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1. PREFACE v

1. Preface

Real Analysis is based on the real numbers, and it is naturally
involved in practical mathematics. On the other hand, it has taken on
subject matter from set theory, harmonic analysis, integration theory,
probability theory, theory of partial differential equations, etc., and
has provided these areas with important ideas and basic concepts. This
relationship continues even today. This book, contains the basic matter
of “real analysis” and an introduction to “wavelet analysis,” a popular
topic in “applied real analysis.”

Nowadays, students studying real analysis come from different back-
grounds and have diverse objectives. A course in this subject may serve
both undergraduates and graduates, students not only in mathematics
but also in statistics, engineering, etc., and students who are seek-
ing master’s degrees and those who plan to pursue doctoral degrees in
the sciences. Written with the student in mind, this book is suitable
for students with a minimal background. In particular, this book is
written as a textbook for the course usually called Real Analysis as
presently offered to first or second year graduate students in American
universities with a master’s degree program in mathematics.

The subject matter of the book focuses on measure theory, the
Lebesgue integral, topics in probability, Lp spaces, Fourier analysis,
and wavelet theory as well as on applications. It contains many fea-
tures that are unique for a real analysis text. This one-year course
provides students the material in Fourier analysis, wavelet theory and
applications and makes a very natural connection between classical
pure analysis and the applied topic — wavelet theory and applications.
The text can also be used for a one-semester course only on Real Analy-
sis (I) by covering Chapters 1-3 and selected material in Chapters 4
and 5 or a one-semester course on Applied Analysis or Introduction to
Wavelets using material in Chapters 5–9. Here are a few other features:
• The text is relatively elementary at the start, but the level of

difficulty increases steadily.
• The book includes many examples and exercises. Some exercises

form a supplementary part of the text.
• Different from the classical real analysis books, this text covers

a number of applied topics related to measure theory and pure analy-
sis. Some topics in basic probability theory, the Fourier transform,
and wavelets provide interesting subjects in applied analysis. Many
projects can be developed which could lead to qualitative undergradu-
ate/graduate research theses.
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• The text is intended mainly for graduates pursuing a master’s
degree, so only a basic background in linear algebra and analysis is
assumed. Wavelet theory is also introduced at an elementary level,
but it leads to some updated research topics. We provide relatively
complete references on relevant topics in the bibliography at the end
of the text.

This text is based on our classnotes and a primary version of this
text has been tested in the classrooms of our universities on several oc-
casions in the courses of Real Analysis, Topics in Applied Mathematics,
and Special Topics on Wavelets.

Though the text is basically selfcontained, it will be very helpful
for the reader to have some knowledge of elementary analysis — for
example, the material in Walter Rudin’s Principal of Mathematical
Analysis [25].

The Outline of the book is as follows.
Chapter 1 is intended as reference material. Many readers and

instructors will be able to quickly review much of the material. This
chapter is intended to make the text as self-contained as possible and
also to provide a logically ordered context for the subject matter and
to motivate later development.

Chapter 2 presents the elements of measure theory by first dis-
cussing measure on rings of sets and then the Lebesgue theory on the
line.

Chapter 3 discusses Lebesgue integration and its fundamental prop-
erties. This material is prerequisite to subsequent chapters.

Chapter 4 explores the relationship of differentiation and integra-
tion and presents some of the main theorems in probability which are
closely related to measure theory and Lebesgue integration.

Chapters 5 and 6 provide the fundamentals of Hilbert spaces and
Fourier analysis. These two chapters become a natural extention of the
Lebesgue theory and also a preparation for the later wavelet analysis.

Chapters 7 and 8 include basic wavelet theory by starting with the
Haar basis and multiresolution analysis and then discussing orthog-
onal wavelets and the construction of compactly supported wavelets.
Smoothness, convergence, and approximation properties of wavelets are
also discussed.

Chapter 9 provides applications of wavelets. We examine digital sig-
nals and filters, multi-channel coding using wavelets, and filter banks.

A website is available which contains a list of known errors and
updates for this text:

http://www.etsu.edu/math/real-analysis/updates.htm.
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CHAPTER 1

Fundamentals

The concepts of real analysis rest on the system of real numbers and
on such notions as sets, relations, and functions. In this chapter we
introduce some elementary facts from set theory, topology of the real
numbers, and the theory of real functions that are used frequently
in the main theme of this text. The style here is deliberately terse,
since this chapter is intended as a reference rather than a systematic
exposition. For a more detailed study of these topics, see such texts as
[16] and [25].

1. Elementary Set Theory

We start with the assumption that the reader has an intuitive feel
for the concept of a “set.” In fact, we have no other choice! Since
we can only define objects or concepts in terms of other objects and
concepts, we must draw the line somewhere and take some ideas as
fundamental, intuitive starting blocks (almost atomic in the classical
Greek sense). In fact, one of the founders of set theory, Georg Cantor
(1845–1918), in the late 1800’s wrote: “A set is a collection into a whole
of definite, distinct objects of our intuition or our thought” [13]. With
this said, we begin . . .

A set is a well-defined collection of objects. The objects in the
collection will be called elements of the set. For example, A = {x, y, z}
is a set with three elements x, y, and z. We use the notation x ∈ A
to denote that x belongs to A or equivalently, x is in A. The set A,
in turn, will be said to contain the element x. By convention, a set
contains each of its elements exactly once (as opposed to a multiset

which can contain multiple copies of an element).
Sets will usually be denoted by capital letters: A,B,C, . . . and

elements by lower-case letters: a, b, c, . . . . If a does not belong to A, we
write a /∈ A. We sometimes designate sets by displaying the elements
in braces. For example, A = {2, 4, 8, 16}. If A is the collection of
all x which satisfy a property P , we indicate this briefly by writing
A = {x | x satisfies P}. A set containing no elements, denoted by ∅, is

1
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called an empty set. For example, {x | x is real and x2 + 1 = 0} = ∅.
We say that two sets are equal if they have the same elements.

Usually, we use R to denote the set of real numbers, i.e. R = {x |
−∞ < x < ∞}. Using the interval notation, we have the real line
R = (−∞,∞), the closed interval [a, b] = {x | a ≤ x ≤ b}, open
interval (a, b) = {x | a < x < b), and half-open and half-closed
intervals [a, b) = {x | a ≤ x < b} and (a, b] = {x | a < x ≤ b}.

As usual, the set of natural numbers is denoted by N, the set of
integers by Z, the set of rational numbers by Q, and the set of complex
numbers by C:

N = {1, 2, 3, . . .},
Z = {. . . ,−2,−1, 0, 1, 2, . . .},
Q =

{m
n

∣∣∣ m,n ∈ Z, m �= 0
}
,

and
C = {z | z = x+ yi for x, y ∈ R and i2 = −1}.

Given two sets A and B, we say A is a subset of B, denoted by
A ⊂ B, if every element of A is also an element of B. That is, A ⊂ B
means that if a ∈ A then a ∈ B. We say A is a proper subset of B if
A ⊂ B and A �= B. Notice that A = B if and only if A ⊂ B and B ⊂ A.
The empty set ∅ is a subset of any set. The union of two sets A and B is
defined as the set of all elements that are in A or in B, and it is denoted
by A ∪ B. Thus, A ∪ B = {x | x ∈ A or x ∈ B}. The intersection

of two sets A and B is the set of all elements that are in both A and
B, denoted by A ∩ B. That is, A ∩ B = {x | x ∈ A and x ∈ B}.
If A ∩ B = ∅, then A and B are called disjoint. We can generalize
the ideas of unions and intersections of sets from a pair of sets to an
arbitrary collection of sets. For a family of infinitely many sets Aλ,
λ ∈ Λ (Λ is called the indexing set), union and intersection are
defined as: ⋃

λ∈Λ

Aλ = {x | x ∈ Aλ for some λ ∈ Λ} and

⋂
λ∈Λ

Aλ = {x | x ∈ Aλ for all λ ∈ Λ}.

We define the relative complement of B in A, also called the
difference set and denoted A\B, to be A\B = {x | x ∈ A and x /∈
B}. The symmetric difference of A and B, denoted by A∆B, is
defined as A∆B = (A\B)∪ (B \A). The following properties are easy
to prove.

Theorem 1.1.1. Let A, B, and C be subsets of X. Then
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(i) A ∪B = B ∪A, A ∩B = B ∩A;
(ii) (A ∪B) ∪ C = A ∪ (B ∪ C), (A ∩B) ∩ C = A ∩ (B ∩ C);
(iii) (A∪B)∩C = (A∩C)∪(B∩C), (A∩B)∪C = (A∪C)∩(B∪C);

When it is clearly understood that all sets in question are subsets
of a fixed set (called a universal set) X, we define the complement

Ac of a set A (in X) as Ac = X \ A. In this situation we have de

Morgan’s Laws:

(A ∪ B)c = Ac ∩ Bc and (A ∩B)c = Ac ∪ Bc.

In general, we have the following.

Theorem 1.1.2. For any collection of sets Aλ, λ ∈ Λ, we have:(⋃
λ∈Λ

Aλ

)c

=
⋂
λ∈Λ

Acλ and (1.1)

(⋂
λ∈Λ

Aλ

)c

=
⋃
λ∈Λ

Acλ. (1.2)

Proof. We only show (1.1). The proof of (1.2) is similar. Let
P = (∪λ∈ΛAλ)

c and Q = ∩λ∈ΛA
c
λ.

For x ∈ P , we have that x /∈ ∪λ∈ΛAλ. Thus, for every λ ∈ Λ,
x /∈ Aλ and so x ∈ Acλ. Therefore, x ∈ Q. This implies that P ⊂ Q.

On the other hand, for x ∈ Q, we have that for any λ ∈ Λ, x /∈ Aλ.
Thus, x /∈ ∪λ∈ΛAλ. Therefore, x ∈ (∪λ∈ΛAλ)

c = P . This means that
Q ⊂ P . Hence, P = Q. �

Let (An) = {An}n∈N be a sequence of subsets of X. (An) is said to
be increasing if

A1 ⊂ A2 ⊂ A3 ⊂ · · · .
(An) is called decreasing if

A1 ⊃ A2 ⊃ A3 ⊃ · · · .
For a given sequence (An) of subsets of X, we construct two new se-
quences (Bn) and (Cn) of sets as follows:

Bn =

∞⋃
k=n

Ak and Cn =

∞⋂
k=n

Ak.

Clearly, (Bn) is decreasing and (Cn) is increasing. The set of intersec-
tion of Bn, n ∈ N is called the limit superior of (An) and is denoted
by limn→∞An or lim supn→∞An. The set of union of Cn, n ∈ N is
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called the limit inferior of (An) and is denoted by limn→∞An or
lim infn→∞An. Therefore,

limn→∞An =
∞⋂
n=1

( ∞⋃
k=n

Ak

)
and limn→∞An =

∞⋃
n=1

( ∞⋂
k=n

Ak

)
.

It can be seen that the limit superior is the set of those members that
belong to An for infinitely many values of n, while the limit inferior is
the set of those members that belong to An for all but a finite number
of subscripts. For this description it can be seen that limn→∞An ⊂
limn→∞An. If limn→∞An = limn→∞An, then we say the limit of (An)
exists and is denoted by lim

n→∞
An.

Example 1.1.1. Let E and F be any two sets. Define a sequence
(Ak) of sets by

Ak =

{
E, if k is odd,
F, if k is even.

Then, Bn =
⋃∞
k=nAk = E ∪ F , so limk→∞Ak =

∞⋂
n=1

Bn = E ∪ F.
From the fact that Cn =

⋂∞
k=nAk = E ∩ F , n = 1, 2, 3, . . . , we obtain

limk→∞Ak =

∞⋃
n=1

( ∞⋂
k=n

Ak

)
= E ∩ F .

For a given set A, the power set of A, denoted by P(A) or 2A, is
the collection of all subsets of A. For example, if A = {1, 2, 3}, then
P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. There are 8
distinct elements in the power set of A = {1, 2, 3}. In general, for
any finite set A containing n distinct elements, we find that A has 2n

subsets and therefore, P(A) has 2n elements in it.

Exercises
1. Prove Theorem 1.1.1.
2. Show that S and T are disjoint if and only if S ∪ T = S∆T .
3. Prove that A∆(B∆C) = (A∆B)∆C and A ∩ (B∆C) = (A ∩
B)∆(A ∩ C).

4. For any sets A,B, and C, prove that
(a) A∆B ⊂ (A∆C) ∪ (B∆C), and show by an example that

the inclusion may be proper.
(b) (A \B) ∪B = (A ∪B) \B if and only if B = ∅.

5. For a given integer n ≥ 1, let An =
{m
n

∣∣∣m ∈ Z
}

. Show

limn→∞An = Q, the set of rational numbers and limn→∞An = Z,
the set of integers.
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6. Let (An) be a sequence of sets. Prove the following properties.
(a) x ∈ limn→∞An if and only if for any N ∈ N, there exists

n ≥ N such that x ∈ An.
(b)x ∈ limn→∞An if and only if there exists Nx ∈ N, such

that for all n ≥ Nx, we have x ∈ An.
(c) If (An) is increasing, then lim

n→∞
An exists and

lim
n→∞

An =
∞⋃
n=1

An.

(d)If (An) is decreasing, then lim
n→∞

An exists and

lim
n→∞

An =

∞⋂
n=1

An.

7. If A = limn→∞An andB = limn→∞An. Show thatBc = limn→∞A
c
n

and Ac = limn→∞Acn.
8. Let (An) be a sequence of sets defined as follows:

A2k+1 =

[
0, 2− 1

2k + 1

]
, k = 0, 1, 2, · · ·

A2k =

[
0, 1 +

1

2k

]
, k = 1, 2, · · · .

Show that limn→∞An = [0, 1] and limn→∞An = [0, 2).
9. Let (An) be a sequence of sets which are mutually disjoint, i.e.
Ak ∩ A� = ∅ for k �= �. Then lim

n→∞
An = lim

n→∞
An = ∅.

10. Let A be a nonempty finite set with n elements. Show that there
are 2n elements in its power set P(A).

2. Relations and Orderings

Let X and Y be two sets. The Cartesian product, or cross

product of X and Y , denoted by X × Y , is the set given by

X × Y = {(x, y) | x ∈ X, y ∈ Y }.
The elements ofX×Y are called ordered pairs. For (x1, y1), (x2, y2) ∈
X × Y , we have (x1, y1) = (x2, y2) if and only if x1 = x2 and y1 = y2.

Any subset R of X×Y is called a relation from X to Y . We also
write (x, y) ∈ R as xRy. For nonempty sets X and Y , a function, or
mapping f from X to Y , denoted by f : X �→ Y , is a relation from
X to Y in which every element of X appears exactly once as the first
component of an ordered pair in the relation. We often write y = f(x)
when (x, y) is an ordered pair in the function. In this case, y is called
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the image (or the value) of x under f and x the preimage of y. We
call X the domain of f and Y the codomain of f . The subset of Y
consisting of those elements that appear as second components in the
ordered pairs of f is called the range of f and is denoted by f(X) since
it is the set of images of elements of X under f . If f : X �→ Y and
A ⊂ X, the image of A under f is the set

f(A) = {y ∈ Y | y = f(x) for some x ∈ A}.
If B ⊂ Y , the inverse image of B is the set

f−1(B) = {x ∈ X | y = f(x) for some y ∈ B}.
A real-valued function on A is a function f : A �→ R and a
complex-valued function on A is a function f : A �→ C.

The proofs of the following properties are left to the reader as ex-
ercises.

Theorem 1.2.1. Let f : X �→ Y and A a collection of subsets
from X, B a collection of subsets of Y . Then

(i) f(∪A∈AA) = ∪A∈Af(A);
(ii) f−1(∪B∈BB) = ∪B∈Bf−1(B);
(iii) f−1(∩B∈BB) = ∩B∈Bf−1(B).

A function f : X �→ Y is called one-to-one, or injective, if
f(x1) = f(x2) implies that x1 = x2. Therefore, by the contrapositive
of the definition, f : X �→ Y is one-to-one if and only if x1 �= x2

implies that f(x1) �= f(x2). A function f : X �→ Y is called onto, or
surjective, if f(X) = Y . Thus, f : X �→ Y is onto if and only if for
any y ∈ Y , there is x ∈ X such that f(x) = y. f : X �→ Y is said to be
bijective or a one-to-one correspondence if f is both one-to-one
and onto.

Let f be a relation from a set X to a set Y and g a relation from
Y to a set Z. The composition of f and g is the relation consisting
of ordered pairs (x, z), where x ∈ X, z ∈ Z, and for which there exists
an element y ∈ Y such that (x, y) ∈ f and (y, z) ∈ g. We denote the
composition of f and g by g ◦ f . If f : X �→ Y and g : Y �→ Z are
functions, then g ◦ f : X �→ Z is called the composite function or
composition of f and g. If f : A �→ B is bijective, there is a unique
inverse function f−1 : B �→ A such that f−1 ◦ f(x) = x, for all x ∈ A,
and f ◦ f−1(y) = y for all y ∈ B.

Definition 1.2.1. For E ⊂ R, a function f : E �→ R is said to
be continuous at a point x0 ∈ E, if for every ε > 0, there exists a
δ > 0 such that

|f(x)− f(x0)| < ε
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for all x ∈ E with |x−x0| < δ. The function f is said to be continuous
on E if and only if f is continuous at every point in E. The set of
continuous functions on E is denoted by C(E). When E = [a, b] is an
interval, we simply denote C(E) by C[a, b].

Example 1.2.1. Consider the functions f : Z �→ N, g : Z �→ Z, h :
Z �→ Z, defined by f(n) = n2 + 1, g(n) = 3n, h(n) = 1 − n. Then
f is neither one-to-one nor onto, g is one-to-one but not onto, h is
bijective, h−1(n) = 1 − n, and f ◦ h(n) = n2 − 2n + 2. All of these
functions are continuous on their domains.

Example 1.2.2. A real-valued polynomial function of degree n
is a function p(x) of the form

p(x) = a0 + a1x+ · · ·+ anx
n

defined on R, where n is a fixed nonnegative integer and the coefficients
ak ∈ R, k = 0, 1, · · · , n with an �= 0. We usually denote by Pn the set
of polynomials of degree at most n. p(x) = x3 ∈ P3 is bijective from
R to R. However, q(x) = x2 + x − 2 is neither one-to-one nor onto.
Polynomial functions are continuous.

Definition 1.2.2. Let −∞ < a = x0 < x1 · · · < xn = b < ∞.
Then the set ∆ := {xk}nk=0 of knots xk, k = 0, 1, · · · , n is called a
partition of the interval [a, b]. A function s : [a, b] �→ R is called
a spline of degree d defined over the partition ∆ if f restricted to
each subinterval (xk, xk+1) is a polynomial in Pd. We denote by Srd(∆)
the set of splines of degree d with smoothness order r defined over ∆.
That is, s ∈ Srd(∆) if and only if s is a spline of degree d defined
over ∆ and its rth derivative is continuous. As usual, the derivative of
f : [a, b] �→ R at a point x ∈ [a, b], denoted by f ′(x) or d

dx
f(x) is defined

as f ′(x) = limh→0
f(x+h)−f(x)

h
(under the restriction that x, x+h ∈ [a, b])

and the rth derivative is defined by f (r)(x) = d
dx
f (r−1)(x) for any integer

r > 1. We denote by Cr[a, b] the set of functions with continuous rth
derivatives over [a, b].

Example 1.2.3. Let

s(x) =

⎧⎪⎪⎨⎪⎪⎩
0, x /∈ [0, 3],
x2

2
, 0 ≤ x ≤ 1,
−x2 + 3x− 3

2
, 1 ≤ x ≤ 2,

x2

2
− 3x+ 9

2
, 2 ≤ x ≤ 3.

Then s(x) is a C2 quadratic spline function.

Any subset of X × X is called a binary relation on X. Thus,
a binary relation on X is a relation from X to X. A relation R on
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X is called reflexive if for all x ∈ X, (x, x) ∈ R. R is said to be
symmetric if (x, y) ∈ R implies (y, x) ∈ R for all x, y ∈ X. R is
called transitive if for all x, y, z ∈ X, (x, y), (y, z) ∈ R, implies that
(x, z) ∈ R. R is called antisymmetric if for all x, y ∈ X, (x, y) ∈ R
and (y, x) ∈ R implies that x = y.

Definition 1.2.3. A relation R on X is called an equivalence

relation, if it is reflexive, symmetric, and transitive. A relation R
on X is called a partial ordering, denoted by ≤, if R is reflexive,
antisymmetric, and transitive. R is called a total ordering if R is a
partial ordering and for any x, y ∈ X, either x ≤ y or y ≤ x. A well

ordering relation on X is a total ordering on X such that for any
nonempty subset A of X, there exists an element a ∈ A such that a ≤ x
for all x ∈ A. Such an a is called the smallest element of A.

Example 1.2.4. (a) For a given s ∈ N define a relation on Z as
nRsm if n ≡ m (mod s). Then Rs is an equivalence relation on Z.

(b) Define the relation on N, denoted by nRm, or (n,m) ∈ R, if
n ≤ m. Then R is an equivalence relation. R is also a partial ordering,
and a total ordering. In addition, R is a well ordering on N. We write
R = (N,≤).

(c) (Z,≤) is a total ordering relation but it is not a well ordering.
(d) For any set X, its power set P(X) is partially ordered by inclu-

sion.

Corresponding to the notation of partial orderings ≤, we write x <
y to mean that x ≤ y and x �= y. Notice that a partial ordering on X
naturally induces a partial ordering on every nonempty subset of X.
If X is partially ordered by ≤, a maximal (minimal) element of X
is an element x ∈ X such that x ≤ y (y ≤ x) implies y = x. Maximal
and minimal elements may or may not exist, and they need not to be
unique unless the ordering is a total ordering. If E ⊂ X, an upper

(lower) bound for E is an element x ∈ X such that y ≤ x (x ≤ y) for
all y ∈ E. An upper bound for E need not be an element of E. Unless
E is totally ordered, a maximal element of E need not to be an upper
bound for E.

Earlier we defined the Cartesian product of two sets. Similarly,
we can define the Cartesian product of n sets in terms of ordered n-
tuples. For infinite families of sets, {Xλ}λ∈Λ, we define their Cartesian
product Πλ∈ΛXλ to be the set of all maps f : Λ �→ ∪λ∈ΛXλ such that
f(λ) ∈ Xλ for every λ ∈ Λ. For x ∈ Πλ∈ΛXλ, we write xλ = f(λ) and
call it the λth coordinate of x. For a proof of the following theorem,
see [14].
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Theorem 1.2.2. The following statements are equivalent:

(i) The Hausdorff Maximal Principle. Every partially ordered set
has a maximal totally ordered subset.

(ii) Zorn’s Lemma. If X is a partially ordered set and every totally
ordered subset of X has an upper bound, then X has a maximal
element.

(iii) The Well Ordering Principle. Every nonempty set X can be
totally ordered and every nonempty subset of X has a minimal
element.

(iv) The Axiom of Choice. If {Xλ}λ∈Λ is a nonempty collection of
nonempty sets, then the Cartesian product Πλ∈ΛXλ is nonempty.

The operations of addition and multiplication can be thought of as
functions from R× R to R. Addition assigns (x, y) ∈ R to an element
in R denoted x+ y and multiplication assigns an element of R denoted
xy. The familiar properties of these functions can be listed as follows:

Axioms of Addition: A1. (x + y) + z = x + (y + z), for any
x, y, x ∈ R.

A2. x+ y = y + x, for any x, y ∈ R.
A3. There is an element 0 ∈ R such that x + 0 = x for every

x ∈ R.
A4. For each x ∈ R, there is an element −x ∈ R such that

x+ (−x) = 0.
Axioms of Multiplication: M1. (xy)z = x(yz), for any x, y, z ∈

R.
M2. xy = yx, for any x, y ∈ R.
M3. There is an element 1 ∈ R such that x1 = x for any x ∈ R.
M4. For every nonzero x ∈ R, there is an element x−1 ∈ R such

that xx−1 = 1.

For the addition operation, the zero element 0 is unique in R. Also, for
every x ∈ R, the additive inverse element −x is unique. Therefore, we
have −(−x) = x. For the multiplication operation, the unit element 1
is unique and also for every x ∈ R, the inverse element x−1 is unique.

Concerning the interaction of addition and multiplication we have:

Distribution Law: For any x, y, z ∈ R, we have x(y + z) = xy +
xz.

We also hypothesize a subset P of R, called the set of “positive”
elements satisfying the following:

Axioms of Order: O1. If x ∈ R, then exactly one of the follow-
ing holds: x ∈ P , −x ∈ P , or x = 0.

O2. If x, y ∈ P , then x+ y ∈ P .
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O3. If x, y ∈ P , then xy ∈ P .
O4. If we define x < y by y − x ∈ P , then x ∈ P if and only if

x > 0. In terms of this, we have the Archimedean Axiom:
if x, y > 0, then there is a positive integer n such that
nx > y.

We complete our list of axioms describing R with the following:

Axiom of Completeness: If A is a nonempty subset of R which
is bounded above (i.e. there is y ∈ R such that for any x ∈ A,
either x < y or x = y — y is called an upper bound for A), then
A has a least upper bound (x ∈ R is said to be a least upper

bound for a nonempty set A ⊂ R, denoted by lub A, if x is an
upper bound, and any upper bound x′ of A satisfies x′ ≥ x. The
greatest lower bound for A, glb A, is defined similarly.).

It can be shown that any set with addition, multiplication, and a
subset of positive elements, which satisfies all the axioms above, is just
a copy of R (see, for example, [15]).

Starting from R, we can construct the set C of complex numbers.
As usual, we write the elements of C by z = x+ iy and x = Re(z) and
y = Im(z), which are called the real part and imaginary part of z,
respectively. The complex conjugate of z = x + iy, denoted by z̄ is
defined by z̄ = x − iy. It is easy to see that zz̄ = x2 + y2. We define
the modulus of z as

|z| = (zz̄)1/2 =
√
x2 + y2.

Exercises

1. Prove Theorem 1.2.1
2. Prove that the following are generally proper inclusions

(a) f(∩A∈AA) ⊂ ∩A∈Af(A);
(b) f [f−1(B)] ⊂ B;
(c) f−1[f(A)] ⊃ A.

3. Let Ψ∗ be the set of all finite strings of a’s, b’s, and c’s, and Σ∗

the set of all finite strings of a’s and b’s. Define f : Ψ∗ �→ Σ∗ by
f of a string s ∈ Ψ∗ is the string in Σ∗ obtained by omitting all
the c’s in s (so that f(abccbca) = abba, for example).

(a) Is f one-to-one? Prove this or give a counterexample.
(b) Is f onto? Prove this or give a counterexample.

4. (a) Give an example of a function f : N �→ N which is onto but
not one-to-one. Be sure to prove that your example has these
properties.
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(b) Give an example of a function g : N �→ N which is one-to-
one but not onto. Be sure to prove that your example has these
properties.

5. Let f : A �→ B, g : B �→ C. Prove that
(a) if g ◦ f : A �→ C is onto, then g : B �→ C is also onto;
(b) if g ◦ f : X �→ Z is one-to-one, f : X �→ Y is also

one-to-one.
6. Prove that if f : A �→ B, g : B �→ C, and h : C �→ D, then

(h ◦ g) ◦ f = h ◦ (g ◦ f).
7. If f : A �→ B is bijective, then prove that there is a unique

function f−1 : B �→ A such that f−1 ◦ f(x) = x, for all x ∈ A,
and f ◦ f−1(y) = y for all y ∈ B.

8. Let (fn(x)) be a sequence of real-valued functions defined on R.
Then for real-valued function f(x) over R, prove that we have

{x | lim
n→∞

fn(x) �= f(x)} =

∞⋃
k=1

∞⋂
N=1

∞⋃
n=N

{
x

∣∣∣∣|fn(x)− f(x)| ≥ 1

k

}
.

9. Prove that, for the addition operation satisfying the axioms of
addition, the zero element 0 is unique and also for any x ∈ R,
the additive inverse element −x is unique.

10. Prove that, for the multiplication operation satisfying the axioms
of multiplication, the unit element 1 is unique and also for any
x ∈ R, the inverse element x−1 is unique.

11. Under the axioms of addition and multiplication together with
the distribution law, prove that 0x = 0, (−1)x = −x, and
(−x)y = −xy.

12. Define addition and multiplication over a set of two elements so
that the axioms of addition and multiplication, and the distrib-
ution law are satisfied.

13. Show that Q does not satisfy the Completeness Axiom.
14. Show that Re(z+w) = Re(z)+Re(w) and Im(z+w) = Im(z)+

Im(w) for z, w ∈ C.
15. Show that |z + w| ≤ |z|+ |w| for any z, w ∈ C.
16. Define a relation R on N by nRm if n and m are relatively prime.

Is R reflexive? symmetric? transitive? Why or why not?
17. Define a relation ∼ on the set of positive reals by x ∼ y if either

x = y or xy = 1. (So that 3 ∼ 3 and 3 ∼ 1
3
.) Is ∼ an equivalence

relation? Why or why not?
18. Let R be an equivalence relation on a set A. For each x ∈ A,

the equivalence class of x, denoted by [x], is defined by [x] =
{y ∈ A | yRx}. Show that for x, y ∈ A, (a) x ∈ [x]; (b) xRy
if and only if [x] = [y], and (c) either [x] = [y] or [x] ∩ [y] = ∅.
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Therefore, any equivalence relation R on A induces a partition
of A.

19. Give an example of a partial ordering on a set X where neither
the maximal nor the minimal element of X is unique.

20. Show that if f is surjective from A �→ B, then f [f−1(B)] = B.
21. For any set X and its power set P(X), prove that there is no

surjection f : X �→ P(X). (Hint. Consider the set {x ∈ X | x /∈
f(x)}.)

22. For set A ⊂ X, we define the characteristic function of A
as

χA(x) =

{
1, x ∈ A
0, x ∈ Ac.

Prove
(a) χA∪B(x) = χA(x) + χB(x)− χA∩B(x);
(b) χA∩B(x) = χa(x) · χB(x);
(c) χA\B(x) = χA(x)[1− χB(x)];
(d) χA∆B(x) = |χA(x)− χB(x)|.

23. Prove that if f : X �→ Y is surjective, then the following are
equivalent:

(a) f is injective;
(b) For any sets A,B ⊂ X, f(A ∩ B) = f(A) ∩ f(B);
(c) For any sets A,B ⊂ X with A∩B = ∅, f(A)∩ f(B) = ∅.

24. A proof by mathematical induction that a proposition P (n)
is true for every positive integer n consists of two steps:

(i) Basic Step. P(1) is shown to be true.
(ii) Inductive Step. The implication P (k)→ P (k+1) is shown

to be true for every positive integer k.
Show that the Well-Ordering Principle of N is equivalent to the
Principle of Mathematical Induction.

3. Cardinality and Countability

The cardinality of a finite set is merely the number of elements
that the set possesses. That is, for a set E with finitely many elements
the cardinal number of E, denoted by |E| or card(E), is the number
of elements in E. It is easy to see that for finite sets A and B, if f :
A �→ B is one-to-one, onto, or bijective, then we have |A| ≤ |B|, |A| ≥
|B|, |A| = |B|, respectively. In general, if X and Y are nonempty sets,
we define the formulas

|X| ≤ |Y |, |X| = |Y |, |X| ≥ |Y |
to mean that there exists f : X �→ Y which is injective, bijective, or
surjective, respectively. We sayX and Y have the same cardinality,
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denoted by X ∼ Y , if |X| = |Y | (i.e. if there is a bijection from X to
Y ). If |X| ≤ |Y |, then there is a subset Y1 of Y such that X ∼ Y1.

The reader can easily prove the following.

Theorem 1.3.1. For sets A, B, and C, we have

(i) A ∼ A.
(ii) If A ∼ B, then B ∼ A.
(iii) If A ∼ B and B ∼ C, then A ∼ C.

Therefore, ∼ is an equivalence relation on any collection of sets.

Example 1.3.1. Let O = {2k− 1 | k ∈ N} and E = {2k | k ∈ N}.
Then O ∼ E ∼ N since f1(k) = 2k + 1 : N �→ O and f2(k) = 2k : N �→
E are bijective.

Example 1.3.2. Let A = {x1, · · · , xm} and B = {a1, · · · , an}. To
define a function f : A �→ B, there are n choices from B for the value
of f(xi), i = 1, · · · , m. Therefore, there are nm = |B||A| functions
from A to B. For a given set A with |A| = n, we consider a set F
of functions from A to {0, 1}, i.e. the set of binary functions on A.
Clearly, |F | = |P(A)|. Thus, |F | = 2n. Therefore, we denote by 2A

the set of all binary functions on A. For given two sets A and B, BA

denotes the set of all functions A �→ B.

Let {Aλ | λ ∈ Λ} and {Bλ | λ ∈ Λ} be two families of mutually
disjoint sets. That is, for λ, µ ∈ Λ and λ �= µ, Aλ ∩ Aµ = ∅ and

Bλ ∩ Bµ = ∅. If for every λ ∈ Λ, Aλ ∼ Bλ, then
⋃
λ∈Λ

Aλ ∼
⋃
λ∈Λ

Bλ.

The following theorem is useful to determine if two sets have the
same cardinality.

Theorem 1.3.2. [Bernstein’s Theorem] If card(X) ≤ card(Y ) and
card(Y ) ≤ card(X), then card(X) = card(Y ).

Proof. Let f1 be a bijection from X to a subset Y1 of Y and f2 a
bijection from Y to a subset X1 of X. Let X2 = f2(Y1). Then f2 is a
bijection from Y1 to X2. That is,

X
f1∼ Y1

f2∼ X2, (X2 ⊂ X1).

Therefore, f = f2 ◦ f1 is a bijection from X to X2. Let X3 = f(X1).

Then X1
f∼ X3, X3 ⊂ X2 since X1 ⊂ X and X3 = f(X1) ⊂ X2.

Continuing this process, we obtain a sequence of decreasing sets:

X ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xn ⊃ · · ·
and under the same bijection f ,

X ∼ X2 ∼ X4 ∼ · · ·
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X1 ∼ X3 ∼ X5 ∼ · · · .
Let X0 = X and D = ∩∞n=1Xn. Then X can be written as

X = ∪∞n=0(Xn \Xn+1) ∪D.
Similarly, we have a decomposition of X1:

X1 = ∪∞n=1(Xn \Xn+1) ∪D.
Since f is a bijection, we have

(X \X1)
f∼ (X2 \X3), · · · , (Xn \Xn+1)

f∼ (Xn+2 \Xn+3), · · · .
Rewrite the decompositions of X and X1 as the following:

X = D ∪ (X \X1) ∪ (X1 \X2) ∪ (X2 \X3) ∪ (X3 \X4) ∪ · · · ,
X1 = D ∪ (X2 \X1) ∪ (X1 \X2) ∪ (X4 \X5) ∪ (X3 \X4) ∪ · · · .

Notice that X2n \ X2n+1
f∼ X2n+2 \ X2n+3 for n = 0, 1, · · · and D,

X2n+1 \X2n+2 for n = 1, 2, · · · are identical to themselves in X and X1,
we obtain that X ∼ X1. Therefore, X ∼ Y since X1 ∼ Y . �

We have shown that |P(A)| = 2n if |A| = n. In general we have the
following.

Theorem 1.3.3. For any set X, card(X) < card(P(X)).

Proof. It is clear that card(X) ≤ card(P(X)), since X can be
injectively mapped to the set of one-element sets of X, which is a
subset of P(X). We need to show there is no onto map between X and
P(X). Consider any map f : X �→ P(X). Let E = {x | x /∈ f(x)}.
Then E ∈ P(X). E has no pre-image from f . In fact, if there exists
x0 ∈ X such that f(x0) = E, then there are two cases:

Case 1: x0 ∈ E. Then x0 /∈ f(x) = E, which is a contradiction.
Case 2: x0 /∈ E, then x0 ∈ f(x) = E, which is again a contradiction.

Therefore, Card(X) < Card(P(X)). �

Definition 1.3.1. A set E is called countable if card(E) ≤ card(N).
A set E is said to be countable but not finite, also called an
infinite countable set, if card(E) = card(N). We denote Card(N) =
ℵ0 (aleph zero).

Clearly, every subset of a countable set is still countable. In addi-
tion, we have the following. (Notice the use of the Axiom of Choice
and the Principle of Mathematical Induction in the proof.)

Theorem 1.3.4. For any infinite set E, there is an infinite count-
able subset.
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Proof: Choose x1 ∈ E. Then E − {x1} is not empty. Next
choose x2 ∈ E − {x1}. If we have taken {x1, x2, . . . , xn} from E, then
E − {x1, x2, . . . , xn} is not empty. Then we can choose xn+1 ∈ E −
{x1, x2, . . . , xn}. By induction we have a sequence A = {x1, x2, . . . , xb, . . . }.
Then A is an infinite countable subset of E. �

From the above theorem, we see that the smallest cardinality among
infinite sets is ℵ0. From Theorem 1.3.3, we have ℵ0 < 2ℵ0 for X = N.
This means that an uncountable set does exist.

Example 1.3.3. The interval [0, 1] = {x ∈ R | 0 ≤ x ≤ 1} is
uncountable!

Proof. It suffices to show that (0, 1] is uncountable. Suppose that
(0, 1] is countable, then we can list the points in (0, 1] as a sequence
{x1, x2, · · · , xn, · · · }. Notice that each real number in (0, 1] can be
uniquely written as a decimal number with infinitely many non-zero
digits. For the numbers with a finite representation, we can write
them with infinitely many nines. For example, 0.1 = 0.0999999 · · ·
and 1 = 0.999999 · · · . Express each xn ∈ (0, 1] in this form:

x1 = 0.x11x12x13x14 · · ·
x2 = 0.x21x22x23x24 · · ·
x3 = 0.x31x32x33x34 · · ·
x4 = 0.x41x42x43x44 · · ·

...

Define x0 = 0.a1a2a3 · · · by 0 �= ak �= xkk for k = 1, 2, · · · . Then x0 is
not in the sequence, for by the definition, the kth digits of x0 and xk
are different for any k ∈ N. �
The method used above is called the Cantor diagonalization argument.

We can prove that [0, 1] and the set R of real numbers have the same
cardinality (exercise). The cardinality of R is denoted by c and is called
the cardinality of the continuum. Since no bijection between N
and R exists and N ⊂ R, we can write ℵ0 < c.

For a long time mathematicians did not know if there was a set with
cardinality strictly between ℵ0 and c. The Continuum Hypothesis

states that there is no such set. In 1939 Kurt Gödel showed that the
Continuum Hypothesis does not contradict the axioms of set theory and
in 1964 by Paul Cohen showed that it also does not follow from them.
Therefore, the existence (or, as the Continuum Hypothesis states, the
nonexistence) of the set A such that ℵ0 < |A| < c can be taken as a
new and independent axiom of set theory.

We now present some facts concerning cardinality:



16 1. FUNDAMENTALS

1. A union of a finite set and a countable set is still countable.
Proof. We leave the proof to the reader as an exercise. �

2. If Xk, k ∈ N are countable sets, then

∞⋃
k=1

Xk is also countable.

Proof. Without loss of generality, we assume that Xk, k ∈
N are mutually disjoint. Since Xk, k = 1, 2, · · · , are count-
able, we can list them as X1 = {x11, x12, . . . , x1n, . . .}, X2 =
{x21, x22, · · · , x2n, · · · }, and so on. Then ∪∞k=1Xk can be listed as
{x11, {x12, x21}(xij , i+ j = 3), {x13, x22, x31}(xij , i+ j = 4), · · · }.
Therefore, it is countable. �

3. If X1 and X2 are countable, then X1 ×X2 is countable.
Proof. Let Xk × X2 = {(xk, x) | x ∈ X2} for any xk ∈ X1.

Notice that X1 ×X2 =

∞⋃
k=1

Xk ×X2 = {(x, y) | x ∈ X1, y ∈ X2},
and the conclusion follows from Fact 2 above. �

4. If Xk, k = 1, · · · , n are countable, then X1 × X2 × · · · × Xn =
Πn
k=1Xk is countable.

Theorem 1.3.5. Let A be a countable set. Then the set of all
finite-length strings from A is also countable.

Proof. Let A = {a1, a2, . . . , an, · · · }. There are a countable number
of 1-strings, “a1”, “a2”,· · · , “an”,· · · . There are also a countable num-
ber of 2-sequences, “a1, a1”, “a1, a2”, “a1, a3”,· · · , “a2, a1”, “a2, a2”,
“a2, a3”,· · · , and so on. Consider an n-string: “a1, a2, · · · , an” for each
ak ∈ A. The set of n-sequences is the same as

An = Πn
i=1A.

This is countable by Fact 4 above. The set of all finite strings is the
union of the sets of n-string, n = 1, 2, · · · . Therefore, it is countable
by Fact 2 above. �

Example 1.3.4. The set Q of rational numbers is countable.

Example 1.3.5. The set of disjoint intervals on R is countable.
Proof. Let E be the set of disjoint intervals. Define a map f from

E to Q for any interval I ∈ E, ti map I to a rational number contained
in I. Then f is one-to-one since intervals in E are disjoint. Thus, E
is countable. �

Recall that card(N) = ℵ0 and card(N) < card(P(N)), we write
card(P(N)) = 2ℵ0 . We can prove that c = 2ℵ0.

Theorem 1.3.6. Card([0, 1]) = 2ℵ0.
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Proof. Let {0, 1}N be the set of maps from N to {0, 1}; i.e. {0, 1}N =
{(a1, a2, · · · , an, · · · ) | an = 0 or 1 for all n ∈ N}. We claim that

card({0, 1}N) = 2ℵ0 . In fact the map f : P(N) �→ {0, 1}N defined on
E ⊂ N as f(E) = (a1, a2, · · · , an, · · · ), where

an =

{
0, if n /∈ E;
1, if n ∈ E,

is a one-to-one correspondence. So, it is sufficient to show that card([0, 1]) =

card({0, 1}N). Let

A = {(a1, a2, · · · , an, · · · ) | an = 0 or 1 for all n ∈ N,

and only finitely many a′ns are 1}
and

B = {(a1, a2, · · · , an, · · · ) | an = 0 or 1 for all n ∈ N,

and infinitely many an
′s are 1}.

Then {0, 1}N = A ∪ B and A ∩ B = ∅. Note that card(A) = ℵ0 and

card({0, 1}N) = 2ℵ0 . Then we have card(B) = 2ℵ0.
Consider a map g from B to (0, 1] defined as g : ψ ∈ B �→

Σ∞
n=1

ψ(n)

2n
, where ψ = {ψ(n)}∞n=1 ∈ B. Then g is a one-to-one corre-

spondence. Therefore, card((0, 1]) = card(B), so card((0, 1]) = card([0, 1]) =

card(A ∪ B) = card({0, 1}N) = 2ℵ0 . �
Exercises

1. For any sets X and Y , prove that either card(X) ≤ card(Y ) or
card(X) ≥ card(Y ). [Hint: consider the set J of all injections
from subsets of X into Y . The members of J can be regarded
as subsets of X × Y , and so J is partially ordered by inclusion.
Then Zorn’s Lemma can be applied.]

2. For sets A and B, if |A| = m and |B| = n, then
(a) how many relations are there from A to B?
(b) how many functions are there from A to B?
(c) how many one-to-one functions are there from A to B?
(d)∗ how many onto functions are there from A to B?

3. Let {Aλ | λ ∈ Λ} and {Bλ | λ ∈ Λ} be two families of mutually
disjoint sets. If for every λ ∈ Λ, Aλ ∼ Bλ, then prove ∪λ∈ΛAλ ∼
∪λ∈ΛBλ.

4. Prove that a union of two countable sets is countable.
5. Prove that the set Q of rational numbers is countable.
6. Show that the set of intervals with rational numbers as endpoints

is countable.
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7. Show that the function f(x) = 1
x

is a one-to-one function from
the finite segment (0, 1] onto the infinite segment [1,∞).

8. Prove that [0, 1] ∼ (0, 1) ∼ R.
9. Prove that a nonempty set is countable if and only if it is the

range of an infinite sequence.
10. Prove that the intervals (a, b) and [a, b] have the same cardinality

for b > a.
11. Prove that A is an infinite set if and only if there is a proper

subset A1 ⊂ A such that A1 ∼ A.
12. Show that [0, 1]× [0, 1] and [0, 1] have the same cardinality.
13. If f is a monotone function on R, then prove the set of disconti-

nuity points of f is countable.
14. Let R[a, b] be the set of all real valued functions on R. Prove

card(R[a, b]) > c.
15. Let C[a, b] denote the space of continuous functions over interval

[a, b] with a < b. Prove card(C[a, b]) = 2ℵ0 .
16. Let E be the set of real numbers so that any two elements in E,

say x and y, satisfy dist(x, y) = |x−y| >1. Prove E is countable.

4. The Topology of Rn

Without any doubt, the most important set for real analysis is the
set R of real numbers, also called the real line R = (−∞,∞). In many
situations, functions of interest depend on several variables. This puts
us into the realm of multivariate calculus, which is naturally set in Rn.

Let Rn be the set of n-vectors x = (x1, x2, · · · , xn) with xi ∈ R
for i = 1, 2, · · · , n. xi is called the ith coordinate of the vector x. We
define the following operations on Rn:

(i) Addition. For x = (x1, x2, · · · , xn),y = (y1, y2, · · · , yn) ∈ Rn, we
define

x + y = (x1 + y1, · · · , xn + yn).

(ii) Scalar Multiplication. For λ ∈ R and x = (x1, x2, · · · , xn) ∈ Rn,
we define λx = λ(x1, x2, · · · , xn) = (λx1, λx2, · · · , λxn).

Then Rn becomes a vector space, called the Euclidean space. If
xi, i = 1, · · · , n are rationals, then x = (x1, x2, · · · , xn) is called a
rational point in Rn.

Definition 1.4.1. For x = (x1, x2, · · · , xn) ∈ Rn, we define the

length of x as |x| = (x1
2 + x2

2 + · · ·+ xn
2)

1
2 .

Theorem 1.4.1. The length |x| satisfies:

(1) |x| ≥ 0 and |x| = 0 if and only if x = 0 = (0, · · · , 0).
(2) For all λ ∈ R, |λx| = |λ| |x|.
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(3) For all x,y ∈ Rn, we have |x + y| ≤ |x|+ |y|. This is called the
triangle inequality.

Proof. (1) and (2) are obvious. Showing (3) is equivalent to showing

|x + y|2 ≤ (|x|+ |y|)2 = |x|2 + 2|x||y|+ |y|2,
i.e.

n∑
i=1

(xi + yi)
2 ≤

n∑
i=1

xi
2 + 2

(
n∑
i=1

xi

) 1
2
(

n∑
i=1

yi

) 1
2

+

n∑
i=1

yi
2.

Thus, we need only to show

n∑
i=1

xiyi ≤
(

n∑
i=1

(xi)
2

) 1
2
(

n∑
i=1

(yi)
2

) 1
2

.

Or equivalently, (
n∑
i=1

xiyi

)2

≤
n∑
i=1

xi
2

n∑
i=1

yi
2.

This is the Schwartz Inequality! To prove it, we consider a quadratic
function of λ as follows.

f(λ) = |x + λy|2 =

n∑
i=1

(xi + λyi)
2 =

n∑
i=1

xi
2 + 2λ

n∑
i=1

xiyi + λ2
n∑
i=1

yi
2.

Since f(λ) ≥ 0 for all λ, we have its discriminant

∆ = 4

(
n∑
i=1

xiyi

)2

− 4

(
n∑
i=1

xi
2

)(
n∑
i=1

yi
2

)
≤ 0.

This gives the Cauchy-Schwartz Inequality. �
The inner product of two vectors x,y ∈ Rn is defined by

〈x,y〉 =
n∑
i=1

xiyi.

Clearly, 〈x,x〉 = |x|2. From the proof of the above property (3), we
see that for any x,y ∈ Rn,

〈x,y〉 ≤ |x| |y|
and equality holds if and only if x and y are collinear.

Definition 1.4.2. For any x,y ∈ Rn, we define the distance,
d(x,y) between x and y by |x− y|. Then d(x,y) = |x− y| satisfies

(i) d(x,y) ≥ 0 and d(x,y) = 0 if and only if x = y.
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(ii) d(x,y) = d(y,x).
(iii) d(x,y) ≤ d(x, z) + d(z,y).

Definition 1.4.3. Let E ⊂ Rn. We define diam(E) = sup{|x −
y| | x,y ∈ E} and call it the diameter of E. If diam(E) < ∞, then
E is said to be a bounded set.

Example 1.4.1. Consider the set of positive integers N. For any
two elements say x = n, y = m, we have dist(x, y) = |n−m| <∞, but
diam(N) = ∞. Clearly, if E is bounded then there exist M > 0, such
that |x| ≤M for any x ∈ E.

Definition 1.4.4. (1) Let
mathbfx0 ∈ Rn, and δ > 0, we define the δ-neighborhood of
x0 as the open ball B(x0, δ) = {x ∈ Rn, |x− x0| < δ}.

(2) Let ai, bi ∈ R and ai < bi for i = 1, 2, · · · , n. We define the open

rectangle as I = {x ∈ Rn; x = (x1, x2, · · · , xn), ai < xi <
bi, i = 1, 2, · · · , n}. That is, I = (a1, b1)× (a2, b2)×· · ·× (an, bn).

The notion of distance for points in Rn immediately allows us to
discuss convergence of sequences in Rn.

Definition 1.4.5. For xk ∈ Rn, k = 1, 2, · · · , if x ∈ Rn satisfies
that for any ε-ball of x, B(x, ε), there exists N ∈ N and for any k > N ,
we have xk ∈ B(x, ε), i.e. limk→∞ |xk−x| = 0, then we say the sequence
(xk) converges to x. x is called the limit of the sequence (xk),
denoted by limk→∞ xk = x.

The proof of the following result is left to the reader as an exercise.

Theorem 1.4.2. Suppose xk ∈ Rn and xk = (x1,k, x2,k, · · · , xn,k)
then limk→∞ xk = x if and only if limk→∞ xi,k = xi for i = 1, 2, · · · , n
where x = (x1, x2, · · · , xn).

Definition 1.4.6. A sequence (xk) in Rn is said to be a Cauchy

sequence if for ε > 0, there exists N ∈ N such that d(xk,x�) < ε for
all �, k > N .

Using Theorem 1.4.2 and the Cauchy criterion of the real line (see
the exercises), we obtain the following.

Theorem 1.4.3. A sequence (xk) in Rn converges if and only if it
is a Cauchy sequence.

Definition 1.4.7. For a sequence (xk) in Rn and a subsequence
(ki) of possible integers so that k1 < k2 < · · · , the sequence (xki) is
called a subsequence of (xk).
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Theorem 1.4.4. The sequence (xk) converges if and only if any
subsequence of (xk) converges.

Proof. “=⇒” Suppose (xk) converges to x. Then for all ε > 0, there
exists N ∈ N such that dist(xk,x) < ε for k > N . For any subsequence
of (xk), say (xki), dist(xki ,x) < ε for ki > N . So (xki) converges to x.

“⇐=” (Proof of contrapositive). Suppose (xk) diverges, then we
need to show that there exists a subsequence (xki) which diverges.
From the definition of (xk) divergent, we have that there exists ε0 >
0 such that for any N ∈ N, there exists k2 > k1 > N such that
dist(xk2 − xk1) ≥ ε0. For N1 = 1, we have k2 > k1 > 1 such that
dist(xk2 − xk1) ≥ ε0. For N2 = max{k1, k2}, we have k4 > k3 > N2

such that dist(xk4 −xk3) ≥ ε0, and so on. In such a way, we obtained a
subsequence (xki) satisfying dist(xki+1

− xki) ≥ ε. Clearly, (xki) is not
a Cauchy sequence and thus diverges. �

Similar to the Bolzano-Weierstrass Theorem on R, we have the
following.

Theorem 1.4.5. Every bounded sequence (xk) in Rn has a con-
vergent subsequence.

For a sequence (xn) of real numbers, (xn) is said to be nondecreasing
if x1 ≤ x2 ≤ · · · . (xn) is said to be nonincreasing if x1 ≥ x2 ≥ · · · . In
either case, (xn) is called a monotone sequence.

Corollary 1.4.1. Any bounded monotone sequence has a limit
point.

Definition 1.4.8. Let E ⊂ Rn and x ∈ Rn. If there is a se-
quence (xk) of distinct points in E such that limk→∞ |xk−x| = 0, (i.e.
limk→∞ xk = x) then x is said to be an accumulation point of E.
The set of all accumulation points of E is denoted E ′. The set E ∪E ′

is called the closure of E and denoted by E.

Example 1.4.2. (a) Let E = (a, b) then E ′ = [a, b]. So E = [a, b].
(b) Let E = {1, 1

2
, · · · , 1

n
, · · · }. Then E ′ = {0}.

Theorem 1.4.6. Some basic facts of E ′ include:

(1) If E is a finite set, then E ′ is empty.
(2) If E ⊂ Rn, then x ∈ E ′ if and only if for δ > 0, (B(x, δ)\{x})∩

E �= ∅.
(3) If E ⊂ Rn then x /∈ E ′ if and only if there exists δ > 0 such

that (B(x, δ) \ {x}) ∩ E) = ∅. Such points are called isolated

points of E .
(4) (E ∪ F )′ = E ′ ∪ F ′.
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Example 1.4.3. If E = {√n − √m | m,n ∈ N}, then E ′ = R.

In fact, let xn =
√�(x+ n)2� − √n2 where �·� denotes the greatest

integer ≤ x. Then
√

(x+ n)2 − 1 − √n2 ≤ xn ≤ x + n − n = x. So
limn→∞ xn = x.

Definition 1.4.9. L is a cluster point of a sequence (xk) if for
any given ε > 0 and N ∈ N, there exists k > N such that |xk −L| < ε.

Example 1.4.4. The cluster points of
(
sin(nπ

2
)
)

are 1,−1, and 0.

Definition 1.4.10. Let E ⊂ Rn. If E ′ ⊂ E, then E is called a
closed set.

Similar to the definition of the real-valued continuous function f on
R, we say that f : Rn �→ Rm is continuous at a ∈ Rn if for any ε > 0,
there exists δ > 0 such that f(x) ∈ B(f(a, ε) whenever x ∈ B(a, δ).

Example 1.4.5. (i) [0, 1] is a closed set of R and [0, 1]n is closed
in Rn.

(ii) Rn and ∅ are closed sets.
(iii) Let f be a continuous function on Rn. Then E1 = {x | f(x) ≤ a}

and E2 = {x | f(x) ≥ a} are closed sets of Rn.

Proof. We show that E1 is a closed set. If E ′
1 = ∅, then the

conclusion holds. Assume that x0 ∈ E ′. Then there exists (xk) ⊂ E
such that xk → x0 as k → ∞. Notice that xk ∈ E implies that
f(xk) ≤ a and thus, f(x0) = limk→∞ f(xk) ≤ a. Therefore, x0 ∈ E1.
This means that E ′

1 ⊂ E1 and so, E1 is closed. �

Theorem 1.4.7. (1) If F1 and F2 are closed sets of Rn, then
F1 ∪ F2 is closed.

(2) If {Fλ} is a collection of closed sets of Rn, then the intersection
F = ∩λ∈ΛFλ is closed.

Proof. (1) Suppose that F̄1 = F1, F̄2 = F2. Then F1 ∪ F2 = (F1 ∪
F2) ∪ (F1 ∪ F2)

′ = (F1 ∪ F2) ∪ (F ′
1 ∪ F ′

2) = (F1 ∪ F ′
1) ∪ (F2 ∪ F ′

2) =
F̄1 ∪ F̄2 = F1 ∪ F2. Therefore, F1 ∪ F2 is closed.

(2) If Fλ, λ ∈ Λ are closed, then F̄λ = Fλ, λ ∈ Λ. Let F = ∩λ∈ΛFλ.
Then F ⊂ Fλ, λ ∈ Λ. Thus, F̄ ⊂ F̄λ, λ ∈ Λ. So, F̄ ⊂ ∩λ∈ΛF̄λ =
∩λ∈ΛF̄λ = F . Therefore, F is a closed set. �

Example 1.4.6. The union of infinitely many closed sets may not
be a closed set. For instance, Fk = [ 1

k+1
, 1
k
], k = 1, · · · , then ∪k∈NFk =

(0, 1].

Definition 1.4.11. G ⊂ Rn is said to be open if Gc = Rn \ G is
closed.
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Example 1.4.7. (i) For any real numbers a < b, (a, b) is an
open set of R and (a, b)n is open in Rn.

(ii) Rn and ∅ are open sets.
(iii) Let f be a continuous function on Rn. Then G1 = {x | f(x) < c}

and G2 = {x | f(x) > c} are open sets of Rn for any c ∈ R.

