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Preface to the Third Edition

This new edition constitutes a major and fundamental revision of the original
text. Nearly twenty years have passed since the manuscript was first drafted, and
much has been written on issues of learning mathematics in those intervening
years. As one would hope and expect, newly published research continues to
provide additional enlightenment. There are also new areas of concern which have
come to the fore in recent years and which therefore demanded a place, and this
has led to the introduction of three new chapters. Two of these chapters are
absolutely new, one relating to issues of situated cognition and transfer of learning,
and the other being concerned with the place of pattern in mathematics. The
third new chapter is an expansion and reorganization of material which existed in
a much more abbreviated form in previous editions and concerns the issue of
constructivism.

It had originally been hoped to include chapters on the impact of calculators and
computers on learning, and on the issue of advanced mathematical thinking, but
unfortunately constraints of space did not allow either of these to be included. Indeed,
in order to make room for the three new chapters and for the revision and extension of
existing chapters, two of the original ones have been greatly reduced, with what has
been retained from them being dispersed to relevant chapters in this new edition. The
criterion for discarding any material was solely that it is now better dealt with in other
texts. All of the remaining eight chapters have been revised, some have been extended,
and many have been largely rewritten.

Although the book is written from a British perspective, issues of learning
are global, so the book is still relevant on an international basis, and all of the
references to and from other countries which were introduced in the second edition
have been retained. The book is not tied to any particular curriculum, though the
requirements and constraints of the National Curricula of Britain are fully
acknowledged.

The major difficulty in revising the book has been what it has always been, namely
that there are so many relevant references relating to the issues of the book, more than
could ever be acknowledged without the text taking on some of the characteristics of
a catalogue. Once again, I can only apologize to those whose work I have not been able
to use.



x Preface to the Third Edition

As a result of this revision, I believe that the text is now an even better resource for
teachers of mathematics, students of mathematics education, educational researchers,
parents and anyone else interested in how mathematics is learned.

Tony Orton
Leeds 2004
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Chapter 1

Do Teachers of Mathematics Need Theories?

The importance of theories

Educational issues are rarely clear cut. An individual teacher may hold very firm views
on a particular issue in mathematical education, but must at the same time accept that
very different, even completely contrary, views may be held by a colleague in the same
school. Examples are not hard to find. Some years ago, the introduction of pocket
calculators sparked off discussion and controversy about how and when they should
be used. If young children are allowed to use them would multiplication tables ever be
learned? Could sensible use of calculators enhance understanding? A variety of dif-
ferent kinds of structural apparatus exists for helping children to acquire the concepts
of elementary number. Is such apparatus essential? If so, which is the best? Some
teachers believe that mathematics should be a silent activity with each of the children
always producing their 'own work', but other teachers allow cooperation and discus-
sion between pupils. Is discussion important for all or do some pupils opt out and so
learn nothing? The debate about the place of calculus continued throughout the
twentieth century and we cannot assume it is settled even now. Is there a place for
calculus before the sixth form or is it conceptually too difficult for all but a very few?
Although curriculum decisions are only possible within national guidelines, these
examples nevertheless illustrate some of the many issues which would be likely to lead
to varied opinions and to disagreement amongst teachers.

In accepting a particular viewpoint, or in taking sides on a particular issue, it
could be said that a teacher has accepted a theoretical position. Throughout any day
in school we adopt particular ploys and use particular methods because we believe
they work. Such limited theories are based on experience, intuition and perhaps
even on wishful thinking. They may be helpful, but on the other hand they may be
dangerous. For example, is it dangerous to teach the division of fractions in the
primary school? It might be if, in not understanding, children become confused,
frustrated and anxious and come to reject mathematics, seeing it as a meaningless
and worthless activity. It appears that the job of teaching cannot be done without
accepting theoretical views, however limited and small-scale. In this sense it appears
that we do need theories as a basis even for day-to-day decision-making in the
classroom.
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However, although teachers do need to adopt and practise theories in their daily
work it is not unusual to find many who are sceptical or even disparaging about the
value of what might be called general theories. Such larger-scale theories, which
might enlighten the teaching-learning process, are sometimes dismissed as irrelevant,
even without them being given serious consideration. For example, it might not be
appreciated by those of us who use and value structural and other apparatus that the
invention of the equipment could have been prompted by acceptance of a particular
learning theory. One of the earlier kits was devised by Catherine Stern (see Stern with
Stern, 1953) because her belief in Gestalt theory (see Chapter 5) demanded that such
apparatus should be made available to children. And then of course, it is also possible
that some of us reject theories because accepting them might necessitate adopting a
radically different teaching style!

A theory of learning should be compatible with children's behaviour in learning
situations. Thus, it may initially be based on classroom observation, but it should
also ultimately enable us to both understand what we witness and even to take
appropriate action. In this sense our theory explains, and could even predict, phenom-
ena. Hopefully, with sufficient data on which to construct hypotheses, our theory
might present a systematic view of phenomena whilst at the same time remaining
relatively simple to grasp. The general theories which are sometimes rejected with-
out serious consideration have usually been based on a systematic view extrapolated
from a much wider range of events and situations than any one individual is likely
to have experienced and contemplated. The view which underlies this book is
that education is too important for us to be able to dismiss as irrelevant theories of
learning which attempt to do what has just been described. Child (1986) explained
it by saying, '. . . innovation and speculation in learning . . . are more likely to
succeed when they are informed by sound theoretical frameworks'. Larkin (1989)
provides eight reasons for explicit theories, and supports the view that, '. . . more
concern for theory could be beneficial to the field of mathematics education'.
Her reasons include the claim that attempting to formulate even partial theories
exposes defects and gaps which could otherwise go unaddressed. Also, trying to unify
our data clarifies relationships which might have gone unnoticed. She concludes by
saying that:

formulating theories that clearly and succinctly relate data is challenging,
creative work. It makes us think hard about what we know and pushes our
curiosity to enquire further about what we do not know. (p. 275)

One major problem is that there can appear to be a large number of conflicting
or contradictory general theories in existence. Historically, one might say that two
major kinds of theory have been developed, referred to here as 'behaviourist' and
'cognitive', and these two certainly do conflict, though there have been some attempts
at reconciliation. Within these apparently very different schools of thought there
have been variations and amendments over the years. The most important distinction
between the two can be illustrated by referring to a situation in primary mathematics.
It is very important that all pupils come to a working understanding of place value.
At a certain stage in the education of young children it would be reasonable to
ask them to write 'four hundred and twenty-seven' as a number. Some children would
write



Do Teachers of Mathematics Need Theories? 3

40027,
others 4027,
or even 400207,

and these would not be the only answers offered from within the class. Most children,
it is hoped, would correctly write

427,

but the incorrect responses, however few, would require remediation. How should
remedial action be taken? Indeed, how should the children have been taught the
concepts in the first place?

If our theoretical view is that children learn through practising to produce the
correct response to a given stimulus, then we should give them more practice. Such an
approach might incorporate the use of apparatus, but the fundamental objective is
based on the belief that practice makes perfect. In this approach there might well be
the underlying assumption that we are there to feed information and knowledge into
the mind of the child. In an extreme form the approach might be referred to as rote
learning. If, on the other hand, we believe that children learn through making sense
of the world themselves, we would wish them to learn for themselves the essential
relationships through interaction with an appropriate environment. Thus we might
well base the learning experiences on structural or other apparatus and devise suitable
activities, allowing exploration of the structure of the situation. It would, of course, be
necessary to ensure that the notation emerges as being logical and efficient, so some
teacher intervention is inevitable. In this way we would expect understanding to grow
from within, as it were. Any attempt to hasten the child by using rote methods
might not only be unsuccessful, it might persuade the child that mathematics is
meaningless.

It should be stressed that these two contrasting approaches are not intended to
explain fully the difference between particular behaviourist and cognitive beliefs,
they are merely intended to illustrate how possible interpretations might manifest
themselves in mathematics lessons. It would be wrong to tie rote learning too closely
to the behaviourist approach and by implication suggest that it has no place within
any other approach. There is, after all, the eclectic view, that children do need to
develop their own understanding from within, but that there might be a very firm
place for practice, and even perhaps for some element of rote learning. In relation to
place value, used here as an example, it has long been known as an early concept
which presents young children with a real intellectual challenge. The difficulties and
misconceptions associated with it have been documented over the years by many
mathematics educators, and Branford (1921) offered a very early discussion of the
issues.

It is unfortunate if conflicting theories and variations on a common theme lead
some teachers to reject them all. Some conflict is, after all, only to be expected within
a discipline with a very short history. It is sometimes forgotten that the so-called
'pure' sciences of physics, chemistry and biology have been the subject of many
battles throughout hundreds of years and that, even now, disagreements can still exist.
Scientific theories are continually being modified, elaborated and clarified and, from
time to time, radically new ideas are produced. In the world at large decisions have to
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be made, and they are made on the basis of existing theoretical views. Not all such
decisions ultimately turn out to have been correct. Particular theories of learning
might also be wrong, or might subsequently need qualification or amendment. But
the formulation of a theory and the observation of it in action are both part of the
process through which we improve our understanding (see Davis, 1984, pp. 22-6, for
further discussion on this issue). We can learn more about the learning process if we
are prepared to encourage the formulation of theories and then test out those which
appear most likely to help.

Learning is a mental activity. We might therefore understand more about learning
if we knew more about the functioning of the brain as a processor of information. The
brain receives information, interprets it, stores it, transforms it, associates it with
other information to create new information and allows information to be recalled.
The brain also only develops and retains the faculties which it is called upon to use
(Winston, 2003). In recent years considerable attention has been accorded to informa-
tion processing as an approach to learning theories, and this has led to greater interest
in what goes on inside the brain. It has been known for many years that different
learning activities take place in different parts of the brain, though that very simple
statement glosses over complexities which are certainly beyond our scope for the
present. What is clear, however, is that there is a relationship between the chemistry
of the brain, the nerve impulses which are generated, and learning. Chemical
imbalances, unusual electrical activity and inadequate or inappropriate diet can there-
fore all affect mental processing. Thus it should be clear that we might understand
much more about learning, as an aspect of psychology, when we understand more
about the workings of the brain as an aspect of physiology.

One of the traditional justifications for teaching mathematics is that it teaches
logical thinking. Unfortunately, the logic of mathematics is not necessarily the same
as the logic of any other sphere of human intellectual activity. The argument therefore
stands or falls on the theory that the ability to think logically in mathematics is a
transferable skill and can be put into practice outside mathematics. This assumption
has been known in the past as 'transfer of training'. Shulman (1970, p. 55) said:
'Transfer of training is the most important single concept in any educationally
relevant theory of learning'. There is no doubt that the former view that studying
geometry or Latin made one a better logical thinker is now discredited. Nevertheless,
some lateral transfer must be possible, lateral implying the transference of skill in
one domain to the achievement of a parallel skill in another domain (though 'parallel'
is not easy to define in this context), for, without it, learning would be extremely
slow and would be limited to what had actually been encountered in the course of
instruction.

There is no general agreement about the extent to which lateral transfer can take
place in mathematics. There have been psychologists and learning theorists who have
expressed the view that broad transfer can take place, that ideas and strategies can be
transferred within a discipline and perhaps even outside. Thus it might be believed
that mastery of the idea of balance, as a physical property using weigh-scales and
weights, can be transferred and applied to the solution of linear equations, and might
even be transferable to studies of balance in nature and in economics. It might also be
believed that learning how to prove results in Euclidean or any other sort of geometry
would be transferable to proof in other branches of mathematics, to proof in other
disciplines such as science and even to proof in a court of law. Other psychologists have
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believed that transfer only occurs to a very limited extent, perhaps only to the extent
that identical elements occur. This latter view probably carries more conviction than
the former at the present time. Some transfer must be possible, but it will probably
be limited and might depend on the conditions under which learning takes place.
It is certainly not wise to assume that transfer will just happen, when teaching
mathematics, because it frequently does not.

The learning difficulties which one observes as a teacher of mathematics raise many
other questions for which one might seek an answer from theories. For example,
although reflection on our own experience should suggest to us that learning cannot
be achieved in a hurry, some children appear to learn incredibly slowly. Other children
make rapid progress, a few even making astounding progress when given the
opportunity to learn at their rate rather than the class rate. What determines rate of
learning? Is it possible to accelerate the learning of mathematics for more pupils or
even for the majority of pupils and, if so, how? At the moment it seems that for some
children it is not a matter of whether they can learn mathematics more quickly; rather
it is a question of why they appear to take in hardly anything at all. So might it even
be that mathematical ability is a peculiar aptitude not possessed by all?

Individual differences are very significant in many spheres of human activity. Some
of us are barred from particular occupations because of physical characteristics, like
being too small, too overweight, or having poor eyesight. Many of us who have
become teachers of mathematics because of an apparent aptitude and a liking for the
subject would not have been able to become teachers of other subjects, like English,
history or art. Amongst international athletes some are good only at running, others
at jumping events and yet others at throwing events. Individual differences might
be important even within mathematics. Hadamard (1945), in discussing math-
ematicians, drew attention to great differences in the kind of mathematical aptitude
which individuals have displayed. In the classroom it might be that different learning
environments and different teaching styles are needed for different pupils. This
would present very great teaching problems, taking into account that any individual
teacher also presumably has aptitudes and preferences which are in accord with only
a proportion of the pupils. Any acceptable theory which enables us to understand
individual differences would be very valuable.

One interpretation of the evidence of what children appear to learn and appear to
find difficult is that there are serious obstacles or stumbling blocks in the logical
structure of mathematics, and some of these will be looked at in more detail in the
next section of this chapter and later in the book. With many young children, the
ideas of place value appear to present hurdles which cause frequent falls. With slightly
older children the introduction of algebraic notions causes problems for which some
pupils never forgive us. There are mathematical ideas, like ratio and rate, which
frequently cause difficulty for many adults, even though the notions are important
and relevant to daily life. It is possible to survive in life without understanding
the implications of a fall in the rate of inflation, but it is still regrettable that so
many adults have little understanding of key mathematical ideas. So what is it about
particular aspects of mathematics, such as place value, algebra and rate of change,
which makes them so difficult? When we analyse the structure of mathematics in
order to devise the optimum teaching sequence, how do we allow for the fact that the
logical order of topics might not be appropriate for psychological reasons?

A major complexity in learning any subject is the relationship with language
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learning. At a surface level the effects may be observed when a child cannot master the
mathematics because the particular language used is not understood. There are many
examples of peculiar language and of familiar words used in different or very specific
ways in mathematics. At a deeper level, to understand the language is to understand
the concept which a particular word symbolizes. More fundamental still is the
relationship between language and learning. Does language merely enable one to
communicate learning that has already taken place? Is language the vehicle which
enables us to formulate our ideas and manipulate them to create new meanings? Is it
that language development is inextricably tied to overall cognitive development and
cannot be thought of as a separate entity?

It has been suggested earlier that the environment might be an important factor
affecting both what mathematics is learned and how understanding of mathematics
develops. It might, therefore, be postulated that the richer the environment the more
efficient the learning, but to some extent that begs the question. What constitutes
a supportive learning environment in a subject which is basically a creation of
the human mind and in which the aim is to enable abstract argument to take
place through the mental manipulation of symbols? The belief that young children
must be allowed and encouraged to interact in a very active manner with physical or
concrete materials is a theoretical stance suggested through experience of teaching
young children. If we accept this and provide an environment rich in equipment
and learning materials for young children, how soon can we wean them away from it?
Do we need to do anything for older children in, for example, coming to terms
with algebra? Or should we not be attempting algebra until the pupils can manage
without concrete apparatus? When can learners begin to learn only from exposition
and from books?

These are some of the many aspects of mathematics learning for which we might
seek answers, and many of the theoretical viewpoints expressed in subsequent parts of
this book do attempt to address questions raised above. It has already been suggested
that teachers need theories, hence major theories of all kinds and from many sources
are included within the discussion of particular questions. They are introduced,
chapter by chapter, in an approximate chronological order. First, however, some
comments on the investigation of children's understanding are pertinent. Before we
can consider what any theory might suggest in relation to learning mathematics,
we ought to be fully aware of the extent of the problems experienced by pupils.

The origins of theories

As teachers, we may be involved in writing and interpreting syllabuses and preparing
detailed schemes of work. Many of us are guided, or more likely constrained, in such
tasks by a national curriculum. In this planning, and indeed in the preparation of a
national curriculum itself, it would seem to be important to take into account the
evidence of what children appear to be able to learn, and in what sequence. There is no
point in defining unreasonable objectives, though a major objective is always to
challenge the pupils and extend their knowledge and understanding. We may also
need to take note of any substantive evidence that pupils in countries other than our
own are achieving more than our own pupils are. After all, we currently live within a
political climate of constantly trying to prove that standards, however they may be
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defined, are going up. But in seeking the right road for our pupils we may choose a
middle route and so get it wrong for many. On the one hand, evidence of children
failing to learn because of unreasonable aims might be ignored, as we try to impart as
much of our own mathematical knowledge as we can in as short a time as possible. On
the other hand, we might believe that some groups of pupils are not being sufficiently
extended.

At most stages in the education of the majority we find an extensive and arguably
frequently overloaded mathematics curriculum, with pupils hastened along through
material which, at best, is only half-learned by a considerable proportion of the
children. Naturally, it must be admitted that it is difficult for anyone to achieve
complete mastery of anything, in the sense that there might always seem to be further
extensions, just as climbing one mountain peak invariably reveals a view of even
higher ones. The point at issue is whether the pupils achieve adequate mastery to
enable them to proceed with what we have decided comes next. The available evidence
suggests that many pupils frequently fail to match up to our expectations in this
respect. Indeed we, the teachers, can be very easily misled. Young children can often
learn to recite numbers long before they fully comprehend what the numbers
represent and how they are related, and we can easily assume they know more than
they do. Pupils can appear to be attaining correct answers to set tasks, but they might
be slavishly following the routine we have suggested and might not grasp why the
method works.

Place value has already been used as an example of a topic which creates difficulties
for many pupils. It has been discussed in greater detail elsewhere, in for example
Brown (1981b) and Dickson et al. (1984). The Cockcroft Report (1982), drawing on
Brown's research, referred to a 'seven-year difference' in respect to the age at which
pupils might be expected to provide a correct answer to the sum

6399+1,

in the context of counting spectators through a turnstile. The conclusion was that the
task is in general mastered by the 'average' child at around age eleven years, but
that some seven-year-old children would be able to cope and some fourteen-year-old
children would not. It is not that such learning difficulties experienced by pupils have
only recently been detected, for awareness of the problems encountered by many
pupils has been growing over a long period of time - see, for example, Branford (1921)
and Renwick (1935). However, it might be that not enough people have been aware
of the extent of such learning problems in the past, as Fogelman (1970, p. 72) has
suggested:

It is only in the last few years that we have adjusted ourselves to the idea that
seemingly simple concepts . . . are acquired only gradually during the period of
primary schooling. It is not yet appreciated that a sizeable minority of children
cannot handle these concepts even after they are in secondary school.

Place value is a key concept in the early stages of learning mathematics, and it cannot
be avoided. Thus, we need to be fully aware of the difficulties faced by some children,
and we need to search for ways to help individual children to grasp this fundamental
idea.
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In contrast, it is doubtful whether any mathematics teacher would wish to argue
that long division is a key concept. In recent years, there seems to have been disagree-
ment between educators and others in society about the importance of this topic in the
primary curriculum. Where there is a similarity with place value, however, it is in the
fact that children, seemingly down the ages, have struggled to master long division.
Indeed, teachers have always found it hard to explain the method and why it works. In
this context, it is important to stress that there is a very big difference between the
concept of division, as manifested perhaps in short division tasks, and the complexity
of many traditional long division questions. Renwick (1935) reported American
research that the optimum mental age for beginning to learn long division was twelve
years seven months. Her Majesty's Inspectorate (HMI) (1985, p. 12) have suggested
that,'. . . some standard written methods of calculation, such as a long division, which
many pupils find difficult and few really understand, should no longer be generally
taught'. Yet it could be said that it is the widespread availability of cheap calculators
which has prompted this statement, not the difficulty of long division. We certainly
cannot claim that we did not know that long division was difficult, and we should not
turn a blind eye to the evidence whatever our curriculum dictates. However, although
we might now regard long division as less vital than it once was, and too difficult
anyway, it still seems that this conclusion has not yet been accepted by our political
masters and by the wider community.

Learning is rarely easy, of course, but there are many topics in our primary school
mathematics curriculum which pupils find particularly difficult. The primary school
curriculum convincingly illustrates how our enthusiasm to introduce pupils to all the
interesting mathematics we can think of can blind us to the magnitude of what faces
the average child. Naturally, we are obliged to try to extend all of our pupils, and we
need to provide just as fully for the most able as for the weakest. But the new freedom
from the old restrictions of the 11+ selection examinations, obtained in the second half
of the last century, immediately led to a considerable broadening into extra topics
without a corresponding reduction of existing ones. Why, for example, does work
with fractions still constitute such a substantial part of the primary curriculum?
Nearly all of what we teach of fractions in the primary school is re-taught, often every
year, to pupils in the secondary school, because many pupils never seem to achieve
adequate mastery. Although we may pride ourselves that we can explain to our own
satisfaction why the method of division of fractions works, very few pupils grasp our
explanation. We can often mislead ourselves that, because our explanation has been
lucid, clear and logical, the message has been received, but one cannot deliver a
curriculum! Is it really necessary that children should be able to add, subtract, multi-
ply and divide a wide range of sometimes awkward pairs of fractions? Essential ideas
illustrated by very simple cases might make much more sense, particularly at primary
school level. It was Skemp (1964) who, in devising his own curriculum and textbooks,
emphasized the view that fractions provide the obvious example of a mathematical
idea previously assumed to be elementary which analysis of concepts reveals as very far
from simple. This message itself was not new and had already been comprehensively
discussed in Renwick (1935), but we clearly need to keep reminding ourselves of such
facts.

Fractions are not irrelevant to the curriculum, however, even if we may be over-
ambitious in what we hope to achieve with many of our pupils. Fractions are rational
numbers, and ratio is without question a fundamental concept in the development of
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mathematical understanding. One reason for the importance of teaching ratio (and
proportion) is that it provides a useful problem-solving technique, either by direct
manipulation or by the method variously known as 'the unitary method', or 'the
method of practice'. A simple example of this would be: 'given that seven pencils cost
63 pence, find the cost of three pencils'. Beyond such elementary problem-solving,
other mathematical concepts build on the basic concept of ratio. Geometrical
theorems and results based on similarity and on parallel lines and intercepts require a
grasp of proportionality. The idea of gradient, which is fundamental to the algebra of
graphs and to calculus, also depends on ratio and proportion. Simple trigonometry,
likewise, has its beginnings in the study of equal ratios. Rational numbers are studied
throughout most years of a child's school life, progressing through operations on
fractions, decimals and percentages, and perhaps culminating in a more formal study
of the number system. Ratio also underlies pie charts, scale factor and the slide
rule (now superseded by calculators). Ratio and proportion not only pervade much of
the mathematics curriculum, they also support topics within other school subjects.
The development of scientific understanding relies on the ability to handle ratios,
for example in the definitions of density, velocity and acceleration; in calculating
chemical equivalents; in applications of the ideal gas laws and in using many laws of
physics. Other school subjects make use of proportionality through simple calcula-
tions such as the pencil problem, through percentages, through scale drawing and
through graphical representation.

Although ratio and proportion are important in so many subject areas, pupils often
struggle and find it difficult to handle situations involving the notions. A considerable
quantity of evidence from children's responses in proportionality situations has now
been assembled. A typical basic proportion task was devised and used by Karplus and
Peterson (1970), in one of the early large-scale research projects on understanding
proportion. This particular task has subsequently been used in many countries around
the world, because it encapsulates the concept of proportionality so concisely, and in
what is such an elementary situation (to a mathematician). The task is based on the
heights of two pin men, known as Mr Short and Mr Tall. A diagram is provided (see
Figure 1.1), and two different measuring techniques are described, using objects such
as paper clips and buttons. Thus, Mr Short is first found to measure four paper clips,
and then Mr Tall is found to measure six paper clips. Finally, Mr Short is measured

Figure 1.1
Mr Short Mr Tall
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with the buttons and is found to measure six buttons in height. The question is how
many buttons will be required to measure Mr Tall? In any secondary school year group
the percentage of correct responses from a sample of pupils across the ability range can
be surprisingly small. More able pupils naturally have a higher success rate than other
pupils, but the success rate only grows slowly with increasing age.

Since 1970, ratio has been extensively researched, and it has become abundantly
clear that, like place value, it presents real problems, but this time to many secondary
school pupils. The understanding of proportionality develops late in the school life of
many pupils, if it develops at all. The difficulties which ratio and proportion present
to pupils have been known about for a long time. Renwick (1935) suggested that the
concept was far beyond the intellectual range of intelligent pupils of eleven years of
age. For intellectually weaker children it seems to be beyond their range at fourteen,
and for some it seems doubtful that it will ever be within their range. We must take
this not as an indication that proportionality should be avoided at all costs, for it is so
fundamental to mathematics, and therefore must be included in the curriculum. We
should rather continue to seek a better understanding of the difficulties in order to
inform our teaching. More detailed information about ratio, including attempts
to achieve greater understanding, are to be found in, for example, Hart (1981) and
Hart (1984).

Indeed, there are many other serious learning problems in secondary school math-
ematics, algebra being another obvious example. Sometimes textbooks with a high
algebraic content and intended only for very able pupils have been used with weaker
pupils as well. Cockcroft (1982) was very critical on this point, suggesting that
the majority of secondary school pupils were following syllabuses which were of
a difficulty and extent appropriate only to about a quarter of pupils. The current
curriculum of the General Certificate of Secondary Education (GCSE), and the specifi-
cations for the various National Curricula of the United Kingdom, together suggest
that the inherent difficulties of algebra have now been to some extent acknowledged.
Overall, however, it seems that we, as teachers of mathematics, have a very mixed
record when it comes to taking into account evidence of what children can learn.
We still frequently have a tendency to want to teach mathematics which we know
countless previous generations have been delighted to reject as both unintelligible and
worthless as soon as they leave school.

However, it has to be admitted that it is not easy to be sure of what children can
learn. We may feel that we have imperfect, even conflicting, evidence on which to base
our decisions. In the first place we do not know precisely what children can learn, only
what they appear to have learned on the evidence obtained on the day of a test or more
informally in a class lesson. We are forced to use measuring instruments which may be
far from perfect. Certainly the evidence gained even from typical school tests and
written examinations may be very flawed. Probably the best vehicle for investigating
what has really been learned and what misunderstandings and misconceptions still
remain is the individual interview, widely used by Jean Piaget and by countless other
researchers as they discovered its value. In this method the teacher, or researcher, asks
the child questions, records the responses, and subsequently analyses the interview
data obtained. That sounds very straightforward, though it may only occasionally be
possible in a normal classroom situation. There is, however, usually rather more to
the collection of reliable data than this simplistic outline suggests. Questions or tasks
need to be carefully structured, sequenced and standardized, so that there will be
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validity to data collected from a large number of interviews with many different
children. It is often necessary to have a range of alternative standardized questions,
and to be ready with appropriate supplementary standardized questions to be used
according to the initial response or reaction of the child. It is not always easy to train
oneself to become a researcher of this kind. It is very easy to fall back into the role
of the teacher and make suggestions, or coax, or just simply talk too much instead of
listening. It is very hard to allow free rein to the child whilst still being systematic in
the collection of evidence. Piaget (1973, p. 20) summed up the problem as follows:
'The good experimenter . . . must know how to observe . . . [but] must constantly
be alert for something definitive, at every moment he must have some working
hypothesis, some theory, true or false, which he is seeking to check'. In the context of
this book, it is interesting to note the reference to theory in Piaget's statement.
Naturally, we do not need to collect data and then leave the children in ignorance of
their weaknesses. We can subsequently set about trying to remedy any deficiencies in
understanding all the better for having an accurate picture of what the problems are.

Even if one is able to collect useful research data there can be other complications,
for example apparent inconsistencies. Sometimes it seems that children can answer a
question on one day but not on the next. Sometimes it seems that children can answer
one question but cannot answer another which seems to us to be exactly alike. Some-
times our evidence might suggest that task A is harder than task B, and sometimes
the reverse might appear to be true. Sometimes the accessibility of appropriate
language might not be adequate for the children to convey adequately what they really
do understand, but how do we know? Sometimes the variety of responses, the com-
plexity of the data collected, almost defies analysis. Often, children are learning from
our questions. Such are the difficulties, but all research must present comparable
difficulties. Despite these problems, and possibly many others, the evidence strongly
suggests that there are widespread misconceptions, that there are limits in terms of
levels of understanding which are achievable by individual children at particular
moments in time.

We must also take into account that we all have a greater capacity for learning
when we really want to learn. We cannot ignore the effect on quality of learning of
motivation, interest, determination and the desire to succeed. We know that pupils'
self-confidence can affect their success in mathematics (Askew and Wiliam, 1995).
We know that a novel approach can assist in lodging new notions firmly in the
mind (Winston, 2003). The search to find ways of making school mathematics more
appealing and exciting, more relevant and more obviously useful, must never end,
because we know that children learn much better under such circumstances. High
levels of motivation and interest in individual children who do not shine in school
mathematics can make them experts in very diverse areas of knowledge from pop
records to computer games, from football to British butterflies. At the opposite
extreme is the problem of demotivation through anxiety. This might be created
through unsuitable subject matter, unsympathetic teaching and a whole variety of
environmental factors. Also, some children do appear to panic quite badly, and this is
clearly not helpful in fostering learning (see Buxton, 1981). We do not know what
such anxious children might achieve under different circumstances if we could find a
way to dissipate the anxiety. It is not possible to completely separate out the cognitive
factors from the affective (where cognitive may be thought of as pertaining to the recall
or recognition of knowledge and the development of intellectual abilities and skills,
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and affective as pertaining to interest, attitudes, values and appreciations — see Bloom
etal., 1956 and Krathwohl etal., 1964).

The topics of place value, long division, ratio and algebra have been used in this
section to justify the claim that many pupils experience real difficulties in trying to
grasp the ideas and concepts of mathematics. Experienced teachers of mathematics
will already be aware of such difficulties. The major issues which any theories of
learning need to address include both a consideration of why it is that learning is
not straightforward, and why it is that there are notable stumbling blocks in the
mathematics curriculum. We should also hope that a by-product of any theory would
be at least some hint of what might be done to ease learning and thus improve the lot
of the children and of their mathematics teachers. Thus, the origins of theories must
lie with the struggles experienced by the pupils, and with the well known difficulties
caused by critically important topics. The data on which any theories are based must
originate with the children and largely in their classrooms, and must be collected in
a reliable and objective way. More immediately, and in the next chapter, we shall
consider more deeply the nature of what it is that we are expecting our pupils to learn.
What kinds of knowledge and understanding does mathematics incorporate?

Suggestions for further reading

Branford, B. (1921) A Study of Mathematical Education. Oxford: Clarendon Press.
Ginsburg, H. (1977) Children's Arithmetic: The Learning Process. New York: Van Nostrand.
Holt, J. (1964) How Children Fail. Harmondsworth: Penguin Books.
Renwick, E. M. (1935) The Case Against Arithmetic. London: Simpkin Marshall.

Questions for discussion

1. What do you believe are the most effective teaching methods for promoting the learning of
mathematics? (These beliefs might change as a result of reading this book!)

2. To what extent should the teaching of mathematics be intuitive and pragmatic and to what
extent should teachers be deliberately trying to put theories into practice?

3. What issues concerning mathematics learning and their implications for teaching are
debated or discussed in your school? What should be discussed?

4. What mathematical topics or ideas appear to be particularly inappropriate because pupils
experience learning difficulties? What is it about these topics, do you think, which makes
them so difficult?



Chapter 2

What Cognitive Demands Are Made in
Learning Mathematics?

The problem of classification

There have been various attempts to classify the mental constructs involved in learning.
Gagné (1985) listed and described eight types of learning. Bloom et al. (1956) pro-
vided a detailed analysis of the objectives of education in the cognitive domain. Skemp
(1971) discussed the processes which need to be adopted in doing mathematics. Polya
(1957) attempted to analyse the process of solving mathematical problems, a theme
subsequently taken up by Wickelgren (1974). Brown (1978) suggested that there
were four types of mathematical learning, namely simple recall, algorithmic learning,
conceptual learning and problem-solving. Her Majesty's Inspectorate (1985) listed
five main categories of objectives for mathematics learning, and these were facts,
skills, conceptual structures, general strategies and personal qualities. The four
cognitive categories here bear a close resemblance to those of Brown, and basically
provide a suitable structure for further discussion, although in reality all four are
inextricably linked in the learning process.

Retention and recall

Children are expected to be able to recall from memory a variety of different facts or
qualities in mathematics, for example:

words (e.g. length, metre, triangle)
symbols (e.g. +, -, X, ÷, /)
numerical facts (e.g. addition 'bonds', multiplication tables)
formulas (e.g. A = Ib, C = 27πr).

Memory has been the focus for considerable research effort by psychologists over
many years. At one time it was believed that our powers of memory could be improved
by exercising them, in other words by being made to learn anything — relevant and
useful or otherwise. Such an extreme view is not now acceptable, though the value of
exercise in the form of meaningful practice still has a place in education. The modern
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view of memory is that it is a feature of overall intellectual capacity, and that different
people might even have differing capacities regarding what kinds of knowledge or
understanding can most readily be remembered. As with the processing powers of the
brain, human capabilities in terms of memory have been studied from physiological
perspectives. There is no doubt that the chemistry and physics of the brain might
provide the ultimate answers to problems studied in educational psychology but
we do not have complete answers yet. Such physiological studies are therefore not
considered to be within the scope of this book.

It should be pointed out that psychologists have expressed the view that we
possess both short-term and long-term memory. What we certainly wish to achieve
is accurate long-term storage together with ready recall, and the problem is how to
achieve these. Retention of knowledge has often been associated in the past with rote
learning; drill (repetitive practice) was thought to be the answer to the problem of
fixing knowledge in the memory, though subsequent difficulties of recall suggest
that drill alone does not necessarily achieve long-term retention. The recent history of
curriculum development in mathematics, however, reveals a clear, new view from
innovators that the emphasis should be taken off memory work so, for example,
formula lists or booklets are now provided for candidates in certain examinations.
There is considerable doubt whether this movement has carried all mathematics
teachers along with it, but it has happened. There is an obvious efficiency factor in
having knowledge readily to hand, and nothing is more 'to hand' than the forefront
of our own mind, so there is much to be said in favour of being able to remember
mathematical facts and results. The view from psychology is that committing
knowledge to memory is important in terms of efficient processing but at the same
time rote learning without meaning is relatively unhelpful. Cockcroft (1982) did
include practice of skills and routines in the list of features of good mathematics
teaching, but there was much more besides. Rehearsal is certainly a necessary part
of learning, but it is unlikely to be sufficient, as we all prefer to have an underlying
meaning to the knowledge we are expected to acquire. In other words, retention and
recall are easier if what is learned is meaningful in terms of the network of knowledge
held in the mind of the learner. At the same time, however, repetition of a kind is
often what establishes the link to the appropriate networks (Winston, 2003).

One difficulty in accepting the view that repetition is inadequate on its own
immediately emerges. What must we do for learners at the very beginnings of
mathematics when there is virtually no network of mathematical knowledge in the
mind of the learner? How, for example, is the child to learn the symbols 0 to 9 and the
corresponding words? There is clearly meaning to be learned in the ideas of 'oneness',
and 'twoness' and so on, but the symbols and words are essentially arbitrary and
therefore have to be learned by rote. Even as a child progresses through mathematics
some element of rote learning must remain, in particular in relation to many words
and symbols. Some words may be remembered more easily because they are used in
everyday life, for example, 'length'. Other words like 'litre' and 'centilitre' are not often
used in everyday speech and need to be practised in order to be remembered. Meaning
is also involved, however, in the relationship between the capacities which these
two words represent and the connection with the prefix 'centi'. The word 'triangle'
would seem to be very meaningful in its bringing together of the two ideas of three-
ness and angle, but there must be considerable doubt as to whether this is helpful
when the teacher first talks about triangles because the concept of angle is still likely
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to be relatively unformed. Symbols must frequently involve rote learning. Some
require very careful discrimination, for example + and X, and also — and 4÷. In learning
mathematics, and particularly in the early years, it seems inevitable that learning by
rote or by simple association will be involved to some extent.

There is a variety of ways in which retention can be fostered. Novelty of presenta-
tion is effective, but is difficult to achieve regularly in most classroom lessons. Gener-
ally, we have to settle for more ordinary attempts at variation, such as in the layout
within text and exercise books. Different type styles, different colours, the placing of
certain key elements in boxes and summary notes are all helpful. Repetition, or
rehearsal, has a part to play, both spoken and written. Constant 'sung' repetition of
multiplication tables was once commonplace in mathematics lessons. Such learning
techniques cannot be considered bad if they achieve their objective, but of course they
often did not, and in any case there are patterns, relationships and properties within
tables which give a conceptual component to them which suggests that repetition is
not likely to be the only way of promoting the learning of tables. Rehearsal, however,
must not be rejected out of hand as a way of assisting in the fostering of retention of
facts. Periodic revision, likewise, is also important.

Retention can also be promoted by using deliberate contrivances such as mnemonics.
The use of a variety of such devices has always been common in learning the basic
three trigonometrical ratios, for example, 'oranges have segments (sectors), apples have
cores', for:

opposite
sine =

hypotenuse

and

adjacent
cosine =

hypotenuse

or the more lengthy statement, 'some officers have curly auburn hair to offer
attraction', which includes cues for the tangent ratio as well. It is interesting that
mnemonics have not been used widely outside trigonometry. It may be that oppor-
tunities for using other mnemonics in the rest of mathematics are very limited, but
they do work, and we must acknowledge that and use them as appropriate.

Even if retention is achieved we cannot test it without recall, and recall can be a
serious problem. Sitting and thinking, hoping the elements will come back, 'racking
one's brains', is frustrating and tiring. Often, however, presenting the learner with an
appropriate cue 'jogs the memory', but it is how to arrange for the right cue which is
the difficulty. Memory is, to some extent, context specific, which is why our memory
is sometimes jogged by reconstructing the situation in which the original experience
occurred. Teachers are willing to provide children with appropriate cues, but there
comes a time when pupils might have to manage without external help. In the case of
mnemonics, the 'rhyme' provides the cue. Structure built into the retention greatly
assists recall and figuring out. Learning which has been achieved simply by rote
and without a link into a network of knowledge does not facilitate recall. Askew and
Wiliam (1995, p. 8) comment that: ' "Knowing by heart" and "figuring out" support
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Figure 2.1

each other in pupils' progression in number'. A concept map fixed in the mind might
also help. It may enable the child to follow the network to the required element,
or might release a complete structure of elements once a few key ideas are remem-
bered. Considerable attention has been given to the idea of concept maps since
their first introduction. A concept map is simply a linked network of related elements
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Figure 2.2

of learning material. It can be used in a variety of ways. It can be used by
teachers in course planning, it can be given to pupils as a model for revision, and it
can be used by a learner in a deliberate way in the learning process. An example
is given in Figure 2.1 which is a map of mathematics associated with triangles and
triangularity. This map, as with most such maps, is not exhaustive. At the same time,
it may be too difficult for most children to appreciate that there are so many related
mathematical ideas, so more limited maps might be more useful in assisting
remembering, for example the diagram in Figure 2.2, which was created by a middle
years pupil.

In connection with using concept maps there are provisos which need to be
mentioned. First, there is much more to be learned, for example, about triangles,
than can be memorized without understanding, so that in introducing concept
maps within this section we have certainly gone beyond the basic ideas of retention
and recall. Secondly, and unfortunately, the effect of concept maps presented by the
teacher, in helping to foster retention, is also likely to be limited. The basic problem
here is that, when learning, we each put our own structure on the material that we
absorb into our minds. Modern constructivist views suggest that learners do not
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remember material exactly as it was taught, that meaning is not absorbed but is
constructed, and that retention involves an active process of construction (see Chapter
11). There is, therefore, the suggestion that many of the learning difficulties recorded
in the previous chapter are not caused by failure to absorb all that was taught but
rather that they are failures of reconstruction. Retention and recall are clearly not
simple processes.

Using algorithms

Learning mathematics is very much concerned with learning algorithms, for example,
the following:

long multiplication
long division
adding and subtracting fractions
multiplying fractions
dividing fractions
multiplying matrices.

Clearly, memory is also important here, but in using algorithms the pupils have to
remember a step-by-step procedure rather than isolated facts. A worrying feature
about algorithms in mathematics is that many which we expect children to remember
and use with confidence lack meaning for the pupils, in terms of worthwhile
knowledge, and sometimes appear completely irrelevant. The distinction between
instrumental understanding and relational understanding (Skemp, 1976) is helpful in
appreciating this point, and this is illustrated below.

One of the less obvious school algorithms is for converting denary (decimal)
numbers to binary. Assuming that 13 is our denary number, we divide it by 2 and
record the quotient (6) and the remainder (1). Next we divide 6 by 2 and record
the quotient (3) and the remainder (0). We continue until the quotient is 0, as shown
here.

Then the required binary number is 1101, formed from the remainders - but in
reverse order! It may be possible for pupils to learn this as a procedure, but it is
doubtful if many would appreciate why it works, let alone why they need to know it.
Thus, they might understand what to do to get the answer, in which case they
have achieved instrumental understanding, but they have not necessarily achieved
relational understanding, when the procedure makes total sense. There is something
of a parallel between this distinction and that between memorizing by rote and
memorizing through establishing connections in the mind.

Another example is the addition of two fractions, as follows:

2
2

2

2

13

6

3

1

0

1

0

1

1
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a c
- + -
b d

ad + bc

bd

2 1
However, this algorithm is sensible for some fractions, such as - + -

1 1
but is not sensible for - + -

2 4
1 2

nor for - + -
6 9

because these sums may be obtained more simply. Furthermore, the subtle variations
in method which are sensible for the latter two examples can only be appreciated
through relational understanding, incorporating the idea of lowest common multiple.
Recently, this algorithm has been linked with the idea of equivalent fractions. Since
the equivalence of fractions depends on the equality of ratios (proportion) it is open to
question whether such use of equivalence leads to any greater understanding (see
Chapter 1). In any case, why should we wish young children to be using a routine
process to add fractions in the first place?

The worst scenario concerning fractions involves division, for example,

3 ÷ 7 _

5 ' 10

The equivalent fractions approach suggests using ̂  and ̂ , but how do we then justify
the rest of the procedure which leads to the answer? To find the answer instrumentally,
one 'inverts the second fraction and replaces the -f by X. This seemingly arbitrary set
of instructions often leads pupils to confusion. Which fraction is the one to invert?
Or is it both? Relationally, of course, we wish to know how many ̂  there are in y, and
this may be attempted through a progression of examples starting with very simple
ones. However, it might not be possible to progress as far as this rather more difficult
example, in which case — is the instrumental approach justifiable? Is it necessary? If it
is necessary, at what age is it appropriate to aim for relational understanding? In
reality, relational understanding of the division of all possible pairs of fractions does
not appear to be achievable by most pupils within the compulsory years of schooling.

A major problem with algorithms is that we often appear to introduce them before
the pupils see a need for them. For example, we teach pupils how to solve linear
equations in a kind of algorithmic way by applying a set of rules when the equation
can, and often will, be solved by inspection, or by trial and improvement. At the time
of introduction to the procedure the equation

2x + 3 - 11

will not be willingly solved by the method:

3 4
- + -

=

- -
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2x + 3-3 = l l -3
2x =8

8
x = —

2
x =4

This reluctance to accept the taught routine is because anyone can see almost at a
glance (or by mailing) that x = 4! Hart (1981, p. 212) stated:

We appear to teach algorithms too soon, illustrate their use with simple
examples (which the child knows he can do another way) and assume once taught
they are remembered. We have ample proof that they are not remembered or
[are] sometimes remembered in a form that was never taught, e.g. to add two
fractions, add the tops and add the bottoms.

One of the difficulties we must contend with, however, is that we cannot be sure
that relational understanding must precede the use of an algorithm, or is indeed
necessary at all. There is some evidence that relational understanding can be developed
by thoughtful use of an algorithm over a period of time, in other words that instru-
mental application might help to promote relational understanding. Learning is so
complex, and we all learn in so many different ways, that it seems like another chicken
and egg situation. Which comes first? Nevertheless, there seems to be no doubt that
too much instrumental learning is accepted in mathematics with pupils for whom
relational understanding seemingly will never come, and that too much dependence
on instrumental understanding in learning mathematics can be rather like building a
tower on insecure foundations. Such a tower will eventually crumble, and perhaps
from somewhere quite near the bottom. As with so many aspects of learning, it is not
easy to find the right compromise. This compromise might, after all, be different for
different pupils! If we decide that a particular algorithm has some value is it justifiable
to teach it, even knowing that relational understanding is impossible to achieve? Are
there any essential algorithms anyway? If so, which are they?

Learning concepts

There are problems in remembering facts in mathematics, and there are difficulties
in learning algorithms meaningfully, but the conceptual structure or basis of math-
ematics is likely to be even more demanding. Learning mathematics consists very
largely of building the understanding of new concepts onto and into previously under-
stood concepts. Examples of concepts are so widespread that it is almost unnecessary
to quote any, but for comparison with simple recall and algorithmic learning here are
a few:

triangularity
percentage
relation
similarity
limit.
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Strangely, however, it is not easy to explain what a concept is. A dictionary might tell
us that a concept is an 'abstract idea'. The definition by Novak (1977, p. 18) is rather
more helpful, namely: 'Concepts describe some regularity or relationship within a
group of facts and are designated by some sign or symbol'. Novak went further and
also defined a 'theory' as being like a higher order concept, 'in that [it] may suggest
order or relationships between less inclusive concepts'. However, it is probably easier
to understand any definition of concept retrospectively, as it were, after thinking
about particular concepts and what is involved in using them.

Skemp (1971) discussed exactly this point in a very helpful illustration of how
concepts are learned. Considering the hypothetical situation of an adult born blind
but given sight by an operation Skemp suggested that there is no way we can help
the adult to understand the concept of 'redness' by means of a definition. It is only
by pointing to a variety of objects which are red that the adult might be able to
abstract the idea of redness, as one particular property which is common to all of the
objects. Clearly, one would also assume that counter-examples, involving objects
which were not red, would also help to clarify what was meant by 'redness'. Skemp
was claiming that the learning of mathematical concepts is comparable. We must not
expect that children will learn through definitions. We need to use examples and
counter-examples. Thus, in exactly the same way, we can run into difficulty in trying
to define what we mean by a concept in mathematics unless we have many examples
in mind.

The clear implication is that we learn about triangularity through examples of
triangles and the contrast with other shapes. The concept of 'triangle' is probably
relatively easy to grasp in this way, but we must not take it for granted. After all,
children are sometimes very reluctant to admit that the shape in Figure 2.3 is a square,
and often wish to call it a 'diamond', and indeed sometimes vehemently deny that it is
a square. It would seem likely that our examples of squares, from which abstraction
of the concept takes place, have not included a sufficient number for which one side
is not parallel to the bottom of the page, chalkboard or whiteboard. This is a point
made by Dienes (I960) in connection with his theory of mathematics learning (see
Chapter 10). Other concepts, such as 'similarity' and 'relation', are certainly much
more difficult to learn (see Orton, 1971). The idea of a 'function' in the language of
modern mathematics was always very difficult to introduce, and probably irrelevant to
most children anyway. Using functions without trying to define the idea abstractly
may be the best starting point, and a more abstract definition of function can then be

Figure 2.3
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provided much later only to those for whom it is appropriate. We need to be very
careful when trying to introduce abstract mathematical ideas. Some ideas may be more
abstract and therefore more difficult than we imagine. Skemp (1964), in drawing
attention to the surprises we may get through concept analysis, cited not only
fractions as being very much harder than we had previously thought but also sets as
being very much easier.

The precise mathematical definition of a concept, based on many years of handling
examples, is something the mathematics teacher needs to have, but even that might
cause problems. We all know exactly what a triangle is, but do we know what a
natural number is? To many professional mathematicians the natural numbers are
0,1,2,3,4,5 . . . but to others they are 1,2,3,4,5 . . . . The definition of prime numbers
at one time included unity, and may still do so for some people, but nowadays most
definitions of prime numbers exclude unity. Some books might define rectangular
numbers to include the square numbers, and others might not. Some books might
define both 'rectangular' and 'oblong' numbers in order that rectangular numbers
should include square numbers, with oblong numbers being those rectangular num-
bers which are not square, but other books might not accept 'oblong' as a useful idea.
Yet it is possible to learn mathematics without having a completely 'watertight'
definition of certain concepts. Certainly, our concepts grow and develop over the
years. We introduce children to 'numbers', meaning only the numbers we count with.
Subsequently, and over many years, other kinds of numbers are introduced, namely
fractions (rational numbers), integers, irrational numbers and real numbers. Thus our
original numbers have had to be redefined as natural numbers. Despite the apparent
complexities of concept redefinition which are implied, learning can still take place.
There are other problems too. As we have seen, Skemp (1964) expressed the view that
sets were relatively simple to understand, but how should we introduce the notion of
the empty set? The emptiness of particular intersections of sets or of particular defined
sets is an easy idea but not so the uniqueness of the empty set, nor the fact that the
empty set is a subset of every set (contemporary school curricula are not likely to
include this complication). Yet learning about sets can still take place successfully,
and can still enlighten certain mathematical ideas, whether the topic of sets is
included in the statutory curriculum or not.

Boundary disputes might be less likely in mathematics than in other areas of
knowledge, but they do exist, for example whether a square is a rectangle. Dis-
tinguishing between blue and green around the boundary between two colours
might lead to disagreement, but is unlikely to hold up learning or cause argument.
We do not fully know what the boundary problems are for children in learning
mathematics, and how much they interfere with learning. The definition of concept by
Child (1986, p. 72) acknowledges that there is a boundary problem:

With most concepts there are wide margins of attribute acceptability. . . . In
some cases, the boundaries which distinguish concepts are hazy and ill-defined.
But generally speaking, there is a large measure of agreement in the definition of
most class concepts within a given culture.

The suggestion by Skemp that we do not learn concepts from definitions is not the
only major strand of recommendations. In Nuffield (1967, frontispiece) we find
the simple proverb:
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I hear, and I forget;
I see, and I remember;
I do, and I understand.

Here is a strong activity message, also found in the Schools Council Report (1965) and
in many other documents including Cockcroft (1982). The assumption in all of these
references is that children, particularly young children, learn best by proceeding from
the concrete to the abstract. Perhaps, to a large extent, we all learn through concrete
examples, though thinking purely in abstractions does become more possible, though
not certain, in adulthood. Cockcroft, in many paragraphs, emphasized this kind of
message, and suggested that it is important that we do not assume that practical
approaches should be limited only to young children, or to children whose attainment
is low. Cockcroft also stressed the slowness of the progression from concrete materials
to abstract thinking. The Schools Council Report (p. 9) emphasized the same in:
'Children learn mathematical concepts more slowly than we realized. They learn by
their own activities'.

Such views as those recorded above, and many other related views, are common to
most publications which set out to make recommendations to teachers about how
to help children to learn mathematical concepts. The theories of learning which are
discussed in some subsequent chapters of this book all face up to the crucial issue of
how to promote concept learning. In fact, many of the above references show clear
evidence of close association with such theories of learning anyway. It is interesting
to note that one theorist, Gagne (1985), was at pains to claim that some concepts can
be denned. He suggested that there are two kinds of concepts, concrete concepts and
defined concepts and, whilst admitting that many concepts require a concrete approach,
since they are fundamentally classes of objects, events and qualities (for example,
'angle', 'triangle' and 'regularity'), he pointed to other concepts such as 'pivot', 'uncle'
and 'sell' which cannot be learned from examples. This issue will be raised in the
next chapter. Suffice to say at this stage that Gagne" s view is open to debate, and
if a distinction exists between concrete and defined concepts it is not a clear dis-
tinction, at least in terms of learning mathematics. What neither Gagne nor any
other major theorist has denied is that, in the case of young children learning math-
ematics, attempts to define concepts are unlikely to be successful. Concrete approaches
are often very necessary, though no approach will ever guarantee that relational
understanding will be achieved.

Skemp and others have drawn attention to the implications for concept learning of
what is perhaps best described as the hierarchical nature of mathematics. In some
subject disciplines there might be very considerable freedom in terms of the order in
which topics may be taught. In mathematics it is usually much more important that
we find a right sequence for the learner. Often the very examples which we use to
promote concept learning are themselves other concepts, and we must be sure that
these other concepts have already been adequately understood. A mature understand-
ing of what we mean by 'number' as a generalization may depend on an understanding
of natural numbers, rational numbers, irrational numbers, integers and real numbers,
together with, perhaps, an appreciation that this might not be a completely exhaustive
list of different number sets. Various authors have tried to elaborate the hierarchy
of concepts, or topics, through which learners must pass. Two such attempts are
in Nuffield (1970) and Skemp (1971). It does not seem likely, however, that such
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hierarchies can ever completely solve our problems in the sequencing of learning in
mathematics, though they should help. One other feature of concept learning is that
we continue to refine and extend our understanding of concepts throughout life. A
thorough and complete understanding of a concept is sometimes not only unnecessary
to enable a learner to move on to the next concept, it might even be unattainable. It
might be that it is the study of parallel or even more advanced concepts which leads
to enhancement of the understanding of previously encountered concepts. Another
feature of learning mathematics is that some flexibility within the hierarchy of topics
is possible, even though we have to be more careful with our sequence than in some
other knowledge areas. Learners are not identical in their needs, after all, and do not all
achieve identical levels of understanding of particular topics in a hierarchy. Hence the
good sense of the well known statement by Ausubel (1968, frontispiece):

If I had to reduce all of educational psychology to just one principle, I would say
this: The most important single factor influencing learning is what the learner
already knows. Ascertain this and teach him accordingly.

It is not completely clear how to promote concept formation most effectively.
Obviously, examples and counter-examples must play a large part in helping pupils
to extrapolate essential characteristics and classify according to features, properties
and differences. The examples, however, must be presented in as many variations as
possible, for example, of position and orientation, and in as many environments
as possible. This is so that, for example, pupils do not reject as squares those which
look like 'diamonds'. Askew and Wiliam (1995, p. 15) state that: '. . . teachers should
use a mixture of examples and non-examples and should choose the examples so as to
"rule in" as much as possible, and should choose the non-examples to "rule out" as
much as possible'. They also point out that there is research evidence that a sequence
of examples followed by a sequence of non-examples is more effective than random
sequencing, and that the ideal examples to use are 'only just' examples, whilst the ideal
non-examples are 'very nearly' examples. Howard (1987) suggests many techniques,
such as matched and unmatched pairs and the idea of coordinate concepts, though his
examples come from across the whole curriculum and not just from mathematics.

Problem-solving

Considerable attention has been accorded in recent years to the place of problem-
solving in mathematics and to how to help children to become better problem-solvers.
It is first necessary to declare exactly what is meant by 'problem-solving' in this
context. In fact, it is perhaps better to clarify what we do not mean. At the end of a
section of a mathematics textbook there is often a set of routine exercises, which may
even be referred to in the text as problems, but these are unlikely to involve 'problem-
solving' in the sense intended here. The routine practice provided by such exercises
may be important, and can be thought of in terms of rehearsal as a way of fostering
retention in the memory. Some such exercises might require the learners to apply their
mathematics to situations which arise in the real world and, as such, could be termed
applications. Some such applications may also involve a degree of novelty.

Problem-solving is now normally intended to imply a process in which the learner
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combines previously learned elements of knowledge, rules, techniques, skills and con-
cepts to provide a solution to a situation not encountered before. It is now generally
accepted that mathematics is both product and process; it is both an organized body of
knowledge and a creative activity in which the learner participates. It might, in fact,
be claimed that the real purpose of learning rules, techniques and content generally is
to enable the learner to do mathematics, indeed to solve problems, though Ausubel
(1963) would appear to be one respected educationist who has expounded a contrary
view. Thus, in a sense, problem-solving could be considered to be the real essence
of mathematics. Gagne (1985) has expressed the view that problem-solving is the
highest form of learning. Having solved a problem, one has learned something new
and possibly vital. One might only have learned to solve that problem, but it is more
likely that one has learned the essence of how to solve a variety of similar problems
and perhaps even a variety of problems simply possessing some similar characteristics.
Descartes expressed the view that each problem that is solved becomes a rule which
serves afterwards to solve other problems. One might therefore be tempted to
enquire what is the difference between problem-solving and discovery? Both require
'thinking', leading to the re-creation of some knowledge or capability which the
learner did not have before. Another term which is currently in frequent use in current
mathematics curricula is 'investigation'. An investigation might be closed, in the
sense that the intention is to lead to an established mathematical result, or it might be
open, in the sense that the result is not known in advance, or there might not even be a
clear result which can be stated simply. Investigations could clearly lead to problem-
solving. Investigations also, hopefully, lead to discovery. In short, whatever we mean
by the separate terms, 'discovery', 'investigation' and 'problem-solving', there are clear
connections between the processes involved. For this reason, a more detailed consider-
ation of problem-solving is contained within Chapter 5, which is about discovery.

Thus by definition problem-solving is not routine, each problem being to a
greater or lesser degree a novelty to the learner. Successful solutions of problems are
dependent on the learner not only having the knowledge and skills required but also
being able to tap into the relevant networks and structures in the mind. Sometimes
a flash of insight seems to occur when solving a novel problem. Although this is a
phenomenon which is not fully understood, it seems it may involve the realization of
some previously unacknowledged relationship or connection within the knowledge
structure. It therefore depends on having the richest possible knowledge base from
which to draw, this base including awareness of possible strategies. Askew and Wiliam
(1995, p. 24) sum all this up in: 'Success in problem-solving requires both specific
content knowledge and general skills'. It is also known that problem-solving is
assisted by turning over the problem in the mind thoroughly, trying out avenues of
approach, and thus bringing to the forefront of the mind a whole range of techniques
and methods which might be appropriate. Further, it is known that the solution will
often not come immediately, but might come subsequently, after a period of time
away from the problem, as if the subconscious mind, freed from the constraints of
conscious attempts to solve the problem, continues to experiment with combinations
of elements from the knowledge base.

There is considerable interest at the moment in aiming to improve the problem-
solving skills of pupils in school. Polya (1957, 1962) has led the way in the con-
sideration of how to establish a routine for problem-solving and, therefore, in how to
train people to become better problem-solvers, though his problems are more relevant
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to older students. Wickelgren (1974) too, basing his work on Polya but elaborating
and extending this, claims to have evidence that his methods do produce more
competent problem-solvers. It is interesting to speculate, however, that, although
such training in problem-solving strategies might have considerable pay-off, any
form of training might be moving us towards a more algorithmic approach, with all
the inherent weaknesses of algorithmic learning. In fact, in contrast to Polya and
Wickelgren, and many current advocates of methodical approaches, Gagne has gone
on record as stating that we probably cannot teach people to become better problem-
solvers. This is because of his belief that one cannot teach thinking skills in a vacuum
— each problem involves its own content and context, for if it does not, we have moved
towards the kind of routine exercises discussed at the beginning of this section.
Having solved a problem we have learned something, but we have not become a better
problem-solver per se. Ausubel (1963) too, whilst accepting that training in problem-
solving within a fairly narrow and well defined subject discipline might achieve some
success, is at great pains to point out the transfer problem, raised in Chapter 1 and
discussed more thoroughly in Chapter 7.

One aspect of problem-solving in mathematics is that often the problems are
divorced both from the mainstream subject matter and also from the real world. Such
puzzles may contain great interest for some children, but others may not see the
point and be demotivated. Such puzzles are unlikely to produce knowledge or rules
which are useful or applicable elsewhere. It has been a common feature of research into
problem-solving and discovery that subjects have been presented with problems
which are almost frivolous or whimsical. This has advantages in a controlled experi-
ment, for it is then most likely that all subjects start with the same knowledge of the
situation - namely nil. It has also often produced interesting results. However, what
can be deduced about problem-solving in a novel situation may not apply within
school subjects.

Suggestions for further reading
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NJ: Lawrence Erlbaum.
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Questions for discussion

1. To what extent is the provision of formula lists and books and other means of reducing
memory load justifiable in mathematics?

2. How essential is relational understanding in learning mathematics?
3. Justify the algorithmic content of your mathematics curriculum.
4. Choose a unit of mathematics and analyse it in terms of memory load, algorithmic content

and conceptual demand.



Chapter 3

Could We Enhance Learning Through
Optimum Sequencing?

Behaviourism

How do children best learn multiplication tables? Is it by 'sung' repetition
(chanting)? Or do they learn best by investigating number patterns from knowledge
of additions? Do they learn best by practising correct responses for given stimuli,
such as random products presented on flash-cards? Or is a mixture of methods best?
Mathematics teachers are likely to hold a variety of views on the best methods to
use. Many adults will recall learning by chanting, and it is still used, but as the
predominant method of learning tables it has been out of favour for many years. At
the opposite extreme, investigation of number patterns and relationships, without
other methods which involve repetition, may not fix products and factors in the
memory. We do want children to 'understand' why 7 X 9 = 63, but we also hope that
the stimulus

7 X 9

will produce the instant response

63

However one defines behaviourism, it is likely that some of the practices of teaching
associated with behaviourist learning theories will be used in the teaching of elementary
arithmetic such as multiplication tables.

How should we define behaviourism? Different authors appear to use different
definitions, so it is not easy to present a definition with which all interested parties
would agree. Early behaviourist psychologists trained animals to exhibit required
patterns of behaviour to prove that conditioning worked, so conditioning might be
assumed to be an important feature of behaviourism. One very well known experiment
was carried out by Pavlov, who conditioned dogs to salivate in readiness for eating
on merely hearing the ringing of a bell. More recently, Skinner conditioned rats
and pigeons to perform particular actions, usually in order to obtain food. Skinner
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claimed: 'Once we have arranged the particular type of consequence called a
reinforcement our techniques permit us to shape up the behavior of an organism
almost at will' (reported in Lysaught and Williams, 1963, p. 6). It seems that Skinner
was suggesting that what could be achieved with animals could be achieved with
humans; people could also be conditioned to exhibit the required behaviour. This
seems a worrying claim — but how true is it?

One problem with trying to define behaviourism is that precise definitions
may have changed over time. In a developing discipline one would expect newer
theories to extend or amend older theories. For this reason, reading the literature
brings to light a variety of technical terms, not only 'behaviourism' but also
'associationism' and 'connectionism', all of which appear to describe behaviourist-type
beliefs. There are undoubtedly differences between the strict definitions associated
with these technical terms, but it is not appropriate or necessary to discuss these
here. A useful, simplistic definition of behaviourism as it has applied to education
is that it is the belief that learning takes place through stimulus-response con-
nections, in other words that all human behaviour can be analysed into stimulus and
response.

It is also difficult to trace when the theory of behaviourism emerged, just as it is
difficult in the history of mathematics to say when calculus was invented. Thorndike
was certainly an important, and early, associationist instigator of ideas but perhaps one
should look much further back, for example, to Herbart one hundred years before
Thorndike. A comprehensive consideration of the development of behaviourist-type
learning theories will be found in Bigge (1976). More recent neobehaviourists, like
Gagne, appear to hold very different views from those held earlier. Gagne (1985, p. 2)
expressed his views about learning as follows:

Learning is a change in human disposition or capability, which persists over a
period of time, and which is not simply ascribable to processes of growth. The
kind of change called learning exhibits itself as a change in behavior.

Whatever the best definition of behaviourism, an important belief running
throughout its development has been in the effectiveness of stimulus-response
learning. As a result of a particular stimulus the required response is elicited.

S leads to R

Given an appropriate question (stimulus) from the teacher, or from a book or pro-
gramme, the correct answer (response) is obtained. Learning proceeds, slowly but
surely, through a sequence or chain of stimulus-response links. The effectiveness of the
programme depends on the quality of the sequencing as well as the stimuli. However,
feedback, reinforcement and reward also have important places in the application of
the theory. It might be a sufficient reward for a learner to receive instant feedback as
to whether a particular response is correct, and this should then promote the desire to
be presented with the next stimulus. A cycle of learning is thus generated, depicted in
Figure 3.1.

Thorndike (1922) postulated a number of laws which have promoted discussion
and debate ever since, and two are summarized here. Although these laws were
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Figure 3.1

proposed many years ago it is interesting to consider how acceptable they are today in
the teaching of mathematics.

(1) The law of exercise
The response to a situation becomes associated with that situation, and the more it is
used in a given situation the more strongly it becomes associated with it. On the other
hand, disuse of the response weakens the association.

The aim of learning multiplication tables through chanting could be considered to fit
this exactly. Furthermore, much of the teaching of mathematics has traditionally
consisted of the teacher demonstrating a method, process, routine or algorithm to be
used in particular circumstances, followed by the class attempting to solve routine
questions using the set procedure. Often the teaching will have incorporated some
question and answer, yet the pupils will have been firmly steered towards the
intended goal. The Cockcroft Report (1982) drew attention to this, in paragraph 243.
Exposition by the teacher followed by practise of skills and techniques is a feature
which most people remember when they think of how they learned mathematics.
Even if we do not fully believe that practice guarantees perfection many of us might
still believe that practice is the best way to set about it. We are seeking to establish
a strong bond between the stimulus (the question-type) and the response (the appli-
cation of the method of solution leading to the correct answer). This appears to be a
direct application of the law of exercise. Teachers will know only too well, however,
that many pupils subsequently appear to suffer severe weakening of this bond,
assuming a bond existed in the first place. (The behaviourist term 'bond' still survives
as 'number bond' in some literature describing addition combinations.) It is possible
to teach pupils how to add two fractions together by practising the algorithm only
to find that in the end-of-year examination, several months later, most pupils
demonstrate only that they cannot respond correctly. The addition of fractions is
carefully chosen here, because it is taught and re-taught throughout the years of
schooling, subsequent to having been first introduced around the age of ten years.
After revision, many pupils can once more cope for a while, but by next time round a
year later many will have forgotten again. Disuse of the response does appear to
weaken the association — but was the association really firm enough in the first place?
Is disuse of the response the only reason for failures in responding? This apparent
weakening of association would be explained by cognitive psychologists in a different
way from how behaviourists explain it.

stimulus

responsefeedback

29
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(2) The law of effect
Responses that are accompanied or closely followed by satisfaction are more likely to
happen again when the situation recurs, while responses accompanied or closely followed
by discomfort will be less likely to recur.

Certain of the things we do as teachers also appear to suggest some acceptance of the
law of effect, though there are many ways in which satisfaction for a pupil can result
from a response. Ideally, a correct response should automatically produce satisfaction,
because it feels good to be right, and the pupil ought to be reinforced. However, many
teachers find it necessary to provide extrinsic motivation. Hence, there are often
rewards for good work, such as prizes, merit marks, gold stars and the like, on the
assumption that they will help to persuade pupils to persevere. Poor work, on the
other hand, may result in punishment, and certainly in low marks, producing dis-
comfort and theoretically resulting in no recurrence of unsatisfactory work. Although
recent research confirms the potential value of rewards in motivation, the effects of
such an approach to education are not all beneficial. Pupils often look for the line of red
ticks or a complimentary word rather than for advisory comments intended to improve
understanding and attainment. On the other hand, a line of red crosses provides
negative reinforcement; most children would wish to avoid this happening, though
without comments from the teacher there is little chance that the pupil will improve.

So far, the question which forms the title of the chapter has not been addressed.
Although behaviourism has now been explained in terms of stimulus-response
connections, and 'practice makes perfect' is a widely-held belief, there is more to the
theory than that. The optimum sequencing of learning units and materials is also
important to behaviourism. Two important examples of the careful sequencing of
learning material are considered later in this chapter, namely programmed learning
and learning hierarchies. However, before that, it is appropriate to look at the place of
objectives in teaching and learning mathematics.

Objectives

It is common practice nowadays to plan lessons, topics and courses using published
or written objectives as a starting point. This is a relatively recent development
in the history of formal education. Here, we must distinguish between aims and
behavioural objectives. An appropriate broad aim for a mathematics lesson could
be: 'To study Pythagoras' theorem', but this needs to be made much more specific
when clarifying what is actually to happen in the classroom. Hence, an appropriate
behavioural objective might be: 'Given the lengths of the two shorter sides of a right-
angled triangle, the pupils will be able to calculate the length of the longest side'.
This tells us clearly what it is expected the pupils will learn in the lesson. The need for
objectives in planning instruction was summed up by Mager (1975, p. 5): 'When
clearly defined objectives are lacking, there is no sound basis for the selection or
designing of instructional materials, content, or methods'.

It is open to debate as to whether objectives are necessarily associated with the
behaviourist approach to instruction. Gagne (1975, p. 72) appeared to assume that
objectives were part of his neobehaviourism, and explained the place of objectives as
follows:
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To define and state an objective for learning is to express one of the categories (or
sub-categories) of learning outcomes in terms of human performance and to
specify the situation in which it is to be observed.

Mager (1975, p. 23), however, wrote:

During the early sixties we talked about behavior, rather than about per-
formance. This . . . {was] . . . unfortunate . . . people were put off . . . thinking
that objectives necessarily had to have something to do with behaviorism . . .
Not so. Objectives {do} . . . describe . . . behavior, {but only] because behavior is
what we can be specific about.

