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PREFACE

xiii

This book is the fourth volume in a series of four. The first three books in
the Young Mathematicians at Work series were on number and operation
and were co-authored with Maarten Dolk. This volume extends that work
to encompass the development of algebra in children between the ages of
six and twelve.

The series is a culmination of a long and fruitful journey characterized
by collaboration, experimentation, reflection, and growth. Mathematics in
the City (www.mitcccny.org) was established in 1995 with initial funding
from the Exxon-Mobil Foundation and the National Science Foundation.
Today, funded by many sources—including continued funding from
NSF—it is a large center of in-service and research for mathematics educa-
tion, K–8. Over the past twenty years, many researchers, mathematicians,
teacher educators, and classroom teachers have contributed to our work.
Besides the Young Mathematicians at Work series, we have published pro-
fessional development materials (comprising digital materials and facilita-
tor guides) and a K–6 curriculum (comprised of twenty-four units, colorful
posters, and eight trade books). For further information on these, please
see www.newperspectivesonlearning.com.

THE IMPORTANCE OF NUMERACY AND ALGEBRA . . .

Numeracy and algebra are critical issues. In today’s world children need a
strong understanding of number and operation. They need good mental
arithmetic strategies and a deep enough understanding of operations that
the transition to algebra is easy. From our perspective, none of the curricula
we were working with treated computation sufficiently. Some focused on
developing a repertoire of pencil/paper strategies; some designated focus
algorithms; others focused primarily on learner-invented strategies; and
some primarily made use of hands-on materials such as base blocks to
teach the standard algorithms. None really pushed children to generalize or



transition to algebra. In fact, when algebra was taught, it was usually seen
as a separate strand characterized by analysis of patterns and functions.

To strengthen computation, we began to design minilessons with
strings of related problems to develop deep number sense and a repertoire
of strategies for mental arithmetic. Our goal in designing these was to
encourage children to look at the numbers first before they decided on a
strategy, and to have a deep enough sense of landmark numbers and opera-
tion that a toolbox of strategies could be used to calculate efficiently and
elegantly—like mathematicians.

Over the years, to help our teachers develop vibrant math communi-
ties, rather than developing isolated hands-on activities, we built sequences
of investigations to ensure progressive mathematics development. Several of
the sequences we designed focused on developing mathematical modeling,
for example, the open number line and the open array. Once these models
are developed they can be used as powerful tools for thinking—for general-
izing, proving, and even doing algebra.

For three years we ran a think tank on the emergence of algebra. Building
on our initial work on number and operation, we field-tested sequences using
the open number line to develop equations and strategies for solving for
unknowns. We worked on encouraging children to develop conjectures and
proofs. We helped teachers find the moments to push for generalization—to
extend the work on number to algebra. Along the way we began to gain an
understanding of how algebra might be taught in the elementary school.

This book is a culmination of that work. In it we describe our views on
algebra and its development. We provide a “landscape of learning”—a tra-
jectory of big ideas, strategies, and models for algebra—depicting the land-
marks or milestones to be supported and celebrated. We tell the stories of
many talented teachers and their students hard at work exploring and
structuring their lived worlds algebraically.

xiv PREFACE



ABOUT THIS BOOK

xv

Chapter 1 describes and illustrates our beliefs about what algebra is and how
it might be developed in the elementary years. We discuss it as structuring, but
we ground it in the progression of strategies, the development of big ideas,
and the emergence of modeling because we hold a constructivist view of
learning. The mathematician Hans Freudenthal once commented that mathe-
matics should be thought of as a human activity of “mathematizing”—not as a
discipline of structures to be transmitted, discovered, or even constructed—
but as schematizing, structuring, and modeling the world mathematically.
This quote served as a framework for us as we studied and documented the
emergence of algebra in many classrooms over the past five years.

Chapter 2 explains and presents a “landscape of learning” for algebra.
For teachers to open up their teaching, they need to have a deep under-
standing of this landscape, of the strategies, big ideas, and models children
construct, of the landmarks they pass as they journey toward the develop-
ment of rich, dense structures characteristic of many algebraic relations.

Chapter 3 takes us back to the K–1 classroom to see the early part of
the journey—young children beginning to structure the number system.
Their structuring shifts from counting strategies and additive structuring to
an early form of multiplicative structuring as they explore even and odd
numbers. Their journey is facilitated by way of games, contexts, and inves-
tigations previously published (also by Heinemann) in our Contexts for
Learning unit, Beads and Shoes, Making Twos.

Chapter 4 continues with the journey of structuring the number sys-
tem as fourth graders explore geometric models of number, factoring, and
the associative, commutative, and distributive properties for multiplication.
Their journey is facilitated by the sequence of minilessons and investiga-
tions in the Contexts for Learning unit, The Box Factory. Related video of this
chapter can be found in our professional development resource package
(also published by Heinemann)—Working with the Array.

It is impossible to talk about mathematizing without talking about
modeling. Chapter 5 introduces the power of the double number line as
children in grades 2 and 3 explore equivalence and develop algebraic



strategies such as substituting equivalent expressions and cancelling equal
amounts when analyzing equations. In this chapter we also describe the
importance of developing children’s ability to treat an expression as an
object that can be operated on (in contrast to a procedure) and we discuss
the difference between this algebraic strategy and an arithmetic strategy.
The investigations used by the teacher in this chapter can be found in
Trades, Jumps, and Stops.

The focus of Chapter 6 is variation. In this chapter we include a brief
history of the development of algebra and parallel it with the emergence of
algebra ideas in children. We discuss the importance of introducing vari-
ables in ways that emphasize relations, not just simply as unknowns and
share stories of fifth-grade children being introduced to symbolizing with
variables as they investigate The California Frog Jumping Contest.

In Chapter 7 we turn to the development of integers, arguing that
extending the number system to include integers means developing mental
images of negative numbers. We describe why we consider chip and num-
ber line models to be insufficient and offer a beginning look at the net gain
and loss contexts we are currently exploring.

Chapter 8 discusses combination charts and double number lines as
powerful tools for comparing quantities and exploring systems of equa-
tions. Returning to the context of The California Frog Jumping Contest we see
children engaged in determining lengths of unknown jumps by simplifying
algebraic expressions.

In Chapter 9 we turn to the topic of minilessons: how to craft them
and use them to ensure that the big ideas of algebra (such as equivalence
and variation) are at the heart of the work.

Last, in Chapter 10, we focus on the topic of proof. We describe the
difference between writing about what one did to solve a problem and the
crafting of an argument for the mathematical community to read and com-
ment on. How do we help children (and teachers) begin to see themselves
as mathematicians, be willing to inquire, work at their mathematical edge,
appreciate puzzlement? We open a window into classrooms engaged in the
writing of proofs and invite you to examine proof-making along with the
teachers and children we describe.

Like all human beings, mathematicians find ways to make sense of their
reality. They symbolize relationships, quantify them, and prove them to oth-
ers. In the process they develop a rich network of relations—a powerful lens
that they use in structuring. For teachers to engage children in this process,
they must understand and appreciate the nature of mathematics. They must
be willing to investigate and inquire—and to derive enjoyment from doing
so. The book you hold is primarily about that—how teachers and children
come to structure their own lived worlds mathematically, their journeys as
they pursue the hard work of constructing big ideas, strategies, and mathe-
matical models in the collaborative community of the classroom.

xvi ABOUT THIS BOOK
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3

What is algebra? How does it develop? Because algebra includes many
things—generalizing beyond specific instances, describing and represent-
ing patterns and functions, building equations and expressions using sym-
bolic representations with integers and variables, manipulating symbols to
solve for unknowns—there has been a spirited debate as researchers have
tried to define the topic, specifically as it relates to teaching this strand of
mathematics in elementary and middle school.

Some researchers have argued that algebra in the elementary school
should be thought of as the construction of algebraic “big ideas” growing
out of generalized arithmetic (Schifter, Russell, and Bastable 2006; Carpen-
ter, Franke, and Levi 2003). Others (Driscoll 1999) describe algebra as a
type of reasoning in which one investigates the relationships between spe-
cific cases and possible generalizations and develops algebraic “habits of
mind”—ways of thinking about algebraic questions. Whereas early work
on algebra in the sixties’ “new math” movement focused on examining
algebraic structures (Wirtz, cited in Goldenburg and Shteingold 2008),
more recent work has examined the process of “algebrafying” (for example,
systematically symbolizing generalizations) (Kaput, Carraher, and Blanton
2008).

Over the years, our own participation in this discussion was not
directed toward defining algebra as much as it was toward studying its
emergence. Our questions have been: What might the development of alge-
bra look like in the elementary grades? What are some of the critical big
ideas and strategies young children construct that might serve as important

ALGEBRA:
STRUCTURES OR
STRUCTURING?

When I have clarified and exhausted a subject, then I
turn away from it, in order to go into darkness again.
The never-satisfied man is so strange, for he completes
a structure not in order to dwell in it peacefully, but in
order to begin another.
—Karl Friedrich Gauss, Letter to Bolyai (1808)

Nothing is more important than to see the sources of
invention, which are in my opinion more interesting
than the inventions themselves.
—G. W. Leibniz (1646–1716)



landmarks for teachers to notice, develop, and celebrate? What causes
some of the misconceptions and challenges that develop? How might real-
istic contexts and representational models—a double number line, combi-
nation charts, and the ratio table, for example—support the development
of algebra? As we worked in classrooms attempting to answer these ques-
tions, our own working definition of early algebra began to emerge.

TEACHING AND LEARNING IN THE 
ALGEBRA CLASSROOM

It’s a beautiful crisp fall day in New York City. Bill is leading a Math in the
City (MitC) professional development session for twelve elementary teachers.
The group has enthusiastically agreed to come together for four days over the
course of the semester to deepen their own understanding of algebra and to
study how the topic might be taught in the elementary grades. In a typical ses-
sion the participants explore and discuss a mathematical investigation, choose
an inherent idea, and craft a context in which to explore this idea in a fifth-
grade classroom in the host school. Then one of the participants teaches the
lesson while the others observe. Finally everyone reflects on the teaching and
learning that has taken place. Today Bill is focusing on algebraic structures in
the number system.

“How many factors does the number 1 have?” Bill begins.
The question is easy. “Just one,” several teachers exclaim immediately.
“And the numbers 2 and 3 each have two. What about the number 4?”
“That has three,” Camille, a seasoned fourth-grade teacher, replies

quickly. “1, 2, and 4 are all factors of 4.”
“And the number 6 has four factors, right, 1, 2, 3, and 6? Okay. So let’s

investigate this. Work with a partner and sort numbers by the number of
factors they have. Let’s see if we can find any interesting relationships.”

Camille and Karen, working with one number at a time, generate a
table to show their results (see Figure 1.1). When they reach 13, they begin
to discuss what they have noticed.

“Thirteen’s a prime number. All the primes are going to have just two
factors,” Camille says, filling in the chart’s cells for 13. Then she whispers,
“You know, this is embarrassing; I knew 1 wasn’t a prime number because a
teacher told me that once and I accepted it. But my definition of primes
was a number that had factors of 1 and itself only. I never quite understood
why 1 wasn’t a prime because it fit my definition, but in our list I see now
why it isn’t. It’s by itself. All the primes are going to have two factors. The
number 1 only has one factor.”

Karen nods. “I think I’m seeing another pattern. It seems that if we
double a prime number, we have to add two to the number of factors. See,
3 is a prime number, right? And it has two factors. If we double 3, we get 6,
and that number has four factors. The number 5 has two factors, and 10
has four. I think 14 will have four factors, too. Yep—1, 7, 2, and 14.”

4 YOUNG
MATHEMATICIANS 
AT WORK



Camille is intrigued. “That’s interesting.” She ponders a minute and
then realizes what is happening. “Oh, I get it. We are adding two more fac-
tors. First it was 1 and 7, but when we doubled the number, the new prod-
uct and the number 2 became factors, too. That should always work.”

“Yeah, that makes sense, but why didn’t it work with the number 2?
The number 4 has three factors, not four.” She thinks a moment. “Maybe
because 2 was already a factor? Hey, maybe odds and evens have something
to do with it?” Sometimes finding an example that disproves a conjecture can
prompt a new insight. “Hey, the rest of the prime numbers are odd! I just
realized . . . of course, they have to be, because to be even 2 would have to
be a factor!”

Delighted, Karen writes on their chart, “All primes except 2 are 
odd and when you double an odd prime you get two more factors—so
plus two.”

Meanwhile, across the room George and Maria have created a horizon-
tal chart showing the number of factors as numbers increase by one (see
Figure 1.2).

George, chunking the numbers into overlapping triads, notes a pat-
tern. “This is interesting. I see a 232, then a 242, but then a 243 and a 342.
The numbers are always larger in the middle.”

“Yes, I see that but I don’t see what the pattern really is. I mean I don’t
think we can use it to predict it.”

Algebra: Structures 
or Structuring?

5

FIGURE 1.1 
Camille and 
Karen’s Table

Number Factors Number of Factors

1 1 1

2 1, 2 2

3 1, 3 2

4 1, 2, 4 3

5 1, 5 2

6 1, 2, 3, 6 4

7 1, 7 2

8 1, 2, 4, 8 4

9 1, 3, 9 3

10 1, 2, 5, 10 4

11 1, 11 2

12 1, 2, 3, 4, 6, 12 6

13



Bill has been listening to this conversation and joins the pair. “George,
are you thinking about going from one number to the next?”

“Yes, isn’t that what you do when you search for patterns? You asked
us to look for patterns, right?”

“Well, I didn’t exactly ask you to search for patterns. I think I said
something about relationships you might notice when you sort numbers by
their number of factors.” Maria still looks puzzled, so Bill attempts to
reframe the investigation. “Try thinking about this. Factors depend upon
multiplication, right? Maybe it would help to sort the numbers into piles
with the same number of factors and think about how they are related in
terms of multiplication.”

Maria begins to formulate a new direction for their inquiry. “You
mean like, six is two times three and ten is two times five? They are both
double odds.”

“That’s an interesting idea. Keep going and I’ll check back with you in
a bit.”

In many classrooms algebra is taught as recognizing and extending patterns,
and George and Maria initially try to do that by looking for sequential patterns.
While certainly a part of early algebra, this notion is not sufficiently general. Bill
has deliberately chosen an investigation in which sequential (or additive) struc-
turing will not make sense. Numbers can be structured in many ways: in a
sequential (plus one) order, additively, multiplicatively, exponentially, and so on.
The paradigmatic shift from additive to multiplicative structuring took centuries!

Bill returns to Camille and Karen to see whether they are making
progress with their “plus two” idea when they double an odd prime. Camille
begins generalizing her observation. “Hey, maybe it’s not just primes! Maybe
it’s all odd numbers. Nine has three factors: 1, 3, and 9 . . . oh no, 18 is the
double but it has six factors: 1, 18, 2, 9, 3, and 6. If it had been plus two, it
should have had only five factors.” She lays out the original pairs for 9 and
then compares them with the pairs for 18 (see Figure 1.3).

6 YOUNG
MATHEMATICIANS 
AT WORK

FIGURE 1.2  
George and Maria’s Chart

1 2 3 4 5 6 7 8 9 10 11

1 2 2 3 2 4 2 4 3 4 2

FIGURE 1.3 
Camille’s Organization 
of Factors of 18

1, 9 1, 18

3 2, 9

3, 6

Factors of 9 Factors of 18



“It’s like they reorganized themselves,” Karen says. “The 18 went with
the 1; the 9 slid down to go with the 2; and 6 appeared for the 3. The num-
ber doubled, and the number of factors doubled. Let’s try another one. Let’s
do 75. I want to look at a bigger number and see what happens.” Together
they make a factor tree and then chart pairs of factors for the numbers 75
and 150 (see Figure 1.4).

“So when you double an odd number, the number of factors doubles,
too? Will this always happen?” Karen asks.

“The new factors are double all of the original ones, too,” Camille
observes. “It must always work. Let’s see what happens when we double
even numbers. Let’s try 6. It has factors of 1, 2, 3, and 6. Twelve has factors
of 1, 12, 2, 6, 3, and 4. Shoot—only 6 factors, not 8. It doesn’t work.
What’s going on here?”

Traditionally, students have algebraic structures explained to them. For
example, they may have been told that the natural numbers can be sorted 
into evens or odds, or into primes and composites. They are also taught that
every number has a unique factorization into products of prime powers and
that least common multiples are helpful for adding fractions. Although they
may understand these structures, their understanding may be disconnected,
comprising separate unrelated categories, and may be directly linked to 
specific actions (such as even numbers can be divided by 2, or making factor
trees to produce factors and factor pairs). Richer, “dense” structures are
derived by exploring and setting up a variety of relations, often using a larger
set of operations.

Algebra: Structures 
or Structuring?

7

FIGURE 1.4 
Camille and Karen’s
Factors of 75

1 × 75

3 × 25

5 × 5

1, 75 1, 150

3, 25 2, 75

5, 15 3, 50

5, 30

6, 25

10, 15

Factor pairs of 75 Factor pairs of 150



By asking these teachers to sort numbers according to their factors, rather
than defining and presenting an already formed structure, Bill gives them the
opportunity to structure the number system in new ways that will provide a better
understanding of multiplicative relationships. As they inquire they are setting up
relations and analyzing them, examining relationships, and generalizing—they
are doing mathematics. Algebra is often described as an act of generalizing, which
while no doubt true, skirts a key piece of development—the structuring of the
objects into part/whole relations. It is not possible to generalize if one has not first
structured the objects at hand by setting up correspondences between them,
examining how one is transformed into another, and how they are related to the
number system as a whole. It is precisely these actions that potentially result in
the construction of a denser set of interconnected relationships characteristic of a
broader and deeper understanding (Piaget 1977).

Initially, Karen and Camille’s structuring is like George and Maria’s—
additive rather than multiplicative. At first they explore sequentially, one
number at a time in a plus one fashion (1, 2, 3, 4 . . .). The increase they
find as they double the primes they originally construe as plus two. However
as they work, they shift to a doubling strategy—an emergent multiplicative
form of structuring (if the operation is seen as 2n rather than n + n)—and
begin to discuss the resulting increase in factors as a double as well.
Notably absent from their strategy, however, is the examination of how the
prime factors are acting on one another multiplicatively.

Across the room, Marion and Marco are structuring multiplicatively.
They start by sorting numbers by number of factors (see Figure 1.5).

They quickly realize that all primes are in the two-factor column and
then begin to notice relationships across the columns.

“Hey, look at the three-factor column,” Marion says excitedly. “They
are the squares of the primes!”

“Awesome!” Marco grins. Then he looks perplexed. “But why is that
happening?” He ponders a moment. “Oh, I get it! The primes only have
two factors, so when you square a prime number you only get one more
new factor, and it’s the product of the squaring. See? The factors of 2 are 1
and 2, and when you square 2, you get 4. So now there are three factors, 1,
2, and 4.”

“What if we cube a prime? Like 2 times 2 times 2. That’s 8, and 8 is in
the four-factor column!”

“And 3 times 3 times 3 is 27. Are you saying 27 should be in the four-
factor column, too?” Marco asks.

“Yes. Because each time you multiply the prime factor, you just get one
new factor. Like you said before—it’s the multiple. The factors of 27 are 1,
3, 9, and 27. Before, for 3 squared, we had 1, 3, and 9. When we cubed 3,
we added 27 as a factor. I think I’m about to be brilliant,” Marion giggles.
“When multiplying prime numbers by themselves, the number of factors is
one more than the exponent: 3 squared has three factors; 3 to the third
power has four factors; 3 to the fourth power has five factors, and so on.”
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“Yep, you are awesome!” Marco agrees. “Let’s redo our chart to show
those results.” They eliminate the numbers that don’t fit their pattern and
begin adding numbers that do (see Figure 1.6).

“So now our table looks nice, and we are sure about this piece, but
what about the numbers we removed?”

Although they have completed one structure regarding the exponentiation
of primes and are investigating the multiplicative nature of this process, they
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FIGURE 1.5 Marion and Marco’s Chart

One Two Three Four Five Six Seven Eight
Factor Factors Factors Factors Factors Factors Factors Factors

1 2 4 6 16 12 24

3 9 8 18

5 25 10 20

7 14

11 15

13 21

17 22

19

23

FIGURE 1.6 Marion and Marco Add to Their Chart

Three Four Five Factors Six Factors
Two Factors Factors (Primes to (Primes to 

One Factors (Primes (Primes the Fourth the Fifth 
Factor (Primes) Squared) Cubed) Power) Power)

1 2 4 8 16 32

3 9 27 81 243

5 25 125 625 3125

7 49

11 121

13 169



are still thinking about the growth process of the factors as additive (the expo-
nent plus one). An important unanswered question surrounds the remaining
nonprime powers. Susannah and Malika, sitting nearby, are entertaining this
same question.

“I just don’t get how we could know how many factors these other
numbers have,” Susannah exclaims with exasperation.

“I know. This is so hard!” Malika agrees.
Bill tries to be supportive. “This is a pretty complex inquiry, isn’t it? But

that’s what also makes it fun. What are you confident of so far? Sometimes
it helps to step back and reflect on what has worked thus far and then plan
your new direction.”

So often teachers feel they should give answers or provide procedures to
learners. The problem with doing so, however, is that those same learners then
come to depend on the teacher’s hints and never develop the tenacity to work
through the important struggles. Even more to the point, they never learn to
appreciate the fun of puzzlement and the exhilaration that comes with their own
breakthroughs. Keith Devlin (2003) once said, “When I’m working on a problem
it’s like climbing a mountain. Sometimes I can’t even see where I’m going. It is one
foot in front of another. And then I reach a point where all of a sudden the vistas
open up and I can go down easily for a while, only to eventually reach another
climb.” As teachers, our goal is to build the learner’s capacity to make the climb.
To that end, when we confer with learners we need to focus on developing the
mathematician rather than fixing the mathematics. Every action we take should
develop the novice mathematicians in front of us.

“We know that prime numbers squared produce one more factor,”
Susannah summarizes.

Malika extends the idea by symbolizing it. “So what we mean is the
exponent matters, because the number of factors is just one more. Like 3 to
the fifth power has six factors. The exponent is 5 so there are five plus one
factors.”

“So where are you stuck?” Bill asks.
“We have other four-factor numbers, too, like 6, 10, 14, 15, 21 . . . lots

of them, and we can’t figure out why, or to put it better, how we could
know ahead that they would be four-factor numbers.”

Bill paraphrases: “So you’re saying you are confident that primes are
important, and you know that multiplying primes by themselves produces
one more factor. Have you looked at what happens when you multiply two
primes that are different? Like 2 times 3, instead of 2 times 2? That might
be something you could pursue.”

“Look—2 times 3 is 6 and that is in the four-factor column,” Malika
says, giving Susannah an enthusiastic nudge. “Ten is there, too, and that is
2 times 5.”

Susannah offers a new conjecture. “So if each of the primes has two
factors, and these have four, maybe we just add the number of factors of
the primes—two plus two equals four.” She is looking at the composition
additively, just as Camille and Karen have done.
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“Yes. That seems to work. Let’s try a prime number times a nonprime,
like 3 times 4; 3 is prime, but 4 is not. How many factors does the number
12 have?”

Malika’s question is an important one: Her remaining additive structuring is
about to prove insufficient.

“Twelve is a six-factor number. But 4 is a three-factor number, and 3 is
a prime, so it has two factors. Twelve should be a five-factor number, not
six! Two plus three equals five!” Susannah replies.

Malika is puzzled but intrigued and determined. “Maybe we should
multiply the number of factors. Two times three equals six. If we use what
we know about the primes, we would know how many factors each num-
ber has. Like 2 squared times 3 squared. That’s 4 times 9. Thirty-six, right?
We know from our earlier rule that if the power is 2, it has three factors. So
both of these numbers have three factors. Let’s try multiplication again.
Three times three equals nine. Thirty-six should have nine factors.”

Susannah has been listing the factors of 36 as Malika talks: 1, 2, 3, 4,
6, 9, 12, 18, and 36. She counts them and exclaims, “It does, it does! Hot
dog! We’re good!”

“So now we have to figure out why! Why do we multiply? We need to
prove it.”

“We will. We will. We’re on a roll! Let’s keep going. I think maybe it
has to do with the number of ways we can multiply the factors to make
new factors—the number of combinations that can be made.”

WHAT IS REVEALED

The mathematician Hans Freudenthal wrote, “Mathematics should be
thought of as a human activity of mathematizing—not as a discipline of
structures to be transmitted, discovered, or even constructed—but as
schematizing, structuring, and modeling the world mathematically.” His
point was that development should be emphasized and fostered.

Rather than trying to explain the algebraic structures related to prime
factorization, Bill encourages these teachers to structure the number system
according to numbers of factors in their own way. As they work, he chal-
lenges and supports them to develop more powerful ways of structuring.
This developmental approach is also in contrast to discovery learning
approaches, in which learners complete an activity designed to produce the
same “aha” for everyone at the end, as they discover (uncover) the structure
that was the teacher’s intent. In both transmission and discovery models of
learning, preformed algebraic structures are the focus. The teacher attempts
either to transmit the algebraic structure or help learners discover it.

The focus of Bill’s work is the development of structuring—the progressive
building of algebraic structures and the mathematical development of the
learners. Bill wants to help his learners progressively develop richer ways to
structure the number system. Rather than presenting them with a prestruc-
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tured world organized by the past activity of mathematicians throughout
history, he presents them with a mathematical world to be structured. In so
doing, he invites them to do mathematics, to find ways of organizing and
categorizing number by examining common features, similarities, and rela-
tions as a way toward generalizing. He invites them to participate in the
working world of the mathematician.

It is human to seek and build relations. The mind cannot process the
multitude of stimuli in our surroundings and make meaning of them with-
out developing a network of relations. Throughout our history, we have
found ways to structure our lived worlds. We categorize, seriate, and com-
partmentalize. We examine, evaluate, and compare; we make connections
and set up correspondences. We develop systems and describe how the
parts of the systems are related to the whole. We have even created whole
disciplines of knowledge comprising the relations we build between ideas.
As students engage in structuring, the relationships they use and under-
stand are transformed as they shift their cognitive lenses. Their structures
become denser—the network of relations they build becomes richer. When
invited to engage in structuring, they build cohesive structures with many path-
ways and interconnections. In contrast, when presented with preformed
structures, students often process them as isolated bits, associated only
with the activity or topic by which they were introduced.

While investigating how numbers are sorted according to number of
factors, these teachers are building increasingly richer, denser structures.
Marion and Marco have uncovered the multiplicative relationship that
squares of primes are three-factor numbers. Their subsequent realization
that this extends to higher powers of primes (e.g., cubes of primes are four-
factor numbers) enriches their structure. Camille and Karen initially are
thinking only about additive relationships: If you double an odd number,
you get two more factors. However, this additive structuring allows them to
deepen their understanding of prime numbers and the patterns created in
the production of factor pairs. In their investigation of the factors of 36,
Susannah and Malika are structuring the number of factors multiplicatively.
As they explore unique factorization and the multiplicative relations of the
factors, a robust algebraic structure emerges.

The participants in this community are walking the edge between
additive and multiplicative structuring. Camille and Karen have noticed
that if you double an odd three-factor number, then the number of factors
doubles. But is this doubling being thought of as 3 + 3 (additive) or as 2 × 3
(multiplicative)? They have organized their factors according to factor pairs,
a procedure they have been teaching their students to use. Marion and Marco
are examining the multiplicative aspects of exponentiation, but they are
still describing the growing nature of the number of factors in an additive
way. Susannah and Malika have found cases in which if you multiply two
three-factor numbers you get a nine-factor number, not a six-factor num-
ber, so they have found a multiplicative relationship. But is this a general-
izable idea for them? Do they understand why?
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Structures become denser as students add relations: a variety of ways
to symbolize equivalent relations, new observations that occur from similar
ways of structuring, or new insights that occur from a shift in operation
(for example, from additive to multiplicative). At this moment, how can
Bill support all the members of this learning community to build denser
algebraic structures? Can learners really construct powerful structures on
their own that took humans centuries to invent? How can we, as teachers,
facilitate such mathematical development?

Professional mathematicians share their ideas with one another
through publication and conferences. They read one another’s proofs,
comment on them, and discuss ideas, strategies, and insights. Isaac New-
ton once wrote to Hooke, “If I have seen further it is by standing on the
shoulders of giants.” He was expressing his gratitude to the many talented
scientists before him. By examining and comparing different or even con-
tradictory ideas and working to confirm and extend ideas, mathemati-
cians connect, enrich, and extend the structures of their discipline. If this
process is knowledge-generative in the professional community of mathe-
maticians, might it also be growth-producing in the classroom?

BACK TO THE WORKSHOP

Bill asks the participants to make and display posters of their work thus far.
He then has everyone examine everyone else’s work and place sticky notes
with comments and questions on the posters. He has three purposes in mind.
First, as participants make their posters they will have to consider what infor-
mation is important to communicate and how they will justify their ideas to
others in their mathematical community. Second, he hopes the experience of
reading others’ mathematics will challenge them to examine their own mathe-
matical arguments and insights. Third, by encouraging the participants to
reflect on and discuss the various ways of structuring and the relationships
that have been noticed thus far, Bill is preparing them for a subsequent “math
congress” in which he will facilitate a discussion on the power of shifting from
additive to multiplicative structuring. He begins the congress by asking
Camille and Karen to explain how they have represented the six factors of 18
on their poster.

Camille begins. “Well, we noticed that the number of factors doubles,
so we put them in pairs. See, 1 and 18 go together, 2 and 9 go together, and
3 and 6 go together.”

“That’s right,” Karen chimes in. “We put them into factor pairs. Each
pair goes together because they multiply to give 18. We’ve been teaching
our kids how to make factor pairs just this very week.”

“And what do the pairs have to do with the doubling you noticed?”
Bill asks.

“We think that when you have pairs you have a doubling. That’s why
there is an even number of factors.”
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George and Maria, who have proceeded quite differently, look per-
plexed. George says, “We’re confused. Nine has factor pairs, too. How are
these doubling in your diagram?”

Karen writes the factors of 9 in a column next to the factor pairs.
She writes 1, 3, 9, and then continues with her explanation. “See, each
factor of nine becomes part of one of the factor pairs of 18. So since we
have factor pairs now, that’s twice as many. That’s why the number of fac-
tors doubles.”

Murmurs of understanding can be heard among the group.
Next, Bill asks Susannah and Malika to share how they represented the fac-

tors. They have not organized the factors in pairs as Camille and Karen have
done but instead have doubled each of the factors of nine (see Figure 1.7).

Bill says to Susannah, “Tell us why you and Malika decided to organize
them in that way.”

“Well, since we were doubling the number, we decided to double the
factors, too. We did that because when we tried to find the factors for 36,
we wanted to know why there were 9 factors.”

George says, “I guess I don’t see the point. Don’t you want to have fac-
tor pairs? That’s how you can keep track of the factors. Camille and Karen
just convinced me of that.”

“That’s true,” says Malika, “but where we really got the idea was when
we did 36. At first we couldn’t figure out why 36 had 9 factors. We thought
it should have 6 because 36 equals 4 times 9 and 4 is a three-factor number
and 9 is a three-factor number. We thought the three should double and be
six, too, just like Camille said. But it didn’t work. We really wanted to
know why you got nine factors there instead of six. We knew 3 times 3 was
9, so we thought maybe we should look at this with multiplication.”

Bill suggests, “Malika, why don’t you show us what you mean by
extending your chart for 18 to include 36. Take a different-color marker so
we can keep track of the new factors you add.”

This shift from additive structuring to multiplicative structuring is a big
idea—one that requires cognitive reorganization on the part of learners—and
they will need time to consider this shift in perspective.

Malika draws the representation shown below and then elaborates.
“I’m multiplying the first column of factors by 4. This way we get a whole
new column of factors [pointing to the third column]. We add 4 times 1, then
4 times 3, and then 4 times 9” (see Figure 1.8).
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Comparing Two Ways 
of Structuring the Factors
of 18

1 1, 18 1, 2

3 2, 9 3, 6

9 3, 6 9, 18

Factors of 9 Factor pairs of 18 Factors of 18
(Camille and Karen) (Susannah and Malika)



Manipulation of numbers to produce an answer can seem like a magic trick
to learners if they haven’t constructed the implicit relations for themselves. The
importance of this construction cannot be overemphasized, because it is precisely
what enables learners to generalize. To that end, Bill asks the crucial question.

“How do you know these are new factors? That’s an important ques-
tion. Take some time to reflect on this, and then talk to the person next to
you about your thoughts.”

After a few moments he resumes whole-group discussion. “Malika,
what are your thoughts about this?”

“Well, they are new factors, if you check them.”
“Okay, but do you think there is some way you could know without

checking that they have to be new factors?”
Susannah says tentatively, “There must be some way. I think it has to

do with the fact that 4 is a factor of 36 but not a factor of 9.”
Camille has an insight. “Wait a minute—yes, that’s it, Susannah. I

think I see it. If these new numbers in the third column are divisible by
four . . . I mean, these new factors are divisible by 4, but none of the factors
of 18 were divisible by 4, so they have to be new!”

Karen shakes her head in amazement. “This is so different from what
we were doing. We were looking at factor pairs that multiply to 18. But
now you are listing in each column factors with more and more twos! First
no twos, then one two, then a four, which is two twos—that’s why I think
you are getting 3 times 3 factors. You are getting the factors of 9 on the side
of the array, 1, 3, and 9, and the factors of 4 across the top, 1, 2, and 4. It’s
like the array model that we use for multiplication but with factors, and it’s
showing all of the possibilities! We don’t have factor pairs any more. We
have rows and columns!”

Maria adds, “It is kind of like the array model for multiplication! The
top row is the factors of 4 and the left column has the factors of 9.”

For Maria, the 3 × 3 array suggests that the product of 3 × 3 is what is
important in counting factors.

Karen and Camille’s thinking has been transformed. They are now looking at
the multiplicative relationships between the factors of 36. The comparison of the
two different ways of representing factors has helped them (and other members of
the class) reconsider their original structuring of the factors of 18. Instead of
organizing their thinking around the factor pairs that multiply to 18, they are
now sorting the factors according to divisibility relationships among the factors
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FIGURE 1.8 
Malika Adds Factors of
36 to Factors of 18

1, 2, 4

3, 6, 12

9, 18, 36



themselves (not simply as factors of 36). So for the example of 36, the factors 2,
6, 18 are distinguished from the factors 4, 12, 36 because the latter three are
divisible by 4, while the previous three are divisible by 2 but not by 4. This is an
important shift in thinking for several reasons. First, for many participants the
factors of 36 divided only into even and odd factors, but now a new divisibility
relation is on the table (the odd factors, the factors divisible by 2 but not 4, and
the factors divisible by 4). Second, this shift makes it possible to figure out why the
number of factors of 36 is the product of the number of factors of 4 and the num-
ber of factors of 9, and this type of structuring makes generalizing possible.
Finally, it will open doors to other ways to structure the number system, including
properties of unique factorization and exponentiation.

VISITING A FIFTH-GRADE CLASSROOM

The teachers in Bill’s workshop, by structuring the number system, have devel-
oped some important algebraic structures. But what about children in elementary
school? What bearing does this work have on their instruction? Wouldn’t such
open-ended inquiry be too difficult and perhaps even confusing? How far would
their structuring take them? To find out, the group discusses what investigation
they would like to see a fifth-grade class tackle that afternoon.

Camille’s fifth graders have been studying factoring by making factor
trees and creating factor rainbows for numbers, in which the two factors
whose product is the original number are connected by an arc. (For exam-
ple, if the factors of 12 are listed horizontally in ascending order: 1, 2, 3, 4,
6, 12, a “rainbow” of three arcs would be formed, the smallest over the 3
and 4, the next over the 2 and 6, and the third over 1 and 12.)

“I think opening up the activity to a fuller inquiry is what made this so
exciting and rich for me,” Camille confesses. “Making factor rainbows
seems so closed and trivial now. I mean, why would kids want to do that
anyway? They’re just doing it because I asked them to. But what are they
really learning?”

“What do you think they would do with this investigation?” Bill asks.
“I don’t know, but I think they could sort the numbers, and it would

be interesting to find out what they notice.”
The participants head for Camille’s class. She introduces the investi-

gation to her fifth graders in a manner similar to that used by Bill in the
morning. Being asked to structure numbers in this way is a new experi-
ence for most of the students, yet they seem to have a way to start. They
quickly set to work in pairs. The teachers move through the room, listen-
ing and observing.

“The odd numbers are the two-factor numbers. See, 3, 5, 7, and so on.
Odd numbers will have two factors I bet,” Sam says to his partner, Emilio.

Emilio tries 9. “No. Doesn’t work. See, 9 has 3 factors: 1, 3, and 9.
Look at my list. I think it’s prime numbers that have two factors.”
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“Oh, yeah. I think that’s the answer we’re supposed to get. It’s about
primes and composites. Primes have two factors and the composites have
three or four.”

Camille, who is standing nearby, joins in. “What can you say about
three-factor numbers? And what can you say about four-factor numbers?
Keep going.”

Sam looks confused. “I don’t get what you mean.” Usually in school
when you find the teacher’s answer you’re done. Hadn’t he found it? What
could she possibly mean by “keep going”?

This is a new role for Camille as well. Usually she would have congrat-
ulated the pair and tried to find something else for them to work on while
the other children finished. Now she’s trying to model Bill’s line of ques-
tioning, all the time wondering, “How can I get them to be as excited as I
was this morning?” Hook them on an inquiry, she thinks as she forges on.
“Well, you say the two-factor numbers are primes. What’s true about a
three-factor number that makes them different from four-factor numbers?”

Sam offers tentatively, “Well they are odd maybe . . . except 4. Maybe
the four-factor numbers are even. . . .”

“Interesting thought. See if you are right. I’ll be back in a little while to
check with you and you can let me know what you find.”

Sam and Emilio resume investigating, and Camille grins with satisfac-
tion as she leaves them and goes to see what other pairs of students are
doing. She did it! Sam and Emilio are intrigued. This is fun. Her kids are
busy investigating. Amazing! It’s true that other than noticing the primes,
most students are sorting by evens and odds, and some are spending a lot
of time developing their lists of numbers of factors. She notes with interest
that only two students are using the factor rainbows she’s had them prac-
tice making all week.

The following is a typical conversation.
“You have 24 here under eight-factor numbers. How did you know that?”
“1, 2, 3, 4, 6, 8, 12, 24.”
“That’s great! How do you keep track of all of those?”
“I think about the multiplication tables.”
“Is there any other way to think about all of these factors?”
“I just multiply in my head and I get them.”
After about half an hour, the class has collected quite a bit of data, and

most students have recognized the primes as being the two-factor num-
bers. To push their thinking Camille calls the class together for a short
congress. She draws a chart on the board and then asks her students to
provide data for it from their work. Together they produced the chart
shown in Figure 1.9.

After providing some time for partner talk about the relationships
students see on the chart, Camille begins a whole-class discussion.

“Sam, you and Emilio were talking about primes. Tell us about 
your idea.”
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“They are the two-factor numbers. It kind of has to be true. Prime
numbers don’t have any other factors.”

“Okay. So we have a generalization for two-factor numbers. What are
your ideas about the three-factor numbers?” At first no one responds. Then
slowly a few hands go up. Camille calls on Anthony.

He offers an interesting observation, although a bit tentatively. “I think
maybe the numbers in the third column are the square roots of the num-
bers. Four is the square root of 2 and 9 is the square root of 3, and like that.
They are square root numbers.”

In the past, Camille would have immediately focused on Anthony’s
misuse of terminology. But correcting him at this moment may cause him
to shut down, just as he’s beginning to shift the class discussion to multi-
plicative structuring. Therefore, she probes his thinking. “Tell us more
about what you are noticing.”

“Well, 2 times 2 is 4, 3 times 3 is 9, 5 times 5 is 25. So these are square
root numbers. And they are the square root numbers of the primes.”

Work with the developing mathematicians, don’t just try to fix the mathe-
matics, Camille thinks. She can help Anthony with the correct vocabulary
later. Right now the class needs time to consider the relations he is describ-
ing. “Talk with your math partner about this for a minute. What do you
think about what Anthony just said?”

Within a few minutes the room is a buzz of voices. “He’s right. Look!
Multiply the prime numbers! Two times 2 makes 4, 3 times 3 makes 9, 5
times 5 makes 25! Those are all square numbers. The three-factor numbers
are square numbers of the primes!“

“And if you square a three-factor number you get a five-factor number!”
“And if you double the prime numbers you get a four-factor number.

Look at the chart. See how the four-factor numbers go? They go 6, 10, then
14. These are four-factor numbers and they are two times the odd two-factor
numbers, 2 times 3, 2 times 5, and 2 times 7.”
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One-Factor Two-Factor Three-Factor Four-Factor Five-Factor Six-Factor
Numbers Numbers Numbers Numbers Numbers Numbers

1 2 4 6 16 12

3 9 10 81 32

5 25 14

7

11

13



“Hey, multiply any two different prime numbers and you get a four-
factor number!”

Camille is elated. “Wow! I’m hearing so many neat ideas! So what do
you think the next four-factor number will be? Amirah?”

“I think 18 because that’s 2 times 9.”
Sam is looking at the chart he and Emilio have made. “No, it can’t be 18.

That’s a six-factor number. It’s 15 I think. And that’s 3 times 5. Two primes.”
Emilio shakes his head in disagreement. “But 15 is an odd number. I

don’t think odd numbers can be four-factor numbers.”
“Yes, it is 15!” Amirah says, agreeing with Sam. “1, 3, 5, and 15. It does

have four factors. Both odd and even numbers work. But look, the first
number in every column is an even number!”

“So now we have some good questions to investigate. Let’s go back to
work and continue investigating.” Camille knows they need time to explore
further, but now they have a multitude of observations and questions that
can direct their explorations.

WHAT IS REVEALED

“I can’t believe your kids! That was just amazing what they came up with in
such a short time!” Karen says to Camille, giving her a hug, when the teach-
ers convene in a small room at the school to discuss their observations.
Everyone agrees.

Then Bill focuses the group on the development of structuring and the
role of the teacher. “What development did you see, and what did Camille
do that supported it?”

“One of the things I found so interesting,” George begins, “is how hard
it is to think multiplicatively. I know how hard it was for me this morning,
and when I walked around watching what the kids were doing at first, they
were just doing one number at a time.”

“George is right,” Marion chimes in. “I did see lots of interesting things.
One kid was making a bar graph for each number one at a time, showing how
many factors each had. A lot of them were talking about even and odd num-
bers, and most noticed prime numbers were two-factor numbers. But nobody
started multiplying until Anthony started talking about squares.”

