IV. I : EDGEWORTH box 
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the origin 0 2 - prefers all commodity bundles "above" the indifference curve [2. 

Consequently, an exchange of goods results in a higher utility level for both persons, 
provided the new allocation lies within the lens (A I, A2). Each exchange within 
this exchange lens improves the welfare of both consumers, until the indifference 
curves of both persons are eventually tangent. After that there is no further exchange 
possibility improving the situation of one individual without worsening the situation 
of the other one. Allocations with this property are said to be PARETO efficient. 
The core of the examined economy is described by the locus (B I , B2) and indicates 
the set of all PARETO efficient points which are feasible from the initial situation A I . 
Point D will be realized if both consumers agree on an exchange ratio corresponding 
to the line (C l , c2). Here, nothing is said about the slope of the line (Cl , c2) and 
the slopes of the indifference curve at point D. In particular, for a small number 
of market participants the realized exchange ratio depends not least on the market 
power of each agent. 

What is the "optimal" allocation resulting from the initial endowments and the 
preferences of both actors? To answer this question, it is worthwhile to dispense 
with the pure exchange of goods and to introduce a third agent - the market. The 
market "chooses" a commodity price vector p = (PI, P2) T maximizing the value 
of the excess demand pTz = pT(XI + X2 - WI - W2). At the same time the 
relative price PI! P2 determines the exchange ratio x2I XI. A possible relative price 
is represented by the line (C l , c2). 

The simultaneous optimization approach regarding these three agents can now 
be described as follows, presupposing the preferences of both consumers can be 
expressed as a utility function Ua (a = 1,2) respectively. Both consumers maximize 
their utility by valuating their initial endowment at market prices p and choosing the 
"best" commodity bundle they can buy. 

a = 1,2 

These individual choices are made without knowing the demand of the other person 
or considering his wishes. Thus, we speak of decentralized and noncooperative 
decisions. Both agents behave as price takers and quantity adjusters and react only 
to the market instead of affecting each other as in the direct exchange of goods. The 
market simultaneously chooses a price vector p out of the price simplex Il. such that 
the value of the excess demand is maximized. 

In this sense the market behaves as price adjuster by taking the excess demand 
Z = XI + X2 - W A of both consumers as given. 

Suppose the triple (XI' X2' pO) denotes a simultaneous solution to the above three 
problems; that is, the households choose one of the utility maximizing commodity 
bundles XI or X2 at given market prices pO and the market chooses an optimal 
price vector pO E Il. at the given vector ZO = XI + X2 - W A. As both 
households are restricted to their budget constraint poT (X~ - W a ) ~ 0, it follows 
poT ZO = poT (Xi - X2 - W A) ~ O. If the market maximizes the value of the excess 
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demand. then p T ZO ~ 0 for all p E /}. and. therefore. ZO ~ O. Hence. the state 
(Xl' x2• pO) is feasible because of Xl + x2 ~ W A . If all households satisfy their 
budget constraints for appropriate assumptions on their preferences. then poT ZO = 0 
results (WALRAS' law). Thus. (Xl ' x2• pO) denotes a WALRAsian equilibrium. 

In Figure IV2 point D marks a possible candidate for a WALRAsian equilibrium 
(1(0 . pO) at which the corresponding WALRASian allocation 1(0 = (xl' x2) is 
feasible since Xl + x2 = W A. At the same time both markets are cleared. ZO = 0 . 
Because the price ratio Pl/ P2 determines a budget line (CI • C2) containing points 
A I and D. the budgets of both households are balanced and the value of the excess 
demand satisfies poT ZO = O. Point D therefore yields a WALRASian equilibrium 
(1(0. pO) if the allocation 1(0 assigns utility maximizing commodity bundles to both 
persons at given commodity prices pO. 

price consumption curve 

contract curve 

Figure IV2: Exchange equilibrium 

The last step can be explained by Figure IV217. showing the same situation as 
Figure IVI. If the budget line (CI • C2) corresponding to point D separates the 
preference sets of both persons. 18 then each commodity bundle preferred to Xl or x2 

17The results have been derived on the basis of two COBB-DOUGLAS utility functions with the 
assistance of MAlHEMATICA' . Further remarks on using MAlHEMATICA' may be taken from NOGUCHI 

(1993) and BOBZIN. BUHR. CHRISTIAANS (1995). 
18Given the differentiability of the utility functions. the price ratio PI / P2 corresponds to the slopes of 

both indifference curves or the marginal rate of substitution for both persons. 
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costs more than the respective person can afford at the given initial endowment and 
the given commodity prices. Thus, each commodity bundle Xl and x2 maximizes 
utility. 

At the same time the budget line (C l , C2), separating the corresponding 
preference sets of both persons, implies that the adjoined indifference curves are 
tangent to each other at point D. Thus, the allocation (Xl' x2) is PARETO efficient. 
All other points with this property are collected in contract curve (01, 0 2) which 
is marked in bold. As a result Figure IV.2 suggests that WALRASian allocations 
are PARETO efficient and, moreover, that they lie in the core. This supposition is 
inspected and proved in Section 3.2.1. 

An alternative representation of the WALRAsian equilibrium follows from 
determining a common point of the two price consumption curvesl9 (drawn in 
bold) through the initial point AI. The price consumption curves indicate the 
locus of all commodity bundles demanded at alternative price ratios. Thus, the 
price consumption curves generate an aggregate excess demand z(p) so that all 
markets are cleared at the point of intersection, z(pO) = 0 - i.e. at the WALRASian 
equilibrium. This aspect will be the central point of the following analysis. 

The question as to what con­
ditions are sufficient for the exis­
tence of a WALRAsian equilibrium 
is illuminated under consideration 
of the fixed-point theorems of 
BROUWER and of KAKUTANI. 
Here a positive answer depends 
basically on the assumption of 
convex preference sets. As shown 
by Figure IY.3, we can construct 
examples for the case of non convex 
preference sets such that there 
is no price vector at which the 
corresponding budget line separates 
the preference sets. 

L----------1....::,::==~Xll 
0 1 

Figure IV3: Nonconvex preference sets 

Before going into the determination of a quasi-equilibrium with nonconvex 
preference sets, the problem of indivisible goods can be picked up. The subsequent 
Figure IVA illustrates the case of a divisible good 1 and an indivisible good 2. If 
the second good can appear only at integer units, then the total endowment w A2 

of this good must be an integer. As before the initial endowments of both persons 
correspond to point A. It is not required that the initial endowments W21 and W22 

must be integer for this point. Each person may initially own fractions of a good 
that can be consumed only at integer units. 

Now the preference sets of both persons consist only of commodity bundles 
satisfying the integer constraints. The bold lines indicate two preference sets. The 
lower preference set contains all commodity bundles which the second person thinks 
to be not worse than x~. To get an optically better idea, the convex hull of this 
preference set is also marked. The first person's marked preference set includes all 

19Cf. VARIAN (1992, p. 317). 
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commodity bundles which are not worse than xf. As shown by the corresponding 
convex hull, not all points of this convex hull, satisfying at the same time the integer 
constraints, are elements of the preference set; see point x~ and the section to the 
right hand of this point. The diagonal (CI , C2) determines not only an exchange 
ratio or a relative price PI / P'2 but also at the same time separates the convex hulls 
from the above mentioned preference sets. 

xI2 -.,-,---;-----------~_,~----------~--------_, 
0 2 

~----------------------~--~ ________ ~~XII 
0 1 c i 

.... (E------- XII ------~~.~o(----- XI2 --+-I 

Figure IV.4: Nonconvex preferences with an indivisible good 

The given price ratio implies two demand sets - {xf, if} for the first person 
and {x~} for the second person - which themselves do not allow any compatible 
exchange plan. Neither xf - WI nor if - WI equals -(x~ - W2) so that the 
price vector pO cannot provide a WALRASian equilibrium. However, for the marked 
exchange ratio there is an allocation (XI ' x2) = (xI' x~) having the following 
properties: 

• Both persons utilize their whole budgets. 

• The allocation *0 = (xI' x'2) is feasible since xI + x'2 = WI + W2 . 

• The two commodity bundles XI and x'2 are contained in the convex hull of the 
demand set. 

XI E conv {Xf, in = {Axf + (I - A)ifl A E [0, IJ) and x'2 E conv {xn 
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• At least one of the two persons receives a commodity bundle he demands. 
For the given price ratio PI/ P'2 the commodity bundle x'2 = x~ maximizes 
the utility of the second person. In other words, x'2 denotes an element in the 
demand set, x'2 E {x~} . 
However, the first person xI does not demand, xI ¢ txt, it}. Although 
this commodity bundle belongs to the convex hull of the preference set with 
respect to xf. 

Starting with the marked exchange ratio and with an allocation KO = (Xl' x'2), 
the question is now asked as to what shortcoming results from (xI' x'2) and the 
allocation demanded - for instance, (xt, x~) - when a person does not demand 
the allocated commodity bundle. If one person at the most receives a commodity 
bundle he does not demand, then the distance d between the points C! and C2 (with 
appropriate preferences) gives an upper bound for this shortcoming, IIxI - xtll < 
d(C!, C2 ). 

Furthermore, we can ask whether there is an allocation KOO = (xIO, x10) 
alternative to KO = (xI' x2) so that the burden, like Xl - xt, is distributed 
"equally" among all persons and not borne by a particular person. Point B illustrates 
such an allocation. Neither of the two persons is more remote from his real demand 
than II XI - xt II /2. For a sufficient large number of persons it turns out that this 
distance becomes negligibly small. 

As suggested by the graphical introduction, the following Sections 2.1 to 2.3 are 
subdivided hierarchically with respect to the convexity of preferences. 

(1) The case of strictly convex preferences conforms to VARIAN (1992). No 
indivisible goods can be included, but the more familiar dealing with demand 
functions instead of demand correspondences enables an easier lead-in to dealing 
with fixed-point theorems. A commodity price vector pO is required so that the 
resulting aggregate excess demand vector vanishes, z(pO) = o. In view of 
the equilibrium price vector the WALRAsian equilibrium (KO, pO) is completely 
determined. 

(2) For convex preferences we present the dealings with demand correspon­
dences without considering the difficulties caused by indivisible goods. The 
procedure follows HILDENBRAND, KIRMAN (1988). The existence proof is given 
first of all by a procedure frequently used in economic theory, where the commodity 
space is truncated from above. The proof is completed when a price vector pO is 
found which permits all markets to be cleared, pO E Z(pO). Thus, a WALRASian 
equilibrium (KO, pO) exists. 
Afterwards an alternative proof is presented as it is more suitable for the treatment 
of indivisible goods. This procedure is taken from HEUSER (1992) and does not 
need the restriction of the commodity space. 

(3) In the case of indivisible goods no exact equilibria can be proved. However, 
there are pairs (K, p) which do not arbitrarily differ from an exact WALRAsian 
equilibrium (KO, pO). The ROTHENBERG equilibrium presented in Proposition 
IV. 1 0, p. 233, and the e-equilibria illuminate the extent of deviation from an exact 
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equilibrium under various aspects. 20 

1.3 The Problem of Unbounded Demand for Goods 

1.3.1 Convex Preference Orderings 

In view of using the fixed-point theorems (Corollary C.IS.I and Theorem C.17) the 
results of Section 3.2.2(b) show that the aggregate excess demand correspondence 
Z : t::. ~ l,}3(JRn ) does not satisfy the required conditions. 

Assuming convex preference orderings with divisible goods, Z(p) is convex 
(Proposition III.24), but for continuous and strongly monotone preference orderings 
we have Z(p) = 0 for all price vectors pEat::. containing a zero component; 
see Proposition 111.28. At the same time Corollary III.29.1 implies that the 
correspondence Z cannot be bounded. 

There are consequently two possibilities to apply Theorem C.17 (DEBREU, 
GALE, NIKAIDO), p. 314. Either the convex closed subset S to be chosen from 
the price simplex t::. may not contain price vectors with zero components,21 i.e. 
S n at::. = 0. Or we at once put S = t::. and modify the aggregate excess demand 
correspondence Z afterwards so that it holds the premises of Theorem C.17. 

Usually, economic literature on this subject suggests the second way.22 As a 
result the correspondence Z has to be modified so that the level sets of the new 
correspondence ZS are nonempty, i.e. ZS(p) * 0 for all PEt::.. Moreover, we 
have to assure that the new correspondence ZS maps into a compact set. 

______ ~+l 

___________ .w", I 

o 

In accordance with Figure IY.S the 
procedure starts with a truncation of the 
commodity space X = JR~ . 

X{ := {x E XI 0 ~ x ~ WA + I} . 

If each person is only allowed to choose 
commodity bundles within the set X{, then 
he can demand more of a good than is 
available in the economy. But corresponding 
to Figure IV.5 the level of excess demand is 
bounded for each person, x~(p, Wa)-WA ~ 
1. 

Figure IY.S: The restricted commodity For finitely many persons included in the 
space X economy this restricts the aggregate excess 

demand to #A · 1. As long as the level of 
the excess demand is of minor consequence, the previous analysis remains the same 
particularly as the case of a WALRASian equilibrium excludes the excess demand 
for a good. 

20The presented results follow mainly from the analysis of nonconvex preferences. 
21 This method is presented in Section 2.2. 
22 Keep in mind that the transition of the correspondence Z to a correspondence ZS may not destroy 

the economic meaning of an aggregate excess demand correspondence. 
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In view of the introduced truncation 

BS(p, wa ) := B(p, wa ) n XI 
= G(p, wa ) n XI 

person a's demand set at prices p 

has to be modified to 

(because of XI C X) 

D~(p, wa):= {xI x E BS(p, wa), x ~a X 'Ix E BS(p, wa)}. 
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Neither sets differ as long as Da(p, wa ) is already contained in Xf. Moreover, 
the newly defined correspondence D~(-, wa ) is homogeneous of degree ° in prices. 
Furthermore, D~ (', wa ) has the following properties for all price vectors in the price 
simplex D.. 

Proposition Iv.l The synthetic sets D~(p, wa ) are non empty and compact for all 
price vectors p E D. provided ~a is a continuous preference ordering. 

Proof: The set G(p, wa ) is closed for every price vector p E D.. Furthermore, XI 
is compact. Thus, the synthetic budget set BS(p, wa ) = G(p, wa ) n XI is compact 
and not empty as it contains the origin x = O. Proposition 111.22 now means that 
the set of best elements D~(p, wa ) in the set BS(p, wa ) is not empty and compact. 

• 
In particular, it follows 

Proposition Iv.2 Provided the preference orderings are continuous and convex, 
then the synthetic demand correspondence D~(-, wa ): D. --+ I,JJ(Xf) is upper 
semi-continuous in the price simplex D. if Assumption 2 (wa > 0) holds. 

Proof: By definition the correspondence D~(., wa ) is upper semi-continuous in D. 
if it is upper semi-continuous at every point p E D. and if D~(p, wa ) is compact 
for all p ED.. Since the criterion of compactness is already fulfilled by Proposi­
tion IV. I , we have only to prove the upper semi-continuity at each p ED.. 

As XI is compact, by Theorem C.IO, p. 309, it suffices to show that 

is valid for every sequence {pV} of price vectors in D. and for every sequence {XV} 
of commodity bundles in Xf. Because of XV E D~(pV, w a ) both XV E G(pV, w a ) 

and XV E XI must hold since D~(p, wa ) can be expressed as 

G(p, wa ) n XI n :Pa(x). 
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For the closed set Xf we obtain XV -+ xO E Xf. All that is left to show has been 
proved by Proposition 111.25 in which G(p, wa ) must be replaced with BS(p, wa ). 

Note that the condition pOTwa > 0 (Proposition III.25) holds under Assumption 2 
for all price vectors p E/).. • 

Again the actual properties of the new individual demand correspondences 
immediately transfer to the synthetic aggregate demand correspondence DS with 

DS(p) := L D~(p, wa ) 

aeA 

and the synthetic aggregate excess demand correspondence ZS with 

ZS(p) := DS(p) - WA. 

Summarizing with respect to Theorem C.17 (DEBREU, GALE, NIKAIDO) we have 
the following: 

Proposition IV.3 If each person a E A has a positive initial endowment Wa > 0 
(Assumption 2) and a continuous convex preference ordering, then the synthetic 
aggregate excess demand correspondence ZS has the following properties: 

I. ZS (p) is not empty and convex for all p E /). ; 

2. ZS is upper semi-continuous and thus closed in the entire price simplex /).; 

3. ZS is bounded, i.e. ZS(p) C X3:= {zl - WA ~ Z ~ #A ·I}; 

4. For every p E /). and every z E ZS (p) we have p T Z ~ 0 . 

Proof: The first property results from Propositions IV. 1 and III.24. Regarding The­
orem C.7, p. 309, Proposition IV.2 implies the second property. The third property 
ensues from the definitions of the synthetic correspondences DS and ZS, i.e. 

D~(·, wa ): /). -+ s:]3(Xf) 

DS : /). -+ s:]3(X2) 

Zs: /). -+ s:]3(X» 

with Xf = {xl 0 ~ x ~ W A + I} , 

with Xi:= {Xi 0 ~ x ~ W A + # A . I} , 

with X3:= {zl - WA ~ Z ~ #A . I}. 

Take into consideration that the set X3 is compact. Since each person is restricted 
to his budget constraint p T Xa ~ P TWa for all price vectors p E /). the fourth 
property holds for the aggregate economy. • 

1.3.2 Consideration ofIndivisible Commodities 

Allowing for indivisible goods with the commodity space X = lR~ x z~-nd or 
nonconvex preference orderings, the aggregate excess demand correspondence Z or 
the synthetic correspondence ZS will usually not be convex-valued as required by 
Theorem C.17 (DEBREU, GALE, NIKAIDO). 
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BROOME (1972) gets over this problem mainly by superseding the preference sets 
:Pa (x) by their convex hulls. Without repeating the procedure exactly, 

n G(p, wa ) n conv XI n conv:Pa(i) 
XEB'(p.wa ) 

offers an idea of its operating method. Accordingly, i>~(p, wa ) results from 
an intersection of nonempty convex sets, where BS(p, wa ) = G(p, wa ) n XI 
guarantees that only admissible commodity bundles i E XI are taken into account 
so that especially conv:Pa(i)"* 0 holds. 
Afterwards it is shown by a relatively extensive proof that the derived synthetic 
individual demand correspondences i>~C wa): /). -+ I.}J(IRn) are convex-valued 
and upper semi-continuous in the entire price simplex /). provided there is at least 
one divisible good?3 
Thus, a synthetic aggregate excess demand correspondence ZS results satisfying the 
assumptions of the fixed-point theorems. 

2 Existence of Competitive Equilibria 

2.1 Strictly Convex Preference Orderings 

In the case of strictly convex preference orderings the commodity space is X = 
IR~. The existence of an exchange equilibrium is proved when it is possible to 
show the existence of a positive price vector pO > 0 at which the aggregate excess 
demand vanishes, z(pO) = O. Before this is proved with the help of Corollary 
C.I5.I, p. 312 (applying BROUWER's fixed-point theorem), we have to note the 
following implications of strictly convex preference orderings. 

Proposition IV.4 Given strictly convex (and continuous) preference orderings, the 
demand set Da(p, wa ) contains precisely one element x~(p, W a ) for every price 
vector p> o. 

Proof: Suppose that Da(p, wa ) includes two diverse commodity bundles Xl and 
x2. Then person a can also buy each commodity bundle x = Axl + (l - A)x2. 
On the basis of strictly convex preference orderings the person at hand prefers the 
commodity bundle x to commodity bundle xl so that Xl cannot be a best element in 
contradiction to the above assumption. Since Da(p, w,,) is not empty (Proposition 
III.23), the demand set must consist of one and only one element. • 

The transition from an individual demand correspondence DaC wa ): rint /). -+ 

I.}J(X) to an individual demandjimction x~(-, wa): rint /). -+ X yields the next 

Proposition IV.S Given a strictly convex preference ordering of person a, the 
individual demand function x~ (. , wa ) is continuous in the relative interior of the 

23Cf. BROOME (1972, p. 237. Lemma 4.7). 
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price simplex rint I::!... If the preference orderings of all persons a E A are strictly 
convex, then the aggregate demand function xa and the aggregate excess demand 
function z are continuous in rint I::!.. as well. 

Proof: For strictly convex preference orderings the demand set contains one 
and only one element, Da(P, wa) = {x~(p, wa)} for each price vector p 
(Proposition IV.4). For DaC, wa) = {x~c, wa)} the definitions of an upper 
semi-continuous24 correspondence Da (·, wa ) equals the definition of a continuous 
function x~ (', w a ). 25 With that xa, being the sum of continuous functions, is also 
continuous in rint I::!... The same argument holds for the aggregate excess demand 
function z. • 

The restriction of the commodity space to Xi guarantees that the synthetic demand 
correspondences D~ ( " W a ) is upper semi-continuous in the entire price simplex I::!..; 

see Proposition IV2. Analogous to Proposition IV.5, synthetic individual demand 
functions x~s C, wa ): I::!.. -+ Xi result, which are continuous in the entire price 
simplex I::!... This evokes a synthetic aggregate excess demand function zS, which is 
continuous in I::!... Applying Corollary C.I5.I now guarantees the existence of a price 
vector pO E I::!.. satisfying 

(IV1) ZS(pO) = LX~S(pO, wa ) - WA ~ O. 
aEA 

Moreover, this inequality means that no individual person a E A demands 
more of a good than is available in the economy, x~s (pO, wa ) ~ W A. Thus, the 
additional constraint of a truncated commodity space Xi becomes obsolete for price 
vectors pO with ZS(pO) ~ 0, i.e.26 

ZS(pO) ~ 0 ===> X~S(pO, Wa ) = X~(pO, w a ). 

Since the restriction Xi is obsolete for each person, the restriction X3 also loses its 
significance for the total economy 

so that the subsequent propositions in fact hold for the aggregate excess demand 
function z. 
Since pj = 0 leads to a positive excess demand Zj(pO) > 0 for strongly 
monotone preference orderings, there must be a positive commodity price vector 
pO > 0 by (IV1). Both inequalities pO> 0 and z(pO) ~ 0 are only compatible 
with WALRAS' law (Proposition 111.30) poTz(po) = 0 if the excess demand 
vanishes on all commodity markets,27 z(pO) = O. Summarizing, we obtain the 
next 

24The upper semi-continuity of the individual demand correspondences has been proved in Proposition 
III.26. 

25Cf. BERGE (1963, p. 109). 
26If z" = XA - W A ;§; O. then regarding Figure IV.S point XA must lie in the box with the dotted line 

corresponding to the initial endowment W A. Thus. each point x~s (po. wa ) lies also in this box. 
27Cf. VARIAN (1992, p. 318 f.). 
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Proposition IV.6 (Competitive Equilibrium) 28 Under Assumption 2 (wa > 0) in 
each exchange economy 8: A -+ ITsmo x IR~ an equilibrium price vector po > 0 

• seD 
eXlsts. 

If po > 0 is an equilibrium price vector, i.e. z(pO) = 0, then the corresponding 
WALRASian allocation It° is also known from the persons' demand functions x~ = 
x~(pO, wa ). 

Starting with an imbalanced price vector p, we can imagine the following 
adjustment mechanism to a WALRAsian equilibrium (It°, pO). Note that 
BROUWER's fixed-point theorem (Theorem C.lS) and Corollary C.lS.l are 
equivalent. Hence, each numerical procedure for computing equilibrium prices 
has, at the same time, to be an algorithm for computing fixed-points of continuous 
mappings.29 

Because a WALRASian equilibrium30 only allows the occurrence of excess 
supplies, z(pO) ~ 0, we have merely to discuss the clearing of an excess demand. 
By an appropriate modification of the function g with the components 

j = 1 •...• n 

defined in the proof of Corollary C.lS.l a function g results with 

_ pj+max{O.zj(p)} 
g/p) = ",n {O s } 

1 + L...k=1 max . Zk(P) 
j = 1, ...• n. 

If there is an excess demand on one market, zj(p) > O. then the relative price 
P j of the examined good is raised until zj(pO) ~ 0 is satisfied. With that it is 
assumed that the excess demand for a good diminishes with an increasing price for 
this good. Finally, in the WALRASian equilibrium all excess demands are removed, 
z(pO) ~ O. At the same time strongly monotone preferences exclude an excess 
supply (Corollary III.30.2). Thus. at an equilibrium. represented by BROUWER's 
fixed-point pO = g(pO). all markets are cleared, ZS(pO) = O. 

Example: To clarify the structure of the solution. imagine an economy in which 
all persons a E A possess a utility function Ua (XI. X2) = x~ x~ and an initial 
endowment (Wla. W2a). Calculating the excess demand functions Zja(PI, P2) for 
good j and for each person a. two functions for the aggregate excess demand result 
with the following structure: 

ZI(PI. P2) = _C¥_(WIA + P2 W2A) - WIA 
c¥ + f3 PI 

Z2(PI, P2) = ~f3(W2A + PI WIA) - W2A. 
c¥ + P2 

28Cf. HILDENBRAND, KIRMAN (1988, p. 108). 
Note that Assumption 2 is required for the proof of Proposition Iv'2. 

29Cf. SCARF (1982, p. 1014 f.). 
30Por the definition of a W ALRASian equilibrium, see p. 192. 
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Figure IV.6: Representation of a 

competitive equilibrium with two 

goods 

PI 
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where (WIA, W2A) denotes the summed up 
initial endowments (Wla, W2a) of all persons. 
Since the price vector (PI, P2) denotes a 
point in the price simplex tl it is furthermore 
PI + P2 = 1. The restriction of the 
commodity space X = IR~ to 

Xf = {x E XI 0 ~ x ~ (::~: ~) } 
yields the synthetic excess demand functions 
zf and zi according to Figure IV. 6. This 
restriction is irrelevant for the fixed-point 

(PI' P'7) with P'2 = 1 - PI and 
Zj(PI' P'2) = 0 (j = 1,2). 

2.2 Convex Preference Orderings 

As before, convex preference orderings are only compatible with perfectly divisible 
goods. Thus, the commodity space can be identified with X = IR~. For the proof 
of the existence of an exchange eqUilibrium it must be shown that there is a price 
vector pO > 0 satisfying 0 E Z (pO). The proof ensues with the aid of Theorem 
C.17 (DEBREU, GALE, NIKAIDO), p. 314. 

By Proposition IV.3 the synthetic aggregate excess demand correspondence 
Zs: tl -+ ~(X3) derived in Section 1.3.1 satisfies all premises of Theorem C.17 
if Assumption 2 (wa > 0) holds. This implies: 

There is a pO E tl and a ZO E ZS(pO) such that pT ZO ~ 0 holds 
forall p E tl. 

With that each vector ZO with a positive component zi > 0 leads to a contradiction 
since the price vecto~1 p = e j E tl yields p T ZO > O. Thus, ZO ~ O. Again 
this inequality means that no person a E A demands more of a commodity than 
is available in the economy; see (IV. 1). The additional restriction of a bounded 
commodity space becomes obsolete, i.e.32 

For monotone preference orderings each price pi = 0 leads to a positive excess 
demand zi > O. Because of ZO ~ 0 it is thus well-founded to assume pO > O. 
In view of WALRAS' law (Proposition 1II.30) poT ZO = 0 must also be satisfied. 
From pO > 0 it at once ensues ZO = 0 for the examined vector ZO E Z(pO) so 
that the existence of a competitive equilibrium is proved. 

31 We denote the j-th unit vector by ei . 
32 It should not be forgotten at this point the hint of footnote 26. 
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Proposition IV.7 (Competitive Equilibrium) Under Assumption 2 (wa > 0) in 
each exchange economy 8: A -+- Dsmo x JR+ there is an equilibrium price vector 

co 
po> o. 

An alternative proof for the existence of exchange equilibria is given by HEUSER 
(1992, p. 632 f.). This proof does not need the truncation of the commodity space 
and is suitable to avoid analytic difficulties considering indivisible commodities as 
established in Section 1.3.2. The disadvantage is a more complex proof. Preparing 
for the treatment of indivisible goods in Section 2.3, we now give a representation 
of the proof. The idea of the proof refers to the already proved properties of the 
aggregate excess demand Z and is based on constructing a sequence of fixed-points 
of the form (pV, ZV). 

If the correspondence Z: rint 8 -+- I.l3 (JR n ) is restricted to a compact set 
S C rint 8, i.e. 

Z: S -+-1.l3(JRn) with Z(p) = Z(p) Vp E S, 

then the resulting correspondence Z has the following properties: 

1. Given continuous convex preference orderings, the sets Z(p) are not empty 
(Proposition III.23) and convex (Proposition III.24) for all pES. 

2. The correspondence Z is upper semi-continuous (Proposition 111.27) and, 
therefore, closed in S (Theorem C.7, p. 309). 

3. If the upper semi-continuous and compact-valued correspondence Z is 
restricted to a compact set S c rint 8. then the resulting correspondence 
Z is bounded (Theorem C.S, p. 308). 

4. For every PES and every Z E Z(p) we have pTz ~ 0 (see (111.104), 
p.194). 

Thus, by Theorem C.17 (DEBREU, GALE, NIKAIDO) the correspondence Z has a 
fixed-point cPo Z) with PES and Z E Z cP) such that p Tz ~ 0 holds for all 
pES. 

With this outcome it seems reasonable to choose a suitable sequence {SV} 
of closed convex subsets in the price simplex 8 instead of the set S such that 
SV -+- 8 holds for the limit. The corresponding sequence of fixed-points (pV, ZV) 

is investigated afterwards. 
Defining the sets 

for v ~ n 

leads to the following inclusion 

(IV.2) Sn C sn+1 C sn+2 . . . with SV -+- 8 

and each price vector p E 8 is included at least at the limit. 
Let ZV be the correspondence Z restricted to the domain Sv. For v ~ n these 

correspondences fulfill the four above mentioned properties. Hence, by Theorem 
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C.l7 (DEBREU, GALE, NIKAIDO) each of these correspondences has a fixed-point 
(pV, ZV) with pV E SV and ZV E ZV(pV) so that 

(IV. 3) 

With the help of the sequence of fixed-points (pV, ZV) Proposition IV. 7 can be proved 
in four steps. 

Step 1: The sequence of price vectors {pV} C 6.. is bounded. Accordingly, 
there is a convergent subsequence {pVk} with its limit po belonging to the (closed) 
price simplex 6.., pVk ~ pO, and po E 6.. . 

Step 2: On the basis of the definition of an aggregate excess demand the 
sequence {ZV} is bounded below by -w A ~ ZV for all v ~ n. 

Moreover, (IV.3) implies for an arbitrary33 p E sn (with p > 0) the 
inequality pT zn ~ O. Considering the inclusion (IV.2), it follows furthermore 
pT ZV ~ 0 for all v ~ n. Because of -w A ~ ZV the sequence of points {ZV} 
must also be bounded above. Both bounds yield the shadowed area in Figure IV. 7. 
Thus, the sequence of points {ZV} is bounded and a convergent subsequence {ZVk} 
exists with ZVk ~ zo . 

Step 3: For w A > 0 (Assumption 2) 
and po E 6.. it is poT w A > O. Hence, we 
must have a positive price vector po > 0 
because otherwise by Corollary 111.29.1 it 
would be IIzvk II ~ 00 for strongly mono­
tone preference orderings34 contradicting the 
boundedness of the sequence {ZV}; see Figure 
IV.7. Closedness of the correspondence Z for 
all p > 0 assures that 

[pVk ~ po > 0, ZVk ~ zO, ZVk E Z(pVk)] 

==> Zo E Z(pO). 

Figure IV.7: Boundedness of the Step 4: WALRAS' law (Proposition 
sequence of points {z") IIl.30)requires pTz=O forall ZEZ(p). 

In particular, poT ZO = 0 follows from 
ZO E Z(pO). The relation (IV.2) includes every positive price vector satisfying 
condition (IV.3) for sufficiently large v. Thus, p T ZO ~ 0 holds for all p > 0 
such that ZO ~ 0 must be satisfied. Relations po > 0, ZO ~ 0 and poT ZO = 0 
imply finally ZO = O. Thus, the alternative proof of Proposition IV.7 is completed. 

The concluding remarks intend to draw the attention to the major features of 
the aggregate excess demand correspondence Z. Only these properties guarantee 
the existence of a competitive equilibrium. All additional assumptions are made in 
consideration of the aspect that the correspondence Z fulfills the relevant premises. 

Two conditions are given in advance of the subsequent proposition. 35 

33 As PEt:. the set S" contains in the presented case a single price vector p = (1/ v . .. " 1/ v) T 

34Corollary 111.29.1 is based on the same assumptions as Proposition 111.29. Thus. for convex 
preference orderings we have merely to stipulate Assumption 2 (wa > 0); see Proposition IV.7. 

35See Proposition III.30 (WALRAS' Law) and Corollary 111.29.1. 



2 Existence of Competitive Equilibria 231 

WALRAS'Law: For all p > 0 and for all z E Z(p) it is pT Z = o. 

Boundary Condition: Suppose the sequence of price vectors {pV} with pV > 0 
converges to a price vector p having a zero component. p E all. Then for 
each sequence of excess demand vectors {ZV} with ZV E Z(pV) the relation 
IIzvlI -+ +00 is valid. 

Proposition Jv.S (Competitive Equilibrium) 36 Suppose that the aggregate excess 
demand correspondence Z is convex-valued. bounded below. and upper semi­
continuous for all positive price vectors p > O. Then there is an equilibrium 
price vector po > 0 such that 0 E Z(pO) if Z satisfies WALRAS' Law as well 
as the Boundary Condition. 

We refrain from repeating the above proof since merely slight modifications must 
be carried out. 

The relationship with Proposition IV.7 becomes apparent when observing the 
additional assumptions. The correspondence Z satisfies all premises of Proposition 
IV.8 if we assume that each person has a positive initial endowment Wa > 0 (As­
sumption 2) and a strongly monotone convex preference ordering. Proposition IV.8 
implies. therefore. Proposition IV.7. 

2.3 Consideration of Indivisible Commodities 

From Proposition 111.27. p. 199. it is known that the aggregate excess demand 
correspondence Z is upper semi-continuous and compact-valued for every p > 0 
if there is at least one divisible good demanded by each person in a positive quantity 
(Assumption 1). 
Since the correspondence Z is usually not convex-valued for indivisible goods. 
the sets Z(p) are substituted by their convex hull Zco(p):= convZ(p) for all 
p > O. Theorem C.Il. p. 310, assures that the new correspondence Zeo is upper 
semi-continuous and compact-valued for every p > O. 

Let Z~o be the correspondence Zeo restricted to the area SV. Each 
correspondence Z~o is upper semi-continuous in SV. i.e. it is upper semi-continuous 
and compact valued for every p E SV. All correspondences Z~o satisfy the 
following conditions: 

1. For continuous convex preference orderings the sets Z~o (p) are not empty and 
convex for all pES. 

2. The correspondences Z~o are upper semi-continuous and. therefore, closed in 
the respective set SV. 31 

36Cf. DEBREU (1982. p. 722. Theorem 8). where an alternative proof is presented which goes back to 
NEUEFEIND (1977). 

37Theorem C.II states that Zco is compact-valued and upper semi-continuous for every p > O. By 
Proposition 111.27 this property passes on to the restricted correspondences Z~o' Finally. the closedness 
of the correspondences Z~o follows from Theorem C. 7. 
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3. If the correspondence Zeo is restricted to a compact set SV C rint!1, then 
the resulting correspondence Z~o is bounded. 38 

4. In view of Corollary B.4.3, p. 293, for every p E SV and for every Z E 

Z~o (p) the inequality p T Z ~ 0 must be satisfied. 

As before, we obtain from Theorem C.17 (DEBREU, GALE, NIKAIDO), p. 314, for 
each correspondence Z~o a fixed-point (pV, ZV) with pV E SV and ZV E Z~o(pV) 

so that 

Analogous to Proposition IV,7 (competitive equilibrium with convex preferences), 
it follows now 

Proposition IV.9 Let Assumptions 1, 2, and 3 hold. Then in each exchange 
economy 8: A -+ Dsmo x IR~ there is a price vector po > 0 so that 
o E Zeo(PO). 

Proof: Using the sequence of fixed-points (pV, ZV) for the correspondences Z~o: 
SV -+ ~(IRn) with SV -+ !1, Proposition IV,9 can be proved by the same four 
steps as before Proposition IV,7. Hence, only a few comments are necessary. 

If we replace the correspondence Z with Zeo in step 3, p. 230, then to use Cor­
ollary III. 29. 1 we have to keep in mind that the analysis is now based on indivisible 
goods. Thus, all of the three Assumptions 1, 2, and 3 are required. Furthermore, the 
closedness of the correspondence Zeo has already been noted. 

Take Corollary B.4.3, p. 293, into account for step 4. If p T Z = 0 holds for all 
z E Z(p), then the equation is satisfied for all z E Zeo(P), too. • 

The main difference between Propositions IV.7 and IV,9 is that the first assures in 
contrast to the second one - apart from the existence of an equilibrium price vector 
po _ the existence of a WALRASian allocation XO E x X, i.e. 

aeA 

x~ E Da(pO, wa) for every person a E A 

and L:>~ = WA· 

aeA 

This implication can only partially be transferred to Proposition IV,9 because the 
aggregate excess demand correspondence Z has been substituted by the convex­
valued correspondence Zeo' Thus, the conclusion from the aggregate excess demand 
Zco(pO) to the individual commodity demand Da(PO, wa) remains impossible. A 
feasible allocation XO E x IR~ exists but not all persons receive a commodity 

aeA 
bundle they demand. Nevertheless, the issues which can be proved for convex 
preference orderings (Proposition IV,7) do not become completely obsolete. 

381f the correspondence Z:o is upper semi-continuous in S", then it is upper semi-continuous and 
compact-valued for every pES". Everything else results again from Theorem C.?, p. 309. 
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Considering Theorem B.5, p. 294, 

Zco(pO) =conv(LDa(PO,Wa)-WA) = LD~O(pO,Wa)-WA' 
aeA aeA 

where we set again D~O(p, wa ) := convDa(p, wa ), a pair (XO, pO) corresponding 
to Proposition IV.9 can be understood as follows: 

Proposition IV.IO (ROTHENBERG Equilihrium)39 Suppose that Assumptions 1, 
2, and 3 hold. Then in each exchange economy 8: A -+ TIsmo x 1R~ there is a 
price vector pO > 0 and a feasible allocation XO so that 

(IV,4a) 

(IV.4b) 

(IV.4c) 

poTX~ = poTwa for each person a E A, 

x~ E D~O(pO, wa ) foreachperson a E A and 

#(a E AI x~ ¢ Da(pO, wa )} ~ n -1, 

LX~ = WA· 

aeA 

Some comments must first be made in advance of the proof. By (IV.4b) and (IV.4c) 
the above mentioned pair (XO, pO) contains a feasible allocation XO E x 1R~, 

aeA 
where the elements x~ do not necessarily satisfy the integer constraints. The 
budgets of all persons are, however, balanced for the price vector pO; see (IV.4a). 
The statement (IV.4b) notes two properties of the pair (XO, pO). On the one hand 
concerning n goods the allocation XO assigns a vector x~, not required by these 
persons, at the most n - lout of #A persons. On the other hand the allocation 
XO does not consist of arbitrary vectors. Each vector x~ belongs to the convex hull 
of those sets of commodity bundles which are chosen by the person a concerned 
at prices pO. This result has already been noted in Figure IV.4, p. 220, for 
two persons and two goods. If the demand set Da(pO, wa ) is a singleton, then 
Da(pO, wa ) = D~O(pO, wa ). Thus, by (IV.4b) this person at least would receive 
a commodity bundle x~ E X he demands. 

Proof: As each person with a monotone preference ordering and at least one 
divisible good only demands those commodity bundles which make use of the whole 
budget, it ensues that 

Thus, if (IV.4b) holds, Corollary B.4.3, p. 293, entails (IV.4a). 

Defining the individual excess demand by Za:= x~ - Wa with x~ E Da(p, wa ) 

for each person a E A, then the set of excess demand vectors for each given 

39Cf. STARR (1969, p. 29). 
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price vector pO > 0 is a compact subset in the (n - 1 )-dimensional hyperplane 
poT Z = O. By SHAPLEY and FOLKMAN40 for #A > n - 1 and 0 E Zco(pO) 
there are vectors of the form Za E D~O(pO, w a) - Wa or, equivalently, x~:= 

Za + Wa E D~o (pO, w a) fulfilling two conditions: first L Za = 0 and second 
aeA 

Za E Da(pO, w a) - Wa is satisfied with at the most n - 1 exceptions. Therefore no 
further explanations of (IY.4b) and (IY.4c) are needed. • 

As previously shown, the ROTHENBERG equilibrium (KO, pO) of Proposition 
IV.lO involves a feasible allocation KO, but not all vectors x~ correspond to a 
commodity bundle demanded by person a at prices pO. As every person individually 
decides on an optimal commodity bundle x~ E X at given commodity prices pO, 
now the question arises as to what extent the feasible but not necessarily chosen 
allocation KO with 

differs from the chosen but not necessarily feasible allocation Kd with 

(X~)aeA E x X 
aEA 

when both allocations do not differ arbitrarily according to Proposition IY.1 O. 

o Xl 

Figure IY.8: Radius of the demand set 

Da(pO, wa ) 

examined person.42 

To offer a measure for the degree of 
deviation between both allocations KO and Kd , 

we define the radius of the set Da(P, wa ): 

rad Da(p, wa):= inf sup IIi - xII . 
xeRn xeDa(P.Wa) 

This measure indicates the radius of the 
smallest closed ball containing the nonempty 
compact set Da(p, wa).41 Assuming that 
the burden borne by person a by a vector 
x~ E D~o (pO, wa) rises with increasing 
distance to a chosen commodity bundle 
x~ E Da(pO, w a), then 

rad Da(pO, w a) = rad D~O(pO, w a) 

indicates the worst possible case for the 

Figure IY.8 shows the demand set Da(PO, w a) = {x!, x~}. Thus the greatest 
deviation of a point in D~O(pO, w a) results from the commodity bundles x! and x~ 
at x~. From the point of view of person a the point x~ E D~o (pO, Wa) is the worst 
possible case. 