Whether objectives are part of behaviourism is not vital in the context of this book,
but objectives could be essential to the efficient sequencing of material to be learned.
Behaviourist teaching methods should demand optimum sequencing.

One way in which objectives have been associated with behaviourism lies in the
fact that objectives were widely discussed in connection with the programming of
learning, itself a product of the behaviourist approach to education. Mager's own early
book (1962) was entitled, Preparing Objectives for Programmed Instruction. Lysaught and
Williams (1963) included, in their book on programmed instruction, an extensive
discussion of the preparation of objectives. Early work, based largely on logical
reasoning, led to the drawing up of taxonomies of educational objectives, for example
by Bloom et al. (1956) and by Krathwohl el al. (1964). Considerable attention has
subsequently been given to methodologies for the preparation of teaching objectives.

Writers seem to be generally agreed on why objectives are important. It is claimed
that objectives:

(a) provide the teacher with guidelines for developing instructional materials and
teaching method;

(b) enable the teacher to design means of assessing whether what was intended has
been accomplished; and

(c) give direction to the learners and assist them to make better efforts to attain their
goal.

It is not surprising that, because of (a), considerable emphasis is often placed on
objectives in the training of new teachers. It is also not surprising that, because of (b),
it is now expected that new examination schemes are prefaced by clear objectives
for the course — not an easy thing to achieve. It is further suggested in (c) that it is
advantageous if learners are clearly aware of course objectives. It would be false to
claim that this is always the case, and so it may be one way in which we are failing
to capitalize on opportunities presented by using objectives.

What should an objective look like? Is 'the pupils will understand probability'
a suitable objective? Many people would prefer such a vague statement to be regarded
as a broad aim. For the teacher, objectives provide a basis for instructional planning,
for the conduct of teaching and for evaluating pupils' learning at the end, so the
objectives need to be devised with these three points in mind. For the student,
objectives might be expected to contribute to motivation and to provide feedback at
the end. The distinction between aims and objectives could well depend on the words
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used, and considerable discussion has taken place about, for example, verbs which are
open to many interpretations, such as 'know', 'understand', 'appreciate', 'enjoy',
'believe' and 'grasp', as opposed to other verbs which are open to many fewer inter-
pretations, such as 'identify', 'calculate', 'sort', 'construct', 'compare' and 'solve'.
Under no circumstances could: 'be able to understand mathematics', be acceptable as
either an aim or an objective, because it is too vague and ill-defined. On the other
hand: 'develop a liking for mathematics', could be a very worthy broad aim, though it
is not specific enough to be an objective, and it makes no mention of expected changes
in behaviour. One example of a strictly defined behavioural objective is: 'given any
two natural numbers, each less than or equal to 100, the pupils will be able to write
down the sum'. In this we have great precision, it refers to behavioural outcomes, the
teachers and pupils alike know where they are going, and the examiner knows what
sort of question to set to assess the progress of the pupils. The more detailed example
of the difference between broad aims and more specific objectives given below is
concerned with mensuration.

Aims for a topic on mensuration

1. To develop an understanding of the mensuration of certain basic shapes, and
hence also a wide variety of composite shapes.

2. To ensure that pupils have an adequate knowledge of the appropriate units
involved and that they know and can use relevant formulas.

Objectives for a topic on mensuration

1. Pupils will know that the perimeter is the distance around the boundary of a
shape.

2. Pupils will know that, in the case of a circle, the perimeter is called the
circumference.

3. Pupils will know that the area is the amount of surface contained within the
perimeter.

4. Pupils will know the names of, abbreviations for, relative sizes of and relation-
ships between the units of length mm, cm, m, km.

5. Pupils will be able to measure lengths using the units mm, cm, m.
6. Pupils will know that areas are measured in square units and will know

the names, abbreviations for, relative sizes of and relationships between
mm2, cm2, m2, km2.

7. Pupils will be able to calculate the perimeters of rectangles and triangles and also
composite shapes based on these.

8. Pupils will be able to calculate the areas of rectangles, triangles, and composite
shapes, using A = 1 X b (rectangle) and A = -j X b X h (triangle).

9. Pupils will be able to calculate the circumferences of circles using the formula
C = Tld = 27lr.

10. Pupils will be able to calculate the areas of circles using A = Tlr2, and hence will
be able to calculate the areas of composite shapes involving circles.
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Even then, are these objectives specific enough? For example, with what degree of
accuracy do we wish pupils to be able to calculate the areas? From what number sets
will lengths be drawn — will they always be whole numbers or are fractions allowed?
What degree of complexity will be involved in the composite shapes? How do we
introduce the various formulas and should we formulate objectives concerned with the
derivation of, for example, Tlr2? Have we missed out other essentials which might
cause problems when we try to teach? For example, do we need objectives concerned
with clarifying how we use the formula A = ~ X b X h, for many errors are committed
in handling this? Readers may be able to think of other questions.

One problem which has emerged is that the derivation of complete, detailed,
unambiguous and absolutely specific objectives is itself an elusive objective to have.
As Gagne and Briggs (1974, p. 94) wrote, in connection with their systematic
approach to forming objectives:

When instructional objectives are defined in the manner described here, they
reveal the fine-grained nature of the educational process. This in turn reflects
the fine-grained nature of what is learned. As a consequence, the quantity of
individual objectives applicable to a course of instruction usually numbers in the
hundreds. There may be scores of objectives for the single topic of a course, and
several for each individual lesson.

This is certainly the case with the objectives for mensuration given above.
Such objectives make better sense when they are allocated, one or two at a time, to
individual lessons. The following list of objectives taken from a statistics course
forms a good basis for discussion. Although an age range was specified (11—12 years),
statistics and probability are now taught in most age ranges, and so the list is a
relevant one for most mathematics teachers to consider. Are these objectives appro-
priate? Are they clear and unambiguous? Are they sufficiently fine-grained? Are they
appropriate to individual lessons? Are they sequenced appropriately?

Pupils should be able to:

carry out a simple census to find facts from a small, well defined population; draw
a random sample from a small population;

sample from distributions such as those given by throwing dice;
generate random numbers and use random number tables;
obtain their own data by counting and measuring and use other sources of such

data;
draw up their own frequency tables by tallying and read them;
draw and read bar charts for discrete data and for continuous data with equal

class intervals;
read pictograms;
draw simple pie charts;
read time series;
find the mode, median, mean and range of a small set of discrete data;
assign probabilities in the equally likely case;
assign probabilities to the random selection of one item from a finite

population;
use finite relative frequencies to estimate future probabilities;
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find the probabilities of simple combinations of elementary events by addition;
draw simple inferences from bar charts and tables.

One of the most detailed examinations of how to prepare instructional objectives
has been carried out by Mager (1975), and it provides a very helpful guide for
teachers who wish to think carefully about objectives. Issues such as the refinement
of objectives through the use of (a) additional conditions, (b) criteria of acceptable
performance, (c) sample test items and (d) the avoidance of pitfalls are all considered in
detail. For example, a simple objective might be: 'The pupils will be able to multiply
together two 3-digit numbers'. The following could then form an additional con-
dition: 'Without the use of a calculator'. An objective which also involves a criterion
of acceptable performance might be: 'With the aid of a calculator, the pupils will
be able to divide 1-, 2- and 3-digit numbers by 1-, 2- and 3-digit numbers and
express their answers to three significant figures with a 90 per cent success rate'.
Sample test items are usually obvious, for example: 'The pupil will be able to solve
linear equations in one unknown, e.g. solve for x in the following: (a) 3 + 5x = 15,
(b) 3x - 2 = 8'.

Since objectives are now generally included with the syllabuses and specifications
for external examinations, an interesting exercise for mathematics teachers is to look
critically at the objectives associated with familiar external examinations and to assess
their value in the teaching-learning-assessment cycle.

Programmed learning

One of the ways in which behaviourist-type approaches to instruction have influenced
teaching methods has been in commending the programming of learning. Some
people take the view that enthusiasm for programmed learning waxed for a time in the
past and has now most emphatically waned, and one would certainly not find much
obvious evidence of it in today's schools. There was, however, considerable interest in
it around the 1960s, and it would be wrong to write it off as one of the bandwagons of
the day because the advantages sought through the programming of learning material
demand consideration. Programmed learning in schools in the 1960s was based on
books or booklets, or perhaps on cheap, hand-cranked, teaching machines. Ideally,
programmed learning needs to be machine-orientated, but although purpose-built
teaching machines did exist at that time they did not reach the schools. Nowadays we
have computers, so teaching programmes may be presented on screen and pupils may
respond via a keyboard or mouse. The remaining problem is still a major one, however,
and that is writing the computer software to present the material.

It must be pointed out, before moving on, that computers are being used in schools
nowadays in many ways, not only in the 'old-fashioned' sense of programmed learning.
Computer-assisted learning is itself a huge field of study, and there are many modes
possible of which the programming of educational material is only one. The computer
may be used, for example, as a magic blackboard, to provide simulation exercises,
to allow exploration and discovery and to provide a database for investigation and
deduction, to name just a few possibilities. In the context of this chapter, however, the
computer will only be considered in its role in programmed learning.

The section of programmed learning material in Box 3A is from a textbook by
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cT
T
V ^ T

true
true
true
KcL

82
V = {3, 6, 9, 12, 15}; T = {3, 6, 12, 9, 15}.
For the sets V and T, V = T.
Since every element of V is an element of T, V is a subset
ofT,i.e.V .
Also, since every element of T is an element of V, T is a
subset of V, i.e. V contains T, which is written V ̂

So, if T = V, then V c T and .

83
K={3,4 ,5};L={5,3 ,4} .
K = L is a true/false statement.
K c L is true/false.
K 3> L is true/false.
So if K = L, then and K => L.

84
If A = B, we may show A and B in a picture as which
of these?

A,

Box 3 A Reproduced with permission (Young, 1966).

Young (1966, p. 41), and it clearly illustrates some of the problems inherent in the
construction of such books. Where should pupils ideally write their responses to
questions? Where should the correct answers ideally be revealed to the pupils? How
can cheating be prevented? How is the interest of the pupil to be maintained? How
can the programme cater for different abilities? What is the role of the teacher? And,
beyond such practical problems, how valid is the theory which supports the pro-
gramming of material in a form like this?

There seems to have been considerable optimism, in the 1960s, that the program-
ming of educational material had an enormous amount to offer to school teachers.
Lysaught and Williams (1963, p. 1) began their excellent book on programmed
instruction as follows:

In the Blue Ridge mountain city of Roanoke, Virginia, pupils in the eighth
grade of the local schools in a single term all completed a full year of algebra,
normally reserved for the first year of high school in other parts of the country,
and only one child in the entire Roanoke school system failed to perform
satisfactorily on a standardized examination. At Hamilton College, Clinton,
New York, nobody fails the logic course any more; moreover, the average of
grades has risen markedly. At the Collegiate School, New York City, a private
elementary and secondary institution for boys that long has maintained high
scholastic standards, students are now progressing more rapidly in modern
mathematics than ever before. These diverse achievements are neither accidents
nor as unrelated as a casual reading might suggest. Through them runs a common
element. In each instance, classroom teachers have been utilizing the techniques
of programmed learning, a method of pedagogy that increases the learning rate
and proficiency of pupils and students.
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(i)
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(ii)
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The most famous name in the programmed learning movement in the United
States, where it has been practised with perhaps more conviction than anywhere else,
was probably that of the behaviourist psychologist B. F. Skinner. Nowhere is the
connection between conditioning and programmed learning clearer than in his claims.
Skinner's beliefs were confirmed for him through his enormous success in training
animals using methods of conditioning, and many criticisms have been levelled at
the theory for this reason. Why should we believe that, because rats and pigeons
can be conditioned to perform intricate movements in order to receive food, we can
and should educate humans in a behaviouristic way? Yet Skinner believed that the
possibilities for human learning were enormous. As we have seen earlier, an important
element of Skinner's theory was the practice of reinforcement, and the belief that,
through reinforcement, the behaviour of humans could be shaped as desired.

Reinforcement has always been an important part of formal teaching. Early in the
twentieth century reinforcement was largely based on fear — of incurring the wrath of
the teacher, of punishment, or of ridicule. Even today some aspects of the behaviour
of children in school are based on their desire to avoid unpleasant consequences, and
not on any desire to learn. Skinner was concerned that children were not learning in
any positive sense, but that they were learning only to avoid the consequences of not
learning. Dienes (I960) has also pointed out that learning motivated by gold stars,
house points, merit marks or even to gain a high position in the class is not good
education. Praise and encouragement from the teacher can, however, be a very good
form of reinforcement, though it is inevitably spread very thinly across the class of
pupils, so that any one pupil is unlikely to receive such reinforcement more than once
in a lesson. Given the realities of life in today's schools it may be unrealistic to expect
that all punishment intended as reinforcement, and all extrinsic rewards used as
encouragement, will eventually be phased out. But Skinner's ideal, that all individual
pupils will receive constant and rapid feedback of results and will, as a result, need no
further form of reinforcement is not one that we can dismiss lightly.

Teachers would be likely to agree that reinforcement, through efficient feedback of
results to pupils, is important. Skinner's view would be that even this might not be
enough if feedback were delayed, that even a short period of time between response
and reinforcement could destroy all positive effects. Normally, in our schools, it takes
many hours, sometimes days, before pupils receive feedback for written work like
homework. This view of the importance of instant feedback is not necessarily accepted
today as a universal rule, and a contrary view is that the quality and nature of the
feedback matter more (see Hartley, 1980, for an introduction to this), but the belief in
the immediacy of reinforcement was a part of Skinner's justification for programmed
learning and teaching machines.

Skinner was also critical of the unskilled way in which pupils were introduced to
new knowledge, and, in particular, the way in which they were expected to cope with
sequences of material that were aimed at presenting groups or classes with chunks of
material. Each pupil ideally needs to proceed through a programme of work which is
individually tailored to meet his or her needs. For Skinner, the theory was that each
pupil requires every step forward to be small enough for that individual to accept
readily. A possible counter-theory is that some pupils, at some times, may learn best
through being plunged into a problem situation which is some way removed from
their current state of knowledge and understanding. Learning then takes place
through finding ways of relating the new situation to the current state of knowledge
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and understanding. Many teachers will feel that Skinner's theory is the safer one to
accept, at least for many of the children they teach, and for much of the time. It is, of
course, impossible to say which is correct, as each might apply in different circum-
stances, or with different pupils, but these represent contrasting views which teachers
have to acknowledge. Skinner's opinions about step-size were critical to his approach
to programmed learning.

It is interesting to record, in passing, that another of the conclusions that Skinner
drew from his critical consideration of school learning had little to do with the
programming of learning and was more akin to cognitive approaches to learning.
Skinner noted that children gain reinforcement through practical approaches to
learning, through interaction with their environment, and through manipulating real
objects. Some teachers would feel that rigid programmed learning is at the opposite
end of a spectrum of learning styles from the active approach. Yet Biggs (1972)
included programmed discovery as one of five different kinds of discovery in her
commendation of discovery learning. Perhaps programmed learning and active
participation in learning are not irreconcilable. Skinner believed that the application
of programmed learning via suitable teaching machines did provide an active
approach in which the pupil had to be at least moderately creative in composing a
response, as opposed to selecting a response from alternatives.

According to Bigge (1976), programmed instruction as advocated by Skinner
requires the subject matter to be broken down into small, discrete steps and carefully
organized into a logical sequence. Each new step builds on the preceding one:

The learner can progress through the sequence of steps at his own rate and he
(she) is reinforced immediately after each step. Reinforcement consists of his
either being given the correct response immediately after registering his response
or his being permitted to proceed to the next step only after he has registered the
correct response. (Bigge, p. 133)

The example in Box 3B is taken from Lysaught and Williams (1963, p. 108).
In general, both appropriately small step-size and appropriate reinforcement are

difficult to achieve for all pupils as individuals without the use of teaching machines.
Skinner explained this as follows:

As a mere reinforcing mechanism, a teacher is out-of-date — and would be even
if he (she) devoted all his time to a single child. Only through mechanical
devices can the necessarily large number of contingencies be provided. (Bigge,
pp. 136-7)

Such devices (electronic not mechanical) now exist in large numbers as computers.
Teaching machines did exist in the 1960s but were not particularly versatile or
adaptable and, although used in the armed services, did not have any real impact on
our schools, presumably for reasons of cost. The hand-cranked 'machine' which schools
had to be content with only survived an initial novelty interest in the 1960s. However,
the principles governing the presentation of material in programmed learning are the
same whatever the means of presentation, whether by machine or by textbook.

Programmed learning involves the presentation of a sequence of stimuli to a pupil
in the form of'frames'. A single frame should contain any necessary information and
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S. Quod means four. Lateral refers to side. A quadrilateral always
has four sides. A square would be one type of quadrilateral.
The figures below are all because thev have four
sides.

R. quadrilaterals

S. A rectangle

rilateral because it always has

R. four

S. A rectangle is one type of
sides.

R. quadrilateral
four

S. A square is a tvpe of
sides.

R. quadrilateral
four

S. All figures that have four sides are

R. quadrilaterals

is a quad-

sides.

because it has

because it has

known as

Box 3B Reproduced with permission (Lysaught and Williams, 1963).

then demand interaction, perhaps as a response to a question. The programming
device used must provide a means for the pupil to respond. A textbook, worksheet,
hand-cranked 'machine' and some mechanical machines would very likely demand
this response to be written on paper, on the page of a book, or perhaps on a roll of
paper passing through a machine. A computer naturally demands a response via the
keyboard or mouse. An example of a single frame is given in Figure 3.2.

3cm

2cm

The area of the rectangle is
square centimetres.

This rectangle contains an
exact number of square centimetres.

Figure 3.2

Having responded, the pupil moves to the next frame, at the same time receiving
feedback about their response to the previous frame. The most elementary form of
programmed sequence is a linear one, in which no deviation from a predetermined
sequence of frames is possible. This is clearly not always satisfactory, as there is no
concession to the different needs of the pupils, and it does not accord with Skinner's
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ideal. With more versatile equipment, variations on a linear theme can be introduced
(see Lysaught and Williams, 1963), ulTtimately leading to the idea of branching an
looping within a programme. In computers, there is no limit to the complexity of
branching which may be used, save that imposed by the time required to prepare
the software. Not surprisingly, attempts to implement branching programmes in
textbook form have not been all that successful.

The mode of computer-assisted learning based on programmed learning is often
referred to as 'instructional'. Because free responses are difficult to cope with it is
common to find that pupil interaction is via multiple-choice or 'yes/no' or 'true/false'
choices. As we have seen, this is not really what Skinner intended. Whatever the
complexity, enormous flexibility is theoretically possible, and the computer can act as
a teacher-substitute on a one-to-one basis. Thus, pupils do not have to expose their
errors and learning difficulties to anyone. Another advantage for teachers is that pupils
will not see a correct answer before making a response, which is something that cannot
be guaranteed when using programmed learning texts.

Research into the value of instructional computer-assisted learning has raised ques-
tions about the assumptions behind the place of feedback. Simple knowledge of results
may not be enough. What may be much more important is the location of errors and
the provision of information to the pupil which allows such errors to be corrected. It
may therefore be important not that the step-size is so small that errors are avoided,
but that the stimuli set out to bring misconceptions to light as a first step towards
correcting them. Furthermore, feedback can be passive, merely informative, or it can
be active in that it requires the participation of the learner. A common form of
feedback is when the computer will not proceed until the correct key is pressed, but
this has to be terminated sometime and, if concluded by an instruction or message
after which the next frame is presented, again the student can choose not to read it.
Active feedback is in the form of further questions which demand further responses.
The further questions are intended to be those the student should be asking (see also
problem-posing in Chapter 5). One interesting study (Tait et al., 1973) suggested that
less able pupils particularly benefited from active feedback. For more able children it
did not appear to matter as much.

To sum up, advantages claimed for programmed learning include the following:

learning is individualized;
pupils are responsible for their own learning;
pupils work at their own rate;
interaction between learners and material is constant;
pupils only have to cope with one stimulus at a time;
learning material is correctly sequenced;
learning material is correctly paced;
each idea must be mastered in order to progress;
pupils receive instant feedback;
pupils are motivated to learn;
there is little problem of pupil anxiety;
a range of pupil abilities may be accommodated.

Such an impressive list should suggest to any experienced educator that there must be
corresponding disadvantages. These include:
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motivation generated by working with other pupils is missing;
inspiration generated by ideas from other pupils is missing;
pupil might choose to work too slowly;
pupil might unwittingly choose inappropriate routes through the programme;
material might not be sufficiently challenging;
material might hold some pupils back unnecessarily;
learning programmes are extremely time-consuming to prepare;
some kinds of learning experiences cannot be presented in programmed form;
ere might be too much dependence on the honesty of the pupil;
material might lack essential interest and might not motivate;
learning might be promoted better when there is some anxiety in the pupil;
it might not be possible to accommodate the full range of pupil abilities.

As part of a curriculum, programmed learning has strong claims for a place. Some
obvious uses are for individuals with special needs (for example, enrichment for rapid
workers, revision and repetition for slower workers and for new pupils), for pupils
who have missed work through illness, or as a revision course. Now that we have
computers in our classrooms we need to carry out a continual appraisal of the place
of instructional programs in our teaching of mathematics. This, however, will not be
the only way in which we will wish to make use of the particular advantages of the
computer in the mathematics classroom.

Learning hierarchies

Let us imagine that we wish to teach the multiplication of fractions to a class (why we
should wish to do that is not our concern at the moment). Having defined our
objective in behavioural form, for example: 'the pupils will be able to find the product
of any two rational numbers', we then have to determine what is our starting point
for the sequence of instruction. What are we assuming that the pupils already know?
In our list we might be tempted to include all aspects of work with fractions which
traditionally come before multiplication. Our list might, therefore, look something
like this:

1. Products of natural numbers
2. Knowledge that 'of and 'X' are equivalent
3. Definition of a fraction
4. Equivalence of fractions
5. Lowest common denominator
6. How to change a mixed number into an improper fraction and vice versa
7. Comparative size of two fractions
8. Sums and differences of fractions.

Our list of prerequisite skills and knowledge, however, is intended to enable us to
check that the pupils' understanding is adequate, and to revise material where
necessary. We do not want to be side-tracked into revising what is not essential in
order for pupils to attain the objective, so the above list may contain irrelevant items.
For example, do we really need to revise sums and differences of fractions? Also, can
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we take it for granted that some items in the list are so elementary (for example,
products of natural numbers) that they do not need to be revised? Only when we have
clarified both our objectives and our starting point can we begin to work out a
sequence of instruction, which we might decide is as follows:

1. Finding a proper fraction of a whole number
2. Finding an improper fraction of a whole number
3. Finding a proper fraction of a proper fraction
4. Finding a proper fraction of an improper fraction
5. Finding an improper fraction of a proper fraction
6. Finding an improper fraction of an improper fraction.

But is this the correct teaching sequence? Are there alternative teaching sequences?
Should 3 come before 2, for example? Which comes first, 4 or 5 ? How do we decide on
the correct teaching sequence?

More than likely, teachers will make certain decisions as to the order of instruction
according to intuition and preference. They may teach one order at one time and a
rather different order at another time. But decisions of this sort do have to be
made, and all of this comes before decisions are made concerning the detail of
how the instruction is to be carried out. Indeed, all of the steps along the road to the
attainment of the ultimate objective may be regarded as prerequisite knowledge, each
step requiring a clear statement of the objective. We could then hypothesize the
existence of a sort of pyramid of stages, with the ultimate objective at the top, such
as in Figure 3.3. A hierarchy of this kind is often very important for a teacher of
mathematics to have in mind. If the teacher does not correctly identify the base line

Product of any two
rational numbers

Product of two
improper fractions

Product of a proper
fraction and an improper

fraction

Product of an improper
fraction and a whole

number

Figure 3-3

Product of an improper
fraction and a proper

fraction

Product of two proper
fractions

Product of a proper fraction and a whole number
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of the pyramid then some pupils will be lost right from the start. If the teacher does
not identify all of the stages in the pyramid, and omits some, pupils could become
confused somewhere in the middle of the hierarchy. If the teacher does not break down
the steps into ones that are small enough for the pupils to cope with, many pupils
will be unable to keep pace. Additionally, the teacher needs to check whether the
objectives for each stage in the hierarchy have been attained before moving on to
the next stage.

The theory of learning proposed by Robert Gagne is a more sophisticated and
tightly controlled elaboration of this model. Gagne suggested that children learn an
ordered, additive, sequence of capabilities, with each new capability being more
complex or more advanced than the prerequisite capabilities on which it is built. We
have considered one such analysis, concerned with multiplying fractions. At a higher
level one might hypothesize that in order to be able to solve quadratic equations by
factors, necessary prerequisites would include being able to solve linear equations,
being able to find squares and square roots, and being able to factorize. At a lower level
still there would be many more prerequisites concerned with ideas such as equality,
products and quotients, sums and differences. A teacher preparing to teach how to
solve quadratic equations might decide to revise some of the more advanced pre-
requisites but would probably take for granted that the children would be able to cope
with the more elementary ones. These common sense considerations suggest two other
features of Gagne" s theory, first that there is a variety of different kinds of prerequisite,
some more advanced than others, and second that the more elementary prerequisites
can be ignored in devising a learning hierarchy.

A learning hierarchy, according to Gagne, is therefore built from the top down. We
begin by defining the capability which is the ultimate objective at the apex of the
pyramid. This must be defined in terms of behavioural objectives, for example: 'pupils
will be able to convert rational numbers in fractional form into decimals'; or: 'pupils
will be able to find the sum of any pair of directed numbers'. The next stage is to carry
out a detailed task analysis by considering what prerequisite capabilities are required
in order to be able to attain the ultimate capability (Figure 3-4). Then, it is necessary

Figure 3.4

to repeat the procedure, by defining what prerequisites are required in order to attain
the more elementary prerequisites (labelled a and b, see Figure 3.5).

Much of the research carried out by Gagne and his colleagues has been concerned
with whether the hypothesized prerequisites were necessary and sufficient. If pupils
possess prerequisites a and b can they always be taught the ultimate capability? Can
pupils who do not possess either a or b or both be taught this final capability? If pupils
possess the final capability, is it always found that they possess both a and b? To carry
this out at all levels of a hierarchy is very time-consuming, but Gagne's research has
produced many such fully-tested hierarchies (see Gagne, 1985). As one might expect

capability

prerequisite bprerequisite a
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Figure 3.5

in education, however, results do not always correspond perfectly with theory. For
example, one is likely to find that there are pupils who do possess the final capability
but do not possess both a and b. One might also find occasions when pupils can attain
a or b without specific teaching in the process of receiving instruction on the final
capability. One is therefore forced into the conclusion, as defined by Gagne (1985,
p. 128), that:

a learning hierarchy . . . describes an on-the-average efficient route to the attain-
ment of an organized set of intellectual skills that represents 'understanding' of a
topic.

Another problem is that there seems little likelihood that tested learning hierarchies
can be defined for all topics which might at some time be taught in mathematics.
There is even less likelihood that busy teachers can involve themselves in devising and
testing hierarchies. But as a general idea, used in a more loosely-defined manner, there
must be some relevance to the idea of learning hierarchies in formal instructional
situations.

It is important, in a consideration of Gagne" s views, to realize that his theory
incorporates a view of 'readiness for learning' to which not all teachers would sub-
scribe. Quite simply: 'developmental readiness for learning any new intellectual skill
is conceived as the presence of certain relevant subordinate intellectual skills'
(Gagne, 1985, p. 130). Let us consider a typical conservation task (conservation tasks
are described in more detail in Chapter 4) with liquids poured from one shape of
container into another, pictured in Figure 3-6. A child is ready to learn any particular
capability, in this case conservation of liquid, if all the prerequisite capabilities have

Figure 3.6
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been mastered, and readiness depends on that alone. It is interesting to compare this
view of readiness with that of Piaget. Piaget's view is that being able to perform such
conservation tasks correctly depends on the stage of cognitive or intellectual develop-
ment of the child, which is in itself defined by the fact that certain general logical
processes have developed in the mind.

Gagne" s theory of learning also incorporates views on the transfer of learning. The
intellectual capabilities of a child do not remain specific; for example if, based on
appropriate learning hierarchies, learning of conservation has taken place with both
rectangular containers and with cylindrical containers, then the skills common to both
situations will promote the generalizing of skills into other specific situations. Once a
wide range of specific skills has been learned, for example in conservation, all other
conservation situations will be that much easier to master. It then becomes possible to
classify children as, in this case, 'conservers'.

The learning hierarchies of Gagne suggest that different prerequisites may be of
different qualities, that there is, in fact, a hierarchy of types of learning. Let us consider
Pythagoras' theorem, i.e. the sum of the squares of the lengths of the two shorter sides
in a right-angled triangle is equal to the square of the hypotenuse (illustrated in

Figure 3.7). The statement s clearly a rule o

Figure 3.7

only to triangles when they are right-angled). A rule is a statement of a relationship
between qualities. The relationship and the qualities both involve conceptual learn-
ing, for example, squaring, area, equality, summation, triangle, right-angle, length,
side, angle. The concepts themselves involve discrimination, between lengths and
areas for example, or between squaring and doubling, and they also involve classifica-
tion, what it is that is common to all triangles, for example. At quite a low level
squaring involves products, and the most efficient way to find products is to know the
multiplication tables. The learning of multiplication tables is likely to involve some
elements of stimulus-response learning whatever one's beliefs about how tables should
be learned.

It is therefore possible to draw up a linear hierarchy of types of learning which
might apply to mathematics. The well known list by Gagne is summarized in Figure
3.8. There are many examples one can give for each of these types as they relate to
mathematics. At the lowest level much of the early number work might involve
predominantly stimulus-response learning, for example, learning number names and
symbols and their ordering, knowledge of number bonds and of products, multiples
and factors. Gagne has suggested also that learning to use mathematical instruments
and equipment falls into this category. The association of names with ideas, objects or
processes may also be learned in much the same way, for example, 'octagon' (eight
sides, octopus), 'triangle' (three angles, tricycle). 'Cube' may be learned from the

a

c

b

Figure 3.7). The statement
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Figure 3.8

Problem-solving

requires as prerequisites
I

Rules, principles and
defined concepts

requires as prerequisites

Concrete concepts

requires as prerequisites

Discriminations

requires as prerequisites

Stimulus-response
connections

common domestic items, sugar cubes and stock cubes. 'Kite' may be learned through
association with kites which fly. Ideas for which word and other associations do not
exist (for example, 'rhombus') are much more difficult to learn.

The ability to discriminate is as important in mathematics as in any other
subject. From the very early stages of being able to discriminate between numbers
of beads, counters or other objects held in the hand — is it five or is it six? — to
discriminating between Dx, dx and 5x, mathematics is full of subtle differences
and similar symbolisms. The symbols for the four basic rules, +, —, X and -=- possess
remarkable similarities, so that if a teacher is careless in writing them the child can
have great difficulty in discriminating. When children learn about angles they have to
be able to associate the correct term — acute, right, obtuse or reflex — with the correct
picture or magnitude. Many children struggle to come to terms with the difference

, though there may be conceptual difficulties here as well as purely
discriminatory problems. Properties of objects, such as the cube, need to be discrimi-
nated — edge, face, vertex, surface, area, volume, length, mass, weight. At a higher level
still, such similar arrangements of letters and numbers as need to be
mastered and discriminated.

Mathematics is said to be very conceptually based, yet it is sometimes difficult to
define exactly what we mean by a concept (see Chapter 2). There are hierarchies of
mathematical concepts, some being of a 'higher order' than others (Skemp, 1971).
One might claim, for example, that multiplication is a higher order concept than
addition because multiplication, as repeated addition, depends on addition and cannot
be learned before addition. In a different sense, number may be regarded as a higher
order concept than natural number. It is necessary to learn what we mean by natural
numbers, zero, fractions and decimals, negative numbers, integers, rational numbers,
irrational numbers and real numbers in order to allow a mature concept of what we
mean by 'number' to develop. Of course, young children will use the word 'number'

and

between and
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when they mean, in the mathematician's terms, 'natural number', these being the
only sort of numbers they have encountered. Their concept of number is a limited
one.

There is probably an element of conceptual understanding in nearly all that we
introduce in mathematics, from the beginnings of number work like multiplication
tables and from elementary spatial work like identifying triangles and rectangles,
through more complex ideas like sine and cosine to advanced procedures like dif-
ferentiation and integration. The idea that readiness depends only on mastery of
prerequisite concepts is not one which finds automatic favour with many teachers of
mathematics. The concept of place value is very difficult for some children and yet
comes so early in the logical hierarchy of mathematical concepts that it is difficult to
accept that the problem only arises because concepts taught earlier have not been
mastered. Learning to cope with place value is a long, slow process for many pupils. At
a higher level, the concept of ratio appears to depend on so little in the way of obvious
prerequisites, and yet ratio and proportion are not adequately mastered by many
pupils by the time they leave school.

Principles are basically rules or laws. Gagne included 'defined concepts' within this
category, that is, concepts which cannot be learned directly from concrete situations
but require a definition. One example used by Gagne is 'diagonal'. He appeared to
claim that it is necessary to state a definition, namely that a diagonal is a straight line
which connects non-adjacent vertices of a polygon or polyhedron. Yet it is not always
clear whether a concept is 'concrete' or 'defined'. Fractions (rational numbers) can be
defined as ratios of integers; they can also be defined as parts of wholes (then mixed
numbers are problematic); or they can be defined as operators (see Gattegno, I960).
Few people would claim to have learned what fractions were from such a definition.
The same is true with the concept of 'diagonal' — it is likely to be learned best from
concrete considerations. The definition is a summary which comes later after many
examples have been encountered. Principles may cause some of us less of a problem,
particularly scientific principles like the gas law P = RT/V. Here adults can clearly see
that there is an association of concepts, though when children learn what the law really
means it normally involves much more than being told about the relationship. It
involves experimentation and measurement in order to observe that the relationship
holds. It may be possible for more mature learners to accept principles without
experimentation, but many teachers believe that children benefit from a concrete
approach.

One might consider that one principle of mathematics is that 'equations remain
valid if you do the same thing to both sides'. As a working rule for a particular stage of
children's education this is very useful. It may present difficulties later (see Skemp,
1971), but many teachers use it with pupils around eleven or twelve years old. But
again, it is doubtful that children would accept this rule as a statement without being
able to construct it from concrete examples of what it means with familiar concepts
like numbers. In terms of Gagne"s analysis, it seems that we must classify Pythagoras'
theorem as a principle or rule. But no teacher would introduce the rule without
investigation, using numbers, squares of numbers and areas. The commutative law
of multiplication is only defined as a rule once it has been found to hold in many
numerical situations and one can generalize from it. So although principles (rules,
defined concepts) might nominally be regarded as of a higher level of learning than
concrete concepts this says nothing about the way principles might be learned.
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Most people would agree that problem-solving can legitimately be regarded as
the ultimate in terms of types of learning. It requires what we call 'thinking', and is
dependent on a large store of knowledge and capabilities. One has first, however, to
satisfy oneself that it is a form of learning. By problem we mean a question which
requires some originality on the part of the learner for its solution, that is, it requires
the learner to put elements of prior learning together in a new way. Having solved
such a problem, something has been learned (see Chapters 2 and 5).

Gagne's contribution to the study of how learning takes place and how it can be
organized is a substantial one. In its entirety it may have recruited few disciples
in Britain, but it is worthy of study. Elements of it will turn out to be part of the
approach of many teachers to lesson planning and presentation. In particular, the
careful sequencing of material to be learned is likely to enhance the quality and
quantity of learning. This sequencing, however, is not likely to be all that is required
in the planning of learning experiences. Davis (1984, p. 21) suggested some of
the major dissatisfactions with behaviourist approaches to learning in: 'learning
mathematics by ... routine is dull and unmotivating; learning it creatively is exciting
and interesting (at least for many people)', and 'mathematics is too complex and
too vast to learn by rote'. Skinner, however, maintained that behaviourism had been
much maligned by educationists, and that many of the standard criticisms were
unfounded (Skinner, 1974, p. 5): 'the contentions represent . . . an extraordinary
misunderstanding of the achievements and significance of a scientific enterprise'. The
alternatives to behaviourism, in terms of theoretical bases for planning education, are
developed in subsequent chapters.

Suggestions for further reading
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Questions for discussion

1. What is the place of stimulus-response and rote learning in a mathematical education
today?

2. Assess the learning objectives for a mathematics course which you teach in terms of
comprehensiveness, specificity, lack of ambiguity and overall value.

3. Define the learning objectives for a unit of mathematics and prepare a draft learning
hierarchy to guide teaching.

4. What is the value of instructional computer-assisted learning programmes in mathematics
teaching today?



Chapter 4

Must We Wait Until Pupils Are Ready?

Alternative views

Once children have learned the meaning of addition and subtraction of natural
numbers and are sufficiently skilled in carrying out the two operations, the thoughts
of the teacher naturally turn to multiplication. Is there any reason why we should not
press on immediately with multiplication? Are the pupils ready? Later still, having
learned about natural numbers and mastered all the standard operations on them is
there any reason why we should not introduce our pupils to negative numbers and
zero, and begin work on operations on integers? Is there any more to readiness for
new mathematical ideas than adequate mastery of the mathematics which underlies
the new ideas upon which they must be built?

The view that readiness for learning is simply 'the presence of certain relevant
subordinate intellectual skills' (Gagne, 1985) was considered in Chapter 3 as being
one interpretation of an aspect of behaviourist approaches to education. There are,
however, alternative views around. Such alternative views have to be considered
seriously when one acknowledges the learning difficulties experienced by pupils. If,
for example, we treat fractions as an extension of the idea of number, as rational
numbers in fact, it might be thought that pupils are ready for fractions once natural
numbers have been adequately mastered. Yet many pupils struggle with operations on
fractions for the whole of their school life, from the moment the ideas and techniques
are introduced. Could such pupils really have been ready when we tried to teach them
about operations on fractions? If we take an alternative view of the place of fractions
in the curriculum, and regard them as part of a study of ratio and proportion, and
acknowledge the difficulties inherent in a study of ratio and proportion, as illustrated
in Chapter 1, it should not surprise us that doubts are raised about introducing
operations on fractions as early as we often do. But what makes pupils ready for a study
of ratio and proportion? Do many pupils struggle with ratio and proportion solely
because we have failed to identify and teach all of the relevant subordinate intellectual
skills? And how do we know when students are ready for the concept of real numbers
(see Orton, 2001)?

The obvious major alternatives to behaviourist views of readiness are developmental
views. Simplistically, developmental approaches are likely to state that a pupil is only
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ready when the quality of thinking and processing skills possessed by the learner
matches the demands of the subject matter. Furthermore, such thinking and pro-
cessing skills are heavily dependent for their development on maturation, but may
also depend on environmental factors such as quality of schooling, home background,
society and general cultural milieu. It is interaction between the maturing child and
all aspects of the environment which makes the required development possible.
Developmental views achieved prominence through the publication of the work of
Jean Piaget and his colleagues at Geneva, and these views have become both better
understood and modified with the passage of time. Many seeds of mathematical
knowledge sown in our classrooms on the assumption that the earth is ready for
cultivation appear instead to fall on stony ground. Developmental views attempt to
explain this phenomenon, and the best place to begin to consider them is with a study
of what is relevant from the work of Piaget. It needs to be stressed at the outset,
however, that although Piagetian theory may be interpreted as containing views on
readiness, many would say that the readiness issue is not the most important aspect of
the theory.

Piaget and readiness

Piaget's theory of intellectual development was based on results from experiments
with children using the clinical or individual interviewing method described in
Chapter 1. These experiments were carried out over a long period of time, com-
mencing some 70 or more years ago, and were very numerous and varied in both
nature and content. Many of the experiments investigated the understanding of
mathematical content and concepts. Piaget himself came from a background in the
biological sciences, and his view of learners as growing and ever-changing organisms
is the underlying basis for his developmental approach to learning theory. It should
be pointed out that Piaget never claimed to be a learning theorist as such, but the
extent to which his theory has been applied to education suggests that it is not
inappropriate for others to view his work as providing theoretical bases for learning.
Piaget's experimental work was so extensive that it is possible only to select a very
small part to illustrate both the emergence of the theory and the importance
for learning mathematics. A suitable part is a selection of experiments concerning
conservation.

One conservation experiment was based on containers of beads. Two equal quantities
of identical beads were counted out into two identical containers, thus reaching the
same level in both containers which were intended to be seen by children as totally
equivalent. The beads from one of these two containers were then tipped into con-
tainers of a very different shape, firstly into a container which was both wide and
shallow, and secondly into a container which was both tall and narrow (see Figure 4.1).
At each stage of rest the child was asked whether there were the same number of
beads in the two containers currently holding the beads. Piaget, and others who
have repeated the experiment subsequently, noted that many children gave responses
which, to an adult, would be considered strange, unexpected and incorrect. The
younger children tended to express the view that the number of beads changed
according to the shape of the container, and that, for example, there were more beads
in the tall, narrow container than in the original. What is more, when tipped back
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Figure 4.1

into the container in which they had first been placed there was once again the same
number of beads as in the untouched original container. Testing children at a variety
of ages led Piaget to conclude that children's first ideas are likely to be that the
number of beads changes, in fact to deny conservation. Eventually, after a period of
time which can be confusing to the observer (in that the children sometimes accept
conservation and at other times do not), the adult opinion is finally expressed and
conservation is consistently admitted.

A different experiment, but another approach to conservation, was to use liquids
instead of beads, and one might regard this as the continuous equivalent of the
discrete beads. Nowadays, lemonade or orange squash might be used in order to
motivate and capture attention, perhaps through promise of a drink later. The
questioning procedure, however, has always basically been the same as for the beads.
Thus, equal quantities of liquid were poured into two identical containers. Alongside
were containers of different shapes, taller and narrower than the original, or wider and
shallower (see Figure 4.2). Pouring the liquid into these other containers was likely to

Figure 4.2

produce the same responses as for the beads, thus suggesting that the younger children
were not accepting conservation. Older children, however, gave responses which were
of the kind one would expect an adult to give.

A third version of the conservation experiment was originally based on modelling
clay, but modern-day researchers would use plasticine. Starting with two balls,
accepted as being equal in every way (mass and shape) one was rolled into a sausage
shape under the constant gaze of the child. Having agreed initially that there
was the same amount of plasticine in both balls, younger children would be likely to
claim that the sausage, or perhaps the ball, now contained more plasticine. Older
children would, however, generally give responses which suggest that they accepted
conservation.
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Piaget's view of results from conservation experiments, and from a very large
number of other experiments which revealed a change in children's beliefs about the
world at around the same age, was that the structure and nature of intellectual
behaviour changed, that the children had moved on to a significantly different stage of
intellectual development. In the case of conservation the critical age for this change
appeared to Piaget to be around seven years old, though one would naturally expect
some variation, perhaps from six to eight years old. The acceptance of conservation was
not the only change in intellectual capability at around this age, suggesting that the
critical feature was not some specific new understanding, like what happens when
plasticine is moulded, but was a wholesale change over a comparatively short period of
time into a radically different way of thinking and of seeing the world.

Piaget suggested that there were a number of such radically different stages in
intellectual development. Thus, he also used experiments which he claimed revealed
a significant change in the nature and quality of thinking at other times in life. A
number of experiments appropriate to a change later on involved the ideas of ratio
and proportion. One such task was adapted and used subsequently by Hart (1981) and
was based on eels whose lengths were in a known ratio and whose appetites were said
to be proportional to their lengths. In one version of the experiment the eels were
fed with 'discrete' items of food, meatballs for Piaget and sprats for Hart, and
the pupil was required to calculate the number needed to feed each eel. Thus, given
eels of lengths 5, 10 and 15 cm and given that the 10-cm eel needed four meatballs,
the pupils would be asked how many meatballs each of the other eels would need. In
another version of the experiment eels were fed with 'continuous' items, biscuits
for Piaget and fish fingers for Hart. Given that the 10-cm eel needed a biscuit of
length 6 cm the pupils would be asked what length biscuit would be required for the
other eels. The pattern of results obtained by Piaget, and its interpretation, has been
discussed in detail by Lovell (197 la). From the point of view of the present discussion,
Piaget used his results of proportionality experiments and many other experiments of
a scientific or mathematical nature, to theorize that the ability to handle proportion
was dependent on the pupil progressing to a more advanced stage of intellectual
development.

From Piagetian theory we may therefore extract a clear view of readiness. Children
are not ready for mathematics which depends on a grasp of conservation if they have
not reached the stage of intellectual development at which conservation is accepted as
a part of the way the world works. Pupils are likewise not ready for mathematics
which depends on understanding ratio and proportion if they have not reached the
stage at which the essence of proportionality can be mastered. Well-informed readers
might feel that the above outline of aspects of Piagetian theory and the link with the
readiness issue has been over-simplified. It is, for example, perhaps unlikely that
Piaget would ever have presented the issue as it has been presented above, if only
because the interpretation of his work in terms of implications for the mathematics
curriculum has always been left to others. The justification for presenting the issue so
simplistically is that it is precisely the way others have interpreted the results.

It is now appropriate to mention briefly the stages of intellectual development
which Piaget proposed. For convenience four major stages are listed below though,
for Piaget, some of these stages incorporated substages, and some stages have sub-
sequently been allocated simple subdivisions by other educationists. In fact, different
reviewers of Piaget have even grouped the stages and substages in slightly different
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ways, so it is possible to find authors referring to Piaget's five stages, or to four stages,
or even to three. The four stages included here are:

1. The sensori-motor stage
2. The pre-operational stage
3. The concrete operational stage
4. The formal operational stage.

Piaget himself subdivided the pre-operational stage into preconceptual and intuitive.
Early concrete, late concrete, early formal and late formal subdivisions have been used
from time to time by others. All children, according to Piaget, pass through these
stages and in the defined order, that is, they successively reveal those characteristics of
intellectual activity which he spelled out for the stages.

From the point of view of learning mathematics the consequence should be that,
if a child is known to be operating at a particular Piagetian level, if it is known at
what stage they are functioning, there is no possibility that they will be able to cope
with any mathematics which depends on capabilities associated with a subsequent
stage. For example, acceptance of conservation is not a characteristic of the child's
thinking before the concrete operational stage. Indeed, according to Piaget, a number
of thinking skills emerge and develop with the onset of concrete operational thought,
including class inclusion, reversibility, combination and separation, arranging in
order and relative position, all of which might be very important in moving from
an informal and intuitive approach to mathematics, involving little more than the
manipulation of objects and materials, to mathematics as a thoughtful paper and
pencil activity. A major problem with this interpretation, however, is how do you
identify at what stage a particular child is operating? Is it even possible to identify a
stage and label a particular child in this way? However, it is interesting to note that
the age of seven has traditionally been given particular significance and importance in
English education. Without the benefit of Piagetian theory suggesting an important
intellectual development at around the age of seven we have seemingly traditionally
classed children under seven as infants and children over seven as juniors. What is
more, the approach to learning in the past would have likely changed, with infants
spending their time learning through playing, and juniors being expected to cope
with a more formal approach.

The two separate components of the term 'concrete operations' both require
comment. The term 'operation' is common to three of the Piagetian stages listed
earlier and, to Piaget, 'operation' possessed a precise meaning. Operations were to be
thought of as actions, but carried out in the mind, and the operations were organized
into a system. At the concrete operational stage these operations included combining,
separating, ordering, and so on, operations which have been described earlier. The term
'concrete' must not be thought of as implying that mathematics teaching always
requires concrete apparatus until the full emergence from the concrete operational
stage. The concreteness of the operations depends as much on actions carried out in the
mind on the basis of prior knowledge of, and familiarity with, relevant underlying
concrete manipulations. Thus, in a new learning situation, physical activity with
actual objects is likely to be important at the concrete operational stage, but only up
to the time when the child is able to replace such actual physical manipulations with
corresponding mental activities. Concrete referents are always likely to be important
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at the concrete operational stage but should not be required all the time. Although
there has sometimes been misunderstanding about the relationship between the term
'concrete operational' and the use of concrete apparatus in the classroom, the usual
error made in mathematics teaching has not been to overuse apparatus, it has been not
to have apparatus as reference material sufficiently often. There are, of course, many
people who cannot accept that such stages of intellectual development as described
by Piaget have any meaning. However, the need for concrete referents in teaching
mathematics to most pupils for much of their school life does appear to exist
independently of any acceptance or non-acceptance of Piagetian theory.

In learning mathematics, Piaget's theory would suggest that the ability to cope
with abstractions depends on the emergence or development of formal operational
thinking. Apart from proportionality, there are many mathematical topics and ideas
with which teachers know that many of their pupils will have difficulties because of
the level of abstraction required. The whole of algebra as generalized arithmetic is
dependent on abstraction from relatively more concrete numerical relationships. It is
well known that algebra is found to be difficult by many pupils, and some develop
such an intense dislike of it because of this that it colours their whole attitude to
mathematics. To these pupils there is no real meaning underlying the use of letters.
Perhaps many pupils are not ready in the sense that we, the teachers, are always eager
to press on to the next topic and we introduce algebraic ideas too soon and too quickly.
Piagetian theory also suggests that it is only at the formal operational stage that
one might expect dependence on concrete referents to recede into the background.
We know that our most able pupils have little need for concrete apparatus as they
move into and through the secondary school though, again, we are always likely to
assume that they need the support of concrete ways of thinking less than they perhaps
do. Eventually the manipulation of symbols as an abstract exercise does become
more comfortable, but only for a proportion of our pupils. It seems that the majority
are never ready for most of the algebra we would like to be able to teach. Formal
operational thinking, to Piaget, allows hypothesis and deduction, it allows logical
argument, it allows reasoning in verbal propositions. It is important to emphasize,
however, that for Piaget these more adult intellectual pursuits only become possible
with the onset of the formal operational stage, they do not become certain. In
other words, adults might also need to function at a more concrete level, and often a
practical introduction to a new idea is helpful, like using interlocking cubes to
investigate number series.

The implications for learning mathematics are clear. Many mathematical ideas
require the kind of thinking skills which Piaget has claimed are not beginning to be
available until the onset of the formal operational stage. It does not matter how
carefully and systematically the teacher might try to build up a pupil's capabilities
and knowledge — it is impossible to introduce concepts dependent on formal
operational thought before the pupil has moved into that stage. The pupil is not yet
ready for such abstract ideas. Pupils might, of course, be able to grasp the beginnings
of an abstract idea in an intuitive or concrete way, but they cannot appreciate the idea
as the teacher does. Explanations by the teacher will fail to make any impact unless
such explanations are dependent only on skills available to pupils at the concrete
operational stage.

Up to the present moment no attempt has been made to state the ages at which
children move from one Piagetian stage to another, apart from the references to
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'around seven' for the arrival of concrete operational thinking. There are many
problems with trying to relate Piaget's stages with ages. Clearly, pupils do not pass
suddenly from one stage to the next — there must surely be a period of transition
between any two stages. One of the problems with Piagetian theory is that it might
appear that children are in transition for much more of their childhood than they can
be said to be identifiably operating within a particular stage. Yet the idea of continual
transition cannot be reconciled with Piagetian stage theory. Another problem is that
it is difficult to identify categorically at which stage a particular pupil is operating at a
particular moment in time. It is interesting in this context to speculate on how the
Piagetian theory of intellectual growth compares with physical growth, for example in
terms of height. Children do go through periods of rapid physical growth and other
periods of much slower growth. For example, in the years just before puberty many
children appear to grow relatively slowly for a considerable period of time. Then, in
adolescence and particularly noticeable in boys, there is often a period of amazingly
rapid growth before it slows again as adulthood is approached. It almost seems as if
there are stages in physical growth. It must be a possibility that children experience
periods of rapid intellectual development and periods of much slower development.
This need not, however, imply that such relatively stable stages in intellectual growth
are qualitatively different in the way that Piaget has suggested. Nor has there been in
the past any clear evidence to suggest that changes in intellectual development from
one Piagetian stage to the next are related in any way to periods of rapid physical
growth. However, there are physiological changes taking place throughout ado-
lescence within the brain (see Winston, 2003), and further evaluation of these devel-
opments could eventually throw more light on changes in learning capabilities.

Since Piaget first outlined his theory that intellectual development takes place in
stages, and at the same time related the stages to ages, the literature has been dogged
by too optimistic a view of the rate of development in most pupils. Piaget suggested
that the development from pre-operational thinking to concrete operational thinking
took place around the age of seven, but there must be wide variation from pupil to
pupil. Extensive research has suggested that those characteristics which Piaget
described for the formal operational stage do not begin to emerge until fourteen or
fifteen years of age in many pupils. This is much less optimistic than Piaget's original
suggestion of eleven years of age, which seems to accord only with very able pupils,
such as those with whom he mostly worked. There are undoubtedly differences
between pupils of the same age and categorical statements about the age when pupils
move from one stage to the next are not helpful. Cockcroft (1982) drew attention to
this feature when he suggested a seven-year difference for a particular place value
skill (referred to in Chapter 1). The only description of intellectual development
which would make sense to most teachers is one that takes this seven-year difference
phenomenon into account. Figure 4.3 illustrates the likely relationship between
Piagetian stages and ages seen through the eyes of a mathematics teacher, though this
diagram must not be taken as prescriptive. Omitting any reference to Piaget's stages,
and using the sloping lines merely as markers, the diagram would probably not cause
offence to those who are unhappy about stages.

It is necessary to comment on a number of features of this diagram. First, the
discrepancy between the most able and least able widens with increase in age. That is,
the difference in intellectual capability between the most able and the least able in a
particular year group is considerable and growing, particularly in the upper junior and
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secondary schools. In comparison, the growth in intellectual capability from one year
to the next for any individual child is relatively small. Secondly, at the extremes of the
ability range it is difficult to know what to do with the sloping subdivision lines. A
few children, including those with severe brain damage, make very little progress
intellectually and do not fit into the implications of the scheme shown in Figure 4.3.
Likewise, at the other extreme, a very few children seem capable of such rapid
intellectual development that it is doubtful that the diagram accommodates them
too. Thirdly, a considerable proportion of sixteen-year-old school-leavers have not
reached the formal operational stage. Whether they ever do is not known since very
little cognitive-development research evidence exists concerning such individuals.
Taking into account the importance of motivation and intellectual activity in learning
it seems very likely that some of the population might never develop those abilities
outlined by Piaget as being characteristic of formal operational thinking. Finally,
the diagram, in its simplicity, gives the impression of sudden change from one stage
to the next. This, clearly, does not happen.

Accelerating learning

From the preceding outline of Piagetian stage theory, itself only a part of the totality
of Piaget's developmental theory, it might be thought that one implication is
that there is little anyone can do to accelerate learning in others. This is not necessarily
the case. Piaget's theory is not solely concerned with maturation; it is more funda-
mentally about action and interaction. Even when engaging in abstract mathematics
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our thought processes are founded on previous actions. Here there is a hint of
the fundamental philosophical distinction between Piaget and the behaviourist
tradition. To Piaget, it is not a case of pouring knowledge into an empty vessel (a
simplistic interpretation of behaviourism). Knowledge has to be constructed by each
and every learner, hence different children must be expected to learn differently from
the same learning experience. Interaction with the world outside the individual child
carries the implication that an enriched environment might help to accelerate learning
but only to the extent that the child can benefit through his or her constructive
efforts.

Piaget's background as a biologist ensured that he regarded intellectual develop-
ment in the same way as any aspect of growth, and in particular as involving self-
regulation. When new ideas impinge on existing ideas it can happen that they create
conflict. A situation of disequilibrium can therefore emerge, and this must be
resolved. As a living being a child must reconcile any disturbance to the stability of
his or her mental state. Piaget referred to this phenomenon under the description
'equilibration', and there are many who regard this aspect of Piagetian theory as
the most important. Equilibration implies equilibrium in the same sense as in the
natural sciences. It implies not a state of rest but a state of balance, a state for which
the system is striving. In connection with equilibration Piaget introduced two helpful
ideas, namely assimilation and accommodation. Assimilation refers to the taking
in, the acceptance or absorption of, new ideas. Accommodation refers to what
might be necessary in the way of modification and amendment to previously held
ideas in order for assimilation to be possible. These two aspects of equilibration occur
together and are generally inseparable. Equilibration, in the form of assimilation
and accommodation, is relevant to all learning, but a few mathematical examples are
appropriate.

We introduce young children to the idea of number. The children must master
ideas of 'oneness', 'twoness', 'threeness', and so on, and must comprehend the impli-
cations of the usual counting sequence 'one, two, three . . .'. They must also absorb all
relevant terminology and symbolism, must appreciate both cardinal and ordinal
aspects, must learn how to apply the four rules, involving the use of place value to
organize our recording and manipulation of numbers, and all of this takes a long time.
Over many years, children build up a view in their minds of what we mean by number
and what a number is. This undoubtedly necessitates continual equilibration.
Subsequently we introduce fractions. At the time of introduction there might be no
suggestion that fractions are themselves also numbers, but eventually we hope that
what is regarded by the child as a number is very much extended and modified from
our original implication that 'numbers' = 'natural numbers' (possibly including zero).
In assimilating the ideas that fractions are (rational) numbers, that improper fractions
are still fractions and are numbers, that integers are numbers, that there are other
(irrational) numbers, that the idea of real numbers is a valuable one, at each step the
previously held view of what 'number' means requires modification. Assimilation
cannot take place without accommodation, and accommodation might not be easy.
In a trivial way we can appreciate this because in puzzle situations, when asked to 'give
a number between 1 and 10', the almost universal assumption is that the number
required is a whole number or natural number. There is a strong tendency to think
only of natural numbers when adults are requested to provide 'a number', so perhaps
many of us have still not accommodated fully to a more mature view of number.
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Another mathematical example involves equations. When equations are introduced
they are inevitably linear equations, and techniques for solving linear equations are
introduced and practised. The subsequent introduction of quadratic equations might
well raise problems of accommodation. What we mean by 'equation' is certainly
extended and methods appropriate for solving various kinds of equations need to be
assimilated. The accommodation problem might be that techniques appropriate to
linear equations no longer work; pupils certainly sometimes try to use them, however,
showing that there are residual accommodation difficulties. Once a broader, more
general, view of'equation' is arrived at through the gradual introduction of a variety of
different kinds of equation, there might be little problem when any further kinds
of equation are introduced. Mastery of a broad view of equations as incorporating
linear, simultaneous, quadratic and trigonometric should lead, for those who continue
beyond this point, to minds which are open enough to accommodate logarithmic,
exponential and differential equations.

At a higher level still, there is a widespread belief that velocity is proportional to
force and also that force always acts in the direction of motion. These views arise
through construction by the individual on the basis of observation of the world. They
are, however, incorrect, and it took mankind many thousands of years to arrive at
contemporary agreed views. It should not be a surprise that such beliefs are prevalent,
nor that they are very resistant to teaching. It is even possible to find individuals who
show mastery of the mathematics (and physics) in the classroom but whose views
outside the classroom revert to the popular incorrect notions. This is a situation where
accommodation might even require complete eradication of previously held views. It
even seems as if the correct laws can be assimilated and yet incorrect laws continue to
survive alongside. The individual must arrive at a state of mental equilibrium, even if
that means one law for the classroom and another for the real world.

There are issues raised by the concept of equilibration which relate to the
acceleration of learning. Is it possible, for example, to accelerate learning by setting
out to avoid some occurrences of disequilibrium? Is it wrong to introduce pupils to
the concept of a simple balance as a support to solving linear equations on the grounds
that the comparison with balancing weights works less well or not at all when we
move on to quadratic equations and differential equations? Skemp (1971) has referred
to the problems of using inappropriate 'schema' which are not applicable beyond a
certain type of mathematical situation. The Nuffield Mathematics Project (1969),
in introducing integers, criticized such devices as temperature scales which took
children some way into a study of integers but had to be rejected when it came
to multiplication and division. Unfortunately, it is not easy to find illustrations
which are better than thermometers (in many countries) for introducing integers and
balances for introducing equations. When these devices subsequently fail, however,
disequilibrium may follow, and a struggle to achieve equilibrium must follow, unless
the pupil decides it isn't worth the effort.

There is a contrary view, namely that deliberately placing a child in a state of
mental disequilibrium generates the constructive activity required for accommoda-
tion, and learning is more permanent than if ideas are presented passively. Evidence
from using apparatus as a basis for experiment and discussion in mechanics learning
suggests that the presentation of conflict which needs to be resolved can lead to
successful learning with motivated students. Given a loop-the-loop toy as an aid
to studying motion in a vertical circle (see Figure 4.4) students have been observed to
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Figure 4.4

propose theories based on intuition which were incorrect, but which could be tested
and thus found wanting (Williams, 1985). The conflict between incorrect theory and
observed results in this situation led the students to new theory and experimentation
and eventually to the acceptance of the universally accepted laws. Such learning is
likely to be more successful and permanent than any attempt to present the correct
law without active involvement. Further examples of incorrect theories which might
lead to useful and constructive conflict experimentation are: that the completion of
a vertical circle depends on the steepness of the approach track, and that the object
needs to be released from a point on the approach track level with the top of the circle
in order to complete a circle.

The views of Bruner concerning learning are relevant to a consideration of the
acceleration of learning. The following statement from Bruner (1960b, p. 33) is well
known: 'We begin with the hypothesis that any subject can be taught effectively
in some intellectually honest form to any child at any stage of development'. This
certainly appears, on first reading, to be a complete contradiction of any suggestion
that particular topics may be assigned an absolute level of difficulty according to
Piagetian stages of development. One experiment described by Bruner (1966)
involved comparatively young children learning about quadratic expansions, not
normally taught until at least age thirteen, by using some of the equipment suggested
by Dienes (I960), illustrated in Figure 4.5. It was first necessary to ensure that the
children accepted the dimensions of the small square (actually a cuboid but commonly
referred to as a square!) as 1 X 1 and that they accepted that, since we did not know
its length, a suitable name for the strip was V (dimensions 1 X x). The dimensions of
the larger square are then x X x. Naturally, the introduction of these notions is not
simple, but Bruner claimed that they were eventually accepted by the children. The

Figure 4.5
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experiment then proceeded via the construction of squares larger than x X x by putting
appropriate materials together. Figure 4.6 shows some such larger squares. The intro-
duction of notation to record these results then became necessary, and this again was
not simple, but was achieved through such steps as, 'one x-square plus two x-strips
plus one unit square', to 'one x plus two x plus one', and finally to
which could then also be equated with

Figure 4.6

At all stages, because so many new ideas were being considered, particularly
involving the use of notation, time for both discussion and reflection were important.
At the end the children, it was claimed, had learned some mathematics several years in
advance of what might have been expected. The ideas that

and the studies of number patterns which could emerge, leading to further generaliza-
tion, are all very advanced for young children. The method can eventually lead to the
practical demonstration of the use of the distributive law in more general cases like

It is important to note that the children concerned had not been introduced to the
ideas in the way which would be considered normal for, say, fourteen-year-old pupils.
This would have been impossible if only because the symbolism would not have been
available. However, in an intellectually honest way appropriate to their stage of
development they had been introduced to a much more advanced mathematical
idea than is normal at their age. The question must arise as to whether the results of
the experiment are in any way in conflict with the kind of conclusions about the
acceleration of learning which one might draw from Piagetian theory. There was
no suggestion in the results of the experiment that children had learned advanced
mathematics in a formal way and were able to use the ideas and relate them to other
aspects of formal mathematics. So in stating that proportionality, for example, is an
aspect of mathematics which requires formal operational thinking it is implied that
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we mean reasonable facility in the use of equality of ratios in arithmetic manipulative
situations. The idea that because one measure is larger another must be comparably
larger would not be considered a sufficient indication that metric aspects of proportion
were understood.

Certain other aspects of Bruner's experiment have led to criticism by mathematics
teachers. In terms of practical applicability in the ordinary classroom there was no
suggestion from Bruner that teachers might be able to use the procedure without
assistance and with an entire class of 30 or more pupils. The original experiment
reported by Bruner and Kenney (1965) involved only four children, with six adults
available in the role of teachers! The four children were only eight years old but were
in the IQ range 120-130 and came from middle-class professional homes. The class-
room environment was as favourable as is possible, in terms of the availability of
concrete resource materials, suitable work assignments and, of course, opportunity for
question and discussion with adults. One must accept the results for what they are —
the results of one experiment which show what might happen under particularly
favourable circumstances. One must therefore be cautious about assigning absolute
levels of difficulty to topics in the mathematics curriculum. There are almost certainly
alternative ways into mathematical topics which are appropriate for young pupils
which particular circumstances might make possible.

The Schools Council Bulletin (1965) recorded accounts of work carried out by some
ten-year-old pupils. In one particular instance one child was so motivated by a study
of gradients that he pursued the idea to the beginnings of differentiation and inte-
gration. Other children became involved in what was an intellectually honest and
justifiable approach to elementary calculus taking into account the stage of develop-
ment of the children. It is, of course, possible that those pupils who took the lead in
the investigations were intellectually amongst the most able in the class. However,
that does not contradict the view that the assignation of absolute levels of difficulty to
particular mathematical topics is not easy and might be dangerous and unhelpful. The
issue of readiness for learning is a very complex one. We should certainly not use
general statements about stages of development to justify not looking for appropriate
ways of helping children to learn mathematical ideas, just as we should not present
mathematical ideas to pupils in such a way as to persuade them that mathematics is
not for them.

Curriculum implementation

The work of Piaget has probably been more influential than has the work of any other
theorist in terms of mathematics curriculum development in Britain, particularly at
the primary level. This is in stark contrast to the situation in the USA where the
behaviourist tradition was not seriously questioned before Bruner began to inject
new ideas from cognitive psychology, some of which were influenced by the work of
Piaget. One illustration of the impact in England and Wales is the Schools Council
Bulletin (1965) referred to in the previous section. Although this publication was
principally a practical guide for teachers, it included a chapter on research into the way
children learn. There were many references to Piaget in that chapter and the impact
that the work of Piaget was having on those concerned with improving the primary
mathematics curriculum at that time is illustrated by the following extracts (pp. 5-9).
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Piaget set himself the task of finding out . . . how the principles of conservation
and of reversibility, as applied to numbers and to spatial thinking, develop in
the minds of young children. The two principles are fundamental to all
mathematical (and logical) thinking.

. . . understanding cannot be taught nor does it come by itself, independently
of experience . . . This does not mean that there is nothing the teacher can
do except wait for the dawn of understanding. He can provide the kind of
experience which will assist the child to move from intuitive to operational
thinking.

Children learn mathematical concepts more slowly than we realized. They learn
by their own activities.

Although children think and reason in different ways they all pass through
certain stages depending on their chronological and mental ages and their
experience.

The report of the Mathematical Association (1970) on primary mathematics
included an appendix on 'Understanding and mathematics' which incorporated much
of the spirit of Piaget within a broader review of what was known about learning.
Caution was recommended, however, in the application of any interpretation of
Piagetian theory, as is shown in these two extracts (p. 153):

Although these stages . . . have been broadly substantiated by a large number of
research workers, we should show due caution in accepting them as a permanent
feature in childhood development;

. . . it is important not to discourage experiment, in the belief that what has been
found is an unalterable feature of childhood development. We have only to
compare the thinking of primitive adults with that of educated children in
industrial societies to see the vast changes which are possible.

Piagetian views provided the underlying rationale for the book by Lovell (1971b)
prepared as a guide for teachers of young children. The two extracts below would
be found acceptable by many teachers today, even though certain aspects of Piagetian
theory have received considerable criticism (p. 17):

There appears to be a danger that some mathematical ideas are introduced too
early to children, or that there is insufficient appreciation on the part of pro-
fessional mathematicians that many of the ideas they would like to introduce
to elementary school pupils are understood only in an intuitive and not in an
analytic sense by the children.

It is not in any sense suggested that the child must always be 'ready' for a
particular idea before the teacher introduces it. The job of the teacher is to use his
professional skill and provide learning situations for the child which demand
thinking skills just ahead of those . . . available to him . . . When a child is
almost ready for an idea, the learning situation provided by the teacher may well
'precipitate' the child's understanding of that idea.
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The distinction between 'ready' and 'almost ready' might be considered too subtle to
be useful, but the message that the teacher does have a role to play and that it is not
appropriate to sit back and wait is clear.

The early 1960s to the late 1970s was a time of curriculum experimentation in
school mathematics and a considerable number of curriculum projects sprang up
in Britain. The only project which overtly expressed a Piagetian view was also the
only major project aimed at younger pupils, and that was the Nuffield Mathematics
Project. The title of the first publication which introduced teachers to the work of the
project was / Do, and I UnderstandXI967). The words of the title themselves reflected
the Piagetian message, though it was claimed that the title formed part of a Chinese
proverb. This particular book included a discussion on how children learn and con-
tained reference to stages of learning, to active learning and to the role of interaction
with the environment. Among the many publications for teachers produced by
Nuffield (1970, 1973) were three, Checking Up (I, II and ///), which provided teachers
with Piagetian tests which could be applied to pupils in order to ascertain readiness in
terms of the stage of development. The authors were at pains to point out that the
tests were put on trial in schools before publication, as was the other material of
the project, and that the original ideas came from the work of Piaget. The Checking Up
books also included a sort of time chart of conceptual development, particularly
through the concrete operational stage, showing which ideas needed to be developed
before other concepts could be mastered.