“I think your chart helped them notice the squaring,” Marco says. “The
columns were organized so that the squares of the primes were right next
to the primes. It helped the kids notice the relationships.”

“That’s important, Marco,” Bill agrees. “Did you notice that I also used
them this morning when I juxtaposed Camille and Karen’s factor pairing
representation next to Malika and Susannah’s array model?”

“And it helped me,” Camille remembered. “What I mostly loved this
afternoon though was that I really felt my students were growing as mathe-
maticians. I felt the focus was really on their development. It felt so gen-
uine. Halfway through the session I realized I had been doing all of this
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factor rainbow practice and no one was even using it! Instead they were
using what they knew about multiplication. It made me wonder about so
many of the cute things we do that we think will help kids but that are
nothing but trivial activities. I like that my kids and all of us this morning
were really finding so many new relationships among numbers. I don’t
think I’ll ever look at numbers in the same way again!”

SUMMING UP

The workshop participants and the students in Camille’s fifth-grade class
have been structuring the number system. When algebra is understood as
structuring, rather than as the transmission and examination of pre-
formed algebraic rules, teaching and learning become seen as interwoven
processes related to the development of the learner as a mathematician.
Karl Friedrich Gauss said, “When I have clarified and exhausted a sub-
ject, then I turn away from it, in order to go into darkness again. The
never-satisfied man is so strange, for he completes a structure not in
order to dwell in it peacefully, but in order to begin another.” Rather than
“fixing” the mathematics in student productions as has often traditionally
been the practice, teachers (like Bill and Camille) are finding ways to sup-
port and challenge learners to engage them in the making of mathemat-
ics. They are inviting them to derive enjoyment in the act of making
algebraic structures and in the “going into the darkness again” in order to
“begin another.” In so doing, learners are developing denser, richer struc-
tures constituting many relations—powerful algebraic networks that will
serve them in the years ahead.

The multiplicative structures traditionally taught in Camille’s school in
fifth grade included finding factor trees, factor pairs, unique factorizations,
greatest common factors, least common multiples, and more. But the cur-
riculum designers included them because they wanted students to apply
these rules and procedures elsewhere, most likely when adding and sub-
tracting fractions, not because they wanted students to engage in structur-
ing the number system. Because these structures had been taught in
isolation, when actually placed in a problematic situation requiring struc-
turing as part of the sense making, the students (and the teachers) did not
use them.

G. W. Leibniz observed, “Nothing is more important than to see the
sources of invention, which are in my opinion more interesting than the
inventions themselves.” By opening up the task and inviting students to
find ways to structure the number system, the sources of invention and the
development of structuring became apparent. The first shift from additive
to emergent multiplicative structuring was Karen and Camille’s investiga-
tion of factors when doubling primes. This emergent multiplicative strategy
allowed participants to move beyond thinking about factor pairs and see
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the relations embedded in the array structure introduced by Susannah and
Malika. This richer multiplicative structuring led to an exploration of expo-
nentiation including the roles of powers of primes in unique factorization.
Slowly a more robust algebraic multiplicative form of structuring began to
emerge. It was the carefully constructed context, use of representations,
and questioning by Bill and Camille that supported this development. As
the community engaged in powerful talk, they found ways to build on one
another’s ideas and generate more elegant structures.

Algebra: Structures 
or Structuring?
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COMPARING CURRICULUM FRAMEWORKS

Historically, curriculum designers did not use a developmental framework
when they designed texts, nor did they see mathematics (or algebra) as
mathematizing—as structuring one’s lived world mathematically. Instead,
algebra was seen as the accumulated content of a mathematics strand com-
prising preformed algebraic structures, forms of symbolization, and gener-
alized procedures for solving for unknowns. Teaching and learning
objectives were determined by formulating this content into skills and con-
cepts and placing them along a line (Gagne 1965; Bloom et al. 1971). For
example, simplistic notions of patterns and solving missing addend prob-
lems were considered developmentally appropriate for early childhood as a
way to begin the algebra strand. Later, in the middle elementary grades,
learners were introduced to the commutative, associative, and distributive
properties and to some of the structures in the number system (such as odd
and even numbers, factors, and multiples). In middle school they studied
proportional reasoning, integers, variables, and procedures for solving for
unknowns in simultaneous equations. Development was considered but
only in relation to the content: from simple to complex skills and concepts.

Focusing only on transmission of the content of mathematics in this
way can lead to teaching that emphasizes the abstractions, related proce-
dures, and mathematical concepts without considering the learners’ pro-
gressive cognitive development. In a framework like this, learning is

THE LANDSCAPE 
OF LEARNING

Cognition does not start with concepts, but rather the
other way around: concepts are the results of cognitive
processes. . . . How often haven’t I been disappointed
by mathematicians interested in education who
narrowed mathematizing to its vertical component, as
well as by educationalists turning to mathematics
instruction who restricted it to the horizontal one.
—Hans Freudenthal, China Lectures (1905–1990)

Mathematics is not a careful march down a 
well-cleared highway, but a journey into a strange
wilderness, where the explorers often get lost.
—W. S. Anglin (1992)



understood to move along a line. Each lesson, each day, is geared to a dif-
ferent objective, a different “it.” At the end of the lesson, all children are
expected to understand the same “it,” in the same way. They are assumed to
move along the same learning path; if there are individual differences, it is
just that some children move along the path more slowly—hence, some get
classified as “slow” or “below-grade-level” learners needing more time or
remediation.

To see the fallacies in this approach to instruction, let’s imagine a far-
fetched example—teaching a child to walk by breaking the activity into a
set of skills and working on each until mastery is achieved. “First, the right
foot . . . watch me now. Balance on the left and lift the right. Practice now,
over and over, until you can do it without falling. Good job!” Heap on the
praise for reinforcement and then check off that skill as mastered! “Now,
the next skill . . . on to the left foot. Up, down, up, down . . . there! Mas-
tery of that skill achieved, too. And now finally we are ready for Bloom’s
level of synthesis. Let’s put the skills together and try walking across the
room.” Just as ridiculous is the idea of doing a hands-on activity with a
group of toddlers and expecting that at the completion of it they should all
“get it” in the same way at the same time.

Those who have spent time with young children know that neither
approach is sufficient to engender learning precisely because learning is
development. It is the child’s desire and inquiry to stand and get across the
room that encourages the first faltering steps. The interaction between mat-
uration and the social surround—the fact that the other humans around
him walk upright—also affects this development. Studies of a few children
who spent many years deprived of human contact found that they may not
walk totally upright. Instead, they developed a gait characteristic of the
interactions they witnessed or dictated by the limitations of their environ-
ment (Candland 1993).

When toddlers take their first faltering steps, we facilitate their devel-
opment by celebrating their attempts and upping the ante when the first
step is taken. We hold our hands out but most likely take a step backward.
We make the surround as rich and enticing as we can to support develop-
ment. We notice the phenomena that prompt inquiry and place these
objects (or people) within range. We capitalize on the human instinct to
reach beyond one’s grasp, and we celebrate the developmental landmark
accomplishments.

“It is a general insight,” Noam Chomsky has written, “which merits
more attention than it receives, that teaching should not be compared to
filling a bottle with water, but rather to helping a flower to grow in its own
way. As any good teacher knows, the methods of instruction and the range
of material covered are matters of small importance as compared with the
success in arousing the natural curiosity of the students and stimulating
their interest in exploring on their own. . . . We should not be speaking to
[learners], but with [them]. That is second nature to any good teacher”
(Chomsky 1988).
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One could object to the example of learning to walk, saying it’s far-
fetched and related more to physical than mathematical development. But
doesn’t it have implications for learning in general? A child comes into this
world not as a blank slate but with reflexes that soon become differentiated
and integrated into schemes to act on the environment. We are born with
the mathematical ability to recognize small amounts such as one, two, or
three, to determine magnitude, and to imagine number spatially (Dehaene
1997). We come to “know” our surround further through exploration,
interpretation, and construction—organizing and generating ideas into effi-
cient neural networks of cognitive structures.

It is human to inquire. It doesn’t take a biologist or cognitive scientist
to confirm what the philosopher Philo stated long ago: Learning is by
nature curiosity. However, inquiry is also social. It takes place within a cul-
tural community of discourse and reflection and uses tools and forms of
representation and argumentation characteristic of the specific discipline.
As scientists experiment and collect data, they use cultural tools, ideas,
models, and systems of measurement previously constructed by their com-
munity. They share data in juried publications. Various scientists often
work on small pieces of large communal puzzles. The same is true of math-
ematicians. At a certain point enough of the pieces have been placed and an
overall structure begins to emerge. Sometimes this new structure is even a
paradigm shift—the tipping point has been reached, and past ideas need to
be reorganized.

As teachers, do we see our role as initiating learners into mathematical
communities, speaking and inquiring with young mathematicians at work?
Do we open the doors of our community, respecting each learner as an
apprentice fellow inquirer? Or do we speak to them, trying to transmit a set
of skills and concepts arranged on a continuum based on an analysis of the
discipline by previous mathematicians? Are we teaching the history of
mathematics rather than mathematics? Or are we teaching mathematics as
the alive, creative, generative activity it is? By inviting young children to
solve problems in their own ways, we are initiating them into the commu-
nity of mathematicians who engage in structuring and modeling their
“lived worlds” mathematically.

Teaching to support the cognitive development of apprentice mathe-
maticians is surprising and exhilarating. It is also complex and demanding,
because it is not aimless and random. We have a critical, very important
role to play as teachers. We walk the edge between the structures of mathe-
matics and the development of the child. This means we have to under-
stand thoroughly the development of the mathematics by considering the
progression of strategies, the big ideas involved, and the emergent models
that potentially can become powerful forms of representation with which
to think.

Math teachers do not walk into the classroom wondering what to do,
waiting for learners to inquire. They plan lessons and know what they expect
their students to do. The investigations they introduce allow for many entry
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points, and as learners respond, they acknowledge the differences in their
thinking and strategies and adjust their questions and comments accordingly.
While they honor divergence, development, and individual differences, they
also identify landmarks along the way that grow out of their knowledge of
mathematics and mathematical development. These landmarks help them
plan, question, and decide what to do next.

THE ALGEBRA LANDSCAPE: 
DESCRIBING THE JOURNEY

In previous work we have delineated this developmental trajectory, this
“landscape of learning,” in three areas: (1) early number sense, addition,
and subtraction (Fosnot and Dolk 2001a); (2) multiplication and division
(Fosnot and Dolk 2001b); and (3) fractions, decimals, and percents (Fos-
not and Dolk 2002). But what is the landscape of learning for algebra?

DENSE AND SPARSE STRUCTURES

Imagine the number 64. How do you think about it? As a counting num-
ber that is one more than 63, additively as 60 + 4 (and other equivalent
expressions such as 59 + 5, 58 + 6, 70 – 6, etc.), or multiplicatively (using
place value such as 6 × 10 plus 4)? Or perhaps as an even number, a dou-
ble (2 × 32), a square number (the multiple of 8 × 8), or as a power of two
(i.e., 26)? Maybe you think of it geometrically, as a 4 × 4 × 4 cube or as b2 in
a 6, 8, 10 right triangle (a2 + b2 = c2) or as the number of hexagons in a
fullerene that has 76 faces or as the number of faces in two truncated icosa-
hedra (each having 20 hexagons and 12 pentagons, as in a soccer ball). If
you’ve read the first chapter, you may be thinking of it as a seven-factor
number. You have many ways to think about it, and the more ways you
have, the denser your network of relations.

When cognitive structures are dense, they consist of many intercon-
nected pathways, many networks of relations. Sparse structures, on the
other hand, have few. Dense cognitive structures are important because
there are more relationships to exploit when solving problems. The mathe-
matician Keith Devlin has written:

What makes it possible for the mathematician to see what to
do . . . is that she or he sees an underlying structure to the problem
domain. When you can see that structure, it often is obvious what
to do next. Mathematical knowledge is not a collection of isolated
facts. Each branch is a connected whole, and there are links
between many of the branches. Think of it as an undulating land-
scape, much of it heavily forested and shrouded in mist. Trying to
find your way around by trial and error is unlikely to get you to
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your destination. It helps to know as much of the overall topogra-
phy as possible so you can find the best route. Those individuals
who seem to just “know” how to solve math problems have simply
spent enough time exploring the mathematical landscape to have
developed a good sense of the terrain” (2003, 33–34).

Sometimes it is helpful to peel off layers of relationships to expose a
sparser structure, as this may be more illuminating to the problem at hand.
Having dense structures allows for various “peelings.” Mathematics taught
as an isolated set of skills and concepts rarely becomes part of an intercon-
nected network of relations. That’s because structuring requires cognitive
reorganization on the part of the learner; the ideas usually cannot be trans-
mitted by explanation alone.

DEVELOPING DENSE STRUCTURES

Structures are the result of organizing elements into a system of part/whole
relations. The parts of the system can be described in relation to one
another as well as to the whole. Throughout the history of mathematics,
many structures have been developed as mathematicians have structured
new relations and built on previous ideas.

One of the earliest structures was the set of counting numbers, N =
{1,2,3,4...}. Emerging from the need to count items, starting with 1, each
number is related to the one before it by +1, or the one after it by –1. The
counting numbers are ordered, and each number is either greater than or
less than other numbers. So the set N has an order relation, which is sym-
bolized (N,<). In time, the drive for increased utility led to the inclusion of
0, both to facilitate numeration, as a placeholder in a place value system,
and as an amount such as 3 – 3 (Guedj 1997).

Operations and properties were soon added. For example, consider
the operation of addition, (N,<,+). Here, all the true addition sentences join
the structure of the counting numbers: 1 + 1 = 2, 3 + 5 = 8, and so forth.
Two parts add up to a whole, and thus when one part is removed the other
remains.

This new structure also includes the algebraic relationships of the
commutative and associative properties and strategies like compensation.
For example, the use of compensation to find the sum of 63 + 98 by using
61 + 100 = 161 is a generalizable algebraic strategy that arises through
structuring (N,<,+) and the understanding that (a + b) + c = a + (b + c).

It is also possible to encode forms of multiplication in the additive
structure (N,<,+). These are forms of multiplication by a given natural
number and arise from thinking about multiplication as repeated addition.
Here one thinks of 3 × 4 = 3 + 3 + 3 + 3 and 4 × 3 = 4 + 4 + 4. But suppose
one only views multiplication as an additive structure. How is one able to
understand 3/5 × 15 or understand a justification for the commutative law,
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that a × b = b × a? A multiplicative structure is more encompassing than an
additive structure. Proportional reasoning is added. If you want to multiply
by eight, you can double three times in succession, or if you want to multi-
ply 31/2 × 14, you can double 31/2 and halve 14 and realize the product is
the same as 7 × 7. Structuring the multiplicative aspects of the numbers in
this way, one is employing the associative law of multiplication.

Attempts were made in the new math movement of the sixties to align
instruction with vertical progressions like the above. Materials such as base
blocks and Cuisinaire® rods were designed and used in an attempt to
expose learners to the structures of mathematics (or to help them discover
them). Learners were introduced to counting first, and then the rods were
used to represent the cardinal sets. Addition was represented as the union
of (nonintersecting) sets, and the increasing order in (N,<) was explored by
building staircases with the materials. Multiplication was introduced by
arranging the materials into rectangular arrays to make the part/whole rela-
tions of the distributive property explicit. This approach failed for many
reasons, and led Freudenthal (1991) to comment that mathematics should
be thought of as a human activity of “mathematizing”—not as a discipline
of structures to be transmitted, discovered, or even constructed—but as
schematizing, structuring, and modeling the world mathematically.

To understand the development of structuring in learners it is helpful to
consider two dimensions—a vertical one and a horizontal one (Treffers
1987). The vertical dimension progresses by mathematizing mathematics—
that is, adding operations (for example, from counting to addition to multi-
plication to exponentiation, and so on, as described earlier). It depicts the
development of more or less sophisticated mathematical processing. In
contrast, the horizontal dimension makes a problem field accessible to
mathematical treatment. It allows life to be treated mathematically; we stay
within the realm of realistic contexts, building connections across prob-
lems. For example, one might envision a rectangular grid of rows and
columns, the volume of a box, or the possible combinations made with
three shirts and two pairs of trousers as situations that can be mathema-
tized with the operation of multiplication. Structures become denser as
growth occurs in both dimensions (see Figure 2.1).
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Another way to imagine the development of dense structuring is as a
journey along a landscape. The vertical dimension is represented as a
direct, linear, forward path toward the horizon, the horizontal as the
many pathways and landmarks to the right and left. Traversing many
paths over the landscape—traveling both horizontally and vertically—
will result in a richer understanding of the terrain than if one takes only
a direct path.

LANDMARKS ON THE LANDSCAPE

As we traverse the landscape of algebra development with young learners,
there are many strategies, big ideas, and ways of modeling to notice and
support. Signposts on the journey, these landmarks help you situate your
learners developmentally. A graphic depiction of the algebra landscape
described in this book is provided in Figure 2.2, although the landmarks
on it will likely have meaning only once the whole book is read. Examine it
only briefly at this point, continue reading, and return to it at the end.

Strategies

In Figure 2.2, strategies are depicted as rectangles. These are the forms of
organizing, the schemes you will see as learners structure their activities. For
example, initially learners may just use procedural arithmetic to determine if
the statement 8 + 2 + 5 = 7 + 8 is true. They add up both sides of the equa-
tion and if the answers are the same (15 = 15), they deem the statement
true. Later in their development they prove the same statement employing
associativity and commutativity: 2 + 5 = 7, and since 8 + 7 = 7 + 8 the state-
ment is true. Still later they may disregard the eights, since they are on both
sides of the equation, saying the statement is true because 2 + 5 = 7. This
strategy is later extended into an undoing strategy and employed to solve for
unknowns 3 + 8 + 2 + 5 = n + 8 + 7. The expressions 8 + 2 + 5 and 8 + 7 are
removed by the addition of negative integers, leaving 3 = n. The develop-
mental progression of strategies, or “progressive schematization” as Treffers
(1987) calls it, is an important inherent characteristic of learning.

Big Ideas

Underlying the developmental progression of strategies is the construction of
some essential big ideas. These are depicted as ovals in Figure 2.2. Big ideas
are the “central, organizing ideas of mathematics—principles that define
mathematical order” (Shifter and Fosnot 1993, 35). As such, they are deeply
connected to the structures of mathematics. They are, however, also character-
istic of shifts in learners’ reasoning—in logic—in the mathematical relation-
ships they set up. As such, they are connected to part/whole relationships—to
the structure of thought in general (Piaget 1977). That’s precisely why they are
connected to the structures of mathematics. As mathematical ideas developed
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FIGURE 2.2  The Landscape of Learning for Algebra
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through the centuries and across cultures, the advances were often character-
ized by paradigmatic shifts in reasoning. These ideas are considered “big”
because they are critical to mathematics and because they are big leaps in the
development of children’s reasoning.

For example, research has shown that many students comfortable with
x + 3 = 8 do not understand how to interpret the expression x + 3 as an object
by itself (National Research Council 2001). The confusion may be that they
don’t know how to combine the x and the 3 or that they believe that every
time they add two things the result has to equal something else. Middle school
mathematics teachers share stories like this repeatedly: “I gave my students a
quiz and they were asked to factor 3x + 36. Many students wrote x = 12.” The
notion that the expression 3x + 36 can be considered an object in and of itself
has not been formed—it is as if whenever the student sees an x they think
they must find its value. Yet often, in algebra, mathematicians want to work
with expressions (like x + 3) in a meaningful way. In other words, they want to
treat the expression as an object. Indeed, it is common to find middle school
mathematics texts (and teachers) diligently drilling students on the distinction
between an equation and an expression, evidence that teachers of algebra have
long recognized the critical importance of this big idea.

Unfortunately, such a big idea cannot be reduced to applying syntactical
rules—it is a huge shift in thinking. Young students find it natural to solve for
unknowns in equations. Even in first grade, students can think about ques-
tions like __ + 3 = 8 and determine how to fill in the blank. Later, teachers
may write x + 3 = 8 and tell the students “to find x,” and again most students
find this easy to think about. They see the question as what number is 8 three
more than, or they count backward from 8 (removing 3) and then write x = 5.
Here students see the use of the variable to represent an unknown value, and
they understand x + 3 as an expression to describe a procedure.

An added complexity is that in teaching variation the procedure may
remain the focus of attention and actually hinder the development needed
for later algebra. Teachers prompting middle school students to think
about why 2(n – 1) and 2n – 2 were equivalent expressions asked, “How
would you prove that 2(n – 1) = 2n – 2 is true for all numbers?” (Boaler
and Humphreys 2005, 66). The difference may seem subtle, but it is criti-
cal. Does 2(n – 1) only have meaning when you can consider evaluating it
for all numbers, or is it an object one can manipulate in and of itself ?

Let’s take another example, this time solving for two unknowns when
presented with simultaneous equations: x + y = 53 and x – y = 23. If one
thinks about x – y and x + y as two objects (the former being equivalent to
23, the latter to 53), then adding equivalent objects, one to each side of the
equation also maintains the equivalence. So let’s add x – y to one side and
23 to the other: (x + y) + (x – y) = 53 + 23. This strategy simplifies the
whole thing to 2x = 76. Isn’t that nice?

One could also envision the expressions as objects on a number line.
Starting on a spot marked x and jumping a length of y, results in landing
at 53. On the other hand jumping back a distance of y, results in landing at
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23. This means x is at the midpoint between 23 and 53. The midpoint can
be derived by finding the average: (23 + 53)/2 (see Figure 2.3).

Another big idea is related to understanding variation: variables
describe relationships—and are not merely unknown quantities. In order to
make sense of algebraic equations such as x + 3 = y – 2, students need to
construct the idea of variation: An indeterminate amount can be related
to another indeterminate amount, and this is meaningful even if the
amounts are not known.

A third big idea is the understanding of equivalence: Algebraic expres-
sions can appear different yet be equivalent objects. These ideas will be revis-
ited and further clarified and many more big ideas will be described
throughout this book.

Models As Tools for Thought

When we construct an idea, we want to communicate it. Through time and
across cultures humans have developed language as a way to do so. Ini-
tially, language represents ideas and actions; it is a representation of thought.
Language also serves as a tool for thought.

Numerals were developed to signify the meaning of counting. Opera-
tional symbols like × and ÷ were constructed to represent the actions of
combining and portioning equivalent-size groups. Variables arose to signify
variation, unknowns, and relations. Ratio tables, combination charts,
arrays, and open number lines were developed as ways to represent rela-
tions graphically. While these symbols and models were initially developed
to represent mathematical ideas, over time they become tools—mental
images to facilitate thinking.

Professional mathematicians do a great deal of abstract mathematics by
using models as tools for thinking. Consider the well-known Pythagorean
theorem. Many adults will likely say, “Yeah, isn’t that a-squared plus 
b-squared equals c-squared?” But do they realize this theorem is critical to
finding distance in mathematics or understand why it should be true? Not as
likely. In some geometry class they might have seen a depiction of a right tri-
angle with squares added to each of its three sides (see Figure 2.4a). But likely
this mysterious figure wasn’t very helpful. It might visually clarify the ques-
tion, “How are a-squared, b-squared, and c-squared related?” but there is no
evident reason why these three squares should be related, nor does the dia-
gram provide much motivation to care about them.
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In contrast, consider the two large squares in Figure 2.4b. They are
dissected in interesting ways, and we see four right triangles in each large
square, each triangle with side lengths a, b, c. Can you find squares with
areas of a2, b2, and c2? Look at the part-whole relations between these
squares in the two larger squares, both of which are the same size. Can you
see now why the Pythagorean theorem is true? To be sure, the squares in
Figure 2.4b have been carefully dissected to facilitate this understanding.
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This is what mathematicians do; they find ways to represent relationships
to illuminate important ideas.

Of course, this example is likely too difficult for young children. You may
have even skipped this section yourself! Therefore, this model is not included
on the portion of the landscape of learning shown on page 30. You will, how-
ever, see the double number line included as a landmark in several places. It is
a powerful tool for thinking algebraically—specifically for representing varia-
tion and expressions as objects that are related, solving for unknowns, explor-
ing common multiples and factors, and thinking proportionally. For example,
imagine three jumps of the same size along a track, compared to four smaller
jumps of equal length that end at the same point (see Figure 2.5). We might
represent this relation as 3x = 4y. What can you tell about the lengths of the
jumps? Can you predict how many more jumps of each are needed to meet
again? Can you tell how many jumps of x would be needed to match the
length of 2 jumps of y? Or just one? What if you learned in addition that 
3x + 4y = 24? Does this information force specific values for x and y?

The mental images learners form and then manipulate allow them to
work meaningfully with the actions most people associate with the word
algebra, such as symbolizing, symbolic reasoning, solving for unknowns,
and so forth. Imagine a young child who is adding a pile of six beans and a
pile of eight beans but miscounts and finds thirteen. If you tell the child,
“That can’t be right because six and eight are even and thirteen is odd,” the
child won’t have a clue what you are talking about unless he has con-
structed the mental objects labeled as even and odd. Sadly, much of current
algebra teaching fits this pattern: little to no structuring, little time to con-
struct the mental objects, but lots of talk about structures and relations.
This is why we have developed the landscape.

WALKING THE EDGE

A good teacher walks the edge between the structure of mathematics and
the development of the child by considering the progression of strategies,
the big ideas involved, and the emergent models. Ultimately what matters is
the mathematical activity of the learner—how the learner mathematizes and
structures the situations the teacher offers. But learning—development—is
complex. Strategies, big ideas, and models are all involved, and they all
need to be developed as they affect one another. And vertical and horizon-
tal explorations are both critical.

Strategies, big ideas, and models, however, are not static points in a
landscape—objectives to get everyone to the same place at the same time in
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the same way. They are dynamic movements on the part of the learner in a
journey of mathematical development, and the role of teachers is to foster,
support, and celebrate this development.

Several tools can facilitate this journey. One is to craft problem situa-
tions that beg to mathematized. Contexts like these, designed with poten-
tially realizable strategies and/or built-in constraints to prior strategies, can
be powerful inducers of development. Facilitating inquiry and dialogue,
asking learners to read and comment on one another’s mathematics, and
holding math congresses to discuss key strategies and ideas also spark
development. And last, short guided minilessons at the start of math work-
shop can introduce certain strategies for examination. In the next several
chapters, stories from classrooms illustrate these possibilities.

SUMMING UP

Historically, learning has been seen as a linear vertical path depicting a pro-
gressive list of skills, concepts, and procedures—arrived at by dissecting
the already formed structures of the discipline in an attempt to transmit (or
enable learners to discover) them. Yet as Freudenthal points out, “Cogni-
tion does not start with concepts, but rather the other way around: con-
cepts are the results of cognitive processes.”

The development of dense cognitive structures over time allows learners
a larger set of lenses when approaching problems. As learners develop, their
structuring increases in two dimensions, both in the number of the operations
being considered (vertical structuring) and in the interconnectedness of the
relationships involving those operations (horizontal structuring). This goal
makes teaching and learning very complex causing Freudenthal to comment,
“How often haven’t I been disappointed by mathematicians interested in edu-
cation who narrowed mathematizing to its vertical component, as well as by
educationalists turning to mathematics instruction who restricted it to the
horizontal one.” Freudenthal understood that narrow views of education, at
either extreme, severely limit children’s experiences. If we as teachers have a
deep knowledge of the landscape—the big ideas, the strategies, and the mod-
els that characterize the journey—we can facilitate inquiry through contexts
that support children’s journey in both dimensions.

Einstein wrote, “It is nothing short of a miracle that modern methods of
instruction have not yet entirely strangled the holy curiosity of inquiry” (Eves
1988, 31). But change is not easy! When the act of teaching is viewed as the
“filling of a bottle with water” it is easy to quantify and measure the levels of
the outcomes, easy to compare and label humans as fit and unfit, and easy to
ensure the continuation of the status quo with its categories of “haves” and
“have nots.” In contrast, when teaching is characterized as “helping a flower
to grow in its own way,” due emphasis is placed on learning as development
and as treating young children as developing mathematicians from the start.
Equity and access are ensured; empowerment of all is the result.
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The first structuring of the number system (usually noticeable in young
learners around the age of five or six) is the arrangement of the counting
numbers as a sequence of amounts nested one inside the other. As children
construct the idea that the result of their counting is an amount (in contrast
to the name of the last object or just the last word in a counting song), they
come to realize that the counting numbers increase in increments of +1
and therefore nest inside each other almost like Russian nesting dolls.
Researchers call this idea hierarchical inclusion (Kamii 1985; Fosnot and
Dolk 2001a). Another important big idea about number constructed early
on is one-to-one correspondence—that if six children each need a partner, six
more children are needed.

When addition contexts are posed, young children initially make sense
of the situation by counting three times (once for each part, and then
counting all). This provides the basis for early part/whole relations involv-
ing addition, namely the two parts (represented by the two addends) and
the entire quantity (the sum). Around the age of six or seven, rather than
counting three times, children begin to “count on.” For example, to figure
out 5 + 3, they count on from the 5, saying “six, seven, eight.” Once they

EARLY STRUCTURING
OF THE NUMBER
SYSTEM

Whenever a large sample of chaotic elements are
taken in hand and marshaled in the order of their
magnitude, an unsuspected and most beautiful form
of regularity proves to have been latent all along.
—Sir Francis Galton (1822–1911)

Classification is not a matter of child experience as
things do not come to the individual pigeonholed. The
vital ties of affection, the connecting bonds of activity,
hold together the variety of his personal experiences.
The adult mind is so familiar with the notion of
logically ordered facts that it does not recognize—
it cannot realize—the amount of separating and
reformulating which facts of direct experience have to
undergo before they can appear as a study, or branch
of learning.
—John Dewey (1902)



understand the whole as comprising two disjoint1 subsets, they can incor-
porate subtraction (as removal) into this mental construct and the full
breadth of part/whole relations emerges—that 5 + 3 = 8 and 8 – 5 = 3 are
two expressions describing the same mental image. They are equivalent
statements as they reflect the same part/whole relationships.

This is only the beginning of the additive structuring of number, and
some say this belongs in the domain of number, not algebra. However, this
early structuring also allows learners to structure the natural numbers in alge-
braic ways using additive properties, rather than simply recording the results
of addition and subtraction. For example, the subdivision of natural numbers
into two parts, the evens and the odds, is a structure that students recognize
early on as they work to automatize the basic addition facts. Doubling is an
important arithmetic action because it helps students construct new facts from
old (if 3 + 3 = 6 then 3 + 4 = 7), but it also helps students form the mental
image of the subdivision of the natural numbers into even and odd.

TEACHING AND LEARNING IN THE CLASSROOM

Madeline Chang is using the unit Beads and Shoes, Making Twos (Chang and
Fosnot 2007) to invite her young kindergarten and first-grade mathemati-
cians to begin structuring the number system. To explore doubling, she
uses the context of walking hand-in-hand in two lines, which the children
are used to doing when they leave their classroom for other areas of the
school or take field trips. She reads the classic children’s book Madeline, by
Ludwig Bemelmans, to develop the context and then asks her children to
draw different-size groups (lines) to produce doubles—class sizes that
allow everyone to have a partner. Enthusiastically, one of her five-year-olds,
Sofia, says a number aloud before they even leave the meeting area.

“I know one!” she exclaims. “When five kids have partners, it’s ten,
because five plus five makes ten!”

Madeline smiles and writes, 5 + 5 = 10. “So 10 is a special number that
works. Let’s find some more.”

The children eagerly go off to work in pairs. Many begin by drawing
one line first and only then complete the second line. It is sometimes a
struggle for young children to draw two corresponding sets of the same
number of objects, and they might draw the second line of children longer
or shorter than the first line.

This is true for Josie, who suggests using plastic teddy bear manipula-
tives to her partner, Chloe. “Let’s make lines with the teddy bears first, and
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not model addition; to determine the total, counting all may be necessary rather than a count-
ing on.



then we can draw the children.” Josie then makes two lines of objects, one
line longer than the other.

Madeline notices this and says, “I see that you are making beautiful
lines, Josie. But I’m wondering—one of your lines looks longer than the
other. How do you know that everyone in this line has a partner in the
other line?”

Reiterating the context helps children realize the meaning of what they are
doing and may create conditions for them to develop their own solutions. It can
help them develop an understanding of one-to-one correspondence and doubling,
landmarks that are precursors to being able to structure the natural numbers into
evens and odds.

Josie looks puzzled but then figures out a solution. “I know! We have
to hold hands with our partners. I can draw them holding hands!” She
draws two rows of teddy bears and represents their holding hands by draw-
ing a line from each bear in one row to the corresponding bear in the other
row (see Figure 3.1). “We need one more teddy bear here.”

Madeline asks, “How many do you have in each row now?”
Josie counts: “One, two, three, four, five, six, seven. I have seven!”
“And how many in this line?”
Madeline’s question is powerful: She doesn’t assume that Josie understands

one-to-one correspondence. Josie’s answer will provide important information,
proving in fact that Josie has constructed that idea.

“That’s seven, too! See, they’re holding hands now.”
Madeline celebrates this early landmark and then challenges the girls

by introducing the addition. “I see. That was a great idea! So shall we
record this one as 7 + 7? How many children is that?”

Instead of counting on from seven, Josie begins all over at one, count-
ing up to fourteen. She has not yet constructed an understanding of part/whole
relations. “How do you write that?” she asks as she finishes.

“Like this—14.” Madeline shows Josie how to make the numerals (how
a number is represented is social knowledge—a label or name—and does not
need to be constructed in the same way as a mathematical idea) and then cele-
brates the finding of another even number. “Wow! You found another spe-
cial double number.”

After the children have worked for an appropriate length of time,
Madeline asks them to prepare for a math congress by looking back over
their work and making a list of all the doubles they found. She knows this
will generate a large assortment of even numbers, and she plans to place
these numbers on a long strip of paper (reminiscent of an open number
line) and discuss any patterns the children notice. She hopes they will
begin to notice patterns and suggest new doubles for the list. The line of
even numbers is not only a representation of their work but also a tool for think-
ing. She also places a standard number line with the counting numbers 1–
100 nearby, hoping children will notice that the standard number line has
numbers going up by ones and the one the class is making skips every
other number. They may also notice that all the numbers on their line end in 0,
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2, 4, 6, or 8, whereas the numbers in between—those not listed—end in 1, 3, 5,
7, and 9.

“So it seems we found a lot of numbers. Let’s start posting them on this
strip, like a number line.” Madeline points to the strip of paper she will be
using and the standard number line displayed nearby. “I wonder which of
these is the smallest. Where shall we begin? Mathew?”

“I did three plus three. It’s six.”
Madeline pushes three red beads over on the top row of the class arith-

metic rack2 and three red beads over on the bottom row. “Do we agree that
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FIGURE 3.1 
Holding Hands: 
Josie and Chloe’s 
Work

2For information on arithmetic racks see Fosnot and Dolk, Young Mathematicians at Work, Con-
structing Number Sense, Addition, and Subraction, pp. 105–12, or go to www.mathrack.com.



three plus three is six?” Some children count and then nod; others nod
immediately. “Okay. Let’s post your record, then.”

“I don’t think it’s the littlest though,” Leah pipes up. “I think we could
do two and two. That’s four.”

“Shall we add that one?” Madeline does not acknowledge the answer as
correct but turns to the community for consensus. Since the numbers are small,
the children can easily imagine them. Again, many children nod.

It is common that students will not see 1 + 1, or 0 + 0 as possibilities in this
context because they don’t think of one child (or 0) as a “line.” For now Madeline
does not push to add these to the list.

“Daniel, you tried a different number. What did you find out?”
“I found out that four plus four equals eight.”
“How shall I make that on the arithmetic rack?” Madeline presses the

children to envision arrangements of the amounts.
“One more on the top and one more on the bottom,” Daniel says with

conviction.
Madeline restates what they have so far. “So two plus two was four,

three plus three was six, and now four plus four is eight.”
“Two more! It’s two more every time!” Sofia exclaims. Other murmurs

of surprise and delight are heard as well.
Madeline smiles and encourages the children to continue examining

this relationship. “Isn’t that interesting? Two more.”
Sadie, another five-year-old, shows her drawing of fourteen children in

two lines (see Figure 3.2), “I counted by twos. See . . . two, four, six, eight,
ten, twelve, fourteen. It’s seven and seven in a line. If it’s eight kids, it
would just be two more.”

“Hey, look!” Mathew has jumped up in excitement and is pointing to
the standard number line. “That one over there is going up like this—1, 2,
3, 4, 5—and ours is 2, 4, 6, 8. It’s just skipping numbers!”

Madeline is delighted. “What an interesting thing to notice Mathew.
Do you think then that we could add more double numbers to our list?”

“Yeah, ’cause it’s like Sadie said—count by twos.”

WHAT IS REVEALED

Madeline has succeeded in encouraging her five- and six-year-olds to begin
structuring the number system into evens and odds, but their work so far is
the very beginning of the journey. The children initially construct the one-
to-one correspondence inherent in doubling contexts (represented by
“holding hands”), but they move toward thinking about this additively.
They are considering a “double number” as a number added to itself. Next,
some children see the sequence as growing in a +2 fashion, when the
increase by two represents a new pair of children holding hands. One of
Madeline’s goals is to help their structures become denser, so she needs to
move both horizontally and vertically (as described in Chapter 2). She
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wants to provide them with many more “horizontal” experiences exploring
even/odd relationships, and she also wants to encourage vertical moves.

For example, one of the big ideas related to even numbers is the multi-
plicative aspect of the structuring, where 2n means two times a natural
number (including 0). With this, odd numbers are represented in relation
to the evens as 2n + 1, thereby being understood in terms of part/whole
relations. The commutative property for multiplication then explains why
Sadie’s point holds: groups of twos, n times, equals 2 times any natural
number (2n). But is multiplicative structuring developmentally appropri-
ate? What can be expected of these kindergartners and first graders? How
far along the landscape can they traverse when structuring is supported?
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Sadie’s Work: 
Counting by Twos



BACK TO THE CLASSROOM

At first Madeline traverses the landscape horizontally. Over the next sev-
eral days she makes a habit of beginning math workshop with brief
minilessons—strings of related problems using doubles and near dou-
bles. For example, she shows one problem at a time on the class arith-
metic rack and asks for thumbs up when children have an answer. She
explores alternative strategies but encourages the children to make use
of the relations in the string.

Here’s one string of related problems she presents:

Three on the top, three on the bottom
Five on the top, five on the bottom
Five on the top, six on the bottom
Eight on the top, eight on the bottom
Seven on the top, eight on the bottom
Six on the top, six on the bottom
Seven on the top, six on the bottom

The first two problems in the string are chosen with the expectation that
they will be easy for the children. The second problem can be used to
solve the third. The fourth problem is more challenging and many chil-
dren resort to counting by ones, but Madeline encourages them to think
about whether any of the previous problems can be helpful (the first two—
(5 + 5) + (3 + 3)—for example; the color of the beads on the arithmetic
rack—twenty beads arranged in two rows, each with five reds and five
whites—makes these doubles stand out). The string continues with more
doubles and near doubles, and children are encouraged to use a known
double to solve an unknown near double.

Simultaneously, Madeline begins a new investigation related to the
eggs the class has been incubating as part of their science work. The chil-
dren have noticed that egg cartons come in various sizes (6, 12, and 24), all
“doubles.” Capitalizing on this, Madeline asks the students to think about
why that might be and to design containers for larger numbers of eggs.
How many eggs would a carton with two rows of 10 hold? How about one
with two rows of 13? Why wouldn’t there be a box for 7 eggs? Children
make posters of their designs, display them around the room, and have a
“gallery walk” so everyone gets a chance to see the various containers. (A
few samples of work are shown in Figures 3.3a and b.)

After the gallery walk Madeline convenes a math congress. Using a
pocket hundred chart, the children record the numbers by placing colored
transparent inserts in the chart to highlight the sizes of all the containers
they have made. Although not all the even numbers are highlighted,
enough are for children to begin to notice some patterns and to make pre-
dictions of other numbers that might be doubles.

“Hey, all the numbers have 0, 2, 4, 6, and 8 in them,” remarks Sadie.
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Mathew proudly asserts his conjecture. “I think the numbers will
always go down (referring to the columns on the chart). See, 2, 12, 22—it
goes down. It skips 3, 13, 23. And over there it is 4, 14, and 24. I bet 34 is
a double, too. Let’s check.”

“Yeah, it’s gonna skip like that,” Sadie nods in agreement.

EMERGING MULTIPLICATIVE STRUCTURING

As the children explore even and odd numbers, the variety of representa-
tions and contexts (number lines, pairs of children walking in line, egg car-
tons, a hundred chart) helps them notice different relationships. The

44 YOUNG
MATHEMATICIANS 
AT WORK

FIGURE 3.3a
Designing Egg 
Cartons



number line calls attention to the +2 increments, for example, and the hun-
dred chart prompts a discussion of the 0, 2, 4, 6, and 8 digits. Their struc-
tures are becoming denser as Madeline provides horizontal structuring
opportunities.

When Madeline realizes that she is beginning to notice many examples
of doubles in her daily life, she asks the children whether they are too,
challenging them to begin to mathematize their world—and introducing
another investigation. She explains that last night she looked in her closet
and realized—shoes! Shoes are perfect for thinking about doubles! Shoes
come in pairs—and a pair is a double of one. How many shoes in five pairs,
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FIGURE 3.3b
Designing Egg 
Cartons (continued)



twelve pairs, or fifteen pairs? She suggests they think of a group of people
and the number of shoes that would be. (Some of the children’s work is
shown in Figures 3.4a and b.)
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FIGURE 3.4a
Shoes

FIGURE 3.4b
Shoes (continued)



After the children have worked on their own for an appropriate length
of time, Madeline convenes a math congress and places their combined
data on a t-chart (see Figure 3.5).

“So now we have a chart with all our findings. After mathematicians
collect all their findings, they often put them on a chart like this. Then they
step back and think, ‘Is there anything interesting here?’ So mathemati-
cians, turn to the person next to you and talk about anything interesting
you notice.” After several moments, Madeline resumes the whole-group
conversation. “Ethan, what did you and Josie talk about?”

“All the numbers of shoes are over here.” Ethan points to the open
number line constructed when they explored children walking in line with
partners. He has noticed that all the answers are even numbers. For a young
mathematician, this is an important observation.

“Who else noticed that?” Several hands go up. “Why would that be
happening, I wonder?”