Theorem 1.4.8. (1) If {Gλ}λ∈Λ is a collection of open sets of
Rn, then ∪λ∈ΛGλ is open.

(2) If G1, G2, · · · , Gn are open sets of Rn, then ∩nk=1Gk is open.
(3) G ⊂ Rn is open if and only if for all x ∈ G, there exists δ > 0,

such that B(x, δ) ⊂ G.

Theorem 1.4.9. If (Fk) is a sequence of nonempty bounded closed
sets of Rn and

F1 ⊃ F2 ⊃ · · · ⊃ Fk ⊃ · · · ,
then ∩∞k=1Fk �= ∅.

Proof. If there are only finitely many different sets in (Fk), then
there exists k0 ∈ N such that Fk = Fk0 for k ≥ k0. In this case,
∩Fk = Fk0 �= ∅.

Now, without loss of generality, we assume that for any k ∈ N,
Fk \ Fk+1 �= ∅. Then we can choose xk ∈ Fk \ Fk+1, k = 1, · · · , and
thus (xk) consists of distinct points in Rn and (xk) is bounded. By the
Bolzano-Weierstrass Theorem, (xk) has a convergent subsequence, say
(xki) and limi→∞ xki = x0. Since Fk is closed for any k ∈ N, we have
x0 ∈ Fk for k = 1, 2, · · · , i.e. x0 ∈ ∩∞k=1Fk. �

Definition 1.4.12. For E ⊂ Rn, let C be a collection of open sets
satisfying for all x ∈ E, there exists O ∈ C such that x ∈ O. Then C
is called an open covering of E. If there exists C1 ⊂ C and C1 covers
E, then C1 is called a subcovering. In particular, if C1 is finite, then
it is called a finite covering.

Theorem 1.4.10. Let C be a collection of open sets of Rn. Then
there exists a countable subcollection {Oi}i∈I such that ∪O∈CO = ∪i∈IOi,
where I ⊂ N.

Corollary 1.4.2. Any open covering C of E contains a countable
subcovering.

Theorem 1.4.11. [Heine-Borel] Let F be a closed and bounded set
of Rn. Then each open covering C of F contains a finite subcovering.

Proof. By the above corollary, we can assume C is a countable
covering. Let Hk = ∪ki=1Oi, and Lk = F \ Hk, k = 1, · · · . Then for
each k, Hk is open and ∪∞k=1Hk = ∪∞i=1Oi. For each k, Lk is closed and
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Lk ⊃ Lk+1 for k = 1, 2, · · · . If there exists k0 ∈ N such that Lk0 = ∅,
then F ⊂ Hk0 = ∪k0i=1Oi. The conclusion holds.

If for all k ∈ N, Lk �= ∅, then since Lk is closed and bounded (Lk ⊂
F and F is bounded), by Theorem 1.4.9, we have that ∩∞k=1Lk �= ∅.
That is, there is x ∈ F \ Hk for k = 1, 2 · · · , and thus, x ∈ F but
x /∈ Hk for any k ∈ N. This is a contradiction since (Hk) is an open
covering of F . �

The boundedness condition and closed condition are important in
the Heine-Borel Theorem, as the next example shows.

Example 1.4.8. (1) F = N is closed but not bounded. The set
of Ok = (k− 1

k
, k+ 1

k
), k = 1, 2 · · · is an open covering of F , but

there is no finite subcovering.
(2) F = {1, 1

2
, 1

3
, · · · } is a bounded set but F is not closed. The set

of Ok = ( 1
k
− 1

2k
, 1
k

+ 1
2k

), k = 1, 2, · · · is an open covering of F ,
but there is no finite subcovering.

Theorem 1.4.12. Let E ⊂ Rn. If any open covering of E contains
a finite subcovering, then E is a bounded and closed set.

Proof. Consider any given point y in Ec. For all x ∈ E we can
have a δx > 0 such that B(y, δx) ∩ B(x, δx) = ∅. The collection of all
such δ-balls is an open covering of E. By the assumption, there is a
finite subcovering, say, B(x1, δ1) ∪ · · · ∪ B(xn, δn) ⊃ E. Therefore, E
must be bounded. Let δ = min{δ1, · · · , δn}. Then B(y, δ) ∩ E = ∅.
Thus, Ec is open and so, E is closed. �

Definition 1.4.13. A set E is called a compact set if any open
covering of E contains a finite subcovering.

Corollary 1.4.3. In Rn, a set E is compact if and only if E is
bounded and closed.

Theorem 1.4.13. Let C be a collection of closed sets of Rn with the
property that every finite subcollection of C has a nonempty intersection
and suppose there is at least one set in C which is bounded. Then
∩F∈CF �= ∅.

Proof. Assume that F1 is bounded and C = {Fλ | λ ∈ Λ}. Let
Gλ = F c

λ, λ ∈ Λ.
If ∩λ∈ΛFλ = ∅, then (∩λ∈ΛFλ)

c = Rn, i.e. ∪λ∈ΛF
c
λ = ∪λ∈ΛGλ =

Rn ⊃ F1.
Since F1 is closed and bounded, there is a finite subcovering from

{Gλ | λ ∈ Λ}, sayGλ1∪· · ·∪Gλm ⊃ F1. Therefore, F1∩Gc
λ1
∩· · ·∩Gc

λm
=

∅, i.e. F1 ∩ Fλ1 ∩ · · · ∩ Fλm = ∅. This is a contradiction. �
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Next, we discuss the open set structure on R.

Theorem 1.4.14. Any open set on R is a countable union of dis-
joint open intervals.

Proof. Let O be an open set on R. Then for all x ∈ O, there exists
δ > 0 such that B(x, δ) ⊂ O. For a given x ∈ O, let bx = sup{b |
(x, b) ⊂ O} and ax = inf{a | (a, x) ⊂ O}. Here, bx could be ∞ and ax
could be −∞.

Let Ix = (ax, bx) for x ∈ O. Then ∪x∈OIx = O. In fact, for all
x ∈ O, x ∈ Ix and thus ∪x∈OIx ⊃ O. On the other hand, Ix ⊂ O: for
any y ∈ Ix, if y = x, then clearly x ∈ O; if y ∈ (x, bx), then by the
definition of bx, there is b such that y ∈ (x, b) ⊂ O. Thus, [x, bx) ⊂ O
and similarly we have (ax, x] ⊂ O.

Now, we show that for any x, y ∈ O and x �= y, we have either
Ix ∩ Iy = ∅ or Ix = Iy. Assume that x < y and Ix ∩ Iy �= ∅. Then
ay < bx. Since ay /∈ O by the definition of ay, we must have that
ax = ay. Similarly, we have bx = by. That is Ix = Iy.

Notice that the collection {Ix | x ∈ O} is a set of disjoint open
intervals and thus it is countable. Therefore, ∪x∈OIx = O shows that
the open set O is a union of countably many disjoint open intervals. �

Definition 1.4.14. A set E is called a perfect set if E ′ = E.

Notice, every point in a perfect set E is a limit point of E. Any closed
interval is a perfect set.

Next, we discuss a very special subset of [0, 1] called the Cantor

set. Let K0 = [0, 1]. First, we remove the segment (1
3
, 2

3
) from K0.

The remaining part is [0, 1
3
] ∪ [2

3
, 1], denoted by K1. Then, remove the

middle-thirds of these intervals and letK2 be the union of the remaining
intervals. So, K2 = [0, 1

9
]∪ [2

9
, 3

9
]∪ [6

9
, 7

9
]∪ [8

9
, 1]. Inductively continuing

this process, we obtain a sequence of compact sets Kn satisfying (i)
K0 ⊃ K1 ⊃ K2 ⊃ · · · and (ii) Kn is the union of 2n closed intervals
with the length 1

3n
of each interval. The limit set K = ∩∞n=0Kn is called

the Cantor set.

Theorem 1.4.15. The Cantor set K is nonempty but K contains
no segment. K is compact, perfect, and card(K) = c.

Proof. Obviously K is nonempty. K is closed and thus compact as
it is an intersection of closed sets and bounded. From the construction,
it is also clear that K does not contain any interval and thus it has
empty interior. Next, for any x ∈ K, we need to show x ∈ K ′. For
each n ∈ N we have x ∈ Kn. Let In,i0 be the interval which contains
x where Kn = ∪2n

i=1In,i. For any δ > 0, we can choose n large enough
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so that In,i0 ⊂ B(x, δ). Let xn be one of the end points of In,i0 . Then
xn ∈ B(x, δ) ∩ K. Hence, x is a limit point of K or x ∈ K ′. This
concludes that K is perfect.

For any point x ∈ [0, 1], we choose the ternary (base three) rep-
resentation of x: x =

∑∞
k=1

pk
3k

, where each pk is 0, 1, or 2. Then
x ∈ [0, 1] \K if and only if there exists k such that pk = 1. So, x ∈ K
if and only if x = 2

∑∞
k=1

ak
3k

for each ak = 0 or 1. Define φ : K �→ [0, 1]
as φ(x) = φ(2

∑∞
k=1

ak
3k

) =
∑∞

k=1
ak
2k

. Then φ is a one-to-one correspon-

dence. So, card(K) = card2{0,1} = card([0, 1]) = c. �
The concept of distance in Rn can be extended on any nonempty

set X, usually called a metric on X. More precisely, a metric (or a
distance) d on a nonempty set X is a function d : X×X �→ R satisfying
(i) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y; (ii)
d(x, y) = d(y, x) for all x, y ∈ X; (iii) d(x, y) ≤ d(x, z) + d(z, y) for all
x, y, z ∈ X. The set X with the distance d is called a metric space.
For a metric space X with distance d, let x ∈ X. The open ball of
x with radius r > 0 is the set B(x, r) = {y ∈ X | d(x, y) < r}. A set
O ⊂ X is said to be an open set if for every x ∈ O, there is some r > 0
such that B(x, r) ⊂ O. A point x is called an interior point of a set
E if there exists an open ball B(x, r) such that B(x, r) ⊂ E. Similar
to the setting of Rn, we can define the convergence of a sequence in a
metric space X, the accumulation points, and the closure set E of a
set E. A subset E of a metric space X is called dense in X if E = X.
A set E ⊂ X is said to be nowhere dense if its closure has an empty
interior set. Cantor set K is nowhere dense in [0, 1]. A set E ⊂ X is
said to be first category if there exists a sequence (En) of nowhere
dense subsets such that E = ∪∞n=1En. A metric space is called a Baire

space if every nonempty open set is not first category. A set that is
not first category is said to be second category.

Exercises
1. For x,y ∈ Rn, we say x and y are orthogonal if 〈x,y〉 = 0. Prove

that for two orthogonal vectors x and y in Rn,

|x + y| = (|x|2 + |y|2) 1
2 .

2. Show that |x+y|2 + |x−y|2 = 2(|x|2 + |y|2) for any two vectors
x and y in Rn. This is called the parallelogram law.

3. Prove the Bolzano-Weierstrass Theorem on R: Every bounded
sequence in R contains a convergent subsequence.

4. (a) Show that a sequence (xn) in R which converges to a real
number l is a Cauchy sequence.

(b) Show that each Cauchy sequence in R is bounded.
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(c) Show that if a Cauchy sequence in R has a subsequence
that converges to l, then the original sequence converges to l.

(d) Establish the Cauchy Criterion of the real line: There is
a real number l to which the sequence (xn) converges if and only
if (xn) is a Cauchy sequence.

5. Consider the infinite continued fraction

1

2 + 1
2+ 1

2+···

.

We have a recursion formula an+1 = 1
2+an

, n ≥ 1, and a1 = 1
2

for
the following approximation sequence of the continued fraction:

a1 =
1

2
, a2 =

1

2 + 1
2

, a3 =
1

2 + 1
2+ 1

2

, · · · .

Show that (an) is a Cauchy sequence and evaluate limn→∞ an,
the value of the continued fraction.

6. Show that a continuous function f : Rn �→ R maps a compact
set to a compact set. That is, an image of a compact set under
f is also compact.

7. Construct a bounded set of real numbers with exactly two limit
points.

8. Show that every bounded monotone sequence has a unique limit
point.

9. Give an example of an open covering of (0, 1) with has no finite
subcovering.

10. If X is the space of all rational numbers, and E is the set of
all rational p such that 2 < p2 < 3, then prove E is closed and
bounded, but not compact.

11. For a set A of real numbers, show that the following are equiva-
lent:

(a) A is closed and bounded.
(b) Every sequence of points in A has a limit-point.
(c) Every open cover of A has a finite subcover.

12. Suppose that A and B are closed (open). Show that A × B =
{(a, b) | a ∈ A, b ∈ B} is also closed (open).

13. Show that compact sets are closed under arbitrary intersections
and finite unions.

14. Show that if f : Rn �→ Rm is continuous, then U ⊂ Rm is open
implies that f−1(U) is also open in Rn.

15. Give an example of a continuous function f and open set U such
that f(U) is not open.
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16. Show that a function f : Rn �→ Rn is continuous if and only if
f−1(E) is closed for every closed set E ⊂ Rm.

17. Let C be a compact set of Rn and f : Rn �→ Rm a continuous
function. Then the image set f(C) is compact in Rm.

18. A function f : E �→ Rm is called a Lipschitz function on E ⊂
Rn if there is a constant C such that |f(x)−f(y)| ≤ C|x−y| for
all x,y ∈ E. Show that every Lipschitz function is continuous.

19. A function f : S �→ Rm on S ⊂ Rn is said to be uniformly

continuous if for every ε > 0, there is a positive real number
δ > 0 such that |f(x)−f(y)| < ε whenever |x−y| < δ for x,y ∈
S. Show that every Lipschitz function is uniformly continuous.

20. Let f be a differentiable real-valued function on [a, b] with bounded
derivative. Then prove f is uniformly continuous on [a, b].

21. Suppose that E ⊂ Rn is compact and f : E �→ Rm is continuous.
Then prove f is uniformly continuous on E.

22. Show that the function f defined by f(x) = 1
x

sin x for x �= 0 and
f(0) = 1 is uniformly continuous on R.

23. A sequence (fk(x)) of real-valued functions on D ⊂ Rn is said to
converge uniformly to a function f(x) if for any ε > 0, there
is N ∈ N such that fk(x) ∈ B(f(x), ε) for all x ∈ D whenever
k > N .

(a) (Cauchy criterion) Show that (fk(x)) converges to f(x)
uniformly if and only if for any ε > 0, there is N ∈ N such that
|fk(x)− f�(x)| < ε for all x ∈ D whenever k, � > N .

(b) Show that if (fk(x)) converges to f(x) uniformly on D
and all the fk(x) are continuous on D, then f(x) is continuous
on D.

(c) Give an example of a sequence of continuous functions on
a compact domain converging pointwise but not uniformly.

24. Prove that every continuous function on [a, b] is the uniform limit
of linear splines.

25. Define a step function to be a function that is piecewise con-
stant, f(x) =

∑m
k=1 αkχ[ak ,bk)(x), where [ak, bk) are disjoint inter-

vals. Show that every continuous function on [a, b] is a uniform
limit of step functions.

26. For a given function f defined on [0, 1], define its Bernstein

polynomial

Bn(f, x) =
n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k.

Show that
(a) If f is linear, then Bn(f, x) = f(x).
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(b) If f(x) = x2, then Bn(f, x) = x2 + 1
n
(x− x2).

(c) If f ∈ C[0, 1], then Bn(f, x) converges to f uniformly on
[0, 1].

(d) Let f ∈ C[a, b] and pn(x) = Bn

(
f, x−a

b−a
)
. Then pn(x)

converges to f uniformly on [a, b].
27. A metric space is called separable if it contains a countable

dense subset. Show that Rn is separable.
28. A sequence (xn) of a metric space X with distance d is called

a Cauchy sequence if for every ε > 0, there is N ∈ N such
that d(xn, xm) < ε for all integers n,m > N . A metric space is
called a complete metric space if all of its Cauchy sequences
converge in the space. Show that if the monotone decreasing
sequence (En) of closed, nonempty subsets of a complete metric
space X satisfies that the diameter of En, d(En)→ 0 as n→∞,
then ∩∞n=1En consists of only one element.

29. Show that every complete metric space is a Baire space.
30. Let B[a, b] be the set of all real-valued, bounded functions defined

on [a, b]. For f, g ∈ B[a, b], we define d(f, g) = sup{|f(y)−g(y)| |
y ∈ [a, b]}. Then prove d is a distance function on B[a, b] and
B[a, b] becomes a complete metric space with this distance.

31. Prove that for a metric space X, the following statements are
equivalent: (i) X is a Baire space; (ii) Every countable inter-
section of open dense sets is also dense; (iii) If X = ∪∞n=1Fn for
closed sets Fn, then the open set ∪∞n=1(Fn)

◦ is dense. Here F ◦

denotes the set of interior points of F .
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CHAPTER 2

Measure Theory

There are many cases in which we need to extend the Riemann integral.
As a simple example, let us consider the Dirichlet function

D(x) =

{
0, if x is an irrational in [0, 1];
1, if x is a rational in [0, 1].

Let {rk}∞k=1 denote the set of all rational numbers in [0, 1]. Define

ϕrk(x) =

{
0, if x �= rk;
1, if x = rk.

Then D(x) =
∑∞

k=1 ϕrk(x). Clearly, (R)
∫ 1

0
ϕrk(x) dx = 0, where (R)

∫
means Riemann integral. Therefore,

∑∞
k=1(R)

∫ 1

0
ϕrk(x) dx = 0. On

the other hand, (R)
∫ 1

0

∑∞
k=1 ϕrkdx = (R)

∫ 1

0
D(x)dx does not exist.

We would like to have a new integral so that∫ 1

0

∞∑
k=1

ϕrk(x)dx =

∞∑
k=1

∫ 1

0

ϕrk(x)dx.

H. Lebesgue (1875–1941) first established such an integral which is
well-known as the Lebesgue integral.

Recall that the Riemann integral

(R)

∫ b

a

f(x) dx = lim
|∆|→0

n∑
k=1

f(xk)∆xk,

where ∆: a = x0 < x1 < · · · < xn = b and |∆| = maxk ∆xk,
∆xk = xk − xk−1 for k = 1, · · · , n. f is Riemann integrable if and only
if lim|∆|→0

∑n
k=1 ωk∆xk = 0 where ωk = sup{|f(x) − f(y)| | x, y ∈

[xk−1, xk]}. We notice that ωk = 1 on any small subinterval for the
function D(x). For a bounded function f (A ≤ f(x) ≤ B) over [a, b],
rather than using the sum

∑n
k=1 f(xk)∆xk, the Lebesgue integral con-

siders the sum
∑n

k=1 ykm(Ek), where A = y0 < y1 < · · · < yn = B,
Ek = {x ∈ [a, b] | yk−1 ≤ f(x) < yk}, and m(Ek) is the measure of the
set of Ek which is an extension of the length of an interval.

For this application, we need to define the measure of sets first.

31
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The concept of measure is an extension of the concept of length. E.
Borel (1871–1956) in 1898 formulated several postulates which outline
essential properties of the length of an interval by defining the measure
of sets as follows:

• (Nonnegativity) A measure is always nonnegative.
• (Countable additivity) The measure of the union of a countable

number of nonoverlapping sets equals the sum of their measures.
• (Monotonicity) The measure of the difference of a set and a sub-

set is equal to the difference of their measures.
• Every set whose measure is not zero is uncountable.

H. Lebesgue presented a mathematically rigorous description of the
class of sets for which he defined a measure satisfying Borel’s postulates.
This measure is well known as Lebesgue measure and is perhaps the
most important and useful concept of a measure found on R to date.
Our approach to Lebesgue’s theory follows the elegant treatment given
by a Greek mathematician C. Carathéodory (1873–1950).

This chapter presents measure theory roughly as follows. A general
procedure is developed for constructing measures by first defining the
measure on a ring of subsets of an arbitrary abstract nonempty set, then
obtaining a measure on a σ-ring using an outer measure. Throughout
this chapter, we apply this procedure to construct Lebesgue measure
on R as a concrete example.

1. Classes of Sets

In this section, we introduce the classes of sets which will be the
domains of measures.

Let X be a nonempty set. There are five types of classes of subsets
of X we wish to examine: rings, algebras, σ-rings, σ-algebras, and
monotone classes.

Definition 2.1.1. A collection R of subsets of X is called a ring

on X if for any E1, E2 ∈ R, we have E1 ∪ E2 ∈ R and E1 \ E2 ∈ R.
A ring on X is called a σ-ring if it is closed under countable unions,
that is, if for Ek ∈ R, k ∈ N, then ∪∞k=1Ek ∈ R.

Some basic facts of a ring/σ-ring include the following:

• If R is a ring, then ∅ ∈ R.
• If R is a ring and A,B ∈ R, then A \B ∈ R and A∆B ∈ R.
• If R is a ring and Ek ∈ R for k = 1, · · · , n, then ∪nk=1Ek ∈ R

and ∩nk=1Ek ∈ R.
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• If R is a σ-ring and Ek ∈ R for k ∈ N, then ∩∞k=1Ek ∈ R since
∩∞k=1Ek = E \ ∪∞k=1(E − Ek) for E = ∪∞k=1Ek. That is, a σ-ring
is also closed under countable intersections.
• If R is a σ-ring and Ek ∈ R for k ∈ N, then limk→∞Ek ∈ R and

limk→∞Ek ∈ R.
• Let C ⊂ 2X . Then there exists a unique ring R(C) such that
C ⊂ R(C) and for any ring R containing C, we have R(C) ⊂ R.
That is, R(C) is the smallest ring that contains C.
• Let C ⊂ 2X . Then there exists a unique σ-ring σr(C) such that
C ⊂ σr(C) and that any σ-ring σr containing C, we have σr(C) ⊂
σr. That is, σr(C) is the smallest σ-ring that contains C.

We leave the proof of these facts as exercises.

Definition 2.1.2. An algebra of sets on X is a nonempty collec-
tion A of subsets of X which is closed under finite unions and comple-
ments. That is, A ⊂ 2X is called an algebra if E1, · · · , En ∈ A implies
that ∪nk=1Ek ∈ A and Ec ∈ A for all E ∈ A. An algebra is called a
σ-algebra if it is closed under countable unions. That is, if Ak ∈ A
for k ∈ N, then ∪∞k=1Ak ∈ A.

Similar to the facts of a ring/σ-ring, the following properties of an
algebra/σ-algebra are basic. We provide the verification of some facts
and leave the others as exercises.

Some basic facts of an algebra/σ-algebra include the following:

• If A is an algebra of sets on X, then X ∈ A and ∅ ∈ A.
• If A is an algebra, then A is closed for finite intersections. That

is, if A1, · · · , An ∈ A, then ∩nk=1Ak ∈ A.
Proof: Since A is an algebra, we have that A1, A2, · · · , An ∈ A
implies Ac1, A

c
2, · · · , Acn ∈ A, so ∪nk=1A

c
k ∈ A and then

( ∪nk=1

Ack
)c ∈ A. By De Morgan’s Law, we have ∩nk=1Ak ∈ A. �

• If A is a σ-algebra then A is closed under countable intersections.
• Let {Aλ}λ∈Λ be an arbitrary collection of algebras in X. Then
∩λ∈ΛAλ is again an algebra in X.
Proof: Let Aλ, where λ ∈ Λ, be an algebra. For any A ∈ ∩λ∈ΛAλ
we have A ∈ Aλ, λ ∈ Λ, and then Ac ∈ Aλ for each λ ∈ Λ. Thus,
Ac ∈ ∩λ∈ΛAλ, i.e. ∩λ∈ΛAλ is closed for complements. Also, for
A,B ∈ ∩λ∈ΛAλ, we have A,B ∈ Aλ, for each λ ∈ Λ and so
A ∪ B ∈ Aλ, for each λ ∈ Λ. Therefore, A ∪ B ∈ ∩λ∈ΛAλ i.e.
∩λ∈ΛAλ is an algebra. �
• For any collection C of subsets of X there exists a smallest algebra

(σ-algebra) containing C. Such an algebra (σ-algebra) is called
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the algebra (σ-algebra) generated by C and is denoted by A(C)
(σa(C)).
• If A is an algebra on X and (An) is a sequence of elements in
A, then there exists a disjoint sequence (Bn) in A such that
∪∞n=1An = ∪∞n=1Bn.
Proof: Let B1 = A1 and proceed by induction so that Bn+1 =
An+1 \ (∪nk=1Ak). �
• For a ring C on X, if X ∈ C, then C is an algebra.
• For a σ-ring C on X, if X ∈ C, then C is a σ-algebra.
• For any collection C of sets in X, we have σa(C) = σa(R(C)).
Example 2.1.1. (a) Let X = R and R = {E | E ∈ 2X , |E| <
∞}. Then R is a ring on R, but R is not a σ-ring nor an
algebra.

(b) X = R, R = {E | E ∈ 2X , E is countable}, then R is a σ-ring,
but R is not an algebra.

Example 2.1.2. (a) Let X be a set of infinitely many elements.
C denotes the collection of countable subsets of X. Then C is a
σ-ring. If X is countable, then C becomes a σ-algebra.

(b) For any set X, the power set 2X is an algebra and it is a σ-
algebra.

(c) Let X �= ∅ and C denote the set of all single element subsets of
X. Then R(C) is the set of all finite subsets of X (including ∅).

The following example is important to our later discussion since we
will use the ring R0 defined below to construct Lebesgue measure on
R.

Example 2.1.3. Let X = R. Then the class R0 of all finite unions
of “half-open” bounded intervals (a, b] is a ring. In fact, it is obvious
that R0 is closed under the union operation. Let E1 and E2 be two ele-
ments in R0. That is, let them be finite unions of “half-open” bounded
intervals. Noticing that the difference of any two“half-open” bounded
intervals satisfies

(a, b] \ (c, d] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∅, if (a, b] ⊂ (c, d];
(a, b], if [a, b) ∩ (c, d) = ∅;
(a, c], if a < c ≤ b ≤ d;
(a, c] ∪ (d, b], if a ≤ c < d ≤ b;
(d, b], if c ≤ a < d ≤ b,

we have (a, b] \ (c, d] ∈ R. Let E1 = ∪mi=1(ai, bi] and E2 = ∪nj=1(cj , dj].

Then E1 \ (c, d] = ∪mi=1(ai, bi] \ (c, d] = ∪mi=1

(
(ai, bi] \ (c, d]

) ∈ R0.
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Therefore, E1 \ E2 ∈ R followed by
(
E1 \ (c1, d1]

) \ ∪nj=2(cj, dj] and
math induction.

Definition 2.1.3. The σ-algebra generated from R0 is called the
σ-algebra of Borel sets of R and denoted by BR.

Let I denote the set of intervals (open, closed, or half-open and half-
closed) of R. For an interval I ∈ I with end points a and b (a ≤ b),
we denote I by I(a, b) (here, a could be −∞ and b could be ∞). By
convention, the open interval (a, a) = ∅ for any a ∈ R. Then we have
σr(I) = σa(I) = BR (exercise).

Definition 2.1.4. For a nonempty class C of subsets of X, if for
any monotone sequence (En) of sets, limn→∞En ∈ C, then C is called
a monotone class.

Example 2.1.4. (a) For any setX, {∅, X} and 2X are monotone
classes.

(b) On the real line, C = {[0, 1], [3, 4]} is a monotone class. Thus, it
is not necessary to be closed under the operations of unions and
set differences.

Some basic facts of monotone classes include the following:

• The intersection of any collection of monotone classes is again a
monotone class.
• Any σ-ring is a monotone class. A monotone class is a σ-ring if

and only if it is a ring.
• For any collection C of subsets of X there exists a smallest

monotone class containing C. Such a monotone class is called the
monotone class generated by C and is denoted byM(C).

Theorem 2.1.1. If R is a ring on X, then M(R) = σr(R).

Proof. Since σ-ring σr(R) is a monotone class and M(R) is the
smallest monotone class containing R, we have M(R) ⊂ σr(R).

On the other hand, we can verify that M(R) is a ring (exercise).
Therefore, it is a σ-ring. Thus, M(R) ⊃ σr(R). �

Exercises
1. (a) If R is a ring and A,B ∈ R, then A \B ∈ R and A∆B ∈ R.

(b) IfR is a ring and Ek ∈ R for k = 1, · · · , n, then ∪nk=1Ek ∈
R and ∩nk=1Ek ∈ R.

(c) Let C ⊂ 2X . Then there exists a unique ring R(C) gener-
ated by C.

2. (a) If R is a σ-ring and Ek ∈ R for k ∈ N, then limk→∞Ek ∈ R
and limk→∞Ek ∈ R.
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(b) Let C ⊂ 2X . Then there exists a unique σ-ring σr(C)
generated by C.

3. (a) If A is an algebra of sets on X, then X ∈ A and ∅ ∈ A.
(b) If A is a σ-algebra then A is closed for countable inter-

sections.
(c) For any collection C of subsets of X, there exists a unique

algebra (σ-algebra) generated by C.
4. Let C be a collection of subsets of X and A ⊂ X. Denote

A ∩ C = {A ∩B | B ∈ C}.
Then σa(A ∩ C) = A ∩ σa(C).

5. For C = {E1, · · · , En}, find R(C) and A(C).
6. Show that σr(I) = σa(I) = BR.
7. Let Ir denote the class of all open intervals of R with rational

endpoints. Show that σa(Ir) = BR.
8. (a) The intersection of any collection of monotone classes is again

a monotone class.
(b) Any σ-ring is a monotone class. A monotone class is a

σ-ring if and only if it is a ring.
(c) For any collection C of subsets of X there exists a unique

monotone class generated by C.
(d) If R is a ring, thenM(R) is also a ring.

9. For any collection C of sets on X, we have
(a)M(C) ⊂ σa(C).
(b)M(C) = σa(C) if and only if

A ∈ C impies Ac ∈M(C) and A,B ∈ C implies A ∩B ∈M(C).

2. Measures on a Ring

In the following discussion, we would like to define µ, a measure on a
ring R, and then to extend it to a σ-ring and even a larger collection of
sets using an outer measure in the next section. As a concrete example,
we first define the Lebesgue measure on the ring R0 over the real line,
and then extend it to a σ-ring and an even larger collection of sets on
R. As usual, we denote by R = R∪ {−∞}∪ {∞} the set of extended
real numbers.

Let us recall some properties of the length function of intervals
first. For an interval I ∈ I with end points a and b (a ≤ b), the
length function on I is defined by λ(I(a, b)) = b − a if a, b ∈ R and
λ(I(a, b)) =∞ if either a = −∞, or b =∞, or both.

Theorem 2.2.1. We have the following properties on the length
function λ(I) on I:
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(a) λ(∅) = 0.
(b) (Monotonicity) λ(I) ≤ λ(J) for I ⊂ J and I, J ∈ I.
(c) (Finite additivity) If I ∈ I and I = ∪nk=1Jk for mutually disjoint

subintervals Jk ∈ I, k = 1, · · · , n, then λ(I) =
∑n

k=1 λ(Jk).
(d) (Countable subadditivity) Let I ∈ I satisfy I ⊂ ∪∞k=1Ik for Ik ∈
I, k ∈ N. Then λ(I) ≤∑∞

k=1 λ(Ik).
(e) (Countable additivity) Let I ∈ I satisfy I = ∪∞k=1Ik for mutually

disjoint Ik ∈ I, k ∈ N. Then λ(I) =
∑∞

k=1 λ(Ik).
(f) (Translation invariance) λ(I) = λ(I + y) for every I ∈ I and

y ∈ R, where I + y = {x+ y | x ∈ I}.
To extend the length of intervals to a larger class of subsets of R,

our first choice would be to measure all sets. However, this turns out to
be impossible if we want to retain the properties of the length function.
Let us define a measure on a ring as follows.

Definition 2.2.1. Let R ⊂ 2X be a ring, the extended real valued
set function µ : R �→ R is called a measure on ring R if µ satisfies

(i) µ(∅) = 0,
(ii) for any E ∈ R, µ(E) ≥ 0, and
(iii) for Ek ∈ R, k ∈ N and Ek ∩ E� = ∅ for k �= �, if ∪∞k=1Ek ∈ R,

then µ(∪∞k=1Ek) =
∑∞

k=1 µ(Ek).

The extended real value µ(E) is called the measure of the set E.

Except µ ≡ ∞, any set function satisfying (ii) and (iii) implies
(i). In fact, if µ(E) < ∞, for some E ∈ C, we choose E1 = E,
Ek = ∅, k = 2, · · · , then ∪∞k=1Ek = E, by (iii), we have µ(E) = µ(E1)+∑∞

k=2 µ(Ek). If µ(E) < ∞, then
∑∞

k=2 µ(Ek) = 0. By (ii), we have
µ(∅) = 0. Therefore, a finite measure µ on a ring R is a non-negative
and countably additive set function.

If R is an algebra, the extended real-valued set function µ in this
definition defines a measure on an algebra.

Example 2.2.1. (a) For a set X, letR be a ring of finite subsets
of X. Define µ on R as µ(E) = |E|, E ∈ R. Then µ is a
measure on R.

(b) Let X �= ∅ and A = 2X . For a fixed element a ∈ X and any set
E ∈ A, we define

µ(E) =

{
0, if a /∈ E;
1, if a ∈ E.

Then µ is a measure on A.
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(c) Let A = 2X and µ be defined on A by

µ(E) =

{ |E|, if E is finite;
∞, if E is infinite.

Then µ is a measure. This is usually called the counting measure

in X.
(d) Let X be an uncountable set and

A = {E ⊂ X | either E or X \ E is countable}.
Then A is a σ-algebra. Define µ on A by

µ(E) =

{
0, if E is countable;
1, if X \ E is countable.

Then µ is a measure on A.

Theorem 2.2.2. If µ is the measure on a ring R, then it has the
following properties:

(i) (Finite additivity) If Ek ∈ R, k = 1, · · · , n and Ek ∩ E� = ∅ for
k �= �, then µ(∪nk=1Ek) =

∑n
k=1 µ(Ek).

(ii) (Monotonicity) If E,F ∈ R and E ⊂ F , then µ(E) ≤ µ(F ).
(iii) (Countable subadditivity) If Ek ∈ R for k = 1, 2, · · · , then µ(∪∞k=1Ek) ≤∑∞

k=1 µ(Ek).
(iv) (Continuity from below) If Ek ∈ R and E1 ⊂ E2 ⊂ · · · ⊂ En ⊂

· · · , then µ(∪∞k=1Ek) = limn→∞ µ(En).
(v) (Continuity from above) If Ek ∈ R for k ∈ N, E1 ⊃ E2 ⊃ E3 ⊃
· · · ⊃ En ⊃ · · · , and µ(En) <∞ for some n, then µ(∩∞k=1Ek) =
limk→∞ µ(Ek).

Proof. (i) Let En+k = ∅ for k ∈ N. Then Ek∩E� = ∅ for any k �= �.
By the countable additivity of µ, we have µ(∪∞k=1Ek) =

∑∞
k=1 µ(Ek).

Since µ(En+�) = µ(∅) = 0 for � ≥ 1, we have µ(∪nk=1Ek) =
∑n

k=1 µ(Ek).
(ii) Since F = E ∪ (F \ E) and E ∩ (F \ E) = ∅, we have µ(F ) =

µ(E) + µ(F \ E) by (i). So, µ(F ) ≥ µ(E) since µ(F \ E) ≥ 0.
(iii) Let F1 = E1, Fk = Ek \ ∪k−1

�=1E� for k ≥ 2. Then Fk ∩ Fk′ = ∅
if k �= k′ and ∪∞k=1Fk = ∪∞k=1Ek. Thus µ(∪∞k=1Ek) = µ(∪∞k=1Fk) =∑∞

k=1 µ(Fk). Fk ⊂ Ek, so by (ii) we have µ(Fk) ≤ µ(Ek). Therefore,
µ(∪∞k=1Ek) =

∑∞
k=1 µ(Fk) ≤

∑∞
k=1 µ(Ek).

(iv) Let F1 = E1, Fk = Ek \ Ek−1 for k ≥ 2, then F� ∩ Fk = ∅
when � �= k and ∪∞k=1Fk = ∪∞k=1Ek. Thus µ(∪∞k=1Ek) = µ(∪∞k=1Fk) =∑∞

k=1 µ(Fk) = limn→∞
∑n

k=1 µ(Fk) = limn→∞ µ(∪nk=1Fk) = limn→∞ µ(En).
(v) Without loss of generality, we assume µ(E1) < ∞. Let Fk =

E1\Ek for k ∈ N, then (Fk) is increasing. By (iv), we have µ(∪∞k=1Fk) =
limn→∞ µ(Fn). Noticing that E1 = Ek ∪ Fk and then µ(Fk) = µ(E1)−
µ(Ek) and ∩nk=1Ek = E1 \ (∪nk=1Fk), µ(∩nk=1Ek) = µ(En) = µ(E1) −
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µ(∪nk=1Fk) = µ(E1) − µ(Fn). Therefore limn→∞ µ(En) = µ(E1) −
limn→∞ µ(Fn) = µ(E1)−µ(∪∞k=1Fk) = µ(E1 \∪∞k=1Fk) = µ(∩∞k=1Ek). �

Let R0 = {E ⊂ R | E = ∪ni=1(ai, bi] for some n ∈ N and ai, bi ∈ R}
be the ring discussed in Example 2.1.3. Then for any set E ∈ R0, we
have always a disjoint decomposition E = ∪mi=1(ai, bi] for some m ∈ N.

Definition 2.2.2. For interval E = (a, b], we define the measure

m(E) = b− a. If a general element E = ∪ni=1(ai, bi] ∈ R0 and (ai, bi]∩
(aj, bj ] = ∅ for i �= j, then m(E) =

∑n
i=1(bi − ai).

The following result and Theorem 2.2.4 show that m is an extension
of the interval length function λ to R0.

Theorem 2.2.3. m is a well-defined set function over R0.

Proof: Noting that for a set E ∈ R0, there are different decom-
positions: E = ∪ni=1(ai, bi], E = ∪mj=1(cj , dj], it suffices to show m(E)
is independent of the decompositions. First, for any decomposition
of (a, b], (a, b] = ∪ni=1(ai, bi], assume a = a1 ≤ b1 ≤ a2 ≤ b2 ≤
· · · ≤ an ≤ bn = b. Since (ai, bi] ∩ (aj , bj] = ∅ if i �= j, we have
m((a, b]) =

∑n
i=1(bi − ai) =

∑n
i=1m((ai, bi]) = b − a. Now consider

E ∈ R0, say E = ∪ni=1(ai, bi] = ∪mj=1(cj , dj] and (ai, bi] ∩ (ai′ , bi′] = ∅
for i �= i′ and (cj, dj] ∩ (cj′, dj′] = ∅ for j �= j′. Since (ai, bi] = (ai, bi] ∩
E = (ai, bi] ∩ ∪mj=1(cj, dj] = ∪mj=1(ai, bi] ∩ (cj, dj] = ∪mj=1(eij , fij] where
eij ≤ fij for j = 1, 2, · · · , m. We have m((ai, bi]) =

∑m
j=1(fij − eij) and

m(E) = m(∪ni=1(ai, bi]) =
∑n

i=1

∑m
j=1(fij − eij). Similarly, m(E) =

m(∪mj=1(cj, dj]) =
∑m

j=1

∑n
i=1m(eij , fij) =

∑m
j=1

∑n
i=1 (fij − eij). Thus

m(E) is well defined on R0. �
Some facts of set function m on R0 include the following:

• m is finitely additive.
Proof. We need to showm(∪ni=1Ei) =

∑n
i=1m(Ei) for disjoint

sets Ei, i = 1, · · ·n. Let E = ∪ni=1Ei and Ei = ∪nij=1(aij , bij ] be a
disjoint decomposition of Ei in R0. Then E = ∪ni=1∪nij=1(aij , bij]
is a disjoint decomposition of E since Ei, i = 1, · · · , n are dis-
joint. Thus, m(E) =

∑n
i=1

∑ni
j=1(bij − aij) =

∑n
i=1m(Ei). �

• For E1, · · · , En, E ∈ R0, if Ei∩Ej = ∅ for i �= j and ∪ni=1Ei ⊂ E,
then

∑n
i=1m(Ei) ≤ m(E).

Proof. Let En+1 = E \∪ni=1Ei, then Ei, i = 1, · · · , (n+1) are
disjoint sets in R0, and ∪n+1

i=1 Ei = E. By (1), we have m(E) =∑n+1
i=1 m(Ei) ≥

∑n
i=1m(Ei) since m(En+1) ≥ 0. �

• If E1, · · · , En, E ∈ R0 and E ⊂ ∪ni=1Ei thenm(E) ≤∑n
i=1m(Ei).
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Proof. Let F1 = E1, Fi = Ei \ ∪i−1
j=1Ej , then ∪ni=1Fi = ∪ni=1Ei

and Fi, i = 1, · · · , n are disjoint. Since E ⊂ ∪ni=1Ei, we have
E = E ∩ ∪ni=1Ei = E ∩ ∪ni=1Fi = ∪ni=1(E ∩ Fi). Here E ∩ Fi, i =
1, · · · , n are disjoint sets inR0. Thusm(E) =

∑n
i=1m(E ∩ Fi) ≤∑n

i=1m(Fi) ≤
∑n

i=1m(Ei). �

Theorem 2.2.4. m is a measure on R0.

Proof: It suffices to prove m is countably additive. Let Ei, i ∈ N
be a collection of disjoint sets in R0 and E = ∪∞i=1Ei ∈ R0. Then∑∞

i=1m(Ei) ≤ m(E) since ∪ni=1Ei ⊂ E for any n ∈ N (monotonicity of
m). On the other hand, let E = ∪nk=1(ak, bk] be a disjoint decomposi-
tion of E in R0 and Ei = ∪nij=1(αij , βij ] be the disjoint decomposition of
Ei inR0, i ∈ N. Then ∪∞i=1Ei = ∪∞i=1∪nij=1(αij , βij ]. For convenience, we
relabel (αij , βij ], j = 1, · · · , ni, i = 1, 2, · · · as (α�, β�], � = 1, 2, · · · . For
any ε > 0 (assume ε < n(bk−ak), k = 1, 2, · · · , n). We construct closed
intervals [ak+ ε

n
, bk], k = 1, 2, · · · , n and open intervals (α�, β�+

ε
2�

), � =
1, 2, · · · . Noticing that (α�, β�+

ε
2�

), � = 1, 2, · · · form an open covering
of E, and so it covers every [ak + ε

n
, bk]. There exists a finite open

covering for each of [ak + ε
n
, bk], k = 1, · · · , n. Putting all these finite

subcoverings together, we obtain a set of open intervals (αn1, βn1
+

ε
2n1

), · · · , (αns , βns + ε
2ns

) such that ∪nk=1[ak + ε
n
, bk] ⊂ ∪si=1(αni, βni +

ε
2ni

). So, ∪nk=1(ak + ε
n
, bk] ⊂ ∪si=1(αni , βni + ε

2ni
]. Since [ak + ε

n
, bk], k =

1, 2, · · · , n are disjoint, we havem(∪nk=1(ak+
ε
n
, bk]) ≤ m(∪si=1(αni , βni+

ε
2ni

]). That is,
∑n

k=1(bk − ak − ε
n
) ≤ ∑s

i=1(βni + ε
2ni
− αni), and so,∑n

k=1(bk − ak)− ε ≤
∑∞

i=1(βi +
ε
2i
− αi). Therefore,

n∑
k=1

(bk − ak)− ε ≤
∞∑
i=1

(βi − αi) + ε.

Since ε is arbitrary, we have
∑n

k=1(bk − ak) ≤
∑∞

i=1(βi − αi). That is,
m(E) =

∑∞
i=1m(Ei). �

Exercises
1. Prove Theorem 2.2.1.
2. If µ is a measure on a ring R, then prove that for E1, E2 ∈ R

and E1 ⊂ E2, we have µ(E2 −E1) = µ(E2)− µ(E1).
3. If µ is a measure on a ring Σ, then prove that for E1, E2, · · · ∈ Σ,

we have
(a) µ(limn→∞En) ≤ limn→∞µ(En), and
(b) if there is some k ∈ N such that µ(∪∞n=kEn) < ∞, then

µ(limn→∞En) ≥ limn→∞µ(En);
(c) if there is some k ∈ N such that

∑∞
n=k µ(En) <∞, then µ(limn→∞En) =

0.
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4. Show by a counterexample that the condition µ(En) < ∞ for
some n ∈ N in Theorem 2.2.2 (v) is necessary.

5. Let µ be a measure on a σ-algebra Σ and F a set in Σ. Define
the restriction of µ to F , denoted by µ|F , by µ|F (A) = µ(A∩F ).
Prove that µ|F is a measure on Σ.

6. Let µ be a measure on a σ-algebra Σ and a1, a2, · · · , an ∈ [0,∞).
Then prove µ =

∑n
i=1 aiµi is a measure on Σ.

7. If µn is a sequence of measures on a ring R satisfying the condi-
tion that for any E ∈ R, the limit limn→∞ µn(E) exists, denoted
by µ(E). Show that µ is a nonnegative and finite additive set
function satisfying µ(∅) = 0. Give a counterexample to show
that µ may not be a measure on R.

8. Let (µn) be a sequence of measures on a ring R such that for
all E ∈ R and any n ∈ N, µn(E) ≤ 1. Show that µ(E) =∑∞

n=1
1
2n
µn(E), µ ∈ R is also a measure on R satisfying µ(E) ≤

1 for E ∈ R.
9. Let X be any infinite set and (xn) a sequence of distinct elements

in X. Let (pn) be a sequence of nonnegative real numbers. For
E ⊂ X, define

µ(E) =
∑

{k|xk∈E}
pk.

(a) Prove µ is a measure on 2X . µ is called a discrete

measure with ‘mass’ pk at xk.
(b) Prove the measure µ is finite (i.e. µ(X) <∞) if and only

if
∑∞

k=1 pk < ∞. If
∑∞

k=1 pk = 1, the measure µ is called a
discrete probability measure.

10. Let C0 be the collection of rectangles of the form (a, b]× (c, d] =
{(x, y) | a < x ≤ b, c < y ≤ d} and define a set function m on C0
by

m((a, b]× (c, d]) = (b− a)(d− c).
Show that m can be uniquely extended to be a measure on
R(C0).

11. Let g(x) be a monotone increasing function on R satisfying for
each x ∈ R g(x) = lim y → x−g(y). For interval (α, β], define its
length by

g((α, β]) = g(β)− g(α).

Show that this set function g can be uniquely extended to be a
measure on R0.
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3. Outer Measures and Lebesgue Measure

In the previous section, we have defined a measure m on the ring
R0 on R as

m(E) =

n∑
i=1

(bi − ai)

if E = ∪ni=1(ai, bi] for some n ∈ N and (ai, bi] ∩ (aj, bj ] = ∅, for i �= j.
Next, we would like to extend m to a larger class of subsets of R (e.g.,
at least on a σ−ring such as BR). This is usually done through the
introduction of outer measures, a concept due to C. Carathéodory. Let
us briefly explain the idea as follows.

Suppose that a set E is covered by a countable union of elements
of R0, E ⊂ ∪∞k=1Ek for Ek ∈ R0. Then if E would be measurable, the
countable subadditivity would yield m(E) ≤∑∞

k=1m(Ek). Therefore,
any countable covering of a set gives some information of the measure of
the set. Observe that the information from countable coverings is much
more precise than that obtained from finite coverings. For example, let
E be the set of rationals on [0, 1]. Then any finite covering from R0

should cover [0, 1] entirely. Thus, the measures of these finite sets ofR0

should add up to at least one. However, using the countable covering,
we can show that m(E) can be as small as any given ε > 0. In fact, let
E = {r1, · · · , rn, · · · } be the set of all rational numbers on [0, 1]. Then
{(rk − ε

2k+1 , rk + ε
2k+1 ] | k ∈ N} will be a countable covering of E from

R0. Therefore, m(E) ≤∑∞
k=1

ε
2k

= ε. Since this is true for any ε > 0.
We have m(E) = 0. Based on this discussion, for any “measurable”
set E, it is natural to define

m(E) = inf

{ ∞∑
k=1

m(Ek)

∣∣∣∣∣Ek ∈ R0 and E ⊂ ∪∞k=1Ek

}
.

In general, let R be a ring on X and µ a measure on R. We
introduce a σ-ring S(R) containing R defined by

S(R) = {E ∈ 2X | E ⊂ ∪∞i=1Ei and Ei ∈ R, i ∈ N}.
Lemma 2.3.1. For any ring R, S(R) ⊃ R is a σ-ring. Also, for

any E ∈ R, its power set 2E ⊂ S(R).

Proof. We leave the proof as an exercise. �
It is clear that on the real line R, S(R0) = P(R), the entire power

set of R.
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Definition 2.3.1. For any set E ∈ S(R), we define

µ∗(E) = inf

{ ∞∑
i=1

µ(Ei)

∣∣∣∣∣E ⊂ ∪∞i=1Ei, Ei ∈ R
}
.

µ∗(E) is called an outer measure of E.

Clearly, if we restrict µ∗ on R, we have µ∗|R = µ. That is, µ∗(E) =
µ(E) for E ∈ R. The following properties can be easily verified.

Lemma 2.3.2. µ∗ on S(R) has the following properties.

(1) µ∗(∅) = 0.
(2) µ∗(E) ≥ 0 for any E ∈ S(R).
(3) µ∗(E1) ≤ m�(E2) if E1 ⊂ E2.
(4) µ∗(E) = m(E) if E ∈ R.

In addition, we have the countable subadditivity property of µ∗:

Theorem 2.3.1. Let (Ei) be a sequence of sets in S(R). Then
µ∗(∪∞i=1Ei) ≤

∑∞
i=1µ

∗(Ei)

Proof. Clearly, the theorem holds if µ∗(Ei) = ∞ for some i. We
assume that µ∗(Ei) <∞ for all i ∈ N.

For a fixed i and for all ε > 0, by the definition of µ∗, we have
(Ei

(j)) such that

Ei
(j) ∈ R0, ∪∞j=1Ei

(j) ⊃ Ei

with
∞∑
j=1

µ(Ei
(j)) < µ∗(Ei) +

ε

2i
.

Thus,
∞∑
i=1

∞∑
j=1

µ(Ei
(j)) <

∞∑
i=1

µ∗(Ei) + ε.

Noticing that ∪∞i=1∪∞j=1Ei
(j) ⊃ ∪∞i=1Ei, we have

µ∗(∪∞i=1Ei) ≤
∑
i,j

µ(Ei
(j)) <

∞∑
j=1

µ∗(Ei) + ε.

The conclusion follows by letting ε→ 0. �

So far we have seen that µ∗ is a set function extended to S(R)
from R. A question arises naturally: is µ∗ a measure on S(R)? The
following example shows that µ∗ is not, in general, a measure on S(R).
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Example 2.3.1. Let X = (0, 1], R = {∅, X}. Define µ on R by
µ(∅) = 0 and µ(X) = 1. Then S(R) is the power set of X. Obviously,
for any nonempty set E ∈ S(R), µ∗(E) = 1. Therefore, µ∗ is not finite
additive and so, µ∗ is not a measure on S(R).

It seems that we have to adjust our goal and hope to find a class, say
R∗, in S(R), which is a σ-ring containing R, and µ∗ will be a measure
on R∗. The following theorem provides a characteristic to identify the
sets in the class R∗ and is usually call the splitting condition of a
measurable set.

Theorem 2.3.2. Let E ∈ R and F be any set of S(R), then

µ∗(F ) = µ∗(F ∩ E) + µ∗(F \ E).

Proof. Since F = (F ∩ E) ∪ (F \ E), we have

µ∗(F ) ≤ µ∗(F ∩E) + µ∗(F \ E).

If µ∗(F ) =∞, then we are done.
Assume µ∗(F ) < ∞. For all ε > 0, there exists (Ei) such that

Ei ∈ R, ∪Ei ⊃ F and
∞∑
i=1

µ(Ei) < µ∗(F ) + ε.

Let Ei
(1) = E ∩ Ei, Ei(2) = Ei \ E. Then Ei

(1), Ei
(2) ∈ R, and Ei

(1) ∩
Ei

(2) = ∅. So, µ(Ei) = µ(Ei
(1) ∪ Ei(2)) = µ(Ei

(1)) + µ(Ei
(2)). Thus,∑∞

i=1 µ(Ei) =
∑∞

i=1 µ(E
(1)
i ) +

∑∞
i=1 µ(E

(2)
i ).

Noticing that

∪∞i=1(E
(1)
i ) = ∪∞i=1(Ei ∩E) = (∪∞i=1Ei) ∩E ⊃ F ∩ E

and
∪∞i=1(E

(2)
i ) = ∪∞i=1(Ei \ E) = (∪∞i=1Ei)) \ E ⊃ F \ E,

we have,
∞∑
i=1

µ(Ei) =

∞∑
i=1

µ(Ei ∩ E) +

∞∑
i=1

µ(Ei \ E) ≥ µ∗(F ∩E) + µ∗(F \ E).

Therefore, µ∗(F ) + ε > µ∗(F ∩ E) + µ∗(F \ E). Letting ε → 0, we
obtain µ∗(F ) ≥ µ∗(F ∩E) + µ∗(F \ E). �

The equation

µ∗(F ) = µ∗(F ∩E) + µ∗(F \ E)

is also called the Carathéodory condition. It is used to characterize
measurable sets.
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Definition 2.3.2. For E ⊂ S(R), if for any set F ∈ S(R), we
have µ∗(F ) = µ∗(F∩E)+µ∗(F\E), then E is said to be µ∗-measurable.
The set of all µ∗-measurable sets is denoted by R∗.

It can be proved that such an extension of µ-measure on R to µ∗-
measure on R∗ is unique. The following result meets our expectation.

Theorem 2.3.3. The class R∗ of all µ∗-measurable sets is a σ-
ring.

Proof. We leave the proof as an exercise. �
In the following, we restrict our study to Lebesgue measure on the

real line.

Definition 2.3.3. Based on the ring R0 on the real line R and
the measure m on R0, the extended measure m∗ on R∗

0 is called the
Lebesgue measure and is still denoted by m. The collection of all
Lebesgue measurable sets is denoted by M.

Though most of the following properties are also true for a general
measure µ, we state them only for Lebesgue measure m.

Theorem 2.3.4. The set E is Lebesgue measurable if and only if
for any A ⊂ E and B ⊂ Ec,

m∗(A ∪ B) = m∗(A) +m∗(B).

Proof. Let F = A ∪ B. Then F ∩ E = A and F \ E = B. E is
measurable implies thatm∗(A∪B) = m∗(F ) = m∗(F∩E)+m∗(F\E) =
m∗(A) +m∗(B).

On the other hand, for any F ⊂ R, let A = F ∩E and B = F \E.
Then A ⊂ E and B ⊂ Ec. Therefore, m∗(F ) = m∗(A+B) = m∗(A) +
m∗(B) = m∗(F ∩ E) +m∗(F \ E). �

Theorem 2.3.5. On M, we have the following properties.

(1) E ∈M if and only if Ec ∈ M.
(2) If m∗(E) = 0, then E ∈M.
(3) If E1 and E2 are in M, then E1 ∪ E2 ∈ M. In particular, if

E1 ∩ E2 = ∅, then for any set F ⊂ R,

m∗(F ∩ (E1 ∪ E2)) = m∗(F ∩E1) +m∗(F ∩E2).

(4) If E1 and E2 are measurable, so are E1 ∩ E2 and E1 \ E2.
(5) If Ek ∈M for k ∈ N, then ∪∞k=1Ek ∈M.

Proof. (1) This is obvious from the definition.
(2) For any F ⊂ R, we have 0 ≤ m∗(E ∩ F ) ≤ m∗(E) = 0. There-

fore, m∗(F ) ≥ m∗(F \ E) = m∗(F ∩ E) + m∗(F \ E). On the other
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hand, we always have m∗(F ) ≤ m∗(F ∩E) +m∗(F \E) and thus, E is
measurable.

(3) For any set F , we have the decomposition

F = (F∩E1\E2)∪(F∩E2\E1)∪(F∩E1∩E2)∪(F\E1\E2) := A∪B∪C∪D.
Noticing that A ∪ C ⊂ E1, B ∪ D ⊂ Ec

1, and E1 is measurable, by
Theorem 2.3.4 we have

m∗(A ∪ C) +m∗(B ∪D) = m∗(F ).

Similarly, we have

m∗(B) +m∗(A ∪ C) = m∗(A ∪ B ∪ C).

Since E2 is measurable, we obtain

m∗(B ∪D) = m∗(B) +m∗(D).

Combining the above three equalities, we have

m∗(F ) = m∗(A∪B∪C)+m∗(D) = m∗(F∩(E1∪E2)
)
+m∗(F\(E1∪E2)

)
.