In I Do, and I Understand there were references to readiness, in relation to develop-
ment through stages, and to the slow rate of intellectual development:

Any attempt to hurry children through this stage of development [concrete
operations] is liable to lead to a serious loss of confidence. They will discard real
materials themselves at the appropriate moment . . . and eventually, when faced
with a problem, will ignore all available materials and approach it abstractly,
(p. 9)

Those who are familiar with the material of this Nuffield Project, however, cannot
fail to have speculated on how a project which was apparently so heavily influenced
by Piaget could include, for example, the approach to integers through ordered
pairs (Nuffield, 1969). The reasons for doing this were explained, and a variety of
practical or game-type activities were suggested to help in introducing this approach
to integers, but they could not wholly compensate for the fact that, in the end,
abstraction of quite a high level was required.

The Cockcroft Report (1982) contained many references to aspects of learning but
showed no real enthusiasm for Piaget's stage theory or for any views on readiness
which might be said to follow from Piaget. Both understanding and rate of intel-
lectual development are recurring themes, however, as reflected by these extracts
(pp. 100-110):

. . . it is not possible to make any overall statement about the mathematical
knowledge and understanding which children in general should be expected to
possess at the end of the primary years;

. . . the curriculum provided for pupils needs to take into account the wide gap
in understanding and skill which can exist between children of the same age.
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The review of research, carried out for the Cockcroft Committee by Bell et al. (1983),
contained a section on research relating to stages of intellectual development and to
the work of Piaget. This was an important section because it clearly revealed ways
in which subsequent research to that of Piaget has raised doubts about the value of
the idea of stages in relation to learning mathematics. Criticisms and current attitudes
to aspects of the work of Piaget and to readiness are considered in the next section of
this chapter.

Critical evaluation

The work of Piaget was originally welcomed as being helpful in relation to curriculum
design and to the planning of learning activities and experiences for children, but
a body of criticism has grown up subsequently. Given the complexity of human
learning and the comparative youth of educational psychology in the history of
mankind it would have been very surprising if criticisms had not appeared. Any major
theory which appears to fit experimental data is likely to lead us forward towards
widely acceptable theories about learning but may not provide the ultimate answer.
In accepting that there have been criticisms of Piaget's work it is important to realize
that many have been concerned with particular aspects, some relatively trivial. We
must not necessarily reject every aspect of the theory because certain parts do not stand
up to close inspection.

There has been criticism of many of the tasks used by Piaget on these grounds:

many questions are not meaningful to the children — either they do not relate to
the world in which the child lives or they do not motivate;
some questions might be regarded as ridiculous or frivolous for the above reason
or because they contain questionable statements;
the complexity of instructions in some questions, that is the language demands,
are too much for some pupils;
some questions are not sufficiently free from context variables to produce results,
from different backgrounds, which are comparable;
some questions, particularly those devised to test formal operational thinking
skills, are too difficult even for most adults.

Other, more substantive, concerns have also been expressed. Some of the many
criticisms are now considered in more detail.

One difficulty of task construction is to devise a question which is both meaningful
and mathematically appropriate, and which is fair to every child. The task devised to
expose a child's competence in handling ratio and proportion based on the eating
habits of eels is an interesting example. In the Piagetian version (translation) eels eat
meatballs and biscuits (Lovell, 197 la), but in the Concepts in Secondary Mathematics
and Science project (CSMS) version (Hart, 1981) the eels eat sprats and fish fingers.
The whole situation, in both cases, is artificially contrived to set up a particular
mathematical task. This is common in mathematics teaching, but could be one reason
why some pupils can find mathematics unpalatable and divorced from the real world.
It is hoped that children will play along with us under such circumstances, but do
they, and could results be affected by differing attitudes? What of those children
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whose knowledge of biology is such that they cannot accept that eels would eat
biscuits, or cannot accept that eels have mouths which are big enough to eat sprats?
The particular stretching of the imagination required in this question is unimportant,
but the general principle is not. Are the results of research sometimes distorted
because some pupils do not or cannot accept the situations?

Another Piagetian question concerns two fields each containing a cow and in which
houses are to be placed. In one field houses are to be spaced randomly but in the other
the houses are to be lined up, in terraced format. At all times when questions are asked
there must be the same number of houses in each field. The basic question is whether
each cow has the same amount of grass to eat, and this question is to be put for a
variety of different numbers of houses. Results have been as intriguing as those for
the conservation tasks described earlier, but children do tend to agree that the two
cows have the same amount of grass to eat when there are no houses or just one house
in each field. With more houses than one, younger children are inclined to deny
conservation. However, there is a complication to the situation, appreciated by some
children. Cows have a tendency to churn up the ground around buildings, thus killing
off the grass. Would this happen round the houses in the question? If it did there
would be less grass to eat in one field than in the other! This feature could be con-
sidered even more relevant if there were to be more than one cow in each field. The
question is arguably not equally fair to all children, and is clearly open to varied
interpretations, so either way results might be distorted.

Yet another Piagetian task involves wooden beads in a box. Most of the beads are
brown, but a small number are white. The question is whether the box contained more
wooden beads or more brown beads. Results have suggested that many children were
unable to answer correctly. The question, however, is one that most adults would
puzzle over, not because they could not answer the question but because they might
not believe that the questioner had expressed it correctly. It is unusual, and to some
extent ridiculous, to ask a question comparing the number of objects in a set with
the number of objects in a subset of the set. The description of the application of the
test by Piaget suggests that he was at great pains to try to ensure that the question was
understood. But there is still a nagging feeling that the unusual and unexpected, even
unacceptable, nature of the question might have seriously influenced the results.

The above examples illustrate how difficult it is to produce or invent a question
which is acceptable from all points of view and upon which one can base general
conclusions about intellectual development. There have been many experiments
carried out to test Piaget's conclusions using alternative language or situations
but based on the same ideas. Results from such experiments have thrown serious
doubt on aspects of the conclusions drawn by Piaget. Yet it must be admitted that
no alternative experiment has ever produced results in which all children across a
wide age range have answered correctly. What has normally happened is that
the proportion of children answering correctly has been different, occasionally very
different.

Many of these issues have been discussed by Bryant. Another ability required for
mathematical development not previously considered here and which Piaget had
claimed was not present until the onset of concrete operations was the ability to make
transitive inferences. A simple task involving transitivity might be based on three
quantities A, B and C, for which direct comparison showed that A > B and B > C.
Piaget concluded that pre-operational children could not deduce that A > C. Bryant's
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discussion of this issue (Bryant, 1974) is well worth studying. Bryant was particularly
concerned that Piaget had not taken into account alternative reasons for the failure of
young children to make transitive inferences. A very real alternative reason was con-
sidered to be that young children could not keep in mind the two earlier comparisons,
A > B and B > C, which is essential before inferencing becomes possible. Memory
training involving such relationships did, indeed, produce a higher success rate.
Bryant also took into account the possibility that children might state the correct
conclusion for the wrong reason, that is, because A is the larger in A > B and because C
is the smaller in B > C, any relationship involving only A and C must have A as
the larger and C as the smaller. In conclusion Bryant stated (pp. 47-8): 'This experi-
ment demonstrates conclusively that young children are capable of making genuine
transitive inferences . . . Piaget's theory about logical development must, to some
extent, be wrong'.

The Piagetian task involving beads and brown beads has been investigated by
McGarrigle and the conclusions are reported in Donaldson (1978). McGarrigle
invented an experiment based on toy cows, three of them black and one white. When
laid on their sides the cows were described as 'sleeping'. He was then able to compare
the standard Piagetian form with a version which introduced greater emphasis on the
total class — 'Are there more black cows or more sleeping cows?' The cows were all
sleeping in both versions of the experiment. With six-year-old children the success
rate increased from 25 per cent to 48 per cent with the introduction of the word
'sleeping'. This illustrates the kind of influence particular variations can exert on test
results. In another experiment black and white toy cows and horses were arranged on
either side of a wall, as in Figure 4.7. The children were asked a number of questions,
including, 'Are there more cows or more black horses?' Only 14 per cent of children
answered this correctly. Donaldson concluded from the results and the accompanying
comments of the children that they were comparing the black horses with the black
cows. Children's own interpretations of the language used in framing questions
clearly can affect results and conclusions drawn from such results can be distorted (see
Chapter 9).
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Figure 4.7

Piaget has also been criticized for his lack of concern about sampling. Generally
his experiments were tried out on very small numbers of children, seemingly often
a few comparatively clever children from the immediate locality. As a biologist,
however, he may have been very content in working with a few readily available
subjects. Biologists often have to be content with very small samples in experi-
mental work. Conclusions drawn on the basis of work with small samples must be
cautious, but the information which is obtained can have genuine value. Many
experiments based on Piagetian tasks have been replicated by others in many countries
around the world using much larger samples including children spanning the whole
range of all relevant variables like age, ability and social background. Because
this criticism has been addressed by others, inadequate sampling is therefore not a
substantive issue.
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A much more substantial criticism of Piagetian theory concerns the idea that
human intellectual development occurs in stages in which qualitatively different
thinking structures may be detected. Many critics have drawn attention to the weak-
nesses of such a theoretical position. There is just too much variation to make the
theory useful, particularly in terms of prediction. There is considerable evidence
that individual children cannot easily be categorized as being at a particular stage of
development. For example, in one subject area they might reveal complete com-
petence in tasks which are considered to require formal operational thinking, yet in
another subject area they might reveal no higher than concrete operational responses.
Even in the same subject area, say conservation, they might behave on some tasks as if
they are at the concrete operational level but on other tasks their behaviour might
indicate only pre-operational thinking. One day they might answer a particular task
correctly, suggesting capabilities associated with a particular Piagetian level, but on
the next day, on what is seemingly an exactly comparable task, their reaction might
suggest they have not reached that level. Piagetian theory acknowledges this phenom-
enon in two ways. Firstly, between any two adjacent stages there must be a period of
transition when such phenomena will arise. Secondly, some element of confusion of
the sort described above, referred to by Piaget as 'decalage', is accepted because
humans will always be prone to respond with a degree of variability. Many modern
critics, however, are unhappy that the variability seems too great to support a theory
which is of any real use. They would not necessarily reject any suggestion that intelli-
gence or cognition develops throughout childhood, that maturation of the central
nervous system plays a part and that the quality of interaction with the environment is
an important contributory factor. They are unhappy with the idea of development in
identifiable stages.

Another criticism arises in the accusation that Piaget's theory is only illustrative
and not confirmatory (Brown and Desforges, 1977). The data may be considered to fit
the theory but there is no other way to prove the theory. Certainly, any theory which
can only be supported in this illustrative way cannot be regarded with complete
satisfaction, yet it is likely that human progress in many areas of science has depended
on such assumptions. It would be interesting to research into the history of science
with a view to establishing how many theories were originally developed solely
because they fitted the available data. More abstract proofs can only be sought once the
data has suggested a hypothesis.

Piaget's work has also been taken to imply a consistent order in the acquisition of
mathematical concepts, and the time chart contained in the Nuffield Checking Up
books has already been mentioned. Cross-cultural studies, however, have generally not
confirmed consistency of order. It is possible that there are elements of order, that
length must come before area, for example, but there are also many indications that in
different cultures the order is not the same as in Western culture. Piaget's theory does,
however, acknowledge the vital effect of interaction with the environment in its
widest definition. The role of experience is much more crucial than any constant order
theory can acknowledge. It is, for example, often suggested that any differences in
spatial and mechanical ability between boys and girls is because of differences in the
environment in which the two sexes are reared. This is an hypothesis which cannot
easily be proved or disproved but it cannot be denied that this is an example of
different environments within the same overall culture. Children from more rural and
agricultural cultures tend to develop skills, knowledge and understanding required for
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survival and not develop other capabilities which those in an industrial society might
take for granted.

All of the above reservations about aspects of Piagetian theory should suggest that
attempts to apply Piaget either to the construction of the mathematics curriculum or
to assessing pupil progress have not been successful. On the whole this has been the
case. The only mathematics curriculum development project in Britain which has
referred heavily to Piaget was the original Nuffield Mathematics Project. This project
in itself received rather limited levels of support and interest from teachers, who tend
naturally to be more interested in the practicalities of schemes of work and exercises
for pupils rather than directly on the implications of Piaget for classroom implementa-
tion. The materials of the scheme were comparatively lacking in material of direct
applicability to the classroom. More recently, in the 1980s, a new scheme entitled
'Nuffield Maths 5-11' (1983, for example) was produced as a revised and extended
version of the primary section of the Nuffield Mathematics Project. The revision
included removing any reference to Piagetian theory. The nearest messages one can
find to those of the original Nuffield and to the Schools Council (1965) publication in
terms of the influence of Piaget are that children learn at different rates and so will not
reach the same stage simultaneously, and that young children learn by doing and by
discussion.

Difficulties in relating to the Piagetian stage theory have been experienced by those
who have researched into mathematical understanding on a large scale. Hughes
(1980), writing about the Schools Council Project on the development of scientific
and mathematical concepts in children between the ages of seven and eleven stated
that (p. 94): 'The conclusions . . . confirm the doubts one has for the resolving power
of Piagetian type tests'. The study was based on the responses of 1000 children to a
battery of practical tests on the concepts associated with area, weight and volume. It
developed (p. 88): 'as a result of the trend in the late sixties and early seventies for
modes of teaching to be loosely based on beliefs about the conceptual development of
children [basically Piagetian]'. The results exposed so much decalage as to make
general statements about conceptual development, particularly of stages of intel-
lectual development, completely inappropriate. The following extract sums this up
(p. 92):

Some children, at all ages, grasp one conservation concept in one test situation
before grasping it in another; this is true from topic to topic and also between
apparently fairly similar tasks in any one topic (say weight). From our research it
is not possible to determine for certain which they will grasp first.

Reference to selected results of the work of the mathematics team of the CSMS
project has already been made (Hart, 1981). This team also experienced difficulty in
relating their findings to Piagetian theory. It had been hoped that the development
of the understanding of mathematical concept areas 'could be described in terms of
the demand (as related to) Piagetian levels of cognition', but this did not materialize.
The problem was clearly stated:

It was hoped that a child could be designated as being at a particular Piagetian
level and, by looking at his performance on a maths test, the mathematical levels
could also be described in Piagetian terms . . . we found however that the child's
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performance varied considerably task to task and that we could not label a child
as being overall at a certain Piagetian level. (Hart, 1980, p. 55)

Nevertheless, the terminology 'concrete operations', 'formal operations', is still
apparently found to be useful by those reporting on empirical research, and by the
many who write about child development and curriculum reform.

Work by Booth (1984) reflects the dilemma facing empirical researchers in relation
to Piagetian theory. Reporting on the research project 'Strategies and Errors in
Secondary Mathematics: Algebra' she draws attention (p. 95) to inconsistencies
militating against 'the unqualified acceptance of the "unified stage" view of cognition
which characterizes the Piagetian formulation'. At the same time the following points
are also made (p. 95):

the observed similarities in the nature of the informal methods used by different
children, as well as the points concerning context and the generalized nature
of algebraic representation outlined above, suggest some generality in cognition
which requires explanation;

and (p. 91):

Analysis of the nature of the difficulties which children have been observed to
experience suggests a picture of conceptual growth which is generally not
inconsistent with Piaget's description of the development from concrete to
formal operational thinking.

Despite criticism, expected in the world of education, Piaget has acted as an
inspiration to many who have produced alternative theories concerning cognitive
development, for example, Ausubel, and also to those who have proposed ideas
concerning mathematics learning, for example, Dienes. Shulman wrote (1970, p. 40),
'Many psychologists are seriously suggesting that [Piaget's} stature will eventually
equal that of Freud as a pioneering giant in the behavioral sciences'. The influence of
Piaget will certainly reappear in subsequent chapters of this book.

Cross-cultural issues

The implication from the work of Piaget is that all children, all over the world,
develop in substantially the same way. To Piaget, progression from one stage to
another is achieved through a combination of maturation, interaction with the
environment and equilibration, with equilibration being perhaps the most critical
factor. But what is the comparative effect of these various factors? Might it be that the
wider environment, which includes the social and cultural environment, plays a larger
part than Piaget believed? It must be admitted that Piaget's theoretical constructs
were produced within a Western cultural situation and on the basis of empirical work
carried out with children brought up in such an environment. Berry (1985, p. 18)
has summed up the criticisms of the assertion that development is invariant across
different cultural and linguistic groups in writing: 'studies conducted in a variety of
settings in Latin America, Africa, Asia and the South Pacific have raised serious
questions about the validity of this assumption'.
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Many cross-cultural studies have, in fact, been carried out, but a substantial number
of them by Western research workers, who Piaget himself pointed out would find
this kind of research very difficult, because such studies presuppose a complete and
thorough knowledge of the language and a sophisticated understanding of the culture
and society within which the research is to be conducted. The same point could, of
course, be made about research with children from particular subcultures within
Western society, and not only ethnic subcultures. Dasen (1972, p. 29) reported that:
'A number of studies show that both non-Western and low socio-economic class
Western children lag behind in their concept development when compared with
middle-class Western children.' Also, '. . . since Western science does not necessarily
represent the form of thought valued in other cultures, nor in fact in some subcultures
within the West, the Piagetian sequence is likely to be ethnocentric' (Dasen, 1977,
p. 5). A particular issue is the one of language, namely whether the language used
to communicate ideas allows the complete elaboration of concepts which have
largely been derived through the medium of Western languages, and whether this
communication is conducted in the first or a second language (see Chapter 9).

A major difficulty in making sense of the findings from cross-cultural studies has
been the absence of adequate common ground, with each new study being perhaps in a
new culture and with new tasks. Many studies, however, have deduced a 'time-lag' in
the development of concepts. Such studies should not be interpreted in terms of
cultural deprivation, with the development of the Western child being taken as the
norm against which all other children must be compared. Concepts might develop
together in a Western society but at different rates in another culture when that
culture places a different value on the ideas or when one idea is more culturally
relevant than another. The early study by Gay and Cole (1967) established that for the
Kpelle of Liberia it was the requirements of everyday life which dictated which
numerical estimation skills were most fully developed, and that with certain skills the
Kpelle were better than American college students. Not all cross-cultural studies have
adopted a strictly Piagetian framework, of course, but the results often throw light on
the issue of social and cultural environment. Saxe and Posner (1983) have reported
research carried out in the Ivory Coast which reveals that the children of merchants
adopted more economical strategies of arithmetic problem-solving than children
brought up in an agricultural situation, showing 'how individuals develop the sym-
bolic skills that are most useful to them in their differing social contexts' (p. 303).
There is some support, across many different cultural groups, for believing that con-
cepts of number conservation develop similarly through the concrete operational
stage, yet time-lags are still widely reported and there seems to be considerable
variability in performance across tasks. Saxe and Posner claimed that,'. . . problematic
for the Piagetian formulation is the lack of empirical support for the construct of
stage' (p. 311). A further conclusion drawn from evidence from a wide range of cross-
cultural studies by Saxe and Posner is that: 'the formation of mathematical concepts is
a developmental process simultaneously rooted in the constructive activities of the
individual and in social life' (p. 315). Solomon (1989) has similarly criticized Piaget's
assumption of a solitary knower who must construct mathematical understanding,
suggesting persistently that it is rather the case of an essentially social being for whom
knowing number involves entering into the social practices of its use. Social practices
(also discussed later in the context of the issues of Chapter 7) will inevitably vary
according to cultural background.
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In terms of readiness for learning, the underlying theme of this chapter, the issue
remains somewhat unresolved. The view of behaviourists is found to be unsatisfactory
by many teachers, yet the presence of prerequisite knowledge, suggested by Gagne
and supported by the cognitive psychologist, Ausubel, is clearly important. There
might well be a maturational factor in learning mathematics. The role of interaction
with the environment is clearly important, and that environment comprises not
only the immediate classroom or teaching environment but also extends to the wider
social and cultural milieu within which children are educated (see Chapter 7). To a
certain extent teachers are forced to keep an open mind on the readiness issue. It would
possibly be detrimental to the cognitive development of pupils to assume too quickly
and easily that they are not yet ready for a new idea. But experience of teaching would
suggest that attempts to introduce new ideas will not always be successful, and we
ourselves must be ready for that.

Suggestions for further reading

Bryant, P. (1974) Perception and Understanding in Young Children. London: Methuen.
Copeland, R. W. (1979) How Children Learn Mathematics. New York: Macmillan.
Dasen, P. R. (ed.) (1977) Piagetian Psychology: Cross-Cultural Contributions. New York: Gardner

Press.
Donaldson, M. (1978) Children's Minds. Glasgow: Fontana/Collins.
Rosskopf, M. E, Steff, L. P. and Taback, S. (eds) (1971) Piagetian Cognitive-development Research

and Mathematical Education. Reston, VA: National Council of Teachers of Mathematics.

Questions for discussion

1. Do you think that there is more to readiness than the presence of certain relevant sub-
ordinate intellectual skills? Give reasons for your answer.

2. What do you understand by the terms 'concrete' and 'formal' and what are the implications
for mathematics learning?

3. When are children ready to learn about fractions (rational numbers) and operations on
them?

4. For any topic which you teach regularly, state what you need to take into account in
deciding whether a pupil is ready to learn the topic.



Chapter 5

Can Pupils Discover Mathematics
for Themselves?

Learning by discovery

All polygons with more than three sides have diagonals. A quadrilateral has two
diagonals, a pentagon has five, a hexagon has nine, and so on (see Figure 5.1). Pupils
may obtain at least some of these results for themselves by drawing. A table
(Table 5.1) showing number of diagonals against number of sides reveals a number

Figure 5.1

Table 5.1 Number of diagonals for polygons

Number of sides
Number of diagonals

3
0

4
2

5
5

6
9

7
14

8
20

9
27

10
35

pattern which may be used to extend the sequence and thus determine the number of
diagonals for any given number of sides. It is also possible to use the pattern to
obtain a formula linking the number of diagonals and the number of sides. Extension
activities might include investigating the number of regions into which the
diagonals dissect the polygon when (a) the polygon is regular, and (b) the polygon is
irregular. The entire assignment may be given to children to work on for themselves.
Any results obtained would not really constitute knowledge which all truly educated
people must possess. Nor is it likely that such knowledge would ever be taught
in an expository way. The assignment would not be given to children unless the
teacher believed or was persuaded that taking part in an active way in a mathematical
investigation, and perhaps discovering some mathematics, was worthwhile.
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Some teachers of young children regularly use coloured rods to help with the
introduction to the counting of (natural) numbers. It is sometimes claimed, by
advocates of the use of such apparatus, that simply playing with the rods takes the
children a very long way towards mastery of number relationships (see Figure 5.2).
The children discover that a certain pair of different coloured rods arranged in a 'train'
is equivalent in some way (length) to a third rod of yet another colour. They might
also discover that the rods may be arranged in a staircase of equal steps.

Figure 5.2

There is clearly an extent to which some mathematics may be discovered by
children, and it is often claimed that learning is the more thorough and complete
for having been obtained by this means rather than by exposition. However, there is
also an extent to which the teacher may need to intervene in order to introduce first
the appropriate language, then to help clarify the thinking, and then to introduce
symbolism and recording methods. Nevertheless, the children can have considerable
control over their own learning. Unfortunately, experience suggests that some
children may be able to discover disappointingly little, and so the teacher may then
feel obliged to try to give detailed guidance. Certain number relationships, for
example, still do constitute knowledge considered essential for a truly educated
person, so if nothing is discovered the teacher might well feel inclined to try to hasten
learning by telling the child in some direct or indirect way. On the other hand, it is
questionable whether a child who cannot discover anything at all can benefit much
from expository teaching either.

Words such as 'discovery', 'investigation', 'activity' and 'problem-solving' have
become very much a part of the language we now use in talking about mathematics
teaching. Many pupils today, however, are still taught largely by exposition and are
given little opportunity to learn by discovery. Some teachers, when they themselves
were pupils, were given almost no chance to discover mathematics, though some
educators in every generation have believed that exposition alone was unlikely to be
effective, particularly with younger pupils. With more able and older pupils teachers
of mathematics have, in the past, often been able to avoid criticism with only minimal
use of methods other than exposition and practice of skills. At the present time,
however, there is now much more pressure on teachers to use more active approaches.
Supporters of the use of discovery, investigations and problem-solving have probably
never been absent from the educational scene, but paragraph 243 and associated
elaboration in the Cockcroft Report (1982) has given a boost to their cause. There
is still a degree of vagueness about terms such as 'discovery', 'investigation' and
'problem-solving' which some would say does not matter much in a general discussion
of the issues. It is the spirit of active rather than passive education, they would claim,
which is at the heart of the matter.

Shulman (1970) wrote of a new psychology of learning mathematics which, to a
large extent, was based on discovery learning. The main advocate of discovery learning
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in the USA around 1970 was Jerome Bruner. Shulman described the origins of the
theory of learning by discovery as a melange of Piaget and Plato. It was the work of
Piaget, interpreted in mathematical education as supporting interaction with the
environment leading to individual insight, which was a major factor in justifying
a discovery approach. In the USA this was a relatively revolutionary idea for many
teachers, given the previous domination of educational practice by behaviourist
learning theory. It is interesting to speculate, however, whether behaviourism need
necessarily rule out discovery, and indeed the idea of programmed discovery will be
considered later. Bruner's pioneering work in encouraging discovery learning in the
USA was certainly significant for a considerable time and developments in Britain
around the same time also reflected similar interest in more active approaches.

The Schools Council Bulletin (1965) contained a number of references to learning
by discovery at the primary level, for example:

Mathematics is a discovery of relationships and the expression of the relation-
ships in symbolic (or abstract) form. This is no static definition, but implies
action on the part of the learner of whatever age and whatever ability. It is the
fact that mathematical relationships can be discovered and communicated in
such a variety of ways that puts mathematics within reach of children and adults
of all abilities, (p. 9)

A central message of the Bulletin was that teachers must teach primary mathematics
by means of as much active involvement as possible, using practical activities with
equipment and apparatus whenever possible, and by this means children would dis-
cover and would need to be told much less. The principal author of this bulletin,
Edith Biggs, has also written separately about discovery (Biggs, 1972), and one inter-
esting feature was her use of 'discovery', 'investigation' and 'active learning' in an
almost synonymous way, reflecting an earlier point of this chapter. Another feature
was her claim that discovery methods gave pupils the opportunity to think for them-
selves, and develop their capabilities to the full. In addition, such methods generated
real excitement for mathematics which, given the binding relationship between cog-
nitive and affective factors in learning, no doubt contributed to the greater realization
of potential.

Different authors have attempted to classify discovery methods. The five described
by Biggs (1972) provide a good means of reflecting on this issue, and they were:
fortuitous, free and exploratory, guided, directed and programmed. At one extreme,
fortuitous discovery certainly cannot be planned. It happens, but no learning pro-
gramme can be built around it. At the other extreme, programmed discovery has a
feeling of contradiction about it. The intention in programming a unit of work is to
try to ensure that learning does take place. The unit of work entitled 'Fibonacci
Fractions' (p. 74) is an example of an attempt of this kind.

The 'Fibonacci Fractions' unit of work should provide an example of a discovery
programme at the level of the reader. Successful completion of the unit cannot be
guaranteed with any individual learner, but successful completion does imply dis-
covery of some mathematics, assuming the knowledge was not already held. The
learning sequence is more than guided - it is heavily directed and could be considered
to be virtually programmed, although it might not pass a Skinnerian test of what
constitutes programmed learning. Unfortunately, the lack of activity implicit in the
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FIBONACCI FRACTIONS
You have already met the Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,...

The numbers in this sequence may be used to form Fibonacci fractions, for example,
I I 2 3 5
1'2'3'5'8'"

(1) Write down the next ten fractions in this sequence.
(2) Use your calculator to convert all fifteen terms into decimals.
(3) Draw a graph to show the value of the decimal for each term of the sequence.
(4) Describe, as fully as you can, what you notice about your sequence of decimals and,

in particular, what would happen if you went on to 20, 50, 100 or more terms.

Now look at the alternative sequence of fractions,
1 2 3 5 8
1'1'2'3'5'"

(5) Write down the next ten fractions in this sequence.
(6) Use your calculator to convert all fifteen terms into decimals.
(7) Describe, with the aid of a graph if necessary, what you notice about this sequence of

decimals.
(8) What is the relationship between the fifteenth terms of the two sequences? What do

you think is the relationship between the limits of the two sequences? (There are two
relationships, one based on difference and the other involving reciprocals.)

(9) Use your two relationships to write down a quadratic equation, the solution of which
is the exact value of the limit of one of the sequences.

(10) Solve the quadratic equation to find the exact value of this limit and then determine
the limit of the other sequence.

unit renders it boring to some students. Others find it interesting and revealing,
which confirms the existence of individual differences between learners.

Near the other extreme, discovery which is free and exploratory might follow from
the investigation entitled 'Rectangles'.

RECTANGLES

How many rectangles can be formed on a 5 x 3 pegboard?
What about other sizes of pegboard?

There is no guarantee that anything other than numerical information (which may
or may not be correct) will be discovered from the 'Rectangles' investigation. Further,
there is much more of a burden for the teacher if it is important that correct con-
clusions do result from free and exploratory activity. For this reason, with a firm eye
on the syllabus and forthcoming examinations, teachers might be happier to allow free
and exploratory investigation if the results do not constitute essential knowledge.
Where mathematical results are important many teachers would undoubtedly support
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teaching methods which they believe come closest to guaranteeing that pupils gain
the requisite knowledge. Despite the missionary work of a few, and despite its
inadequacies, teachers generally favour exposition under such circumstances. Edith
Biggs, and other advocates of investigational and discovery learning, have been at
pains to point out that examination syllabuses can be completed and all required
results learned thoroughly via active learning methods, but it still seems the majority
of mathematics teachers have yet to accept this view.

The value of discovery has been the subject of debate and some disagreement
amongst educational psychologists. Gagne and Brown (1961) claimed to have estab-
lished that guided discovery was the best method (of those used) to promote the
learning of certain rules. There is not much other evidence from research to support
any particular view about the value of discovery methods. Ausubel (1963) argued
that guided discovery only seemed the best method because it had been compared
with rote learning. He went further and claimed that there was just no evidence
that discovery of any kind was a more effective teaching method than meaningful
exposition. Ausubel did, however, agree that discovery is important in promoting
learning with young children, and both Gagne and Ausubel agreed that active
learning methods are more important for younger pupils than for older. Yet guided
discovery is quite popular with some teachers. They believe the pupils are better
motivated by an active approach, and perhaps by a challenge, but the teacher may
justifiably step in at any time.

The enthusiasm for discovery learning generated by Bruner led to a public and
published debate with Ausubel, and both their viewpoints are important. The main
points recorded by Bruner (1960a) in favour of learning by discovery were as follows.
Firstly, discovery encouraged a way of learning mathematics by doing mathematics,
and encouraged the development of a view that mathematics was a process rather
than a finished product. Secondly, discovery is intrinsically rewarding for pupils, so
that teachers using discovery methods should have little need to use extrinsic forms
of reward. These two points carry great weight. A more debatable third issue con-
cerns whether pupils can be genuinely creative, which was certainly implied by
Bruner. Practical difficulties were acknowledged, namely that one could not wait for
ever for pupils to discover, and that the curriculum could not be completely open,
so discovery would often need to be to some extent guided or directed. Some
pupils might even find their inability to discover extremely discouraging. It was, of
course, up to the teacher to make the kind of judgements necessary to circumvent
these difficulties.

Ausubel (1963) attempted to temper the missionary zeal of Bruner because he
feared excessive or inappropriate use of discovery. He suggested that discovery was not
the only way a teacher could generate motivation, self-confidence and a desire to learn,
because expository teaching, at its best, was just as capable of exciting and inspiring
pupils. Discovery could seriously demotivate when nothing was discovered. Further,
any suggestion that discovery learning implied creativity was questionable, for pupils
can rarely be genuinely creative, and guided discovery was hardly creative at all.
No research evidence was available which conclusively proved that discovery learning
was superior to expository learning in terms of long-term learning gains. Certainly
there was need for discovery methods with young children but discovery was not at all
valuable for most learning at the abstract stage of cognitive development. Discovery,
after all, could use up too much time. Practising mathematics as a process was not
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the main priority for school learning. It was much more important, for example,
that pupils should learn the substantial body of knowledge which was essential for
survival in a complex society. Since there was no possibility that pupils could re-create
the whole of that knowledge, teacher intervention in a more or less direct way was
frequently necessary.

Whether teachers are persuaded more by Bruner or by Ausubel, discovery learning
was definitely adopted by some of those involved in curriculum development in
mathematics in the 1960s and 1970s. Discovery was an important feature of the
Madison Project in the United States of America. Davis (1966) drew attention to
the place and value of discovery largely through examples of pupils' discoveries.
The Madison Project claimed to use an additional discovery technique which they
described as 'torpedoing' in which, once pupils thought that they had discovered a
pattern, relationship or rule, an example was injected which did not fit, which caused
the pupils to think again. In a sense, this is an example of deliberately creating a state
of mental disequilibrium, in order to encourage the twin processes of assimilation and
accommodation. It is not clear, however, that 'torpedoing' was sufficiently successful
in promoting learning for it to be seriously advocated as a worthwhile technique to be
used on a large scale.

In Britain, discovery methods were generally actively encouraged at the primary
level through the work of Edith Biggs and also through the original Nuffield
Mathematics Project. Chapter 5 of / Do, and I Understand (Nuffield, 1967) describe
the meaning and importance of discovery learning within the project. Some teachers
may remember the early stages of secondary curriculum reform in the 1960s for the
emphasis on changes of content. In the first report of the Midlands Mathematical
Experiment (1964, p. 12), however, we find: 'We are continually being surprised by
what children can do, provided that it grows out of their peculiar experiences. Our job
is to recognize mathematics in the children's activities and utilize it'. From 1968
onwards, the A-H series of the School Mathematics Project included experimental and
investigational sections. More recently, in the wake of the Cockcroft Report (1982),
there have been developments aimed at ensuring that secondary school mathematics
curricula do involve an element of active learning leading to discovery.

However, the efficacy, or otherwise, of discovery methods has always been under
debate. The issue was commented on by Davis (1984, p. 371), as follows:

one cannot compare, say, 'discovery teaching' with 'non-discovery teaching'
. . . one can only compare some specific attempts to do 'discovery' teaching, vs. some
specific attempts to do 'non-discovery' teaching. One or both may be done very well, or
moderately well, or badly, or even very badly . . . One has NOT compared
'discovery' and 'non-discovery' teaching in general. But that is the way the results
are invariably interpreted.

In this respect, discovery is no different from the subject of much other educational
research. Supporters of discovery learning may therefore, rather than accepting
evidence, be accepting a belief, summed up by Biggs (1972, p. 240):

I believe this method [discovery] is the best way to give our pupils real excite-
ment in mathematics. I believe too, that it is only when we give our children a
chance to think for themselves that they realize their full potential.
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Research, in any case, usually attempts to measure only cognitive development, or
what has been mastered. Gains in attitude to mathematics and increased awareness of
the nature of the subject are not easily measured. Who knows what long-term benefits
might accrue if discovery were to be used much more than it is, particularly at the
secondary level where the balance, up to now, has been very much in favour of more
passive instructional methods of learning mathematics?

Gestalt psychology

Discovery learning depends on a child making connections and seeing relationships
without having to have them explained by the teacher. Consider the 'Quarter-Circle
Problem'. Here, the child must see through the information in the diagram and
realize that the length of XY is equal to the length of the other diagonal of the
rectangle, which is a radius of the circle. Such insight is frequently required in
problem-solving.

A QUARTER-CIRCLE PROBLEM

B

O X

Given a quarter-circle OAB of radius 10 cm, where O is the
centre of the circle. Find the length of XY, where OXPY

is a rectangle.

Insight was acknowledged by Gestalt psychologists as being vital to independent
learning. The essence of Gestalt psychology has always been that the mind (and not
necessarily just in humans) attempts to interpret incoming sensations and experiences
as an organized whole and not as a collection of separate units of data. If the under-
lying structure is immediately perceived in a meaningful way the learner is better
able to proceed to the solution of the problem. We, as teachers, can help our pupils by
providing experiences in which the structure is evident or by guiding or directing
pupils to the structure. Gestalt psychology originally developed in Germany, and the
word 'Gestalt', roughly translated, means 'form' or 'shape'.

The leading mathematical Gestalt psychologist, throughout the period of the
development of the theory, was Max Wertheimer. Scheerer (1963, pp. 2—3), com-
menting on Gestalt psychology, reported on Wertheimer's famous parallelogram
example as follows:

A

Y p
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Suppose a child who already knows how to get the area of a rectangle is asked to
find the formula for the area of a parallelogram. If a child thinks about it,
Wertheimer said, he will be struck by the fact that a parallelogram would look
like a rectangle were it not for the fact that one side has a 'protuberance' and the
other side has a 'gap' {see Figure 5.3} ... Then he realizes that the protuberance
is equivalent to the gap; if he moves the protruding corner to the indented side,
the figure is converted into a rectangle of the same base and altitude. Hence the
formula is the same as it is for a rectangle.

Figure 5.3

Thus, although trial and improvement might be involved in solving problems, where
a problem has a relatively clear structure it helps to point the way to a solution.

There are four principles of Gestalt psychology, which may be summed up as
follows:

1. The principle of proximity, which explains why humans tend to organize elements
which are close (spatially or temporally) as a unit.

2. The principle of similarity, which predicts that elements which have a similar
structure are perceived together.

3. The principle of good continuation, which explains why humans tend to perceive
smooth curves rather than curves which have breaks or sharp angles.

4. The principle of good form by which, in a complex diagram where there are
many possible configurations embedded, humans tend to perceive only those
configurations which form closed shapes, such as triangles, quadrilaterals and
circles.

The fact that humans tend to perceive a configuration as a whole has a drawback
in that a specific structure or order is imposed on the mind which may prevent
the definition and use of crucial elements of a problem. To overcome this imposed
structure a reorganization of the elements is needed, which then hopefully enables
the individual to comprehend how the elements fit together, thus achieving what
Gestaltists termed structural understanding. For the parallelogram example, structural
understanding occurs when the shape is perceived as equivalent to a rectangle.
Both Wertheimer and Katona (1940) attempted to show that structural under-
standing produces greater success than rote learning, but others have criticized aspects
of their methodology. Nevertheless, both of these Gestalt psychologists helped to
promote greater understanding of knowledge organization as a key factor in cognitive
psychology.

Wertheimer (1961) also recorded the well known story of Gauss who, as quite a
young child, is reputed to have found a simple solution to the problem of summing
any set of consecutive natural numbers. Given, for simplicity, 1+2 + 3+4 + 5 + 6 +
7 + 8 + 9+10, insight into the structure might bring to light that 1 + 10 = 2 + 9 = 3
+ 8 = 4 + 7 = 5 + 6 = 1 1 , and hence the sum is 5x11 = 55. Longer sums, or sums
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Figure 5.4

involving larger numbers, may be obtained in a similar way. Some children might
benefit from a pictorial cue to help bring the structure to light (see Figure 5.4). When
put together, the two staircases reveal that

and hence, in general,

2(1+ 2 + 3 + 4 +5) = 5x6

2(1 +2 + . . . + ») = »(»+ 1).

Whether many pupils are capable of the kind of insight reputedly shown by Gauss
is an open question. What is clearly suggested by Gestalt theory is that demonstration
of a result by the teacher might not lead to insight for the pupil. Exposition of how to
calculate the area of a parallelogram, perhaps based on proving congruence of the two
small triangles, will not necessarily ensure that the pupils understand why it is
required that the triangles should be proved congruent. Insight comes as an aspect of
the discovery process. The situation needs to be structured so as to make the necessary
discovery as certain as possible. The insight gained may then be transferred, and areas
of triangles and trapeziums understood.

Gestalt theory acted as the spur for Catherine Stern in the invention of her
structural apparatus. Stern, in fact, dedicated her book (Stern with Stern, 1953) to
Wertheimer. The Stern structural apparatus was devised to enable children to discover
arithmetic for themselves through the prompting of insight which the equipment
fostered. It was not enough to learn number by counting — the relationships between
numbers needed to be made explicit. Thus, coloured rods were used as the basis,
and these rods were segmented to enable pupils to see how many 'unit' rods were
equivalent to a particular rod, and to see the difference in value of any two rods
(Figure 5.5).

Figure 5.5

Structural apparatus

Simple learning support materials consisting basically of rods and blocks have been
used in classrooms for many years, and long before Stern used Gestalt theory as a
theoretical support for her advocacy of their use in a structured form. The terms 'mani-
pulative' and 'structural apparatus' have both been used in educational publications to
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describe such apparatus, though the very words suggest the two terms ought to mean
different things. The term 'manipulative' suggests any object which is intended to be
handled by the children in a learning situation, but 'structural apparatus' must surely
suggest that there is some inbuilt structure to the equipment, perhaps a structure
which is intended to reflect and therefore direct the children towards an equivalent
mathematical structure. Throughout the last few centuries there have been many
different forms of apparatus, even of structural apparatus. There is evidence that earlier
educational pioneers, such as Tillich (born 1780) and Froebel (born 1782), advocated
the use of concrete equipment in the teaching of elementary number, though this
equipment might not have possessed the degree of structure inherent within some of
the apparatus developed since that time. For both Tillich and Froebel, however, it did
seem that much more than the provision of beads, counters and other unitary equip-
ment was recommended. In particular, the Tillich equipment was concerned with a
concrete approach to place value, an idea which was taken up in the mid-twentieth
century by Dienes. Froebel claimed that arithmetical relationships and processes will
unfold naturally in children's minds if their home and school activities help them to
form concepts before they are asked to deal solely with symbols, and he provided rods
and blocks to support this unfolding in the classroom. Montessori (born 1870) also
used a variety of forms of apparatus, including rods similar to Stern (but bigger), bead
bars, counting frames, apparatus for multiplication and division, fraction equipment,
and equipment for learning about indices and for studying algebra. According to
Resnick and Ford (1984, p. 108), at least some of the Montessori materials 'represent
an attempt to teach place value concretely through the systematic use of colour coding
and a carefully planned sequence of manipulative materials'. Those of us who have
attempted to help children to grasp the essentials of place value can take comfort from
the fact that it may not be our fault that pupils often struggle. Eminent educational
innovators such as Tillich and Montessori clearly felt compelled to produce materials
and equipment intended specifically to support the learning of this essential concept.

There was a surge of interest in structural apparatus in the 1960s, perhaps for a
number of reasons. Firstly, there was greater awareness of the work of Piaget, which
brought with it the suggested importance of the construction of understanding from
activity and from interaction with the learning environment. Secondly, there was
growing interest in discovery learning, as a kind of theory concerning how children
might be able to learn more effectively. Around this time, also, the use of equipment
generally was being greatly encouraged and supported through the work of the
Association for Teaching Aids in Mathematics (later to become the ATM). Many
schools in Britain thus procured some Stern apparatus, or some Cuisenaire kits, or
some of the Dienes equipment, or indeed even some of the other kits such as Unifix.
The ones mentioned specifically here together illustrate the point that different
apparatus was indeed devised to emphasize different structures. Unifix essentially
consists of cubes which may be slotted together to form rods. The Stern apparatus,
as mentioned earlier, is based on segmented rods, so that eventual use of a number line
for addition, for example, makes sense (see Figure 5.6). The Cuisenaire equipment

1
Figure 5.6

2 3 4 5 6 7 8 9 10
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consists of unsegmented rods, so the numerical relationships have to be learned with the
aid of the colours of the rods and in relation to their lengths (whereas the Stern rods
allowed children to count the number of units on each rod). It was claimed by
Cuisenaire that children grasped essential elementary number concepts better if there
was no assistance from segmentation. A further advantage intended from Cuisenaire
is that any rod may more easily be defined as the unit, and then shorter rods become
fractions. The Dienes Multi-base Arithmetic Blocks (MAB) are different yet again,
consisting of small (unit) cubes, segmented 1 X n rods rather like the Stern rods, n X
n flats and n X n X n blocks (larger cubes), illustrated for base five in Figure 5.7. The
Dienes MAB apparatus was originally available in all number bases from two to ten,
and the structure it was intended to illustrate is clearly place value. The MAB appar-
atus was, of course, just one of the types of apparatus which Dienes introduced (or
reintroduced) to mathematics (see Chapter 10).

Figure 5.7

Modern equivalents of the original apparatus kits are of cheaper plastic, and are
more colourful, more attractive to handle, and can provide for more flexible use, for
example when based on interlocking cubes such as Multilink. With such cubes the
teacher needs to build or create the structure, so that with one class the cubes might be
assembled as rods and used in the way Stern advocated, and with another class they
might be built up into multibase apparatus like Dienes MAB. What must be weighed
in the balance, however, are the advantages of cheap and flexible interlocking cubes
on the one hand, and the disadvantages of the loss of purpose-built apparatus which
requires no prior assembling on the other. With Stern, Cuisenaire and Dienes MAB
the structure is in evidence right from the start and, unlike interlocking cubes, the
apparatus is not going to collapse or disintegrate when being used, thereby destroying
the very structure which is being illustrated.

Throughout the last 40 years or more, sceptics have suggested that the structural
apparatus movement of the 1960s was merely another educational bandwagon. At the
moment, there is some evidence that teachers in Britain who believe they are under
overwhelming pressure from the demands of the National Curriculum are rejecting
the use of apparatus as being too time-consuming (Threlfall, 1996). At the same
time, some express the view that the equipment doesn't work anyway, though their
evidence for this is likely to be anecdotal and their application of the apparatus
unknown. Whatever the pressures of teaching, the critical questions remain as they
always have, namely (1) do children learn better with or without the support of
apparatus, and (2) how should apparatus be used in the classroom in order to achieve
the objectives of greater understanding and enlightenment? Cockcroft (1982), in
recommending the use of apparatus throughout the whole of the primary school, and
into the secondary school for some pupils, suggested that practical work provides the
most effective means by which understanding in mathematics can develop. The case
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for providing children with concrete support for learning mathematics, because they
often struggle without it, clearly accepted by respected and prominent educators
throughout the 1800s and 1900s, was thus given an official seal of approval. The
case for using such support materials is surely just as strong as ever now, so how do we
address the criticisms?

The case for using structural apparatus would be overwhelming if research evidence
showed that it was clearly beneficial. Unfortunately, and typically with education,
it is not as simple and clear cut as that. Some of the research of the 1950s and 1960s
certainly suggested that there were immediate gains, but there was usually little
evidence of long-term benefits. Two or three years afterwards, any advantages gained
through a project based on using structural apparatus had usually disappeared. What
many of these studies also revealed very clearly are the difficulties inherent in carrying
out educational research. If an experimental group is being compared with a control
group, how can one ensure that the two groups are exactly comparable, and that either
group is completely denied any input other than what they received from their
'official' lessons? And how can one be sure that any measured effect is independent
of the effects introduced by particular teachers? Also, what sort of test should be used
at the end of the experiment to ensure a fair comparison between the effects of two
very different experiences? One additional well known complication with research
studies is that teachers who wish to take part in an experiment in teaching and
learning are often stimulated by the whole idea and are very keen to see it succeed.
Furthermore, their enthusiasm is conveyed to the pupils, which makes them more
enthusiastic in turn, and so learning may be enhanced through enthusiasm. Under
such circumstances, any measured gain is therefore likely to be the outcome of an
inseparable combination of the effects of new materials and methods and the total
involvement of the teacher and the pupils. It is also well known that the most likely
significant variable in trying to improve learning is the quality of the teaching.

The problems with evaluating the effectiveness of apparatus do not end there. In
the years both before and since the Cockcroft Committee lent its support to the use
of structural apparatus, serious concerns have been expressed about the effectiveness
of its use, and these need to be addressed. The main conclusion must be that simply
providing children with apparatus is often not enough, because the children will not
necessarily see any connection between the bricks and the sums. Holt (1964), writing
on his experiences of using Cuisenaire rods with children, tells of his delight in having
discovered apparatus which could be used to reflect the way numbers worked - but his
dismay on realizing that he already knew how the numbers behaved, and that was why
he was able to see the connection so clearly. Unfortunately, as he explained, it is not so
clear for many of the children:

We want the rods to turn the mumbo-jumbo of arithmetic into sense. The
danger is that the mumbo-jumbo may engulf the rods instead. It doesn't do any
good to tell Cher} to look at the rods if she doesn't believe that when she looks she
will find the answer there. She will only have two mysteries to contend with
instead of one. (p. 87)

Dearden (1967, p. 146) expressed similar doubts when he stated that, 'in some
mysterious way, a special potency is thought to inhere in ... apparatus such that if
children play with it or manipulate it, significant experiences must be had, and
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important concepts must be abstracted'. For Dearden, the essential flaw in the claims
for using apparatus was the assumption that children would perceive for themselves
the structure that the apparatus embodies. Hart (1989, p. 142), on the basis of
research data, expressed the problem thus:

Many of us have believed that in order to teach formal mathematics one should
build up to the formalization by using materials, and that the child will then
better understand the process. I now believe that the gap between the two types
of experience is too large.

She went on to provide a striking example of why the provision of apparatus might
not be helpful to understanding the intended mathematical ideas:

Consider . . . the case of a class of 8-year-olds who used Unifix blocks to do
subtraction questions building up to the algorithm involving decomposition. A
valid and much used method of solving 56 — 28 was to set out 56 as five columns
often bricks and six bricks and then to use 28 as a mental instruction. This was
followed by the removal of three of the tens, returning two units (broken off one
of the tens) to the table. Finally, the collection still left on the table was counted.
This (method). . . has very little connection to the algorithm, which is supposed
to result from all the experience with bricks.

The conclusion we must draw is that apparatus is not a panacea which, if provided,
will solve problems of learning elementary number concepts. Dearden (1967), stressed
the importance of the role of the teacher in being much more than the hovering
provider of materials, or the structurer of an environment from which new concepts
are supposed to be abstracted in the course of undirected activity. Thus, the teacher
needs to question, discuss, hint, suggest and instruct what to do to find out. It is
perhaps significant that the Cockcroft Committee (1982, p. 84) were careful to
expand on the simplistic view that apparatus was important:

such work (with apparatus) requires a considerable amount of time. However,
provided that the practical work is properly structured with a wide variety
of experience and clear stages of progression, and is followed up by the teacher by
means of questions and discussion, this time is well spent.

Thus, it is clear that, far from providing the teacher with materials that children can
learn from without any teacher input, the provision of apparatus places great demands
on both lesson planning and classroom implementation.

Dickson et al. (1984) reported many studies to support the view that the rules of
arithmetic are forgotten if not supported by understanding and that understanding
is best facilitated with the help of concrete materials. Threlfall (1996) has provided
a detailed and timely reminder of all the benefits which might accrue from the use
of apparatus. At the same time he points out that the apparatus will not show its
full value if it is used inappropriately, for example, in supporting calculations: 'to
use the apparatus to get answers is to obscure its purpose and prevent it from having
its true value, which is to bring meaning to arithmetic', and, 'if there are children
who cannot do the calculations without the apparatus, they should not yet be doing
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such calculations' (pp. 10-11). Hart (1989) pointed out that it is very important
that children understand the connection the apparatus is intended to support, and that
teachers need to devote considerable time and attention to explaining the connection
under consideration. Furthermore, even when we do attempt to relate the practical
activities to the abstraction, we must not expect all of the pupils to understand this
connection immediately - in other words they will not necessarily all be 'ready'. The
evidence available to us about disappointments when apparatus is used does not
add up to the conviction that practical work with apparatus is a waste of time. Rather,
it suggests that: (1) our expectations in the past have perhaps been unrealistic,
(2) the mere provision of apparatus is usually not enough, (3) the issue of readiness
is still clearly also relevant, (4) it is not easy to organize learning situations so that
all the pupils may use the apparatus to develop their thinking, and (5) it is not
always easy to know what to do and say as we move around assisting the children
to progress.

Problems and investigations

The desire to help learners to become better problem-solvers is a frequently expressed
aim of education, and not only of mathematical education. Although it has been
claimed (Anderson, 1985; Newell and Simon, 1972) that all cognitive activities are
fundamentally problem-solving in nature, we do need to be clear what is usually
meant by problem-solving in mathematics. First, we must suggest that there are
different kinds of problems in mathematics, one possible classification being into
routine practice problems, word problems (see Chapter 9), real-life applications and
novel situations (see also Chapter 2). It is the last of these four which is usually what
is meant when discussing problem-solving. Gagne (1985, p. 178), who classed such
problem-solving as the highest form of learning, defined it as 'a process by which the
learner discovers a combination of previously learned rules . . . [which can be applied]
. . . to achieve a solution for a novel problem situation'. Here, the word 'rule' is
being used in a way similar to that in which Descartes used it as anything which has
been proved or established on a previous occasion. Other researchers have attempted
to study problem-solving by using the idea of 'states'; at the outset a task is in a
particular state, it is hoped to attain a different state, but there is no obvious direct
way to journey from the initial state to the final state. Some people believe that solving
problems is the essence of mathematics learning, even to the extent of considering that
the body of knowledge, which others regard as mathematics, is merely the set of tools
available for the active process of problem-solving. This process, it can be claimed, is a
creative act of striving for a goal (specified or unspecified) based on discovering new
ways of combining or uniting prior learning. Thus, insight is likely to be required in
solving novel problems. Johnson and Rising (1967) declared that: 'learning to solve
problems is the most significant learning in every mathematics class'. They gave five
reasons for this: it is a way of learning new concepts, it is a way of discovering new
knowledge, it is a meaningful way to practise computational skills, it is a way of
stimulating intellectual curiosity, and it is a way of learning to transfer concepts
and skills to new situations. Problem-solving studies have produced an immense
bibliography (see, for example, Hill, 1979). Lester (1977) suggested that research into
human problem-solving has a well-earned reputation for being the most chaotic of all
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identifiable categories of human learning. Although this should warn us to be careful
about drawing conclusions, it could be said that almost any category of studies of
human learning is prone to produce inconclusive results!

The description 'investigation' has appeared in the literature on learning mathe-
matics much more frequently in the last thirty years. The exact distinction between an
investigation and a problem has rarely been clarified by advocates of their inclusion
in the curriculum, and it is still not always clear what is meant when either is being
discussed today. Disappointingly, Cockcroft (1982) and Her Majesty's Inspectorate
(1985) both chose not to distinguish between them. Both words encompass the idea
of active participation in learning on the part of the child, and to some people that is
all that is important. Others suggest that we really ought to try to define the dis-
tinction in order that we can make it clear to our pupils exactly what we are requiring
of them in a particular task. Of the two, 'problem' has a more static feel about it,
though activity is involved in striving for a solution. 'Investigation' has an active feel
about it, though an investigation could, presumably, incorporate a problem or might
lead to a problem. There is some suggestion in the words that a problem has a definite
end-point, and is thus essentially a convergent process, whether there is a solution or
not, whilst an investigation might offer much more openness, and is likely to provide
scope for divergence. Frobisher (1994) has discussed the issue of the importance
of being clear about whether we are setting a problem (routine, word, real-life or
novel) or an investigation. He has also provided suggestions about how convergent
routine tasks may be converted into more open investigations, thus at the same time
providing a hint as to what the difference between a problem and an investigation
might be. The simplest kind of example concerns routine practice problems, for
example:

36
+ 23

59

We might justifiably open this situation up by asking questions based on the property
that there are six digits here, and although it is the 'answer' (59) which is required in a
convergent problem, any one or more of the six digits might be the unknown(s). Thus
we could create all kinds of tasks which are much more like investigations, for
example based on finding the missing numbers in:

48 2X 26 25 37 AB
+2A +1X +3L +1P +TU +BA

B9 Y2 5M 4Q 9V CD

Opportunities to convert a convergent task into something which provides greater
scope for investigation, inventiveness and creativity surely ought to be grasped, at
least from time to time, if we wish to develop problem-solving skills. Also, although
there might well be an important distinction between a problem and an investigation,
it is clear that either or both may be developed from the same basic idea or situation.

Like other active approaches to learning, the use of problem-solving as a deliberately
intended component of a mathematics curriculum involves a radical change of
teaching approach from the more traditional exposition and practice of skills. The
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impression conveyed to learners at all levels by expository approaches to mathematics
is that the subject necessitates a clean, logical, tidy sequence of statements and a
tightly-controlled crystal-clear argument. We pursue this by such instructions as
always working down the page, keeping the 'equals' signs directly underneath each
other in a mathematical solution, providing suitable links between lines in an argu-
ment (for example, by using the symbol for 'therefore', or for 'implies'), and so on.
Many learners may never appreciate that the process of establishing mathematical
results, theorems and rules in the first place probably involved some very untidy
activity indeed. It is this potentially untidy activity which those who are persuaded
that the process side of mathematics is important are anxious to allow. Of course, the
activity might turn out to be quite tidy, but the point is that we do not mind if
investigations and problems lead to untidy recording. This does not imply that our
approaches to active mathematics need be unsystematic, in fact it could be argued that
we should always be attempting to promote systematic approaches to problem-
solving. The point is that we have all frequently used the backs of envelopes to solve
problems, but we can subsequently tidy up our solutions in order that others might
read them (though it is better if they work them out for themselves!).

An early, extensive and famous, study of problem-solving in mathematics was
carried out by Polya (1957), in which he suggested ways of improving the teaching
and learning of problem-solving. In fact, he claimed that solving problems was a
practical skill like swimming, and therefore both imitation and practice were needed
if improvement was to take place. To some extent this might well be true, but the
differences between mental and physical activity would suggest that this conclusion is
too simplistic, and that the reality of developing problem-solving proficiency cannot
be explained quite so straightforwardly. Wickelgren (1974) has subsequently followed
in Polya's footsteps in trying to describe and explain how problem-solving skills
may be developed. More recent research into human problem-solving abilities
has drawn attention to comparisons with the use of a computer to solve problems.
Problem-solving involves the processing of information, an activity for which com-
puters are well suited, particularly when many possibilities need to be studied. A
considerable proportion of current research in mathematics involves lengthy computer
searches, as for example in the continuing attempts to identify larger and larger prime
numbers. Such modern research perhaps confirms that problem-solving is still prone
to be an essentially untidy activity, sometimes made to appear tidy only because most
of the processing carried out by the computer remains concealed.

The essence of Polya's How to Solve It was the elaboration and justification of a self-
questioning procedure to be carried out by the solver. This technique involves four
stages: (1) understanding the problem, (2) devising a plan, (3) carrying out the plan
and (4) looking back. The first stage must not be dismissed as trivial, for it includes
such essential steps as drawing a diagram and introducing suitable notation, in
addition to considerations like trying to decide whether the information provided is
sufficient and whether it incorporates any redundancy. The last stage involves the
final checking, but also includes extension considerations such as whether the result
may be generalized and whether alternative, perhaps more economical, solutions
might exist. The crucial and sometimes very difficult stages both to carry out and to
explain are the middle two, particularly stage (2) for which inventiveness and insight
might be required. In reality, the problem-solving process might involve circularity
or looping, illustrated in Figure 5.8.
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Figure 5.8

It is interesting that Hadamard (1945), drawing from writings and statements of
famous mathematicians, himself included, also independently suggested that there
were four stages in the solution of a problem. His stages were: (1) preparation, (2)
incubation, (3) illumination and (4) verification. The first and last of these stages are
clearly similar to those described by Polya. If there is a difference it must lie in the
middle two stages where Polya's belief, that by practising a routine pupils and
students can become better problem-solvers, might seem to be at variance with
Hadamard's apparent implication that you almost have to sit back and wait for
illumination. Of course, it could be said that the two were writing about different
levels of problem-solving. Hadamard was writing more about the process of creating
new mathematics whereas Polya was writing more with the ordinary mathematics
student in mind. But even restricting ourselves to the school situation one suspects
there is common ground in both. For particular students and for many problems
the Polya routine might work, but there are likely to be other problems for which
application of the routine does not automatically lead to a solution. Almost everyone
has experienced being unable to solve a problem at a particular moment, even after
much effort but, having slept on it, or having gone away to do something different, a
fruitful idea has suddenly and unexpectedly come to mind. Unfortunately, this cannot
be relied on either, for there are some problems which we never solve. The incubation
and illumination sequence is, of course, very interesting from the point of view of
studies of learning. The only tenable theory so far produced to explain sudden
illumination is that the mind continues to search for meaning, to look for and try out
connections, but at a subconscious level, thus it can produce ideas whilst we sleep and
whilst we are doing other things. Sadly, this theory suggests that we might produce

Understanding
the problem

Devising a plan

Carrying out
the plan

NoDoes
the plan
work?
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wonderful ideas whilst we sleep which never come to the surface when we reawaken!
Winston (2003) suggests that it is necessary sometimes to clear and relax the mind,
because when the mind is too full of 'noise' and bustle the tiny signal of an original
thought cannot and does not stand out.

There have been other, similar, studies of problem-solving. Hadamard gathered his
ideas from a number of sources, one such major source being Poincare who suggested
there might be a kind of aesthetic element in the process (see Poincare, 1970). The
subconscious mind never ceases trying out connections but the ones which emerge
at the surface are the ones which are, in a mathematical sense, the most pleasing,
elegant or even beautiful. This is not a theory which will enable us to teach our
pupils to become better problem-solvers! Dewey (1910) also wrote about the
problem-solving sequence. He outlined five stages, which were: (1) the presentation
of the problem, (2) the definition of the problem in terms of, for example, dis-
tinguishing essential features, (3) the formulation of a hypothesis, (4) the testing
of the hypothesis and (5) the verification of the hypothesis. The similarity with
Polya's stages is striking, indeed Dewey's list looks like a forerunner. However, such
stages are all very well, but what do they imply in relation to classroom practice?
What do we actually have to do within each of these stages? What should our thought
processes be? The 'Divisors' problem (often described as an investigation) might help
us here.

DIVISORS
6-

18

The set of divisors of 12 is {1,2,3,4,6,12}. So 12
has 6 divisors, shown on the graph by an arrow from 12

to 6. Check that an arrow should also be drawn from 18 to 6.

Find some other numbers with 6 divisors.

What is the relationship between a number and how many
divisors it has?

This task first directs students to use trialling to find more whole numbers with six
divisors, and numbers such as 20, 28 and 32 should emerge. Subsequently, in order to
relate a number to how many divisors it has, in what is the main task, it is necessary
to widen the search. Every whole number from 1 upwards needs to be investigated to
ascertain how many divisors it has. In this way it will be found that 2, 3, 5 and 7 are
examples of the many numbers with two divisors, and that 4, 9 and 25 have three
divisors. Eventually, it should become apparent that tabulation might clarify matters
still further. This entire first stage may be summed up as data collection leading to a
systematic recording of results. Table 5.2 shows the resultant classification for the
numbers 1 to 40. We are now in a position to look at the properties of the rows

12 ?
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Table 5.2 Numbers and their number of divisors

Number of divisor

1 1
2 2 , 3 , 5 , 7 , 11, 13, 17, 19,23,29,31,37
3 4 ,9 ,25
4 6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39
5 16
6 12,18,20,28,32
7
8 24,30,40
9 36

of numbers, and certain features should be apparent immediately. Firstly, only one
number (unity) has one divisor. Secondly, all the numbers with two divisors are prime.
May we draw the conclusion that the only numbers with two divisors are the primes?
Thirdly, all the numbers with three divisors are perfect squares. But some perfect
squares apparently have more than three divisors (16 and 36, for example), so what
may we deduce from that information? Many numbers have four divisors, but there
is a confusing mixture here. Close inspection reveals that the perfect cubes 8 and 27
are present, but what are all the other numbers (6, 10, 14, 15, 21, 22, 26, etc.)? Will
all perfect cubes have exactly four divisors? Why is there only one number for five
divisors and one number for nine divisors? Why are there no numbers for seven
divisors? Do any numbers exist which have seven divisors? The investigation started
with data collection, then involved systematic tabulation, pattern-spotting, problem-
posing, hypothesis formulation, and finally led to hypothesis checking. This particular
investigation is very relevant to the ordinary mathematics curriculum, though it is not
easy to carry the process through to what might be thought of as a final conclusion.
Nevertheless, different ages and stages of pupils can all make some progress. The
link with the stages suggested by Polya and others, however, seems to be somewhat
tenuous.

This illustration of problem-solving in action is similar to the illustrations
contained in the Joint Matriculation Board/Shell Centre pack Problems with Patterns
and Numbers (1984). The main assumption underlying this pack seems to be that
it is possible to teach children to become better problem-solvers. Included in the
pack is a recommended routine to be followed when presented with a problem,
namely:

Try some simple cases,
Find a helpful diagram,
Organize systematically,
Make a table,
Spot patterns,
Use the patterns,
Find a rule,
Check the rule,
Explain why it works.

-

Numbers
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This list of steps applies fairly well to 'Divisors', but only up to the stage of under-
standing the patterns; rinding a rule is then very difficult for pupils. Thus, even this
one example suggests that any recommended routine is not likely to apply to all
problems. Indeed, the JMB/Shell Centre routine basically only applies to the kinds of
problems which subsequently appeared in examination papers, specimen questions
and curriculum documents. In other words, this procedure works for a very limited
range of problems, just as Polya's does. There must also be dangers with this kind of
prescriptive approach to problem-solving. It gives a false impression of what problem-
solving is about. It only helps pupils to solve particular kinds of simple problems. It
even suggests that collecting numbers, tabulating and spotting patterns is the key
to problem-solving. And it moves us away from openness and creativity and back
towards using a learned routine, thus seeming to defeat the objective of setting
problems and investigations. On the other hand, supporters could claim that it does
provide a beginning, by setting out to enable pupils to experience solving one kind
of problem. After all, in teaching we often have to be satisfied with one small step at
a time.

What is not clear from the JMB/Shell Centre list is the importance of asking the
right questions and seeking answers to them. Problem-solving is always likely to
involve problem-posing. There could be valuable questions to ask oneself at all stages
in the solving procedure. At the start, there might be simple clarification, for example,
when asked to find how many squares there are on a chessboard. Does this task involve
only the 1 X 1 squares, or are other sizes like 2 X 2 and 3 X 3 to be included? In finding
sets of three numbers which fit the rule 
are other numbers allowable? What about complex numbers? These are 'clearing the
ground' questions. Then, as with 'Divisors', questions will arise within the processes
of collecting and ordering any data, such as what is it about 24, 30 and 40 which
makes them have exactly eight divisors? Later on still, once a kind of rule has been
found for each row, is it possible to sum the whole situation up with one all-embracing
rule? At the end of an assignment, when the problem has supposedly been solved,
there might still be the opportunity to pose extension problems. For example, in
relation to Pythagoras' theorem, how does the rule change if the triangle is not right-
angled? The geometrical illustration of the rule involves squares, but does it work for
other shapes and, if so, which shapes? Is there a three-dimensional equivalent to
Pythagoras' theorem? Does the rule work for cubes and higher powers as well as for
squares? What would be the geometrical illustration for a rule like 
Brown and Walter (1983, p. 2) suggest that, 'problem-posing is deeply embedded
in the activity of problem-solving . . . it is impossible to solve any novel problem
without first reconstructing the task by posing new problems'. Perhaps it is more
important to try to teach pupils to ask questions and pose new problems rather than to
give them a routine to apply to a very limited range of problems.

Polya (1957) was probably the first to attempt to provide a list of suitable questions
in his suggested problem-solving procedure. For each of his stages he outlined some
questions which he thought the solver should ask, though not all of these questions
are likely to turn out to be relevant to all problems. Some of those at his first
stage have already been presented, though it is important to reiterate here the value
of drawing a diagram (when appropriate) and introducing suitable notation. His
longest list of questions is for the critical second stage. These include trying to relate
the new task to previously solved problems, relaxing the conditions, trying to solve

must the numbers be integers, or

+1?



Can Pupils Discover Mathematics for Themselves? 91

a truncated version of the problem, and using the data to see what emerges, to
list just a few of the suggestions. Once the problem is solved, he recommends
checking, looking for alternative ways of proving the result, trying out the procedure
on other problems, and generally looking beyond the problem. Here is a problem
(Polya, 1957, p. 237) on which this procedure may be tested. How well does it fit his
routine?

The length of the perimeter of a right-angled
triangle is 60 cm and the length of the altitude
perpendicular to the hypotenuse is 12 cm. Find
the lengths of the sides of the triangle.

Brown and Walter (1983) also provided a list of questions to ask when solving a
problem. It is too long to include here, but it incorporates issues such as whether there
is a formula, whether there is a pattern, whether there are examples or counter-
examples, whether a table would help, whether there is a range of answers, what the
data suggests, and so on. What the work of Polya, Brown and Walter, Wickelgren,
and many others indicate is the impossibility of being completely prescriptive. Prob-
lems are many and varied, and thus cannot be classified easily, so it should not be
surprising that it is difficult to teach pupils how to solve them. Indeed, Brown and
Walter admit they do not have a simple prescription, or even a complete list of
suitable questions. Rather, what they are seeking to emphasize are both the import-
ance of knowing what kinds of questions to pose and of accepting that different
circumstances are likely to require different sets of questions.