40See Theorem B.6, p. 295. 
4lTherefore BONNESEN, FENCHEL (1934, p. 54) call rad C the radius of the circumscribing ball of 

the set C. 
42Note that upward and downward deviations from a feasible (integer) commodity bundle x~ are 

treated as being equal: ''Thus, 11110 and 9/10 of a car are equally bad." 
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With regard to each person the radius of a commodity demand set Da(pO, wa ) 

gives a nonnegative upper bound for the deviation between both x~ E D~o (pO, Wa ) 

and x~ E Da(pO, wa ). Hence, there is an upper bound for the accumulated 
deviation between both allocations XO and xd with respect to the total economy. 

Proposition Iv.ll Let Assumptions 1, 2, and 3 hold. Then in each exchange 
economy 8: A ---+> il smo x 1R~ there is a price vector pO > 0 as well as a 
feasible allocation XO and an allocation xd chosen such that 

(IV.5a) 

(IV.5b) 

X:EDa(pO,wa) foreach aEA, 

II ~)x: - x~)112 ~ Lrad2 Da(pO, wa ). 

aeA aeA 

Before proving this proposition, two comments are given in advance. The 
allocation xd is described by (IV.5a). Each person chooses a commodity bundle 
x~ E X demanded at commodity prices pO. The inequality (IV.5b) provides a first 
upper bound for the accumulated deviation between the (feasible) allocation XO and 
the allocation xd chosen at prices pO. 

The second comment notes the consistence of this outcome. If the demand sets 
Da (pO , wa ) consist of one and only one element so that rad Da(pO, wa ) = 0, then 

it ensues that II L(x: - x~)112 ~ O. As found out before, this inequality holds if 
aeA 

and only if each person receives a commodity bundle he demands, x~ = x~ for all 
a E A. 

Proof: By Proposition IY.I0 under the Assumptions 1, 2, and 3 there is a 
ROTHENBERG equilibrium (XO, pO) in the examined economy 8 with 

L(X~ - wa ) = 0 E Zco(pO). 
aeA 

With that and by Theorem B.7, p. 295, there is a commodity bundle x~ - Wa E 

Da(pO, wa ) - Wa so that (IV.5a) is satisfied.43 Furthermore, Theorem B.7 results 
in 

II L(x~ - wa ) - L(x~ - wa )1I2 ~ Lrad2 [Da(pO, wa ) - Wa]. 

aeA aeA aeA 

Because of rad Da(p, wa ) = rad Da(p, wa ) - Wa this at once yields (IV.5b). • 

A weakness of the estimation (IV.5b) is that the right hand side of the inequality 
depends among other things on the number of persons, on the price vector pO, and 
on the form of preferences. Thus, the estimation will vary with each change of these 
parameters. This deficit can be sorted out by an additional assumption. Supposing 
an upper bound for the radius of the sets Da(p, wa ), asymptotic propositions about 
the extent of deviation between both allocations XO and xd can be made. 

43 A similar result may be found in BROOME (1972. p. 238 f .• Lemma 4.9). 
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Assumption 444 For the preference orderings of all persons there is a finite number 
DSUP with 

DSUP := sup sup rad Da(p, wa ) . 
aEA pErinI f). 

With that, two commodity bundles chosen under the same conditions cannot differ 
more than 2· DSup; see the commodity bundles x~ and x~ demanded in Figure IV9. 
Thus, the number DSup is also used as measure for the degree of nonconvexity of 
preferences. Continuing Proposition IVII we now gain 

Corollary N.H.1 (Quasi-Equilibrium)45 Under Assumptions J to 4 in each 
exchange economy 8: A ~ nsmo x IR~ there is a price vector po > 0 as 
well as a feasible allocation *0 and an allocation *d chosen such that 

(lV6a) 

(IV6b) 

x~ E Da(PO, wa) for each person a E A and 

II ~)x~ - x~)II ~ ~ DSuP. 

aEA 

Proof: Using the allocation *d and the price vector po of Proposition lVII, we 
know that the sets {za I Za = x~ - W a , x~ E D a (pO, W a ) } are not empty compact 
subsets in the (n - I )-dimensional hyperplane {z I poT Z = o}. Concerning 

o E Zco(pO) = L D~O(pO, wa ) - L W a , 

aEA aEA 

by Corollary B.7.I, p. 29S, there are commodity bundles x~ E Da(PO, wa) so that 

110 - L Zall 2 = II L(x~ - wa )1I2 ~ R, 
aEA aEA 

where R is defined as the sum of the min {# A, n - I} greatest rad2 D a (pO, wa ). 

Considering Assumption 4, Proposition lVII, (IVSb) implies 

II L(x~ - x~)112 ~ R ~ (n - I)(DSUP)2 

aEA 

for the examined ROTHENBERG equilibrium (*0, pO) and, therefore, (IV6b). • 

The advantage of Corollary IV.II.I over Proposition IV. I I is that the estimation 
(IV.6b) in contrast to (IVSb) does not depend on the number of persons but on the 
positive number DSuP. With this fact the ROTHENBERG equilibrium (*0, pO) of 
Proposition IVI 0 can be viewed from an alternative point of view. 

Proposition IV. I 0 proves the existence of a feasible allocation *0 by which at the 
most n - I persons receive a vector x~ they do not ask for. This result is not affected 
by increasing the number of persons. 

44The assumptions used until now were introduced on pages 198, 203, and 204. 
45Cf. STARR (1969) and ARROW, HAHN (1971, Chapter 7). 
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Corollary IV.II.I, however, suggests that with an increasing number of persons 
the degree of deviation between both allocations XO and xd per head diminishes. 
Obviously, this view is merely useful when the occurring burdens are distributed 
equally among all persons instead of being born by at the most n - 1 persons as in 
Proposition IY.I O. 

The next expositions serve for the equal distribution of the occurring burdens. 
The allocation XO known from Proposition IY.IO is modified to an alternative 
allocation xOO which must satisfy certain premises. 

1. Proposition IY.I2 presents conditions for a feasible allocation xOO such that no 
person a receives a commodity bundle x~o which differs on average in more 
than c from a chosen commodity bundle x~. 

2. Proposition IV. 13 has more restrictive conditions for a feasible allocation XOO 
such that none of the commodity bundles x~o is further away from a chosen 
commodity bundle x~ than c. 

Starting with the ROTHENBERG equilibrium (XO, pO) of Proposition IV.IO, each 
person receives a vector x~ E IR~ deviating by 8a := x~ - x~ from a commodity 
bundle x~ E X demanded. Hence, for at the most n - 1 persons 8a =/: O. If each 
person's vector x~ is expanded by the respective 8a ,46 then the feasible allocation XO 

results in an allocation xd chosen, which differs by 

(IV.7) 
aeA aeA aeA 

from a feasible allocation. The task now is to partition 8A into ea such that the 
outcome x~o:= x~ - ea is a feasible allocation xoo, where no commodity bundle 
of anyone differs on average in more than c from a chosen commodity bundle x~. 

The step described above may be clearly summarized in a table. 

stage allocation person a E A 
1. XO feasible usually not chosen XO 

a 

2. xa usually feasible chosen x~ = x~ + 8a 

3. XOO feasible usually not chosen x~o = x~ - ea 

The problem is to find a feasible allocation XOO where the choice of the ea is 
subject to several restrictions which can be established by the following premises.47 

1. "The reallocation should not cost anything." 
Because of (lVAa) poT 8a = poT ea = 0 must hold for each person since 

46Remember that poT &a = O. 
47 See Figure IV.9. 
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2. "The reallocation has to be feasible." 
Because of (IV.4c) the reallocation is restricted to L &a = Lea since 

aeA aeA 

L x~o = L (x~ - ea) = L (x~ + &a - ea) = W A + L &a - Lea. 
aeA aeA aeA aeA aeA 

3. "Nothing can be taken away from a person that it does not have." 
The choice of the ea must assure x~O = x~ - ea ~ 0 ; see x~ - ea in Figure 
IV.9. Thus, ea = &A/#A is ruled out since this reallocation will usually not 
satisfy the nonnegativity constraint. 

4. Finally, the ea , and their respective components, must be chosen such that they 
have the same signs as the components of & A ;48 this condition is necessary to 
estimate (IV.8). 

Figure IV.9 describes 
the restrictions on a suit­
able reallocation (ea)aeA 
for an individual person 
with the initial endowment 
Wa. The person demands 
one of the two commodity 
bundles x~ or i~ at prices 
pO, that is 

According to the 
ROTHENBERG equi-
librium (XO, pO), the 
vector x~ is allocated to 
the person concerned. 
The difference between 

Figure IV.9: The problem of a suitable reallocation this vector and the chosen 
commodity bundle i~ is 

&a = i~ - x~. Accumulating these differences &A = LaeA &a and partitioning 
this &A into appropriate ea vectors, yields x~o = i~ - ea for person a. In the 
example shown by the figure we have lIi~ - x~oll = lIeali > e for person a, but 
anticipating (IV.9d) only J LaeA Ilea 112 < #A . e is required for the economy. 

48This property is not valid for the &a! 
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If a suitable reallocation (ea)aeA with the above properties exists, then 

aeA aeA 

=> &1&A = Le!ea + LLe!eil ~ Le!ea 
aeA aeA ileA aeA 

il*a 

(IV. 8) {:=::> II&AII2 ~ L Ilea 112 = L IIx~ - x~01l2 
aeA aeA 

holds and we gain 

Proposition Iv.12 (e-Equilibrium)49 Suppose that we can prove a reallocation 
(ea)aeA with the above given properties. Let Assumptions 1 to 4 hold. Then in each 
exchange economy 8: A --+ nsmo x IR~ there are a price vector po > 0, a 
feasible allocation It°O and an allocation ltd chosen such that 

(Iy'9a) 

(IV.9b) 

(IY.9c) 

poT x~o = poT Wa 

x~ E Da (pO , Wa ) 

LX~o = wA 

aeA 

is satisfied. Moreover, 

(Iy'9d) Lllx~-x~01l2 <#A·e 
aeA 

for each person a E A 

for each person a E A 

holds if the inequality # A > .J1i"'='T DSup / e is satisfied for sufficiently large # A. 

Before this proposition is proved, let us look at the main results. The allocation 
ltd E x X chosen by (IV.9b) faces an allocation It°o x IR~ being feasible by 

aeA aeA 
(IV.9c) so that each person satisfies his budget constraint at prices po by (IV.9a). 
The degree of deviation between these two allocations is indicated by (IV.9d) as an 
average deviation per head. If the economy 8 has a sufficiently large number of 
persons # A, then the commodity bundle of no person is on average further away 
from a chosen commodity bundle x~ than e. In this #A > .J1i"'='TDsup /e is 
fulfilled for an increasing number of persons #A if e continually falls.5o In the 
case of two goods - i.e. for n = 2 as in Figure IY.9 - (IV.9d) simplifies to #A > 
DSup /e. 

49Cf. STARR (1969, p. 31). 
Analogous to the ROTHENBERG equilibrium (1(0, pO), the pair (1(00, pO) is called an e-equilibrium in the 
sense of STARR. 

50MAS-COLELL (1985, p. 144 ff.) present similar results. 
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Proof: The initial point of the proof is the ROTHENBERG equilibrium (XO, pO) of 
Proposition IV. 10, p. 233. Setting x~o = x~ - Ea = x~ + &a - Ea for each person 
a E A leads to 

#A· e > ...rn=TDsup ?; II L)x~ - x~)11 by Corollary IV.ll.l 
aeA 

is subject to (IV.8) 

for a given e and a sufficiently large number of persons #A. The proof of Proposition 
IV. 12 is completed having found an appropriate reallocation (Ea)aeA. At this point 
we refrain from the determination of the Ea vectors.51 However, it is pointed out 
that the vectors, having the required properties, are determined within the proof of 
Proposition IV.l3. In (IV.lSa) these vectors are denoted by l/#Ak. • 

The e-equilibrium in the sense of STARR (Proposition IV.12) refers to the 
accumulated deviations IIx~ - x~o II. But the inequality (lV.9d) 

#A 
L IIx~ - x~O 112 < e 
aeA 

can nevertheless be violated for individual persons. Subsequently we examine an 
e-equilibrium in the sense of HILDENBRAND and KIRMAN, where IIx~ - x~oll ~ e 
is required for each person.52 Thus, it is not surprising that the examined exchange 
economies are subject to further and more restrictive regularity constraints. As will 
be shown, the examined economies must be "large" with regard to different aspects. 
An interpretation of the parameters (w, e, 0 and ii) used in the following proposition 
will be given later. Similar to Proposition IV.12 we have 

Proposition IV.13 (e-Equilihrium)53 Suppose that Assumptions 1, 2 and 3 are 
satisfied and each person holds a bounded initial endowment, i. e. II wall ~ w for 
all a EA. Then an integer ii exists for each e > 0 and for each 0 > 0 such 
that in each exchange economy «: A ~ nsmo x IR~ there is a price vector 
pO > 0, afeasible allocation xoo, and an allocation xd chosen with 

(IV. lOa) 

(IV. lOb) 

(IV.lOc) 

(IV.lOd) 

poTX~o = poTwa 

x~ E Da(PO, wa ) 

"\"' 00 
~xa = WA, 

aeA 

IIx~ _x~oll ~ e 

for each person a E A, 

for each person a E A, 

for each person a E A. 

51 An appropriate reallocation (Ba)aEA is presented in STARR (1969. p. 31). 
52The case illustrated in Figure IY.9 for x:: and x~o should no longer occur. 
53Cf. HILDENBRAND, SCHMEIDLER, ZAMIR (1973, p. 1160, Theorem 1). 
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Moreover; 

(IV.lOe) 

holds when the two inequalities #A ~ n and W A/#A > 81 are satisfied. 

Before going into the proof of this proposition, we first make some comments. 
Analogous to Proposition IV. 12, the allocation xd E x X demanded by (IV. 1 Ob) 

aeA 
faces an allocation xOo x IR~ being feasible by (IV.lOc) such that all persons 

aeA 
satisfy their budget constraint for the price vector pO by (IV. lOa). According to 
(IV.lOd), the vector x~o of no person a E A is "far" away from a chosen commodity 
bundle x~ E X; the parameter e serves as an upper bound. Obviously, this fact is 
only relevant for those persons who are associated with a vector x~o outside of their 
demand sets Da(pO, wa). By (IV.lOe) the number of these persons is smaller than 
n. Moreover, the accumulated deviation is 

L)x~ - x~oll ~ en ~ e' #A, 
aeA 

where en does not depend on the number of persons. 
After these preliminary comments it becomes clear why the examined exchange 
economy is said to be "large". On the one hand it is required that the economy 8 
contains no less than n persons (#A ~ n), on the other hand the total endowment 
W A of the economy must be larger than #AcH. Interpreting the parameter 8 > 0 it 
is useful to rewrite the corresponding inequality as follows: 

Finally, a parameter w is given which limits the influence of an individual person a. 
His initial endowment Wa is restricted to IIwa II ~ w. 
proof: 54 Again the ROTHENBERG equilibrium (XO, pO) of Proposition IV. 10 serves 
for the initial point of the explanations. If each person a E A asks for a commodity 
bundle x~ E Da(pO, wa), then we can set as before 

(IV.7) «SA = L «Sa = L (x~ - x~) = L x~ - W A • 

aeA aeA aeA 

At the same time the budget balance poT X~ = poT wa implies poT «SA = 0 for 
each person. The problem is to distribute «SA among the persons of the economy 
such that the resulting allocation xOo satisfies the premises of Proposition IV. 13, i.e. 
especially 

Va E A (feasible allocation XOO) 
aeA 

IIx~ - x~oll ~ e, poTx: = poTx~o = poTwa Va E A. 

54For the proof, see HILDENBRAND, SCHMEIDLER, ZAMIR (1973, p. 1161 If.). 



242 Chapter IV. Theory of Market Equilibria 

From person a's point of view the reallocation appears as follows: 

&. d e. 
XO --+ X --+ Xoo a a a . 

As already mentioned above, the intuitive first approach & A /# A to the reallocation 
of &A is ruled out because it usually violates the condition x~o ~ O. A positive 
quantity 8 jA can only be distributed equally among the members of a group A j c A 
if each member of the group demands more than 8 jA/# A j :55 

(N.ll) 00 d 8jA 0 
x ja = x ja - #A· > 

J 

If we introduce a threshold ~ such that person a belongs to group A j if and only if 
rJa > ~, then the following problem arises: for large ~ the number of the members 
of the group #A j will be small so that ~. #A j < 8 jA may arise, i.e. the potential 
of redistribution ~ . #A j does not meet the need for redistribution 8 jA. Conversely, 
this case may even occur for a very small threshold~. Again ~. #A j < 8 jA holds 
despite large groups # A j. The proof requires a threshold ~ < 8. In this ~ = 8/ n 
turns out to be a favorable choice, see (IV. 12) and (N.14). 

Because the redistribution has an upper bound by (IV. 1 Od), the following 
estimation can be made: 

E' #A ~ L IIx~ - x~01l2. 
aeA 

Using (lV.7), the right hand side can be estimated by E' #A ~ II&AII. Indeed, 
this inequality holds true, if the relation E' # A j ~ II & A II is satisfied for each 
group A j C A; see (IV. 13). The relationship to (IV. 11 ) becomes apparent, when 
II&A II ~ 8 jA is taken into account. If each person belongs to exactly one group 
A j, then two effects occur: first, (N.ll) guarantees a positive xj~ and at the same 
time x~o ~ 0 holds since x~ ~ 0 and x~o differ only by the j-th component. 
Second, the upper bound of the reallocation E ~ IIx~ - x~o II is guaranteed by 
E ~ 8 jA/#A j = rJa - xj~ > O. 56 This is the reason for partitioning the set A with 
respect to (N.12) and (N.13). 

The rest of the proof succeeds in two steps. First, it is supposed that the 
mentioned partition of A into suitable groups is possible. Second, it is shown how 
to carry out the grouping. 

Step 1: Partition the set of all persons A into n disjoint groups (A j) j=1. .... n (for 
each good one group) such that 

(N.12) 

(N.13) 

x1a>8/n VaeAj 

min {E, 8/n}· #A j ~ II&AII. 

55 At the same time it becomes evident that the inverse case with IS jA ~ 0 is no real problem. 
56If the both vectors ~ and x~o differ at the most by the j-th component with x'f. - xj~ !l; O. then 

IIx~ - x~oll = x'f. - xj~ ~ E. 
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The two conditions can be summarized to 

(Iv' 14) 

Given 0 A, we define two index sets 

J+:={J18 jA>0, j=I, ... ,n} 

and r:={J18jA~0, j=I, ... ,n}. 

Because of poTOA = 0 the vector OA must vanish for J+ = 0, i.e. OA = O. 
With that a reallocation of OA becomes superfluous. Thus, we suppose k E J+ so 
that J- *" 0 is implied. Now a 1 = (AI, ... , An) T is determined such that 

o ~ Aj ~ OjA 

A j = 8 jA 

Aj = 0 

for j E r 
for j = k 

for j E J+ \ {k} 

(note 8 jA ~ 0) 

(note OkA > 0) 

and poTl = P'k8kA + L pjAj = 0 are satisfied. In particular, IIlll ~ IIOAII can 
jeJ-

be presumed. Because of poT OA = 0 such a choice of 1 is always possible since 

L PjOjA + L pj8 jA = 0 
jeJ+ jeJ-

keJ+ 
==? P'k0kA + L pj8 jA ~ O. 

jeJ-

Assuming x~ E Da(PO, wa) with poT x~ = poTwa for all a E A, we now put 

(Iv' 15a) 

(IV. 15b) 

x~o := x~ - l/#Ak 

X oo '= xd 
a' a 

for a E Ak , 

for a ¢ Ak. 

Thus, the reallocation of the positive quantity 8kA takes place exclusively within 
the group Ak. The persons of this group must give away some of good k and they 
are offset in the sense of a balanced budget by some amounts of other goods with 
8 jA < O. We get the following properties of the above redistribution: 

1. Because of pOT(l/#Ak) = (pOTl)/#Ak = 0 everyone's budget remains 
balanced; (IV. lOa) follows from (Iv' 15a) and (IV. 15b). 

2. Each person receives an x~o ~ O. In particular a positive quantity of good 
k results from (Iv' 14), 

3. Each person gets an x~o being not "far" away from x~: By (Iv' 13) c· #Ak ~ 
IIOAII ~ IIlll implies IIl/#Akll ~c. Thus,(IV.lOd)isprovedregarding 

IIx~ - x~oll = IIl/#Akll ~ c 'Va E Ak 

IIx~ - x~o II = 0 'Va ¢ Ak 

see (Iv' 15a), 

see (Iv' 15b). 
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Proposition 
IV. 10 

Proposition 
IV. 13 

eliminate k E J+ 

Figure IV. 1 0: Proof of Proposition 
IV.13 (Step 1) 

/).. 
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The resulting allocation 1(00 constitutes a 

new &A := LX~o - WA as well as new 
aeA 

index sets J+ and J- , where J+ now has one 
element less. Repeating the above steps, it 
eventually ensues J+ = (0 and, therefore, 
&A = 0 or (IV.IOc); see Figure Iy'lO. 

Step 2: The two inequalities (IY.16) 
and (IV.17) are required for an appropriate 
partition of the set of persons A; they are 
deduced from the following steps (aa)-(ee). 

(aa)Forall x = (Xl, ••• ,Xn)T ~ 0 we 
have IIxll ~ L:j=l Xj.57 At the same time 
one gets IIpll ~ L:j=l P j = I for all p E 

(bb) Set P':nin:= min{PI"'" p~}. Because of pO> 0 the price P':nin must be 
positive, too. Thus, for all x E 1R~ with poT x = poT wa the inequality 

holds; see Figure IV. I I with P':nin = P'2 < PI' 

Figure IV.II: Proof of Proposition IV.13 

57The conclusion for X!1:; 0 results from 

(ee) The first two points imply 

for all j = I, ... , n. Due to IIpo II ~ I 
and II Wa II ~ iii for each person 
a E A, SCHWARZ's inequality 
(A.I),p.282, poTwa ~ IIpoll'lIwall ~ 
iii yields 

poTW iii 
(lV.16) Xj ~ IIxll ~ ~ ~ -0-

Pmin Pmin 

for each good j (j = I, ... , n). 

(LjXj)2=LjxJ+LjLk*jXjXk~LjxJ ¢=} LjXj~JLjxJ = II xII 

where}. k = 1 ..... n. 
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(dd) Thus, by the triangular inequality58 it ensues 

for all Xa , x~o E IR~ with poT Xa = poTWa = poT x~o. Figure IVll illustrates 
this estimation of the distance between points Xa and x~o for the case xl = Xa and 
x2 = x~o . 

(ee) For «SA = L (x~ - x~) the triangular inequality furthermore provides 
aEA 

aEA aEA 

Since x~ '* x~ holds for at the most n - 1 persons by (IV.4b), it follows from (dd) 
with regard to poT X~ = poT wa for each person a E A 

(lVI7) 
2w 

II«SAII ~ (n - 1) . -0- • 

Pmin 

Now all information on the explicit subdivision of the set of persons A into 
disjoint groups (A j) j=l .... ,n is available so that each group hold~ (IVl2) and (IV.13). 

The way taken can be sketched by the inclusion A j C A j C A j C A j. 
The starting points for the determination of the disjoint groups (A j) j=l. ... n are 

the following groups which are not necessarily disjoint 

Aj := {a E AI x}a > «s/n} (j = 1, ... , n), 

where the definition conforms to the remarks on (IV.!l). The result of the 
subsequent estimation of group sizes is taken from (IV. 19). 
By the assumption W A/#A > 01 we obtain for each j = 1, ... , n 

#A.o n - 1 
n 

#A 

(IVl8) 

58The triangular inequality [No3], p. 282, denotes one property of the norm. 
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To estimate #A j > #A/O, we choose a positive constant59 

2(n - l)w 
N := 0 • max {lie, n/o5 } 

Pmin 

such that the smallest integer r Nl not smaller than N fulfills r Nl ~ 1. Besides N 
we have to fix an integer ii satisfying 

(IV. IS) 
ii~(nrNl+n-l)O > nrNl+n-l 

If e < 8/ n, then e determines the value of N. A reduction of e enlarges not only 
N but also ii. Provided that #A ~ ii, the number of persons #A in the economy 
concerned must be even larger the smaller e is chosen. For too restrictive parameters 
e and [, we have #A < ii so that e and possibly [, must be relaxed, but the increase 
of [, has an upper bound by W A > # A . 81. The assumption # A ~ ii merely says 
that each group A j contains at least 

(IV. 19) 
- (IV.IS) #A ii 

#A· > - ~ - ~ n rNl + n - 1 
J 0-0-

persons. For subsets A j in A j which are subject to the restrictions 

Aj = Aj 

Aj c Aj with #A j = ii 

we get 

for #Aj ~ ii 

for #A j > ii 

(j = 1, ... , n). 

Because of (IVAb) x~ *" x~ holds for at the most n - 1 persons and we can 
determine subsets by 

(j=I, ... ,n) 

(j = 1, ... , n). 

Because each of the n sets A j contains more than n r Nl persons, we can now choose 
n disjoint sets A j C A j with the group size # A j = r Nl. As in the first step 
of the proof we only modify the commodity bundles of persons in U};I A j and 
because of # A ~ ii > n r Nl = n . # A j there are less than ii persons receiving a 
vector x~o they do not ask for; see (IV.1Oe). 

59The construction of the constant N can be justified with respect to (lV.!7) by min {e. 8/ n} . N ~ 
1105A II. An appropriate partition of the set A into groups Aj will satisfy (lV.l3) if #Aj ~ N holds. 
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Inequality (IV. 12) is satisfied by the definition of A j. From 

2(n - l)w 
#A j = r Nl ~ N = ° . max {lIe, nls} by definition 

Pmin 

and 2(n ~ l)w ~ II&A II by (IY.17) 
Pmin 

follows inequality (IY.13), min{e, !SIn}· #A j ~ II&AII. • 

2.4 Summary 

247 

Finally, we carry out a comparison of the discussed equilibria and their properties. 
First of all, remember that exact competitive equilibria have only been proved 
for convex preferences. Considering indivisible goods, the existence of an exact 
equilibrium is not assured. 

In particular, the assumption of strictly convex preferences with perfectly 
divisible goods allows to presume demand functions in Section 2.1. The proof 
of an exact competitive equilibrium (*0, pO) by Proposition IV.6 follows from 
BROUWER's fixed-point theorem. One of the requirements of this theorem is a 
bounded aggregate demand of the economy. This condition is fulfilled when the 
commodity space is restricted to an appropriate compact set. Since a positive 
commodity price vector pO > 0 is calculated, the above introduced restriction 
turns out to be superfluous to the outcome. 

If we suppose only convex preferences instead of strictly convex preferences, 
then we have to consider the possibility that for each person there may be more than 
one best commodity bundle. The existence of a competitive equilibrium (*0, pO) is 
guaranteed by Proposition IV.7, i.e. the price vector pO > 0 permits the clearing 
of all commodity markets, but in contrast with strictly convex preferences we can 
no longer assume the uniqueness of the allocation *0.60 To prove Proposition IV.7, 
we present two procedures both of which are based on Theorem C.17 (DEBREU, 
GALE, NIKAIDO), where this theorem follows from KAKUTANI'S fixed-point 
theorem. As before, the first method gets over the problem of unbounded excess 
demand by an appropriate restriction of the commodity space. The second method 
avoids this procedure, which is associated with analytical difficulties with respect 
to the treatment of indivisible goods. Instead of this a sequence of fixed-points is 
constructed, which is used to prove Proposition IV.7. 

The second method is now transferred to the case of indivisible goods by 
replacing the aggregate excess demand correspondence Z by an appropriate 
convex-valued correspondence Zco. For this correspondence a fixed-point can be 
determined (Proposition IY.9), but the conclusion to the original correspondence 
and, therefore, the conclusion to the individual demand correspondences DaC wa ) 

remains essentially blocked. 

60This observation is also reflected by the method of proof. Instead of BROUWER'S fixed-point 
theorem referring to functions we now use KAKUTANI'S fixed-point theorem allowing to deal with 
correspondences. 
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However, it is possible to prove feasible allocations which may not deviate 
arbitrarily from an equilibrium allocation. For the sake of clarity the presented 
allocations *0, *00, and *d as well as their properties are summarized in the following 
table where #A - indicates # {a E AI x: ¢ Da (pO , wa )} with x: belonging to the 
respective allocation. 

I ROTHENBERG equilibrium Ie-equilibrium reference situation 

allocation 
*0 by Proposition IV. 10 I xOo by Proposition IV. 13 I *a 

budget constraint 
pOIX~ = pOIWa I pOIX~O = pOIWa I pOIX~ = pOlwa 

deviation from individual demand Da(pO, wa) 
x~ E D~O(pO, wa) I"x~ - x~o II ;;§ e I x~ E Da(pO, wa) 
#A-;;§n-l #A- < n;;§ #A #A- =0 

feasibility of the allocation 

I>~ =WA I I>~o =WA I usually I>~ ;/;WA 
aeA aeA aeA 

In the ROTHENBERG equilibrium (*0, pO) with n goods at the most n - lout 
of #A persons receive a vector x~ they do not ask for. Without giving the distance 
to a chosen commodity bundle x~, for the moment it is only known that x~ can 
be expressed as a convex combination of demanded commodity bundles, x~ E 

D~O(pO, wa ). 

Referring now to the smallest ball containing D~O(pO, wa ) and, therefore, x~,61 
the maximum distance between a point x~ and a chosen commodity bundle x~ can 
be limited by assuming that the radius of the examined ball cannot pass the value 
DSup (Assumption 4). 

Corollary IV.I1.1 states that under this assumption there is a ROTHENBERG 
allocation *0 and an allocation *d chosen whose deviation is restricted to 

II L(x~ - x~)11 ;;§ rn=T DSuP. 

aeA 

As the inequality does not depend on the number of persons #A included in the 
economy the deviation per head can be arbitrarily reduced by an increasing #A. 
Nevertheless, we have &a = x~ - x~ ;/; 0 for at the most n - I persons. The 
particular situation of these persons will not necessarily be improved by a rising 
number of persons #A. 

A first approach to get over this dilemma is presented in Proposition IV. 12. 
Starting with a ROTHENBERG allocation *0, we derive an alternative feasible 
allocation *00 by an appropriate reallocation. For a sufficient large number of 

61Figure IY.9 shows the implications of the comments for an individual person. 
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persons # A we now have 

L IIx~ - x~01l2 < #A· e 
aEA 

if # A > In=l DSup / e holds. The advantage over the above estimation is that 
now all differences <Sa = x~ - x~o are included by positive weights. Yet the 
problem of an individual treatment still exists. Although the deviation per head e 
can be reduced by enlarging the number of persons #A, IIx~ - x~o II > e may, 
however, hold for an individual person. In addition the problem emerges that 
possibly considerably more than n - 1 persons receive a vector x~o they do not 
ask for. 

Both problems are considered in Proposition IV.13. First of all, it is explicitly 
required that 

is satisfied for each person in the e-equilibrium (XOO, pO) concerned. But this 
stronger result is based on more restrictive assumptions. For example, the examined 
economy must have a "large" (but finite) number of persons #A and a "large" total 
endowment W A. Finally, the number of persons who receive no commodity bundle 
demanded is bounded, n < # A. Nevertheless, the larger the number n is the more 
restrictive the parameter e is given. 

Analogous issues referring to economies with a large number of persons are 
given by KIRMAN (1981). A model that explicitly considers infinitely many 
indivisible goods and infinitely many consumers is presented in DUNZ (1992). 

3 Generalization of the Model of an Exchange 
Economy 

3.1 Equilibria in Production Economies 

3.1.1 Description of a Production Economy 

The preceding sections discuss the existence of competitive equilibria within the 
setting of an exchange economy. The question now arises as to how the results 
change if we consider not only the exchange of goods but also the production of 
goods. 

For the proof for the existence of competitive equilibria in such production 
economies there are different approaches available, where the technical proof again 
relies upon KAKUTANI'S fixed-point theorem. Whereas WALD (1933-34, 1934-
35, 1936) presents a first exact but tedious proof, we find in KUHN (1956) or 
DORFMAN, SAMUELSON, SOLOW (1958, Chapter 13) more favorable procedures 
using the results of linear programming. Although these works present a relatively 
simple proof for the existence of competitive equilibria, the formulation of the 
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problem involves some unsatisfactory aspects. For example, neither the behavior 
of the consumers nor the behavior of the producers is described.62 The kernel of the 
matter is whether a certain set of equations has a solution or not. 

A more modern formulation of the problem goes back to ARROW, DEBREU 
(1954). The question is now whether a set of optimization problems can be solved 
simultaneously, where the optimization problems are associated with individual 
economic agents facing different restrictions independent of each other. 63 As in 
the treatment of an exchange economy, the production economy is modelled as a 
noncooperative n-person game. First of all, a consumption set and a production 
set is specified for each household and each firm respectively. Moreover, we 
make assumptions on the economic behavior of the economic agents and define 
a competitive equilibrium. Finally, we try to prove the existence of a competitive 
equilibrium using the established assumptions. 

The presented analysis conforms to ARROW, HAHN (1971, Chapter 7), where 
similar approaches may be found in McKENZIE (1959,1981) and DEBREU (1959). 
Further aspects can be taken from the more recent works of DEBREU (1982) and 
SMALE (1981). 

While an exchange economy contains a finite set A of households, the examined 
production economy contains in addition a finite set B of producers. Suppose again 
that only nd out of the n goods are perfectly divisible. Thus, the commodity space 
X or the nonnegative region of the commodity space X+ is 

respectively. Each household a E A is indicated by a triple (Xa , ~a, wa ). Here 
Xa C X denotes the consumption set of the examined household. Up until now 
this set has been substituted by Xa = X+, but alternative consumption sets can 
certainly be specified.64 Each household has a continuous preference ordering ~a 65 

defined in the entire consumption set Xa, i.e. ~a E Xa X Xa. Moreover, each 
household has an initial endowment Wa E 1R~. As before, the total endowment 
of the economy is denoted by W A = LaeA Wa. 

Each firm b E B is characterized by a production set 

Yb := {Yb E XI Yb is a possible activity for the firm b} , 

where the components of a netput vector Yb represent (demanded) quantities of 
inputs if Y jb < 0 or (supplied) quantities of output if Y jb > O. According to 
the remarks on the production technology of a firm b, we suppose the following 

62Cf. TAKAYAMA (1990, p. 261). 
63Cf. KOOPMANS (1957, p. 60). 
64NEWMAN (1987a, p. 616) delivers three arguments to associate each person a with his own 

consumption set Xa. (1) Xa denotes the subset in the commodity space X, in which the preferences 
are defined. (2) Xa contains only commodity bundles which guarantee the existence minimum of person 
a. (3) The household's maximal labor supply and its initial endowment form a natural upper bound for 
the consumption set Xa. 

65See Axioms [9'1)-[9'4], p. 7f. 
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properties of a production set Yb;66 (1) Each firm b has the possibility of inaction, 
o E Yb. This relation corresponds to Axiom [PIa] with 0 E Pb(O). (2) By [PIb] 
(No Land of Cockaigne) no netput vector Yb can be strictly positive, Yb n X+ = 
{OJ. (3) The production set Yb is closed analogous to [P6]. (4) Similar to [TI] 
we suppose a convex production set Yb. This assumption involves two problems. 
First, all goods which leave their mark on the production set Yb must be divisible. 
Moreover, the assumption of a convex production set rules out increasing returns to 
scale.67 (5) Free disposability of all goods by [P3] (Disposability of Inputs) and 
[P4] (Disposability of Outputs) implies Yb;2 (- X+). 

Concerning the union of all firms, the aggregate technology is denoted by 

Now the examined production economy 8 can be indicated by a tuple 

8 = (Xa, ~a, Wa)aeA, (Yb)beB, (eab)aeA.beB), 

where eab ~ 0 is the household a's share of firm b's profit. Provided all profits 
are completely apportioned to the households,68 

(lY.20) Leab = I Vb E B 
aeA 

must be fulfilled. In the production economy an allocation 

is said to be attainable if the aggregate endowments of the individual economic 
agents do not exceed the endowment of the economy.69 

(lY.2I) L Xa - LYb - W A ;:rii 0 
aeA beB 

The following three points describe the individual and the aggregate behavior of 
the economic actors. 

(a) Households: Each household a E A chooses a commodity bundle 
satisfying its needs best possible over the set of all commodity bundles it can buy. 
In this the budget set 

Ba(P) = (Xa E Xal pTxa;:rii wa(p)} 

consists of all commodity bundles the household a can buy in principle with wealth 
wa(P) and which belong to the consumption set Xa. The wealth corresponds to the 

66See Figure IV.l2, p. 253. 
67 Suppose that Yb is a closed convex cone. Then constant returns to scale are supposed according to 

the expositions in Section II.2.3.1. 
68Since all firms are owned by the households, we speak of a private ownership economy. 
69Remember that an allocation is called feasible if it hold (IY.21). 
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value of the initial endowment Wa expanded by the profit share (} abP T Y b which is 
entitled to household a. 

(IY.22) Wa(P):= pTwa + L::0abpTYb 
beB 

As before, the individual commodity demand correspondence is defined by 

(b) Finns: Each firm b E B maximizes the profit 7rb with respect to its 
production set Yb. 

If each firm b has the possibility of inaction, 0 E Yb, then the profit cannot be 
negative, 7rb(p) ~ O. The correspondence Sb with 

Sb(P) := {Yb E Ybl pTYb ~ pTYb VYb E Yb} 

includes all of firm b's profit maximizing activities Yb; it describes the commodity 
supply (y jb > 0) as well as the factor demand (y jb ~ 0). 

The left hand part of Figure IV.12 shows a production set Yb fulfilling the 
required properties. The commodity prices given by a' and b' yield the price ratios 
a and b, which is noted together with the supplied quantities of good 2 in the right 
hand part of the figure. An analogous representation of the demand for good 1 is 
omitted. 

Given constant returns to scale, Yb is a cone. In this case no positive profits 
may occur, hence 7rb(p) = O. If a price vector leads to a positive profit, then the 
profit could be raised by each enlargement of the production level. 70 Thus, no finite 
maximal profit exists as well as no profit maximizing activity, i.e. Sb(p) = (3. 

(c) Aggregate behavior: Summing up over all economic agents, we gain the 
aggregate excess demand correspondence Z with 

Z(p):= L::Da(p) - L::Sb(P) -WA. 

aeA beB 

As every firm realizes a nonnegative profit p T Yb ~ 0, the aggregation of the 

individual budget constraints pT(Xa - Wa - L::0abYb) ~ 0 yields similar to 
beB 

(111.104), p. 194: 

(IV.23) pT Z ~ 0 for every p E Dom Z and every Z E Z(p) 

On the basis of the homogeneity of degree 0 of all correspondences Da and Sb at 
this point we need only consider price vectors p which belong to the price simplex 
/).. 

70If Yb is a cone and if p T Yb > 0 for Yb E Yb. then the profit can be increased arbitrarily for each 
production level A > 0 because of AYb E Yb. 
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Source: ARROW, HAHN (1971, p. 56). 

Figure IVI2: Graphical representation of the supply correspondence 
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If a price vector p E /}. and an excess demand vector z hold z E Z (p) , then 
an allocation (it, y) exists such that 

(lV24a) 

(IV24b) 

(lV24c) 

Xu E Du(p) 

Yb E Sb(P) 

and z = L Xu - L h - W A . 

ueA beB 

for all households a E A 

for all firms b E B 

Furthermore, if z ~ 0, then the allocation (it, y) is feasible and 

(it, y, p) = (Xa)aeA, (h)beB, p) 

is called an attainable state? I of the production economy. Each firm chooses a 
profit maximizing activity Yb with respect to its technology and each household 
chooses a best element xa with respect to its preferences. Moreover, by (IV24a) the 
commodity bundles Xu belong to the respective consumption set, Xu E Xu. If the 
consumption set Xu contains no point of saturation, then for strongly monotone 
preferences a commodity bundle x~ ~ x~ exists for every x~ E Xu with 
x~ ~ u x~ . Thus, each household utilizes its whole budget provided the consumption 
set Xu includes at least one divisible good.72 

pTXa = pT Wu + L (JabpTYb 
aeA 

71Cf. DEBREU (1982. p. 705). 

for all households a E A 

72This analogous argument has been used in the proof of W ALRAS' law (Proposition 111.30). 
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Considering (IV.20), the summation of all budget equations yields WALRAS' law. 73 

pTz = 0 for every p E Dom Z and every z E Z(p). 

Note that neither (Iv'23) nor WALRAS' law requires z ~ O. 

3.1.2 Existence of Competitive Equilibria 

(a) Perfectly Divisible Goods Having introduced the examined production 
economy, we can now formulate the requirements of an equilibrium state. An 
attainable state (*0, yO, pO) fulfilling apart from (lv'24a) and (Iv'24b) the condition 

(lv'25) ZO = L>~ -LYh - w A = 0 
aeA beB 

is called a WALRASian equilibrium or a competitive equilibrium. Moreover, 
pO E tl. is called an equilibrium price vector. 

Looking back at (lv'24a)-(IV.24c), the proof of the existence of a WALRAsian 
equilibrium is completed if it can be shown that there is an equilibrium price vector 
pO satisfying 0 E Z(pO) . 

The representation of a 
WALRASian equilibrium is 
given by Figure IV,13 for 
a particular firm with the 
production set Yb and for a 
particular household with the 
consumption set Xa = 1R~. 
If the household owns the 
initial endowment w~, then 
each quantity of good 2 the 
household wants to consume 
must be produced by the firm 
using the first good. For the 
initial endowment w~ both of 
the commodities are available 
in a positive amount even 

Figure IV13: mustration of a WALRAsian equilibrium without any production. Only 
for a relatively large price ratio P2/ PI the firm agrees to take up the production 
of the second good.14 In the illustrated WALRAsian equilibrium (x~, Yh' pO) with 
Yh = x~ - w~ the firm earns a positive profit 1l'b(pO) = poT Yh' which is certainly 
earned by the household as sole owner of the firm, Bab = I. In this way the 
household has the income w (pO) = poT w~ +po T Yh' which equals the consumption 
expenditures w(pO) = poT x~. 

73The excess demand Z (p) does not need to be defined for all p E fl.. This case may occur for 
example when the production technology of a firm obeys constant returns to scale. Depending on what 
commodity prices p are considered. the profit is unbounded above. Then both Sb(p) = 0 and Z(p) = 
o hold. 