Sofia offers her earlier insight about increments of +2. “Because you go
2, 4, 6, like that. You skip-count.”

“Two shoes in every pair,” says CJ. He is beginning to unitize groups of two
as one, given the pairing context.

“You can’t get a different number—you would have a shoe missing,” Josie
offers. “If you go 2, 4, 5, the 5 would be for only one shoe. A shoe is missing.”

“So I see that it is six pairs of shoes, and that is 2, 4, 6, 8, 10, 12. But
how did it end up being two sixes, like our double numbers?” Madeline
challenges her students to consider the equivalence of 6 twos to 2 sixes—to exam-
ine a case of the commutative property for multiplication. “Will this always
work? If we have five pairs of shoes, will it be two fives?” Madeline purposely
uses the language of unitizing—making the group a unit to be counted.

Several children say, “No, not always—just sometimes.”
Daniel is bursting with excitement. “It will, it will! Always! And I know

why!” Daniel sees the beauty of this emerging multiplicative structure. He
produces his picture (see Figure 3.4b). “I did six pairs of shoes. But I
thought of it as six right shoes and six left shoes.” Most of the children are
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FIGURE 3.5 
T-Chart Illustrating the
Number of Shoes for
Groups of People

Number of Pairs of Shoes Number of Shoes

1 2
2 4
3 6
4 8
5 10
6 12
7 14
8 16
9 18

10 20



puzzled by this, but Daniel explains that if the shoes are arranged in pairs
in a line, they can be seen as two lines, one line of right shoes and one line
of left shoes. Eventually most of his classmates begin to grasp the multi-
plicative relations he has noticed.

“So numbers that go in twos also can be thought of as doubles? And
the other numbers, the ones that don’t work, don’t go in twos? There is an
extra one?” Madeline is encouraging her students to examine evens in relation to
odds—as part/whole relations in the set of counting numbers. “Actually, mathe-
maticians have a name for these numbers. The double numbers they call
even numbers. The ones that don’t go in twos—the ones that have an
extra—they call odd numbers.” She introduces the terminology of odds and
evens, but only after children have constructed the ideas for themselves.

Josie finds this terminology quite logical. “Yeah, it would be odd. If
you have five shoes, you know something is wrong. A shoe is missing!”

Michael has been looking at the hundred chart on which the egg car-
ton data is recorded. “Look. I just noticed something. On the hundred
chart—it goes odd, even, odd, even, like that. It’s a pattern.”

WHAT IS REVEALED

These five- and six-year-olds are forming a variety of representations of odd
and even numbers. They are examining the natural numbers in relation to
one another and noting the alternating pattern. They realize that even
numbers can be thought of in two ways—as doubles (2n) and as n sets of
two—and that odd numbers have one single more (2n + 1). Although most
of the children are still most likely structuring these relations additively,
multiplicative ideas are slowly beginning to emerge. The two-for-one unit
(two shoes in a pair) is seen in relation to twice the number of pairs (see
Figure 3.6). The arraylike arrangements (rows and columns) of lines of
children holding hands, egg cartons, and pairs of shoes lined up are help-
ing children visualize these relations.

48 YOUNG
MATHEMATICIANS 
AT WORK

FIGURE 3.6 
Multiplicative 
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5 × 2 = 2 × 5



Structuring the natural numbers into evens and odds, however, is not
the end of the journey; it is only a landmark idea along the way. The real
goal is the development of the structuring—an infinite journey. The journey
of these young mathematicians is thus far mostly horizontal. Even and odd
numbers have been explored in a variety of situations (lines, cartons,
shoes) and with a diverse set of representations (number lines, hundred
charts, arrays, ratio tables). This horizontal structuring has brought up sev-
eral patterns and relationships. A small vertical step has been taken in the
discussion of the unitizing of groups of twos and the relationship of five
pairs to two fives (5 × 2 = 2 × 5).

BACK TO THE CLASSROOM

To continue this vertical movement Madeline reads the picture book
Grandma’s Necklaces (Fosnot 2007b). In the story Grandma has discovered
some very special numbers that help her make three different necklace pat-
terns using blue beads and green beads. Her granddaughter wonders how
her grandma knows what numbers of beads will work for each necklace.
The mystery of the numbers is not solved in the story, so it is a great intro-
duction to a math investigation.

The first necklace is made by alternating blue and green beads. There-
fore it can be made in various sizes with n sets of two—one of each color. The
repeating unit is one blue and one green bead, and as long as the numbers of
blue and green beads are equal, any reasonable number of beads (10, 12, 14,
and so on) works. However, if there is an odd number of beads, two beads of
the same color will then appear next to each other when the string is tied.

The second necklace is a bit more challenging; the repeating unit is
five blue beads and five green beads, or ten beads. Although all possible
numbers of beads for this type of necklace must also be even, the added
constraint is that they must also be multiples of ten. For example, 20 beads
work (two sets of five blue and five green) but 25 beads do not (because
there would be ten beads of one color together when tied).

The third necklace is made with a repeating pattern of three blue beads
and three green beads; therefore, it can be made only with even numbers of
groups of three, which is the same as saying that only multiples of six will
work.

Madeline reads the book and then challenges her young mathematicians
to figure out Grandma’s special numbers. She doesn’t expect all the children
to solve all the necklace problems, so she uses an open-ended format that
will support each child as far as he or she is able to go. The intent is to give
every child rich opportunities to continue structuring the number system.

Nate examines the numbers in the list that he and Sofia have devel-
oped for the first necklace, the one with the alternating blue and green
beads. “I think there is a pattern. It’s gonna be every other one again. Like
before.”
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Sofia agrees, “Yeah. Like when we walked in line.”
“Say more about that. What do you mean? Are you noticing something

about how the necklaces are related to walking hand-in-hand in line?
Madeline is requesting elaboration to make the relationships more explicit.

“Yeah. It’s like the blue and green beads are holding hands. They go
together, blue and green, blue and green,” Sofia explains.

Nate nods. “It’s like the shoes, too. The blue and green are like a pair of
shoes. They go together, like Sofia said.”

Madeline pushes them to generalize. “So are you saying that any number
of green beads will work as long as the greens have the same number of
blues? And when I add these numbers of greens and blues together, no
matter what the number, I get an even number?”

Sofia is convinced. “Yes. You can make the necklace in lots of sizes,
and the sizes will all be even numbers. Odd numbers can’t work, like the
shoes. You need a pair. If you have one extra, it’s a problem. The greens
have to be the same number as the blues.”

The second and third necklace patterns with alternating groups of five
(necklace two) and alternating groups of three (necklace three) are a bigger
challenge, pushing children to consider not only even numbers but even
numbers of groups. This is a difficult idea for young children because here the
group is being considered as a unit. It is just this challenge, however, that can be
instrumental in developing multiplicative structuring—a vertical movement.

Initially many children use a trial-and-adjustment strategy. They select
numbers to try at random and when one doesn’t work, they add or remove
beads to try to make the pattern fit. A few children skip-count by fives or
threes, make a list of those numbers, and are surprised when not all their
numbers (multiples of five or three) work. Madeline encourages them to
circle the numbers that do work, and they eventually notice that every
other number on their list works (even numbers of groups).

Some children are intrigued by how some number combinations result
in necklaces with a long section of beads of the same color and others
don’t. For example, for the second necklace pattern, ten green beads and
fourteen blue beads create a section of nine blue beads in a row when tied
into a circle. On the other hand, if one uses six green beads and ten blue
beads, there will only be one green bead between two sets of five blue
beads.

As the children identify numbers that work, they place colored trans-
parent inserts over those numbers in the hundred chart. A few children
notice that all the numbers that work for the second necklace pattern are in
the tens column (10, 20, 30, 40, etc.).

Sofia announces a related connection. “Hey! Like walking in line again!
Every time the green gets five more, the blue does, too.”

Daniel expands on Sofia’s idea. “Yeah, it’s like the blue and green beads
are holding hands. They go together, blue and green, blue and green, but
now there are five in each line. Four groups of five worked, then six, then
eight. The fives have to be even. Odd ones don’t work.”
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“Do you mean the number of groups has to be even?”
“Yeah . . . because they go together—two colors, five greens and five

blues—and that makes an even number. That makes ten!”

WHAT IS REVEALED

As Madeline progressed through this unit, her young learners developed
along two dimensions: horizontal and vertical. Initially most of the activ-
ities were designed to support horizontal structuring. The horizontal
dimension allows the real world to be treated mathematically. Madeline
used lines, egg cartons, shoes, and bead necklaces as contexts to examine
odd and even relationships. She used number lines, hundred charts, arrays,
and t-charts to represent the data in various ways to help students notice a
number of patterns.

The vertical dimension “mathematizes” the mathematics—that is, it
moves students to a more sophisticated mathematical process. Madeline
helped her students move from counting by ones to using a two-for-one
relationship as they counted pairs. Initially they set up one-to-one corre-
spondences by counting, but because of the contexts they quickly began
to use additive structuring as they formed doubles (n + n) and near doubles
(n + n + 1). Multiplicative structuring began to emerge when they realized
that pairs of shoes could be thought of in an array—as columns of left and
right feet (2n) and rows of pairs (n sets of twos). The bead necklace investi-
gations continued to support and challenge children to operate with even
and odd numbers by examining groups of numbers.

As progressions occurred along the two dimensions, students’ struc-
tures became denser. They explored and developed a variety of relations.
This density promotes generalizations, which gets to the heart of algebra.
Here are some of the generalizations the students articulated as they
explored the three necklace patterns:

• Any numbers that work for the second and third styles also work for
the first.

• Only even numbers work because there are two colors and the beads
need to “hold hands.”

• Odd total numbers of beads don’t work for any of Grandma’s patterns.
• More numbers work for the first pattern than for any of the others.
• For a number to work for the first pattern, you have to land on it when

you skip-count by twos.
• For a number to work for the second pattern, you have to land on it

when you skip-count by tens.

The necklace investigation has generalizing potential for older students
as well. Children in second and third grade will spend more time with the
third pattern, noticing that even numbers are necessary but also noticing
the role of six in these special numbers:
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• For a number to work for the third pattern, you have to land on it
when you skip-count by sixes.

• For a number to work for all three patterns (Grandma’s very special
numbers), you have to land on it when you skip-count by twos and
tens and sixes.

• If you skip-count by thirties, you get all the really, really special numbers.

FURTHER STRUCTURING: EVENS, 
“THREEVENS,” AND PLACE VALUE

At this point, students in Madeline’s class have informally been adding even
and odd numbers to produce even numbers. They have not explored the for-
mal aspects of additive operations with even and odd numbers—that is, if
you add two even numbers you get another even; if you add two odd num-
bers you get an even number; the sum of an even and an odd is odd. How-
ever, it is common for teachers to ask students to articulate reasons for why
these statements are true. (See Carpenter et al. 2003, 116–18, for a discus-
sion of how students might approach this using multiplicative structuring.)

To deepen students’ understanding of the part/whole relations
involved in the even/odd structure it often helps to explore a variety of
ways to structure numbers and compare the results. For example, an exten-
sion of even-odd structuring appropriate for older children is to partition
numbers that arise when you divide by numbers other than two. For exam-
ple, you might consider “threeven” numbers, those you get when you skip-
count by three. Children note that the numbers 1, 2, 4, 5, 7, 8 are not
“threeven” numbers, while 3, 6, 9, 12, and so on are; and as they structure
this set of numbers, properties quite different from those that arise with
even and odd emerge. In the following vignette, fifth graders Sandra and
Marcia are investigating “threevens.”

“Hey, this isn’t good,” Sandra declares. “If you add threeven numbers
you get another threeven number, but if you add two not-threeven num-
bers you can get a not-threeven number.”

“Yeah,” Marcia says with chagrin. “It’s like odd plus odd equals even
doesn’t work anymore. Two plus two isn’t threeven.”

“This isn’t good.”
“But one plus two is threeven . . . and so is four plus five.”
Sandra offers a tentative conjecture. “Maybe threevens next to each

other—no, I mean the ones that aren’t threevens next to each other. . . .”
“Let’s write that. Non-threevens next to each other add up to a threeven.”
Bill, their teacher, presses them to reflect on the part/whole relations.

“That’s interesting. When do you think non-threevens add to a threeven
and when do they not? Could you generalize this idea?”

What is emerging in this inquiry, in contrast to the earlier explorations
in Madeline’s class, is an important idea involving divisibility. These fifth
graders will come to realize that when a number is divided by 3, the
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remainder will have to be 0, 1, or 2, and that when threevens are divided
by 3 the remainder is 0. Initially ignoring the operation of division opens
the door to structuring the addition of threevens horizontally. In time, Mar-
cia and Sandra will recognize that when you add a non-threeven with
remainder 1 to a non-threeven with remainder 2, a threeven results. Ulti-
mately they will structure numbers according to three subsets (not two, as
with even and odd), laying a foundation for modular arithmetic.

The children in Madeline’s class will make similar observations when
they connect place value with multiples of numbers. They will notice that
even numbers all lie in the same column of the hundred chart. As they go
down the hundred chart they are adding tens, and if n is even, so is n + 10.
Ultimately it is all bound up in an early form of the distributive property: If
two numbers are divisible by two (or three, or five), then so is their sum.
This can be expressed symbolically as 2n + 2m = 2(n + m), or 3n + 3m =
3(n + m), or 5n + 5m = 5(n + m). Similar reasoning describes the three subdi-
visions of numbers according to divisibility by 3. If a number has a remain-
der of 1 when divided by 3 it can be symbolized as 3n + 1. If a number has a
remainder of 2 when divided by 3 it can be symbolized as 3m + 2. When we
add these, we find 3n + 1 + 3m + 2 = 3(n + m + 1), a number divisible by 3.

Unitizing groups and operating with these groups is just the beginning
step in structuring the number system multiplicatively. On the horizon (in
the years to come) are related big ideas. As students discuss the structures
emerging in their work, they will need to develop language and symbols to
express their ideas. The symbols represent the new mental objects they are
forming—all part of the developing landscape of algebra.

SUMMING UP

The children described in this chapter separated and reformulated the nat-
ural numbers as they traversed the mathematics landscape horizontally and
vertically. The “connecting bonds of activity” (Dewey’s phrase) that devel-
oped formed a network of relations—dense structures—that provided
powerful algebraic tools for future structuring. Dewey also noted that as
adults we are so familiar with these structures that it is hard for us to imag-
ine how complex this process is. We saw that moving vertically from an
additive understanding of even numbers (as n + n, or step by step as n +2)
to the multiplicative understanding of even numbers (as both 2 × n and
n × 2) is a significant step in first grade. The notion of “threeven” extends
these ideas in ways that can challenge adults!

When learners are given opportunities to organize and classify—struc-
ture—their own lived worlds, the forms they create are beautiful and sur-
prising. The construction of Galton’s “beautiful form[s] of regularity” is one
of the driving forces of mathematicians. Even young children, when given
the opportunity to be “young mathematicians at work,” can revel in the
beauty of mathematics.

Early Structuring of the
Number System
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The shift from additive structuring to multiplicative structuring is difficult
to make. For five- and six-year-olds, using doubles and treating the group
as a unit to be counted (unitizing) are landmarks on the horizon. Arriving
at them is cause for celebration. Once those landmarks have been reached,
however, new ones appear. A rich, dense structuring of multiplicative rela-
tions is necessary in later algebraic work, and a reliance on doubling can
lead to many cognitive obstacles.

In this chapter fourth and fifth graders explore factors and multiples,
unique factorization, least common multiples, and greatest common fac-
tors, as well as additive combinations related to these concepts. These for-
ays along the vertical dimension of the landscape of learning lead them to
generate and generalize the commutative, distributive, and associative
properties for multiplication. Simultaneously, as they traverse the land-
scape horizontally, they enter the world of geometry—exploring the rela-
tionship of surface area to volume of rectangular prisms (boxes) and
measuring jumps in frog races.

TEACHING AND LEARNING IN THE CLASSROOM

Miki Jensen is using the unit The Box Factory ( Jensen and Fosnot 2007)
with her fourth graders, which she introduces by showing her students a
box of chocolates she received in the mail. “A friend sent me a box of
chocolates the other day. I opened it and I noticed that the chocolates in the
box formed an array. See, two rows and six columns.” She writes 2 × 6 on
the chalkboard as she talks, checking to make sure her students agree with
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her representation. “I discovered that there was another two-by-six layer of
chocolates underneath! Look! How many chocolates are there all together?”

The students easily establish that the box holds twenty-four choco-
lates, so Miki writes (2 × 6) × 2, explaining that she is putting the paren-
theses around the 2 × 6 because that was the part they calculated first (the
amount in the first layer) and that the × 2 on the right of the expression
represents that there are two layers. “This box has a layer on top arranged
as two by six,” she explains, “and another one just like it on the bottom:
twelve in each layer, two layers, and twenty-four chocolates in the box. But
then I began thinking about boxes in general—not just my chocolate
box—and how they come in all different shapes and sizes. Some boxes
have only one layer; others have arrangements like two by two, but then
there might be many layers and the boxes are taller. If a box held twenty-
four items and each layer had two rows and two columns, how many layers
would there be?”

Together the class establishes that there would be six layers. Miki
writes (2 × 2) × 6 and then continues. “I started to wonder about all of the
possible arrangements, about box factories where boxes are made, and
about how so many things come packaged like this, in rows and columns
and layers. Box factories must have designers—people who decide the size
and shape of boxes. What other arrangements do you think there are for
twenty-four items—arrangements of rows and columns with layers? How
many possible designs are there?” One of the things mathematicians often do
before they explore a problem is agree first on how to define it. They decide what
the constraints will be: what will count as a solution or possibility and what won’t.
Here Miki supports such a conversation and the community limits the box shapes
to be explored to rectangular prisms.

The group also decides that a box rotated 90 degrees on the horizontal
(or tabletop) plane (not turned on end) is really the same box and thus
won’t count as another possibility: (4 × 3) × 2 is the same box as (3 × 4) × 2,
as it is a box with two layers, each 3 × 4; it has only been rotated 90
degrees. On the other hand, (4 × 2) × 3 will count as a different box
because the bottom is now what was previously a side. The box has been
turned on end or “flipped” as the children call it,1 and now there are three
layers of 4 × 2.

These fourth graders now set off to determine all the possible boxes
(rectangular prisms) for twenty-four items arranged in rows, columns, and
layers. Most important, they are also asked to consider how they know they
have all of the possibilities. Bins of multilink cubes are available on the
tables.
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Context is a powerful tool that teachers can use to support mathematical
development. In contrast to typical word problems found in many curriculums,
which ask children only to apply what they already know, Miki is using a real-
world context with two purposes in mind. She has crafted it to generate new
learning, and she provides it as a framework to help children realize what they
are doing. She has chosen a situation from children’s lives that they can imagine,
carefully picked numbers that will engender some interesting factoring possibili-
ties, and then invited them to engage in a series of investigations during which
data can be collected and examined.

At first a few students use the cubes to build rectangular prisms ran-
domly and then count to see if they have used twenty-four cubes. Others
don’t include arrangements with more than one layer. But working in small
groups helps to clarify the task, and soon more systematic strategies begin
to emerge.

“It’s, hmm, I think we need to use factors. Here’s one. It’s two by six—
those are factors—with two layers, and now we can make a four by three with
two layers,” Lori explains to her partner, Michelle. “See? We can move this
part around.” She breaks a (2 × 3) × 2 arrangement off the original (2 × 6) × 2
arrangement and reattaches it to the bottom to make a (4 × 3) × 2.

Miki notices that Lori is using a doubling and halving strategy. To
ensure that Michelle is following, she says, “Oh, that’s an interesting way to
find other boxes. Did you see what she did, Michelle?”

“Yeah, that’s neat. Which is the bottom of your box, though? I’m
confused.”

Miki models how to record the arrangement. “Let’s mark the bottom
array with parentheses.” She writes (4 × 3) × 2. “I’m just going to put
parentheses around the 4 × 3 so we know that this is the bottom layer and
the two means number of layers. Remember? Does that make sense?”

“Oh, I get it. We just doubled and halved. You broke the box in half
and moved it down. Now the two becomes four and the six is three.”

Miki leaves them with an important question before she moves to
another group. “I wonder if this doubling and halving strategy will help
you find all of the possible boxes for twenty-four items?”

Delighted with their new strategy the girls begin to work more system-
atically. They are beginning to consider factors and have a systematic way
to make another factor pair from an original by doubling and halving, but
they don’t consider the number of layers as a factor as well. They work first
with two layers, then with one, but ignore other possible numbers of lay-
ers. Their work is shown in Figure 4.1.

Across the room Cherise, Michael, and Aaron are working quite dif-
ferently. Although they begin by using doubling and halving, as they
build the boxes with cubes they realize that new arrangements can be
found if they flip the box. Although the commutative and associative
properties are not being used consciously and are not yet generalized
ideas, they underlie these students’ flipping strategy. Their work is shown
in Figure 4.2.
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FIGURE 4.1  Lori and Michelle’s Doubling and Halving Strategy

FIGURE 4.2 Cherise, Michael, and Aaron’s Work
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Gene, Ebon, and Brian also use a flipping strategy. Although they
struggle to draw the three-dimensional boxes to scale, they have systemati-
cally used all the factors and found all the arrangements. Their work is
shown in Figure 4.3.

Next Miki suggests a gallery walk to give her students an opportunity
to read and think about one another’s solutions. Time for reflection is critical
to learning, and a gallery walk allows students to revisit and reflect on the prob-
lem and comment on one another’s mathematical thinking and representations. In
this particular case, it is also a chance to examine the reasoning regarding the sec-
ond question: How do we know we have found all the possibilities? Miki passes
out small pads of sticky notes and suggests that her students use them to
record comments or questions and place them directly on the posters.

Continuing the Journey 59

FIGURE 4.3
The Work of Gene, 
Ebon, and Brian



After the gallery walk, Miki convenes a math congress. Although many
of the students have used a flipping strategy, they are not yet consciously
aware of the properties underlying their actions. Miki wants to get her stu-
dents to generalize the commutative and associative properties, so she asks
Tim, Mary, and Chas, whose poster is shown in Figure 4.4, to start the dis-
cussion. Tim begins.

“First we started with all the one-layer boxes,” he explains, pointing to
the chart on their poster that shows boxes with one layer. “Then we halved
this row.” He points to the (4 × 6) × 1 box. “And then we doubled the num-
ber of layers and got another box, four by three by two.”

Mary helps clarify. “How we knew that there were no more ways [to
make boxes for twenty-four items] was because we started with all the ways
for one layer, and then we found all the different ones for each layer up to
twenty-four. So we switched the number in the rows with the number in the
layers, and this is our example. We had this”—she points to (1 × 24) × 1—
“and then we made it this”—she points to (1 × 1) × 24—“because we
switched this number here with this number there.”
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Chas joins in. “That was kind of another strategy. We did that with all
the other boxes, and later we made sure we didn’t do double the same
boxes.”

The three students wait for questions from the class. Chas calls on
Chloe, who has raised her hand.

“Right down there, I don’t exactly get what you did.” Chloe points to
the bottom of the poster, where they have written “switched numbers.”

Chas responds. “We wrote that after we began to realize that since we
have all the ways for one layer, we could do the same thing for all the layers
up to twenty-four. So we switched the numbers in the rows place with the
numbers in the layers place to get all the ways. We had the columns stay
the same, but these two”—pointing to the rows and layers—“were reversed
and it’s a different box.”

Chloe still looks confused, and Miki attempts to focus the discussion.
“Mary, Chas, and Tim, I think what some people might be confused about
is what you mean by ‘switched the numbers.’ When you’re switching
numbers around, what exactly is happening with the box? If you can show
us using the box, it might make it clearer for some people who are still
confused.”

Miki wants her students to generalize the associative and commutative prop-
erties of multiplication. Noticing the confusing language this group is using
(“ways,” “switching numbers,” “reversed”) to explain their work, she refocuses the
discussion around the original context—the boxes. Staying within the context
gives students a concrete tool with which to imagine the situation. In time, after
they’ve explored several situations in which the properties appear—as they move
across the landscape horizontally—they will reflect on the relationships and
become more able to abstract them from the context.

“Okay, well, this is two by six by two. So it’s two, six, two. Chas holds
the 2 × 6 × 2 box made of cubes as he explains, but his language (2, 6, 2) also
reflects pure number. He has already generalized beyond the context. He points
to the chart where 2 is in the column labeled column, 6 is in the column
labeled row, and 2 is in the column labeled layer. “So this is the box flat.
And then we changed it and made it tall. He takes the same box and flips it
so it is now a box with six layers and continues, “So now it has six layers
and each layer is two by two. So the six and the two were switched. Like a
one-by-twenty-four-by-one is long.” He stretches out his arms wide to the
left and right to demonstrate and then turns the box. “But if we change it
this way it becomes really tall. Then it’s one-by-one on the bottom with a
lot of layers, twenty-four.

Miki continues to focus on the context of the box. “How many of you
found that you could turn and flip? Sometimes just turning got you the
same box, didn’t it? But flipping gave you a different box bottom so the
parentheses changed. For example, if two by three is the bottom and you
have four layers, you can move the parentheses to get a new bottom of
three by four, and now there are two layers. It’s still twenty-four items but
now we have two layers and each layer is three by four.”
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Several students nod, and Katie, who has been quiet during most of
the discussion, exclaims, “It’s like you still have the same factors but you’re
grouping them differently!”

“Isn’t that interesting about multiplication? We can group the factors in
different ways but we still get the same answer.” Miki makes the associative
property explicit.

WHAT IS REVEALED

Miki has successfully encouraged her fourth graders to begin structuring
the number system multiplicatively, but their work thus far is represen-
tative of only the very beginning of the journey. Many children have
begun to consider the associative and commutative properties, but are
these generalized ideas for all of them? Would they be able to generate
all the possibilities in another context using the commutative and asso-
ciative properties?

Just appearing on the horizon is prime factorization, where a number
is factored into prime factors using exponentiation. For example, one can
think of 36 as 32 × 22. Miki’s students have a long way to go yet before this
landmark is realizable. It may in fact be at least another year away. In the
meantime, Miki is preparing the terrain. Underlying prime factorization is
the understanding that multiples can be decomposed into factors, which in
turn may be able to be further decomposed and regrouped.

BACK TO THE CLASSROOM

Over the next several days Miki begins math workshop with brief mini-
lessons—strings of related problems using doubling and halving, tripling
and thirding, and eventually generalizing to n and 1/n. She writes one prob-
lem at a time from the string below and asks for thumbs up when children
have an answer:

3 × 4
3 × 8
6 × 8

12 × 4
24 × 2
48 × 1
3 × 16

Then, using rectangular arrays, she represents a variety of the students’
strategies for finding the products but encourages the children to make use
of the relations in the string. [For more information and video of teachers
doing minilessons using strings, see Dolk and Fosnot, Multiplication and
Division Minilessons (CD-ROM), Portsmouth, NH: Heinemann, 2006.]
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The first three problems are basic facts, but they are presented one at a
time and related in a way that supports the noticing of doubling (each one
is double the previous one). The next three problems are all equivalent,
because one factor doubles while the other halves. Not all of the students
use doubling and halving to produce the answers, but the fact that the
answers are the same prompts a discussion of the equivalent expressions.
The doubling and halving are not as easy to see in the last problem (going
back to 6 × 8), but the students begin to look back over the string. And
since the answer is the same as in the previous problems, new relationships
are also examined (for example, 12 × 4 = 3 × 16 and 24 × 2 = 3 × 16).

Over the next several days the ideas discussed in the first string are
generalized using strings like the one below:

6 × 8
12 × 4
3 × 16
5 × 9

15 × 3
45 × 1
24 × 3
8 × 9

Here, the first three problems in the string are equivalent. The first two
remind students of the doubling and halving work they did earlier, but the
third problem provokes some discussion. Some students note that the first
problem can be doubled and halved to reproduce it, but others note that
the second problem, quartered and quadrupled, produces the same result.

The next three problems invite students to consider tripling and third-
ing. Students point out, “Tripling and thirding is basically like doubling
and halving except you have to break it up into three hunks and slide them
over instead of two equal hunks.” Eventually students begin to discuss the
underlying reason that these strategies work—the associative property—for
example (5 × 3) × 3 = 5 × (3 × 3).

The next problem requires students to come up with their own helper
problems. Miki uses 24 and 3 because students are quite familiar with the
factors of 24 at this point. Thirding and tripling turns 24 × 3 into a fact
they know: 8 × 9.

Miki also prompts her students to make use of the distributive prop-
erty with this string:

2 × 3
2 × 30
4 × 4
4 × 40
4 × 41
4 × 39

The first and third problems are basic facts, which are related to the second
and fourth problems, respectively. Each coupling supports the development
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and use of the associative property. For example, 2 × 30 can be thought of
as 2 × (3 × 10) or (2 × 3) × 10. The last two problems in the string help stu-
dents use the distributive property of multiplication. The 4 × 41 is just one
more group of four when compared to the fourth problem. For the last
problem, some students split 39 and calculate (4 × 30) + (4 × 9) and add
the partial products together, 120 + 36 = 156. Other students notice a con-
nection to the previous two problems. For example, 4 × 39 = 4 × (40 – 1) =
(4 × 40) – (4 × 1) = 4 × 4 × 10 – 4.

Miki also wants to encourage horizontal mathematizing and so she
introduces another context for investigation. “We spent the last couple of
days investigating all the different boxes for twenty-four items. We talked
about how we knew we had all the possibilities, and we’re confident that
we’ve found them all. We found some boxes for twenty-four items that had
pretty interesting dimensions, like the one by twenty-four by one. Imagine
what this box would look like and trying to buy it at the store! Then I
began to think about the amount of cardboard needed to manufacture each
of the boxes. I started to wonder, would all our designs require the same
amount of cardboard? If not, since it costs money to buy cardboard to
make the boxes, would some of them be cheaper to manufacture? Would
some be more expensive?”

THE ROLE OF CONTEXT

The first investigation required students to arrange twenty-four items in a
box. By using parentheses to differentiate the rows and columns of the lay-
ers from the number of layers, students constructed and employed the
associative property as they worked to find all the different ways to arrange
twenty-four items (cubes) into rectangular prisms.

Building on this initial investigation, Miki now offers a context in
which the students explore the surface area of these boxes and subse-
quently the relationship of surface area to volume. The 3/4-inch multilink
cube is the unit of volume; the face of the cube—a 3/4-inch square—
becomes the square unit used to measure the surface area. The faces of
the box become smaller (less area) the closer you get to a cube and there-
fore require less cardboard. Eventually students will find that the closer
they get to the making of a cubic prism, the cheaper the box will be to
manufacture.

This new exploration is also designed to get students to realize the
congruency of some of the boxes and to further support their understand-
ing of the associative and commutative properties. For example, students
notice that the cost of cardboard for a (3 × 8) × 1 box will be the same as
that for a (3 × 1) × 8 and (1 × 8) × 3 box. They apply this observation to
other boxes, making it a generalization. Sample students’ work is shown
in Figure 4.5.
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BACK TO THE CLASSROOM

In a subsequent math congress Max and Joe discuss the relationship they
have noticed about the shape of the box and the cost of the cardboard.
Their work is shown in Figure 4.6.

“Well, we started like everyone else,” Max begins. “We had the differ-
ent boxes for the twenty-four items, and we found how much they cost and
stuff. But what Joe and I are going to talk about is this.” He points to the
writing on their poster. “Here it says that we think the more cube-y boxes
take less cardboard, so this one is cheaper.” He holds up a 3 × 4 × 2 box.

Miki comments on their coined term. “Ooh, interesting word, cube-y.
Can you talk to everyone about what you mean by it?”

“Cube-y is the opposite of long and thin. Cube-y is like this.” Max
holds up the 3 × 4 × 2 box.

“Why cube-y and not cube? What is the difference?”
“If the box was a cube, the length and width and the number of layers

would all be the same. All the sides of the box would have to be squares.

FIGURE 4.5 Exploring Congruency
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We couldn’t make that with the twenty-four cubes—this was the closest we
could get—so we called it cube-y.”

“So you’re saying that the more cube-y the box gets, the cheaper it is.
Why do you think that happens?”

Joe responds, referring to the work of the previous group. “Well, it’s
kind of like what Jeff and Maggie were saying before, about how when
there’s less showing it’s, umm, wait . . .” He looks at Jeff and Maggie’s
poster still hanging on the board. “I think they were saying there’s more,
umm, what were you saying again?”

“The boxes that show the least squares on the outside cost the least,”
Maggie clarifies. “The box that shows the most squares on the outside costs
the most.”
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Joe resumes, clearer about the point he wanted to make. “Right. When
the box is cube-y there’s more stuff on the inside that’s not showing. So you
don’t need cardboard for those. So it’s cheaper.”

Miki is elated about the way her students are imagining spatial rela-
tions about interior edges of cubes being adjacent. This observation will
motivate more multiplicative structuring as students become interested in factor-
izations, which may involve squares or cubes or at least be close to cubes. “This
is a pretty important point that you’ve noticed. Do you think that we can
say, then, that the closer the box gets to a cube, the less cardboard is
needed? For example, if you had eight items, what do you think the
dimensions of the cheapest box would be? Turn to a neighbor and share
your thinking about this question.”

WHAT IS REVEALED

As Miki has encouraged multiplicative structuring, her students have jour-
neyed vertically, developing important properties—big ideas that in later
years can be represented algebraically as ab = ba; (ab)c = a(bc); and a(b + c)
= ab + ac. They have also traversed the landscape horizontally, applying
multiplicative structuring to various geometric contexts. Being able to
imagine the possible shapes of products, the factors as dimensions, the
areas of the faces formed, and the congruencies of some of the shapes will
be important capabilities in later algebraic work.

Because Miki’s intent is to develop a rich network of relations—dense
structures—there is one more part to this story. As mentioned earlier,
prime factorization and exponentiation are on the horizon. A full under-
standing of these ideas is not a landmark goal at this point for most, but
before Miki leaves the box factory exploration, she provides opportunities
for these ideas to be explored as well.

THE ROLE OF CONTEXT

Miki introduces a new investigation by building on prior constructions—
the idea of cubic boxes being the cheapest to make. She then offers a new
challenge, asking her students to imagine three cubic boxes: a small box,
2 × 2 × 2; a medium box, 3 × 3 × 3; and a large box, 4 × 4 × 4. She also
tells them that the cost of cardboard is 12 cents per square unit and asks
them to consider how many items (they can use multilink cubes) each of
the boxes holds and the cost of the cardboard for each box.

The numbers for this investigation have been carefully chosen to call even
more attention to the associative and commutative properties. Some students
calculate the cost of each face separately; their strategy for the smallest box is
represented as (12 cents × 2 × 2) × 6. Other students work with the total sur-
face area first; their strategy is represented as (2 × 2 × 6) × 12 cents.
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In the subsequent math congress, Miki addresses the idea that the fac-
tors can be grouped in a variety of ways without changing the product. As
students compare the 2 × 2, the 3 × 3, and the 4 × 4 faces, they also note
some interesting patterns. The dimensions (width and length) are growing
by only one each time, but the area grows quite differently. An L shape is
formed around the initial square; thus the increase from 2 × 2 to 3 × 3 is 5
square units; from 3 × 3 to 4 × 4, it is 7 square units. Noting these patterns
(made by the difference of consecutive squares) provides a new look at
area, arrays, and dimensions. (See Figure 4.7.) It also provides new insights
related to volume. The number of cubes held by each of the three boxes
increases dramatically, by a cubic power—from 8 = 23 to 27 = 33 to 64 = 43.

THE IMPORTANCE OF MODELS

Woven throughout Miki’s work is the use of the array model (two-dimensional
and three-dimensional). It is generated in the context of a box holding choco-
lates arranged in rows and columns and layers (three-dimensional), and later
it represents the surface area of the faces (two-dimensional). The array model
is a concrete tool the children can use to explore the commutative, distribu-
tive, and associative properties in relation to multiplication and to examine the
relationship between surface area and volume. Miki also uses the open array
model to represent their strategies for computation as she does strings of
related problems in minilessons.

Over time the array model will become a powerful tool for thinking—
allowing students to represent multiplicative algebraic expressions geo-
metrically where appropriate and helpful. For example, the multiplication
(x + 3)(x +2) = x2 + 2x + 3x + 6 was traditionally taught using an acronym like
FOIL (first, outer, inner, last). Multiplying the first terms in the expressions
x + 3 and x + 2 produces x2; multiplying the outer terms produces 2x, the
inner terms, 3x, and the last terms, 6. Students taught these procedures by
rote often don’t understand that such a product can be represented by an area.
To make matters worse, the order of procedures they were taught for whole

68 YOUNG
MATHEMATICIANS 
AT WORK

FIGURE 4.7
Comparing a 
2 × 2 Square to a 
3 × 3 Square



number arithmetic multiplication is the reverse—LIOF, or last, inner, outer,
first! For example, imagine the same product as before, (x + 3)(x + 2) = 
x2 + 2x + 3x + 6, but where x = 10. If we used FOIL, we would have 13 × 12 =
100 + 20 + 30 + 6. Yet the standard algorithm requires 3 × 2 as the first step,
3 × 10 as the second, 10 × 2 as the third, and 10 × 10 as the last! The partial
products in both cases can be represented geometrically with arrays, and the
underlying big idea is the distributive property. Students who have developed
rich, dense multiplicative structures have no difficulty in understanding the
relationships. But students who have been taught only rote procedures often
have no image of the relationships. (See Figure 4.8.)

The number line is also a powerful representation for developing mul-
tiplicative structuring. It is well suited for exploring and representing com-
mon multiples, because they appear as the landing points when repeated
jumps of equivalent lengths are taken. Factors also appear, except in
reverse; they are the lengths of the jumps and the number of jumps taken
to get where you want to be on the line. (See Figure 4.9.)

BACK TO THE CLASSROOM

The students in Bill’s fifth-grade class, who are working on the unit The Cal-
ifornia Frog-Jumping Contest ( Jacob and Fosnot 2007), are investigating rela-
tionships between multiples of numbers on an open number line. The
context is one in which a frog and a toad jump equal distances. This context
and representation will also be used to help construct the notion of variation
and solving for unknowns (see Chapter 6), but at this point students are
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developing familiarity with the model and constructing multiplicative rela-
tions that will be crucial to what is to come. Here’s the problem:

Frog-jump problem. Frog jumps 8 times. Every time he jumps he
travels the same number of frog steps. After 8 jumps he has trav-
eled 96 steps. How many steps are in each of his jumps?
Toad-jump problem. It takes Toad the same amount of time to
get to 96, but he does it differently. Each of his jumps is equal to
8 frog steps. How many jumps does Toad make to get to 96 steps?
Represent both problems on one diagram showing jumping
amounts and explain how are they are different and how are they
similar.
Mark the meeting points. Where do Frog and Toad both land?
Clearly, 96 is one answer. Are there other places where they might
both land?

The Frog and Toad problems are placed together purposefully. Frog’s
problem is a form of partitive division—distributing the 96 into 8 equal
jumps. The Toad problem results in the same answer (12), but it is a form
of quotative division—measuring how many eights fit into 96.

Tom and Alicia have just finished presenting two diagrams illustrating
their solutions to the Frog and Toad problems. Most students have solved it
rather readily—a few students writing as little as “96 ÷ 8 = 12” and stating,
“This is easy!”

Bill asks Tom and Alicia, “Okay, you have two nice diagrams here, and
you found that Frog jumps 12 steps each time and Toad takes 12 jumps.
Nobody asked you any questions, which is unusual for this group. You made
two diagrams. Let’s make one together and put both Toad’s and Frog’s jumps
on the same line.” Tom, with Alicia’s help, makes a new drawing shown in
Figure 4.10. “You started carefully, but then you drew the last jumps quickly.
Why?”

Tom replies, “We realized it was just the same pattern over again so we
did it quickly.”

“What do you mean? What pattern?” asks a classmate, Sylvia.
“See these three jumps of Toad’s?” Tom explains. “They are like two

jumps of Frog’s. That pattern goes over and over again. In fact it would
keep on going if they didn’t have to stop at 96.”

“Tom, show us these chunks, or patterns as you call them. Circle them
in green and let’s think about how many there are and how big they are.”
Proportionality is an important big idea so Bill asks for clarification in an attempt
to help more students understand Tom’s insight.

“Well, there are four of them, and each is 24. I guess that’s because three
8s is two 12s. There would be more than four if they didn’t have to stop at 96.”

Alicia records what Tom has said: “3 × 8 = 2 × 12, 4 chunks of 24.”
Then she adds, “96 ÷ 8 = 12, 96 ÷ 12 = 8.”

Bill suggests, “We have two ways to see 8 × 12 = 96 on this diagram.
And we can think of Alicia’s four chunks of 24 as 4 × 24 = 96. Talk with
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your partner about how all these numbers are related. We got 96 twice.
Think about the context. Do you think this is a coincidence?”

Bill moves around the class, conferring with groups as they work.
Many times he has to ask them to explain where the 12 is. The 8s are clear
from the context, but the 12s are not as easy. But soon students see that the
8 and 12 are switching roles. For Frog, there are 8 jumps of length 12; for
Toad, there are 12 jumps of length 8. A number of groups are also noticing
that 24 is a common multiple of 8 and 12. In fact, it is the smallest com-
mon multiple, or least common multiple. Bill introduces the least common
multiple notation: 24 = LCM(8,12).

The 4 remains a mystery to most of the students. There are four groups
of the pattern that Tom reported initially, but how does it relate to the orig-
inal numbers? While conferring with her partner, Samantha has an insight.
“You know, if you think of each of these meeting places as a jump, then
there are four meeting jumps inside Frog’s eight jumps, and there are four
meeting jumps inside Toad’s twelve jumps. It has to divide both—it’s the
biggest factor of both.”

Overhearing, Bill asks her to explain it again. He introduces the great-
est common factor notation, 4 = GCF(8,12), and asks Samantha’s group to
think about the relationship between LCM and GCF in this context and to
make a poster, a recording of their ideas, which they will present in a math
congress the next day.

WHAT IS REVEALED

Earlier, some students were reluctant to create a diagram representing the two
forms of division on the number line. The division problem was easy and they
didn’t see the point: They could easily get the answer. But Bill’s request for rep-
resentation on the same line pushed them to continue to investigate and
moved them beyond an initial disinterest. The mystery of the 4 and 24 multi-
plying to 96 is a key to unlocking the important relationships between LCM
and GCF. Bill is guided by his knowledge of the landscape here: There is some
very interesting mathematics embedded in the merging of these two diagrams.