Another issue related to pupils' active participation in problems and investigations
concerns recording. What should we expect pupils to be writing down? What are the
purposes of written recording, and what part do they play in the learning process?
Traditionally, writing in sentences has not been a frequent activity of mathematics
classrooms, but some recent and current investigative projects, such as those used for
public examination purposes, expect the progression of steps and associated findings
to be recorded clearly and set within descriptive writing. Morgan (1998) has discussed
mathematical writing, and in particular the assessment of written reports of investi-
gative work, very fully. There are many important issues and difficulties related to
such assessment, but they are not our concern in this book. Mason et al, (1985a)
have suggested that recording and writing up play a significant role in developing
mathematical thinking. Common sense would support such views, given that writing
down one's thoughts and conclusions does generally make them clearer and more
open for reconsideration and possible improvement (c.f. the use of discussion - see
Chapter 9). Thus, when pupils produce a written report, it should make it easier for
the pupil to reflect, to check, to amend, and to understand what has been achieved.
But is this how it works out in practice? Or do some pupils find the written recording
a burden and a hindrance to learning? Are there significant differences in what can be
gained from extended writing between boys and girls, between ethnic groups, or
between pupils of different abilities? We need to know much more about the potential
benefits and drawbacks of encouraging pupils to write extended reports or essays in
mathematics, whether for investigations or otherwise.

A sometimes difficult but vitally important stage in solving some problems
involves finding a rule from a pattern. Generalization is likely to be the key, an
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activity which was fully considered by Polya. A simple example of generalizing is in
the search for a formula for the sum of the cubes of the natural numbers. Trying out
simple cases systematically produces:

The pattern of the totals should immediately suggest squares, for 
36 = 62, 100 = 102 and 225 = 152. We now have a derived pattern, the numbers 1, 3,
6, 10 and 15, the first five triangular numbers, and these are the sums of consecutive
natural numbers:

1 = 1
1 + 2 = 3
1 + 2 + 3 = 6
1 + 2 + 3 + 4=10
1 + 2 + 3 + 4 + 5 = 15

which then leads us to the generalization we really wanted:

Not all attempts to generalize in problem situations are as straightforward as this!
And even this example based on familiar number patterns is difficult for most pupils
below the sixth form. To complete the process a mathematician would now require
a proof of the generalization. The usual sixth form method of proof for this result is
induction, a method which many students, meeting it for the first time, regard with
great suspicion. There is, for them, a feeling of having assumed the result which they
were expected to prove and so, having made the assumption, the 'proof cannot be a
proof. This is an indication that barriers can occur in the mind, and that there can be
hurdles which students can take a long time to surmount. There are, indeed, other
well known barriers to problem-solving which are considered in a later section of this
chapter.

If it is important that pupils learn how to solve problems, it is equally important
that they learn about proof in mathematics. How do we set about proving results?
What constitutes a proof? What different ways of proving are there? This is much too
large an aspect of learning mathematics to tackle in a chapter on discovering
mathematics, but discussion of pattern and proof will be continued in the next
chapter. Polya's How to Solve It did include a discussion of all of the standard methods
of proof in mathematics, which he calls induction, deduction, contradiction, counter-
example, and working backwards. He also continued his work in two further
books (1954 and 1962). Wickelgren (1974) based his work on the same premise as
Polya, namely that problem-solving in mathematics can be learned, and indeed he
was careful to acknowledge the pioneering work of Polya. An important aspect of
Wickelgren's work is his claim that there are only seven types of mathematical
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problem, in the sense that in order to achieve a solution it was necessary to use one
or other of the seven methods which he explained in considerable detail. Each of these
seven methods, he claimed, needed to be practised, if one wished to become a better
problem-solver. Wickelgren also included an enormous number of problems in his
book, which should be of great interest to teachers of mathematics. In recent years
many other books have been published which are concerned with helping teachers to
take problem-solving into the classroom (see, for example, Burton, 1984).

Obstacles and difficulties in problem-solving

There are a number of well known obstacles and difficulties which might hinder
attempts to solve problems. These will be discussed with reference to the following six
problems which the reader should attempt before reading on.

Problem 1

Using only four straight lines, connect the nine dots
shown above without lifting pen from paper.

Problem 2

Assemble six matches so that they form four
congruent equilateral triangles each side (edge) of
which is equal to the length of the matches.

Problem 3

Four soldiers have to cross a river. The only means of
transportation is a small boat in which two boys are
playing. The boat can carry at most two boys or one
soldier. How can the soldiers cross to the other side?
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Problem 4

Given 3 containers ('buckets') and plenty of water, the
task is to measure out a required amount.
Example: Given 3, 21 and 127 litre buckets, measure
out 100 litres.

Solution: 100 = 127 -

Problems:

1
2
3
4
5
6
7

a
21
14
18
7

20
23
15

Buckets
b

127
46
43
42
57
49
39

21-3-3.

c
3
5

10
6
4
3
3

Goa/

100
22
5

23
29
20
18

Problem 5

Given the sum
DONALD

+ G E R A L D
R O B E R T

and the fact that D = 5, find what numbers the letters
represent. Every digit 0 to 9 has a different letter, every
letter has a different number.

Problem 6

Given 16 matches arranged in the form of 5 squares,
move 3 matches to new positions so as to make 4
squares of the same size as above.

The problems above, or variations on them, have been so widely used that it is difficult
to know where they originated. They have been used, however, by a variety of
researchers involved in investigating human problem-solving behaviour.

Very few people, including university students of mathematics, are able to solve
Problem 1 within a limited time period. It is necessary to draw lines which go outside
the shape implicitly defined by the nine dots (see Figure 5.9). It appears that most
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Figure 5.9

people work under the assumption that the four lines must lie entirely within the
shape, yet no such restriction was stated in the question. The phenomenon was dis-
cussed by Scheerer (1963) as 'fixation', sometimes referred to as 'problem-solving set'.
It appears that we are prone to making initial assumptions which are not included in
the problem specification.

The second problem also brings to light another fixation. Most people try to
arrange the matches on a flat surface and fail to appreciate the novel three-dimensional
use which is required. The solution (shown in Figure 5.10) is to arrange the matches
into a tetrahedron.

Figure 5.10

The third problem, sometimes rather less of a problem than the other two as far as
mathematics students are concerned, depends on an iteration or cycle of moves. The
fixation here is described by Scheerer as unwillingness to accept a detour when it
appears that the achievement of the required goal is being unnecessarily delayed. The
solution requires the two boys to row across, one to return with the boat, one soldier
to cross in the boat, and the second boy to bring the boat back. That completes
the first cycle, so the problem is solved after three more cycles. It appears that
some people cannot surmount that barrier of 'undoing' what has already seemingly
been achieved.

The barrier of fixation is a major discussion point in the paper by Scheerer (1963,
p. 9) who wrote: 'If insight is the essential element in intelligent problem-solving,
fixation is its arch enemy'. Fixation, however, is not the only possible barrier or
difficulty. In Problem 4, all of the seven parts of the problem may be completed in a
routine way using b — a — c — c. The inclination we all have, once we have settled into
a routine, is not to look for another method. Thus we might fail to see that part 6 only
requires a — c and part 7 only a + c. In general, in mathematics, we are sometimes
inclined to overlook a quicker route in our haste to apply an established routine. This
particular barrier was described by Scheerer as 'habituation'.

There is yet another barrier to successful problem-solving, known as 'over-
motivation'. Scheerer's explanation was that '. . . there is some evidence that strong
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ego-involvement in a problem makes for over-motivation and is detrimental to a
solution' (p. 9)- Thus, for example, when a pupil presents the mathematics teacher
with a novel mathematics problem and then waits around to watch over the attempts
at solution, a situation of over-motivation can arise! But this barrier, and the
others mentioned earlier, must affect pupils too. Indeed, it is rather reminiscent of
what professional sports teams experience when playing away in a cup-tie against
supposedly inferior opposition!

Newell and Simon (1972) used Problem 5 to research how subjects attempted the
task. They found that subjects who achieved the solution all followed very similar
paths, based on processing the most constrained columns in order of emergence. Thus
T = 0, E = 9, A = 4, R = 7, G = 1, L = 8, N = 6, B = 3 and O = 2. In this problem there
is little need for much more than serial processing which places little demand on
short-term memory. If, however, we tried to solve the problem by investigating the
number of possible assignments of digits to letters we would find the demands of the
search procedure unacceptable. In general terms, Newell and Simon suggested that we
are willing to endure only a limited amount of mailing. So, in situations which
involve a huge 'problem-space' it is necessary to isolate promising parts of the space, or
to first find promising approaches with which we can cope.

The sixth problem is one of many variations on the theme of moving matches,
sticks or other objects in order to achieve a specified transformation. The expected
solution is shown in Figure 5.11. Katona (1940) used problems of this type in Gestalt
studies of problem-solving. Of three methods used to try to promote successful
problem-solving he discovered that the least effective was to demonstrate the solution
and then rely on the solver remembering the procedure. Such a method is basically
rote learning, and provides no connection to units of existing knowledge structured in
the mind. A second method used by Katona was to make helpful statements like, for
example, 'matches with double functions should be moved so that they have single
functions', and, 'proceed by creating holes and generally loosening the figures'. This
method was reasonably effective in promoting success but the best teaching method
was to illustrate what changes would be brought about by particular moves of indi-
vidual matches, such as moving one with a double function. It is interesting that both
the second and third methods were based on providing limited guidance. The second
was based on making verbal statements but the third, the most successful, was based
on carrying out particular actions and forcing the student to try out particular moves
and think about their effects.

Figure 5.11

Newell and Simon (1972) have also pointed out difficulties in problem-solving
which stem from the limitations of the human information-processing system. Firstly,
we can only operate in a serial manner, one process at a time, and not on several
processes in parallel. Secondly, whatever processing we do has to pass through our
short-term memory, which has a limited capacity of around seven units of information
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(Miller, 1956). Sometimes it might be possible to retain more in our short-term
memory by chunking units of knowledge, but we are still limited. Thirdly, although
we have apparently virtually unlimited storage capacity in long-term memory, there is
the difficulty of committing knowledge to it. It takes a long time to do this in
comparison with the very short time required for actual processing. It can also be
difficult to do it unless we can link the new knowledge to existing knowledge.
Retrieval of knowledge held in long-term memory is by no means automatic.

Logo

Most teachers are now familiar with Logo as a computer microworld, within which
children may discover mathematics. Seymour Papert, co-inventor of Logo as a com-
puter programming language, was the original instigator of school activities, and
pioneered the use of a mobile electronic 'turtle' which can trace out shapes on a
classroom floor. Hence this often highly motivating school application of Logo is
sometimes referred to as 'turtle geometry'. Papert gained his enthusiasm for active,
discovery-type learning environments directly from Piaget, with whom he worked for
five years. Summing up his impressions of Piaget's work at Geneva, he said he left,
'impressed by [Piaget's] way of looking at children as the active builders of their own
intellectual structures' (Papert, 1980, p. 19), but he believed that the enrichment of
the learning environment through the use of materials was of greater significance than
Piaget had suggested. The task of drawing a regular pentagon without Logo requires
some knowledge of angles, such as angles at the centre, interior angles, and exterior
angles. By using a computer equipped with Logo facilities, however, children are able
to explore the drawing of polygons, starting with squares and rectangles, and building
up to more difficult constructions such as regular pentagons. Trial and improvement
is clearly involved but, possibly because the computer is motivating, and because
the computer removes much of the potential tedium of continuous trialling, children
are able to construct their own polygons and develop their understanding of shapes
and their properties.

Papert's approach to the application of Piagetian theory to education involved a
mildly critical attack on the perceived implications of accepting the notions of
concrete and formal thinking. Papert claimed that the boundary between the two
could be moved, with the help of the computer, and that the computer can concretize
(and personalize) the formal. The computer provides the additional advantage
that the child's anxiety level is reduced, and the desire to obtain the correct solution is
not so compelling. Working in an exploratory way with Logo not only guarantees
many wrong attempts, producing merely impersonal and uncritical responses on
the screen, it also encourages the process of 'debugging', claimed by Papert as an
important life skill. Papert believed that the usual mathematics curriculum was
meaningless to most children, but Logo allowed them to construct knowledge in a
meaningful way.

Subsequent experience of using Logo in ordinary classrooms has, however, con-
vinced many teachers that pupils cannot work entirely on their own in the way Papert
seems to suggest is both possible and desirable, and that skilful teacher mediation
between the child and the software is needed. There have also been some objections
firstly on the grounds that Logo is too difficult, and secondly that it takes too much
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time. The first is best evaluated through studying the findings of the Logo Maths
Project (Hoyles and Sutherland, 1989), and other research reports. There is no short
answer to the second — save to say that so does all learning.

A very large amount of research into the use of Logo with children has now been
carried out. According to Noss and Hoyles (1996), early Logo-based research tended
to adopt a learning-transfer approach which invariably ended in trivial outcomes.
Papert was never directly interested in using Logo to teach curriculum content,
and believed that Logo programming was best seen as a means of fostering ways of
thinking which would subsequently make it easier to learn content. Noss and Hoyles
pursue this thought in drawing our attention to the potential outcomes of Logo as
a curriculum priority, alongside the current ones of literacy and numeracy. This
might be an exciting prospect to some, but busy teachers endeavouring to cope
with an overfull curriculum are looking for more direct advice, which they might
find in reports such as that of the Logo Maths Project. A major aim of this study
was to encourage an interactive exploratory environment, in which pupils were
allowed to work in pairs, thus having to learn to discuss and cooperate. Dependence
on teachers was discouraged, pupils determined their own goals, and teacher inter-
actions always attempted to push decision-making back to the pupils. Individual
conceptual development was clearly observed as the feedback provoked recon-
sideration of ideas, thus allowing pupils to move on from earlier conceptions. There
were gender differences both in pupil approaches and in role demarcation, with
boys favouring more well defined goals than girls, and boys being more competitive
and generally less willing to share. Emotional resistance from past mathematical
experiences was exposed, and misconceptions were brought to light. Logo also
proved to be a natural and profitable context for generalizing and formalizing.
Most importantly, the role of the teacher was clarified - the teacher is the pivotal
mediator of the technicalities of the language, the mathematics embedded in the
computer activity, the problem-solving processes and the connections between Logo
and paper and pencil work.

Suggestions for further reading
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Institute Press.

Papert, S. (1980) Mindstorms. Brighton: Harvester Press.
Polya, G. (1957) Row to Solve It. New York: Doubleday Anchor Books.
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Questions for discussion

1. Under what conditions are children able to discover mathematics for themselves?
2. Is problem-solving the essence of mathematics?
3. How should structural apparatus be used in helping children to learn basic number

knowledge?
4. What obstacles to problem-solving have you observed amongst your pupils and students?



Chapter 6

Is an Appreciation of Pattern Important in
Learning Mathematics?

Pattern in mathematics

In the previous chapter, we have seen how patterns can arise in classroom problem-
solving situations. When this happens, the key to solving the problem may lie
in finding a rule from the pattern. In learning mathematics, children are often
encouraged to base their understanding on patterns, particularly of numbers, indeed
pattern has frequently been claimed as a vital component of mathematics. Warwick
Sawyer (1955, p. 12) stated that 'Mathematics is the classification and study of all
possible patterns'. Sawyer's books have provided a wealth of ideas for teaching, and in
many of his suggestions it is patterns that provide the insights. Edith Biggs pioneered
investigative approaches to teaching and learning mathematics in primary schools
in Britain, and in Biggs and Shaw (1985) we find: 'Mathematics can . . . be thought
of as a search for patterns and relationships'. Williams and Shuard (1982), in a book
that has become a classic of primary mathematics teaching, suggested that: 'the search
for order and pattern . . . is one of the driving forces of all mathematical work with
young children'. Such views about mathematics teaching cannot be ignored. Indeed,
an analysis of the school mathematics curriculum immediately reveals how pattern is
an ever-present strand. In the study of numbers, in the approach to algebra, in aspects
of geometry such as symmetry, in graphs and calculus, and in many aspects of higher
mathematics, there are patterns which can make the subject more meaningful. Figure
6.1 illustrates how pattern underlies and illuminates so much of school mathematics.

The vital issue from the perspective of this chapter is whether the patterns which
underlie our curriculum really do help pupils to learn mathematics. There is some
psychological support for pattern as one of the bases of all learning in that we, as a
species, are said to depend on pattern in our attempts to comprehend the universe.
In many aspects of life it seems we are attracted to regularity, and may even try to
make sense of new situations by seeking or even imposing patterns and structures
within them. A simple example of a pattern which is used to help children to make
sense of the structure of our number system is the 100-square (Table 6.1). To most
adults, the patterns and structures could not be clearer and more significant, but it
takes children many years to come to such a mature understanding of all the patterns
and relationships. In this chapter we look at some of the evidence of pupils' growing
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Figure 6.1 Reproduced with permission (Frobisher, L. et al., 1999, Learning to Teach
Number, Cheltenham: Nelson Thornes Ltd.)

Table 6.1 The 100-square
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awareness, understanding and use of pattern through the years of schooling, and how
pattern may be used to support learning.

Early concepts of pattern

Before we can use patterns to support mathematics learning we need to be sure
that children appreciate and understand pattern and what we mean by pattern in
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mathematics. Perceptive parents who observe their pre-school children arranging toy
cars or dolls or any other play objects in straight lines, and later perhaps in two parallel
lines, and then maybe even in three parallel lines or more, ought to note that a
structure is being imposed, and that this might convey interesting information about
their children's talents. If similar objects are placed alongside each other in the lines
this might be construed as an appreciation of symmetry. If a child is also using the
lines to add up the numbers of objects, in twos or threes, or even more in the case
of the parallel lines, this may well be an illustration of using patterns as a support
to learning about numbers. There is no doubt that there is an extent to which
many young children do appreciate patterns, and can begin to impose their own
structures and patterns on objects around them. In the nursery environment, children
are often provided with objects which lend themselves to patterning, for example,
coloured bricks, threading materials, pegs and pegboards and mark-making materials.
Colour is a particularly important basis for structuring at this stage. Her Majesty's
Inspectorate (1989) claimed that some children will frequently impose a patterned
structure on play materials. In a research study, Gura (1992) classified children who
were observed in self-initiated play with wooden blocks into three groups, patterners,
dramatists, and those who were happy to mix the two styles. This should not be taken
as an indication of different preferences which will continue throughout life; it is
merely an indication that spontaneous patterning activities do feature in the play
activities of at least a considerable proportion of very young children.

The early National Curriculum of England and Wales included reference to pattern
within the mathematics specifications for young children. The demands of the
various curriculum documents have changed over the years, but they have at various
times included reference to such activities as recognizing, describing, copying, re-
creating and continuing patterns. However, what stands out clearly from these early
curriculum demands is that the intention was that the teacher should control what the
children do. The teacher is to provide the patterns and the children are expected to use
them and learn from them. There is little or no indication that children should engage
in free and open activities, such as making up patterns of their own, at least not before
they have received a thorough grounding from activities provided by the teacher.
Aubrey (1993), researching with children at the point of entry to formal schooling,
found that the children had more difficulty with set tasks which involved some
element of pattern than they did with other aspects of the number curriculum. What
is more, on both copying and continuing simple repeating patterns, more than half
the children were unsuccessful. Garrick et al. (1999, p. 16) suggest that guidelines:

which place recognizing and copying the work of others before making patterns
of their own devising, may well have underestimated the cognitive demands of
this apparently simple activity of recognizing patterns, as well as failing to
acknowledge the spontaneous pattern-making that often occurs without models.

Garrick studied children in the three to five age range, recording and commenting
on their pattern-making activities over periods of time. The children, who were not
'advantaged' in any way, used objects such as beads, pegs and mosaic tiles, so that both
spatial and colour organization of objects could be noted. She was able to conclude
that, within this ordinary inner-city nursery, significant development took place in
children's spatial structuring of materials, as they gained control of a number of linear
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and non-linear basic elements, such as proximity placing, symmetry, and finding
and marking mid-points, corners and centre. Between four and five years of age the
children developed increasing capabilities in utilizing the basic elements in more
complex pattern-making. Similar and parallel development took place in relation to
colour, the basic elements including chaining (for example, red, red, red, blue, blue,
green, green, green, green, . . .), alternating (red, yellow, red, red, yellow, red,
yellow, yellow, yellow, . . .), repeating (red, yellow, blue, red, yellow, blue, . . .), and
placing symmetrically. A small number of children eventually began to integrate
spatial and colour structuring in relatively complex ways. The younger children
usually worked alone, but many of the older children regularly chose to work
alongside friends, and ideas spread through working side-by-side, and by allowing
the whole class to see finished products. Adult-initiated models were not only
superfluous, being helpful only rarely and with a minority of the children, but there
was more than a suggestion that too much adult input could undermine and limit
children's individual explorations. Some children could work independently for long
periods of time, and were highly motivated to develop both their thinking and their
skills, whereas others were more dependent on peer group support and on the well-
timed interventions of the teacher. Making the teacher the only source of pattern
is likely to miss the potential which exists within groups of pupils. Nevertheless,
the teacher has an important role in helping children to become more aware of the
significant features of what they have produced, and in providing opportunities for
the sharing of ideas.

As children progress through the primary school years, greater emphasis is placed
by the curriculum on repeating patterns, particularly linear ones. The curriculum may
only indicate that the intention is to develop ideas of sequencing and regularity,
but there may be greater importance to this activity. There is an obvious link with
everyday repeating patterns like the days of the week and the months of the year.
There is the possibility that repeating patterns lead to ideas of length. And there is
the claim that repeating patterns lead eventually to generalization and algebra. The
question is whether children learn what we want them to learn. The official view
seems to have been that devising a repeating pattern requires the creation of a rule
and its consistent application, but is that what children do? Threlfall (1999) points
out that the sequence ACABACABA . . . may be generated in at least three different
ways. One method is rhythmic, and often children can be heard chanting as they
create, another method is something like, 'if it is an A and the one before was a C, then
the next must be a B', and finally there is using ACAB as a unit of repeat. Observation
of children creating patterns also reveals that they frequently use filling in, as this
example of placing pegs on a pegboard illustrates:

First R R R R
Then RB RB RB RB
Then RBG RBG RBG RBG
Finally RBGG RBGG RBGG RBGG

Here, all the red pegs were placed first, then all the blues, and finally all the greens.
Thus, Threlfall suggests, the existence of a repeating pattern is no evidence at all that
a rule has been created and applied.
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Various studies have suggested that there are two strands to development in
repeating patterns, one relating to the complexity of the patterns and the other to how
the children are 'seeing' the patterns. Threlfall (p. 25) concluded from his research
that, in relation to seeing the pattern, 'there seems to be a major developmental
threshold, concerning whether or not the children are aware of the pattern as a whole
being related to a unit of repeat'. Children must be able to refer to a unit of repeat
(such as RBGG) to convince us that they have made this step; chanting should not
be taken as evidence that the unit of repeat is appreciated, nor should it be accepted
by the teacher. Wood (1988) and others have confirmed the developmental issue
in suggesting that, from a Piagetian perspective, pre-operational children are
limited in how they understand repeating patterns. Children can seem to be operating
with a particular strategy when they are not, so we must be wary of drawing too
firm a conclusion about a child's grasp of repeating patterns before we are absolutely
sure. The danger is that children who have not surmounted this developmental
hurdle by the time they reach the later primary years may at the same time have
also moved beyond the stage in the curriculum where repeating patterns are
studied. For their sakes, repeating patterns need to be included in the curriculum
of the later primary years, and perhaps even beyond. There is also evidence that
the two strands of pattern complexity and appreciation of a unit of repeat develop
largely independently. It is important that the issue of whether a repeating unit
is being fully appreciated is not overlooked as children create increasingly complex
sequences.

Gray and Tall (1994) have declared that both procedure and concept may be
important in mathematics, and that, emphasizing procedures leads many children
inexorably into a cul-de-sac from which there is little hope of future development.
Seeing a repeating pattern in terms of a unit of repeat involves both a conceptual
aspect and a procedural aspect, in that the unit of repeat offers ways of both under-
standing and creating a pattern. Gray and Tall have named this combination a
'procept'. The importance of the proceptual approach may be seen from the pattern of
squares in Figure 6.2. This pattern enables many searching questions to be aske

Figure 6.2

such as, 'What colour would the 27th shape be?' or, 'What would be the position of
the 19th white?', or 'If there were 32 squares, how many of each colour would there
be?' Children with a procedural or rhythmic approach would basically have to count, a
process which is subject to errors and which offers no means of checking for accuracy.
On the other hand, a child with a unit of repeat approach would be thinking in fives
(where each five = first three white, then two black), a method which is 'pre-algebraic'.
Threlfall (1999, p. 30) concludes that:

For the whole of its mathematical potential to be realized, and to deserve its
comparatively exalted status as 'pre-algebra', the approach of the child to the
recognition and creation of repeating patterns needs to be developed to a 'pro-
ceptual' one, in which the unit of repeat is 'seen' and can be processed both as a
part of a pattern and as a composite of parts.
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Number patterns

As some of the concepts associated with pattern become more firmly established,
number sequences become a major focus for study. One early number pattern which is
emphasized in primary mathematics is odd and even numbers. To an adult, the odds
and evens stand out very clearly from the 100-square (Table 6.1) but it seems that, for
two-digit numbers, many children do not find it at all easy to distinguish odds from
evens. Frobisher (1999) conducted an extensive study with primary children aged five
to eleven years. The tasks allowed the children to place the numbers from 0 to 99 into
one of the five categories: odd, even, neither, both and don't know. By the age of eleven
only 86 per cent of the year group successfully recognized the odd and even nature
of a single-digit number, never mind double-digit numbers. Zero was a particular
problem across the entire age range, and it was clear that success in deciding that zero
is an even number rose only very slowly with age. More than one in five children in
every year group decided that zero was an odd number. Not surprisingly, therefore,
there were difficulties in classifying the multiples of ten. A major problem for the
children was that, instead of focusing solely on the units digit, the tens digit was
always likely to be a distraction. One number, 21, was incorrectly classified by a
majority of the children. Table 6.2 shows the percentages of correct responses for Year
6 pupils (age ten to eleven years), and many interesting features of the responses are
apparent. Clearly, what seems to be a relatively simple classification to teachers is
not at all straightforward for many pupils. Given that we think it is vital that children
should be able to distinguish odds from evens, lesson time needs to be devoted to
this topic throughout the whole of the primary school, and perhaps even into the
secondary school for some pupils.

Table 6.2 Percentages of correct responses for Year 6 children

Ten
digit

0
1

2

3
4
5
6
7
8
9

Unit digit

0

47
84
86
71
87
74

79
67
84
67

1

84
82

47
80

68

85

79
84

69
88

2

84

82

88
72

82

69
83
67
84
68

3

83
82

71
81

69
86

65
84

67
82

4

84

78
86

70

79
71
80

71

83
62

5

86

84

69
81

70

76

67

80

62

78

6

86

79
84

74

83
70
82

68

87

69

7

87

85

69
86

75
81

75
82

72

86

8

86

76
81

68

86

66
82

64

84

68

9

91
85

69
80

76

84

71

66
66
85

One way in which even numbers result from an arithmetic procedure is in the
addition of 'ties', that is when both addends are the same, such as in 3 + 3, 4 + 4, and
7 + 7. There is evidence that the first addition facts to become knowledge retrieved
from memory are the ties:
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All the research evidence on children's recall of addition facts point to ties as the
combination of pairs of numbers which are most readily known and are also the
starting point for the derivation of many other facts. (Threlfall and Frobisher,
1999, p. 60)

Examples of derivation based on ties include arguing that 6 + 7 must be 13 because
6 + 6= 12, or 8 + 6 = 6 + 6 + 2 = 12 + 2 = 14. Other derivation strategies ultimately
exist amongst children, however, for example 8 + 6 = 8 + 2 + 4 = 10 + 4. Gray (1991)
found that many children over the age of eight years were able to use derived facts
extensively. Furthermore, it seems that teachers are often not aware of the extent to
which derived facts are being used by children. The foundation for the use of derived
facts is a thorough knowledge of the ties, so there are strong grounds for singling out
ties for thorough classroom treatment. Derivation also depends heavily on being able
to add and subtract 1 and 2, accurately and speedily, from any given number. Threlfall
and Frobisher argue that the way to learn number facts is by means of the automatiza-
tion of derived facts, and that this learning may be supported by the use of number
patterns, such as with number strips, Cuisenaire rods, and diagrams:

Competence in addition facts is attainable if children have a knowledge and
understanding of the workings of the number system, of the relationships
between numbers and the principles of commutativity, associativity and inverse
operations, all of which can be developed through observation and application of
number patterns, (p. 65)

The only major alternative to this approach to learning number facts is rote learn-
ing. Many would say this has been discredited, but teachers are often tempted to resort
to rote learning for basic number facts, perhaps because other methods seem slow in
comparison. Rote learning of basic number facts can certainly seem effective at first,
because the facts can apparently be learned quite quickly, if enough effort is applied.
However, knowledge learned by rote frequently does not stand the test of time — it
requires constant and regular reinforcement, and it therefore wastes time in the longer
run if there is an effective alternative — and without regular rehearsal it is likely to
disappear altogether. Rote-learned knowledge can also become distorted by 'interfer-
ence'. This phenomenon is when errors in remembering occur through accidental
association with similar facts, for example the common confusion between the answers
to 7 X 8 and 6 x 9 - Acquiring basic knowledge of number facts is too important to
rely on ineffective methods. Whatever methods are used, children need to be equipped
with reliable ways in which number facts can be retrieved. The use of derivation
strategies, based on ties and supported by number patterns, is a good long-term
strategy.

Number facts also include the multiplication tables, which many of us recall
learning by chanting. It may be that chanting is an enjoyable social activity in its
own right, and it may make some contribution to learning, but it is not likely to
lead to true understanding on its own. In order to make sense of multiplication other
methods are needed, and these are likely to incorporate emphasis on the patterns
which multiplication tables reveal. Each separate table has its own patterns, and each
needs to be dealt with separately, before an overall combined table such as Table 6.3
may be presented. Within this table we see not only all the multiplication tables, we
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Table 6.3 Combined multiplication tables

12

11

10

9

8

7

6

5

4

3

2

1

X

12

11

10

9

8

7

6

5

4

3

2

1

1

24

22

20

18

16

14

12

10

8

6

4

2

2

36

33

30

27

24

21

18

15

12

9

6

3

3

48

44

40

36

32

28

24

20

16

12

8

4

4

60

55

50

45

40

35

30

25

20

15

10

5

5
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may see much more, for example, in the 'diagonal' lines and in the positions of
individual numbers (for example what do the positions of the number 24 reveal?). The
point here is that number patterns can not only make a contribution towards the
understanding and memorization of the basic number facts which all children spend
many years attempting to master, they can also pave the way for more advanced
mathematical ideas to be dealt with more fully in later years.

The approach to algebra

Cockcroft (1982, p. 60) included the statement that, 'algebra is a source of consider-
able confusion and negative attitudes among pupils'. Teachers have always known
this, particularly since the broadening of the mathematics curriculum some fifty
years ago. Around this time, when the school leaving age was raised in Britain,
first to fifteen years of age and then to sixteen, the curriculum for the majority
of pupils naturally needed to be extended. Thus, it began to include many areas of
mathematics like algebra which had previously only been taught to pupils in selective
schools. Because of the acknowledged difficulties of algebra, there have been many
attempts in recent years to find alternative routes into algebra which would be more
meaningful, particularly for academically weaker pupils. One such route is the use
of pattern. According to the Department of Education and Science (DES/WO 1988,
p. 16):

Algebra develops out of the search for pattern, relationships and generalization.
It is not just 'all about using letters' but can exist independently of the use of
symbols. Work in the primary school on number pattern and the relationships
between numbers lays the foundation for the subsequent development of algebra.
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Figure 6.3

As we have already seen, the earliest number patterns encountered by children
include counting numbers, even numbers, odd numbers and square numbers.
Ultimately being able to understand », 2», 2n — 1 and n2 as general terms for each of
these sequences is thus considered to be a valuable step into algebra. Variations
and extensions based on simple number patterns, such as arithmetic and geometric
progressions, may be presented either as sequences or in some pictorial form, as shown
in Figure 6.3. Here, the sides of the inner squares and the areas of the outer borders are
related as shown in Table 6.4. Such a task might require pupils to continue each row
of numbers, to explain the patterns in words or writing, and possibly to decide on
a suitable general term for the inner and outer areas, first in words but eventually
as a mathematical formula. Graph drawing is also supported by tables of numbers,

Table 6.4 Number patterns revealed by Figure 6.3

Length o f side o f white squar

Area of black outer border

Table 6.5 Table of values for a straight line graph

-3 -2
-1

-1
1

4
11

for example, Table 6.5, and the objectives here are likely to be to understand the
pattern and thus find the equation. From the point of view of this chapter we need to
know whether such approaches to algebra are successful.

An early enquiry into pupils' attempts to master patterns of numbers was con-
ducted by the Assessment of Performance Unit (undated, pp. 417-19). Tasks were
based on finding the next two terms in the following four sequences: (1) 1, 2, 4, 8,
. . ., (2) 1, 3, 6, 10,. . ., (3) 1, 4, 9, 16, . . ., and (4) 1, 1, 2, 3, 5. The results are shown
in Table 6.6. Clearly, even the fifteen-year-old pupils did not find all of the tasks
elementary. The general comments about number patterns from the APU (p. 416),
which many subsequent research studies have confirmed, were that:

Finding terms in number patterns gets progressively more difficult the further the
terms are from those given in the question,

More pupils can continue a task than can explain it,

1 2 3 4 5 . . .

8 12 16 . . .

x

y

0 1 2 3 4
3 5
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Table 6.6 Facility levels for APU questions (1978 to 1982)

Question Expected response Age 11 (% correct) Age 15 (% correct)

1
2

3

4

16,32

15,21

25,36

8,13

48

60

41

14

82

77

64

37

Number pattern rules are described by a large proportion of pupils in relation to
differences between terms,

Generally, oral explanations of rules . . . are given by more pupils than can write an
explanation.

It is common for pupils to seek an explanation of a number pattern in terms of
differences, and all subsequent research studies have confirmed this, even with adults.
Differences are important in arithmetic progressions (for example, 4, 7, 10, 13,
16, . . ., with first differences 3), and both first and second differences might help in
understanding quadratic sequences (for example, 1, 4, 9, 16, 25, 36, . . ., with first
differences 3, 5, 7, 9, 11, • • • and second difference 2). However, differences may not
enlighten other sequences, as the APU tasks illustrate. Thus an important conclusion
we can draw is that pupils must be encouraged not to rely solely on differencing as a
way of trying to understand a number pattern.

There are additional problems with differencing. Stacey (1989), Orton, A. and
Orton, J. (1999), Orton, J. and Orton, A. (1996) and others have not only confirmed
the widespread use of differencing, but have identified the methods used by pupils,
some of which are inappropriate. Given a linear sequence like 1, 4, 7, 10, . . ., and
asked for the 50th term, say, there are four common methods which pupils use. The
first is to try to extend the sequence until a list of 50 terms is obtained, a procedure
which is tedious and subject to errors. The second is to identify the difference (3, in
this case) and then to multiply this by the number of terms, thus obtaining 150. The
third is to try to shortcut the procedure in another way, by finding perhaps the fifth
term (13) and multiplying this by ten, thus arriving at 130, or perhaps finding the
tenth term (28) and multiplying by five, thus obtaining 140. The fourth method is
some version of the correct analysis (for example, 1 + 3 X 49 = 148). The second and
third methods, which are likely to yield incorrect answers, are in widespread use in the
classroom. Teachers need to be aware of what is going on, even when pupils are
legitimately using differencing, and need to challenge incorrect methods. It should
also be noted that even those pupils who are able to obtain the correct answer by a
formula method may not be able to write down the general term as 3» - 2. Plenty of
practice with number sequences leads to trying to determine the general term in some
appropriate algebraic form, but it does not guarantee that a 'finished' formula will be
obtained. Using patterns does not provide immediate insight into algebraic formulas.

Number patterns based on squaring are not surprisingly much more difficult for
pupils to understand than linear patterns. It is easy to be misled by the fact that the
rule for the square numbers (1, 4, 9, 16, 25, 36, . . .) can be grasped relatively easily,
for even the triangle numbers (1, 3, 6, 10, 15, 21,. . .), which crop up so frequently in
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Figure 6.4

mathematics, are difficult to generalize. Making sense of anything more obscure (for
example, 3, 6, 11, 18, 27, 38, . . .) seems to be virtually impossible for the majority of
pupils. In research involving mature adults seeking entry into the teaching profession
(Orton, J. et al., 1999), there were some successes and some notable failures on dot
pattern tasks involving quadratic solutions. The triangle numbers (Figure 6.4) were
just as difficult for the adults as they are for pupils, but other dot patterns which led to
the sequences 1, 9, 25, 49, . . . and 1,5,11,19, . . . were mastered more easily. In fact,
some of the better candidates were able to find a general rule for these two sequences
quite early, perhaps by trial and improvement, and then to use this to continue the
sequence, which was the reverse of what was intended. At the same time, there were
other candidates who engaged in the potentially never-ending task of extending
the sequences term by term. Thus the triangle numbers warrant a special warning. A
pattern-based approach to the general term^»(» +1) might not be impossible with
some pupils, but the diagrammatic approach based on two staircases is likely to be
more meaningful (see Figure 5.4). Any triangle number is the sum of consecutive
natural numbers (for example, u5 =15 = 1+2 + 3 + 4 + 5 ) . Each of the two staircases
in Figure 5.4 illustrates this sum, and fitting the two staircases together makes a 5 X 6
rectangle. Thus we have an illustration of 2 x 1 5 = 5 x 6 , but more generally, we also
have 2 X un = n X (n + 1), which implies that un = \n(n + 1). In general, although a
pattern approach to more advanced school mathematics such as quadratics may be
helpful to some pupils, and is certainly possible in the sixth form, it would be unwise
to expect too much from it with the majority of pupils.

Tasks in which number patterns are intended to lead to generalization are often set
in pictorial or practical contexts, such as patterns of dots or tiles, or matchsticks, and
two examples have arisen already (Figures 6.3 and 6.4). The reasons for this use of
visual representations are often not clear, and it sometimes seems that the pictures
just add another stage in answering the questions. Presmeg (1986) has claimed
that both teachers and the curriculum tend to present visual reasoning as a first step,
or as an accessory, in what is basically a number pattern situation. It may be that it is
believed that picture tasks are simpler, or that pictures add meaning and purpose, or
that they enliven a dull number sequence, or even add a real-life dimension. Whatever
the reasons for using pictures, we need to know how pupils react. Do pictorially-based
tasks produce new difficulties and complications, or do they provide additional
support to the children?

An early research project was by Lee and Wheeler (1987), and they based a task on
overlapping rectangles ('Dots in Rectangles'). Pupils used one of three strategies.
Firstly, perhaps because the pictures appeared to suggest the L-shaped borders were
significant, many students tried to use them, but this approach was not particularly
helpful. Secondly, many students focused on counting the numbers of dots in succes-
sive rectangles, which the written tasks emphasized. However, the best approach was
not to count dots at all, but to adopt a kind of area approach, and some students made
rapid progress based on 1 X 2, 2 X 3, 3 X 4, . . . . Lee and Wheeler concluded that a
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DOTS IN RECTANGLES

The diagram shows a set of overlapping rectangles:
The first contains 2 dots
The second contains 6 dots
The third contains 12 dots
The fourth contains 20 dots
How many dots would there be in the fifth
rectangle?
How many dots would there be in the hun-
dredth rectangle? How do you know?
How many dots would there be in the nth
rectangle? How do you know?

borders perception of the problem was likely to hinder progress. There was also some
evidence that the borders approach came first, but it eventually gave way to the
rectangles perception. In retrospect, and from the point of view of generalizing the
sequence (2, 6, 12, 20, . . .), separate rectangles with no borders might have provided
better support, though as a research task it did bring certain issues to light.

Warren (1992, p. 253) discussed the possible complexities of using shapes in the
context of a line of hexagonal flower beds and surrounding paving slabs (Figure 6.5).
For Warren, the steps in obtaining a generalization are first to identify the component
parts (flower beds, surrounding paving slabs), then identify the generalities, namely
that each extra flower bed requires an additional four paving slabs, and finally to
realize that the first flower bed has six paving slabs, two more than for the other flower
beds. This task therefore requires 'sound visual skills {and} an array of specific thinking
skills' (p. 253). Completing the task is not easy, and listing numbers does not appear
to help, so it is best not to treat it as a number pattern question. Ursini (1991) used
rather simpler shapes, and concluded that the children needed to understand (a) the
pattern within both representations of the situation, the visual and the analytic, and
(b) that both rules are the same rule. The underlying implication from both Warren
and Ursini is that pictorial pattern questions can be more complex than we realize. In
particular, it is questionable whether the curriculum provides experiences which
would prepare pupils for visual thinking, and for thinking which requires taking both
the visual and the analytic into account. Thus, picture questions need careful planning

Figure 6.5
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based on clear objectives, and also they do not have to lead to number sequences.
Indeed, there are some grounds for thinking that well chosen pictorial questions could
be used to wean children away from a number pattern approach to generalization and
onto strategies which are based on understanding the structure of a situation.

A number of studies of children's patterning have been based on matchsticks,
usually with the objective of obtaining a number pattern from the configurations.
Pegg and Redden (1990) used pictures of matchsticks arranged into lines of triangles
with eleven to twelve year olds (see Figure 6.6), and most pupils had no difficulty with

Figure 6.6

this pattern. What they did find 'challenging' was to try to work the other way round,
that is to devise concrete representations from number patterns. Orton (1997) used
matchstick tasks with children aged nine to thirteen, but the innovation here was that
the pupils were able to handle the matchsticks and make their own shapes (Figure 6.7).

STEPS

SHEEP-PENS

CONTAINERS

Figure 6.7

The pupils were interviewed as they attempted to construct additional shapes in the
sequences begun by the interviewer. Most pupils were able to do this, but some ran
into difficulties. It was also apparent that pupils perceived the configurations in
various ways. For example, in the 'Steps' task some saw the next shape as requiring an
extra match along each of four lines, others saw the need for an extra step at the top
plus a match at the bottom, and a more unusual perception was as rearrangements of
squares of matches of sizes 1 x 1 , 2 x 2 , 3 X 3 , etc. Such a variety of perceptions shows
how difficult it could be to talk about the configurations to a whole class. The match-
stick patterns were used to derive number sequences, and some children quickly
rejected the matches in favour of continuing their lists of numbers based on differ-
ences, leading to the typical misuses of differencing. Some children were slowed down
by the matches, because they couldn't handle them efficiently or because they couldn't
count them. The overall conclusion about using matchstick patterns must be that they
might or might not provide the hoped for insight and support, but they could also
introduce new complications.

All of this discussion of number patterns suggests a very mixed conclusion in terms of
them leading to generalization and algebraic formulae, and also about using pictures
to initiate a pattern approach. Certainly, this new route into algebra offers another
alternative, and embraces features which are valuable mathematical experiences.
However, there is no indication that algebra is suddenly made easier to learn, so there
is no reason to assume that the pattern route should replace other routes.
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Pattern and proof

Any respectable mathematics curriculum must ultimately include proving, even if
only for those pupils who develop most rapidly. In many school curricula around the
world Euclidean geometry still provides the vehicle for teaching notions of proof, but
in Britain the geometry is now as much based on transformations as on any other
approach. However, there is little attempt to use the transformations which British
pupils study to lead to proof, so the question arises as to whether ideas of proof might
emerge from the study of algebra. In particular, we need to consider here whether the
pattern approach to algebra might provide suitable opportunities. We also need to
know the extent to which pupils have the capability to create proofs based on number
patterns, and whether there are ways in which teachers might extend the study of
patterns to a consideration of proof.

Proof in mathematics has been the subject of research in the past (see Bell et al.,
1983), but many studies have focused on proof as it arises within Euclidean geometry.
In one study, however, Bell explained the development of the understanding of
proof in pupils aged eleven to seventeen as passing through four stages. The second of
these stages demands the recognition of pattern or relationship, but without any
checking of the domain of applicability. Waring et al. (1999) have reported on a
teaching study which was based exclusively on patterns which arise in mathematics
lessons. The research involved attempting to introduce above average school students
aged fourteen to sixteen to notions of proof based on the pattern route into algebra. In
all of the tasks, pupils were encouraged to use the pattern to find a formula-based rule,
and then to try to explain the formula. Individual exploration, group discussion and
whole-class lessons were all used to support the production of a final written report for
each task. There were genuine achievements, namely that pupils were able to come
to an appreciation of the distinction between demonstration and proof, to understand
the need for proof, and ultimately to produce a proof, though considerable 'piloting'
was often required from the teacher. In general, however, the difficulties experienced
by the pupils were greater than had been anticipated, and in particular a task based on
the triangle numbers proved to be much more difficult than anticipated at first,
though all the tasks were eventually completed with guidance. Task A, a matchstick
task, is just one example of the large number used within the teaching and testing
programmes.

At the end of the teaching sequence, post-tests enabled separate measures of
capability in patterning and in proving, and also provided a comparison with scores on
'basic' mathematics (the remainder of the curriculum for the year). An end-of-year
examination provided an opportunity to include what were in effect delayed post-test
questions. Three normal school classes (about 25 pupils in each) were involved, com-
prising an experimental group (E) and two control groups, one of which had been
taught without any reference to pattern (Cl), but the other had included patterns
within the traditional curriculum, though it had not included proof (C2). Some pupils
were also later interviewed on an individual basis. The results on the 'basic' items
confirmed the comparability of these three groups in terms of overall mathematical
attainment. The outcomes of all the various assessments revealed that the success of
the experiment was limited, though group E pupils did have more success on the
proving tasks than the other two groups. In addition, C2 pupils were better than Cl
pupils on pattern questions, but differences between the two control groups on proof
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TASK A

For the above patterns of L-shapes, made from
matches:

1. Copy and complete the following table down to
n = 6.

Side of Number
large of small
square (n) squares (s)

Perimeter Number
of L-shape of matches
(P) (m)

2 3 8 10
3
4
5
6

10
100

2. Describe any patterns you see.

3. Find formulae for the following in terms of n:
(a) the number of small squares (s);
(b) the perimeter (number of matches round

the outside) of the L-shape (P);
(c) the number of matches used (m).

4. Prove that your formulae are correct by explain-
ing how each one is connected to the diagrams.
(Remember — checking is not the same as proving.)

5. Use your formula to calculate the values of s,
P and m for n = 10 and n = 100 and put your
answers in the table.

questions were not significant. Perhaps not surprisingly, the awareness of the need for
proof had certainly been raised in the group E pupils, and they were more prepared to
seek a proof than when the experiment began. It was also clear that these particular
pattern questions had provided adequate motivation for the study of proof.
Unfortunately, there was still a very strong tendency for pupils to rely too much on
differencing, which sometimes inhibited progress towards finding a generalization
because that really needed to be derived from structural considerations. Pupils often
lost their way when they tried to proceed entirely algebraically, whilst there were
many instances of pupils benefiting from the support of an appropriate diagram. It
seemed (cf. Polya, 1957) that, if a task offered the opportunity to draw a diagram to
support thinking, it is always sensible to do so. In general, when proofs were provided
by the pupils, they were written informally, using sentences rather than mathematical
symbols. In the interviews, pupils indicated very strongly that they found it difficult
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TASKB

(a) Find 
(b) Continue up to
(c) If n is the smaller of the two consecutive num-

bers write down an expression for the larger.
(d) Explain, using algebra and/or diagrams, why

the above result will always happen for the
difference between any two consecutive square
numbers.

to explain in writing ('It's easier to talk'), and that the tasks weren't as clear as if a
teacher had been available to explain ('I wasn't sure what I was doing').

Some of the test tasks were not based on the routine 'pattern —> formula —> proof
procedure, that is, they were unique, an example being Task B. It was very clear from
the results that transfer of learning to unusual situations was extremely limited.
Pupils were more likely to succeed with analysing new patterns if they were similar to
patterns experienced earlier, and conversely were not likely to succeed with patterns
arising from completely new contexts. We must therefore conclude that we have no
evidence that the ability to produce a satisfactory proof in these pattern situations will
extend to other areas of mathematics outside the narrow confines of this topic. The
limited success of the experiment indicates that the search for strategies based on
patterns which lead to greater success in understanding and producing mathematical
proofs must continue. On the other hand, there is evidence that pattern situations can
provide a legitimate approach to proof, can provide pupils with valuable pre-proof
experiences, and might even enable some movement towards acceptable mathematical
proofs.

Pattern in relation to shape

It is in geometry that we realize how difficult it is to define what we mean by 'pattern'.
Unfortunately, the term can take various meanings in the wider world. Griinbaum
and Shephard (1986), in their classic book on tilings and patterns, confess that they
could not find a satisfactory definition. For Sawyer (1955, p. 12), however, pattern is
'any kind of regularity that can be recognized by the mind'. Sawyer's regularity is
basically achieved through symmetry and iteration, with symmetry being undoubtedly
the key mathematical feature in the study of pattern in geometry. Tessellations,
both those occurring naturally and those in manufactured designs, are fundamentally
based on symmetry and iteration, but they also incorporate transformations. When
we study wrapping paper and wallpaper from our own country, wall and ceiling
designs from Islam, and textile patterns from around the world it is often tessellations
which provide the first impact. Deeper analysis then reveals the symmetries and
transformations, and it is therefore these two features which are singled out for
discussion here.

Symmetry must be a basic element in any geometry curriculum, but symmetry may
be reflective or rotational (or both), and the ideas of reflection and rotation are not of
the same order of difficulty. Reflection is definitely understood before rotation, but
other hierarchies of difficulty exist as well. Figure 6.8 (see Orton, 1999) illustrates
some typical shapes on which explorations of reflective symmetry may be based.
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(2) (3) (4)

Figure 6.8
(5) (6) (7)

Here we have examples of vertical symmetry ('vertical' mirror line), horizontal
symmetry ('horizontal' mirror line), and double symmetry (when both vertical and
horizontal symmetry are present) - see Figure 6.9. Research studies have confirmed
that there is a clear order of difficulty for such symmetrical designs. Chipman and
Mendelson (1979), for example, working with children aged six to twelve years
and with college students, concluded that:

Sensitivity to double symmetry and vertical symmetry appeared quite early,
whereas sensitivity to horizontal symmetry, diagonal symmetry, and checker-
board organization appeared considerably later. Sensitivity to rotational
organization . . . was not fully evident even in the oldest subjects, (p. 375)

Types of symmetry

Vertical Horizontal Double
Figure 6.9

Oblique

Similar conclusions have been drawn from other studies conducted in a variety of
countries. Thus, the symmetries of shapes 1, 3 and 6 in Figure 6.8 should be identified
most easily, shapes 2 and 4 can be expected to provide rather more difficulty, and
shapes 5 and 7 are likely to prove the most difficult of all. Vertical symmetry exists
in many objects in the world around us and seems to be easily recognizable, but this
appears to lead to many children showing a tendency to impose vertical symmetry
where none exists. However, research results indicate that this tendency does decrease
with increasing age.

When it comes to transformations, Piaget suggested many years ago that the
order in which children learn basic transformations is first translation, then reflection,
and finally rotation. This is a very broad classification, however, and some curricula
distinguish between different kinds of translations, reflections and rotations, rather
along the lines of the different kinds of symmetry identified above. Dickson et
al. (1984) quote results obtained separately by both Perham and Schultz which

(1)
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distinguish between horizontal, vertical and oblique transformations (see Figure 6.9)
and which claim that the last is very difficult for children. Shultz, working with six to
eight-year-olds, concluded that the image in an oblique translation was often given
in the direction of the translation and also that the tendency with reflections and
rotations was to turn the image so that it faced the direction of reflection or turn.
These children might seem to be unusually young for such tasks, but there is even
more evidence involving older pupils. The Assessment of Performance Unit (1980)
concluded that only 14 per cent of eleven-year-olds could find the reflection of a shape
in an oblique mirror line. Kiichemann (1980) discovered that many fourteen-year-olds
reflected vertically or horizontally across an oblique mirror, and they also had
difficulty rotating a shape if the centre of rotation was not on the object. The distance
and direction in which to reflect an object was helped if there was an underlying grid,
but it neither prevented all errors nor helped significantly with rotation. Kiichemann
also provided descriptions of developmental levels of understanding in reflection and
rotation. Bell et al. (1989) confirmed the common misconception that horizontal
and vertical objects must always have horizontal or vertical images, whatever the
orientation of the mirror line. He also found that many children believed that a line
which divides a shape into two parts of equal area must be a line of symmetry (for
example, the diagonal of a rectangle). Perham also found that children could select
the correct image of a transformation from alternatives before they could construct the
image, so this might suggest a good way to commence the study of transformations.

It might at first seem questionable whether shape recognition constitutes part of
pattern awareness, but children have to be able to recognize the same shape in dif-
ferent positions and orientations in order to identify patterns. This ability is vital
for other reasons too, for example, if children are to identify the shaded triangle in
Figure 6.10 as one quarter of the whole square they must appreciate the congruency

Figure 6.10

of the four triangles. Orton (1999) conducted a major study in shape recognition with
pupils aged nine to fifteen. In general, there was evidence of improvement with age,
though if there was a relationship with general ability it was not a clear one. Three
stages of development were identified, as follows:

Stage 1: copying a shape, simple pattern completion; detection of embedded
figures; matching picture shapes; recognition of reflection in a Vertical' axis;
simple rotation and reflection completion with a frame of reference.
Stage 2: matching of embedded shapes; matching of simple shapes in different
orientations; complex rotation and reflection with a frame of reference.
Stage 3: matching of complex shapes in different orientations; complex completion
of patterns including rotation; recognition of most reflections and rotations.

The issue of whole or parts is also relevant to geometrical pattern recognition.
Orton (1999) illustrated this issue with the diagram in Figure 6.11, and asked
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Figure 6.11

whether it is the whole or the parts which children see. There is obviously no math-
ematical name for the shape as a whole, so in breaking it down is it more helpful to
treat it as two overlapping equilateral triangles, or as four separate equilateral tri-
angles and a rhombus, or should the parallelograms be used in the analysis? This
clearly should remind us of the discussion of Gestalt theory in the previous chapter,
but more recent analysis and theory based on research projects can now provide greater
detail about what children perceive. Ghent (1956), for example, who used overlapping
figures with pupils aged four to thirteen, concluded that young children have dif-
ficulty in perceiving a given boundary as simultaneously belonging to more than one
form. Reed (1973) found that the rhombus in Figure 6.11 was easier to identify than
the parallelograms, and hypothesized that people mentally store the presented pat-
terns as parts together with rules for linking them. Kolinsky et al. (1987, p. 399)
concluded that 'the processes of post-perceptual analysis necessary to find a part in a
figure are neither built-in nor the consequences of ... cognitive growth, but depend
on the instruction or experience usually found in school'. For more detail on theories of
perception of mathematical shapes and pattern recognition see Orton (1999).

The conclusion drawn by Kolinsky is a reassuring one for teachers. It suggests that
the pattern recognition experiences which children encounter in school, no doubt
coupled with teacher-led class or group discussion of what shapes lie where within the
overall configuration, are likely to contribute to pupils' growing ability to recognize
and analyse patterns in shapes. Another practical suggestion for teachers comes from
Bell et al. (1989), who has recommended the use of'conflict' lessons to try to eradicate
misconceptions about transformations. The idea is that pupils should first think
about a problem on their own, then come together in small groups to discuss
and debate in the expectation that suspect conclusions can be challenged in a less
threatening atmosphere than the whole class. Once the small groups come to some
agreement, whole-class discussion allows a wider debate leading to ultimate agree-
ment. Such conflict lessons appeared to be very successful in dealing with the
prevalent tendency to reflect incorrectly across an oblique mirror line, but they could
undoubtedly be used more widely within mathematics teaching (see Chapter 11). The
final word on symmetry and transformations should be given to Kuchemann (1981).
In reminding us of the reasons for the attempt to replace Euclidean geometry with
a geometry based on transformations, he concludes that both are equally unsuitable,
but that the study of the separate transformations can be a valuable mathematical
experience in itself.
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Questions for discussion

1. To what extent is the appreciation of pattern innate and to what extent does it have to be
learned?

2. What are the strengths and weaknesses of basing the introduction to algebra on pattern?
3. How can children best be taught proof in mathematics?
4. How can dynamic geometry software be used to support a pattern approach to geometry?



Chapter 7

Does What We Learn Depend on Where
We Are?

Applying mathematics

For mathematics teachers, there is nothing more galling than finding that non-
mathematicians can be more competent in a mathematical activity than one is oneself.
The pub darts team player has to be very quick at arithmetic, particularly at doubling
and trebling, and at adding and subtracting. Many professional mathematicians must
have marvelled at the speed with which a match commentator is able to complete the
mental arithmetic and then deduce and describe the next throw(s), a speed which they
themselves could not match. This everyday example indicates how numerical com-
petence of a particular kind can be achieved by people whose earlier performance in
the mathematics classroom might have been anything but exemplary. There are many
such examples of mathematical competence in common everyday activities. Sensible
betting, if there is such a thing, demands considerable mathematical capability,
because it demands facility with odds in probability — and that involves fractions.
Yet, in school, many pupils struggle with fractions, and probability is not a part of
the curriculum which is always grasped. In both of these examples of popular adult
activities the situation demands particular mathematical mastery. Teachers might
claim that any expertise originated in the general arithmetic skills developed in
primary school, but adults often assert that their school mathematics was of little or no
help in achieving the very specific mastery which they display regularly.

For science teachers, it is very frustrating when pupils claim that they cannot cope
with the mathematics required in analysing experimental results and discussing
theory. Sometimes, mathematics teachers are blamed. They are accused of inadequate
or unsupportive teaching, or for a curriculum which does not provide for the needs of
other subjects. Outside of the mathematics classroom, many pupils seem to be unable
to apply their mathematical knowledge as readily as teachers might have hoped.
Indeed, usually the mathematics required is not difficult and has indeed been taught,
but the situation is different and the children seem unable to transfer their learning.
Yet one of the reasons given for teaching mathematics is that it is a very useful subject,
and can be applied in so many different ways in other specialist areas of knowledge and
in the world at large. Freudenthal (1968, p. 4) commented on this phenomenon when
he wrote:
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Very little, if anything, is known about how the individual manages to apply
what he has learnt, though such . . . knowledge would be the key to understand-
ing why most people never succeed in putting their theoretical knowledge to
practical use.

For all teachers, it is a surprise when one finds that a child who struggled at school
has gone on to achieve honour and acclaim in the very subject area in which the
teacher laboured in vain to impart knowledge. An example of this was an overall
better than average pupil whose weakest subject by a colossal margin was mathematics
but who came top in mathematics in his first year as a naval cadet. It is easy to say
that motivation was the key here. Motivation might well be important in attempting
to maximize learning, but in this particular example it also required a change of
situation, with the mathematics being seen to be directly relevant. There is a common
view, frequently expressed by pupils who are not enjoying their mathematical studies,
that school mathematics is not used in the world outside, at least in the world which
they envisage for themselves. Yet particular occupations do require some mathematics,
and people who aim to succeed in certain jobs must master the relevant mathematics,
which they often seem to do within the activity having not impressed at school.
Although mathematics is not the subject of television programmes very often (because
planners and producers have to keep likely viewing figures in mind!), the math-
ematical content is often there if one looks carefully. A simple example lies in the
gardening programmes, which appear so regularly on our screens. This practical,
down-to-earth, area of mainly leisure activity demands particular facilities, such as the
measurement and shaping of timber, and calculations concerning building materials
in the design of garden features, some of which are quite intricate or complicated. It
also sometimes requires a combination of art and geometry. On recent programmes,
professional gardeners have marked out circles, for both flower beds and water
features, and they have also constructed elliptical beds using two pegs and a loop of
string, a method not always included in the school curriculum, and presumably passed
on from one gardener to another. And then, of course, there is always the costing to be
done. Such skills appear to be developed and committed to memory in situ and not in
any school classroom.

All of the above illustrations suggest something of a separation or 'discontinuity'
between school mathematics and 'real-world' mathematics. As mathematics teachers
we need to recognize a number of truths: firstly, that many adults who use math-
ematics might not be aware that they are doing so; secondly that, when they are aware,
they might not recognize the mathematics as being essentially the same as something
they learned at school; thirdly that users of mathematics might find it more difficult to
apply school-learned mathematics than we imagine, and finally that the mathematics
classroom is not the only place where mathematics is learned. In our school lessons we
often try to embed mathematical tasks within out-of-school contexts. One reason for
doing this is surely because we hope we are forging links with mathematical usage
outside the classroom. Other reasons include the belief that such tasks are altogether
more meaningful and more interesting. However, just as there is lack of appreciation
that the wider world might involve school mathematics, it also appears that children
do not necessarily activate any knowledge they might have from the world at large in
their attempts to solve a school problem. Often they arrive at solutions which we can
only describe as defying common sense. Lester (1989) tried to explain these difficulties
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by stating that in mathematics classes the pupils are focused on symbols and rules,
while in out-of-school situations we are focused on the meaning of the task in relation
to the setting. In other words, the situation in which the mathematics is being used
makes a difference.

Everyday mathematics

The Cockcroft Report (1982) included a short discussion and analysis of the math-
ematics which is required by people in their daily lives. The purpose appears to have
been to assess whether the mathematics which was being taught in school provided
the mathematics which adults needed. Thus one assumption appears to have been
that if we teach the right mathematics then adults will be able to tap into whatever is
needed. In order to be able to include this section they commissioned a report, by
Sewell (1981), which was based on surveys carried out in the street, and which was
subsequently followed up in a larger survey by Gallup (which essentially produced
identical findings). Many adults approached to take part in Sewell's research were very
reluctant to involve themselves in anything to do with mathematics, and some refused
point blank. Those participants who had good qualifications in other fields of study
were inclined to express feelings of guilt about the weaknesses they felt they had in
mathematics. It seems that there is a widespread lack of confidence amongst adults
concerning ability in mathematics, not always justified on the basis of mathematical
qualifications attained, and even present in people who need to use some mathematics
in their lives. Particular feelings of inadequacy arose from participants believing on
the one hand that they were not using the proper method, and on the other from being
unable to obtain an exact answer, a phenomenon which appeared to persuade them
that their answer could not be correct. Curious views were expressed about what were
considered to be the innate characteristics of mathematics, such as accuracy, speed
of working, and showing all working neatly. And there was widespread professed
inability to understand some mathematical topics, such as percentages, graphs and
timetables. Thus, some of the views of mathematics certainly indicated a discon-
tinuity with the views of mathematicians. For the record, the basic mathematical
needs of adult life emerged, perhaps not unexpectedly, as being quite modest. Count-
ing, telling the time, handling money, measuring, facility with timetables, graphs and
charts, and sensible estimation and approximation were all that most people needed.

The questions used by Sewell included best buys in the supermarket, interpreting
charts and tables, adapting a recipe for other numbers of people than stated, and money
calculations of many kinds. Such problems have been used in other research studies,
the outcomes of which have tended to highlight the issues surrounding the relation-
ship between school practice and life practice, and the differences between school
learning and everyday learning. This distinction used to be referred to as the distinc-
tion between formal learning and informal learning. Formal school learning is prin-
cipally de-contextualized, and pupils are often limited in the particular tools they may
use, whereas everyday life activities are situated, and we all use whatever tools we need
or have at hand. In other words, the calculations which we perform when shopping
might be quite different from those used in comparable classroom problems. In school
mathematics generalities and wide applicability are emphasized, whereas everyday
situations are very specific. In school, an answer must be obtained, even if it is incorrect,
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but in shopping a particular comparison can be abandoned, a decision need not be
made, and a product can be left on the shelves. Also, learning in school is primarily
individual, whereas out-of-school activities are much more often carried out in groups.

One particular research study, the Adult Mathematics Project (Lave, 1988),
included best buys in the supermarket as one source of problem situations. Partici-
pants were asked to choose the best value for money when the choice was from several
articles of the same type and quality with varied weights and prices. The task was set
both in the form of a test, like a school test and performed in the home, when the best
buy was correctly identified in 59 per cent of the cases, and it was also carried out in
the supermarket when the success rate was a remarkable 98 per cent. The obvious
indication is that mathematical knowledge is linked to the situation in which it is
used. Clearly, the calculation of a best buy in the supermarket matters a great deal
to the purchaser, whereas a de-contextualized test question does not, and this might
contribute towards the difference in the success rates.

In another kind of real-life situation, Lave (1997) reports on a study by de la Rocha
of nine new members of Weight Watchers. The mathematical content of their
activities revolved around the measurement required to prepare appropriate quantities
of the right kinds of food in their diet. After a number of weeks in which the dieters
were observed in their kitchens they then took part in a variety of arithmetic-testing
activities. All of the participants were more successful on the practical food measure-
ment tasks than they were on the isomorphic formal test questions. An interesting
feature occurred because the daily measuring of food quantities takes time, so ways
of short-cutting were devised. One example of this was always to pour the milk
allowance into the same glass up to the mark on the pattern which previous careful
measurement had revealed was the right level. This was just one of many examples of
the dieters inventing their own units of measurement. In contrast to school math-
ematics problem situations, the dieting calculations also led to unexpected conflicts.
For example, having followed the Weight Watchers guidelines to make a peanut
butter sandwich, and having obtained the correct solutions (in nine uniquely different
ways), the quantity of peanut butter turned out to be too great for the one slice of
bread, so they scraped some off, despite knowing the amount was correct. Problem-
solving in the abstract does not lead to such difficulties.

Formal and informal mathematics cannot always be distinguished easily, because
the boundaries between them are inevitably not always clear. Nunes et al. (1993)
adopted the working definition that informal mathematics is that practised outside
school. They identified two forms of informal mathematics, namely one constructed
outside school and one embedded in cultural practices. Their research included studies
with Brazilian children working as street vendors, engaged in out-of-school selling
activities in order to help supplement the family income. Thus, the term 'street
mathematics' seemed appropriate, and this mathematics was compared with school
mathematics. In one study, children were approached at their particular pitch (a street
corner or market) and were engaged in both normal sales transactions and calculations
based on other possible purchases. Subsequently, and no more than a week later, the
children took a more formal test based on the kinds of calculation involved in the
vending. Problems presented and addressed orally in the streets were more easily
solved than those included in the more formal test in which pencil and paper were
available. For example, one twelve-year-old street vendor calculated the cost of four
coconuts at Cr$35 per coconut as: 'There will be one hundred five, plus thirty, that's
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one thirty-five . . . one coconut is thirty-five . . . that is ... one forty'. The same child
in the formal test calculated 35 X 4 as: Tour times five is twenty, carry the two; two
plus three is five, times four is twenty', and proceeded to write 200 as the answer (see
Nunes et al., 1993, p. 24). Several important questions demand attention on the basis
of the results obtained. Firstly, how can it be that more correct answers were obtained
in the street than in the formal test? Secondly, how is it that the children could not
relate the formally presented questions to the comparable vending questions? Thirdly,
what do results like these tell us about the commonly held assumption that we need
to teach methods of calculation first, before the children can apply them outside
the class? The facts that the vending involved familiar activity and orally-expressed
calculation, whereas the formal test involved de-contextualized thinking and written
arithmetic, have to be considered significant.

A further question concerns whether children construe their everyday problem-
solving activities as involving mathematics at all. Abreu et al. (1997) described a study
carried out with children in Madeira, where the life of the children outside school
was claimed to have many similarities with the Brazilian children. These Madeiran
children often found their school mathematics very difficult, it being 'prescribed from
outside and based on a culture-free view of learning' (p. 238). Outside school, they
helped in domestic activities such as shopping, some of the boys helped with the
agriculture, and some of the girls helped with embroidery in the home. The study
revolved around typical shopping and farming activities and attempted to ascertain
whether the children believed particular situations involved mathematics. The out-
come was that children expressed the view that people were using mathematics in
some computational situations more than in others. Their reasoning appeared to be
based on the belief that trading transactions were mathematical, but other situations
were not. Thus, for the children, farming, carpentry and the fish market all involved
the use of mathematics. The fact that carpentry also involved measurement was not
considered as relevant as that it required computation. What is more, when children
were asked to compare how problems were solved within a real-life activity and
how similar problems were solved in school mathematics, they claimed there were
differences — but the school methods were superior. Basically, the children's beliefs
indicated that they did not see much connection between school mathematics and
everyday mathematics. In school you do one kind of mathematics, out of school you do
another and more inferior kind.

Work mathematics

Most mathematical activity which adults and children engage in outside or beyond
school is associated with work. The child street vendor studies could be classified
as work mathematics rather than everyday mathematics, but work mathematics
usually implies a more formally-organized and remunerated work or training
situation. Again, the Cockcroft committee thought it important to investigate
work mathematics, and indeed devoted quite a long section to the issues. This should
not be surprising when one considers that a prime motivation for setting up the
committee was reputed to be the many complaints from employers about inadequate
mathematical knowledge amongst newly recruited employees. In other words, as with
everyday mathematics, the major interest was with whether schools were providing
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adequate mathematical training for future employment, and it was again assumed that
all we needed to do was teach the most appropriate mathematics curriculum and it
would then be available for application at work. Not surprisingly, as with the every-
day mathematics, the mathematical needs of employment were found to be quite
modest. The study by Fitzgerald and Rich (1981), set up specifically to provide
information for the Cockcroft Report (1982), found that many operatives used no
mathematics, and that not many traditional school methods were in use. For example,
fractions were certainly met, but school methods of combining them were not. The
authors reported that many workers found it hard to recognize that they were using
mathematics at all, the skills often being seen as common sense. Idiosyncratic job-
specific methods applied in a purely instrumental way were frequently found, even
though there were appropriate school algorithms available. These methods had been
devised for a particular job situation, often by the workers themselves, illustrating
the point already made that the mathematics classroom is not the only place where
mathematics is learned.