74 See Figure IVI2. 
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Replacing (IV.25) by the weaker requirement1s 

(IY.26) ZO = LX~ - LYb - WA ~ 0 with pO e l:!. and poTzo = 0, 
aeA beB 

there may be no excess demand on the market for good j, zi = 0, as long 
as the price of this good is positive, pj > O. Conversely, an excess supply 
zi < 0 implies a commodity price pi = O. Thus, we look for an attainable 
state (XO, yO, pO) with ZO ~ 0 and pO E l:!. which satisfies WALRAS' law, i.e. 
poTzo = O. 

To isolate those problems resulting from the indivisibility of some goods, we 
present for the moment the case of divisible goods. Thus, the commodity space is 
X = IRn or X+ = IR+. 

Proposition IV. 14 76 In each production economy 8 fulfilling the following 
assumptions there is a WALRASian equilibrium (XO, yO, pO) satisfying the three 
conditions (IV.24a), (IV.24b), and (IV.26). 

1. For each household a e A we have: 

(a) The consumption sets Xa are closed, convex, and bounded below, i.e. 
there is an x,:in so that x,:in ~ Xa forall Xa e Xa. 

(b) Every household owns an initial endowment Wa e X+ so that there is 
a commodity bundle xa e Xa with xa < Wa . 

(c) Every household possesses a continuous preference ordering satisfying 
>..x+(l-A)x>ax, Ae]O,l] forall x,xeXa with x>ax. 

(d) The consumption sets Xa have no point of saturation. 

(e) The firms are owned by the households. Thus, the relative profit shares 
(Jab are subject to (IV.20); the households' wealth wa(P) follows from 
(lv.n). 

2. For eachfirm b e B we assume: 

(a) Eachfirm has the possibility of inaction, 0 e Yb; the production sets 
Yb are closed and convex. 

(b) Theaggregatetechnologyholds YBn(-YB) = {O} and YB 2 (-X+). 

A proof of Proposition IV. 14 is omitted since the method varies only slightly from 
the methods applied with respect to exchange economies. At this point it may be 
enough to present the meaning of the premises of Proposition IV. 14 and to give an 

75DEBREU (1982, p. 704) refers to this case as (Walrasian) free disposal equilibrium. This condition 
is important if and only if all of the goods are assumed to be disposable and, therefore, that they could be 
thrown away without causing costs. In this case the price vector pO must be nonnegative. If one good has 
a negative price, then in contradiction to (IY.24b) a firm could increase its profit arbitrarily by expanding 
the quantity of the (free disposable) good. 

76Cf. ARROW, DEBREU (1954). 
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outline of the proof. The method of the proof is discussed especially with respect to 
Figure IV. 14, which itself is founded on Figure IY.13. 

Assumptions l.(a) and l.(c) are needed to guarantee the existence of a utility 
maximizing commodity bundle for each household. Here point x~in illustrated 
in Figure IY.14 can be understood as an existence minimum.77 Assumption 
l.(b) assures that each household has an initial endowment Wa so that there is a 
commodity bundle xa E Xa which satisfies x~in ~ xa < Wa. Hence, each 
household can survive without exchange. In view of the existence proof there is 
one more important implication: independent of the price vector PEl!,. each 
household owns an initial endowment with positive value,18 i.e. Wa (p) = P TWa > 
O. 

Furthermore, the wealth of each household has to be greater than the 
expenditures for the cheapest commodity bundle Xa E Xa. Accordingly, household 
a can buy in particular the existence minimum x~in; the budget set Ba(P) is not 
empty. 

The condition in l.(c) is satisfied if the preferences are strictly convex, and it 
implies itself convex preferences;79 the preference set:l'a (x~) in Figure IV. 13 has not 
been transferred to Figure IY.14. If l.(c) is expanded by l.(d), then all households 
satisfy their budget constraint, p T x~ = Wa (p), and WALRAS' law holds. 

All assumptions on the households together assure that the demand 
correspondences Da are upper semi-continuous and that the profits are distributed 
completely by l.(e) among the households. 

Because a convex production set Yb excludes increasing returns to scale for the 
firm b, it is more generally presumed, that YB is convex.80 As proved by NIKAIDO, 

the outcomes of Proposition IV.14 will still be the same.81 MCKENZIE supposes 
further that the set YB is a closed convex cone.82 Thus, he presumes constant returns 
to scale at least for the aggregate technology. Whereas Figure IY.13 includes a 
convex production set Yb, Figure IY.14 illustrates the production set Yb as a convex 
cone. 

By Assumption 2.(b) it is supposed that the aggregate processes are irreversible, 
Y B n (- Y B) = {O}. If Y B =1= 0 is composed of possible activities Yb of the sole 

77For a comparison of the assumptions to the similar conditions in McKENZIE (1981, p. 821), we 
have to take into account that the consumption sets Xa in McKENZIE describes the household a's excess 
demand, i.e. Xa E Xa ==> Xa - Wa E Xa. 

78Under these conditions the equilibria discussed in ARROW, HAHN (1971), Theorem 5 (p. 119, 
competitive equilibrium) and Theorem 4 (p. 116, compensated equilibrium) are equivalent; see Theorem 
2 (p. 109). 
The condition that each person has a positive wealth for every price vector and that no person has a 
point of saturation (1.(b) and l.(e» may be substituted by alternative (local) conditions. For example, 
McKENZIE (1959) introduces an assumption, which is called the irreducibility of the (convex) market; 
it assures that each person has a positive wealth in a neighborhood of the equilibrium prices and that 
there is at least locally nonsaturation. 

79Cf. NIKAIDO (1968, p. 241, Lemma 15.5). 
8oFor equilibria in production economies with increasing returns to scale, see VILLAR (1996, 

Chapter 4). 
81Cf. NIKAIDO (1968, p. 256, Theorem 16.4). 
82Cf. McKENZIE(1981, p. 821). 
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firm, then the aggregate activity -Y B, where the roles of all inputs and outputs are 
interchanged, is not viable. Given free disposability of all goods, Y B :2 (- X+), 
the land of Cockaigne is ruled out by YB n X+ = {OJ SInce 

{o}=yB n(-YB):2yB nX+:2{O} => YBnX+={O}. 

Astonishing, with respect to production 2.(d) is enough to prove that all activities 
Yb lie within a compact set for all production allocations y = (Yb)bEB which are 
possible by (IY.21). 83 This implication is important for the existence proof and is 
discussed in Figure IY.14 by the set rb. 

In particular, if the restrictive assumption l.(b) is relaxed, then there must be a 
prerequisite that there is an admissible allocation (x, y) associated with a positive 
excess supply for all goods,84 LbEB Yb + W A > LaEA Xa' This implication is not 
explicitly required by Proposition IY.14, but it is implicitly involved by l.(b) and 
2.(a): if each firm chooses the possibility of inaction Yb = 0, then l.(b) yields 
WA > LaEAxa. 

Sketch of the proof of Proposition IV.14: Looking at the proof for the 
existence of competitive equilibria in exchange economies suggests the conjecture 
that at this point an appropriate treatment of the aggregate excess demand Z should 
lead to the goal, too. This is an illusion. As mentioned above, the additional 
consideration of production implies that the excess demand need not be defined 
for each price vector p > 0; see footnote 70. 

With regard to KAKUTANI's fixed-point theorem85 it is convenient to use the 
method presented in Section 1.3. We seek for a fixed-point of the correspondence 
r defined afterwards by (IY.28), which reflects the simultaneous optimization 
approach of all market participants. Before going into the relevant properties of the 
correspondence r, it must be proved that the examined correspondence is defined 
on a nonempty, compact, and convex set C and that it ma£s into ...!his set, i.e. 
r: C ~ ~(C). Regarding a production economy, the sets Xa and Yb (shown in 
Figure IY.14) together with the price simplex /),. will adopt the role of C; see (IY.27) 
below. 

Analogous to Figure IY.5, p. 222, Figure IY.14 sketches the procedure when 
dealing with a production economy. The consumption set Xa of the sole household 
faces the production set Yb of the sole firm. The cone, denoted by Yb, implies 
constant returns to scale and excludes a profit maximum for a sufficiently large 
price ratio P2/ PI. 

Conversely, the production of the second commodity good takes place only if 
the price ratio P2/ PI is not too low. The household has the initial endowment 
Wa > x~in. Thus, Y b denotes the production activity with the highest of all possible 
production levels, i.e. h+wa ~ O. Despite this, it must be taken into account that 

83Cf. SMALE (1981, p. 364 f., Lemma A.2) and ARROW, HAHN (1971, p. 66, Theorem 2). 
84See ARROW, DEBREU (1954, p. 280). 

McKENZIE (1981, p. 821) supposes that the sets XA = LaEA(Xa -wa ) and YB = LbEB Yb have 
a relatively interior point in common, rint XA n rint YB "* Ill. 

85 See Theorem C.16, p. 313. 
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Figure IY.14: Proof of Proposition IY.14 

the activity h is the highest production level consistent with the existence minimum 
xr;:in, i.e. Yb + Wa ~ xr;:in. 

With respect to the required compact and convex set C we now define a ball Kl 
centered at the origin of radius IIYbli. Thus, Yb:= Yb n Kl is a compact convex 
set containing all possible production activities Yb E Yb with IIYb II ~ IIYbli. The 
restriction to the set Y is irrelevant for an optimal solution h to the problem of profit 
maximization max {pTYbl Yb E Yb} as long as IIhll < IIhll is satisfied. In this 
case h also solves the genuine problem max {p T Ybl Yb E Yb} . 

Similarly, a ball K2 centered at the originS6 can be determined such that the 
relation IIxa II ~ IIYb + Wa II holds for all admissible commodity bundles Xa E Xa . 
As before, a compact and convex set Xa = Xa n K2 results. If a commodity 
bundle xa E Xa solves the problem of utility maximization, then xa is also an 
optimal solution to the original problem of utility maximization, provided IIxa II < 
IIh + wall holds good. 

The above determined sets Xa and Yb are shown in Figure IY.14 by gray areas 
and they can now be united with the price simplex 6. to the required set 

(IY.27) 

Since all subsets are not empty, compact, and convex, C has these properties, too. 
The concluding comments apply directly to KAKUTANI's fixed-point theorem,s7 

where we look for a fixed-point of the correspondence r: c -+ I.lJ (C) defined by 
(IY.28). Under the premises of Proposition IY.14 it can be shown that household 

86The ball K2 chosen in Figure IV14 suffices for the sake of demonstration. 
87For a generalization to many households and firms, see DEBREU (1982). 
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a's preferences can be described by a continuous quasi-concave utility function Ua . 

When we introduce the market as agent choosing a price vector p E ~ so that 
the value of the excess demand on all markets is maximized, then the continuous 
objective functions of all market participants in the simultaneous optimization 
approach are given by 

Ua(Xa,Yb,P) = ua(xa) 

rrb(xa,Yb,p) =pTYb 

t(Xa , Yb, p) =pTZ 

for the household a, 

for the firm b, 

for the market with z = Xa - Yb - Wa. 

The households' budget set is now Ba (p) = {xa E Xa I p T Xa ~ P T Wa +Jrb(p) }. If 
two out of the three scrutinized market participants have chosen an activity, then the 
third agent must consider these facts at the choice of his particular optimal activity. 
Now the set T(xa, Yb) collects all of the price vectors which are optimal for the 
market, provided the household chooses the commodity bundle xa and the firm 
chooses the activity Yb. It turns out to be technically more pleasant to denote the 
set T(xa, Yb) by T(xa, Yb, p), where it must be taken into account that T(xa, Yb, p) 
does not change with any variation of p. 

For a state of the economy (xa, Yb, p) E Xa x Yb x ~ the following sets of 
optimal activities result regarding the three market participants - the household a, 
the firm b, and the market - respectively. 88 

Da(xa, h, p) = {Xa E Ba(P)1 Ua(Xa) = max {ua(xa)1 Xa E Ba(P)}} 

Sb(Xa, Yb, p) = {h E Ybl pTh = max {pTYbl Yb E Yb}} 

T(xa, Yb, p) = {p E ~I pTz = max {pTzl p E ~}} 

Following KAKUTANI's fixed-point theorem, the purpose of the analysis can now 
be made aware of. Concerning the non empty convex compact set C = Xa X Yb X ~ 
we define the correspondence r: C -+ I.lJ (C) with89 

(IY.28) 

so that it must be shown that the correspondence r has a fixed-point 

(X~, Yb' pO) E r(x~, Yb' pO). 

If the above state of the economy satisfies (xa, Yb, p) = (x~, Yb' pO), then the 
simultaneous optimization approach permits the choice (xa, h, p) = (x~, Yb' pO). 
Thus, the examined economy with the fixed-point (x~, Yb' pO) has a state at which 
each actor makes an optimal choice. 

Since the sole household is restricted to the budget constraint x~ E Ba(PO) the 
equation poT ZO = poT (X~ - Wa - Yb) ~ 0 must hold. If the market maximizes 

88 Atthis point is has to be shown moreover that the sets Da(xa, Yb, p), Sb(Xa , Yb, p), and T(xa, Yb, p) 
are not empty and convex for all states (xa , Yb, p) E Xa X Yb X D. of the economy. 

89The Cartesian product of upper semi-continuous correspondences is also upper semi-continuous. At 
this point we refrain from proving the upper semi-continuity of the correspondences Da , Sb, and T. 
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the value of the excess demand. then p T ZO ;§ 0 for all PEl). and. therefore. 
ZO ;§ o. Thus. the state (x~. Yb' pO) is attainable. Assuming nonsaturation. the 
household will utilize its whole budget. where at the same time poT ZO = 0 
corresponds to WALRAS' law. We obtain a WALRAsian equilibrium of the form 
(IV.26). 

(b) Consideration of Indivisible Goods If some goods are only available at 
integer units. then the consumption set Xa and the production set Yb are usually 
nonconvex subsets in the commodity space X = lRnd x zn-nd. Thus. it seems 
to be reasonable to replace the consumption sets and the production sets with their 
convex hulls conv Xa and conv Yb respectively. After substituting the budget sets by 

B~O(p) := {xa E convXal pTxa;§ pTwa + 2::0abpTYb} 
beB 

we have a problem analogous to the one described in Figure IV. 14. For households 
as well as for firms we have to establish nonempty compact convex sets embracing 
all possible activities of the respective economic agent. The adequate sets are now 
rbo := conv Yb n KJ and x~o:= conv Xa n K2. As before. for a given state of the 
economy 

c eo := X Xeo X X yeo X I). 
aeA a beB b 

the subsequent synthetic sets90 of optimal activities for the respective market 
participants result - the households a EA. the firms b E B. and the market. 

b~O(xa. h. p) = n B~O(p) n X~o n conv9{,(xa) 
XaeB.@ 

SbO(Xa• h. p) = {h E rbol pTh = max {pTYbl Yb E r bO}} 

T(xa • h. p) = {p El).I pTz = max {pTzl PEl).}} 

The difference to the previous analysis is particularly revealed by the synthetic 
demand correspondence b~o. Since the premises are not enough to guarantee the 
existence of a continuous and quasi-concave utility function Ua• we have to revert 
to an alternative derivation of the correspondence b~o. The surrogate b~o must 
not arbitrarily differ from the real demand correspondence Da and it must be upper 
semi-continuous in the entire price simplex 1).. Furthermore. KAKUTANI'S fixed­
point theorem requires the level sets b~O(xa. Yb. p) to be not empty. compact. and 
convex. In the derivation of the~e sets especially the relation Xa E Ba(P) C Xa 
assures that conv9{,(xa) '* 0 h:olds. 

Assume the suggested modifications suffice to prove a fixed-point of the 
correspondence reo: ceo -+ ~(ceo) with 

reO(x. Y. p) = X b~O(xa. Yb. p) X X SbO(Xa• n. p) X T(xa• Yb. p). 
aeA beB 

90The definition of the synthetic demand correspondence has already been suggested in Section 1.3.2 
and is discussed in detail by BROOME (1972). 
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Then this fixed-point (*0, yO, pO) E r(*o, yO, pO) denotes a state of the "convex­
valued" production economy 8 satisfying91 

(Iv'29a) 

(Iv'29b) 

(1V.29c) 

° D-CO( ° ° 0) xa E a Xa ' Y b, P 

y); E SbO(X~, y);, pO) 

pO E T(x~, y);, pO) 

for all households a E A, 

for all firms b E B, 

for the market. 

Moreover, if suitable assumptions assure - as in Proposition III.30 (WALRAS' law)­
that each household makes use of its whole budget, poT X~ = poTwa+ Lb f)abpoTy); , 
then analogous to Proposition IV,14 it ensues 

(Iv'26) ZO = L x~ - LY); - W A ~ 0 with pO E!:l. and poT ZO = O. 
aEA bEB 

With that we have reached a point for the presented production economy that has 
been noted by Proposition IV,9, p. 232, regarding exchange economies. 

If the production technologies also satisfy Assumption 4, p. 236, i.e. DSup ~ 

radSb(Yb), then, analogous to Corollary IV,ll.1, we can estimate how far the 
allocation (*0, yO) concerned can deviate at the most from an allocation (*d, yd) 
with 

yt E Sb(pO) 

x~ E Da(pO) 

for all firms b E B , 

for all households a EA. 

In this context ARROW and HAHN92 present the subsequent estimation for 
nonconvex preferences and nonconvex production sets Yb 

Inequalities of this form have been discussed in more detail in Section IV,2.3 and 
this need not be repeated at this point since we cannot expect that this analysis 
gives basically new insights. Nevertheless, the question now arises as to how far the 
production technologies hold DSup ~ rad Sb(Yb) when considering indivisible 
goods. The number DSUP has been interpreted at its introduction as a measure 
for the degree of nonconvexity of preference sets. Referring to production this 
interpretation is lacking in content when relative to the examined economy large 
and significant indivisibilities appear which result in increasing economies to scale. 
As examples for this SCARF (1994) offers production lines, bridges, and networks 
which are only available at certain discrete sizes and whose utilization is merely 
useful at a high production scale. The results following from an approximation of 
the production set Yb by its convex hull COnvYb are useless in this case. 

To give an idea of the described problem, Figure IV.l5 offers a production set 
Yb which has similar properties as in Figure 11.23, p. 42.93 Remember that the 

91 A similar statement is given by ARROW, HAHN (1971, p. 177) regarding nonconvex preferences. 
92Cf. ARROW, HAHN (1971, p. 178, Theorem I). 
93 A similar example may be found in MAS-COLELL, WHINSTON, GREEN (1995, p. 572). 



262 Chapter IV. Theory of Market Equilibria 

production technology is indicated by netput vectors. After the convex hull of 
the production set Yb has been deduced. the household a's initial endowment Wa 
can be added to the set conv Yb . Analogous to Figure IVI3. we get a graphical 
representation of the set convYb + Wa. Starting with the netput vectors Y1. yb. 0 E 

Yb. then x~ = Y 1 + Wa• x~ = Yb + Wa• and Wa denote the relevant points of the 
set COnvYb + Wa. 

o 

To grasp the problem of significant 
indivisibilities with increasing returns to 
scale. we now refer to point x~ which is 
assigned to the state (x~. Yb' pO) (with x~ = 
Wa + Yb)' If this point fulfills the conditions 
(IV29a)-(IV29c) and (lV26). then it must 
be an integer commodity bundle x~ E 

X since the correspondence iJ~o. used in 
(IV29a). is based on the set conv~(x~). 
In the case of x~ ¢:. X not only the 
preference set ~(x~) but also its convex hull 
conv~(x~) and. therefore. iJ~O(x~. Yb' pO) 
were empty contrary to the hypothesis 
° D-CO( ° ° 0) G' d . 'bl Figure lY.lS: Increasing returns to xa E a xa. Yb' p. Iven an a mlssl e 

commodity bundle x~ EX. the problem is scale 
limited to production. Yb E SbO(x~. Yb' pO) by (IV29b). In the sense of important 
indivisibilities with increasing returns to scale it is now supposed that there is 
no possible netput vector94 Yb E Yb such that Yb + Wa E conv {x~ , x~, wa} 
holds.95 In this case x~ = Yb + Wa merely gives an approximation to the possible 
point x~ = Y1 + Wa' This approximation must particularly be considered as 
unsatisfactory if we lay great emphasis on large indivisibilities. 

Moreover, Figure IVIS illustrates another problem that has already been 
mentioned in a similar form by Figure IV3, p. 219, concerning exchange economies. 
If the "boundary points" of the set Yb + Wa are given by Wa, x!. and x~ and if 
x! :> a Wa :> a x~ holds for the household a, then there is no price line, separating 
the sets Yb + Wa and conv3-'(x!). At the same time the existence of a WALRAS 
equilibrium is excluded. 

With that the question arises as to whether it is in principle possible to construct 
a nonlinear pricing rule96 superceding the price line and yielding x! = y~+wa as a 
market result. Such a nonlinear pricing rule is sketched in Figure IVIS by the curve 
through x!. In particular, x~ = Yb + Wa and Wa (with Yb = 0) lie below this curve 
so that Y1 = x! - Wa corresponds to the profit maximizing activity of the firm. 

94Since both x~ and Wa satisfy the integer constraints. Yb = x~ - Wa satisfies the conditions, too. 
Thus, in the case of an integer convex production set Yb the relation Yb E conv Yb would imply a 
possible netput vector Yb E Yb. The example would be null and void. 

95The previous remarks only imply Yb E convYb and x~ = Yb + Wa E conv Ix! . x~, Wa} . 
96 JOUINI (1992) examines general equilibria with respect to nonconvex production sets, where the 

firm sets the commodity prices in accordance with nonlinear pricing rules. One pricing rule determines 
a lower bound for the firm's losses, another rule fixes the commodity price corresponding to marginal 
costs. Last but not least WILSON (l993) provides a detailed discussion of nonlinear pricing. 



3 Generalization of the Model of an Exchange Economy 263 

Such pricing rules are examined in BROWN, HEAL (1980) and KAMIYA (1995) for 
a general equilibrium mode1.97 Here the pricing rules should not primarily assure 
the existence of equilibria but for the moment PARETO optimal allocations. The 
following section is dedicated to this criterion of optimality. 

3.2 Alternative Criteria for Optimal Market Results 

3.2.1 The Core of an Exchange Economy 

3.2.2 PARETO Optimal Allocations 

The WALRASian equilibrium has been characterized by high requirements on 
market results. The class of all PARETO efficient allocations is less restrictive and 
requires a very weak property of economic efficiency. A feasible allocation K is 
said to be PARETO efficient or PARETO optimal if there is no alternative feasible 
allocation K' which puts none of the persons (xa ~a x~ for all a E A) in a worse 
position and at least one of them (xa >-a x~ for at least one a E A) in a better 
position. 

Letting * be the set of all feasible allocations K E x X, then we can define 
aEA 

a binary relation >- A on * by putting 

1( >- A 1(' ¢::::=} [Xa ~a x~ for all a E A and Xa >-a x~ for one a E A] 

for all 1(, K' E *. Thus, a PARETO optimal allocation corresponds to a maximal 
element in * with respect to relation >- A. 

The following propositions refer to an economy in which exclusively indivisible 
goods occur. Thus, for a finite endowment W A > 0 it is guaranteed that * consists 
of a finite number of feasible allocations. To prove the existence of a PARETO 
optimal allocation, we have now to show: 

Proposition IV. 15 98 If each person a E A possesses a preference ordering ~a, then 
>- A is an irreflexive quasi-ordering, i.e. >- A is irreflexive and transitive. 

Proof: The assumed preference orderings are reflexive [01'1] and transitive [3'3] by 
definition; see p. 6. 
(a) For each allocation 1( E * the implication 

1( >- A 1( =::} Xa >-a Xa for one a E A 

generates a contradiction of the assumed reflexivity of the preference orderings since 
Xa >-a Xa implies --'(xa ~a xa). Thus the relation >-A is irreflexive because of 
--'(1( >- A 1() for all 1( E *. 
(b) For three feasible allocations K, 1(', and 1(" with 1( >- A 1(' and K' >- A 1(" we 
obtain 

97 A survey on general equilibrium theory with increasing returns to scale is given by CORNET (1988), 
where the attention is drawn to "nonconvex economies" and not directly to indivisible goods. VILLAR 

(1996) examines increasing returns to scale. 
98Cf. EMMERSON (1972, p. 180). 
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1. Xii >ii x~ for at least one person Ii E A. Due to Xii >ii x~ and x~ ~ii xi{ it 
ensues Xii >ii xi{ by transitivity. 

2. for all of the remaining persons a E A (a =1= Ii) the implication Xa ~a x~, 
x~ ~a x~ ==> Xa ~a x~ follows immediately from the supposed transitivity. 

The union of the two arguments induces x > A x" and therefore the transitivity of 
the relation > A. • 

Hence, considering Proposition 11.1, p. 9, we can state: 

For each economy with a finite number of indivisible goods and a finite 
endowment there is a PARETO optimal allocation if each of the finitely 
many persons has a preference ordering. 

In each exchange economy with a divisible good we can think of an infinite 
number of feasible allocations. Nevertheless, the existence of an individually 
rational PARETO optimum is assured if each consumer has a continuous preference 
ordering.99 As the proof of this statement does not refer to the divisibility or 
indivisibility of goods, the proof is omitted. loo 

In Figure IV.2, p. 218, the set of all PARETO efficient allocations is indicated 
by the contract curve (01, 0 2). Each PARETO efficient allocation corresponds to a 
point of tangency of two indifference curves. At the same time it becomes apparent 
that not all of the PARETO efficient allocations can lead to satisfying results. A 
person will not agree to any allocation x in which his position is worsened in 
comparison with his initial endowment Wa (wa >a xa). 

In this sense HILDENBRAND, KIRMAN (1988) pick up the idea of an 
"individually rational PARETO optimum", where each person must accept the 
PARETO optimal x allocation (xa ~a Wa for all a E A). If we ignore for a moment 
the criterion of PARETO efficiency, then we have to ask when an allocation can be 
"improved" at all. For this purpose we examine arbitrary nonempty subsets S in the 
set of all persons A which are called coalitions. A coalition S is able to improve 
the allocation x if an alternative allocation lE' exists such that x~ >a Xa for every 
person a of the allocation S and Laesx~ = Laeswa. Eventually, the core of 
an economy contains all allocations which cannot be improved by any coalition. lol 

Figure IV.l, p. 216, with two divisible goods illustrates the core as a part of the 
contract curve determined by the section (BI , B2). 

From this approach of game theory it follows that each allocation x in the core 
is individually rational (xa ~a Wa for all a E A) and it is weakly PARETO efficient 
(there is no allocation lE' with x~ >a Xa for all a E A). \02 For the following 
propositions it is important to know when the criteria of PARETO efficiency equals 
the weak PARETO efficiency, where the influence of indivisible goods must be taken 
into account. 

99See [9'4] on p. 6 
lOOSee ALIPRANTIS, BROWN, BURKINS HAW (1989, p. 40, Theorem 1.5.3). 
IOISee HILDENBRAND (1987). 
102Cf. ALIPRANTIS, BROWN, BURKINSHAW (1989, pp. 39-42), in particular Theorem 1.5.5. 
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Proposition IV.16 Suppose that all persons in an exchange economy possess 
continuous and strongly monotone preference orderings. If there is at least one 
divisible commodity. then a feasible allocation x is PARETO efficient if and only if it 
is weakly PARETO efficient. 

Proof: Each PARETO efficient allocation is immediately weakly PARETO efficient 
and we have merely to prove the reverse conclusion. Thus, no feasible allocation 
x' can imply a PARETO improvement to a weakly PARETO efficient allocation 
X.103 The starting point of the proof of contradiction is a weakly PARETO optimal 
allocation x and a feasible allocation x' being a PARETO improvement, i.e. 

X~ ~a Xa for each person a E A 

and x~ > ii Xii for one person ii EA. 

Without loss of generality it is supposed that the first good is divisible. If we take 
away the positive quantity a of the first good from person ii. then x~ > ii x~ -
ael for a strongly monotone preference ordering. The continuity of the preference 
ordering means that the preference set ~(x~) is closed. Due to Xii f. ~(x~) there 
must be an open ball K centered at Xii ofradius a such that K(Xii. a)n~(x~) = 0. 
Thus for a sufficiently small quantity a and strong monotonicity of the preference 
ordering we have 

, ".' I Xii > ii Xii .= Xii - ae > ii Xii . 

Now the quantity a can be distributed equally among all the remaining persons 
a EA. a"* ii). With respect to strongly monotone preference orderings it follows 

"._ '+ a I xa .- xa #A _ 1 e >a Xa· 

Although the generated allocation x" is feasible. x~ >a Xa holds for all a E A 
because of the strong monotonicity. Hence. x cannot be weakly PARETO optimal 
which is contrary to the supposition. If there is no allocation x' with the quoted 
properties, then the weakly PARETO optimal allocation x is also PARETO optimal . 

• 
3.2.3 First Theorem of Welfare Economics 

Under the premises of Proposition IV. 16 we can now prove that each WALRAsian 
allocation in an exchange economy also lies in the core of this economy.l04 
Supposing this statement were wrong, then there must be a WALRASian allocation 
XO not lying in the core of the economy. In this case there is a coalition Sand 

103Cf. e.g. ALlPRANTlS, BROWN. BURKINSHAW (1989, p. 40, Theorem 1.5.2). 
The cited theorem does not explicitly presume the divisibility of goods; the proof requires, however, this 
assumption. 

I04Cf. DEBREU, SCARF (1963, p. 240, Theorem 1) or HILDENBRAND, KIRMAN (1988, p. 83, 
Proposition 2.4). 
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an allocation x' satisfying two conditions: (i) x~ >a x~ for all a E S and 
(ii) Laes x~ = Laes Wa· For the WALRAsian equilibrium (pO, XO) (i) implies in 
conjunction with the premises of Proposition IV. 16 

Va E S. 

In contradiction to (ii) we get 

LPoTx~ > LpoTWa . 

aeS aeS 

Thus, the WALRAsian allocation XO lies in the core of the economy. Conversely, 
a WALRASian allocation can only exist if the core of the economy is not empty. 
Accordingly, the search for a WALRASian equilibrium need not be continued if it 
has been shown that the core of the economy concerned is empty. 

Finally, it remains to be noted that each WALRAsian allocation must be PARETO 
efficient (first theorem of welfare economics) under the premises of Proposition 
IV.16 since all allocations in the core of the economy have this property. lOS This 
outcome is noteworthy if we take into account that the described WALRAsian 
equilibria are the result of a simultaneous optimization approach in which the agents 
do not cooperate. 

~ __ -+-__ --+_-4-....>...o>--_____ -t_~Xl1 

0 1 

For exchange 
economies including 
only indivisible goods 
contrary to Proposition 
IV. 16, the statement 
of the first theorem of 
welfare economics is no 
longer valid. As shown 
by the EDGEWORTH 
box in Figure IV.16 for 
two persons a = 1, 2, we 
can construct examples 
where not all equilibria 
are at the same time 
PARETO efficient. 106 

X22 Starting with the ini-L-____________________________________ ~ 

tial endowments WI and 
Figure IY.16: Non PARETO efficient WALRAsian equilibrium W2 of two persons in 

Figure IV.16, the feasible allocation XO = (xl' xp implies the budget balance 
for both persons given the depicted price ratio: pO Wa = poT x~ with a = 1, 2. 

105KHAN, YAMAZAKI (1981) present similar results referring to economies with indivisible goods 
and a continuum of households. The authors discuss assumptions so that the core of the examined 
economies is not empty. Furthermore, it is shown that the set of W ALRAsian allocations equals the set 
of all allocations in the core, where the WALRAsian allocations underly slightly weaker requirements. 
QUINZII (1984) describes a market for m houses and the perfectly divisible good money. Again 
assumptions are presented under which the set of W ALRASian allocations equals the set of all allocations 
in the core. Concerning this market, SVENSSON (1991) shows that each WALRAsian equilibrium is 
furthermore equivalent to a (strong) NASH eqUilibrium. 

106 A similar example may be found in EMMERSON (1972, p. 184). 
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Thus, the allocation XO denotes a WALRAsian equilibrium if xI and xl are best 
commodity bundles relative to the respective budget sets of both persons. 107 In 
this sense it is supposed for person 1 that the allocations xo, x2, and x3 reflect the 
following indifference: xI -I xi -I xi. Analogously, it is assumed that the 
allocations XO and Xl evoke xl -2 x~ for the second person. 

Although XO corresponds to a WALRAsian allocation, this allocation cannot be 
PARETO efficient for strongly monotone preferences. For instance, the allocation 
Xl is a PARETO improvement to XO since we have xl >1 XI for the first person 
besides x~ -2 xl' 

The equilibrium allocation XO does not even need to be weakly PARETO efficient. 
If both agents ignore the given price ratio and agree to the allocation X4, then the 
result can be favorable for both actors. In this case the WALRASian allocation XO 

would not lie in the core of the economy since a coalition of both persons would 
block XO because they can realize a better result than X4. 108 

3.2.4 Comments on the Second Theorem of Welfare Economics 

After the expositions on the first theorem of welfare economics the question now 
arises as to what extent indivisible goods influence the validity of the second 
theorem of welfare economics. 

Second Theorem of Welfare EconomicslO9 Suppose XO is a PARETO efficient 
allocation with x~ > 0 for each person a EA. Provided the preference 
orderings are convex, continuous, and monotone, XO is a WALRASian equilibrium 
for the initial endowments Wa = x~ (a E A). 

Thus, each of the mentioned PARETO ,.-----------------, 

efficient allocations can be converted 
into a WALRAsian equilibrium by an 
appropriate reallocation of the initial 
endowments. 

The idea of the proof can be justified 
for' two persons and two goods with 
the help of the EDGEWORTH Box 
opposite. If point D is a PARETO 
efficient allocation (xI' Xl) with XI = 
WI and Xl = W2 , then there 
must be a hyperplane separating both 
convex closed preference sets 9l (xl> and 

0 2 
~+-~--------. 

Figure IV. 17 : Second theorem of welfare 
economics 

107 Technically x~ E Da(pO, wa ) must hold for both persons a = 1,2, where the demand 
correspondence Da (·, wa ) has been defined on p. 190. 

108More examples with WALRASian allocations being not PARETO efficient may be found in 
GUESNERIE (1975, p. 23 ff.). The presented production economies presume divisible goods but 
nonconvex production technologies. The presented nonconvex technologies as a cause for PARETO 
inefficient W ALRAsian allocations cannot be transferred to the case of indivisible goods without further 
assumptions. 

I09VARIAN (1992, p. 326). 
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~(X2).110 Now for strongly monotone preferences the corresponding price vector 
pO yields the WALRASian eqUilibrium (xl' x2' pO). 

According to VARIAN (1992), the proof of such a hyperplane relies crucially on 
the convexity of both preference sets. Thus, it is not surprising that the statement of 
the second theorem of welfare economics is no longer valid under the consideration 
of indivisible goods. At this point it may be enough to note two statements offered 
without proof. 

(1) Despite an indivisible good the second theorem of welfare economics 
remains valid if the following assumptions are made. The economy concerned 
embraces two persons and two goods. The first good is perfectly divisible and it is 
chosen by each person in a positive amount. lll The prefere~ces satisfy Assumption 
3, i.e. for both persons and for all commodity bundles x, x' E X a positive number 
).., exists such that x + )..,el ~a x' (a = 1,2). The sets {x E XI x >a x} (a = 1,2) 
are integer convex, i.e. for each commodity vector x in the commodity space 
X = 1R+ x Z+ we have 

conv{x E XI x >a x} n X = {x E XI x >a x}. 

Although the proof is omitted, we can make use of Figure IV.4, p. 220. Substituting 
the first person's preference set by an integer convex preference set, the marked 
allocation (Xl' x2) is PARETO efficient, and the price line Cl C2 separates the convex 
hulls conv{x E XI x >1 x)'} and conv{x E XI x >2 x2}. Thecorrespondingprice 
vector pO constitutes the WALRAsian equilibrium (Xl' x2' pO). 

(2) Although it seems intuitively reasonable to make a generalization for more 
than two goods, we can already construct PARETO efficient allocations for three 
goods (two indivisible goods and one divisible good) which do not determine a 
WALRAsian equilibrium. 1 12 

3.3 Summary 

Section IV.3 presents initial points which continue the results of the existence of 
exchange equilibria regarding two aspects. On the one hand the exchange economy 
is expanded by the ignored aspects of production and on the other hand the PARETO 
efficiency gives an alternative criterion for assessing an allocation. 

The consideration of production causes no major problems for the moment. 
All assumptions on the production technology of the individual firm have already 
been introduced in Chapter I. As seen in the expositions of Proposition IV. 14, the 

llOSuch a hyperplane implies that there is no allocation improving the position of one of both persons 
without worsening the position of the other person. 

lllThis condition was introduced by Assumption 1 (BROOME). 
Jl2 MATIlEMATIQ\' is especially suitable for a geometrical construction of three-dimensional EDGE­

WORTH boxes with appropriate preference structures. 
EMMERSON (1972. Theorem 2) asserts that monotonicity and integer convexity of preferences would 
suffice to prove that each PARETO optimal allocation describes at the same time a W ALRASian allocation 
given an appropriate price vector. But the proof stipulates that the sum of integer convex sets is also 
integer convex; see EMMERSON (1972. p. 182). Even simple examples disprove this assumption. 
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existence of a WALRAsian equilibrium with divisible goods can be proved with 
the same arguments as introduced in the treatment of exchange economies. The 
simultaneous optimization approach is merely expanded by firms as additional 
actors. Provided that it is possible to convert the described production economy 
regarding indivisible goods into a "convex-valued" economy, then the results 
cannot essentially differ from the results with respect to exchange economies. As 
before, we have to suppose that no exact equilibria need to exist, but at least for 
nonincreasing returns to scale the simultaneous optimization approach will end up in 
a state (*d, yd, pO) of the economy which cannot arbitrarily differ from a determined 
fixed-point (*0, yO, pO). 

For significant indivisibilities implying increasing returns to scale the 
established estimations of the deviation between both allocations (*d, yd) and 
(*0, yO) ought to be useless. Keeping that in mind, we are faced with the question 
which ties in with one cause for the deviation of the preceding allocations. Although 
the maximal utility level of the representative household can be associated with a 
certain production level, no price vector needs to exist so that the corresponding 
production activity is profit maximizing. As no linear price plane supports the 
production set at the point of the utility maximizing production activity, we try to 
construct a nonlinear price plane, which furthermore transfers the utility maximizing 
activity into a profit maximum; see Figure IY.IS. 

To assess an attainable allocation, the criterion of a WALRASian equilibrium 
faces the criterion of PARETO efficiency. By the first theorem of welfare economics 
we can prove, under relatively weak assumptions, that each WALRASian allocation 
has to be PARETO efficient at the same time. The reverse conclusion of the 
second theorem of welfare economics is usually not admissible for given initial 
endowments. In this sense the PARETO efficiency is often understood as a weaker 
criterion of optimality. But if all of the goods are indivisible, then we can offer 
examples in which WALRAsian allocations are not PARETO efficient. 
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Critique 

In treating indivisible goods and factors we follow a path which is based on well 
known approaches in microeconomic theory. 

The analysis begins with the basic requirements regarding the preferences of a 
household and the production technology of a firm. Representing the household's 
preference structure by a family of preference sets (:p(x) I x E X) it becomes 
evident that the properties of continuous preference orderings do not depend on the 
consideration of indivisible goods. Merely the assumption of convex preference sets 
contradicts the requirement that some goods are only available at integer amounts. 
Since the convexity of sets is associated with a series of analytical advantages, we 
look for a suitable substitute for nonconvex sets so that we can take advantage of 
convexity. 

Before concerning ourselves with the household's preference structure, we 
examine the analogous problem with respect to the firm's production technology 
(Section 11.1.2). Again the production structure (P(v)1 v E V), which consists of 
production possibility sets P(v), has several properties which are not influenced 
by the existence of indivisible factors; see [Pl]-[P6], p. 11 ff. These features face 
equivalent properties [Ll]-[L6] of the inverse production structure (L(x) I x E X), 
where L(x) denotes an input requirement set (Proposition 11.2). 

In order to make use of the analytical advantages of convex sets, in the next 
step we introduce the concept of the convex hull (Section 11.2.2.1). This set is 
the smallest of all convex sets containing the genuine set. In the case of an input 
requirement set the transition to the convex hull is indicated by L(x) -+ conv L(x). 
To represent convex hulls, two views are compared (Figure 11.10). On the one 
hand each point in the convex hull can be expressed as a convex combination of 
points in the original set (inner representation). On the other hand a (closed) convex 
hull is the intersection of all (closed) half-spaces containing the original set (outer 
representation). These views of an input requirement set L(x) are reflected by the 
cost function c(·, x) and the input distance function tl(', x). While the cost function 
is determined by a system of hyperplanes tangent to the convex hull of the input 
requirement set (Proposition III. I I ), the input distance function indicates how much 
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a point in the convex hull can be deflated along a ray through the origin until it 
reaches the frontier of this set. 

Since both functions refer in particular to boundary points of the convex hull 
of an input requirement set, the interrelation between the convex hull and certain 
boundary points is first analyzed. Not only extreme points but also exposed points 
turn out to be of major importance. For instance, it is shown that a cost minimum 
is always achieved at an extreme point of the convex hull conv L(x) of the input 
requirement set. In order to prove that both extreme points and exposed points are 
admissible in principle, it is furthermore shown that the convex hull conv L(x) is 
closed under the assumptions on the production technology (Proposition 11.14). 

The comparison of the cost function c(·, x) and the input distance function 
tl(', x) is determined by certain characteristics of the input requirement sets. 
Analogously, the revenue function r(·, v) and the output distance function to(', v) 
are related to each other via the equivalent properties of the production possibility 
sets, which also result from the assumptions on the production technology. Whereas 
the convex hull conv P(v) of a production possibility set contains the origin x = 0 
and is star-shaped (Figure ILl 5), the convex hull of an input requirement set 
conv L(x) is an aureoled set, which does not contain the origin v = 0 (Figure 
11.16). Using these properties the relevant part of the frontiers of the respective 
convex hull can be described by gauges which correspond to the economic distance 
functions. If the frontiers are known, then the assumption of integer convexity 
enables us to determine unequivocally all of the possible activities. In this case there 
is no loss of information if we go over from a set to its convex hull. In particular, 
the relevant integer boundary points of the convex hull are at the same time points 
of the genuine set (Section 11.2.2.2). 