Thus, E1 ∪E2 is measurable.
If E1∩E2 = ∅ and E1 is measurable, then for any set F , F∩E1 ⊂ E1

and F ∩ E2 ⊂ Ec
1. The equality

m∗(F ∩ (E1 ∪ E2) = m∗(F ∩ E1) +m∗(F ∩ E2)

follows from Theorem 2.3.4.
(4) Noticing that E1 ∩ E2 = (Ec

1 ∪ Ec
2)
c, we know that E1 ∩ E2 is

measurable from facts (1) and (3). The fact that E1 \E2 is measurable
can be seen from E1 \ E2 = E1 ∩Ec

2.
(5) Without loss any generality, we can assume that (Ek) is the

sequence of pairwise disjoint measurable sets because of the decompo-
sition formula

∪∞k=1Ek = E1 ∪ (E1 \ E2) ∪ (E1 \ E2 \ E3) ∪ · · ·
and fact (3).

Let S = ∪∞k=1Ek and Sn = ∪nk=1Ek. From fact (3) and math induc-
tion, we know that Sn is measurable for any n ∈ N and also that for
any F ⊂ R,

m∗(F ∩ Sn) =

n∑
k=1

m∗(F ∩Ek).

Therefore,

m∗(F ) = m∗(F ∩ Sn) +m∗(F \ Sn) ≥ m∗(F ∩ Sn) +m∗(F \ S)

=
n∑
k=1

m∗(F ∩Ek) +m∗(F \ S).
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Letting n→∞, we obtain

m∗(F ) ≥
∞∑
k=1

m∗(F ∩Ek) +m∗(F \ S) ≥ m∗(F ∩ S) +m∗(F \ S)

by the countable subadditivity of m∗, and thus S is measurable. �

Corollary 2.3.1. (1) If Ek, k = 1, 2, · · · , n are measurable, then
so are ∪nk=1Ek and ∩nk=1Ek.

(2) If (Ek) is a sequence of measurable sets, then

m(∪∞k=1Ek) ≤
∞∑
k=1

m(Ek).

If (Ek) is a sequence of pairwise disjoint measurable sets, then

m(∪∞k=1Ek) =

∞∑
k=1

m(Ek).

(3) If Ek is measurable for every k ∈ N, then so is ∩∞k=1Ek.

Theorem 2.3.6. Let (Ek) be an increasing sequence of measur-
able sets. That is, Ek ⊂ Ek+1 for each k ∈ N and E = ∪∞k=1Ek =
limk→∞Ek. Then for any set F ⊂ R, we have

m∗(F ∩E) = lim
k→∞

m∗(F ∩ Ek).
In particular, we have

m(E) = lim
k→∞

m(Ek).

Proof. We leave the proof as an exercise. �

Theorem 2.3.7. Let (Ek) be a decreasing sequence of measurable
sets. That is, Ek ⊃ Ek+1 for each k ∈ N and E = ∪∞k=1Ek =
limk→∞Ek. Then for any set F ⊂ R with m∗(F ) <∞, we have

m∗(F ∩E) = lim
k→∞

m∗(F ∩ Ek).
In particular, if m(En) <∞ for some n ∈ N, we have

m(E) = lim
k→∞

m(Ek).

Proof. We leave the proof as an exercise. �
Recall that BR denotes the collection of Borel sets, which is the

smallest σ-algebra generated by R0. Thus, BR ⊂ M. Therefore, all
open sets and closed sets are inM. In fact, we can see thatM is a σ-
algebra. Noticing that the Cantor set K has cardinality c and measure
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zero, we see that P (K) ⊂ M. On the other hand, obviously, we have
M⊂ P (R). Therefore, the cardinality ofM is 2c.

Noticing that BR = σa(R0) = σa(I), the following result is not
unexpected.

Lemma 2.3.3. For any E ∈ 2R, the outer measure m∗ can also be
defined as m∗(E) = inf{m(O) | O ⊃ E,O is open }.

Proof. By the monotonicity of m∗, we have m∗(E) ≤ m∗(O) if
O ⊃ E. Noticing that O ∈ M, we have m∗(E) ≤ inf{m(O) | O ⊃
E,O is open }. Ifm∗(E) =∞ , then we are done. Therefore, we assume
m∗(E) <∞. For any ε > 0, by definition there exists a sequence (Ei)
of sets in R0, such that E ⊂ ∪∞i=1Ei and m∗(E) + ε >

∑∞
i=1m(Ei).

Let Ei = ∪nij=1E
(j)
i be a disjoint decomposition of Ei in R0. E

(j)
i =

(a
(j)
i , b

(j)
i ], E ⊂ ∪∞i=1∪nij=1E

(j)
i and m(Ei) =

∑ni
j=1m(E

(j)
i ), i = 1, 2, · · · .

Since {E(j)
i | j = 1, 2, · · · , ni, i = 1, 2, · · · } is countable, we can

relabel the collection as {(an, bn] | n = 1, 2, · · · }. Then E ⊂ ∪i,jE(j)
i =

∪∞n=1(an, bn].
Define On = (an, bn + ε

2n
). Then the open set O = ∪∞n=1On ⊃ E

and

m(O) = m∗(O) ≤
∞∑
n=1

m∗(On) =

∞∑
n=1

(bn +
ε

2n
− an)

=

∞∑
n=1

(bn − an) + ε < m∗(E) + 2ε.

So, inf{m(O) | O ⊃ E,O is open } ≤ m∗(E) + 2ε.
Let ε→ 0. We have inf{m(O) | E ⊂ O,O is open} ≤ m∗(E). �
We also have the following results on approximating Lebesgue mea-

surable sets using open sets or closed sets.

Theorem 2.3.8. The following are equivalent:

(1) E ∈M.
(2) For all ε > 0, there exists an open set O ⊃ E, such that m∗(O \

E) < ε.
(3) For all ε > 0, there exists a closed set F ⊂ E, such that m∗(E \

F ) < ε.
(4) For all ε > 0, there exists an open set O and a closed set F such

that F ⊂ E ⊂ O, and m∗(O \ F ) < ε.

Proof. We leave the proof as an exercise. �
If E can be expressed as an intersection of countably many open

sets, then E is called a Gδ set. Similarly, if F is a union of countably
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many closed sets, then F is called an Fσ set. Therefore, we obtain
the following.

Corollary 2.3.2. If E ∈ M then there exists a Gδ set G and
an Fσ set F such that F ⊂ E ⊂ G, and m(G \ E) = m(E \ F ) =
m(G \ F ) = 0.

Proof. Let E be a measurable set. Then by Theorem 2.3.8, for all
εn = 1

n
, there exists an open set On ⊃ E and a closed set Fn ⊂ E, such

that m∗(On \ E) < ε and m∗(E \ Fn) < ε.
Now let G = ∩∞n=1On and F = ∪∞n=1Fn. Then G is a Gδ set and F

is an Fσ set.
Now m(G \E) ≤ m(On \E) ≤ 1

n
for all n and thus m(G \E) = 0.

Similarly, m(E \F ) = 0. Also, m(G \F ) ≤ m(G \E) +m(E \F ) = 0.
�

Since any subset of a measure zero set is measurable, we obtain the
following.

Corollary 2.3.3. For any E ∈ M, E is a union of a Borel set
and a set of Lebesgue measure zero.

For E ⊂ R and y ∈ R, we define Ey = {x + y | x ∈ E}. Ey is
called the y-translation of E. For Lebesgue measure m, we can show
that m(E) = m(Ey) if E is measurable. That is, m is a translation
invariant measure. Using this property, we can show that there is a
non-measurable set P ⊂ [0, 1) and thus a nonmearsurable set in any
interval of positive length. See for example, the book by Royden [23]
for details.

Are there Lebesgue measurable sets that are not Borel sets? The
answer to this question is “yes.” In fact, we can use the Cantor function
to construct such a set. As a reference, see [23] Problem 2.48 and
Problem 3.28.

Exercises
1. Show that the class R∗ is a σ-ring.
2. If m∗(E) = 0, then prove any subset of E is measurable.
3. Show that the Cantor set K on [0, 1] has measure zero.
4. Define the distance between two set as d(E1, E2) = inf{|x1 −
x2| | x1 ∈ E1, x2 ∈ E2}. Prove that if d(E1, E2) > 0, then
m∗(E1 ∪E2) = m∗(E1) +m∗(E2).

5. For 0 < m∗(E) <∞ and f(x) = (−∞, x)∩E, show that f(x) is
a continuous function on R.

6. If both A ∪ B and A are measurable, can you conclude that
B is also measurable? Discuss the cases when m(A) = 0 and
A ∩B = ∅, respectively.
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7. For a set A ⊂ R, m∗A is the outer measure of A. Prove that if
m∗A = 0, then m∗(A ∪ B) = m∗B.

8. Let A and E be subsets of R and let E be measurable. Prove
that

m∗(A) +m∗(E) = m∗(A ∪E) +m∗(A ∩ E).

9. Let E ⊂ R and m∗(E) > 0. Prove that for any 0 < a < m∗(E),
there is a subset A of E such that m∗(A) = a.

10. If A ∈M and m(A∆B) = 0, then prove B is also measurable.
11. Show that Q is an Fσ set and therefore, Qc is a Gδ set.
12. Prove Theorem 2.3.9 and Theorem 2.3.10.
13. Let m∗(E) <∞. Show that there is a Gδ set H such that H ⊃ E

and m∗(E) = m(H).
14. If A∪B ∈M and m(A∪B) = m∗(A) +m∗(B) <∞, then both

A and B are measurable.
15. Prove Theorem 2.3.12.
16. For E ∈ M, if m(E) < ∞, then prove that for all ε > 0, there

are open intervals I�, � = 1, · · · , k with rational end-points such
that m(E∆G) < ε, where G = ∪k�=1I�.

4. Measurable Functions

In the previous sections, we have extended the concept of length
of intervals to measure of Lebesgue measurable sets. Consequently, we
are now able to generalize Riemann integrals to Lebesgue integrals. For
this purpose, we first define Lebesgue measurable functions, which play
a similar role in Lebesgue integrals as the almost continuous functions
in Riemann integrals. In the following, we always consider real-valued
functions defined over measurable sets of R.

Definition 2.4.1. A function f is said to be measurable on a
measurable set E if for any α ∈ R, the set E(f ≤ α) = E∩{x | f(x) ≤
α} is measurable.

Therefore, by saying a function f is measurable on E, we mean its
domain is a measurable set E and that for any α ∈ R, the set E(f ≤ α)
is measurable. Similarly, we define E(f < α) = E ∩ {x | f(x) < α),
E(f > α) = E ∩ {x | f(x) > α), and E(f ≥ α) = E ∩ {x | f(x) ≥ α).

Theorem 2.4.1. Let f be a real-valued function defined on a mea-
surable set E. Then the following are equivalent:

(1) f is measurable on E.
(2) E(f < α) is measurable for any α ∈ R.
(3) E(f > α) is measurable for any α ∈ R.
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(4) E(f ≥ α) is measurable for any α ∈ R.

Proof. The equivalence follows immediately from the set equations

E(x | f(x) < α) =
∞⋃
k=1

E

(
x

∣∣∣∣ f(x) ≤ α− 1

k

)
,

E(x | f(x) ≤ α) =

∞⋂
k=1

E

(
x

∣∣∣∣ f(x) < α +
1

k

)
,

and
E(f > α) = E \E(f ≤ α), E(f ≥ α) = E \ (f < α).

�
Example 2.4.1. (a) If f ∈ C[a, b], then E(f ≤ α) is a closed

set. Thus, f is a measurable function on E = [a, b].
(b) For the Dirichlet function on E = [0, 1],

E(D ≤ α) =

⎧⎨⎩ E \Q, if 0 ≤ α < 1;
∅, if α < 0;
E, if α ≥ 1.

Thus, D(x) is measurable.
(c) A step function φ(x) =

∑n
k=1 ckχ(k,k+1] for k ∈ Z is measurable,

since, E(x : φ(x) ≤ α) is a union of half-open and half-closed
intervals.

Theorem 2.4.2. Let D be a dense set in R and E a measurable
set. Then f is measurable on E if and only if for any number r ∈ D,
the set E(f ≤ r) is measurable.

Proof. The necessary condition is obvious. For the sufficient con-
dition, notice that for any α ∈ R, since set D is dense we can choose a
sequence (rk) such that rk ≥ r and limk→∞ rk = r. From the fact that

E(f ≤ r) = ∩∞k=1E(f ≤ rk),

we see that E(f ≤ r) is measurable from Corollary 2.3.1 since each
E(f ≤ rk) is measurable. �

We would like to choose measurable functions as the Lebesgue in-
tegrable functions. For this, we need to consider the measurability of
functions after some operations on measurable functions.

Lemma 2.4.1. If f is measurable, then f 2 is measurable.

Proof. In fact, the conclusion follows from the fact that f is measur-
able and that if α > 0, E(f 2 < α) = [E(f <

√
α)

⋂
E(f ≥ 0)]

⋃
[E(f <

0)
⋂
E(f > −√α)]. If α < 0, E(f 2 < α) = ∅. �
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Theorem 2.4.3. If f and g are measurable functions on E ⊂ R,
then cf, f + g, fg, f

g
(g �= 0), max(f, g), and min(f, g) are measurable.

Proof. cf is measurable: If c = 0, then cf is measurable since

E(x : cf < α) =

{
E, if α > 0
∅, if α ≤ 0.

If c > 0, then E(x : cf < α) = E
(
x : f <

α

c

)
is measurable for any

α ∈ R. Similarly, if c < 0, E(x : cf < α) is measurable. Thus, cf is
measurable.

f + g is measurable since

E(f + g < α) =
⋃
r∈Q

E(f < r)
⋂
E(g < α− r).

We leave this claim as an exercise.
fg is measurable if f and g are measurable: This follows from

Lemma 2.4.1 since fg = 1
4
[(f + g)2 − (f − g)2].

f

g
is measurable because

1

g
is measurable if g �= 0:

E

(
1

g
< α

)
=

⎧⎨⎩ E(g < 0)
⋃

[E(g > 0)
⋂
E(g > 1

α
)], if α > 0;

E(g < 0), if α = 0;
E(g < 0)

⋂
E(g > 1

α
), if α < 0.

max(f, g) is measurable since E(max(f, g) > α) = E(f > α)
⋃
E(g >

α). min(f, g) is measurable since min(f, g) = −max(−f,−g). �
Noticing that |f | = max(f,−f), we obtain the following.

Corollary 2.4.1. If f is measurable, then |f | is measurable.

Next, we need to consider the measurability of a limit of a sequence
of measurable functions.

Theorem 2.4.4. Let (fn) be a sequence of measurable functions on
E. Then limn→∞fn and limn→∞fn are also measurable. In particular,
if lim

n→∞
fn exists, then f = lim

n→∞
fn is also measurable on E.

Proof. We leave the proof as an exercise. �
The following results are easy to see.

Theorem 2.4.5. (1) If f is defined on E1∪E2 and f is measurable
on E1 and E2, respectively, then f is measurable on E1 ∪E2.

(2) If f is a measurable function on E and A ⊂ E is measurable,
then f |A, the function restricted on A, is measurable on A.
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Definition 2.4.2. For a statement P (x) on E, if P (x) is true on
E except a measure zero subset of E, then we say P (x) is true almost

everywhere on E, denoted by P(x) a.e. on E.

Example 2.4.2. Let f and g be functions defined on a measur-
able set E. If m

(
E(x | f(x) �= g(x))

)
= 0, then f equals g almost

everywhere, denoted by f = g a.e. on E. For instance, f(x) = 0 for
x ∈ [0, 1] and the Dirichlet function D(x) are equal almost everywhere,
since m(Q ∩ [0, 1]) = 0, so we have D(x) = 0 a.e. on [0, 1].

Theorem 2.4.6. Let f and g be two functions on E and f mea-
surable. If f = g a.e. on E, then g is measurable.

Proof. Let A = { x ∈ E | f(x) �= g(x)}. E( x : g(x) < α) = {x ∈
E \ A | g(x) < α} ∪ {x ∈ A | g(x) < α} = {x ∈ E \ A | f(x) <
α} ∪ {x ∈ A | g(x) < α}. �

Definition 2.4.3. A real-valued function φ on E is called a simple

function if it is measurable and assumes only a finite number of val-
ues.

Thus, if f is a simple function on E, then the set {y | y = f(x), x ∈
E} is a finite set. A step function is of course a simple function.

Example 2.4.3. The greatest integer function �x� (floor function)
on [a, b] is a simple function. Also, the Dirichlet function, D(x) is a
simple function.

Let f be a simple function on E. Then the range of f , R(f) =
{c1, c2, · · · , cn} for some n ∈ N. Let Ei = E{ x : f(x) = ci}. Then

E =

n⋃
i=1

Ei. Therefore, f =

n∑
i=1

ciχEi where χEi is the characteristic

function of Ei. Recall that any continuous function on [a, b] can be
approximated by step functions. For a bounded measurable function,
we obtain the following.

Theorem 2.4.7. For any real-valued measurable bounded function
f on E and for all ε > 0, there exists a sequence (ϕn) of simple func-
tions on E such that ϕn → f on E as n→∞.

Proof. For n ∈ N, let

E
(n)
j = E

(
j

n
≤ f ≤ j + 1

n

)
, j = −n2,−n2 + 1, · · · , 0, 1, · · · , n2 − 1.

Define

ϕn =
n2−1∑
j=−n2

j

n
χ
E

(n)
j
.
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Then ϕn’s are simple functions. For any x0 ∈ E, there exits N ∈ N such
that |f(x0)| ≤ N since f is finite. Thus, for n > N , there exists j ∈ N

such that −n2 ≤ j ≤ n2 − 1, and j
n
≤ f(x0) ≤ j+1

n
. So, x0 ∈ E(n)

j . By

the definition of ϕn, we see that ϕn(x0) = j
n
, therefore, when n > N ,

|ϕn(x0)− f(x0)| < 1

n
.

That is, ϕn(x0) → f(x0) as n → ∞. x0 ∈ E is arbitrarily chosen and
so (ϕn) converges to f on E. �

More generally, we can prove the following.

Theorem 2.4.8. If f is measurable on E, then there is a sequence
(ϕn) such that ϕn → f on E and

(i) if f ≥ 0, then for every x ∈ E, (ϕn) is an increasing sequence of
nonnegative simple functions convergent to f on E;

(ii) if f is bounded, then (ϕn) converges to f uniformly.

Proof. We leave the proof as an exercise. �
Finally, we end this section by discussing the relationship between

measurable functions and continuous functions.

Theorem 2.4.9. [Lusin] Let f be a measurable function on E. for
all δ > 0, there exists a closed set F ⊂ E such that m(E \ F ) < δ and
f |F is continuous.

Proof. We leave the proof as an exercise. �

Lemma 2.4.2. If F ⊂ R is closed and f is continuous on F , then
f can be extended to a continuous function on R. That is, there exists
h ∈ C(R) such that h |F= f .

Proof. F c is open and thus, by Theorem 1.4.14 we have F c =
∪(ak, bk) and the open intervals (ak, bk) are mutually disjoint. Define
h(x) by h(x) = f(x) if x ∈ F , h(x) = f(ak)

b−x
bk−ak + f(bk)

x−ak
bk−ak if

(ak, bk) is a finite interval, otherwise, h(x) = f(bk) if ak = −∞ and
h(x) = f(ak) if bk =∞. It is easy to see now h(x) is continuous on R
and h |F= f . �

Theorem 2.4.10. [Lusin] If f is measurable on E, then for any
δ > 0, there exists a continuous function h on R, such that m({x |
f(x) �= h(x)}) < δ.

Proof. For δ > 0, there is a closed set Fδ such that Fδ ⊂ E and
m(E \ Fδ) < δ. Using the above lemma, we can have a continuous
function h such that E(f �= h) ⊂ E \ Fδ. Therefore, m(f �= h) < δ. �



4. MEASURABLE FUNCTIONS 55

Exercises

1. Let f be a measurable function on E. Prove that for any a ∈ R,
the set E(f = a) is measurable.

2. Let f be a measurable function on R. Then prove
(a) For any open set O on the real line, f−1(O) is measurable.
(b) For any closed set F on the real line, f−1(F ) is measur-

able.
(c) For any Gδ or Fσ set E on the real line, f−1(E) is mea-

surable.
(d) For any Borel set B on the real line, f−1(B) is measurable.

[Hint: The class of sets for which f−1(E) is measurable is a σ-
algebra.]

3. Show that E ∈M if and only if its characteristic function χE(x)
is a measurable function.

4. Show that E(f + g < α) = ∪r∈QE(f < r) ∩ E(g < α− r).
5. If f is measurable, then prove f 2 is also measurable. Construct

a function f satisfying f 2 is measurable but f is nonmeasurable.
6. If f and g are measurable on E, then prove

(a) for any α, β ∈ R, E(f = α) and E(α < f < β) are
measurable and so are E(α ≤ f ≤ β), E(α ≤ f < β), and
E(α < f ≤ β);

(b) E(f > g) is measurable.
7. Show that if f is a measurable function and g a continuous func-

tion defined on R, then g ◦ f is measurable. If we only assume
that f and g are measurable on R, then is g ◦ f measurable?

8. Prove Theorem 2.4.4.
9. Let f be a bounded measurable function on E. Prove there is a

sequence (fn) of simple functions such that (fn) converges to f
uniformly on E and |fn(x)| ≤ supx∈E |f(x)|, n = 1, 2, · · · .

10. Prove that if f ∈ C(R) (that is, f is continuous on R), then f is
measurable. Furthermore, if f is differentiable, then prove f ′ is
measurable.

11. Let ϕ(x) =
∑
ck · χFk and Fk, k = 1, 2, · · · , n be disjoint closed

sets. Then prove ϕ(x) is continuous when restricted to E =
∪nk=1Fk.

12. Prove Lusin’s Theorem: Let f be a measurable function on E.
For all δ > 0, there exists a closed set F ⊂ E such that m(E \
F ) < δ and f |F is continuous.



56 2. MEASURE THEORY

5. Convergence of Measurable Functions

In this section, we discuss the convergence properties of measurable
function sequences by only stating results without giving proof. First,
we give the following definitions.

Definition 2.5.1. (1) (Convergence a.e.) (fn) converges to

f almost everywhere on E means that limn→∞ fn(x) = f(x) for all
x ∈ E except a measure zero subset of E. fn → f almost everywhere
on E is denoted by fn→f a.e. on E.

(2) (Uniform convergence a.e.) (fn) is said to be almost everywhere

uniformly convergent to f on E if there is a measure zero subset A
of E such that (fn) uniformly converges to f on E \ A. (fn) almost
everywhere uniformly converges to f on E is denoted by fn ⇒ f a.e.
on E.

(3) (Convergence in measure) A sequence (fn) of measurable func-
tions on E is said to converge to f in measure if for any ε > 0,
there exists an positive integer N such that m{x | |fn(x)−f(x)| ≥ ε} <
ε for all integers n ≥ N. fn → f in measure on E is denoted by fn

m→ f
on E.

In the following, we give characterizations of these convergences.

Theorem 2.5.1. Let (fn) and f be measurable on E. Then

(1) fn → f a.e. on E if and only if for any ε > 0,

m
( ∩∞n=1 ∪∞k=nE(|fk − f | ≥ ε)

)
= 0.

(2) fn ⇒ f a.e. on E if and only if for any ε > 0,

lim
n→∞

m
( ∪∞k=n E(|fk − f | ≥ ε)

)
= 0.

(3) fn
m→ f on E if and only if for any subsequence (fnk) of (fn),

there is its subsequence (fn′
k
) such that fn′

k

m→ f a.e. on E.

From the characterization of fn → f a.e. on E in the above theorem
and Theorem 2.3.7, we obtain the following.

Theorem 2.5.2. If m(E) <∞ and fn → f a.e. on E, then fn
m→

f on E.

If m(E) =∞, then fn → f a.e. on E may not imply fn
m→ f on E.

Example 2.5.1. Define

fn(x) =

{
x, if x ∈ [0, n],
0, if x ∈ (n,∞).
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E = [0,∞). Then limn→∞ fn(x) = x and so f(x) = x. limn→∞ fn = f
almost everywhere. Noticing that m{x | |fn(x) − f(x)| ≥ ε} = ∞ for
any fixed n, we have fn → f in measure on [0,∞).

The following example shows that fn
m→ f on E does not imply

fn → f a.e. on E.

Example 2.5.2. Let E = (0, 1] and define (fn) as follows. First,
divide E into two even subintervals and define

f
(1)
1 =

{
1, x ∈ (0, 1

2
];

0, x ∈ (1
2
, 1].

f
(1)
2 =

{
0, x ∈ (0, 1

2
];

1, x ∈ (1
2
, 1].

Then, for n ∈ N, inductively divide E into 2n subintervals. We define
2n functions on E as

f
(n)
j =

{
1, x ∈ ( j−1

2n
, j

2n
];

0, x /∈ ( j−1
2n
, j

2n
].

Let fN = f
(n)
j for N = 2n − 2 + j and then fN

m→ 0 on E since for

ε > 0, E(|fN − 0| > ε) either is the empty set or ( j−1
2n
, j

2n
] and so,

m(E(|fN − 0| > ε)) ≤ 1
2n

.
However, fN diverges everywhere on (0, 1]! In fact, for any x0 ∈

(0, 1], no matter how large n is, there is a j ∈ N such that x0 ∈ ( j−1
2n
, j

2n
].

Thus, f
(n)
j (x0) = 1 and f

(n)
j+1(x0) = 0 or f

(n)
j−1(x0) = 0. Therefore, we

can always find two subsequences from (fN) such that one converges to
1 and the other converges to 0.

However, we have the following.

Theorem 2.5.3. [Riesz] Let (fn) be a sequence of measurable func-
tions that converges in measure to f on E. Then there is a subsequence
(fnk) that converges to f almost everywhere on E.

The following theorem provides a relationship between convergence
a.e. and uniform convergence.

Theorem 2.5.4. [Egoroff] If (fn) is a sequence of measurable func-
tions that converges to f on E with m(E) < ∞, then for all η > 0,
there exists A ⊂ E with m(A) < η such that fn converges to f on E \A
uniformly.

A sequence (fn) of measurable functions on E is called a Cauchy

sequence in measure if for any δ > 0, we have limk,�→∞m(E(fk −
f�| ≥ δ)) = 0. The following gives the Cauchy criterion for convergence
in measure.
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Theorem 2.5.5. Let (fk) be a sequence of measurable functions

which are finite a.e. on E. Then fk
m→ f a measurable function f on

E if and only if (fk) is a Cauchy sequence in measure.

Exercises
1. Show that the sequence of functions (fn(x)) := (sinn x) converges

to 0 a.e. on R.
2. Let (fk) be a sequence of measurable functions onE withm(E) <

∞. Prove that if fk
m→ f , then for any p > 0, |fk|p m→ |f |.

3. If f is a measurable function on E with m(E) <∞, then prove

there is a sequence (ϕk) of simple functions such that fk
m→ f

and fk → f a.e. simultaneously.
4. Suppose fk

m→ f and gk
m→ g on domain D. Show that

(a) fk ± gk m→ f ± g.
(b) |fk| m→ |f |.
(c) min{fk, gk} m→ min{f, g} and max{fk, gk} m→ max{f, g}.

(d) fkgk
m→ fg when m(D) <∞.

5. Let f be a measurable and bounded function on [a, b]. Show that
there is a sequence (gk) of continuous functions such that gk → f
a.e. on [a, b] and maxx∈[a,b] |gk(x)| ≤ supx∈[a,b] |f(x)|.

6. Show that f is measurable on [a, b] if and only if there is a se-

quence of polynomials (pn) such that pn
m→ f on [a, b].



CHAPTER 3

The Lebesgue Integral

In the classical theory of integration on R,
∫ b
a
f(x) dx is introduced

as the signed area under a continuous curve y = f(x) and is defined
as a limit of Riemann sums, which are integrals of piecewise constant
functions which approximate f on the interval [a, b]. In this chapter
we extend the concept of integration to measurable functions which
are approximated by simple functions and thus develop Lebesgue inte-
gration theory. We consider only real-valued functions in the following
discussion.

1. The Riemann Integral and the Lebesgue Integral

In this section, we will introduce the Lebesgue integral of bounded
measurable functions on E and its basic properties. We begin by re-
calling the definition of the Riemann integral for a bounded function
f : [a, b] �→ R. For any partition

∆ : a = x0 < x1 < · · · < xn = b

of [a, b], we define the meshsize |∆| of the partition as |∆| = max{∆k :=
xk − xk−1 | k = 1, · · · , n}. Then the Riemann integral of f on [a, b] is
defined by

(R)

∫ b

a

f(x) dx = lim
|∆|→0

n∑
k=1

f(ξk)∆k,

where ξk ∈ [xk−1, xk], k = 1, 2, · · · , n.
For a step function ψ on [a, b],

ψ(x) = ck, xk−1 < x < xk, k = 1, 2, · · · , n,

we have

(R)

∫ b

a

ψ(x) dx =
n∑
k=1

ck(xk − xk−1).

59
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For f defined on [a, b] and ∆ a partition of [a, b], letMk = supxk−1≤x≤xk f(x)

and mk = infxk−1≤x≤xk f(x). Then the upper (Riemann) integral is de-
fined as

(R)

∫ b

a

f(x) dx = inf
∆

n∑
k=1

Mk(xk − xk−1).

The lower (Riemann) integral is then

(R)

∫ b

a

f(x) dx = sup
∆

n∑
k=1

mk∆k.

Clearly, (R)
∫ b
a
f(x) dx ≥ (R)

∫ b
a
f(x) dx and we say that f is Rie-

mann integrable if (R)
∫
b
af(x) dx = (R)

∫ b
a
f(x) dx. In this case, the

Riemann integral of f over [a, b] is

(R)

∫ b

a

f(x) dx = (R)

∫ b

a

f(x) dx = (R)

∫ b

a

f(x) dx.

Therefore, if f is Riemann integrable over [a, b], then

(R)

∫ b

a

f(x) dx = inf

{∫ b

a

ψ(x) dx

∣∣∣∣ψ ≥ f and ψ is a step function

}
.

The numbers (R)
∫ b
a
f(x) dx and (R)

∫ b
a
f(x) dx will be close if f is

continuous. We can show that f is Riemann integrable if f is continu-
ous almost everywhere (exercise).

Example 3.1.1. Consider the Dirichlet function

D(x) =

{
0, if x is an irrational in [0, 1];
1, if x is a rational in [0, 1].

We have (R)
∫ 1

0
D(x) dx = 1 and (R)

∫ 1

0
D(x) dx = 0. Therefore, D(x)

is not Riemann integrable.

This example shows that f is not Riemann integrable if it has “too
many” discontinuities. Notice that though the set of discontinuities of
D(x) is [0, 1], D(x) is zero almost everywhere since {x | D(x) �= 0} =
Q ∩ [0, 1]. Lebesgue extended the concept of integration to the space

of measurable functions and we would expect that
∫ 1

0
D(x) dx = 0.

For a measurable function f defined on a measurable set E with
mE < ∞. Assume that � ≤ f(x) ≤ L. Let ∆y : � = y0 < y1 < · · · <
yn = L and |∆y| = maxk(yk − yk−1). Let

Ek =

{
f−1([yk−1, yk)), if k < n;
f−1([yk−1, yk]), if k = n.
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Then Ek, k = 1, 2, · · · , n are measurable. For any ηk ∈ [yk−1, yk),
k = 1, 2, · · · , n, if the limit lim|∆y|→0

∑n
k=1 ηkm(Ek) exits, then we say

f is Lebesgue integrable over E and we denote it by (L)
∫
E
f(x) dx

or
∫
E
f(x) dx for short.

For the Dirichlet function D(x), if |∆y| < 1
2

it is easy to see that

Ek =

⎧⎨⎩ [0, 1] ∩Q, if 1 ∈ [yk−1, yk);
[0, 1] \Q, if 0 ∈ [yk−1, yk);
∅, otherwise.

Therefore,
∫ 1

0
D(x) dx = 0.

For a simple function ϕ(x) =
∑n

k=1 ckχEk , where ∪nk=1Ek = E
and Ek are mutually disjoint measurable sets, we define

∫
E
ϕ(x) dx =∑n

k=1 ckm(Ek).

Lemma 3.1.1. If ϕ and ψ are simple functions on E and ϕ = ψ
a.e., then

∫
E
ϕdx =

∫
E
ψ dx.

Proof. Let ϕ(x) =
∑n

i=1 αiχEi(x) and φ(x) =
∑m

j=1 βjχFj(x) for

E = ∪iEi = ∪jFj. Then αi = βj on Ei ∩ Fj a.e. Therefore, αim(Ei ∩
Fj) = βjm(Ei ∩ Fj) for all i = 1, · · · , n and j = 1, · · · , n. Hence,

∫
E

ϕdx =

n∑
i=1

αim(Ei) =

n∑
i=1

m∑
j=1

αim(Ei ∩ Fj)

=
n∑
i=1

m∑
j=1

βjm(Ei ∩ Fj) =
m∑
j=1

βjm(Fj) =

∫
E

ψ dx.

�
The following properties of the integral of simple functions can be
proved similarly.

Lemma 3.1.2. Suppose that ϕ and ψ are simple functions on a
measurable set E. We have

(i) If ϕ ≤ ψ a.e. on E, then
∫
E
ϕdx ≤ ∫

E
ψ dx.

(ii)
∫
E
ϕdx ≤ max{ϕ} ·m(E).

(iii) For any real numbers λ and η,
∫
E
(λϕ + ηψ) dx = λ

∫
E
ϕdx +

η
∫
E
ψ dx.

(iv) If E = E1 ∪ E2 for disjoint measurable sets E1 and E2, then∫
E
ϕdx =

∫
E1
ϕdx+

∫
E2
ϕdx.
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Similar to upper and lower Riemann integrals, we define the upper

and lower Lebesgue integrals as∫
E

f(x) dx = inf

{∫
E

ψ(x) dx,where simple function ψ(x) ≥ f(x)

}
and∫

E

f(x) dx = sup

{∫
E

ϕ(x)dx, where simple function ϕ ≤ f(x)

}
,

respectively. We have the following.

Theorem 3.1.1. Let f be a bounded Lebesgue measurable function
defined on a measurable set E with mE <∞. Then∫

E

f(x) dx =

∫
E

f(x) dx.

Therefore, f is Lebesgue integrable over E.

Therefore, for a bounded Lebesgue measurable function f on E, we
can simply define∫

E

f(x) dx = inf

{∫
E

ψ dx

∣∣∣∣ ψ ≥ f, ψ is simple

}
.

Proof. Let α ≤ f ≤ β. For a give n ∈ N, consider a partition of
[α, β]:

α = y0 < y1 < · · · < yn = β

satisfying yk − yk−1 <
1
n
. Define the sets

Ek = {x ∈ E | yk−1 ≤ f(x) < yk}
for k = 1, 2, · · · , n − 1 and En = {x ∈ E | f(x) = β}. Then Ek, k =
1, 2, · · · , n are measurable, disjoint, and have union E. Thus,

n∑
k=1

m(Ek) = m(E).

The simple functions defined by

ψn(x) =

n∑
k=1

ykχEk(x)

and

φn(x) =
n∑
k=1

yk−1χEk(x)

satisfy
φn(x) ≤ f(x) ≤ ψn(x).
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Therefore,

inf
ψ≥f

ψ is simple

∫
E

ψ(x) dx ≤
∫
E

ψn(x) dx =

n∑
k=1

ykm(Ek)

and

sup
φ≤f

φ is simple

∫
E

φ(x) dx ≥
∫
E

φn(x) dx =
n∑
k=1

yk−1m(Ek).

Hence

0 ≤ inf
ψ≥f

ψ is simple

∫
E

ψ(x) dx− sup
φ≤f

φ is simple

∫
E

φ(x) dx

≤ β − α
n

n∑
k=1

mEk =
β − α
n

m(E).

Letting n→∞, we obtain

inf
ψ≥f

ψ is simple

∫
E

ψ(x) dx− sup
φ≤f

φ is simple

∫
E

φ(x) dx = 0.

�
We sometimes write the integral as

∫
E
f . When E is an interval

[a, b], we may write
∫ b
a
f instead of

∫
[a,b]

f . From the above theorem,

we see that if f is a bounded Lebesgue measurable function on E,
then there is a sequence (ψn) of simple functions such that ψn → f
(in fact, the convergence is uniform and the functions ψn are uniformly
bounded above) and

∫
E
ψn →

∫
E
f as n → ∞. On the other hand,

if f is bounded on a measurable set E with m(E) < ∞, then there
are simple functions ϕn and ψn such that ϕn(x) ≤ f(x) ≤ ψn(x) and∫
ψn −

∫
ϕn ≤ 1

n
. Therefore, except for at most a measure zero subset

of E, f is a limit of simple functions on E. Hence by Theorem 2.4.4,
f must be measurable on E. We obtain the following.

Theorem 3.1.2. Let f be a bounded function defined on a mea-
surable set E with m(E) < ∞. Then f is Lebesgue integrable on E if
and only if f is measurable.

The following result shows that the Lebesgue integral is indeed a
generalization of the Riemann integral.
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Theorem 3.1.3. If f is bounded and Riemann integrable on [a, b],
then f is Lebesgue integrable and∫ b

a

f(x) dx = (R)

∫ b

a

f(x) dx.

Proof: If f is Riemann integrable then

(R)

∫ b

a

f(x) dx = sup
s≤f

{∫ b

a

s(x) dx

∣∣∣∣ s is a step function

}
= inf

S≥f

{∫ b

a

S(x) dx

∣∣∣∣S is a step function

}
.

Noticing that the step functions are simple functions, we have

sup
s≤f

{∫ b

a

s(x) dx

}
≤ sup

ϕ≤f

{∫ b

a

ϕdx

}
≤ inf

ψ≥f

{∫ b

a

ψ dx

}
≤ inf

S≥f

{∫ b

a

S(x) dx

}
for the step functions s and S and the simple functions ϕ and ψ. There-
fore

(R)

∫ b

a

f(x)dx ≤ sup
ϕ≤f

{∫ b

a

ϕdx

}
≤ inf

ψ≥f

{∫ b

a

ψ dx

}
≤ (R)

∫ b

a

f(x) dx.

Thus,
∫ b
a
f(x) dx = (R)

∫ b
a
f(x) dx if f is Riemann integrable on [a, b].

�
Using Lemma 3.1.1 and Lemma 3.1.2, we can prove the following

properties of
∫
E
f for a bounded measurable function f on E.

Theorem 3.1.4. Suppose f and g are bounded and measurable on
E with m(E) <∞. Then we have the following properties:

(i)
∫
E
(af ± bg) dx = a

∫
E
f dx± b ∫

E
g dx.

(ii) If f = g a.e., then
∫
E
f dx =

∫
E
g dx.

(iii) If f ≤ g a.e., then
∫
E
f dx ≤ ∫

E
g dx. Thus, | ∫

E
f(x) dx| ≤∫

E
|f(x)| dx.

(iv) If l ≤ f ≤ L, then l m(E) ≤ ∫
E
f dx ≤ Lm(E).

(v) If E = E1 ∪ E2 , E1 ∩ E2 = ∅, and E1, E2 are measurable, then∫
E
f(x) dx =

∫
E1
f(x) dx+

∫
E2
f(x) dx.

For a convergent sequence of measurable functions, we have the
following.

Theorem 3.1.5. [Bounded Convergence Theorem] Let (fn) be a
sequence of measurable functions on E with m(E) < ∞ and fn → f
for x ∈ E as n→∞. If |fn(x)| ≤M for x ∈ E and all n ∈ N, then

lim
n→∞

∫
E

fn(x) dx =

∫
E

f(x) dx.
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That is, limn→∞
∫
E
fn(x) dx =

∫
E

limn→∞ fn(x) dx.

Proof. It is clear that the theorem holds if fn → f uniformly on E.
By Egoroff’s Theorem (Theorem 2.5.4) for δ = ε

4M
(ε > 0), we have

Eδ ⊂ E such that m(E \Eδ) < δ and fn → f on Eδ uniformly. That is,
on Eδ for ε > 0 there exists N ∈ N such that |fn(x) − f(x)| < ε

2m(Eδ)
.

For the given ε > 0,∣∣∣∣∫
E

fn(x) dx−
∫
E

f(x) dx)

∣∣∣∣ =

∣∣∣∣∫
Eδ

(fn − f) dx+

∫
E\Eδ

(fn − f) dx

∣∣∣∣
≤

∫
Eδ

|fn − f | dx+

∫
E\Eδ
|fn − f | dx

≤ ε

2m(Eδ)
m(Eδ) + 2Mm(E \ Eδ) < ε

2
+ 2Mδ

=
ε

2
+ 2M

ε

4M
=
ε

2
+
ε

2
= ε.

Thus, limn→∞
∫
E
fn(x) dx =

∫
E
f(x) dx. �

Exercises
1. For f defined on [a, b] and ∆ a partition of [a, b], let ωk =
Mk − mk. Then prove f is Riemann integrable if and only if
lim|∆|→0

∑n
k=1 ωk∆xk = 0.

2. If f and g are simple functions on a measurable set E and f ≤ g
a.e. on E, then prove

∫
E
f dx ≤ ∫

E
g dx.

3. Prove Theorem 3.1.4.
4. Let f be a bounded nonnegative measurable function on [a, b]

and E,F measurable subsets of [a, b]. Show that if E ⊂ F , then∫
E
f(x) dx ≤ ∫

F
f(x) dx.

5. If f is a bounded measurable function on [a, b] and
∫ b
a
[f(x)]2 dx =

0, then prove f = 0 a.e. on [a, b].
6. Let Ek, k = 1, · · · , n be measurable subsets of [0, 1]. If each

point of [0, 1] belongs to at least three of these sets, show that
at least one of the sets has measure ≥ 3/n. [Hint: Consider the
characteristic functions of Ek and first show that

∑
k χEk ≥ 3.]

7. Suppose m(E) < ∞ and (fn) is a sequence of measurable func-

tions which are bounded a.e. on E. Show that fn
m→ 0 if and

only if
∫
E

|fn|
1+|fn| dx→ 0 as n→∞.

2. The General Lebesgue Integral

For a µ-measurable set E, if E has a decomposition E =
∑∞

k=1Ek
with µ(Ek) <∞ for all k ∈ N, then we say E has a σ-finite measure.
For any measurable set with σ-finite measure, there is a nondecreasing
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sequence (Fk) of measurable subsets of E with µ(Fk) <∞, for example
Fk = ∪kj=1Ej, such that E = ∪kFk. For any Lebesgue measurable set E,
it is always σ-finite since E can be expressed as E = supn∈NE∩(n, n+1]
and m(E ∩ (n, n+ 1]) ≤ 1 for all n ∈ N. In this section, we will extend
the definition of the Lebesgue integral to a general measurable func-
tion over arbitrary measurable sets. Let f be a real-valued function
defined on E. We define its positive part f+ = max{f, 0} and its
negative part f− = max{−f, 0}. Then both f+ and f− are non-
negative and f = f+ − f− and |f | = f+ + f−. For any N ∈ N, let
[f ]N = max{min{f(x), N},−N} be an N -truncation function of f . On
the points that |f(x)| ≤ N , we have [f(x)]N = f(x), if f(x) > N , then
[f(x)]N = N , and if f(x) < −N , [f(x)]N = −N .

For a measurable set E, if (Fk) is a sequence of nondecreasing mea-
surable subsets of E with m(Fk) < ∞ and E = ∪kFk, then (Fk) is
called a finite-measure monotone covering of E.

Definition 3.2.1. Let f be a measurable function defined on mea-
surable set E. If f is nonnegative and (Fk) is a finite-measure monotone
covering of E, then f is said to be Lebesgue integrable if the limit
limN→∞

∫
FN

[f(x)]N dx is finite. We write∫
E

f(x) dx = lim
N→∞

∫
FN

[f(x)]N dx.

It seems that the integral
∫
E
f(x) dx depends on the choices of finite-

measure monotone coverings of E. The following lemma shows that∫
E
f(x) dx is well-defined on E. When m(E) < ∞, this definition is

consistent with the Lebesgue integral definition given in the previous
section.

Lemma 3.2.1. Let f be a measurable function defined on measur-
able set E. If f is nonnegative and (Fk), (Ek) are two finite-measure
monotone coverings of E, then

lim
k→∞

∫
Fk

[f(x)]k dx = lim
n→∞

∫
En

[f(x)]n dx

whenever one of the two limits is finite.

Proof. Let’s write �k =
∫
Ek

[f(x)]k dx and rn =
∫
Fn

[f(x)]n dx. Then

both (�k) and (rn) are nondecreasing sequences of real numbers. If
� = limk→∞ �k exists, then we have �k ≤ � for all k ∈ N.

Now for any fixed N , FN ⊂ E with m(FN ) <∞. Then FN \ Ek is
a decreasing sequence of measurable sets. By Theorem 2.3.7, we have
limk→∞m(FN \ Ek) = 0. Therefore, taking the limit as k → ∞ from
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the inequality∫
FN

[f ]N dx =

∫
FN∩Ek

[f ]N dx+

∫
FN\Ek

[f ]N dx

≤
∫
Ek

[f ]N dx+Nm(FN \ Ek)
≤ �+Nm(FN \ Ek),

we obtain that

rN =

∫
FN

[f ]N dx ≤ �.

Therefore, (rn) converges and limn rn ≤ �. Now, interchanging the
positions between rn and �k, we have limk �k ≤ limn rn and thus,
limk �k = limn rn. �

Example 3.2.1. Let

f(x) =

{
1√
x
, x ∈ (0, 1]

1
x2 , x ∈ (1,∞).

Then, for Fk = [ 1
k2 , k],∫

FN

[f(x)]N dx = (R)

∫
FN

[f(x)]N dx =

∫ 1

1/N2

1√
x
dx+

∫ N

1

1

x2
dx = 3− 3

N
.

Therefore,
∫∞
0
f dx = 3.

For a general measurable function on measurable set E, its positive
part and negative part are both Lebesgue integrable.

Definition 3.2.2. If f is a measurable function on measurable
set E and both f+ and f− are Lebesgue integrable, then f is said to
be Lebesgue integrable.

∫
E
f dx is defined as

∫
E
f dx =

∫
E
f+ dx−∫

E
f− dx.

Clearly, f is Lebesgue integrable on E if and only if
∫
E
|f | dx <

∞. This cannot be true for Riemann integrals and thus, it shows a
difference between the Riemann integral and the Lebesgue integral in
the general setting.

We denote by L(E) the class of all Lebesgue integral functions on
E and write L[a, b] if E = [a, b].

Example 3.2.2. (1) Consider a function f defined on (0,∞) by
f(x) = sinx

x
. Then it is well-known that its Riemann improper inte-

gral (R)
∫∞
0

sinx
x
dx = π

2
. However, (R)

∫∞
0
| sinx
x
| dx diverges and thus,

f(x) /∈ L(0,∞).
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(2) Define f on [0, 1) by

f(x) =

{
0, x = 0

(−1)n+1n, 1
n+1

< x ≤ 1
n
, n ∈ N.

Then, its Riemann improper integral (R)
∫ 1

0
f(x) dx =

∑∞
n=1(−1)n+1 1

n+1
=

1− ln 2. However, (R)
∫ 1

0
|f(x)| dx =∞ and thus, f(x) /∈ L[0, 1].

The following result is often used to check integrability of measur-
able functions.

Lemma 3.2.2. Suppose f ∈ L(E) and E is measurable. Let g be a
measurable function on E. If |g| ≤ f , then g is also in L(E).

Proof. Since |g| ≤ f , we have g+ ≤ f and g− ≤ f . For a finite-
measure monotone covering (Fk) of E and positive integers k, we have

0 ≤
∫
Fk

[g+]k dx ≤
∫
Fk

[f ]k dx ≤
∫
E

f dx <∞.

Therefore, g+ is integrable. Similarly, g− is integrable and so is g. �
Next, we would like to verify the integral properties listed in The-

orem 3.1.4 for the general integrable functions defined on measurable
set E. First we prove the linearity property.

Theorem 3.2.1. Let f, g ∈ L(E) and let E be measurable. Then
for any real numbers α and β, αf + βg is also integrable and∫

E

(αf + βg) dx = α

∫
E

f dx+ β

∫
E

g dx.

Proof. First, we verify that for α ≥ 0, αf is integrable. In this
case, (αf)+ = αf+ and we’d like to show

∫
E
(αf)+dx = α

∫
E
f+dx. It

is true when α = 0. For α > 0, [αf ]N = α[f ]N/α and thus,∫
E

(αf)+ dx = lim
n→∞

∫
Fk

[(αf)+]k dx = α lim
n→∞

∫
Fk

[f+]k/α dx = α

∫
E

f+ dx.

From |αf | = |α||f | and Lemma 3.2.2, we see that αf is measurable on
E, since f integrable implies that |f | is also integrable.

Now it is sufficient to prove the theorem only for α = β = 1. Since
|f+g| ≤ |f |+ |g|, we have that f+g is integrable. From the definition,
we see that the values

∫
E
(f + g) dx =

∫
E
(f + g)+ dx − ∫

E
(f + g)− dx

and
∫
E
f+ dx− ∫

E
f− dx+

∫
E
g+ dx− ∫

E
g− dx should be equal.

One notes that if f = h − k, h ≥ 0, k ≥ 0, and f is integrable
on E, then

∫
E
f =

∫
E
h − ∫

E
k. In fact, f = f+ − f− = h − k,

so f+ + k = h + f−. Thus,
∫
f+ dx +

∫
k dx =

∫
h dx +

∫
f− dx.

That is,
∫
f =

∫
f+ − ∫

f− =
∫
h − ∫

k. Therefore
∫

(f + g) dx =
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f+−∫ f−+

∫
g+−∫ g− =

∫
f+

∫
g, since f+g = f+−f−+g+−g−.

�
We can also prove the following properties.

Theorem 3.2.2. Let f, g ∈ L(E) and let E be measurable. Then

(1)
∫
E
f dx ≤ ∫

E
g dx if f ≤ g;

(2) If E = E1∪E2 and E1∩E2 = ∅ then
∫
E
f dx =

∫
E1
f dx+

∫
E2
f dx.

The following is called the absolute continuity property of Lebesgue
integrals.

Theorem 3.2.3. If f ∈ L(E) and E is measurable, then for any
ε > 0, there exists δ > 0 such that for any measurable subset A of E
with m(A) < δ, we have | ∫

A
f dx| < ε.

Proof. Since |f | is measurable, for any finite-measure monotone
covering (Fk) of E, there is a positive integer N such that∫

E

|f | dx−
∫
FN

[|f |]N dx < ε

2
.

On the other hand,
∫
FN

[|f |]N dx ≤
∫
E
[|f |]N dx and thus,∫

E

(|f | − [|f |]N)dx <
ε

2
.

Choosing δ = ε
2(N+1)

, we have∣∣∣∣∫
A

f dx

∣∣∣∣ ≤ ∫
A

|f | dx =

∫
A

(|f | − [|f |]N) dx+

∫
A

[|f |]N dx

≤ ε

2
+Nm(A) <

ε

2
+Nδ < ε.

�
Exercises

1. For a measurable function f on measurable set E, prove that
f ∈ L(E) if and only if |f | ∈ L(E) and | ∫

E
fdx| ≤ ∫

E
|f |dx.

Show by an example that if the condition that f is measurable
on E is removed, then there is a function f such that |f | ∈ L(E)
but f /∈ L(E).

2. Let f ∈ L(E) and nonnegative such that
∫
E
fdx = 0. Prove

f = 0 a.e. on E.
3. Let f ∈ L(E) and nonnegative such that m({x ∈ E | f(x) >

0}) > 0. Prove
∫
E
f(x) dx > 0.

4. Directly prove (without using Theorem 3.2.3) that if f ≥ 0 is
integrable on E, then for all ε > 0, there exists δ > 0, such that∫
A
f dx < ε whenever A ⊂ E and m(A) < δ.
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5. If f ∈ L(E), then prove |f | <∞ a.e. on E.
6. For every ε > 0 and f ∈ L(E), show that

m(E(|f | ≥ ε)) ≤ 1

ε

∫
E

|f | dx.

This is called Chebyshev’s Inequality.
7. Let f and g be Lebesgue integrable functions defined on measur-

able set E. Prove
(1)

∫
E
f dx ≤ ∫

E
g dx if f ≤ g;

(2) If E = E1∪E2 and E1∩E2 = ∅ then
∫
E
f dx =

∫
E1
f dx+∫

E2
f dx.

8. Prove that if f ∈ L[a, b] and for any c ∈ [a, b],
∫ c
a
f(x) dx = 0,

then f = 0 a.e. on [a, b].
9. Prove that if f ∈ L[a, b], then F (x) :=

∫ x
a
f(t) dt is continuous.

10. Suppose Ek, k ∈ N are mutually disjoint measurable sets and
E = ∪kEk is measurable. If f ∈ L(E), then prove

∞∑
k=1

∫
Ek

f(x) dx =

∫
E

f(x) dx.

3. Convergence and Approximation of Lebesgue Integrals

We discuss next the convergence properties of sequences of Lebesgue
integrals and also the approximation properties of Lebesgue integrable
functions. We assume that E is a Lebesgue measurable set.

Generalizing Theorem 3.1.5, the following is the most frequently
used theorem which allows us to interchange the operations of integra-
tion and limits.

Theorem 3.3.1. [Lebesgue Dominated Convergence Theorem] Sup-
pose g is Lebesgue integrable on E. The sequence (fn) of measurable
functions satisfies:

(i) |fn| ≤ g a.e. on E for n ∈ N;

(ii) fn
m→ f on E.

Then, f ∈ L(E) and

lim
n→∞

∫
E

fn dx =

∫
E

f dx.(3.1)

Proof. Since fn
m→ f , f is measurable on E and also there is a

subsequence (fnk) of (fn) such that fnk → f a.e. on E. Therefore,
|f | ≤ g a.e. on E and thus, f is integrable from Theorem 3.2.2.
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Next, we first prove (3.1) for m(E) < ∞. For ε > 0, let En =

E

(
|fn − f | ≥ ε

2(m(E) + 1)

)
. Then,∣∣∣∣∫

E

(fn − f) dx

∣∣∣∣ ≤ ∣∣∣∣∫
E\En

(fn − f)

∣∣∣∣+

∣∣∣∣∫
En

(fn − f)

∣∣∣∣
≤

∫
E\En

|fn − f |+
∣∣∣∣∫
En

(fn − f)

∣∣∣∣ .(3.2)

The first term in (3.2) is bounded from above by
ε

2(m(E) + 1)
·m(E \

En) <
ε

2
. For such an ε > 0, applying Theorem 3.2.3 to g, there is

δ > 0 such that
∫
A
g dx < ε

4
. Since fn

m→ f a.e. on E, there is N ∈ N
such that m(EN ) < δ. Hence, the second term in (3.2) is bounded
from above by 2

∫
En
g dx < ε

2
for n ≥ N . Therefore, (3.1) holds for

m(E) <∞.
If E is measurable and (Fk) is a finite-measure monotone covering

of E, then for ε > 0, there is Fk ⊂ E with m(Fk) <∞ such that∫
E

g dx <

∫
Fk

[g]k dx+
ε

4

and thus, ∫
E\FK

g =

∫
E

g −
∫
Fk

g ≤
∫
E

g −
∫
Fk

[g]k ≤ ε

4
.

Therefore,∣∣∣∣∫
E

(fn − f)

∣∣∣∣ ≤ ∣∣∣∣∫
Fk

(fn − f)

∣∣∣∣+

∣∣∣∣∫
E\Fk

(fn − f)

∣∣∣∣
≤

∣∣∣∣∫
Fk

(fn − f)

∣∣∣∣+

∫
E\Fk

2g

<

∣∣∣∣∫
Fk

(fn − f)

∣∣∣∣+
ε

2
.(3.3)

Noticing that m(Fk) < ∞ and thus (3.1) holds, there is N ∈ N such
that for n ≥ N , we have | ∫

Fk
(fn − f)| ≤ ε

2
. Therefore,∣∣∣∣∫

E

(fn − f)

∣∣∣∣ < ε

for n ≥ N . �
Using a similar proof, we can obtain the Lebesgue Dominated Con-

vergence Theorem for fn → f a.e. on E.



72 3. THE LEBESGUE INTEGRAL

Theorem 3.3.2. Suppose g is Lebesgue integrable on E. The se-
quence (fn) of measurable functions satisfies:

(i) |fn| ≤ g a.e. on E for n ∈ N;
(ii) fn → f a.e. on E.

Then, f ∈ L(E) and

lim
n→∞

∫
E

fn dx =

∫
E

f dx.(3.4)

The following two theorems are equivalent to the Lebesgue Domi-
nated Convergence Theorem.

Theorem 3.3.3. [Monotone Convergence Theorem] If (fn) is a se-
quence of increasing integrable functions on E, and limn

∫
E
fn < ∞,

then limn→∞
∫
E
fn dx =

∫
E

limn→∞ fn dx.