One example of a unique method recounted by Fitzgerald and Rich was from a
clothing factory, where the width of rolls of cloth was 60 inches, but the length (L)
was measured in metres, a strange mixture of units but not untypical of practices in
Britain at the time. The area in square inches was then obtained instrumentally by
multiplying L X 2160 X 1.093614, and the workers had no idea why this procedure
was appropriate. Readers might like to try to sort out why the method works! Another
example from the wool industry involved the notoriously difficult algebraic formula:

1 1 1 1
— = — + - + -
R A B C

and the algorithm being used for calculating R ran as follows:

1. Choose the highest number of A, B and C.
2. Divide it by itself and subsequently by each of

the other two numbers.
3. Add the three answers together.
4. Divide their sum into the highest number of A,

B and C. This gives R.

Numbers were frequently written in a more convenient form, when an employee could
not handle the original. For example, the method shown here indicates considerable
understanding of fractions, whilst at the same time it deviates from the school-taught
algorithm for adding fractions.

A A _ A _L _L
16 + 64~16+16 + 64

__4_ J_
~ 16 + 64
_\6_ J_
~ 64 + 64

_il
~ 64
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Other studies of the mathematics being used in employment have been carried out
all around the world. Scribner (1984), for example, studied the work involved in 'pre-
loaders' assembling containers of milk into cases in a dairy. The basic mathematical
task involved the properties that a case held up to 16 containers, but naturally the
retailers did not always order multiples of 16. The workers received computer-
generated instructions for an order in the form of two numbers, the first referring to
the number of full cases to be assembled initially. The second number was signed,
and referred to extra containers (for example, +5), to be placed in another incomplete
case, or containers to be removed from one of the full cases (for example, —3). This
second number was numerically never greater than 8. In practice, however, there
would frequently be incomplete cases left over from previous orders, and it was often
much easier for the pre-loaders to create any additional part-case required for a new
order by adding to or subtracting from one of the leftovers. In other words, the
workers were not obeying the instructions but were using their own adaptation of the
prescribed method. Their efficiency could be measured in terms of the number of units
moved. In a comparison with drivers, clerks and students, the pre-loaders were the
most efficient and the students the least.

In a comprehensive series of studies, Masingila et al. (1996) have researched the
mathematical thinking of carpet layers, restaurant managers, dieticians and interior
designers, comparing the approaches of these various professionals with the methods
used by students solving the same practical problems. One example will suffice to
illustrate that there were differences. The restaurant manager needed to adapt a recipe
for fruit salad for six persons for a dinner party for 20 people. She decided to make
enough for 24 portions, and divide the remaining four portions among the 20 fruit
cups. The students were asked to use the recipe to make 10 portions. One pair of
students started by using the proportional multiplying factor 10/6, and obtained
quantities like 0.833, which they could not interpret in making up portions. They
then excluded decimals and changed to working entirely with fractions, which again
proved problematic and caused them to make up rules about what fractions to accept.
Their orders included items such as 3f cups of apple and if tablespoons of butter.
In other words, they saw the task as being to obtain quantities without regard to
reasonableness in the work situation. Other students who started off trying to use
exact proportions did eventually realize that things would be done less formally in an
out-of-school context, and decided to make 12 portions and divide up the extra two
between the other ten.

Fasheh (1991) contrasts his own mathematical knowledge, learned and sub-
sequently taught in a Third World environment, with that of his illiterate mother.
His teaching of mathematics in a school, he claimed, incorporated recognized good
contemporary practice, with a revitalized curriculum, pupil involvement, discussion,
clubs and magazines. His mother, on the other hand, was a dressmaker who used
rectangles of cloth and fashioned them into well-fitting garments without the use of
paper patterns, and with only the minimum of measurement. The mathematics
involved in the manipulation of these oddment pieces was, he claimed, beyond his
comprehension. She manipulated small pieces and made a new whole from them,
whilst he manipulated symbols and concepts. Mistakes in her mathematics entailed
serious practical consequences, mistakes in his did not. Her mathematics lacked
the structure and theory of his, yet it was integrated into her work as it never was into
his. Her work was valuable to the immediate needs and actions of her community, but
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it seemed no-one really needed his mathematics at all. These examples, and many
others in the literature, illustrate that mathematical knowledge and application are
frequently integrated with work situations, and the mathematics involved is often not
the same as that taught in schools.

Much of the evidence relating to the mathematics of working practices concerns
the use of relatively elementary mathematical skills and concepts, indeed they largely
only involved simple measurement. Magajna (2001) set out to produce evidence
relating to more advanced mathematics used in connection with computer-aided
design in machining and in the relevant associated vocational schools in Slovenia.
Three activities were considered: learning geometry in a vocational school for machine
technicians, learning computer-drafting in a computer-aided design course in a
vocational school for machine technicians, and the work setting of designing and
manufacturing moulds for complex-shaped glass containers. The discontinuity between
school and workplace mathematics was largely confirmed, but an encouraging finding
was the importance of related school knowledge. There was evidence that school-
learned advanced mathematical ideas can and did develop, and they became trans-
formed into practice-related knowledge. The school-learned knowledge was, in these
cases, an important basis for building the knowledge required in the profession. The
mathematics in the workplace activities were, however, largely embedded within
the technology, thus mathematical knowledge based on conceptual understanding
was required to enable efficient use of the complex tools of practice. Magajna com-
ments that since most workplaces are becoming more and more complex and
mathematized, it is essential to learn, in schools, mathematical concepts on which to
root the workplace knowledge. He further concludes that:

As more and more mathematical knowledge is frozen in the technology used, it
is important to realize that in making sense of technologized workplaces and
in constructing representations and in using models in workplaces, [at least
some] practitioners with vocational . . . training can and do build on, or at
least significantly relate to, ideas from school mathematics, (p. 235)

An educationally relevant finding was the suggestion that an impediment to being
able to use mathematics in another subject was inadequate knowledge of that other
subject. Thus, in the observed setting, a very good mastery of the computer drafting
program was a necessary condition for applying school mathematics. In this context
Magajna also cites the work of Lagrange, who found that learning mathematics with a
computer algebra system required a far better mastery of program technicalities than
the teachers had imagined. Perhaps there is at least a hint here that, if pupils are to
use their mathematical knowledge effectively in science classes, as referred to earlier,
they must have a good mastery of the science as well as of the mathematics. Often, we
expect pupils to apply mathematics in science lessons when their understanding of the
content of either or both subjects is still very hazy.

Transfer of learning and situated cognition

The evidence presented in the two previous sections, concerning everyday mathematics
and work mathematics, respectively, is but a small sample from the huge number of
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research studies completed in recent years which illustrate the so-called discontinuity
between the mathematics of classroom lessons and other mathematics encountered in
everyday activities. If it is one of our intentions in teaching that we should equip our
children with mathematics that will be needed for life after school then there is plenty
of evidence that we do not succeed, at least certainly not in the straightforward way
that we might hope. Our school mathematics curriculum is really based on the
assumption that mathematics is a formal body of knowledge, a self-contained subject
domain which contains mathematical objects with meanings which do not have to be
applied outside the subject. This mathematics, it is assumed, can therefore be com-
pletely detached from the experiential world and can be studied purely for its own
sake, although we do also intend our pupils to use them in later life. Bishop (1988b,
p. 8) summed up the position as follows:

The idea of the average person as a peripatetic problem-solver armed with a tool-
bag of mathematical techniques and looking for a problem to solve is a myth.
But it is a powerful myth. It dominates mathematical education at present, has
done for a long time, and probably will continue to do so for a long time to come.

The fact that our pupils cannot use their knowledge in other domains is usually
classified as being a problem of the transfer of learning. Transfer is, of course, a long-
standing educational issue, and used to be referred to as transfer of training, which
in itself indicates a shift in the way education is regarded. The evidence from the
many investigations and research studies illustrated above, together with our own
experiences of teaching, might often seem to suggest that very little learning, if any at
all, is likely to transfer from one situation to another. Cormier and Hagman (1987),
however, claim that it has been accepted for many years now that some transfer
from one domain to another does occur, so the issue deserves deeper consideration.
Two kinds of transfer have been discussed in the literature, namely horizontal (lateral)
transfer and vertical transfer, with the latter being the less contentious of the two.
Mathematics is generally considered to be a hierarchical subject, in which new ideas
continually need to be constructed upon a base of earlier and more elementary ideas,
and in this way vertical transfer should be occurring constantly. For individual pupils
there might be frequent difficulties, yet gradual and steady progression from the less
abstract to the more abstract is regularly assumed. However, this does not mean to say
that there is agreement about the conditions under which vertical transfer optimally
occurs, or indeed about the optimum sequence, or about the likely rate of progress.
Lateral transfer, on the other hand, is recognized as being much more doubtful, and
this is what is generally at issue when we hope that the mathematics which we have
taught will be available in other subject areas, in daily life, and in future employment.
And yet, without some lateral transfer, and in simplistic terms, the extent of every-
one's knowledge would remain within what they have learned from direct teaching. If
there is ever to be a solution to the transfer dilemma which is of help to educators it
will surely only come with much better understanding of the conditions under which
it might occur.

The problems of the apparent lack of transfer of school-learned concepts, methods
and skills to other areas of activity, together with the propensity for individuals to
invent or construct their own ways of solving the problems they encounter in life, have
together led to the theoretical standpoint that all learning is essentially situated. In
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recent years, this theory of situated cognition has gathered many adherents, of varying
levels of enthusiasm, and with varying views on the importance of the theory and the
circumstances under which it might have justification. Kirshner and Whitson (1997,
p. 4) explained the significance of the study of situated cognition as follows:

One source of inspiration for situated cognitionists is the robust expertise that
ordinary folks regularly display in ordinary situations. Against the backdrop of
an educational enterprise that too often fails to engage students and develop their
competencies are the multifaceted ways in which people succeed and learn in all
sorts of out-of-school settings.

The theoretical foundations of the theory of situated cognition lie in both socio-
cultural approaches to education and in anthropology - and, for some, in history as
well. Often, proponents of the view that learning is basically situated have been
influenced by the work of Vygotsky and Leont'ev. In recent years, one of the most
influential proponents of a particularly strong form of situated cognition has been Jean
Lave, and we need to consider her original standpoint in more detail.

According to Lave, we need to think of a situated mind, with cognition being
'distributed', or 'stretched over' mind, body, activity and setting. Lave has described
many studies, some involving adults and some involving children. Those summarized
earlier have revolved around adult learning behaviour, so it is appropriate to describe
some of her findings based on work with children. In a study involving a high-
performing mathematics class, Lave (1997, p. 29) tells of children who 'brought to a
three-week unit on multiplication and division facts almost as much knowledge as
when they finished'. Indeed, the performances of the less successful (on a pre-test)
converged over time with those of the more adept. It seemed that during the three
weeks the children gave no evidence of having adopted any of the specific methods or
techniques which had been taught, rather they were able to use the methods which
they had brought with them or invented, but they were able to use them in such a way
as to make it appear that they had used the teacher's methods. In short, 'the teacher,
text, and exercise books prescribed in detail how the children should act - what their
everyday practice of math should be - while the children produced a different practice'
(p. 30). Essentially, the pupils solved the problems using counting and regrouping
strategies which had not been taught in the lessons and which were not supposed to be
used. Lave further supports her case with other examples, including studies with Vai
children in Liberia, where the local number system which tallies at 5, 10 and 20,
together with the associated arithmetic processes, are different from those taught in
school. Here, 'the children routinely develop a syncretic form of Vai and school-taught
arithmetic, and become increasingly skilled in its use over time, although it is never
taught' (p. 31). On the basis of results such as the above, together with her wider
knowledge of schools in the USA, Lave claims that understanding in practice looks
like a more powerful source of enculturation than the pedagogical efforts of teachers.

Another significant contributor to the situated cognition debate is Geoffrey Saxe.
He particularly expressed concern that neither Piaget nor Vygotsky had been able to
explain how the mathematical understandings of a cultural group that have emerged
throughout history become the child's own, and are linked with the child's purposive
problem-solving activities. In earlier studies (Saxe, 1991) he reported the use of body
part counting among Oksapmin schoolchildren and unschooled adults engaged in
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selling goods on the streets in Papua New Guinea. Outside school, the subjects had
learned a system of counting based on parts of the body which extended beyond
simply using fingers. In this case, they also had to cope with a non-base counting
system. In addition to his work among the Oksapmin peoples he also worked in a
separate study with child candy sellers in Brazil. Saxe has expressed greater optimism
about transfer than Lave, and has provided examples of candy sellers who were using
school algorithms within their calculations. He has also claimed that sellers were
witnessed using adaptations of candy-selling practices in attempts to solve school
problems, thereby performing better on their school problems than non-sellers. His
work suggests that successful transfer is unlikely to be immediate, but should perhaps
be considered as a long process of repeated attempts at construction. Furthermore, he
also emphasizes the importance of the depth of understanding of the relevant prior
knowledge.

Ethnomathematics

An obvious extension to the consideration of alternative mathematical practices
within particular social contexts or situations is to consider the differences which exist
across different cultural or ethnic groupings. This issue has already arisen, through the
references to the Oksapmin and Vai cultures, which may be used to illustrate the
potential for an enormous diversity of local practice. In accepting that such differences
exist, however, we must also admit that mathematics might therefore not be the
universally accepted body of infallible knowledge that we might have been educated
to think it is. One consequence of an acceptance of variation is pressure for the school
curriculum to respond and adapt to the nature of the society which it serves. In
Britain, as in many countries, the claim is that our society is now more multicultural
and multi-ethnic than ever before, and the response has been to try to develop a
curriculum which draws from and relates to the cultural backgrounds of all pupils.
In a broader historical sense, one might claim that the curriculum has continually
responded and developed according to influences from around the world, for example,
in our acceptance down the years of our current measures of time, angle, length,
weight and capacity. Within the last one hundred years many standardized older
systems of measurement have been phased out, particularly those relating to agri-
cultural and other occupational practices. Given that linguists often emphasize the
interdependence of language and culture one might even suggest that, if there are
distinctive features of the mathematics of any cultural or subcultural group, they
reflect the distinctive character of that group. We must also not overlook the fact that
a curriculum is not just a list of topics and ideas to be taught, it also incorporates
teaching methods, about which different cultures are likely to have very strong views,
and in this we are moving into the realms of beliefs and values.

Ethnomathematics is the description now used for what Gerdes (1994) has referred
to as the cultural anthropology of mathematics. The term was first coined by
d'Ambrosio, who wrote (1991):

we will call ethnomathematics the mathematics which is practised among
identifiable cultural groups, such as national-tribal societies, labour groups,
children of a certain age bracket, professional classes, and so on. Its identity
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depends on focus of interests, on motivation, on certain codes and jargons, which
do not belong to the realm of academic mathematics, (p. 18)

It has become clear that all societies and cultures around the world have developed
mathematics in their own ways, but Bishop (1988b) has claimed that these can always
be classified under the six headings of counting, locating, measuring, designing,
playing and explaining. This also provides a way in which variations around the
world may be classified and understood. Counting might involve fingers, but it might
also involve other body parts; it can include using sticks, stones, bones, ropes or
other objects for tallying. It is likely to involve number names, and these might
incorporate some kind of linguistic structure. Locating involves mastering the spatial
environment, and includes exploring, conceptualizing and mapping. Travel and navi-
gation are dependent on mastering location, hence the link with astronomy. Measuring
is essential for arranging in order and for comparing, and many everyday activities and
transactions such as construction, and buying and selling depend on it. Designing is
both creative and technical, but it also involves aesthetic appreciation or beauty. It
should therefore be no surprise that, around the world, there is great variety of shapes
and styles in dwellings and larger buildings for religious, administrative, military and
political purposes. Playing is important to humans, and there are some universal
games, but there are also many which are unique to particular cultures. Explaining is
to do with putting all of our knowledge into perspective, and mathematical constructs
and models can help with this. The enormous diversity of practice around the world is
inevitable when one considers these six dimensions and the possibilities which might
emerge, and have indeed developed throughout history. This should at least partly
explain why Bishop (1991) was able to claim that there has been criticism from many
regions of the world when there have been attempts to import a Western mathematics
curriculum.

Magajna (2001) has used a three-way classification of ethnomathematics in order to
help to expose its dimensions. Firstly, he asserts, there is the mathematics unique
to various cultural groups, which is what raises doubts about the validity of claims
that mathematics is a universally and objectively agreed subject area. Researchers in
this first domain might attempt to bring to light the products and practices of
any cultural group. Other studies might consider the historical development of
mathematical ideas in different cultures. Yet others might investigate the practices
of subgroups within a society, such as the child street vendors of Brazil. Secondly,
there is ethnomathematics as an emancipatory movement, that is, an opposition to any
claim to the superiority of Western mathematics. Significant examples of this, for
Magajna, include the sociomathematics of Zaslavsky (1973, for example), and the
frozen mathematics of colonized nations (see Gerdes, 1985) which would at first sight
appear to have been lost or forgotten at an explicit level, but which still emerges in the
technology of such activities as dwelling construction, basket making and weaving.
Thirdly, there is ethnomathematics as an educational theory. The essence of this is the
desire to base the teaching of mathematics on the cultural background of the pupils,
thus using out-of-school experiences and practices, both extracting mathematical
ideas from the environment and embedding them within it. Minorities within any
society such as regional communities would come into the reckoning here. Many
a teacher moving from a city school to an isolated rural village has gone through
the learning experience of discovering that mathematical ideas can have different
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meanings, examples and implications in different locations which are not too distant
from each other geographically. There is, however, a strong counter-argument to any
simplistically conceived close association of school mathematics with local culture.
Vithal and Skovsmose (1997) have highlighted the need to take account not only of a
pupil's background, but also to acknowledge the need to prepare pupils to face
their future, and for this, it can be argued, we need a curriculum with international
credibility, which provides the tools for using and developing technology and thereby
improving people's lives.

An important issue is therefore how best to promote learning in an ethnically-
diverse mathematics classroom. How might we set about structuring a mathematics
curriculum which caters for all children? One partial solution is to use mathematical
ideas and constructs from the whole range of cultural backgrounds present in the class.
In practice, however, the danger is that we shall still merely have a common Western
curriculum, but one which allows the possibility of the occasional use of a variety of
culturally-based activities to enlighten and perhaps enliven the statutory scheme.
Perhaps because this limited acknowledgement of cultural diversity is often all that
we have been able to achieve up to now, there has been pressure in Britain recently
to allow the setting up of separate schools for children from particular ethnic and
religious backgrounds. Or, alternatively, perhaps this pressure is more the result of
differing beliefs and values which a national curriculum and associated teaching
methods fail to acknowledge adequately. Bishop (1991, p. 38) has suggested that the
six activities described earlier might provide a structural framework for curriculum
construction, for, 'if those activities are universal, and if they are both necessary and
sufficient for mathematical development, then a curriculum which is structured
around [them] would allow the mathematical ideas from different cultural groups to
be introduced sensibly'. Another approach, suggested and used by Harris (1997), is
to base the development of mathematical understanding on the study of some
major areas of human activity, and her main example is textiles. Her Common Threads
exhibition, she claims, 'came at a time when research was confirming the significance
of the context on learning mathematics, and when gender and cultural issues were
high priorities' (p. 127). Bishop, however, also wonders whether it is even possible
to create a 'culturally-fair mathematics curriculum', that is, 'a curriculum which
would allow all cultural groups to involve their own ideas whilst also permitting the
international mathematical ideas to be developed' (1991, p. 38).

Ginsburg et al. (1997) have considered another issue of cultural diversity, namely
why it is that there are sometimes differences in examination performance between
children from different ethnic backgrounds. This is the kind of problem which can
persuade politicians that intervention on a large scale is necessary. Writing from the
perspective of the USA, the problem Ginsburg et al. raise is that Asian-American
children perform the best, African-American children and Hispanic children do
poorly, and White children fall between the extremes. This kind of phenomenon has
been noted in other countries too. The issue in the USA, as elsewhere, is compounded
by issues of social class and relative affluence or poverty. The superior performance
of Asian children has often, in the past, been ascribed to such factors as motivation,
the high expectations of parents, and belief in the importance of effort rather than
inherent ability. It has also been claimed that Asian teachers explain in more depth
and place more emphasis on thinking and understanding than do other teachers.
Ginsburg et al., however, researched the possibility that the key might be differences
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in informal mathematical knowledge. They quote from recent studies from various
countries which indicate that 'informal mathematical thinking develops in robust
fashion before the onset of schooling', and that, 'much of this informal mathematics
can develop in the absence of adult instruction' (see Chapter 11), and also that, 'many
adults are quite surprised to learn how much their young children . . . know in this
area' (p. 165). They further claim that informal mathematical development is vital for
progress in school, because it provides a solid structure on which to build in a more
formal way. However, their conclusion is that there is no convincing evidence that
informal mathematical knowledge influences why some groups subsequently learn
better than others. The problem appears to be more likely to result from differences in
motivation and schooling. Also, in certain countries, some ethnic and other subgroups
are subverted by a deep-seated anti-academic attitude. Ginsburg et al. do also point
out, however, that:

if {pupils] receive preschool instruction (like certain Chinese), or are born into a
culture favouring quantitative activity (like the Japanese), or are privileged to be
a member of a relatively affluent class . . . or a group with positive expectations
about schooling . . . then their potential is more likely to be realized, (p. 201)

The significance of the situation

It should now be clear that there are ways in which the situation can affect what is
learned. Firstly, and at the most basic level, there are variations in mathematics
curricula around the world, documented recently in, for example, Hoyles et al. (2003).
Secondly, there are differing ways in which counting methods have developed in
different societies, and these methods have often influenced subsequent mathematical
development. Thirdly, there is the multitude of ways in which informal mathematics
can develop according to the individual circumstances of both individual children and
social groupings. Then there is the evidence of variations in examination performances
among different ethnic groups within the same nation, which appear likely to be
associated with home, society and culture. Then there are the individual ways in
which small but highly motivated groups, and also teams of workers in particular
occupations, solve their mathematical problems. So the main point at issue should
really be the extent to which situations might affect learning. It should also now
be clear that those who have, in recent years, contributed evidence to support a
situational effect have themselves not all held identical views, some being much more
extreme than others in their belief in the affect of the situation. One problem, not
surprisingly, has been with the interpretation of situated cognition data, so we need to
consider its robustness.

Evans (2000) has discussed some of the weaknesses of the conclusions drawn from
the many studies on which Lave has based her earliest beliefs in situated cognition.
Concerning the Adult Mathematics Project, he claims firstly that it was not clear that
the categorization of the tasks as either school or everyday was straightforward, sec-
ondly that judgements of relative difficulty were suspect, thirdly that the results taken
at face value did not justify a claim of discontinuity of performance, and fourthly that
it was not justifiable to compare compulsory test results with non-compulsory
behaviour in the supermarket. Indeed, one might also query whether the attitudes and
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motivations of these adult shoppers could ever have been exactly determined, let alone
how their attitudes might have influenced their behaviour. Noss and Hoyles (1996)
have similarly evaluated the supermarket research, summarizing it as follows:

When shoppers do use mathematics in the supermarket, it is supermarket
mathematics, . . . mathematics of this kind differs in substantial respects from
the kinds of mathematics commonly taught in schools . . . situated cognition has
no need for universal laws . . . it is concerned with getting the job done. (p. 33)

Evans (2000) acknowledges, however, that Lave's contribution to the situated
cognition debate has been enormous, but he claims that the way ahead is a deeper
analysis of the bases of observed differences in practice:

[Lave] has shown how to look for, and to begin to describe, the ways that
different contexts may be discontinuous, and may have effects on activity and
thinking in them . . . however, it is important to avoid the cul-de-sac of the
strong form of situated cognition, (p. 85)

Other major early contributors to the situated cognition debate are clearly Nunes,
Schliemann and Carraher. Some of their seminal work concerning child street vendors
in Brazil has already been discussed, but the question of whether like was being
compared with like arises once again for Evans (2000), who claims that to attempt to
draw conclusions about cognition across contexts based on an assumption that the
same tasks were being used is highly questionable. Subsequently Nunes et al. (1993)
have addressed further issues such as which aspects of different contexts could account
for the observed differences in performance. They have suggested that one important
difference concerns the social relations between researcher and subject, for example,
whether the customer is known to be a researcher. In one study, keeping the context
constant (testing in school), and comparing the three situations of simulated store
problems, word problems and computation exercises, they were able to show that
oral calculations were done correctly more often than written ones, and that when the
procedure was controlled, the differences in performance across situations disappeared
(Carraher et al., 1987). Furthermore, Nunes et al. (1993) have separated out and
researched different levels of transfer, namely application to problems with unfamiliar
parameters, reversibility (use of a procedure in the opposite direction), and transfer
across situations. Another significant conclusion (Schliemann, 1995) was that:

Mathematical knowledge developed in everyday contexts is flexible and general.
Strategies developed to solve problems in a specific context can be applied to
other contexts, provided that the relations between the quantities in the target
context are known by the subject as being related in the same manner as the
quantities in the initial context are. (p. 49)

A similar conclusion expressed by Saxe (1991) has been stated earlier.
Bereiter (1997), in claiming that situated cognition has not provided a new

educational vision, has set the debate within a much broader context than simply
reviewing data and conclusions drawn from them. He accuses proponents of confusing
process which is situated, and product which may not be situated. He claims that
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there are three ways in which humans may transcend their animal heritage. The first
way is by transforming physical environments and creating new social structures and
practices. The second is by acquiring expertise which enables us to function in a novel
environment much as if we evolved within it. The third is by creating a world of
immaterial knowledge objects and acquiring expertise in working with them. He then
claims a direct mapping between these three ways and Popper's (1972) metaphoric
schema of three worlds, the first level of which is the material world - both inanimate
and animate, the second is the level of the subjective world of individual mental
activity, and the third is the level of the world of immaterial knowledge objects. He
claims that situated cognition might help us to understand the relationship between
the first and second levels, but the third level represents the strongest sense in which
humans may be said to have overcome situated cognition. The ability to work at the
third level is what has enabled the human race to develop all the modern trappings of
civilization, to continue to raise our standards of living year on year, and to perform
incredible feats requiring great technological mastery. Mathematics beyond the
early years of schooling, as it becomes increasingly more and more abstract, surely
moves steadily further into the third level. Bereiter thus claims that formal education
provides us with an escape route away from the confines of the situatedness of the
lower levels. He admits that none of the three levels is likely to escape completely
from the possibility of the effects of particular circumstances and environments,
but the third level allows the best escape possibilities. Logical argument at the third
level is extremely powerful, for when one works within the third level on premises
which hold in the first level, then valid conclusions from the premises do as well.
Also, and conversely, if valid conclusions turn out to be not true at the first level,
then there must be something wrong with the premises. Disciplined movement
between the levels thus gives us the hypothetico-deductive method and opens up
the highest levels of thinking. Interestingly, Donaldson (1978), after discussing
the logicality of the behaviour of young children, then suggested that during
subsequent cognitive development this logicality becomes less and less dependent on
the situation. Thus situated cognition has not provided a new and vital educational
vision.

One benefit that has emerged from studies around and within the domain of
situated cognition is a better understanding of many of the issues which affect the
efficient transfer of learning. For Bereiter (1997), what mainly fails to transfer is
learned intelligent behaviour. The technological advances referred to earlier suggest
strongly that intelligent behaviour can transfer under the right conditions, and indeed
it must transfer for society to continue to progress. Many of us will be familiar with
the circumstances in which two friends who have previously succeeded at the highest
level in external examinations at 16+ subsequently do not perform at the same level
as each other in 'higher' examinations in later years. At this higher level it is possible
for the first to pass with flying colours and the other to struggle and even fail. When
this happens, we may conclude that the first has been successful in achieving transfer
but the second has not. The second has very likely learned only how to pass the
examination at 16+ and has not learned what is transferable. The first has engaged
in intentional learning, which incorporates knowledge-building goals, the second
has not progressed beyond task completion exercises and the successful passing of
examinations. Knowledge-building, the continuous construction of understanding
and knowledge, is the key, and it is only weakly connected to immediate situations. It
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requires learners to be looking all the time for connections and relationships based on
structural or logical correspondences.

The situated cognition debate has produced other analyses concerning transfer.
Evans (2000), for example, proposes seven guidelines for optimizing transfer. Par-
ticularly important suggestions include making the ability to transfer a specific and
explicit goal, by establishing the links and inter-relationships between the contexts,
by clarifying the similarities and differences, and by generalizing the methods used
across the contexts. In other words, making every effort to set up transfer, rather than
what has happened in the past - the all too common practice of just hoping transfer
will happen. Transfer will never be automatic for any learner, and it will never be easy
to understand for those who try to make more and more sense of how we might
promote learning in others. But our knowledge of the conditions under which transfer
can and hopefully should occur continues to develop, and the situated cognition
debate has assisted us in moving our understanding forward.
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Questions for discussion

1. What do you think the majority of adults have gained from their mathematical education?
2. To what extent does school mathematics equip pupils for the workplace?
3. What is the ethnomathematics of your country or home area?
4. What changes in school mathematics need to be adopted in order to enhance the transfer of

learning to new situations?



Chapter 8

Why Do Some Pupils Achieve More
Than Others?

Individual differences

A wide variety of differences between pupils will be observed when we ask them to do
mathematics. How, for example, are pupils likely to react to this problem?

League fixtures

There are eight teams in a Junior League.
How many league matches are required to
complete all the fixtures in one season?
If there were n teams, how many matches
would be required?

Some children play in a local Junior League in some sport or other, so the context
would be familiar. They might even have been motivated to have obtained the
solution independent of mathematics lessons and long before the teacher posed
the question. They, and some children who do not play in a local league, would
find the problem interesting and worth attempting, but many other pupils would
not. It might be found that more boys than girls are motivated by the problem,
but it might not. Some contexts are more immediately appealing to a majority
of girls and others to a majority of boys. Some children, despite finding the
context interesting, might not be able to solve the problem. Amongst those who
could solve the problem, a variety of different methods might be used. The fact
that so much variety could emerge in response to one mathematical situation is
another feature which needs to be taken into account in considering the learning
process.

For those pupils who are unable to solve the problem the teacher might decide to
demonstrate or discuss a solution. There are, however, so many different ways of
setting about the problem that it is difficult to know which is to choose. Whichever
method is chosen, it might not be the best for all pupils. A variety of methods of
solution is outlined below, all based on numbering the teams one to eight.
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Method A

The fixtures for Team 1 are:

1 v. 2 2 v. 1
1 v. 3 3 v. 1
1 v. 4 4 v. 1
1 v. 5 5 v. 1
1 v. 6 6 v. 1
1 v. 7 7 v. 1
1 v. 8 8 v. 1

so the total number of matches involving Team 1 is 14.

The fixtures for Team 2 are:

2 v. 1 1 v. 2
2 v. 3 3 v. 2
2 v. 4 4 v. 2
2 v. 5 5 v. 2
2 v. 6 6 v. 2
2 v. 7 7 v. 2
2 v. 8 8 v. 2

but two of these fixtures, 2 v. 1 and 1 v. 2, have already been counted amongst the
fixtures for Team 1, so there are only 12 new matches.

Proceeding by listing might eventually lead to short-cutting, though it might not,
but eventually the method results in this sum and total:

14+ 12+ 10 + 8 + 6 + 4 + 2 = 56

Method B

Each team plays all of the other seven teams twice, making 14 matches. But this
approach counts each match twice, since 1 v. 2, for example, is counted both as a home
match for Team 1 and an away match for Team 2. The total number of matches is
therefore:

1 4 X 8 X ^ = 5 6

Method C

All we need to do is find how many home matches each team plays and total those.
Each team plays seven home matches, so the total is:

7 X 8 = 56

Mathematically, this might be considered the same as Method B, but pupils might
not appreciate that.

Method D

There are eight numbers, 1, 2, 3, 4, 5, 6, 7 and 8, and we need to know how many
pairs of numbers may be selected from these eight. This total is 8 X 8 = 64, but this
includes 1 v. 1, 2 v. 2, etc. The number of matches is therefore:
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8 x 8 - 8 = 56

When the number of teams is allowed to vary, the generalization also permits
variation of method.

Method X

We know that a league of eight teams produces 56 matches. An extra team introduces
another eight home matches and another eight away matches yielding this total
number of fixtures:

56 + 2 x 8 = 72

Then 10 teams would produce a total of:

72 + 2 X 9 = 90

and so on.

Method Y

Any of methods A to D applied to a different number of teams, to provide the same
data as in Method X.

Method Z

A tabulation of all numbers of fixtures for any number of teams, leading to a number
pattern, which may be extended using, for example, the fact that the differences (see
Chapter 6) are consecutive even numbers.

Number of teams

1
2
3
4
5
6
7
8
9

10

Number of fixtures

0
2
6

12
20
30
42
56
72
90

The tabulated data may now be used to generalize for n teams. It might be clear to
some pupils (but not necessarily to all), that the pattern reveals that the number of
fixtures is always:

(number of teams) X (one less than the number of teams).

Other pupils might see things differently, in that the number of fixtures is:

(the square of the number of teams) - (the number of teams).
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Some pupils, who have successfully produced results like those in the table, will not be
able to proceed with the use of letters, and will be mystified by n (n — 1).

This issue has been explored at length because the fact that different pupils will
think their way through mathematical problems in a variety of different ways is a
complication presented to all teachers. For two reasons, any taught method for solving
a particular problem might not meet the requirements of all pupils. Firstly, it might
not meet all of them where they are (Ausubel, 1968), in the sense that too many
assumptions are made about prior knowledge. Secondly, it might not coincide with
their preferred cognitive style. Discussion of a variety of different methods of solving
the same problem could thus be considered much more beneficial. On the other hand
such an approach might be rejected on a number of grounds, including boredom
created by spending so long on the one problem, and lack of interest amongst those
pupils who have decided that their method of solution is the only one that matters.

The issue of different methods favoured by different pupils on the same problem is
only one within the complete range of issues associated with individual differences.
Some pupils clearly do achieve more in their studies of mathematics than do others,
hence there are differences. Abilities, preferences, attitudes and motivation all con-
tribute to making some pupils more successful than others, and in the remainder of
this chapter a variety of contributory factors are considered.

Convergent and divergent thinking

It is necessary to consider the issue of convergent and divergent thinking first in order
that reference can be made to it subsequently. The convergence/divergence dichotomy
(or is it a spectrum?) is best introduced by means of examples.

Tests of intelligence are of many types but some, and particularly tests of non-verbal
intelligence, include questions which are numerical, for example:

and

also

1,5,9,13,17.. .

What number comes next?

1, 2, 3, 4, 5, 6, 7, 8, 9

Write down the difference between the
largest and smallest of these numbers.

Here are three figures:

5,2,7

Add the largest two figures together and
divide the total by the smallest.
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Some general ability tests also involve diagrams, as in these further examples:

is to as is to what?

Draw in the missing shape.

and

From remove

Draw the shape which remains.

A good example of a test which includes items of the numerical and diagrammatic
kinds represented here is that by Heim (1970).

All of these sample test items are basically mathematical. In addition, for all of the
items, there is only one expected answer, that is, the questions are all convergent. To
most people, mathematical thinking always seems to be convergent. In fact, there may
be no evidence that divergent thinking skills are needed at all. In other curriculum
areas it is very easy to produce questions which are divergent, that is, which provide
the opportunity for a variety of acceptable responses, for example, the following:

Write down as many words as you can which end in

-ing

Test items in mathematics which are divergent are not much used. One which
Guilford (1959) suggested was:

Make up as many equations as you can which follow
from

and

B-C = D

Z = A + D
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Even then, the opportunity for divergence is not as great as in the previous test item.
In one sense, the recent trend to encourage the use of investigations in mathematics,
many of which are 'open-ended', can be considered to be a reaction against the highly
convergent nature of the majority of the usual school mathematics curriculum.

An early study of thinking skills was carried out by Bartlett (1958), who described
and investigated several categories of 'thinking within closed systems', which he
contrasted with 'adventurous thinking'. Getzels and Jackson (1962) researched into
two types of child, those who were of 'high IQ' and those who were 'high creative',
which appears to imply that high intelligence only depends on convergent thinking
skills and that creativity is not related to intelligence. In fact it further tends to
suggest that the typical IQ test often does not measure anything other than con-
vergent abilities. Hudson (1966) used tests of convergent and divergent thinking with
sixth form students in a fascinating research study into individual differences. In fact
he used a battery of tests of both ability and personality, and concluded:

Most arts specialists, weak at the IQ tests, were much better at the open-ended
ones; most scientists were the reverse. Arts specialists are on the whole divergers,
physical scientists convergers. Between three and four divergers go into arts
subjects like history, English literature and modern languages for every one that
goes into physical science. And, vice-versa, between three and four convergers
do mathematics, physics and chemistry for every one that goes into the arts,
(pp. 56-7)

Biology, geography and economics attracted convergers and divergers roughly
equally, whilst classics went with the physical sciences and mathematics. Only a
minority of students coped equally well with convergent and divergent items. Such
results demand further reflection.

If most mathematics students are predominantly convergent thinkers, does this
imply that few specialist mathematicians are capable of creativity or inventiveness?
This surely cannot be the case, so do Hudson's results suggest that the only creative
mathematics students are the minority who are either divergent thinkers or who are
equally at home with both kinds of thinking? Furthermore, does the predominantly
convergent nature of the thinking of the majority of mathematics sixth form
students imply that this will remain the case throughout life? Does the typical school
mathematics education produce the convergent thinkers which we find in the sixth
form or is it the case that the pupils are already predisposed towards convergence and
our mathematics curriculum both attracts them and also does little to counteract it? If
we attempt radical changes to the mathematics curriculum so that it becomes much
more based on open-ended situations will we deter those students whose preference is
for convergent studies? What should we be doing, as mathematics teachers, to cater
for both convergence and divergence in the preferences of our pupils?

In this particular domain of individual differences there may seem to be more
questions than answers. Hudson pursued his research into the affective domain by
looking for correlations between the convergence/divergence trait and personality
traits. As a result, he suggested that convergent thinking is the preference of the
pupil who likes to keep emotion apart from studies and that divergent thinking is
the preference of those who like their studies to involve them emotionally. In short,
the theory proposed by Hudson was that affective predispositions which reach right
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back into early childhood cause us to prefer either convergent- or divergent-related
studies, so these are the kinds of studies in which we subsequently choose to specialize.
Does this mean there is a connection with the introvert-extrovert spectrum? An
interesting comparison here is between the typical behaviour patterns of mathematics
teachers and, say, English and drama teachers. Of course, some of those who choose to
specialize in mathematics are at ease with both convergent and divergent situations.
Nevertheless, the theory cannot be dismissed lightly. A recent BBC television series
entitled 'The Mind' chose to use a group of physics specialists as a typical collection
of introverts. The following statements from two seventeen-year-old pupils were
collected by the author and by Russell (1983, p. 79), respectively.

I think the popularity of maths depends very much on the character of the
person. Maths is an ideally suited subject to anyone who likes logic, clear-cut
solutions, methods, definite right or wrong answers. Such people are bound to
enjoy mathematics.

English is very much you - far more of your personality comes through. Maths
doesn't show your personality.

Mathematical ability

The analysis of human abilities has been the subject of many studies which have taken
a variety of different forms. At one extreme has been the method based on the
statistical procedure of factor analysis applied to test scores. At the other extreme has
been the anecdotal approach, often based on the reflections by famous mathematicians
about their own ability. The outcome has been the clear indication that overall
intellectual capacity is the most dominant influence on mathematical ability, and it
is a matter of what other more specific abilities can be shown to exist. Some pupils,
however, clearly do show more aptitude for mathematics than others, so the issue of
mathematical ability is essential to a consideration of individual differences. Particular
points of interest, apart from what it is that makes one pupil more able than another,
include whether it is possible to identify pupils of high mathematical ability early in
life, whether it is possible to foster such ability with a special study programme, and
of course what should be done to make other pupils more able than they currently
appear to be.

A major study of mathematical ability in pupils was carried out by Krutetskii
(1976). The study was, in essence, based on observation of pupils and conversation
with them, so it is not surprising that the research method used by Krutetskii
has been compared with that of Piaget. The origins of mathematical ability were
seen by Krutetskii to lie in the existence of 'inborn inclinations', as can be seen in the
following statements:

Mathematical abilities are not innate, but are properties acquired in life that are
formed on the basis of certain inclinations . . . some persons have inborn charac-
teristics in the structure and functional features of their brains which are
extremely favourable to the development of mathematical abilities . . . anyone
can become an ordinary mathematician; one must be born an outstandingly
talented one. (p. 361)
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This theory must be seen against the Soviet political background which did not accept
that innate intellectual abilities existed. The resulting confusion between the relative
contributions from innate inclinations and from environmental factors, contained
in Krutetskii's book, therefore does not provide a secure foundation for explaining
mathematical ability. In other ways, however, Krutetskii's work is helpful.

Krutetskii devoted considerable space to debating how mathematical ability might
be defined. He referred to individual psychological characteristics that answer the
requirements of school mathematical activity and that influence success in the creative
mastery of mathematics as a school subject - in particular, a relatively rapid, easy, and
thorough mastery of knowledge, skills, and habits in mathematics. His components of
mathematical ability include the following:

1. An ability to extract the formal structure from the content of a mathematical
problem and to operate with that formal structure.

2. An ability to generalize from mathematical results.
3. An ability to operate with symbols, including numbers.
4. An ability for spatial concepts, required in certain branches of mathematics.
5. A logical reasoning ability.
6. An ability to shorten ('curtail') the process of reasoning.
7. An ability to be flexible in switching from one approach to another, including

both the avoidance of fixations (see Chapter 5) and the ability to reverse trains
of thought.

8. An ability to achieve clarity, simplicity, economy and rationality in
mathematical argument and proof.

9. A good memory for mathematical knowledge and ideas.

It is interesting to compare this analysis with that described by Suydam and
Weaver (1977, p. 42), reflecting on characteristics of good problem-solvers in
mathematics:

1. Ability to estimate and analyse.
2. Ability to visualize and interpret quantitative facts and relationships.
3. Ability to understand mathematical terms and concepts.
4. Ability to note likenesses, differences and analogies.
5. Ability to select correct procedures and data.
6. Ability to note irrelevant detail.
7. Ability to generalize on the basis of few examples.
8. Ability to switch methods readily
9. Higher scores for self-esteem and lower scores for text anxiety.

Suydam and Weaver also noted that 'more impulsive students are often poor problem-
solvers, while more reflective students are likely to be good problem-solvers'.

It might be considered reasonable to assume that the existence or otherwise of
mathematical ability stems from physiological sources, and Krutetskii discussed this
in some detail. Mathematically-able pupils adopt a procedure in solving mathematical
problems which suggests they can follow a plan which involves trying out ideas
systematically and in which they appear to be able to see which ideas are worth
pursuing and which are not. Less capable pupils, on the other hand, he claimed,
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show blind, unmotivated manipulations, and chaotic and unsystematic attempts. The
physiological explanation provided by Krutetskii was that there is a control apparatus
within the cortex of the brain, the acceptor of an operation, which evaluates results of
any operation, comparing what has been tried with what could be tried and generally
directing and regulating trials. Thus, 'when there is a pronounced inability for
mathematics, a low level of functional maturity of the inferior parietal region of the
cortex and of its connections with other sections of the brain is observed' (Krutetskii,
1976, p. 363).

Krutetskii also suggested that there were different kinds of mathematical ability.
Some pupils had an 'analytic' mind and preferred to think in verbal, logical ways;
other pupils had a 'geometric' mind and liked a visual or pictorial approach. A
majority of students, however, had a 'harmonic' mind and were able to combine
characteristics of both the analytic and the geometric, though they were likely to show
some leaning towards either the analytic or the geometric approach. Pupils with a
harmonic type of mind were most likely to show real mathematical aptitude. The
suggestion that there are varieties of 'mathematical mind' has also been made by
Hadamard (1945). Earlier attempts to describe mathematical ability provided
by Hamley, Haecker and Ziehen, Oldham and Werdelin are also described by
Krutetskii, but none of these studies has provided truly enlightening information
about mathematical ability.

Hadamard (1945), in using evidence from studies of a number of famous math-
ematicians of his day and of earlier times, considered that mathematical ability was
part of general ability. He justified this view in two ways. Firstly, he pointed out that
few pupils who excelled in mathematics at school were useless in other areas of human
knowledge. Secondly, he stated that many creative mathematicians had also been
creative in other spheres of study, and he quoted Gauss, Newton, Descartes and
Leibniz in support of this view. It must be admitted, however, that mathematicians
who contributed in other fields usually did so in closely allied subject areas like
physical science, and not in vastly different areas like literature. Others took their
mathematical reasoning powers into logic and philosophy, though on the whole they
adopted a mathematical approach. Nevertheless, Hadamard might be correct in gen-
eral terms, and there certainly are some examples of eminent contributors to very
varied fields of study, like Leonardo da Vinci and Lewis Carroll. The widely quoted
correlation between mathematics and music is also of interest in this context, though
evidence is sometimes anecdotal and the link is difficult to substantiate through
research. Drawing conclusions from a few examples or from anecdotal evidence is
always dangerous, but few teachers would disagree that the most mathematically-
talented pupils usually have many other talents too.

Just as Krutetskii pointed out differences between mathematically able pupils, so
too Hadamard cited differences between famous mathematicians. Riemann was said
to have had an 'intuitive' mind, whilst Weierstrass was 'logical'. Hermite preferred
analysis whilst Hadamard himself thought 'geometrically'. Poincare is said to have
claimed that he could not carry out an addition without making a mistake! Hadamard
claimed to have experienced great difficulty in mastering certain mathematical
ideas, like group theory, whilst being able to contribute original ideas in other
branches of mathematics. Einstein, of course, has been described as having been
useless at anything other than mathematics and physics, with even a suspicion that his
analytical mathematical talents were limited.
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The other phenomenon which needs to be taken into account is the 'prodigious
calculator'. Hadamard suggested that this is a separate and distinct ability from
mathematical ability because many prodigious calculators did not appear to be in any
real sense mathematicians. Yet, in identifying pupils who are highly talented in
mathematics, one of the signs to look for is said to be a fascination with numbers and
high facility in handling them. The issue of the prodigious calculator has been con-
sidered more recently by Hope (1985). Many children become almost obsessed with
one particular interest, such as sport, and are so motivated as to make themselves
experts, possessing a wide knowledge of the statistics. In the same way, Hope
suggested, some children's early fascination with number and number relationships
motivates them to learn and memorize much more than is normal even for an able
child, eventually resulting in the prodigious calculator. The characteristics of such a
person, as described by Hope, are mastery of many number facts committed to long-
term memory, excellent short-term memory with a capacity greater than the normal
7 ± 2 units (Miller, 1956), and mastery of methods of processing which make the
best use of our limited short-term memory, for example, left to right calculation
with replacement of running totals instead of the taught method of right to left
calculation. There is also the likelihood that the prodigious calculator will make use of
mathematical relationships which many pupils meet but which few value and use in
calculations, for example a2 — b2 = (a — b) (a + b) which assists in computations such as

Expert calculators are frequently in the news, usually in the entertainment
business but, of the many which history has recorded, only Gauss and Aitken have
been considered to be mathematicians.

Throughout this century, many psychologists have attempted to investigate ability,
both overall intelligence and also specific abilities. Many such psychological studies
have been based on the statistical techniques of factor analysis (see for example,
Vernon, 1950), though the basis of factor analysis has often been disputed. Generally,
such studies have not produced evidence to contradict the well known theory of
Spearman that a general intellectual factor (denoted by 'g') operates across all domains
of human intellectual activity. In fact, factor analysis often suggests that the 'g' factor
is dominant. Whether such separate abilities as mathematical ability, geographical
ability, historical ability and the like exist has not been fully substantiated, yet
we often describe people as having great musical or artistic aptitude or talent, and
sometimes even great mathematical ability. Factor-analytic studies have been used
to justify the existence of group factors, such as verbal ability, spatial ability and
numerical ability, which are required over a whole range of school subjects. Thus
mathematical ability might be a particular hybrid drawn from a number of group
factors but, if so, would be difficult to identify. Vernon (1950) reported research that
showed: common elements in attainments at different branches of mathematics, a
small mathematical factor, and a tendency for verbal ability to correlate negatively
with mathematical while spatial ability correlated only with geometry. Wrigley
(1963) was more positive in claiming there was overwhelming evidence to support the
existence of a group factor for mathematical ability, over and above the general factor
(g). Nevertheless, g was found to be very significant, thus high intelligence must be
a prime requisite for high mathematical ability. Bell et al., (1983) used the work of
Wrigley and others to claim that '. . . the relative independence of computational
achievement is generally established', but also stated that '. . . not all factorial studies
yield the same set of components [factors]' (p. 83). The latter statement reflects the
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real problem, namely that factor-analytic studies have not led us to a satisfactory
understanding of mathematical ability. There have been some benefits, however, for
example, the indication that verbal ability tends to correlate negatively with math-
ematical ability warns us of the danger of attempting to assess the potential of pupils
on the basis of verbal tests alone — a practice still sometimes used.

Guilford (1959) used factor analysis to develop a unique approach to the study of
human abilities. He proposed a cubical model of the intellect, with the three axes
defining different kinds of classification (see Figure 8.1). One axis comprised the five

Figure 8.1
operations

major groups of abilities which he claimed were suggested by factor-analytic studies,
and these were cognition, memory, convergent thinking, divergent thinking and
evaluation. These, Guilford termed 'operations'. A second axis was concerned with
categories of content, namely figural (concrete material perceived through the senses),
symbolic (symbols of all kinds including letters and digits) and semantic (verbal
meanings or ideas). The third axis classified six kinds of products when a certain
operation was applied to particular content, namely units, classes, relations, systems,
transformations and implications, which he claimed factor analysis had suggested
were the only fundamental kinds of products that we know. The outcome was a 5 X 3
X 6 cubical arrangement, consisting of 90 smaller cubes or cells, each defining a
particular ability in terms of a single operation on a single content type and a single
product. Guilford was then able to demonstrate many of these particular abilities
through sample test items. Examples of cognition/semantic/systems items in the
mathematical domain can be provided, according to Guilford, by tests of 'necessary
mathematical operations' such as the following multiple-choice arithmetic reasoning
item from CSMS (Brown, 1981a, p. 25):

A shop makes sandwiches. You can choose from 3
sorts of bread and 6 sorts of filling. How do you
work out how many different sandwiches you could
choose?

3x6 6-3 6 + 3 3-6
18 + 3 6 + 3 6x3 3 + 3

Examples of convergent and divergent items have been provided earlier in this chapter,
though it is not easy to know which content and products these correspond to without



Why Do Some Pupils Achieve More Than Others? 147

careful reference to Guilford (1959). The divergent item concerned with making up
equations from B — C = D and Z = A + D, also quoted earlier, is an example of a
divergent/symbolic/implications item.

The specificity of Guilford's 90 distinct abilities makes it very difficult to define an
entity such as mathematical ability. It is not impossible to think of this in terms of
assembling a collection of appropriate cells and grouping these together as 'math-
ematical ability', though it is doubtful if this is a practical proposition. Guilford's
subsequent discussion of mathematical ability reverts to a broader suggestion that it
involves largely symbolic abilities, except that some aspects, such as geometry, have
strong figural involvement, and semantic abilities are important in all courses where
the learning of facts and ideas is essential! Although Guilford's model of the 'three
faces of intellect' is well known and is highly ingenious, it does not solve the problem
of identifying mathematical ability.

Other studies of mathematical ability based on factor analysis have been carried out
by Furneaux and Rees (1978). They claim strong support for the view that there
is a mathematical ability factor independent of 'g'. Earlier work (Rees, 1974) had
indicated that there was a core of mathematical test items which all groups of students
found to be particularly difficult. Factor analysis techniques subsequently led to the
isolation of two relatively distinct types of mathematical ability (Rees, 1981). One
type, referred to as the 'g-factor', was found to be associated with more routine tasks
and was dependent only on instrumental understanding (see Chapter 2). The other
type of ability was found to be related to making valid inferences, and was more
dependent on relational understanding. Tasks which involved inference were
more difficult for students than those requiring only the 'g-factor'. In considering
implications for teaching, Rees suggested, perhaps controversially, that very able
pupils should be positively encouraged to develop inferential powers whilst average
and less able pupils should concentrate on intellectual development via more instru-
mental approaches, with the possibility that relational understanding might develop
in some domains. It was not possible to be certain to what extent the inferential factor
represents a specific mathematical ability.

The existence of different forms of high mathematical ability (Hadamard, 1945)
together with the elusiveness of a single mathematical ability as revealed by factor
analysis suggests that mathematical ability can take many forms, each form derived
from a different mix of other abilities. These other abilities presumably include
numerical ability, spatial ability, verbal and non-verbal reasoning, convergent and
divergent thinking abilities, and so on. One of these abilities which has attracted
considerable research attention is spatial ability, and this is now considered separately.

Spatial ability

Learning mathematics presents pupils with a wide variety of pictures, diagrams,
graphs and visual presentations and representations. One specific problem is the
two-dimensional representation of three-dimensional objects. Thinking about three-
dimensional objects is not particularly easy, unless the object itself is present. A well
known three-dimensional spatial problem involves a painted cube which is sliced
across all three perpendicular directions so as to produce smaller, congruent cubes.
Two equally-spaced slices across each dimension produces 27 smaller cubes. How
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many of these smaller cubes would have three painted faces, two painted faces, one
painted face and no painted faces, respectively? What would be the numbers of cubes
with different numbers of painted faces if the original cube was dissected into 64
smaller cubes, 125 smaller cubes, and so on? Try to think it out for yourself! Would
all pupils of high mathematical ability and sufficient maturity be able to visualize
the effects of this dissecting? The evidence of differing abilities amongst great math-
ematicians would suggest not. Would some pupils who were not noticeably of high
mathematical ability be able to solve the problem? One would suspect they would,
particularly if spatial ability is a distinct ability and not simply one facet of math-
ematical ability. Visual and pictorial applications are certainly not linked only with
mathematics, as examination questions in other subjects indicate! The situation is
even more complicated in that it might not be helpful to assume that spatial ability
is the same as visualizing ability.

The anecdotal evidence of Hadamard exposed his own love of geometry and his
ability to visualize, but it also cited Hermite's hatred of geometry. Krutetskii (1976),
writing about school pupils who were mathematically very able, reported that some
favoured spatial or geometrical thinking whilst others did not. Walkup (1965) pro-
vided further evidence of the capacity which certain people have to visualize in cir-
cumstances which do not at first sight appear to be conducive to visualization. He
hypothesized that some creative people have developed the ability to visualize in the
area in which they are innovative. Thus Faraday could 'see' the electrical and magnetic
lines of force, Kekule could visualize the benzene ring as like a snake biting its tail,
and Einstein believed that thought was a matter of dealing with mechanical images
and was not concerned with words at all.

Smith (1964) carried out extensive studies into spatial ability and concluded that
it was a key component of mathematical ability. He also considered that the relation-
ship between spatial ability and the cognitive trait which has become known as field-
independence was very strong. The field-dependence/independence spectrum of
cognitive style has been extensively researched, notably by Witkin et al. (1977). Such
research has attempted to assess the extent to which the field which surrounds a
situation influences perception. Examples of research studies include documenting
both the reactions of people attempting to sit upright within a tilted room and also
attempts to pick out a particular shape within a complex figure (see Figure 8.2).

Figure 8.2

Towards one end of the spectrum, field-dependent individuals have difficulty in, for
example, finding the shape within the complex figure or in finding true vertical in a
tilted room. Those near the other end, the field-independent people, are able to ignore
the confusion created by the surrounding field. Smith's perceived association between
spatial ability and the field-dependence/independence spectrum is reflected in the
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inclusion of tests like the embedded figures tests in the catalogue of spatial ability
tests (Eliot and Smith, 1983).

The existence of a measure which can place people on a spectrum of field inde-
pendence (Fl)-field dependence (FD) raises the question of whether the kind of
teaching which pupils receive makes a difference. The evidence suggests that the
characteristics of a strongly FI person include being: more interested in the abstract
and theoretical, more likely to impose structure spontaneously on stimulus material,
more inclined towards mathematics and science, comparatively insensitive to social
undercurrents, better able to learn when no social cues are involved, and more
appreciative of independent working opportunities. On the other hand, FD people
learn better under guidance and with redundant social cues, and attend more to verbal
messages which incorporate a social context. Naturally, if the FI—FD measure has
real validity, there will be identifiable FI and FD teachers and teaching styles which
affect a wider range of the curriculum than has been illustrated by the examples
in the previous paragraph. Experiments in which FI and FD pupils have been
deliberately matched or mismatched with FI and FD teaching styles have produced
interesting results. Firstly, teachers and students who are matched view one another
positively, whereas mismatch leads to negative regard. Secondly, teachers have higher
expectations of matched pupils than of mismatched. Thirdly, pupils taught in a
matched environment outperform mismatched pupils. Fourthly, being mismatched is
much less important for FI pupils than for FD. In short, there is sufficient evidence of
differences between pupils which, if substantiated over time, suggests that FD pupils
would benefit considerably from the adoption of an FD teaching style. However, the
relationship between the FI—FD distinction and other measures of cognitive style is
still not clear.

Bruner (1973) suggested that, in education, we had hardly begun to scratch the
surface of training in visualization, thus raising the issue of the extent to which
spatial ability may be enhanced through teaching. Mitchelmore (1980) suggested
that measured differences in three-dimensional drawing ability between American,
English and West Indian children were the result of differences in teaching approach.
English teachers, he claimed, tended to have a more informal approach to geometry,
and to use more manipulative materials in teaching arithmetic at the elementary
level and also to use diagrams more freely at both secondary and tertiary levels. The
potential value of manipulative materials was also suggested by Bishop (1973) who
found that children who have used such materials extensively tended to perform better
on spatial ability tests than children from schools where such materials were hardly
used. A recent issue concerning spatial ability relates to the widespread belief in
mathematics learning that drawing a diagram assists thinking (c.f. Polya in Chapter
5). Perhaps such a tactic only assists those who possess a high enough level of spatial
ability. Perhaps a diagram is a hindrance to those with limited spatial ability.
A variety of issues concerned with spatial ability is discussed in Bishop (1980); this
paper also includes a comprehensive review of the literature.

The possibility that there might be a spectrum rather than a dichotomy of abilities
was raised in connection with field-dependence/independence. It is also possible,
perhaps even likely, that all human abilities are similar. If there is a spectrum for every
facet of ability and each one of us possesses a unique combination of levels of ability
it should be no surprise that the study of abilities, such as mathematical and spatial, is
so complex. There is certainly no evidence of one kind of mathematical ability which
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is the same for all mathematicians. Nor does research confirm that spatial ability is the
most vital component of mathematical ability.

Additional insight into spatial ability has been obtained through medical research
into the functions of different parts of the brain. In very simple terms, the brain
consists of a left hemisphere, a right hemisphere and a region linking the two
hemispheres, and the two hemispheres perform distinctly different functions. A great
deal is now known about the functions of various regions of the brain in terms of
motor and intellectual skills (see Springer and Deutsch, 1981, and Winston, 2003).
The left hemisphere controls language and speech and excels in performing sequential
tasks, logical reasoning and analysis. The right hemisphere processes stimuli as a
whole structure (cf. Gestalt psychology in Chapter 5) and processes images rather
than words. A complex shape is seen as a whole by the right hemisphere whilst the left
hemisphere analyses the parts separately. This brief outline is an over-simplification
for, as might be expected, we are not all exactly the same. In broad general terms,
however, it is true to say that the right hemisphere generally controls spatial ability.
There has been the suggestion that school education tends to concentrate on develop-
ing those abilities controlled by the left hemisphere, whilst the right hemisphere is
comparatively neglected. At the moment, we do not appear to know how to act on the
knowledge we have about the link between abilities and the hemispheres of the brain
in terms of providing appropriate learning experiences.

Gender-related differences

Changes in the comparative attainments of boys and girls in Britain in recent years
have been profound, and many preconceived notions have had to be reconsidered.
Girls are currently outperforming boys in many secondary school examinations at
age sixteen, and where there have been major differences in attainment in the past,
such as in mathematics and physical science, these are now virtually non-existent.
Differences in attainment in mathematics, as measured by public examination scores,
have been well documented throughout the recent past, both for Britain and for many
other countries. In Britain, little difference has been reported at the primary school
level over the years, though the Assessment of Performance Unit (1982a) recorded
that what differences there were at age eleven appeared to foreshadow the main areas
of mathematics where the differences are larger some five years later. Leder (1985)
also found few consistent sex-related differences at the primary school level. Thus,
what has happened is that the absence of a clear 'global' difference up to age
eleven now extends at least to age sixteen. It might still be the case, however, that
many more boys than girls choose mathematics as one of their specialist sixth form
subjects, and comparatively few females have, up to now, taken up employment
directly related to mathematics or dependent on high qualifications in mathematics.
In Russia, and some other countries, it has been claimed fairly consistently over
the years that there are no significant differences in overall mathematical attain-
ment between boys and girls (see, for example, Krutetskii, 1976), though some might
say that is no surprise. Suydam and Weaver (1977) reported that, in the USA, sex
differences do not appear to exist in the ability to solve arithmetic word problems.
None of this proves there are no differences in the detail, it merely suggests overall
comparability.
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In the years leading up to the end of the twentieth century, it was considered very
important in Britain that the issue of the 'under-performance' of girls in mathematics
was addressed. Reasons for observed differences in attainment were investigated
from a variety of different standpoints including biological, psychological and socio-
logical. The best documented conclusions emerged in relation to attitudes and the
expectations of society. It was claimed that, in a variety of ways, girls were consistently
being discriminated against in terms of mathematical education. This is clearly a
serious issue whatever the relative performance levels of boys and girls, particularly
since qualified mathematicians are permanently in short supply, and it was considered
important enough to warrant a separate Appendix in the Cockcroft Report (Shuard,
1982a).

Whether there are measurable differences or not, the influences of society and from
the environment which might result in differential performances between boys and
girls still need to be clearly identified. There are countries in the world where boys
still outperform girls in mathematics, and in Britain there is even a growing concern
that girls might soon outperform boys, just as they do already in other school subjects.
One major concern has involved differences in parental expectations and desires which
may even have led to different pressures being exerted within the home. It may be that
such pressures are not so prevalent in Britain nowadays, or that girls are able to ignore
them. The usefulness and value of mathematics has always generally been considered
to be in other school subjects also regarded as boys' subjects and in careers which have
been viewed by society as male occupations. Russell (1983) has drawn attention to the
fact that pressures might work equally unfairly against both sexes in that girls may
not be encouraged to opt for mathematical studies whereas boys most certainly are,
even when their ability and interest in the subject is, at best, indifferent. There is
evidence that boys often opt for mathematics in the sixth form because it is expected
of them and not because they enjoy the subject. Society appears to have conveyed the
message that mathematics is a male subject and that certain other subjects are female
subjects, but this may no longer be the case. Peer group pressures have in the past also
added to the difficulties faced by girls when choosing subjects in a mixed school, but
either these pressures are no longer so strong or they are being ignored. The current
peer group pressures on British boys, under which it is not acceptable to study hard
and education is not to be regarded seriously, are seemingly massive, and are now of
much greater concern. Russell also drew attention to the ways boys and girls regarded
themselves in relation to mathematical ability. Girls tended to underestimate their
potential whereas boys tended to overestimate; boys displayed confidence about
their ability in mathematics which was sometimes not justifiable whilst girls, perhaps
with better test results, displayed unjustifiable anxiety. Such traits may still be
prevalent in Britain, but if they are they are not as damaging to academic progress as it
seems they might have been in the past.

There have also been many changes to the learning environment throughout recent
years. If it is still the case that more mathematics teachers are male than female,
the balance has certainly changed. In teacher training departments there are some-
times more intending female mathematics teachers than male, particularly when the
economy is booming and there are plenty of other career opportunities. Textbooks
have changed too, and now there is a deliberate policy not to insinuate a male image
into mathematics. Mathematics textbooks have in the past generally been written by
men, so mathematical activities have tended to be set within contexts which were
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of much greater interest to males than to females, but there is a deliberate attempt to
avoid bias now. Internal school organization has not always in the past allowed girls to
combine the study of mathematics with their other choices, and in girls' schools
pupils have sometimes been guided away from mathematics because of timetabling
difficulties. Hopefully, that too has changed. Teachers have been shown to interact in
the classroom much more with boys than with girls, have paid more attention to
boys, have given more positive encouragement to boys, have allowed boys to gain their
attention simply because they clamoured more than the girls. This is now well known,
and needs to be addressed consistently. Some research has suggested that girls achieve
more in mathematics in a single-sex school than they do in a mixed school. Boys, on
the other hand, tend to perform better in a mixed school than in a single-sex school!
Such is the range and variety of influences which might result in differences in
performance in mathematics that it is easy to appreciate the summary by Leder (1985,
p. 305): 'Sex differences possibly due to biological constraints are dwarfed by the
far greater pressures imposed by social and cultural stereotypes about cognitive skills
and occupations'. A more recent suggestion has been that girls have appreciated
the change in examination styles, now that measures of attainment are no longer based
entirely on a single timed written paper. Interestingly, if this has affected comparative
performances, it would indicate that this is a difference between boys and girls — if
only in their appreciation of different kinds of examinations. The literature has, how-
ever, also hinted at non-sociological factors, and publications over the years have
attempted to clarify these.

In a discussion of differences in intelligence and special abilities between males and
females Hutt (1972) clearly accepted that there were factors which originated from the
biological and psychological domains. The main differences raised were as follows.
First, scores obtained from applying general ability (intelligence) tests consistently
produced different distributions for males and females. The scores for males tended
to spread more widely whilst the scores for females were more clustered around the
mean. The difference was not a large one, but there was a tendency for males to
predominate in both extremes, the most able and the least able. Many other authors
have referred to this phenomenon. Secondly, males were said to excel in spatial
ability whilst females excelled in verbal ability. Thirdly, females were clearly superior
in both manual dexterity and in rote learning ability whereas tests of divergent
thinking tended to produce higher scores for males. In all cases the differences
between the sexes were small. In such matters, differences between the extreme per-
formances for either sex are always likely to be huge in comparison with any difference
between the sexes.

An interesting feature of the measured differences in performance is that it is only
in certain mathematical topics that boys have generally scored rather higher than
girls, and vice versa. The Assessment of Performance Unit (1982b) recorded that the
greatest differences were in the topics of mensuration, rate and ratio, descriptive
geometry and unit measures. Wood (1977) observed similar differences. Drawing
from the examination scripts of boys and girls educated in the same schools he dis-
covered that the superiority of boys was most marked in items of two types, one
concerned with ratio (scaling, moving between different orders of magnitude, moving
between different units of measurement). Wood drew a parallel with the common
core of difficulty discovered by Rees (1974) and claimed that the underlying difficulty
was a 'comparison factor', which was basically the scaling up and down that is so
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important in coming to an understanding of metric proportionality. It was no surprise
to him that fractions were found to be more difficult for girls than for boys. This is a
difficult topic area for both sexes but Wood asked whether this was a major source of
the difference between the sexes? Perhaps, he suggested, a concentration of effort on
fractions, proportion and, more generally, comparison factors is what is required to
compensate for the difference between girls and boys.

The other topic area observed by Wood as resulting in gender differences was
geometry, also noted by the Assessment of Performance Unit (1982b). This alleged
difference in spatial ability has been mentioned earlier, and was referred to by Wood in
his claim that girls' weakness at spatial visualization and solid geometry problems was
well documented. He further claimed that it was generally known that genetic causes
are suspected. Spatial ability, as we have seen, is not required in all of mathematics,
only in certain aspects, and many famous mathematicians have not felt themselves
to be at all capable in geometry. However, if we accept that spatial ability is com-
paratively weaker in girls than in boys, this is a major handicap to a study of some
parts of mathematics. The greatest gender difference in mathematical performance
found by Wood was in answering a question which he described as an almost pure
measure of ability to visualize in three dimensions. Fennema and Tartre (1985), in
reporting on a longitudinal study, confirmed that there was a difference between
girls and boys in respect of spatial visualization skills, but it was small. They did
agree that low spatial visualization skill may be more debilitating to girls' math-
ematical problem-solving than to that of boys. It might also be debilitating in
respect of attitude to mathematics. At the moment, whatever the changes in overall
performance, there is still a view within the teaching profession that boys have
something of a better spatial ability than girls, and that girls have a very much better
verbal ability.