The problem also offers room to differentiate instruction. Some students
may not have yet constructed the relationship between partitive and quotative
division. Here they may notice that these two forms of division are related to
“what you are multiplying when you turn it around”; that is, are you thinking
of 12 jumps of 8 steps or 8 jumps of 12 steps. They are the same because of
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the commutative law: 12 × 8 = 8 × 12. The commutative law of multiplication
is linked with different forms of division! For many students, this is an impor-
tant observation stemming from the pairing of these two problems.

For other students, the model is a way to understand the least common
multiple, and how it is related to other common multiples. The common
multiples are where Frog and Toad both land. This is why students are asked
to find the places where they meet. Most note what Tom and Alicia shared
with the class—that the pattern repeats (showing that every common multi-
ple of 8 and 12 is a multiple of the least common multiple). In other words,
because LCM(8,12) = 24, all the common multiples of 8 and 12 are 24, 48,
72, 96, continuing in increments of 24. Tom knew you could go beyond 96,
because he mentions that there would be more if Frog and Toad didn’t have
to stop at 96.

The work with greatest common factors is more challenging. However,
as Samantha notices, if a number of equal jumps fits inside a larger number
of different-size (but smaller) equal jumps, then the first number will divide
the second. In the example, 4 divides both 8 and 12. This is a tricky transi-
tion in this context, because one is now thinking about the number of jumps
rather than the length of the jumps. But the students who find this can now
merge their observations. The original 8 × 12 = 96 can be merged with the
fact that the four chunks of 24 produces 96 too, because they come from the
subdivision of the original 96. Now, 4 = GCF(8,12) and 24 = LCM(8,12).

Consider the factors of 5 and 10 (m = 5, n = 10) as jumps on the num-
ber line. The greatest common factor is 5, as 2 jumps of 5—or 5 jumps of
2—result in 10. The meeting points are at multiples of 10; thus 10 is the
least common multiple. And 5 × 10 (GCF × LCM) = 50. In later years stu-
dents will explore the formal proof that mn = GCF(n,m) × LCM(n,m), but
for now they have a model that can provide some generalizable ideas that
could lead to a proof.2 Most important, the students are constructing mul-
tiplicative relations that will certainly move them toward greater success
in algebra.

WHAT MODELS ARE IMPORTANT 
FOR MULTIPLICATIVE THINKING?

Current cognitive scientists believe that number and space are linked—that
our brains are wired to understand number and space together (Dehaene
1997, Izard et al. 2008). Using models like arrays and number lines builds
on our natural capacity to intuit number relations spatially.

The models allow students to treat numerosities as the basic mental
objects that are formed by direct experience—using the common sense
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about number that Freudenthal refers to (1973). In contrast, the standard
approach is rooted in the use of unique factorization and makes use of pre-
formed mathematical structures defined by pure number relations devoid
of context, namely the existence of a factorization into primes, and break-
ing these apart to find the relationship between GCF and LCM. Because of
the axiomatic nature of the reasoning, it applies more generally (to polyno-
mials for example), but this likely means that approaches like this should
come much later in students’ development.

For example, many textbooks teach students to build factor trees. This
approach stems from the pedagogical belief that teaching this process and
how to represent it will lead to understanding. In our experience, many
students who build these trees have either lost sight of or never actually
constructed the multiplicative relations that underlie the process. They can
carry out this procedure successfully but cannot use the unique factoriza-
tion that results from the process, saying they have “forgotten what to do.”
The uniqueness properties may not be in sight either. Some students who
build a factor tree for 32 will, even after finding all the 2s in the tree, be
uncertain whether 3 could be a factor. In fact, factors of a number come
from a pair of numbers—this is the multiplicative relation that defines
them, and it is at the heart of the partitive and quotative structures dis-
cussed earlier. It is also at the heart of the array model in which the factors
of the total area are the measures of the sides.

A number has a set of factors, and this mental object needs to be acted
upon using certain operations. The pairing within the set of factors is an
important piece of the structure, and it is by operating with this pairing that
many algebraic constructs about number become accessible. Some curricu-
lums have students build what they call rainbow diagrams, where the factors of
a number are listed in ascending order and the pairing between factors is indi-
cated by an arc, the collection of which form the rainbow. This is a powerful
representation, but it is critical that students first create a mental object based
on meaningful interactions within a context (the number line, for example),
after which this particular representation, or another, may make sense.

The creation of a mental object (which the learner may represent in
many ways) provides an opportunity to access many algebraic ideas within
number. Among these are primes, common factors and multiples, and
unique factorization, as well as access to more robust strategies within arith-
metic operations. Dense multiplicative structures are the result of becoming
intimately familiar with the sets of factors of many numbers and using them
to build other sets of factors, all of which are bound up with the development
of fluency with facts and the development of what we call multiplicative num-
ber sense. Students with good multiplicative number sense will, when asked
to discuss 49, not only say, “Forty-nine is one less than 50” (an additive
understanding), but will also note, “It is 7 squared, so its only factors are 1, 7,
and 49.” In contrast, 48 is full of factors—{1,2,3,4,6,8,12,16,24,48}. Forty-
eight and 49 differ by one, but their multiplicative behavior is very different!
The problems students are given must allow them to build these mental
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objects. Not only do these structures provide access to algebraic ideas within
number, but as students generalize their features, they will also provide
access to related ideas in symbolic algebra as well.

MORE EXAMPLES: LINEAR COMBINATIONS

There are rich algebraic structures associated with adding multiples of dif-
ferent numbers. Problems of this type provide contexts for further multi-
plicative structuring and opportunities for students to increase their
repertoire of multiplicative relations between numbers, sets of factors, mul-
tiples, and factorizations. These can surface in a variety of problems and are
often presented in a postage-stamp context—for example, finding the val-
ues that can be made using two types of stamps of given values. Investigat-
ing sums of multiples of three- and six-cent stamps (or of six- and
fifteen-cent stamps) should lead one to inquire about uses of the distribu-
tive law. In effect, sums of multiples of 3 are always multiples of 3. Ask
yourself, or a student, “Is 27 + 99 divisible by 3?” If this instance of the dis-
tributive law is interpreted within a rich multiplicative structure and with a
vision of what that might look like on a number line, one would not have
to calculate to see that the answer is yes. This is a basic facet of multiplica-
tive structuring and can be represented on a number line in repeated jumps
of threes (9 threes and then 33 threes for a total of 42 threes), or with open
arrays (3 × 9 + 3 × 33). Such mental spatial objects for the distributive law
underlie the development of many structures critical to algebra.

Adding multiples of numbers without common factors also leads to
important algebraic structures within number. Adding a four-cent stamp to
an inventory of six-cent and fifteen-cent stamps enables the possibilities of
forming 18-, 19-, 20- and 21-cent combinations, and therefore all larger
combinations (17 is not possible). This is a result of a big idea known as
cyclicity. Once one has the numbers 18, 19, 20, and 21 as sums, one can add
multiples of four to these and, cycling through, obtain all larger numbers.
The mental object upon which this big idea is built is the listing of possible
remainders when dividing by four. The remainders are 0, 1, 2, and 3. This
structure can be derived when divisibility by 4 is studied and builds on the
partition of whole numbers into even and odd (see Chapter 3). Students
need to construct similar partitions for divisibility by 3 (into three classes),
as illustrated earlier in our discussion of “threeven” numbers. These mental
structures can then be represented and generalized. Postage-stamp problems
are one context in which acting with these objects is a powerful problem-
solving tool—far more robust than guess-and-check methods.

Unfortunately, many problems presented to students don’t produce the
structures and mental objects we want to encourage. For example, Lager
(2007) has written about a professional development session in which
teachers considered a problem involving possible change received from
$5.00 after purchasing 150 three- or six-cent stamps, the exact number of
each stamp being unknown. The problem posed was, “Would $.74 be pos-
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sible as the correct change?” In a course Bill co-taught with Lager, univer-
sity students worked on the problem and then studied his article. Interest-
ingly, after considerable discussion of language issues and problem-solving
approaches (including various facets of guess-and-check approaches) and
examination of work by teachers and students, the fact that whatever
amount was spent had to be a multiple of three rarely surfaced. This funda-
mental consequence of the structure of sums of multiples was not on their
radar screen. Students’ failure to grasp such a basic idea is something all
mathematics educators need to work on!

SUMMING UP

It is impossible to talk about mathematizing without talking about model-
ing. Mathematical models are mental maps that depict relationships help-
ing us to understand and represent our world. As such they are powerful
tools when solving problems. Models themselves are constructed. They
emerge from representations of the action in the situation. Later these repre-
sentations develop into representations of the situation using cubes or draw-
ings. Eventually, modeling develops into a symbolic representation of the
mathematizing itself and becomes a tool to think with.

In this chapter we witnessed fourth graders decompose numbers into
their factors and generate the commutative, distributive, and associative prop-
erties as they pertain to multiplication. Along the way, a rich set of geometrical
representations also developed building on students’ intuitive natural abilities
to unite space and number. Multiplicative relations can also be represented
powerfully on a number line. We saw fifth-grade students representing least
common multiples in a context where the representations of two problems,
one involving a frog jumping and the other a toad, were merged onto a single
diagram. Again, spatial modeling was key to multiplicative structuring.

The movement from structuring the number system additively to
structuring it multiplicatively is an important developmental step in the
algebra landscape. In order to develop a dense collection of multiplicative
structures, students need repeated opportunities to construct mental
objects of sets of factors, including information about primes, common fac-
tors and multiples, and unique factorization, all of which are bound up
with the development of fluency with multiplication and the development
of what we call multiplicative number sense. Contexts that lead to array and
number line models play a crucial role in this development.

As David Hilbert says in the epigraph to this chapter, “The further a
mathematical theory is developed, the more harmoniously and uniformly
does its construction proceed, and unsuspected relations are disclosed
between hitherto separated branches of the science.” The relationships stu-
dents found as they examined the special cases related to the boxes and
frog jumping helped to foster the development of generalities and the
development of a rich, dense multiplicative structure—one that will become
a powerful lens in their later algebraic work.
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Equivalence—knowing that two expressions may be equivalent even
though they don’t look alike—is one of the most important ideas in early
algebra. Equations are based on this concept. Unfortunately, young learners
often think the equals sign just means “the answer is coming” (Carpenter,
Franke, and Levi 2003), probably because many teachers tend to write
equations depicting the result of arithmetic procedures, with the answer to
the right of the sign. This misconception may also be reinforced by the use
of the = button on a calculator.

Early in the development of mathematical understanding children
struggle to understand how statements such as 5 + 3 = 4 + 4 can represent
equality—particularly when they are presented only with the symbols.
“The numerals are different, so how can the two sides be the same?” they
ask, unable to differentiate equivalence from being identical. Thus they need
to add the numbers on each side; only after achieving 8 = 8, are they cer-
tain. As they construct the idea of compensation—in this case, that one is
removed from the five but added to the three—they begin to understand
how things can be equivalent without necessarily being identical.

Early number sense and the ability to judge magnitude and equiva-
lence may be directly connected to spatial sense. It is easier to determine
magnitude when the difference between the numbers chosen for compari-
son is greater, presumably because we can rely on our spatial sense. When
numbers are close together, we shift to a mental counting strategy, an activ-
ity that researchers now think takes place in a different part of the brain
than the area used for spatial/number sense. For example, if you are asked
to choose which is greater, 2 or 9, you would respond 9 in a split second,
and one might think comparing 7 to 8 could be done equally quickly. Sur-
prisingly, the comparison when the numerals are close together requires a
longer response time (Dehaene 1997).

EQUIVALENCE ON
THE HORIZON

Everything should be made as simple as possible, but
not simpler.
—Albert Einstein

It seems that if one is working from the point of view
of getting beauty in one’s equations, and if one has
really a sound insight, one is on a sure line of
progress.
—Paul Dirac



Researchers also now believe that the brain is hardwired to perceive
(subitize) small amounts without needing to count one by one. For exam-
ple, infants can tell the difference between two and three objects and can
do early addition and subtraction—they know when one is missing (Wynn
1998). The same mathematical ability appears to be true even of raccoons,
dolphins, and monkeys! To make use of this natural capacity for comparing
and examining equivalence, and to build on it, we often flash images of
small amounts (3 and 2 on one arithmetic rack and 4 and 1 on another, for
example, or 3 and 3 and 3 and 2), and ask children to determine which is
more or whether they are equivalent.

Grounding the work in realistic contexts from children’s lives also
helps them realize that amounts can look different but still be equivalent.
In the children’s book The Sleepover (Fosnot 2007c), eight children
rearrange themselves on a pair of bunk beds to confuse the babysitter, who
brings up eight cups of popcorn (two groups of four cups each—four for
the kids on the top bunk and four for the kids on the bottom bunk) only to
find five children on the top bunk and three on the bottom. She thinks she
has gained a kid and is amazed to find that four cups and four cups is per-
fect for serving five kids and three kids! She then goes down to get juice
and brings back glasses in groups of five and three only to find that the
children have now rearranged themselves into groups of six and two. After
reading this story to children, you can ask them to find all the ways the
kids can rearrange themselves on the bunk beds to trick the babysitter. The
early development of equivalence and compensation will be seen in excla-
mations like, “It is still eight! One kid just went up the ladder!”

Games provide young children with further experiences with equiva-
lence and help them connect the written symbols with the perceived
amounts (see Fosnot and Cameron 2007 and Fosnot 2007a). For example,
children can play bunk beds in pairs, taking turns rolling a pair of dice. If a
5 and a 1 are rolled, player 1 takes 6 counters and places them on the game
board on two lines, 5 on the top line and 1 on the bottom line, and writes
5 + 1. Player 2 then draws a game card (which either says, “1 up the lad-
der” or “1 down the ladder”) and arranges counters on his side of the game
board according to the card’s instructions. For example, if the card says “1
down the ladder,” player 2 puts four counters on the top line and two on
the bottom, records 4 + 2, and adds the equal sign to complete the equa-
tion: 5 + 1 = 4 + 2. (See Figure 5.1.)

Another game that supports the development of equivalence is
part/whole bingo. Players take turns rolling a pair of dice and placing that
amount of connecting cubes onto tracks on their game cards. The tracks
they cover do not have to be the same as long as the total number of cubes
is used. For example, if a 5 and a 2 are rolled, one child might place 7
cubes on the 7 track, but the other child might cover the 5 and 2 tracks or
the 3 and 4. It is also possible to cover tracks 2, 2, and 3 or tracks 6 and 1,
and so on. As long as only 7 connecting cubes in total and no partial tracks
are used, the cubes can be arranged in any way the players want. The
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objective is to eventually cover the entire game card. (As with bingo, each
game card is different.) Play is cooperative rather than competitive; players
are encouraged to help each other. The game ends when both game cards
are covered. The point of the game is to make equivalent amounts rather
than simply finding and covering the sum.

The capture ten game supports the “making-ten” strategy for automatiz-
ing the basic facts (for example, 9 + 6 is much easier to recall when a child
thinks of it as being equivalent to 10 + 5). Again, two children play together.
A deck of playing cards with the face cards removed is placed in the center
with cards stacked facedown. The game board has ten pockets labeled with
the expressions 10 + 1 through 10 + 10 (see Figure 5.2). Each player turns
over a card. Together players determine in which pocket to place the cards.
For example, if 8 and 7 were drawn they would be placed in the 10 + 5
pocket. (They might be asked to justify their thinking, perhaps using the
arithmetic rack.) If the sum of the two cards is less than 10 (5 and 2, for
example), players put the cards back in the deck and reshuffle.

Games like these are just the beginning steps in understanding equiva-
lence. In grades 2 and 3, students can analyze statements like 8 + 2 + 10 =
12 + 4 + 4, as well as make the generalization that equivalence is maintained
no matter what operation you use on an equation, as long as you do it to
both sides (thus the statement n + 8 + 2 + 10 = 12 + 4 + 4 + n is also true).

Initially children approach equations like this arithmetically; they pro-
ceed with the necessary operations left to right. To determine whether the
statement 8 + 2 + 26 + 2 = 28 + 8 + 2 is true, they compute 8 + 2, add 26
next, and then add 2. On the right of the equation they start with 28, add
8, and then add 2, producing 38 = 38. One of the big ideas on the land-
scape now is for children to treat the expressions as objects that can be
operated on—to prove equivalence without doing all the arithmetic. For
example, if two of the numbers to the left of the equals sign are combined
(26 + 2), the result is 8 + 2 + 28 on each side. Alternatively, children might
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subtract 26 from each side and produce 8 + 2 + 2 on each side. Done! No
need for further arithmetic.

When students encounter expressions with variables in later years, a
major difficulty is that they attempt to use arithmetic and when it doesn’t
work they don’t know how to proceed. How do you interpret 2x + 5 = 3x – 6
if you don’t know what x is? But when you understand that the expressions
are objects and that amounts can be added to or subtracted from them and
equivalence is maintained, you just add –2x + 6 to both sides, resulting in
11 = x. Children can learn these procedures to solve for unknowns, but if
they have not constructed the idea of expressions as objects that can be
operated on, the procedures are rote and without meaning.

There are several ways to operate on expressions. Using the associa-
tive and commutative properties is one way. For example, the problem
19 + 32 + 8 = ? can be solved by adding left to right. But the problem can be
made a bit easier to solve by employing the associative property and group-
ing the 32 and 8 first: (19 + 32) + 8 = 19 + (32 + 8). Children may under-
stand that they can group numbers in addition without changing the total
sum, but they often don’t think to use this strategy. Besides being an impor-
tant big idea to develop, the associative property of addition can be helpful to
simplify equations because the grouping may allow for “canceling” equivalent
expressions on each side of the equals sign. The same can be said for com-
mutativity. When analyzing the statement 8 + 15 + 3 + 2 = 15 + 8 + 5, using
a combination of the associative and commutative properties allows children
to conclude that the statement is true without doing all the arithmetic to
derive 28 = 28.

Algebraically, commutativity can be represented as a + b = b + a and
associativity as (a + b) + c = a + (b + c). Children don’t need to be intro-
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duced to formal notation like this at this point, but they do need many
opportunities to compose and decompose numbers and generalize that
numbers can be grouped in a variety of ways, even turned around, and the
amounts stay the same. (These properties do not hold for subtraction, and
children may be amazed and puzzled as they explore this difference.)

Once children understand these ideas, they become willing to aban-
don their earlier, more tedious, arithmetic strategies. They begin to substi-
tute one expression for another. For example to subtract 8, a child might
subtract 10 and then add 2, or she might solve 32 + 38 by substituting the
equivalent expression of 30 + 40. As their understanding of equivalent
expressions increases, children may begin to simplify equations by elimi-
nating quantities that are on both sides of the equals sign. For example, in
the statement 8 + 2 + 26 + 2 = 28 + 8 + 2, the 8 + 2 can be “canceled” on
each side to produce 26 + 2 = 28. At first children draw lines through the
identical numbers on each side of the equals sign but won’t erase them, or
they talk about ignoring or separating off those numbers momentarily. As
they become more confident that the equivalence remains, they develop
what they often call a “cross-out” rule.

Once children are confident that quantities can be “canceled” and that
adding or subtracting identical quantities on each side of an equation won’t
disturb equivalence, they develop an undoing strategy for simplifying
equations. For example, they might add 6 to each side of an equation to get
rid of –6, or subtract 6 from each side to get rid of +6.

Developing these ideas and strategies is a huge leap in development
and won’t happen by just working on procedures and skills. It takes con-
scious thought on the part of the teacher to ensure that progress occurs
toward these landmark ideas and strategies.

TEACHING AND LEARNING IN THE CLASSROOM

Cynthia Lowry is using the unit Trades, Jumps, and Stops (Fosnot and
Lent 2007) with her second graders. She begins by reading the story The
Masloppy Family Goes to New York City as a context for investigating how
to divide the money from a giant piggy bank (6 rolls of quarters, 3 rolls
of dimes, 3 rolls of nickels, 3 rolls of pennies, 4 loose quarters, 7 loose
nickels, 1 loose dime, and 5 loose pennies) into three equivalent piles.
The numbers of rolls (six and three) have been chosen to encourage chil-
dren to distribute them easily into three piles. The real problem lies in
finding ways to distribute the loose coins (which add up to $1.50)
equally.

If children begin by distributing the rolls into three equal piles, they
usually do the same with the four loose quarters, the seven nickels, and the
five pennies. The constraint of what to do with the remaining quarter, dime,
nickel, and two pennies requires that they exchange equivalent amounts. In
the following excerpt from a conference with Jasmine and Keshawn, Cyn-
thia encourages them to deal with equivalence and exchange.
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“I think we need to add up all this money first,” Jasmine asserts as she
and her partner, Keshawn, begin.

“That’s a lot of money. Two, four, six. Six dollars for the nickels! Write
that down,” Keshawn tells Jasmine, recognizing they need to keep track of
the amounts. “Six rolls of quarters—10, 20 . . . 60. Sixty dollars in quar-
ters. Wow! That’s a lot of quarters!”

“It is, isn’t it!” Cynthia says. “I wonder if we need to add all this up.
Could we divide it without adding it all up?” By pondering aloud whether
addition is needed, Cynthia invites consideration of an alternative strategy. She
does not suggest that the rolls be shared as wholes; she only wonders aloud
whether another way is possible. She respects the children’s autonomy and trusts
them to generate clever solutions.

Jasmine rises to the challenge. “I could pass out the rolls. One, two,
three. . . . One, two, three. . . .” Next she and Keshawn will be faced with
how to distribute the loose coins.

“Passing everything out to three piles—that’s a great idea. I’ll check
back with you in a little bit.”

During the investigation, Cynthia is only able to confer with four or
five pairs of children, but they discuss and reflect on the problem with
each other, working and learning autonomously. As Cynthia observes
the children, she notes that several big ideas about algebra are emerging:
equivalence and substitution (exchange); the generalization that a sub-
stitution strategy opens up possibilities; and the idea that the rolls are
not important because each pile has the same number, so the most
important part of the problem is how to distribute the coins to make
equivalent amounts. After the students have had enough time to explore
the problem thoroughly, Cynthia convenes a math congress to focus on
these ideas.

“Ian, would you and Peter begin? Tell us what you did.” Starting with
children who distributed and then were puzzled about what to do next, Cynthia
frames the main problem that will engender the strategy of substitution and a dis-
cussion of equivalence.

“We shared out all the rolls first. That was easy,” Ian declares. “Then
we shared out the coins. We gave every pile a quarter. Then we did two
nickels each. Last we did the pennies. But then we had this left over. The
boys hold out one quarter, one dime, one nickel, and two pennies. We’re
stuck. It’s hard.”

“This is tough, isn’t it?” Cynthia agrees sympathetically. Acknowledging
that the problem is difficult allows the children to feel comfortable admitting they
aren’t sure what to do. It also lets them take risks and work as a community to
help one another. Too often as teachers we think we should eliminate struggle; we
offer our strategies too readily or simplify problems into trivialized tasks to ensure
easier answers. Doing so unfortunately eliminates all opportunity for children to
learn the tenacity needed to work on mathematics and to feel the resulting exhila-
ration of solution when grappling with challenging problems. “It seems that
sharing the rolls was the easy part. I guess we don’t have to worry now
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83about the rolls.” Cynthia’s comment that they don’t have to worry about the rolls
helps the children see how equivalent amounts can momentarily be disregarded.
Over time this will result in a “canceling” strategy. Since the emphasis is on
proving equivalence, she continues, “But what should we do with the loose
coins? Does anyone have a way to solve this?”

“I do,” Jasmine says. “You can trade. Put a dime for two nickels. Then
we can give two piles another nickel and the other pile can have five pen-
nies. That’s fair.”

Realizing that the children need time to think about this, Cynthia suggests a
few moments of pair talk. “Turn to the person next to you and discuss what
Jasmine did. Is this fair?”

After a minute or two, Amirah voices the question many of these young
mathematicians have. “Yes, we agree. But we still have a quarter and a nickel
left. What do we do with those?” Although Jasmine’s idea to use equivalence is a
brilliant insight, her specific choice of coins does not solve the problem.

“Did anyone find a way that worked? Is there a different exchange we
could do?”

“We found a way,” Carmen says excitedly. “José and I gave two quarters
for one pile, and two quarters for another. Then the third pile had all of the
other coins.”

Cynthia says, “Let me write that down so we can all consider it.” She
writes Rolls + 2 25  = Rolls + 2 25  = Rolls + 7 5  + 5 1  + 1 10 . “What do
you think? Does this work?”

Sally, who has been looking perplexed until now, exclaims, “It works!
Seven nickels and five pennies and one dime is the same as two quarters!
Each pile has rolls and fifty cents!”

“Yep,” her partner, Marcus, chimes in, “and there’s another way, too.”
“Another way?” Cynthia smiles encouragingly. “Let’s check it out.” Then

she challenges them again. “I wonder how many ways there are to do this?”
By exploring alternative solutions, Cynthia establishes that there are other possi-
bilities and encourages her young mathematicians to inquire further. An important
part of algebra is generalizing and proving that all possibilities have been found.

WHAT IS REVEALED

Cynthia has been using the Masloppy’s trip to New York City, which necessi-
tates that the money in the piggy bank be equitably distributed into three bags,
as a context in which to develop early algebra ideas related to equivalence, sub-
stitution, and cancellation. The rolls of coins support simplifying the problem
by separating out equal amounts, and the loose coins prompt the students to
use equivalent amounts rather than combinations of identical coins.

A realistic context like this not only helps children realize what they
are doing and makes math meaningful but it can also be specifically
crafted to support development. Sequencing these activities progressively
is critical. Powerful learning only results when ideas are explored in depth



over time—introduced through hands-on activities and then revisited per-
haps weeks or months later in different ways. Without strong sequences of
carefully crafted activities, learners may have insufficient opportunities to
develop the dense structuring important for later algebra.

At this point, Cynthia is just starting the journey of developing equiv-
alence. The ideas are not yet explicit nor generalizable, but the terrain is
being prepared. This early work with equivalence sets the stage for estab-
lishing the use of equivalent expressions and for analyzing equations.
Over the next several weeks, Cynthia continues to work on these ideas
progressively with a sequence of investigations, games, and minilessons.

For example, she plays twenty questions, inviting children to figure
out what coins, which total fifty cents, she has in her hand. She also intro-
duces the piggy bank game (see Figure 5.3). Two children, in turn, select a
card from the game deck that indicates an amount of money they can place
on their game card. Players determine what combination of coins to take.
For example if a “15 cents” card is drawn, the player can take fifteen pen-
nies, or a dime and a nickel, or three nickels, and so on. These coins are
then placed on the player’s board and the transaction is recorded on a
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shared recording sheet. Each pair of transactions is then linked with <, >,
or =, whichever symbol is appropriate.

BACK TO THE CLASSROOM

Cynthia is conferring with Philip and Isaac as they play piggy bank.
“I have 41 cents,” Philip declares, pointing to his board, which has one

penny, one nickel, one dime, and one quarter.
“How do you know?” Cynthia asks.
“I added it up.” Philip easily adds up the fives and tens. “A quarter is

25 plus 10 . . . 35 . . . plus 5 . . . 40. So it’s 41.”
“What about you, Isaac?” On his board he has three pennies, one

nickel, one dime, and one quarter.
Adding up all the coins is difficult for Isaac, so he estimates. “I think

maybe 47.”
“Do you have more or less than Philip? Let’s look at the boards

together. Is there another way to tell without adding it all up?” Cynthia
prompts Isaac to use a spatial sense of number, to compare equivalent amounts,
and eliminate unnecessary information.

“He has more, I know. Wait, maybe I do. Because we both have this.”
Isaac places his hand on top of the nickels, dimes, and quarters. But I have
three pennies!”

“So who has more?” Cynthia asks.
“I do! I guess I have 43 cents, because I have two more pennies than

him!”
Encouraging Isaac to examine the expression without doing arithmetic chal-

lenged him to stop guessing—to consider equivalent expressions.
Cynthia helps Isaac record the amounts and relate them to Philip’s

amounts using the appropriate symbols (see Figure 5.4).
Later, Isaac plays a round of piggy bank with Olivia and teaches her

the strategy he developed when he was playing with Philip.
After the students have played several rounds of the game with differ-

ent partners, Cynthia convenes a math congress. “Olivia and Isaac, tell us
about the strategy you found helpful.”

Isaac begins, “I had three nickels and two quarters and two pennies.
Olivia had two nickels, three dimes, one quarter, and two pennies. We
decided it was equal.”

Cynthia writes 3 5  + 2 25  + 2 1  = 2 5  + 3 10  + 1 25  + 2 1 .
Olivia explains, “We knew two dimes and a nickel made a quarter. So

Isaac traded.”
Cynthia represents their thinking as an emergent two-column proof:

3 5  + 2 25  + 2 1  ? 2 5  + 3 10  + 1 25  + 2 1 
2 10  + 1 5  = 1 25 (Trade)

3 5  + 2  25  + 2 1  ? 1 25  + 1 5  + 1 10  + 1 25  + 2 1  (Equivalence)
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Isaac continues, “And we both had two pennies and two quarters so
we knew that part was the same and so they didn’t matter.”

“Wow. You said a lot there. Let’s see what everyone thinks. Isaac said
that the two pennies and the two quarters don’t matter because they are on
both sides. Turn to the person next to you and talk about this. Is he right?”
Cynthia encourages the community to consider Isaac’s justification.

Mia says, “He’s right. They are the same.”
“So can I erase them?” Cynthia inquires.
“I don’t think you can erase them.”
“Cross ’em out,” Isaac says. “You could do that because we both have

them. They don’t matter. And a dime is two nickels. So, see, they are equal.
So we put an equal sign.”

“Does everybody agree that if the same thing is on both sides we can
cross them out?” Cynthia is establishing a “cancellation” law relative to equiva-
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lence. Although mathematicians eliminate extraneous equivalent expressions, this
is difficult for children to understand. They often are willing to cross numbers out
or to say that equivalent amounts don’t matter, but they want to hold the amount
“in storage” rather than eliminate it. Cynthia records “Isaac’s cross-out rule”
on the right under the word trade as the next step in the representation.

At this point most of the work children have been doing is within the
context of money. Cynthia wants to generalize these procedures to the
realm of pure number. Therefore, the next day she begins math workshop
with a ten-minute minilesson consisting of a series of related problems,
or strings. The focus is on deciding whether number statements are true.

“Let’s warm up for math workshop today with a string of equations.
And remember, let’s look for shortcuts, like mathematicians! Here’s the first
one.” She writes 5 + 4 + 10 = 10 + 5 + 5 and asks, “True or not true?”

“Not true,” Jasmine replies immediately. “It should say not equal.”
Cynthia records the statement on the board and represents it on a

series of cubes held to the chalkboard with small magnets (see Figure 5.5).
The cubes are a concrete bridge for children who still need to see a spatial repre-
sentation of the quantities.

Cynthia moves on to the next equation in the string. “How about this
one?” She writes 9 + 5 = 8 + 6. “True or not true?”

“True, because 9 is 1 more than 8, and 6 is 1 more than 5,” Mia says
with conviction.

Olivia is puzzled. “I don’t get it.”
Isaac explains, “It’s like taking 1 from the 6 and giving it to the 8. You

get 9 + 5 = 9 + 5.”
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Representing Two
Expressions on a Bar 
of Cubes to Examine
Equivalence



“Oh, cool—you could also do 10 + 4 = 4 + 10.”
As Cynthia progresses through the string she begins using a double

open number line in place of the cubes. (In an open number line only the
numbers the children use are represented.) See Figure 5.6.

For the next problem, 13 + 8 + 6 = 5 + 9 + 13, children note that 13
has just been added to both sides, thus equivalence is maintained.

Then Cynthia challenges with 13 + 8 = 5 + 9 + 13 – 6 to introduce
undoing. “True, or not true?”

“Equal. Because 13 is still on both sides, we can cross those out. Use
Isaac’s cross-out rule,” Olivia suggests. “5 + 9 is 14 and 14 – 6 is 8. And 8 = 8.”
She still needs to do all of the arithmetic to feel certain of the equivalence.

Philip shares an alternative, more algebraic, strategy, employing the
use of the commutative property in his justification. “My way is different. I
started with the 9 and took 6 away. That left me with 13 + 8 = 8 + 13. And
I know that is equal because the numbers can be turned around.”

Cynthia challenges them to think about the cancellation as subtracting 6.
“I’ll share my way, but I don’t know if it will work all of the time. Tell me what
you think. When I wrote the problem, I used the problem before it: 13 + 8 + 6
= 5 + 9 + 13. I took six away from both sides, and since I knew the first prob-
lem was true I thought this one had to be, too. What do you think?”

“That works!” Jasmine exclaims. “All the time. Because if you add or
subtract on both sides, and you use the same number, it stays the same.”

Having gotten her young mathematicians to generalize, Cynthia repre-
sents symbolically the idea they are discussing. “So I’ll use an n to represent
any number like Jasmine said. If I write n + 13 + 8 + 6 = 5 + 9 + 13 + n, is
this a true statement?”

“Yep.” Olivia is confident. “It’s like a mirror on the number line, like
symmetry. What happens on the top happens on the bottom. And if you
add a number and then take it away, it makes a jump but then you jump
back to where you started. Looks like a banana!”

“Or like chalk dust!” Jasmine exclaims. “You make a mark and then
you erase it. A number minus the same number is zero.”

As children begin to understand that adding a number n to both sides of an
equation does not disturb equivalence, they often overgeneralize and assume that if n
is on only one side of the equation the equivalence is lost. Cynthia wants them to real-
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ize that with some problems equivalence can be maintained if and only if n = 0 and to
realize the importance of considering this possibility.

“So what about this one?” she says with a smile. “True or not true? I’ll
use n again to mean any number.” She writes 8 + 6 = 5 + 9 + n.

The first child to respond, Mia, overgeneralizes. “Not equal, because if
you add a number on only one side it won’t work,” she declares emphatically.

Cynthia prompts discussion. “Turn to the person next to you and talk
about what Mia just said. Do you agree?” After a few moments, Cynthia
calls on Roxanna, who has been discussing the possibility of n = 0 with her
partner, Haille. “Roxanna, what did you and Haille decide?”

“Mostly we agree, but what if the secret number is 0? Her idea doesn’t
work then.”

Cynthia paraphrases. “So this is true only when n equals 0?”

WHAT IS REVEALED

Cynthia’s second graders are developing a strong sense of equivalence and
clearly have constructed a system that includes several rules of deduction
that are regarded as valid in their community. For example, they have con-
structed compensation (what is added must be removed to maintain iden-
tity), commutativity, associativity, ignoring (canceling out) like amounts,
and adding and/or subtracting n to both sides to simplify for analysis.

However, having a strong sense of equivalence and a variety of deduc-
tive rules to prove equivalence does not necessarily mean children will sub-
stitute equivalent expressions when they are computing. Encouraging them
to do this is important, because a repertoire of strategies leads to better and
faster mental arithmetic. For example, subtracting 321 – 189, one might
use the equivalent expression 332 – 200. Adding 11 to each number gets
the subtrahend to the landmark number of 200, making the problem easier
to do mentally. One could also subtract 200 and add 11 back afterward.
Both of these strategies—constant difference, and removing and adjust-
ing—are much easier to do mentally than performing the standard
regrouping algorithm using paper and pencil.

BACK TO THE CLASSROOM

Because the children are beginning to develop emerging ideas of proof,
Cynthia wants to provide a more open-ended investigation. She begins by
reminding the children of the story about the Masloppy family. The main
character, Nicholas, loves to organize things. It was Nicholas who thought
to organize the money in the piggy bank into rolls, and then into three
equivalent piles. Cynthia tells her second graders that she once knew a boy
just like Nicholas. He loved to organize things, too. One day he told her
that he knew a fast way to subtract five. He said that instead of taking five
away he added five and then took ten away.
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She encourages the children to try the boy’s strategy, and together
they subtract 32 – 5. They get the same answer of 27 when they compute
32 + 5 – 10. It works! Then they set off, in pairs, to figure out whether the
strategy will always work and why. After they’ve investigated for a while,
Cynthia convenes a math congress.

“So Colleen and Juanita, you showed us several examples, and then
you said, ‘So we know it always works.’ Have they convinced us that the
strategy will always work?” Cynthia prompts the community to consider what is
necessary to make a convincing argument—what is sufficient to support a gener-
alization. Her question goes right to the heart of algebraic thinking. “Is just try-
ing it out several times enough for us to be certain that it will always work?
Maybe in the next problem you try, it won’t work. We might not want to
use this strategy if we can’t be certain. How can we be certain?”

“I don’t think trying it out lots of times is enough,” Olivia exclaims. “I
think we have to know why it works. And that’s what’s bothering me. I
don’t know why it works!”

“Hmm. Knowing why might help us be sure it will always work,”
agrees Cynthia. “What is going on here? Rosie, you and Jasmine have an
interesting way for us to look at this. Show us what you did.”

“We made a number line,” Rosie says as she shows their drawing (see
Figure 5.7). “We did the boy’s strategy on top, and we did 32 minus 5 on
the bottom. We got 27 both times.”

“Let me write down an equation for what you said so we can all think
about this. On the top of the number line is 32 plus 5 minus 10, and on the
bottom is 32 minus 5.” Cynthia paraphrases to give everyone a chance to think
about what Rosie has said. She writes 32 + 5 – 10 = 32 – 5.

Jasmine is excited. “It works because five and five make ten. That’s it! I
get it!”

“Who thinks you understand what Jasmine means? Who can put Jas-
mine and Rosie’s idea in your own words?” Cynthia asks. To get an inclusive
discussion going, Cynthia needs to make sure that the ideas being offered are
understood. Often teachers just say, “Does everybody get that?” and everyone
nods or choruses yes. By asking, “Who can put Jasmine and Rosie’s idea in your
own words?” only children who can paraphrase the idea will put their hand up,
and Cynthia can quickly tell who needs further clarification. Several hands go
up and Cynthia asks Ian to give it a try.
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Ian looks quizzically at Jasmine who nods. “But if we did five and six it
wouldn’t work.”

“Yeah. See?” Rosie draws another line. “The six is too big. It has to be
five and five.”

Cynthia reframes the comment. “So you are saying that if we want to
take away six, we can’t add five and take away ten. What would we add if
we took away ten? Everybody, turn to the person next to you and talk
about this.” After a few minutes, Cynthia returns to the whole-group dis-
cussion. “Keshawn, what did you and Isaac decide?”

“We decided it would only work if we added four.”
Isaac offers a new idea. “Or we could take away eleven and add five in

order to subtract six, too.”
Olivia joins the conversation. “Oh, yeah, wow, because five and six

make eleven, and four and six make ten. The numbers have to add up to
the number you take away.”

The conversation continues as Cynthia challenges the children to con-
sider other numbers. Questions like this guide children to generalize and to
examine the part/whole relations involved—getting right to the core of structuring.
And as the part/whole relations are examined, equivalence is once again the focus.

SUMMING UP

Understanding the equal sign, =, as equivalence and not as a symbol denot-
ing “the answer is coming” is essential if children are to use algebraic
expressions with meaning. The games and investigations in this chapter
were set in contexts that required second graders to use equivalence and to
examine equations relationally instead of only performing computations.
They developed several “rules” that can be used in later years in chains of
deductive reasoning as they work more formally to prove their thinking.
These rules include compensation (what is added must be removed to
maintain identity), commutativity, associativity, ignoring (canceling out)
like amounts, and adding and/or subtracting n to both sides to simplify for
analysis. For this they construct a second big idea: They learn to treat
expressions as objects that can be operated on with these rules.

Children’s work with equivalence is also tied to developing flexibility
in using computational strategies such as compensation (291 + 348 =
300 + 339) or constant difference (321 – 189 = 332 – 200). As Einstein
once said, “Everything should be made as simple as possible, but not sim-
pler.” The goal of algebra instruction should not be to dumb down the
problems by making them simpler. Instead, the goal should be to support
young learners to find their own ways to make problems as simple as possi-
ble. By inviting learners to find ways to simplify, rather than simplifying for
them, we are inviting them into the world of the mathematician. We are
involving them in the process of structuring problems. At the heart of
structuring is simplification; it is precisely that process that brings beauty
to the mathematician’s creation.
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So far in this book we have seen children actively structuring the num-
ber system. They have considered even and odd numbers, “threeven”
numbers, factors and multiples, equivalence, and more. Yet we have not
begun to discuss what in the public eye is algebra—what about variables,
what about x and y?

A quick glance at the walls of middle and high school classrooms
reveals the presence of the rules of algebra. Posters proclaim the rules chil-
dren need for success: order of operations; the binomial theorem; the
quadratic formula; the slope intercept equation of a line. Often these
posters cite the state standard their mastery represents. In California, a list
of twenty-five standards nails down everything one needs to know for
Algebra I, the standard eighth-grade course. Also in California, seventh-
grade algebra standards make up a significant chunk of the high school exit
examination, and failure to pass this exam has prevented tens of thousands
of students from receiving a diploma in spite of successful completion of
every other graduation requirement. The stakes are high!

Many researchers and authors have defined early algebra in ways that
capture aspects of the activity we collectively recognize as algebra. But as we
said at the outset, our objective is not to define algebra but to look at the
emergence of algebra, in particular to identify the critical big ideas and strate-
gies young children construct that are important landmarks for teachers to
notice, develop, encourage, and celebrate. These developmental landmarks
are not found on posters summarizing how to calculate or how to meet a
particular state standard, but they are crucial for students to succeed.

VARIATION VERSUS
VARIABLES

In symbols one observes an advantage in discovery
which is greatest when they express the exact nature
of a thing briefly and, as it were, picture it; then
indeed the labor of thought is wonderfully diminished.
—Gottfried Wilhem Leibniz

But when the guidelines we give teachers are
transmuted into lists of state-mandated jargon that
are given an iconic status in the classroom, I don’t
think we’re saving time for good instruction. I think
we’re stealing time from anything that actually
contributes to a child’s education.
—Jonathan Kozol



Precisely because these landmarks are cognitive developmental leaps
that often require the reorganization of previous ideas, they cannot be
forced by segmenting material into predigested bits requiring sequential
mastery. Too often, however, curricula and standards are organized in such
bits: First it’s solving one-step linear equations; then it’s solving two-step
equations; and when they are mastered we’re on to three-step equations!
Teachers are expected to follow sequential instruction, and some districts
purchase standardized tests that monitor which students have mastered
each step in the instructional sequence.