Proof. We can assume that fn ≥ 0 since otherwise, we just need to
consider gn := fn − f1.

Let f(x) = lim fn(x) (the limit exists for every point x ∈ E) and
write K = supn

∫
E
fndx. Then we first show that the set {x ∈ E |

f(x) =∞} is a zero-measure set.
For any positive integer N , we have

0 ≤ [f1]N ≤ [f2]N ≤ · · · ≤ [fn]N ≤ · · · → [f ]N .

If (Fn) is a monotone finite-measure covering of E. Then by bounded
convergence theorem, we have that∫

FN

[f ]Ndx = lim
n→∞

∫
FN

[fn]Ndx ≤ K.

Noticing that E∞ := {x ∈ E | f(x) = ∞} = ∩NE([f ]N = N) and the
sets E([f ]N = N) are measurable, E∞ is measurable and∫

E∞∩FN
Ndx =

∫
E∞∩FN

[f ]Ndx ≤ K.

Hence, m(E∞ ∩ FN ) ≤ k
N

. For N > n, we have Fn ⊂ FN and thus,

m(E∞ ∩ Fn) ≤ m(E∞ ∩ FN ) ≤ K

N
.

Let N →∞ we see that m(E∞ ∩ Fn) = 0 and so, m(E∞) = 0.
Next, we define

h =

{
f(x), if h(x) <∞
0, if h(x) =∞.
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Then h is finite on E. Also, h = f a.e and [h]N = [f ]N a.e. on E and
thus, ∫

FN

[h]Ndx ≤ K.

Therefore, h is integrable on E. Using h as the control function in the
Lebesgue dominated convergence theorem for (fn), we obtain that

lim
n→∞

∫
E

fndx =

∫
E

lim
n→∞

fndx.

�

Theorem 3.3.4. [Fatou’s Lemma] Suppose that (fn) is a sequence
of integrable functions on E, and fn ≥ h a.e. on E and limn→∞

∫
E
fn dx <

∞. Then ∫
E

limn→∞fn dx ≤ limn→∞

∫
E

fn dx.

Proof. We remark that in many applications h is the zero function.
Let

gn = inf{fn, fn1, · · · }.
Then gn → f and (gn) is an increasing sequence satisfying

h(x) ≤ gn(x) ≤ fn(x).

We can then deduce that gn is integrable. Now
∫
gndx ≤

∫
fndx yields

that limn

∫
gndx ≤ limn

∫
E
fndx <∞. The conclusion follows from the

monotone convergence theorem. �
We present the following application of the Lebesgue Dominated

Convergence Theorem.

Theorem 3.3.5. Let f(x, y) be a function defined on E × (a,b).
Suppose f is integrable with respect to x on E and f is differentiable
with respect to y on (a, b) and there exists an integrable function F (x)
on E such that | d

dy
f(x, y)| ≤ F (x) then

d

dy

∫
E

f(x, y) dx =

∫
E

d

dy
f(x, y) dx.

Proof. Fix y ∈ (a, b). Choose hk → 0 as k →∞. Then

lim
k→∞

f(x, y + hk)− f(x, y)

hk
=

d

dy
f(x, y).

On the other hand, |dx
dy
f(x, y)| ≤ F (x) for (x, y) ∈ E × (a, b) and

f(x,y+hk)−f(x,y)
hk

= d
dy
f(x, ξk) by the Mean Value Theorem from calculus
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— here ξ is between y and y + hk. Therefore, | f(x,y+hk)−f(x,y)
hk

| ≤ F (x).
Applying the Lebesgue Dominated Convergence Theorem, we have

d

dy

∫
f(x, y) dx = lim

k→∞

∫
E

f(x, y + hk)− f(x, y)

hk
dx

=

∫
E

lim
k→∞

f(x, y + hk)− f(x, y)

hk
dx =

∫
E

d

dy
f(x, y) dx.

�
Let f and fn be integrable on E. If limn

∫
E
|fn − f | dx = 0, then

(fn) is said to be convergent in mean (of order 1) to f or (fn) is
said to be L1-convergent to f . Later in Chapter 5, we shall consider
convergence in mean of order p (or Lp-convergence). The proof of the
following result is left as an exercise.

Theorem 3.3.6. If (fn) converges to f in mean on E, then fn
m→ f

on E.

Recall that Lusin’s Theorem (Theorem 2.4.9) provides an approxi-
mation to a measurable function using continuous functions. We next
prove an approximation theorem for integrable functions.

Theorem 3.3.7. If f ∈ L(E), then for every ε > 0 there exists a
continuous function g on R such that

∫
E
|f(x)− g(x)| dx < ε.

Proof. For ε > 0, by the definition of integrals of f+ and f−, we
have N ∈ N such that∫

E

|f − [f ]N | dx =

∫
E

(f − [f+]N) dx+

∫
E

(f − [f−]N) dx <
ε

3
.

Applying Lusin’s Theorem to [f ]N , there is a continuous function g on
R with |g| ≤ N , and a measurable subset Eδ such that m(Eδ) < δ and
g = [f ]N for x ∈ E \ Eδ. Choose δ = ε

3N+1
, we have∫

E

|[f ]N − g| dx =

∫
Eδ

|[f ]N − g| dx ≤ 2Nm(Eδ) <
2ε

3
.

Therefore,∫
E

|f − g| dx ≤
∫
E

|f − [f ]N | dx+

∫
E

|[f ]N − g| dx < ε.

�
The above theorem shows that if f ∈ L(E), then for any ε > 0,

f has the decomposition f = f1 + f2, where f1 is continuous on R
and

∫
E
|f2| dx < ε. As an application, we have the following average

continuity property of Lebesgue integrals.
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Theorem 3.3.8. If f is Lebesgue integrable on R, then

lim
h→0

∫
R
|f(x+ h)− f(x)| dx = 0.

Proof. For every ε > 0, there exists a continuous function g on
R such that {x | g(x) �= 0} ⊂ [a, b] for −∞ < a ≤ b < ∞ and∫
R |f − g|dx < ε. Therefore,∫
|f(x+ h)− f(x)| dx ≤

∫
|f(x+ h)− g(x+ h)| dx+

∫
|g(x+ h)− g(x)| dx

+

∫
|g(x)− f(x)| dx

< ε+

∫
R
|g(x+ h)− g(x)| dx+ ε

= 2ε+

∫
|g(x+ h)− g(x)| dx.

Noticing that g can be chosen as a continuous function on R and
g(x) = 0 for x ∈ R\ [a, b] for some a, b ∈ R, we have that g is uniformly
continuous on R. So, for ε > 0, there exists δ > 0 such that for |h| < δ,
|g(x+ h)− g(x)|dx < ε

b−a . So,∫
R
|g(x+ h)− g(x)| dx =

∫ b

a

|g(x+ h)− g(x)| dx < ε

b− a · (b− a) = ε.

Therefore, as long as |h| < δ, we have
∫
R |f(x+ h)− f(x)| dx < 3ε.

ε is arbitrary, so limh→0

∫
R |f(x+ h)− f(x)| dx = 0. �

Exercises
1. Let (fn) be a sequence of measurable functions on E. If (i) there

exists an integrable function F on E such that |fn| ≤ F a.e. on

E for n ∈ N, and (ii) fn → f a.e. on E, then prove fn
m→ f as

n→∞.
2. Suppose (gn) is a sequence of integrable functions on E and
gn → g a.e. with g integrable. If the sequence (fn) of measurable
functions satisfies:

(i) |fn| ≤ gn for n ∈ N;
(ii) fn → f a.e. on E.

Then prove limn→∞
∫
E
fn dx =

∫
E
f dx.

3. Let L[a, b] denote the class of all Lebesgue integrable functions
on [a, b]. Show that for f ∈ L[a, b] and for all ε > 0, there is

(a) a bounded measurable function g such that
∫ b
a
|f(x) −

g(x)| dx < ε;

(b) a continuous function h such that
∫ b
a
|f(x)−h(x)| dx < ε;
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(c) a polynomial function p such that
∫ b
a
|f(x)−p(x)| dx < ε;

(d) a step function s such that
∫ b
a
|f(x)− s(x)| dx < ε.

4. If f ∈ L[a, b], then prove limn→∞
∫ b
a
f(x) cosnx dx = 0 and

limn→∞
∫ b
a
f(x) sinnx dx = 0. [Hint: Consider a step function

f first.]
5. Show by example that the inequality in Fatou’s Lemma (Theo-

rem 3.3.4) is not in general an equality even if the sequence of
functions (fn) converges everywhere.

6. If f ∈ L[a, b], then prove limn→∞
∫ b
a
f(x)| cosnx| dx = 2

π

∫ b
a
f(x) dx.

7. If f ∈ L[a, b] and for k ∈ N ,
∫ b
a
xkf(x) dx = 0, then prove f = 0

a.e. on [a, b].
8. If f ∈ L(R) and for any compactly supported continuous func-

tion g,
∫
R f(x)g(x) dx = 0, then prove f = 0 a.e.

9. If (fn) is a sequence of integrable functions on E satisfying fn
m→

f , then prove
∫
E
f(x) dx ≤ limn→∞

∫
E
fn(x) dx.

10. Let f ∈ L[0, 1]. Then prove xnf(x) ∈ L[0, 1] for any n ∈ N and

limn→∞
∫ 1

0
xnf(x) dx = 0.

11. If fn, f ∈ L(E) and
∫
E
|fn − f | dx→ 0, then prove fn

m→ f .
12. Use Fatou’s Lemma to prove the Lebesgue Dominated Conver-

gence Theorem.

4. Lebesgue Integrals in the Plane

In this section, we outline the theory of measure and integration in
the plane R2. The procedure is very much analogous to that for the
real line R. Rectangles in R2 play the role of intervals in R.

Let C0 be the collection of rectangles of the form (a, b] × (c, d] =
{(x, y) | a < x ≤ b, c < y ≤ d} and define a set function m on C0 by

m((a, b]× (c, d]) = (b− a)(d− c).
We can show that m can be uniquely extended to be a measure on
R(C0). Using a method similar to the construction of m on R, we can
define a class of Lebesgue measurable sets in R2.

A function f(x, y) defined on a measurable set E in the plane is said
to be measurable if for any α ∈ R, the set {(x, y) ∈ E | f(x, y) ≤ α}
is measurable. We may then define the Lebesgue integral on E. We
let L(E) denote the class of Lebesgue integrable functions on E. If
f ∈ L(E), the integral of f over E is denoted by

∫ ∫
E
f(x, y) dx dy.

Such integrals are often called double integrals.
For a measurable function f on E, the following theorem provides

the connection between measurable functions on the plane and the
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measurable functions on the real line. For simplicity, we may assume
E is a rectangular domain.

Theorem 3.4.1. If f is a measurable function f(x, y) on T =
[a, b] × [c, d], then f(x, y) is a measurable function of y for any fixed
x ∈ [a, b] and f(x, y) is a measurable function of x for any fixed y ∈
[c, d].

In practice, the integral
∫ ∫

T
f(x, y) dx dy is computed by inte-

grating first with respect to x and then with respect to y or vice
versa. This method is usually called iterated integrals or repeated
integrals. This requires some caution to go beyond continuous func-
tions.

Example 3.4.1. Let

f(x, y) =

{
x2−y2

(x2+y2)2
, (x, y) ∈ (0, 1]× (0, 1]

0, (x, y) = (0, 0).

Then ∫ 1

0

{∫ 1

0

f(x, y)dx

}
dy = −π

4

but ∫ 1

0

{∫ 1

0

f(x, y)dy

}
dx =

π

4
.

The fact that a double integral can be evaluated by iterated integra-
tion does not follow immediately from the definition of

∫ ∫
T
f(x, y) dx dy,

but rather is a famous theorem called Fubini’s Theorem.

Theorem 3.4.2. [Fubini’s Theorem] Let f be an integrable func-
tion on R2. Then the double integral and iterated integrals are equal.
In particular, f(x, y) is integrable with respect to x for almost every y
and

∫
f(x, y) dx is integrable as a function of y, and the same with x

and y reversed.

Proof. First, we assume that f is nonnegative. Then similar to the
one variable setting, there is a sequence (ϕn) of non-negative simple
functions converging monotonely to f and thus,

∫
fdx =

∫
ϕn dx. Since

the double and iterated integrals are equal for simple functions, we
obtain ∫ ∫

ϕn(x, y) dx dy =

∫ {∫
ϕn(x, y) dx

}
dy.

Applying the Monotone Convergence Theorem to ϕn(x, y) as a func-
tion of x for a fixed y, we have limn

∫
ϕndx =

∫
f(x, y) dx. Noticing
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that
∫
ϕn dx is measurable and so is

∫
f(x, y), we apply the Monotone

Convergence Theorem one more time and obtain

lim
n

∫ {∫
ϕn(x, y) dx

}
dy =

∫ {∫
f(x, y) dx

}
dy.

Similarly, we have

lim
n

∫ {∫
ϕn(x, y) dy

}
dx =

∫ {∫
f(x, y) dy

}
dx.

Next, for a general integrable function f , we apply the proof in the
first step to f+ and f−, respectively. Using the linearity of the double
integral and iterated integrals we obtain∫ {∫

f(x, y) dy

}
dx =

∫ {∫
f(x, y) dx

}
dy.

�
If f ∈ L(T ) with T = [a, b] × [c, d], then Fubini’s Theorem gives

that∫ ∫
T

f(x, y) dx dy =

∫ b

a

{∫ d

c

f(x, y) dy

}
dx =

∫ d

c

{∫ b

a

f(x, y) dx

}
dy.

That is, f(x, y) ∈ L[c, d] for almost every x ∈ [a, b] and f(x, y) ∈
L[a, b] for almost every y ∈ [c, d]. Moreover,

∫ d
c
f(x, y) dy ∈ L[a, b] and∫ b

a
f(x, y) dx ∈ L[c, d] and the iterated integrals are equal to the double

integral.
In practice, it is much easier to check the existence of iterated in-

tegrals instead of double integrals. The following version of Fubini’s
Theorem is the most useful.

Theorem 3.4.3. Let f be a measurable function on R2. Suppose
one of the iterated integrals for |f | exists, say

∫
f(x, y) dx exists a.e.

on y and
∫ {∫ |f(x, y)| dx} dy exists. Then the double integral and

iterated integrals on f exist and are equal.

Proof. From the first part of the proof of Theorem 3.4.2, we see
that the double integral of |f | is equal to its iterated integrals and so,
|f | is integrable. This means f is integrable. Then applying Theorem
3.4.2 to f completes the proof. �

If f ∈ L(0,∞), then the function e−xtf(t) is also in L(0,∞) for
x ∈ [0,∞) since |e−xtf(t)| ≤ |f(t)|. The function of x defined by∫∞
0
e−xtf(t) dt, denoted by L(f), is called the Laplace transform of

f .
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Definition 3.4.1. For f, g ∈ L(R), if the integral
∫∞
−∞ f(x−y)g(y) dy

exists, then is it called the convolution of f and g, denoted f ∗ g.
Theorem 3.4.4. If f, g ∈ L(R), then (f ∗ g)(x) exists a.e. for x

and ∫ ∞

−∞
|(f ∗ g)(x)| dx ≤

(∫ ∞

−∞
|f(x)| dx

)(∫ ∞

−∞
|g(x)| dx

)
.

Therefore, f ∗ g ∈ L(R).

Proof. Noticing that∫ ∞

−∞
|f(x− y)| dx =

∫ ∞

−∞
|f(u)| du

by the change of variable u = x−y, we obtain that the iterated integral∫ ∞

−∞

{∫ ∞

−∞
|f(x− y)g(y)| dx

}
dy =

∫ ∞

−∞
|f(u)| du

∫ ∞

−∞
|g(y)| dy.

Thus, by Theorem 3.4.3, f(x− y)g(y) ∈ L(R2). By Fubini’s Theorem,
f ∗ g exists for all most every x and is integrable. �

We next state a famous result involving Laplace transforms and
convolutions.

Theorem 3.4.5. Let f, g ∈ L(0,∞). Then the Laplace transform
of the convolution f ∗ g is the product of the Laplace transforms of f
and g. That is,

L(f ∗ g) = L(f)L(g).

Proof. We leave the proof as an exercise. �
Exercises

1. Let f(x, y) ∈ L([0, 1]× [0, 1]). Then prove∫ 1

0

{∫ x

0

f(x, y) dy

}
dx =

∫ 1

0

{∫ 1

y

f(x, y) dx

}
dy.

2. Let

f(x, y) =

{
4xy−x2−y2

(x+y)4
, x > 0, y > 0)

0, (x, y) = (0, 0).

Show that∫ ∞

0

{∫ ∞

0

f(x, y) dx

}
dy =

∫ ∞

0

{∫ ∞

0

f(x, y) dy

}
dx = 0

but that
∫ ∫

[0,∞)×[0,∞)
f(x, y) dx dy does not exist. Which hy-

potheses of the Fubini’s theorem have been violated?
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3. Let

f(x, y) =

{
xy

(x2+y2)
, x2 + y2 > 0)

0, (x, y) = (0, 0).

Show that∫ 1

0

{∫ 1

0

f(x, y) dx

}
dy =

∫ 1

0

{∫ 1

0

f(x, y) dy

}
dx = 0

but that
∫ ∫

[0,∞)×[0,∞)
f(x, y) dx dy does not exist.

4. Prove Theorem 3.4.5.
5. If f ∈ L[a, b] and g ∈ L[c, d], then prove h(x, y) = f(x)g(y) ∈
L([a, b]× [c, d]) and∫ ∫

[a,b]×[c,d]

h(x, y) dx dy =

∫ b

a

f(x) dx

∫ d

c

g(y) dy.

6. Evaluate L(xk), the Laplace transform of the power functions xk

for k = 0, 1, · · · .
7. Let B1(x) = χ[−1/2,1/2](x) and Bn(x) be defined using the recur-

sion formula
Bn(x) = (Bn−1 ∗B1)(x)

for n = 2, 3, · · · . The functions Bn(x) are called B-splines.
Find explicit expressions for B2, B3, and B4.

8. Verify the following properties of B-splines:
(a) Bn is in spline space Sn−2

n−1 ;
(b) Bn ≥ 0 and Bn > 0 for x ∈ (−n/2, n/2);
(c)

∑
j Bn(x− j) = 1 for all x ∈ R;

(d)
∫∞
−∞Bn(x) dx = 1;

(e) B′
n(x) = Bn−1(x+ 1

2
)− Bn−1(x− 1

2
).

9. Suppose that g ∈ L(R) and f is bounded and continuous. Then
prove f ∗ g is also bounded and continuous.

10. If g ∈ L(R) and f ′ is bounded and continuous, then prove f ∗ g
is differentiable and

d

dx
(f ∗ g)(x) =

∫ ∞

−∞
f ′(x− y)g(y) dy.



CHAPTER 4

Special Topics of Lebesgue Integral and

Applications

This chapter contains first a brief discussion of the relationship be-
tween differentiation and integration on R. We explore the condi-

tions under which the fundamental theorem of calculus
∫ b
a
F (x) dx =

F (b)−F (a) is valid. This exploration leads to interesting and perhaps
unexpected measure-theoretic ideas. The main result in this direction
is the Lebesgue-Radon-Nikodym theorem, which we cannot include in
this book and refer the reader to other texts, [23] for example, for the
material. The remainder of the chapter presents some of the main the-
orems in probability which are closely related to measure theory and
Lebesgue integration.

1. Differentiation and Integration

In order to discuss derivatives of a Lebesgue integrable function we
need the following definitions.

Definition 4.1.1. Let x ∈ R and f a real-valued function and
δ > 0. If f is defined on [x, x+ δ), then define

D+f(x) = limh→0+

f(x+ h)− f(x)

h
.

D+f(x) = limh→0+

f(x+ h)− f(x)

h
.

If f is defined on (x− δ, x], then define

D−f(x) = limh→0−
f(x+ h)− f(x)

h
.

D−f(x) = limh→0−
f(x+ h)− f(x)

h
.

These four extended real numbers are called Dini derivatives of f .
We say f is differentiable at x if D+f(x) = D−f(x) = D+f(x) =
D−f(x) and write f ′(x) or d

dx
f(x).

Example 4.1.1. Let f(x) = x sin 1
x

for x �= 0 and f(0) = 0. Then
D+f(0) = 1, D+f(0) = −1, D−f(0) = 1, and D−f(0) = −1.

81
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A real-valued function f on R is said to be nondecreasing (strictly
increasing) if f(x1) ≤ f(x2) (f(x1) < f(x2)) whenever x1 < x2 and
nonincreasing (strictly decreasing) if f(x1) ≥ f(x2) (f(x1) >
f(x2)) whenever x1 < x2; in either case f is called a monotone function.
For a monotone function f and an interior point a of the domain E, the
jump of f at a, denoted by J(f, a), is the absolute difference between
the right limit value f(a+) = limx→a+ f(x) and the left limit value
f(a−) = limx→a− f(x). That is J(f, a) = |f(a+)− f(a−)|.

Theorem 4.1.1. If f is continuous on [a, b] and D+f(x) ≥ 0 for
all x ∈ (a, b) then f is monotone non-decreasing on [a, b].

Proof. We leave the proof as an exercise. �
Our next goal is to show Lebesgue’s famous theorem that a monotone

function has a finite derivative almost everywhere. The main tool used
in the proof is the so-called Vitali’s Covering Theorem. Vitali’s the-
orem has many applications in classical analysis, particularly in the
theory of differentiation.

Definition 4.1.2. Let V be a collection of intervals of R, each
having positive length. We say that V is a Vitali cover of E ⊂ R if
V covers E finely. This means E ⊂ ∪I∈VI and for every x ∈ E and
ε > 0, there exists I ∈ V such that x ∈ I and its length λ(I) = m(I) <
ε.

Example 4.1.2. Let E = [a, b] and (rn) be the sequence of all
rational numbers in E. Then V = {[rn − 1

m
, rn + 1

m
] | m,n ∈ N} is a

Vitali’s cover of E.

Theorem 4.1.2. [Vitali’s Covering Theorem] Let E be a set with
m∗(E) < ∞. Let V be a Vitali cover for E. Then for every ε > 0
there exists disjoint intervals (finitely many) I1, I2, · · · , In in V such
that m∗(E\ ∪nk=1 Ik) < ε.

Proof. We can assume that V is a set of closed intervals, for other-
wise we replace each interval by its closure which does not change the
length of the intervals.

Because m∗(E) <∞, we can have an open set G such that G ⊃ E
with m(G) < ∞. Since V is a Vitali cover of E, we may assume that
each I ∈ V is contained in G for otherwise, W = {I ∈ I | I ⊂ V}
is a Vitali cover of E. We choose a sequence (In) of disjoint intervals
of V by induction as follows: Let I1 be an arbitrary interval in V. If
E ⊂ I1, then we are done. If not, suppose I1, · · · , Ik were chosen such
that they are mutually disjoint. If E ⊂ ∪kj=1Ij, then again, we are
done. Otherwise, let δk = sup{λ(I) | I ∈ V, I ∩ Ij = ∅, j = 1, · · · , k},
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the supremum of the lengths of the intervals of V that do not meet any
of the intervals I1, · · · , Ik. Then δk ≤ m(G) < ∞. Therefore, we can
find Ik+1 ∈ V such that its length λ(Ik+1) >

δk
2

and Ij , j = 1, · · · , k+ 1
are mutually disjoint. In this way, we find a sequence (In) of disjoint
intervals of V such that ∪Ik ⊂ G and thus,

∑
k λ(Ik) ≤ m(G) < ∞.

Therefore, for ε > 0 there is N ∈ N such that
∑∞

j=n λ(Ij) <
ε
5

for

n ≥ N . Next, let S = E \ ∪Nj=1Ij . Then it is sufficient to show that

m∗(S) < ε. Since ∪Nj=1Ij is closed and thus, for any x ∈ S, the distance

between x and ∪Nj=1Ij is positive. We can find an interval I of V which
contains x and whose length is so small that I does not meet any of the
intervals Ij, j = 1, · · · , N . If I ∩Ij = ∅ for j ≤ n, from the definition of
δk, we must have λ(I) ≤ δn ≤ 2λ(In+1). Since λ(In)→ 0, the interval I
must meet at least one of the intervals In. Let n be the smallest integer
such that I meets In. We have n > N , and λ(I) ≤ δn−1 ≤ 2λ(In). Since
x ∈ I and I has a common point with In, it follows that the distance
from x to the midpoint cn of In is at most λ(I) + 1

2
λ(In) ≤ 5

2
λ(In).

Hence, x is in the interval Jn = [cn − 5λ(In)
2

, cn + 5λ(In)
2

] having the
same midpoint as In and five times the length. Thus, S ⊂ ∪∞n=N+1Jn.
Therefore,

m∗(S) ≤
∞∑

n=N+1

|Jn| = 5
∞∑

n=N+1

|In| < ε.

�

Theorem 4.1.3. [Lebesgue] If f is increasing on [a, b] then f is
differentiable a.e. on [a, b]. Furthermore, f ′ is integrable on [a, b] and∫ b

a

f ′ dx ≤ f(b)− f(a).

Proof. Using the Vitali Covering Theorem, we can show that f ′

exists a.e. To this end, let us first show that the sets where any two
derivatives are unequal have measure zero. In this case, we only show
the set E := {x ∈ (a, b) | D+f(x) > D−f(x)} has measure 0; the sets
arising from other combinations of derivatives can be proved similarly.
For rational numbers r and s, we write

Er,s = {x | D+f(x) > r > s > D−f(x)}

and then, E = ∪r,s∈QEr,s. Therefore, it suffices to prove thatm∗(Er,s) =
0.
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Choose an open set G ⊃ Er,s such that m(G) < m∗(Er,s) + ε. For
any x ∈ Er,s, since D−f(x) < s, there is h > 0 such that

f(x− h)− f(x)

−h < s

for sufficiently small h, and so, we assume [x − h, x] ⊂ G. All such
intervals form a Vitali cover of Er,s. By Theorem 4.1.2, for any ε > 0,
there are disjoint intervals [x1 − h1, x1], · · · , [xN − hN , xN ] such that

m∗(Er,s \ ∪Ni=j [xj − hj , xj ]) < ε.

Set U = ∪Nj=1(xj−hj , xj). Then m∗(Er,s \U) < ε. Also, U ⊂ G implies
that

N∑
j=1

hj = m(U) ≤ m(G) < m∗(Er,s) + ε.

Summing the inequalities

f(xj)− f(xj − hj) < shj , j = 1, 2, · · · , N,
we obtain

N∑
j=1

[f(xj)− f(xj − hj)] < s

N∑
j=1

hj < sm(G) < s(m∗(Er,s) + ε).

Next, for each point y ∈ Er,s ∩U , D+f(y) > r implies that f(y + k)−
f(y) > rk for sufficiently small k, and so, we assume [y, y+k] ⊂ U∩Er,s.
All such intervals form a Vitali cover of U ∩Er,s. Using Theorem 4.1.2
again, we can pick out disjoint intervals J1, · · · , JM with Ji = [yi, yi+ki]
such that

m∗((Er,s ∩ U) \ ∪Mi=1Ji
)
< ε.

Thus, m∗(Er,s) ≤ m∗(Er,s ∩ U) + m∗(Er,s \ U) ≤ ε +
∑M

i=1 λ(Ji) + ε.
Hence,

M∑
i=1

ki > m∗(Er,s ∩ (∪Nj=1(xj − hj , xj))− ε

and thus, summing over i in

f(yi + ki)− f(yi) > rki,

we obtain

M∑
i=1

[f(yi + ki)− f(yi)] > r(m∗(Er,s)− 2ε).
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Noticing that f is increasing, we have

N∑
j=1

[f(xj)− f(xj − hj)] ≥
M∑
i=1

[f(xi + ki)− f(xi)]

and so
r(m∗(Er,s)− 2ε) < s(m∗(Er,s) + ε).

Since ε is arbitrary, we see that rm∗(Er,s) ≤ sm∗(Er,s). However, r > s,
so we must have m∗(Er,s) = 0.

Next, let A = {x ∈ (a, b) | f ′(x) =∞}. Then we prove m∗(A) = 0.
For any N ∈ N and x ∈ A, D+f(x) = ∞ implies that there is h > 0
small enough such that

f(x+ h)− f(x) > Nh.

We can assume [x, x + h] ⊂ [a, b] and thus, all such intervals form a
Vitali cover of A. Using Theorem 4.1.2 again, we can pick out disjoint
intervals I1, · · · , In with Ii = [xi, xi + ki] such that

m∗(A \ ∪ni=1Ii) <
1

N
.

Using a similar argument as above, we have

Nm∗(A) < 1 + f(b)− f(a)

for any N ∈ N and thus, m∗(A) = 0. Therefore, f ′(x) exists a.e. on
[a, b].

Finally, consider

fn(x) =
f(x+ 1/n)− f(x)

1/n
,

where f(x) = f(b) if x > b. We have fn(x)→ f ′(x) a.e. and fn(x) ≥ 0
since f is increasing. Then by Fatou’s Lemma (Theorem 3.3.4), we
obtain∫ b

a

f ′(x) dx ≤ limn→∞

∫ b

a

fn(x) dx

= limn→∞

∫ b

a

n[f(x+ 1/n)− f(x)] dx

= n[limn→∞

∫ b+1/n

b

f(x) dx−
∫ a+1/n

a

f(x) dx]

= f(b)− limn→∞n
∫ a+1/n

a

f(x) dx ≤ f(b)− f(a),

the last inequality holds because f is increasing. �
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Corollary 4.1.1. If f is the difference of two monotone func-
tions, then f is differentiable almost everywhere.

In the study of integrals, often the function
∫ x
a
f(t) dt for f ≥ 0 is

an increasing function on [a, b]. For a general integrable function on
[a, b], we have

F (x) :=

∫ x

a

f(t) dt =

∫ x

a

f+(t) dt−
∫ x

a

f−(t) dt,

the difference of two increasing functions. Let us investigate for a mo-
ment which functions can be expressed the difference of two increasing
functions.

Let f be a real valued function on [a, b]. For any partition

� : a = x0 < x1 < x2 < · · · < xn = b,

we define

p(f,�) =
n∑
k=1

[f(xk)− f(xk−1)]
+

and

n(f,�) =

n∑
k=1

[f(xk)− f(xk−1)]
−

where, y+ = max{y, 0}, y− = |y| − y+.
Clearly,

p(f,�)− n(f,�) =
∞∑
k=1

[f(xk)− f(xk−1)] = f(b)− f(a)

and

p(f,�) + n(f,�) =
∞∑
k=1

|f(xk)− f(xk−1)|.

Define

Pa
b(f) = sup



p(f,�),

Na
b(f) = sup



n(f,�)

and

Ta
b(f) = sup



{p(f,�) + n(f,�)}.

Definition 4.1.3. Ta
b(f) is called the total variation of f over

[a, b]. If Ta
b(f) <∞, then f is said to be of bounded variation over

[a, b], denoted by f ∈ BV [a, b].
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Theorem 4.1.4. Ta
b(f) = Pa

b(f)+Na
b(f) and Pa

b(f)−Na
b(f) =

f(b) − f(a). If f ∈ BV [a, b], then f can be written as a difference of
two monotone increasing functions.

Proof. We have p(f,�) = n(f,�) + f(b) − f(a). Thus, Pa
b(f) =

Na
b(f) + f(b) − f(a). So, Pa

b(f) − Na
b(f) = f(b) − f(a). Therefore

p(f,�) + n(f,�) = 2n(f,�) + f(b) − f(a), and Ta
b(f) = 2Na

b(f) +
f(b)− f(a) = Pa

b(f) +Na
b(f).

If f ∈ BV [a, b], then f(x) = f(a) = Pa
x(f) − Na

x(f). So, f(x) =
Pa

x(f)− (Na
x(f)− f(a)). Noticing Pa

x(f) and Na
x(f) are increasing,

the conclusion follows. �

Corollary 4.1.2. If f ∈ BV [a, b], then f ′ exists a.e. on [a, b].

We leave the proof of the following properties of bounded variation
functions to the reader.

Theorem 4.1.5. For bounded variation functions, the following
properties hold.

(1) If f ∈ BV [a, b], then f is bounded.
(2) If f, g ∈ BV [a, b], then αf + βg ∈ BV [a, b] for α, β ∈ R and

Ta
b(αf + βg) ≤ |α|Tab(f) + |β|Tab(g).

(3) If f, g ∈ BV [a, b], then f ∗g ∈ BV [a, b]. The convolution is given

by f ∗ g(x) =
∫ b
a
f(x− y)g(y) dy.

(4) If f ∈ BV [a, b] and Ta
b(f) = 0, then f is a constant.

(5) If f ∈ BV [a, b] and c ∈ [a, b], then

Ta
b(f) = Ta

c(f) + Tc
b(f).

(6) If f ∈ Lip M, then f ∈ BV [a, b].
(7) If f is monotone increasing, then Ta

b(f) = f(b)− f(a).
(8) If f is integrable on [a, b], then F (x) =

∫ x
a
f(t) dt ∈ BV [a, b].

Example 4.1.3. If f ∈ BV [a, b], then f(x) = Pa
x − (Na

x − f(a))
and f(x) = 1

2
(Ta

x+f(x))− 1
2
(Ta

x−f(x)) are two other decompositions
of the difference of two increasing functions.

Recall that differentiation and integration are inverse operations to
each other on the space of smooth functions. That is, if f is continuous
on R, we have

d

dx

∫ x

a

f(t) dt = f(x).



88 4. SPECIAL TOPICS OF LEBESGUE INTEGRAL AND APPLICATIONS

Conversely, if the derivative function f ′ is continuous, then the inte-
gration of the derivative coincides with the original function:∫ x

a

f ′(t) dt = f(x)− f(a).

Those are fundamental theorems of the calculus for continuous func-
tions. We will investigate next the fundamental theorems for the cal-
culus for Lebesgue integrable functions. First, we consider if

d

dx

∫ x

a

f(t) dt = f(x)

holds for an integrable function f on [a, b]. Of course, we may expect
to have the following:

d

dx

∫ x

a

f(t) dt = f(x) a.e. on [a, b].

Lemma 4.1.1. If f is integrable on [a, b] and
∫ x

0
f(t) dt = 0 for any

x ∈ [a, b], then f = 0 a.e. on [a, b].

Proof. If f > 0 on a set E with m(E) > 0, then there exists a closed
set F ⊂ E such that m(F ) > 0. It is easy to see that

∫
E
f(x) dx >

0 (see Exercise 3 in Section 3.2). Let O = [a, b] \ E. Then either∫ b
a
f(x) dx �= 0, or else

0 =

∫ b

a

f(x) dx =

∫
F

f dx+

∫
O

f(x) dx,

and ∫
O

f(x) dx = −
∫
F

f(x) dx �= 0.

From the structure of open sets, we know that O is a union of countable
many disjoint open intervals: O = ∪n(an, bn) and thus∫

O

f(x) dx =
∑
n

∫ bn

an

f(x) dx.

Hence, for some n we have
∫ bn
an
f �= 0. Then, either

∫ an
a

f(x)dx �= 0 or∫ bn
a
f(x) dx �= 0. In any case we see there is an x such that

∫ x
a
f(t) dt �=

0 if f > 0 on a set of positive measure. Similarly for f < 0 on a set of
positive measure. Therefore, f = 0 a.e. on [a, b]. �

Let F (x) =
∫ x
a
f(t) dt for an integrable function f . If f ≥ 0,

then F (x) is absolutely continuous (by Theorem 3.2.3), increasing and,
therefore, F ′ exists a.e. (by Theorem 4.1.3).
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Suppose f is bounded, that is, 0 ≤ f ≤ K for a constant K. Define

gn(x) =
F (x+ 1/n)− F (x)

1/n
.

Then gn(x) ≥ 0 and gn(x) = n
∫ x+1/n

x
f(t) dt ≤ K and gn(x) → F ′(x)

as n→∞.
Applying the Bounded Convergence Theorem (Theorem 3.1.5), we

have

lim
n→∞

∫ c

a

gn(x) dx =

∫ c

a

F ′(x) dx

for any c ∈ [a, b].
On the other hand,∫ c

a

gn(x) =

∫ c

a

F (x+ 1/n)− F (x)

1/n
dx

= −n
∫ a+1/n

a

F (x) dx+ n

∫ c+1/n

c

F (x) dx

= −F (ξn) + F (ηn),

where ξn ∈ (a, a + 1/n), ηn ∈ (c, c + 1/n) by the mean value theorem
for continuous functions. Therefore, as n→∞ we have

lim
n→∞

∫ c

a

gn(x) dx = F (c)− F (a) =

∫ c

a

f(x) dx.

So
∫ c
a
F ′(x) dx =

∫ c
a
f(x) dx for any c ∈ [a, b]. That is,

∫ c
a
(F ′(x) −

f(x)) dx = 0. By the Lemma 4.1.1, we have F ′(x) = f(x) a.e.
If f is assumed only to be nonnegative, then let fn(x) = [f(x)]n

where n ∈ N. (fn(x)) is an increasing sequence convergent to f and
thus, (Fn) also increasingly converges to F , where

Fn(x) =

∫ x

a

fn(t) dt

and F (x) =
∫ x
a
f(t)dt by the Monotone Convergence Theorem (The-

orem 3.3.3). Let Gn(x) = F (x) − Fn(x). Then Gn(x) is a monotone
increasing function of x and G′

n(x) ≥ 0 a.e. We have

F (x) = Gn(x) + Fn(x), and F ′(x) = G′
n(x) + F ′

n(x).

Clearly, F ′(x) ≥ F ′
n(x) a.e. on [a, b].

Since fn(x) is increasing on x, again from Theorem 4.1.3 we have
fn(x) = F ′

n(x) a.e. and thus,

f(x) = lim
n→∞

fn(x) = lim
n→∞

F ′
n(x) ≤ F ′(x)



90 4. SPECIAL TOPICS OF LEBESGUE INTEGRAL AND APPLICATIONS

a.e. on [a, b]. Therefore, for any c ∈ [a, b]

F (c)− F (a) =

∫ c

a

f(x) dx ≤
∫ c

a

F ′(x) dx.

However, F is increasing. From the last part of Theorem 4.1.3,
we know that

∫ c
a
F ′(x) dx ≤ F (c) − F (a). Therefore,

∫ c
a
F ′(x) dx =

F (c)− F (a) =
∫ c
a
f(x) dx and so, F ′ = f a.e. on [a, b].

For a general function f , we notice that f = f+−f−. The reasoning
is still valid because Lemma 4.1.1 is true for any integrable function on
[a, b]. Therefore, we have proved the following.

Theorem 4.1.6. If f is integrable on [a, b] and F (x) = F (a) +∫ x
a
f(t) dt, then F ′ = f a.e. on [a, b].

So far, we have proved the first part of the fundamental theorem
of calculus: for a function f ∈ L[a, b], its indefinite (Lebesgue)

integral F (x) :=
∫ x
a
f(t) dt is differentiable a.e. on [a, b] and at these

points F ′(x) = f(x). Next we would like to look at the converse ques-
tion: what function F : [a, b] �→ R is the indefinite integral of its
derivative? To answer this question, we introduce a new class of func-
tions which are “stronger” continuous than continuous functions, called
absolutely continuous functions.

Definition 4.1.4. f is said to be absolutely continuous on
[a, b], if for all ε > 0, there exists δ > 0, such that if {(xi, yi)}ki=1 is a

disjoint collection of intervals with
∑k

i=1(yi − xi) < δ, then

k∑
i=1

|f(yi)− f(xi)| < ε.

The class of absolutely continuous functions on [a, b] is denoted by
AC[a, b].

It is easy to see directly from the definition that if f ∈ AC[a, b],
then f ∈ C[a, b].

Theorem 4.1.7. If f ∈ AC[a, b], then f ∈ BV [a, b].

Proof. If f ∈ AC[a, b], take ε = 1. There exists δ > 0, such that∑k
i=1 |f(bi) − f(ai)| < 1 as long as

∑k
i=1 |bi − ai| < δ for the disjoint

intervals (ai, bi), i = 1, · · · , k.
Now, consider any partition ∆ of [a, b]: a = x0 < x1 < · · · < xm = b

with its meshsize |∆| = maxj{|xj+1 − xj |} < δ. It is clear from the
absolute continuity that T

xj+1
xj (f) < 1 and thus,

Ta
b(f) =

n∑
j=0

T xj+1
xj

(f) < m <∞.
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That is, f ∈ BV [a, b]. �

Lemma 4.1.2. If f ∈ AC[a, b] and f ′ = 0 a.e. then f is constant.

Proof. We leave the proof as an exercise. �

Theorem 4.1.8. F ∈ AC[a, b] if and only if F is an indefinite
integral of a Lebesgue integrable function f , i.e.

F (x) = f(a)−
∫
a

x

f(t) dt.

Proof. If F is an indefinite integral, then F is absolutely continuous
by Theorem 3.2.3. Suppose on the other hand that F is absolutely
continuous on [a, b]. Then F is in BV [a, b] and thus, it can be expressed
as the difference of two increasing functions:

F (x) = F1(x)− F2(x)

and

|F ′(x)| ≤ F ′
1(x) + F ′

2(x).

Thus, ∫ b

a

|F ′(x)| dx ≤ F1(b) + F2(b)− F1(a)− F2(a).

Therefore, F ′ is integrable on [a, b]. Let G(x) =
∫ x
a
F ′(t)dt. Then

G ∈ AC[a, b]. Applying Theorem 4.1.3 to the function f ′ = F ′ − G′,
we find that f ′ = 0 a.e. and thus f is a constant by Lemma 4.1.1.
Therefore,

F (x) =

∫ x

a

F ′(t) dt+ F (a).

�

Corollary 4.1.3. Every absolutely continuous function F is the

indefinite integral of its derivative. In fact F (x) = F (a) +
∫
a

b
F ′(t) dt.

Exercises
1. Show that

(a) D+[−f(x)] = −D+f(x);
(b) D+[f(−x)] = −D−f(−x).

2. Suppose f is defined on an open interval containing a and f
attains its minimum at a point a. Show that D+f(a) ≥ 0 ≥
D−f(x).

3. If f is monotone on [a, b], then prove the set {x ∈ [a, b] | J(f, x) >
0} is countable.
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4. Prove that if f is continuous on [a, b] and D+f(x) ≥ 0 for all
x ∈ (a, b) then f is monotone non-decreasing on [a, b]. [Hint:
consider g with D+g ≥ ε > 0 first and then apply it to g(x) =
f(x) + εx.]

5. Let f be differentiable on (a, b) such that f ′ is bounded, then
prove f ∈ BV [a, b].

6. Show that the function

f(x) =

{
x sin π

x
, x �= 0

0, x = 0

is uniformly continuous on [0, 1] but is not in BV [0, 1].
7. Let f be of bounded variation on [a, b]. Show that∫ b

a

|f ′(x)| dx ≤ T ba(f).

8. Prove that if f is an absolutely continuous function on [a, b], then

T ba(f) =
∫ b
a
|f ′| dx.

9. Prove that a function f satisfying a Lipschitz condition is of
bounded variation and absolutely continuous.

10. Let f be an integrable functions on E with
∫
E
f(x) dx = r > 0.

Then prove there is a subset e ⊂ E such that
∫
e
f(x) dx = r

3
.

[Hint: Consider the function
∫
E∩[a,x]

f(t) dt.]

11. A function f on [a, b] is said to be convex if for any x, y ∈ [a, b]
and r ∈ [0, 1], we have

f(rx+ (1− r)y) ≤ rf(x) + (1− r)f(y).

Show that for convex function f
(a) for any points x, x′, y, y′ satisfying x ≤ x′ ≤ y ≤ y′, we

have
f(y)− f(x)

y − x ≤ f(y′)− f(x′)
y′ − x′ .

(b) f ′ exists a.e. on [a, b].
(c) if f has a second derivative then f is convex, if and only

if f ′′(x) ≥ 0 for all x.
12. [Jensen’s Inequality] Let f be a convex function on (−∞,∞) and

g an integrable function on [0,1], then prove∫ ∞

−∞
f(g(t)) dt ≥ f

(∫
0

1

g(t) dt

)
.

Let g be an integrable function on [0,1], then prove∫
0

1

eg(t)dt ≥ e 0
1g(t) dt.
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13. If f ∈ Lip α, then prove f ∈ AC[a, b].

14. If f ∈ AC[a, b], then prove f ∈ BV [a, b] and Ta
b(f) =

∫
a

b|f ′| dx.
15. Prove Lemma 4.1.2.

2. Mathematical Models for Probability

In this section, we briefly describe probability models which use
measure theory and Lebesgue integration. A measure theoretic foun-
dation for probability theory was set up by a Russian mathematician,
Andrei Kolmogorov (1903–1987). It has been widely accepted that
probabilities should be studied as special sorts of measures.

Imagine that some experiment involving random chance takes place,
and use the symbol Ω, called the sample space to denote the set of all
possible outcomes. An event is a collection of outcomes. We say that
an event occurs when any of the outcomes that belong to it occur. The
probability of an event A gives a scale that measures opinions on the
likehoods of events happening. If E denotes the collection of events,
then (i) Ω ∈ E , (ii) whenever A ∈ E , then Ac ∈ E , and (iii) if (Ak) are
events in E , then ∪kAk ∈ E .

There are three fundamental laws of probability. Probabilities are
real numbers and whatever the event A, its probability P (A) satisfies
(1) 0 ≤ P (A) ≤ 1, (2) P (Ω) = 1, and (3) for pairwise disjoint events
Ak, k = 1, · · · , P (∪Ak) =

∑
k P (Ak). This property reminds us of the

countable additivity of a measure. In general, in probability theory, for
the collection E of µ-measurable sets on the sample space Ω, the triple
(Ω, E , µ) is usually called a measurable space. If µ(Ω) <∞, then µ is
called a finite measure and (Ω, E , µ) is called a finite measurable

space. If µ(Ω) = 1, then µ is called a probability measure and
(Ω, E , µ) is called a probability space. As mentioned above, the
class E of events usually is a σ-algebra.

Example 4.2.1. Let X = {ωk | k ∈ N} be a countable set and take
E to be the collection of all subsets of X. Let

∑∞
k=1 pk be a series of

nonnegative terms, and assume that the series converges to 1. Define
a set function µ on E by µ(∅) = 0 and µ(E) =

∑
ωki∈E pki, where

the term pki is included in the sum if the corresponding ωki is in E.
The function µ is a probability measure. The probability space (X, E , µ)
serves to describe any probability experiment of a discrete nature.

Many experiments with finitely many outcomes have such a degree
of symmetry that it is reasonable to assume that all these outcomes
are equally likely.
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Example 4.2.2. Some typical examples of discrete probability mod-
els are:

(1) The binomial distribution:

ω = 0, 1, · · · , n, P (ω = k) =

(
n

k

)
pk(1− p)n−k, p ∈ [0, 1].

(2) The Poisson distribution:

ω = 0, 1, · · · , P (ω = k) =
λk

k!
e−λ, λ > 0.

Because a probability space is a finite measure space, we can imme-
diately infer for a probability space any properties of a finite measure
space. For future reference, we list some important properties of prob-
ability in the following.

Theorem 4.2.1. Suppose that (Ω, E , P ) is a probability space. If
A,B ∈ E , then the following holds.

(i) If A ⊂ B, then P (A) ≤ P (B) and P (B \ A) = P (B)− P (A).
(ii) P (Ac) = 1− P (A).
(iii) P (A ∪ B) = P (A) + P (B)− P (A ∩ B).
(iv) If Ek ∈ E , then P (∪Ek) ≤

∑
k P (Ek).

A real-valued measurable function defined on Ω is called a random

variable and is usually denoted by symbols such as X, Y · · · rather
than the symbols f, g, · · · . Subsets of Ω such as {ω | X(ω) ≤ x} are
written as {X ≤ x} and the probability P ({X ≤ x}) is written simply
as P (X ≤ x).

A distribution function corresponding to a random variable X
is the function defined by

FX(x) = P (X ≤ x).

It is easy to see that the distribution function is nondecreasing and
continuous from the right, moreover, it is bounded since FX(−∞) = 0
and FX(∞) = 1.

A random variable X is said to be (absolutely) continuous if
and only if its distribution function FX is (absolutely) continuous on
R. From Theorem 4.1.3 we see that FX is differentiable a.e. on R.
Applying Theorem 4.1.8, we can show the following.

Theorem 4.2.2. If X is an absolutely continuous random variable
and if B is a Borel set of R, then

P (x ∈ B) =

∫
B

F ′
X(x) dx.(2.1)
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Proof. Let E be the collection of sets for which (2.1) is valid. Then
it is easy to verify that E is a σ-algebra. From the definition of FX , we
see that all intervals of the form (−∞, x] are members of E and thus,
by considering complements and unions it follows that all intervals are
in E . So E is a σ-algebra, and it contains the Borel sets. This, together
with Theorem 4.1.8, yields the conclusion. �

The derivative function f(x) := F ′
X(x) is called the density function

of random variable X. Since FX is increasing and FX(∞) = 1, we ob-
tain the basic properties of a density function f : (i) f ≥ 0 and (ii)∫∞
−∞ f(x) dx = 1.

Example 4.2.3. Some typical examples of density functions are:

(1) The uniform density on [a, b]:

f(x) =

{
1
b−a , x ∈ [a, b],

0, elsewhere.

(2) The exponential density:

f(x) =

{
λe−λx, x ≥ 0,

0, elsewhere.

(3) The normal density function:

f(x) =
1√
2πσ

exp

[
−(x− µ)2

2σ2

]
, σ > 0, µ ∈ R.

Events A andB are said to be independent if P (A∩B) = P (A)P (B).
For more than two events, we should be very careful to distinguish be-
tween two types of independence, pairwise independence and mutual

independence. Events Ak, k = 1, · · · , An are said to be pairwise inde-
pendent if for i �= j, Ai and Aj are independent. However, the concept
of mutual independence means that for any subset of {1, 2, · · · , n}, say
{i1, · · · , ik}, we have

P (Ai1 ∩ · · · ∩Aik) = P (Ai1) · · ·P (Aik).

Clearly, mutual independence implies pairwise independence, but the
converse is not true.

Using properties of a measure, we can prove the following results
on limits of events.

Theorem 4.2.3. [Borel-Canteli Lemma] Suppose that (Ω, E , P ) is
a probability space and that En ∈ E for n = 1, 2, · · · .

(a) If
∑

n P (En) <∞, then P (limn→∞En) = 0.
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(2) If E1, · · · , En, · · · are mutually independent and
∑∞

n=1 P (En) =

∞, then P (limn→∞En) = 1.

Proof. We leave the proof as an exercise. �

Definition 4.2.1. Let (Ω, E , P ) be a probability space and E ∈ E
with P (E) > 0. Then for F ∈ E , the conditional probability of
F given E is defined to be

P (F |E) =
P (F ∩E)

P (E)
.

Corollary 4.2.1. If events E and F are independent and P (E) >
0, then P (F |E) = P (F ).

Let Xk, k = 1, · · · , n be n random variables defined on the same
probability space (Ω, E , P ). Then the joint probability distribution

of X := (X1, · · · , Xn) is

F (x) = F (x1, x2, · · · , xn) = P (x | X1 ≤ x1, · · · , Xn ≤ xn),

where x = (x1, · · · , xn) ∈ Rn.

Theorem 4.2.4. The random variables Xk, k = 1, · · · , n are inde-
pendent if and only if

F (x1, x2, · · · , xn) = F (x1)F (x2) · · ·F (xn), for all x1, · · · , xn.
We may also characterize independence in terms of densities.

Theorem 4.2.5. If X = (X1, · · · , Xn) has a density f and each
Xi has a density fi, then X1, · · · , Xn are independent if and only if

f(x1, · · · , xn) = f(x1) · · ·f(xn)

for all (x1, · · · , xn) ∈ Rn except possibly for a Borel set of measure
zero.

In the study of probability distributions, we would like to examine
the center point and the overall spread of information of the distribu-
tion. These usually can be obtained by computing the so-called mean
value and standard deviation.

Consider a random variable taking only finitely many values: x1, · · · , xn
with probabilities p1, · · · , pn, respectively. The “average” value

µ :=
1

n

n∑
k=1

pkxk
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is called the expected value or mean value of X. The variance of
X is

σ2 := (x1 − µ)2p1 + (x2 − µ)2p2 + · · ·+ (xk − µ)2pk =
n∑
i=1

(xi − µ)2pi.

The standard deviation σ is the square root of the variance.
Suppose that X is a continuous random variable with probability

density f(x). The expected value of X is

µ = E(X) =

∫
xf(x) dx

and the variance of X is

Var(X) =

∫
(x− µ)2f(x) dx,

where the integrals are taken over all possible values of X. Again, the
standard deviation σ is the square root of the variance.

The following properties of expected value and variance (standard
deviation) are easy to verify.

Theorem 4.2.6. Assume that X and Y are random variables and
c ∈ R, Then

(1) E(X + Y ) = E(X) + E(Y ),
(2) E(cX) = cE(X),
(3) E(c) = c.
(4) Var(X) = E(X2)− [E(X)]2.

Example 4.2.4. (i) IfX is a binomial distribution, then E(X) =
np and V ar(X) = np(1− p).

(ii) If X is a normal distribution, then E(X) = µ and V ar(X) = σ2.

Definition 4.2.2. Let X be a random variable on a probability
space (Ω, E , P ). If k > 0, then the number E(Xk) is called the kth
moment of X.

Note that E(Xk) is finite if and only if E(|X|k) is finite. The
following shows that the finiteness of the kth moments implies finiteness
of the r moments if r < k.

Lemma 4.2.1. If k > 0 and E(Xk) is finite, then E(Xj) is finite
for 0 < j < k.
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Proof.

E(|X|j) =

∫
|x|jf(x) dx

=

∫
{|x|j<1}

+

∫
{|x|j≥1}

(|x|jf(x)) dx

≤ P (|X|j < 1) +

∫
Ω

|x|kf(x)dx <∞.

�
The following result is related to measure theory.

Theorem 4.2.7. If X is a random variable with E(|X|p) < ∞,
then for any ε > 0, we have Markov’s Inequality

P (|X| ≥ ε) ≤ E(|X|p)
εp

.

In particular, if X has a finite mean value and variance σ2, we have
Chebyshev’s Inequality

P (|X − E(X)| ≥ ε) ≤ σ2

ε2
.

Proof.

P (|X| ≥ ε) =

∫
|x|≥ε

f(x) dx

≤
∫
|x|≥ε

|x|p
εp

dx ≤ 1

εp

∫ ∞

−∞
|x|pf(x) dx =

E(|X|p)
εp

.

Choosing p = 2 and replacing X by X − E(X), we obtain the
Chebyshev Inequality. �

The following result is a direct consequence of Fubini’s Theorem
(Theorem 3.4.2).

Theorem 4.2.8. Let X1, · · · , Xn be independent random variables
on (Ω, E , P ). If all Xi are nonnegative or if E(Xi) is finite for each i,
then E(X1 · · ·Xn) exists and equal to E(X1) · · ·E(Xn).

Exercises
1. Set up a probability space for tossing a fair coin three times.

What is the chance all three tosses give the same result?
2. Prove Theorem 4.2.1.
3. Let f be a nonnegative integrable function and assume that∫∞

−∞ f(x) dx = 1. Prove that there exists a random variable
having f as its density function.



3. CONVERGENCE AND LIMIT THEOREMS 99

4. For the normal distribution density

f(x) =
1√
2πσ

exp

[
−(x− µ)2

2σ2

]
, σ > 0, µ ∈ R,

verify that
∫∞
−∞ f(x) = 1. [Hint: Use [

∫
f(x) dx]2 =

∫
f(x) dx

∫
f(y) dy

and a polar coordinates substitution.]
5. Let X be an exponential random variable with parameter λ.

Find the probability distribution function F (x).
6. Show that if A and B are independent events, then so are the

events Ac and Bc.
7. Let S and T be independent with P (S) = P (T ) and P (S∪T ) =

1
2
. What is P (S)?

8. Assume that the proportion of commercial vehicles among users
of the Humber Bridge varies randomly from day to day, with
density f(x) = cx(1 − x)2 for 0 < x < 1, where c is a constant.
Show that c = 12, then find the distribution function. On what
fraction of days is the proportion of commercial vehicles between
20% and 50%.

9. Prove the Borel-Canteli Lemma. [Hint: In the second part, Con-
sider the complements and use the fact that for x > 0, e−x ≥
1− x.]

10. Show that E(X) = λ and Var(X) = λ2 if X is a Poisson distri-
bution.

11. Evaluate E(X) and Var(X) for the exponential distribution.
12. If X1, · · · , Xn are random variables with finite expected values

and E(XiXj) is finite for all i, j with i �= j, then prove

Var(X1 + · · ·+Xn) =

n∑
i−1

Var(Xi) + 2

n∑
1≤i<j≤n

Cov(Xi, Xj),

where Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))] = E(XY ) −
E(X)E(Y ) is the covariance of X and Y .