Suggestions from test results and classroom observation of comparatively poorer
spatial ability in girls, and comparatively better verbal ability, have led to con-
siderations of brain differences. We have already seen that the range of scores obtained
from general ability tests is greater for boys than for girls, but there are other obvious
differences too, for example, more boys than girls are colour-blind, and more boys than
girls are autistic. Winston (2003) has now confirmed that such differences and many
more are likely to stem from the fact that there are differences between the brains of
males and females, and that from puberty the two hemispheres develop differently in
girls and boys. Thus, the fact that girls have superior verbal abilities and boys have
superior spatial and systemizing abilities he now claims is a direct outcome of brain
differences. Boys prefer construction, rule-based and classification activities whereas
girls prefer interaction with other people. In adult life, Winston claims, this shows up
as a male preference for mathematics, science, engineering and construction — in other
words an interest in how things work. Other genetically-based theories have also been
proposed to explain the observable differences between girls and boys in terms of
mathematical attainment, for example, the female x-chromosome leading directly
to more skilled social interaction. It all adds to previous suggestions that boys and
girls often reveal slightly different mathematical strengths and weaknesses. Overall
mathematical performances, however, are comparable now in Britain, which may
satisfy many people, but it is not the most important consideration. What is vital is
whether we are managing to get the best out of both boys and girls, irrespective of
whether there are differences or not.
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Preferences and attitudes

Hudson (1966) drew attention to the possibility that a liking for mathematics
stemmed from preferred styles of study. Mathematics does not involve the learner in
revealing emotions or opinions and hardly involves, of absolute necessity, any inter-
action with others. Private positive emotional reaction to the beauty or elegance
of mathematical ideas and results is not ruled out, of course. But the fact that 'maths
is just a matter of facts being hammered into you . . . it's not a subject you can
humanize' (Russell, 1983, p. 81, quoting a sixth form student) is also a commonly
held attitude. Russell also showed that pupils often perceive the mathematics class-
room as being a place for competition, which is attractive to some and not to others; it
can act as an incentive, particularly for successful pupils; for less successful pupils a
negative attitude to mathematics can develop. The security of the traditional method
of teaching mathematics via exposition and practice is attractive to some, and the
fact that responses or solutions are categorically either right or wrong is very much
appreciated by some pupils. Other pupils thrive on discussion, or wish to express their
personality, and do not find that mathematics allows this. Preferences are part of
the spectrum of individual differences and might exert a great impact on eventual
achievement.

In terms of the totality of educational research, comparatively little work has been
carried out in the domain of preferences and attitudes in learning mathematics.
The Assessment of Performance Unit (1982a) found that the relationship between
attitude and performance in mathematics at age eleven was surprisingly weak. Boys
demonstrated greater confidence in their own mathematical ability than did girls,
and this was also reflected at age fifteen (Assessment of Performance Unit, 1982b).
Mathematics was believed to be important by a majority of fifteen-year-old pupils and
there was correlation between ratings of usefulness and interest.

Major studies of cognitive preference include those concerned with the field-
dependence/independence issue. Bruner et al. (1956) have suggested other preferences
in problem-solving methods, between 'focusers' and 'scanners'. Thus, in looking for
a relationship between items the 'focusers' would extract as much information as
possible from the first item and then use the information as a basis for comparison
and amendment in focusing on the other items in turn. 'Scanners', on the other
hand, would select only one property and then scan all items, and would proceed by
scanning all items for other properties. Under pressure of time, focusing was found to
be the more effective method.

It is important to realize that a decision to study mathematics does not imply a
positive liking for the subject. Russell (1983) found many sixth form boys studying
mathematics who did not like the subject. They had opted for mathematics because
they considered it useful, or perhaps it went with their other subjects. Girls, on the
whole, did not perceive mathematics to be all that useful, and there was evidence
that it was largely those girls who derived genuine enjoyment from it who pursued
it into the sixth form. Mathematics was considered to be a high status subject,
particularly by boys, but this does not of itself imply liking. The attitude of many
girls to mathematics appeared to deteriorate steadily through the years of secondary
schooling, alongside the growth of self-consciousness about errors and difficulties.
There was some evidence from Russell's research that a good relationship with the
teacher was more important for girls than it was for boys.
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Mathematics teachers take for granted the acceptability of question and answer
situations ('the recitation' in the USA). There is never any deliberate intention to
expose weaknesses and inadequacies to peers but that is precisely what can happen,
and there is evidence that pupils can find the situation embarrassing and unacceptable.
Holt (1964) has provided anecdotal evidence of the strategies pupils use to cope with
question and answer in class, and has also referred to cultures where such a situation —
that is one in which individuals might be laid open to ridicule - would be completely
unacceptable. Clearly, pupils who feel that they are being embarrassed in this way
will develop a negative attitude to mathematics. They might become extremely
anxious and hence, in Scheerer's sense of over-motivation (see Chapter 5), be unable to
produce their best work. The whole subject of anxiety about mathematics has been
comprehensively discussed by Buxton (1981).

Suggestions for further reading

Buxton, L. (1981) Do You Panic About Maths? London: Heinemann.
Hadamard, J. (1945) The Psychology of Invention in the Mathematical Field. Princeton, NJ:

Princeton University Press.
Hudson, L. (1966) Contrary Imaginations. Harmondsworth: Penguin Books.
Krutetskii, V. A. (1976) The Psychology of Mathematical Abilities in Schoolchildren. Chicago:

The University of Chicago Press.
Springer, S. P. and Deutsch, G. (1981) Left Brain, Right Brain. San Francisco, CA: Freeman.

Questions for discussion

1. What should mathematics teachers be doing to provide opportunities for divergent
thinking?

2. How should we provide for the very able pupil in mathematics lessons?
3. How should we ensure that neither girls nor boys are disadvantaged in mathematics

lessons?
4. How should mathematics be taught so as to foster a positive attitude and prevent anxiety?



Chapter 9

Does Language Interfere with
Learning Mathematics?

Issues of language

The fortnightly mental arithmetic test for a primary school class regularly included a
question of the type:

What is the difference between
47 and 23?

One child thought the question rather odd, but nevertheless answered it, as follows:

One of the numbers is bigger than
the other.

When the test papers were returned the answer was marked wrong. Such was the fear
which the teacher generated in the pupils that there was no question of going to ask
him why it was wrong. Better to try again next time and see what happened. Along
came the next test, so our pupil tried a different answer:

One number is about twice
the other.

This also came back marked wrong. Next time, with growing desperation and anx-
iety, our pupil tried again:

One number contains a 4 and a 7 but the
other number doesn't.

This saga continued over many tests until the child found out from a friend what was
the expected answer.
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The story is in essence a true one, for the author was that child. Fear of the teacher
and a misunderstanding of the language combined to create an unhappy and
unfortunate situation. It illustrates a problem with language, which pupils experience
in learning any subject. Problems of language are obviously not unique to children of
any particular country; the following example appeared as a snippet in the May 1964
Arithmetic Teacher.

A ... kindergarten teacher drew a triangle, a square and a rectangle on the
blackboard and explained each to her pupils. One little girl went home, drew
the symbols and told her parents: 'This is a triangle . . . this is a square and this is
a crashed angle'.

Such stories may be amusing to adults but they are often not the slightest bit funny for
the pupil concerned. Obstacles can be placed in the path of children which have little
to do with mathematics but which are created because of problems of language.

There are many aspects of the issue of language and mathematics which might affect
learning (see, for example, Austin and Howson, 1979). Anecdotes about children
experiencing difficulties because they do not understand the words are not hard to find,
but they do introduce the importance of mathematical vocabulary. Even if the vocabu-
lary is appropriate there might be problems because children do not always interpret
statements literally, but sometimes appear to change the meaning into what they think
the teacher intended to say. The special symbols of mathematics, as an extension to the
language of the mathematics classroom, cause additional problems. Reading math-
ematics is different from reading literature, or even from reading texts in other subjects.
Learning mathematics in a second language can present difficulties which first
language learners do not experience. The place of talk in the classroom and the use of
discussion between teacher and pupil, and between pupil and pupil, demands careful
thought. The relationship between mathematics learning and language development
is clearly crucial. The extent to which the acquisition or formation of concepts in the
mind of the learner depends on the use of appropriate language is an important issue.

Barnes (1976) has argued that teachers are often aware of problems of form but are
less likely to show concern about problems of use. It is not the particular terms used
which are critical, it is whether the underlying concepts and processes are being
communicated, whether meaning is being conveyed. In short, there is a danger of
reducing to lists of difficult words and readability measures what is a more complex
interplay. It is access to one another's meanings that matters in teaching. Skemp
(1982) used the terms 'deep structures' and 'surface structures' to draw attention to
the two levels, namely, the ideas of mathematics which we wish to communicate and
the language and symbol systems which represent the ideas and which we use to
transmit the meaning. It is important to be aware of potential problems of both form
and use; we must know that problems might arise at the surface level of transmission
and at the deeper level of meaning.

The mathematics register

The following end-of-chapter summary was found in a textbook, though new names
have been invented for the technical terms:
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Summary:

A danding is a kambon if each trotick
of the squidgment has only one ploud,
for example the danding which dands
each number onto its smallest lume
tombage is a kambon.

To a child who did not grasp the terminology during the lessons in which the words
were introduced, or perhaps revised, the summary does not help. To a child who
missed the lessons through illness the summary is meaningless. The vocabulary of
mathematics (the mathematics register) is more extensive than many teachers realize.
Bell (1970) listed a basic vocabulary of some 365 words, in common use both within
and without mathematics, which even our slowest learners need to comprehend just in
dealing with the elementary topics of quantity, measurement, time, money, position
and natural number. Beyond that basic vocabulary, most children might be expected to
learn the meaning of one hundred or more new words in each year. This mathematical
vocabulary ranges from simple words like 'find' and 'sort' to more specialized words
like 'bilateral' and 'quadratic'.

Although there are serious problems in terms of the extent of the vocabulary of
mathematics, there are additional problems when particular words carry a math-
ematical meaning which is different from the usual everyday meaning. One of the
words in the summary above is a replacement for the word 'relation'. A mathematical
relation is strictly a set of ordered pairs, but the ordinary use of the same word
suggests a member of the extended family, and appears to bear no resemblance to the
mathematical idea. It is possible to use the ordinary meaning of 'relation' to introduce
the mathematical idea but, given what we are aiming at, is that a help or a hindrance?
As we have seen, the word 'difference' has a mathematical usage which is very specific
and which needs to be made clear to pupils. There are, of course, many words which
are wholly specific to mathematics and about which there should be no confusion
with an everyday meaning, for example, 'numerator', 'isosceles' and 'hypotenuse', but
there must also be many other words which were in use in everyday speech before
mathematicians adopted them and assigned special meanings, for example, 'field',
'group' and 'root'. Examples of confusion between everyday meaning and math-
ematical meaning must be numerous. Stories of children who think that Volume' is
merely a control on the television or radio set (set!) or who think 'axes' are only for
chopping with, or who believe that a 'revolution' is what happens when a government
is violently overthrown are too frequent for us not to pay attention to the problem.

Some words are particularly difficult for children. It is very questionable whether
more than just a small minority of our pupils ever distinguish the mathematical
meaning of 'similar' from its everyday meaning. The particular problem here is that
the two meanings are not far apart, the distinction is quite a subtle one. Another
interesting example is 'segment', which sometimes appears to be used in everyday
speech when a better word would seem to be 'sector'. Some words are used with a
different specialized meaning in other subjects, like 'chord'. Even the word 'circle'
has two meanings, and only in mechanics are these two clearly distinguished as 'ring'
and 'disc'. A few words might be very difficult for children to accept, like Vulgar' and
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'improper', and yet others are odd, like 'odd' and 'real'. Clearly, it is very important,
when a word like 'root' is introduced in a mathematics lesson, that the pupils are given
the opportunity to come to terms with the particular mathematical meaning. Many
words in a language have a number of different meanings, for example, 'product', and
that might be a problem for younger children. Older children may have realized this,
but will still need time to get accustomed to any new usage. A salutary exercise for a
teacher is to write down all of the many technical words used with a class through-
out one year, and then classify them into categories: those which are uniquely math-
ematical, those which are not unique and subtly different in meaning, those which are
very different in meaning, and those which are odd or objectionable. Clearly, testing
pupils, perhaps simply orally, will reveal at least some points of difficulty and will
allow remediation. Otterburn and Nicholson (1976) and others have provided us with
a clear indication of the kinds of difficulties which the technical terms of mathematics
can present. One special difficulty for younger children revolves around the erratic
structure of English number names, in which numbers between ten and twenty do not
follow the pattern of other number names.

Apart from technical terms which represent mathematical concepts, some of the
more general instructions are not understood as well as might be imagined. Children
have been known to think that 'evaluate' means 'change the value of, and, even that
'tabulate' means 'take the tablets'. Frequently, the word 'simplify' does not really
mean 'make simpler', it means 'carry out the mathematical process which has been
demonstrated'. An unusual problem of language is one that we create ourselves when
we make a careful definition and then misuse the word. The most obvious example of
this is when we describe axes on a Cartesian graph as 'horizontal' and 'vertical'. It
cannot help the many children who are still struggling to understand what we mean
by 'vertical' when we carelessly use the word to refer to one of the horizontal lines on
the graph paper on their desk. The word 'histogram' has a very precise meaning in
mathematics, which distinguishes it from a 'bar chart', yet there are data collection
situations in mathematics in which the boundary between the two ideas appears to
be hazy and ill-defined (see Chapter 2), and this has perhaps led to misuse of the
language. Another word which can create problems is 'chord'. There was a time when
the word 'secant' was used to describe the line which was obtained when a chord was
produced in both directions, but now we often attempt to use the word 'chord' for this
extended line as well. We therefore have no idea what meaning is being registered
in the mind of the student when we use the word 'chord', and this can be critical when
it comes to introducing differentiation (Orton, 1983). It is interesting that even the
word 'produced' can cause problems, and many pupils cannot understand why we do
not use 'extended'.

It might be that problems of vocabulary are relatively superficial within the whole
range of issues of language and learning mathematics, but it is nevertheless critical
that such problems are not ignored in the hope that they will go away. In order to
facilitate the learning of mathematical ideas it is important that children are given
help with the language which they are going to be expected to use in discussing
and generally processing those ideas. It is clearly necessary, when a new idea and its
surface representation are introduced, that any new words and symbols are spoken,
discussed and written down. Words like 'octagon' and 'quadrilateral' may become
more meaningful when set alongside words with the same beginning (octopus, octave,
octogenarian, octet, October) or ending (pentagon, hexagon, decagon). There are also
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specific vocabulary activities which are well known to children through work in other
subjects and through puzzle books. A simple word search based on the mathematical
topic just completed can help with consolidating words and their spellings. An
elementary crossword can be used to attach the word to its meaning or to the way
it might occur in mathematical text. Unscrambling words (for example, UARQES),
matching a list of words with a list of meanings or a set of pictures, and a mixture of
unscrambling and matching, all have some value. Selecting the best description for a
word from a number of alternatives is another possibility. Using lesson time for such
activities might be considered a nuisance until one realizes that coping with the
vocabulary is vital to learning.

Reading mathematics

Any mathematical textual material which is intended to be read by pupils must be
readable. It is not easy to specify what we might mean by readability in completely
explicit terms, but there is no doubt about what is intended; we want pupils to be
able to learn without the language itself getting in the way. Thus, the lengths of
words, the lengths of sentences, the particular words used and whether they form part
of the vocabulary of the pupils may all be important. The readability of text has
become of major concern in education in recent years, and a variety of different
techniques have been proposed to enable teachers to carry out checks as to whether
particular text is appropriate. The difficulty of defining readability seems to have been
reflected in these proposals, however, because most of the techniques only incorporate
a selection of the possible facets of readability. Thus the Dale-Chall formula is based
only on the percentage of words not included in a set list of common words and the
average number of words in a sentence. The FOG formula is based only on the average
number of words in a sentence and the percentage of words with three or more
syllables. The Flesch formula is based on the average number of syllables per 100
words and the average number of words per sentence. The Fry procedure is based on
the number of syllables and the number of sentences in a one-hundred-word passage.
And the 'cloze' procedure is based on the ability of the reader to fill in missing words
in text. Such methods were clearly not developed with mathematical text in mind,
nor are they necessarily applicable outside a particular country. Thus, for example, a
formula devised for use in the USA would not necessarily be as applicable in Britain.
The various readability formulas have been reviewed in more detail in Shuard (1982b)
and in Shuard and Rothery (1984).

The readability formulas (formulae?) outlined above, and others not mentioned,
are generally not applicable to mathematics because mathematical text is peculiar in
comparison with text in other subject areas. One example of peculiarity is that the text
does not necessarily flow left to right, line after line. It is sometimes necessary to move
in unusual directions and even to move about the page in order to refer to tables,
graphs or diagrams. The text is also likely to contain certain non-alphabetic symbols,
which may or may not be numbers. This complexity of mathematical texts led Kane
etal. (1974) to devise a readability formula for use specifically with mathematical text.
Unfortunately, not only is the formula extremely complex to apply, it might not give
appropriate results outside the USA. In general, apart from drawing the attention of
mathematics teachers to the important issue of readability, specific formulas have not
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proved to be of much practical value. It is essential that teachers of mathematics
should assess the appropriateness of text for their pupils, but the general recommenda-
tion at the moment is that this should be achieved by means of'informed judgements'.
Clearly, it is important to have the knowledge and insight on which to base such
judgements.

It is possible to read a story or novel in a fairly superficial way, and yet still derive
meaning, message and moral. It is even possible to use rapid reading techniques,
perhaps skipping sentences or descriptive paragraphs which are not crucial. Non-
fiction such as mathematics cannot generally be read in a superficial way without
losing detail that might be essential. Mathematical text generally cannot be read
quickly, for every word could be crucial and every symbol essential in the extraction of
meaning. In order to ensure that attention is focused on all parts of the text, inter-
action might help. This issue arose in Chapter 3 in a consideration of programmed
learning. Stimulus-response-based interactive texts are not currently popular for
reasons which have nothing to do with the acknowledged importance of interaction.
And many children learn mathematics today through the use of workcards which
clearly necessitate interaction and which contain some explanatory text. An entire
workcard scheme can be considered as a large-scale interactive text, similar in many
ways to a programmed learning scheme. But however the material is presented,
whether textbook or workcard, some parts will demand interaction.

Shuard and Rothery (1984) classified the main components of mathematical text as
teaching, exercises, revision and testing. Revision and testing, however, could be
considered as teaching and exercises but presented in a different, perhaps abbreviated,
format, and included for a different purpose. For many pupils, and in the interests of
readability, it is advisable that teaching sections are short, and that exercises and text
are interwoven in order to achieve interaction. However, even if pupils interact, there
is no guarantee that they will interact in the way intended. So how are pupils to be
informed whether they reacted correctly or not? How do we ensure that pupils do not
skip sections and resume reading at the next point where answers are provided? Many
of the problems associated with interactive text are the same as some which were
discussed under programmed learning (Chapter 3). The interactive task (Fibonacci
Fractions) in Chapter 5 also illustrates many of the difficulties. It is not easy to provide
an interactive, readable text which will be followed through rigorously by students,
and which will guarantee learning.

Other features of mathematics not usually found in non-mathematical text are
graphs, tables and diagrams. These offer the advantage of breaking up the text.
However, it is essential that they are situated appropriately in relation to references to
them within the text. It is also essential that pupils are compelled to interact with
them and are assisted in extracting information from them. Worked examples are
commonly found within mathematical text, and these can form an important reference
for pupils when working alone, so they should not be ignored. Interaction may also be
achieved through practical activities directed from within the text, and then it is
helpful if the results of the activity are referred to in the subsequent development of
ideas in the text. Before interaction of any kind can be achieved, however, the pupils
must find the text sufficiently attractive. Variety in colour, type style, spacing and
general layout all have a part to play. Pictures are valuable, in commanding attention,
though it must be remembered that many adolescents are easily offended if they feel
the attempts to brighten up the material are juvenile.
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The correct and most appropriate forms and level of interaction are important
in ensuring readability but so too is whether the meaning flows easily. Shuard and
Rothery (1984) have discussed this issue and also the three types of meaning unit
included within mathematical text. First, there are explicit statements, for example:
'The numbers in this sequence may be used to form Fibonacci fractions'. Secondly,
there are statements or questions which demand activity from the pupil. This inter-
action ultimately provides information which is intended to be explicit, for example:
'Write down the next ten fractions'. Thirdly, there are gaps in meaning which the
pupils must fill, either by inference from the text or by bringing knowledge from
completely outside the text. An example of this from a primary school textbook is
given here.

To add fractions,
the denominators
must be the same:

l + l

3 + 2
-2 + l
" 6 6
_ 5
~ 6
Add these fractions:

1. | + f etc.

Clearly, in this example, there is more to deciding on this 'same denominator' than
writing a number at random. The pupils must either infer that the required denomin-
ator is the product of the two given denominators or must bring knowledge about
lowest common denominators or equivalent fractions from outside. Even then there is
more for the pupils to fill in, for no mention has been made of numerators. In many
cases, gaps have been 'filled' earlier in the course, but not always.

Shuard and Rothery (1984) proposed the use of a diagrammatic analysis of flow-of-
meaning, using three different symbols for the three kinds of unit. The value of such
an analysis to the teacher was summed up in:

Pupils are not likely to notice many of the subtle points which the flow-of-
meaning diagram brings out, but they may experience a feeling of general
inability to follow the argument of the passage . . . Thus, a flow-of-meaning
analysis may be useful in trying to understand the difficulties which pupils find
in a particular passage, or in preparing a discussion lesson as an introduction to
the work. (p. 74)

Unfortunately, the preparation of a flow-of-meaning diagram for even a short section
of text may take considerable time.

In order to make an informed judgement about suitability for particular pupils it
therefore appears that there are many facets of a text to take into account. At the most
superficial level there is the general attractiveness and appeal of the text. Appropriate
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summaries can also be helpful in fostering retention. Then there is the relationship
between text to be read and sections to provide active involvement. A more detailed
scrutiny then needs to take in vocabulary, length of words, and length and structure of
sentences. Particular features of mathematical text like tables, graphs, diagrams and
special symbols need to be inspected. The flow-of-meaning requires detailed analysis if
it is to provide useful information. Finally, the exercises themselves need to be con-
sidered, for they too must flow, from the relatively elementary to the more difficult;
they must be correctly sequenced and appropriately paced. The issue of readability of
examination questions has also been addressed by Mobley (1987).

Mathematical symbols

The symbol '4' and the word 'four' convey the same idea, but the form differs. In
reading mathematical text it is necessary to be able to read all forms, including
those special mathematical symbols which are incorporated within the text. There
are, however, peculiar difficulties with mathematical symbol structures. To the
experienced student, the expression (3 + 2) X 4 conveys a clear message but at the
same time the parentheses make it awkward to dictate the expression to someone else.
Some arrangements of symbols are not left to right, for example j. Sometimes it is
necessary to read a collection of mathematical symbols before a clear message can be
obtained, for example ]\ x2 dx. Sometimes different structures of symbols are intended
to convey the same meaning, for example 3 -r 4 and 4 |"~3, and at other times the same
surface structure implies different meanings, for example 34 and 3.x.

Many problems occur for children in coming to terms with mathematical symbols
and their corresponding words. In 5 + 3 = 8, for example, it is common for the '+' to
be read by young children as 'add'. Yet the instruction 'add 5 and 3' would hardly be
written as '+ 5 and 3'. The symbolic representations '+' and 'add' are not exactly
interchangeable. In the same example '=' might be read as 'makes' at first, but then
eventually as 'equals'. Yet 'makes' would not be considered an acceptable replacement
for '=' in

d2y dy
-^ + 3 — = 7
dx2 dx

The same '=' symbol might be read as 'leaves' in 5 - 3 = 2. The instruction 'take 3
from 5', and even the more advanced equivalent 'subtract 3 from 5', requires reversal
of order in conversion to 5 — 3. The symbol 'X' in 3 X 5 is read as 'times' by many
pupils and implies 3 lots of 5, but the secondary school teacher wants 'multiplied by'
which conveys the idea of 5 lots of 3. The symbol ' - f ' is read by many pupils as 'shared
by', despite the fact that 6 ^ 3 can represent the sharing of 6 items between 3 receivers
and can also represent the number of groups of 3 items which can be obtained from 6.

Division also presents another problem in that 6 -=- 3, 6/3, f, 3 [~6 and 3 [_6 are all
found in mathematics texts as different ways of defining the same task. These five
alternatives, it will be noticed, contain the two numbers, 6 and 3, in two different
orders. The order does not matter when recording addition and multiplication because
of commutativity, but it does matter in subtraction and division. We perhaps should
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not be surprised that 8|~4 frequently leads to the response, '2', as confused children
often take the easy way out and divide the larger number by the smaller.

Discrimination between very similar symbols is vital in mathematics. The early
symbols '+' and 'X' are very similar, as are '—' and '-=-'. In the secondary school the very

cause many problems. Skemp (1982) refers to the
symbols of mathematics as surface structures, but it is the deep structures which they
represent which are important - for example the symbols 23, 2^ and 2a all have the
same surface structure. Some pupils eventually have to be able to discriminate
between a wide range of symbols with similar surface structures, for example 5C2,

Most individual mathematical symbols have separate
meanings, but a few do not. The fact that Sx is a single unit and not a product like 3x
causes problems. In fact, in terms of elementary calculus, the situation is much worse

8y dy
(Orton, 1983), for — is a quotient, Oy divided by ox, but — is not quotient and needs

Ox dx
to be regarded as a single entity. Once we have convinced students of this we can then

dy
feel free to start using — as if it was a quotient. A discussion of the symbols of

dx
mathematics is also included in Shuard and Rothery (1984).

From the point of view of understanding symbols in mathematics, Skemp (1982)
made a number of suggestions. He assumed that the critical problem was lack of
understanding of the deep structures, thus the suggestions have similarities with those
intended to encourage concept formation. First, the symbolism should only be intro-
duced as the final stage of a learning sequence which is developed from physical or
concrete embodiments of the concepts. Place value provides a good example of this,
and many teachers have always provided a variety of forms of equipment from straws
and bundles of straws to the more sophisticated Dienes Multi-base Arithmetic Blocks
(see Chapter 10). Secondly, the mathematical ideas should be sequenced and presented
so that assimilation to existing conceptual knowledge is eased, and should not be
presented as a discrete unit of mathematics which bears no relationship to work which
has gone before. Thirdly, spoken language needs to be used for an extended period of
time, and pressure to convert quickly to abbreviated symbolism should be resisted.
Finally, transitional notations could be used to form a bridge to the condensed
symbolism, for example, children might be happy using 'area = length X breadth'
when they are not yet ready to accept A = Ib. The introduction of mathematical
symbols too soon, without an adequate understanding of the deep structures, can be a
major cause of alienation.

Communicating meaning

Conveying meaning to pupils is the objective of teaching. This will not necessarily be
achieved even when vocabulary is appropriate, symbols are understood and text is
readable, for a whole variety of reasons including the fact that pupils will sometimes
place their own interpretation on what we say. When we ask our own children at home
to put the knives and forks on the table we do not expect to find that every single knife
and fork in the house has been set out. We expect the children to know what we mean.
The communication of meaning frequently involves interpretation on the part of the

and

different meanings of and
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receiver, and this should warn us that messages could frequently be given incorrect
interpretations by pupils. Donaldson (1978), who introduced the 'knives and forks'
illustration, suggested:

When a child interprets what we say to him his interpretation is influenced by at
least three things . . . his knowledge of the language, his assessment of what we
intend (as indicated by our non-linguistic behaviour), and the manner in which
he would represent the physical situation to himself if we were not there at all.

(p. 69)

The nature of young children's responses persuaded Piaget that the unexpected
utterances were a consequence of stage of development (see Chapter 4). Donaldson
and others have conducted experiments which, they have claimed, suggest that the
difficulty is, in part at least, a problem of the interpretation of language. In one
particular experiment four toy garages and a number of toy cars were used, and a
toy panda then made judgements on the truth or falsity of certain statements.
The children had to inform the panda whether the judgement was correct or not. The
statements were: (1) all the cars are in the garages, (2) all the garages have cars in
them. The numbers of cars present was: (a) 3 in the first experiment, (b) 5 in the
second experiment. The expected responses were therefore: (al) true, (a2) false, (bl)
false, and (b2) true, but these expected answers were not provided by all the children.
The conclusion drawn was that, irrespective of the actual words used, the children
were concentrating on whether all the garages were full. There was also the suggestion
from some responses that children were interpreting 'all the cars' to mean 'all the cars
which ought to be there'.

(a) (b)
Figure 9.1

One of Piaget's conservation tasks involved two sticks arranged first in exact align-
ment (Figure 9.1 (a)) and then secondly with the alignment destroyed but the sticks
still parallel (Figure 9-l(b)). The fact that many younger children, answering the
question, 'Are the sticks the same length?', said 'Yes' for (a) and 'No' for (b) was taken
by Piaget to imply that such children did not accept conservation. If, however,
these children were interpreting the situation as one in which the experimenter very
deliberately draws attention to a change, and if they did not pay much attention to
the exact words and their meaning, it is reasonable to assume something other than
non-conservation. Rose and Blank have repeated this experiment without the first
stage of exact alignment (reported by Donaldson, 1978), and fewer errors occurred.
In the original experiment the children were not, perhaps, paying attention to
the language so much as to other cues. It is important to note that alternative experi-
ments have never produced correct answers from all children; they have produced a
different balance of responses which has been taken to suggest that children have not
interpreted language in the way that was expected.

Such results have drawn attention to the whole relationship between language and
learning, for, '. . . behind words there is the independent grammar of thoughts'
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(Vygotsky, 1962). The fact that children can interpret what we say in a way that is
different from what we expected is but one part of the relationship between language
and learning. The Cockcroft Report (1982) included the recommendation that
mathematics teaching should include opportunities for discussion between pupil
and teacher and between pupil and pupil. Bruner (1966) declared that language was
not only the medium of exchange but the instrument the learner can use in bringing
order into the environment. Language plays a vital role in learning in that it makes
knowledge and thought processes readily available to introspection and revision
(Barnes, 1976). Thus egocentric speech, talking for the benefit of oneself, is important
for young children because it serves mental orientation and conscious understanding,
it helps in overcoming difficulties, and it is intimately connected with thinking
(Vygotsky, 1962).

The relationship between language and thought has been the subject of debate
by psychologists over many years. To Piaget, language was important but it did not
play a central role in the growth of thinking. Language helps the child to organize,
experience and carry thoughts with precision but this can only be brought about by
dialogue and discussion alongside action (Lovell, 197Ib). To Vygotsky, language
played a far greater role in the growth of thinking, for egocentric speech soon becomes
an instrument of thought in the proper sense - in seeking and planning the solution of
a problem. However, although there might be considerable difference in emphasis in
these views, the relationship between language and learning clearly cannot be ignored
in mathematics learning. One outcome of the language issue has been emphasis on the
importance of allowing children to talk about their mathematics.

Talking offers advantages to the teacher in that some access is gained to the
thinking of pupils. Traditionally, this access has been obtained through question and
answer (or 'the recitation') but, although this is valuable, there is considerable doubt
as to whether it allows sufficient pupil involvement. In any case, evidence provided
by Holt (1964) and many others has suggested that teachers do not always obtain
worthwhile feedback from such so-called classroom discussions, partly because
children possess many strategies to deceive. Barnes (1976) refers to American research
about the persistence of the recitation, all of which criticizes it as being unlikely to
encourage the most valuable kinds of learning. Question and answer is basically a
coping method - the teacher remains firmly in control, attention is maintained,
content is 'covered', and limited demands are made on the energy of the teacher. Real
contact with each individual child is only occasional in the recitation, and assump-
tions are often made by the teacher on the one hand from the responses of a few and on
the other hand from non-linguistic cues. Flanders (1970) suggested that a 'rule of two-
thirds' is in operation in most classrooms, that is, someone is talking for two-thirds of
the time, two-thirds of the talk is teacher-talk, and two-thirds of the teacher-talk is
direct influence. Direct influence was defined as exposition, giving instructions and
exercising authority. Very little of most mathematics courses consists of genuine
discussion, and even teachers who have believed that they were conducting a dis-
cussion lesson have been very surprised and even upset on hearing the transcript. If a
teacher is to obtain the kind of access to a pupil's thinking which is desirable, a one-
to-one situation is required for a much longer time than in the normal question and
answer situation. Extended one-to-one interview situations are the norm in many
research studies (see Chapter 1), but most teachers do not manage to find much time
amongst all their other duties for this kind of interaction. Discussion between pupil
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and pupil in a small group situation is much easier to achieve, but it requires close
monitoring and effective follow-up.

Other criticisms of teacher-led discussions have been reported by Sutton (1981).
Firstly, such discussion often allows only the teacher to ask the questions, so the
questions are not necessarily those to which the pupils feel they need an answer.
The teacher's questions are almost inevitably carefully sequenced to lead towards a
predefined objective not declared to the pupils. Secondly, even when pupils are
allowed to ask questions, the teacher's response effectively annihilates the likelihood
of contributions from other pupils, and so does not necessarily solve the pupils'
difficulties. Those points which are raised by pupils are often reformulated in the
teacher's own words, anyway. Thirdly, it is inevitable that the teacher will only take
up some contributions, and the many pupils who are ignored are therefore not helped.
Finally, it is also inevitable that some contributions from pupils will be received in a
complimentary manner by the teacher, clearly indicating what the teacher wanted all
along, thus preventing other pupils from suggesting alternatives which might have
highlighted their particular difficulties.

The real objective of discussion is to foster learning. The growth of relational
understanding requires constant appraisal and development of existing knowledge
structures in the light of new knowledge. Concepts, as we have seen, are not formed
and learned only to remain permanently fixed, they continue to change and develop as
new contexts emerge and are studied. Talk allows appraisal and development of ideas
to occur. Most of us are unwilling to concede that we talk to ourselves. Young children
are not at all inhibited in this way, and engage constantly in egocentric speech. Older
children, like adults, are not willing to be found talking aloud unless to others. Piaget
believed that egocentric speech was a feature of a particular stage of growth and that it
eventually disappeared, but Vygotsky believed that egocentric speech turned into
inner speech, and in that form remained a feature of how ideas were manipulated.
Inner speech, however, is not always sufficient, even for adults, and conversation often
includes considerable periods of time when another adult is being used virtually as a
sounding-board.

Until recent times the majority of mathematics teaching has been convergent,
in that the objective has been to steer or pilot pupils towards attaining a specific
objective. Only recently have more 'open-ended' situations been encouraged.
Although discussion between pupils need not be thought of as necessarily leading to
divergence, there is no doubt that discussion allows broad exploration and allows
informal hypotheses to be formulated and debated. A number of minds attacking a
problem in different ways ought to offer advantages. Gagne and Smith (1962) pro-
duced some evidence that pupils who were encouraged to talk about what they were
doing were more successful than when talk played little part. Wall (1965) also pointed
out that groups are more productive of hypotheses and therefore are likely to be more
productive of solutions than individuals, the solutions reached also tend to have a
higher quality, and there is a higher level of criticism of hypotheses and of suggested
solutions in a group.

Barnes (1976) discusses group work in considerable detail, describing a number of
ways in which the teacher can remain at a distance and yet still influence the activity
and discussion. The first essential is that pupils should fully comprehend the purposes
of a group activity, should be convinced that their contribution will be valued, and
should not be constrained by formal language or by trying to guess what the teacher



168 Learning Mathematics

wants. If a task is not adequately focused the pupils are likely to flounder, but if it is
too focused there will be too little scope for exploration. Targets and deadlines will be
necessary, but pupils should not be pushed along too quickly and should be allowed
sufficient time to try out their ideas and organize their thoughts. Pupils will also
need help in reporting back, because this can be a daunting experience. Within a
small group of friends there is little pressure, but the pressure increases with size of
audience, and it can be very acute if the teacher is also present. Help will also be
needed in organizing materials and ideas, and in preparing what needs to be said if
pupils are expected to declare outcomes publicly.

Teachers are likely to be concerned that group methods might take up too much
time. In the long run, however, if ideas are grasped more thoroughly, time could well
be saved. So much of mathematics teaching seems to consist of teaching the same ideas
again and again because pupils have not retained them. Clearly, for discussion to offer
advantages to all concerned, every pupil must be actively involved in the sense of
attending to the discussion in its entirety. Potential advantages of group discussion
therefore might not materialize if the group is too large for all members to remain
involved. Some pupils will 'sleep' if given the opportunity. Others will not be con-
fident enough to make much contribution, particularly if there are dominant pupils
in the group. However, all the evidence about using discussion between pupils to
facilitate learning suggests that discussion is an important vehicle for sorting out
ideas. Much more work still remains to be done to explore styles of mathematics
teaching which will enable pupils to develop their mathematical understanding and
thinking through varied use of language (Torbe and Shuard, 1982).

Language, culture and mathematics

Communicating mathematical ideas so that the message is adequately understood is
difficult enough when teacher and learner have a common first language, but the
problem is more acute when their preferred languages differ. Many pupils, in most
countries of the world, are expected to learn mathematics through the medium of a
spoken and written language which is not the one used in the home. Mathematics is a
very important subject in the primary curriculum, so the teaching of mathematics
might have to commence in one language, only to change to another later (Morris,
1974). Whatever language is used for teaching purposes one would expect that pupils
would have some knowledge of that language, but it might be a very restricted
knowledge. As we have seen, language is important not only for communicating but
also because it facilitates thinking. The language used for thinking is almost certainly
the first language, thus mathematics communicated in one language might need to be
translated into another to allow thinking, and then would need to be translated back
in order to converse with the teacher. Errors and misunderstandings might arise at any
stage of this two-way inner translation process. Berry (1985) contrasted the progress
in mathematics of a group of university mathematics students in Botswana and a
similar group of Chinese university students in Canada. The former group claimed
they had to do all their thinking in English, because their own language did not
facilitate mathematical proofs, and they did not find this easy. The Chinese students,
on the other hand, claimed that they carried out their proofs in Chinese and then
translated back to English, and that they were able to do this quite successfully. Berry
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concludes that the more severe problems would be likely to lie with students trying
to learn mathematics through the medium of an unfamiliar language which is very
different from their own.

There are many problems created by the interaction between language and math-
ematical education and these were the subject of a major international (UNESCO)
conference (Morris, 1974). The variety of local languages in some countries necessi-
tates that a national decision is made about the teaching language. Ethiopia, for
example, has 70 different languages and many more dialects, and Tanzania has some
120 languages. A common experience for many children is that they use a local
language at home, learn at primary school in a regional or national language, and
finally follow more advanced studies in one of the international languages. Some
countries have taken the decision to adopt a bilingual approach. There is a variety of
reasons why it is not appropriate to attempt to educate children throughout their
school life in their local language, and there can also be problems with regional and
national languages.

The first problem which often needs attention is lack of vocabulary and symbolism.
Despite a reputation for mental arithmetic, the Yoruba (of Nigeria) had no symbols for
the numerals or for elementary mathematical operations, and despite the existence of
symmetrical and octagonal constructions in Ethiopia there were no local words for
'symmetry' and 'octagon'. Sinhalese also lacked precise equivalents for words denoting
mathematical operations. There was no word in Norwegian for 'power', so the same
word as for 'force' was used. For such reasons, major programmes of language enrich-
ment have been undertaken around the world — in, for example, Malaysia, Indonesia,
Tanzania and many other African and Asian countries. Often, words adopted have
been taken from another language, but differences in association of word-form with
pronunciation have led to different spellings, thus 'cube' in Malay has become 'kiub'.
Sesotho, the language of Lesotho, is also the language for many people in South Africa,
but as a result of this separation of peoples, different words for the same concepts have
been adopted in the two countries. (The same phenomenon is also present between
English-speaking countries — for example, we tend not to use the word 'trapezoid' in
Britain.) Problems of lack of vocabulary can, of course, eventually be solved, but a
more difficult problem arises when ideas do not exist.

The Yoruba traditionally compared weights by lifting by hand and had no measures
of weight, whilst in Amharic (Ethiopia) ideas of negative number and square root were
foreign. The idea of a day in the Yoruba culture is that it lasts from dawn to dusk, not
for 24 hours, and time is also measured from sunrise to sunset by those who speak
Amharic. The ideas of zero and the empty set are very difficult to explain in Igbo
(a Nigerian language) because of problems of the language representing slightly
different ideas. Subsets are difficult to explain in Sinhalese and some kinds of
mathematical questions are rendered ridiculous, for example, the translation of, 'Are
roses flowers?' is, 'Are rose flowers flowers?' The Yoruba idea of direction is imprecise,
being based on directions of sunrise and sunset. Inclusive calculations in Yoruba
and in other cultures lead to the translation of 'the day before yesterday' as 'three
days back'. There are cultures, like the Oksapmin of New Guinea, where there is no
concept of number base and body parts are used for counting. Even where the idea of
base is part of the number system the base might not be ten (see Saxe and Posner,
1983), and thus translation of mathematics into a second language might create
problems because the mathematical constructions are different. The Yoruba are said to
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have an unusually complex system involving base 20, but other bases exist, for
example, base four (the Huku of Uganda) and base fifteen (the Huli of New Guinea).
The Dioulas (Ivory Coast) are able to identify commutativity in addition but not in
multiplication because of asymmetry of linguistic construction, which hinders any
concept that the multiplier and multiplicand may be exchanged. Morris (1974) has
detailed many more examples of such difficulties across many cultures.

The problem may be even deeper than one of vocabulary and mathematical ideas,
for there is also the suggestion that there is a problem caused by the 'distance' between
the mother tongue and the language of instruction, which is also the language which
has dictated the design of the curriculum. There is now the strong belief that the so-
called Indo-European languages are 'close', but as a group they are far removed from,
for example, the languages of many African countries. Berry (1985) has summarized
these problems as:

In general it is likely to be easier for a student to function effectively in a second
language which is semantically and culturally close to his mother tongue than
in one which is remote . . . [for] . . . the structure of the learner's mother tongue
has a strong influence on his cognitive processes such as classification and
recognition of equivalences - processes which are central to the understanding of
mathematical concepts, (p. 19)

Clearly, if the problem is only that the language of instruction is not the learner's
mother tongue, then it is necessary to provide remedial help of a linguistic nature.
If, however, the problem is one of 'distance', and this problem can arise among
unilinguals being taught in their own language, the appropriate remedial strategies
are more likely to involve the mathematics rather than the language of instruction.
There is apparently a great need to develop mathematics curricula which enable and
encourage students to think in their mother tongue.

Berry (1985), in recounting the difficulties faced by two children, Mothibi and
Lefa, in their school situations in Botswana, suggested that school is a threatening
place because mysterious tasks are assigned for no apparently useful reason. The result
is that disappointing progress is made in mathematics, and what progress is made is
largely based on rote learning. Gay and Cole (1967), concluded from their research
with the Kpelle (Liberia) that there were no inherent difficulties about learning
mathematics, it was simply that the content imposed by the curriculum did not make
any sense within the Kpelle culture. All over the developing world one hears of
disappointing mathematics results and of great concern about the very small numbers
of pupils who show the expected level of mathematical competence, despite curricula
which, though derived from Western curricula, have been meticulously translated so
as to reflect the world of the children who will use the learning materials. Is there
more than a problem of language here? Anthropological and linguistic studies appear
to indicate that language and culture are inseparable, so that no amount of translation
will help many pupils around the world if the mathematics does not fit the culture.
According to d'Ambrosio (1985), recent advances in theories of cognition show how
strongly culture and cognition are related. Indeed, the growing body of knowledge
about 'ethnomathematics' has already been considered (see Chapter 7). The con-
ventional view that mathematics is 'culture-free' is in danger of concealing the
complication of the cultural basis and derivation of knowledge. It is thus, clearly, also
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important to look at the relationship between ethnomathematics and cognition if one
is attempting to improve the mathematical competence of pupils around the world.
Perhaps this reinforces the view that curriculum change is necessary, and that it is
necessary to consider more than just language. Gay and Cole, d'Ambrosio, and Gerdes
(1988), all stress the importance of beginning with materials from the indigenous
culture and utilizing them to extract the universal truths of mathematics. Which
materials are used and in what ways will also have to take into account such issues as
gender roles, if the mathematics is to be accepted by the community. Lancy (1983)
has, in fact, gone so far as to propose an alternative stage theory for cognitive
development, in which Piaget's sensori-motor and pre-operational stages are
succeeded by a stage in which cognitive growth has much to do with culture and
environment and little to do with genetics. Bishop (1988a) has suggested that it is at
this stage that different cultures develop different mathematics.

It is only possible, in the space available, to provide a brief hint of the extent of
problems of language and mathematical education, for a very considerable body
of research has been documented (Wilson, 1981). Many questions still remain
unanswered. Do bilingual children suffer academically when forced to learn in their
weaker language? There is some evidence that mechanical arithmetic does not neces-
sarily suffer but that, perhaps not surprisingly, arithmetic word problems do. Is it
possible that learning mathematical concepts in two languages could help to free the
concepts from dependence on language thus enhancing understanding, or would it
depend which two languages? How does one teach mathematics in a language which
lacks essential mathematical vocabulary? How does one teach mathematics when
essential ideas or concepts are not present? How does one take account of ethno-
mathematics? These questions and the problems expressed earlier are not completely
irrelevant for teachers who imagine they speak the same language as their pupils.
Studies of problems of language and mathematical education might ultimately
enlighten us all in terms of problems experienced by children, in particular those
whose language is much more restricted than our own.

Word problems

A word problem, or verbal problem, is simply a question which requires the applica-
tion of mathematics in order to achieve a solution, but in which the required pro-
cedure has first to be extracted from within sentences. These sentences are often
intended to provide a real-life setting for a simple task. Thus:

Sarah had 5 sweets. Her father gave her another 3 sweets. How many sweets did
Sarah have altogether?

is a simple word problem which only requires the use of the elementary procedure

5 + 3 = 8

In Chapters 2 and 5, problem-solving was described as what transpires when a learner
strives to find the solution to a novel problem, in fact, when previously learned
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knowledge, rules, techniques, skills and concepts have to be combined in a new way.
Word problems are often not particularly novel, being frequently simply another way
of providing practice of simple algorithms. Indeed, they often only require the appli-
cation of the 'four rules', that is, addition, subtraction, multiplication and division.
Thus, word problems and problem-solving need to be differentiated, though there
could obviously be overlap. Many teachers around the world express great concern
about the difficulties which their children experience with word problems. Verschaffel
and De Corte (1997, quoting Nesher) claim that pupils 'do not see the applicability of
their formal mathematical knowledge to real-world situations; . . . they have only a
weak understanding of arithmetic operations as models of situations; [and} they seem
to dislike mathematics in general and word problems in particular' (p. 69)-

One assumption made by mathematics teachers in the past has been that pupils
first need to be confident in handling purely numerical tasks before they are ready to
attempt the equivalent word problems. Carpenter and Moser (1982) have, however,
repudiated both the suggestion that verbal problems are difficult for children of all
ages, and that children must master addition and subtraction operations before they
can solve word problems. It is interesting to compare this with the findings reported
by Hughes (1986) which confirm that, with small-sized sets, young children could
perform addition and subtraction as long as real-life situations were being described,
in other words the question was not 'disembedded', to use the terminology of
Donaldson (1978), who also has much to say on the issue. In the research reported by
Carpenter and Moser the informal strategies used by children in addition problems
were based on counting (variations on 'counting all' and 'counting on'), and sub-
traction was based on separating and matching together with counting techniques.
The results indicated that children continued to use informal techniques based on
counting well into the middle years of schooling, but that eventually most children
began to use number facts and algorithms. The major problem which emerged was
that:

by the age of 9, many children mechanically add, subtract, multiply, or divide
whatever numbers are given in a problem with little regard for the problem's
content. Somehow in learning formal arithmetic procedures, many children stop
analyzing the problems they attempt to solve, (p. 23)

It seems, therefore, that it is the transition from informal procedures which the child
constructs to the procedures which the teacher teaches and expects the child to learn
where one difficulty arises. This appears to be more a problem of learning than one
of understanding language. It is certainly necessary to rethink the assumption that
the numerical algorithms must come before the corresponding word problems. It is
possible that the better way in some circumstances is to learn the algorithms through
word problems.

All research into performance on word problems has revealed the enormous variety
of sentence and overall problem structure which can arise. Carpenter and Moser
describe seventeen different kinds of elementary word problem involving only
addition and subtraction, and these are still not completely unambiguous. These
seventeen incorporate three basic types known as 'Change', 'Combine' and 'Compare'.
Verschaffel and De Corte (1997) claim that research indicates a clear order of difficulty
for addition and subtraction word problems based on these three types and on what is
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the unknown. A more complete framework by Vergnaud (1982) extends these word
problems to operations on integers. Laborde et al. (1990, p. 62) have also attempted
to describe the main variables of word problems, as follows: (1) how relations between
the given and the unknown quantities are expressed, and in particular the degree to
which they are made explicit; (2) the order of items of information; (3) the degree
of attraction of some words, such as the priority of numbers over words or the use of
keywords like 'more', 'less' related to arithmetical operations, which may be dis-
tractors as well as cues; (4) the complexity of the syntax and of the vocabulary. This
analysis appears to be particularly valuable when looking into whether changes in
wording will lead to improvement in performance.

One of the seventeen examples provided by Carpenter and Moser is:

Connie had some marbles. She won 8 more marbles. Now she has 13 marbles.
How many marbles did Connie have to start with?

Verschaffel and De Corte (1997) emphasize how important the first sentence is, which
could easily but mistakenly be omitted in attempting to economize. They believe that
inexperienced pupils are more dependent on text-driven processing whereas more
mature pupils have mastered complex semantic problem schemes. Thus rewording
verbal problems so that the semantic relations are made more explicit facilitates
the construction of a proper problem representation. It is now clear that the order of
information, the relations between known and unknown and the transition from
known to unknown all influence understanding of a word problem in younger
learners. Thus, it should be possible to effect some improvement in performance on
word problems by amending the wording. Verschaffel and De Corte have also claimed
that pupils (and unschooled adults) may be inclined to produce bizarre responses to
word problems because they just do not understand how to play the game of solving
school-type word problems.

Research on multiplication and division word problems has focused particularly on
the selection and execution of the appropriate arithmetic operation. A well-established
finding is that one-step multiplication word problems are often answered by using
addition. There is also an order of difficulty based on the nature of the numbers to be
multiplied. Verschaffel and De Corte state:

There is robust evidence that pupils are systematically better at choosing the
correct operation for a multiplication word problem with an integer as multi-
plier, than when the multiplier is a decimal larger than 1; problems with a
decimal multiplier smaller than 1 are still much more difficult. By contrast, the
size of the multiplicand has no effect on problem difficulty, (p. 85)

The most frequently observed error in these questions is to divide rather than multi-
ply. Two misunderstandings are at work here, both arising from the fact that the
child's underlying intuitive model is repeated addition: firstly the multiplier must be
an integer, and secondly the result must be larger than the multiplicand. Coping
strategies include firstly using the given numbers and applying any well understood
operation, secondly reacting to keywords ('more' means add; 'less' means subtract;
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'each' means multiply, etc.), and thirdly using the operation which yields the 'nicest'
answer. Children are also inclined to use informal solution strategies, like using
objects which are to hand. Many informal strategies can yield the correct answer, and
could be used as a starting point for teaching, but they often reveal that pupils have
not internalized the formal strategy which they have been taught. When interpreting
their result, some pupils are inclined to give meaningless answers (such as there were
6.5 children at a party). There are several possible reasons for this too: firstly they may
not check their answer with the question at all, secondly any verification is often
restricted only to the calculation, and thirdly pupils often do not detect an error even
when they check.

All the available evidence suggests that it is not a simple matter to explain children's
difficulties with word problems, so it not a simple matter to find ways of improving
performance. Several obvious general points have emerged, but none are easy to con-
vert into best practice. Apart from issues of wording, the most obvious improvement
would be to take note of the comparative difficulty levels of the various categories of
problem types described in the research literature, and ensure they are optimally
matched to the level of progress of the children. Another way of trying to improve
performance on word problems is to attempt to build better on the informal methods
employed by children before formal instruction has modified and possibly confused
their thought processes. This is even more difficult to implement because little is
known about when is the optimum moment to attempt to introduce any new pro-
cedure, and also about possible detrimental effects of allowing children to continue to
use informal methods for as long as they are inclined to do so.
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Questions for discussion

1. What methods might we adopt to try to ensure that pupils learn the vocabulary of
mathematics?

2. How should the three facets of language (reading, writing and talking) all contribute to the
learning of mathematics?

3. Discuss the suitability of a textbook you use from the points of view of vocabulary,
readability, symbolism and the communication of meaning.

4. What lessons can we learn about the interference of language in mathematics learning from
the experiences of countries around the world?



Chapter 10

Is There a Theory of Mathematics Learning?

Mathematics and theories of learning

The place of theory in supporting and enlightening the process of learning math-
ematics is a major theme of this book. Debate about how mathematics is learned has
continued throughout the recorded history of mathematics teaching, yet the process
is still not founded on a single universally accepted theory. Shulman (1970, p. 23)
claimed t h a t " . . . mathematics instruction has been quite sensitive to shifts in psycho-
logical theories', but also that, '. . . mathematics educators have shown themselves
especially adept at taking hold of conveniently available psychological theories to
buttress previously held instructional proclivities'. Some mathematics teachers and
educationists have been very keen to look to learning theory for help in determining
classroom practice, others have not been aware that there were theories, and yet others
have reacted strongly against any suggestion that psychology could possibly have
anything to offer. The concern of some teachers that there appears to be a variety
of different theories and that it is difficult to know which is the correct one was part of
the discussion in Chapter 1. The problem with a universally accepted theory would, of
course, be that many teachers might then feel pressure to change teaching methods,
and such pressure is not always welcome.

In searching for appropriate theoretical underpinning, two kinds of theory demand
attention. There are theories which are specifically concerned with learning math-
ematics, and there are general learning theories which are clearly relevant. Given the
complexity of the nature of human abilities and the fact that it is so difficult to isolate
mathematical ability from other abilities and from overall ability (see Chapter 8), it
seems reasonable to assume that a general theory of learning might have much to offer.
General theories of learning certainly cannot be ignored. The theoretical approach
to learning known as behaviourism is an example of a general learning theory which
led to the specific application to mathematics (see Chapter 3). On the whole,
behaviourism is out of favour with educationists in Britain, despite the widespread use
of teaching methods which appear to be closely related to behaviourist beliefs. Dienes
(1973, p. 5) certainly appeared to believe that behaviourism was out of favour, in
saying that '. . . no one today doubts any more the fact that the stimulus-response
relation leads to a training which most of the time induces mental blockages . . .'.
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Stewart (1985, p. 1) endorsed the current view in declaring that'. . . behaviourism [is]
essentially finished as a theory that could adequately explain the more complex aspects
of human mental activity'. And yet experts on the functioning of the brain still
emphasize the vital part that repetition plays in fixing knowledge in the mind. There
is clearly an important distinction between thoughtful and necessary repetition and
practice on the one hand, and mindless and potentially mind-numbing use of routine
stimulus-response activities on the other.

The major alternatives to behaviourism are the cognitive learning theories. The
work of Piaget (Chapter 4) was an important landmark in the development in the
emphasis on cognition, though he did not attempt to present his ideas as a learning
theory. Bruner's belief in the importance of cognition led to him promoting discovery
learning (Chapter 5), and this has had a considerable effect on school curricula.
Ausubel (1968) has also presented a comprehensive theory of meaningful verbal
learning which demands careful consideration, incorporating results and concepts
described by Piaget but also criticizing the wholehearted belief in the efficacy of
discovery learning. The general theory of David Ausubel therefore demands considera-
tion in this chapter. Before that, however, we consider two theories of mathematics
learning, by Dienes, and by the van Hieles.

The Dienes theory of mathematics-learning

Place value has been referred to earlier as being a difficult concept. It is therefore
relevant to try to determine what the most appropriate sequence of learning situations
might be, in order to help children to attain the necessary knowledge, understanding
and skills. A behaviourist approach suggests the use of stimulus-response situations
through which connections are practised, but it is difficult to see how the underlying
structure of place value could be grasped in this way, and much might depend on the
quality of subsequent reflection by the child. A cognitive approach suggests that
children should be placed in a learning environment in which they might investigate,
and perhaps discover, and in which understanding might be constructed through their
own efforts. Piaget's work suggests that children learn by abstracting from concrete
situations in which they have been actively involved. The Multi-base Arithmetic
Blocks (MAB) of Zoltan Dienes provide an early-learning environment intended to
promote the construction of an understanding of place value.

The MAB equipment consists of'units', 'longs', 'flats' and 'blocks' in a wide variety
of number bases (see also Chapter 5). The base ten Dienes MAB shapes are shown in
Figure 10.1. If children experience handling this equipment we might hope that they
will eventually notice and appreciate (with or without teacher intervention) that there
are equivalences — ten units to a long, ten longs to a flat and ten flats to a block. This
structure must become apparent if place value is to be learned through the use of this
equipment. Furthermore, children might then be able to appreciate the foundations
of simple arithmetical calculation through activities which involve exchanging
shapes. Thus, for example, thirteen units could become one long and three units,
and the paying of a forfeit of four units from a long would leave six units. Teachers
of young children will know that teaching based on such activities can take quite a
time. In fact, more equipment might be needed, for the structure of our number
system is not dependent on the particular materials used, so matchsticks, bundles of
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Figure 10.1

ten matchsticks, and boxes containing ten bundles could provide a parallel activity.
An illustration of using the Dienes MAB equipment in this way is shown in Resnick
and Ford (1984, p. 211). Some teachers would also want to divorce the place value
concept from the base ten concept by providing activities which depend on other
bases, like six 'eggs' to an egg box. Dienes provided MAB equipment in a wide variety
of number bases for just this same reason. This outline of the teaching of place value
introduces the practical application of the theory of mathematics-learning proposed
by Dienes (I960).

Dienes began from the premise that mathematics could not be learned in a
stimulus-response way because it was not content that caused the problem, it was the
fact that mathematics-learning was so bound up with understanding structure.
Although the equipment suggested by Dienes is comparatively well known to
teachers (see Seaborne, 1975) it is not so widely appreciated that the apparatus was
proposed, at least in part, as a way of putting the 'Dienes Theory of Mathematics-
Learning' into practice. In addition to the MAB, Dienes commended the use of the
Algebraic Experience Material (AEM), the Equaliser (Dienes' Balance) and the Logical
Blocks, all of which encouraged the construction of understanding. Dienes drew his
initial inspiration from the work of Piaget, Bruner and Bartlett, but his theory was
also based on research of his own. The resulting theory of mathematics-learning
comprised four principles:

1. The dynamic principle
2. The constructivity principle
3. The mathematical variability principle
4. The perceptual variability principle.

Dienes took Piaget's work to suggest that learning is an active process, and the
dynamic principle was directly derived from the assumption that concept formation is
promoted by providing suitable learning materials with which children can interact.
In fact Dienes accepted 'Piaget's three stages in the formation of a concept', which he
called the play stage, the structure stage, and the practice stage. The play stage was
basically unstructured activity, so for place value it was playing with the MAB
equipment, or with other suitable materials. Eventually, as the realization of structure
grew, children's activities could be geared much more towards the structure, and
teacher intervention could try to ensure that this structure was grasped. Practice of the
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structure could then lead to more overt use of practice exercises, leading to simple
arithmetic and the written recording of calculations. The play-structure-practice
sequence was to be seen only in relation to a single concept, and would thus feature
over and over again as children learned other concepts, and the practice activities for
one concept might be suitable as the play activities for a subsequent concept. It should
also be pointed out that, for Dienes, the three dynamic stages subsequently became six
(Dienes, 1973), and also that the play stage might not always seem, to older pupils, to
be play.

It is appropriate, in the context of Dienes' three stages in learning mathematical
concepts, to compare these with the three stages described by Bruner. In representing
the world, or translating experience into a model of the world, Bruner (1966)
suggested that the stages of learning were the enactive, the iconic and the symbolic. These
stages were further elaborated in Bruner et al. (1966). Many forms of knowledge can
only be learned in an active way, like riding a bicycle or playing tennis. According
to Bruner (as with both Piaget and Dienes), the early phase of learning an abstract
concept like place value might also require an enactive approach, with children
engaged in manipulating concrete apparatus. A second approach to learning is,
however, the use of visual images, so eventually the actual concrete objects might
become iconic representations such as pictures of the objects. Textbooks, workcards
and other written materials are heavily dependent on an iconic approach. Certain
mathematical ideas might, however, be learned directly from pictures and without any
prior dependence on enactive representation. The ultimate approach to learning is
symbolic, through language and through other symbols of a specific mathematical
nature. Naturally, for some pupils, some mathematical concepts might be learned
directly through the manipulation of symbols and without prior dependence on
either enactive or iconic approaches. The three stages may be regarded as a sequential
approach to learning a concept or structure like place value, with concrete equipment
followed by pictures, followed by pencil-and-paper tasks. Alternatively, the three
forms of representation might be regarded as three different approaches to learning,
with their appropriateness related to characteristics of the particular learner such as
prior experience and knowledge, and to the characteristics of the concept or structure
being studied. Bruner did not suggest that there was any direct connection between
the enactive, iconic and symbolic stages of learning new concepts and the stages
of intellectual development suggested by Piaget. Certainly, any feeling that the
appropriateness of a particular form of representation is related to the age of the
learner would indicate a developmental aspect to the theory which was not intended
by Bruner. Thus Piaget, Bruner and Dienes have all introduced the notion of stages to
explain learning, and though these stages were distinctly different, they can all claim
to be relevant to trying to understand how children learn.

Dienes also believed that mathematics must be a constructive activity for children,
rather than an analytic one. Formal logical thinking, dependent on analysis, may well
be something which adults can engage in, but the constructivity principle is based on
his conviction that children need to construct their own knowledge. In the case of
place value, this is accomplished by using a variety of forms of concrete activity,
possibly in a variety of number bases. It is interesting to speculate on the relationship
between Piaget's concrete operational stage and Dienes' views on the construction of
knowledge, and on the relationship between Piaget's formal operational stage and the
ability to think analytically. Dienes did not refer to Piagetian stage theory directly in
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the exposition of his theory. This conviction that children need to construct their
understanding, and indeed can only construct, is an example of views which would
now be classed as constructivist (see Chapter 11).

The issue of how to accelerate mathematics learning was answered by Dienes
in terms of providing varied learning experiences. Earlier discussion of concepts in
this book (Chapter 2) has drawn attention to the fact that concepts describe some
regularity or relationship within a group of facts (Novak, 1977), and that concepts are
learned from examples and counter-examples (Skemp, 1971). Dienes concluded that a
mathematical concept usually contains a certain number of variables and it is the
constancy of the relationship between these, while the variables themselves vary,
that constitutes the mathematical concept. This led Dienes to the mathematical
variability principle. In place value, it was important to Dienes that children should
work with a wide variety of number bases. When learning about parallelograms,
another example considered by Dienes, it was essential that lengths, angles and
orientation should all vary. In fact, orientation has often not been varied in the
experience of many children, and the belief that a square in certain orientations was
not a square but was a 'diamond' was mentioned in Chapter 2. Teachers of less able
children are often unconvinced by the suggestion that a variety of number bases is
essential, believing that such an approach can confuse. The exhortation to apply the
mathematical variability principle in teaching about geometrical shapes, however,
cannot be ignored.

Another issue considered by Dienes was that of individual differences (see Chapter
8). This led to two recommendations, one being to organize learning on an individual
or small group basis, perhaps using workcards, and the other being the perceptual
variability principle. He considered it important that the perceptual representation
of a concept should be varied, thus, in place value, the specifically provided wooden or
plastic blocks of the MAB would not be sufficient. The idea of matches or straws
and bundles of matches or straws has already been mentioned. Some writers have
suggested different coloured counters (5 yellow = 1 green, 5 green = 1 red, etc.) but
there are disadvantages with this equipment because, perceptually, one counter of
one colour does not look equivalent to five of another colour. Dienes also suggested
that some of the AEM material, based on shapes other than cuboids, was appro-
priate for place value. In the case of parallelograms, these may be represented on
paper and chalkboard, may be made out of wood, metal and plastic, may be outlined
with pegs on a pegboard or elastic bands on a nailboard, be made by putting
two congruent triangles together or by dissecting a rectangle, and be seen in shapes
in the real world, for example in windows and other features of buildings and floors,
and in patterns on wallpaper and many other designs. The need for Variability',
in both mathematics and materials, is often referred to as the principle of multiple
embodiment.

The four principles of Dienes' Theory of Mathematics-Learning were not intended
to apply only to concepts of elementary mathematics. One of the most difficult aspects
of more advanced and abstract mathematics is algebra. Attention has already been
drawn to the use of certain Dienes AEM wooden blocks to promote an early under-

(see Chapter 4). Whether earlier understanding
than normal is sought or not, there can be no doubt that equipment can be used to
approach quadratic expansions constructively rather than abstractly. The constructive
approach might involve either using wooden or plastic squares and rectangles, as in

standing of
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Figure 10.2

the illustration in Chapter 4, or placing patterns of pegs in a pegboard, as in Figure
10.2. The patterns obtained can then reveal the following relationships:

and

Thus we might deduce that, in general,

The formula has thus been constructed, but it has not been proved. The numbers have
been varied, but the structure remains the same, so mathematical variability has been
applied. The same result can be approached using square regions on a nailboard,
coloured regions on ordinary squared paper, or Dienes MAB equipment, so perceptual
variability can be applied. The result can be extended, by a process of construction, to

and to

and so on, until the whole range of possible quadratic expansions has been explored,
and appropriate generalizations constructed.

The Dienes Theory of Mathematics-Learning is very satisfying in a number of ways.
It is clearly a cognitive approach, and builds on the work of Piaget, Bruner, Bartlett
and Wertheimer. Certain other important issues like how to accelerate learning and
how to cope with individual differences are incorporated. Current views on learning
are placing considerable emphasis on the belief that knowledge is constructed by each
individual and often cannot be simply transferred ready-made from teacher to learner.
But Dienes' theory has limitations. The constructivity principle relates to learning
individual concepts, and the relationship between the learning of a new concept
and the existing knowledge structure already held in the mind is not considered.
Mathematics is, after all, a very hierarchical subject in which new knowledge generall
must be secured onto existing knowledge; if prerequisites have not been mastered
the new knowledge just cannot be learned. Nor was the issue of readiness explicitly
tackled by Dienes; it was tacitly assumed that adopting the four principles would
lead to learning, and likewise that forgetting would not occur. Certainly, it is clear
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that the community of mathematics teachers and educators has not accepted the
theory as the ultimate answer to anything. Dienes proposed it as a feasible skeleton
theory of learning mathematics, and not necessarily as an ultimate answer. It should
therefore be interpreted as a useful contribution to debate, from an educator to whom
the essence of mathematics was structure. What must also be gratefully acknow-
ledged, however, is that Dienes has given us a wealth of teaching ideas. In particular,
many teachers believe that the manipulatives which he promoted are very valuable.

The van Hiele theory of learning geometry

Anyone who has tried to teach Euclidean geometry to teenagers must have been
frustrated by their seeming inability to comprehend the nature of proof. In the first
place, some pupils seem not to see any need for a proof, particularly if it is related to a
result that looks obviously true. In the second place, having been shown a proof by the
teacher, some pupils clearly reveal that they do not truly comprehend precisely what
had been achieved. The outcome of setting riders as class or homework tasks then very
likely results in the teacher having to provide all or nearly all of the solutions the next
day. The theory of Pierre van Hiele and Dina van Hiele-Geldof was the eventual
outcome of their concern over these and other issues. After studying the work of
Piaget, they thought that pupils might well develop geometrical competence by
progressing over a period of time through successive levels of thinking. Thus, if a
pupil was not able to cope with a particular geometry task it was likely to be because
completion demanded a higher level of thinking than the pupil had so far attained. In
other words, the van Hieles postulated sequential levels of geometrical thought but,
in addition, suggested phases of instruction intended to enhance the learning of
geometrical ideas.

For older British teachers, all this might bring to mind the long-standing recom-
mendations of the Mathematical Association (1923, 1939)- In Britain, the study
of geometry was basically Euclidean until around 1970, when the introduction of
what was loosely termed 'modern mathematics' introduced ideas of transformations,
matrices and vectors. At the moment, it is difficult to describe the British geometry
curriculum simply, but it certainly is not Euclidean. In many other countries around
the world, however, Euclidean geometry is still taught. Concern about the difficulties
which the Euclidean approach to geometry presented even for clever pupils was
expressed by many educators in Britain throughout the second half of the nineteenth
century and into the twentieth (see, for example, Ministry of Education, 1958). This
concern led to the formation of the Association for the Improvement of Geometrical
Teaching in 1871 (later renamed the Mathematical Association), whose two reports on
the teaching of geometry contained recommendations about the teaching of geometry
in five stages.

The stages advocated by the Association addressed the issue of the intrinsic dif-
ficulty of Euclidean geometry, and provided practical recommendations concerning
how pupils might be taught at the various stages. The descriptions of the stages with
their curriculum suggestions remained major guidelines for the teaching of geometry
in Britain until the late twentieth century. Stage A was known as the Experimental
Stage, in which work was to be based on real problems such as land measuring, and
illustrated by the use of drawing instruments and other simple apparatus. In due
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course, it was claimed, fundamental facts would emerge, relating to angles, lines and
triangles (Mathematical Association, 1923). Deduction was to be phased in gently,
and usually conducted orally. Stage B, the Deductive Stage, was when theorems
were studied, and proofs were learned. The main interest here was in the systematic
process, but it was accepted that the systematizing instinct was not strongly
developed even up to age 15 (for selective pupils!). It was also considered better to
experiment and investigate rather than to attempt the proof of properties that appear
obviously true. Stage C was the Systematizing Stage, and it was not anticipated that
all pupils would reach this level before they were entitled to leave school. There were
two other stages (D: Modern Geometry; and E: the Philosophy of Geometry) to be
pursued later, but very few pupils ever reached them because the geometry of the sixth
form was based on coordinates.