No matter what the set is, this property holds for all of the extreme points of a 
convex hull, hence we can now give a plausible measure for the technical efficiency 
of activities. If we apply FARRELL's input efficiency measure to the convex hull of 
the input requirement set concerned, then the measure compares each input vector 
with a boundary point of the convex hull lying on the same ray through the origin. 
Since each boundary point can be expressed as a convex combination of extreme 
points of the convex hull and all of the extreme points are at the same time efficient 
input vectors, the modified FARRELL'S input efficiency measure yields an indirect 
comparison to technically efficient activities for each input vector. For this reason 
the input distance function tIC x), which corresponds to the reciprocal value of 
FARRELL'S input efficiency measure, is directly defined on the basis of the convex 
hull conv L(x) of the input requirement set (Section III.2.2). 

Having pointed out the importance of boundary points to technical efficiency, 
we now seek for activities which are even efficient with respect to economic terms. 
An input vector v must not only be input efficient but also cost minimizing with 
respect to the production of a given commodity bundle x. Again the relevant input 
vectors lie in the frontier of conv L(x). 

In principle the boundary of the convex hull of an input requirement set can 
be described in two ways. The first way refers to a partial factor variation and 
the second way to the total factor variation (Figure IILl). Starting with the partial 
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factor variation, a function g(·lconvL(x» is derived which implicitly represents the 
boundary of the set conv L(x) (Section III.1.2). This function faces a normalized 
cost function c(·, x) indicating the minimal factor costs in the production of the 
commodity bundle x in units of factor r. At the same time it is shown that the 
normalized cost function c(·, x) does not depend on the fact whether it is derived on 
the basis of the input requirement set L(x) or its convex hull conv L(x) (Proposition 
111.2). This result is not valid for the optimal solutions to the cost minimization. Not 
all of the optimal solutions to the cost minimization on the basis of the convex hull 
convL(x) are at the same time admissible input vectors. Nevertheless, the reverse 
conclusion can be proved: all of the cost minimizing input vectors belong to the 
set of optimal solutions with respect to conv L(x) (Section III.l.4.2). Furthermore, 
there is at least one admissible cost minimizing input vector, provided the given x is 
an admissible commodity bundle. 

Among other properties of the pair of functions (g(·lconvL(x», c(·, x»), it has 
especially been shown what requirements suffice for the normalized cost function 
to be differentiable at a point of normalized factor prices q-r. In this case according 
to SHEPHARD'S Lemma the gradient y-r = Vc(q-r, x) denotes a unique cost 
minimizing and admissible input vector (Section 111.1.4.3). 

To demonstrate further properties of such pairs of dual points (q-r, y-r), we 
present a series of examples such that the interrelation of the pair of functions 
(g(·lconvL(x», c(·, x») can be explained by graphs (Figures III.S, 111.12, III.14, 
and III. 16). It can be observed there that the generalization of SHEPHARD's Lemma 
only leads to unique factor demand functions if the input requirement sets are strictly 
convex. In particular, the normalized cost function is not differentiable at each 
price vector for indivisible factors. Several possible cost minimizing input vectors 
exist for these vectors, which can as before be determined unequivocally under the 
assumption of integer convex input requirement sets. 

In what follows, the analysis switches over to the total factor variation, 
which leads to an alternative cost function c(·, x) (Section 111.2). This function 
corresponds to the support function qJ of the input requirement set L(x) and, 
therefore, generates a system of hyperplanes tangent to the convex hull conv L(x) 
(Proposition 1I1.11). For each hyperplane there is a nonnegative perpendicular 
price vector q unique up to a scalar. Uniting all price vectors with the property 
c(q, x) ~ I in the polar input requirement set Lo(x) of L(x) (Proposition 111.17), a 
family (Lo(x)1 x E X) is generated, which can be interpreted as a cost structure in 
comparison to the production structure (L(x) I x E X). Each polar input requirement 
set Lo(x) is in tum associated with a support function qJ. Thus, according to 
the explanations a bipolar set Loo(x) can be generated which satisfies Loo(x) = 
convL(x). Analogous to the normalized cost function c(·, x), it is shown that the 
determination of the cost function c(·, x) does not depend on the fact whether it is 
based on the input requirement set L(x) or its convex hull convL(x). Moreover, it 
has been shown that the two cost functions c(·, x) and c(·, x) can be transformed 
into each other (Proposition III. 12). 

The introduction of the input distance function tIC, x) compares the cost 
function to a radial measure of the input efficiency of an activity. To get over the 
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difficulties in measuring the efficiency regarding nonconvex input requirement sets, 
the input distance function is immediately defined with respect to the convex hull 
conv L(x) (Section 111.2.2). The resulting problems have already been discussed for 
the modified FARRELL's input efficiency measure. 

It turns out that the input distance function regarding the sets conv L(x) and 
Lo(x) plays the reverse role of the cost function (Corollary III.I8.I). The input 
distance function t I (', x) is defined as the gauge 1/1 of the convex hull of the 
input requirement set conv L(x) and denotes the support function cp of the polar 
set Lo (x). In contrast, the cost function c(-, x) is defined as the support function 
cp(-IL(x» and equals the gauge 1/I(·ILo (x». This dual relation is reflected by 
SHEPHARD's Theorem (Proposition 111.19): an input vector v solves the problem 
of cost minimization such that c(q, x) = qTv if and only if the input vector v 
is efficient with respect to the convex hull convL(x), i.e. tl(q, x) = 1. In this 
case (q, v) is called a pair of polar points. Remember again that not all vectors, 
yielding minimal costs, correspond to admissible input vectors. However, for each 
admissible commodity bundle there is at least one admissible cost minimizing input 
vector. 

The concluding examples (Section III.2.4.2) offer not only a graphical 
comparisons of the input requirement set L(x) (or its convex hull conv L(x» and 
its polar set Lo(x), but also of the corresponding boundary functions tl(V, x) = I 
and c(q, x) = 1 (Proposition 111.17). Finally, we demonstrate the relation to the 
factor demand correspondences which have been derived from the normalized cost 
function c(', x) (Figure 111.36). 

In the theory of the household we refrain from analyzing the expenditure 
structure in analogy to the cost structure of a firm. Instead, the expositions 
concentrate on the properties of the commodity demand which are required for the 
proof of the existence of a competitive equilibrium in exchange economies. In this 
the exchange economy consists of a set A of persons and each person possesses 
a continuous monotone preference ordering apart from an initial endowment Wa. 

The aim is to show that a price vector exists such that the aggregate excess demand 
vanishes on all commodity markets. The proof succeeds when the aggregate excess 
demand, which is made up of the individual demand correspondences, has certain 
properties. 

First of all, it is shown that the aggregate excess demand correspondence is 
homogeneous of degree zero in commodity prices p if every person is free of money 
illusion (Proposition III.2I). Thus, the factor price space can be restricted to the 
price simplex D., where we have to distinguish positive price vectors p > 0 from 
price vectors with a zero component. The aggregate excess demand correspondence 
is well defined for positive price vectors - i.e. Z (p) '* 0 - but not for price vectors 
having a zero component (Propositions 111.23 and III.28). As an alternative it is 
shown that the aggregate excess demand becomes infinitely large as soon as a 
commodity price falls to zero (Corollary 111.29.1). 

Finally, we present assumptions preventing the individual demand correspon­
dences and, therefore, the aggregate excess demand correspondence from making 
arbitrary jumps. These jumps, caused by a marginal change of a positive price 
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vector (Figure 111.44), can be ruled out by presuming at least one divisible good 
in the exchange economy (Proposition 111.27). For a similar reason it is assumed 
that each person holds a positive initial endowment Wa > O. In doing so it is 
assured that each person has a positive budget even when the price vector has a 
zero component. Otherwise the demand would suddenly disappear at that moment 
when the value of the initial endowment has fallen to zero. The third assumption on 
households' preferences also serves to avoid jumps, now ruling out that the demand 
suddenly becomes infinitely large as soon as a price vector has a zero component 
(Figure 111.48). 

Finally, WALRAS' law (Proposition 111.30) notes conditions so that every person 
makes use of his whole budget. Hence, the value of aggregate excess demand is 
identically zero. 

Chapter IV goes into the existence of competitive equilibria, where the hierarchy 
conforms to strictly convex, convex, and nonconvex preference sets. While in the 
first two cases the existence proof is successful (Propositions IV6 and IV7), there 
need not be any equilibrium with regard to indivisible goods. Nevertheless, ignoring 
the requirement of being integer, we can establish a feasible allocation K O and a 
price vector pO > 0 being suitable for an approximation of a real competitive 
equilibrium (Proposition IY.I 0). In particUlar, it can be shown that at the most n - I 
persons receive no commodity bundle demanded in the so called ROTHENBERG 
equilibrium (KO, pO) with n goods. However, they are assigned a vector x~ which 
can be expressed as a convex combination of commodity bundles demanded. In this 
sense the persons at hand are not "far" away from their real demand. 

If it is possible to give an upper bound for the distance between two chosen 
commodity bundles, then the maximal degree of the accumulated deviation between 
the ROTHENBERG equilibrium (KO, pO) and a pair (Kd , pO) can be offered, where Kd 

denotes an allocation which is chosen (i.e. integer) at prices pO and usually feasible 
(Proposition IY.II and Corollary IVII.I). Note that the deviation between (KO, pO) 
and (Kd , pO) is still allocated to at the most n - I persons. 

In the following £-equilibria it is shown how to distribute the given deviation 
equally such that the burden of a nonexisting equilibrium is not borne by at the 
most n - I persons. The two £-equilibria stipulate that the exchange economy has 
a sufficiently large number of persons. In each case the ROTHENBERG equilibrium 
(KO, pO) serves as an initial point. The first £-equilibrium (KOO, p) in the sense of 
STARR modifies the allocation KO to a feasible allocation KOO such that the distance 
between the vector x~o and a commodity bundle x~ demanded at prices pO is on 
average smaller than £ (Proposition IV12). Moreover it is shown that this £ can 
be chosen even smaller, the more persons are included in the exchange economy. 
Although on average IIx~o - x~1I < £ holds good for each person, this inequality 
can be violated for individual persons with considerable consequences. For this 
reason the second £-equilibrium in the sense of HILDENBRAND and KIRMAN 
(Proposition IY.13) requires the preceding inequality to be satisfied for all persons. 
Thus, it is not surprising that now more restrictive requirements are needed with 
respect to the exchange economy. If the examined exchange economy is "large" 
under various aspects, then it can be shown that no person is assigned a vector 
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x~O deviating by more than s from a commodity bundle x~ demanded. Moreover, 
all persons satisfy their budget constraint. The allocation 1(00 derived from the 
ROTHENBERG equilibrium is again feasible and the number of persons receiving 
no commodity bundle demanded is bounded above. 

The concluding extension from the exchange economy to a production economy 
suggests that similar results will appear; see p. 260ff. However, SCARF stresses 
that when the production is characterized by important indivisibilities, then the 
analogous approximation for an equilibrium will become almost useless. 

The concluding remarks concentrate on the criterion of PARETO efficient 
allocations in an exchange economy. Again, the importance of a perfectly divisible 
good is pointed out for the analysis of indivisible goods (Section Iy'3.2.3). While 
the statement of the first theorem of welfare economics remains the same if there is 
at least one divisible good, the statement is no longer valid for exclusively indivisible 
goods (Figure IY.16). 

The representation of indivisible goods and factors requires some comments 
with respect to two aspects. The first point is of a technical nature: it shows 
alternatives for the approximation of nonconvex sets by their convex hulls. The 
second point deals with the ignored problem of large, indivisible, and irreversible 
investments corresponding to fixed or sunk cost. At the same time the goal of 
optimal investment strategies is expanded by game theoretical aspects. 

The theory of the firm in Sections 111.1 and III.2 concentrates on implications 
resulting from certain properties of the production technology. If indivisible goods 
or factors appear, then the tool of the convex hull is used. For instance, the 
production technology (L(x)1 x E X) has been approximated by (convL(x)1 x E 

X). Moreover, factor constraints are not taken into account. 
This permits a further class of problems to be shown whose solution procedures 

are offered by discrete optimization. Suppose that the input requirement sets L(x) 
are expressed as systems of inequalities 

L(x) = {vi v ~ Ax, v E lR~d X z~-md} , 

where A is an m x n-matrix of positive and constant input coefficients. In this 
case knowing the vertices of the polehydral convex set described by the inequalities 
v ~ Ax in order to represent conv L(x) is not sufficient. l Conversely, each arbitrary 
point v of the polehydral convex set satisfies the relation v E L(x) provided this 
point satisfies the integer constraints, v E lR~d X Z~-md. In all cases Ax = v 
yields an input vector r v 1 E L(x), where r v 1 denotes the "next larger input vector 
of v" by Definition 1104. 

If the input vector v is subject to further factor constraints, i.e. v may not 
exceed the given factor stocks b E lR~d X Z~-md, then the problem of revenue 
maximization is given by 

sup {pTxl v E L(x), v ~ b, x E IR~ x Z:-nd } 

= sup {pTxl Ax ~ v, rvl ~ b, x E IR~ x Z~-nd}. 

I This statement can be illustrated by Figure V.I even though no input requirement set is shown. 
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Because r v 1 ~ rb 1 == b also holds for all v ~ b, we obtain 

(VI) sup {pTxl Ax ~ b, x E IR~ x Z~-nd}. 

If no good is divisible, nd = 0, then (VI) is called a pure integer linear 
optimization problem.2 Otherwise it is called a mixed integer linear optimization 
problem. 

The concept of integer optimization is founded on the following observation.3 

If £ is a polehydral convex set, i.e. 

£= {xElRnIAx~b, x~o}, 

and if [£) denotes the set of its integer points 

[£) = £ n (IR~ x Z~-nd), 

then: 

1. The set R:= conv[£) is an integer polehydral set, i.e. all basic solutions or 
extreme points satisfy the integer constraints. 

2. The idea of integer convexity in Section 11.2.2.2 is reflected by [R) = [£) . 

3. The set of basic solutions R* of the polehydral convex set R belongs to the set 
[R), R* C [R). The reverse conclusion is used by the theorem of KREIN­
MILMAN, p. 25: convR* = R. 

o o o 

o 

o 

The Figure VI opposite illus­
trates the polehydral convex set £ 
with the constraints hI and h2. Thus, 
[£) corresponds to the bold points, 
and R = conv[£) is described 
by the gray region. Note that both 
restrictions do not a priori permit the 
conclusion to conv[£). 

KORBUT and FINKELSTEIN offer 
a result which is the most important 
conclusion and very similar to the 
statement of Theorem 11.2, p. 63. If 
the feasible region of problem (VI) is 

Figure V,I: The idea of discrete optimization 
denoted by [£) and if x is an optimal 
basic solution to the problem 

(V2) sup {pTxl x E conv[£)} , 

then x solves the original problem (VI) subject to the feasible region [£), too. If 
we ignore the integer constraints in (VI), then each optimal solution x to 

(V3) sup {pTxl Ax ~ b, x ~ o} = sup {pTxl x E £} 

2A pure integer linear optimization problem is presented in KOOPMANS, BECKMANN (1957) and is 
based on this in REITER. SHERMAN (1962): what does an efficient allocation of n indivisible firms to n 
locations look like when each location can be taken by exactly one firm and each location has different 
advantages for the firms? What price system can be assigned to a solution of the problem? 

3Cf. KORBUT, FINKELSTEIN (1971. p. 84. Theorem 5.1.1). 
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gives a value of the objective function p T i, which is at the same time an upper bound 
for the optimal value of (V, 1); see Figure V, 1.4 Moreover, provided i satisfies the 
ignored integer constraints, then it solves (V. 1 ). 

Now we can get an idea of how the method of cutting planes works. One must 
take into account according to Theorem B.11, p. 297, that the set cl(conv[.l]) is the 
intersection of all closed half-spaces containing conv[.l]. 

1. If i solves (v'3) and if i fulfills the integer constraints, then i solves (v'1), 
too. 

2. Otherwise (V.3) is expanded by an additional linear inequality which 
eliminates i from being a feasible solution, but does not cut off any feasible 
integer solution. Such a cut leaves conv[.l] unchanged. 

3. A finite sequence of steps is required leading eventually to an optimal solution 
to (v'l). 

Such an algorithm has been presented by GOMORY. Note that the method of cutting 
planes breaks off as soon as an optimal solution is found. The introduced cuts 
are usually not enough to determine conv[.l] but to approximate conv[.l] "at the 
relevant point". 

Regarding the method of cutting planes, we are now confronted by two methods: 
(1) The first approach replaces the feasible region [.l] of (v'1) with a unique 

integer polehydral set conv[.l] such that the optimal solutions can be computed 
by methods of linear programming. With a unique linear program there is also 
a unique dual program and the values of the dual variables do not depend on the 
solution procedure. The advantages of this procedure have been widely used in 
the theory of the firm on the supposition that the corresponding integer polehydral 
set conv[.l] is known. Because the ascertainment of the polehydral set conv[.l] 
requires considerable effort, no essential advantage for the pure computation of 
optimal solutions remains. 

(2) The converse is true for the results derived from the introduction of additional 
cuts. The calculation of optimal values is simplified but it depends on the ordering 
of cuts.5 Hence, a unique dual program can no longer be determined so that the dual 
variables have a certain degree of arbitrariness. 

Apart from GOMORY'S cutting plane algorithm, GOMORY, BAUMOL (1960) 
discuss how to interpret the dual variables associated with the extended problem. 
ALCALY, KLEVORICK (1966) and UEBE (1969) present a refined algorithm, which 
in particular assigns a zero price to each production factor with excess capacities. As 
shown by KIM, CHO (1988), we can also define average shadow prices. The authors 
derive a version of the complementary slackness theorem (Theorem 1) where a 
resource is assigned to an average shadow price of zero if and only if this resource 
has an excess capacity (Theorem 3). 

4Cf. SALKIN, MATHUR (1989, Theorem 3.1). 
5 Alternative algorithms which do not need additional cuts are discussed in WOLSEY (1981), where 

the form of the price functions depends on the chosen algorithm. WILLIAMS (1989) presents an 
extension of WOLSEY to mixed integer problems. 
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A further remark refers to the algorithm for solving linear programs - the 
simplex algorithm. Since we know that the optimal solution is achieved at a vertex 
of the convex feasible region, it suffices to compare the values of the objective 
function at these vertices. The simplex algorithm is based on this conception6 by 
systematically switching neighboring vertices such that the value of the objective 
function is improved by each pivot step.1 The procedure stops if none of the 
neighboring vertices improves the value of the objective function. 

A similar idea is pursued by SCARF (1981a), where a completely different 
analytical framework (basing on SPERNER'S Lemma) is presented for the solution 
of pure integer programming problems. Here a pure integer production set Y serves 
as a starting point of profit maximization, where this production technology is 
expanded by the restrictions of given factor endowments b.8 Each activity (or 
each netput vector) y E Y is connected with a neighborhood consisting of a 
finite number of activities near y. If y is an activity fulfilling the constraints of the 
underlying problem, then the algorithm checks whether there is a neighboring point 
fulfilling the constraints as well as improving the value of the objective function. 
If such a point exists, then the algorithm continues with this point, otherwise an 
optimal solution to the problem has been found.9 

Finally, we have to point out an extensive bibliography dealing with the 
implications of large discrete capacity expansions. Here attention is drawn to 
important indivisible inputs of a firm (for instance the number of blocks of a power 
station), while the output (i.e. the amount of electricity) is perfectly divisible. The 
problem of fixing welfare optimal prices can be described in the following way. 

A continuously growing demand faces discrete production capacities. Hence, 
for each investment a certain period with excess capacities results until the demand 
permits full employment of the expanded capacity.lO In particular BOITEUX 
(1964) and TURVEY (1969) recommend for these firms with respect to welfare 
maximization that the (held fixed) commodity price should in general be based 
on the long-term marginal costs. However, VICKREY (1971) argues that the price 

6See for example COLLATZ, WETTERLING (1971, §§2-4). 
7For each pivot step (switch of vertices) it is supposed that the slope of the objective function and 

therefore the relative prices do not change. At this point SCARF (1994) starts his criticism. If a pivot 
step goes along with large and relevant changes such that the price ratios change, then the criterion of an 
profitable pivot step will no longer be valid. In particular, on the basis of actual prices we cannot decide 
whether it is profitable to take up large and important production activities, i.e. in other words of SCARF 
(1994, p. 115): .. ... if the activity makes a negative profit at old equilibrium prices, then there is no way 
to use it at a discrete or continuous level so as to improve the utility of every agent in the economy. The 
problem arises with the converse; it is perfectly possible that the activity makers] a positive profit at old 
prices and [will] still not be capable of being used at any discrete level to yield a Pareto improvement." 

8SCARF (1981a) stresses the necessity to consider explicitly factor constraints for increasing returns 
to scale because of indivisible goods and factors in profit maximization. Otherwise the price mechanism 
could exclude profit maxima such that the existence of a W ALRAsian equilibrium in a production 
economy is impossible as well. 

9The complexity of the algorithm for two activities is discussed in SCARF (l981b). 
IOThe firm is capable of choosing between alternative indivisible investments of different size. The 

combination of different investments for the detennination of the minimal investment costs in the 
electricity supply industry is used by ANDERSON (1972). For conditions on optimal growth with constant 
(discrete) capacity expansions in a macroeconomic model see e.g. WEITZMANN (1970). 
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ought to be continually adjusted to the short-term marginal costs. STARRETT (1978) 
presents a generalization of BOITEUX's pricing rule and furthermore deduces rules 
for the optimal extent of capacity expansion as well as the optimal point of time for 
investment. 

At the same time aspects of game theory overlap the problem of large and 
indivisible investments. Within these approaches the forming of excess capacities 
by an established firm has a threatening potential to deter possible competitors from 
entering monopolistic or oligopolistic markets. I I DIXIT (1980) describes the results 
of this game in the form of a NASH equilibrium, where the established firm has the 
privilege of making the first choice on capacity. Hence, up to a certain degree this 
VON STACKELBERG leader has the possibility to prevent his potential competitors 
from entering the market. 

GILBERT, HARRIS (1984) follow up a similar game theoretical aspect, which 
is further extended by MILLS (1990). They examine the competitive behavior on 
markets with indivisible and irreversible investments. The market participants seek 
for optimal strategies with respect to the size and the points of time for investment to 
expand their capacity. In particular, the competition for each new investment reflects 
the threatening behavior against the other (established and potential) suppliers. 12 
The resulting market outcome corresponds to the empirical observation of the 
pattern of U.S. industry in BAIN (1954). Although substantially increasing returns 
to scale can be detected for many sectors, they are, however, not enough to explain 
the observed degree of business concentration. \3 

In this regard SCARF's well founded critique must be seen in relative terms: 
"Both linear programming and the Walrasian model of equilibrium make the 
fundamental assumption that the production possibility set displays constant or 
decreasing returns to scale; that there are no economies associated with production 
at a high scale. I find this an absurd assumption, contradicted by the most casual 
observations.,,14 In view of BAIN'S empirical observations not all phenomena can 
be put down to increasing returns to scale such that in particular the harshness of the 
following statement is taken away: "If production really does obey constant returns 
to scale, there is nothing to be gained by organizing economic activity in large, 
durable, and complex units.,,15 If an established firm whose production technology 
obeys (integer) constant returns to scale is able to deter potential competitors from 
market entry by its investment behavior, then it is not only the firm's size that will 
grow. Rather the firm will build up market power depending on the success of its 
investment strategy such that it is capable of earning positive profits. This case will 
be all the more likely, the more important the indivisibility and the irreversibility of 
investments are. 

!lEATON, LIPSEY (1979) observe this behavior in the U.S. aluminum industry, which extends its 
capacities before they are needed for meeting demand. 

l2In GILBERT, HARRIS (1984, Section 3), it is optimal for the established firms to do investments as 
soon as the continuously growing demand promises a profit with respect to the investment. This outcome 
is even valid when the profit for the whole capacity is reduced. 

l3Cf. BAIN (1954), in particular pp. 33-35. 
l4SCARF (1994, p. 114). 
l5SCARF (1994, p. 115). 
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A Basic Concepts of Analysis 

A.I Important Properties of the Euclidean Space 

The following section is primarily concerned with the analytical difficulties in 
treating indivisible goods and factors. For example concerning n goods of which 
only nd goods are perfectly divisible, the commodity space X is defined by 

Now the question arises as to what mathematical operations may be carried out 
with respect to elements in X without contradicting mathematical or economic laws. 
Adding two elements in X results again in an element in X, but the multiplication 
of an element in X by a scalar cannot be interpreted as commodity bundle in every 
case. Probably the "space" X will be left. 

With regard to this aspect it turns out to be useful to refer to the n-dimensional 
Euclidean space IRn as the basis for the technical analysis. Nevertheless, the results 
of mathematical operations must always be reviewed with respect to their economic 
meaning. 

The space IRn satisfies the conditions of three special spaces: 

1. a (real) vector space, 

2. a metric space, and 

3. a normed space. 

Without giving an exact definition of these spaces) we have to explain some terms. 
The elements x E IRn are called points or vectors and they are taken as column 
vectors. 

x = (X), . .. , xn)T with the coordinates Xj E IR (j = 1, ... , n) 

The IRn is a (real) vector space or linear space if the operations "addition" and 
"scalar multiplication" are defined as follows: for x, y E IRn and A E IR we set 

x + y = (x) + Y), ..• , Xn + Yn)T and Ax = (AX), ... , Axn)T. 

ICf. DALLMANN, ELSTER (l991a, pp. 69-97). 
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The opposite vector ofx is denoted by -x and 0 = (0, ... , O)T is called zero vector 
or origin. For Xl, .•• , xm E IRn 

m 

LAixi with AI,. .. , Am E IR 
i=1 

is called a linear combination of x I , ... , xm. The vectors x I , ... , xm are said to 
be linearly independent if 

m 

LAixi = 0 ==> Ai = 0 (i = 1, ... , m). 
i=1 

Otherwise we speak of linearly dependent vectors. In IRn at the most n vectors can 
be linearly independent. Each n linearly independent vectors are called a base of 
IRn and each vector in IRn can be expressed unequivocally as a linear combination 
of the base vectors. The n coordinate unit vectors of IRn , which are denoted by 

form a base of IRn and x can be expressed as 

n 

X = LXjej. 
j=1 

The IRn is a metric space if we introduce the Euclidean metric d: IRn xIRn ---+ 
IR+ defined by 

n 

d(x, y) := L(Xj - Yj)2. 
j=1 

For all x, y, z E IRn this distance d between the points x and y satisfies the 
relations 

[Ml] d(x, y) = 0 <==> x = y; 

[M2] d(x, y) = d(y, x); 

[M3] d(x, y) ~ d(x, z) + d(z, y) (triangular inequality). 

Analogously, the distance between two nonempty sets C, D C IRn is defined by 

d(C, D) := inf{d(x, y)1 x E C, Y ED}. 

In the special case C = {x} 

d(x, D) := inf {d(x, y)1 y E D} 

indicates the distance between the point x and the set D. 
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The IRn is a nonned space if we establish the Euclidean nonn p: IRn -+ IR+ 
with 

p(x) = Ilxl ,= J txj. 
j=1 

In this case it can be shown that the requirements of a nonn 

[Nol] 

[N02] 

[N03] 

IIxll = 0 ¢=> x = 0 

IIx + yll ~ IIxll + lIyll 
IIAxIl = IAI . IIxll 

Vx, Y E IRn 

V A E IR, Vx E IRn 

are equivalent to the conditions [Ml]-[M3], IIxll = d(O, x). The symbol IIxll is 
frequently called the length of the vector x, where the direction of the vector is 
irrelevant. Thus, [N03] yields at once IIxll = II-xII for A = -1 . 

Finally, the scalar product of two vectors y, x E 1Rn is defined as 

n 

yTx:= LYjXj. 
j=1 

Bear in mind that SCHWARZ'S inequality 

(A.I) 

is satisfied for all vectors y, x E 1R n. 

A.2 Elementary Concepts of Topology 

Topologically, the presented metric is suitable for describing closed, open, and 
compact sets. Moreover, the convergence of a sequence of points can be 
characterized. 

The initial point of the subsequent expositions is an arbitrary set M. If a family 
:D = (Oili E /) satisfies the conditions2 

[01] 0 E:D and M E :D, 

[02] for a finite number of Oi E:D it follows n Oi E :D, 
i=1 

[03] for an arbitrary number of Oi E:D it follows U Oi E :D, 

then the pair (M, :D) is called a topological space. Each set Oi E:D is said to be 
an open set (in (M, :D». A set C c M is closed (in (M, :D» if its complement 
CMC := M \ C is an open set, i.e. if CMC E :D. 

The next theorem is important because the analysis frequently uses closed sets. 

2Cf. DALLMANN, ELSTER (l991a, p. 51 ff.). For a valuable introduction to topology cf. PATTY 
(1993). 
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Theorem A.I The intersection of an arbitrary number of closed sets is closed. The 
union of a finite number of closed sets is closed. 

Various elementary terms are established for a topological space (M, :D). 

• A set U C M is called an (open) neighborhood of x E M if there is 
an open set 0 E:D with x E 0 and 0 c U. The set U is called a 
neighborhood of the subset C c M if an open set 0 E:D exists with 
Cc Oc U. 

• A point x E C is called an inner point of C if there is a neighborhood U 
of x with U C C. The collection of all inner points is called the interior or 
(open) core of C and is denoted by int C. 

The set C is open if and only if each element x E C belongs to the interior 
of C, i.e. 

C = intC. 

• A point xO E M is called a cluster point of C if every neighborhood of 
xO contains a point x E C with x * xo. The set of all cluster point is 
frequently denoted by C'. 

• A point x E C which is not a cluster point of C is said to be an isolated 
point of C. 

• A point x E M is said to be adherent to C if it is either a cluster point or 
an isolated point of C. The closed hull or closure of the set C contains all of 
its adherent points and is denoted by cl C.3 Hence, cl C = C U C'. 

A set is closed if and only if it contains all of its cluster points, that is 

C' c C or C = cl C . 

• A point x E C is called a boundary point if every neighborhood contains 
at least one point in C and at the same time a point in Cc. The set of all 
boundary points is called the boundary or frontier ac of C. 

ac = cl C n cl(CC) 

Each boundary point belongs to the closure and does not belong to the interior. 

ac = cl C \ int C 

Summarizing we have the inclusion 

intC C C C clC 

3The closure of the set C c IRn is the smallest closed subset in IRn containing C. 
Cf. HILDENBRAND, KIRMAN (1988, p. 244). 



284 Mathematical Appendix 

for each set C in the topological space (M, fJ). All of the concepts can be 
transferred to the metric space JR." by introducing the term ball. A ball K of radius 
r E JR.++ centered at the point x E JR." is given by 

K(x, r) := {Y E JR." I d(x, y) < r} 

K[x, r] := {Y E JR."I d(x, y) ~ r} 

(open ball), 

(closed ball). 

If we denote the intersection of a finite number of open balls or the union of an 
arbitrary number of open balls as an open sets, then these open sets fulfill the 
conditions [01]-[03]. We speak of the natural or ordinary topology or the topology 
induced by the metric d. In this way each set X C JR." can be converted into a 
topological space by declaring the set C:= C n X to be open in X for each open 
set C (in JR"). 

An open ball centered at point x immediately provides a neighborhood of the 
vector x. The ball K(x, e) == Us(x) is then said to be an (open) e-neighborhood 
ofx. 

A subset C C JR." is now said to be open (with respect to the metric d) if 
either 

(A.2) x E C ~ 3r> 0 with K(x, r) C C 

or C = 0. A subset C C JR." is said to be closed (with respect to the metric d) 
if either the complement Cc is open or C = 0. By (A.2) the interior of the set C 
can be expressed as 

(A.3) intC={xECj3e>O: K(x,e)CC}. 

The characterization of specific points follows from 

Theorem A.2 Given a point x E JR." and a nonempty set C C JR.", then we 
have for the space JR." endowed with a metric d 

1. The point x is an adherent point of C iff d(x, C) = O. 

2. The point x is an inner point of C iff d(x, CC) > O. 

3. The point x is an innerpointofCC (outer point of C) iff d(x, C) > O. 

4. The point x is a boundary point of C iff d(x, C) = d(x, CC) = o. 

A.3 Convergence in Metric Spaces 

The description of sequences is fundamental to the concept of convergence in the 
metric space JR.". 

A unique mapping ~ of the set IN of natural numbers into the set JR. of real 
numbers is called a sequence of numbers or, in short, sequence. If we put ~(v) = 
XV for all v E IN, then XV is called an element of the sequence and we write 
~ = {XV}. Similarly, {XV} denotes a sequence of points in JR.". 
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Monotonic sequences are subdivided into monotonically increasing and 
decreasing sequences. A sequence {XV} is said to be monotonically decreasing or 
nonincreasing if XV ~ xv+1 holds for all v E IN. Monotonically increasing 
sequences are defined analogously. If the strict inequality holds, then we speak of 
strict monotonicity. Letting {vd be a strictly monotonically increasing sequence 
with Vk E IN for all k E IN, then {XV'} is called a subsequence of {xv}.4 
A sequence of numbers {XV} is said to be bounded (bounded below, bounded above) 
if there is a number r E IR such that for all v E IN we have Ixvi ~ r (XV ~ 
r; XV ~ r). Accordingly, a sequence of points {XV} is said to be bounded if there is 
a number r E IR such that IIxvll ~ r for all v E IN. 

A number ct is called a cluster point or a partial limit of the sequence of 
numbers {XV} if the sequence is frequently in every £-neighborhood of ct, i.e. if 
there is an infinite number of indices v for each £ such that Ixv - ctl < £. If the 
sequence is eventually in every £-neighborhood of ct, then the number ct is called 
the limit of the sequence. 
A bounded sequence of numbers {XV} is said to be convergent, if it has exactly 
one cluster point ct, which is moreover equivalent to the limit of the sequence of 
numbers;5 we now write XV --* xO or lim XV = xO. If there is no number xO 

V~+OO 

such that XV --* xO, then we say that the sequence is divergent. The sequence of 
numbers {XV} converges if and only if for every £ > 0 there is an no E IN such 
that 1x"-x"'I<£ foralln,mwith n~no and m~no (CAUCHY'Scriterion 
of convergence). The sequence of numbers {XV} converges to xO if for each positive 
number £ an index no exists such that always Ixv - xOI < £ for all v> no. That 
is, a sequence of numbers converges to xO if the sequence is eventually in every £­
neighborhood of xO and only a finite number6 of elements of the sequence does not 
lie in the £-neighborhood. Frequently, sequences of numbers converging to zero are 
of particular interest. 

A sequence of points {XV} in IRn approaches the limit xO E IRn if and only if 
the sequence of numbers {d(xV, xo)} converges to zero. 

d(xV , xo) --* 0 ¢=} XV --* xO . 

Equivalently,? the sequence of points must converge coordinatewise to xO. 

xv--*xo ¢=} xj--*x~ (j=l, ... ,n) 

A point xO E IRn is called a cluster pointS ofthe sequence of points {XV} if there 
is a subsequence {XV'} with xv, --* xO. The only cluster point of a convergent 
sequence is its limit. 

Theorem A.3 9 A point xO E IRn is a cluster point of the set C if and only if there 

4Cf. BRONSTEIN, SEMENDJAJEW (1987, p. 245 f.) and DALLMANN, ELSTER (l99lb, p. 1IOff.). 
5 Accordingly, a sequence can have at the most one limit. 
6If all but the most elements of the sequence lie in the e-neighborhood, then all except a finite number 

of elements of the sequence have this property. 
7Cf. HILDENBRAND, KIRMAN (1988, p. 242). 
8LEWIN, LEWIN (1993, p. 113) speak of partial limits instead of cluster points. 
9DALLMANN, ELSTER (199la, p. 82, Theorem 4.7). 
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is a sequence of points {XV} C C with XV '* xO for all v E IN converging to 
the limit xO, i.e. XV -+ xO . 

Theorem A.4 (BOLZANO, WEIERSTRASS) 10 Each bounded sequence {XV} in IRn 

(equipped with an arbitrary norm) contains a convergent subsequence. 

A sequence having -00 or +00 as a sole cluster point is said to be divergentll , we 
then write XV -+ -00 or XV -+ +00. If a sequence is convergent or divergent 
with limit -00 or +00, then we say that it achieves a limit in [-00, +00]. 
The subsequent statements are also valid for sequences of points. Note that the 
elements of a sequence need not be distinct. 

• Each bounded sequence of numbers {XV} has at least one cluster point. l2 

• By Theorem A.4 (BOLZANO, WEIERSTRASS) each bounded sequence of 
numbers {XV} contains a convergent subsequence {XVt}.J3 

• The number ex is a cluster point of the sequence {XV} if and only if {XV} 
contains a convergent subsequence {XVk} such that ex is the limit of this 
subsequence, X Vk -+ ex. In doing so the number ex itself does not need 
to belong to the examined sequence. 

• Every subsequence {XVk} of a convergent sequence of numbers {XV} as well 
converges to the limit of {XV}. 

• Each monotonic and bounded sequence of numbers {XV} is convergent. 

• Each monotonic and nonbounded sequence of numbers {XV} diverges to 
infinity; if the sequence monotonically increases (decreases), then it diverges 
to +00 (-00). 

The set of all cluster points of a given sequence of numbers is denoted by L{ XV} and 
each bounded sequence of numbers has a greatest and a smallest cluster point. The 
greatest and the smallest cluster point are called limes superior (lim sup XV = 

v-++oo 

sup L{xV}) and limes inferior (lim inf XV = inf L{xV}) respectively.l4 From 
v-++oo 

these definitions follows at once 

lim inf XV ~ xO ~ lim sup XV 
V ..... +00 V--> +00 

for each element of the set of cluster points xO E L{xV}. 

iOCf. HEUSER (1992, p. 22, Theorem 109.15). 
II Sequences with more than one cluster point are also called divergent. 

Cf. DALLMANN, ELSTER (1991b, p. 122). 
l2Cf. DALLMANN, ELSTER (l991b, p. 116 f.). 
l3Cf. in what follows DALLMANN, ELSTER (l991b, pp. 125-131). 
14For the empty set we declare inf0:= +00 and sup 0 := -00. 
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If the sequence {XV} is not bounded above (or below), then l5 lim sup XV = +00 
V---,lo+OO 

(or liminf XV = -(0). Obviously, lim sup XV = +00 holds if and only if {XV} 
V~+OO V~+OO 

contains a subsequence {XVk} diverging to infinity, X Vk ~ +00. Hence, for a 
monotonically increasing and bounded above sequence of numbers lim inf XV = 

LJ~+OO 

lim sup XV = +00 . 
V---++OO 

A bounded sequence of number {XV} converges to xO if and only if 

lim sup XV = xO = lim inf xv. 
V""" +00 V""" +00 

Examples: Each real number is a cluster point for the sequence of the rational 
numbers Q. The sequence of the rational numbers in [0, 1[ has each xO E [0, 1] 
as a cluster point. Thus, we have lim inf XV = 0 and lim sup XV = 1. For 

v ...... +00 V""" +00 

the sequence of the positive rational numbers Q++ we have lim inf XV = 0 and 
v ...... +00 

lim sup XV = +00. The sequence of the natural numbers IN yields lim inf XV 
v ...... +00 V---++OO 

lim sup XV = +00 since there is no finite cluster point. 
v ...... +00 

Because each closed set in an arbitrary topological space contains all of its 
cluster points, the closedness in the metric space IRn can be described with respect 
to the characterization of cluster points by Theorem A.3. 

Theorem A.5 16 A subset C C IRn is closed if and only if the limit xO of a 
convergent sequence {XV} with XV E C always satisfies xO E C. 

A set C C IRn is bounded if a positive real number r exists and a point y E 

IRn with d(x, y) < r for each x E C. Accordingly, for each bounded set 
C there is an open ball K(y, r) of finite radius r containing C, i.e. C C K(y, r). 
Together with Theorem A.4 each sequence in a bounded set C contains a convergent 
subsequence. 

A.4 Compact Sets 

A set C C IRn is said to be compact if one of the following equivalent 
statements l ? is satisfied. 

(1) The set C is closed and bounded. 18 

15Cf. HEUSER (1982, p. 185). 
16DALLMANN, ELSTER (l99Ia, p. 82, Theorem 4.8). 
17The statements are equivalent as long as C is a subset in R n The equivalence is not valid for more 

general spaces. 
18Cf. HEUSER (1992, p. 33, Theorem 111.6). 
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(2) Each open covering of C contains a finite covering (covering compactness of 
HEINE, BOREL).19 

(3) Each sequence of points {XV} in C contains a convergent subsequence {XVk} 
whose limit belongs to C (sequentially compactness). 

(4) If (Cil i E I) is an arbitrary family of closed sets in C such that each finite 
intersection of sets of the family is not empty, then niel Ci * 0 (finite 
intersection property). 

Since the finite intersection property is an unusual criterion for the compactness of 
a set C according to (4), we now prove the equivalence of (2) and (4). All of the 
remaining proof is omitted. 
The necessary part proves by contradiction that (4) is implied by (2): let ( Ci liE I) 
be a family of closed sets in C such that each finite intersection of sets of the family 
is not empty. For niel Ci = 0 DE MORGAN's complementation rules yield20 

m (2) m n Ci = 0 ~ C = U (C \ Ci) ~ C = U (C \ Ci) ~ n Ci = 0, 
iel iel i=1 i=1 

so that a contradiction to the premise results. 
In the sufficient part (4) is given and (2) is concluded by contradiction: Suppose 
(Cd i E J) is an open covering of C containing no finite covering, i.e. for each 
finite family (Ci I i = 1, ... , m) we have 

m (m ) m 
3 x E C: x ¢ ~ Ci {:=::> C \ ~ Ci = Q (C \ Ci ) * 0 . 

Then the family of closed sets (C \ Cd i E J) satisfies niel (C \ Ci ) * 0 by 
(4). In view of DE MORGAN'S complementation rules follows 

n (C \ Ci) = C \ (U Ci) * 0 . 
~I ~I 

As C t Uiel Ci contradicts the assumption, (Cil i E J) cannot be an open 
covering of C. 

19 A family (Cil i E I) of subsets in Rn with C C Uiel Ci is called a covering of C. If the family 
consists of open sets, then we speak of an open covering. Accordingly, the family is called a finite 
covering if it consists of a finite number of sets. 