13. If X1, · · · , Xn are pairwise independent random variables with
finite variances, then prove that for ai ∈ R, i = 1, · · · , n,

Var(a1X1 + · · ·+ anXn) =
n∑
i=1

a2
iVar(Xi).

3. Convergence and Limit Theorems

In this section, we will discuss convergence of random variables and
distributions.
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Definition 4.3.1. Let (Xn(ω)) be a sequence of random variables
on the probability space (Ω, E , P ).

(i) If Xn → X a.e. on Ω, that is,

P
(
ω; lim

n→∞
Xn(ω) = X(ω)

)
= 1

a.e. on Ω, then Xn is said to be convergent to X almost surely.

(ii) If Xn→X in probability measure P (Xn
P→ X), that is,

lim
n→∞

P (ω; |Xn(ω)−X(ω)| ≥ ε) = 0

for every ε > 0, then (Xn) is said to be convergent to X in

probability.

The following are corollaries of the corresponding theorems in Chap-
ter 3.

Theorem 4.3.1. (1) Random variable sequence Xn → X al-
most surely if and only if for ε > 0,

lim
n→∞

P (∪∞k=n(|Xk −X| ≥ ε)) = 0.

(2) If Xn → X almost surely, then Xn → X.

From the fact that convergence in measure cannot imply conver-
gence a.e., we know that convergence in probability does not imply
convergence almost surely.

Definition 4.3.2. Let (Xn(ω)) be a sequence of random variables
on the probability space (Ω, E , P ). Fn(x) are the corresponding distrib-
ution functions of Xn, n ∈ N.

(i) If there is a nondecreasing function F (x) such that

lim
n→∞

Fn(x) = F (x)

holds for every point of continuity of F , then (Fn) is said to
weakly converge to F , denoted by Fn → F (w).

If F becomes a probability distribution function of a ran-
dom variable X on (Ω, E , P ), then we say that (Xn) weakly

converges to X, denoted by Xn → X (w).
(ii) Let the random variables Xn and X satisfy E(|Xn|r) < ∞ and

E(|X|r) <∞ for r > 0. If

lim
n→∞

E(|Xn −X|r) = 0,

then (Xn) is said to be convergent to X of order r (or in the

rth mean), denoted by Xn → X (order r).
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Example 4.3.1. (1) The limit of distribution function Fn may
not be a probability distribution at all. Define

Fn(x) =

{
0, x < n,

1, X ≥ n

and F (x) = 0. Then we have Fn → F (w), but F is not a
distribution function.

(2) A random variable sequence may converge weakly, but may not
converge in probability. For example, let X and Xn be indepen-
dent discrete random variables with identical probability distrib-
ution: p(0) = p(1) = 1

2
. Then, of course Xn → X (w) since they

have identical distributions. But for ε > 0,

P (|Xn −X| > ε) = P (Xn = 1, X = 0) + P (Xn = 0, X = 1)

= P (Xn = 1)P (X = 0) + P (Xn = 0)P (X = 1)

=
1

2
· 1
2

+
1

2
· 1
2

=
1

2
.

Therefore, Xn �→ X in probability.

Theorem 4.3.2. If the random variables Xn → X in probability,
then Xn → X weakly.

Proof. For x, y ∈ R, we have

F (y) ≤ Fn(x) + P (Xn > x,X ≤ y)

since

(X ≤ y) = (Xn ≤ x,X ≤ y) ∪ (Xn > x,X ≤ y)

⊂ (Xn ≤ x) ∪ (Xn > x,X ≤ y).

From Xn → X in probability, we see that for y < x,

P (Xn > x,X ≤ y) ≤ P (|Xn −X| ≥ x− y)→ 0

as n→∞. Therefore,

F (y) ≤ limn→∞Fn(x).

Similarly, we have for x < z,

limn→∞Fn(x) ≤ F (z).

Hence for y < x < z,

F (y) ≤ limn→∞Fn(x) ≤ limn→∞Fn(x) ≤ F (z).

Therefore, for any point of continuity x of F , we have

lim
n→∞

Fn(x) = F (x).
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�
We leave the proof of the following result to the reader.

Theorem 4.3.3. If distribution functions Fn → F (w) and F is
a continuous probability distribution function, then limn Fn(x) = F (x)
uniformly on R.

For the relationship between convergence of order r and convergence
in probability, we have the following.

Theorem 4.3.4. If Xn → X (order r), then Xn
P→ X.

Proof. The conclusion follows from the Markov Inequality

P (|Xn −X| ≥ ε) ≤ E(|Xn −X|r
εr

.

�
The converse of Theorem 4.3.4 is not true (exercise).
In summary, we have the following implications of convergences:

Corollary 4.3.1. On (Ω, E , P ), Convergence almost surely (or
convergence of order r) implies convergence in probability, and conver-
gence in probability implies convergence weakly.

Next, let (Xn) be random variables on the same probability space
(Ω, E , P ) which are independent with identical distribution (iid), write

Sn =
∑n

k=1Xk, X̄ = Sn
n

and S2 =
∑n

k=1
(Xi−X̄)2

(n−1)
. We would like to

investigate the probability of X̄ when n is large.

Lemma 4.3.1. Suppose (Xn) is a sequence of iid random variables,
with E(Xi) = µ and Var(Xi) = σ2, both finite. Then E(X̄) = µ and

Var(X̄) =
σ2

N
, and E(S2) = σ2.

Proof. We leave the proof as an exercise. �

Theorem 4.3.5. [Weak Law of Large Numbers] Suppose (Xn) are

iid with mean µ and finite variance σ2. Then X̄
P→ µ.

Proof. Using Chebyshev’s Inequality and the above lemma, we have

P (|X̄ − µ| > ε) ≤ σ2

nε2
.

The conclusion follows by letting n→∞. �
Using Markov’s Inequality and the Borel-Canteli Lemma, we can

prove the Strong Law of Large Numbers:
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Theorem 4.3.6. [Strong Law of Large Numbers] Suppose (Xn) are

iid with mean µ and finite forth moment E(|Xi|4). Then X̄
P→ µ almost

surely.

Proof. Notice that

E
(
(Sn − nµ)4

)
= E

(
n∑
i=1

(Xi − µ)4

)
+ E

(∑
i<j

(Xi − µ)2(Xj − µ)2

)
,

as all other terms in the expansion are zero, based on their the inde-
pendence. Thus,

E((Sn − nµ)4) = nE((X1 − µ)4) + 3n(n− 1)σ4 ≤ Cn2

for some constant C.
From Markov’s Inequality, we have

P

(∣∣∣∣Snn − µ
∣∣∣∣ > ε

)
= P ((Sn − nµ)4 > n4ε4) ≤ Cn2

n4ε4
=
C1

n2
,

where C1 = C/ε4. Since
∑

n
1
n2 converges, the first part of the Borel-

Cantelli Lemma shows that, with probability one, only finitely many
of the events |Sn/n− µ| > ε occur for any ε > 0. Therefore, Sn/n→ µ
almost surely. �

Exercises
1. Prove that if Xn → X and Yn → Y , then Xn + Yn → X + Y ,

provided the mode of convergence is either in probability, almost
surely, or of order r throughout.

2. Prove that if f ∈ C(0,∞) and f is bounded and strictly increas-

ing with f(0) = 0, thenXn
P→ 0 if and only if limn→∞E(f |Xn|) =

0.
3. Prove that if Xn is a Poisson distribution with parameter n, then

Xn−n√
n

converges weakly to the normal distribution X.

4. Show by an example that the converse of Theorem 4.3.4 is not
true.

5. Prove Lemma 4.3.1.
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CHAPTER 5

Vector Spaces, Hilbert Spaces, and the L2 Space

1. Groups, Fields, and Vector Spaces

The theory of vector spaces has a tremendous number of applica-
tions, as is seen in a standard sophomore level linear algebra class. In
this section, we review the definitions and properties of finite dimen-
sional vector spaces. We do so by taking an algebraic approach.

Definition 5.1.1. A group is a set of elements G along with a
mapping (called a binary operation) � : G×G �→ G such that

(1) There exists an element e ∈ G such that for all g ∈ G, e � g =
g � e = g. This element e is called the identity element of group G.

(2) For any element g ∈ G there exists a unique element h ∈ G
such that g � h = h � g = e. Element h is the inverse of g and is
denoted h = g−1.

(3) For all g, h, j ∈ G, g � (h � j) = (g � h) � j. That is, � is
associative.

We denote the group as 〈G, �〉. If, in addition, for all g, h ∈ G,
g � h = h � g then G is an Abelian (or commutative) group. A
subgroup of group 〈G, �〉 is a subset S of G such that S is closed
under �.

Example 5.1.1. Examples of additive groups include:
(a) The integers under addition modulo n: 〈Zn,+〉.
(b) The integers under addition: 〈Z,+〉.
(c) The rational numbers under addition: 〈Q,+〉.
(d) The real numbers under addition: 〈R,+〉.
(e) The complex numbers under addition: 〈C,+〉.

Notice that each of these groups is Abelian. Notice that 〈Z,+〉 is a
subgroup of 〈Q,+〉, 〈Q,+〉 is a subgroup of 〈R,+〉, and 〈R,+〉 is a
subgroup of 〈C,+〉.

Definition 5.1.2. A field is a set of elements F along with two
mappings, called addition, denoted +, and multiplication, denoted
·, where + : F×F �→ F and · : F×F �→ F, such that 〈F,+〉 is an Abelian
group with identity element 0 and 〈F \ {0}, ·〉 is an Abelian group. The
identity element of 〈F \ {0}, ·〉 is denoted by 1 and called unity. We
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denote the field as 〈F,+, ·〉. A subfield of 〈F,+, ·〉 is a subset S of F
such that 〈S,+, ·〉 is a field.

Example 5.1.2. Examples of fields are:
(a) The integers modulo p, where p is prime, under addition and

multiplication: 〈Zp,+, ·〉.
(b) The rational numbers under addition and multiplication: 〈Q,+, ·〉.
(c) The real numbers under addition and multiplication: 〈R,+, ·〉.
(d) The complex numbers under addition and multiplication: 〈C,+, ·〉.

〈Zp,+, ·〉 is an example of a finite field and the remaining examples
are infinite fields. Notice that 〈Q,+, ·〉 is a subfield of 〈R,+, ·〉, and
〈R,+, ·〉 is a subfield of 〈C,+, ·〉.

We are now in the position to define a vector space. Since we
have established a bit of algebraic background, we can give a definition
slightly more concise than that encountered in a sophomore level linear
algebra class.

Definition 5.1.3. A vector space over field F (the elements of
which are called scalars) is a set V of elements called vectors such
that

(a) A mapping called addition, denoted +, is defined such that
+ : V × V �→ V and 〈V,+〉 is an Abelian group. The identity element
of this group is denoted 0.
We also define a mapping F×V �→ V called scalar multiplication.
For f ∈ F and v ∈ V we denote the scalar product of f and v as fv.
Scalar multiplication satisfies the following properties: for all a, b ∈ F
and for all u,v ∈ V :

(b) a(u + v) = au + av (distribution of scalar multiplication over
vector addition),

(c) (a + b)v = av + bv (distribution of scalar multiplication over
scalar addition),

(d) a(bv) = (a · b)v (associativity of scalar multiplication),
(e) 1v = v, and
(f) 0v = 0.

We denote this vector space as 〈V,F〉.
Example 5.1.3. Examples of vector spaces include:
(a) Qn = 〈V,Q〉 where V = {(q1, q2, . . . , qn) | qi ∈ Q for 1 ≤ i ≤

n}, and scalar multiplication and vector addition are defined component
wise.

(b) Rn = 〈V,R〉 where V = {(r1, r2, . . . , rn) | ri ∈ R for 1 ≤ i ≤ n},
and scalar multiplication and vector addition are defined component
wise.
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(c) Cn = 〈V,C〉 where V = {(c1, c2, . . . , cn) | ci ∈ C for 1 ≤ i ≤ n},
and scalar multiplication and vector addition are defined component
wise.

(d) Fn = 〈V,F〉 where V = {(f1, f2, . . . , fn) | fi ∈ F for 1 ≤ i ≤ n},
and scalar multiplication and vector addition are defined component
wise.

(e) l2(R) = 〈V,R〉 where

V =

{
(r1, r2, r3, . . . ) | ri ∈ R for i ≥ 1 and

∞∑
i=1

r2
i <∞

}
,

and scalar multiplication and vector addition are defined component
wise.

(f) l2(C) = 〈V,C〉 where

V =

{
(c1, c2, c3, . . . ) | ci ∈ C for i ≥ 1 and

∞∑
i=1

|ci|2 <∞
}
,

and scalar multiplication and vector addition are defined component
wise.

The reader is probably familiar with the vector spaces of Example
5.1.3 (b) and (c). However, the vector spaces of (e) and (f) may be new
to you. It may not even be clear that the sets V in these examples are
closed under vector addition. We will explore these examples in much
more detail in the following sections, and find that they play a role as
fundamental as the other examples.

We would like to classify vector spaces and see what they “look
like.” In that direction, we introduce several definitions.

Definition 5.1.4. Suppose 〈V,F〉 is a vector space. A linear

combination of vectors v1,v2, . . . ,vn ∈ V is a sum of the form f1v1+
f2v2 + · · ·+ fnvn where f1, f2, . . . , fn ∈ F are scalars. A set of vectors
{v1,v2, . . . ,vn} is linearly independent if f1v1+f2v2+· · ·+fnvn =
0 only when f1 = f2 = · · · = fn = 0. The span of a set of vectors
{v1,v2, . . . ,vn} ⊂ V is the set of all linear combinations of the vectors:
span{v1,v2, . . . ,vn} = {f1v1 + f2v2 + · · ·+ fnvn | f1, f2, . . . , fn ∈ F}.
A basis for a vector space is a linearly independent spanning set of
the vector space. A vector space is finite dimensional if it has a
basis of finite cardinality.

We follow the method of Lang [17] in our classification of finite dimen-
sional vector spaces. First, we need a preliminary result concerning
systems of equations. We will use this result to show that all bases of
a given finite dimensional vector space are of the same cardinality.
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Lemma 5.1.1. Consider the homogeneous system of equations

a11x1 + a12x2 + · · · + a1nxn = 0
a21x1 + a22x2 + · · · + a2nxn = 0

...
. . .

...
am1x1 + am2x2 + · · · + amnxn = 0

with coefficients aij (1 ≤ i ≤ m, 1 ≤ j ≤ n) and unknowns xk (1 ≤
k ≤ n) from field F. If n > m then the system has a nontrivial solution
(that is, a solution x1, x2, . . . , xn where xk �= 0 for some 1 ≤ k ≤ n).

Proof. We prove the result by induction on the number of equations
m. First, suppose we have m = 1 equation in n > 1 unknowns: a11x1 +
a12x2 + · · · + a1nxn = 0. If a1j = 0 for 1 ≤ j ≤ n, then we have the
nontrivial solution x1 = x2 = · · · = xn = 1. If some coefficient a1j∗ �= 0,
then we have the nontrivial solution

xk =

{
1 if k �= j∗

−(a1j∗)
−1(a11 + a12 + · · ·+ a1n − a1j∗) if k = j∗

This proves the result for m = 1 and n > m.
Next suppose the result holds for a system of m − 1 equations in

n − 1 > m − 1 unknowns. If all coefficients aij = 0, then x1 = x2 =
· · · = xn = 1 is a nontrivial solution. If some ai∗j∗ �= 0, then consider
the system of equations

(a11 − (ai∗j∗)
−1a1j∗ai∗1)x1 + (a12 − (ai∗j∗)

−1a1j∗ai∗2)x2 + · · ·
+ (a1j∗ − (ai∗j∗)

−1a1j∗ai∗j∗)xj∗ + · · ·
+ (a1n − (ai∗j∗)

−1a1j∗ai∗n)xn = 0

(a21 − (ai∗j∗)
−1a2j∗ai∗1)x1 + (a22 − (ai∗j∗)

−1a2j∗ai∗2)x2 + · · ·
+ (a2j∗ − (ai∗j∗)

−1a2j∗ai∗j∗)xj∗ + · · ·
+ (a2n − (ai∗j∗)

−1a2j∗ai∗n)xn = 0
...

...
...

(am1 − (ai∗j∗)
−1amj∗ai∗1)x1 + (am2 − (ai∗j∗)

−1amj∗ai∗2)x2 + · · ·
+ (amj∗ − (ai∗j∗)

−1amj∗ai∗j∗)xj∗ + · · ·
+ (amn − (ai∗j∗)

−1amj∗ai∗n)xn = 0

(This system is obtained from the original one by eliminating the vari-
able xj∗ from all equations.) Notice that the coefficient of xj∗ is 0 in
each equation and that the j∗ equation is 0 = 0. Therefore, this is a sys-
tem ofm−1 equations in the n−1 variables x1, x2, . . . , xj∗−1, xj∗+1, xj∗+2,



1. GROUPS, FIELDS, AND VECTOR SPACES 109

. . . , xn. By the induction hypothesis, this system has a nontrivial so-
lution, and this solution along with

xj∗ = −(ai∗j∗)
−1(aj∗1x1 + aj∗2x2 + · · ·+ aj∗(j∗−1)xj∗−1 + aj∗(j∗+1)xj∗+1

+aj∗(j∗+2)xj∗+2 + · · ·+ aj∗nxn)

forms a nontrivial solution to the original system of equations. Hence,
by induction, the result holds for all m ≥ 1 and all n > m. �

Theorem 5.1.1. Let 〈V,F〉 be a vector space with bases {v1,v2, . . . ,
vm} and {w1,w2, . . . ,wn}. Then n = m.

Proof. Suppose n > m. Since {v1,v2, . . . ,vm} is a basis, then for
some aij where 1 ≤ i ≤ m, 1 ≤ j ≤ n we have

w1 = a11v1 + a21v2 + · · ·+ am1vm

w2 = a12v1 + a22v2 + · · ·+ am2vm
...

...
...

wn = a1nv1 + a2nv2 + · · ·+ amnvm.

Let x1, x2, . . . , xn be (“unknown”) elements of F. Then

x1w1+x2w2+· · ·+xnwn = (x1a11+x2a12+· · ·+xna1n)v1+(x1a21+x2a22+

· · ·+ xna2n)v2 + · · ·+ (x1am1 + x2am2 + · · ·+ xnamn)vm.

The system of equations

x1a11 + x2a12 + · · ·+ xna1n = 0

x1a21 + x2a22 + · · ·+ xna2n = 0
...

...
...

x1am1 + x2am2 + · · ·+ xnamn = 0

has a nontrivial solution x1, x2, . . . , xn by Lemma 5.1.1, since n > m.
Therefore x1w1 +x2w2 + · · ·+xnwn = 0 for x1, x2, . . . xn where xk �= 0
for some 1 ≤ k ≤ n. That is, the set of vectors {w1,w2, . . . ,wm} is
linearly dependent. But this is a contradiction since {w1,w2, . . . ,wn}
is a basis for 〈V,F〉, and hence is a linearly independent set. Therefore
n ≤ m. Similarly, m ≤ n and we conclude that n = m. �

We will make extensive use of Theorem 5.1.1. It will be the whole basis
(!) of our classification of finite dimensional vector spaces.

Definition 5.1.5. If vector space 〈V,F〉 is a finite dimensional
vector space, then the dimension of the vector space is the cardinality
of a basis.
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Definition 5.1.6. Two vector spaces over the same field F, 〈V,F〉
and 〈W,F〉, are isomorphic if there is a one-to-one and onto mapping
φ : V �→ W such that for all f, f ′ ∈ F and v,v′ ∈ V , we have:
φ(fv + f ′v′) = fφ(v) + f ′φ(v′).

Informally, an isomorphism is a one-to-one and onto mapping between
two mathematical entities which preserves the structure of those en-
tities (whether the structure is connectivity in a graph, the binary
operation in a group, etc.). The structure in a vector space consists
of scalar multiplication and vector addition and that is why we define
isomorphism in this setting as we do.

We are now prepared to completely classify finite dimensional vector
spaces. The following result gives us the answer to the question “What
does a finite dimensional vector space look like?” More precisely, this re-
sult tells us, up to isomorphism, what an n-dimensional vector space is.
We raise this result to the status of a “fundamental theorem” and de-
clare it the Fundamental Theorem of Finite Dimensional Vector

Spaces.

Theorem 5.1.2. [The Fundamental Theorem of Finite Dimensional
Vector Spaces] If 〈V,F〉 is an n-dimensional vector space, then 〈V,F〉 is
isomorphic to Fn = 〈V ∗,F〉 where V ∗ = {(f1, f2, . . . , fn) | f1, f2, . . . , fn ∈
F}, and scalar multiplication and vector addition are defined component
wise.

Proof. Let {v1,v2, . . . ,vn} be a basis of 〈V,F〉. Define φ : V �→ V ∗ as

φ((f1v1 + f2v2 + · · ·+ fnvn)) = (f1, f2, . . . , fn).

Since {v1,v2, . . . ,vn} is a linearly independent set, then φ is one-to-
one. Since {v1,v2, . . . ,vn} is a spanning set of 〈V,F〉 then φ is onto.
Finally, for any f, f ′ ∈ F and v,v′ ∈ V we have

φ(fv + f ′v′) = φ(f(f1v1 + f2v2 + · · ·+ fnfn) + f ′(f ′
1v1 + f ′

2v2 + · · ·
+f ′

nvn)) where v = f1v1 + f2 + v2 + · · ·+ fnvn

and v′ = f ′
1v1 + f ′

2 + v2 + · · ·+ f ′
nvn

= φ((ff1 + f ′f ′
1)v1 + (ff2 + f ′f ′

2)v2 + · · · (ffn + f ′f ′
n)vn)

= (ff1 + f ′f ′
1, ff2 + f ′f ′

2, . . . , ffn + f ′f ′
n)

= (ff1, ff2, . . . , ffn) + (f ′f ′
1, f

′f ′
2, . . . , f

′f ′
n)

= f(f1, f2, . . . , fn) + f ′(f ′
1, f

′
2, . . . , f

′
n)

= fφ(f1v1 + f2v2 + · · ·+ fnvn) + f ′φ(f ′
1v1 + f ′

2v2 + · · ·+ f ′
nvn)

= fφ(v) + f ′φ(v′).

Therefore φ is an isomorphism. �



1. GROUPS, FIELDS, AND VECTOR SPACES 111

The Fundamental Theorem of Finite Dimensional Vector Spaces tells
us, in particular, that an n-dimensional vector space over scalar field
R is isomorphic to Rn. Similarly, an n-dimensional vector space over
scalar field C is isomorphic to Cn. We therefore can completely deter-
mine a finite dimensional vector space simply by knowing its dimension
and scalar field. We will see in Section 5.4 that this idea can be ex-
tended to infinite dimensional spaces as well. However, this extension
will require that we modify some of the definitions encountered in this
section.

Now that we know what an n-dimensional vector space “looks like,”
we use the Fundamental Theorem of Finite Dimensional Vector Spaces
to classify certain transformations of these vector spaces.

Definition 5.1.7. A transformation T mapping one vector space
〈V,F〉 into another 〈W,F〉 is a linear transformation if for all
v,v′ ∈ V and for all f, f ′ ∈ F, we have T (fv+f ′v′) = fT (v)+f ′T (v′).

Notice that an isomorphism between two vector spaces over the same
field is just a one-to-one and onto mapping which is linear. The follow-
ing result allows us to classify all linear transformations between two fi-
nite dimensional vector spaces. We do so by considering the behavior of
linear transformations on the standard basis of Fn: {(1, 0, 0, . . . , 0),
(0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}.We
commonly represent the set of standard basis vectors as {e1, e2, . . . , en}.
If v ∈ Fn and v = v1e1 + v2e2 + · · · + vnen, then we represent v as
(v1, v2, . . . , vn).

Theorem 5.1.3. If T is a linear transformation from n-dimensional
vector space 〈V,F〉 to m-dimensional vector space 〈W,F〉 then T is
equivalent to the action of an m× n matrix AT : Fn �→ Fm.

Proof. Let v ∈ V and consider the representation of v with respect
to the standard basis of 〈V,F〉, v = v1e1 + v2e2 + · · · + vnen :=
(v1, v2, . . . , vn). Then applying T to v yields

T (v) = T (v1e1 + v2e2 + · · ·+ vnen)

= v1T (e1) + v2T (e2) + · · ·+ vnT (en).

The vectors T (ei), 1 ≤ i ≤ n are elements of W . Suppose that, with
respect to the standard basis for 〈W,F〉, we have the representation
T (ei) = (a1i, a2i, . . . , ami) for 1 ≤ i ≤ n. Then defining

AT =

⎡⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn

⎤⎥⎥⎦ ,
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we see that vector v is mapped equivalently under T and AT . �

Surprisingly, Theorem 5.1.3 can be extended to linear transformations
between infinite dimensional vector spaces as well. We will see this in
section 5.4.

The Fundamental Theorem of Finite Dimensional Vector Spaces
(Theorem 5.1.2) gives a complete classification of finite dimensional
vector spaces simply in terms of the dimension and the scalar field.
We now turn our attention to infinite dimensional vector spaces. We
will offer some alternative definitions of basis, span, and linear

combination in the infinite dimensional setting. If we follow Definition
5.1.4 in the infinite dimensional setting (where linear combination,
linearly independent, and span are all defined in terms of finite
sums), then the type of basis that results is called a Hamel basis.
Every vector space has a Hamel basis.

Theorem 5.1.4. Let 〈V,F〉 be a vector space. Then there exists
a set of vectors B ⊂ V such that (1) B is linearly independent and
(2) for any v ∈ V there exists finite sets {b1,b2, . . . ,bn} ⊂ B and
{f1, f2, . . . , fn} such that v = f1b1 + f2b2 + · · ·+ fnbn. That is, B is
a Hamel basis for 〈V,F〉.

Proof. Let P be the class whose members are the linearly indepen-
dent subsets of V . Then define the partial order ≺ on P as A ≺ B for
A,B ∈ P if A ⊂ B. Now for v �= 0, {v} ∈ P and so P is nonempty.
Next, suppose Q is a totally subset of P . Define M to be the union
of all the sets in Q. Then M ∈ P is an upper bound of Q. Hence
by Zorn’s Lemma (see Theorem 1.2.2), P has a maximal element, call
it B. Since B is in P , B is linearly independent. Also, any vector v
must be a linear combination of elements of B, for if not, then the set
B
⋃{v} would be in P and B would not be maximal. �

Unfortunately, the proof of Theorem 5.1.4 requires Zorn’s Lemma (or
equivalently the Axiom of Choice). This makes the construction of
a Hamel basis quite a delicate affair! A much more useful idea was
introduced by J. Schauder. As opposed to writing any element of the
vector space as a finite linear combination of basis vectors, it is desired
to write any element as a series of basis vectors. Therefore we are
required to deal with vector spaces which have a metric.

Definition 5.1.8. Let 〈V,F〉 be a vector space with metric m.
Then a set of vectors B ⊂ V is a Schauder basis for 〈V,F〉 if for
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each v ∈ V there is a unique set of scalars {f1, f2, . . . } ⊂ F such that

v =

∞∑
n=1

fnbn. That is, lim
n→∞

m

(
v,

n∑
i=1

fibi

)
= 0.

The requirement that the set of scalars {f1, f2, . . . } be unique for any

given vector v guarantees that 0 =

∞∑
n=1

fnbn only when fn = 0 for

all n ∈ N (this can be interpreted as a requirement that set B is
linearly independent). Therefore, a Schauder basis of a vector space
with a metric is a linearly independent spanning set where linear

combination and span are defined in terms of series as opposed to
finite linear combinations.

Example 5.1.4. Define R∞ = 〈V,R〉 where V = {(r1, r2, . . . ) |
ri ∈ R for 1 ≤ n < ∞}, and scalar multiplication and vector ad-
dition are defined component wise. Then R∞ is a vector space and
each vector can be written as an infinite linear combination of the vec-
tors (1, 0, 0, 0, . . . ), (0, 1, 0, 0, . . . ), (0, 0, 1, 0, . . . ), . . . (the presence of so
many zeros in this collection of vectors allows us to avoid the need for
a metric — in general, though, we should avoid infinite sums in this
space). However, we will see that we cannot define an inner product
(or dot product) on R∞.

If we are taking infinite sums of elements of a vector space, we must
be concerned with convergence. We’ll explore this more in the next
section.

Exercises
1. Verify that the examples of groups, fields, and vector spaces given

in this section are what they are claimed to be.
2. Prove that the matrix AT of Theorem 5.1.3 is unique.
3. Show that if B1 and B2 are Hamel bases for a given infinite

dimensional vector space, then B1 and B2 are of the same cardi-
nality.

4. Consider the vector space Pn of all polynomials of degree at
most n. Find a basis for this space and find the matrix which
represents the differentiation operator (with respect to the basis
you choose).

5. Consider the nth order linear differential homogeneous differen-
tial equation

fn(x)y
(n) + fn−1(x)y

(n−1) + · · ·+ f1(x)y
′ + f0(x)y = 0.

Show that the set of solutions of this differential equation forms
a vector space.
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6. Let 〈V1,F〉 and 〈V2,F〉 be vector spaces, and let V = V1 ∩ V2.
Show that 〈V,F〉 is a vector space (called the intersection of
the two given vector spaces). Give an example of V1 and V2

where V1 ∪ V2 is not a vector space.
7. Consider the vector space of functions continuous on the in-

terval [a, b], denoted C([a, b]). Show that f1(x) = cosx and
f2 = sin x are linearly independent in this space. Show that the
set {1, x, x2, . . . , xn} is a linearly independent set in C([a, b]).

8. Prove that if 〈V,F〉 is an n dimensional vector space and {v1,v2, . . . ,vn}
is a linearly independent set, then {v1,v2, . . . ,vn} is a spanning
set of 〈V,F〉.

9. Let T be a linear transformation from one vector space 〈V,F〉 into
another 〈W,F〉. Show that 〈T (V ),F〉 is a subspace of 〈W,F〉.

10. If T is a linear transformation from one vector space to another,
then the set of vectors mapped to 0 under T is called the kernel
of T . Prove that the kernel of T is a vector space.

11. Let T be a linear transformation from 〈V,F〉 into 〈V,F〉. Vector v
is an eigenvector of T if there exists λ ∈ F such that T (v) = λv.
Suppose {v1,v2, . . . ,vn} is a basis for 〈V,F〉 where each vi is an
eigenvector and T (vi) = λivi. Find the n× n matrix AT which
represents T .

2. Inner Product Spaces

As seen in a linear algebra class, the idea of dot product allows
one to discuss certain geometric properties such as orthogonality and
distance. In this section, we take these properties as motivation in
defining the concept of an inner product space.

Definition 5.2.1. A vector space with complex scalars 〈V,C〉 is
an inner product space (also called a Euclidean Space or a Pre-

Hilbert Space) if there is a function 〈·, ·〉 : V × V �→ C such that for
all u,v,w ∈ V and a ∈ C we have:

(a) 〈v,v〉 ∈ R and 〈v,v〉 ≥ 0 with 〈v,v〉 = 0 if and only if v = 0,
(b) 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉,
(c) 〈au,v〉 = a〈u,v〉, and

(d) 〈u,v〉 = 〈v,u〉 where the over line represents the operation of
complex conjugation.
The function 〈·, ·〉 is called an inner product. (Some texts such as
[24] replace property (c) with the requirement that 〈u, av〉 = a〈u,v〉.)
Notice that properties (b), (c), and (d) of Definition 5.2.1 combine to
imply that

〈au + bv,w〉 = a〈u,w〉+ b〈u,w〉
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and

〈u, av + bw〉 = a〈u,v〉+ b〈u,w〉
for all relevant vectors and scalars. That is, 〈·, ·〉 is linear in the first
positions and “conjugate-linear” in the second position.

Example 5.2.1. The vector space Cn is an inner product space
with the inner product defined for u = (u1, u2, . . . , un) and v = (v1, v2,

. . . , vn) as 〈u,v〉 =

n∑
j=1

ujvj .

We can also define an inner product on a vector space with real scalars
by requiring that 〈·, ·〉 : V × V �→ R and by replacing property (d) in
Definition 5.2.1 with the requirement that the inner product is sym-
metric: 〈u,v〉 = 〈v,u〉. Then Rn with the usual dot product is an
example of a real inner product space.

Definition 5.2.2. For inner product space 〈V,C〉 with inner prod-
uct 〈·, ·〉, define the norm induced by the inner product as ‖v‖ = 〈v,v〉1/2
for all v ∈ V.
From Definition 5.2.1 we see that ‖v‖ is real, ‖v‖ ≥ 0 and ‖v‖ = 0 if
and only if v = 0. Also

‖av‖ = 〈av, av〉1/2 = (aa〈v,v〉)1/2 = |a|〈v,v〉1/2 = |a|‖v‖.
Of course, if we use the term “norm,” then we must verify that ‖ · ‖ :
V �→ R satisfies another property, the “triangle inequality.” We now
take steps in that direction.

Theorem 5.2.1. [The Schwarz Inequality.] For all u,v in inner
product space 〈V,C〉, we have

|〈u,v〉| ≤ ‖u‖‖v‖.
Proof. We know that for all a ∈ C

‖u + av‖ = 〈u + av,u + av〉 ≥ 0.

In particular, this inequality holds for a = b
〈u,v〉
|〈u,v〉| where b is real.

Therefore

〈u + av,u + av〉 = ‖u‖2 + a〈u,v〉+ a〈u,v〉+ |a|2‖v‖2(2.1)

= ‖u‖2 + 2b|〈u,v〉|+ b2‖v‖2 ≥ 0.

Solving the equality

‖u‖2 + 2b|〈u,v〉|+ b2‖v‖2 = 0
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for b, we get

b =
−2|〈u,v〉| ±√

(2|〈u,v〉|)2 − 4‖v‖2‖u‖2
2‖v‖2 .(2.2)

Therefore, inequality (2.2) holds for all u and v if and only if the
discriminant of (2.2) is nonpositive:

(2|〈u,v〉|)2 − 4‖v‖2‖u‖2 ≤ 0.

That is, |〈u,v〉| ≤ ‖u‖‖v‖. �

The Schwarz Inequality puts us in the position to show that ‖·‖ satisfies
the triangle inequality.

Theorem 5.2.2. [The Triangle Inequality.] For all u,v in an in-
ner product space 〈V,C〉 we have ‖u + v‖ ≤ ‖u‖+ ‖v‖.

Proof. We have by the Schwarz Inequality (Theorem 5.2.1):

‖u + v‖2 = 〈u + v,u + v〉 = 〈u,u〉+ 〈u,v〉+ 〈v,u〉+ 〈v,v〉
= ‖u‖2 + 〈u,v〉+ 〈u,v〉+ ‖v‖2
= ‖u‖2 + 2Re〈u,v〉+ ‖v‖2
≤ ‖u‖2 + 2|〈u,v〉|+ ‖v‖2
= (‖u‖+ ‖v‖)2.

Taking square roots yields the result. �

We have now seen that ‖ · ‖ satisfies for all u,v ∈ V and for all a ∈ C:
(1) ‖v‖ ≥ 0 and ‖v‖ = 0 if and only if v = 0,
(2) ‖av‖ = |a|‖v‖, and
(3) ‖u + v‖ ≤ ‖u‖+ ‖v‖.

Therefore we are justified in calling ‖ · ‖ a norm. So for any vector
space with an inner product, there is also a norm. The converse does
not hold, however (the classical Banach spaces are normed but the
norm is not induced by an inner product in most cases — see Exercise
5 of Section 5.5). Therefore we have the following hierarchy:(

vector
spaces

)
⊃
⎛⎝ normed

vector
spaces

⎞⎠ ⊃
⎛⎝ inner

product
spaces

⎞⎠ .

Analogous to the use of dot product in Rn to define the angle between
two vectors, we have the following definition.
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Definition 5.2.3. Two vectors u,v in an inner product space are
orthogonal if 〈u,v〉 = 0. A set of vectors {v1,v2, . . . } is orthogonal
if 〈vi,vj〉 = 0 for i �= j. This orthogonal set of vectors is orthonormal
if in addition 〈vi,vi〉 = ‖vi‖2 = 1 for all i and, in this case, the vectors
are said to be normalized.

An important property of an orthonormal system of vectors is the
following.

Theorem 5.2.3. [The Pythagorean Theorem] Let {v1,v2, . . . , vn}
be an orthonormal set of vectors in an inner product space 〈V,C〉. Then
for all u ∈ V

‖u‖2 =

n∑
j=1

|〈u,vj〉|2 +

∥∥∥∥∥u−
n∑
j=1

〈vj,u〉vj
∥∥∥∥∥

2

.

Proof. Trivially

u =

n∑
j=1

〈vj ,u〉vj +

(
u−

n∑
j=1

〈vj,u〉vj
)
.

(We will see latter that this is a rather fundamental decomposition of
u.) Since 〈

n∑
j=1

〈vj,u〉vj,u−
n∑
j=1

〈vj,u〉vj
〉

=

〈
n∑
j=1

〈vj,u〉vj,u
〉
−
〈

n∑
j=1

〈vj ,u〉vj,
n∑
j=1

〈vj,u〉vj
〉

=

n∑
j=1

〈vj,u〉〈vj,u〉 −
n∑
j=1

〈
〈vj,u〉vj,

n∑
k=1

〈vk,u〉vk
〉

=
n∑
j=1

〈vj,u〉〈vj,u〉 −
n∑
j=1

n∑
k=1

〈〈vj,u〉vj, 〈vk,u〉vk〉

=

n∑
j=1

〈vj,u〉〈vj,u〉 −
n∑
j=1

n∑
k=1

〈vj ,u〉〈vk,u〉〈vj,vk〉

=

n∑
j=1

|〈vj,u〉|2 −
n∑
j=1

|〈vj,u〉|2 = 0,
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then these two vectors are orthogonal. Therefore

‖u‖2 = 〈u,u〉 =

〈
n∑
j=1

〈vj,u〉vj +

(
u−

n∑
j=1

〈vj,u〉vj
)
,

n∑
j=1

〈vj,u〉vj +

(
u−

n∑
j=1

〈vj,u〉vj
)〉

=

〈
n∑
j=1

〈vj,u〉vj ,
n∑
j=1

〈vj ,u〉vj
〉

+

〈
u−

n∑
j=1

〈vj,u〉vj,u−
n∑
j=1

〈vj,u〉vj
〉

=
n∑
j=1

|〈vj ,u〉|2 +

∥∥∥∥∥u−
n∑
j=1

〈vj,u〉vj
∥∥∥∥∥

2

.

�

Notice that if we have v and w orthogonal and set u = v+w then the
Pythagorean Theorem implies the familiar result that ‖u‖2 = ‖v‖2 +
‖w‖2.

We immediately have from the Pythagorean Theorem the following:

Corollary 5.2.1. [Bessel’s Inequality] Let {v1,v2, . . . ,vn} be an
orthonormal set in an inner product space 〈V,C〉. Then for all u ∈ V
we have

‖u‖2 ≥
n∑
j=1

|(u,vj)|2.

Since inner product spaces have the induced norm ‖ · ‖ = 〈·, ·〉1/2,
then we can define the metric d : V × V �→ R as d(u,v) = ‖u− v‖ =
〈u − v,u − v〉1/2. Therefore in an inner product space there is the
concept of “distance” and “closeness.” As a consequence, we can ad-
dress several topics that are familiar in the setting of Rn: limits and
convergence of sequences and series, Cauchy sequences, and complete-
ness. An axiomatic development of the real numbers requires (as seen
in Chapter 1) an Axiom of Completeness. It is this completeness of R
which leads us to several desired properties, such as the convergence of
Cauchy sequences. We parallel this development by focusing our study
on complete inner product spaces. However, our approach is necessar-
ily a bit different from the setting of R. Namely, we have the following
definition.
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Definition 5.2.4. In inner product space 〈V,C〉 a sequence (v1,v2,
. . . ), where vj ∈ V for all i, is Cauchy if for any ε > 0 there exists
N ∈ N such that for all m,n ≥ N we have d(vm,vn) < ε. The se-
quence is convergent if there exists v ∈ V such that, for any ε > 0
there exists N ∈ N satisfying the property that for all n > N we have
d(v,vn) < ε. Element v is called the limit of the sequence.

In real n-dimensional space, Rn, Definition 5.2.4 reduces to the familiar
concepts. So, with Theorem 1.4.6 as motivation, we define complete-
ness in an inner product space in terms of Cauchy sequences:

Definition 5.2.5. An inner product space is complete if Cauchy
sequences converge.

Intuitively (and very informally), a complete space has no holes in
it! For example, Q is not complete, since we can take the sequence
(1, 1.4, 1.41, 1.414, . . . ) of progressively better decimal approximations
of
√

2, which we know to be Cauchy (for it is a convergent sequence in R
and a sequence of real numbers is Cauchy if and only if it is convergent
to a real number). However, the sequence does not converge in Q! This
is because, again informally, Q has a hole in it at

√
2. In inner product

spaces we will be interested in finding a basis in the sense of Schauder,
and therefore we must address the issue of convergence of series (which,
of course, is defined in terms of the convergence of sequences of partial
sums). Hence, from this point on, we focus our attention on complete
inner product spaces.

Definition 5.2.6. A complete inner product space is a Hilbert

space.

We have reached a climax in terms of defining mathematical structures!
Much of the previous material in this book will be aimed at exploring
the structure of Hilbert spaces, and all of the remaining material in
this book is a direct application of Hilbert space theory!

Example 5.2.2. Since R and C are complete, then Rn and Cn are
examples of Hilbert spaces (with the familiar dot product as the inner
product on Rn and the inner product on Cn as defined in Example
5.2.1).

We are quite familiar with the structure of Rn and Cn from our stud-
ies of linear algebra. In fact, every real vector space of dimension n
is isomorphic to Rn and every complex vector space of dimension n
is isomorphic to Cn (see Theorem 5.1.2). So we will now focus our
attention on infinite dimensional vector spaces which are also Hilbert
spaces.
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Exercises
1. Use Bessel’s Inequality to give an alternative proof of the Schwarz

Inequality.
2. Prove that in an inner product space, every convergent sequence

is Cauchy.
3. Let u and v be vectors in an inner product space. Prove that ‖u+

v‖+‖u−v‖ = 2(‖u‖2+‖v‖2). This is called the Parallelogram
Law. We can interprete this geometrically in Rn in the sense
that u and v determine a parallelogram with diagonals of length
‖u + v‖ and ‖u− v‖.

4. Let u and v be vectors in an inner product space. Prove that

〈u,v〉 =
1

4

{‖u + v‖2 − ‖u− v‖2 + i
(‖u + iv‖2 − ‖u− iv‖2)} .

This is called the Polarization Identity and, in the event that
a norm is induced by an inner product, allows us to express the
inner product directly in terms of the norm.

5. Let u, v, and w be vectors in an inner product space. Prove that
‖u− v‖+ ‖v −w‖ = ‖u−w‖ if and only if v = tu + (1− t)w
for some t ∈ [0, 1].

6. Prove that the inner product is continuous. That is, if (un)→ u
and (vn)→ v, then 〈un,vn〉 → 〈u,v〉.

3. The Space L2

We now study infinite dimensional Hilbert spaces. We will see in the
Fundamental Theorem of Infinite Dimensional Vector Spaces (Theorem
5.4.8) of the next section, that all infinite dimensional Hilbert spaces
(with a particular type of basis) are isomorphic. Therefore there is, up
to isomorphism, only one such space. In this section, we give a few
different “incarnations” of this space.

First, for the interval [a, b], we define the space L2([a, b]) as

L2([a, b]) =

{
f

∣∣∣∣∫
[a,b]

|f |2 <∞
}
,

where the inner product is 〈f, g〉 =
∫ b
a
fg. Since sets of measure zero

will not affect inner products or norms, we draw no distinctions be-
tween functions which are equal almost everywhere. To be precise, we
partition L2([a, b]) into equivalence classes with f ≡ g if and only if
f = g a.e. on [a, b] (we will encounter this concept again in Section
5.5). With this convention, it is clear that L2([a, b]) satisfies Definition
5.2.1 and hence is an inner product space. We show that L2([a, b]) is
complete in the following theorem, and hence it is a Hilbert space.
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Theorem 5.3.1. L2([a, b]) is complete.

Proof. Let (fN) be a Cauchy sequence in L2([a, b]). Consider a
subsequence (fn) where

‖fn − fn+1‖2 =

√∫
|fn − fn+1|2 < 2−n.

Let

gm(x) =

√√√√ m∑
n=1

|fn(x)− fn+1(x)|2.

Let g∞ = lim
m→∞

gm. Then (gm) monotonically approaches g∞ and∫
|gm|2 =

∫ m∑
n=1

|fn−fn+1|2 =

m∑
n=1

∫
|fn−fn+1|2 =

m∑
n=1

‖fn−fn+1‖22 < 1.

So we have∫
|g∞|2 =

∫ ∣∣∣ lim
m→∞

gm

∣∣∣2 =

∫
lim
m→∞

|gm|2

= lim
m→∞

∫
|gm|2

(by the Monotone Convergence Theorem [Theorem 3.3.3])

≤ 1.

So g∞ ∈ L2([a, b]). Therefore |g∞(x)| <∞ almost everywhere on [a, b],
and

fm(x) = fn(x)−
m−1∑
n=1

(fn(x)− fn+1(x))

converges pointwise a.e. to a function f . Now we show that f is the
limit of (fn) in the L2 sense and that f ∈ L2. For each x, we have

|fm(x)| ≤ |f1(x)|+
m−1∑
n=1

|fn(x)− fn+1|

= |f1(x)|+ |gm(x)| ≤ |f1(x)|+ |g∞(x)|
and

|fm(x)|2 ≤ (|f1(x)| + |g∞(x)|)2 ≤ 4 max
{|f1(x)|2, |g∞(x)|2} .

Now f1, g∞ ∈ L2, so by the Lebesgue Dominated Convergence Theorem
(Theorem 3.3.1)

lim
m→∞

∫
|fm|2 =

∫
lim
m→∞

|fm|2 =

∫
|f |2
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and ∫
|f |2 = lim

m→∞

∫
|fm|2 <∞

and hence f ∈ L2. Next,

|f(x)− fn(x)| ≤ |f(x)|+ f1(x)|+ |g∞(x)|
and

|f(x)− fm(x)|2 ≤ 9 max
{|f(x)|2, |f1(x)|2, |g∞(x)|2}

and again by the Lebesgue Dominated Convergence Theorem

lim
m→∞

‖f − fm‖2 = lim
m→∞

∫
|f − fm|2 =

∫
lim
m→∞

|f − fm|2 = 0.

The result follows. �

We comment that there is nothing special about the set [a, b] and, in
fact, the arguments used in Theorem 5.3.1 are still valid if we choose to
integrate over any measurable set E ⊂ R. Therefore, we can consider

L2(E) =

{
f

∣∣∣∣∫
E

|f |2 <∞
}

and we find that this is also a Hilbert Space.
Next, we introduce complex valued functions of a real variable.

That is, we are now interested in f : R �→ C where the real and
imaginary parts of f are measurable. In particular, for such an f and
a measurable set E, we define

L2(E) =

{
f

∣∣∣∣∫
E

ff =

∫
E

|f |2 <∞
}
.

In this case, we define the inner product of f and g in L2(E) as

〈f, g〉 =

∫
E

fg,

and hence L2(E) has the norm ‖f‖ =
∫ |f |2 (here |f | refers to the

modulus of f). Again, we can verify that L2(E) is in fact a Hilbert
space. In Chapter 6, we will be especially interested in L2([−π, π]).
We will see that the set {einx/√2π | n ∈ Z} is an orthonormal set (in
fact, a basis) in this space.

We now explore one slightly different example of a Hilbert space.
Consider the collection of all square summable sequences of real num-
bers:

l2 =

{
(x1, x2, x3, . . . )

∣∣∣∣∣xi ∈ R for all i ∈ N,
∞∑
j=1

|xj |2 <∞
}
.
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We define the inner product 〈x,y〉 =
∑∞

j=1 xjyj. Quite clearly, this is
an inner product space. We leave the proof of the completeness as an
exercise. We will show in the next section that L2([a, b]) (and every
infinite dimensional Hilbert space with a particular type of basis) is
isomorphic to l2.

We now briefly step aside to informally discuss the geometry of l2.
At this stage, we are all quite comfortable with the geometry of finite
dimensional real vector spaces (which are, by the Fundamental Theo-
rem of Finite Dimensional Vector Spaces [Theorem 5.1.2], isomorphic
to Rn). In two or three dimensions, we are accustomed to representing
vectors as arrows and discussing (especially in the presence of physicists
and engineers) the ideas of “direction” and “magnitude.” By analogy,
we extend the idea of dot products (and hence orthogonality) to these
higher dimensions. The higher dimensional spaces are hard to visualize
(except by analogy), but projections (discussed in the next section in
the Hilbert space setting) and algebraic manipulations are straightfor-
ward. What if we wish to extend all these nice properties to an infinite
dimensional space? Naively, we might jump to the conclusion that R∞

(where vectors are infinite sequences) is a good candidate for an infinite
dimensional space. True, it is infinite dimensional, but we have some
obvious problems extending all of the “nice” properties of Rn. If we
try to extend the inner product from Rn to R∞ simply by exchanging
(finite) sums for (infinite) series, then there is a problem. For example,
the vector of all 1’s has infinite length! As is always the case, the tran-
sition from the finite to the infinite raises a concern over divergence. If
we address this single concern and take the subset of R∞ of all vectors
of finite length (i.e. all vectors from R∞ whose components are square
summable), then we can preserve all the nice properties of Rn. As we’ll
see in the next section, l2 will share with Rn such properties as: the
Pythagorean Theorem (which, for geometry fans, indicates that l2, like
Rn, is flat — it has Euclidean geometry), the Parallelogram Rule, or-
thogonality of vectors, the Gram-Schmidt process, and the possession
of an orthonormal basis.

Exercises
1. Use the completeness of L2([a, b]) to show that L2(R) is complete.
2. Prove that l2 is complete.
3. The Legendre polynomials are defined as

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n for n ∈ N

and P0(x) = 1. In the space L2([−1, 1]), show that 〈Pn, xm〉 = 0
for m ∈ N and m < n, and then show that the set of Legendre
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polynomials is an orthogonal set. Show that ‖Pn‖ = 1/
√
n+ 1

2

and hence the set
{√

n+ 1
2
Pn(x) | n = 0, 1, 2, . . .

}
forms an or-

thonormal set.
4. We will see in Chapter 6 that the set{

1√
2π
,
cosx√
π
,
sin x√
π
,
cos 2x√

π
,
sin 2x√

π
, . . .

}
is an orthonormal basis for L2([−π, π]). For now, show that this
is in fact an orthonormal set.

5. A set D is said to be dense in l2 if the topological closure of D
is l2. That is, if x ∈ l2 then for all ε > 0 there exists d ∈ D such
that ‖x− d‖2 < ε. Find a countable dense subset of l2.

4. Projections and Hilbert Space Isomorphisms

Since Hilbert spaces are endowed with an inner product, they have
much of the associated geometry of familiar vector spaces. We have
already defined orthogonality using the inner product and, of course,
the inner product induces a norm. In this section, we take many of the
ideas from Rn and extend them to Hilbert spaces.

Recall that the projection of a vector x ∈ Rn onto a nonzero

vector a ∈ Rn is proja(x) =
x · a
a · aa. Therefore, in an inner product

space we define the projection of f onto nonzero g as projg(f) =
〈f, g〉
〈g, g〉g.

For a nonempty set S in a Hilbert space H , we say that h ∈ H
is orthogonal to S if 〈h, s〉 = 0 for all s ∈ S. The orthogonal

complement of S is

S⊥ = {h ∈ H | 〈h, s〉 = 0 for all s ∈ S} .
(S⊥ is pronounced “S perp” and S⊥ is sometimes called the “perp
space” of S.) In fact, S⊥ is itself a Hilbert space:

Theorem 5.4.1. For any nonempty set S in a Hilbert space H,
the set S⊥ is a Hilbert space.

Proof. Clearly, S⊥ is a vector space. We only need to show that it
is complete. Let (sn) be a Cauchy sequence in S⊥. Then, since H is
complete, there exists h ∈ H such that lim

n→∞
sn = h. Now for all s ∈ S

we have

〈h, s〉 =
〈
h, lim

n→∞
sn

〉
= lim

n→∞
〈h, sn〉 = 0
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since the inner product is continuous (Exercise 6 of Section 5.2). So
h ∈ S⊥ and (sn) converges in S⊥. Therefore S⊥ is complete. �

We now use the idea of an orthogonal complement to decompose a
Hilbert space into subspaces. As we will see, the decomposition is an
algebraic and not a set theoretic decomposition (it will involve vector
addition as opposed to set union).

Theorem 5.4.2. Let S be a subspace of a Hilbert space H (that
is, the set of vectors in S is a subset of the set of vectors in H, and
S itself is a Hilbert space). Then for any h ∈ H, there exists a unique
t ∈ S such that inf

s∈S
‖h− s‖ = ‖h− t‖.

Proof. Let d = inf
s∈S
‖h − s‖ and choose a sequence (sn) ⊂ S such

that lim
n→∞

‖h− sn‖ = d. Then

‖sm − sn‖2 = ‖(sm − h)− (sn − h)‖2
= 2‖sm − h‖2 + 2‖sn − h‖2 − ‖sm + sn − 2h‖2

by the Parallelogram Law (Excercise 3 of Section 5.2)

= 2‖sm − h‖2 + 2‖sn − h‖2 − 4

∥∥∥∥h− 1

2
(sm + sn)

∥∥∥∥2

≤ 2‖sm − h‖2 + 2‖sn − h‖2 − 4d2 since
1

2
(sm + sn) ∈ S.

Now the fact that lim
n→∞

‖h − sn‖ = d, implies that as m,n → ∞,

‖sm − sn‖ → 0 and so (sn) is Cauchy and hence convergent to some
t1 ∈ S, where lim

n→∞
‖h − sn‖ = ‖h − t1‖. For uniqueness, suppose for

some t2 ∈ S we also have lim
n→∞

‖h− sn‖ = ‖h− t2‖. Then

‖t1 − t2‖2 = 2‖h− t1‖2 + 2‖h− t2‖2 − 4

∥∥∥∥h− 1

2
(t1 + t2)

∥∥∥∥2

(as above)

= 4d2 − 4

∥∥∥∥h− 1

2
(t1 + t2)

∥∥∥∥2

.

Next,
1

2
(t1 + t2) ∈ S and so

∥∥∥∥h− 1

2
(t1 + t2)

∥∥∥∥ ≥ inf
s∈S
‖h − s‖ = d.

Therefore ‖t1 − t2‖2 = 0 and t1 = t2. �

We now use Theorem 5.4.2 to uniquely decompose elements of H into
a sum of an element of S and an element of S⊥.
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Theorem 5.4.3. Let S be a subspace of a Hilbert space H. Then
for all h ∈ H, there exists a unique decomposition of the form h = s+s′

where s ∈ S and s′ ∈ S⊥.

Proof. For h ∈ H , let t be as defined in Theorem 5.4.2. Let r = h−t.
Now for any s1 ∈ S and any scalar a,

‖r‖2 = ‖h− t‖2 ≤ ‖h− (t+ as1)‖2 = ‖r − as1‖2
= 〈r − as1, r − as1〉 = ‖r‖2 − 〈as1, r〉 − 〈r, as1〉+ |a|2‖s1‖2.

Therefore 0 ≤ |a|2‖s1‖2 − 〈as1, r〉 − 〈r, as1〉. If the inner product is
complex valued and a is real, then we have 0 ≤ |a|2‖s1‖2−2|a|Re〈r, s1〉.
Therefore by letting a → 0, we see that Re〈r, s1〉 = 0. If a is purely
imaginary, say a = ib where b ∈ R, then

0 ≤ b2‖s1‖2 − 〈ibs1, r〉 − 〈r, ibs1〉
= b2‖s1‖2 − ib〈s1, r〉+ ib〈r, s1〉
= b2‖s1‖2 + ib 〈2iIm〈r, s1〉〉
= b2‖s1‖2 − 2bIm〈r, s1〉.

Therefore, b‖s1‖2−2Im〈r, s1〉 ≥ 0 and upon letting b→ 0+, we see that
Im〈r, s1〉 = 0. Hence, 〈r, s1〉 = 0 for all s1 ∈ S, and therefore r ∈ S⊥.
So we have written h as h = t+ r where t = s ∈ S and r = s′ ∈ S⊥.