Some time ago a group of middle school teachers asked Bill for strate-
gies on how to help students learn to solve three-step equations once they
had “really mastered” two-step equations. Hoping to get the group to focus
on student thinking rather than teacher actions, he began, “I’m not sure
what you mean by a two-step or a three-step equation, but give me some
samples and we can start by talking about what your students are doing.”
This cost him his credibility—how could a University of California mathe-
matics professor not know the difference between a two-step and a three-
step equation!1

In many school districts the jargon has attained “iconic status” (to use
Kozol’s term), and the process by which students are expected to proceed
from the two-step skill to the three-step skill is laid out in their texts, the
district’s standards, and the state’s expectations. But there is much, much
more to the development of the ability to solve equations than moving up
step by step.

A BRIEF HISTORY OF THE DEVELOPMENT OF ALGEBRA

Historically, the first important step toward symbolic reasoning—as opposed
to mere symbolic representation—occurred in the context of problem solv-
ing. Numerous ancient texts, including some from Babylonia and China,
include problems in which information is given about some unknown quan-
tity and readers are asked to determine its value. For example, a standard
recipe for problems in Babylonian tablets begins, “I found a stone but did not
weigh it.” After some additional information, for example—“when I added a
second stone of half the weight, the total weight was 15 gin”—the student is
required to calculate the weight of the original stone (Stewart 2008).

The word algebra comes from the Arabic al-jabr, a term used by
Muhammad ibn Musa al-Khwarizmi in 820 A.D.—the same mathematician
who brought us the standard place value algorithms for arithmetic, such as
long division. His seminal work The Compendius Book on Calculation by Al-
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jabr w’Al-muqabala laid out methods of calculation for solving six types of
equations (Stewart 2008). Al-jabr means adding equal amounts to both
sides of an equation; al-muqabala means subtracting equal amounts from
both sides of an equation. Although these methods are recognizably similar
to those taught today in a traditional algebra course, the latter term also has
a general, and perhaps even more important, meaning—comparison. Com-
paring algebraic expressions gets to the heart of algebra—analysis occurs,
relationships are determined, expressions are treated as objects, and equiv-
alence is examined. Sadly, in the traditional teaching of algebra, emphasis is
most often placed solely on the procedures to be used; the importance of
the activity of comparison is overlooked.

As in the early Babylonian tablets, words were used by Al-Khwarizmi,
not symbols. It took hundreds of years for today’s algebraic symbolism to
develop. Symbols first appeared for operations in the fifteenth century; the
letters p and m were used as abbreviations for plus and minus. Soon after,
the symbols + and – arose in commerce, where they were used by German
merchants to distinguish overweight and underweight items. Mathemati-
cians quickly began to employ them too. In 1557, the mathematician
Robert Recorde invented the symbol = for equality. In his book The Whet-
stone of Witte, he wrote that he could think of no two things that were more
alike than two parallel lines of the same length (Stewart 2008). (He used
much longer lines than we do today, more like two open number lines, one
on top of the other.)

Although some spotty use of symbols early on to represent unknowns
has been found (for example, in Diophantus of Alexandria’s Arithmetica,
written around 250 A.D.), the move to symbolic notation for unknowns
didn’t gain momentum until the Renaissance. François Vieta was one of the
first mathematicians to state his mathematical results in symbolic form. He
used the consonants (B, C, D, etc.) to represent known values and used the
vowels (a, e, i, o, and u) to represent unknown quantities (Stewart 2008).

However, it is not Vieta’s use of letters that is important in the develop-
ment of algebra, particularly since we use them differently today. What is
important is that Vieta also made a crucial distinction between what he called
the “logic of species” and the “logic of numbers.” He argued that algebraic
expressions could represent an entire class (species) of arithmetical expres-
sions and that algebra should be seen as a method for operating on general
forms. In contrast, arithmetic is a method for operating on specific numbers.

This distinction was a huge cognitive shift—a big idea. Before Vieta,
equations were simply numerical relationships that allowed specific num-
bers to be substituted for the symbols x and y. Mathematicians were now
challenged to distinguish algebra from arithmetic by treating algebraic
expressions (such as 2x + 3y) as mathematical objects that could be added,
subtracted, multiplied, and divided without ever considering them as rep-
resentations of specific numbers. Equivalent expressions could be
exchanged. Algebra took on a life of its own, free from arithmetical inter-
pretation (Stewart 2008).
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This historical progression from solving problems with unknowns, to
representing equivalence and comparing expressions, to the treatment of
expressions as objects was a long one in the development of algebra. As will
become evident in this chapter, many of the ideas that were cognitive leaps
for mathematicians are big ideas for children, too.

IN THE CLASSROOM2

The fifth graders who have been working on frog-jumping problems (see
Chapter 4) are moving on to solving linear equations, still within the con-
text of frog jumping. Bill, their teacher, mentions Mark Twain’s book The
Jumping Frog of Calaveras County and explains that every year frog-jumping
contests are still held at the Calaveras County, California, fairgrounds. He
then presents this problem:

MT is a bullfrog. He is world famous for his long jump. Every time
he jumps he travels exactly the same distance. When he takes 4
jumps and 8 frog steps, it is the same as taking 52 frog steps.

1. How many frog steps are in 2 jumps and 4 frog steps?
2. How many frog steps are in each of MT’s jumps?

Before the students begin working, they discuss some ground rules. What
assumptions are necessary? In the story, frogs don’t jump once and stop.
Instead, they jump a number of times and then walk a little bit. If the various
frog jumps are different lengths, possibly in multiple directions, it would be
impossible to determine how long the jumps are from the information given.
So for scoring purposes, it is assumed that the jumps are in a straight line and
that their length will be determined according to this rule: Whenever a frog
jumps in an event, if the frog takes more than one jump, all jumps are equal in
length. All frog jumps are measured in steps, and all steps are equal in length.

Bryan and José start with the expression 4j + 8 and interpret the fact
that there are four jumps and eight steps in the sequence as meaning that
each jump is two steps. They write (see Figure 6.1a), “MT did four jumps
which is equal to 8 steps.” They are not treating the expression 4j + 8 as an
object with j an unknown value—for them j must equal 2. Interestingly,
they notice that 2j + 4 must be half the distance of 4j + 8 and determine its
value as 26. However, most students solve the problem using direct calcu-
lations, beginning by undoing the operations that led to 52:

52 – 8 = 44
44 ÷ 4 = 11

22 + 4 = 26 frog steps
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The jump is treated as an unknown and arithmetic is used to determine the value.
The value is then plugged into the next expression (2j + 4) to determine the
numeric value—26. This strategy is reminiscent of the early algebra strategies
found on Babylonian tablets.

Traditionally, teachers have often taught learners to use such procedures, but
they employ the logic of the al-muqabala strategy (subtracting equal amounts
from both sides of an equation). Learners are told, “To solve for j in the equation
4j + 8 = 52 get all of the numbers on the same side of the equation to simplify it.
To do this, subtract 8 on both sides of the equation, because whatever you do to
one side of the equation, you must do to the other. This produces 4j = 44, so divide
both sides of the equation by 4 to get a result of j = 11.” In contrast, in this frog-
jumping situation, students have been invited to mathematize the situation in
their own ways, and procedures to solve the problem have not been discussed.

A few students take other approaches. For example, Alyssa and Sam
have constructed the following table:

4 8 52
2 4 26
1 2 13

Noticing that 2 is half of 4, and 4 is half of 8, they deduce that there are 26
frog steps in 2 jumps and 4 frog steps, since 26 is half of 52. They also
draw a diagram of what the 4 jumps and 8 steps might look like (see Figure
6.1b).
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One purpose of this problem is to set up a situation in which the context of
frogs jumping on a track can be developed and student strategies for determining
unknown jump lengths can be discussed and represented on an open number
line—a powerful model for comparing expressions. The numbers in the problem
have been carefully chosen to encourage children to examine the relationship that
Alyssa and Sam have used.

Bill invites Alyssa and Sam to share their diagram.
Alyssa explains, “Well, these are the jumps. Four of them. And these

are the steps. Eight of them.” She points to the related parts of their dia-
gram.

“In your table, you wrote 2, 4, 26 underneath 4, 8, 52. What does that
mean?” Bill asks. “Can you explain that using your diagram?”

This time Sam responds. “It’s half of everything. That’s why we did it. It
really means that two jumps and four steps are twenty-six.”

When several classmates look puzzled, Alyssa says, “See, here we have
two jumps and four steps.” She points to the lower number line in Figure
6.1b. “It’s half of the first.”

A few students now begin to voice their confusion. “How is it half? I
don’t see that.”

“Well, two of these jumps are here, that’s four, and four of these steps
are here, and that’s eight. So we doubled it.”

Sam adds, “If you put two of the bottom diagrams together you get the
top one.”

Sam has brought up an equivalent relationship, and Bill wants to maximize
this teaching moment. He challenges the students to consider both equations on
the same number line, thereby emphasizing the equivalence. “So if you put two
jumps and four steps and two jumps and four steps together you get the
top diagram? Will they look exactly the same?”

For the next few minutes the class discusses the fact that if one consid-
ers only the lengths involved, it doesn’t matter the order in which jumps
and steps are drawn as long as there are the same number of jumps in each
representation and also the same number of steps in each. Eventually they
agree that if they halved the diagram again, it would show that one jump
and two steps are equal to 13.
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At this point, Bill challenges, “Now that we’ve figured out how these
diagrams are related, I’m wondering about a few more things. Can we use
what we know to figure out three jumps and six steps? Talk with the per-
son sitting next to you.”

After a moment or two, Bill resumes whole-group conversation.
“Maria?”

“Rosie and I think we can. It’s 39, because a jump plus two steps is 13,
so three times it.”

Bill draws j + 2 three times (see Figure 6.2) and marks 13, 26, and 39
on the number line.

Juan and Tanisha offer a different strategy. “We did it a different way,”
Juan exclaims. “Tanisha and I subtracted a jump and two steps. That makes
3 jumps and 6 steps, too.”

“Is this what you mean?” Bill draws four jumps and eight steps and
then crosses out one jump and two steps. “How do you know how many
steps that is?”

“We subtracted. Fifty-two minus thirteen equals thirty-nine.”
Treating algebraic expressions as objects rather than simply as procedures is

an important landmark on the landscape. To ensure that the students examine
this idea, Bill prompts, “Turn to the person you are next to and talk about
what Juan and Tanisha did. Why are they subtracting?”

Alyssa shares her excitement. “Oh, that’s really cool. It works. And that
means we could make lots and lots of ways. We can half or double, and we
can add or subtract.”

Juan adds another critical concept—the generalization of the idea of
equivalent algebraic expressions. “Actually we can multiply or divide by
any number, not just double or half. It’s like if something is equal to some-
thing, then you can use those things and add ‘em to other equal things.”

WHAT IS REVEALED

Interestingly, the fact that the jump was a length of 11 steps was not part of
the children’s discussion. The class already knew this (most students deter-
mined this using an undoing procedure). Instead the conversation focused
on the relationship between diagrams representing 4j + 8, 2j + 4, and j + 2.
Based on Alyssa and Sam’s representations, the students understand that
2 × (2j + 4) = 4j + 8 and that 4 × ( j + 2) = 4j + 8, although these expressions
were not written down in that form.
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In due time, the students will use these symbols. For now, it is signifi-
cant that they are manipulating chunks of diagrams in meaningful ways—
in effect treating the expression 2j+ 4 as an object. The arc representing j is
not merely an unknown number—it is a meaningful quantity that can be
manipulated, and in this context it has a visual representation.

A new type of equivalence has arisen in this conversation—students
are seeing that algebraic expressions may appear different yet can be equivalent.
That four jumps and eight steps is the same as repeating two jumps and
four steps twice is true independent of the length of the jump. The variable
j used this way represents true variation. In Vieta’s words, it represents
the logic of species rather than the logic of numbers. Instead of viewing
2 × (2j + 4) = 4j + 8 as being the result of a symbolic rule, the variable has
a representation as an object—an arc that can vary—and the steps can be
understood as lengths too. These ideas—that an expression can be thought
of as an object and can appear different yet be equivalent, and that these
relationships hold for various lengths—are big ideas that will become fur-
ther elaborated as students have more opportunities to investigate equiva-
lence and representations on the number line.

BACK TO THE CLASSROOM

Now that his students have multiple ways to represent equivalent jumps
and steps on a double open number line (using the top and bottom of the
line), Bill invites them to explore a new series of problems, the two-trial
jumping contest, in which three frogs—Cal, Sunny, and Legs—each com-
plete two jump/step sequences that land them in the same place:

• When Cal jumps 3 times and then takes 6 steps forward, he lands in the
same place as when he jumps 4 times and then takes 2 steps backward.

• When Sunny jumps 4 times and then takes 11 steps forward he lands in
the same place as when he jumps 5 times and then takes 4 steps forward.

• When Legs jumps 2 times and then takes 13 steps forward he lands
in the same place as when he jumps 4 times and then takes 5 steps
backward.

Bill reminds everyone of the frog-jumping rule—whenever a frog jumps in
an event, if the frog takes more than one jump, all jumps are equal in length; all
frog jumps are measured in steps, and all steps are equal in length—and stu-
dents set off to determine which frog has the biggest jump and therefore
wins the contest.

At first many students have trouble comparing jumping scenarios 
(3 jumps + 6 = 4 jumps – 2) because they create two open number lines
and either don’t start jumps at the same point or don’t align the jumps
equally. Consequently, they either have to redraw their work or draw various
curves to indicate which parts of one diagram correspond to parts of the
other. (See Figures 6.3a, b, and c.)
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Problems like these can be solved by guess-and-check methods, and when
students use this approach they have made sense of the context and the question.
But it does not lead to the type of structuring and sense making about expressions
with variables that Bill hopes to generate, so he encourages students to represent
the problem using the relationships provided. He confers with Thomas and
Alyssa, who are working on Sunny’s jumping data.

Thomas offers a guess. “What if the jump is 10? Let’s try that—4 times
10 is 40, plus 11 is 51.”

“Okay. I’ll do the other one for Sunny.” Alyssa plugs 10 into 5j + 4.
He has to land at the same place, right? Five times 10 is 50, plus 4 is 54.
Doesn’t work.”

Bill suggests, “Sometimes when mathematicians feel stuck they begin
by modeling the problem. Have you thought of drawing the jumps and the
steps, like on a track, or a number line?”

Thomas and Alyssa look surprised at Bill’s suggestion. “How can we do
that on a number line? We don’t know what the size of the jump is!”

“Can you draw the jumps on a track?” Bill offers the same suggestion but
keeps it grounded in the context.

“I guess.” Thomas draws a track with 4 jumps and 11 little steps. The
context helps him realize what he is doing.
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“I’ll do the other one,” Alyssa offers. She draws a track with 5 jumps
and 4 steps, but her tracks and jumps are different sizes than Thomas’ are.

Bill attempts to focus them on the equivalence. “It looks like your jumps
and your track are bigger than the ones Thomas made. Does that matter?”

Thomas exclaims, “Yeah. It’s the same track, and they have to land at
the same spot! You have to make yours exactly like mine.”
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Poster for the Jumping
Contest (continued)

FIGURE 6.3c
Poster for the Jumping
Contest (continued)



By coordinating their representations, Thomas and Alyssa will come to real-
ize how the jumps and steps are related. At first students struggle to find common
meeting points on the line, but this struggle is an important precursor to develop-
ing the big idea of equivalence and deriving later cancellation strategies.

Bill now suggests they use just one line. “Since it’s the same track,
maybe you should just draw one line. You could put Sunny’s first trial 
of 4 jumps and 11 steps on the top and his second trial of 5 jumps and 
4 steps on the bottom. And you’re right, Thomas—they have to land at
the same place.”

Thomas and Alyssa start drawing on the same track, each doing one
side, but the jump sizes are still not the same. Bill helps them stay
grounded in the context. “I thought you said the frog’s jump sizes were
the same?”

“Oh, yeah—the frog-jumping rule. Let’s start over.”
When they begin using double number lines, many students find that after

an initial attempt to represent the problem, they have to start over. Bill encour-
ages, “It’s fine to start over when you are making double number lines.
After all, you don’t know how big the jump is when you start, so it makes
sense that you may have to redraw.”

The next day, after students have had time to create posters of their
work, Bill convenes a math congress and picks Maria, Yolanda, and 
Sam to present their work, each of them dealing with one part of the
problem.

Maria begins discussing her work on Cal. (Her work is shown in Fig-
ure 6.4.) “I drew three jumps and six small steps, and another three, I
mean, four jumps take away two small steps. And I drew this a certain way
showing the line because I decided to ignore these three jumps so I could
see how the two parts—six steps and the jump taking away the two steps—
were equal. So. . . .” Maria hesitates.

After a moment Bill asks students to tell a partner in their own words
what Maria has done so far. “Turn and talk to the person next to you. Try to
put Maria’s strategy in your own words. Talk about what the big bar in her
drawing is.”

After a few minutes, Bill asks Alberto to share his explanation. “I think
it is kind of like a separator, because the three jumps on the top and the
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three jumps on the bottom both meet up. But we want to see how the six
little steps and the big jump minus two steps meet up because it is sup-
posed to end up in the same place—because it’s not really important where
the other three jumps are at. It’s really just important to find out how they
meet up.”

Bill paraphrases to focus on what has been separated out. “You say this is
like a separator. You think Maria separated the stuff that doesn’t matter so
much?”

Alberto clarifies, “Well, it is not that it doesn’t matter. It’s just that you
could tell that they automatically meet up and that you don’t have to worry
about that part.”

Knowing how difficult it has been for many of the students to repre-
sent the two equations on the same line, Bill continues probing. “You could
tell they meet up because . . .”

Alberto says confidently, “Because three jumps and three jumps are the
same thing!”

Maria now uses her hand to show on her line how the sum of 6 and 2
is equivalent to one jump, successfully convincing her peers that the dis-
tance of Cal’s jump is 8 steps.

WHAT IS REVEALED

The Importance of Representation

The double number line representation is a powerful tool for helping stu-
dents examine equivalence and variation. Most students find it easier to
reason with the double number line than to guess and check. It is also
more interesting for them to draw the diagrams than to guess with num-
bers. This is an important developmental transition. At the same time,
working with the diagrams does not guarantee an answer on the first go-
round (Thomas and Alyssa’s struggle is common). When drawing two dia-
grams, children’s endpoints often don’t match and they are unsure how to
proceed (see Figure 6.3b, page 102).

There is a lot at stake in setting up these three frog-jumping problems.
In Cal’s case, the students have to create a representation for 3j + 6 = 4j – 2.
This is a so-called three-step equation (although many students can solve it
in two steps). Students who memorize the steps for solving such equations
when they do not have a mental image of what the equality represents often
confound the procedures as they work with symbols. They ask, “Do you
add or subtract 3j? Do you add 2, subtract 2, or what?”

As students struggle to represent three jumps followed by six steps for-
ward in relation to four jumps followed by two steps backward, they are
constructing the big idea that you can work meaningfully with expressions con-
taining unknown quantities, even if you don’t know their value. Freudenthal
(1973) argued that concepts are the results of cognitive processes and not
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the other way around. Working with diagrams facilitates important cogni-
tive processes. When students diagram the two jumps, they eventually line
them up with the same beginning and end points. The context of the frogs
jumping on tracks helps them realize the equivalence. As they study their
equivalent representations, they notice that the first three jumps in each
must line up. This is another big idea, that when variables are used repeatedly
in equivalent expressions they must represent the same thing (in this case the
unknown jump length). At this point the students are working meaning-
fully with unknown quantities, even though they don’t know what they
are. The jumps in the diagrams are representations of a variable and a men-
tal object is forming alongside them.

The Importance of Redrawing

In order to get the two diagrams to align, students often have to redraw
their initial try. They forget to line up beginning and end points, or they
aren’t careful to draw jump lengths the same (see Figure 6.3a, page 101).
Sometimes it takes many tries. Revision is an important part of the learning
process.

Redrawing is important because it raises issues about equivalence and
leads to the notion of variation. The equivalence in three jumps followed by
six steps forward is the same as four jumps followed by two steps backward
expresses a relationship between jump sizes and step sizes. This is the
essence of the big idea of variation, that variables describe relationships. Too
often students believe a variable is simply an unknown number to be
found, a habit of mind likely developed from solving equations procedur-
ally. But variables represent more than unknowns, they represent (Vieta’s
word) a species. This notion of variation underlies the notion of function,
probably the single most important abstract construction in higher mathe-
matics. All of these big ideas are packed into making sense of three-step
equations.

BACK TO THE CLASSROOM

As Bill’s math congress continues, Yolanda presents her solution to Sunny’s
jump length, 4j + 11 = 5j + 4 (see the diagram in Figure 6.5).
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“Well,” she begins confidently, “I knew that there were four equal
jumps both times, so one jump and these four steps [pointing to the four
frog steps] had to equal eleven steps. I saw four here [comparing the 4 to
the 11] so this and this were equal [pointing to one jump and four frog 
steps and 11 steps] so that left seven frog steps here. That meant it has to
equal one jump because there were only seven left and there were four
before.”

“I get it,” Maria interrupts, smiling. “It’s pretty much the same as what I
did with Cal. You took away the jumps because they didn’t really help.”

“They both used a separation bar, too,” adds Alberto. “I think that was
the biggest similarity, because it was like the root of their, um, strategy. So I
think that was the biggest . . .”

“So the separation bar enables you to take away things that are unnec-
essary?” Bill asks. Are ideas about cancellation emerging?

Several students nod affirmatively.
Maria offers a new image. “Like a storage box, kind of.”
Bill probes their sense of variation. “Does it matter that we don’t know

the sizes of the jumps in the storage box?”
“No because they’re equal—the size doesn’t matter,” Alberto says with

conviction.
No one objects, and Bill asks Sam to share his analysis of the data on

Legs’s jumps, 2j + 13 = 4j – 5. He presents what might be considered a gen-
eralization of the cancellation strategy (see Figure 6.6).

“Depending on the difference in the number of jumps and whether the
steps are forward or backward you can always figure out how many steps
are in a jump,” Sam begins. “For Legs it is thirteen plus five divided by two
is nine. That’s how many it was, because there are two jumps and then thir-
teen steps [draws] and then there are four jumps and five steps backward,
so since there are two extra jumps that’s why you need to divide by two.”
He writes 13 + 5 = 18 ÷ 2 = 9, which after a short discussion on the proper
use of the equals sign he rewrites as 13 + 5 = 18 with 18 ÷ 2 = 9 below it.

Bill asks for clarification. “Show us on the picture—where is the thir-
teen plus five?”

Sam obliges. “If these two were the same jump it would just be thirteen
plus five, because two jumps plus thirteen equals up to here, and then the
five would go back to there because they have to land in the same place. So
you need to know thirteen plus five to get here. If this was all one jump it
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would just be thirteen plus five. But since it is two jumps you need to
divide it by two because they are separate jumps.”

Bill relates what Sam has described to the earlier discussion. “Do you think
Sam used the storage box idea in his shortcut?”

“Yes,” says Juanita, and many of her classmates nod in agreement. “It
was kind of like an invisible line even though he didn’t draw it, because
the first two jumps on the top and the first two jumps on the bottom he
didn’t care about because they wouldn’t help him solve the problem. He
just paid attention to the two last jumps and the thirteen little steps, so
technically he is using it but like an invisible line. He simplified the prob-
lem to be two jumps equals thirteen plus five, and then he divided each by
two to get one jump.”

“Do you agree, Sam?” Bill wonders whether Sam sees that he has done the
elimination mentally.

“I guess . . . maybe . . . I don’t know.”

WHAT IS REVEALED

Cancellation is a process employed in symbolic reasoning that is typically
taught when students are learning equation-solving rules. In the previous
discussion, the class, working as a community, is devoting part of their
efforts to constructing and defining an algebraic rule whereby one removes
equal amounts of an unknown from both sides of an equality. The conver-
sation centers around certain lines drawn to locate equivalent points on
two open number lines. Some students have trouble figuring out where to
draw lines on their diagrams. The symbolic issue is how to deduce 6 = j – 2
from the earlier representation of 3j + 6 = 4j – 2—that is, how to “cancel” 3j
from each side of the equation.

The terminology used in this discussion gives some clues about the
students’ development of a cancellation rule. In explaining the bar Alberto
first describes it as a separator. This terminology is appealing, because
many students seem unwilling to remove the equal amounts from consider-
ation. They view the separator as breaking the problem into two parts, even
though they recognize the equivalent amounts on the left are not necessary
to answer the question. This hypothesis is supported later when Maria
refers to the separator as a “storage box.” The equal amounts in the
unknowns are not thrown away; they are stored, not “cancelled.” The stu-
dents also seemed to prefer the word unnecessary rather than the words Bill
used—ignore and remove.

On the other hand, their terminology could result from the context.
In the frog-jumping contest, jumps aren’t thrown away or removed. Ref-
erees consider all jumps and all steps in determining the length of a sin-
gle jump. Nevertheless, Sam does appear to cancel equal amounts and
remove them from consideration. His rule considers only the extra jumps
and the forward and backward steps, and on his written paper he uses
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equals signs to represent the result of operations rather than equivalence,
writing 13 + 5 ÷ 2 = 9, together with the check 9 × 2 = 18 + 13 = 31 and
4 × 9 = 36 – 5 = 31.

This misuse of equality is corrected during the congress, but only after
Bill has uncovered the sequence of operations Sam is describing, which is a
clue to Sam’s thinking. Sam creates a diagram that includes all the jumps,
indicating he understands the representation, but he does not include a
separation line and his discussion includes only the right portion of the
diagram. That the other students realize he is using a version of their earlier
rule in the form of a “hidden line” indicates the community is making
progress toward identifying cancellation as a deductive rule. But it is not
clear that Sam sees that he is using that rule. In fact, on the back of his
paper he records his justification to the second problem as: “4 jumps + 11
steps is the same as 5 jumps + 4 steps, so the difference between 11 steps
and 4 steps is the difference between 4 jumps and 5 jumps.” Assuming he
used similar reasoning in the third situation, we can understand why he
was not convinced he was using an invisible line. He is able to work with
the remaining jumps (as if they were separated out), but he remains aware
of the context.

These students will, in time, symbolize their work with conventional
algebraic expressions and make sense of symbolic rules of reasoning, such
as canceling equivalent amounts. But the conversations in this congress
illustrate why it is crucial to allow students time to first make sense of the
algebraic operations in context and to use representations (in this case dou-
ble number lines) as a tool. As fifth graders they are conversing about how
to make sense in solving three-step linear equations. Many big ideas are on
the horizon! These same problems, set in a symbolic fashion without the
proper grounding, can trip students up. There is time between fifth grade
and twelfth grade for sense making in algebra. We need to find that time—
and take that time.

SUMMING UP

Algebra has traditionally been taught as a collection of rules to solve partic-
ular types of problems. These rules do govern how symbolic expressions
are manipulated and how equations involving them can be solved, but
algebra instruction now focuses almost entirely on the formalism in which
these rules are embedded. The jargon we use to describe the progression of
processes has become iconic, and students no longer have the time they
need to construct the big ideas that underlie the important mathematics—
expressions as objects, equivalence, variation, the fact that expressions with
variables describe relationships.

Representing expressions with variables on open number lines facili-
tates the construction of big ideas. Four frog jumps and eight frog steps can
be visualized, even though one may not know how large the jumps are in
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relation to the steps. This visual image helps students work with expres-
sions as objects. They can then, using double number lines, investigate
equations involving expressions. Variables take on a special value governed
by the equation (or equations). Often, because variables describe relation-
ships (variation), these double number line representations have to be
redrawn as part of the problem-solving process. But this redrawing process
is a good thing. It leads to a deeper understanding of variation and the
development of powerful strategies for solving for unknowns. Most impor-
tant, these strategies and ideas are generated and owned by the students
and thus employed with a robust understanding, empowering them as
developing mathematicians.
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Why is –4 – –5 = +1 true? Most students are not convinced when told, “It
must be so.” Nor are many adults. Parents and educators sometimes offer
learners explanations to try to trigger understanding—for example, “When
you get rid of your debt, you gain money,” or, “Subtraction and addition are
inverse operations and since subtraction takes away what was added, if we
have 1 + –5 = –4 we also have to have –4 – –5 = +1.” But just as often, stu-
dents are simply given rules (two minus signs make a plus) and asked to
use them even if they don’t understand them. The unfortunate result is that
they implicitly accept mathematics as not needing to make sense.

But it is critical that young, developing mathematicians believe that
mathematics makes sense. We don’t yet have definitive or comprehensive
research on the best way to teach operations with integers, but given the
fluency with integers expected of students when they take algebra courses,
it’s important to provide some glimpses of contexts and models that help
students investigate the big ideas involved in the addition and subtraction
of integers, as well as some of the underlying theory.

The notion of number evolves progressively. It begins with using small
subitizable units and counting, constructing cardinality, and building a
measurement model for number, each of which represents significant cog-
nitive leaps. Then, through investigating fair shares and part-to-parts rela-
tionships with fractions and decimals, the notion of number gets extended
to include rational numbers. In each case context is a powerful learning
tool, and the everyday actions of counting, measuring, and dividing up
root the extension of ideas about number in familiar experiences.

FURTHER HORIZONS
Integers and Equivalence

We are usually convinced more easily by reasons we
have found ourselves than by those which have
occurred to others.
—Blaise Pascal

In my view, the primordial and—in most cases for
most people—the final goal of teaching and learning
is mental objects. I particularly like this term because
it can be extrapolated to a term that describes how
these objects are handled, namely, by mental
operations.
—Hans Freudenthal



But negative numbers are somehow different. We don’t typically
observe them as a quantity1 either to count or measure, and we don’t typi-
cally experience antimatter, which wouldn’t necessarily provide a good
model for them anyway. The negative numbers are mental objects having
enough properties in common with the other numbers that we allow them
into the family—into our structuring of the number system.

If we take seriously the idea of algebra as a structuring activity, then
extending counting numbers to include negative integers requires that we con-
struct new mental objects. There are no shortcuts. Current approaches typi-
cally either involve demonstrations on a number line (going backward to
include negatives) or equivalences using + and – chips in which the chips
cancel each other out—for example, three positive (red) chips added to five
negative (yellow) chips equals two negative (yellow) chips. These approaches
do capture the key features of integers and their arithmetic and, in fact, are
linked to important applications. However, it is very easy for them to
become rule driven and for students to arrive at answers based on their
actions with the manipulatives rather than operating mentally.

The context of net change, which is built on equivalence, is instrumen-
tal in understanding integers. Net gain and net loss are both mental
images—generalizations—but they arise from examining data and noticing
patterns in realistic situations.

TEACHING AND LEARNING IN THE CLASSROOM2

Patricia Lent begins her second-grade math workshop by reminding her
students about taking the subway to Central Park for a field trip:

Remember when we took our birding trip to Central Park and we
rode the subway? We all got on the same subway car. It was really
crowded. None of us had seats. At the first stop, a few of us got
seats. Then at the next stop, a few more of us got seats. The car
kept getting emptier and emptier, until by the time we got to the
park, everyone had a seat. In fact, we were practically the only
people on the car. During our subway ride a lot of people got off
the car, but people also got on the car at nearly every stop. I won-
dered how our subway car kept getting emptier if there were peo-
ple getting on at every stop.

I was still puzzling about this on my way home from school
yesterday. I got on the local train at Chambers Street. When the
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1While we do read temperature below 0, these numbers do not really have the features of neg-
ative numbers—they measure thermal energy, which is always positive.
2The dialogue and work samples of these second graders were previously published in an arti-
cle by Lent, Wall, and Fosnot (2006).



train left Chambers Street, I counted ten people in my car. At
Franklin Street, the next stop, some people got off, and some peo-
ple got on. I couldn’t see exactly how many people got off and on,
but when the train left Franklin Street, there were fifteen people in
the car. I’m wondering what could have happened. How many
people could have gotten off? How many people could have got-
ten on?

Although most members of the class realize the problem has multiple
solutions, a few students initially see it as having a single solution. And
only a few of the students who realize the problem has multiple solutions
seem to understand there might be a finite number of solutions. A few stu-
dents use some kind of system to generate solutions; however, most find
new solutions by random searching. They represent their solutions in a
variety of ways—diagrams, open number lines (a common model they
have used for arithmetic), prose, and equations (see Figures 7.1a, b, and c).

During the first math congress, Patricia and Cathy (who is also working
in the classroom) focus on the different ways students have represented and
organized their solutions. The class is particularly intrigued by Uriah and
Mia’s use of what they term “a pattern” (specifically, decreasing by one the
number getting off and decreasing by one the number getting on) to generate
eleven solutions beginning with 10 + (–10 + 15) = 15, 10 + (–9 + 14) = 15,
and so on, ending with 10 + (0 + 5) = 15. “If you use a pattern,” one stu-
dent says, “you’ll get more ways.” However, although many of the students
seem to understand the landmark strategy of using a systematic procedure
to generate a lot of solutions, the big idea that one might be able to use this
strategy to generate all the solutions seems out of reach for most. When
Chynna and Nyima share their system for systematically keeping track of
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which solutions they have found, few of their classmates seem to under-
stand why being systematic is important.

The next day, to provide further experiences with these ideas, Patricia
and Cathy present a new but similar problem. They tell the children that
ten people are in a subway car at Chambers Street but after the next stop
there are seventeen people in the car. As the partners get to work, spirited
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FIGURE 7.1b
Subway Problem 
Work (continued)

FIGURE 7.1c
Subway Problem 
Work (continued)



conversations about patterns and possible solutions begin: “Let’s do a pat-
tern, so we can find lots of ways!” “How many ways do we have?” “How
many do they [nearby pairs of classmates] have?”

Working systematically does help students generate additional solu-
tions. However, using this strategy doesn’t necessarily lead them to ask the
critical mathematical question, “Do we have them all?” For instance, Ava
and Danielle successfully use a table to find and record eight solutions
beginning with “7 people got on, 0 got off.” They stop at “14 people got on,
7 got off” not because they’ve found all the solutions but because they run
out of room on their paper. “We found out that we made a pattern,” they
write on their poster, “and we are going to do it again.” Devin and Philip
also use this “pattern” to find five consecutive ways, but stop after five
when they too run out of room.

Tova and Haille end their search for solutions for a different reason. In
their investigation the day before, they used an open number line to repre-
sent their thinking, jumping forward to record the number of people get-
ting on and then jumping backward for the people getting off. Focused on
this strategy and forgetting about the context, they ended up with some
impossible solutions (30 people getting on and 25 people getting off, even
though there were only 10 people to begin with). This time they start at ten
and jump backward first, then jump forward. “We figured out it was easier
to minus first,” Tova explains. They also pair each open number line with a
diagram of the subway car “just to make sure.” Their pattern begins with
10 – 5 + 12 and continues until they reach 10 – 9 + 16. They stop here,
reasoning that since Patricia had to stay on the train, no more than nine
people could get off.

Patricia challenges them to think about other possibilities. “Do you
think you have them all?”

Haille replies, “Well, we can’t think of any more, but Ava and Danielle
have more than we do.”

“Let’s see, you started at –5 and went all the way down to –9,” Patricia
probes. “Could you extend your pattern in the other direction?”

“Oh, now I see!” Haille responds. Excitedly they tape a blank sheet of
paper above 10 – 5 +12 and extend the pattern up to 10 – 1 + 8 (see Figure
7.2). They stop here, since the story is “some people got off and some peo-
ple got on” and thus 10 – 0 + 7 is not a valid solution.

The math congress for this second investigation begins where the pre-
vious one ended—looking at different representations and discussing stu-
dents’ systematic approaches. First Ava and Danielle share their table; then
Devin and Philip share their poster. Their classmates note that both part-
nerships have used “patterns,” but at first they think the two posters show
different solutions. Ava and Danielle began with people getting on, while
Devin and Philip began with people getting off, and their numbers are
therefore in a different order. Eventually, they realize that Devin and
Phillip’s “10 – 2 + 9 = 17: 2 people got off then 9 people got on” is the same
as Ava and Danielle’s “9 people got on, 2 got off.” Mia, commenting on the
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rearrangement of symbolic representations, explains, “It’s the same thing
just put in a different way.” Isaac points to the functional nature of the pat-
terns and exclaims, “It’s like a machine!” Interestingly, Isaac had no previ-
ous experience with input/output function machines that we are aware of,
which makes his comment so remarkable. But he loved to draw intricate
gigantic imaginary machines that did things only he understood and in the
block area he often built structures that marbles and balls would roll
through.
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WHAT IS REVEALED

Given the context of people leaving and getting on, it can be argued that
–2 + 9 = 9 – 2 is really a series of operations on 10, with whole numbers
representing quantities of people (10 – 2 + 9 = 10 + 9 – 2), and doesn’t
require the construction of negative and positive integers. However, over
the next few days the emergence of a mental image of net change begins to
incorporate a truer sense of positive and negative quantities as children
describe these results as equivalent to the overall end result of people get-
ting on and off.

BACK TO THE CLASSROOM

The third investigation Patricia and Cathy initiate involves net loss. (The
idea of net change had come up briefly in the second congress when
Devin presented his poster and explained, “The more that get off the
higher the number to get on.” However, it had been overshadowed by the
students’ eagerness to compare representations and identify systematic
approaches.) This time, the train continues on from Franklin Street with
17 people on board. At the next stop—Canal Street—some people get on,
some people get off, and there are 15 people on board—fewer people,
which is what happened on the class field trip, but the net change is
small. Patricia and Cathy begin the discussion by looking at Austin and
Isaac’s series of equations (see Figure 7.3) and Ava and Danielle’s table
(see Figure 7.4).

Devin, generalizing beyond the specific instances he observes, says,
“The number that minuses has to be two numbers bigger than the num-
ber that plusses.” This idea spreads and is picked up by a number of the
students.

Chiara: On every one, it minuses two.
Nyima: Two got off, zero got on, and that equals two. All the way down on

both sides it’s always two.
Sam: The numbers are two more here than the other side. Four is two

more than two, seven is two more than five.
Aidan: It’s three and one, four and two, five and three, six and four. It’s like

counting by two but using the numbers in between.
Delia: I understand that everything is two away—if four got off, two got

on, because it’s two away from the number you started with.
Michael: Each time two more people got off than got on.

In order to see net change in the posters, these second graders must shift their
attention away from the pattern going down the columns and focus on the across
relationship between the pair of numbers in each row. More to the point, they must
shift from the numbers of people getting on and off to an abstraction—a mental
image of the resulting negative result. Although many students are perplexed, they
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know they have a responsibility to articulate what they do understand and what
they need help with. These young mathematicians are working very hard.

Austin: I have a question. I get that they go in order, and the minus is more
than the plus. So if you take away more, do you add less?

Simone: If you take away less you won’t get to the right number.
Delia: Because fifteen is two less than seventeen.
Nyima: Because seventeen is two more than fifteen. If you’re taking away

more, you’re ending up with less.
Chynna: Seventeen minus two equals fifteen. So I think that relates to the

other question, why off is two more than on.
Mia: I don’t fully understand. It has to do with the pattern—one getting

higher, the other getting lower.
Michael: What Chynna is trying to say, and what Nyima is trying to say, is

everything you do, it has to have two more people getting off than get-
ting on.

WHAT IS REVEALED

At this point in the discussion the children are beginning to get a mental
image of net loss, and this mental image of –2 is seen as equivalent to many
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other expressions. For example, they understand that +15 – 17 is equiva-
lent to 1 – 3 and 2 – 4. Although the net loss is still directly linked to the
result of people getting on and off—operations with positive numbers—the
result itself is an abstraction.

Operating with integers is not yet on the horizon for these second
graders—this topic does not usually appear in the curriculum until middle
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school. But is this model useful for the work middle school students are
required to do? And perhaps more to the point, is it useful for algebra? To
find out, let’s listen in on a Math in the City workshop where elementary
teachers are using this model.

TEACHING AND LEARNING IN A 
PROFESSIONAL DEVELOPMENT SEMINAR

Bill introduces the investigation by telling how he enjoyed hearing a mari-
achi group on the Lexington Avenue subway. He then poses a set of prob-
lems for the group to investigate:

Mark, Shelia, and Annie want to put on sixty-second comedy
shows on Saturday mornings for people who are riding the sub-
way. They decide to start with the F train because it takes them
from their school in Brooklyn to midtown, but they aren’t sure
between which stations to perform. They want cars with enough
people but not too many people, because they need room to move
around. They decide to collect some information by riding the
subway and counting people on some of the cars. Since it’s hard to
count everyone on a car, they decide to count the number of peo-
ple who get on and off at each door at each stop.

Part 1: Testing the theory. Twenty-six people are in Mark’s sub-
way car when it pulls out of 14th street. At 23rd street, people get
on and off and after the doors close there are eighteen people in
the car. Mark thinks that eleven people got on and nineteen peo-
ple got off, although he is not sure. He writes 11 – 19 to record his
thinking. What else could have happened; how many people
might have entered or left the car? How could you represent the
possibilities?

Part 2: Rockefeller Center. A few stops later when the car
approaches Rockefeller Center there are fourteen people in the
car. Mark sees six people get on and three get off, so there should
be seventeen people in the car. But there are thirty-two people in
the car! Mark realizes he only watched the door next to where he
is sitting, but the subway car has three doors! This is going to be
tricky. How can Mark list the possibilities? What could have hap-
pened at Mark’s door (in/out) and what could have happened at
the other two doors (in/out)?

The teachers set to work on the first problem. The scenario seems sim-
ple enough. Several people write 26 + 11 – 19 = 18 to record what seems to
have happened. Mark could be right. But what else might have happened?
One participant uses variables and writes 26 + x – y = 18.
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Two groups decide to make t-charts to record the in/out possibilities
(see Figure 7.5). Someone says, “You have to make sure that when you
change the ins you do the same for the outs.” Bill says, “Okay, talk about
how you change them and put that on your posters.”

A third group recalls that number lines have been important in the
workshop and they create the diagram in Figure 7.6, which they call
“linked number lines.”

The fourth group remembers the work they’ve seen Patricia’s students
do. They make the chart shown in Figure 7.7.

Having represented the combinations that could have occurred in part
1 of the investigation, participants turn their attention to part 2. It isn’t very
long before they start complaining: “This is going to be a real mess.” “I
don’t see how we could possibly record all of this.” Before the frustration
leads to disengagement, Bill tells each group, “The whole point here is for
the context to push you to find a way to organize what is going on in a rea-
sonable way in a reasonable amount of time.”

“You mean do the impossible?” Celia laughs.
Bill smiles but urges the group on. “No, in fact remember our conver-

sation about algebra being about the act of structuring? Here is your
chance. Think about how you could represent the possibilities.” Bill lets the
groups work, and then each one presents their poster.