20DE MORGAN's complementation rules state 

C\ (Uel Ci) = nel (C\ Ci) and C\ (nel Ci) = Uel (C\ Ci)· 

see HEUSER (1982, p. 20). 
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B Convex Analysis 

B.l Affine Sets 

Let C and D be two nonempty subsets in JRn. The subsequent operations are defined 
for a vector a E JRn and a real number A.21 

C + a := {x + al x E C} 

C + D := {x + yl x E C, Y E D} 

AC := {Axl x E C} 

Moreover, the following rules must be taken into account. 

C+0=0 
A0 = 0 

-C = (-l)C 

C- D = C+ (-D) 

A subset C in JRn is called an affine set22 , if each two points Xl and x2 in C 
imply 

VA E JR. 

Subspaces in JRn are affine sets containing the origin of ordinates. If we define the 
dimension of a nonempty affine set as dimension of the half-space parallel to the 
examined set, then affine sets of dimension 0, 1, or 2 are called a point, a line or a 
plane. For the empty set we declare dim 0 = -1. An (n - 1 )-dimensional affine 
subset in JRn is called a hyperplane. 

Theorem B.1 23 For given Ot E JR and y E JRn with y '* 0 the set 

is a hyperplane in JRn• Every hyperplane may be represented in this way, with Ot and 
y unique up to a common nonzero multiple A '* O. 

The vector y is normal to the hyperplane H. All vectors which are normal to H 
may be expressed as AY, where the scalar A E JR may not be zero. A hyperplane 
H(y, Ot) is called a supporting hyperplaneof a set C C JRn if both of the 
following conditions are satisfied. 

yTX~Ot 

and yTx = Ot 

21Cf. BERGE (1963, p. 131). 
22Cf. ROCKAFELLAR (1972, p. 3). 
23RoCKAFELLAR (1972, p. 5, Theorem 1.3). 

for all x E C 

for at least one x E C 
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By a nontrivial supporting hyperplane of the set C we understand a supporting 
hyperplane H of C with C rt. H . 

Apart from the coordinate representation of a hyperplane H in IRn according 
to Theorem B.l there is a parametric representation of H. Thus, each hyperplane 
in IRn can be expressed by a vector bO E IRn and n - 1 linearly independent 
directions b i *' 0 (i = 1, ... , n - 1). 

An equivalent representation of H is given by n affinely independent vectors. 
Let Xl, ... , xm be distinct vectors in IRn , then the vectors are said to be affinely 
independent if 

m m 

L:).iXi = 0, L:).i = 0 ~ Ai = 0 (i = 1, ... , m). 
i=1 i=1 

One can show, that the definition of affine independence is equivalent to linear 
independence24 of the vectors x2 - xl, ... , xm - xl, i.e. 

m 

LA7(xi-xl)=O ~ Ai'=O(i=I, ... ,m). 

i=2 

Moreover, for each set C C IRn one can show that there is an unique smallest 
affine set containing C, which is denoted the affine hull affC. Over and above the 
points xO, Xl, ... , xm E IRn are affinely independent if its affine hull aff{xo, xl, ... 
,xm} is m-dimensional. 

If the set C consists of three different points in IRn and if these points do not lie 
in a line, then the plane through these points is the affine hull of the set C. If these 
points lie on a line, then the line itself detennines the affine hull of the set C. For 
three identical points this point would also be the affine hull of the points. 

Theorem B.2 25 The affine hull of a set C C IRn is given by the set of all affinely 
linear combinations of points in C, i.e. 

24In JR.3 the vector bO and the two linearly independent directions b 1 * 0 and b2 * 0 give a parametric 
representation of the plane 

H = {x E JR.3 1 x = bO + A1b 1 + A2b2 with AI, A2 E JR.}. 

Alternatively, three affinely independent vectors aO = bO, ai, a2 suffice for the representation of the 
hyperplane. The directions are then given by b 1 = a 1 - aO and b2 = a2 - ao. 
According to Theorem B.l we obtain the coordinate representation of the hyperplane by choosing a 
vector y perpendicular to the directions b 1 and b2, i.e. yTb l = 0 and yTb2 = O. Finally, we put 
a = yTbo. 

25Cf. ELSTER, REINHARDT, SCHAUBLE, DONATH (1977, p. 34 f., Theorem 2.7). 
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B.2 Convex Sets 

For the class of convex sets two definitions are of particular interest.26 A point 
x E IRn with 

(B.1) 
m 

X= LAiXi 
i=l 

m 

with LAi = 1, Ai ~ 0 (i = 1, ... , m) 
i=l 

is called a convex (linear) combination or a centroid of the points xl, ... , Xm E 

IR n. A set C C IR n is said to be convex if 

The empty set is also declared to be a convex set in IRn. For convex sets the 
following theorems hold good. 

• The intersection of an arbitrary number of convex sets is convex. 

• A subset in IR n is said to be convex if and only if it contains all of the convex 
combinations of its elements. 

• Let C be a convex subset in IRn. If a E IRn and A E IR, then the sets 
C + a and AC are convex, too. 

• Let Ci (i = 1, ... , r) be convex subsets in IR n. Then each linear combination 
L~=l AiCi is convex, too. 

The relative interior27 of a convex set C E IRn is determined by the interior of 
the set C regarding its affine hull affC. If we denote the relative interior of the set C 
by rint C, then analogous to (A.3) it ensues28 

(B.2) rintC:= {x E affCl3e > 0: K(x, e) n affC c C}. 

In the special case of a solitary point C = {x} the relative interior of this set 
consists of the element x itself, rint C = {x}. 
The relative boundary of C results from the set difference of the closed hull of C 
and the relative interior of C, i.e. cl C \ rint C. A set is called relatively open 
(with respect to affC) if rint C = C. 29 Regarding the separation theorems, the 
following property is important: for each convex set C C IRn we have 

(B.3) cl(rint C) = cl C and rint(cl C) = rint C . 

26Unless otherwise specified the expositions are taken from ROCKAFELLAR (1972). 
27 A line between two distinct points in JR.3 has no interior points. However, all points of the line except 

the end points are included as relatively interior points. 
28Cf. ROCKAFELLAR (1972, p. 44). 
29See p. 283. 
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The dimension dim C of a convex set C is the dimension of its affine hull. Thus, for 
an n-dimensional convex subset C C lRn we need not to distinguish its relative 
interior by (B.2) from its interior by (A.3): 

(B.4) rint C = int C. 

In the class of convex subsets in lRn especially convex cones stand out. The 
nonnegative orthant lR+ as well as the positive orthant lR++ with 

lR~ := {x E lRnl x ~ o} and lR~+:= {x E lRnl x > o} 
belong to the perhaps most significant convex cones of lR n. Further examples of 
convex cones are half-spaces. For y E lRn, y"* 0 and a E lR the sets 

{x E lRnl yTx ~ a} and {x E lRnl yTx ~ a} 

are called closed half-spaces. Accordingly, the following sets denote open half­
spaces: 

{x E lRnl yTx < a} and {x E lRnl yTx > a} 

In many cases we need a representation of nonconvex sets by convex sets. For this 
purpose we establish the convex hull of a set analogous to the affine hull. 

The convex hull of a set C C lRn is defined by the intersection of all convex 
sets containing C and is denoted by convC. Equivalently, convC is the smallest 
convex set containing the original set C. 

The convex hull of a set is always convex. We have convC = C if and only if 
C is a convex subset in lRn. The convex hull of two points xl, x2 E lRn is the line 
segment [Xl, x2]. The convex hull of the three points (not lying on a straight line) 
xl, x2 , x3 E lRn is the triangle determined by these points. Summarizing we have 
in correspondence with Theorem B.2 

Theorem B.3 3o The convex hull convC of a set C consists of the set of all convex 
combinations of points in C. 

m m 

convC = {I>'iXil xi E C, Ai ~ 0 (i = 1, ... , m), LAi = 1, m = 1,2, ... } 
~l ~l 

The convex hull of a set C containing a finite number of points is called a polehydral 
set. If C consists of m + 1 affinely independent vectors, then the convex hull of C 
is called an m-dimensional simplex. The vectors {xo, ... , xm} are called vertices of 
the simplex. Each point of a simplex can be expressed unequivocally as a convex 
combination of the vertices. To simplify notation, we define the n-dimensional unit 
simplex A n+l with the coordinate unit vectors as its vertices:3! 

(B.S) An+l := \A. E lR~+11 A. = (Ao, ... , An)T, tAi = 1) 
1=0 

30ef. ELSTER. REINHARDT. SCHAUBLE, DONATH (1977. p. 34 f .• Theorem 2.7). 
31For n goods the price simplex 6.:= {p E R~I L:}=l Pi = I} is an (n - I)-dimensional unit 

simplex with the unit vectors as vertices. 
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Thus, the statement of Theorem B.3 can be rewritten as 

Theorem B.4 (CARATHEODORY'S Theorem)32 Let C be a non empty subset in 
IRn. Then each point x E convC can be expressed as a convex combination of no 
more than n + 1 points in C which are not necessarily distinct. 

n 

x= LAiXi 
i=O 

with Xi E C, l. E 1\ n+l 

In particular, convC corresponds to the union of all d-dimensional simplices with 
vertices in C, where d = dim C . 

Note that this theorem especially holds if C is convex, i.e. C = convC . 

Coronary B.4.1 If (Cd i E I) is an arbitrary family of nonempty convex subsets in 
IRn, then each point x E cony UiEI Ci can be expressed as a convex combination 
of no more than n + 1 distinct points Xi, where each xi belongs to a diverse set Ci . 

Proof: According to Theorem B.4 there are no more than n + 1 not necessarily 
distinct points Xi in UiEI Ci such that x = L7=0 AiXi with l. E 1\ n+l. Having 
eliminated all points weighted by zero, all pairs of points belonging to the same set 
can be removed as follows: assume without loss of generality that xO and xi belong 
to the set Ci . Substituting /-Lxi:= AOXO + AiXi by AO + Ai = /-L yields 

Xi = (AO//-L)XO + (A;//-L)Xi E Ci. 

Therefore, the expression of x can be reduced to points belonging to diverse sets . 

• 
In particular, if the family (Cd i E /) consist of m sets, where m ~ n 
by assumption, then each point in cony UiEI Ci can be expressed as a convex 
combination of no more than m distinct points, where again each point belongs 
to a diverse set. For the special case of two sets we obtain 

Corollary B.4.2 33 For two nonempty convex subsets C and Din IRn we have 

conv(C U D) = {Ax + /-Lyl x E C, Y E D, A;;; 0, /-L;;; 0, A + /-L = I}. 

Corollary B.4.3 Provided y T X ~ ex holds for all x E C with C c IR n , then 
the inequality is also satisfied for all x E convC. The analogous statement is 
valid if the inequality is substituted by an equation. 

Proof: By Theorem B.4 each x E convC can be expressed as 

n 

X= LAiXi 
i=O 

32Cf. NOZICKA, GRYGAROV A, LOMMATZSCH(1988, p. 31) and ROCKAFELLAR (1972, p. \55). 
33Cf. NOZICKA, GRYGAROvA, LOMMATZSCH(1988, p. 34). 
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n 

Therefore, yTx = ~::>"iyTxi ~ ty ensues from yTxi ~ ty (i = 0, ... , n). • 
i=O 

Theorem B.S 34 For two nonempty subsets C and D in 1Rn and any two numbers A 
and /.L we have 

conv(AC + /.LD) = AconvC + /.LconvD. 

For appropriate sets this theorem yields especially 

conv(C + D) = convC + convD and AconvC = conv(AC). 

Topologically, some important properties must be noted. Letting C and D be subsets 
in 1Rn , then the following statements hold good: 

• If C is open, then C + D is open, toO.35 

• The sum of two closed sets C and D need not be closed. This becomes 
obvious by 

C+D= U(C+x) 
XED 

with respect to Theorem A. I. But if one of the two sets is bounded - i.e. 
compact - then C + D is closed, too. 

• If C and D are compact, then C + D is compact, toO.36 

• If C is open (closed, compact), then AC is open (closed, compact) with the 
exception of A = 0 in the case of an open set C.37 

• If C is open, then convC is open.38 

• If C is bounded, then convC is bounded and cl(convC) = conv(cl C). 
Thus, convC is compact for compact C.39 

The assertion that the convex hull of a closed set C C 1Rn should be closed is 
wrong. A counterexample given by LEICHTWEISS refers to a (closed) hyperplane 
H and a point x not lying in this hyperplane (x ¢ H). 

34Cf. NOZltKA, GRYGAROvA, LOMMATZSCH(1988, p. 32). 
35BERGE (1963, p. 161, Corollary 1). 
36BERGE (1963, p. 161, Corollary 2). 
37BERGE (1963, p. 161, Corollary 4). 
38Cf. LEICHTWEISS (1980, p. 24). 
39RoCKAFELLAR (1972, p. 158). 
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The convex hull of the closed set H U 
{x} corresponds to a set composed of the 
semi-open stripe between H and the parallel 
hyperplane through x in union with point x 
itself. As illustrated by the Figure B.I, this 
convex hull is not closed. 

Finally, some combinatory results can be 
given. First of all, it is known that vectors 
Xi E Ci (i = I, ... , m) exist for each point 
x E Li Ci such that x = Li xi holds. 
If we replace the set Ci with its convex hull, 
then problems result which are estimated by 
the next theorem. Figure B.l: Counterexample 

Theorem B.6 (SHAPLEY, FOLKMAN)40 Let Ci (i = I, ... , m) be a compact 
subset in IRn, where m > n. Then vectors Xi E convCi exist for each x E 

convCLi C) such that 

m 

X = L xi and #{ i I Xi ¢ Ci } ~ n . 
i=l 

For a further estimation of this fault we define the radius of a nonempty set 
C C IRn by 

radC := inf sup lIy - xII· 
yeRn xeC 

For each compact set C the symbol rad C denotes the radius of the smallest closed 
ball containing C. Thus, the radius of an unbounded set C is declared to be rad C = 
+00. If C consists of a sole point, then rad C = O. A "movement" of the set C 
does not change its radius, rad C = rad( C + x). 

TheoremB.7 41 Let Ci (i = l, . . . ,m) be nonempty subsets in IRn. If x E 

conv(Li C), then points Xi E Ci (i = I ... ,m) exist such that 

m m 

IIx- Lxill2 ~ Lrad2Ci. 
i=l i=l 

Corollary B.7.1 42 Let Ci (i = 1, ... , m) be nonempty compact subsets in IRn. If 
x E convCLi C), then points Xi E Ci i = I ... ,m) exist such that 

m 

IIx - Lxi 112 ~ R , 
i=l 

4OTheorem and proof may be found in STARR (1969, p. 35). 
41 Theorem and proof may be found in STARR (1969, p. 36). 
42Cf. STARR (1969, p. 36). 
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where R is defined as the sum of the min{m, n} greatest rad2 Ci . 

Proof: For m ~ n Theorem B. 7 must be used. In the other case with m > n 
there are Xi E convCi with x = Li Xi (Theorem B.6). If we choose xi = Xi 
for Xi E Ci in the corollary, then at the most n vectors with Xi ¢ Ci remain 
whose indices are collected in T. Again Theorem B.7 yields the needed result, 

m 

II L(xi - xi)1I 2 = II L(xi - xi)f = IIi - Lxill2 ~ Lrad2 Ci ~ R, 
i=1 ieT ieT ieT 

:: " -i where x:= ~ieT X and #T ~ n < m must be taken into account. • 
B.3 Separation Theorems 

Figure B.2: Separation of two sets 

Two nonempty subsets C and D in IRn are 
separated by the hyperplane H (y, a.) if 

inf{yTxl x E C} ~ a. ~ sup {yTxl xED} . 

If the strict inequality holds, then the sets 
C and D are strongly separated by the 
hyperplane H. The hyperplane H separates 
C and D properly if H separates both sets 
and CUD ¢. H. Regarding convex sets 
some separation theorems result. 

Theorem B.8 (MINKOWSKI)43 Let C and D be nonempty disjoint convex subsets 
in IRn. Then a hyperplane H exists separating these sets. 

Theorem B.9 (First Separation Theorem)44 Let C and D be non empty convex 
subsets in IRn. Then a hyperplane H exists separating the sets properly if and only 
if rintCnrintD = 0. 

Theorem B.10 (Second Separation Theorem)45 Let C and D be nonempty 
disjoint closed convex subsets in IRn. If one of the sets is bounded (and therefore 
compact), then a hyperplane H exists separating both sets strongly. 

The separation theorems yield numerous conclusions, of which only the most 
important ones are quoted at this point. If we interpret Theorems B.3 and B.4 
(CARA THEODORY) as "inner" representation of a convex set C, then the following 
two theorems can be seen as "outer" representation. 

43Cf. BERGE (1963, p. 163). 
44Cf. ROCKAFELLAR (1972, p. 97, Theorem 11.3). Note particularly (B.3), rint(c1 C) = rint C. 
4SCf. BERGE (1963, p. 163). 

For two bounded sets see ROCKAFELLAR (1972, p. 98, Corollary 11.4.1). 
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Theorem B.U 46 A closed convex set C is the intersection of all closed half-spaces 
containing C. 

Inspecting an arbitrary set D C IRn , Theorem B.II is valid with respect to the set 
C = cl (conv D). A stronger version of Theorem B .11 yields 

Theorem B.1247 An n-dimensional closed subset C in IRn is the intersection of all 
closed half-spaces tangent to C. 

Theorem B.I2 may be interpreted as follows: each boundary point x E ac of an 
n-dimensional closed convex set C C IRn is at the same time a supporting point 
of C, i.e. there is a supporting hyperplane of C at x. In the class of supporting points 
the exposed points introduced on p. 26 stand out. At this point we also presented 
conditions such that the convex hull of the exposed points of a set C equals the set 
C itself; see for instance (II.9). 

C Mappings 

C.l Functions as Single-Valued Mappings 

This section introduces two kinds of mappings. Single-valued mappings or 
functions face multi-valued mappings or correspondences. Although functions may 
be interpreted as special cases of correspondences it is useful to treat functions and 
correspondences separately. 

The expositions on the concept of functions are expanded by important 
properties of functions with respect to the theory of conjugate functions. Apart from 
proper functions we introduce convex, closed, and linearly homogeneous functions. 

Let X and Y be any two nonempty sets. Each rule f with the property48 

"Each x E X is assigned to precisely one y E Y." 

is called a mapping from X into Y, a single-valued function or simply a function. 
The abbreviation f: X ---+ Y fixes the set of departure X and the set of arrival Y. 
The set X is called the domain of f. It is compared to the range Range f of f. 

Rangef == f(X) = {YI y = f(x), x EX} C Y 

Given two sets C C X and DeY, we call f(C) the image of C and r 1 (D) 
the inverse image of D under the mapping f, where 

f(C) := {f(x)1 x E C} C Y and rl (D) := {xl f(x) E D} eX. 

46RoCKAFELLAR (1972. p. 99. Theorem 11.5). 
47RoCKAFELLAR (1972. p. 169. Theorem 18.8). A closed half-space is tangent to the set C if it 

contains C and if it has a boundary point in common with C. The boundary of such a half-space has 
already been introduced as supporting hyperplane. 

48Cf. DALLMANN. ELSTER (l99Ib. p. 71). 
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Finally, the graph of I is defined by 

graph I := {(~)I x EX, Y = I(x)} c X x Y. 

If a function I can only take finite real values and if it is defined on a subset X in 
1R n, then I: X --* 1R is called a real-valued function with the domain X and the 
range Range I. 

The objects +00 and -00 are no elements of the set of real numbers 1R. To 
embrace functions which may take the functional values ±oo, we define the set of 
extended real numbers, 

1R U {-oo} U {+oo} == [-00, +00]. 

Besides - ( -00) = +00 we declare the following rules of calculation. 

+00 + x = x + 00 = +00 

-00 + x = x - 00 = -00 

x . (±oo) = ±oo . x = ±oo, 

X· (±oo) = ±oo · x = ~oo, 

(±oo) . 0 = 0 . (±oo) = o. 

v x E ]-00, +00], 

V x E [-00, +oo[ , 

V x E ]0, +00], 

V x E [-00,0[, 

Terms like -00 + 00 or +00 - 00 are not defined.49 

A positive real-valued x is indicated by x E 1R++ = ]0, +00[. However, the 
notation x E 1R++ U {+oo} = ]0, +00] means that x is allowed to take the value 
+00. 

~Domf----I 

[ n-Dom f --+-

Figure C.l: Graphical representation of a 
hypograph and an epigraph 

49Cf. HEWITT, STROMBERG (1969, p. 54f.). 

x 

If a function I can take real values 
or the values ±oo and if it is defined 
on a set X C 1Rn, then I: X --* 
[-00, +00] is called an extended 
real-valued function or generalized 
numerical function. 

Each function I is associated with 
an epigraph 

epi/:= (G) E X x 1R1 y ~ I(x)}, 

which faces the hypograph of I. 

hypo I := (G) E X x 1R1 y ~ I(x)} 

Figure C.I shows both the epigraph 
and the hypograph of a function 1.50 

50The vertical separating line between epi f and hypo f indicates that both sets are not closed in the 
present case. We refer to this at a later stage. 
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The effective domain Dom I of a function I: X--+-[ -00, +00] is given by51 

Dom/:= {x E XI3y E JR: (;) E epi/} 

= {x E XI I(x) < +oo} . 

Moreover, the set n-Dom I, which will be required at a later stage, is established as 
follows: 

n-Dom 1:= {x E XI I(x) > -oo} 

Figure C.I includes also Dom I and n-Dom I. 

Def'mition C.1 52 An extended real-valuedfunction I: X--+-[ -00, +00] is said 
to be proper if it achieves the value -00 nowhere on X and if it is finite lor at least 
one point, 

3x EX: I(x) < +00 (<=> epi/"* 0) 

and Yx EX: I(x) > -00 . 

Functions which are not proper are said to be improper. This distinction is needed 
to rule out cases with undefined terms like +00 - 00 or -00 + 00. For this 
purpose other cases only inspect functions I: X --+- [-00, +00] which are n­
proper, i.e. they take the value +00 nowhere on X and they are finite for at least 
one point. Improper functions cannot simply be excluded from the analysis since 
the transforms of proper functions may imply improper functions. 

Comment C.I Each extended real-valued function I: X--+-[ -00, +00] with 
X c JRn - especially each real-valued function - can be extended to the entire 
Euclidean space JRn with respect to its domain X. With a suitable fixing of the 
functional values for x ¢ X two new functions arise. 

(a) From j(x) = I(x) for all x E X and j(x) = +00 for all x ¢ X we 
obtain an extended real-valued function j: JRn --+- [-00, +00]. The function j 
is proper if I is also proper. Moreover, we have Dom I = Dom j for the effective 
domain of the resulting function. 

(b) Analogously, the setting j(x) = I(x) for all x E X and j(x) = -00 
for all x ¢ X yields an extended real-valued function j: JRn --+- [-00, +00] 
which is n-proper if I is an n-proper function I. Moreover, we have n-Dom I = 
n-Domj. 

Given two functions I: JRn --+- [-00, +00] and g: JRn --+- [-00, +00]. If 
the relation I(x) = g(x) holds for all x E JRn, then we abbreviate I = 
g. The relations I ~ g, I ~ g and I == +00 are defined similarly. If 
afunction I: JRn x JRm --+- [-00,+00] dependsontheparameters Y E JRm, 
then 1(', y): JRn --+- [-00, +00] denotes the corresponding function with respect 
to the variables x. 

SICf. ROCKAFELLAR (1972, p. 23). If a convex function f takes nowhere the value +00, then X = 
Domf· 

s2Cf. ROCKAFELLAR (1972, p. 24) and WETS (1976, p. 2). 
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Def"mition C.2 The function I: X ~ [-00, +00] is said to be convex in X if its 
epigraph epil is a convex subset in ]Rn+1. 

Analogously, afunction g: X ~ [-00, +00] is said to be concave on X if -g is 
convex in X. In this case the hypograph hypo g is a convex set. 
Functions being both convex and concave are called affine. 53 

For a convex function I bear in mind that not only the epigraph epil but also the 
effective domain 

Dom I = {x E XI I(x) < +oo} 

is a convex set. Moreover, each convex function is continuous in the relative interior 
of its domain rint(Dom f}. In the more convenient definition of convex functions 
we have to avoid terms of the form +00 - 00. 

Theorem C.I 54 A function I: X ~ ]-00, +00] is convex on the convex set 
X ~]Rn if and only if 

J.../(x) + (1 - J...)/(y) ~ I(h + (1 - J...)y) V J... E [0, 1]. 

holds lor arbitrary x, y EX. 
Regarding g: X ~ [-00, +oo[ with the inverse inequality the function g is said 
to be concave. 

The convex hull of a function I: X ~ [-00, +00] is denoted by conv I and 
indicates the greatest convex function with conv I ~ f. Accordingly, the convex 
hull of the function I, as illustrated in Figure C.2, is described by the (not marked) 
curve ABeD. Geometrically, the epigraph of conv I is given by the convex hull of 
the epigraph of I, i.e. 

epi(conv f} = conv(epif}. 

Apart from functions with convex epigraphs we can establish a further class of 
functions whose epigraphs are closed. Regarding Theorem C.2 we need the criterion 
of a semi-continuous function.55 

Definition C.356 Let xO be a point in the domain X C]Rn 01 a function I: X ~ 
[-00, +00]. Thefunction I is called 

S3Each vector-valued function f: R n --+ RM with f(x) = Ax + b is called affine, where A is an 
m x n-matrix and bERM. In the case of b = 0 the function is said to be linear. 

s4RoCKAFELLAR (1972, p. 25, Theorem 4.1). 
sSEach proper lower semi-continuous function f: IRn --+ [-00, +00] achieves its minimum on a 

compact subset C in its effective domain Dom f, inf {f(x) I x E C} = min tf(x)1 x E C}. See BERGE 
(1963, p. 76). 

s6Cf. ROCKAFELLAR (1972, p. 51 f.). Equivalent definitions of real-valued functions may be found in 
BERGE (1963, p. 74) and SHEPHARD (1953, p. 295 f.). 
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• lower semi-continuous at xO if 

• upper semi-continuous at xO if 

The next theorem is helpful to identify semi-continuous functions as illustrated by 
Figure C.2 for J-L = J-L* with the closed level set (x E IRI f(x) ~ J-L*} = [a', b']. 

f(x) f(x) 

A ..... __ -<> 

epif 
<>---__ D 

J-L + ....... ....... .. ...... ... .... ...... .. ... ...... ...... . 

B' C 

~------------------~~ x ~+-----+-------+---~~ x 
a' b a 

Figure C.2: Semi-continuity of a function 

Theorem C.2 57 For each extended real-valued function f : IRn -+ [-00, +00] 
the following conditions are equivalent: 

J. The function f is lower semi-continuous throughout IRn. 

2. The level set (x E JR." I f(x) ~ J-L} is closedfor every J-L E IR. 

3. The epigraph epif = ((:) E IR"+11 f(x) ~ J-L} is a closed set in IRn+1 . 

Remember the properties of lower semi-continuous functions passing on to 
upper semi-continuous functions by substituting f by - f. In doing so the three 
equivalent conditions can be rewritten for a function g : IRn -+ [-00, +00] : 

1. The function g is upper semi-continuous throughout IR". 

57Cf. ROCKAFELLAR (1972. p. 51) and BERGE (1963. p. 76). 
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2. The level set (x E 1Rn l g(x) ~ IL} is closed for every IL E 1R. 

3. The hypograph hypo g = {(;) E 1Rn+11 g(x) ~ IL} is a closed set in 1Rn+1 . 

Bearing that in mind, we can establish the lower semi-continuous hull lsc f of a 
function f. Letting lsc f denote the greatest lower semi-continuous function with 
lsc f ~ f, then by definition 

epi(lsc f) = cl(epif) 

or, equivalently, 

lsc f(x) = lim inf f(x V ). 
x1l'---+ox 

Thus, the function f is lower semi-continuous if and only if f = lsc f. 
Referring to proper functions, which attain nowhere the value -00, the 

following operation, which is slightly modified, turns out to be more useful for 
convex analysis. 

DermitionC.458 Theclosureclfofafunction f: 1Rn ~ [-00,+00] isdefined 
by 

cl f(x) := {ISC f(x) 
-00 

for all x, if lsc f(x) > -00 for all x 

for all x, if lsc f(x) = -00 for one x. 

A function is closed if cl f = f. 
Accordingly, a function f is closed if lsc f takes nowhere the value -00 or if 
f == -00. 59 To protect n-proper functions against the exclusion from the analysis, 
the upper closure is compared to the lower closure. Regarding the upper semi­
continuous hull of a function g 

we now put60 

{
uscg(X) 

cl g(x) := 
+00 

uscg(x) = lim sup g(XV) 
x"""'" x 

for all x, if usc g(x) < +00 for all x 

for all x, if usc g(x) = +00 for one x. 

Thus, the closure operation is no longer unique, but for the analysis of proper and 
n-proper functions it is enough to identify the closure uniquely by the following 
criteria.61 

S8Cf. ROCKAFELLAR (1972, p. 52). 
s9The identity f = ±oo implies c1 f = ±oo . 
60The identity g = ±oo implies c1 g = ±oo . 
6IIOFFE, TIHOMIROV (1979, p. 169) define the c10sedness of a function by the c10sedness of its 

epigraph. 
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l. A proper function f: X -+ ]-00, +00] with X C IRn is closed if and 
only ifits epigraph epif is closed. 

f = Isc f = cI f ¢=> epif = epi(lsc f) = epi(c1 f) = c1(epif) 

Proof: If the function f is proper, f > -00, and closed, cI f = f, 
then the equation Isc f = cI f ensues from cI f > -00. Thus, f is 
lower semi-continuous, Isc f = f, such that the epigraph epif is closed 
(Theorem C.2). 
If the proper function f > -00 has a closed epigraph epif, then the 
function is lower semi-continuous by Theorem C.2, Isc f = f. Thus, Isc f 
takes nowhere the value -00 such that f = Isc f = cI f. • 

2. An n-proper function g: X -+ [-00, +oo[ with X C IRn is closed if and 
only if its hypograph hypo g is closed. 

g = uscg = c1g ¢=> hypog = hypo(uscg) = hypo(c1g) = c1(hypog) 

The proof parallels the conclusions on proper functions. 

For proper, convex functions we do not need to distinguish the criterion of lower 
semi-continuity from the criterion of c1osedness.62 If X is a nonempty convex subset 
in IRn , then the closure cI f of a proper convex function f: X -+ [-00, +00] is 
given by63 

cI f(x) = lim inf f(x") 
XV ..... X 

The closure cI g of an n-proper concave 
function g: X -+ [-00, +00] results 
from 

cI g(x) = lim sup g(x") 'ixEclX. 
XV~X 

The closure of a convex function f may be 
seen as regularization of this function since 
the functional values of f and cI f differ 
at the most at the relative boundary of the 
effective domain Dom f. 

Before this statement is noted by Theo­
rem C.3, a graphical representation is given 

'ixEclX. 

f 

a 

o 

by Figure C.3. Here the graph of a function Figure C.3: Closure of a function 
f is illustrated with x not belonging to the 

x 

(effective) domain of f. Note that epif is neither open nor closed. Furthermore, 
the closure of the epigraph contains the left (dotted) vertical line such that cI f is 
defined by cI f(x) = a at point x. 

62The advantage to pennit only real-valued convex functions becomes noticeable particularly in 
BLUM, 0TTLI (1975, p. 154ff.). 

63Cf. ROCKAFELLAR (1974, pp. 14 and 17) and NOZltKA, GRYGAROvA, LOMMATZSCH (1988, 
p. 243, Theorem \8 .2). 
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Theorem C.364 Let f: IRn -+ [-00, +00] be a proper convex function. Then 
cl f is a proper closed convex function with 

cl f(x) = f(x) v x E rint(Dom f). 

Let g: IRn -+ [-00, +00] be an n-proper concave function. Then cl g is an 
n-proper closed concave function with 

cl g(x) = g(x) Vx E rint(n-Domg). 

Apart from the discussed classes of functions linearly homogeneous functions 
are important for convex analysis. A function f: IRn -+ [-00, +00] is said to be 
positively homogeneous of degree I or linearly homogeneous65 , if 

f(h) = Vex) 0<)..<+00 

for every x. Form the point of view of the epigraph of the function f 

epif = {G) E IRn x IRJ y ~ f(x)} 

the class of linearly homogeneous functions corresponds to the class of functions 
whose epigraphs are cones66 ; see the left hand part of Figure C.4. That is, the 
function f is linearly homogeneous if and only if its epigraph epif is a cone. 

Considering Theorem C.l, we obtain a modified criterion for linearly homogeneous 
functions to be convex. 

Theorem C.467 A linearly homogeneous function f: IRn -+ ] - 00, +00] is 
convex if and only if 

(C.l) f(x + y) ~ f(x) + fey) 

Proof: If formula (C.1) holds for x =)..x and y = (1 - )..)y, then the function 
f is concave since 

f()..x + (1 - )..)y) ~ f()..x) + f( (1 - )..)y) V)"x, (1- )..)y E IRn 

implies with respect to linear homogeneity the criterion of convexity 

(C.2) f()..x + (1 - )..)y) ~ V(x) + (1 - )..)f(Y) VX,YEIRn , )..E[O,I]. 

64Cf. NOZIC:KA. GRYGAROV A, LOMMATZSCH (1988, p. 243) or ROCKAFELLAR (1972, p. 56). 
65 A function is called homogeneous of degree I if the above criterion is satisfied for all A E IR. If 

only A > ° is required, then the function is called positively homogeneous of degree I. The addition 
positively is omitted in future as long as the context is unambiguous. 

66 At this point the definition of a cone, not necessarily containing its vertex 0, turns out to be useful as 
linearly homogeneous functions may take an arbitrary functional value at the point x = O. 

67Cf. ROCKAFELLAR (1972, p. 30, Theorem 4.7). 
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Suppose the convexity of the function f, then (C.l) induces (C.2) by choosing A = 
Ih and using again the linear homogeneity. • 

Figure C.4 shows two forms of scalar multiplication. Interpreting Af as a new 
function , then the convexity of f passes on to the function Af by the operation 
f ~ Af. 68 This form of left scalar multiplication is shown in the left hand part of 
Figure C.4 for the scalar A = Ih 

Given a convex function f, we can moreover define a function fA with 

(C.3a) (fA)(X) := VeX/A) VA >0, 

where the operation f ~ fA is defined as right scalar multiplication.69 As 
depicted in the right hand part of Figure C.4 (for A = Ih), the operation f ~ fA 
is equivalent to the multiplication of the epigraph epif by a scalar A > 0, i.e. 
Aepif = epi(fA) . According to the figure with i = Ax, the equivalence relation 
can technically be expressed as 

f Af 

I(x) 

( fAx ) E Aepif = epi(fA) 
A (x) 

(fA~(i») E epi(fA). 

f fA 

(x) f(i/A 

(fA)(X - -

~------+-------P---~ x ~--~X----X~-/~A--------~ X 

Figure C.4: Scalar multiplications 

Consequently, we may now examine the parameter value A = 0 presuming 

68The operation f --+ Af is defined by (Af)(X) = A(f(x» and is called the left scalar 
multiplication in ROCKAFELLAR (1972). 

69Cf. ROCKAFELLAR (1972. p. 35) for the definition of the right scalar multiplication. 
The operation f --+ fA is picked up and extended in Section 0 .2.1 ; see for instance (0.8). 
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f "¥ +00 or epif * 0 : 

(C.3b) (fO)(x) = c5(xIO) := 10 
+00 

For f == +00 we set fO == +00. 

Mathematical Appendix 

for x = 0 

for x * O. 

Such as the left scalar multiplication the right scalar mUltiplication implies a 
convex function fA provided the function f is convex. Note that a function f is 
linearly homogeneous if and only if fA = f for all A > O. Accordingly, the 
right hand part of Figure C.4 depicts no linearly homogeneous function f. Neither 
the epigraph epif is a cone nor fA = f. 

C.2 Correspondences as Multi· Valued Mappings 

The economic theory often looks at mappings, where no unique functional value 
exists. For instance, the point at which the objective function of a convex program 
achieves its optimal value does not need to be unique provided the scrutinized 
program has a solution at all. In order to note all optimal solutions or the set of 
solutions we introduce correspondences. 

Again X and Y denote any nonempty sets. If the rule r maps each element 
in X into precisely one subset in Y, then we speak of a multi-valued mapping or 
correspondence. Using the power set '.)J(Y), the correspondence r: X --+ '.)J(Y) 
denotes the mapping rule of X into Y. The set r(x) is the so called image of x under 
the mapping r.70 

A comparison to the concept of (single-valued) functions shows that each 
function f: X --+ Y can be interpreted as special case of a correspondence 
r: X --+ '.)J (Y). If every set r (x) c Y consists of one and only one element 
y E Y, then the function f with f(x) = y corresponds to the "vector-valued" 
correspondence r with the only difference of representation. 

y = f(x) E Y or {y} = f'(x) C Y 

Besides the domain 

Domr:= {x E XI3y E Y: y E r(x)} = {x E XI r(x) * 0} 

the range of the correspondence r is defined by7) 

Range r:= {y E YI3x EX: y E r(x)} = U r(x). 
XEX 

The graph of the correspondence r is given by 

graph r := {(x, y)1 x E X, Y E r(x)} . 

70Some authors refrain from a symbolic distinction between functions and correspondences. 
Cf. TAKAYAMA (1990, p. 7) or SHEPHARD (1953, p. 298). 

71Some authors call the mapping r: X ~ '.}3(Y) a correspondence only if rex) *' 0 for all 
x E X. The mapping r of X onto Y then has the range Range r = Y. Cf. e.g. HEUSER (1992, p. 609). 
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The multi-valued mapping r- I : y ---+ ~(X) is called the inverse 
correspondence of r if 

r- I (y) = (x E XI y E r(x)} 

holds for every y E Y. Accordingly, inverse correspondences satisfy the 
equivalence relation 

Y E rex) {=::::} x E r- I (y). 

Finally, the composition product r l or2 of two correspondences rl: Y ---+ ~(Z) 

and r2: X ---+ ~(Y) is defined by 

rIO r2(X):= r 1(r2(X)) = U rl(y). 
YEr2(X) 

If the correspondence is defined on a set X C IRn such that rex) is a subset in 
Y C IRm for every x E X, then two kinds of correspondences can immediately 
be emphasized. A correspondence r: X ---+ ~(Y) is compact-valued if the sets 
rex) are compact for all x E X. Analogously, a correspondence r: X ---+ ~(Y) 

is convex-valued if the sets rex) are convex for all x E X. 
Moreover, semi-continuous and closed correspondences must be stressed. Bear 

in mind that we have to distinguish strictly between the concepts of a semi­
continuous (extended) function and the semi-continuity of a correspondence! For 
this reason HILDENBRAND, KIRMAN72 speak of semi-continuous functions and 
hemi -continuous correspondences. 

Definition C.S 73 Let r: X ---+ ~ (Y) be a correspondence which maps each 
vector in X C IRn into a nonempty subset in Y C IRm. Suppose xo to be a point 
in the domain X. The correspondence r is called 

• lower semi-continuous at xo iffor each open set V with r(xo) eVe Y 
there is a neighborhood U (xo) such that rex) c V for all x E U (xo). 

• lower semi-continuous at xO iffor each open set V C Y with r(xo) n V *- QJ 

there is a neighborhood U(xo) such that r(x)n V*- QJ forall x E U(xO).74 

• continuous at xO if it is upper semi-continuous and lower semi-continuous at 
xO. 75 

• quasi upper semi-continuous (in X) ifit is upper semi-continuous at xfor all 
x E X. 

nCf. HILDENBRAND, KIRMAN (1988, p. 189 f.). 
73Cf. BERGE (1963, p. 109) or MOORE (1968, p. 130). 
74BERGE writes in his definition "open set V meeting r(xo)", what has been taken falsely by 

TAKAYAMA as "open set V containing r(x°)". 
75When r is a single-valued mapping, then r is continuous in X if and only if for each open (closed) 

set V E Y the inverse image r- 1 (V) is open (closed) in X. Cf. e.g. TAKAYAMA (1990, p. 255). 
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• upper semi-continuous (in X) if it is upper semi-continuous at every x E X 
and ifr(x) is compacr76 for all x EX . 

• lower semi-continuous (continuous) (in X) if it is lower semi-continuous 
(continuous) at xfor all x E X. 

A graphical representation of the concept is given in Section 3.2.1 (c) by explaining 
the upper semi-continuity of demand correspondences. 

If a correspondence r: X -+ ~(Y) with X C 1Rn , Y C 1R and a function 
f: X -+ Y fulfill the relation rex) = {f(x)}, then the subsequent relation can 
be proved. The definitions of upper and lower semi-continuity of r at point xO are 
equivalent and they equal the definition of the continuity of f at point xO. 77 

The following result will be important with respect to Theorem C.17 (DEBREU, 

GALE, NIKAIDO): 

Theorem C.S 78 Letting r: X -+ ~(Y) be a compact-valued and upper semi­
continuous correspondence, then the set 

reS) := U rex) 
XES 

is compact for each compact SeX. Thus, the correspondence r is bounded, 
provided r is the correspondence r which is restricted to the region S. 

The semi-continuity of a correspondence must be distinguished from the property 
of c1osedness. 

Definition c.679 The correspondence r: X -+ ~(Y) with the topological 
spaces X and Y is said to be closed if it satisfies the following condition: whenever 
XO EX, lEY and l f/. r(xo), then neighborhoods U(xo) and Vel) exist 
such that x E U(xo) implies rex) n V(yo) = 0. 

Specifying the topological spaces X and Y by subsets in the Euclidean spaces, we 
obtain 

Theorem C.6 80 A correspondence r: X -+ ~(Y) with X C 1Rn and Y C 
1Rm is closed at point xO E X if the sequences {XV} and {yV} satisfy 

[XV -+ xO, yV -+ yO, yV E r(xV)] ===> yO E r(xo). 

The correspondence r is closed (in X) ifit is closed for every point in X. 

76Some authors dispense with requiring a compact-valued correspondence. Cf. HILDENBRAND, 
KIRMAN (1988, p. 262 If.) in contrast with TAKAYAMA (1990, p. 251). 