Now suppose that h = t1 + r1 = t2 + r2 where t1, t2 ∈ S and r1, r2 ∈
S⊥. Then t1 − t2 = r2 − r1 where t1 − t2 ∈ S and r2 − r1 ∈ S⊥. Since
the only element common to S and S⊥ is 0, then t1 − t2 = r2 − r1 = 0
and t1 = t2 and r1 = r2. Therefore the decomposition of h is unique.
�

Theorem 5.4.3 allows us now to define the projection of a vector onto
a subspace. With the notation of Theorem 5.4.3, define the projection
of vector h ∈ H onto subspace S as the unique s ∈ S such that
h = s + s′ for s′ ∈ S⊥, denoted projS(h) = s. We also say that H
can be written as the direct sum of S and S⊥, denoted H = S ⊕ S⊥,
and that H has this as an (orthogonal) decomposition. Theorems 5.4.2
and 5.4.3 combine to show that the best approximation of h ∈ H by
elements of a subspace S is projS(h).

Recall that the standard basis for Rn is {(1, 0, 0, . . . , 0), (0, 1, 0, . . . ,
0), . . . , (0, 0, 0, . . . , 0, 1)}.This basis has two desirable properties, namely
that each vector is a unit vector and the vectors are pairwise orthog-
onal. In an inner product space, a set of nonzero vectors is said to be
orthogonal if the vectors are pairwise orthogonal, and an orthogonal
set of vectors in which each vector is a unit vector is an orthonormal

set. We are interested in Hilbert spaces with a basis in the sense of
Schauder which is also an orthonormal set.
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Definition 5.4.1. A Schauder basis of a Hilbert space which is
also an orthonormal set is called an orthonormal basis.

Theorem 5.4.4. A Hilbert space with a Schauder basis has an or-
thonormal basis.

Proof. We start with a Schauder basis S = {s1, s2, . . . } and con-
struct an orthonormal basis R = {r1, r2, . . . } using a method called the
Gram-Schmidt process.

First define r1 = s1/‖s1‖.Now for k ≥ 2 define Rk = span{r1, r2, . . . ,
rk−1} and

rk =
sk − projRk(sk)

‖sk − projRk(sk)‖
.

Then for i �= j,

〈ri, rj〉 =

〈
si − projRi(si), sj − projRj (sj)

〉
‖si − projRi(si)‖‖sj − projRj (sj)‖

.

Clearly the ri’s are unit vectors. We leave as an exercise the proof that
the ri’s are pairwise orthogonal. �

The Gram-Schmidt process introduced in the proof of the previous
theorem is very geometric. By removing from sk its projection onto
the space Rk, we construct rk such that rk ∈ R⊥

k . Since rk ∈ R⊥
k+1,

then we are assured that the ri’s are orthogonal.

Theorem 5.4.5. If R = {r1, r2, . . .} is an orthonormal basis for a
Hilbert space H and if h ∈ H, then

h =
∞∑
k=1

〈h, rk〉rk.

Proof. We know from Bessel’s Inequality (Corollary 5.2.1) that for
all n ∈ N,

n∑
k=1

|〈h, rk〉|2 ≤ ‖h‖2.



128 5. VECTOR SPACES, HILBERT SPACES, AND THE L2 SPACE

Therefore sn =
n∑
k=1

|〈h, rk〉|2 is a monotone bounded sequence of real

numbers and hence converges (by Corollary 1.4.1) and is Cauchy. De-

fine hn =
n∑
k=1

〈h, rk〉rk. Then for n > m

‖hn − hm‖2 =

∥∥∥∥∥
n∑

k=m

〈h, rk〉rk
∥∥∥∥∥

2

=
n∑

k=m

|〈h, rk〉|2,

and as a consequence, the sequence (hn) is a Cauchy sequence in H
and so converges to some h′ ∈ H . So for each i ∈ N,

〈h− h′, ri〉 =

〈
h− lim

n→∞

n∑
k=1

〈h, rk〉rk, ri
〉

= lim
n→∞

〈
h−

n∑
k=1

〈h, rk〉rk, ri
〉

= 〈h, ri〉 − 〈h, ri〉 = 0

Therefore by Exercise 7, h− h′ = 0 and h =

∞∑
k=1

〈h, rk〉rk. �

Notice that the previous theorem is consistent with our experience in
Rn. It merely states that every element h of a Hilbert space can be
written as a (infinite) linear combination of the projections of h onto
the elements of an orthonormal basis R:

h =
∞∑
k=1

projrk(h).

Though we don’t usually speak of vectors in Hilbert spaces as having
magnitude and direction, there is still some validity to this idea. Just as
there are n “fundamental directions” (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . ,
(0, 0, 0, . . . , 0, 1) in Rn (the “fundamental” property being given by the
fact that every “direction” [i.e. nonzero vector] is a linear combination
of these “directions” [i.e. vectors]), there are a countable number of
“fundamental directions” in a Hilbert space with an orthonormal ba-
sis. This is a particularly tangible idea when we consider the Hilbert
space

l2 =

{
(x1, x2, . . . )

∣∣∣∣∣ xk ∈ R,
∞∑
k=1

|xk|2 <∞
}
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with orthonormal basis R = {(1, 0, 0, . . . ), (0, 1, 0, . . . ), (0, 0, 1, 0, . . . ),
. . . }.

Theorem 5.4.6. If R = {r1, r2, . . .} is an orthonormal basis for a

Hilbert space H and for h ∈ H, h =
∞∑
k=1

akrk, then ‖h‖ =
∞∑
k=1

|ak|2.

We leave the proof of Theorem 5.4.6 as an exercise.
We state the following definition for Hilbert spaces, though it is

valid for any space with a metric (see Exercise 26 of Section 1.4).

Definition 5.4.2. A Hilbert space with a countable dense subset
is separable. That is, a separable Hilbert space H has a subset D =
{d1, d2, . . . } such that for any h ∈ H and for all ε > 0, there exists
dk ∈ D with ‖h − dk‖ < ε. Therefore the (topological) closure of D is
H.

Most texts concentrate on a study of separable Hilbert spaces. We
prefer to focus on Hilbert spaces with orthonormal bases. The following
result resolves our apparently novel approach!

Theorem 5.4.7. A Hilbert space with scalar field R or C is sepa-
rable if and only if it has an orthonormal basis.

Proof. Suppose H is separable and {d1, d2, . . . } is dense in H . For
k ≥ 2 define Dk = span{d1, d2, . . . , dk−1} and ek = dk − projDk(dk).
Then the set E = {e1, e2, . . .}\{0} is linearly independent (in the sense
of Schauder) and dense in H . Applying the Gram-Schmidt process to
E yields an orthonormal basis of H .

Next, suppose R = {r1, r2 . . . } is an orthonormal basis for H . Then

for each h ∈ H , h =

∞∑
k=1

〈h, rk〉rk, by Theorem 5.4.5. Let ε > 0 be

given. For each k, there exists a rational number (or a rational complex

number if 〈h, rk〉 is complex) ak such that |〈h, rk〉 − ak| < ε

2k
. Then∣∣∣∣∣h−

∞∑
k=1

akrk

∣∣∣∣∣ < ε and the set

D =

{ ∞∑
k=1

akrk

∣∣∣∣∣ ak is rational (or complex rational)

}

is a countable dense subset of H . �
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We want to study Hilbert spaces with orthonormal bases. Fortu-
nately, there are not very many such spaces! In fact, there is (up to
isomorphism) only one such space.

Definition 5.4.3. Let H1 and H2 be Hilbert spaces. If there exists
a one-to-one and onto mapping π : H1 �→ H2 such that inner products
are preserved: (h, h′) = (π(h), π(h′)) for all h, h′ ∈ H1, then π is a
Hilbert space isomorphism and H1 and H2 are isomorphic.

We are now ready to extend the Fundamental Theorem of Finite Di-
mensional Vector Spaces (Theorem 5.1.2) to the infinite dimensional
case.

Theorem 5.4.8. [Fundamental Theorem of Infinite Dimensional
Vector Spaces] Let H be a Hilbert space with an infinite orthonormal
basis. Then H is isomorphic to l2.

Proof. Let the orthonormal basis of H be R = {r1, r2, . . .}. Then for
h ∈ H , define π(h) to be the sequence of inner products of h with the
elements of R:

π(h) = (〈h, r1〉, 〈h, r2〉, . . . ) .

By Theorem 5.4.5, h =

∞∑
k=1

〈h, rk〉rk and by Theorem 5.4.6 π(h) ∈ l2.
Now the representation of h in terms of the basis elements is unique,
so π is one-to-one.

Next, let
∞∑
k=1

|ak|2 ∈ l2, and consider the partial sums, sn, of
∞∑
k=1

akrk.

Then for m < n

‖sn − sm‖2 =

∥∥∥∥∥
n∑

k=m+1

akrk

∥∥∥∥∥
2

=

n∑
k=m+1

|ak|2.

Since
∞∑
k=1

|ak|2 converges (its associated sequence of partial sums is a

monotone, bounded sequence of real numbers), then the sequence of
partial sums of this series is convergent and hence Cauchy. Therefore,
(sn) is a Cauchy sequence in H and hence is convergent. Therefore π
is onto.
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Now consider h, h′ ∈ H where h =
∞∑
k=1

akrk and h′ =
∞∑
k=1

a′krk.

Then

〈h, h′〉 =

〈 ∞∑
k=1

akrk,

∞∑
k=1

a′krk

〉
=

∞∑
k=1

|ak|2

= 〈(a1, a2, . . . ), (a
′
1, a

′
2, . . . )〉 = 〈π(h), π(h′)〉 .

Therefore π is a Hilbert space isomorphism. �
As in Definition 5.1.7, we define a transformation T from one Hilbert

space H1 to another Hilbert space H2 (both with the same scalar field)
as linear if for all h, h′ ∈ H1 and for all scalars f and f ′, we have
T (fh+ f ′h′) = fT (h) + f ′T (h′). We can use Theorem 5.4.8 to find a
representation of a linear transformation from one Hilbert space with
an infinite orthonormal basis to another such space.

Theorem 5.4.9. If T : H1 �→ H2 is a linear transformation where
both H1 and H2 are Hilbert spaces (over the same field) with infinite
orthonormal bases, then T is equivalent to the action of an infinite
matrix (Aij)i,j∈N.

The proof parallels the proof of Theorem 5.1.3 and we leave it as an
exercise.

Exercises
1. Find the projection of f(x) = x2 onto sin x in L2([−π, π]).
2. Prove that if S is an orthonormal set in an inner product space,

then any finite subset of S is linearly independent.
3. (a) Prove that if S is a subspace of an inner product space H and
S has orthonormal basis {s1, s2, . . . , sn} then for any h ∈ H , we

have projS(h) =

n∑
k=1

〈h, sk〉sk.
(b) Use induction to show that 〈ri, rj〉 = 0 for i �= j, where

the ri’s are as defined in Theorem 5.4.4.
4. Suppose Hilbert spaceH has orthonormal basis R = {r1, r2, . . .}.

Let h ∈ H . Prove that ‖h‖2 =

∞∑
k=1

|〈h, ri〉|2.
5. Show that the natural orthonormal basis R = {(1, 0, 0, . . . ), (0, 1,

0, . . . ), . . . } for l2 is a (topologically) closed set and a bounded
set, but not a compact set. Recall that the Heine-Borel Theorem
(Theorem 1.4.11) states that a set in Rn is compact if and only if
it is closed and bounded. The example given here shows that the
familiar Heine-Borel Theorem does not hold in all metric spaces.
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Also notice that R is an infinite bounded set with no limit points,
indicating that the Bolzano-Weierstrass Theorem (see Exercise
3 of Section 1.4) does not hold in l2.

6. Prove Theorem 5.4.6.
7. Prove that if {r1, r2, . . . } is an orthonormal basis for Hilbert

space H , and for h ∈ H we have 〈h, ri〉 = 0 for all i ∈ N, then
h = 0.

8. Prove Theorem 5.4.9.
9. Apply the Gram-Schmidt process to the set {1, x, x2, x3} in the

space L2([−1, 1]). Verify that this yields the first four Legendre
polynomials (see Exercise 3 of Section 5.3).

5. Banach Spaces

In our study of Hilbert spaces, we had the luxury of a norm with
which to measure distances and an inner product with which to measure
angles. In this section, we consider vector spaces with a norm, but will
omit the requirement of an inner product.

Definition 5.5.1. A vector space with a norm is a normed linear

space. A normed linear space which is complete with respect to the
norm, is a Banach space. That is, a Banach space is a normed linear
space in which Cauchy sequences converge.

Since an inner product induces a norm, we see that every Hilbert space
is a Banach space.

Example 5.5.1. Consider the linear space C([a, b]) of all contin-
uous functions on [a, b]. Define ‖f‖ = max

x∈[a,b]
|f(x)|. Then we claim

C([a, b]) is a Banach space with norm ‖ · ‖. First, it is easy to verify
that ‖ · ‖ is a norm. Let (fn) be a Cauchy sequence in C([a, b]). That
is, for any ε1 > 0 there exists N1 ∈ N such that for all m,n > N1 we
have ‖fn− fm‖ < ε1. Therefore for each x ∈ [a, b], the sequence of real
numbers (fn(x)) is Cauchy. Since R is complete (or, if f : R �→ C,
then since C is complete), (fn(x)) converges to some real number, call
it f(x). With ε1, n, and N1 as above and letting m→ ∞, we see that
|fn(x) − f(x)| < ε for all x ∈ [a, b]. Therefore f is the limit of (fn)
under the norm ‖ · ‖. We now only need to show that f ∈ C([a, b]).

Let ε2 > 0. Then there exists N2 ∈ N such that |fN2(x0)− f(x0)| <
ε2/3 for all x0 ∈ [a, b]. Since fN2 is continuous, there exists δ > 0 such
that |fN2(x0)− fN2(y)| < ε2/3 whenever |x0 − y| < δ and x0, y ∈ [a, b].
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Hence for such y,

|f(x0)− f(y)| ≤ |f(x0)− fN2(x0)|+ |fN2(x0)− fN2(y)|+ |fN2(y)− f(y)|
<

ε2
3

+
ε2
3

+
ε2
3

= ε2.

Therefore f is continuous at x0 and since x0 is arbitrary, f is con-
tinuous on [a, b]. Therefore C([a, b]) is complete and so is a Banach
space.

For p ≥ 1 and measurable set E, define

Lp(E) =

{
f

∣∣∣∣∫
E

|f |p <∞
}
.

We partition Lp(E) into equivalence classes by defining the equivalence
relation f ≡ g if and only if f = g a.e. on E. As a consequence, we will
not draw a distinction between two functions which are equal almost

everywhere. We define ‖f‖p =

{∫
E

|f |p
}1/p

and therefore ‖f‖p = 0 if

and only if f ≡ 0. Also, for any scalar a, ‖af‖p = |a|‖f‖p. For the case
p =∞, we define L∞(E) to be the set of essentially bounded functions
on E and let ‖f‖∞ = esssup{f(x) | x ∈ E}. We now go to the task
of showing that Lp(E) (or simply Lp) is a Banach space. We establish
the triangle inequality in the following theorem.

Theorem 5.5.1. [Minkowski’s Inequality] Let p ≥ 1 and f, g ∈ Lp.
Then for 1 ≤ p ≤ ∞ we have ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. Suppose 1 ≤ p <∞. If ‖f‖p = 0 or ‖g‖p = 0 then the result
is obvious. Now for x ∈ E

|f(x) + g(x)|p ≤ (|f(x)|+ |g(x)|)p =

(
‖f‖p |f(x)|

‖f‖p + ‖g‖p |g(x)|‖g‖p

)p

= (‖f‖p + ‖g‖p)p
( ‖f‖p
‖f‖p + ‖g‖p

|f(x)|
‖f‖p +

‖g‖p
‖f‖p + ‖g‖p

|g(x)|
‖g‖p

)p

= (‖f‖p + ‖g‖p)p
(
λ
|f(x)|
‖f‖p + (1− λ)

|g(x)
‖g‖p

)p

where λ =
‖f |p

‖f‖p + ‖g‖p . Now the function h(y) = yp is concave up on

y ∈ [0,∞) for p ≥ 1. Since λ ∈ (0, 1) then λ
|f(x)|
‖f‖p + (1 − λ)

|g(x)|
‖g‖p ∈
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‖f‖p ,

|g(x)|
‖g‖p

)
and(

λ
|f(x)|
‖f‖p + (1− λ)

|g(x)|
‖g‖p

)p

≤ λ

( |f(x)|
‖f‖p

)p

+ (1− λ)

( |g(x)|
‖g‖p

)p

.

Therefore for all x ∈ E,

|f(x) + g(x)|p ≤ ‖f‖p + ‖g‖p)p
{
λ

( |f(x)|
‖f‖p

)p

+ (1− λ)

( |g(x)|
‖g‖p

)p}
and integrating over E, we get the desired result. We leave the case
p =∞ as an exercise. �

Minkowski’s Inequality accomplishes two things — it guarantees that
Lp is closed under addition and that ‖ · ‖p is a norm on Lp. Therefore
the Lp spaces are normed linear spaces (at least for 1 ≤ p ≤ ∞). If
we try to extend the above arguments to Lp spaces where 0 < p < 1,
then there is a problem. In particular, we can modify the proof of
Minkowski’s Inequality to show that for f, g ∈ Lp with 0 < p < 1,
we have ‖f + g‖p ≥ ‖f‖p + ‖g‖p (see the exercises). Therefore the Lp

spaces are not normed when 0 < p < 1.

Theorem 5.5.2. [Hölder’s Inequality] If p and q are nonnegative

(extended) real numbers such that
1

p
+

1

q
= 1, and if f ∈ Lp and g ∈ Lq,

then fg ∈ L1 and ‖fg‖1 ≤ ‖f‖p‖g‖q.

Proof. Suppose p = 1 and q =∞. Then∫
|fg| ≤

∫
|f |‖g‖∞ = ‖g‖∞‖f‖1.

Therefore fg ∈ L1 and ‖fg‖1 ≤ ‖f‖1‖g‖∞.
Now suppose 1 < p < ∞ and 1 < q < ∞. Since Lp norms are

calculated from absolute values, we may assume without loss of gener-
ality that f and g are nonnegative. First we show the result holds for
‖f‖p = ‖g‖q = 1. Define Φ(x) = x

p
+ 1

q
− x1/p. Then Φ(0) = 1

q
> 0 and

Φ′(x) =
1

p
− 1

p
x1/p−1 =

1

p
− 1

p
x−1/q =

1

p

(
1− x−1/q

)
=

1

p

(
1− 1

q
√
x

)
.

Therefore Φ has a minimum at x = 1 and Φ(1) = 0. So for x > 0,
x1/p ≤ x

p
+ 1

q
.
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Let x = fp

gq
, then

Φ(x) = Φ

(
f p

gq

)
=
−f
gq/p

+
f p

pgq
+

1

q
≥ 0

and gf ≤ gq

q
+
f p

p
. Hence

‖fg‖1 ≤ ‖f‖
p

p
+
‖g‖q
q

= 1 = ‖f‖p‖g‖q.(5.1)

Now for general f ∈ Lp and g ∈ Lq, replace f and g of (5.1) with f
‖f‖p

and g
‖g‖q , respectively. This yields the result. �

When p = q = 2, Hölder’s Inequality is sometimes called the Schwarz
Inequality.

We now want to establish the completeness of the Lp spaces for
p ≥ 1. To do so, we will study the summability of series.

Definition 5.5.2. For a sequence (fn) in a normed linear space,

we define the series

∞∑
n=1

fn. The nth partial sum of this series is

sn =

n∑
k=1

fk, and we say that the series is summable if the sequence

(sn) converges. That is,

∞∑
n=1

fn is summable if there exists f such that

lim
n→∞

∥∥∥∥∥
n∑
k=1

fk − f
∥∥∥∥∥ = 0.

In this case, f is called the sum of the series. The series

∞∑
n=1

fn is said

to be absolutely summable if the series

∞∑
n=1

‖fn‖ is summable in R.

Before we explore the completeness of Lp, we need the following lemma:

Lemma 5.5.1. A normed linear space is complete if and only if
every absolutely summable series is summable.

Proof. Suppose the normed linear space is complete (that is, is a Ba-

nach space) and let the series
∞∑
k=1

fk be absolutely summable. Then
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∞∑
k=1

‖fk‖ is summable and hence for all ε > 0, there exists N ∈ N such

that
∑∞

k=N ‖fk‖ < ε. Let the nth partial sum of the series
∞∑
k=1

fk be

sn =

n∑
k=1

fk. Then for n > m > N we have

‖sn − sm‖ =

∥∥∥∥∥
n∑

k=m+1

fk

∥∥∥∥∥ ≤
n∑

k=m+1

‖fk‖ ≤
∞∑

k=m+1

‖fk‖ < ε.

Therefore the sequence (sn) is Cauchy and hence converges. That is,

the series
∞∑
k=1

fk converges.

Next, suppose that every absolutely summable series is summable,
and let (fk) be a Cauchy sequence. Then for all l ∈ N, there exists
Nl ∈ N such that ‖fm− fn‖ < 1/2l whenever m > n > Nl. Notice that
we may choose the Nl to be an increasing sequence. Now consider the

series
∞∑
l=1

‖fNl+1
− fNl‖. This series is absolutely summable, and so by

our hypothesis, is summable. Say f =
∞∑
l=1

(fNl+1
−fNl). Notice that the

nth partial sum of this series is
n∑
l=1

(fNl+1
− fN1) = fNn+1 − fN1 , and so

lim
n→∞

fNn+1 = f for some f . We will see that f = lim
k→∞

fk. Let ε > 0.

Since (fk) is Cauchy, there exists N ∈ N such that for all m,n > N we
have ‖fn− fm‖ < ε/2. Since FNl → f , there exists L ∈ N such that for
all l > L we have ‖fNl − f‖ < ε/2. By choosing l such that both l > L
and Nl > N then we have for all n > N

‖fn− f‖ = ‖fn− fNl + fNl − f‖ ≤ ‖fn− fNl‖+ ‖fNl − f‖ <
ε

2
+
ε

2
= ε.

Hence lim
k→∞

fk = f and the space is complete. �

We are now in a position to establish the completeness of Lp.

Theorem 5.5.3. [Riesz-Fisher Theorem] For 1 ≤ p ≤ ∞, Lp(E)
is complete.



5. BANACH SPACES 137

Proof. First suppose 1 ≤ p <∞. Let (fk) be an absolutely summable

series:
∞∑
k=1

‖fk‖ ≤ M for some M ∈ R. Consider for each x ∈ E the

partial sum gn(x) =
n∑
k=1

|fk(x)|. This defines a sequence of functions

(gn) defined on E. Then by Minkowski’s Inequality (Theorem 5.8.1)

we have ‖gn‖ ≤
n∑
k=1

‖fk‖ ≤ M , and so

∫
E

(gn)
p ≤Mp. For each x ∈ E,

the sequence (gn(x)) is monotone increasing, and so g = lim
n→∞

gn on

E. Then g is measurable and by Fatou’s Lemma (Theorem 3.3.4)

we have

∫
e

gp ≤ lim

∫
E

gpn ≤ Mp. Therefore g < ∞ on E \ I where

m(I) = 0. Now for each x ∈ E \ I,
∞∑
k=1

fk(x) is absolutely summable

and hence summable to some number h(x). Extend h(x) to E by

defining h(x) = 0 for x ∈ I. Then h(x) =
∞∑
k=1

fk(x) a.e. on E and

so h is measurable. Now

∣∣∣∣∣
n∑
k=1

fk(x)

∣∣∣∣∣ ≤ g(x) for all n ∈ N and so

|h(x)| = |∑∞
k=1 fk(x)| ≤

∑∞
k=1 |fk(x)| ≤ g(x). Hence

‖h(x)‖p =

∫
E

|h|p ≤
∫
E

|g|p =

∫
E

gp ≤Mp

and so h ∈ Lp. We now show that h is the limit of
∞∑
k=1

fk (in the Lp

sense). Now for each x ∈ E∣∣∣∣∣h(x)−
n∑
k=1

fk(x)

∣∣∣∣∣
p

≤
(
|h(x)|+

∣∣∣∣∣
n∑
k=1

fk(x)

∣∣∣∣∣
)p

≤ (2g(x))p,

and since 2pgp is integrable over E, then

lim
n→∞

∫
E

∣∣∣∣∣h(x)−
n∑
k=1

fk(x)

∣∣∣∣∣
p

=

∫
E

lim
n→∞

∣∣∣∣∣h(x)−
n∑
k=1

fk(x)

∣∣∣∣∣
p

= 0

by the Lebesgue Dominated Convergence Theorem (Theorem 3.3.1).

That is, lim
n→∞

∥∥∥∥∥h(x)−
n∑
k=1

fk(x)

∥∥∥∥∥ = 0 and so
∞∑
k=1

fk(x) = h(x) (in the
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Lp sense). Therefore, the absolutely summable series
∞∑
k=1

fk(x) is also

summable, and by Lemma 5.8.1, Lp is complete. We leave the proof
that L∞ is complete as an exercise. �

We now see that, with an eye towards completeness, we can modify
the hierarchy of the spaces mentioned in Section 5.2 to the following:(

vector
spaces

)
⊃
⎛⎝ normed

vector
spaces

⎞⎠ ⊃ (
Banach
spaces

)
⊃
(

Hilbert
spaces

)
.

We now turn our attention to a slightly different topic.

Definition 5.5.3. A linear functional T on a normed linear
space 〈V,F〉 is a mapping T : V �→ F such that for all scalars f1, f2 ∈ F
and all vectors v1,v2 ∈ V we have T (f1v1+f2v2) = f1T (v1)+f2T (v2).
Linear functional T is bounded if there exists some M ∈ R such that
‖T (v)‖ ≤ M‖v‖ for all v ∈ V . The collection of all bounded linear
functionals from 〈V,F〉 to F make up the dual space of 〈V,F〉, denoted
〈V,F〉∗ or simply V ∗.

Notice that if S, T ∈ V ∗, then f1S + f2T ∈ V ∗ for all f1, f2 ∈ F.
Therefore V ∗ is itself a linear space.

Definition 5.5.4. For T ∈ V ∗ where the scalar field of V is R or

C, define the functional norm ‖T‖ = sup
v �=0

|T (v)|
‖v‖ . (Notice that this

equation actually involves three norms: the functional norm, absolute
value on R or C, and the norm on the linear space 〈V,F〉.)

We now want to investigate the structure of the dual space of Lp.
We present a suggestive lemma.

Lemma 5.5.2. If t ∈ Lq then T (s) =
∫
st is a bounded linear func-

tional on Lp where 1
p

+ 1
q

= 1, 1 ≤ p ≤ ∞. In addition ‖T‖ = ‖t‖q.
Proof. By Hölder’s Inequality (Theorem 5.5.2),

|T (s)| =
∣∣∣∣∫ st

∣∣∣∣ ≤ ‖st‖1 ≤ ‖s‖p‖t‖q
and hence for all s ∈ Lp, |T (s)|

‖s‖q ≤ ‖t‖p. Therefore ‖T‖ ≤ ‖t‖p, and T

is bounded. We leave the proof of the equality as an exercise. �
In fact, the converse of Lemma 5.5.2 holds for 1 ≤ p < ∞. This is
the well-known Riesz Representation Theorem (the proof of which is
rather long, so we omit it):
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Theorem 5.5.4. [Riesz Representation Theorem] Let T be a bounded
linear functional on Lp, 1 ≤ p < ∞. Then there is a function t ∈ Lq,
where 1

p
+ 1

q
= 1, such that T (s) =

∫
st. In addition, ‖T‖ = ‖t‖q.

In slightly different terminology, the Riesz Representation Theorem
states that the dual space of Lp is Lq. In particular, we see that L2

is self dual and bounded linear functionals on L2 can be represented
using the inner product:

Corollary 5.5.1. Let T be a bounded linear functional on L2.
Then there is t ∈ L2 such that T (s) =

∫
st = 〈s, t〉. In addition,

‖T‖ = ‖t‖2.
Exercises

1. (a) Prove that Minkowski’s Inequality, ‖f + g‖p ≤ ‖f‖p + ‖g‖p,
reduces to equality if and only if g = af for some scalar a.

(b) Prove Minkowski’s Inequality for the case p =∞.
2. Modify the proof of Minkowski’s Inequality to show that for
f, g ∈ Lp with 0 < p < 1, we have ‖f + g‖p ≥ ‖f‖p + ‖g‖p.

3. Consider the vector space Pn of all complex valued polynomials
of degree n or less. For 1 ≤ p < ∞ we define the Lp norm of

P ∈ Lp as ‖P‖p =
1

2π

(∫ 2π

0

|P (eiθ)|p dθ
)1/p

.

(a) Verify that limp→∞ ‖P‖p = max|z|=1 |P (z)|.
(b) For 0 < p < 1, define ‖P‖p as above (though for these

values of p, this is not a norm because it does not satisfy the

triangle inequality). Define ‖P‖0 = exp
(

1
2π

∫ 2π

0
log |P (eiθ)| dθ

)
and verify that limp→0+ ‖P‖p = ‖P‖0. ‖P‖0 is called the Mahler

measure of P [41].
4. Show that a normed linear space is an inner product space if and

only if the norm satisfies the Parallelogram Law (see Exercise 3
of Section 5.2).

5. Show that, for 1 ≤ p ≤ ∞, the only space Lp([a, b]) which is an
inner product space is the space L2([a, b]).

6. Show that Lp([a, b]) ⊂ Lq([a, b]) for p ≥ q. By example, show
the subset inclusion is proper.

7. Prove that for T a bounded linear functional, ‖T‖ is the infimum
over allM such that |T (v)| ≤M‖v‖ and also ‖T‖ = sup

‖v‖=1

|T (v)|.
8. Complete the Riesz-Fisher Theorem by showing that L∞ is com-

plete.
9. In Lemma 5.5.2, prove ‖T‖ = ‖t‖q.
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10. For 1 ≤ p <∞, define

lp =

{
x = (x1, x2, . . . )

∣∣∣∣∣xi ∈ R for i ∈ N,
∞∑
i=1

|xi|p <∞
}

and ‖x‖p = ‖(x1, x2, . . . )‖p = {∑∞
i=1 |xi|p}1/p .

(a) Prove Minkowski’s Inequality for lp: ‖x + y‖p ≤ ‖x‖p +
‖y‖p.

(b) Prove Hölder’s Inequality for lp:
∑∞

i=1 |xiyi| ≤ ‖x‖p‖y‖p
where 1

p
+ 1

q
= 1. (c) Prove lp is complete.

11. Define l∞ = {x = (x1, x2, . . . ) | supi∈N |xi| < ∞}. Prove l∞ is
complete.

12. State a Riesz Representation Theorem for bounded linear func-
tionals on lp, 1 ≤ p <∞.



CHAPTER 6

Fourier Analysis

In the real world, many phenomena can be described by periodic func-
tions. For example, common household electrical current is alternating
current. The voltage V in a typical 115-volt outlet with frequency
60 hertz can be expressed as the function V = 163 sin 60(2πt) =
163 sin 120πt. A basic component of music is a pure tone, which is
a single sine wave. A musical instrument usually creates several dif-
ferent tones at the same time, that is a linear combination of sine and
cosine functions with different frequencies. An electrocardiograph is
nearly a periodic function. Joseph Fourier was the first person who
created the idea of representing functions in the “frequency” domain
to reveal the “wave” property of a function. Thus, he opened a new
area in mathematics called Fourier analysis.

Joseph Fourier was born in 1768 in Auxserre, a small town in
France. In 1807, he presented a memoir to the Institute of France
(which was published in 1822 in his book The Analytic Theory of Heat),
where he claimed that any periodic function could be expressed as the
sum of sine and cosine functions. Fourier was motivated by the study
of heat diffusion. He wanted to represent the solution of a heat equa-
tion in a practical way that would yield a deeper understanding of the
physical problem. He found the series of harmonically related sinu-
soids to be a good representation. His ideas dominated mathematical
analysis for a hundred years. Outside mathematics, Fourier analysis
is used in many areas. It contains all of the central ideas of electrical
engineering. Crystallography, the telephone, the x-ray machine, and
many other devices use Fourier’s ideas.

In Fourier analysis, the complex exponential function eix is often
used. By the Euler formula,

eix = cosx+ i sin x,(0.2)

sin x =
eix − e−ix

2i
cosx =

eix + e−ix

2
.(0.3)

Hence, eix can be considered as a complex sinusoid. In general, a
complex valued function (with a real independent variable) has the

141
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form

f(x) = a(x) + ib(x), x ∈ R,

where a(x) is the real part of f(x) and b(x) is the imaginary part

of f(x), and both a and b are real-valued functions. The complex

conjugate of f(x) is

f(x) = a(x)− ib(x), x ∈ R.

We have f ′(x) = a′(x) + ib′(x) and
∫
f(x) dx =

∫
a(x) dx+ i

∫
b(x) dx.

Hence, the calculus of complex valued functions is similar to the calcu-
lus of real-valued functions. In this chapter, we assume functions are
complex valued.

1. Fourier Series

Following Fourier’s original ideas, we discuss how to represent a
periodic function as a series of sine and cosine functions. We first
consider 2π-periodic functions. Each element of the set

{1, sin x, cosx, sin 2x, cos 2x, · · · }(1.1)

is 2π-periodic. They are “fundamental tones” for 2π-periodic functions:
a linear combination of them represents a 2π-periodic function. We call
1
2
a0+

∑n
k=1 ak cos kx+bk sin kx a trigonometric polynomial and call

the series 1
2
a0 +

∑∞
k=1 ak cos kx + bk sin kx a trigonometric series.

The set (1.1) has an important property called orthogonality, which
is stated in the following.

Theorem 6.1.1. The set (1.1) satisfies
(1)

∫ π
−π sin nx cosmxdx = 0, m∈ Z+,

(2) 1
π

∫ π
−π sinnx sin kx dx = δn,k, (n, k) ∈ N2,

(3) 1
π

∫ π
−π cosmx cos lx dx = δm,l, m, l ∈ (Z+ × Z+)\{(0, 0)},

where δn,k is Kronecker’s symbol: δn,k =

{
1, if n = k
0, otherwise

.

Proof.We leave the proof as an exercise. �
Orthogonality is extremely useful when we represent a periodic

function as a trigonometric series. For example, if

f(x) =
1

2
a0 +

∞∑
k=1

ak cos kx+ bk sin kx,

where the series is uniformly convergent on [−π, π], then

ak =
1

π

∫ π

−π
f(x) cos kx dx, bk =

1

π

∫ π

−π
f(x) sin kx dx.(1.2)
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Conversely, if f(x) is integrable on [−π, π], then the integrals (1.2) exist.
In this case, we can make a trigonometric series 1

2
a0 +

∑∞
k=1 ak cos kx+

bk sin kx for f although we do not know whether the series is convergent.
The use of this series to study f is Fourier’s original idea. We now put
it on a solid foundation.

1.1. The Finite Fourier Transform and Its Properties. Let

L̃1 =

{
f

∣∣∣∣f is 2π-periodic and

∫ π

−π
|f(x)| dx <∞

}
Definition 6.1.1. For f ∈ L̃1, define

fcˆ(k) = 1
π

∫ π
−π f(x) cos kx dx,

fsˆ(k) = 1
π

∫ π
−π f(x) sin kx dx,

k ∈ Z+.(1.3)

Then fcˆ(k) and fsˆ(k) are called real Fourier coefficients of f,
and the trigonometric series

1

2
fcˆ(0) +

∞∑
k=1

fcˆ(k) cos kx+ fsˆ(k) sin kx(1.4)

is called the real Fourier series of f.

Note that we do not know whether the series (1.4) converges to
f(x). Hence, we use the notation

f(x) ∼ 1

2
fcˆ(0) +

∞∑
k=1

fcˆ(k) cos kx+ fsˆ(k) sin kx(1.5)

to indicate that (1.4) is the Fourier series of f(x).
When we multiply two Fourier series together, it is easier to use

the complex exponential representation instead of the sine and cosine
representation. Hence, we apply the Euler formula (0.3) to change the
form of (1.5):

1

2
fcˆ(0) +

∞∑
k=1

fcˆ(k) cos kx+ fsˆ(k) sin kx

=
1

2
fcˆ(0) +

∞∑
k=1

fcˆ(k)
eikx + e−ikx

2
+ fsˆ(k)

eikx − e−ikx
2i

=
1

2
fcˆ(0) +

∞∑
k=1

fcˆ(k)− ifsˆ(k)

2
eikx +

∞∑
k=1

fcˆ(k) + ifsˆ(k)

2
e−ikx.

Write

fˆ(k) =
fcˆ(k)− ifsˆ(k)

2
, fˆ(−k) =

fcˆ(k) + ifsˆ(k)

2
, k ∈ Z+,
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then

1

2
fcˆ(0) +

∞∑
k=1

fcˆ(k) cos kx+ fsˆ(k) sin kx =
∑
k∈Z

fˆ(k)eikx.

Definition 6.1.2. The series∑
k∈Z

fˆ(k)eikx(1.6)

is called the (complex) Fourier series of f, and fˆ(k) is called the
kth Fourier coefficient of f.

It is easy to verify that {eikx | k ∈ Z} is also an orthogonal system
on [−π, π] in the sense that

1

2π

∫ π

−π
eikxeilx dx = δk,l.(1.7)

Equation (1.7) allows us to compute fˆ(k) directly as

fˆ(k) =
1

2π

∫ π

−π
f(x)e−ikx dx, k ∈ Z.(1.8)

Formula (1.8) maps a function f to a sequence (fˆ(k))k∈Z. We call it
the finite Fourier transform.

Example 6.1.1. Let f(x) ∈ L̃1 be defined by f(x) = x, x ∈ [−π, π).
Then

f(x) ∼ 2

∞∑
n=1

(−1)n

n
sinnx.

Example 6.1.2. Let f(x) = | sin x|. Then

f(x) ∼ 2

π

(
1 +

∞∑
n=1

2

1− (2n)2
cos 2nx

)
.

Example 6.1.3. Let f(x) ∈ L̃1 be defined by

f(x) =

{
x(π + x), −π ≤ x ≤ 0
x(π − x), 0 < x < π

.

Then

f(x) ∼ 8

π

∞∑
n=1

1

(2n− 1)3
sin(2n− 1)x.

By definition, if f(x) = 0 almost everywhere, then its Fourier series
is 0. The converse is also true. Indeed, we have the following uniqueness
theorem.
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Theorem 6.1.2. The Fourier series of f(x) is 0 if and only if
f(x) = 0 almost everywhere.

The proof of the theorem needs knowledge of Fourier summation.
We will not prove it here.

Fourier series are a useful tool for analyzing the frequency properties
of a function. If you consider the function f(t) as a record of a period
of a music, then its Fourier series exhibits the tones in the music and
shows the strength of each tone: The larger (the magnitude of) the kth

coefficient, the stronger the kth tone.
We now discuss the basic properties of the finite Fourier transform.

First, the finite Fourier transform is linear, i.e.

[f + g]ˆ(k) = fˆ(k) + gˆ(k), [cf ]ˆ(k) = cfˆ(k).

Second, it has the following operation properties.

Lemma 6.1.1. Let f ∈ L̃1. For h ∈ R, k ∈ Z, we have
(1) [f(·+ h)]ˆ(k) = eihkfˆ(k);
(2) [e−ij·f(·)]ˆ(k) = fˆ(k + j);

(3) [f(−·)]ˆ(k) = fˆ(k).

Proof. We have

[f(·+ h)]ˆ(k) =
1

2π

∫ π

−π
f(x+ h)e−ikx dx

=
1

2π

∫ π−h

−π−h
f(x)e−ik(x−h) dx

=
1

2π

∫ π

−π
f(x)e−ikxeikh dx = eihkfˆ(k).

and

[e−ij·f(·)]ˆ(k) =
1

2π

∫ π

−π
e−ijxf(x)e−ikx dx

=
1

2π

∫ π

−π
f(x)e−i(k+j)x dx = fˆ(k + j).

We leave (3) as an exercise. �
The following theorem shows that the high frequency components

in a Fourier series are near 0.

Theorem 6.1.3. For f ∈ L̃1,

lim
|k|→∞

fˆ(k) = 0, lim
k→∞

fsˆ(k) = 0, lim
k→∞

fcˆ(k) = 0.(1.9)

This result is a consequence of the famous Riemann-Lebesgue Lemma.
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Lemma 6.1.2. [Riemann-Lebesgue] If f is integrable on the inter-
val (a, b), Then

lim
ρ→∞

∫ b

a

f(t) sin ρt dt = 0, lim
ρ→∞

∫ b

a

f(t) cos ρt dt = 0.(1.10)

Proof. We only prove the first limit in (1.10). The proof of the
second limit is similar, and we leave it as an exercise. First, we assume
f ′ is continuous. Then

lim
ρ→∞

∫ b

a

f(t) sin ρt dt = lim
ρ→∞

(
−1

ρ
f(t) cos ρt|ba +

1

ρ

∫ b

a

f ′(t) cos ρt dt

)
= 0.

If f is now only integrable on [a, b], then for any ε > 0, there is a
continuously differentiable function g such that∫ b

a

|f(x)− g(x)| dx < ε/2.

Since (1.10) holds for g, there is an N > 0 such that∣∣∣∣∫ b

a

g(x) sin ρx dx

∣∣∣∣ < ε/2, for all ρ ≥ N.

Thus, for ρ ≥ N,∣∣∣∣∫ b

a

f(x) sin ρx dx

∣∣∣∣ =

∣∣∣∣∫ b

a

g(x) sin ρx dx+

∫ b

a

(f(x)− g(x)) sin ρx dx

∣∣∣∣
≤
∣∣∣∣∫ b

a

g(x) sin ρx dx

∣∣∣∣ +

∫ b

a

|f(x)− g(x)| dx < ε.

The lemma is proved. �

1.2. Convergence of Fourier Series. Is the Fourier series of f(t)
always convergent to f(t)? In Fourier’s time, people thought “yes,”
but it is not true! The convergence of Fourier series is much harder to
handle than expected. It took one and a half centuries to fully analyze.
We have no plan to discuss the convergence of Fourier series in detail.
We only give a very brief introduction here.

Let

Sn(f, t) =

n∑
k=−n

f∧(k)eikt,

which is called the Fourier partial sum (of order n) of f.We consider
the pointwise convergence of Fourier series. That is, we address the
questions: “For a fixed t ∈ [−π, π], does limn→∞ Sn(f, t) exist? If it
exists, is the limit equal to f(t)?” The following result is one of the
most important results in this direction.
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Theorem 6.1.4. If f(x) ∈ L̃1 has a bounded variation, then at
each point x ∈ [−π, π], its Fourier series is convergent to

f(x−) + f(x+)

2
.

The proof of this theorem is beyond the scope of this book. We
omit it. Readers can refer to [2]. By Theorem 6.1.4, the Fourier series
of a piecewise differentiable function is convergent everywhere. But
be aware that it is convergent to the function value only at points of
continuity.

Example 6.1.4. We consider the convergence of the Fourier se-
ries in Examples 6.1.1, 6.1.2, and 6.1.3. All of them are functions of
bounded variation. f(x) in Example 6.1.1 is discontinuous at x = ±π,
the other two are continuous everywhere. By Theorem 6.1.4, we have

2
∞∑
n=1

(−1)n

n
sinnx = x, x ∈ (−π, π),

2

π

(
1 +

∞∑
n=1

2

1− (2n)2
cos 2nx

)
= | sin x|, x ∈ [−π, π]

8

π

∞∑
n=1

1

(2n− 1)3
sin(2n− 1)x =

{
x(π + x), −π ≤ x ≤ 0
x(π − x), 0 < x ≤ π

.

Note that for f(x) in Example 6.1.1, f(π−) = π and f(π+) = −π.
Hence,

0 =
f(π+) + f(π−)

2
= 2

∞∑
n=1

(−1)n

n
sinnπ.

Example 6.1.5. Let

f(x) =

⎧⎨⎩
π
2
, x ∈ (0, π),

0, x = 0,
−π

2
, x ∈ (−π, 0).

Its Fourier series is

2

∞∑
n=1

sin(2n− 1)x

2n− 1
.

Hence,

f(x) = 2

∞∑
n=1

sin(2n− 1)x

2n− 1
, x ∈ (−π, π) \ {0}.
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Since 2
∑∞

n=1
sin(2n−1)x

2n−1

∣∣∣
x=0

= 0, it is also convergent to f(x) at x = 0.

We now consider the jumps of f(x) and the amplitude of Sn(f ; x) at
x = 0 respectively. We have

f(0+)− f(0−) = π.

Let ξ+
n = π

2n
and ξ−n = − π

2n
. Then

lim
n→∞

Sn(f ; ξ+
n ) =

∫ π

0

sin t

t
dt ≈ 1.85193706 · · ·

and

lim
n→∞

Sn(f ; ξ−n ) = −
∫ π

0

sin t

t
dt ≈ −1.85193706 · · · ,

which yields

lim
n→∞

∣∣Sn(f ; ξ+
n )− Sn(f ; ξ−n )

∣∣ ≈ 3.70387412 · · ·
≈ 1.179π,

i.e. the limit of the amplitudes of Sn(f, x) around 0 is at least a 1.179
multiple of the jump of f at 0. This is called Gibbs’ phenomenon.

1.3. The Study of Functions Using Fourier Series. A 2π-
periodic function f can be represented in two ways. It can be repre-
sented in the time domain in the form f(t), or it can be represented as
a Fourier series. Since the components in a Fourier series are sinusoids,
this is a representation in the frequency domain. (If f is represented as
f(x), we say it is in the spatial domain. However there is no difference
between f(t) and f(x) mathematically.) We represent f in the time
domain when we want to study the motion of the object. In this case,
we are interested in its differential properties, which are called smooth-
ness. When we want to study the frequency properties of the object,
we represent f in the frequency domain using its Fourier series. In this
case, the frequency range and the strength of each wave component in
the series will be our concern. In this section, we shall show the rela-
tionship between the smoothness of f and the magnitude of f∧(k). Note
that max

∣∣ dn
dtn
eikt

∣∣ = |k|n . Hence, strong high frequency components in
a Fourier series will destroy the smoothness of the function.

We now study the behavior of the Fourier series of the functions
which have high order derivatives. Let W̃ r

1 be the set of all 2π-periodic
functions such that they have derivatives up to order r and their r-order
derivative is in L̃1 :

W̃ 1
1 = {f ∈ L̃1 | f is absolute continuous},

W̃ r
1 = {f ∈ L̃1 | f ′ ∈ W̃ r−1

1 }, r > 1.
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The integer r indicates the smoothness of the functions in W̃ r
1 — the

larger the number r, the smoother the functions.

Example 6.1.6. Consider the 2π-periodic functions defined as
(1) f(x) = x2, x ∈ [0, 2π);
(2) g(x) = x2, x ∈ [−π, π); and

(3) h(x) =

{
x(π + x), −π ≤ x ≤ 0,
x(π − x), 0 < x ≤ π.

Then f ∈ L̃1, but not in W̃ 1
1 ; g ∈ W̃ 1

1 , but not in W̃ 2
1 ; h ∈ W̃ 2

1 , but
not in W̃ 3

1 .

A function f is of smaller order than function g as x → ∞ if

lim
x→∞

f(x)

g(x)
= 0. We denote this as f(x) = ◦(g(x)), pronounced “f is

little-oh of g.”

Theorem 6.1.5. If f ∈ W̃ r
1 , then

fˆ(k) = ◦
(

1

|k|r
)

as |k| → ∞.

Proof. Assume f ∈ W̃ r
1 , r ≥ 1. Then

[f ′]ˆ(k) =
1

2π

∫ π

−π
f ′(t)e−ikt dt

=
1

2π
f(t)e−ikt|π−π + ik

1

2π

∫ π

−π
f(t)e−ikt dt

= ikfˆ(k),

which, by induction, yields

fˆ(k) =

[
f (r)

]
ˆ(k)

(ik)r
.

Since f (r) ∈ L̃1, we have lim|k|→∞
[
f (r)

]
ˆ(k) = 0, which implies

lim
|k|→∞

|krfˆ(k)| = lim
|k|→∞

∣∣[f (r)
]
ˆ(k)

∣∣ = 0.

The theorem is proved. �

Example 6.1.7. The function in Example 6.1.3 is in W̃ 2
1 since

f ′′ ∈ L̃1. Hence, fˆ(k) = ◦( 1
k2 ). In fact, we have

f(x) =
8

π

∞∑
n=1

1

(2n− 1)3
sin(2n− 1)x,

where |f∧(n)| = 4
π(2|n|−1)3

= ◦
(

1
(2|n|−1)2

)
.



150 6. FOURIER ANALYSIS

Note that if f(t) = g(t) almost everywhere, then they have the
same Fourier series. Hence, Theorem 6.1.5 is also true for the function
that is almost equal to a function in W̃ r

1 .

Example 6.1.8. Let the 2π-periodic function g(x) be defined as

g(x) =

{
f(x), x is an irrational number,

0, x is a rational number,

where f(x) is the function in Example 6.1.3. Then

g(x) ∼ 8

π

∞∑
n=1

1

(2n− 1)3
sin(2n− 1)x

and the series converges to g(x) at each irrational point.

Example 6.1.9. The function f(x) in Example 6.1.3 is discontin-

uous at x = ±π. Hence f /∈ W̃ 1
1 . Thus, we cannot expect f∧(k) = ◦( 1

|k|).
In fact, we have

f∧(k) =
(−1)k−1i

k
, k ∈ Z \ {0},

which yields

lim
|k|→∞

∣∣∣∣f∧(k)

k

∣∣∣∣ = 1 �= 0.

The result in Theorem 6.1.5 can be partially reversed. First, we
have the following.

Theorem 6.1.6. If f(t) =
∑

k∈Z cke
ikt and

∑
k∈Z |ck| is conver-

gent, then f(t) is a continuous function and f∧(k) = ck.

Proof. Since
∑

k∈Z |ck| is convergent, the series
∑

k∈Z cke
ikt is uni-

formly convergent to f(t). Note that all functions eikx, k ∈ Z, are con-
tinuous, hence the series is convergent to a continuous function. �

By Theorem 6.1.6, if |ck| ≤ M
|k|1+ε , k ∈ N, holds for an M > 0 and

an ε > 0, then f(t) =
∑

k∈Z cke
ikt is continuous. Assume now that the

ck decay faster. Then f becomes smoother. This fact is shown in the
following theorem.

Theorem 6.1.7. If

|ck| ≤ M

|k|1+n+ε , k ∈ N,

holds for an M > 0, an ε > 0, and an integer n ∈ Z+, then f(t) =∑
k∈Z cke

ikt has continuous derivatives up to order n.
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Proof. We leave the proof an an exercise. �
Exercises

1. Prove Theorem 6.1.1.
2. Prove 1

2π

∫ π
−π e

ikteilt dt = δk,l.

3. Prove |eiht − 1| ≤ |h|.
4. Assume f ∈ L̃1 and fˆ(k) = 0, |k| > n. Prove that f(x) is almost

everywhere equal to a trigonometric polynomial of degree less
than or equal to n.

5. Prove result (3) in Lemma 6.1.1.
6. Find the real and complex Fourier series for the 2π-periodic

piecewise constant function

f(x) =

{ −θ
2
, θ < |x| < π

π−θ
2
, |x| ≤ θ

,

where θ is a constant such that 0 < θ < π.
7. Find the real and complex Fourier series for the 2π-periodic

piecewise linear function

f(x) =

{ −x, 0 ≤ x < θ
π − x, θ ≤ x < 2π

,

where θ is a constant such that 0 < θ < 2π.
8. Find the real and complex Fourier series for the continuous func-

tion f(x) = |x|, |x| ≤ π.
9. Prove that if f(x) is even, then f∧

s (k) = 0 for all k ∈ N; and if
f(x) is odd, then f∧

c (k) = 0 for all k ∈ N.

10. Show that if f is a real valued function, then f∧(−k) = f∧(k).
Prove that all f∧(k), k ∈ Z, are real if and only if f(x) is an even
function.

11. Prove that |f∧(k)| ≤ 1
2π

∫ π
−π |f(x)| dx, for all k ∈ Z.

12. Apply Lemma 6.1.1 to find the Fourier series of the following
functions:

(a) f(x− π
2
) + f(x+ π

2
).

(b) sin xf(x).
(c) cosxf(x).
(d) f(x) + f(−x).

13. Prove the second limit in the Riemann-Lebesgue Lemma: If f is

integrable on the interval (a, b), then limρ→∞
∫ b
a
f(t) cos ρt dt = 0.

14. Let f1(x) and f2(x) be two 2π-periodic functions such that

f1(x) = x2 + x, −π < x ≤ π,
f2(x) = x2 + x, 0 < x ≤ 2π.
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(a) Find the Fourier series for these two functions.
(b) Explain why the Fourier series for them are not equal.
(c) Does the Fourier series of f1(x) converge? Is the Fourier

series of f1(x) convergent to f1(x) everywhere? To what numbers
is its Fourier series is convergent at x = 0, x = π

2
, and x = π?

(d) Does the Fourier series of f2(x) converge? Is the Fourier
series of f2(x) convergent to f2(x) everywhere? To what numbers
is its Fourier series is convergent at x = 0, x = π

2
, and x = π?

15. Let fa(x) be a 2π-periodic function defined by

fa(x) =

{
1√
2a
, |x| ≤ a

0, a < |x| ≤ π

where a is a positive constant less than π.
(a) Find the Fourier series of fa(x).
(b) Find the value of lima→0+ [fa]

∧(k) for each k ∈ Z.
16. Prove Theorem 6.1.7.
17. Assume f is a 2π-periodic, absolutely continuous function. Prove

lim|k|→∞ kfˆ(k) = 0.
18. Assume the sequence (ck)k∈Z exponentially decays, i.e.

|ck| ≤ Ce−λ|k|, k ∈ Z,

for a λ > 0 and a C > 0. Prove that f(t) =
∑

k∈Z cke
ikt is

infinitely differentiable.

2. Parseval’s Formula

The Fourier series of a function in L̃1 is not always pointwise con-
vergent. This fact restricts applications of the finite Fourier transform
in L̃1. Hence, we want to find a better space to overcome this short-
coming. We already know that {eikt}k∈Z is an orthonormal system on
[−π, π]. This provides a geometric explanation of Fourier series: They
form an orthonormal decomposition of a function. Hence, in this sec-
tion, we introduce the space of square integrable periodic functions and
show that {eikt}k∈Z is an orthonormal basis of this space. In this space,
Fourier partial sums are the best approximations for functions.

2.1. The Space of Square Integrable Periodic Functions.
We define the linear space

L̃2 =

{
f ∈ L̃1

∣∣∣∣ 1

2π

∫ π

−π
|f(t)|2 dt <∞

}
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and equip L̃2 with the inner product

〈f, g〉 =
1

2π

∫ π

−π
f(x)g(x) dx for all f, g ∈ L̃2.

Then the norm of a function f ∈ L̃2 is ‖f‖L̃2 =
√〈f, f〉, the distance

between functions f, g ∈ L̃2 is ‖f − g‖L̃2, and the angle between f and
g is

cos−1 〈f, g〉
‖f‖‖g‖ .

We now discuss the partial Fourier sum of a function f ∈ L2. We
already know that {eikt}k∈Z is an orthonormal system in L̃2. Let Vn be
the subspace spanned by {eikt}nk=−n. Then each function in Vn is of the
form

∑n
k=−n cke

ikt, and the partial Fourier sum of f is the orthogonal

projection of f ∈ L̃2 onto Vn:

projVnf =

n∑
k=−n
〈f, eikt〉eikt =

n∑
k=−n

f∧(k)eikt = Sn(f).

From linear algebra, we know

‖Sn(f)− f‖L̃2 ≤ ‖tn − f‖L̃2 for all tn ∈ Vn.(2.1)

Note that ‖Sn(f)‖L̃2 =
√∑n

k=−n |f∧(k)|2 and the distance from f to

Vn is ‖f − Sn(f)‖L̃2. Hence,

n∑
k=−n

|f∧(k)|2 + ‖f − Sn(f)‖2
L̃2 = ‖f‖2

L̃2, for all n ∈ N

which yields √∑
k∈Z
|f∧(k)|2 ≤ ‖f‖L̃2.(2.2)

Let

l2 =

{
a :=(ak)k∈Z

∣∣∣∣∣∑
k∈Z
|ak|2 <∞

}
in which the inner product is defined by 〈a,b〉 =

∑
k∈Z akbk. Then

the norm of a is
√∑

k∈Z |ak|2. Let ek be the sequence such that its kth

term ekj = δjk. Then {ek}k∈Z is an orthonormal basis of l2. Inequality

(2.2) shows that (f∧(k)) ∈ l2. Hence, the finite Fourier transform is a

mapping from L̃2 to l2. To prove {eikt}k∈Z is a basis of L̃2, we have to
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confirm
√∑

k∈Z |f∧(k)|2 = ‖f‖L̃2. We use convolution to complete the
task.