The first poster includes the equations in Figure 7.7 and an in/out
number line similar to Figure 7.6. Discussing part 1 they explain, “If Mark
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wanted to use x and y, he could use x being on and y being off and then all
of these equations would work. They are the same as in the chart.” The
group decides to add two more statements to their poster: 26 + (x – y) = 18;
and (x – y) = –8. They explain the second equation as “y is eight more than x.”

All the groups appear to understand part 1 of the problem as relating
two variables for on and off. They also understand that when you only
worry about one door, you can make a complete list of the possibilities.
Therefore, Bill turns the conversation to the problem in part 2. He asks
Roger and Marcy to share their work, which is shown in Figure 7.8.

Roger and Marcy explain that there are many things that could have
happened and that their poster only shows a few of them. They point
out the column in the chart indicating that the net change in the end is
always +18.

“Look at the top three rows above the line,” Roger says. “They are what
could have happened if we knew the net change that occurred at each door.
And look how complicated it is already! We knew we couldn’t list all the
possibilities, so we just put some down.”

Marcy adds, “Yes, and if you go below the line it gets worse. There are
other things that can happen at the different doors; some may go down and
others have no change like you see in door three.”

Bill asks, “How does your diagram help you know the possibilities?”
Marcy continues, “Well, it really shows it’s a mess, lots of things can

happen.”
“But could you organize it in a way that shows the possibilities without

a long list?” Bill probes.
“You could just write 3 + 7 + 8 for the top three lines,” Roger replies.

“It’s just the totals at each door.”
“Yeah, but that’s just net change, not all the changes,” Marcy cautions.
“But what else can we do? This whole thing would be too big other-

wise,” Roger responds.
Eventually the participants agree that it would be helpful to keep track

of the possible net change at each door, knowing it must be related to the
net change at the other doors (and always keeping in mind that there are
numerous possible scenarios at each door).
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Another group is then invited to discuss their poster, which is shown
in Figure 7.9. They have drawn a rectangle to represent the subway car
with three doors. They have assumed Mark is correct in his count at the
door he was watching and have written +6 – 3.

Cynthia speaks for the group. “We decided to make our work easier by
assuming that Mark had it right at the first door. Six people got on and
three got off. This way we only had to think about the other two doors, and
we knew that whatever happened there we had to have a net gain of 15.
There are lots of ways to do this. But the point is to keep track of the net
change at each door, because that is the best way to sort the possibilities.”
She displays a chart showing some of the possibilities (see Figure 7.10).

Continuing, she points to the rows of the poster where she has 0 + 15,
1 + 14, and so on. “If nobody gets off, then this is all that can happen. But
even if nobody gets on or off at door 2, there are lots of possibilities for
door 3 and we have this in our second column.” She writes 0 + (16 – 1),
0 + (17 – 2), 0 + (18 – 3).

“So explain your strategy to represent all possibilities,” Bill says. He’s
pushing for the big idea.

“Well, as I said, we have a t-chart listing all the net change possibilities.
These are all of them, since no more than fourteen people will get off and
Mark saw three get off. The net changes at the other two doors have many
possibilities, and these have to be listed next. But we didn’t make a full chart
of these, only some examples. The point is that you find the relation between
the net changes first and then think about the possible configurations for each
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net change. The only limit is that no more than fourteen people are going to
leave at Rockefeller Center.”

WHAT IS REVEALED

Cynthia and her teammates have constructed a big idea—net changes can be
used as quantities, not only as the result of two operations. Moreover, when
thinking this way, each net change includes all possible equivalent pairs of
operations—for example, –3 = 0 – 3 = 1 – 4 = 2 – 5 = 3 – 6 = . . . and so
on. Each net change represents a list of possibilities, which in this context
is limited by the number of people who can leave the car (and, of course,
the car’s space limits). The context has provided the opportunity for net
changes to become objects to work with, the operations governed by prop-
erties of the counting numbers. By doing this, Cynthia’s group is now
working with integers. The calculations they do with integers will then be
accomplished using one of these representations for net change (for exam-
ple, 11 – 19, for a net change of –8).

In this context, integers are mental objects consisting of equivalent
differences leading to the same net change (11 – 19 = 12 – 20 = . . .),
and operations with integers can then be carried out by using these
mental objects. For example, if we want to add 4 + –8, the model allows
us to consider these numbers as net changes and combine possible
equivalent expressions, such as (5 – 1) + (12 – 20), which is 17 – 21, a
net change of –4.

The subway context allows Bill to raise the issue of net change and the
equivalences that underlie net changes. In a car with three doors, assuming
Mark’s count is correct at one door, the possibilities at the two other doors
are classified by first describing the relationship between the net changes
(what Cynthia’s group represented as x + y = 15); then each net change rep-
resents a collection of equivalent pairs of operations. But can all operations
with integers be modeled as net changes? What if we need to subtract?
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BACK TO THE PROFESSIONAL DEVELOPMENT SEMINAR

Bill again uses the subway context. “A subway car is going from station A to
station B to station C.” He draws a figure with arrows between the letters A,
B, and C. “Suppose that 24 people were on the car when it left station A
and 36 people arrived at station C. What happened at station B?”

A ———————> B ———————> C

“There is a net change, +12,” Hugo replies confidently.
“How did you know?”
“Because 36 – 24 = 12.”
Bill records:

24              ?              36
A ———————> B ———————> C  36 – 24 = 12

Then he asks, “What if the next time we have this?” He writes:

?             24            36
(net gain)

A ——————-> B ———————> C

“It’s the same equation as what Hugo said,” Marcy replies quickly,
adding, “It is still 36 – 24 = 12. Twelve people leaving the station at A.”

“Why?” Bill persists.
“Well, if the net gain was 24 at station B, to find how many left station

A, we have to remove 24 from 36.”
“Okay, but how come Hugo used the same subtraction expression for

the first context?”
Marcy hesitates a moment, then smiles. “Well, that one is difference,

because you are growing from 24 to 36—oh, yeah, one is the difference
model and the other is removal. That’s neat!”

After making sure participants understand why Hugo’s answer was
based on difference and Marcy’s on removal, Bill presents the next problem
in the string. “How about this one?” He writes:

?             –24            36
(net loss)

A ——————-> B ———————> C

“It’s 60!” the group blurts out.
“But what’s the equation?” Bill responds. Tom suggests hesitantly, “I

think we have to use Marcy’s approach. It should be 36 – –24 equals the
amount. That’s 60 isn’t it?”

Bill records 36 – –24 = 60 and asks the group to discuss why they
think this equation is correct in this context. Alice suggests that the
removal is like going back in time: You are finding out what would have
happened if a net change of –24 hadn’t occurred.
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WHAT IS REVEALED

With this string of related problems, the group has taken another step. Net
changes have been given a new status: They can be operated on with
counting numbers. When Tom suggests that the context gives 36 – –24 =
60, not only has he calculated the value but he has expanded the number sys-
tem to include negative numbers. True, he’s hesitant; he’s using Marcy’s
approach, which seems strange at first, but because he stays in the context
and thinks about the situation, the equation makes sense, so he accepts it.
This is a feature of the construction of integers—the operations work com-
patibly with the operations with counting numbers we are familiar with—
and a good model will support this realization. Because they must work
compatibly with the operations of the natural numbers, the addition and
subtraction “rules” must be what they are. But this realization comes much
later; for now, what is most important is that the operations make sense.

There is another way to represent subtraction as removal, and it is
linked to the equivalences that are used when thinking about net change.
Suppose six people board the subway and fourteen get off, but six of the
fourteen jump back on at the last second before the doors close because
they realize they are at the wrong station. In this case we are now losing –6
of the original net change. If we represent the first change as 6 – 14, we
may then remove the –6 by removing (0 – 6). The resulting equation can
be written as (6 – 14) – (0 – 6) = (6 – 8), because 14 – 6 = 8. The six that
jump back on really are removed from the fourteen people getting off.
Thinking about net change as a quantity like this can be represented 
as –8 – –6 = –2. This approach also works in other contexts and models
used to develop integers—equivalences of + and – chips, for example (see
Figure 7.11).

Adults in math methods courses like the representation in Figure 7.11
because “at last” the rule they memorized seems to have an explanation.
But curriculums using chips can have serious drawbacks for children,
because teachers often use the model to teach subtraction with integers
procedurally and learners do not construct the role of equivalence. In
short, a manipulative cannot do the teaching—the construction of mental
objects requires contexts and problems rich enough to raise the important
issues. The contexts involving subways have prompted learners to grapple
with equivalence and net change simultaneously.
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SUMMING UP

The students in Patricia’s class took net change into account in order to
understand how the number of people on a subway car changes after a
stop. They found that two numbers need to be considered: the number that
get on and the number that leave. Moreover, they found that these num-
bers are related if the net change is known.

Operating with integers is not yet on the horizon for these second
graders but equivalence is and it lays the foundation for the work in later
grades, where, as with the teachers in Bill’s workshop, equivalences in net
change, such as 0 – 3 = 1 – 4 = 2 – 5 = . . . must give rise to a new mental
object—the negative number –3, for example.

The teachers in Bill’s workshop created Freudenthal’s mental objects and
then realized that these objects are handled by mental operations. The sub-
way context—considering all possible pairs whose difference gives the
same net change—led to the big idea that net changes can be considered
quantities and that these new objects can be operated on and with. As Pas-
cal said, “We are usually convinced more easily by reasons we have found
ourselves than by those which have occurred to others.”

Further Horizons 127





8

129

First-year algebra students learn to solve systems of equations like these:

3x + y = 40

4x + 2y = 58

A number of techniques are traditionally taught for finding the solution,
such as eliminating a variable or isolating a variable and then substituting
one equation into the other. If left to their own devices, many students try
to solve the system by guessing and checking, find it extremely tedious,
and give up.

Try thinking about the following context instead (answer the two
questions before you read further):

• Suppose 3 suckers and 1 gum ball cost 40 cents, while 4 suckers and 2
gum balls cost 58 cents.

• What happens to the price when you add one sucker and one gum ball
to your purchase?

• What is the price if you decided to only buy 2 suckers and 0 gum
balls?

Adults often have more trouble with these questions than children do,
because they try to use symbolic procedures without understanding the
underlying algebraic ideas.

Most children do something like the following. Instead of thinking
about individual values, they notice that it was 18 cents more to buy 4
suckers and 2 gumballs than it was to buy 3 suckers and 1 gumball, and
thus they reason that the cost of one sucker and one gumball must be 18
cents. To answer the second question, they remove the cost of a sucker and

COMPARING
QUANTITIES AND
RELATIONS

Mathematicians do not study objects, but relations
between objects.
—Henri Poincare

Each problem that I solved became a rule, which
served afterwards to solve other problems.
—René Descartes



a gum ball from the cost of 3 suckers and 1 gum ball, determining that 2
suckers and 0 gum balls must be 40 – 18 = 22 cents. Note that from here
the individual price of a sucker or a gum ball can be readily determined—
11 cents for a sucker and 7 cents for a gum ball.

The goal of these questions is different from the goal of asking for a
solution to the values of x and y—the context and questions deliberately
raise the issue of how the quantities are related. They link the prealgebraic
strategies involving number developed earlier in this book to problems
involving several unknowns. Contexts that have the potential to suggest
comparing quantities provide students opportunities to develop prealge-
braic abilities, such as reasoning with unknown quantities, using and gen-
eralizing relations, and developing notation to support such reasoning.
They are important for the development of algebra because they focus
attention on relationships between combinations and equivalence. Rather
than teaching elimination methods as is done in procedural algebra
courses, the goal is for students to reason with the quantities in context and
develop the big ideas that will be needed later for making sense of elimina-
tion methods. This is Poincare’s point when he says, “Mathematicians do
not study objects, but relations between objects.” The equations 3x + y = 40
and 4x + 2y = 58 have independent meaning, but when they come together
in this context the relations between them are crucial.

Research has shown that students can use their knowledge of a context
to think about relationships between quantities and that the strategies they
develop are useful in solving systems of equations with two, three, or more
variables (Meyer 2001). Working with the stories and pictures in the Math-
ematics in Context series of curricular units, students imagine exchanges and
equivalences to determine values and relationships in problems like those
in Figure 8.1.

Motivated by our success with using Mathematics in Context materials,
we studied contexts that would develop these same abilities but would fur-
ther lead students to represent their comparisons and equivalences using
number lines and double number lines. To set the stage for a discussion of
this work, let’s listen in as Bill presents a few problems to a class of sixth
graders.

TEACHING AND LEARNING IN THE CLASSROOM:
MIDPOINT PROBLEMS

“I’m thinking of two numbers,” Bill begins. “When I add them I get 20 and
when I subtract them I get 10. Can you find the numbers?” The students
consult with a nearby partner for a few minutes.

“I think they both have to be ten, because ten plus ten is twenty,”
Marcy offers.

“Okay, but what happens when you subtract? Did you get ten?” Bill
replies.
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Marcy shakes her head no and thinks some more. Her partner, Tamar,
offers a different idea. “I think one number has to be fifteen and the other
five, because fifteen plus five is twenty and fifteen minus five is ten.” Most
students have used guess-and-check to arrive at the same answer, and Bill
represents the solution on an open number line (see Figure 8.2). “Here is
fifteen, and if we jump up five we get to twenty and if we jump back five
we get to ten.” Then he challenges, “Okay, I have some new numbers.
When I add them I get 30 and when I subtract them I get 10.”

“Twenty and ten,” Hugh blurts out quickly. As most of his peers nod in
agreement Bill says, “Okay. That was too easy. What if the numbers add to
thirty, but their difference is fourteen?” This time the class is silent. Bill asks
the group to take a minute and think about it.

Some students continue to guess and check, counting on their fingers,
“Let’s try seven plus twenty-three, then it’s thirty, and counting back 
we get . . . sixteen. No, let’s try six plus twenty-four, going back . . .
wrong way. Okay, let’s do eight plus twenty-two, and we get . . . fourteen.
Fourteen—that’s it! The numbers are eight and twenty-two.”

Bill consults with Hugh. “You were so quick to see that the numbers
were ten and twenty just a moment ago. Could your strategy there help you
now?”

“Well, I went to the middle,” Hugh says. “Twenty was the middle of ten
and thirty.”

“Could you do that now?”
Hugh returns to work, beginning by drawing an open number line.
After a few minutes, Bill asks for everyone’s attention and solicits some

strategies. Most students have found that 22 and 8 are the solution, and
their strategies follow basic patterns. Some guess, check, and revise, getting
to the solution in one or two tries. In the literature these approaches are
referred to as arithmetical strategies (van Ameron 2002). Other students
realize that because 10 and 20 don’t work anymore they can adjust by
adding half of the difference between 10 and 14; adding 2 to 20 they get
22. Or they take a different initial estimate and adjust by taking into
account how far off they are. These are prealgebraic strategies—the adjust-
ments are based on the numerical relationships between the numbers they
tried and the ones they want to get (van Ameron 2002). Bill notes the evo-
lution of strategies discussed thus far and asks Hugh to report on his draw-
ing (see Figure 8.3).
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“Well, here is fourteen and here is thirty on the number line. One of
the numbers we want to find is in the middle because you have to go up
and down the same amount. So I did thirty minus fourteen equals sixteen,
and I had to go up eight from fourteen. That gives me twenty-two, and the
other number has to be eight.”

Hugh has used an algebraic strategy. It is a generalizable process that can be
used to find x and y if both x + y and x – y are known. Represented symbolically,
Hugh has subtracted (x + y) – (x – y) and found 2y. From 2y he gets y by divid-
ing by 2 and then he finds x by adding y to x – y, the smaller number. His dia-
gram is essentially the same as Bill’s. Although he is not using the symbols we’ve
used to represent his thinking, Hugh is reasoning with relationships rather than
computation—this is early algebra.

Other students also use algebraic strategies. Connie and Maria add 14
and 30 to get 44 and take half of that, also arriving at 22. This strategy also
works. Bill asks students to discuss in pairs why the larger mystery number
is precisely at the midpoint and why this is the same as adding the two
numbers and dividing by two. Connie shares with the class, “You see, the
bigger number has to be in the middle, so it has to be the average of the
two numbers.” Many students go through school learning to calculate averages
without understanding this interpretation on a number line.

Once this representation of averaging is understood, Bill continues,
“We have seen Hugh’s strategy and Connie and Maria’s strategy. Here is
what I would like you to do. I have two problems for you to work on in
your groups. They are presented this time in symbolic form.” Bill writes the
following problems:

Problem 1: x + y = 151
x – y = 49

Problem 2: z + w + w = 151
z – w = 49

The first problem is a midpoint problem like the earlier two. This time
most students move beyond guess-and-check and represent their work on
an open number line. Since the difference between 49 and 151 is 102, and
half of 102 is 51, that gives y. To find x, many students jump up 51 from
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49 and realize that x = 100. A few students use Connie and Maria’s averag-
ing strategy.

The second problem is trickier, but some students generalize the ideas
from the first problem and break the distance between 49 and 151 into
three equal pieces of length w = 34 to see that z = 49 + 34. The number line
is becoming a tool to compare quantities and for representing algebraic
relationships.

WHAT IS REVEALED

Problems in which the sum and difference of two mystery numbers are
known are called midpoint problems because the larger number occurs
halfway between the two known numbers. In this particular lesson, Bill
first uses an open number line as a representational tool with an easy ver-
sion of the question (the numbers were both landmarks), because he wants
students to try to use the number line as a tool for subsequent investiga-
tions. That 15 is halfway between 10 and 20 is pretty easy for Hugh when
he uses 20 as the midpoint between 10 and 30. When the students find the
answers readily, Bill pushes them to think about the model and the mid-
point in solving the mystery when the sum is 30 but the difference is 14—
a harder version. These problems, represented on the number line, prompt
students to use the model with the more symbolic versions. Although
many students can solve a midpoint problem by generalizing their strate-
gies abstractly (working with numbers in their heads), the number line rep-
resentation is an essential tool in the more general case illustrated in Figure
8.4. It will also become an important representational tool in the investiga-
tion that follows.

BACK TO THE CLASSROOM: BENCHES AND FENCES

Because Bill wants his students to continue to compare quantities and
make further use of number lines and double number lines as tools in their
work, he brings back the frog context (see Chapters 4 and 6).
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Let me tell you a bit more about the frogs. One day they decide to
have a jumping contest. But there are lots of frogs who want to
watch, so they decide to set up benches on each side of their
jumping tracks. They have a twenty-eight-foot track and a forty-
two-foot track. They have decided to bring in benches from their
storeroom and place them along both sides of each track end to
end so the benches line the track lengths exactly. The benches in
the storeroom are of two different lengths. One size is six feet long
and the other size is eight feet long. How can the frogs line the
two tracks with benches that fit exactly?

After a short conversation ensuring that the context is understood—
the requirements that the bench lengths add up to the length of the track
and that no bench can be cut—Bill poses two specific questions for them to
investigate:

• How many six-foot benches and how many eight-foot benches are
needed in order to exactly line both sides of each track?

• Are there other possible choices of six- and eight-foot benches that can
be used?

“We can’t make a length twenty-eight using just eight-foot or just six-
foot benches because six and eight don’t go into twenty-eight,” Thomas
declares in exasperation.

Alyssa offers a possible solution. “But we can mix them up. What if we
use three sixes?”

“Okay, that’s six, twelve, eighteen.” Thomas marks each jump of 6 on
his drawing of the twenty-eight-foot track. “But that leaves ten more. That
can’t work either. Can we cut a bench?”

Overhearing, Bill reminds them that the benches cannot be cut. “No,
you can’t cut the benches. Alyssa said you could mix them up. Are there
other ways to do that?”

“If we do two sixes, that’s twelve, which leaves . . . sixteen. That’s two
eights. Hey, two sixes and two eights work!” Thomas and Alyssa have
found a possible solution for the first track.

John, Meg, and Marcy are working on the forty-two-foot track. “If we
have four eights, that’s thirty-two, and if we have two sixes, it’s twelve, so
together that is, um, forty-four. It’s too much.”

“But it’s only two too much, so let’s switch an eight and a six.” Meg
offers a prealgebraic strategy in contrast to the previous arithmetical guess-and-
check strategy.

“Yeah, that’s a good idea. That cuts it back to forty-two, and we have
three eights and three sixes,” John declares with triumph.

Marcy appears perplexed. “But I got seven sixes for forty-two.
“But that’s not what we got. Can we have two answers?”
“Sure you can,” Bill reassures them. “But when you do, it is important

to think about how they are related. Maybe Meg’s switching strategy can
help you think about this.”
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WHAT IS REVEALED

The numbers in this scenario have been chosen deliberately. There is a
unique way to build each of the twenty-eight-foot lengths (2 six-foot and
2 eight-foot benches can be put together for each side of the track). How-
ever, there are two possible ways to build each of the forty-two-foot
lengths, either with 7 six-foot benches or with 3 six-foot benches and 3
eight-foot benches.

Although most students easily find an answer, Bill pushes them to
think about finding other possibilities and to verify that they have found
them all. The big idea of equivalence emerges when students are able to
see that 4 six-foot benches cover the same distance as 3 eight-foot
benches. This leads to the important algebraic strategy of substitution; 3
six-foot benches and 3 eight-foot benches can replace 7 six-foot benches
on one side.

At first Bill just listens as the students work, wanting to understand
their ideas and strategies (students’ initial ideas are always the beginning of
a good conference). Many students working on this problem draw each
attempt on a representation of the track. Although guess-and-check is com-
mon initially, trial-and-adjustment is an important strategic advance. This
type of thinking, illustrated on the representation as the decomposition
8 = 6 + 2, is a precursor to the formal algebraic operations students will use
later. Bill’s final comment leaves the possibility that students may see that
four sixes is equivalent to three eights with an eye toward using equiva-
lence as a tool for examining the possibilities.

To further facilitate construction of equivalence, the context specifies
placing benches on both sides of the track. Many students use a rectangle
and mark off lengths on opposite sides of this rectangle to represent the
sections they are using on the two sides of the track. Others use arithmetic
(see Figures 8.5a and b). Students who have constructed the equivalence of
four six-foot benches with three eight-foot benches are able to show this
equivalence on their representations.

BACK TO THE CLASSROOM

To encourage construction of this equivalence Bill adds one last condition
to the problem. “While you are working, let me tell you one more part of
the story. When the frogs went to the storeroom, they found that they had
only seventeen six-foot benches and nine eight-foot benches. Will these
amounts work? What should they do? How many six-foot benches and
how many eight-foot benches are needed to line both tracks? Are there
other possible choices of six-foot and eight-foot benches that could be
used? How do you know you have them all?”

After students have had time to consider this extension of the problem,
Bill has them prepare posters (see Figures 8.6a and b) and convenes a math



FIGURE 8.5a
Work on the Bench
Problem

FIGURE 8.5b
Work on the Bench
Problem (continued)
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congress to discuss a few of them. He focuses on how they know that the
three possibilities are all the possibilities that can be found.

“Let’s start with you, José and Lupé. You noticed something about
replacing eights by sixes. Tell us about it.”

“For the small track, the twenty-eight, we knew that two sixes and two
eights worked,” Lupé explains. “If you try to replace any eight by a six it
gets two smaller, and if you do it twice it gets four smaller and then you are
stuck. So there aren‘t any more ways to do it.”

José nods and continues, “But with the bigger track we knew that three
sixes and three eights worked, and if you take three eights out and put 
in three sixes, then you are six too small. You can fix that by putting in
another six. So seven sixes work.”

Lupé adds, “And six times seven is forty-two so that also shows why it
works.”

Bill pushes for proof. “How does that show that we have all the 
solutions?”

Lupé responds, “Because we can’t go any smaller or bigger.”
Bill asks for a paraphrase to see what the other students are thinking. “Can

any of you put what Lupé is saying into your own words? Tara?”
“Well, three sixes and three eights work for the long track. If we want

to do it a different way, say more sixes, we put a six in and take an eight
out, but then it is two shorter. So we do that three times and then have six,
I mean seven, sixes. But you can’t take any more eights out so that’s all of
them. That’s why you did them all.”

Alfonso is puzzled. “But what about if you want fewer sixes?”
Tara explains, “But if you take sixes out and put eights in, it gets 

bigger.”
Alfonso isn’t satisfied. “Yes, but if you take a six out and don’t put an

eight in, it gets smaller.”
Tara tries to convince him. “Yeah, but then it gets too small because

there are only three sixes and you can’t put eights back in to fix it. I
think you have to put in four sixes and take out three eights to make 
it work.”

Tara has just expressed an important algebraic idea: Equivalent expressions
can be substituted. Bill says, “Did you hear what Tara just said? Talk about
Tara’s last statement with your partners for a minute. Does her idea help us
to know if we have found all combinations of sixes and eights that make
forty-two?”

WHAT IS REVEALED

The purposefully chosen limitation on the number of benches requires that
students use both solutions for the forty-two-foot track and thereby con-
sider equivalence. Bill begins by asking two students to share a general
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FIGURE 8.6a Posters from the Bench Problem

FIGURE 8.6b Posters from the Bench Problem (continued)
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observation they have made. This implicitly suggests that part of doing
mathematics is communicating and justifying thinking to a community of
other mathematicians. Discussion is welcomed and flows naturally.

Bill directs the conversation toward the central issue of justifying the
claim that all the possibilities have been found. Asking for clarification and
paraphrasing ensures that students understand one another’s ideas and can
discuss them. Students defend their thinking—Bill doesn’t do it for them.

The equivalence of four sixes and three eights has come up as a strat-
egy for examining the possibilities. This is explored in greater detail as the
congress proceeds. By the end of the congress the students have made con-
vincing arguments that you cannot have more than two possibilities for the
track of length forty-two feet.

The context of placing benches on both sides of a jumping track leads
students to represent combinations in parallel—an emergent double num-
ber line. This facilitates representing the equivalence of three eights and
four sixes on a double number line as in Figure 8.7 and reveals further rela-
tionships. The second six ends in the middle of the second eight. Also the
first eight exceeds the first six by two, so it is one-third of the way to the
end of the next six. These relationships also illustrate Lupe’s idea that when
you replace an eight by a six it gets two smaller—an exchange that requires
addition to form an equivalence.

Lupé and José’s exchanges also prove that all combinations have been
found. If you start with a combination that works, you cannot remove one
or two eights and replace them with sixes because you will be two or four
short. The equivalence of three eights with four sixes needs to be used,
proving that all combinations have been found, which is more efficient
than checking all possibilities. This idea can also be represented nicely
with another powerful model—a combination chart, which is where Bill
goes next.

BACK TO THE CLASSROOM: 
THE COMBINATION CHART

Bill continues with the frog tale. “The frogs now want to build a fence to
enclose a rectangular jumping arena. The arena is fifty-two feet by sixty-six
feet. They can buy fencing in six-foot and eight-foot lengths. What are all
the possible choices of six-foot and eight-foot sections of fencing to go all
around the arena? Like before, they cannot cut these fence sections and
they cannot bend them around a corner. One six-foot section will come
with a gate. Help the frogs prepare a shopping list for the different possibil-
ities so they can buy enough sections of fence.”

Because Bill is using larger numbers this time, the students are pushed
to go beyond guess-and-check and use the equivalence and substitution
strategies they developed previously. But because there are more possibili-

140 YOUNG
MATHEMATICIANS 
AT WORK



ties this time, students are also challenged to organize their work and
record possible exchanges. Again, the numbers in this scenario have been
chosen purposefully. Each length is twenty-four feet more than in the pre-
vious scenario, so students could obtain initial solutions by adding four
sixes or three eights to the solutions for the benches.

At first, students don’t notice this and start over, finding an initial
combination and modifying it by using equivalent exchanges to find the
other possibilities. Eventually a variety of strategies emerge as students
work. Some of the posters they create for the congress are shown in Figure
8.8. Marcy and José create a sequence of diagrams with possibilities deter-
mined by arithmetic (Figure 8.8a), while Clarissa and Juan create number
lines for each fifty-two-foot and sixty-six-foot length, with solutions
shown of the substitutions of four sixes for three eights on double number
lines (Figure 8.8b). Other students work with charts of possible values,
but Maria and Roberto list all the multiples of 6 and all the multiples of 8
and then add various combinations of these multiples together to see
which ones add to 52 (Figure 8.8c). Sam and June create a chart showing
one possibility (such as 6 six-foot pieces and 25 eight-foot pieces) and
then note the corresponding numbers that arise by making successive
exchanges (Figure 8.8d and e).

The next day, Bill organizes a gallery walk to examine the posters and
then convenes a math congress. Rather than discussing the posters (by
this time, based on their experience with the bench problems, the stu-
dents are convinced they’ve found all the possibilities), he introduces the
combination chart. He begins by explaining that often mathematicians
solve problems by stepping back and considering a more general ques-
tion than originally posed. This allows them to think more deeply about
the relationships involved instead of the specific procedures to get the
answer. He tells the class that this is what they will be doing today.
Instead of going through the various approaches to build fences fifty-two
and sixty-six feet long, the class will construct a combination chart,
which will, among other things, include different ways to combine six-
foot and eight-foot lengths to make a total of fifty-two or sixty-six feet.
However, the organization of the chart will be of special interest. Every
“move” from one entry to another corresponds to adding or subtracting
lengths. In this way, all of the exchanges considered on previous days can
be represented on the chart.
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The Equivalence of 
Four Sixes and Three
Eights on a Double
Number Line



FIGURE 8.8a
Student Work on the
Fence Problem
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FIGURE 8.8b
Student Work on the
Fence Problem
(continued)



FIGURE 8.8c
Student Work on the
Fence Problem
(continued)

FIGURE 8.8d
Student Work on the
Fence Problem
(continued)
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“Clarissa, you were talking about what if there were no eight-foot sec-
tions. Then there would be some problems for fence makers,” Bill begins.
“Tell us about that and we’ll start there with a chart.”

“Juan and I were saying that if the store ran out of eight-foot sections,
it would be bad because you could only do multiples of six, like six, twelve,
eighteen, and so on,” Clarissa says.

“Well, that might happen, right? And what if you wanted to build a
thirty-foot fence?”

“That would be okay because you are lucky.” Juan smiles. “You could
just use six-foot sections. You’d need five of them.”

“So let’s start our chart by putting that information down.” Bill begins
the combination chart shown in Figure 8.9. “Does this look okay, Clarissa
and Juan?” They nod their approval. “But what if we had the opposite prob-
lem? Say the store only had eight-foot sections?”
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“Then we’d have to use only the eights. Like sixteen, twenty-four, and
so on.”

“Okay,” Bill replies. “But I’m going to write them as a column instead
of a row. Like this.” Bill models the importance of looking at both extremes, an
important strategy for mathematicians (see Figure 8.10). “Any thoughts on
why I’m doing it this way? Why rows and columns? Talk to your partner
for a minute and see if you can find out why.”

After a few minutes, Bill calls on Rosie. “Rosie, what’s your theory?”
“I think you made a big rectangle with rows and columns so you can

put in all the other numbers,” Rosie declares confidently.
Sam is perplexed. “I don’t get it. What other numbers?”
“So we can combine them,” Rosie explains. “Look. If you have one six

and one eight, that’s fourteen and you can put it here,” pointing to the cell
above the six and to the right of eight.

“Oh, you mean we should just add them up and fill them in, like
adding twelve and eight and putting in twenty in the next spot?” Sam asks.

“We could,” Bill agrees. “Would a chart like this be helpful?”
“I guess. Customers could just read off the chart then.”
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FIGURE 8.9  Beginning the Combination Chart

6 12 18 24 30 36 42 48

1 2 3 4 5 6 7 8

Number of six-foot sections

FIGURE 8.10  Continuing with the Combination Chart



Bill continues building the combination chart. Then he encourages the
students to examine the layout. “Is this organization helpful? Why? What
might go in next?”

“We could just go across and add six each time,” Ramiro offers. “That
might be easier.”

“Explain what you mean.”
Ramiro continues, “Next to the thirty-four. It would be forty, then

forty-six.” (See Figure 8.11 for Ramiro’s numbers.)
Bill encourages everyone to reflect on this important idea. “Why does

Ramiro’s strategy work?”
Charlene says tentatively, “I think it is because each time you are

adding another six-footer.” And then with more confidence, “Yeah, that’s it.
Each time there is one more six-foot piece so the fence grows by six.”

Bill now has students fill in their own copy of the chart. While they
work he asks them to consider the following questions:

• What happens when you go up two rows? Why do the numbers on the
chart go up by 16?

• What happens when you go up one row and then to the left one column?
• What happens if you go down two rows and over three columns?
• The number 30 is on the chart twice. What does that mean? Why did

that happen? What kind of exchange is happening?
• Where do 52 and 66 appear? Why there? Are those solutions on the

posters?

The students find these and other relationships and discuss how they
help them fill out the chart. They examine the chart to verify that they

FIGURE 8.11  Adding Ramiro’s Numbers
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indeed have all combinations of sixes and eights to make fifty-two and
sixty-six.

WHAT IS REVEALED

Thinking about these questions focuses students’ attention on the rela-
tionships encoded in the chart. They note that going up one and right
one is the same as adding 14. But this makes sense, because they are
adding one six-foot and one eight-foot fence piece, so it is the same as
adding 14. Similarly going right one and up two is the same as adding 20.
While working on the chart, some students have complained that filling
it out is laborious, so Bill teases them. “I want you to do this, but I also
want you to be lazy. You have to think about what is happening on the
chart, how you can easily move up, down, diagonal, or like the chess
piece that looks like a horse. Then you can develop a strategy that works
in a lazy way for you.”

Students who are used to being assigned repetitive problems may
indeed view the chart as yet one more: They laboriously add numbers of
sixes and eights to fill in each box, without seeing the relationships. How-
ever, creating the combination chart builds on ideas developed in the previ-
ous investigation with the benches, and it is important to encourage
students to take advantage of them. As Descartes noted, “Each problem that
I solved became a rule, which served afterwards to solve other problems.”
This is exactly the idea here—the combination chart encodes many rules
that will help in situations yet to arise.

BACK TO THE CLASSROOM: 
COMPARING QUANTITIES AND 

SYSTEMS OF EQUATIONS

Bill now wants his students to use the number line as an approach to more
challenging problems that require comparing quantities. He tells the fol-
lowing story:

The frog-jumping Olympics opens with the pairs competi-
tion. Each pair gets two jumping sequences. The winner is the
pair that has the longest distance when their two jumps are
combined.

Team #1 (Huck and Tom): When Huck jumps three times and
Tom jumps once, their total is 40 steps, but when Huck jumps
four times and Tom jumps twice, their total is 58 steps.

Team #2 (Smiley and Grumpy): When Smiley jumps three
times and Grumpy jumps twice, their total is 48 steps, but when
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Smiley jumps four times and Grumpy jumps twice, their total is
56 steps.

Team #3 (Hopper and Skipper): First Hopper takes three
jumps and lands in the same place as Skipper does when he
takes four jumps. Then Hopper takes six jumps and nine steps
to land in the same place as Skipper does when he takes nine
jumps.

Your job is to figure out which pair is the winner. When you
combine the lengths of one jump for each frog in a pair, which
pair has the greatest length?

Before you read on, draw number lines to represent the tracks and solve each
of the problems. Did the context make it easier for you? Were you able to draw
the pictures of the jumps in ways that helped you? The problem context defines
the winners of the pairs competition as being the two frogs whose combined single-
jump length is largest. This focuses attention on a set of relationships (rather than
individual values) that are critical to solving the systems of equations. This is not
an easy transition. For example, in symbolizing the case of Huck and Tom, we
have 3h + t = 40 and 4h + 2t = 58, where h is the length of Huck’s jump and t is
the length of Tom’s jump; the objective is to find h + t.

Alfonso and Marcy are a bit stuck at first; analyzing the first team, they
focus on finding individual jump values. Bill asks, “Why don’t you think
about how much further Huck and Tom traveled the second time, when
they had more jumps? What can you learn just from that?” Their resulting
representation of the problem is shown in Fig 8.12. They don’t need to find
the values of h and t separately—they find h + t directly as the difference
between 4h + 2t and 3h + t.

Analyzing Smiley and Grumpy’s sequences, students notice that Smiley
has an extra jump in one of them, so they are able to determine the length
of Smiley’s jump readily. From there they can find Grumpy’s length.

In analyzing Hopper and Skipper’s sequences, the students have to
work with a proportional relationship. Since three of Hopper’s jumps are
the same as four of Skipper’s jumps, they realize that six of Hopper’s
jumps are the same as eight of Skipper’s jumps. The nine extra steps Hop-
per has to take to match Skipper’s jumps means that Skipper has nine
steps in his jump.

In each case the students are working with relationships between
unknown quantities—not only the values.

Bill structures the math congress so that relationships are the focus.
The relationships he wants students to discuss are embedded in the num-
ber of jumps in these problems. When students are given random systems
to work with, these strategies don‘t evolve. Here, however, they are on their
way to making sense of more sophisticated processes for solving systems of
equations and more generalizable, formal strategies can be introduced with
meaning and with powerful representations.
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SPECIAL NOTE ON SYMBOLIZING

If they haven’t already begun doing so, students may begin using letters
to symbolize the variables instead of representing lengths on a number
line. (This, of course, is what they will do in some later algebra course.)
In using this strategy, students need to distinguish between the number

Comparing Quantities
and Relations

149

FIGURE 8.12  
Student Work on the 
Pairs Competition



150 YOUNG
MATHEMATICIANS 
AT WORK

of jumps and the lengths of jumps. For example, if they represent the
first problem as 3h + t = 40 and 4h + 2t = 58, then it is important for
them to discuss what h and t represent. Here h represents the length of
Huck’s jump and t represents the length of Tom’s jump—not the number
of jumps.

The distinction between numbers of jumps and sizes of jumps is
important. Students will frequently interpret a variable as a noun instead
of as a quantity. For example, students are tempted to express the rela-
tionship that there are five nickels in a quarter as 5n = q, reading n as
nickels and q as quarters. In the work in Cynthia Lowry’s class detailed
in Chapter 5, this equivalence is represented as 5  5 =  25 (the 5 and 25
are circled as if they are coins) to represent a constant value of a coin.
This is deliberate—we don’t want variables to represent fixed known
values. When variables are used in this context of nickels and quarters,
the usual meaning will be n is the number of nickels and q is the number
of quarters. What does the equation 5n = q mean in this setting? Suppose
you have ten nickels, say n = 10. Then substituting n = 10 gives 5 × 10 = q,
which means we have 50 quarters. Do ten nickels and fifty quarters have
the same value? Of course not! What one really wants is the equation n = 5q,
because the number of nickels is equal to 5 times the number of quar-
ters. If you then have n = 10 (ten nickels), you must have q = 2 (two
quarters) for equivalence, which is expressed by 10 = 5 × 2 (substituting
10 for n in n = 5q). This confounding of a noun with a quantity and
using a variable as if it is a noun is the reversal error (NRC 2001). Comparing-
quantities problems involving distances are used to develop a proper
understanding of the use of variables as quantities, possibly unknown,
or otherwise taking on varying values for which certain relations may
hold.

THE COMBINATION CHART AND 
SYSTEMS OF EQUATIONS

Combination charts are useful tools for considering systems of equations as
well as combinations of given values. Recall the system of equations with
which this chapter begins:

3x + y = 40

4x + 2y = 58

This system works well with a comparing-quantities context (such as the
suckers and gum balls) because the increment x + y passing from the
first equation to the second is apparent (it is 18). A combination chart
can represent the relations in the original equation as well as the relation
x + y = 18.



Look at the combination chart in Figure 8.13. Given the context, the
meaning of this chart is clear. The first question in the original context
asks about the movement in the chart from 40 to 58, a diagonal jump of
up one, right one. All diagonal jumps of the same direction and length
lead to the same increment because each is the result of buying one addi-
tional sucker and one additional gum ball. The second question asks
about the reverse direction, going from the 40 to the question mark (down
one, left one). Working with these patterns enables one to use the chart to
solve for unknowns, and the reasons they work can be developed within a
comparing-quantities context, as they were in the fence problem.
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FIGURE 8.13 Sucker and Gumball Problem on a Combination Chart
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The combination chart is a powerful representational tool that can rep-
resent many strategies for solving systems of two equations as long as the
coefficients and values are whole numbers. For example, to solve

2x + 3y = 35

4x + 2y = 34

consider the combination chart in Figure 8.14. Try a left two, up one strat-
egy to find the solution! (This will allow you to find the value of 4y.)

The Mathematics in Context unit Comparing Quantities pushes 
students to work directly with combination charts to find multiple rela-
tions between pairs of unknown quantities (Van Reeuwijk 1995). In
doing so they develop many of the basic operations used in linear alge-
bra, which because of the procedure-driven approaches for solving sys-
tems in high school are often not made explicit until a college course on
linear algebra. The roles of context and representation are powerful
indeed!
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FIGURE 8.14 Combination Chart for Systems of Equations
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SUMMING UP

Systems of equations in early algebra can be introduced by comparing
combinations of quantities and examining relations between these com-
binations. If an understanding of these relationships is grounded in a
meaningful context, strategies to solve for unknowns within them
become easier to develop and generalize. Comparing quantities pushes
students to think about relations instead of equations and procedures.
The most important mathematical ideas arise through investigations of
good problems. The combination chart is a powerful representation that
encodes many relationships between quantities; children can describe
movements on the chart as their rules that become problem-solving
tools.

Variables play a crucial role in mathematics, but they represent quan-
tities, not nouns. We have chosen contexts and representations consistent
with this role, with the hope of minimizing the reversal error. However, it
is not our goal to push symbolizing too early—students will symbolize
with variables when they are ready. In the meantime double number lines
and combination charts can represent the important strategies in a variety
of ways. Expect a diversity of approaches in your class, and celebrate
them all!
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Minilessons are presented at the start of math workshop and last for ten or
fifteen minutes. In contrast to investigations like the ones described in pre-
vious chapters, which characterize the heart of the math workshop, mini-
lessons are more guided and more explicit. They include computation
problems that when placed together are likely to generate discussion on
certain strategies or big ideas that are landmarks on the landscape of learn-
ing. We call these groups of problems strings because they are a tightly
structured series (a string) of problems that are related in a way that sup-
ports the development of numeracy and algebra.

Minilessons are usually presented to the whole class, although many
teachers use them with small groups of students as well as a way to differ-
entiate. During whole-group sessions at the start of math workshop, young
children often sit on a rug. Older students can sit on benches placed in a U.
Clustering students together like this near a chalkboard or whiteboard
facilitates pair talk and allows you to post the problems and the strategies
used to solve them.