77 Cf. TAKAYAMA (1990, p. 252). For the definition of continuous functions see DALLMANN, ELSTER 
(1991a, p. 59). 

78DALLMANN, ELSTER (1991a, p. 609). 
79Cf. BERGE (1963, p. 111). 
80Cf. BERGE (1963, p. III, Theorem 4) or HEUSER (1992, p. 612). 
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Thus, a closed correspondence implies 

[ (XV, yV) ~ (xo, yo), (XV, yV) E graph r] ==} (xo, yo) E graph r , 

i.e. the graph graph r := {(x, y)1 x EX, Y E r(x)} is a closed set in X x Y. 
Hence, the level sets r(x) must also be closed in Y. 

The next results emphasize the relationship of semi-continuous and closed 
correspondences. 

Theorem C.7 8) Every upper semi-continuous correspondence is closed. 

The reverse conclusion regarding this theorem is in general not admissible, i.e.: 

Theorem c.S82 Let Y be a compact space. Then the correspondence r: X ~ 
qJ(Y) is upper semi-continuous if and only if it is closed. 

The next theorem serves for the identification of semi-continuous correspondences. 

Theorem C.9 83 A compact-valued correspondence r: X ~ qJ(Y) is upper 
semi-continuous at point XO if and only if for every sequence {XV} in X with limit 
xO andfor each sequence {yV} with yV E f(xV) there is a convergent subsequence 
{yVt} whose limit yO belongs to r(xo), i.e. yVt ~ yO E r(xo). 

Theorem C.I084 Let Y be a compact subset in JRm. Then two statement are true 
for the correspondence r: X ~ I,JJ(Y) with X C JRn. 

1. The correspondence r is upper semi-continuous at xO if and only if the 
sequences {XV} and {yV} yield 

[xv ~ xO, yV ~ yO, yV E f(xV)] ==} yO E r(xo). 

2. The correspondence r is lower semi-continuous at xO if and only if the 
sequence {XV} yields 

[ XV ~ xO, yO E r(xo)] ==} [3 {yV}: yV ~ yO, yV E r(xV) ]. 

The following properties are presented without proof:85 

• Letting r): Y ~ I,JJ(Z) and r2: X ~ I,JJ(Y) be lower (upper) semi-con­
tinuous, then r) Or2: X ~ I,JJ(Z) is as well lower (upper) semi-continuous . 

• The union r = Uiel ri of a family of lower semi-continuous 
correspondences rj: X ~ I,JJ(Y) is lower semi-continuous with r: X ~ 
I,JJ(Y). 

81 BERGE (1963, p. 112). 
82Cf. BERGE (1963, p. 112) or MOORE (1968, p. 130). 
83Cf. HILDENBRAND, KIRMAN (1988, p. 262). 
84Cf. TAKAYAMA (1990, pp. 239 and 252). 
85See BERGE (1963, p. 113 ff.). 
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• The intersection r = niEl r i of a family of upper semi-continuous 
correspondences r i : X -+ ~(Y) is also upper semi-continuous with 
r: X -+ ~(Y). 

• The union r = U7:1 r i of a finite family of upper semi-continuous 
correspondences r i : X -+ ~(Y) is also upper semi-continuous with 
r: X -+ ~(Y). 

• The Cartesian product r = .:::: r i of a finite family of lower (upper) semi-
1=1 

continuous correspondences ri: X -+ ~(Yi) is also a lower (upper) semi-

continuous correspondence r: X -+ ~ (Y) with Y = :::: Yi . 
i=1 

• The sum r = L~=I r i of a finite family of upper semi-continuous 
correspondences r i : X -+ ~(IRm) is as well upper semi-continuous with 
r: X -+ ~(IRm). 

Theorem C.U 86 Provided a correspondence r: X -+ ~(IRn) is compact­
valued and upper semi-continuous at point xO, then the correspondence reo with 

rco(x) := convr(x) "Ix E X 

has the same properties. 

Proof: Since the convex hull of a compact set is compact (see p. 294), the new 
correspondence r co must also be compact-valued at point x. Thus, it remains to be 
shown that r co is upper semi-continuous at point x. 
By Theorem e.9 for every sequence {XV} in X with limit xO and for every sequence 
{yV} with yV E r co (XV) there must be a convergent subsequence {yVk} whose 
limit yO belongs to rco(xo), yVk -+ yO E rco(xo). According to Theorem B.4 
(CARATHEODORY) each element of the sequence of points {yV} with yV E rco(xV) 
can be expressed as a convex combination of no more than n + 1 points in r(xV). 

n 

yV = I>.YyY with YY E r(xV), l E An+1 

i=O 

Theorem e.9 assures that each sequence of points {yn with YY E r(xV) contains 
a convergent subsequence {y~k} whose limit y? belongs to r(xo). The bounded 
sequence {P} also contains a convergent subsequence {Pk} whose limit l ° satisfies 
Ag + A? + ... + A~ = 1. Thus, for 

n 

yVk = LA~ky? with y? E r(xVk), lVk E An+1 

i=O 

86ef. HILDENBRAND, KIRMAN (1988, p. 266), 
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we have a convergent subsequence of {yV} whose limit 

n 

yO = LA.?Y? with y? E r(xo), l.0 E An+1 

i=O 

C.3 Fixed-Point Theorems 

The semi-continuity of correspondences yields frequently used implications, which 
can be noted by the Maximum Theorem as well as the fixed-point theorems of 
BROUWER and KAKUTANI. Moreover, the maximum theorem can be applied to 
the proof of KAKUTANI'S fixed-point theorem. 

Theorem c.12 87 Let rp: X x Y ~ IR be a lower semi-continuous function and 
r: X ~ I.P(Y) be a lower semi-continuous correspondence with r(x)"* 0 for 
all x E X. Then a lower semi-continuous function 1/1: X ~ IR results with 

1/I(x) := sup {rp(x, y)1 y E r(x)}. 

Theorem C.l3 88 Let rp: X x Y ~ IR be an upper semi-continuous function and 
r: X ~ 1.P(y) be an upper semi-continuous correspondence with r(x)"* 0 for 
all x E X. Then an upper semi-continuous function 1/1: X ~ IR results with 

1/I(x) :=max{rp(x,y)ly E r(x)}. 

Theorem C.l4 (Maximum Theorem) 89 Let rp: X x Y ~ IR be a continuous 
function and r: X ~ 1.P(y) be a continuous correspondence with r(x)"* 0 
for all x E X. Then the function 1/1: X ~ IR with 

1/I(x) := max {rp(x, y)1 y E r(x)) 

is continuous in X and the correspondence III: X ~ 1.P(y) with 

lII(x) := {yl y E r(x), rp(x, y) = 1/I(x)} 

is upper semi-continuous. 

Proof: The continuity of 1/1 ensues from applying the two preceding theorems. To 
prove the upper semi-continuity of III, we look at two sequences {XV} C X, {yV} C 
Y with XV ~ xO, yV ~ yO and yV E lII(xV). This yields: 

87Cf. BERGE (1963, p. 115). Recall the difference between an upper semi-continuous function and a 
lower semi-continuous correspondence. 

88Cf. BERGE (1963, p. 116). Remind that upper semi-continuous correspondences have compact level 
sets by definition! 

89BERGE states the Maximum Theorem for the function iP: Y .... R. Cf. BERGE (1963, p. 116). 
The proof of the modified theorem is taken from DEBREU (1982, p. 701, Lemma I). 
As in Theorem C.13, a continuous correspondence requires compact level sets! 
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1. Because of \II(XV) C r(xV) the upper semi-continuity of r (Theorem C.lO) 
results in 

[xv ~ xO, yV ~ yO, yV E r(xV)] ~ yO E r(xo). 

2. For each zO E r(xo) the lower semi-continuity of r (Theorem C.I0) yields 
[xv ~ xO, zO E r(xo)] ~ [3{zV}: ZV ~ zO, ZV E r(xV)]. 

3. According to 2., for each zO E r(xo) the sequence {ZV} gives with 
continuity of ¢ 

where by point 1. we are especially allowed to put zO = yO. 

The relation yO E \II(xo) ensues from point 3. Thus, \II is upper semi-continuous . 

• 
Corollary C.14.1 Let S be a nonempty compact subset in Y with X = lRn = Y. 
Then the function 1/1: X ~ lR with 1/I(x):= max {xTYI YES} is continuous 
in X. Furthermore, the correspondence \II: X ~ s:t3(Y) with \II(x) := 

{yl YES, X T Y = 1/I(x)} is upper semi-continuous. 

Proof: The statement of Corollary C.l4.1 is an immediate consequence of the 
Maximum Theorem by putting ¢(x, y) = xTy and rex) = S for all x E X . 

• 
Theorem C.lS (BROUWER's Fixed-Point Theorem) Let C be a nonempty com­
pact convex subset in lRn. If the function f: C ~ C is continuous, then f has a 
jixed-pointxO, i.e. XO = f(xO). 

Accordingly, each continuous function f: l:!.. ~ l:!.. has a fixed-point XO if l:!.. 
denotes the unit simplex in lRn , i.e. l:!..:= {p E lR~ I I:J=I P j = I}. 

Corollary C.IS.l Let t: l:!.. ~ lRn be a continuous function such that the 
inequality p T t(p) ~ a holds for all pEl:!... Then there is a pO E l:!.. with 
t(pO)~O. 

Proof: Define the function g with the components 

(j= 1, ... ,n). 

Since t and, therefore, the 1/1 j are continuous90, the maxima of all 1/1 j exist by 
Theorem 11.1 (WEIERSTRASS), p. 63. With that and because of the continuity of 
the maximum function the gj are also continuous functions. Moreover, g(p) is a 

9Oef. DALLMANN, ELSTER (1991b, p. 199, Theorem 7.7): If the function f: [a, b] ~ IR is 
continuous in [a. b], then f is bounded on [a, b]. 
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point in ll. since L:J=I gj(p) = 1 holds good and all of the gj are nonnegative. 
Therefore. the function g: ll. ~ ll. satisfies the conditions ofBROUWER's fixed­
point theorem and a fixed-point pO exists with pO = g(pO). This fixed-point means 
for each component of g 

° pi + max {O. 1/1 j(pO)} 

Pj = 1 + L:~=I max{O.1/Ik(pO)} 
(j=I •...• n). 

Multiplication by the denominator yields 

n 

pi L max (O. 1/Ik(pO)} = max {o. 1/I/pO)} 
k=1 

n 

¢=:} 1/IlpO) pj L max (O. 1/Ik(pO)} = 1/1 j(pO) max {o. 1/1 j(pO)} 
k=1 

n n n 

~ L 1/1 j(pO) pi L max (O. 1/Ik(pO)} = L 1/1 j(pO) max {o. 1/1 j(pO)} 
j=1 k=1 j=1 

for each j = 1 ....• n. Under the assumptions of the corollary we have 
poT t(pO) ~ 0 and. therefore. 

n 

o ~ L 1/1 j(pO) max {O. 1/1 j(pO)} . 
j=1 

Since each summand equals either zero or (1/Ij(po»)2. we get t(pO) ~ 0 for the 
fixed-point. • 

Comment: Corollary C.15.1 requires a continuous function t. This is the reason 
why the function t cannot immediately be identified with the aggregate excess 
demand function z. Since z(p) is not defined for all price vectors p having a zero 
component. the problem max to. Zj(p)} cannot be solved for these price vectors. 

The transference of BROUWER'S fixed-point theorem to convex valued 
correspondences is given by KAKUTANI'S fixed-point theorem. As known from 
HEUSER (1992. p. 616). the two fixed-point theorems are completely equivalent. 

Theorem C.16 (KAKUTANI'S Fixed-Point Theorem)91 Let C be a nonempty 
compact convex subset in lRn. If the correspondence r: C ~ 1.l3( C) is upper 
semi-continuous and if the sets rex) are not empty and convex for all x E C. 
then r has a fixed-point Xo. 

3xO E C: XO E r(xO) 

91Cf. BERGE (1963, p. 174). HEUSER (1992, p. 614) speaks of a closed correspondence, where by 
Theorem C.S it must be noted, that for compact C the correspondence r is closed if and only if it is upper 
semi-continuous. 
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Although the next theorem has been derived independently of Theorem C.16 (KA­
KUTANI), UZAWA (1962) has proved that both theorems are equivalent. 

Theorem C.17 (DEBREU, GALE, NIKAIDO)92 Let S be a nonempty closed 
convex subset in the unit simplex /),. C lRn. Suppose the correspondence \lI: 
S ~ ~(lRn) has the/ollowing properties: 

1. The sets \lI(p) are not empty and convexfor all pES. 

2. The correspondence \lI is closed. 

3. The correspondence \lI is bounded, i.e. a (closed) ball K C lRn exists such 
that \lI(p) C K forevery pES. 

4. Wehave pTz~O foreach PES andeach zE\lI(p). 

Then pO E Sand ZO E \lI(pO) exist such that pT ZO ~ 0 for all pES. 

Proof: First of all, we define the correspondence r: S x K ~ ~(S x K) with 
rep, z) := M(z) x \lI(p) and M(z):= {pi PES, pTz = max {qTzl q E S}}. In 
this S x K is a nonempty compact convex set. 

1. The function q T Z is continuous at every z such that M(z) *- QJ holds for all 
z E K according to Theorem 11.1 (WEIERSTRASS), p. 63. Since \lI(p) *" QJ 

for all PES, we get rep, z) *- QJ for all (p, z) E S x K. 

2. For a convex set S the sets M(z) are convex for every z.93 Since \lI(p) is 
convex for each PES by assumption, rep, z) = M(z) x \lI(p) must be 
convex. 

3. By Theorem C.14 (Maximum Theorem) the correspondence M is upper semi­
continuous. In accordance with Theorem C.8 for a (compact) ball K C lRn 

the correspondence \lI: S ~ ~(K) is upper semi-continuous if and only if 
it is closed. Thus, the cross product r must be upper semi-continuous.94 

Now we can apply KAKUTANI's fixed-point theorem to r 

3(pO, ZO) E S x K: (pO, ZO) E r(pO, ZO) 

<==> [3 po E Sand 3zo E K]: [pO E M(zO) and ZO E \lI(pO)] 

with \lI(pO) C K 

<==> [3 po E Sand 3zo E \lI(pO)] : pO E M(zO) 

<==> [3 pO E Sand 3zo E \lI(pO)]: [Vp E S: pTzo ~ poTzo] 

nCf. HILDENBRAND, KIRMAN (1988, p. 278) and HEUSER (1992, p. 631). 
93 If C is a convex subset in JR" and if the function f is convex in C, then min {f(x)1 x E C} is called 

a convex program. The set of all optimal solutions to this program is convex (but possibly empty). Cf. 
BLUM, GTTU (1975, p. 5, Theorem 1). 

94See p. 310. 
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The proof concludes with a consideration of the fourth assumption. • 

A detailed discussion of further fixed-point theorems may be found in BORDER 
(1985). Besides the discussion of the relationships between fixed-point theorems 
the author presents a series of economic results. For example, the book contains 
conditions for the existence of WALRAsian equilibria, NASH equilibria, and 
equilibria in cooperative games. 

D Duality Theory 

D.l Duality of Conjugate Functions 

The expositions on duality theory are based on ROCKAFELLAR (1972). Continuing 
with the results of convex analysis in Appendix B, the following sections deal with 
implications which result from the properties of functions introduced in Appendix 
C.I. In order to emphasize the dual aspects, we set 

x = IRn = Y, 

where X and Y are the spaces of primal and dual variables respectively. Theorem 
B .11 serves as the initial point. Its meaning for closed convex sets can be transferred 
to convex functions in the following way. 

Theorem D.195 A closed convex function / is the pointwise supremum over the 
class 0/ all affine functions h such that h ~ f. 

The analogy to Theorem B.II becomes lucid if we imagine the epigraph of the 
function / as intersection, where the intersection is taken over the epigraphs of all 
affine functions hex) = yTx+a (y"* 0, a E IR) satisfying h ~ /. Choosing 
the supremum over the set of all functional values hex) for each point x, where h 
denotes the class of all affine functions with h ~ /, the function / results. Cf. the 
left hand part of Figure D.I. 

If we only allow for linear functions with a = 0 instead of affine functions 
hex) = yT X + a (y"* 0, a E IR), then the next definition of conjugate functions 
can be justified corresponding to the right hand part of Figure D .1. 

Definition D.1 96 Let /: X -+ [-00, +00] be an arbitrary function. Then the 
convex conjugate/unction f*: Y -+ [-00, +00] all is given by 

f*(y):= sup {yTx - /(x)1 x EX}. 

95Cf. ROCKAFELLAR(1972, p. 102). 

96Cf. ROCKAFELLAR (1974, pp. 15 and 18). Comment: for a convex differentiable function 
the FENCHEL transform is closely related to the LEGENDRE transform; see ROCKAFELLAR (1972, 

p. 251 ff.). 
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f(x) f(x) 

x 

yx (y < 0) 

Figure 0.1: Illustration of a convex function 

The operation f -+ f* is called the (convex) FENCHEL transform. The convex 
biconjugate junction of f is the convex conjugate function f** of f* (second convex 
FENCHEL transform). 

f** (x) := sup {y T X - f* (y)! y E Y} 

Let g: X -+ [-00, +00] be an arbitrary function. Then g*: Y -+ [-00, +00] 
with 

g*(y) := inf {yTx - g(x)! x EX} 

is called the concave conjugate function of g. The operation g -+ g* is called 
the concave FENCHEL transform. Moreover, we define the concave biconjugate 
function g** by 

g**(x) := inf {yTx - g*(y)! y E Y} . 

The definition assumes an arbitrary function f or g. Remember according to 
Comment C.1, p. 299, that each real-valued function f: C -+ IR with C C IRn 

c~n be expanded to a function j: X -+ [-00, +00] with X = IR n . If we define 
f(x) = +00 for all x ¢ C, then each vector x ¢ C is irrelevant for the 
calculation of the convex conjugate function j* .97 

In order to apply the duality of conjugate functions the next theorem is decisive. 

Theorem D.2 98 The convex conjugate function f*: Y -+ [-00, +00] of an 
arbitrary function f: X -+ [-00, +00] is a closed convex function. Moreover, 

97cf. BLUM, OTTLI (1975, p. 1550. There it is found: if f is a convex function defined on the convex 
set C C JR", then f*(y):= sup {yT x - f(x)1 x E C} is called the convex conjugate function of f. 
Remember, moreover, that the effective domain of an extended real-valued convex function is a convex 
set. 

98For the proof, see ROCKAFELLAR (1974, pp. 16 and 18) or ROCKAFELLAR (1972, p. 104 f.). 
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/* is proper if and only if I is proper. If I is convex, then, furthermore, 

/** = cll and (clf)· = /*. 

Analogously, the concave conjugate function g.: Y --+ [-00, +00] to an 
arbitrary function g: X --+ [-00, +00] is closed and concave. Moreover, g. 
is n-proper if and only if g has this property. For a concave function g we also have 

g •• =clg and (clg)*=g •. 

This theorem includes two major cases with respect to an arbitrary function I. 

1. An improper function I implies an improper function /*. Again we have to 
distinguish between two cases.99 

(a) If an i E X with I(i) = -00 exists, then /*(y) = +00 holds 
good for all y E Y. The function /* is improper. This implication is no 
contradiction to Theorem D.2 since /* == -00 is a closed convex function 
with the (closed convex) epigraph epi/* = JRn+l. 

(b) Supposing 1==+00, at once an improper function /* == -00 results. 
Even this implication is no contradiction to Theorem D.2 as /* == +00 is a 
closed convex function with the (closed convex) epigraph epi/* = 0. 

2. A proper function I implies /* to be proper. 
(a) Since I> -00, /*(0) = sup {-l(x)1 x E X} < +00 must hold. 
(b) If an i exists with finite I(i), then we get 

-00 < yTi - I(i) ~ sup {yTx - l(x)1 x EX} = /*(y) 

for all y E Y. From (b) /* > -00 and (a) /* ¥ +00 we obtain a 
proper function /*. 

The definition of conjugate functions immediately yields the YOUNG-FENCHEL 
inequalities satisfied for each pair of convex conjugate functions (f, /*) and for 
each pair of concave conjugate functions (g, g*) respectively. 

(D.la) 

(D.lb) 

Thus, 

(D.2a) 

(D.2b) 

I(x) + /*(y) ~ yTx 

g(x) + g*(y) ~ yTx 

"Ix EX, Vy E Y 

"Ix EX, Vy E Y 

[J··(x) = sup {yTx_ /*(y)} ~ I(x) "Ix E X] {::::::} /*. ~ I, 
[g •• (x) = inf {yTx - g.(y)} ~ g(x) "Ix EX] {::::::} g •• ~ g. 

How to interpret the function /**? The answer can be illustrated by understanding 
the second convex FENCHEL transform as an operation which assigns the 
greatest closed convex function /** with /** ~ I to an arbitrary function I 

99Dlustrate the given epigraphs by Figure C.l, p. 298. 
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(convexification of f). If cl(conv f) is a proper function, then this statement can be 
made more precise, 100 

/** = cl(conv f). 

Transferred to the epigraphs we equivalently gain 

epi/** = cl (conv(epif)). 

Analogously, g** corresponds to the smallest closed concave function satisfying 
g** ~ g (concavification of g). As before, g** can be determined by the relation 
hypo g ** = cl (conv(hypo g) ) for an n-proper function g. With that we get an idea 
of the next two theorems. 

Theorem D.3 (FENCHEL-MoREAU Theorem) 101 Let f: X -+ [-00, +00] 
be a proper function. The FENCHEL transform is a symmetric operation f -+ h 
with h = /*(= /***) and h* = /** = f if and only if f is a closed convex 
function. 

Corollary D.3.1 (FENCHEL-MoREAU Theorem, Concave Version) 102 

Let g: X -+ [-00, +00] be an n-proper function. The concave FENCHEL 
transform is a symmetric operation g -+ h with h = g*(= g***) and 
h* = g ** = g if and only if g is a closed concave function. 

In order to prove this corollary ROCKAFELLAR refers to the following relation: for 
an n-proper concave function g: X -+ [-00, +00] we obtain a proper convex 
function f by g = - f. The convex conjugate function /* then induces g*(y) = 
-/*(-y). 

Further duality propositions result from the examination of subgradients and 
supergradients of f at a point in the effective domain. 

Definition D.2 103 A vector y is called a subgradient of the convex function f at 
point x E X if the following inequality is satisfied: 

f(x) ~ f(x) + yT (x - x) "Ix EX 

The set of all subgradients of f at point x is called the subdifferential of f at point 
x and is denoted by af(x). The correspondence af: X -+ 1.l3(y) is called the 
subdifferential of f. 
A vector y is called a supergradient of the concave function g at point x E X if 

g(x) ~ g(x) + yT (x - x) 

lOOCf. JOFFE, TiHOMIROV (1979, p. 177, Corollary 2). 
lOICf. JOFFE, TiHOMIROV(1979, p. 174f.). 

"Ix EX. 

lO2Cf. NEWMAN (1987b, p. 927). Note for NEWMAN'S Theorem 2 that every convex (concave) closed 
(n-)proper function is also lower (upper) semi-continuous. 

lO3The definitions are taken from ROCKAFELLAR (1972, p. 214 f.) and NEWMAN (1987b, p. 928). 
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The set 01 all supergradients 01 g at point x is called the superdifferential 01 g at 
point x and is denoted by ~g(x). The correspondence ~g: X -+ 1.lJ(Y) is called 
superdifferential 01 g. 

Note that a convex function I achieves its minimum at point x if and only if 0 E 

al(x) since the subgradient y = 0 satisfies 

I(x) ~ I(x) "Ix EX 

by definition. Conversely, a concave function g attains its maximum at point x if 
and only if 0 E ~g(x). 

If y is a subgradient of I at point x, yEa I(x), then the affine function 

(D.3) hex; x) = I(x) + yT (x - x) 

is called a support function of I at point x. 104 Geometrically, the graph of this 
function hex; x) can be illustrated by a supporting hyperplane of the convex set 
epil at point (f~i»)' The subgradient y determines a normal vector to this supporting 

hyperplanes by (2'1);105 see the comments on Theorem B.l. 
For a convex function I the subdifferential a I(x) is a closedlO6 convex set. If 

al(x) * 0, then I is said to be subdifferentiable at point X. Moreover, for a 
proper convex function I we havel07 

x ¢ Dom I => al(x) = 0, 

x E rint(Dom f) => al(x) * 0, 

x E int(Dom f) <===} a I(x) * 0 and bounded. 

The next theorem is useful to classify sub gradients and supergradients. 

Theorem D.4 108 Let x be a point at which the convex function I is finite. II I is 
differentiable at point x, then the gradient V I(x) is the unique subgradient 01 I at 
x, al(x) = {V I(x)}. Conversely, ifa convexfunction I has a unique subgradient 
y(x) at point x, then I is differentiable at x and y(x) = V I(x). 

If the function I is differentiable at x, then according to (D.3) hex; x) = I(x) + 
V I(x) T (x - x) is called a linearization of I at X. The main results on the duality 
of conjugate functions may now be summarized by 

lO4Cf. BLUM, GTTLI (1975, pp. 49-50). A graphical representation ofthe corresponding supergradient 
may be found in Figure III.9, p. 104. 

105Cf. ELSTER, REINHARDT, SCHAUBLE, DONATH (1977, p. 84f.). 
Converting all subgradients Y E <Jf(x) of the convex function f into (!l)' then a convex cone results 

containing all vectors which are normal to the set epif at point (Ax»)' This cone is frequently called 
Clark's normal cone with respect to CLARKE (1975). 

lO6The empty set is open and closed by definition. 
107 Cf. ROCKAFELLAR (1972, p. 217, Theorem 23.4). 
108Cf. BLUM, GTTLI (1975, p. 50) or ROCKAFELLAR (1972, p. 242). The transference to the concave 

case is omitted. 
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Theorem 0.5 109 Given a proper convex function f and a vector i. Then the 
following relations on a vector yare equivalent to each other. llo 

• Y E af(i), 

• yTx - f(x) achieves the supremum at x = i, 

• f(i)+f*(y)=yTi. 

Dually, three more relations are equivalent to each other. 

• i E af*(y), 

• y T i - f* (y) achieves the supremum at y = y , 
• f**(Y) + f*(i) = yTi. 

Moreover, if cl f(i) = f(i) at point i, then all of the relations are equivalent 
and can be expanded by y E a(cl f)(i). 

In particular, if the inspected function f is closed, i.e. cl f = f by Definition CA, 
p. 302, then 

Corollary 0.5.1 Let f be a proper, convex, and closed function. Then af: X -+ 

'll(Y) and ar: Y -+ 'll(X) are inverse correspondences. 

Y E af(x) ¢:=::> x E af*(y) 

A pair of points (x, y) satisfying this condition is called a pair of dual points. 

Corollary 0.5.2 (Concave Version) III Given an n-proper concave function g and 
a vector i. Then the following relations are equivalent to each other with respect to 
a vectorY. 

• Y E ~g(i), 

• yT x - g(x) achieves the infimum at x = i, 

• g(i) + g*(y) = yTi. 

Dually, three more relations are equivalent to each other. 

• i E ~g*(y), 

• Y T i - g * (y) achieves the infimum at y = y , 
• g**(i) + g*(y) = yTi. 

I09Cf. ROCKAFELLAR (1972, p. 218, Theorem 23.5). 
1l0If sup {f(x)1 x E IRn} is finite and if the supremum is attained at i E IRn, then i is called 

an optimal solution to the problem and we write f(i) = max (f(x) I x E IRn}. See the discussion in 
Section 2.4.2. 

IllCf. NEWMAN (1987b, p. 929). 
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If, moreover, cl g(x) = g(x) holds at point X, then all 01 the six relations are 
equivalent and can be expanded by y E !1 (cl g) (x). In particular, if the function 
g is closed, i. e. cl g = g, then the correspondences !1g: X ~ l.l3 (Y) and 
!1g*: Y ~ l.l3(X) are inverse to each other. 

Y E !1g(x) {=:> x E !1g*(y) 

The properties of conjugate functions have numerous implications especially 
reflected in treating dual programs. To present some aspects of this duality theory, 
the following pair of dual programs underlies the concluding explanations: 

(PI) 

(PI *) 

inf (I(x) - g(x)1 x E XI n Xg} 

sup (g*(y) - f*(y)1 y E YI n Yg} , 

where X I and Xg are convex subsets in IRn. If the function I: X I ~ IR is convex 
on X I and if the function g: Xg ~ IR concave in Xg such that 

f*(y) = sup {yTx - l(x)1 x E XI} 

g*(y) = inf{yTx - g(x)1 x E Xg} 

with Y/ := (yl f*(y) < +oo} 

with Yg:= (yl g*(y) > -oo}, 

then FENCHEL'S duality theorems hold for optimal values to both programs inf(PI) 
and sup(PI *).112 

1. If XI n Xg "* 0 and YI n Yg "* 0, then inf(PI) is bounded below and 
sup(PI*) is bounded above. Moreover, inf(P!) = sup(PI*). 

2. If X I and Xg as well as YI and Yg have relatively interior points in common 
and if the functions I and g are closed, then (PI) and (Pl*) have optimal 
solutions. Moreover, min(Pl) = max(Pl*). 

A more general approach is presented by WALK (1989) including the duality theory 
of linear programs as a limit case. He examines a LAGRANGEan function 

<I>(x, y) = cp(x, y) - a(x) - (3(y), 

where it is supposed that a: Xa ~ IR, (3: Yp ~ IR, cp: Xa x Yp ~ IR and 
Xa x Yp C IRn x IRm. If we define the generalized conjugate functions 

a*(y) := inf{ cp(x, y) - a(x)1 x E Xa} 

(3*(x) :=sup (cp(x, y) - {3(y)1 Y E Yp} 

with Yp:= (Y E Ypl a*(y) > -oo} 

with Xa:= {x E Xal (3*(x) < +oo}, 

then besides Xu x Yp c Xu x Yp it follows 

inf <I>(x, y) = a*(y) - (3(y) 
XEXa 

sup <I> (x, y) = (3*(x) - a(x) 
yEYp 

with Y E fp, 

with x E Xu. 

lI2Cf. FENCHEL(1953. p. 105ff.). For further expositions see BLUM. GTTLI (1975. pp. 156-160). 
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For the pair of dual programs 1 13 

(P2) 

(P2*) 

inf{tJ*(x) - a(x)1 x E Xa} 
sup {a*(y) - tJ(y)1 y E Y,8} 

the subsequent duality theorem can be offered. 

Theorem D.6 114 The following statements are equivalent: 

1. There is a pair (x, y) E Xa x Y,8 such that 

Mathematical Appendix 

<l>(x, y) ~ <l>(x, y) ~ <l>(x, y) 

forall (x, y) E Xa x Y,8. 

2. We have Xa '* 0 and Y,8 '* 0. Both problems (P2) and (P2*) are feasible 
and 

min {tJ*(x) - a(x)1 x E Xa} = max {a*(y) - tJ(y)1 y E Y,8}. 

3. There is a pair (x, y) E Xa x Y,8 such that 

~(x, y) = a(x) + a*(y) and ~(x, y) = tJ(y) + tJ*(x). 

D.2 Duality of Polar Gauges 

D.2.1 Properties of the Support Function 

After the duality of conjugate functions has been introduced, the next appendix 
deals with the duality of polar gauges where the term "polar gauge" is given by 
Definition D.6, p. 334. Although the two theories have points in common there 
is a big difference between their initial points. Whereas the theory of conjugate 
functions examines "best" inequalities of the form yTx ~ f(x) + g(y) the theory 
of polar gauges deals with "best" inequalities of the form yTx ~ f(x) g(y). The 
YOUNG-FENCHEL inequality (D.1a) is compared to MAHLER's inequality (D.16). 
All of the main issues are summarized in Figure D.3, p. 336. A simple example 
stresses the most important properties; see Figure D.4. 

As before, the dual spaces are X = IRn = Y so that the dual aspects of the 
presented functions can explicitly be stressed. In fact, the easiest representation of 
a set C C X is given by the indicatorfunction 8('IC): X -+ [0, +00] 

8(xIC) := 10 
+00 

for x E C 

for x¢. C. 

An alternative way to represent C follows from 

lI3In the case of m = n with cp(x, y) = yT x the relation to (PI) and (PI") becomes apparent by 
putting a = g and fJ = 1*. 

114Cf. VOGEL (1968, p. 4, Main Theorem I). 
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Definition D.3 The supportfunction a(-I C): Y ---+ [-00, +00] of a set C C X 
is defined by 

a(yIC) := sup {yTxl x E C} . 

Analogously, ({1(-IC): Y ---+ [-00, +00] with 

({1(yIC):= inf{yTxl x E C} 

or, equivalently, ({1(yl C) = -a( -yl C) is called the reciprocal support function 
of the set C. 

The relationship between the (linearly homogeneous) indicator function 8 ( ·1 C) and 
the linearly homogeneous support function 115 a(-I C) results from 

(DA) a(yIC) = sup {yTxl x E c} 
= sup {yTx - 8(xIC)1 x EX} 

= 8*(YIC) 

where Theorem D.8 explicitly refers to this result. If the set C is convex, then the 
support function yields 

a(·IC) = a(-I cl C) = a('1 rint C) 

despite the inclusion rint C C C C cl C. Moreover, by the separation theorems in 
Appendix B.3 we can show: 

Theorem D.7 116 Provided a convex set C C X, the following equivalence 
relations are valid. 

xEclC <===} [yTx~a(YIC) VyEY], 

x E rintC <===} [yTx < a(yIC) Vy E Y with a(yIC) '* -a(-YIC)], 

xEintC <===} [yTx < a(yIC) Vy,*O]. 

The following corollary is not really an application of Theorem D.7. It merely 
stresses the one-to-one relation between closed convex sets and their support 
functions. 

Corollary D.7.1117 Let C C X be a closed convex set. Then this set can be 
expressed as system of inequalities given by its support function a(·1 C). 

(D.5) C ={xlyTx~a(YIC) 'lYE Y} 

=n {xlyTx~a(YIC)} 
YEY 

115The linear homogeneity of the support function at once yields '\'u(yIC) = u('\'yIC) = u(yl'<'C) for 
all.<.>O. 

116Cf. ROCKAFELLAR (1972, p. 112 f., Theorem 13.1) 
l17Cf. ROCKAFELLAR (1972, p. 113) and ROBINSON (1987, p. 655). 
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Thus, each closed convex set C C X is completely determined by its support 
function. 

Proof: First of all, the system of inequalities given by the support function a(yl C) 
is rewritten as follows: 118 

{xl yT x;;; a(yIC) Vy E Y} Theorem D.7 

= {xl sup {yTx - a(yIC)1 y E Y} ;;; o} 
= {xI a*(xIC) ;;; o} Definition D.l 

Considering (D.4), we obtain a*(-IC) o**(-IC). If C is a convex set, then 
TheoremD.2gives o**('IC) = clo(·IC). Moreover, o**(-IC) = o(·IC) holdsby 
Theorem D.3 for a closed convex set C. Thus, the system of inequalities represents 
the set C, 

{xl a*(xIC) ;;; o} = {xl o(xIC) ;;; o} = c. • 

If the set C is convex but not necessarily closed, the support function a(·1 C) 
furthermore implies 

a* (-I C) = 0** (-I C) = cl 0 ( ·1 C) = 0 (-I cl C). 

Moreover, concerning two convex sets C and D the equation (D.S) at once 
yields l19 

(D.6) cl C c cl D ¢=:=:> a(·IC);;; a(·ID), 

since {xI yTx;;; a(yIC) Vy E Y} C {xI yTx;;; a(yID) Vy E Y}. 

Theorem D.8 120 The indicator function and the supportfunction of a closed convex 
set C C X are convex conjugate to each other, 

a(-IC) = o*('IC) and o(-IC) = a*(-IC). 

The support function of a non empty set is proper, closed, and convex. Conversely, 
each proper closed convex function which is linearly homogeneous is the support 
function of a nonempty convex set. 

1l8Instead of a proof ROCKAFELLAR refers to Theorem B.ll. 
119Cf. ROCKAFELLAR(1972, p. 113, Corollary 13.1.1). 

For two nonempty sets C and D we may summarize further properties of the support function as follows: 

a(·IC+ D) = a(·IC) + a(·ID) and a(·IC - D) = a(·IC) - rp(·ID). 

l2OCf. ROCKAFELLAR (1972, p. 114, Theorem 13.2). The example in Figure D.4 illustrates this 
correlation. The switch-over to a reciprocal indicator function Q(·IC) and a reciprocal support function 
rp(·1 C) is given by Proposition III.6, p. 132. 
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Proof: Apart from (D.4) only some comments are given. By (D.4) each support 
function a('1 C) has to be closed and convex (Theorem D.2). Furthermore, the 
functions 8('IC) and a(·IC) are proper if and only if C =1= 0 (Theorem D.2). 

The indicator function 8('IC) is closed and convex if and only if the set C 
is closed and convex. For C = 0 we obtain 8( ,10) = a* (,10) = +00 and 
8*(-10) = a('10) = -00. For C =1= 0 Theorem D.3 yields a*('IC) = 8**('IC) 
= 8(·IC). • 

Comment: A proper closed convex function 1 is an indicator function (of a 
nonempty set C) if and only if the conjugate function (i.e. the support function of 
the set C) is linearly homogeneous. 

Given the linearly homogeneous and convex function a(·1 C), Theorem C.4 
yields 

Corollary D.8.1 121 Let 1 be a linearly homogeneous convex junction with 1 ¥ 
+00. Then cl 1 is the support junction 01 a certain closed convex set C C Y, 
namely 

C={YlyTx~/(x) VXEX}. 

Proof: If cl 1 == _00,122 then cl 1 is the support function of the empty set. 
Otherwise, cl 1 is a proper closed convex function which is linearly homogeneous. 
Theorem D.8 says that the convex conjugate function r = (cl f)* (Theorem 
D.2) is an indicator function, namely of 

C = {yl r(y) ~ o} = {yl yTx - I(x) ~ 0 Vx EX} . 

This set is closed and convex because its indicator function 8 (·1 C) = r is closed 
and convex. The following rearrangement completes the proof. 

a(·IC) = 8*('IC) Theorem D.8 

= 1** because of 8 ( ·1 C) = r 
=cll Theorem D.2 • 

If the function I, mentioned in Corollary D.8.l, is not linearly homogeneous, then, 
however, the statement of the corollary is not affected when 1 is replaced with a 
certain function, which is important for the following sections. Given a convex 
function 1 with the epigraph 

epil = ((:) E lRft x lRl J.L ~ I(x)}, 

l2lCf. ROCKAFELLAR(1972. p. 114. Corollary 13.2.1). 
The transference to a linearly homogeneous concave function g with g., -00 causes no problems. 
Thus. cl g may be called the reciprocal support function of the closed convex set 

D = (yl g.(y) ~ O} = (yl yT x ~ g(x) "Ix EX}. 

In this case we obtain cl g = rp(·ID) = Q( ·ID). 
122Tbis case must explicitly be considered according to Definition C.4. 
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the smallest convex cone K generated by this 
epigraph and containing the origin 0 is 

K:= {A~I A ~ 0, ~ E epi/}. 

If we set 

k(x) = inf {J.L I (:) E K} 

Figure D.2: Greatest linearly 
homogeneous convex function k 

generated by f. 

analogous to (III.2), p. 85, then k is 
the greatest of all linearly homogeneous 
convex functions h with h(O) ~ 0 and 
h ~ I. Thus, the function k is called 
the greatest linearly homogeneous convex 
function generated by 1;123 see the figure 
opposite. By recursive substitution we get 

k(x) = inf {J.LI (:) E {A~I A ~ 0, ~ E epif}} . 

For A = 0 

assumed. Using 

(D.7a) 

we have to distinguish between two cases where 

kl (x) := inf {J.LI (:) EO} it ensues 

kl (x) = 8(xI0) := 10 for x = 0 

+00 for x '* O. 

If A > 0, then 

(D.7b) k2(X) := inf{J.L1 (:) E {A(~)I A > 0, il ~ I(x)}} 

= inf{J.L1 A > 0, J.L/A ~ I(X/A)} 

= inf{A/(x/A)1 A > O}. 

epil '* 0 is 

where x = AX and J.L = Ail. Finally, using k(x) = inf {k l (x), k2(X)} (D.7a) 
and (D.7b) yield the greatest linearly homogeneous convex function generated by 
I =f. +00, i.e. 

k(x) = inf {Vex/A) 
A6;O 8(xI0) 

for A> O} 
for A = 0 . 

An alternative representation of the function k results from the convention 
introduced in (C.3a) and (C.3b). 

(D.8) k(x) = inf{(fA)(x)1 A ~ O} 

In this A = 0 can be ignored in the infimum if x '* 0 or 1(0) < +00 is 
fulfilled. The resulting function k is illustrated in the right hand part of Figure C.4, 

l23ef. ROCKAFELLAR (1972, p. 35). 
Note that a linearly homogeneous function h with h > -00 can be convex at the most for h(O) ~ 0; 
see Theorem C.4. Conversely, the function k with k(O) = 0 can only be called the greatest of all 
linearly homogeneous convex functions h with h ~ I, when we require h(O) ~ O. 
If 1(0) < 0, then we put k(O) = -00. For instance, we obtain k'" -00 for I(x) = :xl - I. 



D Duality Theory 327 

p. 305. There k corresponds to the flatter ray through the origin analogous to Figure 
D.2. 

In particular, a linearly homogeneous function f yields k(x) = f(x) for all 
x =1= O. Provided f ¥ +00, we have k(O) = 0 at point x = 0 by definition. 
Figure D.2 results in k(x) = f(x). For 2x = x we have k(x) = 1/2!(2x) = 
Ihf(x) and x = 0 yields k(O) = O. 

The presented procedure will be of major importance for two applications. 
While Theorem D.l2 goes into the relationship between the gauge and the indicator 
function of a set, the following remarks serve as a preparation for Corollary D.9.l. 
This corollary describes the relationship between a function f and the support 
function of the set hypo( - /*). 

Given a proper convex function f: 1Rn ---+ ] - 00, +00], 

(D.9) k(x, A) = {(fA)(X) 
+00 

for A ~ 0 

for A < 0 

denotes the greatest linearly homogeneous convex function k generated byl24 

f(x, A) = f(x) + 8(All) = {f(X) 
+00 

for A = 1 

for A =1= l. 