2.2. The Convolution Theorem. In Section 4 of Chapter 3, we
introduced the convolution for L(R). We now extend it to L̃1.

Definition 6.2.1. Let f, g ∈ L̃1. Then the 2π-periodic function

(f ∗ g)(x) =
1

2π

∫ π

−π
f(x− t)g(t) dt

is called the convolution of f and g.

Convolution has many properties similar to multiplication. We have

f ∗ g = g ∗ f,
f ∗ (g + h) = f ∗ g + f ∗ h,
(f ∗ g) ∗ h = f ∗ (g ∗ h).

An important result is the following Convolution Theorem.

Theorem 6.2.1. [Convolution Theorem] If f, g ∈ L̃2, then

[f ∗ g](t) =
∑
k∈Z

fˆ(k)gˆ(k)eikt.(2.3)

Proof. We have

[f ∗ g]ˆ(k) =
1

2π

∫ π

−π

(
1

2π

∫ π

−π
f(x− t)g(t)dt

)
e−ikx dx

=
1

2π

∫ π

−π

(
1

2π

∫ π

−π
f(x− t)g(t)e−i(x−t)kdx

)
e−itk dt

=
1

2π

∫ π

−π

(
1

2π

∫ π

−π
f(x− t)e−i(x−t)kdx

)
g(t)e−itk dt

= fˆ(k)gˆ(k).

By Schwarz’s Inequality (Theorem 5.2.1) and (2.2),∑
k∈Z
|fˆ(k)gˆ(k)| ≤

√∑
k∈Z
|fˆ(k)|2

√∑
k∈Z
|gˆ(k)|2 ≤ ‖f‖L̃2‖g‖L̃2,

which implies the series
∑

k∈Z |[f ∗ g]ˆ(k)| is convergent. By Theorem
6.1.6 and Theorem 6.2.1, we obtain (2.3). �
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2.3. Parseval’s Formula. We are ready to prove that the finite
Fourier transform is an orthonormal one from L̃ to l2.

Theorem 6.2.2. For f, g ∈ L̃2,

〈f, g〉 = 〈(f∧(k)) , (g∧(k))〉(2.4)

and therefore

‖f‖L̃2 =

√∑
k∈Z
|f∧(k)|2.(2.5)

Proof. In (2.3), letting t = 0, we have

1

2π

∫ π

−π
f(x)g(−x) dx =

∑
k∈Z

fˆ(k)gˆ(k).

Let g(−x) = h(x). By (3) in Lemma 6.1.1,

gˆ(k) = [h(−·)]ˆ(k) = hˆ(k).

Hence,

〈f, h〉 =
1

2π

∫ π

−π
f(x)h(x) dx =

1

2π

∫ π

−π
f(x)g(−x) dx

=
∑
k∈Z

fˆ(k)gˆ(k) =
∑
k∈Z

fˆ(k)hˆ(k),

which yields (2.4). In (2.4), letting g = f, we have (2.5). �
Formula (2.5) is called the Parseval formula and (2.4) is called

the general Parseval formula. From the Parseval formula, we get
the following.

Corollary 6.2.1. For f ∈ L̃2,

lim
n→∞

‖Sn(f)− f‖L̃2 = 0.(2.6)

Therefore, {eikt}k∈Z is an orthonormal basis of L̃2.

We have shown that the finite Fourier transform is an orthonormal
transform from L̃2 to l2. We now show that it is an onto mapping from
L̃2 to l2.

Theorem 6.2.3. For each (ak)∈l2, there is a function f ∈ L̃2

such that f∧(k) = ak, k ∈ Z.

Proof. Let sn(x) =
∑n

k=−n ake
ikx. For m ≥ n, we have

‖sm − sn‖L̃2 =
∑

n+1≤|k|≤m
|ak|2 ,
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where the limit of the right hand side is 0 as n,m→ 0. Hence, (sn) is

a Cauchy sequence in L̃2. Therefore, there is a function f ∈ L̃2 such
that

lim
n→∞

‖sn − f‖L̃2 = 0.(2.7)

We now prove f∧(k) = ak. For an arbitrary fixed k and any n > |k|,
we have

|fˆ(k)− ak| =
∣∣∣∣ 1

2π

∫ π

−π
(f(t)− sn(t))e−iktdt

∣∣∣∣ ≤ ‖f − sn‖L̃2.

By (2.7), we get fˆ(k) = ak. The theorem is proved. �
We summarize Theorem 6.2.2 and Theorem 6.2.3 in the following.

Theorem 6.2.4. The finite Fourier transform f �→ fˆ is an or-
thonormal isomorphism from L̃2 to l2.

Example 6.2.1. The Fourier series of

f(x) =

⎧⎨⎩
π
2
, x ∈ (0, π),

0, x = 0,
−π

2
, x ∈ (−π, 0),

is

2
∞∑
n=1

sin(2n− 1)x

2n− 1
=

∞∑
n=1

ei(2n−1)x − e−i(2n−1)x

i(2n− 1)
.

It is obvious that f ∈ L̃2. We have

‖fˆ‖22 = 2
∞∑
n=1

1

(2n− 1)2

and

‖f‖2
L̃2 =

1

2π

∫ π

−π
f(x) dx =

π2

4
.

By (2.5), we have ‖f‖L̃2 = ‖fˆ‖2. Hence,

∞∑
n=1

1

(2n− 1)2
=
π2

8
.(2.8)

From (2.8), we can derive the sum
∑∞

n=1
1
n2 . Assume

∞∑
n=1

1

n2
= s.
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Then

∞∑
n=1

1

(2n)2
=

1

4
s.

Note that

3

4
s =

∞∑
n=1

1

n2
−

∞∑
n=1

1

(2n)2

=
∞∑
n=1

1

(2n− 1)2
=
π2

8
.

Hence,

∞∑
n=1

1

n2
=
π2

6
.

2.4. The Finite Fourier Transform on General Intervals.
Before we end this section, we briefly discuss the finite Fourier trans-
forms of the functions with periods other than 2π. Let L̃1

2σ be the space
of all 2σ-periodic integrable functions and L̃2

2σ be the space defined by

L̃2
2σ =

{
f ∈ L̃1

2σ

∣∣∣∣∫ σ

−σ
|f(x)|2 dx <∞

}
.

In L̃2
2σ the inner product is defined by

〈f, g〉 =
1

2σ

∫ σ

−σ
f(x)g(x) dx.

For a function f ∈ L̃1
2σ, its Fourier series is

∞∑
k=−∞

f∧
σ (k)eik

π
σ
x,

where

f∧
σ (k) =

1

2σ

∫ σ

−σ
f(x)e−ik

π
σ
x dx.(2.9)

Similarly, its real Fourier series is

1

2
a0 +

∞∑
k=1

ak cos k
π

σ
x+ bk sin k

π

σ
x,
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where

ak =
1

σ

∫ σ

−σ
f(x) cos k

π

σ
x dx, k ∈ Z+,

bk =
1

σ

∫ σ

−σ
f(x) sin k

π

σ
x dx, k ∈ N.

Thus, all results we have obtained for L̃1 and L̃2 also hold for L̃1
2σ and

L̃2
2σ

When a function f is defined on a finite interval [a, b), we can use
the following method to make f periodic on R. Let σ = b−a

2
. Define

f̃(x) = f(x− 2kσ), x ∈ [a+ 2kσ, a+ 2(k + 1)σ), k ∈ Z.(2.10)

Then f̃(x) has period 2σ. If its Fourier series converges to f̃(x), then
in particular the series converges to f(x) on [a, b). However, the peri-

odization (2.10) may destroy the continuity of f̃(x) at the end points a
and b if f(a) �= f. In order to keep the continuity at the ends, we adopt
the following method. For simplicity, we assume a = 0 and b = σ. We
first extend f to an even function on [−σ, σ] by

f(−x) = f(x), x ∈ [0, σ].

Thus, f(x) is well-defined on [−σ, σ] and f(σ) = f(−σ). Then we make
periodic the extended function using (2.10).

Example 6.2.2. Let f(x) = |x|, x ∈ [−l, l]. Then f(x) is continu-
ous and f ′(x) is integrable on [−l, l]. Hence, its Fourier series converges
to f . We have

f(x) =
l

2
− 4l

π2

∞∑
n=1

1

(2n− 1)2
cos

(2n− 1)πx

l
.

Example 6.2.3. Assume 0 < a < l. Let f(x) be a 2l-periodic
function defined by

f(x) =

{
1− |x|

a
, |x| ≤ a

0, a < |x| ≤ l
.

Then we have

f(x) =
a

2l
+

2l

π2a

∞∑
n=1

1

n2

(
1− cos

nπa

l

)
cos

nπx

l
.

For L̃2
2σ, the orthonormal basis used is the Fourier series under

{eiπσ kt}k∈Z. The frequency “spectrum” of this system is { k
2σ
}k∈Z, which

becomes more dense as σ gets larger. When we consider the non-
periodic function defined on the whole real line, the frequency spectrum
becomes continuous and Fourier integrals are introduced.
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Exercises
1. Prove that, if f, g ∈ L̃1, then f ∗ g ∈ L̃1 and [f ∗ g]∧(k) =
f∧(k)g∧(k).

2. Prove that if f, g ∈ L̃1 and the series
∑ |g∧(k)| is convergent,

then

f ∗ g(t) =
∑
k∈Z

f∧(k)g∧(k)eikt.

3. Let f, g ∈ L̃2. Prove fg ∈ L̃1 and [fg]ˆ(k) =
∑

j∈Z fˆ(j)gˆ(k−j).
4. Let f(x) =

∑n
k=1 ak cos kx and g(x) =

∑n
k=1 bk cos kx. Find ‖f−

g‖L̃2.
5. Let tn ∈ Vn be a trigonometric polynomial of order n. Prove that

mintn∈Vn ‖ sin(n+ 1)x− tn(x)‖L̃2 is obtained at tn = 0.
6. Let f(t) =

∑
k∈Z

1
2|k| e

ikt. Find
∫ π
−π |f(t)|2 dt.

7. Prove that ‖f ∗ g − f‖2
L̃2 =

∑
k∈Z |f∧(k)|2|g∧(k)− 1|2.

8. Use the Fourier series in Example 6.1.1 in Section 6.1 to derive∑∞
n=1

1
n2 = π2

6
.

9. Let f(x) = |x|(π − |x|), |x| ≤ π.
(a) Find the Fourier series of f.

(b) Use the result in (a) to prove
∑∞

n=1
1
n4 = π4

90
.

10. Let f(x) be a 2π-periodic function defined by

f(x) =

{
(π − θ) x, |x| ≤ θ,
θ(π − x), θ < x ≤ 2π − θ.

(a) Prove f(x) = 2
∑∞

n=1
sinnθ
n2 sin nx.

(b) Use the result in (a) to find the sum
∑∞

n=1
sin2 nθ
n4 .

11. Assume f ∈ L̃1. Prove that if |f∧(k)| ≤ M
|k|n+1/2+ε , for an M > 0

and an ε > 0, then f has derivatives up to order n and f (r) ∈ L̃2

for r ≤ n.
12. Assume f ∈ L̃2

2σ, Prove

∞∑
k=−∞

|fσˆ(k)|2 =
1

2σ

∫ σ

−σ
|f(x)|2 dx,

where f∧
σ (k) is defined by (2.9).

13. Let f(x) be a π-periodic function defined by f(x) = |x|,−π/2 ≤
x < π/2.

(a) Find its Fourier series
∑
f∧
π (k)ei2kt.

(b) Considering it as a 2π-periodic function, find its Fourier
series

∑
f∧(k)eikt.

(c) Are they the same? What is the general conclusion.
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14. Let f(x) be a 2l-periodic function defined by f(x) = x,−l ≤ x <
l. Find its Fourier series.

15. Prove that x2 = l2

3
+ 4l2

π2

∑∞
n=1

(−1)n

n2 cos nπx
l
, |x| ≤ l.

3. The Fourier Transform of Integrable Functions

Let L1 be the space of all (complex-valued) functions integrable on
R. The norm of f ∈ L1, is defined by

‖f‖1 =

∫
R
|f(t)| dt.

We have the following:

1. ‖f‖1 = 0 if and only if f(x) = 0 a.e. on R.
2. ‖cf‖1 = |c|‖f‖1, for a complex number c.
3. ‖f + g‖1 ≤ ‖f‖1 + ‖g‖1.
We now study the Fourier transform on L1.

3.1. Definition and Properties.

Definition 6.3.1. For a function f ∈ L1, the complex-valued func-
tion

f̂(ω) =

∫
R
f(t)e−itω dt, ω ∈ R,(3.1)

is called the Fourier transform of f.

The Fourier transform is linear:

f̂ + g = f̂ + ĝ and ĉf = cf̂ ,

where c is a complex constant.

Example 6.3.1. Let f(t) = e−at
2
, a > 0. Then f̂(ω) =

√
π
a
e−

ω2

4a .

Example 6.3.2. Let g(t) = 1
t2+a2

. Then ĝ(ω) = πe−a|ω|
a

.

Example 6.3.3. Let f(x) = sin2 x
x2 . Then f̂(ω) =

{
π
(
1− |ω|

2

)
, |ω| < 2,

0 |ω| ≥ 2.

Similar to Lemma 6.1.1, we have the following.

Lemma 6.3.1. For f ∈ L1, we have
(1) [f(·+ h)]ˆ(ω) = eihωf̂(ω), h, ω ∈ R;

(2) [e−ih·f(·)]ˆ(ω) = f̂(ω + h), h, ω ∈ R;

(3) [af(a·)]ˆ(ω) = f̂(ω/a), a > 0, ω ∈ R;

(4) [f(−·)]ˆ(ω) = f̂(ω), ω ∈ R.
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Proof. We have

[f(·+ h)]ˆ(ω) =

∫
R
f(t+ h)e−itω dt

=

∫
R
f(t+ h)e−i(t+h)ωeihω d(t+ h)

= eihω
∫
R
f(x)e−ixω dx = eihωf̂(ω).

(1) is proved. The proofs of the remaining parts are left as exercises.
�

The Fourier transform represents a function in the frequency do-
main. It is the continuous version of the Fourier series. Many results
for the Fourier transform are parallel to those for Fourier series. Read-
ers can compare the results in this section with those in Section 6.1.
The following is a result similar to Theorem 6.1.3.

Theorem 6.3.1. If f ∈ L1, then f̂(ω) is continuous on R and

lim
|ω|→∞

f̂(ω) = 0.

Proof. We have

|f̂(ω + h)− f̂(ω)| ≤
∫ ∞

−∞
|eiht − 1||f(t)| dt.

Recall that

|eiht − 1||f(t)| ≤ 2|f(t)|
and

lim
h→0
|eiht − 1||f(t)| = 0.

By the Lebesgue Dominated Convergence Theorem (Theorem 3.3.1),

f̂(ω) is uniformly continuous on R. Besides, for ω �= 0 we have

f̂(ω) =

∫ ∞

−∞
f(t)e−itω dt

=

∫ ∞

−∞
f
(
t+

π

ω

)
e−i(t+

π
ω

)ω d
(
t+

π

ω

)
= −

∫ ∞

−∞
f
(
t+

π

ω

)
e−itω dt,

which implies that

f̂(ω) =
1

2

∫ ∞

−∞

(
f(t)− f

(
t+

π

ω

))
e−itω dt.
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We know that, for f ∈ L1,

lim
h→0
‖f(·+ h)− f(·)‖1 = 0.

Hence,

0 ≤ lim
|ω|→∞

∣∣∣f̂(ω)
∣∣∣ ≤ lim

| π
ω
|→0

1

2

∫ ∞

−∞

∣∣∣f(t)− f
(
t+

π

ω

)∣∣∣ dt = 0,

i.e. lim|ω|→∞ f̂(ω) = 0. The theorem is proved. �
For convenience, we define

C0 =

{
f ∈ C

∣∣∣∣ lim
|t|→∞

f(t) = 0

}
,

which is a linear subspace of C. Then Theorem 6.3.1 states that the
Fourier transform is a linear transform from L1 to C0.

3.2. The Convolution Theorem. As we have seen in Section
6.2, convolution is a useful tool in the study of relationships between
functions. The convolution of two functions in L1 is defined in Section
3.4. For convenience, we restate it here.

Definition 6.3.2. Let f, g ∈ L1. The convolution of f and g is
defined by

f ∗ g(x) =

∫ ∞

−∞
f(x− t)g(t) dt.(3.2)

Example 6.3.4. For a function f ∈ L1, define the first moving

average of f as

A(f ; x, h) = h−1

∫ x+h/2

x−h/2
f(t) dt = h−1

∫ h/2

−h/2
f(x− t) dt.

We define χh(x) =

{
1, |x| < h/2,
0, |x| ≥ h/2.

Then we can write the moving

average A(f ; x, h) in a convolution form: A(f ; x, h) = f ∗ χh(x). Note
that if f(t) is continuous at x, then limh→0A(f ; x, h) = f(x). Hence,
we can use A(f ; x, h) to approximate f(x). Note also that A(f ; x, h) is
absolutely continuous. Hence, A(f ; x, h) is smoother than f.

Similar to the convolution of periodic functions, for L1 functions we
have

f ∗ g = g ∗ f,
f ∗ (g + h) = f ∗ g + f ∗ h,
(f ∗ g) ∗ h = f ∗ (g ∗ h).

We also have the following.
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Theorem 6.3.2. If f, g ∈ L1 then f ∗ g ∈ L1 and∫
R
|f ∗ g(t)| dx ≤

(∫
R
|f(t)| dt

)(∫
R
|g(t)| dt

)
.(3.3)

If f, g ∈ L2 then f ∗ g ∈ C0 and

sup
t∈R
|f ∗ g(t)| ≤ ‖f‖2‖g‖2.(3.4)

Proof. Equation (3.3) is established in Theorem 3.4.4. If f, g ∈ L2,
then by Schwarz’s Inquality for L2 (Theorem 5.5.2 with p = q = 2) we
have

|f ∗ g(x)| =
∣∣∣∣∫
R
f(x− t)g(t) dt

∣∣∣∣
≤
(∫

R
|f(x− t)|2 dt

)1/2 (∫
R
|g(t)|2 dt

)1/2

= ‖f‖2‖g‖2.

Besides,

|f ∗ g(x+ h)− f ∗ g(x)| =
∣∣∣∣∫
R

(f(x+ h− t)− f(x− t)) g(t) dt
∣∣∣∣

≤ ‖f(·+ h)− f(·)‖2‖g‖2.

Since f ∈ L2,

lim
h→0
‖f(·+ h)− f(·)‖2 = 0,

which implies

lim
h→0
|f ∗ g(x+ h)− f ∗ g(x)| = 0,

i.e. f ∗ g ∈ C. We now prove lim|x|→∞ f ∗ g(x) = 0. Since f, g ∈ L2, for
any ε > 0, there is an N > 0 such that

(∫
|t|≥N

|f(t)|2 dt
)1/2

< ε and

(∫
|t|≥N

|g(t)|2 dt
)1/2

< ε.
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Let x ∈ (−∞,−2N) ∪ (2N,∞). Then (x − N, x+N) ⊂ (−∞,−N) ∪
(N,∞). For this x, we have

|f ∗ g(x)| ≤
(∫

|t|≤N
+

∫
|t|≥N

)
|f(x− t)g(t)| dt

≤
(∫

|t|≤N
|f(x− t)|2 dt

)1/2

‖g‖2

+ ‖f‖2
(∫

|t|≥N
|g(t)|2 dt

)1/2

≤ (‖g‖2 + ‖f‖2) ε,
which yields lim|x|→∞ |f ∗ g(x)| = 0. The lemma is proved. �

We now give the convolution theorem for L1.

Theorem 6.3.3. If f, g ∈ L1, then

[f ∗ g]ˆ(ω) = f̂(ω)ĝ(ω), ω ∈ R.

Proof. We have

[f ∗ g]ˆ(ω) =

∫ ∞

−∞

(∫ ∞

−∞
f(x− t)g(t) dt

)
e−ixω dx

=

∫ ∞

−∞

(∫ ∞

−∞
f(x− t)g(t)e−i(x−t)ω dx

)
e−itω dt

=

∫ ∞

−∞

(∫ ∞

−∞
f(x− t)e−i(x−t)ω dx

)
g(t)e−itω dt

= f̂(ω)ĝ(ω).

This completes the proof. �

3.3. The Inverse Fourier Transform. The convergence theo-
rem for Fourier series confirms that a periodic function can be iden-
tified with its Fourier series. Similarly, we expect that a function on
R can be totally recovered from its Fourier transform. Unfortunately,
f ∈ L1 does not imply f̂ ∈ L1. Hence, the recovery involves a limiting
process.

Theorem 6.3.4. Assume f ∈ L1. For ρ > 0, define

Aρ(t) =
1

2π

∫
R
e−

|ω|
ρ f̂(ω)eitω dω.(3.5)

Then

‖Aρ‖1 ≤ ‖f‖1(3.6)
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and

lim
ρ→∞

Aρ(t) = f(t) a.e.(3.7)

Furthermore, if f is also continuous, then (3.7) holds everywhere.

The function e−
|ω|
ρ in (3.5) is called a convergence factor, which

accelerates the decay of the integrand in (3.5) so that the improper
integral exists. We put the proof of the theorem at the end of the sec-
tion. A direct consequence of Theorem 6.3.4 is the following uniqueness
theorem for the Fourier transform.

Theorem 6.3.5. For f ∈ L1, if f̂ = 0, then f(t) = 0 a.e.

Proof. If f̂ = 0, then Aρ(t) = 0 for each ρ > 0. By (3.7), f(t) = 0
a.e. �

If the function f̂(ω)eitω is integrable on R, then the convergence

factor e−
|ω|
ρ in the integral of (3.5) can be removed. Thus, we have the

following.

Theorem 6.3.6. For function f , if f̂ ∈ L1, then

1

2π

∫ ∞

−∞
f̂(ω)eitω dω = f(t), a.e.(3.8)

Furthermore, if f is also continuous, then (3.8) holds everywhere.

Proof. By Theorem 6.3.4, we have

lim
ρ→∞

1

2π

∫ ∞

−∞
e−

|ω|
ρ f̂(ω)eitω dω = f(t) a.e.

Note that ∣∣∣e− |ω|
ρ f̂(ω)eitω

∣∣∣ ≤ |f̂(ω)| ∈ L1

and

lim
ρ→∞

e−|ω|/ρf̂(ω)eitω = f̂(ω)eitω.

By the Lebesgue Dominated Convergence Theorem (Theorem 3.3.1),
we have

lim
ρ→∞

1

2π

∫ ∞

−∞
e−

|ω|
ρ f̂(ω)eitω dω =

1

2π

∫ ∞

−∞
f̂(ω)eitωdω, for all t ∈ R.

The theorem is proved. �
Formula (3.8) inspires the following definition.

Definition 6.3.3. Let g ∈ L1. The integral 1
2π

∫
R g(ω)eitω dω is

called the inverse Fourier transform of g and denoted by g∨.
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Using normalization, we can define the Fourier transform and in-
verse Fourier transform in a more symmetric way. Let

F(f)(ω) =
1√
2π
f̂(ω) =

1√
2π

∫ ∞

−∞
f(ω)e−itω dt

and

F−1(g)(t) =
√

2πg∨(ω) =
1√
2π

∫ ∞

−∞
g(ω)eitω dω.

Thus, if f and f̂ both are in L1, we have F−1F(f) = f. In this
book, we call F and F−1 the normalized Fourier transform and
the normalized inverse Fourier transform respectively.

3.4. The Study of Functions Using Fourier Transforms. As
with Fourier series, there is a close relationship between the smoothness
of f and the decay rate of f̂ . Let W 1

1 denote the space of all absolutely
continuous functions on R. Then f ∈ W 1

1 implies f ′ ∈ L1(R). We
inductively define

W r
1 = {f | f ′ ∈W r−1

1 , r ≥ 2}
The following theorem is similar to Theorem 6.1.5.

Theorem 6.3.7. If f ∈W r
1 , then

[f (r)]ˆ(ω) = (iω)rf̂(ω)(3.9)

and

lim
ω→0
|ωrf̂(ω)| = 0.(3.10)

Conversely, if f ∈ L1 and there is a function g ∈ L1 such that

(iω)rf̂(ω) = ĝ(ω), ω ∈ R, r ∈ N,(3.11)

then f ∈W r
1 .

Proof. We prove the first claim. Assume f ∈W 1
1 . We have

f(x)− f(x− 1) =

∫ x

x−1

f ′(t) dt =

∫ ∞

−∞
χ(x− t)f ′(t) dt,(3.12)

where

χ(x) =

{
1, x ∈ [0, 1),
0, otherwise.

Taking the Fourier transform of (3.12), we have

(1− e−iω)f̂(ω) = χ̂(ω) (f ′) ˆ(ω)

=
1− e−iω
iω

(f ′) ˆ(ω).
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Thus

(f ′) ˆ(ω) = iωf̂(ω), ω �= 2kπ.(3.13)

However, if both (f ′) ˆ(ω) and iωf̂(ω) are continuous functions, then
(3.13) holds for all ω ∈ R. Using mathematical induction we can prove
the claim for a general r. We now prove the converse claim for r = 1.
It can be done by reversing the steps above. First, (iω)f̂(ω) = ĝ(ω)
implies

1− e−ihω
iω

ĝ(ω) = (1− e−ihω)f̂(ω) = [f(·)− f(· − h)]ˆ(ω).

On other hand, let w(x) =
∫ x
x−h g(t) dt. Then

1− e−ihω
iω

ĝ(ω) = wˆ(ω).

By the uniqueness of the Fourier transform, for each fixed h > 0,

f(x)− f(x− h) =

∫ x

x−h
g(t) dt a.e.,

which implies∫ y

0

[f(x)− f(x− h)] dx =

∫ y

0

∫ x

x−h
g(t) dt dx.

Since f ∈ L1, for each fixed y > 0, we have

lim
h→∞

∫ y

0

[f(x)− f(x− h)] dx

=

∫ y

0

f(x) dx− lim
h→∞

∫ y

0

f(x− h) dx

=

∫ y

0

f(x) dx.

By the Lebesgue Dominated Convergence Theorem (Theorem 3.3.1),
we also have

lim
h→∞

∫ y

0

∫ x

x−h
g(t) dt dx =

∫ y

0

∫ x

−∞
g(t) dt dx.

Hence, ∫ y

0

f(x) dx =

∫ y

0

∫ x

−∞
g(t) dt dx, for all y > 0,

which yields

f(x) =

∫ x

−∞
g(t) dt a.e.
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The claim is proved for r = 1. The result for a general r can be proved
by mathematical induction. �

Limit (3.10) indicates f̂(ω) = ◦( 1
|ω|r ) as |ω| → ∞. Again, we see

that, the smoother the function f , the faster f̂ is decaying as |ω| → ∞.
Note that the Fourier transform and the inverse Fourier transform are
defined in a similar way. Hence, we also expect that fast decay of f
implies high smoothness of f̂ . In fact, we have the following.

Theorem 6.3.8. If f ∈ L1 and xrf(x) ∈ L1 for an r ∈ N, then

f̂ has continuous derivatives up to order r and lim|ω|→∞ f̂ (r)(ω) = 0.
Besides,

(f̂)(k)(ω) = (−i)k
∫ ∞

−∞
xkf(x)e−ixω dx, 0 ≤ k ≤ r.

In particular,

(f̂)(k)(0) = (−i)k
∫ ∞

−∞
xkf(x) dx, 0 ≤ k ≤ r.

Proof. Assume r = 1. Then

f̂(ω + h)− f̂(ω)

h
=

∫ ∞

−∞
f(x)

(e−ihx − 1)

h
e−ixω dx.

Note that ∣∣∣∣f(x)
(e−ihx − 1)

h
e−ixω

∣∣∣∣ ≤ |xf(x)| ∈ L1

and

lim
h→0

f(x)
(e−ihx − 1)

h
e−ixω = −ixf(x)e−ixω.

By the Lebesgue Dominated Convergence Theorem (Theorem 3.3.1),(
f̂
)′

(ω) = lim
h→0

f̂(ω + h)− f̂(ω)

h
= −i

∫ ∞

−∞
xf(x)e−ixω dx.

Hence, the theorem is true for r = 1. The result for a general r can be
proved by mathematical induction. �

Corollary 6.3.1. If f(x) decays faster than 1
|x|n for all n ∈ N,

i.e. if |f(x)| ≤ M
|x|n for some M ∈ R, then f̂(ω) is infinitely differen-

tiable.

Proof. We leave the proof as an exercise. �
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Example 6.3.5. Consider the function f in Example 6.3.3: f(x) =
sin2 x
x2 . We have f ∈ L1, but xf(x) = sin2 x

x
is not in L1. We can see that

the derivative if its Fourier transform f̂(ω) is not continuous at 0 and
±2.

Example 6.3.6. The function e−ax
2
, a > 0, decays faster than xn

for all n ∈ N. Its Fourier transform f̂(ω) =
√

π
a
e−

ω2

4a is infinitely dif-
ferentiable.

Formula (3.9) is useful in solving differential equations.

Example 6.3.7. Find the solution of the heat equation

∂u

∂t
=
∂2u

∂x2
(3.14)

with the initial condition u(x, 0) = f(x), where f, f̂ ∈ L1. Taking the
Fourier transform of equation (3.14), we have

∂

∂t
û(ω, t) = −ω2û(ω, t).

Hence, û(ω, t) = c0(ω)e−ω
2t. Note that û(ω, 0) = f̂(ω). Hence,

û(ω, t) = f̂(ω)e−ω
2t.

Taking the inverse Fourier transform, we get

u(x, t) =
1

2
√
πt

∫
R
f(y)e−

(x−y)2
4t dt.

3.5. Proof of Theorem 6.3.4. We now prove Theorem 6.3.4.

Recall that Aρ(t) = 1
2π

∫
R e

− |ω|
ρ f̂(ω)eitω dω.

Lemma 6.3.2. If f, g ∈ L1, then∫
R
f̂(u)g(u) du =

∫
R
f(u)ĝ(u) du.(3.15)

Proof. Applying Fubini’s Theorem (Theorem 3.4.2), we have the
following: ∫

R
f̂(u)g(u) du =

∫
R

(∫
R
f(t)e−itudt

)
g(u) du

=

∫
R

(∫
R
g(u)e−itudu

)
f(t) dt

=

∫
R
f(t)ĝ(t) dt.

The lemma is proved. �
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Lemma 6.3.3. We have the following

1

2π

∫ ∞

−∞

2ρ

1 + (ρu)2
du = 1, ρ > 0,(3.16)

and

Aρ(t) =
1

2π

∫ ∞

−∞
f(t− u) 2ρ

1 + (ρu)2
du.(3.17)

Proof. We have(
e−|·|)∧ (v) =

∫ ∞

−∞
e−|x|e−ixv dx = 2

∫ ∞

0

e−x cos xv dx =
2

1 + v2
.

Write

gt(·) = e−
|·|
ρ ei·t.

By Lemma 6.3.1,

ĝt(v) =
2ρ

1 + [ρ(v − t)]2 .

By Lemma 6.3.2,

Aρ(t) =
1

2π

∫ ∞

−∞
e−

|ω|
ρ f̂(ω)eitω dω =

1

2π

∫ ∞

−∞
f̂(ω)gt(ω)dω

=
1

2π

∫ ∞

−∞
f(u)ĝt(u) du =

1

2π

∫ ∞

−∞
f(u)

2ρ

1 + [ρ(u− t)]2 du

=
1

2π

∫ ∞

−∞
f(t− u) 2ρ

1 + (ρu)2
du.

Note that ∫ ∞

−∞

2ρ

1 + (ρu)2
du =

∫ ∞

−∞

2

1 + u2
du = 2π.

The lemma is proved. �
We are ready to prove the theorem. By (3.17), we have

‖Aρ‖1 ≤ 1

2π

∫ ∞

−∞
‖f(·+ u)‖1 2ρ

1 + (ρu)2
du

≤ ‖f‖1 1

2π

∫ ∞

−∞

2ρ

1 + (ρu)2
du = ‖f‖1.

This is (3.6). By (3.16) we have f(t) = 1
2π

∫∞
−∞ f(t) 2ρ

1+(ρu)2
du. There-

fore,

Aρ(t)− f(t) =
1

2π

∫ ∞

−∞
(f(t− u)− f(t))

2ρ

1 + (ρu)2
du.
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Since f ∈ L1, for any ε > 0, there is a δ > 0 such that

‖f(· − u)− f(·)‖1 < ε whenever |u| ≤ δ.(3.18)

We now have

‖Aρ − f‖1
≤ 1

2π

∫ ∞

−∞
‖f(· − u)− f‖1 2ρ

1 + (ρu)2
du

=
1

2π

∫ δ

−δ
‖f(· − u)− f‖1 2ρ

1 + (ρu)2
du

+
1

2π

∫
|u|≥δ
‖f(· − u)− f‖1 2ρ

1 + (ρu)2
du

where

1

2π

∫ δ

−δ
‖f(· − u)− f‖1 2ρ

1 + (ρu)2
du ≤ 1

2π

∫ ∞

−∞

2ρε

1 + (ρu)2
du = ε

and

0 ≤ 1

2π

∫
|u|≥δ
‖f(· − u)− f‖1 2ρ

1 + (ρu)2
du

≤ 2‖f‖1 1

2π

∫
|t|>δ

2ρ

1 + (ρu)2
du = ‖f‖1 1

π

∫
|t|>ρδ

1

1 + u2
du.

For a fixed δ > 0,

lim
ρ→∞

∫
|t|>ρδ

1

1 + u2
du = 0.

Hence,

lim
ρ→∞

1

2π

∫
|u|≥δ
‖f(· − u)− f‖1 2ρ

1 + (ρu)2
du→ 0.

Therefore, limρ→∞ ‖Aρ − f‖1 = 0, which implies (3.7). �
Exercises

1. Let f ∈ L1. Prove f̂ is odd (even) if and only if f is odd (even).
2. Find the Fourier transforms for the following functions.

(a) y = χ[−1,1](x)

(b) y = ( sinx/2
x/2

)2

(c) y = 1
1+x2

(d) y =

{
e−x, 0 ≤ x <∞,
0, −∞ < x < 0.

3. Prove (2)–(4) of Lemma 6.3.1.
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4. Assume that f, fn ∈ L1 satisfy

lim
n→∞

‖f − fn‖1 = 0.

Prove

lim
n→∞

f̂n(ω) = f̂(ω)

uniformly for all ω ∈ R.
5. For f, g ∈ L1, the correlation of f and g is the function

[f, g](x) =

∫ ∞

−∞
f(x+ t)g(t) dt,

and [f, f ] is called the auto-correlation of f. Prove

(a) [f, g] = f ∗ g(−·).
(b) [̂f, g](ω) = f̂(ω)ĝ(ω).

(c) [̂f, f ](ω) = |f̂(ω)|2.
6. Let b1(x) = χ[0,1](x).

(a) Find an explicit expression for b2(x) = b1 ∗ b1(x).
(b) Find b̂2(ω).

(c) Let bn(x) = bn−1 ∗ b1(x), n = 2, 3, · · · . Find b̂n(ω).
(d) Use (3.9) (for r = 1) to prove that b′n(x) = bn−1(x) −

bn−1(x− 1).

7. Assume f ∈ L1 and write g(x) = e−x
2
. Prove that g ∗ f is infin-

itely differentiable.
8. Prove Corollary 6.3.1.
9. For g ∈ L1, define g∗(x) =

∑
k∈Z g(x+ 2kπ). Prove

(a) g∗ ∈ L̃1 and
∫ π
−π g

∗(t) dt =
∫
R g(t) dt.

(b) [g∗]∧(k) = 1
2π
ĝ(k).

(c) If
∑

k∈Z g(x+2kπ) is uniformly convergent to g∗(x), then∑
k∈Z g(x+ 2kπ) = 1

2π

∑
k∈Z ĝ(k)e

ikx.

4. Fourier Transforms of Square Integrable Functions

In Section 6.2, we saw that the finite Fourier transform is an ortho-
normal isomorphism from L̃2 to l2. In this section, we want to extend
this result to the space

L2 =

{
f

∣∣∣∣∫
R
|f(t)|2dt <∞

}
.

As we stated in Section 5.3, this space is equipped with the inner
product

〈f, g〉 =
∫
R
f(t)g(t)dt,
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and L2 is a Hilbert space. The norm of f ∈ L2 is ‖f‖2 =
√〈f, f〉 and

the distance between f and g is ‖f − g‖2, and the angle between two
functions f, g ∈ L2 is

cos−1 〈f, g〉
‖f‖2‖g‖2 .

We can see that the geometry in L2 is quite similar to that in L̃2.
Hence, the results in this section are similar to those in Section 2.
However, there is still a main difference between L̃2 and L2 : L̃2 ⊂
L̃1, but L2 is not a subspace of L1. Thus, for f ∈ L2 the integral∫∞
−∞ f(x)e−ixω dx may not exist. Hence, we cannot use it to define the

Fourier transform of f ∈ L2. In order to overcome this difficulty, we
adopt a limit approach to the Fourier transform for L2. Recall that any
function f ∈ L2 can be considered as a limit of a sequence of functions
in L2 ∩ L1, say (fn). Since the Fourier transform of fn is well-defined,

the Fourier transform of f can be defined as the limit of f̂n. We now
provide the details.

4.1. Definition and Properties. We start our discussion with
f ∈ L1 ∩ L2.

Lemma 6.4.1. If f ∈ L1 ∩ L2, then f̂ ∈ L2 and

‖f‖22 =
1

2π
‖f̂‖22.(4.1)

Proof. Let f ∗(x) = f(−x). It is clear that f ∗ ∈ L1 ∩ L2. We define
h = f ∗ f ∗. Since both f, f ∗ ∈ L1 ∩L2, by Lemma 6.3.2 h is continuous
and in L1. We also have ĥ(ω) = |f̂(ω)|2 and h(0) = ‖f‖22. Applying
Theorem 6.3.4 and setting t = 0, we have

‖f‖2 = h(0) = lim
ρ→∞

1

2π

∫ ∞

−∞
e−|ω|/ρĥ(ω) dω

= lim
ρ→∞

1

2π

∫ ∞

−∞
e−|ω|/ρ|f̂(ω)|2 dω.

Note that e−|ω|/ρ|f̂(ω)|2 is a positive, increasing function of ρ > 0 with

lim
ρ→∞

e−|ω|/ρ|f̂(ω)|2 = |f̂(ω)|2.
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By the Monotone Convergence Theorem (Theorem 3.3.3),

‖f‖2 = lim
ρ→∞

1

2π

∫ ∞

−∞
e−|ω|/ρ|f̂(ω)|2 dω

=
1

2π

∫ ∞

−∞
lim
ρ→∞

e−|ω|/ρ|f̂(ω)|2 dω

=
1

2π

∫ ∞

−∞
|f̂(ω)|2 dω =

1

2π
‖f̂‖2.

The theorem is proved. �
The next step is to construct a sequence fN ∈ L1 ∩ L2 which has

limit f as N →∞. Naturally, we choose the truncated functions of f :

fN(t) =

{
f(t), |t| ≤ N,
0, otherwise,

N > 0.

It is clear that fN ∈ L1 ∩ L2 and

lim
N→∞

‖fN − f‖2 = 0.(4.2)

We then use the limit of f̂N to define the Fourier transform of f. First,
we confirm the existence of the limit.

Lemma 6.4.2. There is a function φ ∈ L2 such that

lim
N→∞

‖f̂N − φ‖2 = 0.(4.3)

Proof. By Lemma 6.4.1, for arbitrary N,M > 0,

‖f̂N − f̂M‖22 = 2π‖fN − fM‖22.(4.4)

By (4.2), (fN) is a Cauchy sequence in L2. Then (4.4) implies (f̂N) is
a Cauchy sequence in L2 as well. By the completeness of L2, there is a
function φ ∈ L2 such that (4.3) holds. �

If limn→∞ ‖fn − f‖2 = 0, then we denote it by

f(t) = L2- lim
n→∞

fn(t).

We are ready to define the Fourier transform for a function f ∈ L2.

Definition 6.4.1. For f ∈ L2, the Fourier transform is defined
by

f̂(ω) = L2- lim
N→∞

∫ N

−N
f(x)e−ixω dx.(4.5)
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By Lemma 6.4.1, for a function f ∈ L2 ∩ L1
,∫ ∞

−∞
f(x)e−ixω dx = L2- lim

N→∞

∫ N

−N
f(x)e−ixω dx, a.e.

Hence this definition is consistent with Definition 6.3.1.
Note the difference between the point-wise limit

lim
n→∞

fn(t) = f(t)

and the limit L2-limit

L2- lim
n→∞

fn(t) = f(t).

For example, the function

fn(t) =

{
n, t ∈ (0, 1

n
)

0 otherwise

converges to 0 everywhere: limn→∞ fn(t) = 0, for all t ∈ R, but

lim
n→∞

‖fn − 0‖2 = lim
n→∞

√
n =∞.

Hence L2-limn→∞ fn(t) does not exist. Conversely, there exists a se-
quence (fn) such that its L2-limit exists but the piecewise limit does
not exist. For example, let

gn,m(t) =

{
1, t ∈ ( m

n+1
, m+1
n+1

)
0, otherwise

for all n ∈ Z+, m = 0, 1, · · · , n.

We now arrange gn,m to a bi-index sequence

g0,0, g1,0, g1,1, g2,0, g2,1, g2,2, · · · ,(4.6)

and rewrite it as the sequence f1, f2, · · · . That is, fτ(n,m) = gn,m, where
τ(n,m) = 1

2
(n + 1)n + m. Then L2-limk→∞ fk(t) = 0, but fk(t) is

divergent at any point t ∈ (0, 1).
Similar to the case for L1, the Fourier transform of f ∈ L2 has the

following properties.

Lemma 6.4.3. Lemma 6.3.1 also holds for each f ∈ L2.

Theorem 6.4.1. [Convolution Theorem] If f ∈ L2 and g ∈ L1,

then [f ∗ g]ˆ(ω) = f̂(ω)ĝ(ω) a.e.

Theorem 6.4.2. [Parseval’s Formula] If f, g ∈ L2, then∫ ∞

−∞
f̂(u)g(u) du =

∫ ∞

−∞
f(u)ĝ(u) du.

We leave the proofs of these results to the reader.
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4.2. Plancherel’s Theorem. We have already seen that the Fourier
transform is a linear transform on L2. We now study its geometric prop-
erties. From Lemma 6.4.1 and 6.4.2, we can see that the normalized
Fourier transform is orthonormal.

Theorem 6.4.3. If f ∈ L2, then f̂ ∈ L2 and

‖F(f)‖22 = ‖f‖22.(4.7)

Proof. By Lemma 6.4.1, we have

1

2π
‖f̂N‖22 = ‖fN‖22, N ≥ 0.

Letting N →∞, we have 1
2π
‖f̂‖22 = ‖f‖22 which implies (4.7). �

As a consequence of Theorem 6.4.3, we have:

Corollary 6.4.1. Assume f ∈ L2 and f̂(ω) = 0 a.e. Then
f(t) = 0 a.e.

Proof. If f̂(ω) = 0 a.e., then ‖f̂‖2 = 0, which yields ‖f‖2 = 0.
Hence, f(t) = 0 a.e. �

We also have the following.

Corollary 6.4.2. If f, g ∈ L2, then

〈f, g〉 = 1

2π
〈f̂ , ĝ〉.(4.8)

Proof. We leave the proof as an exercise. �
We now prove that the Fourier transform is also an onto mapping

on L2.

Theorem 6.4.4. For f ∈ L2, set g(x) = 1
2π
f̂(−x). Then ĝ(t) =

f(t) a.e. and

f(t) = L2- lim
N→∞

1

2π

∫
R
f̂(ω)eiωt dω.(4.9)

Proof. By Lemma 6.4.3, we have g∧(x) = [g(−·)]∧(x). Hence,

〈f, ĝ〉 =

∫
R
f(u)ĝ(u) du =

∫
R
f(u)[g(−·)]∧(u) du.

By Theorem 6.4.2,∫
R
f(u)[g(−·)]∧(u) du =

∫
R
f̂(u)g(−u)du

=
1

2π

∫
R
f̂(u)f̂(u) du =

1

2π
‖f̂‖22 = ‖f‖22.



4. FOURIER TRANSFORMS OF SQUARE INTEGRABLE FUNCTIONS 177

Hence, 〈f, ĝ〉 = ‖f‖22 and 〈ĝ, f〉 = 〈f, ĝ〉 = ‖f‖22. We also have

〈ĝ, ĝ〉 = 2π〈g, g〉 = 1

2π
‖f̂(−·)‖22 = ‖f‖22.

Hence,

‖f − ĝ‖22 = 〈f − ĝ, f − ĝ〉
= 〈f, f〉 − 〈f, ĝ〉 − 〈ĝ, f〉+ 〈ĝ, ĝ〉
= 0,

which yields ĝ = f a.e. Note that

ĝ(t) = L2- lim
N→∞

∫ N

−N
g(u)e−iut du

= L2- lim
N→∞

1

2π

∫ N

−N
f̂(−u)e−iut du

= L2- lim
N→∞

1

2π

∫ N

−N
f̂(ω)eiωt dω.

Hence (4.9) holds. �
We summarize Theorem 6.4.3 and Theorem 6.4.4 in the Plancherel

Theorem.

Theorem 6.4.5. [Plancherel’s Theorem] The normalized Fourier
transform F is an orthonormal automorphism on L2.

Recall that the formula (4.9) recovers f from f̂ . Hence we use it to
define the inverse Fourier transform for the functions in L2.

For g ∈ L2, its inverse Fourier transform is defined by

g∨(t) = L2- lim
N→∞

1

2π

∫ N

−N
ĝ(ω)eiωt dω.

Thus, if f ∈ L2, then
[
f̂
]∨

= f, or equivalently, F−1F(f) = f.

4.3. The Fourier Transform of Derivatives. The result for
Fourier transforms of derivatives in L2 is similar to that for L1. We
state the result below without providing the proof. Define

W r
2 =

{
f ∈ L2

∣∣f (j) ∈ L2, 0 ≤ j ≤ r
}
.

Theorem 6.4.6. If f ∈W r
2 , then

[f {r}]ˆ(ω) = (iω)rf̂(ω) a.e.(4.10)

Conversely, if f ∈ L2 and there is a function g ∈ L2 such that

(iω)rf̂(ω) = ĝ(ω) a.e.
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Then f ∈W r
2 .

Proof. We leave the proof as an exercise. �
A useful consequence of the theorem is the following.

Corollary 6.4.3. A function f ∈W r
2 if and only if∫ ∞

−∞
(1 + ω2r)|f̂(ω)|2 dω <∞.(4.11)

Proof. If f ∈ W r
2 , then f (r) ∈ L2, and then so is [f (r)]ˆ. By (4.10),

(iω)rf̂(ω) ∈ L2. We now have∫ ∞

−∞
(1 + ω2r)|f̂(ω)|2 dω =

(∫ 1

−1

+

∫
|ω|>1

)
(1 + ω2r)|f̂(ω)|2 dω,

where ∫ 1

−1

(1 + ω2r)|f̂(ω)|2 dω ≤ 2

∫ 1

−1

|f̂(ω)|2 dω ≤ 2‖f̂‖22
and∫

|ω|>1

(1 + ω2r)|f̂(ω)|2 dω ≤ 2

∫
|ω|>1

ω2r|f̂(ω)|2 dω ≤ 2‖[f (r)]ˆ‖2.

Hence, (4.11) is true. Conversely, if (4.11) is true, then∣∣∣(iω)rf̂(ω)
∣∣∣ ≤√

(1 + ω2r)|f̂(ω)| ∈ L2.

Hence, (iω)rf̂(ω) ∈ L2, which yields f ∈W r
2 . �

Exercises
1. Let f(x) = eix−1

ix
. Prove f ∈ L2, f /∈ L1, and f̂ ∈ L1.

2. Let f(x) = sinx
x
. Prove f̂(ω) =

{
π, |ω| < 1,
0, |ω| > 1.

3. Prove Lemma 6.4.3.
4. Prove Theorem 6.4.1.
5. Prove Theorem 6.4.2.
6. Prove Corollary 6.4.2.
7. Prove Theorem 6.4.6.
8. Let f ∈ L2. Prove that

(a) for x, h ∈ R,∫ x+h

x

f̂(v) dv =

∫ ∞

−∞

e−ihu − 1

−iu f(u)e−ixu du;

in particular,

f̂(ω) =
d

dω

[∫ ∞

−∞

e−iωu − 1

−iu f(u) du

]
a.e.,
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(b) for x, h ∈ R,∫ x+h

x

f(u) du =
1

2π

∫ ∞

−∞

eihω − 1

iω
f̂(ω)eixω dω;

in particular,

f(x) =
d

dx

[
1

2π

∫ ∞

−∞

eixu − 1

iu
f̂(u) du

]
a.e.

9. Use the result of Exercise 2 and the result of Example 6.3.3 to
prove

(a)
∫∞
−∞

sin2 u
u2 du = π;

(b)
∫∞
−∞

sin4 u
u4 du = 2π

3
.

10. Prove Theorem 6.4.6.
11. Let bn(x) be the function defined in Exercise 6 in Section 6.3.

Prove bn ∈W n−1
2 .

12. Assume f ∈ L2 and (ix)f(x) ∈ L2. Write g(x) = (ix)f(x). Prove

that [f̂ ]′ ∈ L2 and

[f̂ ]′(ω) = −ĝˆ(ω) a.e.

5. The Poisson Summation Formula

At the end of this chapter, we give an important formula which
links the sum of the shifts of a function to the sum of the shifts of its
Fourier transform, called the Poisson Summation Formula.

5.1. The Poisson Summation Formula for L1. The first ele-
mentary result in this direction is the following.

Lemma 6.5.1. For g ∈ L1, we define

g∗(x) =
∞∑

k=−∞
g(x+ 2kπ).(5.1)

Then g∗ ∈ L̃1,

‖g∗‖L̃1 ≤ 1

2π
‖g‖1,(5.2)

and ∫ π

−π
g∗(x) dx =

∫ ∞

−∞
g(x) dx.(5.3)

Assume f ∈ C̃. Then∫ π

−π
f(x− t)g∗(t) dt =

∫ ∞

−∞
f(x− t)g(t) dt.(5.4)
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In particular,∫ π

−π
f(t)g∗(t) dt =

∫ ∞

−∞
f(t)g(t) dt, f ∈ C̃.(5.5)

Proof. We have
∞∑

k=−∞

∫ π

−π
|g(x+ 2kπ)| dx =

∫ π

−π

∞∑
k=−∞

|g(x+ 2kπ)| dx

=

∫ ∞

−∞
|g(x)| dx = ‖g‖1 <∞.

By the Monotone Convergence Theorem (Theorem 3.3.3), g∗(x) exists
and (5.3) holds. Equations (5.4) and (5.5) are directly derived from
(5.3). We also have

‖g∗‖L̃1 =
1

2π

∫ π

−π
|g∗(x)| dx

=
1

2π

∫ π

−π

∣∣∣∣∣
∞∑

k=−∞
g(x+ 2kπ)

∣∣∣∣∣ dx
≤ 1

2π

∫ π

−π

∞∑
k=−∞

|g(x+ 2kπ)| dx

=
1

2π
‖g‖1,

which implies (5.2). �
In (5.5), choosing f(t) = 1

2π
e−ikt, we have the following.

Corollary 6.5.1. Let g ∈ L1 and g∗ be given by (5.1). Then the
Fourier coefficients of the 2π-periodic function g∗ are

[g∗]ˆ(k) =
1

2π
ĝ(k), k ∈ Z.

From Corollary 6.5.1, the Fourier series of g∗ is 1
2π

∑∞
k=−∞ ĝ(k)e−ikx.

In general, the Fourier series of a function may not converge to the func-
tion. The theory of Fourier series provides many different conditions
for the convergence of Fourier series; some of them ensure uniform con-
vergence, others ensure almost everywhere convergence or other types
of convergence. When the Fourier series of g∗ is convergent to g∗, we
have the formula

∞∑
k=−∞

g(x+ 2kπ) =
1

2π

∞∑
k=−∞

ĝ(k)e−ikx,
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which holds in a certain sense. This formula is called the Poisson

summation formula. According to the conditions which ensure the
formula, we can derive many different versions of the Poisson summa-
tion formula. We now only establish a few of them.

Theorem 6.5.1. Assume g ∈ L1 ∩C and the series
∑∞

k=−∞ g(x+
2kπ) is uniformly convergent to a function g∗. Assume also

∑
k∈Z |ĝ(k)| <

∞. Then
∞∑

k=−∞
g(x+ 2kπ) =

1

2π

∞∑
k=−∞

ĝ(k)eikx, x ∈ R.(5.6)

Particularly,
∞∑

k=−∞
g(2kπ) =

1

2π

∞∑
k=−∞

ĝ(k).(5.7)

Proof. Since g is continuous and
∑∞

k=−∞ g(x + 2kπ) is uniformly
convergent to g∗(x), g∗ is a continuous function and g∗(x) =

∑∞
k=−∞ g(x+

2kπ) holds everywhere. The condition
∑

k∈Z |ĝ(k)| <∞ implies [g∗]ˆ ∈
l1 and therefore

∑
k∈Z[g

∗]ˆ(k)eikx = g∗(x) everywhere. It yields (5.6).
Formula (5.7) is obtained by setting x = 0 in (5.6). The theorem is
proved. �

Corollary 6.5.2. If g ∈ C satisfies

g(x) = O

(
1

1 + |x|α
)

(5.8)

and

ĝ(ω) = O

(
1

1 + |ω|α
)

(5.9)

for some α > 1, then (5.6) holds.

Proof. By (5.8), for any x ∈ [−π, π],
∞∑

k=−∞
|g(x+ 2kπ)| ≤ C

∞∑
k=−∞

1

1 + |x+ 2kπ|α < M,

where M is independent of x. Hence,
∑∞

k=−∞ g(x+ 2kπ) is uniformly

convergent to a function g∗ ∈ C̃. Similarly, by (5.9),∑
k∈Z
|ĝ(k)| ≤ C

∞∑
k=−∞

1

1 + |k|α <∞.

By Theorem 6.5.1, (5.6) holds. �
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By changing the period of the function, we obtain an alternative
form of the Poisson summation formula.

Theorem 6.5.2. If g ∈ L1 ∩ C, the series
∑∞

k=−∞ g(x + k) is
uniformly convergent, and

∑
k∈Z |ĝ(2kπ)| <∞, then

∞∑
k=−∞

g(x+ k) =

∞∑
k=−∞

ĝ(2kπ)ei2kπx, x ∈ R.(5.10)

In particular,
∞∑

k=−∞
g(k) =

∞∑
k=−∞

ĝ(2kπ).(5.11)

Proof. Let g2π(x) = g( x
2π

). Then g2π is a 2π-periodic function and
g2π satisfies the conditions of Theorem 6.5.1. Hence,

∞∑
k=−∞

g2π(t+ 2kπ) =
1

2π

∞∑
k=−∞

ĝ2π(k)e
ikt, t ∈ R.

Setting t = 2πx, by g2π(x) = g( x
2π

) and ĝ2π(ω) = ĝ(2πω), we have
(5.10). �

Finally, we give the Poisson summation formula for the auto-correlation
of f, which is often used in wavelet analysis. Recall that the auto-
correlation of f ∈ L2 is defined by (see Section 6.3, Exercise 5)

[f, f ](x) =

∫
R
f(t)f(t+ x)dt.(5.12)

Theorem 6.5.3. If f(x) satisfies

f(x) = O

(
1

1 + |x|α
)

(5.13)

for some α > 1 and

f̂(x) = O

(
1

1 + |x|β
)

(5.14)

for some β > 1/2, then
∞∑

k=−∞

∣∣∣f̂(x+ 2kπ)
∣∣∣2 =

∞∑
k=−∞

[f, f ](k)e−ikx, x ∈ R.(5.15)

Proof. By (5.13), f ∈ L1 ∩ L2 and then f̂ ∈ L2 ∩ C0, which im-

plies [̂f, f ] =
∣∣∣f̂ ∣∣∣2 ∈ L1 ∩ C0. Besides, by the Convolution Theorem

(Theorem 6.3.2), [f, f ] ∈ L1 ∩ C0. We now write g =
∣∣∣f̂ ∣∣∣2 . Condition
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(5.14) yields the uniform convergence of the series
∑∞

k=−∞ g(x+2kπ) =∑∞
k=−∞

∣∣∣f̂(x+ 2kπ)
∣∣∣2. By Theorem 6.3.6, we also have

1

2π
ĝ(k) =

1

2π

∫ ∞

−∞
[̂f, f ](t)e−itkdt = [f, f ](−k).(5.16)

By (5.13), there is a C > 0 such that∑
k∈Z
|f(t+ k)| ≤ C

∑
k∈Z

1

1 + |t+ k|α .