The problems are presented one at a time and learners determine an
answer and share the strategy they used. The emphasis is on the develop-
ment of mental math strategies. Learners don’t have to solve the problems
in their head, but it is important for them to do the problem with their
head! In other words, they are encouraged to examine the numbers in the
problem and think about clever, efficient ways to solve it. The relationships
between the problems in the string support them in doing this. The strate-
gies that students offer are represented on an open number line.

DEVELOPING
ALGEBRAIC
STRATEGIES WITH
MINILESSONS

In questions of science, the authority of a thousand is
not worth the humble reasoning of a single individual.
—Galileo Galilei



TEACHING AND LEARNING IN THE CLASSROOM

Carlos, a fifth-grade teacher in California, is presenting a minilesson on
variation using the following math string:

Here is an unknown amount on a number line. I call it j.
If this is one jump, what does 3j look like?
How about one jump and seven steps?
Now, what do three jumps and one step backward look like?
What if j + 7 = 3j – 1?
What if j + 11 = 3j – 1?
What if j + 11 = 3j – 5?

He reminds the students about representing distances using an open num-
ber line and begins the string by drawing a small jump on the line, telling
the students it is j. Then class members represent the second, third, and
fourth jump descriptions. (Heidi and Alyssa’s representations are shown in
Figure 9.1.)

Next Carlos asks whether the drawings include an accurate representa-
tion of the equation j + 7 = 3j – 1. Alyssa says, “Ours isn’t going to work.
We’re going to have to draw it all over again.”

Carlos grins. “Did you draw it wrong? I thought we agreed you were
correct.”

“You tricked me,” Heidi declares. “The equation makes what I was
doing look wrong. But we didn’t know then that j plus seven had to equal
three js minus one.”

“The problem isn’t with Heidi’s drawing,” Alyssa adds, “we’re just
going to have to draw it over again.”

The string has succeeded in generating a spirited conversation on variation.
As pointed out in Chapter 6, variables describe relationships. All the drawings
thus far are correct given the information known at the time. As more information
is given—such as 3 jumps and a step back is equivalent to a jump and 7 steps—
the value for j is forced. Understanding variation is a big idea on the landscape of
learning. To support his learners in constructing this idea, Carlos encourages fur-
ther reflection.
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FIGURE 9.1  
Heidi and Alyssa’s
Representations



“Does everyone understand what Alyssa and Heidi are worried about?”
Carlos asks. “Talk with your neighbor for a few minutes to make sure you
understand the issue.”

After a few minutes Carlos asks Juan to explain. “Well, the point is,”
Juan says, “that Heidi didn’t know how big the jumps would end up. So
they have to fix it. That’s what Alyssa means. What Heidi did is okay, but
the step length has to be related to the jump.”

“Well then, what could the length of the jump be?” Carlos asks. “Heidi,
do you want to add something?”

Heidi explains, “We didn’t know this information before. I think the
way we drew j + 7 is really just a way of showing there is one jump and
seven steps and it’s just a way to think about it. So what we did is still fine.
It’s just that when we know that j plus seven has to equal 3j minus one,
then, well, like Alyssa says, we have to redraw it.”

Carlos says, “Do all of you agree? Heidi is saying that this picture
represents the total distance traveled in one jump and seven steps and
that the amount traveled depends on the size of the jump in relation to
the steps. So we can think of a whole bunch of possibilities and this pic-
ture represents just one of these possibilities.” Most students nod in
agreement. Carlos continues, “And the same for these three jumps minus
one. It’s a picture that helps us think about the possibilities, but to solve
a particular question we may have to work a little more to find the jump
length.”

“Yeah, it’s like an all-in-one picture,” Juan blurts out. Variation is now
the focus.

WHAT IS REVEALED

Carlos is using this string to encourage students to represent related alge-
braic expressions and to treat variables with variation. He represents j, and
the students quickly agree that 3j is just 3 times as big, and that j + 7 would
just be 7 small steps more. The next representation is also easy: three equal
jumps. The fourth requires just one step back. The third and fourth repre-
sentations do prompt students to comment that they don’t know how big
the jump is in relation to the steps, which is true. Nevertheless, asking stu-
dents to draw what the question indicates produces a variety of meaningful
representations. Even though these representations cannot be used to
determine the value of a variable, the students are treating the expressions
as objects. The equation introduces an equivalence that causes students to
have to redraw. As the string continues, new equivalents are introduced,
causing further adjustments.

Too often students believe there is only one way to complete a mathe-
matics problem. Flexibility in thinking is crucial for making sense of the
big idea of variation. When more information is provided—in this case, 3j – 1
is equal to j + 7—an exact relationship between jump lengths and step
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lengths can be nailed down. Without this added information, there are
many possible representations for the expressions 3j – 1 and j + 7.

In previous years, Carlos asked his students to find mystery numbers:
“Find for me the mystery number that satisfies the rule that m + 7 is the
same as  3m – 1.” His students would set to work with calculations, trying
many numbers, 1, 7, 3, 10, 5, and in time they found that 4 was the mys-
tery number. For them, the question was based on simple arithmetic, and
they knew that with a little patience they could solve the mystery. (Often
his students would base a new guess on information from the previous
guess, so the process was not totally random—more a guess-and-revise
strategy.) Once a mystery was solved, they called out their answers and
were ready for a new mystery. Students were engaged, and it was fun, but
something was missing. The students were not using the relationships
encoded in the mystery—they weren’t structuring.

The jump contexts, number lines, and strings Carlos uses now prompt
his students to think, evaluate, and reevaluate. In another four years when
they are in high school, Carlos’ students will study functions; the work he is
doing now is an important part of their preparation. When Juan says, “It’s like
an all-in-one picture,” he is explaining that by representing j + 7 and 3j – 1 as
Heidi did in Figure 9.1, a relationship is at play; for a possible jump length,
there is a resulting total length indicated by the representation.1 As the stu-
dents explore this string, they use these relationships, not guess-and-check
arithmetic, to think about j + 7 = 3j – 1.

BACK TO THE CLASSROOM

Carlos asks his students to work with a partner and draw a picture that rep-
resents 3j – 1 = j + 7. After a few minutes he asks Sam and Ramiro to share
their thinking.

Ramiro begins. “You see, we have to fit the eight steps into two jumps
so we think it is four.” Carlos asks for more details and Ramiro rephrases.
“See, the three jumps and the backward step. Those two jumps and the
backward step have to be the same as seven steps, so we have to fit seven
steps, I mean, eight steps, all into two jumps. That means there are four
steps in a jump.”

Carlos creates the representation in Figure 9.2 and asks, “Do you want
to add something Sam?”

“Yeah, it’s like we used a storage box. We put the first jump both times
in the storage box and just looked at the other jumps and steps.”

Carlos continues to probe. “This new diagram is different from what
we had when Heidi had me draw three jumps and one step backward. Is
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1In terms of function language, the possible jump lengths are the input values (or domain) of
the function, and the total length represents the output values (or range) of the function.



Heidi’s diagram right? Give me a thumbs-up if you think her diagram is still
okay.” Some thumbs go up, but not too many. “Maria, you’ve got your
thumb down, why?”

“Because it won’t work. The eight steps don’t fit.”
“Heidi, you don’t seem to agree.”
“No, mine is still right. Like Juan said, mine just shows how it goes

and we didn’t know the amount of the jump. So it’s still good. But the four
steps in a jump work in Ramiro’s picture because he had another equation.”

“Not everyone seems convinced. Let’s come back to this in a moment
after we try one more problem in this string.” Variation is a difficult idea and
Carlos decides to continue to examine this idea. “Take a minute and give me a
thumbs-up when you know what would happen if j + 11 = 3j – 1.”

After a few minutes, Carlos calls on Maria. “We had to change it again.
Now we had to put twelve steps into two jumps instead of eight. Now the
jumps are bigger.”

Rosie adds, “They are six now, because six and six is twelve.”
“I agree,” Heidi says tentatively, “but it’s the same strategy as in my pic-

ture and that picture is still right too.”
“And they are still using the storage box for the first jump like Sam

said,” Keisha points out. “See, the first jump didn’t matter, it’s the eleven
plus one that matters for two jumps.”

Carlos lets his students negotiate this terrain for a bit. Once they seem
comfortable with Maria’s answer, he asks them to consider j + 11 = 3j – 5.
As the string continues, the class has more opportunities to consider the
idea of variation, and they have a chance to talk about generalizing the
approaches used for this type of problem.

WHAT IS REVEALED

In this brief minilesson, Carlos chooses a series of related problems and
asks his students to solve them. Together they discuss and compare dif-
ferent strategies and ideas and explore relationships between problems.
The relationships between the problems are the critical element of the
string. As he works through it, Carlos uses the double open number line
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as a representational tool. This representation enables children to examine
the equivalence of the expressions.

Carlos succeeds in bringing to the fore some important big ideas—that
variables describe relationships and are not merely unknown quantities
(variation) and that equivalent amounts can be separated off in solving a
problem. The class has also had an opportunity to generalize about a strat-
egy that is useful in considering similar problems of this type. The conver-
sation early on with Heidi and the validation of her original representation
shows students they may often have to redraw to account for variation.

Good minilessons always focus on problems that are likely to develop
certain strategies or big ideas that are landmarks on the landscape of learn-
ing. Designing such strings and other minilessons to develop algebraic
ideas and strategies requires a deep understanding of their development—
the choice of numbers, representational models, and contexts used are not
random.

JOURNEYING THE LANDSCAPE

Choosing the Numbers

Equivalence is a big idea on the algebra landscape. Underlying this idea
is another big idea—that expressions can be treated as objects (rather
than simply as procedures) and placed in relation to one another. These
ideas are precursors to the idea that variables describe relationships and
are not merely unknown quantities (variation). All of these ideas enable
the important algebraic strategy of separating off equivalent amounts.
Knowing that these ideas and strategies are important, Carlos has care-
fully crafted a string of problems to support their development along the
landscape of learning.

Here’s a similar string crafted around the same big ideas:

Here is an unknown amount on a number line. I call it j. Where is 2
times j?

Where is 2 times these 2 js?
Where is 4j + 6?
Where is 4j – 6?
Suppose I tell you that 4j – 6 is the same as 2j. What now?
How about 2j – 3? Where is it? Why?
What if I told you that 4j – 6 is the same as 3j. What now?
Now where is 2j – 3? Why?

In the first problem, j is represented and 2j would just be twice it. The next
problem will probably also be easy for the students: There are four equal
jumps. The third problem introduces +6 and the fourth –6 and here stu-
dents may begin to comment that they don’t know how big the jump is in
relation to the steps. This is true, and such comments should be encour-
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aged, but it is important to ask students to draw what the question indi-
cates and share a variety of representations. Their diverse representations
will promote discussion of this unknown quantity, since the size of the
jump could vary—and now variation is up for discussion. The next prob-
lem introduces an equivalent expression that may be a surprise and most
likely will cause students to have to redraw. As the string continues, new
equivalents are introduced, causing further adjustments.

JOURNEYING THE LANDSCAPE

The double number line that Carlos has chosen as a representational model
prompts students to examine how the expressions are related and to use
equivalence. In each of the strings there are equations in which the num-
bers and the representation of them on double number lines potentially
lead students to think about removing equivalent expressions.

In algebra classes, students traditionally are taught to “cancel out” or
“add equal amounts to both sides of an equation.” But too often they are
taught these rules before they have made sense of what an expression such
as j + 7 actually means. Carlos is very careful to validate Alyssa and Heidi’s
diagrams for j + 7 and 3j – 1, because both are correct and complete. Up
to this point Carlos has been working to ensure that his students under-
stand that an algebraic expression can be treated as an object (not only as
a procedure)—that the multiple representations on the number line as
students suggest small steps or big steps provide possible mental images of
this object.

With the added condition that j + 7 = 3j – 1, the diagrams have to be
redrawn because the jump length is now specified by the relationship of
these two expressions. In the new drawing (Figure 9.2), the representations
of j + 7 and 3j – 1 still have the same structure as Heidi’s drawings did in
Figure 9.1, but now they are aligned to end at the same point. The act of
redrawing is an action in which variation is implicit. There is a continuum
of possible diagrams for j + 7 that are correct, in which the length of j can
stretch or shrink, and this idea is used to create a diagram in which the
ends line up. It is at this point that it becomes apparent that the initial
jump in each sequence can be separated off. This is what Ramiro accom-
plishes when he says “eight steps all into two jumps.” By putting the first
jump aside (like in a “storage box”) Ramiro has reformulated solving j + 7 =
3j – 1 as equivalent equations: 7 = 2j – 1, or 8 = 2j. He has used equiva-
lence to remove an instance of the variable j.

Choosing the Model

The double number line is a powerful tool for examining equivalence and
developing algebraic strategies in the early grades, too. Patricia is using the
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following string with her second graders to help them treat numeric
expressions as objects:

10 = 5 + 5
10 + 10 = 5 + 5 + 5 + 5

5 + 20 = 10 + 10
5 + 20 + 4 = 4 + 10 + 15
13 + 8 + 6 = 5 + 9 + 13

Each time she writes a statement, she asks the children to determine
whether it is true or false. If the statement is false (the third equation in the
string, for example), it is made true by replacing the equals sign with an
inequality sign.

The string begins with an easy equation that supports the second,
third, and fourth. The hope is that as the children work through the string,
someone will suggest that a determination can be made without adding up
all the numbers—that the numeric expressions can be treated as equivalent
objects. For example, in the last problem the students who see 8 + 6 as an
object equivalent to 5 + 9 won’t have to add the numbers to see whether
the statement is true.

The class is discussing the fourth problem in the string. Patricia writes
the statement 5 + 20 + 4 = 4 + 10 + 15, and asks her students to give a quiet
thumbs-up when they are ready to say whether the statement is true or false.
(Her students have learned not to disturb their classmates by calling out
answers. Also, thumbs held up in front of the chest allow class members
who might be distracted by waving arms crucial time in which to think.)

When most thumbs are up, Patricia calls on Ian. “I say it’s true,” he
declares with conviction.

“Okay, it looks like others agree, so tell us why you think that.”
“Well, the fours don’t matter because they are on both sides. And the

five plus twenty is a twenty-five and the ten plus fifteen is another twenty-
five. So it’s true.”

For many children, the only way to solve this problem is to use an arithmetic
strategy: Add up both sides and compare answers to see if they are the same. For
example, here they would produce 29 = 29. But Ian’s first sentence shows this isn’t
his strategy—he is using a more algebraic strategy by noticing the equivalence of
the 4s on each side of the equation and ignoring them. He is also implicitly using
the commutative property of addition (25 + 4 = 4 + 25)—it doesn’t matter the
order in which you add things.

Patricia pushes Ian to say more.
“Because you are adding them up and four more is the same as four

more,” Ian clarifies.
“How many of you can explain what Ian is thinking?”
Mia gives it a go. “I think what Ian is saying is that five plus twenty is

twenty-five and that ten plus fifteen is twenty-five, and these are the same,
so when you go four more you get the same thing and so it’s the same on
both sides.”
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Patricia draws the representation shown in Figure 9.3 and asks Ian and
Mia if this represents their thinking. Mia Chiara nods in agreement, but Ian
is not convinced.

“Ian, you’re not convinced?” Patricia says. “But you were sure a
moment ago.”

“No, I’m convinced the equation is true, but your picture isn’t what I’m
talking about.”

“What’s not right about the picture?”
“Well, I said the fours don’t matter, but you put them both on the same

side and that’s not where they are.” Patricia had placed the fours one above
the other on the number line, hoping to show the equivalence Ian had
mentioned. Surprisingly, although Ian has used equivalence in his determi-
nation that the statement is true, when representing addition on an open
number line the order matters to him. Patricia draws another double num-
ber line on which the jumps appear in the order presented in the equation
(see Figure 9.4) and asks Ian if this is what he means.

“Yes, but you have to put the twenty-fives in.”
Patricia adds the 25s (see Figure 9.5) and Ian nods.
Sensing that the big idea of the commutative property needs further

discussion, Patricia asks the children to talk with their partner about these
two diagrams and about how Ian and Mia are thinking about the problem.

Rosie offers some thoughts, “I think they both see the twenty-fives, but
Ian wants to add the fours first and second while Mia wants to add the
fours at the end both times. But it doesn’t matter, really.”
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First Representation 
of Ian and Mia Chiara’s
Strategy

FIGURE 9.4  
Second Representation of
Ian and Mia Chiara’s
Strategy



“Yeah,” adds Camille, “because you are just adding them up and you
can do it both ways.”

“That’s what I meant when I said the fours don’t matter because we are
adding it all up,” Ian points out. “They don’t matter. Both are four and twenty-
five.” The landmarks of commutativity and equivalence have now been reached.

CHOOSING A CONTEXT

Teaching and Learning in Another Classroom

Maia’s second graders are used to playing a version of twenty questions in
which the goal is to determine what coins (nickels, dimes, pennies, and
quarters totaling fifty cents) she has in her hand. Today she is playing a
variation on this game in her minilesson. She has set down two small bags
with coins in them; the children are to determine which bag has the most
money or whether they contain equal amounts. The first bag has one quar-
ter, three dimes, four nickels, and one foreign coin; the second bag has
one quarter, two dimes, six nickels, and one foreign coin. Both foreign
coins are the same but of unknown value. The children are midway
through the game.

“So far you have figured out that there is one quarter in each bag and
two dimes in this bag on the left. Let me write that down. What sign
should I use so far?” asks Maia.

“Greater than” several children call out.
“Why, Sam?”
“Well, the quarters are the same, but the bag on the left also has two

dimes.” Sam has used equivalence to separate off equal amounts. He
doesn’t need to add the known values in the bags, because the quarters
are equivalent.
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Maia writes 1 25 + 2 10 > 1 25 on the board. “Okay. Do you have
more questions for me?”

Juanita asks, “Are there more than two dimes in the other bag?”
“Yes,” replies Maia.
Kelly gets specific. “Are there three?”
“Do you mean exactly three?” Kelly nods. “Yes. So let’s write this down.

Now you know the quarters and the dimes. Which sign do we need?”
“You have to turn the sign around,” replies Juanita.
Maia writes 1 25 + 2 10 < 1 25 + 3 10 on the board.
After a bit more discussion, the numbers of nickels are determined, pen-

nies are ruled out, and the statement 1 25 + 2 10 + 6  5 = 1 25 +3 10 + 4 5
is established. Explaining this Kelly says, “There is one more dime and two
less nickels in the second bag, so they’re the same because one dime equals
two nickels.” Rather than adding all the values up to prove the values in the bags
are equal—an arithmetic strategy—Kelly is using an algebraic strategy. She is
mentally substituting a dime in the right-hand bag for two nickels.

Now Maia teases the children with a smile. “You think you’re done
now, don’t you? Actually there is one more coin in each bag and it is the
same type of coin in each bag.”

“What is it?” Juanita asks what everyone is wondering.
“I don’t know what this type of coin is worth. They are foreign coins

that I got a long time ago when I was traveling. I put one in each bag. Let’s
call it c for coin because we don’t know what it is worth. What sign should
we use?” As the children ponder her question she says, “Here is what we
know so far,” and writes 1 25 + 2 10 + 6  5 +  c ? 1 25 + 3 10 + 4 5 + c .

“We can’t do it if you don’t tell us,” Sam says with exasperation. “How
can we add it if we don’t know what it is?”

Sam and his classmates are still relying on arithmetic to verify equivalence,
so the problem seems impossible. They do not yet have a strong sense of equiva-
lence, and they also assume an expression represents a procedure. It is impossible
to add something to something if you don’t know what the something is. Maia
wants to make sure her students develop an understanding that equivalence can
be understood without computation.

She asks the class, “Do you have to add it?”
“If it’s a nickel, it’s still equal,” replies Rosie.
“It works for a penny or a dime, too,” adds Juanita.
“Does it work for other numbers, too?” Maia encourages students to con-

sider several numbers as a way of developing the idea of a variable. But here, the
variable is not an unknown number that has to be found. Instead it represents many
possibilities (its value is in some range of amounts)—once again this is variation.

Keshawn begins to grasp the big idea. “It works for any number,
because it’s the same in both bags. You don’t have to know what it is.”

“Yeah, Keshawn, you’re right!” Isaac says in awe. “If it’s the same coin
and it’s in both bags you don’t have to worry about it. It’s the same on both
sides so it’s still an equal sign.”
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Maia continues to use the context of the foreign coin to support the develop-
ment of variation. “Could c be any amount? Are Keshawn and Isaac right?
Would this statement be true no matter what c is?” She writes in an equals
sign: 1 25 + 2 10 + 6 5 +  c = 1 25 + 3 10 + 4 5 + c .

Isaac replies with conviction, “Yep, c could be any number. As long as
they are the same, it doesn’t matter what the c coin is worth. It could be any
number.”

Maia has pushed her students to consider the big idea that equivalent
amounts can be separated off, or substituted, even when variables are involved.
By necessity her minilesson has also involved the big idea of variation. In addi-
tion, the children have had to view expressions as objects, not merely as describing
a set of operations. This interwoven web of ideas is critical to the development of
algebra.

Operating on Expressions

Once equivalence is well understood, children can be challenged to con-
sider how one can operate on expressions. Carlos is using the following
string to develop this idea with his fifth graders:

Here is one jump and two steps. What else could it look like?
So how about two jumps and four steps, how would I represent that?
What about 2( j + 2)?
What about 3( j + 2)?
What about 4( j + 2)?
What about 2(2j + 4)?

Carlos begins his string by drawing the representation shown in Figure
9.6. “Okay, here is one jump and two steps. Is this how it always looks?
Carrie, what do you think?”

“Well, we usually keep the steps the same in our drawings, but the
jump could be shorter or bigger, we don’t know.”

“So it could be like this, or this, or this?” Carlos draws three differ-
ent representations of j + 2 (see Figure 9.7). Most of the students nod in
agreement. “So how about 2j + 4? Carrie, do you have a suggestion on
this one?”

“Well, we do what you just did, except we do two jumps and four
little steps. Each time the jumps have to be the same because of the frog
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jumping rule.” Carlos invites her to draw two jumps and four steps
below his first drawing of one jump and two steps on a double number
line (see Figure 9.8). “What do you think? Jasmine, do you have some-
thing to add?”

“Wouldn’t it have been easier just to add a jump and two steps
rather than starting all over again?” Jasmine offers shyly. Jasmine adds
her idea to Carrie’s drawing (see Figure 9.9). Next Carlos asks the stu-
dents to talk with their partner about what Jasmine and Carrie have
drawn.

“I think it’s two j plus two,” Mario explains. “So no matter how you do
it, it has to be the same.”
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Noticing that Louisa seems puzzled, Carlos attempts to bring her into
the conversation. “Louisa, do you agree?”

“Well, I’m not sure. Doesn’t it have to be the same j each time? What if
they were different frogs or something?”

Mario helps clarify. “No, it has to be one, the same frog for each jump.
That’s what we always do.”

Carlos asks Mario to add to the diagram and show everyone where the
two j + 2’s are. Mario adds two arcs over the jumps and two steps on the
top of the double number line and writes 1 and 2 above each arc (see Fig-
ure 9.10).

Once again Louisa looks puzzled. “Okay, I see them, but why did you
write 1 and 2 above them? They aren’t one jump or one step.”

“Well, this is one jump plus two and this is the other jump plus two,
so I just labeled them 1 and 2.” Mario is treating the j + 2 as a single object and
is operating with that expression as an object. This is a landmark in development
analogous to the leap young children take when they begin to unitize a group of
ten objects and count it as one ten. The ability to look at mathematical expres-
sions and pull out chunks that can be viewed as single “entities” is an essential
strategy throughout mathematics (collegiate and beyond!).

Although Carlos has used the letter j in earlier discussions with his students,
he has refrained from symbolizing to make sure that students are first making
sense of the context and the representation. Now he senses the class is ready to
interpret the symbolic expression, and he wants them to see correctly formulated
algebraic equations that capture the focus of the minilesson.

Pleased with the discussion, Carlos asks the class, “Can we do this?”
and writes 2( j + 2) = 2j + 4 above Mario’s work. The class nods.

Mario interjects, “Yeah, that’s just writing what I’m saying another way.”
Because Carlos knows that many beginning algebra students will

read 2( j + 2) as 2j + 2, interpreting the symbols left to right, rather than
seeing the j + 2 in the parentheses as an object, he continues with the
string, having his students work with 3j + 6 and 4j + 8. Again they work
with multiple chunks of j + 2 as they discuss how these jumping sequences
are related. As the string progresses, equivalences like 3( j + 2) = 3j + 6,
4( j + 2) = 4j + 8, and 2(2j + 4) = 4j + 8 are represented on double num-
ber lines and discussed.
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SUMMING UP

Good minilessons always focus on problems that are likely to develop cer-
tain strategies or big ideas that are landmarks on the landscape of learning.
The big ideas of variation, equivalence, expressions as objects, that vari-
ables describe relationships and strategies such as using cancellation, com-
mutativity, or equivalence can be further developed in minilessons.
Designing strings or other minilessons to develop these ideas requires a
deep understanding of the landscape; the choice of the questions and the
models and contexts used are not random.

When Galileo said, “In questions of science, the authority of a thou-
sand is not worth the humble reasoning of a single individual,” he was
describing his life-long struggle to have scientific ideas accepted in an era
where religious authority dominated. But we cite it here for different rea-
sons. When the humble reasoning of children is valued and nurtured in
mathematics classrooms, doors open. When children are given the chance
to structure number and operation in their own way, they see themselves as
mathematicians and their understanding deepens. They can make sense of
algebra not as a funny set of rules that mixes up letters and numbers
handed down by the authority of thousands but as a language for describ-
ing the structure and relationships they uncover.
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A BIT OF HISTORY

Questioning, defending, justifying, and proving are all processes character-
istic of human activity. Even young children do these things naturally.
While there are rules of logic that govern a rigorous notion of mathematical
proof, the idea of proof has its genesis in the need to establish certainty and
to convince others (Stylianou, Blanton, and Knuth 2009).

Professional mathematicians acquire their understanding of proof by
participating in their community. For them it involves rigorous reasoning,
without gaps, that establishes the validity of a mathematical statement
based on clearly formulated assumptions. Although courses on proof have
begun to appear in the undergraduate curriculum in recent decades, math-
ematicians have for the most part developed their conception of proof in
settings in which their early attempts were questioned: “How did you get
from here to here?” or “I believe this, but why is your next statement true?”
These questions trigger an act of reflection, a reorganization of ideas, and
the presentation of reasons that “fill the gaps.” Mathematicians relive this
process throughout their careers and publish their written proofs in peer-
reviewed journals.

In early civilization, mathematics was bound up with practical ques-
tions of computation (commerce), geometry (surveying land), the passage
of time, and the location of stars. One of the earliest mathematical manu-
scripts is the Rhind Papyrus, attributed to an Egyptian scribe, Ahmes, and
written approximately 1600 B.C.E. It describes how to multiply numbers
using successive doubling and explains how to find the areas of triangles
and approximate the volume of cylinders. A long section describes solu-
tions for dividing 2 by odd numbers, expressing the result as sums of unit
fractions, and there is even early algebra in the text. Perhaps the most
remarkable calculation of antiquity was made by the Greek mathematician
Eratosthenes (266–195 B.C.E.). (He was also the third librarian of Alexan-
dria.) Using the elevation of the sun at solstice in Alexandria and Syene, he
calculated the circumference of Earth within 20 percent of its actual length.

PROOF

Don’t just read it; fight it! Ask your own questions,
look for your own examples, discover your own proofs.
Is the hypothesis necessary? Is the converse true?
What happens in the classical special case? What
about the degenerate cases? Where does the proof 
use the hypothesis?
—Paul R. Halmos



Yes! Eratosthenes knew Earth was a sphere, and he even calculated the
angle of the tilt of Earth’s axis.

Eventually an interest in mathematical relationships, particularly in
geometry, so captivated philosophers and mathematicians that they had to
develop language in order to communicate these new ideas. Eudoxus of
Cnidus (408–355 B.C.E.) was a student of Plato. A mathematician and
astronomer who investigated proportion, Eudoxus expressed the idea that
the area of a circle is proportional to the diameter squared: “Circles are to
each other as are squares on their diameters.” The area of a circle of radius r
is A = πr2, and since the radius is half the diameter d, A = (π/4)d2. So the area
of a circle is proportional to its diameter squared, the proportionality con-
stant being π/4 (approximately 0.7853).

Although Eudoxus’ formulation is opaque to us today (he didn’t
mention π/4), it illustrates the emergence of the language necessary to
describe mathematical relationships with precision. In fact, the develop-
ment of mathematical language has been a long and torturous process,
especially in algebra. Our modern notation using variables, as well as the
order of operations taught today, took several thousand years to evolve
from descriptions like that of Eudoxus. It is no surprise that learners
need time to make sense of today’s algebraic expressions. And, develop-
ing that understanding does to some extent follow the historical devel-
opment (van Ameron 2002).

The modern notion of deductive proof is attributed to Euclid (active in
Alexandria during the third century B.C.E.), whose Elements derived the
plane geometry studied today from five basic assumptions, or axioms. (An
axiom, or postulate, is a statement that is not proved but considered obvi-
ous or self-evident or is otherwise taken as a basis for further work.)
Although modern refinements have cleared up some of the details, the
accomplishment of Euclid was monumental: He showed how basic
assumptions, together with careful definitions and language, could provide
the starting point for deriving all the main results of plane geometry. Euclid
built proofs with a chain of reasoning, step by step, starting with defini-
tions and axioms. This is called a deductive approach. For two millennia
much of geometry teaching has been based on Euclid’s work.

Not all proofs during this period were deductive, however. Perhaps the
most spectacular proof of ancient times was the determination by
Archimedes of the volume of a sphere. He proved that if a sphere is com-
pared with a cylinder of the same radius and a height twice the radius (see
Figure 10.1a), then the ratio of the volume of the cylinder to that of the
sphere is 3:2.1 Archimedes did not give a deductive proof, but instead
relied on a physical model. He imagined a sphere, a cylinder, and a cone
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volume of the cylinder, then you have found the volume of the sphere multiplying by 2/3.



hanging on a bar where the different distances could be selected so that
balance was achieved (Figure 10.1b).

In addition to being a tool for thinking, models can be a tool for devel-
oping the language needed for expressing mathematical ideas and for
organizing proof—paralleling the development in ancient times. Legend
has it that Archimedes believed his calculation of the volume of a sphere to
be his greatest accomplishment and asked that a cylinder and sphere be
placed upon his tomb that would bear the inscription 3:2. Seeing that ratio,
everyone would know who lay there—no need for his name!

Today’s mathematicians craft proofs using a variety of techniques, such
as deduction (the approach used by Euclid), induction (showing how to
start and also how to increase one at a time), contradiction (showing that if
something isn’t true, contradictions arise), and exhaustion (checking all
cases). Many reason with representations like Archimedes did. And still
others use computers to examine all cases. No matter what form of proof is
used, two ingredients are critical: (1) the language and definitions must be
clear (no ambiguity), and (2) each statement must follow logically from
information previously established using mathematically accepted rules of
inference.

A basic rule of inference, first analyzed in abstract form by Aristotle, is
modus ponendo ponens (usually abbreviated modus ponens). This rule of logic
says that if we know that A implies B, and if we know A, then we may con-
clude B. One way to build a proof is to find a sequence of statements linked
together by modus ponens. Many deductive proofs are built up this way,
starting with basic assumptions and definitions followed by applications of
modus ponens or other related deductive rules.

A second basic rule of inference is universal generalization. To find out
if something is true mathematicians often begin by looking at examples.
But checking examples isn’t usually enough to see whether something is
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always true, for there may be many, even infinite cases. However, if an
example checks out, and if we can examine the example thoroughly to see
that no special assumptions were used in the reasoning that would limit the
approach to all the cases, then universal generalization allows mathemati-
cians to claim the result for all.

CHILDREN AND PROOF: WRITING IN MATHEMATICS
VERSUS DEVELOPMENT OF PROOF

The notion of proof evolved throughout the history of mathematics, typi-
cally with increasing rigor but with surprises, too. Children’s ideas of proof
also develop over time if we prompt them to ask why and to develop con-
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vincing arguments. If we take seriously the idea of treating young children
as emerging mathematicians, initiating them into a community of mathe-
matical discourse around proof is critical. Rather than beginning with
instructions to “use words, pictures, and symbols to show your work,” chil-
dren need time to write and revise arguments for their peers to consider
and to read and comment on one another’s arguments. The development of
increasingly precise language while discussing mathematical objects is cru-
cial to the early development of proof. And the use of context and models
as tools for thinking may facilitate the development of language, verbal and
written.

Learners’ early writing about mathematics is usually a description or
retelling of their approaches in solving a problem. This is an important step
in learning to articulate one’s reasoning, and in early grades it often marks
the onset of an awareness of one’s own reasoning. Children may write
something like, “At first we did this, but it didn’t work so we tried that, and
then we added it all up and we found our answer.” They retell the story of
what they did. Although such writing might develop language and help
students focus on clarity, it is only a beginning and should not be confused
with proof. Providing proof to a community requires a reorganization of
ideas into a chain of logically connected statements. These steps involve
analysis and resequencing of a process, in search of a convincing chain of reason-
ing, rather than retelling what was done. To do this requires that learners
take the perspective of the audience.

Children need many experiences reexamining, revising, and simplify-
ing their ideas in order to make concise arguments for readers if they are to
build a foundation for understanding a mathematician’s view of proof.
Teaching practices in which children are encouraged to read and question
others’ ideas, examine their own and others’ thinking, develop conjectures
and build arguments for these conjectures, or write and talk about their
reasoning is foundational for building a habit of mind toward proving
(Stylianou, Blanton, and Knuth 2009). When we provide an audience—
readers—and ask children to write up their “proofs,” shared principles and
rules of deduction begin to be used in a chain, building on one another.
Children naturally reason using universal generalization, and they develop
systematic ways to explore all cases.

TEACHING AND LEARNING IN THE CLASSROOM

As a context for modeling the open number line (although some of her
students had previously used the open number line to represent addi-
tion and subtraction strategies, many had not), Leah’s fifth graders are
investigating the possible two-color farm fences that have a length of 32
using Cuisinaire® rods of length 3, 4, 6, and 8. Each length is a specific
color, so a “two-color fence” is built using rods in two of the lengths. The
restriction to lengths 3, 4, 6, and 8 also prompted the development of
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equivalence and multiplicative relationships: The students need to
choose two of these lengths and find the possible ways to build 32. Ear-
lier in the week the students used the actual Cuisinaire® rods, but now
Leah has put the rods away and instructed them to use relationships
between 3, 4, 6, and 8 they had discovered earlier and represent their
ideas on an open number line.

Harry and Margarita have been working with 3s and 6s, and they don’t
think it is possible to build 32. Leah asks them to record their observations
in preparation for a gallery walk the next day. They draw jumps on an open
number line and write on their poster:

First we tried all 3s but that didn’t work since 3 + 3 + 3 + 3 + 3 +
3 + 3 + 3 + 3 + 3 = 30 is too little but if we do 3 more we get more
than 32. So we tried one 6 and more 3s but that still didn’t work.
We tried using two and three 6s but that didn’t work either. So it
is impossible.

Harry and Margarita are retelling what they did. While they can list all possibili-
ties and provide a full set of reasons, they have not yet considered how to show
that all possibilities have been considered—a critical piece in structuring the rela-
tionships sufficiently to craft a compact proof.

Sonia and Alice start the same way, adding up 3s, but when they use
6s they realize that it is the same as adding 3s. Leah sees the girls writing
addition sentences in lists and says, “Alice, you just said a six is the same
as two threes. Is there a way you can use this equivalence to help you
here? And look at all those threes you are adding, can you write that
another way?”

“You mean like with multiplication?” Alice responds quizzically.
“Yes, see if you can rethink what you are trying to do with multiplica-

tion and write an easier and more convincing proof for your classmates to
read.” Leah is pushing the girls to structure their work differently in the search of
a better proof. After a while Sonia and Alice write:

Fences made only from 3s have to be multiples of 3, and 32 is not
a multiple of 3 because 30 is a multiple of 3 and the next multiple
of 3 is 33. If you use 6s, it’s like using two 3s, so you still only get
multiples of 3. So you can’t make 32 from 3s and 6s.

Sonia and Alice have restructured their work using multiplicative instead of
additive relations. But, more important, the restructuring leads to a new chain
of reasoning, which in this case is more direct. Later, in the math congress,
Sonia adds more: “We knew that it wasn’t enough just to calculate exam-
ples because there may be other possibilities. So that’s why we did it for
3s and then saw that if you used 6s you didn’t get any more new num-
bers.” Sonia has constructed a big idea about proof, that listing examples may
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not be enough. This idea is also an important motivator: Sonia and Alice 
had to look for a different approach so they wouldn’t have to give a long list of
possibilities.

Mark and Daniella have produced a list of computations involving
6s and 8s trying to find which add to 32. They have circled those that
work and crossed out those that don’t. Leah encourages them to review
their work. “For your poster, try to craft a proof that you have them all.
Can you review all that you have done and try to organize it in a way
that will give a convincing proof without retelling all that you did?
Maybe you can make it even easier.” Leah is pushing Mark and Daniella to
look for relationships in their work and to write them down—this is very much
like the revision process we encourage in young writers. Mark and Daniella
want to make sure their list is complete and want to examine all cases.
But they need to analyze and resequence their process. Daniella decides
they can create a complete list if they organize by counting the number
of 8s. She records:

We worked with 6s and 8s. First we did one 8 and we needed 24
more so we used four 6s. Then we did two 8s, but we can’t make
16 out of 6s so we tried three 8s and that didn’t work either
because we can’t make 8 out of 6s. Finally four 8s work without
any 6s. So there are two ways, 8 + 6 + 6 + 6 + 6 = 32 and 8 + 8 +
8 + 8 = 32. P.S.: You can’t do zero 8s either because five 6s is
already 30.

Mark and Daniella have visited several important landmarks in the develop-
ment of proof. They are using a list of cases and are also justifying why their list
is complete—this is proof by cases.

WHAT IS REVEALED

The context of measuring fences for farms was an opportunity for Leah to
make sure her students understood the concept of an open number line.
The inquiries she chose motivated them to use equivalence and multiplica-
tive structuring. The problem of two-color fences led to proofs based on
examining all cases or using divisibility rules and thus provided an oppor-
tunity for these students to make an important transition. All six children
began by adding numbers to see what would work and what wouldn’t
work. They represented their fence combinations on open number lines—
one of Leah’s goals. But when asked to create proofs for a gallery walk, they
started by retelling their steps rather than analyzing what they had done
and trying to resequence their ideas. Leah had expected this, because the
previous year the teachers had students keep math journals and instructed
them to write about what they did. But now Leah wants to push students
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toward crafting more elegant proofs by reexamining their work and writing
for an audience.

Although Harry and Margarita retell the sequence of calculations they
made, the choice of numbers in the context inspires Sonia and Alice to
structure the problem multiplicatively, and this leads them to a new chain
of reasoning based on divisibility by 3. In this case, a significantly more
compact proof emerges—they discover it is impossible to use 3s and 6s
only, because 32 is not a multiple of 3. Mark and Daniella know they need
to use a complete list of cases and be sure to show why their list is com-
plete. They know that listing examples may not be enough. They organize
their list by the number of 8s they try, and they have a rather complete
proof to share with the class. Later, in the math congress, they will hear
about yet another way to think about their cases, based on the equivalence
that 4 × 6 = 3 × 8.

DEVELOPING A SYSTEM OF SHARED PRINCIPLES 
AND RULES OF DEDUCTION

Bill’s fifth graders (see Chapter 6) were able to construct a cancellation
rule involving variables. They constructed their own terminology for 
this process, describing cancellation as placing equivalent amounts in a
storage box and establishing a deductive rule like the following: Given 
a + b = a + c, deduce both a = a and b = c. In this context involving
unknowns the students were unwilling to give up the three equal jumps
on both sides of the equation 3j + 6 = 4j – 2. In time they will, but at 
the moment their shared principle allows them to conclude 3j = 3j and 
6 = j – 2.

Second graders (see Chapter 5) worked with equivalence while playing
the piggy bank game and analyzing true and false statements. They devel-
oped an understanding of compensation (what is added must be removed
to maintain identity), the commutative and associative properties of addi-
tion, ignoring (cancelling out) like amounts, and adding and/or subtracting
n to both sides to simplify for analysis. When children are motivated to
convince their peers, deductive rules can emerge naturally, even at early
ages, and the double number line remains a powerful model for them to
reason with.

What can second graders do if we ask them to write up their proofs
and provide an audience of readers? Will these shared principles and rules
of deduction begin to be used in a chain, building on one another? Will
their written arguments take on any early form of proof?

To examine this question, Patricia Lent (see Chapter 7) wrote up sev-
eral equations on a paper, and we asked the children to write out their
proofs for us to read. Several pieces of work are included in Figures 10.2a,
b, and c.
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Note how the children’s arguments are sequential: “First I knew 
4 + 5 = 9 and there was a 9 on the other side, so I crossed those out. On
one side was 5 – 5, so I crossed that out. Then there was a 2 on the other
side so it wasn’t equal.” Although they are retelling their strategies, the
strategies are based on rules that have been established in the community.
The arguments exemplify cancellation (“there are two Ns so they’re out”),
the commutative law (“I am switching minus 3 to 11 instead of 20”), and a
form of compensation sometimes called swapping (“if I switch the 7 from
the 17 and put in the 5 then I have 15 + 7 = 15 + 7”). The community’s
rules of deduction have become tools for framing coherent mathematical
discussions. Although they start with retelling, because they are using
deductive rules instead of describing computation, they are moving
toward proof.

Even more interesting is the use of the words if and then. These two
words are the ingredients of the most important structure in mathemati-
cal logic: that of logical implication. The work in Figure 10.2a says, “If
20 + 9 = 10 + 19, then if I take n away from one side and not the other
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then it cannot be equal.” Equivalence given by compensation has been
accepted in their classroom; since this student believes 20 + 9 = 10 + 19
and has also observed that if 20 + 9 = 10 + 19 then 20 + 9 + n = 10 + 19

180 YOUNG
MATHEMATICIANS 
AT WORK

FIGURE 10.2b
Patricia’s Student Work,
Equal or Not Equal
(continued)



cannot be true (except if n = 0)—an early use of modus ponens, one of the
most treasured forms in mathematical logic!