Although the stages of the Mathematical Association represented an early attempt
to phase the teaching of geometry in line with developmental considerations, the
fact that even the best pupils only reached Stage B was the inevitable outcome of what
were very broad divisions of subject matter and approach. The van Hieles' belief in
somewhat narrower stages is clear from their claim to have discovered that there
were times when it appeared that learning had stopped, and the teacher was unable to
take pupils further until it seemed that the children had matured (or reached a higher
level of thinking). They analysed the nature of their postulated levels of geometrical
thinking in much finer detail than the Mathematical Association, and although the
work of Piaget (see Chapter 4) formed one of their bases, they clearly did not accept all
that Piaget stated. The four principles of Gestalt theory and Gestalt views on the
importance of insight (see Chapter 5) provided additional theoretical background,
for example, to explain why Level 1 pupils could not easily distinguish components in
a geometrical configuration. They also believed that the pupils needed particular
teaching and learning experiences to assist them to progress from one level to the next.
Burger and Shaughnessy (1986) have used the terms visualization, analysis, informal
deduction, formal deduction and rigour to sum up briefly what was the nature of each
of the five levels. In more detail, some of the characteristics of the levels are as follows
(developed from Fuys etaL, 1988 and Zachos, 1994).

Level 1: The pupil can only recognize shapes as wholes and cannot analyse them
according to component parts; visual impression and appearance exert a strong
influence, thus a square cannot also be a rectangle; drawings of shapes are based on
holistic impressions and not on component parts; names may be invented for shapes
according to their appearance, for example, 'slanty rectangle' for parallelogram.

Level 2: The pupil can see components such as sides and angles but cannot relate
properties logically; properties and rules of a class of shapes may be discovered
empirically (for example, by folding, measuring, or by using a grid or diagram);
a figure can be identified from its properties; generalizations become possible,
for example, all squares have four sides, the angles of triangles total 180°.

Level 3: The pupil can relate properties and can make simple deductions,
though the intrinsic meaning of deduction is not understood; a shape may be
defined using the minimum number of properties; reasoning can be used to
establish that a square is a rectangle; a statement cannot be separated from its
converse.
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Level 4: The pupil can appreciate the need for definitions and assumptions,
and can give proofs within a postulational system; the meanings of deduction,
converse, axiom, necessary and sufficient conditions can be understood; proof as
the final authority is accepted; inter-relationships among networks of theorems
can be established.

Level 5: The pupil can work abstractly and can compare systems, can examine the
consistency and independence of axioms and can generalize a principle or the-
orem to find the broadest context.

Fuys et al. (1988, p. 8) have summarized the most important features of the system of
levels as:

(a) the levels are sequential;
(b) each level has its own language, symbols and network of relations;
(c) what is implicit at one level becomes explicit at the next level;
(d) material taught to students above their level is subject to reduction of level;
(e) progress from one level to the next is more dependent on instructional experience

than on age or maturation;
(f) one goes through various 'phases' in proceeding from one level to the next.

The phases of (f) were described as information, guided orientation, explicitation, free
orientation and integration. The significance of the van Hiele theory in comparison
with other theories of learning is its dependence on the role of instruction.

Evaluation of the van Hiele theory includes the following comments. Bell et al.
(1983) have suggested that Level 2 closely resembles Stage A of the Mathematical
Association, which makes Level 1 even more elementary; also that school geometry
is likely to have to focus largely on Levels 1 to 3. Zachos (1994) suggested that there
is little chance of finding any pupils who have reached Level 5, and so there is
little evidence to support the existence of Level 5, as it is described above. It almost
seems as if Level 5 is hypothetical, and merely consists of those geometrical notions
which were not attained in the lower levels. Subsequent research, largely carried out
in the USA, has studied the basic thesis (that levels can be identified, are discrete and
form a hierarchy), the pattern of levels in given populations, and the possibility
of basing instruction and learning materials on the model. One interesting outcome
is serious doubt about both the discreteness and the globality of the levels, because
a child can seem to act at different levels in different contexts and can even change
level within the same task (Hershkowitz, 1990). This is, of course, reminiscent of
the problem of'decalage' within Piagetian theory. Usiskin (reported in Zachos, 1994)
was able to assign around 90 per cent of a large sample of American students to a van
Hiele level with considerable confidence. It was those students who were in transition
who were difficult to classify. Senk (in Zachos, 1994) suggested that a measure of
knowledge of content would have the same predictive powers as the van Hiele levels,
i.e. would be just as good. Nevertheless, whatever the doubts, the literature reveals
genuine enthusiasm about the likelihood of finding ways of improving the learning
of geometry by building on knowledge obtained from research into the van Hiele
levels. In fact, the theory has affected and changed the teaching of geometry in various
countries around the world, for example, the Soviet Union in the 1960s.
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Ausubel's theory of meaningful learning

Meaningful learning

Any theory of learning mathematics must take into account the structure of the
subject. It is not possible to learn about integers and about rational numbers before
natural numbers are understood meaningfully. Meaningful learning implies more
than knowledge of the number system which allows counting and simple accounting.
It implies an understanding of constraints, for example, that subtractions and divisions
cannot always be carried out within the set of natural numbers. When the existing
knowledge structure is sufficiently rich and varied, and better still when the child
is asking questions which require new input, the time is right for injecting these
new concepts. If an attempt is made to force children to assimilate and accommodate
new ideas that cannot be related to knowledge which is already in the knowledge
structure the ideas can only be learned by rote. A range of examples should illustrate
this point.

The algorithm for calculating the arithmetic mean is a simple one. It is so simple
that it is all too easy to teach without paying due attention to linking the algorithm
in a meaningful way to existing knowledge. Without such links the algorithm will be
learned by rote and will likely be forgotten. It will also not promote flexibility of
thinking, such as is required to cope with increasing the numbers of numbers being
averaged. Basically, the arithmetic mean is one of several measures associated with the
idea of a representative value. Children writing to pen-friends might wish to include
some information about their class. In terms of height they could say, 'we are all about
150 cm in height', or 'a lot of us are exactly 148 cm in height (to the nearest cm)',
or 'we range in height from 140 cm to 157 cm'. The ideas of mean, median, mode
and range can be seen as attempts to convey information about a population, and the
comparative value, particularly of the three forms of average, would need discussion.
Another situation familiar to children concerns sharing out sweets. If the teacher
leaves a tin of sweets for the children to help themselves, different children would take
different numbers of sweets, and that would not be considered fair. Instead of Adam
having eight, Stephanie having seven, Inder having three and Darren having two they
should all really have the same number of sweets, which we could calculate by putting
all the sweets together and sharing them out. The abstract equivalent is to add up
the numbers of sweets held by all children and then divide by the number of children.
In other words, it is possible to link the idea of arithmetic mean to previously held
knowledge, thus conveying ideas in a meaningful way.

The introduction of the sine and cosine ratios to secondary school pupils needs to be
linked to several ideas, including similarity (or enlargement) and ratio, triangles,
right-angles, other angles and lengths. The real meaning and purpose of sines and
cosines will not be absorbed if these two ratios are not linked with previous knowledge
and with some kind of motivation like the need to be able to perform calculations in
triangles. Often either the motivation or the previous knowledge is not there. In terms
of prior knowledge, both similarity and ratio are difficult ideas, and may not be
adequately formed. One must, however, acknowledge that they might become better
formed through a study of elementary trigonometry, but if there is no relevant know-
ledge there at all, sines and cosines would once again have to be learned by rote. The
problem of motivation is not easily solved either, for different real-life situations may
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be meaningful to different pupils. A link with prior knowledge, however, is
important.

Certain mathematical knowledge is so basic that there is unlikely to be any relevant
knowledge already in the mind to which new ideas can be linked. Very young children
usually enjoy trying to slot odd-shaped wooden or plastic objects through holes in the
top of a box, designed in such a way that only one shape will fit into any one hole, and
then only with one particular orientation. It is a process of discovery for children to
solve this problem, but eventually they become quite proficient and their interest
wanes. This particular game has, however, taught them a great deal of basic spatial
knowledge. At a later stage in life pupils might be given Cuisenaire (or other) rods to
play with, and will discover that 'red' + 'pale green' = 'yellow, and 'orange' - 'pink' =
'dark green'. Without such a period of discovery using coloured rods, or using beads or
counters, or using other equipment, it is difficult to see how children could learn the
basis of number combinations. The only alternative would appear to be by rote.
Certain mathematical knowledge is so basic that there might not be any part of the
existing knowledge structure with which it could be connected.

The theory of meaningful learning proposed by David Ausubel (1968) was a general
theory and was not specific to mathematics. It incorporated the ideas presented above
and so, to Ausubel, meaningful learning was a process through which new knowledge
was absorbed by connecting it to some existing relevant aspect of the individual's pre-
existing knowledge structure. If there were no relevant concepts already in the mind
to which new knowledge could be linked, the new knowledge would have to be
learned by rote and stored in an arbitrary and disconnected manner. If new knowledge
was assimilated within the existing knowledge structure as a related unit, and if
appropriate modification of prior knowledge (accommodation) took place, the result
was meaningful learning. It was therefore not necessary for all, or perhaps even much,
knowledge to be acquired by a process of discovery. Good expository teaching could
ensure that new knowledge was linked to relevant existing ideas, and this might not
only be more economical (in terms of time taken) than was discovery, it might be
more efficient in terms of quality and breadth of learning. If you really could ascertain
what the learner already knew, you would then know what and how to teach. Some
discovery learning would be necessary with very young children, and at this stage
of life the emphasis would need to be on encouraging concept formation rather than
teaching for concept acquisition. But once a rich structure of knowledge has been
learned the most efficient way to proceed would be by exposition. Discovery methods
might occasionally be appropriate, but only rarely with older pupils — meaningfu
verbal learning could, in most circumstances, be at least as effective and in some ways
better than any other method.

Clearly this theoretical stance can only become reality if one can find out in
sufficient detail, and in a reliable way, what the learner already knows, and if one can
then ensure good, as opposed to indifferent or bad, expository teaching. Given good
teaching, if subject matter was inadequately learned the reason would then be that
pupils did not have the required foundation of relevant knowledge on which to anchor
new ideas. It would, of course, also be necessary for all members of a class to have
the required foundation of knowledge, something which is not easy to obtain in the
normal school situation. Such difficulties would not invalidate the theory, but would
raise problems for the teacher.

Ausubel's theory of meaningful learning contained a number of other ideas which
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will require discussion in due course, but first, the relationship between the ideas
of Ausubel and Piaget demands attention. Ausubel used data collected by Piaget,
accepted the ideas of assimilation and accommodation, and from time to time referred
to 'concrete' and 'formal' or 'abstract' stages, without accepting the full implications
of Piagetian stage theory. Novak (1977), whose own work ably explained, clarified and
expanded Ausubelian theory, claimed no operational conflict exists between the ideas
of Piaget and Ausubel. In terms of readiness, Ausubel's view was closer to that of
Gagne than to that of Piaget. The existing parts of the knowledge structure to
which new learning needed to be linked were referred to by Ausubel as subsumers or
'subsuming concepts'; subsequently they became known also as 'anchoring' ideas
or concepts. So, if the subsumers were there, the pupil was effectively ready. Readiness
was only related to stage of development in its most open interpretation as dependent
on having more and better developed subsumers. Shulman (1970) certainly expressed
the view that Ausubel was in fundamental agreement with Gagne in that the key
to readiness was prerequisite knowledge. Novak (1977), however, indicated that he
thought Ausubel's view on readiness was close to that of Bruner. Perhaps this can be
taken as an indication of the reconciling power of Ausubelian theory! To Ausubel,
even if the child was not ready in the sense of having appropriate subsumers, all
was not lost. There was then the possibility of using an advance organizer to bridge
the gap.

Matrix multiplication can appear very arbitrary, complex and meaningless to
pupils, and therein lies a recipe for disaster in terms of meaningful learning. Despite
attempts to motivate the idea through using shopping bills and the like, despite
attempts to base the introduction on transformation geometry or on simultaneous
equations, there are arbitrary aspects to the procedure. Matrix multiplication is, how-
ever, essential to the long-term development of an understanding of modern algebra,
and it may be applied, as a technique, in a number of different topics in school
mathematics (though it has seemed to jump in and out of the prescribed syllabus like
a yo-yo). Different authors have used a variety of different ways of introducing matrix
multiplication but Matthews (1964) used a very ingenious method. Secret messages
were to be coded for transmission by: (a) representing each letter by a number; (b)
changing the messages to strings of numbers; (c) grouping consecutive numbers in
fours as 2 X 2 matrices and (d) applying an encoding 2 X 2 matrix to each matrix of the
message to convert the original string of numbers into another string, thus completely
hiding the original message. The messages were then despatched as strings of numbers
which could not be decoded without applying the decoding matrix, the inverse of
the encoding matrix. For many children the whole activity was at best fun, at worst
different. The object of the whole exercise was, naturally, not to teach how to send
coded messages, but was to persuade children to master an arbitrary rule. Ultimately,
this rule would be needed in more mainstream curriculum mathematics, but pupils
might not be so motivated to learn about matrix multiplication in contexts which did
not readily enable them to see where the unusual procedures were leading. Having
implanted this arbitrary and disconnected knowledge in the mind of the learner there
was then an anchoring concept onto which to latch more important applications of
matrix multiplication. In a sense, the use of matrices to send and decode messages was
an advance organizer.

To Ausubel (I960), advance organizers were more general, more abstract, and more
inclusive than the ideas and knowledge which were to follow. It is therefore doubtful



Is There a Theory of Mathematics Learning ? 187

whether sending coded messages would satisfy strict Ausubelian criteria for an
advance organizer. The use of less rigorously-defined advance organizers is probably
quite a common teaching technique, but finding advance organizers which satisfy
the criteria of being more general, more abstract and more inclusive is not so easy.
Scandura and Wells (1967, p. 295) translated the idea of an advance organizer into:
'. . . a general, non-technical overview or outline in which the non-essentials of the
to-be-learned material are ignored'. The idea of an advance organizer is certainly too
useful to be rejected for technical reasons, so perhaps any idea which we can put
into the minds of learners which will act as a bridge for subsequent, more detailed
knowledge should be accepted. Novak (1977, p. 220) claimed that, '. . . research
studies that focus on the use of various forms of advance organizers . . . are not
profitable'. The hierarchical nature of mathematics would also appear to suggest that
there should not be many occasions when new knowledge cannot be linked to existing
knowledge, but the idea of the advance organizer is still valuable.

Concept maps were introduced in Chapter 2. The psychological justification for
using them can now be seen in relation to meaningful learning and the relating of new
knowledge to an existing knowledge structure. Ausubelian theory must be regarded as
an original source for the idea of concept maps, though it has been Novak (1977 and
1980), Novak and Gowin (1984) and many others, who have advocated their use in
recent years. Novak and Gowin (p. 15) state that a concept map is '. . . a schematic
device for representing a set of concept meanings embedded in a framework of pro-
positions [which] work to make clear to both students and teachers the . . . key ideas
they must focus on for any specific learning task'; when the learning sequence is
completed they '. . . provide a schematic summary of what has been learned'.

Superordinate and subordinate learning

The organization of knowledge in the mind demands constant review and rearrange-
ment. It involves the realization that a particular conceptual structure may be
differentiated into concepts which might, in one sense, be considered subordinate. It
involves the realization that certain ideas are all part of a more inclusive or superordinate
concept structure. Skemp (1971) discussed the ideas of primary concepts which were
derived from our sensory and motor experiences of the outside world, and secondary
concepts which were abstracted from other concepts. He expressed the view that
certain concepts were of a higher order than others, which implied they were
abstracted from others. Ausubel (1968) wrote of progressive differentiation in learning,
in which the most inclusive elements of a concept are introduced first and then the
concept is dissected or progressively differentiated in terms of detail and specificity.
He also wrote of superordinate learning, when previously learned concepts are seen to
be elements of a larger, more inclusive, concept structure. The kind of reorganization
of knowledge involved in learning mathematics is certainly likely to involve the two-
way process of relating concepts both to subordinate and to superordinate concepts, as
in the following examples.

Early learning experiences in mathematics are largely concerned with developing
competence and understanding in numbers and the 'four rules', and considerable
time is spent on addition, subtraction, multiplication and division. Over the years,
these same operations are applied to fractions and to decimals and eventually their
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application to all real numbers should be mastered. Some students proceed to apply
the same four operations to complex numbers, and a wider perception of, for example,
multiplication is achieved. In some curricula, children study sets, and operations are
introduced here, too, with union and intersection being the most likely, though not
the only ones possible. Many pupils learn about vectors, and the operations of
addition, subtraction, and scalar product (for some pupils), and perhaps eventually
vector product, are introduced. Operations are applied to matrices, through addition,
subtraction and multiplication. Some students learn prepositional calculus and use
operations such as conjunction and disjunction. Eventually, and perhaps at some
stage within the learning sequence above, the concept of 'binary operation' might be
introduced. The only sensible way to approach the idea of binary operation with
pupils is to have many examples of such operations on which to define the more
inclusive concept (cf. the idea of multiple embodiments from Dienes). In this sense,
the idea of 'binary operation' might be considered to be superordinate to 'multiplica-
tion'. In just the same way the concept of 'commutativity' would make little sense
without examples of commutative operations and non-commutative operations
(defined on particular sets) on which to build the more abstract idea. Superordinate
learning appears to be very much a part of learning mathematics.

In contrast, the important concept of 'symmetry' is usually studied rather dif-
ferently. On the basis of a few examples like human and animal faces, butterflies,
inkblots, mirror reflections, and the like, the idea of symmetry as a kind of repeated
regularity is introduced. Having introduced what is, in essence, bilateral symmetry
in two-dimensions, the possibility of other repeated regularities in familiar objects
and in mathematical entities is investigated. In some shapes the regularity is seen to
be a rotational one, which leads to a differentiation into bilateral and rotational
symmetry. Rotational symmetry itself, when analysed, leads to the idea of order.
Both bilateral and rotational symmetry involve the idea of axes of symmetry. Further
differentiation between two-dimensional and three-dimensional objects introduces
another idea, that of planes of symmetry. Having developed the idea of symmetry by
progressively differentiating a general idea of regularity, the learner is then able to
look at symmetry in mathematics, and perhaps even in the natural world and the
man-made world, with much greater insight. The distinction is that with symmetry,
the overall notion of regularity comes first, but with binary operation it comes last.

Ausubel expressed the view that concept development proceeds best when the most
general, most inclusive elements of a concept are introduced first and then the concept
is progressively differentiated. A much quoted example is that, to many young
children, four-legged animals are all 'dogs', and it takes progressive differentiation
to sort out which of these 'dogs' are cats, cows, horses, sheep, and so on. The same is
variously true about fish, about ducks in the park duck-pond, and about cars. Yet,
either there are exceptions, or learning works both ways, from the superordinate to
the subordinate and vice versa. Children learn what are apples, what are oranges, what
are bananas and only subsequently come to know them collectively as fruit. In math-
ematics, they learn about squares and rectangles (and perhaps parallelograms, kites
and even rhombuses) before being able to fully comprehend quadrilaterals. It is, in
essence, a matter of whether all four-sided shapes are seen by the child as squares,
the idea then being progressively differentiated, or whether squares, rectangles and
other particular four-sided shapes are seen to be different and quadrilaterals are then
perceived as a superordinate idea.
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In fact, learning mathematics must involve both progressive differentiation and
superordinate learning working together; treating the two ideas separately is merely
a convenience to enable analysis of their meaning. The various different number sets
and the relationships between them have already been used as illustrations several
times in this book. It could be legitimately considered that learning about numbers
involves progressive differentiation, but, equally, it could be said that a variety of
different kinds of numbers is introduced over a period of time until eventually the
superordinate concept of real numbers is introduced. Although learning about quadri-
laterals appears to be an illustration of superordinate learning, it is possible they could
be studied the other way round, and the study of triangles certainly appears to take
place by progressive differentiation. At a higher level, the factorization of quadratic
expressions has usually been tackled systematically, by gradually introducing more
and more complicated collections of coefficients, and this appears to be progressive
differentiation. Readers will probably have their own views on illustrations of pro-
gressive differentiation and superordinate learning. Novak (1977) admitted that the
determination of what in a body of knowledge are the most general, most inclusive
concepts and what are subordinate concepts is not easy, so complete agreement about
progressive differentiation and superordinate learning is unlikely. It is important,
however, to consider relationships between concepts for: 'One reason school instruc-
tion has been so ineffective is that curriculum planners rarely sort out the concepts
they hope to teach and even more rarely do they try to search for possible hierarchical
relationships among these concepts' (Novak, 1977, p. 86). Clearly, concept maps
could play a part in curriculum planning which attempted to analyse the relationships
between concepts.

Conflicts and failures in learning

There are times when conflict occurs in learning, and also when learning either does
not take place or is quickly forgotten. All of these issues require consideration, and
Ausubel has again provided us with a theoretical model. Conflict of meaning, termed
cognitive dissonance by Ausubel, might occur for many reasons. It might arise when our
use of the word 'vertical' in graph drawing suggests a meaning which is in conflict
with the previously understood idea. It might arise when one teacher implies that a
triangle is a polygon and the textbook claims it is not. It might arise when one
mathematical text provides a definition of natural numbers which includes zero
and another book excludes zero. It might arise when the mathematical definition of
gradient is seen to be different from the meaning of the concept in the real world.
There are many ways in which cognitive dissonance can occur. Essentially, this is a
problem of accommodation, though rather different from most accommodation
problems. Conflicting ideas create disequilibrium and somehow they must be recon-
ciled, and this is achieved by the process of integrative reconciliation. Without integra-
tive reconciliation it is possible that learners might compartmentalize the conflicting
ideas thus, for example, accepting that force and acceleration are in proportion
in mathematics lessons but acting as if they think otherwise outside the school. In
the case of gradient it is necessary to compartmentalize, with the attendant danger
of legitimizing the holding of two different definitions for the same entity. It is
not easy to prescribe for integrative reconciliation, but cognitive dissonance is a
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common feature of school learning. It is especially difficult to achieve reconciliation
when the cause of the conflict crosses subject boundaries, as in the case of there being
one definition for histogram in mathematics with perhaps a rather different one
in biology.

Reasons why learning does not take place include the non-cognitive, such as not
paying attention at the critical time, and the cognitive, like not being ready in the
sense of having adequate subsumers. The issue of forgetting is equally complex. In
the first place there appear to be degrees of forgetting, for it is possible to forget but
then recall everything when appropriate cues are presented, and it also seems to be
possible to forget irretrievably. Novak (1977) claimed that most information we learn
cannot be recalled at some time in the future, thus suggesting that forgetting is the
norm and that it is remembering that requires explanation. Ausubel's theory
explained variation in rates of forgetting in terms of the degree of meaningfulness of
the learned material. In the case of material learned by rote, the expectation would be
that it would be forgotten, probably sooner rather than later, because such knowledge
must be stored in a part of the knowledge base which is unconnected to major
integrated knowledge structures. The learning of the vocabulary of a foreign language
is almost inevitably at least partly by rote, but words are remembered better under
certain conditions such as regular use in sentences (which introduces a degree of
meaningfulness). Ausubel described 'overlearning', meaning repetition, revision, and
perhaps some extension, and in this way rote-learned material might be retained for
considerably longer than without overlearning. When knowledge has been acquired
meaningfully the expectation would be that retention would be for very much longer.
Forgetting can, however, still occur because of obliterative subsumption.

When a new idea is introduced and becomes connected to relevant subsumers
accommodation might lead to changes in the way both the new idea and the sub-
sumers are understood. This is how we learn — by assimilating and accommodating at
the same time. Subsequent new knowledge might then also produce change, both in
the previous new knowledge and in the subsumers. This process continues throughout
life so that, with successive modification and amendment, a body of knowledge or
a conceptual structure might become so modified that it cannot be brought back to
mind in its original form — the earlier notions have been obliterated through sub-
sumption. This is a very neat theory which it is difficult to confirm or deny, after all,
its verification requires examples of knowledge which have been forgotten! It is
certainly possible that we have learned techniques and methods of solution which
were valuable when introduced but which have been forgotten because subsequent
techniques have, in subsuming them, effectively obliterated earlier ones. Most pupils
who learn about quadratic factorization are provided with tips, rules, or processes to
help with the difficult early stages. Eventually, the elementary techniques fall into
disuse and can easily be forgotten altogether once greater experience and expertise
creates a state in which factorization is no longer found to be difficult. For example,
one factorization technique applied to

We require two numbers A and B with product equal to 10 X 12 and sum equal to
23, that is,

A x B = 120 and A + B = 23

The two numbers, found by a mixture of mailing and insight, are 15 and 8, so:

is as follows:
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= 5x(2x + 3) + 4(2x + 3)
= (5x + 4)(2x+3)

Eventually, however, it becomes possible for many pupils to short-cut this procedure
and factorize very quickly by inspection, so the above method falls into disuse and
may ultimately be forgotten. This illustration may not be ideal as an example of
obliterative subsumption but it does show how knowledge which is temporarily
valuable may subsequently fade into oblivion without the learner becoming deprived.

The phenomenon of obliterative subsumption appears to suggest that meaning-
fully-learned material often cannot be recalled in the exact form in which it was
originally stored, whereas rote-learned material can only be recalled precisely as the
original form, since it cannot be subjected to obliterative subsumption. If that is true
it indicates one advantage of rote-learned material, but all other advantages appear to
be in favour of meaningful learning. Knowledge which is acquired in a meaningful
way is retained longer than if acquired by rote and it contributes to the growth
and development of more subsumers and therefore facilitates further meaningful
learning. However, teaching experience suggests that rote-learned material is not
always recalled, by children, in the form in which it was learned, but this can then be
explained by forgetting (Novak, 1977).

The learning theory proposed by Ausubel (1968) must be seen as extremely com-
prehensive, and space has allowed the consideration of only a selection of the issues.
For the most part, mathematics educators have not paid much attention to Ausubelian
theory, so the relationship to learning mathematics has not been sufficiently widely
applied and debated, and few authors have provided a variety of mathematical
examples in connection with the theory. But contemporary views on learning
frequently draw from the work of Ausubel, as well as from Piaget and Bruner, so it is
helpful to know something of the views of all three if one is to be able to place current
views in context. Science educators have paid rather more attention to Ausubel, but
frequently their interpretations have filtered through to the classroom level only in
terms of practical suggestions like the commendation of the use of concept maps
(sometimes given other names). The very comprehensiveness of the theory of meaning-
ful learning proposed by Ausubel suggests that it is a useful model with which any
future learning theory might be compared in order to help assess its value. There have,
of course, been critics of Ausubelian theory, for example, some mathematics educators
would react strongly against any suggestion that verbal or expository learning is as
effective and as efficient as Ausubel claimed. This is difficult to determine anyway,
because the key to the theory is that one must first ascertain what the learner already
knows and then apply not only appropriate, but good quality, expository teaching. At
the risk of being repetitive, it is not only difficult to ascertain in real detail what a
learner already knows, it is also difficult to define what we mean by consistently good
expository teaching, and therefore to apply it. It is certainly the case that the strongest
supporters of Ausubelian theory have always accused critics of not studying the theory
in sufficient detail.
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A brief note on information processing

It seems that any study which attempts to investigate and understand how informa-
tion is processed in the mind can claim to be a part of that approach to the study of
learning commonly known as information processing. The wide variety of studies
which have been carried out, however, makes it impossible to define simply a theory
of information processing. Cobb (1987) has claimed that information-processing
psychology developed as an alternative to behaviourism, by attempting to study
what happens between stimulus and response, but his own paper is principally con-
cerned with considering information processing from a constructivist perspective (see
Chapter 11). As for links with Piaget, Sternberg (1989, p. 454) declared:

That Piagetian theory is compatible with information-processing theory is
shown by the fact that Rumelhart and Norman . . . have proposed two modes of
knowledge acquisition in information-processing language that correspond
almost exactly to assimilation and accommodation [called 'accretion' and
'restructuring'].

The work of Newell and Simon (1972) is often cited as being seminal in information-
processing approaches to learning theory, and some of this has already been considered
in Chapter 5. Other significant research is documented in Stewart and Atkin (1982)
and Stewart (1985). Krutetskii (1976) included a discussion of the characteristics
of information processing during problem-solving. Lindsay and Norman (1977) have
considered how knowledge is commited to long-term memory. More recently, many
studies have been carried out into the methods which pupils use in solving elementary
problems using the basic operations of addition, subtraction, multiplication and
division, and in the errors which are made. Other work has focused on elementary
algebra. A physiological equivalent to the psychological study of information
processing is described in Esler (1982).

An important feature of much information-processing research has been the com-
parison of the performances of experts and novices. One major weakness of such
research lies in how to define an 'expert' and a 'novice', and many different definitions
have been used by different researchers. A further weakness results from the range
of the chosen expert—novice spectrum. The more the researcher departs from the
extremes of the expert—novice scale, the harder it is to distinguish their respective
mental processes. The closer to the ends of the expert—novice spectrum the two groups
are, the less is the information gained, for easy tasks do not result in any information
about experts, and difficult tasks do not provide knowledge relating to novices.
Furthermore, because the information-processing paradigm deals with performance
at a microscopic level, it has been suggested that it is impossible for it to provide
information which is valuable in the macroscopic level of teaching an instructional
programme.

That part of computer-assisted learning which has become known as artificial intel-
ligence has become very much associated with the information-processing approach
but it has many critics as well as advocates. One impact of the electronic computer on
education is that contemporary theorists of human learning have frequently con-
sidered the computer as a model of the human mind. Memory is seen to be the key to
learning, for the objective is storage within, and ready recall from, long-term memory.
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Thus the computer components of input, control, processing, store and output is seen
as a simple interpretation of long-term memory The analogy with the computer has
been taken further, in suggesting that the human mind has a built-in ready-for-action
ROM (read only memory) from the moment of birth.

There have been many criticisms of information processing, however, for example,
this from Vergnaud (1990, p. 22):

information-processing models . . . do not provide any theory of what a concept
is, and especially of its operational character, . . . [do] not offer any plausible
theory of the part that language and symbols play in thinking . . . [and do] not
offer any plausible view of the long-term development of students' competencies
and conceptions.

Suggestions for further reading

Dienes, Z. P. (I960) Building Up Mathematics. London: Hutchinson Educational.
Fuys, D., Geddes, D. and Tischler, R. (1988) The Van Hiele Model of Thinking in Geometry among

Adolescents. Reston, VA: National Council of Teachers of Mathematics.
Lindsay, P. H. and Norman, D. A. (1977) Human Information Processing (Chapters 8—10). New

York: Academic Press.
Novak, J. D. (1977) A Theory of Education. Ithaca, NY: Cornell University Press.

Questions for discussion

1. How valuable is Ausubel's theory in preparation and planning, both macroscopically and
microscopically, for teaching mathematics?

2. To what extent must the logical structure of mathematics be subordinated to psychological
issues in any theory of learning mathematics?

3. Is there any place for behaviourist as well as cognitive views within a theory of math-
ematics learning?

4. How would an acceptable theory of mathematics-learning influence your teaching?



Chapter 11

Can Pupils Construct Mathematical Knowledge
for Themselves?

Constructivism

Hughes (1986) has provided evidence that pre-school children are able to invent their
own symbols and symbol systems to represent quantities. His research did incorporate
a modicum of interaction with teachers, but the evidence of the ability of children to
invent appropriate notation is convincing, and Hughes is also able to claim that the
children even invented a suitable symbol for zero. Yet the same children experienced
great difficulty in coming to terms with conventional symbolism. Hughes also drew
attention to the similarities between many of the children's own invented systems and
number systems used by earlier cultures. Formal arithmetic presents children with
symbol systems and methods of manipulation which are the products of hundreds of
years of development and refinement. How is it that children can devise their own
symbols but find difficulty in coming to terms with the systems and methods which
teachers try to impose?

Askew and Wiliam (1995, p. 6) have reported evidence that, before beginning
formal schooling, 'many young children can count meaningfully, use terms like
"more" and "less" appropriately, have some understanding of addition and subtraction
with small numbers, [and} invent strategies for solving problems'. Unfortunately, this
so-called informal knowledge is often ignored by teachers when the children start
school. Carpenter and Moser (1982) and MacNamara (1990) have suggested that
strategies for operating with numbers introduced by teachers may run counter to
the knowledge brought to school by the children, and this may cause regrettable
and unnecessary disequilibrium. Children generally base their informal arithmetic on
counting strategies, but school mathematics programmes are based on combining
and separating sets. MacNamara has also claimed that the ability of young children to
'subitize' is often completely ignored by teachers. Subitizing is the ability to recognize
how many objects there are in a group without counting them, and it seems that most
children commencing school have this capability for groups of up to five. At school,
the children would very likely be taught techniques which do not acknowledge
subitizing, and which therefore run counter to their natural inclinations.

We have already seen in Chapter 6 that children in the middle primary years often
spontaneously begin to derive new addition facts from known facts, particularly from
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ties and from bridging 10, for example, in 8 + 6 = (8 + 2) + (6 - 2). Later, when faced
with a multiplication task like 23 X 7, many children will decline to use the taught
algorithm and will construct their own methods. Some of the weaker pupils, even in
the later secondary years, will add 23 seven times. Others, still dependent on addition
but with slightly more confidence might use an alternative addition method, such as
46 + 46 + 46 + 23, or 46 + 46 + 69, or 69 + 69 + 23. The really knowledgeable pupils
might use 20 X 7 + 3 X 7, or 23 X 10 - 23 X 3, or 13 X 7 + 10 X 7, or even 12x7 +
11 X 7 or 42 + 42 + 77. Children could use a very wide variety of alternative
procedures which have not been specifically taught, all of which should produce the
correct answer. Indeed, children should be encouraged to be creative in this way, but
the point here is that many pupils become capable of exercising a certain amount of
creativity in constructing their own methods. Resnick and Ford (1984) have also
reported convincing evidence of the ability of some children to invent their own more
efficient methods of solving simple addition and subtraction tasks, methods which
seemingly could not be taught:

[So] why not teach the more efficient routines directly? Why rely on children's
inventions? In the present cases, the answer lies in the sheer difficulty of explain-
ing the efficient routines to children. Groen and Resnick tried this informally;
they found themselves bogged down in awkward, incomprehensible explanations
and found the children bored or frustrated, (pp. 81—3)

Nunes et al. (1993) have shown that Brazilian children with little or no formal
education can, on their own or as a community of street vendors, invent their own
methods of carrying out calculations in order to earn a living in the 'informal sector'
of the economy (see Chapter 7). These mainly mental calculations make sense to
the child, being based on real transactions in which goods or services are sold for cash.
The evidence appears to indicate that problems which make sense in this way are more
easily solved than the de-contextualized ones of formal arithmetic. Schliemann (1984)
has also compared the problem-solving capabilities of professional carpenters and their
apprentices. These unschooled professionals sought realistic solutions to real problems
and were comparatively successful. On the other hand, schooled apprentices were
inclined to treat the problems as school assignments and were often wrong; what is
more they were unable to appreciate when they had produced an absurd answer.

These examples expose the dilemma that children often seem capable of con-
structing at least some mathematical knowledge for themselves when school-taught
knowledge might be misunderstood, misapplied and even rejected. A considerable
amount, some might say the majority, of the teaching that takes place in mathematics
lessons seems to be based on the view that it is easy to transmit knowledge from
teacher to learner, and that what is received is an exact copy of what was transmitted.
Yet we know that this is not the case. A major reason why children fail to achieve
lasting learning is that the transmitted knowledge was never comprehensively grasped
in the first place. Transmission learning often only achieves limited success, and the
severity of the limitations may not be discovered until much later, or indeed may
never be discovered. Each individual child is likely only to internalize a unique subset,
and possibly quite a small subset, of what was transmitted. An important alternative
view that, if placed in a suitable environment, children can discover mathematics for
themselves has been considered in Chapter 5. Guided discovery, in particular, has



196 Learning Mathematics

many advocates but this involves teacher input, it being in a way merely a com-
bination of discovery and transmission. The issue here is that we cannot ignore one
of the fundamental assumptions of cognitive learning psychology which is that new
knowledge is in large part constructed by the learner (Resnick and Ford, 1984). This
assumption is the fundamental basis of what has become known as constructivism.

The view that knowledge must be constructed, or reconstructed, by each and every
learner has attracted a great deal of interest in recent years. Lochhead (1985, p. 4)
outlined the basis of constructivism as follows:

What I see as critical . . . is the recognition that knowledge is not an entity
which can simply be transferred from those who have to those who don't . . .
Knowledge is something which each individual learner must construct for and
by himself. This view of knowledge as an individual construction . . . is usually
referred to as constructivism.

This is reiterated in the claim by von Glasersfeld (1987, p. 16) that, 'knowledge is not
a transferable commodity and communication not a conveyance'. In fact, not only does
constructivism attempt to explain the process of learning, it has implications for
motivation too, according to von Glasersfeld (pp. 16-17):

if students are to taste something of the mathematician's satisfaction in doing
mathematics, they cannot be expected to find it in whatever rewards they might
be given for their performance but only through becoming aware of the neatness
of fit they have achieved in their own conceptual construction.

Clearly, the origins of constructivism would be difficult to trace, since the so-called
Socratic method seems to have been based on the notions that questions should be
countered with questions, and that the students themselves should ultimately provide
their own answers. In fact, around fifty years ago, Dienes (I960) revealed his own
brand of constructivism in his constructivity principle. He suggested that math-
ematical learning is pre-eminently one of construction - followed only afterwards by a
critical examination of what has been constructed. He also speculated that exceptions
to the otherwise gloomy picture regarding the learning of mathematics seem to
occur when self-motivating learning situations are created, where the information
reaches the child in such a way that he can formulate it in his own language. It is
Piaget, however, who must be regarded as the most significant mid-twentieth century
contributor to the early development of contemporary constructivist views (see
Chapter 4). Kamii, in the titles of two books (1985, 1989), has described her work
with children inventing or reinventing arithmetic as 'implications of Piaget's theory'.
Thus constructivism seems to be a simple but profound expression of contemporary
cognitive views of learning, having evolved naturally from earlier attempts to explain
learning.

Constructivism is therefore based on the view that, in the last resort, we all have to
make sense of the world ourselves; we develop our understandings throughout life
continuously, and through our own efforts and insights. Such a straightforward claim
may appear to some readers to be a truism, but the claim conceals contentious and
potentially difficult issues such as which version of constructivism is the truest
(for there are alternatives), what are the implications of a belief in constructivism for
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classroom practice, and what are the major difficulties when teachers attempt to use
methods which they believe are the best for enabling the construction of meaning. It is
particularly important to scotch, at this point, any attempt to equate constructivism
with 'free-for-all activity', 'child-centred education', 'progressive education' and even
'discovery learning'. In any case, many of these terms, in addition to being used
frequently in recent years in pejorative ways, themselves mean different things to
different people. The following statement about constructivism from Cobb et al.
(1991, p. 165) is quite categorical: 'constructivist teaching does not mean that "any-
thing goes" or that the teacher gives up her authority and abrogates her wider societal
obligations'. At a time when educational methods are under scrutiny from wider
society and require careful justification, it is important to define precisely what is
meant and what is not meant by constructivism. And if there are different versions of
constructivism we need to understand them all.

Versions of constructivism

Lerman (1989, p. 211) described constructivism in the following hypotheses:

1. Knowledge is actively constructed by the learner, not passively received from
the environment.

2. Coming to know is an adaptive process that organizes one's experiential
world; it does not discover an independent, pre-existing world outside the
mind of the knower.

The first hypothesis is essentially another summary of our earlier discussion, but the
second is much more radical. Those who accept only the first hypothesis are some-
times known as 'weak constructivists', but those who accept both are 'radical con-
structivists'. According to Lochhead (1991), constructivism is a statement about the
nature of knowledge and its functional value to us. For the most radical constructivist
there is no possibility of any certain knowledge about the world. The most radical
form of constructivism would, in fact, claim that 'we can never have access to a world
of reality, only to what we ourselves construct from experience; all knowledge is ...
necessarily constructed' (Goldin, 1989, p. 17). Therefore it could be claimed that it is
impossible to ensure that any two learners have acquired the same knowledge, because
each learner has constructed a unique model.

The concept of 'understanding' thus once again emerges as problematical. In the
words of Lerman (1989, p. 220):

if all understandings are private and individual constructions, no student
behaviour will allow me to do anything other than make my own private
construction about what the student 'understands' of my 'understanding' of the
concept or idea in question.

In other words, there is a problem if we try to tie the notion of 'understanding' to the
idea of certain and absolute mathematical concepts, for none of us can be sure what
the absolutes are, if they exist, never mind whether our understanding incorporates
any of the proposed absolutes. There is not only a problem in knowing whether the
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understanding achieved by another is the same as ours, there is also the problem as to
whether it is the same as anything which could be considered objective. Indeed, in
relation to the use of language as the only way we have of comparing our notions, we
might therefore also be led to wonder whether it is ever possible to grasp what anyone
else is saying! This radical view of knowledge is naturally in opposition to more
objectivist views which do support the notion of the existence of agreed objective
knowledge. It is also relevant here to introduce the concept of a 'consensual domain',
which von Glasersfeld (1991, pp. xv—xvi) explains in this way:

I f . . . people . . . look through distorting lenses and agree on what they see, this
does not make what they see any more real - it merely means that on the basis of
such agreements they can build up a consensus in certain areas of their subjective
experiential worlds . . . one of the oldest [such areas] is the consensual domain of
numbers.

The distinction between weak constructivism and radical constructivism is a vital
one, but there is at least one other important interpretation of constructivism, namely
social constructivism or socio-constructivism. Here, an important feature is the role of
social interaction and communication in assisting individuals to construct their own
understanding. Cockcroft (1982) drew attention to the desirability of discussion
between teacher and pupils and between pupils themselves without saying a great deal
about the purposes of such discussion in relation to how it helps learning, particularly
between pupils. The Department of Education and Science (1985) claimed that the
quality of pupils' mathematical thinking as well as their ability to express themselves
are considerably enhanced by discussion. Discussion has already been considered
within the context of the issue of language and mathematics (Chapter 9). Cobb et al.
(1991, pp. 173—4) wrote, 'social interactions between partners influence their math-
ematical activity and give rise to learning opportunities'. These are standard claims
about the value of discussion, but the claims of socio-constructivism are that meaning,
or understanding, is being actively negotiated through such discussion. In terms of
radical views, if there is no absolute knowledge, only our own interpretation of the
world, discussion at least allows the possibility of some mutual agreement within a
group, the development of a consensual domain. Indeed, Solomon (1989) described it
as encouraging the development of an essentially social being for whom knowing
number involves entering into the social practices of its use. For Balacheff (1991,
p. 89):

Students have to learn mathematics as social knowledge; they are not free to
choose the meanings they construct. These meanings must not only be efficient
in solving problems, but they must also be coherent with those socially recog-
nized. This condition is necessary for the future participation of students as
adults in social activities.

In the value it places on social interaction and the negotiation of meaning, the
socio-constructivist perspective thus perhaps owes more to the work of Vygotsky than
to Piaget's view of the solitary knower who must construct meaning alone. The role
of the teacher within a socio-constructivist approach is a sensitive one. According to
Lochhead(1991,p. 82):
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The primary goal . . . is to help students develop skills of constructing,
evaluating and modifying concepts . . . The teacher's role therefore is to work to
improve the quality of the discussions rather than to focus from the beginning on
the 'correct' . . . answer.

The evidence available suggests that many of us have great difficulty in not focusing
on the correct answer when 'guiding' discussion; indeed, we often have great difficulty
in holding back from direct interference and telling. Basically, we wish pupils
to construct what we think they should construct, because we have a prescribed
curriculum to teach!

Yet another alternative contemporary version of constructivism, which also depends
on interaction and debate within groups, is the sociocultural view. Sociocultural
theories are related to the transmission of meaning from one generation to the next as
part of the process of acculturation. The view expressed by Solomon (1989) and
quoted above might appear to be more sociocultural than socio-constructivist. The
same conclusion might even be drawn from the statement by Balacheff (1991), though
it was written in relation to constructivism. There is undoubtedly some common
ground between socio-constructivism and sociocultural views in that both accept
the importance of collective activities in which agreement comes about through
discussion, but the literature suggests there could also be important differences in
relation to the negotiation of meaning.

As a postscript to this consideration of different forms of constructivism Johnson-
Laird (1983, p. 156), in his discussion of mental models, states:

Human beings . . . do not apprehend the world directly; they possess only
internal representation of it, because perception is the construction of a model of
the world. They are unable to compare this perceptual representation directly
with the world — it is their world.

The suggestion is that we all form mental models of the environment and new
experiences are then subsequently interpreted in relation to the models we have
constructed. Newell and Simon (1972), writing about problem-solving, claimed that
the solver first constructs a representation of the 'problem space' and this then governs
the way the encoding of information is carried out. So how we set about solving
problems is less likely to involve logical thinking and is more likely to be based on our
model of the situation, and this in itself is context dependent. What happens after that
may well be a form of hypothesis testing. The last word on versions of constructivism
should be given to von Glasersfeld (1987, pp. 15-16):

teachers tend to assume that there exists in every particular case an objective
problem and an objectively 'true' solution . . . students of any age are therefore
expected somehow to come to 'see' the problem, its solution, and the necessity that
links the two. But . . . logical or mathematical necessity does not reside in any
independent world — to see it and gain satisfaction from it, one must reflect on
one's own constructs and the way in which one has put them together.
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Some constructivist teaching experiments

Constance Kamii has supervised an interesting programme of innovative classroom
activities with young children. For her, the beginnings of arithmetic lie in learning
about numbers and number combinations through playing dice games, leading to the
memorization of number combinations without any direct teaching or reinforcement.
This may be regarded as a form of rote learning, but here the method works well, the
use of games providing essential motivation. Subsequently, numerical questions posed
by the teacher form the focus for class discussion of answers suggested by individual
children, usually privately to the teacher, but sometimes openly to the whole class.
Thus the teacher remains very firmly in control and, as opposed to many group
methods, the questions and suggested answers are presented on the chalkboard to the
whole class. Drill and worksheets do not play any part at this stage, and pencil and
paper are not available, so the emphasis is on 'mental' rather than on 'mechanical' or
written arithmetic. Number tasks are not invented by the children but are part of a
carefully devised sequence of the teacher's making which is intended to provide for
and enable progression in capability and knowledge. The teacher plays a critical role.
When errors are committed, it is said, these arise because the children are thinking
and not because they are careless. Thus the task of the teacher is not to correct from the
outside, but to create a situation in which the children will inevitably correct them-
selves. Kamii claims that children construct knowledge more solidly when they are
encouraged to defend their ideas within a group or even a whole class. When answers
are offered by individual pupils, others declare whether they agree or disagree. Lack
of unanimous agreement among children about a particular answer leads to other
suggested answers. When there is consensus, a pupil who provided the accepted
answer is encouraged to explain how the answer was obtained. This is a very revealing
aspect of the method, for there is normally variety in how the children have con-
structed their solutions, so children have the opportunity to reflect on alternative
approaches. For example, the task:

27
-18

might lead to some children thinking of it in terms of 28 — 18- 1, others as 27 - 17 — 1,
others as 20 - 10 + 7 - 8, others as 20 — 10 - (8 - 7), and so on. In terms of
generalities, allowing children to construct reveals that most children deal with the
tens before the units, this perhaps going some way to explaining why attempts to
teach the algorithm can be difficult, because it runs counter to what at this stage
seems to be a natural tendency. It also confirms that some number combinations are
remembered more easily than others, for example doubles like 6 + 6 are remembered
more easily than 5 + 6, which explains why, when dealing with 26 + 7 many children
will deal with the units as (6 + 6) + 1 (see Chapter 6). At a much later stage, Kamii has
also produced evidence which shows quite young children not only constructing
methods of multiplying two two-digit numbers, but eventually arriving at a form of
the usual multiplication algorithm on their own. The sceptic might want to suggest
that particularly sensitive or introvert children would find such teaching approaches
disagreeable. Nevertheless, this deliberate application of what seems to qualify as a
socio-constructivist approach to teaching needs to be taken seriously.
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Another interesting set of experiments which appear to have at least some
similarities to the work of Kamii has been reported by Bell et al. (1989). The experi-
ments were based on identifying and then eliminating particular misconceptions
using a diagnosis-conflict-discussion procedure. The method demands good
diagnostic test questions which it is known will reveal difficulties and misunder-
standings, such as many of the tasks used by the CSMS project (see Hart, 1981).
According to Bell, subsequent direct instruction focused on such known misconcep-
tions has been shown to be comparatively unsuccessful, in the respect that there was
very little transfer to points not so strongly focused upon. Conflict-discussion teaching
has proved much more successful. The procedure is that a lesson in which pupils
might record their own responses to diagnostic questions is followed by discussion
in small groups. Finally, group conclusions are placed before the whole class for
further discussion and amendment, as thought necessary. The assumption is that the
small group work helps to ensure that pupils' wrong ideas are actually brought out
and expressed, and that these can be subjected to challenge and criticism in an
unthreatening situation. The small group work is also more likely to expose the extent
of any misconceptions from a wider range of pupils, because pupils are more prepared
to talk and are more prepared to be put under pressure to talk in a small group.
Clearly, the intended unthreatening nature of the situations might be difficult to
achieve for all individual pupils, and indeed in certain cultural environments.
Although Bell does not claim that the method is based on constructivist principles,
and in fact claims no support from any particular theory or epistemology, the con-
structivist underpinning of this technique is captured in the statement 'the aim is
that pupils should reach well-founded convictions based on their own perceptions,
not take over superficially-understood ideas from the teacher'. Cognitive conflict has,
in fact, been claimed by Underhill (1991) to be one of the two major mechanisms
which motivate learning and induce reflective activity, which itself stimulates the
cognitive restructuring required within the process of constructing knowledge and
understanding. Early reports of the success of this technique are very encouraging. A
very significant common feature between the methods described by both Kamii and
Bell seems to be the emphasis on social interaction through discussion, debate
and even argument. There is clearly a connection between the use of cognitive conflict
here and the idea of cognitive dissonance from Ausubel.

A further experiment of great interest has been the Calculator Aware Number
(CAN) Project, directed by Hilary Shuard. This project was really set up as a part of
the PrIME Project, which operated with the wider brief of providing a much more
exploratory and investigative approach to mathematics in the primary school. The
basic intention of the CAN Project was to teach mathematics with a calculator always
available, and not to deprive children of what is a very powerful, useful and ubiquitous
aid to calculation. In the English context this was a radical move and, quite naturally,
advocates of proficiency in pencil-and-paper mathematics (many of whom are not
teachers) have viewed what they would regard as a revolutionary development with
suspicion. It is curious that there should be this lingering firm belief in the value
of pencil-and-paper methods when there has not been the same emphasis on them
in many other countries. Not all developing countries have the resources to pro-
vide regular pencil-and-paper facilities, and yet others have depended on regular
use of primitive technology like the abacus. The calculator can, of course, be used
in an exploratory and investigative way, so CAN pupils could use their calculator in
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constructing their own understanding. If calculators are not built into the math-
ematics curriculum the chances are that the pupils will still use them at home, and will
learn ahead of the teacher, and will also come to regard school mathematics as anti-
quated. The progress made by children taught within this scheme has been described
by Shuard et al. (1991, pp. 56-7):

Not only had the children become more enthusiastic, but their work also showed
much greater mathematical understanding . . . the children were willing to
'have a go' at any problem and persist with it far beyond the teacher's normal
expectations . . . [they] developed a wide variety of methods of non-calculator
calculation [which] often made an intuitive use of basic mathematical principles.

Elsewhere, through newsletters, the CAN project drew attention to the new con-
fidence of the children, to the fact that routine algorithms were not taught at all,
and that the children had learned that in mathematics one learned to think things out
for oneself.

Several criticisms might come to the sceptic at this point. The first is the usual one
that such methods as described in these three examples are all very well, but they take
too much time, and there is a syllabus to get through. It does take considerable time
when children are allowed to think things out and debate among themselves, and the
only possible rejoinder is to suggest that time might be saved in the long run. So
much time in mathematics lessons is currently spent on re-teaching and providing
routine practice of ideas which do not seem to have been mastered however many
times they are re-taught in the 'traditional' manner. If the extra time leads to genuine
progression and mastery of mathematics, if ideas are understood more firmly and
lastingly by encouraging the construction of knowledge by the pupils themselves, this
is a more worthwhile gain than the teacher 'covering' a syllabus more quickly.

The second potential criticism relates to the unfortunate outcomes which might
result from pressure being placed on pupils to conform to a particular view. The non-
threatening climate of a small group discussion situation is frequently emphasized in
descriptions of socio-constructivist practice. However, it is possible that meaning is
only negotiated to the extent that some pupils finally have to accept a majority view
without understanding the reasons. For the sake of survival alongside peers, pupils
might say they accept the group view, but at the same time their confidence might
have been undermined if they believe they are the only member of the class who still
does not understand. They may consequently become further convinced that they are
weak at mathematics, and their attitude might deteriorate even more. Such a situation
is hardly non-threatening, for silent but no less worrying threats are likely to be
experienced within the minds of such pupils. Teachers might need to guard against
survival acceptance of class views by very careful monitoring of individuals.

A third criticism of all experimental teaching situations is that they are invariably
better resourced than in an ordinary classroom in an ordinary school. The implication
is that whatever is being tested would not work without the extra provision. Ongoing
research projects often do have more equipment and might sometimes have more than
one teacher in the room. But those who teach in developing countries look askance
at the resources of 'ordinary' classrooms in the Western world in any case, never
mind special projects, so it is an issue of relativity. In other words, there are really no
such things as ordinary classrooms and ordinary schools, for they are all different.
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Nevertheless, the underlying issue is an important one. It is possible that there are
limits to what can be attempted according to class size, general resource provision and
the quality and experience of the teachers.

The three major 'projects' described above are certainly revealing, but teachers are
not always convinced by results from teaching situations which may be regarded as
different from their own. And yet, even prior to the development and clear exposition
of constructivism as a concept in the final decades of the twentieth century, mathe-
matics teaching, in many countries, had begun to change. The shift in teaching
methods in some countries and by some teachers has normally been to move away
from a reliance only on the 'traditional' transmission mode. Investigational methods,
problem-solving and extended projects are now clearly built into the curriculum
in some countries. There may be reasons for these developments in the minds of
curriculum planners which have nothing to do with constructivism, but construc-
tivism could provide a clearer rationale for such methods, and also provide teachers
with clearer guidelines as to procedures to adopt when practising the methods. If the
major intention becomes that of providing pupils with opportunities to construct
their own understanding of mathematics, and if this is to be carried out at least
partly on a social rather than an entirely individual basis, then teaching needs to be
structured in such ways as to attain these ends optimally. Lochhead (1991, p. 75) has
admitted that: 'To date constructivist thinking has been more effective in describing
what sorts of teaching will not work than in specifying what will'. Unfortunately, it is
true that constructivism does not directly dictate to us what teaching methods to use,
so it is appropriate to look in rather more detail at which of the methods in widespread
use in mathematics classrooms are legitimate to a contemporary constructivist. We
must note, however, that there are various interpretations of constructivism and it
does not appear to be clear how classroom practice might be guided by any particular
version.

Constructivism in our classrooms

First, we must clarify that the evolution of constructivism does not imply a rejection
of earlier attempts to facilitate more effective learning within a cognitive learning
environment. It is a misunderstanding of constructivism to suggest that there is
little the teacher can do to facilitate learning simply because the construction must
be carried out by the learner. The American literature contains many references to
'inquiry' learning, as being best for the construction of understanding, but the teacher
still has to organize it. The literature also regularly dismisses transmission as being
inappropriate to a constructivist approach to teaching. Instead, the emphasis is
placed on situations where pupils explore and discuss in an active and creative way.
According to Cobb eta/. (1991, p. 158) 'at a risk of over-simplification, an immediate
implication is that mathematics . . . should be taught through problem-solving'.
Constructivism most of all appears to suggest that the teacher needs to provide the
'scaffolding' which allows the child to progress, and it requires great skill to provide
the best scaffolding for each pupil. A consistent policy of complete non-intervention
by the teacher is therefore certainly not likely to be the best way to promote the con-
struction of knowledge. However, a policy of non-intervention with a certain child at a
particular point in time or with a particular group might be appropriate, especially
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when the responsibility for learning has been fully accepted by the child or group, as
might occur in the ideal 'open learning' or 'supported self-study' scheme. Whether
learning is basically active or passive is not really the critical issue. What matters is
whether the approach used has enabled the construction of meaning. In particular:

it makes no sense to assume that any powerful cognitive satisfaction springs from
. . . being told that one has done something right. . . the 'tightness' must be seen
to fit with an order one has established oneself. . . the teacher's role [is not] to
dispense 'truth' but rather to help and guide the student in the conceptual
organization of certain areas of experience, (von Glasersfeld, 1987, pp. 15—16)

As a generalization, active methods do seem to be preferable for many younger
children and for much of the time, but we certainly need much more knowledge
about what methods best promote construction. Such knowledge, of course, may well
be both topic-specific and child-specific! It must also be acknowledged that any
interpretation of constructivism is itself a construction of the interpreter.

Activity is clearly important to many constructivists, but what is meant by math-
ematical activity and how is it to be encouraged? Richards (1991) has claimed that
students will not become active learners by accident, but by design - in other words it
is up to us, the teachers, to arrange the environment. It might well be true that pupils
frequently seem to appreciate a classroom buzzing with activity and in which they are
engaged in practical tasks. It might well seem to us that learning through physical
activity with concrete objects is often a good way of trying to promote the learning
of particular ideas. However, what is most important is creative mental activity, and
if there is no reflection and no thinking the practical activity might be a waste of
time. This is a misunderstanding which it is easy to hold, for example, about the use
of apparatus (see Chapter 5). On the other hand, we must accept that our minds can
be very active even when listening to a teacher or when reading a book, or in other
occupations which at first sight might appear passive. In other words, any inter-
pretation of constructivism as activity-based learning is too simplistic because, for
many people, this would certainly carry a notion of physical manipulation or move-
ment. Also, for a constructivist, interaction might be considered an important com-
ponent of whatever is thought of as action. The optimum balances between concrete
manipulation and mental activity, and between individual study and cooperative
discussion and debate within the mathematics curriculum are likely to vary according
to age and capability of pupil, to nature and type of content, and to the resources
available anyway.

Many examples of pupils learning through the use of apparatus come from the
approaches to number work in the early primary years. It is therefore very satisfying
when examples which fit with notions of constructivism can be found from the
teaching of older students. Williams (1985) found that the use of apparatus in
learning mechanics helped a great deal. It should perhaps be clarified that there is a
difference between structural apparatus which sets out to provide concrete support for
the extraction of ideas which are modelled by the structure and other apparatus which
contains no such exact match with ideas. The mechanics apparatus used by Williams
was not 'structural' but it did provide practical experience. It mostly helped the
students because it revealed data which challenged preconceptions about motion in
dynamics, it revealed beliefs which were not borne out when the apparatus was used
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(and which were also, of course, contrary to those which the teacher hoped to pro-
mote). It therefore fostered discussion, further controlled experiment and the
exchange of opinions which ultimately led to change of belief. The whole process from
the revelation of alternative conceptions to the coming to an agreed view had to run its
course, and this took time.

Often, the use of apparatus is curtailed by the teacher when it is judged either that
enough time has been spent or that the majority of pupils ought by now to have
learned the knowledge or skill in question. Of course, it is always difficult for a teacher
to know when there is no longer any need to provide apparatus, but some pupils
might be deprived of learning opportunities too soon. From a constructivist perspec-
tive this is very regrettable. And then there is a danger that the use of particular
apparatus leads to worksheets too soon, so becoming almost behaviouristic in its
implementation. Often the use of apparatus does not demand that pupils think,
discuss, argue and conclude. The success in the mechanics context was not solely due
to the apparatus; it was due to allowing students the time as well as the opportunity
to construct their own understanding. It perhaps also involved the resolution of
cognitive conflict within a social context. There can be no guarantee that larger groups
of younger pupils would eventually ever be able to use their experiences with
Multibase Arithmetic Blocks, say, to come to a better understanding of place value in
the same way that the mechanics students eventually constructed their understanding.
That surely is compatible with, rather than a failure of, the notion of constructivism.

Sometimes, when using equipment, too much is expected. The equipment is
merely a vehicle which can provide both analogous concrete experience and oppor-
tunity for group discussion and the construction of meaning. Naturally, it might not
have the desired effect. In many cases of reported failure, the focus has perhaps been
too much on the provision of appropriate equipment and not enough on what goes
on in the minds of the pupils. Indeed, some people would claim that the concrete
embodiments of abstract ideas only directly convey the ideas to those who already
understand them, so failure will be frequent. Nevertheless, we ought to persevere
with a whole variety of teaching methods, for no method is guaranteed to work. With
apparatus, it is important not to lose sight of the Piagetian view that it is the activity
which is to be mathematized, not the equipment itself, nor to lose sight of the
importance of discussion and argument, both between teacher and pupils and between
pupils themselves. As regards discovery learning, similar conclusions are legitimate.
Setting up what is intended to be a discovery learning situation is naturally not
automatically going to guarantee learning, and may be an abysmal failure. Discovery
learning can only succeed when it is reconstituted as providing opportunities for
construction. Situations which introduce cognitive conflict and the opportunities
for the negotiation of meaning within a group are important when one sets out to
implement constructivism. Unfortunately, some teachers might feel that an over-full
curriculum and lack of encouragement to look for better ways of teaching do not
encourage thoughtful constructivist strategies.

As we have already seen, the traditional and ubiquitous whole-class teaching
method which has become known as transmission teaching has been fairly categoric-
ally rejected by many constructivists as being ineffective for most of the time for
most of the class. However, we must also recognize that individual children often need
only the transmission of a quick answer to a question to promote their cognitive
development, and a further question from the teacher may not only be unnecessary, it
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might be a frustration. As a result of being told something, another mental cog might
fit into place. It therefore does not seem legitimate to assume that constructivism
suggests you should never tell any child anything. Also, even if the child cannot
totally integrate a notion with ideas already in the mind, subsequent reflection
can sometimes fill in the gaps. Ideally, the teacher should accept there may still be
uncertainties in the child's mind, and should continue to provide experiences over a
period of time which will help to consolidate a notion which is proving difficult to
accommodate. The best kind of verbal interaction between teacher and pupil is not
one of telling anyway, it is one in which the two minds are interlocked for a time
whilst a notion is explored together, in the same way as it is hoped that pupils will
operate in discussion groups.

Behaviourism has influenced teaching methods around the world since the nine-
teenth century. It led to emphasis on drill and practice in mathematics in the belief
that 'practice makes perfect', and the classroom experience of many teachers will
perhaps lead them to believe that there should still be a place for practice, both
mental and written. The belief that children sometimes need practice in their mental
activities just as they need to practise motor skills such as riding a bicycle or
swimming is supported by Winston (2003), though not as any direct support for
behaviourism. This very recent discussion of the place of repetition comes from our
growing understanding of how our brain works, and the belief that neural connections
are forged by repeating the same mental activity until it becomes firmly attached and
related to existing structures. This belief also incorporates the converse, namely that
deterioration of the physical link will occur when practice ceases (see Chapter 3). Once
the link is fully established, however, one must assume that the risk of deterioration is
less, for strong networks have been created, and so we do not lose the ability to swim,
ride a bicycle, multiply numbers or solve a simple linear equation. Perhaps it explains
why even intelligent adults can forget so much of the mathematics they supposedly
learned at school, because skills have ceased to be practised before they fit into a
network of knowledge which is going to be consciously preserved. One must suspect
than many adults never really forged firm enough connections and so did not absorb
much of their mathematics education in the first place. We must allow a place for
relevant practice within any approach to teaching and learning mathematics, but if it
is used it surely must be practice which engages the minds of the pupils and is not
mere mindless repetition.

It is interesting that practice is said to be excluded from Kamii's innovative
approaches to early number work. Rote learning (learning by heart and without
meaning) has often been associated with behaviourism, perhaps unfairly, and has
certainly been a traditional method of school teaching. However, rote learning is
accepted as a necessary feature of the approach to learning mathematics associated
with Kamii, but it is not forced, it takes place in a natural and enjoyable way.
Ausubel, too, has suggested that some forms of learning by rote might be necessary
with younger pupils, up to the time when notions start to become associated into
networks of knowledge. Many people have successfully and happily learned aspects of
mathematics without fully understanding at the time. Many able pupils seem to be
able to preserve some knowledge in a kind of holding bay in the mind, awaiting the
time when it can either be stored meaningfully, rejected, or discarded. On the other
hand, many others have come to reject mathematics as a subject because they did not
understand enough - there was too little in the way of connections between networks
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in the mind. Rote learning does not feature in most descriptions of constructivist
teaching.

The exploration of teaching methods which might be used by constructivists has
led to interesting novelties which could become valuable common practice. The idea
of concept mapping (see also Chapters 2 and 10) is one that can assist pupils in both
checking and consolidating in a constructivist way what it is that they have learned.
At the nodes of a concept map (network) might be items of knowledge, or concepts,
or anything which a child remembers from lessons. Linking the nodes, lines can be
drawn to show connections or relationships of any kind which the child believes
exists. Figure 2.2 shows a pupil's own representation of what had been learned
about triangles, together with the perceived connections. The constructivist point of
view would be that it is better for children to construct such representations of their
own, showing what they understand of what they have learned rather than for the
teacher to tell them what they ought to have learned. The diagram is then available
for others to challenge and perhaps improve. Figure 11.1 is an example of a map
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constructed by two secondary school pupils working cooperatively (original spellings
retained).

Another variation on concept mapping has recently been suggested by Entrekin
(1992), and this she calls 'mathematical mind mapping'. The basic idea is to begin a
teaching sequence by asking for a word or phrase which best described what a recent
lesson had been about. This word or phrase might then be recorded on the chalkboard.
Subsequent questions could include, 'And what did we discover about it?', or possibly,
'And what else do you remember about it?' The aim here is to build up a map of what
is in the minds of pupils in the class. This can clearly lead to discussion, debate and
argument, with the ultimate stage being either an agreed best map, or each pupil's
own individual best map, of a subject area, showing how separate nodes are related
to a main node and to each other. Maps completed individually after some early dis-
cussion can then lead to consideration of who has the best, and why, perhaps in a small
group situation. An example of what might be produced is shown in Figure 11.2.
Although not produced by pupils, a more complicated map of the algebra curriculum,
incorporating the three different dimensions of tools, themes and concepts, is to be
found in Picciotto and Wah (1993). Exploring sections of the algebra curriculum and
attempting to build up parts of this kind of map might be a very helpful constructive
class activity.

Some mathematical topics might lend themselves to students writing their own
sections for a personal 'textbook'. One example used by the author is from statistics,
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and concerns the theorem that distributions based on sums and differences of two
given distributions have mean equal to the sum (or difference) of the two means and
variance equal to the sum of the two variances. This can be 'proved' by students, thus
providing greater satisfaction than a proof transmitted by the teacher. Initial group
investigation with suitable simple numbers will suggest what the results are, and the
students can then be set to work to produce algebraic proofs. The draft proofs pro-
duced in this way may then be debated and discussed and ultimately written out in a
format which is as good as is found in any textbook. In this way a new theorem has
been constructed and not delivered, with the likelihood that it will not only be better
remembered, but will always be used correctly (not always the outcome of transmis-
sion teaching of this theorem). Here, however, we are clearly talking of able pupils. At
the other extreme we have to acknowledge that there are academically weaker pupils
who may have very different needs. Not enough is known about the extent to which
weaker pupils can construct their own understanding. The first reaction of many
teachers is that such pupils need very clear instructions and a great deal of help, and
that even then the quality of learning is often still poor. Other teachers, however, hold
the view that constructivist approaches must be tried out with weak pupils as well,
because the success rate can hardly be worse than it is with traditional transmission
and practice. Underhill (1991) has described several more teaching techniques which
can assist teachers to move towards styles of teaching which better promote con-
struction. Some of the difficulties which teachers might experience in adopting
constructivist teaching approaches are discussed in Orton (1994).

Cognitive obstacles

The issue of cognitive obstacles is one that must be taken into account in connection
with any theory of how mathematics is learned. In Chapter 1, reference was made to
the existence of notable stumbling blocks in learning mathematics, and the examples
provided in that chapter included place value, ratio and algebra. The last of these,
algebra, is different from the others in that it is a potentially huge subject area, so it
probably contains many stumbling blocks - often referred to as cognitive obstacles.
One example of such an obstacle in algebra was described in work by Collis (1975) and
is known as 'lack of closure'. Young children come to expect that the addition of
two numbers should produce a single number as the answer, for example 2 + 3 = 5. In
algebra, however, additions like x + 3, 2x — 1 and
further. There is no single 'number' which is the answer. As all mathematics teachers
know, children will often try to close algebraic expressions inappropriately, by com-
bining terms in any one of a number of incorrect ways. One example of this is to give
'3x as the 'answer' to x + 3, another is to give 'x' as the 'answer' to 2x — 1, though
these are not the only wrong attempts at closure which we are likely to encounter in
lessons. Perhaps by the age of around fifteen years, after several years of studying
algebra, many pupils will have fully accommodated to the notion that such expres-
sions cannot be closed any further. Then, when this accommodation has finally been
reached, students have attained a stage of understanding described by Collis as
'acceptance of lack of closure'. Other obstacles in learning algebra have been discussed
by Herscovics (1989) under the general description of concatenation, that is, the kind
of abbreviated form of combinations of symbols which is such a feature of algebra.

cannot be closed any
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Many incorrect answers result from this obstacle, for example, when substituting x = 3
in the term 2x pupils will often conclude that the answer is 23.