Because firstly Theorem D.9 and implicitly Corollary D.9.l refer to the closure of 
the function k and secondly the determination of the closure cl k requires a more 
extensive analytical framework, the function cl k is only established for a special 
case, which is enough for the presented purposes.125 If f is a proper closed convex 
function with 0 E Dom f, then 

{ 

(fA)(X) 

clk(x A):= lim (fA)(X) 
, J..(.O 

+00 

for A> 0 

for A = 0 

for A < O. 

Theorem D.9 126 Let f be a proper closed convex function. If kl is the greatest 
linearly homogeneous convex function generated by /*, then cl kl is the support 
function of the set {xl f(x) ~ OJ. If, dually, k2 is the greatest linearly 
homogeneous convex function generated by f. then cl k2 is the support function 
of {YI /*(y) ~ OJ. 

124 Applying (0.8) to f, remember that (fJ..)(x, J..) = J..f(x/J.., 1) = J..f(x/J..) = (fJ..)(x). 
l2SCf. ROCKAFELLAR (1972, p. 66 f.), in particular Corollary 8.5.2. 
l26Cf. ROCKAFELLAR(l972, p. !l8, Theorem 13.5 and p. 67) or JORGENSON, LAU (1974, p. 193). 

For the transference of this theorem to a concave function g it must be taken into account, that we now 
have to apply the smallest linearly homogeneous concave function generated by g; see Section 111.2.1.3. 
The proof of the next theorem ensues analogous to Theorem 0.9 with opposite signs. 

Concave Version of Theorem D.9 Let g be an n-proper closed concave junction. If kl is the smallest 
linearly homogeneous concave junction generated by g., then elk l is the reciprocal support junction of 
the set (xl g(x) ~ OJ. If, dually, k2 is the smallest linearly homogeneous concave junction generated 
by g. then eI k2 isthe support junction of the set (yl g.(y) ~ OJ. 
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Proof: If we can show that the subsequent sets C and D are equal, then the proof is 
complete because of the symmetry between f and r. 
By Corollary 0.8.1 follows that cl k2 is the support function of the set 

C:= {yl yTx ~ k2(X) Vx E X} = n {yl yTx ~ k2(X)}. 
xeX 

In accordance with the theorem this set faces the set D. 

D := {yl /*(y) ~ o} 
= {yl yTx ~ f(x) Vx EX} = n {yl yTx ~ f(x)} 

xeX 

Because of k2 ~ f, we have {yl yTx ~ k2(X)} C {yl yTx ~ f(x)} and, 
therefore, C CD. 
It remains to be shown, that y E D and y ¢ C imply a contradiction. Defining 
the linearly homogeneous function h(x):= yTx, the sets D and C induce 

Vx EX: h(x) s f(X)} k (-) h(-) f(-) 
3i EX: h(i); k2(i) ==> 2 X < X ~ x. 

Contrary to its definition, k2 cannot be the greatest of all linearly homogeneous 
functions h with h(O) ~ 0 and h ~ f. • 

The meaning of Theorem 0.9 as link between the theory of conjugate functions 
and the theory of support functions is expressed by the next corollary. Moreover, 
Theorem 0.9 will later serves as the link to the analysis of gauges. 

Corollary D.9.1 127 Given a closed proper convex function f: X --+ [-00, +00] 
with 0 E Oom f. Then the function k: 1R n+l --+ [-00, +00] with 

{ 
(jJ...)(x) 

k(x J...):= lim (jJ...)(x) 
, J..j,O 

+00 

for J... > 0 

for J... = 0 

for J... < o. 

is the support function of the set {(~) I JL ~ - r (y)} = hypo( - r) c 1R n+ 1. 

Proof: By (0.9) the function k(x, J...) is the closure of the greatest linearly 
homogeneous function generated by f(x, J...) = f(x) + c5(J...1 1). Thus, according to 
Theorem 0.9 k(x, J...) is the support function of the set {(~)I f*(y, JL) ~ a}. Consider 

l27cf. ROCKAFELLAR (1972, p. 119, Corollary 13.5.1), though he uses the recession function /0+. 
Without defining the function /0+, x E Dom f guarantees by ROCKAFELLAR (1972, p. 67, Corollary 
8.5.2) that (fO+)(x) = lim }../(x/}..) . 

.... 0 
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now 

f*(y, /L) = sup {yTx + /LA - f(x, A)I G) E lRn+1} 

= sup {yTx + /LA - f(x) - c5(All)1 G) E lRn+1} 

= sup {yTx + /L - f(x)1 x E lRn} 

= /L + f*(y). • 

0.2.2 Properties of the Gauge 

329 

Defmition 0.4 128 The gauge Y('I C): X ~ [0. +00] of a nonempty set C C X 
is defined by 

y(xIC) := inf {A ~ 01 x E AC}. 

However, 1/I('IC): X~ [0. +00] u {-oo} with 

1/I(xIC) := sup {A ~ 01 x E AC} 

is called the reciprocal gauge. 129 

Theorem 0.10 130 Let C be a nonempty star-shaped subsets in X. then the gauge 
Y('IC) has the following properties. 

1. Thefunction Y('IC) is proper, 0 ~ Y('IC) ~ +00 Vx EX. 

2. Thefunction Y('IC) is linearly homogeneous, Ay(xIC) = Y(AxIC) VA > 
O. 

3. We have y(xIC) = 0 ifand only if AX E C forall A> O. 

4. 1f C is closed, then Y('I C) is lower semi-continuous and 

y(xIC) ~ 1 ¢::::> X E C. 

5. Provided C is convex, then Y('I C) is convex, too. 

The statements of the theorem remain the same for each set C C X if we 
supersede the inspected set C by its star hull star C: 

Y('I star C) = Y('IC) 

Three more remarks are useful. First. if Y('I C) is proper and lower semi­
continuous. then Y(·I C) is closed by Definition CA. p. 302.131 Second, the 

128The genuine Gennan tenn Distanzfunktion was introduced by MINKOWSKI. Hence, gauges are 
frequently called MINKOWSKI functions. 

129Note sup f1J := -00 for the unusual range. 
In honor of SHEPHARD, who introduced this function 1953 into economics, some authors speak of s­
gauges; cf. e.g. NEWMAN (1987c, p. 484). 

130Cf. PHELPS (1963, p. 394). For the definition of star-shaped sets see (11.15), p. 28. 
m A similar result is noted by Theorem 0.13. 
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linearly homogeneous gauge is convex by Theorem C.4, p. 304, if and only if it 
is subadditive. 

Third, the relation 0 E int C induces a unique expression for the boundary ac of 
the closed set C. 

ac = {xl y(xIC) = I} 

Theorem D.11 \32 Let C be a nonempty subset in X with 0 ¢ cl C. Then the 
reciprocal gauge 1/1 ( ·1 C) has the following properties. 

1. Thefunction 1/I('IC) is n-proper; -00 ~ 1/I('IC) < +00 Yx EX. 

2. The function 1/1 ( ·1 C) is linearly homogeneous, A 1/1 (x I C) = 1/I(hl C) Y A > 
O. 
Furthermore, we have 1/1 ( ·1 C) = A 1/1 ( 'IAC) Y A > 0 . 

3. We have 1/1 (x I C) = 0 if and only if x = 0 and, similarly, 1/1 (x I C) > 0 if 
and only if x E cone C \ {OJ. 
Thus, the effective domain is n-Dom 1/1 ( ·1 C) = cone C . 

4. If C is closed and 1/1 (x I C) ~ 0, then the supremum is achieved, i.e. 
1/1 (x I C) = max {A ~ 01 x E AC} . 

5. If C is closed, then 1/I('IC) is lower semi-continuous at every point x with 
1/I(xl C) ~ 0, i.e. in cone C. 

6. For convex C the function 1/1 ( ·1 C) is concave and, therefore, superadditive. 

7. Given int C =1= 0, then 1/1 ( ·1 C) is continuous on cone(int C). 

8. The star-shaped set C' = lRn \ aur C yields y(xl C') = 1/1 (x I C) for all 
x E X with 1/I(xIC) > -00. Provided x =1= 0, then y(xIC') = 0 if 
and only if 1/I(xIC) = -00 . 

Again the statements of the theorem remain unchanged for each set C C X with 
o ¢ cl C if the inspected set is superseded by its aureoled hull aur C: 133 

1/1(·1 aurC) = 1/I('IC) 

The next theorem notes the correlation between a gauge of a set and its indicator 
function. 

Theorem D.12 The gauge Y('I C) of a nonempty convex set C C X is the greatest 
linearly homogeneous convex function generated by the modified indicator function 
8('IC) + 1. 

i32ef. PHELPS (1963, p. 398). 
133 See (11.16) on p. 28 for aureoled sets. Note that a closed set C implies aur C to be closed. 



D Duality Theory 331 

Proof: According to (0.8) the greatest linearly homogeneous convex function 
generated by 8 ( ·1 C) + 1 is 

k(x) = inf{(8A)(xIC) + AI A ~ O}. 

Considering 

(8A)(xIC) = A8(xjAIC) = 8(xjAIC) = 8(xIAC) for A > 0 

(80)(xIC) = 8(xIO) for A = 0, 

it ensues (because of 8(xIAC) = 8(xIO) for A = 0) 

k(x) = inf {8(xIAC) + AI A ~ O} 

= inf {AI A ~ 0, 8(xIAC) = O} 

= inf {A ~ 01 x E AC} 

by 8(·IC) 1- +00 

and, therefore, k = y(·IC). In particular, k(O) = 0 is valid. Note that the 
convexity of the set C implies a convex indicator function 8(·IC). Moreover, the 
right scalar multiplication transfers the convexity to (8A)(-1 C) and, therefore, to k . 

• 
Theorem D.13 134 Let C c X be a closed convex set containing the origin O. 
Then the gauge is closed, y(·IC) = cl y(·IC), moreover, 

(D. lOa) 

(0. lOb) 

{xl y(xIC) ;§ A} = AC V A > 0 

{xl y(xlc) = O} = O+C. 

Based on the results of Theorems 0.12 and 0.13, we can justify to call each function 
k: X -+ [-00, +00] a gauge, which is nonnegative,linearly homogeneous, and 
convex and which takes the functional value k(O) = O. 135 The epigraph epik of 
such a function is then a convex cone in 1Rn+1 with vertex 0, containing no point (~) 
with A < o. Therefore, the class of gauges is given by the set of all functions k with 

k(x) = y(xIC) = infrA ~ 01 x E AC}. 

where C is an arbitrary nonempty convex subset in X. This statement is illustrated 
in the left hand part of Figure 0.4, p. 337. Note that the set C contains the origin, 
o E C. Accordingly, the illustration has to be modified if 0 ¢ C. Although the 
set C is in general not uniquely determined by k, we gain a set C = {xl k(x) ;§ I} 
by assuming a gauge k according to (0. lOa) such that y(·1 C) = k results from the 
reverse conclusion. 

134Cf. ROCKAFELLAR (1972, p. 79, Corollary 9.7.1). The set O+C is called recession cone of C and 
defined by (lUI), p. 27. Comparing to Theorem D.10 it has to be noted that each convex set containing 
the origin is star-shaped. 

135CASSELS (1971) calls each nonnegative continuous function k with Ak(x) = k(Ax) for all }.. ~ 0 
a gauge. 
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D.2.3 Polar Sets and Functions 

Def"mition D.S 136 Given a nonempty set C eX. The polar set Co C Y of C 
is defined by 

The reciprocally polar set Co C Y of C is given by 

The respective bipolar sets follow from Coo = (CO)O and Coo = (Co)o . 

Both polar sets and reciprocally polar sets are closed and convex since they are 
defined as intersection of closed convex sets. The polar set of a nonempty set C 
always contains the origin 0 E Co. In particular, if C consists of the origin as 
singleton, then 

C = to) ===} Co = Y ===} Coo = to}. 

However, the reciprocally polar set of a nonempty set C never contains the origin, 
o fj. Co. Moreover, reciprocally polar sets satisfy the following equivalence 
relation 137 

(0.11) o E cl(convC) {=:::::} Co = 0. 

In view of the support functions defined by Definition 0.3 we get an alternative 
representation of polar sets 

(D.12a) 

(D.12b) 

C = {yl a(ylc) ~ I}, 

Co = {yl ~(yIC) ~ I}. 

Because of a( ·10) == -00 and ~(·10) == +00, now the empty set may be taken 
into account. 

(D.l3a) 

(D.l3b) 

C = 0 ==> C = Y ===} Co = to} 
C = 0 ===} Co = Y ===} Coo = 0 

We obtain the following relations for each nonempty convex set C C X. The 
closure of the support functions, given by Definition 0.4, satisfies 

(D.14a) 

(D.14b) 

cl y(.IC) = a(·ICO) 

cI1{l(·IC) = ~(·ICo) if Co =/: 0. 

136Cf. ROCKAFELLAR (1972, p. 125) and Ruys. WEDDEPOHL (1979. p. 50). 
We have to distinguish polar sets from polar cones. KO:= {yl y T x ~ 0 V X E K} . 

l37Cf. NEWMAN (1987b. p. 486. Theorem 2). 
This statement can be illustrated by expressing the origin as a convex combination of points in C. 
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The proof of the first equation is omitted at this point. But we get an idea of it138 by 
applying Theorem 0.9 to the modified indicator function f = 8('IC) + 1. The 
equivalent proof of (0.14b) yields Proposition IIUS by using the concave version 
of Theorem 0.9. 

The subsequent properties are valid for polar and reciprocally polar sets. 139 

co = (rint ct = (cl ct = (convCt, 

Co = (star ct = star CO , 

Y E aco ¢:=:} H (y, 1) supports C, 

C CD===> C°:2 DO, Coo c DOo , 

(ACt = A -Ico VA E 1R++, 

(C U Dt = Co n DO, 

(C n Dt = conv(CO n DO), 

o E int( convC) ¢:=:} CO is bounded, 

Theorem D.14 (Bipolar Theorem) 140 

statements are true: 
1. The polar set of Co C Y is 

Co = (rint C)o = (cl C)o = (convC)o, 

Co = (aur C)o = aur Co, 

y E aco ¢:=:} H (y, 1) supports C, 

C CD===> Co :2 Do, Coo c Doo, 

(AC)o = A -I Co V A E 1R++, 

(CU D)o = Co n Do, 

(C n D)o = conv(Co n Do), 

o E cl(convC) ¢:=:} Co = 0, 

For each set C C X the following 

COo = cl (conv( C U (O}») = cl (conv(star C») eX. 

2. If 0 ¢ cl(convC), then the reciprocally polar set of Co C Y is given by 

Coo = cl (conv(aurC») eX. 

In the presented theory those cases are of special interest in which the bipolar sets 
equal the original sets,141 i.e. the polar sets CO and Co represent C without loss of 
information. The main outcomes are summarized in the following 

CoroUary D.14.1 Theorem D.14 at once implies two statements. 142 

1. For the bipolar set COo of a closed convex set C C X the equation Coo = C 
holds if and only if C contains the origin 0 E C. In particular. Co = cooo. 

2. The reciprocally bipolar set Coo of a convex closed set C C X fulfills 
Coo = C if and only if C does not contain the origin, 0 ¢ C, and if 
C = aurC. 

l38Cf. ROCKAFELLAR (1972), p. 125. 
l39Cf. Ruys, WEDDEPOHL (1979, p. 52 f.). 

The hyperplane H is defined by H(y, 1) = {xl xT y = II; see Appendix B. 
140Cf. NEWMAN (1987c, p. 485). 
141In all cases C c Coo and C c Coo hold good (Theorem 0.14). Remember Coo = X if 

o E cl(convC) or Co = Ii! , see (0.13b). 
142 An alternative proof may be found in WEDDEPOHL (1972, p. 170). 
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Proof: Under the assumptions of the first statement we have C = cl (conv(C U 
{O}»). Thus, Theorem D.14 yields Coo = C. The proof of the second statement 
ensues analogously. • 

According to the first statement of the corollary, the relations 0 E C and C = 
star C are equivalent for a convex set C, see the first part in Theorem D.14. On 
the basis of the second statement of the corollary the determination of Coo becomes 
superfluous if the set C contains the origin since then Co = 10 . 

Theorem 0.15 For an arbitrary set C C X we obtain 

Proof: Theorem D.13 implies cl y(·ICO) = Y(·ICO). Hence, (D.14a) yields 
y(·ICO) = a(·ICOO). Analogously, Theorem D.13 gives cl y(·ICOO) = Y(·ICOO). 
Again, y(·ICOO) = a(·ICOOO) = a(·ICO) is implied by (D. 14a). • 

Theorem D.15 is even valid for C = 10 as (D.13a) implies y(·IY) = 0 = 
a(·I{O}). 

The issue in Theorem D.15 does not surprise because of 

Coo = {xl a(xl CO) ;§ 1} 

= {xl cl y(xlC) ;§ 1} 

Coo = {xl y(xICOO) ;§ 1} 

by (D.12a) 

by (D. 14a) 

by (D.lOa) 

Corollary 0.15.1 143 If C is a closed convex subset in X containing the origin 0, 
then the support function of C is at the same time the gauge of Co , 

In dual view the supportfunction of CO is at the same time the gauge ofC, 

a(·ICO) = Y(·IC). 

Proof: From Corollary D.14.1 we obtain C = Coo. • 

With the results of this corollary it is now inquired to what extent the functions 
y(·IC) and a(·IC) are related to each other. For this reason each gauge k is 
compared to a nonnegative function kO satisfying an optimality criterion according 
to the next definition. 

Definition 0.6 Provided k: X ~ [-00, +00] is a gauge, then the polar gauge 
kO: Y ~ [-00, +00] isdefinedby 

kO(y) := inf{1L ~ 01 yTx;§ ILk{x) "Ix E Xl . 
143Cf. ROCKAFELLAR (1972, p. 125, Theorem 14.5). 

The example in Figure D.4 illustrates this correlation. 
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Therefore, each pair of polar functions (k, kO) has the property 

(D.15) yTx ~ k(x)kO(y) Vx E Domk, Vy E Domko, 

and one can show for each x*"O that there is a y*"O such that y T X = 
k(x)kO(y) holds, et vice versa. l44 As confirmed by Theorem D.16, it is well­
founded to call the polar function kO a gauge. 

Theorem D.16 145 Let k be a gauge. Then the polar function kO of k is a closed 
gauge and we have kOO = cl k. If C is a non empty convex set with k = Y('I C), 
then the polar set CO of C yields the polar gauge kO = Y('I CO). 

The inequality (D.15) is now 

(D.16) yTx ~ y(xIC)y(yICO) Vx E Dom Y('IC), Vy E Dom Y(-ICO). 

For a gauge y( ·1 C) being finite and positive everywhere except at the origin we can 
rewrite the inequality of Definition D.6. 

Corollary D.16.1 (Gauge Duality) 146 In the class of closed gauges the following 
symmetry between k and h = kO holds good. 

hO = kOO = k and kO = hOC = h 

Two closed convex sets containing the origin are polar to each other, 

C=coo=Do and D=Doo=co, 

if and only if their gauges Y('I C) and Y('I D) = yO (·1 C) are polar to each other. 

Corollary D.16.2 147 Let C be a closed convex set in X containing the origin O. 
Then the gauge Y(·I C) and the support function a('1 C) are polar gauges. 

(D.17) k = Y('IC) <=> kO = a(·Ic) 

Proof: Because of a(·IC) = Y('ICO) by Corollary D.15.I, the equivalence 
relation (D. 17) directly ensues from Theorem D.16. • 

Under the assumptions of Corollary D.16.2 the equivalence relation (D.17) can be 
described by MAHLER'S inequality, which is equivalent to (D.16).t48 

(D.18) yTx ~ a(yIC) y(xICO) Vy E Y, Vx EX 

I44Cf. CASSELS (1971, p. 114, Corollary I). 
14SCf. ROCKAFELLAR (1972, p. 128, Theorem 15.1). 
I46Cf. ROCKAFELLAR (1972, p. 129, Corollary 15.1.1). 
147Cf. ROCKAFELLAR (1972, p. 129, Corollary 15.1.2). If C is the unit ball {xlllxll;a I}, then we 

can show that k corresponds to the Euclidean norm and k = kO. Moreover, (0.17) and (0.18) reduce 
to SCHWARZ's inequality lyT xl ;a lIyll . IIxll . 

148Cf. AUBIN (1979, p. 41, Proposition 12). 
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Before going into the concluding example, the main outcomes of Appendix D.2 
are summarized in the following figure. 

Def.D.4 
(D. lOa) 

(D.12a) 

Cor. 0.15.1 

Def.D.5 

Cor. 0.14.1 

(0.18) 

Cor. 0.16.2 

Def. 0.4 
(D. lOa) 

(D. 12a) 

Cor. 0.15.1 

Figure D.3: Dual relationships in the sense of ROCKAFELLAR 

Finally, an easy example is discussed with respect to the set C = {xl a ~ x < b} 
in order to emphasize the main aspects of the presented theory. The results are 
summarized in Figure DA. The linearly homogeneous convex support function of 
the set C satisfies 

a(yl C) = sup {yxl x E C} 

= sup{yx - 8(xIC)1 x E JR.} 

sup {yX _ {+o 
xeR 00 

for a ~ : < b}} = I ~b 
otherwlse 

ya 

for y > 0 
for y = 0 
for y < O. 

Writing out in full, two chains of equations are compared, which are equivalent to each other under the 
above conditions. 
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The convex conjugate function 0'* (·1 C) is 

0'* (xl C) = sup {yx - O'(yIC)1 y E IR} 

ly(X - b) 
= sup yx 

yeR y(x - a) 

for y> OJ 1+00 
for y = 0 = 0 
for y < 0 +00 

for x> b 
for a ~ x ~ b 
for x < a. 
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In fact 0'* ('IC) = c1 8( ·IC) holds, see Theorem D.S. A graphical representation is 
given by Figure D.4. If in the above mentioned figure it is supposed that C contains 
the origin, then a < 0 < b must hold. The polar set is given by Co = {yl l/a ~ 
x ~ lib} and we have Coo = c1 C, see Theorem D.14. Apart from these polar 
sets the following figure shows the adjoined gauge and support functions, see The­
orem D.15. 

x/a 

lx/a 
y(xlc) = O'(xICO) = 0 

x/b 

lay 
Y(yICO) = O'(yIC) = 0 

by 

for x < 0 
for x = 0 
for x> 0 

for y < 0 
for y = 0 
for y> O. 

y(xIC) = O'(xIC) y(yICO) = O'(yIC) 

ay 

------~----~~------~x --------~~~----~~y 
a COb I/a 0 C 

Figure D.4: Graphical representation of polar sets 
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List of Symbols 

1. Symbols with economic meaning 

a 
A 
b 
B 
B: /),. x IR~ -+ ~(X) 
B(p, wa ) 

BS : /),. x IR~ -+ ~(Xf) 
c: Q x X -+ [-00, +00] 
c: (fl x X -+ [-00, +00] 
D: Q x X -+ ~(V) 
D: (fl x X -+ ~(V) 
Da: /),. x IR~ -+ ~(X) 

D~O: /),. x IR~ -+ ~(IR~) 
D~: /),. x IR~ -+ ~(Xf) 
D: /),. -+ ~(X) 
DSup 

DB(C, R) 

8:A-+nxIR~ 

:Fr: V x X \ to} -+ [0, +00] 
:Fa: X \ to} x V -+ [0, +00] 
G: /),. x IR~ -+ ~(IR~) 
G(p, wa ) 

GR 
L: X -+ ~(V) 
L(x) 
(L(x)1 x E X) 

index of persons (a E A) 
set of all persons 
index of finns (b E B) 
set of all finns 
budget correspondence 
person a's budget set 
synthetic budget correspondence 
cost function (see Section m.2) 
nonned cost function (see Section m.l) 
factor demand correspondence (see Section m.2) 
factor demand correspondence (see Section 111.1) 
individual demand correspondence of person a 
basing on the preference ordering ~a 
convex-valued individual demand correspondence 
synthetic demand correspondence 
aggregate demand correspondence 
measure for the degree of nonconvexity 
set of best elements in the set C with respect to 
relation R 
set of maximal elements in the set C with respect to 
relation R 
exchange economy 
FARRELL's input efficiency measure 
FARRELL'S output efficiency measure 

correspondence containing the correspondence B 
set of all x E IR~ with p T x ~ P TWa 

graph of the production technology 
input correspondence 
input requirement set 
production structure 
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Lo(x) 

(Lo(x)1 x E X) 
m 
md 

n 
nd 

Pj 
P = (PI, .•. , Pn)T 

1p = IR~ 
9;, = IRn- 1 

Pp = IRn 

:Fa: X ~ ~(X) 

P: V ~ ~(X) 
P(V) 

qi 
q = (ql, ... , qm)T 

Q = IR~ 
(!l = IRm- 1 

Q = IRm 

r: Pp x V ~ IR 
~: V x X \ {OJ ~ [0, +00] 
t[: V x X ~ IR+ 
to:XxV~~ 
Ua : X ~ IR 
Vi 

V = (VI, .. " Vm)T 
(v, x) E V x X 
V = IR~d X Z~-md 

V = IRm- 1 

V= IRm 

Vb = {v E VI v ~ b} 
Wa = (Wla, ... , Wna)T 

WA = (WIA, ... , WnA)T 

Xj 

X = (XI, ... , Xn)T 

X~:t::..xIR~~X 

* = (Xa)aeA 
X = IR~ x z~-nd 
X= IRm- 1 

X =IRm 

Xj (j=I,2,3) 
Xa 

* 

(reciprocally) polar input requirement set 
cost structure 
number of production factors 
number of divisible production factors 
number of goods 
number of divisible goods 
price of commodity j (j = I, ... , n) 
commodity price vector 
space of nonnegative commodity prices 
space of normed commodity prices 
space of commodity prices 
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:Fa (x) set of all commodity bundles, person a 
thinks to be not worse than x (preference set) 
output correspondence 
production possibility set 
price of factor i (i = I, ... , m) 
factor price vector 
space of nonnegative factor prices 
space of normed factor prices 
space of factor prices 
revenue function 
RUSSELL'S input efficiency measure 

input distance function 
output distance function 
utility function representing person a's preferences 
quantity offactor i (i = I, ... , m) 
vector of input quantities 
possible activity 
factor space with respect to integer constraints 
factor space (see Section III. I ) 
factor space (see Section 111.2) 
restricted factor space 
person a's initial endowment 
total endowment of the economy 
quantity of good j (j = I, ... , n) 
commodity vector 
individual (vector-valued) demand function of 
person a basing on the preference ordering)loa 
commodity allocation 
commodity space with respect to integer constraints 
commodity space (see Section III. I) 
commodity space (see Section I1I.2) 
subsets in the commodity space X 
person a's consumption set 
set of all feasible allocations 
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Yb 

Yb 
Y = (Yb)bEB 
Zj 

Z= (Zt •.••• Zn)T 

Za = (Zla ••••• Zna)T 

Z: D.. ~ s.}J(JRn ) 

Zco: D.. ~ s.}J(JRn ) 

zs: D.. ~ s.}J(X3) 
~a 

D.. 
D..+ 

aD.. 
7rb: D.. ~ JR 
TI 

TI(s)mo 
(s)co 

2. Symbols in analysis 

firm b's production set 
firm b's netput vector 
production allocation 

Tables 

aggregate quantity of excess demand for good j 
(j=I •...• n) 
vector of aggregate excess demand 
person a's vector of excess demand 
aggregate excess demand correspondence 
convex-valued aggregate excess demand correspon­
dence 
synthetic aggregate excess demand correspondence 
person a's preference ordering 
x ~a x' person a thinks x to be at least as good as 
x' 
x >a x' person a prefers x to x' 
x -a x' person a is indifferent to x and x' 
binary relation between two allocations 
deviation between the chosen commodity bundle x~ 
and a vector x~ 
deviation between an allocation and the total 
endowment W A 

price simplex 
(relative) interior of the price simplex 
(relative) boundary of the price simplex 
firm b's profit 
set of all continuous preference orderings 
set of all continuous ~trongly) monotone and 

~trictly) convex preference orderings 

2.1 Symbols with respect to the set C 

#C 
Cc 
Co 

Co 
affC 
aurC 
dC 
coneC 
convC 
d(x. C) 
int C 
K(C) 
s.}J( C) 

number of elements of C 
complement of C 
polar set of C 
reciprocally polar set of C 
affine hull of C 
aureoled hull of C 
closure of t C 
cone generated by C 
convex hull of C 
distance between the point x and the set C 
interior of C 
cone generated by C without the vertex 0 
power set of C; set of all subsets in C 
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rint C 
starC 
Y('IC): JRn ~ [0, +00] 
8('IC): JRn ~ [0, +00] 
ac 
J.L(C) 
Q(·IC): JRn ~ [-00,0] 
a(·IC): JRn ~ [-00, +00] 
({J(' IC): JRn ~ [-00, +00] 
1{1(- I C): JRn ~ [-00, +00] 

relative interior of C 
star-shaped hull of C 
gauge of C c JRn 
indicator function of C c JRn 
boundary of C 
measure ofC 
reciprocal indicator function of C C JRn 
support function of C c JRn 
reciprocal support function of C c JRn 
reciprocal gauge of C c JRn 

2.2 Symbols with respect to the function I 

I: X~ Y 
r 
10 
f* 
I. 
cll 
convl 
Doml 
epil 
hypo I 
n-Doml 
Rangel 
!:::../: X ~ !,p(Y) 
a/: X ~ !,p(Y) 
AI 
IA 
VI: X ~ Y 

2.3 Other Symbols 

e j 

H 
K(x, r) 
K[x, r] 
IN 
JR 
JR+ 
JR++ 
Z 
r: X ~ !,p(Y) 
A n+! 

Ixl 
IIxll 

function or single-valued mapping 
polar function of I 
reciprocally polar function of I 
convex conjugate function of I 
concave conjugate function of I 
closure of I 
convex hull of I 
effective domain of I 
epigraph of I 
hypograph of I 
effective domain of I 
range of I 
superdifferential of I 
subdifferential of I 
left scalar multiplication 
right scalar multiplication 
gradient of I 

j-th unit vector 
hyperplane 
open ball centered at point x of radius r 
closed ball centered at point x of radius r 
set of positive integers 
set of real numbers 
set of nonnegative real numbers 
set of positive real numbers 
set of integer numbers 
correspondence or multi-valued mapping 
n-dimensional unit simplex 
absolute value of the number x 
Euclidean metric, length of the vector x 
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rxl 
LxJ 
{XV} 
{XVk} 

XV ~ X 

{XV} 
XV~ x 

smallest integer not smaller than x 
greatest integer not greater than x 
sequence of numbers xl , X2 , ••• 

Tables 

subsequence of the sequence of numbers {XV} 
sequence of numbers {XV} with limit x 
sequence of points xl , x 2, ••• 

sequence of points {XV} converging to x with respect 
to each component 



1.1 

11.1 
11.2 
11.3 
11.4 
11.5 
11.6 

11.7 
11.8 
11.9 
11.10 
11.11 
11.12 
11.13 
11.14 
11.15 
11.16 
11.17 
11.18 
11.19 
11.20 
11.21 
11.22 
11.23 
11.24 
11.25 
11.26 
11.27 
11.28 
11.29 
11.30 
11.31 
11.32 
11.33 
11.34 
11.35 
11.36 
11.37 

III. 1 
111.2 

List of Figures 

Organization of the book . 

Disposability of inputs (1) 
Disposability of outputs (1) 
Closedness of the graph graph P . 
The boundary of a production possibility set 
Disposability of outputs (2) ........ . 
Comparison of the input correspondence L and the output 
correspondence P ......... . 
The graph of a production technology 
Disposability of inputs (2) . . . . . . 
Disposability of inputs and outputs 
Inner and outer representation of the convex hull conv P(v) . 
Extreme points versus exposed points . . . . . . . . . . . . 
Graphical representation of a point v E conv L(x) by 11.12 
Star hull, star C, of the set C . . . . . . . . . . 
Aureoled hull, aur C, of the set C ...... . 
Boundary points of the convex hull convP(v) . 
Boundary points of the convex hull conv L(x) 
Graphical representation of Proposition 11.3 
Properties of the convex hull . . . 
Integer convexity of the graph . . . . . . . 
Linear homogeneity of a function . . . . . 
Linear homogeneity of an output correspondence . 
Subhomogeneity of a production technology . . 
Integer constant returns to scale . . . . . . . . . 
Superadditivity of the output correspondence P . 
Technical input efficiency .......... . 
FARRELL'S input efficiency measure ..... . 
Comparison of FARRELL's efficiency measures 
Input efficiency with respect to conv L(x) . . . 
Efficiency with respect to the convex hull of the graph GR 
Efficiency measures ............ . 
The modified FARRELL's efficiency measure ..... . 
Illustration of the support function of a set C . . . . . . 
Representation of the input distance function of a set C . 
Profit maximization .............. . 
Upper semi-continuity of a production function . 
Graph of special production functions 
Proof of Proposition 11.14 '" . . 

Total versus partial factor variation 
The case of an indivisible production factor 

4 

13 
13 
14 
15 
16 

17 
19 
20 
22 
25 
26 
27 
28 
29 
30 
30 
31 
32 
36 
37 
38 
40 
42 
45 
49 
52 
53 
55 
56 
57 
58 
60 
61 
68 
72 
73 
81 

85 
86 



344 

111.3 
111.4 
I1I.5 
111.6 
111.7 
111.8 
I1I.9 
111.10 
111.11 
111.12 
III. 13 
111.14 

111.15 
111.16 
111.17 
III. 18 
111.19 
I1I.20 

111.21 
111.22 
111.23 
111.24 
111.25 
111.26 
111.27 
I1I.28 
111.29 
111.30 
111.31 
111.32 
I1I.33 
111.34 
111.35 
I1I.36 
I1I.37 
111.38 
111.39 
I1I.40 
I1I.41 
111.42 
111.43 
111.44 
111.45 

Tables 

Derivation of the function conv f( 'IL(x» 87 
Graphical representation of the example. 91 
Normalized cost function c(·. x) . . . . . 95 
Reconstruction of the production structure (L(x)1 x E X) . 96 
Representation of the FENCHEL transform 100 
A strictly convex input requirement set . . . . . . 101 
Representation of a unique supergradient . . . . . 104 
Representation of the superdifferentiall!J.g(·1 L(x» 1 08 
Representation of an exposed face of conv L(x) . . 111 
Derivation of the cost function c(·. x) from the function g(·IL(x» 114 
Hypograph of the function g( 'IL(x» ............... 116 
Reconstruction of the concave biconjugate function g**(·IL(x» 
from the cost function c(· • x) ....... 117 
Differentiability of the cost function C(-. x) . . . . 122 
Convex input requirement set ........... 125 
The criterion of differentiability of a cost function 135 
Average costs with an indivisible input ...... 140 
Criterion of an integer convex cost function . . . . 141 
The smallest linearly homogeneous concave function k generated 
by the function g. . . . . . . . . . . . . . . . . . . 145 
Input distance function . . . . . . . . . . . . . . . . . . . . . . . 151 
The effective domain of the input distance function . . . . . . . . 154 
Alternative graphical representation of the input distance function 156 
Duality relations in the sense of SHEPHARD (1) . 158 
Duality relations in a single-product firm .... . . . . . .. 167 
Dual representation of optimal input vectors. . . . . . . . . . 168 
Gauge and support function of the input requirement set L(x) 170 
Gauge and support function of the polar input requirement set Lo (x) 171 
Duality relations in the sense of SHEPHARD (2) . . . . . . . .. 172 
Geometrical derivation of the polar input requirement set Lo(x) 174 
Geometry of polar sets (1) 175 
Geometry of polar sets (2) . . . . . . . . . . . . . . . . . . . 176 
Geometry of polar sets (3) . . . . . . . . . . . . . . . . . " 177 
Geometrical derivation of the isocost curve c(ql. q2. x) = 1 179 
Geometrical derivation of the approximate input requirement set . 180 
Comparison of the duality schemes . 181 
Duality relations regarding revenues . . . . 183 
Theory of the firm . . . . . . . . . . . . . 185 
Counterexample for Assumption (III. 103) . 187 
The budget constraint of a household 190 
Price simplex l!J. ..... 191 
Fixed-point . . . . . . . . . . . . . . 192 
Proof of Proposition 111.25 . . . . . . 196 
Counterexample for Corollary 111.25.3 . 198 
On the criterion of upper semi-continuity of a correspondence r 201 



List of Figures 345 

I1IA6 Upper semi-continuity of a demand correspondence 201 
I1IA7 Price consumption curve. . . . . . . . . . . . . 202 
I1IA8 Noncontinuity ofthe correspondence DaL wa ) . 203 
I1IA9 Proof of Proposition I1I.29 205 
I1I.50 Free good . . . . . 206 

IV. I EDGEWORTH box 216 
IV.2 Exchange equilibrium 218 
IV. 3 N onconvex preference sets . 219 
IVA Nonconvex preferences with an indivisible good 220 
IV. 5 The restricted commodity space X . . . . . . . . 222 
IV.6 Representation of a competitive equilibrium with two goods 228 
IV. 7 Boundedness of the sequence of points {ZV} 230 
IV. 8 Radius of the demand set Da(pO, wa ) 234 
IV. 9 The problem of a suitable reallocation. 238 
IV. I 0 Proof of Proposition IV.13 (Step I) .. 244 
IV. I I Proof of Proposition IV.13 . . . . . . . 244 
IV.12 Graphical representation of the supply correspondence 253 
IV. 13 Illustration of a WALRASian equilibrium 254 
IV.14 Proof of Proposition IV. 14 ............ 258 
IV.15 Increasing returns to scale . . . . . . . . . . . . 262 
IV. 16 Non PARETO efficient WALRASian equilibrium. 266 
IV.17 Second theorem of welfare economics . 267 

V.I The idea of discrete optimization 276 
B.I Counterexample......... 295 
B.2 Separation of two sets . . . . . . 296 
C.I Graphical representation of a hypograph and an epigraph . 298 
C.2 Semi-continuity of a function 301 
C.3 Closure of a function . . . . . . 303 
CA Scalar multiplications ..... 305 
D.I Illustration of a convex function 316 
D.2 Greatest linearly homogeneous convex function k generated by f. 326 
D.3 Dual relationships in the sense of ROCKAFELLAR 336 
DA Graphical representation of polar sets ............... 337 



References 

AFRIAT, S. N., Efficiency Estimation of Production Functions. International 
Economic Review, 13 (1972), pp. 568-598. 

AHLHEIM, M. and ROSE, M., Messung individueller Wohlfahrt. 2 ed. Berlin: 
Springer, 1992. 

ALCALY, R. E. and KLEVORICK, A. K., A Note on the Dual Prices of Integer 
Programs. Econometrica, 34 (1966), pp. 206-214. 

ALIPRANTIS, C. D., Problems Equilibrium Theory. Berlin: Springer, 1995. 

ALIPRANTIS, C. D., BROWN, D. J., and BURKINSHAW, 0., Existence and 
Optimality of Competitive Equilibria. Berlin: Springer, 1989. 

ALKAN, A., DEMANGLE, G., and GALE, D., Fair Allocation of Indivisible Goods 
and Criteria of Justice. Econometrica, 59 (1991), pp. 1023-1039. 

ANDERSON, D., Models for Determining Least-cost Investment in Electricity 
Supply. Bell Journal of Economics and Management Science, 3 (1972), 
pp.267-299. 

ARROW, K. J. and DEBREU, G., Existence of an Equilibrium for a Competitive 
Economy. Econometrica, 22 (1954), pp. 265-290. 

ARROW, K. J. and HAHN, F.H., General Competitive Analysis. San Francisco: 
Holden-Day, 1971. 

ARROW, K. J. and INTRILIGATOR, M. D., eds., Handbook of Mathematical 
Economics, Vol. I. Amsterdam: North-Holland, 1981. 

ARROW, K. J. and INTRILIGATOR, M. D., eds., Handbook of Mathematical 
Economics, Vol. II. Amsterdam: North-Holland, 1982. 

AUBIN, J. P., Mathematical Methods of Game and Economic Theory. Amsterdam: 
North-Holland, 1979 (Studies in Mathematics and its Applications, 7). 

AUMANN, R, Markets with a Continuum of Traders. Econometrica, 32 (1964), 
pp.39-50. 

AUMANN, R., Existence of Competitive Equilibrium in Markets with a Continuum 
of Traders. Econometrica, 34 (1966), pp. 1-17. 

BAIN, J. S., Economies of Scale, Concentration, and the Condition of Entry 
in Twenty Manufacturing Industries. The American Economic Review, 44 
(1954), pp. 15-39. 

BARTEN, A. P. and BOHM, V., Consumer Theory. In ARROW, INTRILIGATOR 
(1982), pp. 381-429 (Chapter 9). 



References 347 

BAUMOL, W. J., Indivisibilities. In EATWELL, MILGATE, NEWMAN (1987), 
pp.793-795. 

BAUMOL, W. 1., PANZAR, J. C., and WILLIG, R D., Contestable Markets and the 
Theory of Industry Structure. New York: Harcourt Brace Jovanovich, 1982. 

BERGE, C., Topological Spaces. 3 ed. New York: Macmillan, 1963. 

BLACKORBY, c., PRIMONT, D., and RUSSEL, R R, Duality, Separability, 
and Functional Structure. Amsterdam: North-Holland, 1978 (A Series of 
Volumes in Dynamic Economics: Theory and Applications). 

BLUM, E. and OTTLI, W., Mathematische Optimierung: Grundlagen und Verfahren. 
Berlin: Springer, 1975 (Econometrics and Operations Research, 20). 

BOBZIN, H., BUHR, W., and CHRISTIAANS, T., AuBenhandelstheorie mit 
Mathematica. das wirtschaftsstudium (WISU), 4 (1995), pp. 360-375. 

BOITEUX, M., Marginal Cost Pricing. In NELSON, J. R, ed.: Marginal Cost Pricing 
in Practice. Englewood Cliffs, N. J.: Prentice Hall, 1964 (Chapter 3). 

BOL, G., Topologien auf Systemen von Teilmengen des 1Rn und Konsequenzen filr 
Produktionskorrespondenzen. Zeitschrift fiir NationalOkonomie, 34 (1974), 
pp.91-106. 

BOL, G., Zur Messung technischer Effizienz. In BECKMANN, M. J., EICHHORN, W., 
and KRELLE, W., eds.: Mathematische Systeme in der Okonomie, pp. 117-
127. Konigstein/fs.: Atheniium, 1983. 