GALLERY WALKS, ASKING QUESTIONS, 
AND REVISITING THINKING

This work, as well as that of other researchers, prompted us to ask our-
selves several questions. Are these chains of reasoning more than just
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retelling or giving evidence? Can we classify them as emergent forms of
proof characterized by use of deductive rules? If children continued and
were supported in this type of work, how might it develop?

To answer this last question, over the past several years we have had
children participate in “gallery walks,” in which they write up their initial
proofs, post them for everyone to see, and invite peer comments. These
gallery walks take place before a math congress begins and are akin to con-
sultations of professional mathematicians: Mathematicians regularly talk
about their ideas with colleagues in order to clarify and simplify their work
and also to weed out anything incorrect.

First, children write up their strategies and ideas in ways that
explicitly attempt to convince readers. These “presentation” pieces are
then posted around the room and students walk around with sticky
notes. They read the pieces, make comments and queries on the sticky
notes, and put the notes on the posters. We introduce this work by
explaining that when mathematicians write up their findings for math
journals, they do not merely reiterate everything they did. Instead, they
focus on crafting a convincing and elegant argument, or proof, for other
mathematicians to consider. Consultation and communication is an
important part of the way mathematicians prepare their work and con-
vince one another.

Of course, elementary students are not expected to write up formal
proofs, but by focusing on the justification and logic of their arguments,
over time they do become better able to eliminate extraneous detail and
delve into the important ideas. As children walk around and comment they
are encouraged to read critically, to follow the reasoning, to look for holes
in the thinking, to disagree, and to question. At first their comments are
quite superficial—“I think you made a really pretty poster”; “I like the way
you used colors”; “I agree with your answer.” But over time, aided by dis-
cussing the comments they find helpful, they begin to ask better ques-
tions—“I understand the top three statements, but I don’t understand how
you got from there to your answer.”

BACK TO THE CLASSROOM

Let’s return to Miki Jensen’s classroom (see Chapter 4), where her fourth
graders have been investigating how many different rectangular prisms
(boxes) can hold twenty-four chocolates. (For example, a 2 × 3 × 4 box and
a 3 × 8 × 1 box both hold twenty-four chocolates. How many more boxes
can?) Miki asks them to develop a convincing argument that they have
found them all. The children then prepare posters for a gallery walk. (If
necessary, students may add to their posters during the walk in order to be
better prepared to ask or answer questions during the math congress.
Reexamination, rethinking, and revision are all critical ingredients to writ-
ing proofs.)
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Miki begins the gallery walk by reminding her students about the
types of comments that are helpful. “You might write, I think your strategy is
interesting, and I’m trying to figure out why we don’t have the same number of
boxes,” she explains. “Or: It’s hard for me to follow your thinking. How do you
know you have them all? Or: Your poster really convinces me. I agree with your
thinking.“ She also suggests that readers notice the way authors begin their
proof. “You might comment: Your strategy is really great. What made you
think of starting like that? Or: I’m puzzled about this box. Isn’t that the same box
as this one, just turned around? I need more convincing. Or: I understand your
first few steps, but I don’t know how you got from there to your conclusion.” She
then joins her students on the walk and makes comments and queries on
sticky notes as well.

Austin, Gabrielle, and Thomas’ poster (see Figure 10.3) exemplifies
the beginning of a “proof by cases.” They have found all the boxes with
one layer and draw them on the lower-right side of their poster. (Note
how they use the associative and commutative properties for multiplica-
tion, which underlie both their doubling and halving and switching
strategies.) During the gallery walk several students place sticky notes
on their poster. Gene writes, “I like your work with the layers of one. It’s
the same as ours. But how do you know that you have them all when
you go to more layers?” Gene’s question is an honest one. Because his
group used layers and was consistent, he is confused by the other
group’s use of halving and doubling. His question is also powerful,
because it gets right to the heart of where they may need to go next.
Although they have been systematically examining various halving and
doubling strategies, they do not yet have an organizational structure to
produce a complete list. However, if they can argue that they have sys-
tematically associated and/or commuted the factors, they will have
developed a nice proof. Conversely, once Austin’s group refines their
thinking, their approach may help Gene’s group improve their strategy
of listing all layers (see Figure 4.3): The fewer number of cases needed in
the proof, the more elegant it is!

Danielle and Gabby (see Figure 10.4) have switched the number of
layers with the number of rows using the commutative property and asso-
ciative properties—(1 × 24) × 1 = (1 × 1) × 24)—and then listed and
drawn six boxes. Michael posts this question on their poster: “We did some
flipping like you did but not as much. We did more halving and doubling.
Would you get more boxes if you tried halving and doubling?” Michael’s
question reflects the important role of halving and doubling in his group’s
work (see Figure 4.2). Children often interpret what other children do in
terms of their own work. This question may push Danielle and Gabby to
consider these other relationships and whether their collection of six non-
congruent boxes is a complete list. The process of halving and doubling is
based on factorization, while flipping yields congruent boxes (and illus-
trates the associative and commutative rules). These are two of the big ideas
Miki wants her students to develop.
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On her sticky note, Chloe writes, “Right here, I don’t exactly get what
you did,” and places it on the poster where Danielle and Gabby have writ-
ten, “They are congruent to each other and you still write them differently
from each other.” This comment prompts Danielle and Gabby to revise
their wording about how flipping relates to boxes with different numbers
of layers.

Many students, such as Tim, Mary, and Chas (see Figure 4.4), demon-
strate they have all the boxes by examining the possibilities within each
layer. This is proof by cases, and as noted in the discussion of the farm
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fences work, it typically has two components: showing that you have all
the cases (in this instance, determining the possible layers) and then check-
ing that you have what you want in each case. However, other strategies
used by these children reveal additional important aspects of the develop-
ment of proof.

Austin, Gabrielle, and Thomas’ early work included many pages in
which they listed possible box dimensions using the commutative law and
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doubling and halving strategies. In the top portion of their final poster (see
Figure 10.3) they focus on these strategies: “We doubled and halved to find
all the ways. But when you double and halve you might not land on all the
ways.” This is a big idea. They are demonstrating an awareness of a need for
more general argumentation than outlining a process that worked. Many stu-
dents were able to double and halve and find what they believed to be a
complete list—and for boxes with a volume of twenty-four it is possible to
find all possibilities through doubling and halving, and flipping. But
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Austin, Gabrielle, and Thomas explicitly raise the need to check that the
process will yield all possibilities. A compelling need for careful proof has
arisen. They go on to say, “You also might land on a number that doesn’t
work” and give the example 8 × 3 → 16 × 11/2. Here they are working for
clarity in definitions and processes—in this context halving and doubling
works only when what you need to halve is even.

Laura and Zach’s work (see Figure 10.5) is another example of the
importance of reexamining one’s strategy. They list boxes according to dif-
ferent numbers of layers and then note, “We knew we could stop at 5
because if we did 6 it would be the same as 4. Example: 4 × 6 × 1, 6 × 4 × 1,
3 × 8 × 1, 8 × 3 × 1. All you do is switch the numbers.” They have noticed
that if they continue to list by layers they will not find any “new” boxes—
all they will get are boxes that were listed before (although they would have
to be flipped). They have discovered they don’t have to make new boxes—
they can look at previous entries on the list to get them all. This is a power-
ful observation that can be an important strategy for condensing a proof.
They have moved beyond a list and are employing general principles to shorten
the search. Although their poster doesn’t provide the complete answer, they
are examining their thinking carefully and have taken an important step in
developing strategies for proving.

WHAT IS REVEALED

It is over time—with opportunities to try to build cohesive arguments—
that children come to appreciate the notion of an acceptable argument in
a mathematics classroom (Stylianou, Blanton, and Knuth 2009). Unfortu-
nately in most elementary classrooms, children are not given opportuni-
ties to consider how to write a mathematical argument for a mathematical
audience; they are merely asked to show the teacher what they did and
to explain their strategy. They need opportunities to revise their written
arguments.

Participating in “gallery walks” implicitly tells children that mathe-
maticians write up their proofs for an audience—an audience that will read
these proofs critically. There is no reason to develop a written form of proof
without an audience. Often when we have solved a problem and are con-
vinced we are right, it is the process of writing up our proofs that causes us
to rethink. And it is the elegancy of the forms we ultimately produce that
makes the discipline at once beautiful and creative.

Miki’s students are developing proofs by examining cases—most of
them classify all the boxes according to the number of layers. This prompts
several important developments. Austin, Gabrielle, and Thomas realize that
a proof requires more than just retelling what you’ve done; they begin look-
ing for a more general argument than outlining a process that worked.
They also realize they must strive for clarity in what they define. Laura
and Zach have found general principles they can use to shorten the list;
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although their poster doesn’t provide the complete list, these strides are
important, as these realizations will make the act of proof more meaningful
and accessible.

GENERALIZING FROM SPECIFIC CASES TO ALL CASES

Many mathematical statements that need to be verified involve large collec-
tions of numbers. Take “the sum of any two even numbers is an even num-
ber.” How can this be checked for all pairs of even numbers? Checking an
example does not give a proof in all cases. Yet, surprisingly, mathematicians
have learned that checking even a single case can lead to a proof for all
when the conditions are right. A number of researchers have investigated
young children’s thinking about even and odd numbers (see Schifter 2009,
for example). In reasoning the validity of the statement “the sum of two
even numbers is an even number,” children naturally make a universal gen-
eralization from a special case. Typically, they create a diagram of two even
numbers, perhaps pictured as two rows of the same length (which they can
do because the numbers are even) and then note that when combined you
still get two rows of the same length (see Figure 10.6).

The diagram literally shows that 8 + 14 is even. But no matter what
even numbers you choose, you can make a version of this same diagram.
Therefore, the result is true for all. In spite of all our proclamations that one
case isn’t enough, if the creator of the diagram asserts that the reasoning is
general enough to cover all cases, then it is enough. In time these same
ideas will be recorded like this: “Since even numbers are multiples of two,
if 2x and 2y are even numbers, then 2x + 2y = 2 (x + y) is also an even
number.” The distributive law, represented as a special case in the diagram,
is now being expressed algebraically.

BACK TO THE CLASSROOM

Fifth and sixth graders in a summer intervention program are also using
The Box Factory ( Jensen and Fosnot 2007). Cathy is working alongside the
teachers as part of a professional development workshop. The children are
exploring the amount of cardboard needed for each of the different boxes,
each holding twenty-four oranges. Some students are cutting rectangles
from 3/4-inch graph paper (which matches the size of the multilink cubes
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they used to build the boxes), six rectangles per box to match each side,
and then counting the squares. Cathy encourages them to move beyond
counting and challenges them to use the array structure and multiplication
to determine the area of each rectangular face. Other students just count
the squares on each side of each box to determine surface area, and some
multiply and then add the six products.

Anthony stares at his list of boxes—(1 × 1) × 24, (1 × 2) × 12, (1 × 3) × 8,
(1 × 4) × 6, (2 × 2) × 6, (3 × 4) × 2. He has organized them so he doesn’t have
to repeat the calculation for the flip of a box—he knows the surface area will
be the same if they are flips of each other. He writes: 

3 × 2 + 4 × 2 + 3 × 2 + 4 × 2 + 3 × 4 + 3 × 4 = 6 + 8 + 6 + 8 + 12 + 12 
= 14 + 14 + 24 = 52

His partner, Jeremy, is cutting more graph-paper rectangles. “I’m doing
the (2 × 6) × 2,” Jeremy says. “It’s the original box.”

Anthony looks again at his list and at what Jeremy is cutting out and
adds: 2 + 2 × 6 + 2 + 2 × 6 + 4 + 4 = 24 + 24 + 8 = 56. Then, tentatively, he
offers a conjecture: “You just go all around where it is the same height and
then you do the bottom and top.”

“What do you mean?” Jeremy asks with a puzzled look, continuing to
cut out six rectangles.

Below his calculation Anthony writes: l + w × h + l + w × h + t + b.
He explains, “We could cut just four rectangles instead of six. There’s two
rectangles that wrap around the sides. Then we just have to add the top
and the bottom.”

Jeremy begins to understand the beauty of Anthony’s insight. “Oh . . . so
you mean we don’t need to make all six rectangles. We can put some of them
together?”

They continue with this strategy and calculate the amount and cost of
the cardboard for each box. As they prepare for the gallery walk, they
decide to add the formula they used. In small, almost illegible, print they
write l + w × 2 × h + t + b = x on the bottom of the poster. During the
gallery walk, their poster receives many sticky notes with questions about
how they came up with the formula.

In the subsequent math congress, Cathy asks Jeremy and Anthony to
discuss the formula. “So what does all this mean that you have here?” She
points at the expression with l, w, and h.

“Jeremy was cutting out each side of the box,” Anthony begins, “and I
noticed that instead of cutting each side out we could think about bigger
pieces by putting some of the sides of the box together and we wouldn’t
have to cut so much. Then I noticed that if we added the length and width
twice, that was the length of the piece of paper that went all around. So
then just multiply that by the height.”

Cathy is not sure all the students are following Anthony’s reasoning,
particularly his use of the letters l, w, and h, so she asks him to cut out a sin-
gle paper for the lateral surface area of the (2 × 3) × 4 box as an example.
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“It’s going to be two five-by-four rectangles, that’s two plus three and then
times five for each half, so it’s times two.” Anthony cuts out the rectangles and
holds them up, showing how they make one piece, which wraps around the
box. He then describes how a bottom and a top are still needed to make the
box. Cathy helps him explain that in this case the l is 2 and the w is 3, then
gives the children time to talk with a partner in order to make sense of the dis-
cussion themselves. Several classmates ask questions about the height and
why he is multiplying by it.

Anthony explains, “The height is the number of layers. Because that is
just two sides of the box, I have to double it to account for the other part of
the box. Then you add the top and the bottom.” On the whiteboard he
writes: l + w × 2 × h + t + b = x.

Marcy, another student, clarifies, “He adds the length and the width,
then multiplies it by the height, which is really the number of layers, and
adds them up two times.”

Cathy asks, “Did he add first or multiply first? How did he do it? Put
your thumbs up if you think he added first.” Some thumbs go up. “Put
your thumbs up if you think he multiplied first.” Other thumbs go up.

“I added the length and width first,” Anthony clarifies.
Cathy knows that Anthony has invented variables and described his opera-

tions symbolically, and that what he wrote makes perfect sense to him, but she is
looking for an opportunity to introduce proper order of operations in a natural
way. “So, Anthony, since the kids weren’t sure, would it be okay if I put
parentheses on your formula like this to show you added length and width
first?” She does so: (l + w) × 2 × h + t + b = x. “Mathematicians like to be
very clear with what they write, so we put parentheses in like this so people
who read the formulas can know what to do first.”

Cathy also wants to help Anthony generalize further. She asks, “So you
used the length and the width twice. Are the top and the bottom related?”

Anthony says they are the same, and Cathy asks how he would find
the area of the top.

“It is l times w,” Anthony declares excitedly. He adds parentheses and
crosses out the t + b. The revised equation now reads: 

[(l + w) × 2 × h] + l × w × 2 = x

Tim, a visiting teacher, asks Anthony if this equation would give him
the surface area of any box, not just a 2, 3, 4.

Anthony thinks for a second and then replies, “Well, what shape is
your box? Because if it had triangles on the top and bottom, this wouldn’t
work. It only works for rectangles.”

WHAT IS REVEALED

Based on his experience with a few examples, Anthony has generalized
his process, which was to separate finding the lateral surface area from
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adding the top and bottom. He even created notation to express his
ideas (although very likely he had seen l × w for area before). Aside from
the lack of parentheses required for conventional order of operations in
his original expression, his formula is correct. More important is his
realization that the process is general. Anthony has worked out a specific
case and then, realizing there are no constraints on his approach to all
other cases, generalizes the result and expresses it symbolically. This is
an extremely powerful mathematical observation. Even more is revealed
when, answering Tim’s question, he articulates his awareness that the
box needs to be a rectangular prism—no triangles allowed! This is uni-
versal generalization.

We often tell students that “an example is not a proof,” because learn-
ers tend to overgeneralize in their first attempts at justification. It’s impor-
tant we do so. But we must also be carefully attuned to the nature of their
examples and representations—sometimes they will generalize appropri-
ately from a special case. In fact, universal generalization is common
throughout mathematics for proving “for all” statements, and Anthony’s
work, as well as children’s work on the sum of even numbers being even,
shows that children are capable of formulating such proofs.

SUMMING UP

Proof has taken on different meanings and forms over the history of mathe-
matics. In the early days of the discipline a compelling picture or descrip-
tion was enough for statements to be accepted as “truths.” Over the years,
though, as mathematicians crafted written forms of their arguments for
mathematical audiences, the proof itself became an object of mathematical
beauty. Various forms were constructed, such as deductive and inductive
proofs, proof by cases, and proof by contradiction. Geometric representa-
tions and models became important as well, as did the basic form of rea-
soning known as modus ponens—connecting “if . . . then” statements into a
chain of reasoning that holds together without gaps. A second basic rule of
inference in mathematical proof is universal generalization—from one case
where no special assumptions limit the process to “for all.” These forms
evolved slowly through the years and were generated through dialogue in a
mathematical community.

If we expect children to understand the beauty of proof, we need to
create a community of discourse in which they can craft arguments, reflect
on these arguments, question them, and revise them. We need to model
their thinking and the processes they use, so they have objects to discuss
and can examine their logic. Then they can link reasons using deductive
rules or talk about why something is always true based on the generality
inherent in an example.

Children’s “proofs” may look different from the professional mathe-
matician’s, but when supported and encouraged to do so, their arguments
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can take on a surprising logic. Children come to enjoy the process of
writing and reading about the mathematical reasoning behind the forms
of proof they create, and by doing so they build a foundation for later,
more advanced mathematics. They need the opportunity to be seen as
young mathematicians hard at work creating their own elegant forms of
proof.
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posters for, 136–38, 139f

big ideas
defined, 29–30, 95
dynamic nature of, 34
expressions as objects, 

79–80

landscape of learning for
algebra and, 29–32

net change, 123–24
time for, 108
variables, 160

Blanton, M. L., 3, 171, 175, 
187

Bloom, B., 23
Boaler, J., 31
Bolyai, 3
boxes. See also chocolates box

problems; rectangular
prisms (boxes) lateral
surfaces proof, 188–91

Box Factory, The ( Jensen and
Fosnot), xv, 55, 188

brain development, 77–78
bunk beds problems, 78, 79f

California Frog Jumping Contest,
The ( Jacob and Fosnot),
xvi, 69

Cameron, A., 78–79
cancellation

as deductive rule, 108
equivalent expressions, 80,

86–87, 161
generalizing, 106, 106f
rules, 178, 179
as strategy, 83, 106
as subtraction, 88
terminology, 107–8

Candland, D. K., 24
capture ten game, equivalence

and, 79, 80f
Carpenter, T., 3, 52, 77
Carraher, D. W., 3
Chang, Madeline, 38, 52
chip models, negative numbers

and, xvi, 126
chocolates box problems, 58f,

59f, 60f, 65f, 66f. See also
rectangular prisms (boxes)

as array, 55–62
cost of cardboard, 65–66
cubic (cube-y) boxes for,

64–67
exploring possible designs,

56–62
minilessons, 63–65
patterns for, 68
as rectangular prism, 56, 64
surface area, 64–68

Chomsky, Noam, 24

circles, 172
cognitive development

language as, 32
models as, xiv, 32–34
teaching mathematics and,

23–24
cognitive structures. See also

dense structures; structuring
dense, 26–27
development of, 35

coin problems, 81–86, 164–66
combination charts

checking possibilities with,
xvi, 140–47

creating, 145–46f
for fence problems, 140–47
introducing, 141
layout of, 146
number lines and, 148
organization of, 141
questions about, 146–47
relationships and, 140–47
for sucker and gumball

problem, 151f, 152f
for systems of equations,

151–53
value of, 145

commutative property of
addition

dense structures and, 27, 29
equivalence and, 88, 163–64
representing, 80–81
using, 178

commutative property of
multiplication

context and, 67–68
dense structures and, 27–28
division and, 72
generalizing, 60–61
pairs and, 47–48
proof and, 183, 185–86
structuring and, 27–28, 42
student use of, 57

Comparing Quantities (Van
Reeuwijk), 151

Compendius Book on Calculation
by Aljabr w’Al-muqabala
(Al-Khwarizmi), 94–95

compensation
as dense structure, 27
equivalence and, 77, 89, 91
swapping, 179

concepts, cognition and, 23
cone, 174f
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consonants, representing known
values with, 95

constant difference strategy, 89
constructivist view of learning,

xv
contexts

coin guessing game, 164–66
for equivalence, 78, 136
for mental objects, 126
prealgebraic strategies and,

130
quantities and, 130–31
role of, 57, 64, 67–68, 111
for solving equations, 129–30

Contexts for Learning units
( Jensen and Fosnot)

Beads and Shoes, Making Twos,
xv, 38

Box Factory, The, xv, 55, 188
contradiction, 173
counting by twos, 42f
counting numbers

addition and, 27, 37–38
defined, 27
structuring of, 37

counting on, 37
cross-out rule, 81, 87, 88
cubes, of prime numbers, 8
cubic (cube-y) boxes

for chocolates box problems,
64–67

Cuisinaire rods, 28, 175–76
curriculum frameworks, 23–26
cyclicity, 74
cylinder, 172–73, 172n, 174f

deduction, 173
deductive proofs, 172, 173
deductive rules

equivalence and, 89
establishing, 180, 181
proof and, 182

Dehaene, S., 25, 72, 77
dense structures

building, 13
defined, 26–27
developing, 27–29, 35
dimensions of, 28f
generalizing from, 51
multiplicative number sense

and, 73
student understanding of, 7

Descartes, René, 129, 147
developmental learning, 11–13

Devlin, Keith, 10, 26–27
Dewey, John, 37, 53
diagrams

redrawing, 105
representing expressions, 105
for sequence of possibilities,

140–41
for subway problem, 113,

114f
value of, 105

diameter, 172
dice, equivalence and, 78–79
Diophantus of Alexandria, 95
Dirac, P., 77
discovery learning, 11
disjoint sets, 38, 38n
distributive property of

multiplication, 23
divisibility relationships and,

53
introducing, 28
multiples and, 74–75
multiplicative structuring and,

69, 74–75
student use of, 64

divisibility relationships
distributive property and, 53
factor pairs and, 15–16
three even numbers and, 

52–53
division

on number lines, 70–72
partitive, 70
quotative, 70

Dolk, M., xiii, 26, 37, 40n, 63
double number lines, xv, 103f

addition on, 163–64
for bench problems, 139f, 140
equivalence and, 88–89, 88f,

104, 141f, 161–62
for frog-jumping problems,

69–71, 71f, 100–105, 
103f

for quantities, xvi
revising, 103, 109
value of, 104–5
variables and, 100–105, 103f,

105f
variation and, 159

doubles and doubling
charts, 47–48
egg carton problems, 43–44,

44f, 45f
even numbers, 7, 38, 48

exploration of, 38–41
known, for solving unknown

near double, 43–44
math congress on, 47–48
minilessons, 43–44
multiplicative structuring and,

53, 55
odd numbers, 7, 38, 48
one-to-one relationships and,

38–41
pairing and, 38–48
patterns in, 39
shoe problems, 45–48, 46f, 47f
student understanding of, 41

doubling and halving strategy,
58f

minilessons, 62–64
proof and, 183, 186
real-world context for, 57
student use of, 63

Driscoll, R., 3

egg carton problems, 43–44, 44f,
45f

Einstein, A., 35, 77, 91
Elements (Euclid), 172
equal or not equal proofs, 179f,

181f
equals sign

meanings of, 77, 78, 91
origin of, 95

equations
cancellation strategy for, 107
contexts for, 129–30
expressions vs., 31
memorizing steps for solving,

68–69, 104
simplifying, 80
solving methods, 95, 129–30
subtracting from both sides of,

97
for subway problem, 113,

114f
systems of, 147–51, 150–53
variation and, 31

equivalence, 77–91
addition and, 88–89
on bar of cubes, 87
as big idea, 32
canceling and, 86–87
coin guessing game, 164–67
commutative property and,

88, 163–64
comparing, 84–89
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equivalence (continued)
compensation and, 89, 91
contexts, 78, 136
deduction rules and, 89
defined, 77
diagramming, 105
double number lines, 88–89,

104, 141f
frog-jumping problem and,

102–4, 166–68
games and, 78–79, 84
generalizing about, 79, 99
mental image of, 104, 165–66
natural capacity for

comparing, 78
on number lines, 90–91,

102–3
on open number lines, 88,

88f, 98–99
operations and, 166–68
proof, 180
spatial sense of, 85
in statements, 77
subtraction and, 88
two-column proof, 85

equivalent differences, net
change and, 124

equivalent expressions
on bar of cubes, 87, 87f
canceling, 80, 161
on double number lines,

161–62
history of algebra and, 95
minilesson, 87–89
substituting, 81, 82, 

138–39
Eratosthenes, 171–72
Eudoxus, 172
even numbers

adding, 52
arraylike arrangements of,

48–49
doubling and, 7, 38, 48
factors of, 5, 19
hundred chart and, 48
patterns in, 39
shoe problems, 45–48
tools for understanding,

44–45
vertical structuring, 50–51

Eves, H., 35
exhaustion, 173
exponents and exponentiation

factors and, 8–10
multiplicative aspects of, 12

prime factors, 62
of prime numbers, 8–10
volume and, 67

extremes, 145

factor pairs, 12, 20
array models for, 15
divisibility relationships,

15–16
doubling, 13–14
generalizing about, 15
as mental object, 73
structuring, 14, 14f

factor rainbows, 16
factors

charts of, 5f, 6f, 7f, 8f, 18
exponents and, 8–10
grouping, associative property

and, 62, 68
investigations of, 16–19
multiplication and, 6
of odd and even numbers, 5,

16
patterns in, 4–6
of prime numbers, 4, 8, 

16
rainbow diagrams of, 73
real-world context for, 57
representation of, 69
sorting numbers by number

of, 8–11
of squares of prime numbers,

8
structuring and, 4–11

factor trees, 7, 16, 20
chart, 7f
limitations of, 73

farm fence problems
open number lines for,

177–78
proof of, 175–78

fence (frog jumping area)
problems, 142f, 143f, 
144f

checking possibilities, 140–47
combination charts for,

140–47
five-factor numbers chart, 18
flexibility, variation and, 157–58,

186
“flip,” 56n
flipping strategy, 57–58, 62,

185–86
FOIL (first, outer, inner, last),

68–69

Fosnot, C. T., 26, 29, 37, 38,
40n, 55, 62, 78, 96, 112n,
188

four-factor numbers, 8, 10
chart, 18
predicting, 19

Franke, M., 3, 77
Freudenthal, Hans, xv, 11, 23,

28, 35, 73, 104, 111, 127
frog bench problems. See bench

problems
frog jumping area fence

problems. See fence (frog
jumping area) problems

frog-jumping problems
cancellation strategy for, 107,

161
double number lines for,

69–71, 71f, 102–4
drawing representations of,

166–68
equivalence and, 102–4,

166–68
modeling, 101–5
posters for, 101f, 102f
proportionality and, 69–72
rules, 96, 100
terminology, 107–8
two-trial jumping contest,

100–105
variables and, 96–108

fullerenes, 26
functions

language of, 158n
preparing for, 158
variation and, 105

Gagne, R., 23
Galileo Galilei, 155, 169
gallery walks, 58, 181–83, 

187
Galton, Francis, 37, 53
games

capture ten, 79, 80f
coin guessing, 165–66
dice, 78–79
equivalence and, 78–79, 84
part/whole relationships,

78–79
piggy bank, 86
twenty questions, 83

Gauss, Karl Friedrich, 3, 20
generalizing

algebra as, 8
associative property, 60–62
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cancellation strategy, 106,
106f

commutative property, 60–62
dense structures and, 51
equivalence, 79
factor pairs, 15
instruction in, xiii–xiv
patterns and, 50
in proofs, 190
from specific cases, 189, 190,

191
universal, 173–74
value of, 83, 141

geometry, xv, 172
Goldenburg, E. P., 3
Grandma’s Necklaces (Fosnot), 

49
greatest common factor (GCF),

20, 71, 72, 72n, 73
group learning, 82–83
Guedj, D., 27
guess-and-check methods, 101,

104
for bench problems, 135, 

136
for finding mystery numbers,

158
for midpoint problems, 132

hexagons, 26
“hidden lines,” 108
hierarchical inclusion, 37
Hilbert, David, 55, 75
holding hands problems, 39–41,

40f, 42f
Hooke, 13
horizontal structuring

chocolate box problems, 64
defined, 28–29
even and odd numbers, 41–42
pairs and doubling with, 51
using, 35, 41–42, 51, 64

Humphreys, C., 31
hundred charts

doubles and, 43, 45
odd and even numbers and,

48

icosahedras, 26
“if . . . then” statements, 179, 

191
induction, 173
inference rules, 173
input/output function machines,

116

input values, of functions, 158n
integers, 29, 111–27. See also

negative numbers
as mental objects, 124
model for working with,

120–24
operations with, 111, 118–24,

127
Izard, V., 72

Jacob, B., 96
Jensen, M., 55–68, 182–83, 

189
Jumping Frog of Calaveras County,

The (Twain), 96

Kamii, C., 37
Kaput, J. J., 3
known values, variables vs., 

150
Knuth, E., 171, 175, 187
Kozol, J., 93, 94

Lager, C., 74–75
landscape of learning, xiv, xv,

29–34
big ideas, 29–32
elements of, 30f
models, 32–34
strategies, 29

language
mathematical, 18, 61, 158n,

172, 173
as tool for thought, 32

lateral surface area. See also
surface area

proof, 189–91
learning

autonomous, 82
cognitive development and,

23–24, 32–34
complexity of, 34, 35
constructivist view of, xv
discovery mode, 11
mental objects and, 111
teaching and, 24–25
transmission mode, 11
working through problems, 

10
least common multiple (LCM),

20, 71, 72, 73
Leibniz, G. W., 3, 20, 93
Lent, Patricia (Trish), 112–15,

112n, 152, 161–62,
178–79

Levi, L., 3, 77
linear combinations, 74–75
linear equations, 96–108
linked number lines. See also

number lines
for subway problems, 

121
LIOF (last, inner, outer, first), 

69
logical thinking, 30–31
logic of numbers, 95
logic of species, 95, 105
Lowry, Cynthia, 81

Madeline (Bemelmans), 38
“making ten” strategy, 79
manipulatives, 126
Masloppy Family Goes to New

York, The, 81, 83
math congresses

on doubling, 47–48
on multiplicative structuring,

13–16
on proofs, 176–77
on relationships, 148
reviewing strategies in, 

59–62
role of, 35
on substituting equivalent

expressions, 82–83
on subway problems, 

113
on unknown near doubles,

43–44
on variables, 103–4

mathematical ability, 25
mathematical language

cancellation, 107–8
development of, 172
for functions, 158n
misuse of, 18
models and, 173
student use of, 61

mathematical models. See
models

mathematical notation, 172, 
190

mathematical proof. See proof
mathematical statements. See also

proof
equivalence and, 77
“if . . . then” statements, 181,

193
number statements, 87–89
validity of, 171
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mathematicians
communication among, 171,

182
generalizing by, 141
looking at extremes, 145
sense-making by, xvi
students as, 11–12, 20, 91,

175
mathematics. See also algebra

as exploration, 23
history of, 94–96, 171–73
teacher appreciation of, xvi

Mathematics in Context series,
130, 151

Mathematics in the City (MitC),
xiii

factors, 4–11
integer model, 120–24

mathematizing
curriculum and, 23
defined, 11
inviting students, 97
mathematics as, xv
new math and, 28

math journals, 177–78
mental objects

algebraic expressions as, 95,
99, 109, 160, 162, 168

algebraic ideas and, 73–74
constructing, 112
contexts for, 126
as goal of teaching and

learning, 111
importance of, 34
integers as, 124
manipulatives and, 126
negative numbers as, 112, 127
net change, 117–18
net loss, 117–19
opportunities to construct, 75

mental operations
minilessons and, 155, 165
for negative numbers, 111,

127
teaching, xiv
value of, xiii, 111

Meyer, M., 130
midpoint problems

arithmetical strategies for, 132
averages and, 133
defined, 133–34
generalized, 134, 134f
guess-and-check methods for,

132
number lines for, 133–34

open number lines for, 134
prealgebraic strategies for,

131–32, 135
midpoints, deriving, 31
minilessons, 155–69

doubling, 43–44
doubling/halving, 62–64
mental math strategies, 155
number statements, 87–89
purpose of, 35, 155
strings for, 155
value of, 160, 169
on variation, 155–60

models
dynamic nature of, 34
frog-jumping problem, 101–5
landscape of learning for

algebra and, 32–34
mathematical language and,

173
multiplicative structuring and,

72–74
as thinking tools, xiv, 32–34
value of, 68–69, 75

modus ponendo ponens, 173, 181,
191

money problems, 81–85
multilink cubes, 64, 67
multiples, in postage stamp

problems, 74–75
multiplication

of algebraic expressions,
68–69

associative property of, 28, 57,
59–62, 64, 67–68, 183

commutative property of, 42,
47–48, 60–62

distributive property of, 23,
28, 63, 69, 74–75

factors and, 6
in new math, 28
as repeated addition, 27

Multiplication and Division
Minilessons (Dolk and
Fosnot), 62

multiplicative number sense, 73,
75

multiplicative relationships
in proofs, 176
understanding, 8

multiplicative structuring
additive structuring and, 6, 8,

12, 14, 20–21, 27–28, 53,
55

discovering, 12

doubling and, 51
early use of, 44–48, 62
encouraging, 67
even numbers, 50–51
linear combinations and,

74–75
math congress on, 13–16
models and, 72–75
postage stamp problems and,

74–75
posters for, 13
representation of, 69, 69f
teaching, 19–20
young children and, 42

mystery numbers, 158

National Research Council, 31
negative numbers, xvi, 29. See

also integers
addition and, 111
chip models for, xvi, 126
generating solutions, 113–15
as mental objects, 112, 127
operations on, 125–27
subtraction and, 111

net changes
defined, 112
equivalent differences and,

124
mental images of, 117–18
operations on, 125–27
posters about, 117–18
as quantities, 123–24
relationships among, 123–24
tracking possibilities for,

122–23, 122f
net gain, 112
net loss, 112, 117–19
new math, 3, 28
Newton, Isaac, 13
nouns, variables as, 150
number lines. See also double

number lines; linked number
lines; open number lines

combination charts and,
150–51

division on, 70–72
doubling and, 39–41
equivalence on, 90–91, 90f,

102–3
for holding hands problems,

39–41
linked, 121
for midpoint problems,

133–34
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midpoints on, 32, 32f
multiples on, 74–75
multiplicative structuring and,

69, 69f
for negative numbers, xvi
relationships and, 149f
separation bars in, 106
for subway problems, 113,

113f
value of, 72
variables and, 97f, 98f, 99f

numbers
additive thinking about, 26
geometric thinking about, 

26
multiplicative thinking about,

26
sorting by number of factors,

8–11
number sense, xiv, 77–78
number statements, 87–89
number system

early structuring of, 37–53
numerals, as social

knowledge, 39
numeracy, xiii–xiv

observations, sharing, 129–30
odd numbers

adding, 52
arraylike arrangements of,

48–49
doubling and, 7, 38, 48
factors of, 5, 16, 19
hundred chart and, 48
tools for understanding,

44–45
on and off variables, 122
one-to-one correspondence, 

37
doubling and, 38–41
recognizing, 51

open array models, xiv, 68
open-ended inquiry, 16–19
open number lines

addition on, 163–64
distances on, 155
equivalence on, 88
expressions on, 34f, 108–9
farm fence problems, 177–78
midpoint problems on, 

134
minilessons, 155
as models for thinking, xiv
proofs and, 175–77

relationships between
multiples on, 69–72

subway problems on, 115,
116f

unknowns on, 98–108
operations

on algebraic expressions, 
166–68

counting numbers and, 27
equivalence and, 166–68
on integers, 111, 118–24, 127
on negative numbers, 125–27
on net changes, 125–27
order of, 190

output values, of functions, 158n

pairing
as array, 51
doubling and, 38–48
egg carton problems, 44–45
hand-holding problems,

38–44
shoe problems, 45–48

pair talk, 83
paraphrasing, for bench

problems, 138, 139
partial products, 69
partitive division, 70
part/whole bingo, 78–79
part/whole relationships

addition and, 37–38
big ideas and, 29
dice game and, 78–79
disjoint sets, 38, 38n
even-odd structuring and, 52
structuring and, 8, 27, 39–41
subtraction and, 38

Pascal, Blaise, 111, 127
patterns

algebra as, 6
for beads, 49–51
for chocolates box problems,

68
in factors, 4–6
generalizing from, 50
for subway problems, 113,

115
Philo, 25
Piaget, J., 8, 29
piggy bank problems, 81–86

game boards, 84f
recording sheet, 86f

plane geometry, 172
pocket hundred charts, 43
Poincare, Henri, 129, 130

postage stamp problems,
multiples and, 74–75

posters
for bench problems, 136–38,

139f
for chocolate box problems,

182–87
for frog jumping problems,

101f, 102f
for multiplicative structuring,

13
net change, 117–18
as proof, 176–77, 182

postulates, 172
prealgebraic strategies

for bench problems, 135
contexts and, 130
defined, 132–33
for midpoint problems,

132–33, 135
prime factorization, 62, 67
prime numbers

cubes of, 8
doubling, 4, 18, 20–21
exponentiation charts, 9f
exponentiation of, 8–10
factors of, 4, 8, 16–17
multiplying different primes,

10
patterns in, 4–6
powers of, 12
squares of, 4, 8, 19
structuring and, 4–11
as two-factor numbers, 16–17

“progressive schematization,” 
29

proof, 171–92
arguments, 175, 178
by cases, 183, 184–85, 187
farm fence problems, 175–78
gallery walks, 181–82
generalizing from specific

cases, 188, 190
history of, 171–73
introducing, xvi
mathematical notation in, 

190
multiplicative relationships in,

176
open number lines and,

175–77
posters as, 176–77, 182
presentation pieces, 182
rectangular prisms (boxes),

182–87
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proof (continued)
retelling and, 175, 178–79
students and, 174–75, 191–92
types of, 191

properties, 27. See also specific
properties

proportionality
frog and toad problems and,

70
reasoning, 23, 28
relationships, 148

Pythagorean theorem, 33, 33f

quadratic equations, multiplying,
68–69

quantities, 130–55
combination charts for,

140–47
comparing, 131f
contexts and, 130–31
exploring, xvi
extremes, 145
midpoint problems, 131–34
relationships among, 130
variables as, 149–50

quotative division, 70

radius, 172
rainbow diagrams, 73
Recorde, Robert, 95
rectangular prisms (boxes). See

also chocolates box problems
chocolates box model, 56–62
context for, 64
minilessons, 63–64
proof, 182–87

reflection, 59
relationships. See also divisibility

relationships; part/whole
relationships

building, 12
checking possibilities, 140–47
combination charts and,

140–47
double number lines, 141f
multiplicative, 8, 176
reasoning with, 133
variables and, 105, 156–57,

160
removal

equivalence and, 89
net gain and, 125
subtraction as, 38, 126

repetitive problems, 147
retelling, proof and, 175, 178–79

reversal errors, 150
“reversing,” 60, 61
revision

of diagrams, 105
of double number lines, 103,

109
Rhind Papyrus, 171
risk-taking, 82
Russell, S. J., 3

Schifter, D., 3, 29, 188
sense-making, xvi
separation bars, 106, 107
sequential structuring, 6. See also

additive structuring
sets

disjoint, 38, 38n
doubling, 38–41

shoes problems, doubling and,
45–48, 46f, 47f, 51

Shteingold, N., 3
simultaneous equations, 23, 31
six-factor numbers chart, 18
skip-counting, 51–52
Sleepover, The (Fosnot), 78
“slow” learners, 24
social knowledge, 39
socially constructed terminology,

56n
spatial sense

brain development and,
77–78

comparing equivalence and,
84

sphere, 172–73, 174n, 176f
square numbers

factors of, 18
of prime numbers, 4, 8, 19

“square-root numbers,” 18
statements. See mathematical

statements
state standards, 93–94
Stewart, I., 94, 95
storage box, 106, 107, 159
strategies. See algebraic

strategies; arithmetic
strategies; prealgebraic
strategies

strings, for minilessons, 155
structuring. See also additive

structuring; multiplicative
structuring

algebra as, xv, 20
developmental approach to,

11–13, 49

discovery learning approach,
11

early, 37–53
engaging students in, 12
factors and, 4–11
horizontal, 28–29
in K–1 classroom, xv
part/whole relationships and,

8, 27
preformed structures vs., 

12
prime numbers and, 4–11
simplification and, 91
for subway problems, 121
teaching, 11–13, 19–20
vertical, 28–29

Stylianou, D., 171, 175, 
187

substituting equivalent
expressions, 81, 82–83

for bench problems, 138
for fence problems, 140–41

subtraction
from both sides of equations,

97
cancellation as, 88
by infants, 78
with negative numbers, 

111
quick method, 89–91
as removal, 38, 123, 125

subway problems, 112–26
generating solutions for,

113–15
in/out possibilities, 120–21,

121f
linked number lines for, 

121
math congress, 113
net change in, 117–18,

123–24
open number lines for, 115,

116f
organizing information for,

120–23
patterns in, 113, 115
random search for solutions,

113
setting up, 120–24
structuring for, 121
systematic search for

solutions, 113–16
T-charts for, 121, 121f

sucker and gumball problems,
129f, 151–52
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surface area
for chocolates box problems,

64–68
multilink cubes and, 64–65,

67–68
proof, 189–91

swapping, 179
switching strategy, 59–60, 61

proof and, 183
symbolism, algebraic, 95,

99–100, 149–50, 168
systems of equations

combination charts and,
150–51

comparing, 147–48
introducing, 151

T-charts, for subway problems,
121, 121f, 123

teachers
activities of, 25–26
appreciation of mathematics

by, xiv, xvi
curiosity and, 24–25
dependence on hints from, 10
factors and, 4–11
learning and, 24–25
learning complexity and, 34
structuring and, 19–20
student empowerment and, 35

terminology. See mathematical
language

three-dimensional array models,
68

three-factor numbers, 8, 12
chart, 18
doubling, 12
generalizing about, 16–18

three-step equations, 104
three even numbers, 52
toad-jumping problems, 69–72.

See also frog-jumping
problems

Trades, Jumps, and Stops (Fosnot
and Lent), xvi, 81

Treffers, A., 29
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