These examples clearly suggest that pupils have a tendency to fall back on an
arithmetic frame of reference when learning algebra. In our teaching, however, we are
very likely to use what we perceive to be corresponding arithmetical examples in
order to try to help pupils to learn algebra, in other words we often encourage such
comparison or analogy. A simple example is when we suggest that the sum x + y is
equivalent to 2 + 3; a more difficult example is when we use 3(2 + 5) as equivalent to
a(b + c). The expansion of
has been mentioned in earlier chapters. Students have a tendency to expand

, but the use of a numerical equivalent lik
correct. However, difficulties with using this assumed comparability start arising very
early in the study of algebra, for example, with the concatenation of the product 'x
multiplied by y' to xy, as illustrated above. And 3(2 + 5) can be simplified to 3 X 7,
whilst a(b + c) cannot be simplified in the same way. Basically, the problem is that
the operations of arithmetic are often fundamentally different from corresponding
operations in algebra, so there is inevitably an obstacle here. In arithmetic, 4 + 7 is a
question to be answered, but in algebra x + 7 is both process and answer. In other
words, a major cognitive adjustment is required in order to come to terms with the
algebra. Piaget's notions of assimilation and accommodation are helpful in under-
standing what the problem is for learners. Here, the point is that accommodation
requires the conflict between the old and new frames of reference to be overcome in
order for the algebraic notions to be assimilated.

The task which is usually described as the 'Student-Professor' problem is a well
known example of an algebraic cognitive obstacle. The problem is this:

There are six times as many students (or pupils)
as professors (or teachers) at this university (or
school). Write an equation to represent this infor-
mation using S for the number of students and P
for the number of professors.

The task has been set to many different groups of university students, yet these
talented learners often answer incorrectly, providing a reversal of the correct answer by
writing 6S = P. Other similar tasks reveal the same obstacle. Rosnick and Clement
(1980) have explored whether tutoring removes the problem, but came to the conclu-
sion the reversal is not easily corrected, and that 'students' misconceptions pertaining
to variable are not easily "taught" away'.

One important issue concerns precisely what is meant by a cognitive obstacle - after
all, the whole of learning could be considered to be about overcoming obstacles. How
should the notion be defined? When is a difficulty encountered in learning just a
minor setback and when is it a cognitive obstacle? Herscovics (1989) suggests that
cognitive obstacles are learning difficulties whose occurrence is widespread. Even
then, this would suggest that there are probably a very large number of such obstacles
in learning mathematics. Here, we are not interested in obstacles which could have
been avoided by better teaching, we mean those obstacles which are difficult to deal
with even under the most ideal circumstances, and which are being experienced year
after year by large numbers of pupils. As we have seen, cognitive obstacles may be

into is a more advanced example wich

as
reveals that cannot be
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understood best as problems of accommodation, and pedagogically they are very
challenging. Fundamentally, they can only be overcome by the learner succeeding in
making alterations to the mental structure in the mind, and presumably effecting a
suitable reorganization of the connections in the neural networks.

Constructivism seems to provide us with a way of coping with the issue of cognitive
obstacles better than most other theories associated with learning, in that it is a very
clear example of learners having to make sense of new notions by their own efforts.
As we have seen, Piaget's concept of equilibration is an important one in the under-
standing of cognitive obstacles, but up to now no attempt has been made to relate
them to stages of intellectual development, and at the moment it does not appear
likely that such an approach would be helpful. After all, cognitive obstacles can arise
at any time, even with students who ought to be firmly at the ultimate stage of formal
operations. Neo-behaviourism, with its belief in the efficacy of stimulus-response
connections, optimum sequencing, practice and readiness based on the existence
of prior knowledge does not seem to provide any way of explaining the problem of
cognitive obstacles and how to tackle them. As for Ausubel, it seems possible that his
notion of cognitive dissonance could be closely related to, or might even incorporate,
the problem of cognitive obstacles, but it is doubtful whether his original explanation
did. Naturally, solutions to the problem of cognitive obstacles are not easy to find
anyway, and Herscovics (1989) suggests, not surprisingly, that there are no guaranteed
recipes. All we can do is to create conditions likely to enable pupils to tackle and
ultimately conquer the obstacle through the difficult process of accommodation.
Such conditions are precisely those required for the construction of understanding
anyway.

There is no doubt that the adoption of methods of teaching which reflect con-
structivist beliefs present difficulties, but effective teaching has always been, and
probably always will be, hard work. It is appropriate to leave the last word to Wood
(1988, p. 210):

The perspective I have adopted on the nature of knowledge and its relation to
formal systems of thinking . . . precludes an approach to teaching that is based
on universal and invariant 'steps' and 'stages' . . . Rather, it invites interaction,
negotiation and the shared construction of experiences . . . The only way to avoid
the formation of entrenched misconceptions is through discussion and inter-
action. A trouble shared, in mathematical discourse, may become a problem
solved.
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Questions for discussion

1. To what extent does constructivism provide a theory of learning which teachers can accept
and put into practice?

2. What evidence is there that children today are benefiting from our accumulated knowledge
about how mathematics is learned?

3. What cognitive obstacles are you aware of and how do you try to help learners to overcome
the difficulties presented by them?

4. In what ways have you changed your views about the most effective ways of promoting the
learning of mathematics as a result of reading this book?



References

Abreu, G., Bishop, A. J. and Pompeu, G. (1997) 'What children and teachers count as
mathematics', in T. Nunes and P. Bryant (eds), Learning and Teaching Mathematics. Hove,
East Sussex: Psychology Press, pp. 233-63.

Anderson, J. R. (1985) Cognitive Psychology and its Implications. New York: W. H. Freeman.
Askew, M. and Wiliam, D. (1995) Recent Research in Mathematics Education 5-16. London:

HMSO.
Assessment of Performance Unit (1980) Mathematical Development: Primary Survey Report Number

1. London: HMSO.
Assessment of Performance Unit (1982a) Mathematical Development: Primary Survey Report

Number 3. London: HMSO.
Assessment of Performance Unit (1982b) Mathematical Development: Secondary Survey Report

Number 3- London: HMSO.
Assessment of Performance Unit (undated) Mathematical Development: A Review of Monitoring in

Mathematics 1978 to 1982. Slough: NFER.
Aubrey, C. (1993) 'An investigation of the mathematical knowledge and competencies which

young children bring into school', British Educational Research Journal, 19(1), 27—41.
Austin, J. L. and Howson, A. G. (1979) 'Language and mathematical education', Educational

Studies in Mathematics, 10, 161-97.
Ausubel, D. P. (I960) 'The use of advance organizers in the learning and retention of meaning-

ful verbal material', Journal of Educational Psychology, 51, 267-72.
Ausubel, D. P. (1963) 'Some psychological and educational limitations of learning by dis-

covery', New York State Mathematics Teachers Journal, XIII, 90—108. (Also in The Arithmetic
Teacher, 11(5), 290-302, 1964.)

Ausubel, D. P. (1968) Educational Psychology: A Cognitive View. New York: Holt, Rinehart &
Winston.

Balacheff, N. (1991) 'Treatment of refutations: Aspects of the complexity of a constructivist
approach to mathematics learning', in E. von Glasersfeld (ed.), Radical Constructivism in
Mathematics Education. Dordrecht: Kluwer, pp. 89-110.

Barnes, D. (1976) From Communication to Curriculum. Harmondsworth: Penguin.
Baroody, A. J. (1987) Children's Mathematical Thinking. New York: Teachers College Press.
Bartlett, F. (1958) Thinking. London: George Allen & Unwin.
Bell, A. W, Costello, J. and Kiichemann, D. (1983) Research on Learning and Teaching. Windsor:

NFER-Nelson.
Bell, A., Swan, M., Onslow, B., Pratt, K. and Purdy, D. (1989) Diagnostic Teaching for Long Term

Learning. Nottingham: Shell Centre for Mathematical Education.



214 References

Bell, P. (1970) Basic Teaching for Slow Learners. London: Mullet.
Bereiter, C. (1997) 'Situated cognition and how to overcome it', in D. Kirshner and

J. A. Whitson (eds), Situated Cognition: Social, Semiotic and Psychological Perspectives.
Mahwah, NJ: Lawrence Erlbaum, pp. 281-300.

Berry, J. W. (1985) 'Learning mathematics in a second language: Some cross-cultural issues',
For the Learning of Mathematics, 5(2), 18-23.

Bigge, M. L. (1976) Learning Theories for Teachers, 3rd edn. New York: Harper & Row.
Biggs, E. E. (1972) 'Investigational methods', in L. R. Chapman (ed.), The Process of Learning

Mathematics. Oxford: Pergamon, pp. 216—40.
Biggs, E. and Shaw, J. (1985) Maths Alive! London: Cassell.
Bishop, A. J. (1973) 'The use of structural apparatus and spatial ability - a possible relation-

ship', Research in Education, 9, 43—9-
Bishop, A. J. (1980) 'Spatial abilities and mathematics education - a review', Educational

Studies in Mathematics, 11, 257—69-
Bishop, A. J. (1988a) 'Mathematics education in its cultural context', Educational Studies in

Mathematics, 19, 179-91.
Bishop, A. J. (1988b) Mathematical Enculturation: A Cultural Perspective on Mathematics

Education. Dordrecht: Kluwer.
Bishop, A. J. (1991) 'Mathematics education in its cultural context', in M. Harris (ed.), Schools,

Mathematics and Work. London: The Falmer Press, pp. 29—41.
Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H. and Krathwohl, D. R. (1956)

Taxonomy of Educational Objectives: Cognitive Domain. London: Longman.
Boaler, J. (1997) Experiencing School Mathematics. Buckingham: Open University Press.
Booth, L. R. (1984) Algebra: Children's Strategies and Errors. Windsor: NFER-Nelson.
Branford, B. (1921) A Study of Mathematical Education. Oxford: The Clarendon Press.
Brown, G. and Desforges, C. (1977) 'Piagetian psychology and education: Time for revision',

British Journal of Educational Psychology, 47, 7-17.
Brown, M. (1978) 'Cognitive development and the learning of mathematics', in A. Floyd (ed.),

Cognitive Development in the School Years. London: Croom Helm, pp. 351—73.
Brown, M. (1981a) 'Number operations', in K. M. Hart (ed.), Children's Understanding of

Mathematics: 11-16. London: John Murray, pp. 23^7.
Brown, M. (1981b) 'Place value and decimals', in K. M. Hart (ed.), Children's Understanding

of Mathematics: 11-16. London: John Murray, pp. 48-65.
Brown, S. I. and Walter, M. I. (1983) The Art of Problem Posing. Philadelphia: The Franklin

Institute Press.
Bruner, J. S. (1960a) 'On learning mathematics', The Mathematics Teacher, 53, 610-19.
Bruner, J. S. (1960b) The Process of Education. Cambridge, MA: Harvard University Press.
Bruner, J. S. (1966) Toward a Theory of Instruction. Cambridge, MA: Harvard University Press.
Bruner, J. S. (1973) Beyond the Information Given. London: George Allen & Unwin.
Bruner, J. S. and Kenney, H. J. (1965) 'Representation and mathematics learning', in

L. N. Morrisett and J. Vinsonhaler (eds), Mathematical Learning. Monograph of the Society
for Research in Child Development, 30(1), pp. 50-9-

Bruner, J. S., Goodnow, J. J. and Austin, G. A. (1956) A Study of Thinking. New York: Wiley.
Bruner, J. S., Olver, R. R. and Greenfield, P. M. (1966) Studies in Cognitive Growth. New York:

Wiley.
Bryant, P. (1974) Perception and Understanding in Young Children. London: Methuen.
Burger, W. F. and Shaughnessy, M. J. (1986) 'Characterizing the van Hiele levels of develop-

ment in geometry', Journal for Research in Mathematics Education, 17, 31—48.
Burton, L. (1984) Thinking Things Through. Oxford: Blackwell.
Buxton, L. (1981) Do You Panic About Maths? London: Heinemann.
Byers, V. and Erlwanger, S. (1985) 'Memory in mathematical understanding', Educational

Studies in Mathematics, 16, 259—81.



References 215

Carpenter, T. P. and Moser, J. M. (1982) 'The development of addition and subtraction
problem-solving skills', in T. P. Carpenter, J. M. Moser and T. A. Romberg (eds), Addition
and Subtraction: A Cognitive Perspective. Hillsdale, NJ: Lawrence Erlbaum, pp. 9-24.

Carraher, T. N., Carraher, D. W. and Schliemann, A. D. (1987) 'Written and oral math-
ematics', Journal for Research in Mathematics Education, 18(2), 83—97.

Child, D. (1986) Psychology and the Teacher, 4th edn. London: Holt, Rinehart and Winston.
Chipman, S. F. and Mendelson, M. J. (1979) 'Influence of six types of visual structure on

complexity judgements in children and adults', Journal of Experimental Psychology: Human
Perception and Performance, 5(2), 365—78.

Cobb, P. (1987) 'Information-processing psychology and mathematics education — a con-
structivist perspective', Journal of Mathematical Behaviour, 6, 3—40.

Cobb, P., Wood, T. and Yackel, E. (1991) 'A constructivist approach to second grade
mathematics', in E. von Glasersfeld (ed.), Radical Constructivism in Mathematics Education.
Dordrecht: Kluwer, pp. 157-76.

Cockcroft, W. H. (1982) Mathematics Counts. London: HMSO.
Collis, K. F. (1975) A Study of Concrete and Formal Operations in School Mathematics: A Piagetian

Viewpoint. Hawthorn, Victoria: Australian Council for Educational Research.
Copeland, R. W. (1979) How Children Learn Mathematics. New York: Macmillan.
Cormier, S. M. and Hagman, J. D. (1987) 'Introduction', in S. M. Cormier and J. D. Hagman

(eds), Transfer of Learning: Contemporary Research and Applications. San Diego, CA: Academic
Press, pp. 1-8.

d'Ambrosio, U. (1985) 'Ethnomathematics and its place in the history and pedagogy of
mathematics', For the Learning of Mathematics, 5(1), 44—8.

d'Ambrosio, U. (1991) 'Ethnomathematics and its place in the history and pedagogy of
mathematics', in M. Harris (ed.), Schools, Mathematics and Work. London: The Falmer Press,
pp. 15-25.

Dasen, P. R. (1972) 'Cross-cultural Piagetian research: A summary', Journal of Cross-Cultural
Psychology, 3(1), 23-39.

Dasen, P. R. (1977) 'Introduction', in P. R. Dasen (ed.), Piagetian Psychology: Cross-Cultural
Contributions. New York: Gardner Press, pp. 1—25.

Davis, R. B. (1966) 'Discovery in the teaching of mathematics', in L. S. Shulman and
E. R. Keislar (eds), Learning by Discovery: A Critical Appraisal. Chicago: Rand McNally,
pp. 115-28.

Davis, R. B. (1984) Learning Mathematics: The Cognitive Science Approach to Mathematics
Education. London: Croom Helm.

Dearden, R. F. (1967) 'Instruction and learning by discovery', in R. S. Peters (ed.), The Concept
of Education. London: Routledge and Kegan Paul, pp. 135—55.

Department of Education and Science (1985) Mathematics from 5 to 16. London: HMSO.
Department of Education and Science/Welsh Office (1988) Mathematics for Ages 5 to 16.

London: HMSO.
Dewey, J. (1910) How We Think. Boston, MA: Heath.
Dickson, L., Brown, M. and Gibson, O. (1984) Children Learning Mathematics. Eastbourne:

Holt, Rinehart & Winston (Schools Council).
Dienes, Z. P. (I960) Building Up Mathematics. London: Hutchinson.
Dienes, Z. P., translated by P. Seaborne (1973) The Six Stages in the Process of Learning Math-

ematics. Windsor: NFER.
Donaldson, M. (1978) Children's Minds. Glasgow: Fontana/Collins.
Durkin, K. and Shire, B. (eds) (1991) Language in Mathematical Education. Buckingham: Open

University Press.
Eliot, J. and Smith, I. M. (1983) An International Directory of Spatial Tests. Windsor: NFER-

Nelson.
Entrekin, V. S. (1992) 'Mathematical mind mapping', The Mathematics Teacher, 85(6), 444-5.



216 References

Esler, W. K. (1982) 'Physiological studies of the brain: Implications for science teaching',
Journal of Research in Science Teaching, 19, 795-803.

Evans, J. (2000) Adults' Mathematical'Thinkingand'Emotions. London: Routledge/Falmer.
Fasheh, M. (1991) 'Mathematics in a social context: math within education as praxis versus

math within education as hegemony', in M. Harris (ed.), Schools, Mathematics and Work.
London: The Palmer Press, pp. 57-61.

Fennema, E. and Tartre, L. A. (1985) 'The use of spatial visualization in mathematics by girls
and boys', Journal for Research in Mathematics Education, 16, 184-206.

Fitzgerald, A. and Rich, K. M. (1981) Mathematics in Employment (16—18). Bath: University of
Bath.

Flanders, N. A. (1970) Analyzing Teaching Behaviour. Reading, MA: Addison-Wesley.
Fogelman, K. R. (1970) Piagetian Tests for the Primary School. Windsor: NFER.
Freudenthal, H. (1968) 'Why to teach mathematics so as to be useful', Educational Studies in

Mathematics, 1, 3—8.
Frobisher, L. (1994) 'Problems, investigations and an investigative approach', in A. Orton and

G. Wain (eds), Issues in Teaching Mathematics. London: Cassell, pp. 150—73.
Frobisher, L. (1999) 'Primary schoolchildren's knowledge of odd and even numbers',

in A. Orton (ed.), Pattern in the Teaching and Learning of Mathematics. London: Cassell,
pp. 31^8.

Frobisher, L., Monaghan, J., Orton, A., Orton, J., Roper, T. and Threlfall, J. (1999) Learning to
Teach Number. Cheltenham: Stanley Thornes.

Furneaux, W. D. and Rees, R. (1978) 'The structure of mathematical ability', British Journal of
Psychology, 69, 507-12.

Fuys, D., Geddes, D. and Tischler, R. (1988) The Van Hiele Model of Thinking in Geometry among
Adolescents. Reston, VA: NCTM.

Gagne, R. M. (1975) Essentials of Learning for Instruction. Hinsdale, IL: The Dryden Press.
Gagne, R.M. (1985) The Conditions of Learning and Theory of Instruction, 4th edn. New York:

Holt, Rinehart & Winston.
Gagne, R. M. and Briggs, L. J. (1974) Principles of Instructional Design. New York: Holt,

Rinehart & Winston.
Gagne, R. M. and Brown, L. T. (1961) 'Some factors in the programming of conceptual

learning', Journal of Experimental Psychology, 62, 313—21.
Gagne, R. M. and Smith, E. C. (1962) 'A study of the effects of verbalization on problem-

sol ving', Journal of Experimental Psychology, 63, 12—18.
Garrick, R., Threlfall, J. and Orton, A. (1999) 'Pattern in the nursery', in A. Orton (ed.),

Pattern in the Teaching and Learning of Mathematics. London: Cassell, pp. 1—17.
Gattegno, C. (I960) Modern Mathematics with Numbers in Colour. Reading: Educational

Explorers.
Gay, J. and Cole, M. (1967) The new mathematics and an old culture. New York: Holt, Rinehart &

Winston.
Gerdes, P. (1985) 'Conditions and strategies for emancipatory mathematics education in

underdeveloped countries', For the Learning of Mathematics, 5(1), 15-20.
Gerdes, P. (1988) 'On culture, geometrical thinking and mathematics education', Educational

Studies in Mathematics, 19, 137—62.
Gerdes, P. (1994) 'Reflections on ethnomathematics', For the Learning of Mathematics, 14(2),

19-22.
Getzels, J. W. and Jackson, P. W. (1962) Creativity and Intelligence. New York: Wiley.
Ghent, L. (1956) 'Perception of overlapping and embedded figures by children of different

ages', American Journal of Psychology, 69, 575—86.
Ginsburg, H. (1977) Children's Arithmetic: The Learning Process. New York: Van Nostrand.
Ginsburg, H. P., Choi, Y E., Lopez, L. S., Netley, R. and Chao-Huan, C. (1997) 'Happy birth-

day to you: early mathematical thinking of Asian, South American, and U.S. children',



References 217

in T. Nunes and P. Bryant (eds), Learning and Teaching Mathematics. Hove, East Sussex:
Psychology Press, pp. 163—201.

Goldin, G. A. (1989) 'Constructivist epistemology and discovery learning in mathematics', in
G. Vergnaud, J. Rogalski and M. Artigue (eds), Proceedings of the Thirteenth Annual Con-
ference for the Psychology of Mathematics Education, Volume 2. Paris, France: G. R. Didactique,
CNRS, pp. 15-22.

Gray, E. M. (1991) 'An analysis of diverging approaches to simple arithmetic: Preference and
its consequences', Educational Studies in Mathematics, 22, 551—74.

Gray, E. M. and Tall, D. O. (1994) 'Duality, ambiguity and flexibility: A "proceptual" view of
simple arithmetic', journal for Research in Mathematics Education, 26(2), 116—40.

Griinbaum, B. and Shephard, G. (1986) Tilings and Patterns: An Introduction. San Francisco:
Freeman.

Guilford, J. P. (1959) 'Three faces of intellect', The American Psychologist, 14, 469-79- (Also
in Wiseman, S. (ed.) (1967) Intelligence and Ability. Harmondsworth: Penguin Books,
pp. 218-37.)

Gura, P. (1992) Exploring Learning: Young Children and Block Play. London: Paul Chapman.
Hadamard, J. (1945) The Psychology of Invention in the Mathematical Field. Princeton, NJ:

Princeton University Press.
Harris, M. (1997) Common Threads: Women, Mathematics and Work. Stoke on Trent: Trentham

Books.
Hart, K. (1980) 'A hierarchy of understanding in mathematics', in W. F. Archenhold,

R. H. Driver, A. Orton and C. Wood-Robinson (eds), Cognitive Development Research In
Science and Mathematics. Leeds: University of Leeds Centre for Studies in Science Education,
pp. 39-61.

Hart, K. M. (ed.) (1981) Children's Understanding of Mathematics: 11-16. London: John
Murray.

Hart, K. M. (1984) Ratio: Children's Strategies and Errors. Windsor: NFER-Nelson.
Hart, K. M. (1989) 'There is little connection', in P. Ernest (ed.), Mathematics Teaching: The

State of the Art. Lewes: The Palmer Press.
Hartley, J. R. (1980) Using the Computer to Study and Assist the Learning of Mathematics. Leeds:

University of Leeds Computer-Based Learning Unit.
Harvey, R., Kerslake, D., Shuard, H. and Torbe, M. (1982) Language Teaching and Learning 6:

Mathematics. London: Ward Lock.
Heim, A. W. (\91Q)AH4 Group Test of General Intelligence. Windsor: NFER.
Her Majesty's Inspectorate (1985) Mathematics from 3 to 16. London: HMSO.
Her Majesty's Inspectorate (1989) Aspects of Primary Education: the Teaching and Learning of

Mathematics. London: HMSO.
Herscovics, N. (1989) 'Cognitive obstacles encountered in the learning of algebra', in

S. Wagner and C. Kieran (eds), Research Issues in the Learning and Teaching of Algebra.
Reston, VA: NCTM, pp. 60-86.

Hershkowitz, R. (1990) 'Psychological aspects of learning geometry', in P. Nesher and
J. Kilpatrick (eds), Mathematics and Cognition. Cambridge: Cambridge University Press,
pp. 70-95.

Hill, C. C. (1979) Problem-solving: Learning and Teaching. London: Frances Pinter.
Holt, J. (1964) How Children Fail. Harmondsworth: Penguin.
Hope, J. A. (1985) 'Unravelling the mysteries of expert mental calculation', Educational Studies

in Mathematics, 16, 355-74.
Howard, R. W. (1987) Concepts and Schemata. London: Cassell.
Hoyles, C. and Sutherland, R. (1989) Logo Mathematics in the Classroom. London: Routledge.
Hoyles, C., Kiichemann, D. and Foxman, D. (2003) 'Comparing geometry curricula: Insights

for policy and practice', Mathematics in School, 32(3), 2—6.
Hudson, L. (1966) Contrary Imaginations. Harmondsworth: Penguin.



218 References

Hughes, E. R. (1980) 'Should we check children?', in W. F. Archenhold, R. H. Driver,
A. Orton and C. Wood-Robinson (eds), Cognitive Development Research in Science and
Mathematics. Leeds: University of Leeds Centre for Studies in Science Education,
pp. 87-104.

Hughes, M. (1986) Children and Number. Oxford: Blackwell.
Hutt, C. (1972) Males and Females. Harmondsworth: Penguin.
Johnson, D. A. and Rising, G. R. (1967) Guidelines for Teaching Mathematics. Belmont, CA:

Wadsworth.
Johnson-Laird, P. N. (1983) Mental Models. Cambridge: Cambridge University Press.
Joint Matriculation Board/Shell Centre for Mathematical Education (1984) Problems with Pat-

terns and Numbers: An 0-level Module. Manchester: Joint Matriculation Board.
Kamii, C. K. with DeClark, G. (1985) Young Children Reinvent Arithmetic: Implications ofPiaget's

Theory. New York: Teachers College Press.
Kane, R. B., Byrne, M. A. and Hater, M. A. (1974) Helping Children Read Mathematics. New

York: American Book Co.
Karplus, R. and Peterson, R. W. (1970) 'Intellectual development beyond elementary school

II: Ratio, a survey', School Science and Mathematics, 70, 813-20.
Katona, G. (1940) Organizing and Memorizing. New York: Columbia University Press.
Kirshner, D. and Whitson, J. A. (1997) 'Editors' introduction', in D. Kirshner and

J. A. Whitson (eds), Situated Cognition: Social, Semiotic and Psychological Perspectives.
Mahwah, NJ: Lawrence Erlbaum, pp. 1—16.

Kolinsky, R., Morais, J., Content, A. and Cary, L. (1987) 'Finding parts within figures:
A developmental study', Perception, 16, 399-407.

Krathwohl, D. R., Bloom, B. S. and Masia, B. B. (1964) Taxonomy of Educational Objectives:
Affective Domain. London: Longman.

Krutetskii, V. A. (1976) The Psychology of Mathematical Abilities in Schoolchildren. Chicago:
University of Chicago Press.

Kuchemann, D. (1980) 'Children's difficulties with single reflections and rotations', Math-
ematics in School, 9(2), 12—13-

Kuchemann, D. (1981) 'Reflections and rotations', in K. M. Hart (ed.), Children's Under-
standing of Mathematics: 11—16. London: John Murray, pp. 137—57.

Laborde C. with Conroy, J., de Corte, E., Lee, L. and Pimm, D. (1990) 'Language and
mathematics', in P. Nesher and J. Kilpatrick (eds), Mathematics and Cognition. Cambridge:
Cambridge University Press, pp. 53—69.

Lancy, D. F. (1983) Cross-cultural Studies in Cognition and Mathematics. New York: Academic
Press.

Larkin, J. H. (1989) 'Eight reasons for explicit theories in mathematics education', in
S. Wagner and C. Kieran (eds), Research Issues in the Learning and Teaching of Algebra.
Reston, VA: NCTM, pp. 275-7.

Lave,J. (1988) Cognition in Practice: Mind, Mathematics and Culture in Every day Life. Cambridge:
Cambridge University Press.

Lave, J. (1997) The culture of acquisition and the practice of understanding', in D. Kirshner
and J. A. Whitson (eds), Situated Cognition: Social, Semiotic, and Psychological Perspectives.
Mahwah, NJ: Lawrence Erlbaum, pp. 17-36.

Leder, G. (1985) 'Sex-related differences in mathematics: An overview', Educational Studies in
Mathematics, 16, 304-9.

Lee, L. and Wheeler, D. (1987) Algebraic Thinking in High School Students: Their Conceptions of
Generalization and Justification. Montreal: Concordia University.

Lerman, S. (1989) 'Constructivism, mathematics and mathematics education', Educational
Studies in Mathematics, 20(2), 211-23-

Lester, F. K. Jr. (1977) 'Ideas about problem-solving: A look at some psychological research',
The Arithmetic Teacher, 25(2), 12-14.



References 219

Lester, F. K. Jr. (1989) 'Mathematical problem-solving in and out of school', The Arithmetic
Teacher, 37(3), 33-5.

Lindsay, P. H. and Norman, D. A. (1977) Human Information Processing. New York: Academic
Press.

Lochhead J. (1985) 'New horizons in educational development', Review of Research in Education,
12, 3-9.

Lochhead, J. (1991) 'Making math mean', in E. von Glasersfeld (ed.), Radical Constructivism in
Mathematics Education. Dordrecht: Kluwer, pp. 75-87.

Lovell, K. (197 la) 'Proportionality and probability', in M. F. Rosskopf, L. P. Steffe and
S. Taback (eds), Piagetian Cognitive-Development Research and Mathematical Education. Reston,
VA:NCTM,pp. 136-48.

Lovell, K. (1971b) The Growth of Understanding in Mathematics: Kindergarten Through Grade
Three. New York: Holt, Rinehart & Winston.

Lysaught, J. P. and Williams, C. M. (1963) A Guide to Programmed Instruction. New York:
Wiley.

MacNamara, E. A. (1990) Subitizing and addition of number: A study of young children learning
mathematics. Unpublished M.Ed, thesis, University of Leeds.

Magajna, Z. (2001) Geometric thinking in out-of-school contexts. Unpublished Ph.D. thesis,
University of Leeds.

Mager, R. F. (1975) Preparing Instructional Objectives (issued 1962 as Preparing Objectives for
Programmed Instruction). Belmont, CA: Fearon.

Masingila, J. O., Davidenko, S. and Prus-Wisniowska, E. (1996) 'Mathematics learning and
practice in and out of school: A framework for connecting these experiences', Educational
Studies in Mathematics, 31, 175-200.

Mason, J., Burton, L. and Stacey, K. (1985a) Thinking Mathematically (revised). Wokingham:
Addison-Wesley.

Mason, J., Graham, A., Pimm, D. and Gowar, N. (1985b) Routes to/Roots of Algebra. Milton
Keynes: Open University Press.

Mathematical Association (1923) The Teaching of Geometry in Schools. London: G. Bell & Sons.
Mathematical Association (1939) A Second Report on the Teaching of Geometry in Schools. London:

G. Bell & Sons.
Mathematical Association (1970) Primary Mathematics — A Further Report. London: Math-

ematical Association.
Matthews, G. (1964) Matrices. London: Edward Arnold.
Midlands Mathematical Experiment (1964) Report 1962—63. London: Harrap.
Miller, G. A. (1956) 'The magical number seven, plus or minus two: Some limits on our

capacity for processing information', Psychological Review, 63, 81—97.
Ministry of Education (1958) Teaching Mathematics in Secondary Schools. London: HMSO.
Mitchelmore, M. C. (1980) 'Three-dimensional geometrical drawing in three cultures',

Educational Studies in Mathematics, 11, 205—16.
Mobley, M. (1987) Making Ourselves Clearer: Readability in the GCSE. London: Secondary

Examinations Council.
Morgan, C. (1998) Writing Mathematically. London: The Palmer Press.
Morris, R. W. (1974) 'Linguistic problems encountered by contemporary curriculum

development projects in mathematics', in Interactions Between Linguistics and Mathematical
Education. Paris: UNESCO/CEDO/ICMI.

Newell, A. and Simon, H. A. (1972) Human Problem Solving. Englewood Cliffs, NJ: Prentice-
Hall.

Noss, R. and Hoyles, C. (1996) Windows on Mathematical Meanings: Learning Cultures and
Computers. Dordrecht: Kluwer.

Novak, J. D. (1977) A Theory of Education. Ithaca, NY: Cornell University Press.
Novak, J. D. (1980) 'Methodological issues in investigating meaningful learning', in



220 References

W. F. Archenhold, R. H. Driver, A. Orton and C. Wood-Robinson (eds), Cognitive Develop-
ment Research in Science and Mathematics. Leeds: University of Leeds Centre for Studies in
Science Education, pp. 129—55.

Novak, J. D. and Gowin, D. B. (1984) Learning How to Learn. Cambridge: Cambridge
University Press.

Nuffield Mathematics Project (1967) / Do, and I Understand. Edinburgh, London, New York:
Chambers/John Murray/Wiley.

Nuffield Mathematics Project (1969) Computation and Structure 4. Edinburgh, London, New
York: Chambers/John Murray.

Nuffield Mathematics Project (1970, 1973) Checking Up I, II, HI. Edinburgh, London, New
York: Chambers/John Murray/Wiley.

Nuffield Maths 5-11 (1983) Nuffield Maths 6 Teacher's Handbook. Harlow: Longman.
Nunes, T. and Bryant, P. (1996) Children Doing Mathematics. Oxford: Blackwell.
Nunes, T., Schliemann, A. D. and Carraher, D. W. (1993) Street Mathematics and School

Mathematics. Cambridge: Cambridge University Press.
Orton, A. (1971) 'Teaching about functions in the secondary school', Mathematics Teaching, 57,

45-9-
Orton, A. (1983) 'Students' understanding of differentiation', Educational Studies in Mathemat-

ics, 14, 235-50.
Orton, A. (1994) 'Learning mathematics: implications for teaching', in A. Orton and G. Wain

(eds), Issues in Teaching Mathematics. London: Cassell, pp. 35—57.
Orton, A. (2001) 'Psychology of learning and instruction, overview', in L. S. Grinstein and

S. I. Lipsey (eds), Encyclopedia of Mathematics Education. New York: RoutledgeFalmer,
pp. 594-602.

Orton, A. and Orton, J. (1999) 'Pattern and the approach to algebra', in A. Orton (ed.), Pattern
in the Teaching and Learning of Mathematics. London: Cassell, pp. 104-20.

Orton, J. (1997) 'Matchsticks, pattern and generalization', Education 3-13, 25(1), 61-5.
Orton, J. (1999) 'Children's perception of pattern in relation to shape', in A. Orton (ed.),

Pattern in the Teaching and Learning of Mathematics. London: Cassell, pp. 149—67.
Orton, J. and Orton, A. (1996) 'Making sense of children's patterning', in L. Puig and

A. Guitierrez (eds), Proceedings of the Twentieth International Conference for the Psychology of
Mathematics Education, Volume 4. Valencia, Spain: Universitat de Valencia, pp. 83-90.

Orton, J., Orton, A. and Roper, T. (1999) 'Pictorial and practical contexts and the perception
of pattern', in A. Orton (ed.), Pattern in the Teaching and Learning of Mathematics. London:
Cassell, pp. 121—36.

Otterburn, M. K. and Nicholson, A. R. (1976) 'The language of (CSE) mathematics',
Mathematics in School, 5(5), 18-20.

Papert, S. (1980) Mindstorms. Brighton: The Harvester Press.
Pegg, J. and Redden, E. (1990) 'Procedures for, and experiences in, introducing algebra in

New South Wales', Mathematics Teacher, 83(5), 386-91.
Piaget, J. (1973) The Child's Conception of the World. London: Paladin.
Picciotto, H. and Wah, A. (1993) 'A new algebra: Tools, themes, concepts', Journal of

Mathematical Behavior, 12, 19^42.
Poincare, H. (1970) 'Mathematical creation', in P. E. Vernon (ed.), Creativity. Harmondsworth:

Penguin, pp. 77-88.
Polya, G. (1954) Mathematics and Plausible Reasoning. Princeton, NJ: Princeton University

Press.
Polya, G. (1957) How to Solve It. New York: Doubleday Anchor Books. (First published in

1945 by Princeton University Press.)
Polya, G. (1962) Mathematical Discovery. New York: Wiley.
Popper, K. R. (1972) Objective Knowledge: An Evolutionary Approach. Oxford: The Clarendon

Press.



References 221

Presmeg, N. (1986) 'Visualization in high school mathematics', For the Learning of Mathematics
6(3), 42-6.

Reed, S. K. (1973) Psychological Processes in Pattern Recognition. New York: Academic Press.
Rees, R. (1974) 'An investigation of some common mathematical difficulties experienced by

students', Mathematics in School, 3(1), 25—7.
Rees, R. (1981) 'Mathematically gifted pupils: Some findings from exploratory studies of

mathematical abilities', Mathematics in School, 10(3), 20—3.
Renwick, E. M. (1935) The Case Against Arithmetic. London: Simpkin Marshall.
Resnick, L. B. and Ford, W. W. (1984) The Psychology of Mathematics for Instruction. Hillsdale,

NJ: Lawrence Erlbaum.
Richards, J. (1991) 'Mathematical discussions', in E. von Glasersfeld (ed.), Radical Con-

structivism in Mathematics Education. Dordrecht: Kluwer, pp. 13-51.
Rosnick, P. and Clement, J. (1980) 'Learning without understanding: The effect of tutoring

strategies on algebra misconceptions', Journal of Mathematical Behavior, 3(1), 3—27.
Rosskopf, M. E, Steffe, L. P. and Taback, S. (eds) (1971) Piagetian Cognitive-development Research

and Mathematical Education. Reston, VA: NCTM.
Russell, S. (1983) Factors Influencing the Choice of Advanced Level Mathematics by Boys and Girls.

Leeds: University of Leeds Centre for Studies in Science and Mathematics Education.
Sawyer, W. W. (1955) Prelude to Mathematics. Harmondsworth: Penguin.
Saxe, G. (1991) Culture and Cognitive Development: Studies in Mathematical Understanding.

Hillsdale, NJ: Lawrence Erlbaum.
Saxe, G. B. and Posner, J. (1983) 'The development of numerical cognition: Cross-cultural

perspectives', in H. P. Ginsburg (ed.), The Development of Mathematical Thinking. New York:
Academic Press, pp. 292-317.

Scandura, J. M. and Wells, J. M. (1967) 'Advance organizers in learning abstract mathematics',
American Educational Research Journal, 4, 295—301.

Scheerer, M. (1963) 'Problem-solving'. Scientific American Offprint 476. (From Scientific American,
208(4), 118-28).

Schliemann, A. (1984) 'Mathematics among carpenters and apprentices', in P. Damerow,
M. W. Dunckley, B. F. Nebres and B. Werry (eds), Mathematics for All. Paris: UNESCO,
pp. 92-5.

Schliemann, A. (1995) 'Some concerns about bringing everyday mathematics to mathematics
education', in L. Meira, and D. Carraher, (eds), Proceedings of the 19th International Conference
for the Psychology of Mathematics Education, Volume 1. Recife, Brazil: Universidade Federal
de Pernambuco, pp. 45—60.

Schools Council (1965) Mathematics in Primary Schools. London: HMSO.
Scribner, S. (1984) 'Studying working intelligence', in B. Rogoff and L. Lave (eds), Everyday

Cognition: Its Development in Social Context. Cambridge, MA: Harvard University Press,
pp. 9-40.

Seaborne, P. L. (1975) An Introduction to the Dienes Mathematics Programme. London: University
of London Press.

Sewell, B. (1981) Use of Mathematics by Adults in Everyday Life. Leicester: ACACE.
Shuard, H. (1982a) 'Differences in mathematical performance between girls and boys', in

W. H. Cockcroft, Mathematics Counts. London: HMSO, pp. 273-87.
Shuard, H. (1982b) 'Reading and learning in mathematics', in R. Harvey, D. Kerslake,

H. Shuard and M. Torbe, Language Teaching and Learning 6: Mathematics. London: Ward
Lock, pp. 84-121.

Shuard, H. and Rothery, A. (eds) (1984) Children Reading Mathematics. London: John Murray.
Shuard, H., Walsh, A., Goodwin, J. and Worcester, V. (1991) Calculators, Children and

Mathematics. London: Simon and Schuster.
Shulman, L. S. (1970) 'Psychology and mathematics education', in E. G. Begle (ed.), Mathemat-

ics Education. Chicago: NSSE, pp. 23—71.



222 References

Skemp, R. R. (1964) Understanding Mathematics: Teacher's Notes for Book I. London: University of
London Press.

Skemp, R. R. (1971) The Psychology of Learning Mathematics. Harmondsworth: Penguin.
Skemp, R. R. (1976) 'Relational understanding and instrumental understanding', Mathematics

Teaching, 77, 20—6.
Skemp, R. R. (1982) 'Communicating mathematics: Surface structures and deep structures',

Visible Language, XVI, 281-8.
Skinner, B. F. (1961) 'Teaching machines'. Scientific American Offprint 461. (From Scientific

American, 205(5), 90-102).
Skinner, B. F. (1974) About Behaviourism. London: Jonathan Cape.
Smith, I. M. (1964) Spatial Ability: Its Educational and Social Significance. London: University of

London Press.
Solomon, Y. (1989) The Practice of Mathematics. London: Routledge.
Springer, S. P. and Deutsch, G. (1981) Left Brain, Right Brain. San Francisco: Freeman.
Stacey, K. (1989) 'Finding and using patterns in linear generalizing problems', Educational

Studies in Mathematics, 20, 147-64.
Stern, C. with Stern, M. B. (1953) Children Discover Arithmetic. London: Harrap.
Sternberg, R. J. (1989) 'A componential approach to intellectual ability', in R. J. Sternberg

(ed.), Advances in the Psychology of Human Intelligence, Volume 1. Hillsdale, NJ: Lawrence
Erlbaum, pp. 413-57.

Stewart, J. (1985) 'Cognitive science and science education', European Journal of Science
Education, 7, 1—17.

Stewart, J. and Atkin, J. (1982) 'Information processing psychology', Journal of Research in
Science Teaching, 19, 321—32.

Sutton, C. (ed.) (1981) Communicating in the Classroom. London: Hodder & Stoughton.
Suydam, M. N. and Weaver, J. F. (1977) 'Research on problem-solving: Implications for

elementary school classrooms', The Arithmetic Teacher, 25(2), 40-2.
Tait, K., Hartley, J. R. and Anderson, R. C. (1973) 'Feedback procedures in computer-assisted

arithmetic instruction', British Journal of Educational Psychology, 43, 161-71.
Thorndike, E. L. (1922) The Psychology of Arithmetic. New York: Macmillan.
Threlfall, J. (1996) 'The role of practical apparatus in the teaching and learning of arithmetic',

Educational Review, 48(1), 3—12.
Threlfall, J. (1999) 'Repeating patterns in the early primary years', in A. Orton (ed.), Pattern in

the Teaching and Learning of Mathematics. London: Cassell, pp. 18—30.
Threlfall, J. and Frobisher, L. (1999) 'Patterns in processing and learning addition facts',

in A. Orton (ed.), Pattern in the Teaching and Learning of Mathematics. London: Cassell,
pp. 49-66.

Torbe, M. and Shuard, H. (1982) 'Mathematics and language', in R. Harvey, D. Kerslake,
H. Shuard and M. Torbe, Language Teaching and Learning 6: Mathematics. London: Ward
Lock, pp. 1-21.

Underbill, R. G. (1991) 'Two layers of constructivist curricular interaction', in E. von
Glasersfeld (ed.), Radical Constructivism in Mathematics Education. Dordrecht: Kluwer,
pp. 229-48.

UNESCO (1974) Interactions Between Linguistics and Mathematical Education. Paris: UNESCO/
CEDO/ICMI.

Ursini, S. (1991) 'First steps in generalization processes in algebra', in F. Furinghetti (ed.),
Proceedings of the Fifteenth International Conference for the Psychology of Mathematics Education,
Volume 3- Assisi, Italy: Universita di Genova, pp. 316-23.

Vergnaud, G. (1982) 'A classification of cognitive tasks and operations of thought involved in
addition and subtraction problems', in T. P. Carpenter, J. M. Moser and T A. Romberg
(eds), Addition and Subtraction: A Cognitive Perspective. Hillsdale, NJ: Lawrence Erlbaum,
pp. 39-59.



References 223

Vergnaud, G. (1990) 'Epistemology and psychology of mathematics education', in P. Nesher
and J. Kilpatrick (eds), Mathematics and Cognition. Cambridge: Cambridge University
Press, pp. 14-30.

Vernon, P. E. (1950) The Structure of Human Abilities. London: Methuen.
Verschaffel, L. and De Corte, E. (1997) 'Word problems: A vehicle for promoting authentic

mathematical understanding and problem-solving in the primary school', in T. Nunes and
P. Bryant (eds), Learning and Teaching Mathematics. Hove, East Sussex: Psychology Press,
pp. 69-97.

Vithal, R. and Skovsmose, O. (1997) 'The end of innocence: A critique of "ethno-
mathematics" ', Educational Studies in Mathematics, 34, 131-57.

von Glasersfeld, E. (1987) 'Learning as a constructive activity', in C. Janvier (ed.), Problems of
Representation in the Teaching and Learning of Mathematics. Hillsdale, NJ: Lawrence Erlbaum,
pp. 3-17.

von Glasersfeld, E. (1991) 'Introduction', in E. von Glasersfeld (ed.), Radical Constructivism in
Mathematics Education. Dordrecht: Kluwer, pp. xiii-xx.

Vygotsky, L. S. (1962) Thought and Language. New York: MIT Press/Wiley.
Walkup, L. E. (1965) 'Creativity in science through visualization', Perceptual and Motor Skills,

21(1)35-41.
Wall, W. D. (1965) 'Learning to think', in W. R. Niblett (ed.), How and Why Do We Learn?

London: Faber & Faber.
Waring, S., Orton, A. and Roper, T. (1999) 'Pattern and proof, in A. Orton (ed.), Pattern in the

Teaching and Learning of Mathematics. London: Cassell, pp. 192—206.
Warren, E. (1992) 'Beyond manipulating symbols', in A. Baturo and T. Cooper (eds), New

Directions in Algebra Education. Red Hill, Australia: Queensland University of Technology,
pp. 252-8.

Wertheimer, M. (1961) Productive Thinking. London: Tavistock Publications.
Wickelgren, W. A. (1974) How to Solve Problems. San Francisco: Freeman.
Williams, E. and Shuard, H. (1982) Primary Mathematics Today, 3rd edn. Harlow: Longman.
Williams, J. S. (1985) 'Using equipment in teaching mechanics', in A. Orton (ed.), Studies

in Mechanics Learning. Leeds: University of Leeds Centre for Studies in Science and
Mathematics Education, pp. 55—86.

Wilson, B. (1981) Cultural Contexts in Science and Mathematics Education. Leeds: University of
Leeds Centre for Studies in Science and Mathematics Education.

Winston, R. (2003) The Human Mind. London: British Broadcasting Corporation and Bantam
Press.

Witkin, H. A., Moore, C. A., Goodenough, D. R. and Cox, P. W. (1977) 'Field-dependent
and field-independent cognitive styles and their educational implications', Review of
Educational Research,47(1), 1—64.

Wood, D. (1988) How Children Think and Learn. Oxford: Blackwell.
Wood, R. (1977) 'Cable's comparison factor: Is this where girls' troubles start?', Mathematics in

School, 6(4), 18-21.
Wrigley, J. (1963) 'Some programmes for research', in F. W. Land (ed.), New Approaches to

Mathematics Teaching. London: Macmillan, pp. 30-9-
Young, R. G. (1966) Sets: A Programmed Course. London: Methuen.
Zachos, I. (1994) Problem-solving in Euclidean geometry in Greek schools. Unpublished Ph.D. thesis,

University of Leeds.
Zaslavsky, C. (1973) Africa Counts. Boston, MA: Prindle, Weber & Schmidt.



This page intentionally left blank 



Author index

Abreu, G. 123
AndersonJ. R. 84
Askew, M. 11, 15,24,25, 194
Assessment of Performance Unit

107, 108, 116, 150, 152^
AtkinJ. 192
Aubrey, C. 101
Austin,]. L. 157, 174
Ausubel, D. P. 24, 26, 68, 70, 75,

76, 139, 176, 185-91,201,
206,211

Balacheff, N. 198, 199
Barnes, D. 157, 166, 167
Baroody, A.J. 211
Bartlett, E 141, 177, 180
Bell, A. W. 63, 112, 116, 117,

145,183,201
Bell, P. 158
Bereirer, C. 133, 134
Berry, J. W. 68, 168, 170

s, M. L. 28, 37
s, E. E. 37,73,75,76,98,99

Bishop, A.J. 127, 130, 131, 149,
171

Bloom, B.S. 11, 13,31
BoalerJ. 135
Booth, L. R. 68
Branford, B. 3,7, 12
Bnggs,L.J. 33
Brown, G. 66, 75
Brown, M. 7, 13, 146
Brown, S. I. 90,91,98
Bruner, J. S. 58, 60, 73-6, 149,

154, 166, 176-80,186,191
Bryant, P. 26,64,65,70
Burger, W. E 182
Burton, L. 93
Buxton, L. 11, 155
Byers, V. 26

Carpenter, T. P. 172, 173, 194

Carraher, D. W. 133, 135
Carraher, T. N. 133
Child, D. 22
Chipman, S. E 115
ClementJ. 210
Cobb, P. 192, 197, 198, 203
Cockcroft, W. H. 7, 10, 14, 23,

29,54,62,63,72,76,81-5,
106,121-24, 151, 166, 198

Cole, M. 69, 170, 171
Collis, K. E 209
Copelancl, R. W. 70
Cormier, S. M. 127

d'Ambrosio, U. 129, 170, 171
Dasen, P. R. 69, 70
Davis, R. B. 4,47,76
Dearden, R. E 82, 83
DeClark, G. 211
DeCorte, E. 172, 173
Department of Education and

Science 106, 198
Desforges, C. 66
Deutsch, G. 150, 155
DeweyJ. 88
Dickson, L. 7,83, 115
Dienes, 7, P. 21,36,58,68,80,

81, 164, 175-81, 188, 19.3,
196

Donaldson, M. 65, 70, 134, 165,
172

Durkin, K. 174

EliotJ. 149
Entrekin, V. S. 208
Erlwanger, S. 26
Esler, W. K. 192
EvansJ. 132-35

Fasheh, M. 125
Fennema, E. 153
Fitzgerald, A. 124

Flanders, N. A. 166
Fogelman, K. R. 7
Ford, W. W. 26,80, 195, 196
Freudenthal, H. 119
Frobisher, L. 85, 100, 104, 105,

118
Furneaux, W. D. 147
Fuys, D. 182, 183, 193

Gagne, R. M. 13, 23, 25-30, 33,
42-8,70,75,84, 167, 186

Garrick, R. 101
Gattegno, C. 46
GayJ. 69, 170, 171
Gerdes, P. 129, 130, 171
GetzelsJ. W. 141
Ghent, L. 117
Ginsburg, H. P. 12, 131, 132
Goldin,G. A. 197
Gowar, N. 118
Gowm, D. B. 187
Graham, A. 118
Gray, E. M. 103, 105
Griinbaum, B. 114
GuilfordJ. P. 140, 146, 147
Gura, P. 101

HadamardJ. 5, 87, 88, 144, 147,
148,155

HagmanJ. D. 127
Harris, M. 131, 1.35
Hart, K. M. 10,20,51,63,67,

68,83,84,201
Hartley,;. R. 36,47
Harvey, R. 174
Heim, A. W. 140
Her Majesty's Inspectorate 8, 13,

85
Herscovics, N. 209-11
Hershkowitz, R. 183
Hill, C. C. 84
HoltJ. 12,82, 155, 166

bIGGE,
bIGGS,



226 Author index

Hope,J. A. 145
Howard, R. W. 24, 26
Howson, A. G. 157, 174
Hoyles, C. 98, 132, 133
Hudson,!. 141, 154, 155
Hughes, E. R. 67
Hughes, M. 172, 194,211
Hutt, C. 152

Jackson, P. W. 141
Johnson, D. A. 84
Johnson-Laird, P. N. 199

Kamii, C K. 200, 201, 206, 211
Kane, R. B. 160
Karplus, R. 9
Katona, G. 78, 96
Kenney, H.J. 60
Kerslake,D. 174
Kirshner, D. 128
Kolinsky, R. 117
Krathwohl, D. R. 11,31
Krutetskii, V. A. 142-44, 148,

150,155,192
Kuchemann, D. 116-18

Laborde, C. 173
Lancy, D. E 171
LarkinJ. H. 2
Lave.J. 122, 128, 129, 132, 133,

135
Leder, G. 150, 152
Lee, L. 109, 110
Lerman, S. 197
Lester, E K., Jr. 84, 120
Lindsay, P. H. 192, 193
LochheadJ. 196-98,203
Lovell, K. 51,61,63, 166
LysaughtJ. P. 28,35,37,39

MacNamara, E. A. 194
Magajna, Z. 126, 130
Mager, R. F. 30, 31,34, 47
MasingilaJ. O. 125
Mason, J. 91, 118
Mathematical Association 61,

181,182
Matthews, G. 186
Mendelson, M. J. 115
Midlands Mathematical

Experiment 76
Miller, G. A. 87, 145
Ministry of Education 181
Mitchelmore, M. C. 149
Mobley, M. 163
Monaghan, J. 118
Morgan, C. 91
Morris, R. W. 168-70
MoserJ. M. 172, 173, 194

Newell, A. 84, 96, 192, 199
Nicholson, A. R. 159
Norman, D. A. 192, 193
Noss, R. 98, 133

Novak, J. D. 21, 179, 186-93
Nuffield Mathematics Project 22,

23,57,62,67,76
Nunes, T. 26, 122, 123, 133, 135,

195

Orton, A. 21, 48, 108, 118, 159,
164,209

Orton, J. 108-11, 114, 116-18
Otterburn, M. K. 159

Papert, S. 97,98
PeggJ. HI
Peterson, R. W. 9
PiagetJ. 10, 11,44,49-70,73,

80,97, 115, 128, 142,
165-7,171, 176-82, 186,
191, 192, 196, 198,205,210,
211

Picciotto, H. 208
Pimm, D. 118
Poincare, H. 88, 144
Polya, G. 13, 25, 26, 86-92, 98,

113
Popper, K. R. 134
PosnerJ. 69, 169
Presmeg, N. 109

Redden, E. Ill
Reed, S. K. 117
Rees, R. 147, 174
Renwick, E. M. 7,8, 10, 12
Resnick, L. B. 26, 80, 195, 196
Rich, K. M. 124
Richards, J. 204
Rising, G. R. 84
Roper, T. 118
Rosnick, P. 210
Rosskopf, M. F. 70
Rothery, A. 160-64, 174
Russell, S. 142, 151, 154

Sawyer, W. W. 99, 114
Saxe, G. B. 69, 128, 129, 133,

135,169
ScanduraJ. M. 187
Scheerer.M. 77,95, 155
Schliemann, A. 133, 135, 195
Schools Council 23, 60, 67, 73
Scribner, S. 125
Seaborne, P. L. 177
Sewell, B. 121
Shaughnessy, M. J. 182
Shaw.J. 99
Shephard, G. 114
Shire, B. 174
Shuard, H. 99, 151, 160-64,

168, 174,201,202
Shulman, L. S. 4, 68, 72, 73, 175
Simon, H. A. 84, 96, 192, 199
Skemp, R. R. 8, 13, 18, 21-3,

26,45,46,57, 157, 164, 179,
187

Skinner, B. F. 27, 28, 36, 37, 47

Skovsmose, O. 131
Smith, E.G. 167
Smith, I. M. 148, 149
Solomon, Y. 69, 198, 199
Springer, S. P. 150, 155
Stacey, K. 108
Steffe, L. P. 70
Stern, C. and M. B. 2, 79-81, 98
Sternberg, R. J. 192
Stewart, J. 176, 192
Sutherland, R. 98
Sutton, C. 167
Suydam, M. N. 143, 150

Taback, S. 70
Tait, K. 39
Tall, D. O. 103
Tartre, L. A. 153
Thorndike, E. L. 28
Threlfall, J. 81, 83, 102-5, 118
Torbe, M. 168,174

Underhill, R. G. 201,209
UNESCO 174
Ursini,S. 110

Vergnaud, G. 173, 193
Vernon, P. E. 145
Verschaffel, L. 172, 173
Vithal, R. 131
von Glasersfeld, E. 196-99, 204,

211
Vygotsky, L. S. 128, 166, 167,

198

Wah, A. 208
Walkup, L. E. 148
Wall, W. D. 167
Walter, M.I. 90, 91,98
Waring, S. 112
Warren, E. 110
Weaver, J. F. 143, 150
Wells, J. M. 187
Wertheimer, M. 77-9, 180
Wheeler, D. 109, 110
Whitson.J. A. 128
Wickelgren, W. A. 13, 26, 86,

91-3
Wiliam, D. 11, 15,24,25, 194
Williams, C.M. 28, 35,37, 39,

99
Williams, J. S. 58,204
Wilson, B. 171
Winston, R. 4, 11, 14,54,88,

150, 153,206,211
Witkin, H. A. 148
Wood, D. 103,211
Wood, R. 152, 153
WrigleyJ. 145

Young, R. G. 35

Zachos, I. 182, 183
Zaslavsky, C. 130



Subject index

ability 5,35,53, 55,66, 86, 91,
114-17, 121, 131, 139-55,
175,194,198, 206

abstract 6, 21, 22, 53-5, 62, 73,
83,84,134,176-9, 183, 187,
188,205

accelerating learning 5, 56—9,
179,180

accommodation 56, 57, 76,
184-6, 189-92, 206, 209-11

activity 3, 6, 23, 37, 39, 52, 55,
58, 61, 62, 68, 70-6, 80-6, 97,
98,102,119-22,127, 133,
161-3, 177, 178, 200, 204-6

addition 8, 18, 19, 27, 29, 44, 45,
48,101,105,119,163,170-3,
187,188,192-5, 204

affective 11, 12,73, 141
algebra 5, 6, 9-12, 53, 80, 99,

102,103,106-14, 118, 124,
126,139,177,179,186,
190-2, 208-10

algorithm 13, 18-20, 26, 29, 83,
124,129,172,184,195,200,
202

anxiety 1, 11,39,40, 143, 151,
155,156

apparatus 1-3, 6, 53, 72, 73,
79-84,98, 164, 176-8, 181,
204,205

assimilation 56, 57, 76, 164,
184-6, 190, 192, 210

attitude 12,77, 106, 132, 133,
139, 151-5,202

behaviourist 2, 3, 27-48, 56, 60,
70,73, 175, 176, 192, 193,
205,206,211

brain 4, 14, 55, 144, 176, 206

calculator 1, 8, 9, 34, 74, 201,
202

calculus 1, 9, 28, 46, 60, 99, 159,
188

capability 25,42, 55,73, 119,
200

cognitive 2, 3, 6, 11, 13, 29, 37,
60,70,73,77, 101, 134, 139,
149, 176, 180, 189, 193,201,
209-11

cognitive conflict 56-8, 117, 189,
201,205

computer 34, 37-40, 47, 97, 98,
125,126,192,193

concept 3, 6-9, 12, 13, 15, 20-4,
26, 44-6, 49, 61-3, 67-9, 83,
84,98, 103, 125-7, 159, 164,
172,176-9, 185, 187, 190,
193, 199, 203, 208

concept map 16, 17, 187-9, 191,
207, 208

conservation 43, 44, 49-52, 61,
64-9, 165

construction 17, 18, 46, 56-8, 69,
80,97, 127, 129, 134, 153,
176-80,192, 194-212

convergent thinking 139-42,
146,167

creativity 25, 75, 76, 84, 85,
90, 102, 130,141,148,195,
204

culture 66-70, 112, 113, 129-32,
135,152,155, 168-71, 199,
201

curriculum 7, 10, 60-3, 67, 75,
76,85,89,97-103, 106,
109-14, 119, 120, 124-127,
130-2, 141, 149, 170, 181,
188,189,199,202-5, 208

daily life mathematics 5, 26, 69,
119-23, 126, 127, 133

definition 21, 22, 27,46, 112,
159,183

development 49, 54, 66-70, 77,
116,178

discovery 25, 26, 34, 37, 71-80,
84,92,97,98, 176, 185,
195-7, 205

discrimination 15, 44, 45, 163
discussion 1, 33, 57-60, 67,

83.91, 112, 117,154,157,
159,162, 166-8, 184,
198-211

divergent thinking 139-42, 146,
147,152,167,

division 1,8, 12, 18, 19, 128,
163,172,173,184,187, 192

environment 3, 5, 6, 11, 24, 37,
49, 56, 60, 62, 66, 68, 70, 73,
80,83,97,98,101, 130, 134,
145, 151, 166, 176, 195,197,
199,203,204

equation 19, 34, 42, 46, 57, 58,
74,140, 206

errors 33, 105, 116, 154, 168,
174,192

ethnomathematics 129—32, 135,
170,171

exposition 6, 29, 71, 72, 75, 79,
85,86, 154, 166,185,191

facts 13,21, 172, 179, 194
formula 13, 14,26,32,33,78,

91.92, 108, 111-14, 124, 180
fractions 1,8,9, 18-22,29,33,

40-2,46,48,56,70,74,81,
119,124,125,153,162,184,
187

gender 66, 91,98, 131, 136,
150-3, 171

generalization 23, 44, 53, 59, 86,
91,92,98, 100, 102, 106-13,
135,138,143,180,182



228 Subject index

geometry 4, 9, 22, 90, 97, 99,
100, 112-20, 126, 147-9, 153,
179, 181-3, 186, 193

Gestalt 2, 77-9, 96, 117, 150,
182

individual differences 4, 5, 74,
136-55, 179, 180

information processing 4, 86, 96,
192,193

insight 25, 73, 77, 79, 84, 95, 99,
108,111,190,196

instrumental understanding
18-20, 26, 124, 147

integer 22, 56, 90, 173, 184
interaction 3, 39, 49, 68, 80, 98,

152-4, 161, 162, 168, 177,
194,199

investigation 25, 27, 34, 46, 53,
60,71-4,85-91,98,99, 141,
176, 182,201,203,209

knowledge network 14-16, 25,
206,211

language 5, 6, 11, 63-5, 69, 72,
129,130, 150, 156-74, 193,
196, 198

mastery 7, 8, 44, 45, 119, 120,
126,130,134, 145

maturation 49, 55, 66, 68, 70,
182,183

meaningful learning 14, 184—91,
206

mechanics 57, 58, 158, 204
memory 13-15,18,24,26,65,96,

97,104,106,120,145,192,

misconception 3, 98, 116, 117,
201,210,211

motivation 11, 26, 30, 31, 36,40,
47,55,57,60,63,75,96, 102,
113, 120, 123, 130-3, 136,
139, 145, 155, 184,186,196,
200, 201

multiplication 1,8, 13, 15, 18,
27,29,40-6,48, 100, 105,
106, 124,125,128,163,

natural numbers 22, 46, 56, 71,
72, 81, 82, 86-9, 92, 99-101,
104-9, 158, 184

notation 3, 59, 86, 164, 194
number sets 9, 22, 23, 27, 40-2,

45,48, 56-9, 62, 70-2, 78, 80,

89,92, 100, 104-9, 111, 114,
128,169,184,194

objectives 3, 6, 13, 30-4, 40-2,
47,81, 111, 167

obstacles 5, 12,92-8, 157,
209-12

operation 48, 52, 66, 68, 100,
103,168,171-3,187, 188,
210

pattern 15, 27, 59, 71, 89-92,
99-118, 159

place value 2, 3, 5, 7, 8, 10, 12,
46,54,56,80,81, 100, 164,
176-9, 209

practice 3, 13, 14, 24, 29, 72, 85,
86, 154, 176, 178,202,206,
209,211

preferences 5, 4l, 139, 141,
153-5

prerequisites 41-6, 70, 180, 186
problem-posing 39, 89-91, 98
problem-solving 9, 13, 24-6, 45,

47, 69, 72,77, 84-99,122,
123,127,128,133,143,154,
171, 172, 192, 195, 199,203

programmed learning 30, 31,
35-40,73, 161

progression 9, 10, 16, 19, 23, 68,
83,84,91, 127, 181,200,202

proof 4, 92, 112-14,118,143,
168,181-3,209

proportion 9, 10,46,48, 51, 53,
57,59,60,63, 125, 153

ratio 5, 8-10, 12, 15, 19, 46, 48,
51,60,63,70, 100, 152, 184,
209

rational numbers 1, 8, 9, 18-22,
29,33,40-2,46,48, 56,70,
74,81, 119, 124, 125, 153,
162,184,187

readability 157, 160-3, 174
readiness 43-9, 51, 60-2, 70,

180, 186, 190,211
real numbers 22, 48, 56, 188, 189
recall 13-18, 27, 97, 191
reinforcement 28, 30, 36, 37, 105
relational understanding 18—20,

23,26, 147, 167
repetition 14, 15, 27, 40, 176,

190,206
retention 14-18, 24, 163
revision 15, 17,40, 161, 166, 190
rote learning 3, 14, 15, 18, 47, 75,

78,96, 105, 152, 170, 184,
185,190,200, 206, 207

rule 25, 26, 44-6, 56, 75, 86, 90,
91, 102, 109, 110, 117, 121,
172

sequencing 24, 28, 30-3, 36-40,
47, 102, 163, 167, 176,200,
211

situation 15, 29, 64, 85-7, 99,
119-122, 126-8, 132-5,155,
165,201,202

skill 4, 11-14,43,48,53,61,69,
72,85,86,102,119,126, 127,
141, 172, 176,205,206

social 68-70, 129, 131-3, 152,
153, 198,201,205

spatial ability 61, 66, 143,
147-50, 152, 153

stages 44, 46, 51-70, 86, 89, 90,
97, 103, 116, 165, 171,178,
181, 182, 186,200,209,211

stimulus-response 27-30, 35-9,
44-7, 161, 175-7, 192,211

structural apparatus 1-3, 79-83,
98, 176-81, 185,204,205

structure 3, 5, 15, 16, 20, 51,
66,77-83,97-102, 111, 113,
125,135,149,150,163,164,
170, 172, 176-87, 190, 193,
204

subtraction 18, 119, 163, 172,
173,184, 187, 188, 192, 194

symbol 6, 13-15, 21, 44, 45, 53,
56,59,72,73,80,86, 100,
106, 113, 121, 125, 143,147,
157_64, 169, 174, 178, 183,
193,194, 209

symmetry 99-102, 114-17, 168,
188

thinking 25, 26, 47, 51, 53, 66,
102,110,131-4,140,141,
166, 168, 178, 181, 184,
198-202,204,211

transfer 4, 5, 26, 84, 98, 114, 119,
126,129,133-5, 180, 196

transmission 195, 196, 199, 203,
209

trialling 19, 20, 78, 88, 96, 97,
109,190

vocabulary 157-60, 169, 170-4,
190

word problems 84, 133, 150,
171-4

work mathematics 123—6, 135

zero 48, 104, 169, 189, 194

193

170-3, 186-8, 192, 195, 200,
206


	Contents
	Preface to the Third Edition
	Chapter 1 Do Teachers of Mathematics Need Theories?
	The importance of theories
	The origins of theories

	Chapter 2 What Cognitive Demands Are Made in Learning Mathematics?
	The problem of classification
	Retention and recall
	Using algorithms
	Learning concepts
	Problem-solving

	Chapter 3 Could We Enhance Learning Through Optimum Sequencing?
	Behaviourism
	Objectives
	Programmed learning
	Learning hierarchies

	Chapter 4 Must We Wait Until Pupils Are Ready?
	Alternative views
	Piaget and readiness
	Accelerating learning
	Curriculum implementation
	Critical evaluation
	Cross-cultural issues

	Chapter 5 Can Pupils Discover Mathematics for Themselves?
	Learning by discovery
	Gestalt psychology
	Structural apparatus
	Problems and investigations
	Obstacles and difficulties in problem-solving
	Logo

	Chapter 6 Is an Appreciation of Pattern Important in Learning Mathematics?
	Pattern in mathematics
	Early concepts of pattern
	Number patterns
	The approach to algebra
	Pattern and proof
	Pattern in relation to shape

	Chapter 7 Does What We Learn Depend on Where We Are?
	Applying mathematics
	Everyday mathematics
	Work mathematics
	Transfer of learning and situated cognition
	Ethnomathematics
	The significance of the situation

	Chapter 8 Why Do Some Pupils Achieve More Than Others?
	Individual differences
	Convergent and divergent thinking
	Mathematical ability
	Spatial ability 
	Gender-related differences
	Preferences and attitudes

	Chapter 9 Does Language Interfere with Learning Mathematics?
	Issues of language
	The mathematics register
	Reading mathematics
	Mathematical symbols
	Communicating meaning
	Language, culture and mathematics
	Word problems

	Chapter 10 Is There a Theory of Mathematics Learning?
	Mathematics and theories of learning
	The Dienes theory of mathematics-learning
	The van Hiele theory of learning geometry
	Ausubel's theory of meaningful learning
	Meaningful learning
	Superordinate and subordinate learning
	Conflicts and failures in learning

	A brief note on information processing

	Chapter 11 Can Pupils Construct Mathematical Knowledge for Themselves?
	Constructivism
	Versions of constructivism 
	Some constructivist teaching experiments
	Constructivism in our classrooms
	Cognitive obstacles

	References
	Author index
	A
	B
	C
	D
	E
	F
	G
	H
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Subject index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W
	Z