BOL, G., On Technical Efficiency Measures: A Remark. Journal of Economic 
Theory, 38 (1986), pp. 380-385. 

BONNESEN, T. and FENCHEL, W., Theorie der konvexen Korper. Berlin: Springer, 
1934. 

BORDER, K. C., Fixed Point Theorems with Applications to Economics and Game 
Theory. Cambridge: Cambridge University, 1985. 

BOSSERT, W. and STEHLING, F., Theorie kollektiver Entscheidungen: Eine Einfiih­
rung. Berlin: Springer, 1990. 

BREMS, H., A Discontinuous Cost Function. The American Economic Review, 62 
(1952), pp. 577-586. 

BREMS, H., Cost and Indivisibility. The Journal of Industrial Economics, 12 
(1963/64), pp. 142-150. 

BRONSTEIN, I. N. and SEMENDJAJEW, K. A., Taschenbuch der Mathematik. 23 ed. 
FrankfurtlMain: Harri Deutsch, 1987. 



348 References 

BROOME, J., Approximate Equilibrium in Economies with Indivisible Commodi­
ties. Journal of Economic Theory, 5 (1972), pp. 224-249. 

BROWN, D. J., Equilibrium Analysis with Non-Convex Technologies. In 
HILDENBRAND, SONNENSCHEIN (1991), pp. 1963-1995 (Chapter 36). 

BROWN, D. J. and HEAL, G., Two-Part Tariffs, Marginal Cost Pricing and Increasing 
Returns in a General Equilibrium Model. Journal of Public Economics, 13 
(1980), pp. 25-49. 

CASSELS, J. W. S., An Introduction to the Geometry of Numbers. 2 ed. 
Berlin: Springer, 1971 (Grundlehren der mathematischen Wissenschaften in 
Einzeldarstellungen, 99). 

CHAMBERLIN, E. H., Proportionality, Divisibility and Economies of Scale. 
Quarterly Journal of Economics, 62 (1947/48), pp. 229-262. 

CHIANG, A C., Fundamental Methods of Mathematical Economics. 3 ed. Auckland: 
McGraw-Hill,1984. 

CLARKE, F. H., Generalized Gradients and Applications. Transactions of the 
American Mathematical Society, 205 (1975), pp. 246-262. 

COLLATZ, L. and WETTERLING, w., Optimierungsaufgaben. 2 ed. Berlin: Springer, 
1971. 

CORNET, B., General Equilibrium Theory and Increasing Returns: Presentation. 
Journal of Mathematical Economics, 17 (1988), pp. 103-118. 

DALLMANN, H. and ELSTER, K.-H., Einfiihrung in die hOhere Mathematik, Bd. 2. 
2 ed. Jena: Gustav Fischer, 1991. (cited as Dallmann, Elster (1991a». 

DALLMANN, H. and ELSTER, K.-H., Einfiihrung in die hOhere Mathematik, Bd. 1. 
3 ed. Jena: Gustav Fischer, 1991. (cited as Dallmann, Elster (1991b». 

DARROUGH, M. N. and SOUTHEY, C., Duality in Consumer Theory Made Simple 
the Revealing of Roy's Identity. Canadian Journal of Economics, 10 (1977), 
pp.307-317. 

DEATON, A, The Distance Function in Consumer Behaviour with Applications 
to Index Numbers and Optimal Taxation. Review of Economic Studies, 46 
(1979). 

DEBREU, G., The Coefficient of Resource Utilization. Econometrica, 19 (1951), 
pp. 273-292. 

DEBREU, G., Theory of Value: An Axiomatic Analysis of Economic Equilibrium. 
New Haven: Yale University, 1959. 

DEBREU, G., Existence of Competitive Equilibrium. In ARROW, INTRILIGATOR 
(1982), pp. 697-743 (Chapter 15). 



References 349 

DEBREU, G. and SCARF, H., A Limit Theorem on the Core of an Economy. 
International Economic Review, 4 (1963), pp. 235-246. 

DIERKER, E., Equilibrium Analysis of Exchange Economies with Indivisible 
Commodities. Econometrica, 39 (1971), pp. 997-1008. 

DIEWERT, W. E., An Application of the Shephard Duality Theorem: A Generalized 
Leontief Production Function. Journal of Political Economy, 79 (1971), 
pp.481-507. 

DIEWERT, W. E., Applications of Duality Theory. In INTRILIGATOR, KENDRICK 
(1974), pp. 106-166. 

DIEWERT, W. E., Duality Approaches to Microeconomic Theory. In ARROW, 
INTRILIGATOR (1982), pp. 535-599 (Chapter 12). 

DIEWERT, W. E., The Measurement of the Benefits of Infrastructure Services. Berlin: 
Springer, 1986 (Lecture Notes in Economics and Mathematical Systems, 
278). 

DIXIT, A., The Role of Investment in Entry-Deterrence. Economic Journal, 90 
(1980), pp. 95-106. 

DORFMAN, R., SAMUELSON, P. A., and SOLOW, R., Linear Programming and 
Economic Analysis. New York: McGraw-Hill, 1958. 

DUNZ, K., Equilibrium of an Economy with Infinitely Many Indivisible 
Commodities and Consumers. In NEUEFEIND, W. and RIEZMAN, R., eds.: 
Economic Theory and International Trade: Essays in memoriam J. Trout 
Rader, pp. 143-152. Berlin: Springer, 1992. 

EATON, B. C. and LEMCHE, S. Q., The Geometry of Supply, Demand, and 
Competitive Market Structure with Economies of Scope. The American 
Economic Review, 81 (1992), pp. 901-911. 

EATON, B. C. and LipSEY, R. G., The Theory of Market Pre-Emption: The 
Persistence of Excess Capacity and Monopoly in Growing Spatial Markets. 
Econometrica, 46 (1979), pp. 149-158. 

EATWELL, J., MILGATE, M., and NEWMAN, P., eds., The New Palgrave, A 
Dictionary of Economics. London: Macmillan, 1987. 

EDWARDS, B. K. and STARR, R. M., A Note on Indivisibilities, Specialization, and 
Economies of Scale. The American Economic Review, 77 (1987), pp. 192-
194. 

EICHHORN, w., Axiomatische Theorie der Produktion mehrerer Gliter. Zeitschrift 
fur NationaLOkonomie, 35 (1975), pp. 195-200. 



350 References 

EICHHORN, W., Functional Equations in Economics. London: Addison-Wesley, 
1978 (Applied Mathematics and Computation, 11). 

EICHHORN, W., SHEPHARD, R w., and STEHLING, F., Produktions- und 
Kostentheorie. In BECKMANN, M. 1., MENGES, G., and SELTEN, R., eds.: 
Handworterbuch der Wirtschaftswissenschaften, Bd. 1, Wirtschaftstheorie, 
pp. 333-357. Wiesbaden: Gabler, 1979. 

ELSTER, K.-H., REINHARDT, R, SCHAuBLE, M., and DONATH, G., Einfiihrung in 
die nichtlineare Optimierung. Leipzig: Teubner, 1977 (Mathematisch-Natur­
wissenschaftliche Bibliothek, 63). 

EMMERSON, R D., Optima and Market Equilibria with Indivisible Commodities. 
Journal of Economic Theory, 5 (1972), pp. 177-188. 

FARRELL, M. J., The Measurement of Productive Efficiency. Journal of the Royal 
Statistical Society, Series A, 120 (1957), pp. 253-290. 

FENCHEL, W., Convex Cones, Sets, and Functions. Princeton: Princeton University, 
1953 (mimeographed lecture notes). 

FRANK, C. R, Production Theory and Indivisible Commodities. Princeton: 
Princeton University, 1969. 

FRENK, J. G. B., DIAS, D. M. L., and GROMICHO, J., Duality Theory for 
ConvexlQuasiconvex Functions and its Applications to Optimization. In 
KOML6sI, RAPCsAK, SCHAIBLE (1994), pp. 153-170. 

Fuss, M. and McFADDEN, D., eds., Production Economics: A Dual Approach 
to Theory and Applications, Vol. I, The Theory of Production. Amsterdam: 
North-Holland, 1978. 

FARE, R, Strong Limitationality of Essential Proper Subsets of Factors of 
Production. Zeitschrift fiir NationalOkonomie, 197 (1972), pp. 417-424. 

FARE, R, Efficiency and the Production Function. Zeitschriftfiir NationalOkonomie, 
35 (1975),pp. 317-324. 

FARE, R., Essential and Limitational Production Factors. Journal of Economics, 40 
(1980), pp. 225-232. (cited as Fiire (1980a)). 

FARE, R, Laws of Diminishing Returns. Berlin: Springer, 1980 (Lecture Notes in 
Economics and Mathematical Systems, 176). (cited as Fiire (1980b)). 

FARE, R., The Dual Measurement of Efficiency. Journal of Economics, 44 (1984), 
pp.283-288. 

FARE, R, Addition and Efficiency. Quarterly Journal of Economics, 20 (1986), 
pp.861-885. 



References 351 

FARE, R, Fundamentals of Production Theory. Berlin: Springer, 1988 (Lecture 
Notes in Economics and Mathematical Systems, 311). 

FARE, R and GROSSKOPF, S., Measuring Congestion in Production. Journal of 
Economics, 43 (1983), pp. 257-271. 

FARE, R, GROSSKOPF, S., and LOVELL, C. A. K., Scale Economies and Duality. 
Journal of Economics, 46 (1986), pp. 175-182. 

FARE, R, GROSSKOPF, S., and LOVELL, C. A. K., Production Frontiers. 
Cambridge: Cambridge University, 1994. 

FARE, R and LOVELL, C. A. K., Measuring the Technical Efficiency of Production. 
Journal of Economic Theory, 19 (1978), pp. 150-162. 

FARE, Rand PRIMONT, D., On Differentiability of Cost Functions. Journal of 
Economic Theory, 38 (1986), pp. 233-237. 

FARE, R. and PRIMONT, D., On Differentiability of Cost Functions: Corrigendum. 
Journal of Economic Theory, 52 (1990), pp. 237. 

FARE, R and PRIMONT, D., The Unification of Ronald W. Shephard's Duality 
Theory. Journal of Economics, 60 (1994), pp. 199-207. 

GILBERT, R J. lind HARRIS, R G., Competition with Lumpy Investment. RAND 
Journal of Economics, 15 (1984), pp. 197-212. 

GOMORY, R E., On the Relation between Integer and Non-integer Solutions to 
Linear Programming. Proceedings of the National Academy of Sciences, 53 
(1965), pp. 260-265. 

GOMORY, R E. and BAUMOL, W. J., Integer Programming and Pricing. 
Econometrica, 28 (1960), pp. 521-550. 

GREEN, J. and HELLER, W. P., Mathematical Analysis and Convexity with 
Applications to Economics. In ARROW, INTRILIGATOR (1981), pp. 15-52 
(Chapter 1). 

GROENEWEGEN, P., Division of Labour. In EATWELL, MILGATE, NEWMAN 
(1987),pp.901-907. 

GUESNERIE, R, Pareto Optimality in Non-Convex Economies. Econometrica, 43 
(1975), pp. 1-29. 

GOTH, W., Preisregeln fiir Auktionen und Ausschreibungen: Eine ordnungspoli­
tische Analyse. Zeitschrift fiir Wirtschafts- und Sozialwissenschaften, 115 
(1995), pp. 1-26. 

HAMPDEN-TURNER, C., Synergy as the Optimization of Differentiation and 
Integration. In LORSCH, J. W. and LAWRENCE, D. C. S., eds.: Studies in 
Organization Design, pp. 187-196. Georgetown, 1970. 



352 References 

HANOCH, G., Symmetric Duality and Polar Production Functions. In Fuss, 
McFADDEN (1978), pp. 111-131. 

HENRY, c., Indivisibilites dans une economie d' echanges. Econometrica, 38 (1970), 
pp. 542-558. 

HEUSER, H., Lehrbuch der Analysis, Bd. 1. 2 ed. Stuttgart: Teubner, 1982 
(Mathematische Leitfaden). 

HEUSER, H., Lehrbuch der Analysis, Bd. 2. 7 ed. Stuttgart: Teubner, 1992 
(Mathematische Leitfaden). 

HEWITT, E. and STROMBERG, K., Real and Abstract Analysis: A Modem Treatment 
of the Theory of Functions of a Real Variable. Berlin: Springer, 1969. 

HILDENBRAND, W., Cores. In EATWELL, MILGATE, NEWMAN (1987), pp. 666-
669. 

HILDENBRAND, W. and KIRMAN, A P., Equilibrium Analysis, Variations on 
Themes by Edgeworth and Walras. Amsterdam: North-Holland, 1988 
(Advanced Textbooks in Economics, 28). 

HILDENBRAND, W., SCHMEIDLER, D., and ZAMIR, S., Existence of Approximate 
Equilibria and Cores. Econometrica, 41 (1973), pp. 1159-1166. 

HILDENBRAND, W. and SONNENSCHEIN, H., eds., Handbook of Mathematical 
Economics, Vol. IV. Amsterdam: North-Holland, 1991. 

INTRILIGATOR, M. D. and KENDRICK, K. A, eds., Frontiers of Quantitative 
Economics, Vol. II. Amsterdam: North-Holland, 1974. 

IOFFE, A D. and TIHOMIROV, V. M., Theory of Extremal Problems. Amsterdam: 
North-Holland, 1979 (Studies in Mathematics and its Applications, 6). 

JACOBSEN, S. E., Production Correspondences. Econometrica, 38 (1970), pp. 754-
771. 

JACOBSEN, S. E., On Shepard's Duality Theorem. Journal of Economic Theory, 4 
(1972),pp.458-464. 

JACOBSEN, S. E., Comments on Diewert's Applications of Duality Theory. In 
INTRILIGATOR, KENDRICK (1974), pp. 171-176. 

JEHLE, G. A, Advanced Microeconomic Theory. Englewood Cliffs, New Jersey: 
Prentice-Hall, 1991. 

JORGENSON, D. W. and LAU, L. J., The Duality of Technology and Economic 
Behaviour. Review of Economic Studies, 41 (1974), pp. 181-200. 

JOUINI, E., An Index Theorem for Nonconvex Economies. Journal of Economic 
Theory, 57 (1992), pp. 176-196. 



References 353 

KAMIYA, K., Optimal Public Utility Pricing: A General Equilibrium Analysis. 
Journal of Economic Theory, 66 (l995), pp. 548-572. 

KANEKO, M. and YAMAMOTO, Y., The Existence and Computation of Competitive 
Equilibria in Markets with an Indivisible Good. Journal of Economic Theory, 
38 (1986), pp. 118-136. 

KANEMOTO, Y., Optimal Cities with Indivisibility in Production and Interaction 
between Firms. Journal of Urban Economics, 27 (l990), pp. 46-59. 

KEHOE, T. J., Computation and Multiplicity of Equilibria. In HILDENBRAND, 
SONNENSCHEIN (l991), pp. 2049-2143 (Chapter 38). 

KHAN, M. A. and YAMAZAKI, A., On the Core of Economies with Indivisible 
Commodities and a Continuum of Traders. Journal of Economic Theory, 24 
(1981), pp. 218-225. 

KIM, S. and CHO, S., A Shadow Price in Integer Programming for Management 
Decision. European Journal of Operational Research, 37 (l988), pp. 328-
335. 

KIRMAN, A. P., Measure Theory with Application to Economics. In ARROW, 
INTRILIGATOR (l981), pp. 159-209 (Chapter 5). 

KLEINDORFER, P. R. and SERTEL, M. R., Auctioning the Provision of an Indivisible 
Public Good. Journal of Economic Theory, 64 (1994), pp. 20-34. 

KOML6sI, S., RAPcsAK, T., and SCHAIBLE, S., eds., Generalized Convexity. 
Berlin: Springer, 1994 (Proceedings of the IVth International Workshop on 
Generalized Convexity, Pees, Hungary, 1992). 

KOOPMANS, T. C., Three Essays on the State of Economic Science. New York: 
McGraw-Hill, 1957. 

KOOPMANS, T. C. and BECKMANN, M., Assignment Problems and the Location of 
Economic Activities. Econometrica, 25 (l957), pp. 53-76. 

KORBUT, A. A. and FINKELSTEIN, 1. J., Diskrete Optimierung. Berlin: Akademie 
Verlag, 1971. 

KUHN, H. W., On a Theorem of Wald. In KUHN, H. W. and TUCKER, A. W., eds.: 
Linear Inequalities and Related Systems, pp. 265-273. Princeton: Princeton 
University, 1956 (Annals of Mathematics Studies, 38). 

KUMAGAI, H., Indivisibilities and Resource Allocation: A Formulation of the 
Problem. Osaka Economic Papers, 10 (1962), pp. 1-15. 

LAU, L. J., Comments on Diewert's Applications of Duality Theory. In 
INTRILIGATOR, KENDRICK (1974), pp. 176-199. 



354 References 

LEICHTWEISS, K., Konvexe Mengen. Berlin: Springer, 1980. 

LEWIN, J. and LEWIN, M., An Introduction to Mathematical Analysis. 2 ed. New 
York: McGraw-Hill, 1993. 

LIEBERMAN, M. B., Capacity Utilisation: Theoretical Models and Empirical Tests. 
European Journal of Operational Research, 40 (1989), pp. 155-168. 

LUK, F. K., A General Equilibrium Simulation Model of Housing Markets with 
Indivisibility. Regional Science and Urban Economics, 23 (1993), pp. 153-
169. 

MANNE, A S., Investment for Capacity Expansion: Size, Location and Tzme­
Phasing. Cambridge: MIT Press, 1967. 

MAS-COLELL, A, A Model of Equilibrium with Differentiated Commodities. 
Journal of Mathematical Economics, 2 (1975), pp. 263-295. 

MAS-COLELL, A, Indivisible Commodities and General Equilibrium Theory. 
Journal of Economic Theory, 16 (1977), pp. 443-456. 

MAS-COLELL, A, The Theory of General Economic Equilibrium. Cambridge: 
Cambridge University, 1985. 

MAS-COLELL, A, WHINSTON, M. D., and GREEN, J. R., Microeconomic Theory. 
New York: Oxford University, 1995. 

MASKIN, E. S., On the Fair Allocation oflndivisible Goods. In FEIWELL, G. R., ed.: 
Arrow and the Foundations of the Theory of Economic Policy, pp. 341-349. 
New York: New York University, 1987. 

MATTHES, N., VergleichsmaBstabe rur Telefongespdiche. ZeitschriJt for Betriebs­
wirtschaJt, 66 (1996), pp. 1223-1240. 

McFADDEN, D., Cost, Revenue, and Profit Functions. In Fuss, McFADDEN 
(1978), pp. 3-109. 

MCKENZIE, L. w., On the Existence of General Equilibrium for a Competitive 
Market. Econometrica, 27 (1959), pp. 54-71. 

McKENZIE, L. W., The Classical Theorem on Existence of Competitive 
EqUilibrium. Econometrica, 49 (1981), pp. 819-841. 

McLEOD, A N. and HAHN, F. H., Proportionality, Divisibility and Economies of 
Scale: Two Comments. Quarterly Journal of Economics, 63 (1949), pp. 128-
143. 

MILLS, D. E., Capacity Expansion and the Size of Plants. RAND Journal of 
Economics, 21 (1990), pp. 555-566. 



References 355 

MITITELU, S., A Survey on Optimality and Duality in Nonsmooth Programming. In 
KOML6sI, RAPCSA.K, SCHAIBLE (1994), pp. 211-225. 

MOORE, J. C., A Note on Point-Set Mappings. Papers in Quantitative Economics, 1 
(1968), pp. 129-137. 

MOORE, I. c., Cost and Supply Curves. In EATWELL, MILGATE, NEWMAN (1987), 
pp.681-687. 

NEUEFEIND, W., Non-convexities and Decentralization in General Equilibrium 
Analysis. Bonn, 1977. 

NEWMAN, P., Consumption Sets. In EATWELL, MILGATE, NEWMAN (1987), 
pp. 616--617. (cited as Newman (1987a)). 

NEWMAN, P., Duality. In EATWELL, MILGATE, NEWMAN (1987), pp. 924-934. 
(cited as Newman (1987b)). 

NEWMAN, P., Gauge Functions. In EATWELL, MILGATE, NEWMAN (1987), 
pp. 484-488. (cited as Newman (1987c)). 

NIKAIDO, H., Convex Structures and Economic Theory. New York: Academic 
Press, 1968. 

NIKAIDO, H., Introduction to Sets and Mappings in Modem Economics. 
Amsterdam: North-Holland, 1975. 

NOGUCHI, A., General Equilibrium Models. In VARIAN, H. R., ed.: Economic and 
Financial Modeling with Mathematica, pp. 104-123. New York: Springer, 
1993. 

NOZICKA, F., GRYGAROVA., L., and LOMMATZSCH, K., Geometrie konvexer 
Mengen und konvexe Analysis. Berlin: Akademie, 1988 (Mathematische 
Monographien,71). 

OPITZ, 0., Zum Problem der Aktivitatsanalyse. Zeitschrift fUr gesamte 
StaatswissenschaJt, 127 (1971), pp. 238-255. 

OSTROY, I. M., On the Existence of Walrasian Equilibrium in Large-Square 
Economies. Journal of Mathematical Economics, 13 (1984), pp. 143-163. 

PADBERG, M. w., Null-Eins-Entscheidungsprobleme. In BECKMANN, M. I., ed.: 
Handworterbuch der mathematischen WirtschaJtswissenschaJten, pp. 187-
229. Wiesbaden: Gabler, 1979. 

PATTY, C. w., Foundations of Topology. Boston, Mass.: PWS-KENT, 1993. 

PFINGSTEN, A., Mikrookonomik, Eine Einftihrung. Berlin: Springer, 1989. 



356 References 

PHELPS, R. R., Support Cones and their Generalizations. In KLEE, V. L., ed.: 
Convexity, pp. 393-401. Providence, Rhode Island: American Mathematical 
Society, 1963 (Proceedings of the Seventh Symposium in Pure Mathematics 
of the American Mathematical Society, VII). 

QUINZII, M., Core and Competitive Equilibria with Indivisibilities. International 
Journal of Game Theory, 13 (1984), pp. 41-60. 

REITER, S. and SHERMAN, G. R., Allocating Indivisible Resources Affording 
External Economies or Diseconomies. International Economic Review, 3 
(1962), pp. 108-135. 

ROBINSON, E. A. G., The Structure of Competitive Industry. London: Cambridge 
University, 1931. 

ROBINSON, S. M., Convex Programming. In EATWELL, MILGATE, NEWMAN 
(1987),pp.647-659. 

ROCKAFELLAR, R. T., Convex Analysis. Princeton: Princeton University Press, 
1972. 

ROCKAFELLAR, R. T., Conjugate Duality and Optimization. Philadelphia: SIAM, 
1974 (Regional Conference Series in Applied Mathematics, 16). 

ROSEN, S., Hedonic Prices and Implicit Markets: Product Differentiation in Pure 
Competition. Journal of Political Economy, 82 (1974), pp. 34-55. 

RUSSELL, R. R., Measures of Technical Efficiency. Journal of Economic Theory, 35 
(1985), pp. 109-126. 

RUSSELL, R. R., On the Axiomatic Approach to the Measurement of Technical 
Efficiency. In EICHHORN, W., ed.: Measurement in Economics: Theory and 
Applications of Economic Indices, pp. 207-217. Heidelberg: Physica, 1987. 

Ruys, P. H. M. and WEDDEPOHL, H. N., Economic Theory and Duality. 
In KRIENS, J., ed.: Convex Analysis and Mathematical Economics, 
Proceedings, 1ilburg 1978, pp. 1-72. Berlin: Springer, 1979 (Lecture Notes 
in Economics and Mathematical Systems, 168). 

SALKIN, H. M. and MATHUR, K., Foundations of Integer Programming. New York: 
North-Holland, 1989. 

SCARF, H. E., The Core of an n Person Game. Econometrica, 45 (1967), pp. 50-69. 

SCARF, H. E., Production Sets with Indivisibilities, Part I: Generalities. 
Econometrica, 49 (1981), pp. 1-32. (cited as Scarf (l981a». 

SCARF, H. E., Production Sets with Indivisibilities, Part II: The Case of Two 
Activities. Econometrica, 49 (1981), pp. 395-423. (cited as Scarf (1981b». 



References 357 

SCARF, H. E., The Computation of Equilibrium Prices: An Exposition. In ARROW, 
INTRILIGATOR (1982), pp. 1007-1061 (Chapter 21). 

SCARF, H. E., The Allocation of Resources in the Presence of Indivisibilities. 
Journal of Economic Perspectives, 8 (1994), pp. 111-128. 

SCAZZIERI, R, A Theory of Production. Oxford: Clarendon, 1993. 

SCHNEIDER, E., Theorie der Produktion. Wien: Springer, 1934. 

SGRO, P. M., The Theory of Duality and International Trade. London: Croom Helm, 
1986. 

SHAPLEY, L. S. and SCARF, H., On Cores and Indivisibility. Journal of 
Mathematical Economics, 1 (1974), pp. 23-38. 

SHEPHARD, R W., Theory of Cost and Production Functions. Princeton: Princeton 
University, 1953 (Nachdruck Berlin: Springer (1981), Lecture Notes and 
Mathematical Systems, 194). 

SHEPHARD, R W., Proof of the Law of Diminishing Returns. Zeitschrijt fUr Natio­
nalOkonomie, 30 (1970), pp. 7-34. 

SHEPHARD, R W., Comments on Diewert's Applications of Duality Theory. 
In INTRILIGATOR, KENDRICK (1974), pp. 200-206. (cited as Shephard 
(1974a)). 

SHEPHARD, R W., Indirect Production Functions. Meisenheim am Glan: Anton 
Hain, 1974 (Mathematical Systems in Economics, 10). (cited as Shephard 
(1974b)). 

SHEPHARD, R W. and FARE, R, Dynamic Theory of Production Correspondences. 
Cambridge, Massachusetts: Oelschlager, Gunn & Hain, 1980 (Mathematical 
Systems in Economics, 50). 

SIEBERT, H., Au.f3enwirtschaft. 6 ed. Stuttgart: Gustav Fischer, 1994 (UTB filr 
Wissenschaft: Uni-Taschenbiicher, 8081: GroBe Reihe). 

SILVESTRE, J., Economies and Diseconomies of Scale. In EATWELL, MILGATE, 
NEWMAN (1987), pp. 80-84. 

SMALE, S., Global Analysis and Economics. In ARROW, INTRILIGATOR (1981), 
pp. 331-370 (Chapter 8). 

SONNENSCHEIN, H., Demand Theory without Transitive Preferences, with 
Applications to the Theory of Competitive Equilibrium. In CHIPMAN, J., 
HURWICZ, L., RICHTER, M., and SONNENSCHEIN, H., eds.: Preferences, 
Utility and Demand, pp. 215-223. New York: Harcourt Brace Jovanovich, 
1971 (A Minnesota Symposium). 



358 References 

STARR, R M., Quasi-Equilibria in Markets with Non-Convex Preferences. 
Econometrica, 37 (1969), pp. 25-38. 

STARRETT, D. A, Marginal Cost Pricing of Recursive Lumpy Investment. Review 
of Economic Studies, 65 (1978), pp. 215-227. 

SVENSSON, L.-G., Large Indivisibilities: An Analysis with Respect to Price 
Equilibrium and Fairness. Econometrica, 51 (1983), pp. 939-954. 

SVENSSON, L.-G., Competitive Equilibria with Indivisible Goods. Journal of 
Economics, 44 (1984), pp. 373-386. 

SVENSSON, L.-G., Nash Implementation of Competitive Equilibria in a Model with 
Indivisible Goods. Econometrica, 59 (1991), pp. 869-877. 

TADENUMA, K. and THOMSON, W., No-Envy and Consistency in Economies with 
Indivisible Goods. Econometrica, 59 (1991), pp. 1755-1767. 

TAKAYAMA, A, Mathematical Economics. 2 ed. Cambridge: Cambridge University, 
1990. 

TURVEY, R, Marginal Cost. Economic Journal, 79 (1969), pp. 282-299. 

UEBE, G., Riickgerechnete Duale Variablen. Zeitschrift fUr NationaLOkonomie, 13 
(1969), pp. 123-140. 

UZAWA, H., Walras' Existence Theorem and Brouwer's Fixed Point Theorem. 
Economic Studies Quarterly, 8 (1962), pp. 59-62. 

UZAWA, H., Duality Principles in the Theory of Cost and Production. International 
Economic Review, 5 (1964), pp. 216-220. 

VARIAN, H. R, Equity, Envy, and Efficiency. Journal of Economic Theory, 9 (1974), 
pp.63-91. 

VARIAN, H. R., Microeconomic Analysis. 3 ed. New York: Norton, 1992. 

VICKREY, W. S., Responsive Pricing of Public Utility Services. Bell Journal of 
Economics and Management Science, 2 (1971), pp. 337-346. 

VIETORISZ, T., Industrial Development Planning Models with Economies of 
Scale and Indivisibilities. Regional Science Association; Papers XII, (1963), 
pp.157-192. 

VILLAR, A, General Equilibrium with Increasing Returns. Berlin: Springer, 1996 
(Lecture Notes in Economics and Mathematical Systems, 438). 

VOGEL, W., Duale Optimierungsaufgaben und Sattelpunktsatze. Unternehmensfor­
schung, 4 (1968), pp. 1-28. 



References 359 

WALD, A., Ober die eindeutige Losbarkeit der neuen Produktionsgleichungen. 
Ergebnisse eines mathematischen Kolloquiums, 6 (1933-34), pp. 12-20. 

WALD, A., Ober die Produktionsgleichungen der okonomischen Wertlehre. 
Ergebnisse eines mathematischen Kolloquiums, 7 (1934-35), pp. 1-6. 

WALD, A., Uber einige Gleichungssysteme der mathematischen Okonomie. 
Zeitschrift fUr NationalOkonomie, 7 (1936), pp. 637-670 (translated in: 
Econometrica, 19 (1951), p. 368-403). 

WALK, M., Theory of Duality in Mathematical Programming. Wien: Springer, 1989. 

WEDDEPOHL, H. N., Duality and Equilibrium. ZeitschriftfUr NationalOkonomie, 32 
(1972), pp . .163-187. 

WEITZMANN, M. L., Optimal Growth with Scale Economies in the Creation of 
Overhead Capital. Review of Economic Studies, 37 (1970), pp. 555-570. 

WETS, R., Grundlagen konvexer Optimierung. Berlin: Springer, 1976 (Lecture 
Notes in Economics and Mathematical Systems, 137). 

WILLIAMS, A. c., Marginal Values in Mixed Integer Linear Programming. 
Mathematical Programming, 44 (1989), pp. 67-75. 

WILLIAMSON, O. E., Peak-Load Pricing and Optimal Capacity under Indivisibility 
Constraints. The American Economic Review, 56 (1966), pp. 810-827. 

WILSON, R., Nonlinear Pricing. New York: Oxford University, 1993. 

WOLSEY, L. A., Integer Programming Duality: Price Functions and Sensitivity 
Analysis. Mathematical Programming, 20 (1981), pp. 173-195. 

ZIESCHANG, K. D., On the Structure of Technologies of an Input-Limited Unit. 
In EICHHORN, W., HENN, R., NEUMANN, K., and SHEPHARD, R. w., 
eds.: Quantitative Studies on Production and Prices, pp. 57-69. Wiirzburg: 
Physica, 1983. 

ZIESCHANG, K. D., An Extended Farrell Technical Efficiency Measure. Journal of 
Economic Theory, 33 (1984), pp. 387-396. 



Index 

A of a preference ordering ........ 8 
activity of production possibility sets .,. 16 

attainable .................... II core ................ 210, 217, 264, 283 
feasible ...................... 11 correspondence ................... 306 
possible ...................... 11 aggregate demand ............ 191 

additivity ......................... .43 aggregate excess demand ..... 191 
aff ..................... see hull, affine bounded .................... 314 
allocation ........................ 189 closed ...................... 308 

WALRAS .................... 192 compact-valued .............. 307 
attainable ................... 251 convex ...................... 136 
feasible ..................... 189 convex-valued ............... 307 

aur .................. see hull, aureoled homogeneous of degree r ...... 40 
individual demand ........... 190 

B input ......................... 18 
ball .............................. 284 inverse ...................... 307 
bipolar theorem ................... 333 output ....................... l0 
boundary ......................... 283 quasi-concave ................ 77 

relative ..................... 291 semi-continuous ............. 307 
boundedness .................. 13,287 sUbhomogeneous ............. 39 
BROUWER ..... see fixed-point theorem superhomogeneous ............ 39 
budget set ........................ 189 cost efficiency ..................... 57 

cost function .................. 92, 132 
C cost structure ..................... 157 

CARATHEODORY ......... see theorem 
centroid .......................... 291 D 
cl ..................... see hull, closed demand correspondence ....... 103,132 
closedness .................... 14,282 aggregate ................... 191 
closure aggregate excess ............. 191 

of a function ................ 302 individual ................... 190 
of a set .................... , .283 synthetic .................... 223 

coalition ..................... 212,264 demand function .................. 225 
Cockaigne ......................... 12 demand set ....................... 190 
commodity bundle ................. 23 dimension of a set ................. 292 
commodity space ................... 6 direction 
complement ...................... 282 exposed ...................... 28 
completeness ....................... 6 extreme ...................... 27 
composition product .............. 307 di s posabili ty 
cone ........... 37, see projection cone of inputs ..................... 19 
consumption set .................. 250 of outputs .................... 19 
continuity strict - of inputs .............. 12 

of a preference ordering ........ 7 strict - of outputs ............. 13 
contract curve .................... 219 weak - of inputs .............. 29 
conv .................. see hull, convex weak - of outputs ............. 28 
convex combination ............... 291 distance .......................... 281 
convexity ......................... 16 distance function ................... 60 

integer .................... 33, 34 input ....................... 151 



Index 

output ...................... 183 
Dom ............. see domain, effective 
domain .......................... 297 

effective .................... 299 

E 
economies of scale ................ 139 
economies of scope ............... 137 
EDGEWORTH box ................ 216 
efficiency 

PARETO .................... 263 
input ......................... 51 

FARRELL's measure ........ 52 
RUSSELL's measure ........ 54 

output ....................... 52 
FARRELL'S measure ........ 53 

technical ..................... 50 
element 

best ........................... 9 
maximal ...................... 9 
of a sequence ................ 285 

epi ...................... see epigraph 
epigraph ......................... 298 
equilibrium 

e- .......................... 240 
ROTHENBERG- .............. 233 
WALRAS .................... 192 
competitive ............. 192, 210 
quasi- ....................... 236 

exchange economy ................ 192 
exchange lens .................... 217 

F 
factor demand .................... 132 
factor space ....................... 10 
FARRELL's input efficiency measure. 52 
FARRELL's output efficiency measure 53 
feasible region ..................... 62 
FENCHEL transform ............... 316 
fixed-point ....................... 192 
fixed-point theorem 

BROUWER .................. 312 
DEBREU, GALE, NIKAIDO ... 314 
KAKUTANI ................. 313 

function .......................... 297 
MINKOWSKI ................ 329 
affine ....................... 300 
biconjugate ................. 316 
closed ...................... 302 

361 

concave ..................... 300 
conjugate ................... 316 
convex ...................... 300 
extended real-valued ......... 298 
improper .................... 299 
linearly homogeneous ........ 304 
n-proper .................... 299 
proper ...................... 299 
quasi-concave ................ 77 
quasi-convex ................. 77 
real-valued .................. 298 

G 
gauge ....................... 329, 331 

polar ....................... 334 
reciprocal ................... 329 
reciprocally polar ............ 161 

good, free ........................ 206 
gradient ..................... 104, 319 
graph ....................... 298, 306 

of a technology ............... 11 

H 
harmonic law ..................... 140 
homogeneity ...................... 39 
hull 

affine ....................... 290 
aureoled ..................... 28 
closed ...................... 283 
convex .................. 24, 292 
convex - of a function ....... 300 
star .......................... 28 

hyperplane ....................... 289 
nontrivial supporting ......... 290 
separating ................... 296 
supporting .................. 289 

hypo ................... see hypograph 
hypograph ....................... 298 

I 
image ............................ 297 
independence 

affine ....................... 290 
linear ....................... 290 

indicator function .............. 60, 322 
reciprocal ................... 130 

inequality 
MAHLER ................... 335 
SCHWARZ .................. 282 



362 Index 

YOUNG-FENCHEL ......••... 317 RUSSELL'S input efficiency .... 54 
triangular ................... 281 metric ........................... 281 

input correspondence ............... 17 Euclidean ................... 281 
input distance function ............ 151 MINKOWSKI •... see separation theorem 
input efficiency .................... 49 MINKOWSKI function ............. 329 

with respect to the convex hull . 54 monopoly, natural ................. 138 
input requirement set ............... 17 monotonicity 

bipolar ...................... 158 of a preference ordering ........ 8 
convex hull ................... 24 
outer approximation .......... 143 N 
polar ....................... 156 n-Dom ........... see domain, effective 

input vector ....................... 23 neighborhood ..................... 283 
int ........................ see interior netput vector ...................... 11 
interior .......................... 283 norm, Euclidean .................. 282 

relative ..................... 291 
intersection property, finite ......... 288 o 
inverse image ..................... 297 objective function .................. 62 
isoquant ........................... 50 optimal solution ................... 62 

optimal value ...................... 62 
K output correspondence .............. 10 

KAKUTANI .... see fixed-point theorem output distance function ........... 183 
output efficiency ................... 49 

L output vector ...................... 23 
land of Cockaigne .................. 12 
law p 

WALRAS' ................... 206 pair 
Lemma of conjugate functions ........ 317 

HOTELLING-SHEPHARD ..... 120 of dual points ........... 106,320 
SHEPHARD'S ........... 120,134 of polar functions ............ 335 

limes of polar points ............... 164 
inferior ..................... 287 PARETO efficiency ................ 263 
superior ..................... 287 individually rational .......... 264 

limit ............................. 285 weak ....................... 264 
line .............................. 289 plane ............................ 289 
linear combination ................ 281 point 

convex ...................... 291 adherent .................... 283 
boundary .................... 283 

M cluster ................. 283,285 
MAHLER'S inequality ............. 335 exposed ...................... 26 
mapping extreme ...................... 26 

additive ...................... 44 interior ..................... 283 
in .......................... 298 isolated ..................... 283 
linear ........................ 44 pair of dual points ........... 320 
multi-valued .. see correspondence pair of polar points ........... 164 
single-valued ........ see function polehydral set .................... 292 

maximum theorem ................ 311 possibility of inaction .............. 11 
measure preference ordering 

FARRELL'S input efficiency .... 52 (stricti y) convex ................ 8 
FARRELL'S output efficiency ... 53 (strongly) monotone ............ 8 



Index 

continuous .................... 7 
definition ...................... 6 

preference relation .................. 6 
preference set .................. 7, 216 
preference structure ................. 8 
price simplex ..................... 190 
process ........................... II 
production economy .............. 251 
production function ............. 49,70 

approximate ................. 144 
indirect ..................... 167 
polar ....................... 167 

production possibility set ........... 10 
production set .................... 250 
production structure ................ II 
production technology .............. 11 
profit efficiency .................... 58 
projection cone .................... 59 

Q 
quasi-concavity 

of the output correspondence ... 16 
quasi-equilibrium ................. 236 
quasi-ordering ...................... 6 

R 
rad ................. see radius of a set 
radius of a set .................... 295 
range ............................ 297 
recession cone ..................... 27 
reflexivity .......................... 6 
relation, binary ...................... 6 
returns to scale ..................... 38 
revenue efficiency .................. 58 
revenue function .................. 183 
revenue structure .................. 184 
rint ............... see interior, relative 
ROTHENBERG ......... see equilibrium 
RUSSELL'S input efficiency measure. 54 

S 
scalar multiplication 

left ......................... 305 
right ........................ 305 

Schwarz's inequality .............. 282 
separation 

of sets ...................... 296 
proper ...................... 296 
strong ...................... 296 

363 

separation theorem 
MINKOWSKI ................ 296 
first ......................... 296 
second ...................... 296 

sequence ......................... 285 
bounded .................... 285 
convergent .................. 285 
divergent .................... 286 
monotonic .................. 285 
of numbers .................. 284 
of points .................... 284 

set 
affine ....................... 289 
aureoled ..................... 28 
bipolar ...................... 332 
bounded .................... 287 
closed ...................... 282 
convex ...................... 291 
open ........................ 282 
polar ....................... 332 
reciprocally polar ............ 332 
relatively open ............... 291 
star-shaped ................... 28 

SHEPHARD .... see lemma, see theorem 
simplex, m-dimensional ........... 292 
space 

Euclidean ................... 280 
linear ....................... 280 
metric ...................... 281 
normed ..................... 282 
topological .................. 282 

star ...................... see hull, star 
state 

attainable - of a production econ-
omy ................... 253 

feasible - of a production economy 
253 

subdifferential .................... 318 
subgradient ....................... 318 
subhomogeneity ................... 39 
subsequence ...................... 285 
superadditivity ..................... 44 
superdifferential .............. 105, 319 
supergradient ................ 104, 318 
superhomogeneity ................. 39 
support function .................. 323 

reciprocal .............. 131,323 
synergy effect ..................... 45 



364 

T 
technology ........................ 11 
theorem 

BOLZANO, WEIERSTRASS ... 286 
CARATHEODORY's .......... 293 
FENCHEL, MOREAU ......... 318 
HEINE, BOREL .............. 288 
KREIN-MILMAN ............. 25 
SHAPLEy-FoLKMAN ........ 295 
SHEPHARD's ................ 164 
WEIERSTRASS ............... 63 
bipolar ...................... 333 
first - of welfare economics .. 266 
second - of welfare economics 267 

topology ......................... 282 
transformation curve ............... 50 
transformation function ............. 50 
transitivity .......................... 7 
triangular inequality ............... 281 

U 
unit simplex ...................... 292 
unit vectors ....................... 281 

V 
vector ........................... 280 

affinely independent .......... 290 
linearly independent ......... 281 
normal ...................... 289 

vector space ...................... 280 
vertex ......... '" ............ 37,292 

w 
W ALRAS allocation ............... 192 
WALRAS equilibrium ............. 192 
WALRAs'law .................... 206 
WEIERSTRASS ............ see theorem 

y 

YOUNG-FENCHEL inequality ...... 317 

Index 