The function
∑

k∈Z
1

1+|t+k|α is a 1-periodic continuous function. Let

M = maxx∈[0,1]

∑
k∈Z

1
1+|t+k|α . Then maxx∈[0,1]

∑
k∈Z |f(t+ k)| ≤ CM.

By (5.16), we have

1

2π

∞∑
k=−∞

|ĝ(k)| =
∞∑

k=−∞
|[f, f ](k)| =

∞∑
k=−∞

∣∣∣∣∫
R
f(t)f(t+ k) dt

∣∣∣∣
≤
∫
R
|f(t)|

∞∑
k=−∞

∣∣∣f(t+ k)
∣∣∣ dt ≤ CM ||f ||1 <∞.

It allows us to apply the Poisson summation formula (5.6) to g. Thus,
we have

∑∞
k=−∞ g(x+2kπ) = 1

2π

∑∞
k=−∞ ĝ(k)eikx, which implies (5.15).

The theorem is proved. �

Example 6.5.1. Let

F (x) =
sin2(x/2)

(x/2)2
.

We have

F̂ (ω) =

{
2π(1− |ω|), |ω| ≤ 1,

0 |ω| ≥ 1.

The function satisfies the conditions of the Poisson summation formula
and so does the function ρF (ρx), ρ > 0. Let g(x) = (n+1)F ((n+1)x).

Then ĝ(ω) = F̂ ( ω
n+1

). Applying the Poisson summation formula (5.6)
to g(x), we have

(n+ 1)
∑
k∈Z

sin2((n+ 1)(x/2 + kπ))

((n+ 1)(x/2 + kπ))2
=

n∑
k=−n

(
1− |k|

n+ 1

)
eikx.

Note that

(n+ 1)
∑
k∈Z

sin2((n + 1)(x/2 + kπ))

((n+ 1)(x/2 + kπ))2
=

1

n+ 1

∑
k∈Z

sin2((n+ 1)x/2)

(x/2 + kπ)2
.
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We also have
n∑

k=−n

(
1− |k|

n+ 1

)
eikx =

1

n + 1

sin2((n+ 1)x/2)

sin2(x/2)
,(5.17)

(see Exercise 1), which yields

1

n + 1

sin2((n + 1)x/2)

sin2(x/2)
=

1

n + 1

∑
k∈Z

sin2((n+ 1)x/2)

(x/2 + kπ)2
,

and therefore

1

sin2 u
=
∑
k∈Z

1

(u+ kπ)2
, u ∈ R \ πZ.(5.18)

5.2. Fourier Transforms of Compactly Supported Func-
tions. In many applications, functions are actually defined on finite
intervals, not on the whole real line. In this subsection we briefly dis-
cuss the properties of the Fourier transforms of these functions.

Definition 6.5.1. Let f ∈ L1
loc. A point x ∈ R is called a support

point of f if, for any δ > 0, there is a function g ∈ L∞
loc such that∫ x+δ

x−δ
f(x)g(x) dx �= 0.

The set of all support points of f is called the support of f and denoted
by suppf.

Note that

Lp ⊂ L1
loc, 1 ≤ p ≤ ∞,

and C ⊂ L1
loc. Hence, by Definition 6.5.1, the support of a function in

Lp or in C is well-defined. It is easy to verify that if f ∈ C, then

supp f = closure {x | f(x) �= 0},
which is a closed set. In general, we have the following.

Lemma 6.5.2. The support of a function f ∈ L1
loc is a closed set.

Proof. Let x̄ be in the closure of supp f. Then, for any δ > 0, there is
an x ∈ supp f such that x ∈ (x̄−δ, x̄+δ). Let d = min(x−x̄+δ, x̄+δ−x).
Then (x − d, x + d) ⊂ (x̄ − δ, x̄ + δ), and there is a function g ∈ L∞

loc

such that ∫ x+d

x−d
f(x)g(x) dx �= 0.
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We now set g∗(x) = g(x)χ[x−d,x+d](x). Then∫ x̄+δ

x̄−δ
f(x)g∗(x) dx =

∫ x+d

x−d
f(x)g(x) dx �= 0.

Hence, x̄ ∈ supp f. The lemma is proved. �

Definition 6.5.2. A function is said to be compactly supported

if its support is a compact set.

For convenience, we denote the subspace of Lp that contains all
compactly supported functions in Lp by Lp0 and denote the subspace of
C0 that contains all compactly supported functions in C0 by C00. (Note
that Lp0 (or C00) is not a closed subspace of Lp (or C0).) Then we have
the following relations

C00 ⊂ Lp0 ⊂ L1
0, 1 ≤ p ≤ ∞.

If f ∈ L1
0, then, by Theorem 6.4.6, it is easy to see that f̂(ω) is infinitely

differentiable and

[f̂ ](r)(ω) =

∫ ∞

−∞
(−ix)rf(x)e−ixω dx.(5.19)

We now prove a stronger result.

Theorem 6.5.4. If f ∈ L1
0, then f̂(ω) is infinitely differentiable.

Moreover, the Maclaurin series of f̂(ω) converges to f̂(ω) on R.

Proof. Since f ∈ L1
0, there is an M > 0 such that supp f ⊂

[−M,M ]. By (5.19)∣∣∣[f̂ ](n)(ω)
∣∣∣

n!
≤
∫M
−M |(−ix)nf(x)e−ixω| dx

n!

≤ ‖f‖1M
n

n!
→ 0, as n→∞.

Hence,

f̂(ω) =

∞∑
k=0

[f̂ ](k)(0)

k!
ωk, ω ∈ R.

The theorem is proved. �
If f ∈ C∞ and the Maclaurin series of f converges to f on R,

then f is called an entire function. Theorem 6.5.4 confirms that
the Fourier transform of a compactly supported function is an entire
function.

Even though the Fourier transform of a compactly supported func-
tion f is very smooth, it may decay very slowly as x→∞. For instance,
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the Fourier transform of a compactly supported function may not be
in L1. It is the smoothness of f, not the compactness of f , that results
in the fast decay of f̂ . The following is such a result.

Lemma 6.5.3. If f ∈ C00 and f ′ ∈ L1, then f̂ ∈ L1 and[
f̂
]
ˆ(−x) = f(x).

Proof. We leave the proof as an exercise. �

5.3. The Poisson Summation Formula for Compactly Sup-
ported Functions. We now apply Lemma 6.5.3 and the Poisson sum-
mation formula to obtain a result analogous to Theorem 6.5.3, but for
compactly supported functions.

Theorem 6.5.5. If f ∈ C00 and f ′ ∈ L1, then
∞∑

k=−∞

∣∣∣f̂(ω + 2kπ)
∣∣∣2 =

∞∑
k=−∞

[f, f ](k)e−ikω, ω ∈ R.(5.20)

Proof. We leave the proof as an exercise. �
Exercises

1. Prove (5.17) by completing the following steps.
(a) Let Dn(x) = 1 + 2

∑n
k=1 cosx. Prove

Dn(x) =

n∑
k=−n

eikx =
sin (2n+1)x

2

sin x
2

, x �= 2jπ, j ∈ Z.

(b) Prove
n∑

k=−n

(
1− |k|

n + 1

)
eikx = 1 + 2

n∑
k=1

(
1− k

n+ 1

)
cos kx =

1

n+ 1

n∑
k=0

Dk(x).

(c) Prove

n∑
k=0

Dk(x) =

(
sin (2n+1)x

2

sin x
2

)2

, x �= 2jπ, j ∈ Z.

(d) Prove (5.17).
2. Prove (5.18) by applying the Poisson summation formula (5.10)

to the function h(x) =

{
1− |x|, x ∈ [−1, 1]

0 otherwise
.Hint:

∑∞
k=−∞ h(x+

k) = 1.

3. Use identity (5.18) to show that
∑∞

n=1
1

(2n−1)2
= π2

8
and then∑∞

n=1
1
n2 = π2

6
. Hint: set x = π

2
in (5.18).
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4. By applying the Poisson summation formula (5.6) to the function
1√
2t
e−

x2

4t , prove√
π

t

∞∑
k=−∞

e−
(x+2kπ)2

4t =

∞∑
k=−∞

e−k
2teikx, t > 0.

5. By applying the Poisson summation formula (5.6) to the function√
2
π

y
x2+y2

, prove

2

∞∑
k=−∞

y

y2 + (x+ 2kπ)2
=

∞∑
k=−∞

e−|k|yeikx, y > 0.

6. Prove the following (weak) Poisson summation formula: If f ∈
L1 and

(
f̂(k)

)
k∈Z
∈ l1 then the Poisson Summation Formula

(5.6) holds almost everywhere.
7. Prove Lemma 6.5.3.
8. Prove that if f ∈ C00 and f (n) ∈ L2, then

lim
n→∞

∣∣∣∣∣ f̂(ω)

ωn

∣∣∣∣∣ = 0.

9. Complete the proof of Theorem 6.5.5.
10. Let f ∈ L2 be compactly supported. Write g = |f̂ |2. Prove that∑

k∈Z g(x+ k) is convergent almost everywhere.
11. Use the result in Exercise 10 to prove that (5.20) holds almost

everywhere for f.
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CHAPTER 7

Orthonormal Wavelet Bases

In the previous chapter, we introduced Fourier series and the Fourier
transform. As has been shown, the basis used in Fourier series,

{
e−ikx

}
k∈Z ,

is an orthonormal basis for the space L̃2, and many important prop-
erties of a function can be described by its Fourier coefficients. This
is one of the main points of interest in the theory of Fourier series.
The Fourier series of a function defined on a finite interval other than
[−π, π] can be obtained by dilating the orthonormal basis {e−ikx}k∈Z.
For instance, {

e−ik(
π
σ
x)
}
k∈Z

is an orthonormal basis of the space L̃2
2σ.

However, each element in the basis
{
e−ik(

π
σ
x)
}
k∈Z is a complex sinu-

soidal wave, which is “global” in the x-domain. Hence, the coefficients
of the Fourier transform of a function do not provide the “local” be-
havior of the function in the x-domain. For example, consider the
2π-periodic function f(x) of Example 6.1.5. It is defined by

f(x) =

⎧⎨⎩ π/2, x ∈ (0, π),
0, x = 0,
−π/2, x ∈ (−π, 0),

It is essentially a constant in each of the “local” areas (−π, 0) and (0, π).

We have f(x) = 2
∑∞

n=1
sin(2n−1)x

2n−1
. The Fourier coefficients of f do not

provide direct information of the “local” behavior of f(x)1. Besides,
the Gibbs’ phenomenon revealed in that example indicates that the
Fourier series does not provide a good approximation of f(x) in the
neighborhood of x = 0.

Another shortcoming of Fourier series exists in convergence. In
1873, Paul Du Bois-Reymond constructed a continuous, 2π-periodic
function, whose Fourier series diverged at a given point.

1Here we use the word “local” in an intuitive sense. Roughly speaking, the
local behavior of f(x), x ∈ R, on a finite interval (a, b) is the behavior of the cut-off

function floc(x) =
{

f(x), x ∈ (a, b),
0, otherwise.

189
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Therefore a question arises: “Is it possible to find other orthogonal
systems for which the phenomenon discovered by Du Bois-Reymond
cannot happen and the ‘local’ behavior of a function can be easily
recognized from its coefficients?” To answer this question, Haar (1909)
began with the function on [0, 1]

H(x) =

{
1, 0 ≤ x < 1

2
,

−1, 1
2
≤ x < 1,

and defined Hn(x) = 2j/2H(2jx − k) for n = 2j + k, where j > 0 and
0 ≤ k < 2j. He added a function H0(x) = 1, x ∈ [0, 1], to the function
sequence H1(x), H2(x), · · · . Then the system {Hn(x)}∞n=0 became an
orthonormal basis for L2[0, 1].

The functions in this system are all locally supported: The support
of Hn(x) is the dyadic interval In = [k2−j , (k + 1)2−j] ⊂ [0, 1]. Be-
sides, they are essentially generated by a single function H1(x) (except
H0(x)). It is also easy to see that any continuous function f ∈ C[0, 1]
can be represented by a series

∑∞
n=0 anHn(x) and the series is uniformly

convergent to f(x) on [0, 1]. Since all functions in the system have their
supports in [0, 1], by taking integer translates, it is easy to extend the
orthonormal basis {Hn(x)}∞n=0 on L2[0, 1] to an orthonormal basis on
L2(R). The functions Hn(x), n = 0, 1, · · · , are not continuous, and this
limits applications of the system. Haar’s idea of using the translates
and dilations of a locally supported function to construct an ortho-
normal basis opens a wide door to the construction of an orthonormal
bases. This route leads to wavelets. In this chapter, we shall introduce
wavelet functions and show how they generate orthonormal bases of
L2(R), which are called “wavelet bases”. Briefly, a wavelet basis is the
basis generated by the dilations and translates of a “wavelet” function
ψ. More precisely, if {

2j/2ψ(2jx− k)}
j,k∈Z(0.21)

forms a basis of L2(R), then we call ψ a wavelet and call the system
(0.21) a wavelet basis. Wavelets are usually compactly supported, or
exponentially decay, i.e. they are “local” functions in the x-domain.
Then each element in the wavelet basis (0.21) is also a “local” function.
Hence, wavelet bases are useful tools for analyzing the “local” behaviors
of functions in the x-domain.

Wavelet analysis also considers many topics other than the con-
struction and analysis of wavelet bases in L2(R). The contents of wavelet
analysis include continuous wavelet transforms, wavelet bases in the
function spaces other than L2(R),wavelet frames, vector-valued wavelets,
and their applications in many areas. Since our purpose is to introduce
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wavelets in a real analysis book, we have no desire to cover all topics.
Readers can refer to [4] and [6] for more in-depth studies. We select
the study of wavelet bases in L2(R) as our main topic, which seems a
suitable topic in the landscape of this book.

1. Haar Wavelet Basis

To understand the idea of the construction of orthonormal wavelet
bases of L2, we introduce in this section a simplest orthonormal wavelet
basis of L2, called the Haar basis. Since in the remainder of the book
we mainly discuss functions in L2, we shall abbreviate ‖ · ‖2 as ‖ · ‖.

1.1. Approximation by Step Functions. We start from a well-
known result: Any function in L2 can be approximated by step func-
tions. In particular, let

χn,k(x) =

{
1, 2−nk ≤ x < 2−n(k + 1),
0, otherwise.

Then for any function f ∈ L2, there exist step functions

fn(x) =
∑
k∈Z

cn,kχn,k(x), n ∈ N,

such that

lim
n→∞

‖fn − f‖ = 0.

We define

Vn =

{
gn

∣∣∣∣∣ gn =
∑
k∈Z

an,kχn,k, (an,k)k∈Z ∈ l2
}
.(1.1)

Then {Vn} is a sequence of subspaces of L2, which approximates L2 in
the sense that, for any f ∈ L2, there are functions fn ∈ Vn such that

lim
n→∞

||fn − f || = 0.

We call {Vn} an approximation of L2. It is obvious that the larger n
is, the “finer resolution” the space Vn has. Note that the subspaces
{Vn} are nested:

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · ·(1.2)

It is easy to see that ⋃
n∈Z

Vn = L2(1.3)
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and ⋂
n∈Z

Vn = {0}.(1.4)

The basis of the space Vn has a simple structure. First we construct
an orthonormal basis of V0. Let B(x) be the box function defined by

B(x) =

{
1, 0 ≤ x < 1,
0, otherwise,

which is the characteristic function of the interval [0, 1). It is clear
that the function system {B(x− k)}k∈Z forms an orthonormal basis of
V0. An orthonormal basis of Vn can be obtained by dilating the system
{B(x− k)}k∈Z. For a function f ∈ L2, we write

fn,k(x) = 2n/2f(2nx− k), k ∈ Z, n ∈ Z,

and abbreviate f0,k as fk. The system {Bn,k}k∈Z then forms an ortho-
normal basis of Vn.

1.2. The Haar Wavelet Basis. With the aid of the nested struc-
ture of (1.2), we can construct an orthonormal basis of L2. Let Wn be
the orthogonal complement of Vn with respect to Vn+1 :

Wn ⊕ Vn = Vn+1, Wn ⊥ Vn.

By the nested structure of (1.3) and (1.4), we have

L2 =
⊕
n∈Z

Wn, Wn ⊥Wn′ , n �= n′.(1.5)

Since each subspace Vn is a 2n-dilation of V0, Wn is also a 2n-dilation of
W0. Recall that dilation preserves orthogonality. Therefore, if {ek}k∈Z
is an orthogonal basis of W0, then its 2n-dilation is an orthogonal basis
of Wn. Thus, our task is reduced to finding an orthonormal basis of
W0. To do so, we define

H(x) =

⎧⎨⎩ 1, 0 ≤ x < 1
2
,

−1, 1
2
≤ x < 1.

0, otherwise,

which is called the Haar function.

Lemma 7.1.1. Let

Hk(x) = H(x− k), k ∈ Z.(1.6)

Then the system {Hk}k∈Z is an orthonormal basis of W0. Consequently,
the system {Hn,k(x)}k∈Z is an orthonormal basis of the space Wn.
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Proof. We only need to prove that the functions in (1.6) form an
orthonormal basis of W0. It is clear that {Hk(x)}k∈Z is an orthonormal
system in W0. We now claim that it is also a basis of W0. Let g be a
function in W0. Then g ∈ V1 and there is a sequence (ck) ∈ l2 such
that

g =
∑
k∈Z

ckB1,k =
∑
l∈Z

(c2lB1,2l + c2l+1B1,2l+1).

Since g ⊥ V0, we have c2l+1 = −c2l. Note thatHl = 1√
2
(B1,2l −B1,2l+1) .

Hence,

g =
√

2
∑
l∈Z

c2lHl, (c2l) ∈ l2.

The lemma is proved. �
From the lemma, we can obtain the following theorem.

Theorem 7.1.1. The system {Hn,k}n,k∈Z forms an orthonormal
basis of L2.

Proof. It is obvious that {Hn,k}n,k∈Z is an orthonormal system in
L2. The fact that it is a basis of L2 is a consequence of (1.5). �

We usually call the space Wn the Haar space and call {Hn,k}n,k∈Z
the Haar basis of L2. The geometric meaning of the Haar decomposi-
tion of a function can be explained as follows. Note that each element
Hn,k in the Haar basis represents a square wave centered at 2k+1

2n+1 with

width 1
2n
. Hence, we may say that Hn,k has the Haar frequency of

2n. The functions in the same Haar subspace Wn have the same Haar
frequency 2n. Unlike sin x or cosx, the Haar function Hn,k is a “small”
local wave. Thus, the width of the wave provides the frequency in-
formation, and the center of the wave provides the spatial (or time)
information. In other words, the first index n of Hn,k indicates the
frequency of the function while the second index k indicates its spatial
(or time) location. Thus, the Haar system becomes a useful tool for
local time-frequency analysis.

Orthonormal bases having structure like the Haar basis are ex-
tremely useful in many applications. Hence we give the following defi-
nition.

Definition 7.1.1. A function ψ ∈ L2 is called an orthonormal

wavelet if {ψnm}n,m∈Z forms an orthonormal basis of L2. The basis
{ψnm}n,m∈Z generated by ψ is called an orthonormal wavelet basis

of L2.
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The term “wavelet” refers to the intuitive idea that the function
ψ represents a “small wave.” For example, the Haar function H(x)
consists of only a small (single) square wave on [0, 1], which can be
partially reflected by the property∫

R
H(x) dx = 0.(1.7)

Hence, (1.7) can be used to define wavelet functions in a general sense,
as is done in the following.

Definition 7.1.2. In general, a function ψ ∈ L1 is called a wavelet

if ∫
R
ψ(x) dx = 0.(1.8)

We now return to analyze the relationship between the box function
and the Haar wavelet. Note that the box function satisfies the following
equation:

B(x) = B(2x) +B(2x− 1),(1.9)

and the Haar wavelet has the following relationship with B(x) :

H(x) = B(2x)− B(2x− 1).(1.10)

Equation (1.9) reveals the relations of two box functions with dif-
ferent scales. Hence, we call (1.9) the two-scale equation (or the
refinement equation) of B. Correspondingly, (1.10) is called the
two-scale relation of H and B. The general definitions of these
concepts will be given in the next section. They play a central role
in the construction of wavelet bases and in the fast wavelet transform
algorithm as well.

1.3. The Decomposition of Functions Into Haar Wavelet
Series. Since {Hnk}n,k∈Z is an orthonormal basis of L2, any function
f ∈ L2 can be expanded as a Haar series

f =
∑

dnkHnk,(1.11)

where the coefficients dnk, n, k ∈ Z, can be computed from the inner
product

dnk = 〈f,Hnk〉.
However, since

Vj =
⊕
k<j

Wk
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and Vj will be reduced to the trivial space as j → −∞, the hybrid
series

f =
∑
k∈Z

cjkBjk +
∑
n≥j

∑
k∈Z

dnkHnk(1.12)

sometimes is more useful than the bi-infinite Haar series (1.11). With-
out loss of generality, we can always assume j = 0 in (1.12). Thus we
have

f =
∑
k∈Z

ckBk +

∞∑
n=0

∑
k∈Z

dnkHnk.

Besides, in many applications, a function is often represented by a
truncated series, along with an error remainder. For example, we use
Taylor polynomials (which are truncated Taylor series) to approximate
analytic functions, and use trigonometric polynomials (which are trun-
cated Fourier series) to approximate periodic functions. Similarly, we
can approximate a function f ∈ L2 using a truncated Haar series. Let

fN =
∑
k∈Z

ckBk +
N−1∑
j=0

∑
k∈Z

djkHjk(1.13)

be a truncated Haar series. Then

fN = ProjVnf

and

‖fN − f‖ → 0 as N →∞.
Using the basis of VN , we can decompose fN into another series

fN =
∑
k∈Z

cNkBNk.(1.14)

The algorithm to compute (ck), (dk), (d1k), · · · , (dN−1,k) in (1.13) from
(cNk) in (1.14) is called the Fast (Haar) Wavelet Transform, and
the algorithm doing the reverse is called the Fast Inverse (Haar)

Wavelet Transform . Using formulas (1.9) and (1.10), we can perform
the Fast (Haar) Wavelet Transform as follows:

(1) Take the sum of two successive boxes numbered 2k, 2k + 1 on
level n for f, and then multiply it by 1/

√
2. This gives the kth box

function component of f on level n− 1.
(2) Take the difference of two successive boxes numbered 2k, 2k+1

on level n for f , and then multiply it by 1/
√

2. This gives the kth Haar
function component of f on level n− 1.
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Example 7.1.1. Let

f(x) =
4∑
k=0

c4kφ4k(x)

where c40 = 1, c41 = 2, c42 = 4, c43 = −2, and c44 = −3. Then c4 =
(c4,k) is

c4 = (· · · , 0, 1, 2, 4,−2,−3, 0, · · · ).
By (1.9) and (1.10), we have

c3 =
√

2(· · · , 0, 3
2
, 1,−3

2
, 0, · · · ),

b3 =
√

2(· · · , 0,−1

2
, 3,−3

2
, 0, · · · ),

a2 = 2(· · · , 0, 5
4
,−3

4
, 0, · · · ),

b2 = 2(· · · , 0, 1
4
,−3

4
, 0, · · · ),

a1 = 2
√

2(· · · , 0, 1
4
, 0, · · · ),

b1 = 2
√

2(· · · , 0, 1, 0, · · · ),

a0 = 4(· · · , 0, 1
8
, 0, · · · ),

and

b0 = 4(· · · , 0, 1
8
, 0, · · · ).

Thus,

f(x) =
1

2
B(x) +

1

2
H(x) + 2

√
2H1,0(x) +

1

2
H2,0(x)− 3

2
H2,1(x)

−
√

2

2
H3,0(x) + 3

√
3H3,1(x)− 3

√
2

2
H3,2(x).

Let

L =
√

2

⎛⎜⎜⎜⎝
... 0 0

...
...

...
· · · 1/2 1/2 0 0 · · ·
· · · 0 0 1/2 1/2 · · ·
...

...
... 0 0

...

⎞⎟⎟⎟⎠
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and

H =
√

2

⎛⎜⎜⎜⎝
... 0 0

...
...

...
· · · 1/2 −1/2 0 0 · · ·
· · · 0 0 1/2 −1/2 · · ·
...

...
... 0 0

...

⎞⎟⎟⎟⎠ .

Then the Fast Haar Wavelet Transform can be formulated as

cj−1 = Lcj

and

cj−1 = Hcj,

for j = N,N−1, · · · , 1, while the Fast Inverse Haar Wavelet Transform
recovers cN from

c0,d0, · · · ,dN−1

using the following algorithm

cj+1 = LTcj +HTdj , j = 0, 1, · · · , N − 1.

Exercises
1. Let f(x), x ∈ R, be a continuous function such that limx→∞ f(x) =
b and limx→−∞ f(x) = a, where a and b are two real numbers.
Let

Un =

{
gn

∣∣∣∣∣ gn =
∑
k∈Z

an,kχn,k, sup
k∈Z
|an,k| <∞

}
.

Prove that there are functions fn ∈ Un, n ∈ Z, such that

lim
n→∞

sup
x∈R
|f(x)− fn(x)| = 0.

2. Let f(x), x ∈ R, be a continuous function and

Ûn =

{
gn

∣∣∣∣∣ gn =
∑
k∈Z

an,kχn,k

}
.

Prove that there are functions fn ∈ Ûn, n ∈ Z, such that

lim
n→∞

sup
x∈R
|f(x)− fn(x)| = 0.

3. Let Vn ⊂ L2 be given by (1.1). The distance from a function f
to Vn is defined by

d(f, Vn) = inf
g∈Vn
||f − g||.

Let f(x) = χ[0,1/3](x). Find the distance d(f, Vn).



198 7. ORTHONORMAL WAVELET BASES

4. Prove (1.4), where {Vn} is generated by the box function.
5. Let function f(x) ∈ V2 be defined by

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
5, 0 ≤ x < 1

4
,

−1, 1
4
≤ x < 1

2
,

2, 1
2
≤ x < 1,

1, 1 ≤ x < 3
2
,

0, otherwise.

(a) Expand f(x) as a linear combination of {B2,k}.
(b) Decompose f(x), step by step, into a wavelet series as

f(x) =
∑

a0,mB0,m +
∑

b0,mH0,m +
∑

b1,mH1,m.

6. Let f(x) = χ[0,1/8](x). Expand it to the series
∑

k∈Z ckBk +∑
n≥0

∑
k∈Z dnkHnk.

7. Let f(x) = χ[0,a](x), where a ∈ (0, 1). Expand it to the series∑
k∈Z ckBk +

∑
n≥0

∑
k∈Z dnkHnk. (Hint: write a =

∑∞
k=1 ak2

−k,
where ak is 0 or 1.)

8. Prove that if a function g ∈ L2(R) is in the subspace

W = span{Hjk}k∈Z,j≥0,

then ∫ k+1

k

g(x)dx = 0, for all k ∈ Z.

9. Let S[a,b] be a subspace of L2
[a,b] defined by

S[a,b] =

{
f ∈ L2

[a,b]

∣∣∣∣ ∫ b

a

f(x)dx = 0

}
.

Prove that all Haar wavelets Hjk with suppHjk ⊂ [a, b] form an
orthonormal basis of S[a,b].

2. Multiresolution Analysis

In the previous section, we constructed a Haar basis of L2, which has
very simple structure. Unfortunately, the Haar function is not contin-
uous and this limits its application. Hence, we want to construct other
wavelet bases. In this section, we establish a general principle for the
construction of orthonormal wavelet bases of L2. As seen in the previ-
ous section, the sequence of nested subspaces {Vn} plays an important
role in the construction. We first study such subspace sequences in L2.
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2.1. Definition of Multiresolution Analysis.

Definition 7.2.1. A multiresolution analysis (shortly, MRA)
of L2 is a nest of subspaces of L2

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · ·
that satisfies the following conditions.

(1) ∩j∈ZVj = {0},
(2) ∪j∈ZVj = L2,
(3) f(·) ∈ Vj if and only if f(2·) ∈ Vj+1, and
(4) there exists a function φ ∈ V0 such that {φ(x − n)}n∈Z is an

unconditional basis of V0, i.e. {φ(x − n)}n∈Z is a basis of V0, and
there exist two constants A,B > 0 such that, for all (cn) ∈ l2, the
following inequality holds:

A
∑
|cn|2 ≤

∥∥∥∑ cnφ(· − n)
∥∥∥2

≤ B
∑
|cn|2.(2.1)

In the literature, an unconditional basis is also called a Riesz

basis and the constants A and B in (2.1) are called the low Riesz

bound and the up Riesz bound respectively. Condition (2.1) is called a
stable condition, and a function φ satisfying (2.1) is called a stable

function. The function φ described in Definition 7.2.1 is called an MRA

generator. Furthermore, if {φ(x− n)}n∈Z is an orthonormal basis of
V0, then φ is called an orthonormal MRA generator.

From the discussion in the previous section, we know that the box
function is an orthonormal MRA generator. When {φm}m∈Z is an un-
conditional basis of V0, we can claim that {φn,m}m∈Z is an unconditional
basis of Vn. In fact, by Condition (3) in Definition 7.2.1, φn,m ∈ Vn and∥∥∥∑ cmφn,m

∥∥∥ =
∥∥∥∑ cmφm

∥∥∥ .
This implies that {φn,m}m∈Z is an unconditional basis of Vn.

Since φ ∈ V0 is also in V1, we can expand φ into a linear combination
of the basis of V1 :

φ(x) = 2
∑
m∈Z

h(m)φ(2x−m), (h(m))m∈Z ∈ l2(2.2)

where the coefficient sequence (h(m)) is in l2 because {φ1,m} is an
unconditional basis of V1. In (2.2), we put a factor of 2 on the right
hand side to simplify the notation in future discussions.

Equation (2.2) is a generalization of (1.9). We call it a two-scale

equation (or refinement equation). Because of the importance of
(2.2), we study it in detail.
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Definition 7.2.2. A function φ ∈ L2 which satisfies a two-scale
equation (2.2) is called a scaling function (or refinable function).
The sequence of the coefficients (h(n))n∈Z in (2.2) is called the mask

of φ, while the series H(z) :=
∑

m∈Z h(m)zm is called the symbol of
φ. If {φ(x − n)}n∈Z is an orthonormal system, then φ is called an
orthonormal scaling function .

Taking the Fourier transform of (2.2), we obtain

φ̂(ω) = H(e−iω/2)φ̂(ω/2),(2.3)

which represents the two-scale equation in the frequency domain. For
convenience, we also call (2.3) a two-scale equation (or refinement equa-
tion) of φ. The notation

H(ω) = H(e−iω/2)

is often used in later discussions. A common technique in wavelet
theory is, when dealing with a problem, to go back and forth between
the time domain and frequency domain.

In general, for an arbitrary given sequence (h(m)) , the L2-solution
of (2.2) may not exist, or the L2-solution of (2.2) exists, but it may not
be an MRA generator. A scaling function φ being an MRA generator
should satisfy two requirements. First, φ should be stable. Second, the
subspace of L2 spanned by {φn,m}m∈Z must approximate L2 as n→∞.
We now discuss these two requirements in detail.

2.2. Stability of Scaling Functions. An MRA generator must
satisfy the stability condition (2.1). Hence, we give a necessary and
sufficient condition for the stability of a function.

Theorem 7.2.1. A function φ ∈ L2 satisfies the stability condition
(2.1) if and only if

0 < ess inf
x∈R

∑
k∈Z
|φ̂(ω + 2kπ)|2(2.4)

and

ess sup
x∈R

∑
k∈Z
|φ̂(ω + 2kπ)|2 <∞.(2.5)

Proof. Let f(x) be a function in V0. Then

f(x) =
∑
m∈Z

cmφ(x−m), (cm) ∈ l2.
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Hence T (ω) =
∑

m∈Z cme
−imω ∈ L̃2 and ||T (ω)||2

L̃2 =
∑

m∈Z |cm|2. By

the Parseval Formula (Theorem 6.4.2) ||f ||2 = 1
2π
||f̂ ||2 and

f̂(ω) =

∫
R

∑
m∈Z

cmφ(x−m)e−ixω dx = T (ω)φ̂(ω).

Hence,

||f ||2 =
1

2π

∫
R
|T (ω)φ̂(ω)|2 dω

=
1

2π

∑
k∈Z

∫ 2π

0

|T (ω)|2|φ̂(ω + 2kπ)|2 dω

=
1

2π

∫ 2π

0

|T (ω)|2
(∑
k∈Z
|φ̂(ω + 2kπ)|2

)
dω.

Let

F (ω) =
∑
k∈Z
|φ̂(ω + 2kπ)|2.

F (ω) is a 2π-periodic, measurable function. Set

Mr = ess sup
x∈R

F (ω)(2.6)

and

Ml = ess inf
x∈R

F (ω).(2.7)

If (2.4) and (2.5) both hold, then we have (2.1). On the other hand, if
Ml = 0, then for an ε > 0, the measure of the set

Eε = {ω | F (ω) ≤ ε, ω ∈ [0, 2π)}
is positive. Let δ = M(Eε). We now define a 2π-periodic function T (ω)
by

T (ω) =

{ √
2π√
δ
, ω ∈ Eε,

0, otherwise.

Then T (ω) ∈ L̃2 and ||T (ω)||2
L̃2 = 1. Let T (ω) =

∑
m cme

imω and

f(x) =
∑

m cmφ(x−m). Then
∑

m |cm|2 = 1 but

||f || = 1

2π
||f̂ ||2 =

1

2π

∫
Eε

|T (ω)|2F (ω)dω ≤ ε,

which implies that there does not exist a constant A > 0 such that the
left part of the stability condition (2.1) holds for all (cm) ∈ l2. Similarly,
if Mr = ∞, then there does not exist a constant B > 0 such that the
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right part of the stable condition (2.1) holds for all (cm) ∈ l2. We leave
the details for this part to the reader. �

The following corollary is directly derived from Theorem 7.2.1.

Corollary 7.2.1. If the function

F (ω) =
∑
k∈Z
|φ̂(ω + 2kπ)|2

is continuous, then {φ(x− k)}k∈Z is stable if and only if F (ω) > 0 for
all ω ∈ R.

2.3. Completeness of Scaling Functions. We now discuss the
conditions under which a scaling function generates an MRA of L2.

Recall that
∣∣∣φ̂j,k(ω)

∣∣∣ = 2−
j
2 |φ̂(2−jω)|, which implies that if φ̂(0) = 0,

then for any integer n, the Fourier transform of a function f ∈ Vn
vanishes at ω = 0. However, it is obvious that there exist functions
in L2 whose Fourier transforms do not vanish at 0. This fact shows
intuitively that the Fourier transform of an MRA generator does not
vanish at 0.

Theorem 7.2.2. Let φ ∈ L1 ∩ L2 be an MRA generator. Then
φ̂(0) �= 0.

Proof. Assume φ is an orthonormal MRA generator, which gener-
ates the MRA · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · . Let f ∈ L2 be defined

by f̂(ω) = χ[−π,π](ω). Then ||f ||2 = 1
2π
||f̂ ||2 = 1. Since

⋃
n∈Z Vn = L2,

there is an integer n > 0 such that the function

fn =
∑
k∈Z
〈f, φn,k〉φn,k

satisfies ||fn − f ||22 < 1
2
. Hence, ||fn||22 ≥ 1

2
. By the orthogonality of

(φn,k)k∈Z, we have

∑
k∈Z
|〈f, φn,k〉|2 = ||fn||22 ≥

1

2
.
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Note that

〈f, φn,k〉 =
1

2π
〈f̂ , φ̂n,k〉 =

1

2π

∫ π

−π
φ̂n,k(ω)dω

=
1

2π

∫ π

−π
2−

n
2 e−i2

−nkωφ̂(2−nω)dω

=
1

2π

∫ 2−nπ

−2−nπ
2
n
2 φ̂(ω)e−ikωdω

=
1

2π

∫ π

−π
2n/2χ[−2−nπ,2nπ](ω)φ̂(ω)e−ikωdω,

which is the kth Fourier coefficient of the function 2n/2χ[−2−nπ,2nπ]φ̂. By
Parseval’s formula for Fourier series (Theorem 6.4.2), we have

1

2
≤
∑
k∈Z
|〈f, φn,k〉|2 = ||2n/2χ[−2−nπ,2nπ]φ̂||2L̃2 =

∫ 2−nπ

−2−nπ
2n
∣∣∣φ̂(ω)

∣∣∣2 dω, n > 0.

Since φ̂(ω) is continuous, we have∣∣∣φ̂(0)
∣∣∣2 = lim

n→∞
1

2π

∫ 2−nπ

−2−nπ
2n
∣∣∣φ̂(ω)

∣∣∣2 dω ≥ 1

4π
> 0.

The theorem is proved for orthonormal MRA generators. In general
cases, applying this result to the orthonormalization of φ, we can get
the conclusion. We leave the proof of this part as an exercise in the
next section. �

We now establish the inverse proposition. Assume a nested sub-
space sequence · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · is generated by a scal-

ing function φ. We prove that φ̂(0) �= 0 is the sufficient condition for
∪n∈ZVn = L2. For this, we establish a lemma, which describes the
translation invariance of the space ∪n∈ZVn.

Lemma 7.2.1. Let φ ∈ L2 be a scaling function. Define

Vn = span2{φn,m}m∈Z(2.8)

and

U =
⋃
n∈Z

Vn.(2.9)

Then for any t ∈ R and any f ∈ U, f(·+ t) ∈ U.
Proof. It is clear that, if f ∈ U and

t = 2nm, n,m ∈ Z,
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then f(·+t) ∈ U. Assume now t ∈ R. Then there is a sequence {2nkmk}
such that 2nkmk → t as k →∞. It is known that

lim
k→∞
||f(·+ 2nkmk)− f(·+ t)|| = 0.(2.10)

Since U is a closed subspace of L2, then f(·+ t) ∈ U. �
The following theorem gives the condition for U = L2.

Theorem 7.2.3. Let φ ∈ L1 ∩ L2 and U be the space defined by
(2.9). Then φ̂(0) �= 0 implies U = L2.

Proof. If U �= L2, then there is a non-vanishing function g ∈ L2

such that g ⊥ U. By Lemma 7.2.1, for any t ∈ R and f ∈ U, we have
f(·+ t) ∈ U and therefore∫

R
g(x)f(x+ t) dx = 0, for all t ∈ R, f ∈ U.(2.11)

By Plancherel’s Theorem (see Section 6.4 and Theorem 6.4.5),

1

2π

∫
R
ĝ(ω)f̂(ω)eitω dω =

∫
R
g(x)f(x+ t) dx = 0, for all t ∈ R, f ∈ U,

(2.12)

which implies

ĝ(ω)f̂(ω) = 0 a.e. for all f ∈ U.
It is clear that φ(2jx) ∈ U. Hence, we have

ĝ(ω)φ̂(2−jω) = 0, j ∈ Z.(2.13)

Since φ ∈ L1 ∩ L2, φ̂ is continuous on R. By φ̂(0) �= 0, there is a δ > 0

such that φ̂(ω) �= 0 on (−δ, δ) and therefore φ̂(2−jω) �= 0 on (2−jδ, 2jδ).
Then (2.13) implies

ĝ(ω) = 0, a.e. on (2−jδ, 2jδ), j ∈ Z,

i.e. ĝ(ω) = 0 a.e., which yields a contradiction. Hence, φ̂(0) �= 0 implies
U = L2. �

Exercises
1. Prove that if condition (2.5) in Theorem 7.2.1 fails, then there

does not exist a constant B such that∥∥∥∑ cnφ(· − n)
∥∥∥2

≤ B
∑
|cn|2

holds for all (cn) ∈ l2.
2. Prove that the function φ = χ[0,3) is a scaling function, but it

does not satisfy the stability condition (2.1).
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3. Let φ1 and φ2 be scaling functions in L1 ∩ L2. Prove that their
convolution φ1 ∗ φ2 is a scaling function in L2.

4. Prove that the function f(x) =

{
1, 0 ≤ x ≤ 3/4,
0, otherwise,

does not

satisfy any two-scale equation.
5. Let φ(x) ∈ L1 ∩ L2 be a scaling function satisfying

φ(x) = 2
∑
m∈Z

h(m)φ(2x−m), (h(m))m∈Z ∈ l2.

Prove that if φ̂(0) �= 0 then
∑

m∈Z h(m) = 1.
6. Prove Corollary 7.2.1.
7. Let φ(x) ∈ L2 be a stable scaling function and b(x) be the box

function. Prove that the convolution φ ∗ b is also a stable scaling
function.

8. Prove the limit (2.10).
9. Let φ be a stable scaling function with the lower Riesz bound

and the upper Riesz bound A and B respectively. Let {Vj} be
the MRA generated by φ. Assume f ∈ V−j satisfies ||f || = 1.

(a) Prove that∫ 4π

2π

|f̂(ω)| dω ≤
√

2π

A

(∫ ∞

22+1π

|φ̂(ω)|2 dω
)1/2

.

(Hint: Let fj(x) = 2
j
2f(2jx). Then fj ∈ V0. Expand fj as a

series of {φ(x− k)} , then apply the stabilty condition for φ in
the frequency domain.)

(b) Use (2.13) to prove that⋂
j∈Z

Vj = {0}.

3. Orthonormal Wavelets From MRA

In the previous section, we learned that a stable two-scaling function
φ can generate an MRA. In this section we discuss how to construct an
orthonormal wavelet basis from an MRA generator. We shall show that
an orthonormal wavelet can be easily constructed from an orthonormal
MRA generator. Hence, we first discuss how to orthonormalize a stable
scaling function.

3.1. Orthonormalization. The stability of {φ(x − k)}k∈Z does
not imply its orthogonality. However, a stable scaling function can be
orthonormalized. To show how to orthonormalize it, we give a criterion
for orthonormalization of {φ(x− k)}k∈Z.
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Theorem 7.3.1. For φ ∈ L2, the following statements are equiva-
lent:

(1) {φ(x− n)}n∈Z is an orthonormal system, i.e.∫
R
φ(x+ k)φ(x+ j) dx = δkj, k, j ∈ Z,(3.1)

(2) ∑
k∈Z
|φ̂(ω + 2kπ)|2 = 1 a.e.,(3.2)

and
(3)

1

2π

∫
R
|φ̂(ω)|2eikω dω = δ0k,

where δ0k =

{
1, if k = 0,
0, otherwise.

Proof. (1)⇐⇒(2): We have∫ 2π

0

∑
k∈Z
|φ̂(ω + 2kπ)|2 dω =

∫
R
|φ̂(ω)|2 dω.(3.3)

Since φ ∈ L2, we have |φ̂|2 ∈ L1 and therefore

F (ω) :=
∑
k∈Z
|φ̂(ω + 2kπ)|2 ∈ L̃1.

The kth Fourier coefficient of F (ω) is

ck =
1

2π

∫ 2π

0

∑
k∈Z
|φ̂(ω + 2kπ)|2e−ikω dω

=
1

2π

∫
R
|φ̂(ω)|2e−ikω dω

=
1

2π

∫
R
φ̂(ω)φ̂(ω)eikω dω

=

∫
R
φ(x)φ(x+ k) dx.

By (3.1), ck = δ0k, i.e. the Fourier series of
∑

k∈Z |φ̂(ω + 2kπ)|2 is 1.
Hence, ∑

k∈Z
|φ̂(ω + 2kπ)|2 = 1, a.e.
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(1)=⇒(2) is proved. Reversing the above proof, we get (2)=⇒(1).
Finally, (2)⇐⇒(3) can be proved from (3.3). �

Example 7.3.1. It is trivial that B(x) is an orthonormal MRA
generator. By Theorem 7.3.1,∑

k∈Z
|B̂(ω + 2kπ)|2 = 1 a.e.(3.4)

The identity (3.4) can be used to prove the following interesting identity:

∞∑
k=−∞

1

(x+ kπ)2
=

1

sin2 x
, x ∈ R \ πZ.(3.5)

In fact, we have B̂(ω) = 1−e−iω
iω

= e−iω/2 sinω/2
ω/2

, which implies that

1 =
∑
k∈Z
|B̂(ω + 2kπ)|2 =

∑
k∈Z

sin2(ω/2)

(ω/2 + kπ)2
a.e.

It follows that (3.5) holds a.e. It can be verified that both functions∑n
k=−n

1
(x+kπ)2

and 1
sin2 x

are continuous on each interval (jπ, (j+1)π), j ∈
Z. Therefore (3.5) holds on R \ πZ.

Example 7.3.2. Let φ(x) = χ[0,2)(x). Then φ̂(ω) = 1−e−2iω

iω
and∑

k∈Z
|φ̂(ω + 2kπ)|2 =

∑
k∈Z

sin2 ω

(ω/2 + kπ)2
. = 4 cos2 ω

2
,

By (3.5),
∑∞

k=−∞
1

(ω/2+kπ)2
= 1

sin2 ω/2
. Hence,∑

k∈Z
|φ̂(ω + 2kπ)|2 =

sin2 ω

sin2 ω/2
= 4 cos2 ω

2

is a continuous function vanishing at ω = π. Hence, {φ(x − n)}n∈Z is
not stable.

By Theorem 7.3.1, we can orthonormalize a stable system {φ(x −
n)}n∈Z.

Theorem 7.3.2. Assume {φ(x− n)}n∈Z is an unconditional basis

of V0. Define φ̃ ∈ V0 by

ˆ̃
φ(ω) =

φ̂(ω)(∑
k∈Z |φ̂(ω + 2kπ)|2

)1/2
.(3.6)

Then {φ̃(x− n)}n∈Z is an orthonormal basis of V0.
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Proof. We first prove that the function φ̃ defined by (3.6) is in V0.

Write F (ω) =
∑

k∈Z |φ̂(ω + 2kπ)|2. Define Mr and Ml as in (2.6) and
(2.7) respectively. By Theorem 7.2.1 we have

1√
Mr

≤ 1√
F (ω)

≤ 1√
Ml

, a.e.(3.7)

Since φ̂ ∈ L2, by (3.7) we have φ̂(ω)√
F (ω)
∈ L2. Hence, there is a function

φ̃ ∈ L2 such that (3.6) holds. Note that (3.7) also implies 1√
F (ω)
∈ L̃2.

Let
∑

n∈Z cne
inω be the Fourier series of 1√

F (ω)
. Then (cn) ∈ l2, which

implies

φ̃(x) =
∑
n∈Z

cnφ(x− n) ∈ V0.

Obviously, the function φ̃ satisfies condition (2) in Theorem 7.3.1.

Hence {φ̃(x− n)}n∈Z is an orthonormal basis of V0. �
If the function φ in Theorem 7.3.1 is also a scaling function, then

we can derive a property of the symbol of φ from identity (3.2).

Corollary 7.3.1. If φ satisfies the two-scale equation (2.2), and
the system {φ(x−m)}m∈Z is an orthonormal one, then

|H(e−iω)|2 + |H(−e−iω)|2 = 1 a.e,(3.8)

which is equivalent to

|H(ω)|2 + |H(ω + π)|2 = 1 a.e,

or

2
∑
m∈Z

h(m)h(m− 2k) = δ0k, for all k ∈ Z.(3.9)

Proof. By Theorem 7.3.1 and (2.2), it holds almost everywhere that

1 =
∑
k∈Z
|φ̂(2ω + 2kπ)|2

=
∑
k∈Z
|H(e−iω)|2|φ̂(ω + kπ)|2

=
∑
l∈Z
|H(e−iω)|2|φ̂(ω + 2lπ)|2 +

∑
l∈Z
|H(−e−iω)|2|φ̂(ω + (2l + 1)π)|2

= |H(e−iω)|2
∑
l∈Z
|φ̂(ω + 2lπ)|2 + |H(−e−iω)|2

∑
l∈Z
|φ̂(ω + (2l + 1)π)|2

= |H(e−iω)|2 + |H(−e−iω)|2.
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The proof of (3.8) is completed. To prove (3.9), we need the Fourier
series of |H(e−iω)|2 and of |H(−e−iω)|2. Since H(e−iω) =

∑
h(n)e−inω,

we have

H(e−iω)e−ikω =
∑

h(n)e−i(n+k)ω

and

H(e−iω) =
∑

h(n)einω.

Therefore

1

2π

∫ 2π

0

|H(e−iω)|2e−ikω dω

=
1

2π

∫ 2π

0

H(e−iω)e−ikωH(e−iω) dω

=
∑
n∈Z

h(n)h(n− k).

Similarly, we have

1

2π

∫ 2π

0

|H(−e−iω)|2e−ikω dω =
∑
n∈Z

(−1)nh(n)h(n− k).

Since |H(e−iω)|2 + |H(−e−iω)|2 = 1 a.e., we have

δ0k =
1

2π

∫ 2π

0

(|H(e−iω)|2 + |H(−e−iω)|2) e−ikω dω
= 2

∑
n∈Z

h(n)h(n− k).

The proof is completed. �
A sequence (h(n)) ∈ l2, whose symbol H(e−iω) =

∑
n∈Z h(n)e−inω

satisfies equation (3.8), is called a conjugate mirror filter. (Here
h(n) is normalized by

∑
n∈Z h(n) = 1. In some books, it is normalized

by
∑

n∈Z h(n) =
√

2.) Thus, we have already shown that the mask of
an orthonormal scaling function is a conjugate mirror filter. However,
the reverse is not true. For example, the function φ = χ[0,3] satisfies
the following two-scale equation

φ(x) = φ(2x) + φ(2x− 3).

The symbol of φ is 1+z3

2
, which satisfies (3.8). But {φm} is not an

orthonormal system.
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3.2. Orthonormal Wavelets. We now can construct an ortho-
normal wavelet basis from an MRA. We assume that the MRA:

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · ·
is generated by an orthonormal MRA generator φ. As we did in Section
7.1, let W0 be the space such that

V0

⊕
W0 = V1, W0 ⊥ V0,

and let Wj be the subspace such that g(·) ∈Wj if and only if g(2−j·) ∈
W0. From the multiresolution structure of {Vj}, we can verify that

Vj
⊕

Wj = Vj+1 Wj ⊥ Vj, j ∈ Z.

Thus, we have

L2 =
⊕
n∈Z

Wn.

Furthermore, we have the following (which generalizes Lemma 7.1.1):

Lemma 7.3.1. Let ψ ∈ L2. Then {ψn,m}m∈Z is an orthonormal
basis of Wn if and only if {ψm}m∈Z is an orthonormal basis of W0.

Proof. By definition, ψn,m = 2
n
2ψ(2nx−m) ∈Wn. We also have

〈ψn,m, ψn,k〉 = 〈ψm, ψk〉,
which implies that {ψn,m}m∈Z is an orthonormal system in Wn if and
only if {ψm}m∈Z is an orthonormal system of W0. All that remains is
to prove that {ψn,m}m∈Z is a basis of Wn if and only if {ψm}m∈Z is a
basis of W0. Let g be an arbitrary function in Wn. By the definition of
Wn, g(2

−nx) ∈W0. If {ψm}m∈Z is a basis of W0, then

g(2−nx) =
∑
k∈Z

dkψ(x− k),

which yields

g(x) =
∑
k∈Z

(
2−

n
2 dk

)
2
n
2ψ(2nx− k).

Hence, {ψn,m}m∈Z is a basis of Wn. If {ψn,m}m∈Z is a basis of Wn, in
the similar way, we can prove that {ψm}m∈Z is a basis of W0. �

From Lemma 7.3.1, we see that to construct an orthonormal basis
of L2, we only need to find an orthonormal basis of W0. Such a basis
can be found as follows:
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Lemma 7.3.2. Let φ be an orthonormal MRA generator, which
satisfies the two-scale equation:

φ(x) = 2
∑
k∈Z

h(k)φ(2x− k), (hk) ∈ l2.(3.10)

Let ψ be defined by

ψ(x) = 2
∑
k∈Z

g(k)φ(2x− k),(3.11)

where

g(k) = (−1)kh(2l + 1− k) for some l ∈ Z.

Then {ψm}m∈Z is an orthonormal basis of W0.

Proof. We first prove that {ψm}m∈Z is an orthonormal system in
V1. Note that

∫
R
ψ(x− n)ψ(x−m) dx =

∫
R
ψ(x+m− n)ψ(x) dx.

Hence, we only need to prove

∫
R
ψ(x− k)ψ(x) dx = δ0k, for all k ∈ Z.

By (3.11), it is clear that ψk := ψ(· − k) ∈ V1 for all k ∈ Z. Note that
{φ1,m}m∈Z is an orthonormal basis of V1. We have

ψ(x− k) = 2
∑
n∈Z

(−1)nh(2l + 1− n)φ(2(x− k)− n)

= 21/2
∑
n∈Z

(−1)nh(2l + 1− n)21/2φ(2x− (2k + n))

= 21/2
∑
n∈Z

(−1)nh(2l + 1− n)φ1,2k+n.
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Hence,∫
R
ψ(x− k)ψ(x) dx

= 2

∫
R

(∑
n∈Z

(−1)nh(1 + 2l − n)φ1,n+2k

)(∑
m∈Z

(−1)mh(1 + 2l −m)φ1m

)
dx

= 2

∫
R

(∑
s∈Z

(−1)sh(1 + 2l − s+ 2k)φ1,s

)(∑
m∈Z

(−1)mh(1 + 2l −m)φ1m

)
dx

= 2
∑
m∈Z

∑
s∈Z

(−1)s−mh(1 + 2l + 2k − s)h(1 + 2l −m)

∫
R
φ1,sφ1m ds

= 2
∑
m∈Z

h(1 + 2l + 2k −m)h(1 + 2l −m) = 2
∑
s∈Z

h(s− 2k)h(s) = δ0,k.

The last equality is from (3.9). Therefore {ψm}m∈Z is an orthonormal
system. Second, we prove that {ψm}m∈Z ⊂W0. Note that if a function
g ∈ V1 and g ⊥ V0, then g(· + m) ⊥ V0 for all m ∈ Z. Hence, we only
need to prove ψ ⊥ V0. We have, for any k ∈ Z,∫ ∞

−∞
φ(x− k)ψ(x) dx

= 2

∫
R

(∑
m∈Z

h(m)φ1m+2k

)(∑
n∈Z

(−1)nh(1 + 2l − n)φ1n

)
dx

= 2
∑
s∈Z

∑
n∈Z

(−1)nh(s− 2k)h(1 + 2l − n)

∫
R
φ1sφ1n dx

= 2
∑
n∈Z

(−1)nh(n− 2k)h(1 + 2l − n)

= 2

(∑
n∈Z

h(2n− 2k)h(1 + 2l − 2n)−
∑
n∈Z

h(2n + 1− 2k)h(2l − 2n)

)
= 0,

which implies {ψm}m∈Z ⊂W0. Finally, we prove that {ψn}n∈Z is a basis
ofW0. It is clear that if {ψn}n∈Z∪{φn}n∈Z is a basis of V1, then {ψn}n∈Z
is a basis of W0. Hence, in order to prove {ψn}n∈Z is a basis of W0, we
only need to prove {ψn}n∈Z∪{φn}n∈Z is a basis of V1.We now show that
φ1,l, l ∈ Z, can be expanded as a linear combination of {ψn}n∈Z and
{φn}n∈Z. Since spaces V0 and W0 both are integer-translate invariant,
we only need to prove that φ(2x) and φ(2x− 1) can be represented as
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a linear combination of {ψn}n∈Z and {φn}n∈Z. Let

G(e−iω) = −e−i(2l+1)ωH(−e−iω).(3.12)

Taking the Fourier transform of (3.11), we get

ψ̂(ω) = G(e−iω/2)φ̂(ω/2).(3.13)

By (3.12), we have

H(e−iω/2)G(e−iω/2) +H(−e−iω/2)G(−e−iω/2) = 0,(3.14)

which implies

(
H(e−iω/2) H(−e−iω/2)
G(e−iω/2) G(−e−iω/2)

)(
H(e−iω/2) G(e−iω/2)
H(−e−iω/2) G(−e−iω/2)

)
= I.

(3.15)

Write

H(z) = He(z
2) + zHo(z

2)

and

G(z) = Ge(z
2) + zGo(z

2).

From (3.15), we have

2

(
He(e

−iω) Ho(e
−iω)

Ge(e
−iω) Go(e

−iω)

)(
He(e

−iω) Ge(e
−iω)

Ho(e−iω) Go(e−iω)

)
= I.(3.16)

Since

φ̂(ω) = H(e−iω/2)φ̂(ω/2) = He(e
−iω)φ̂(ω/2) + e−iω/2Ho(e

−iω)φ̂(ω/2),

ψ̂(ω) = G(e−iω/2)φ̂(ω/2) = Ge(e
−iω)φ̂(ω/2) + e−iω/2Go(e

−iω)φ̂(ω/2),

by (3.16), we have

φ̂(ω/2) = 2He(e−iω/2)φ̂(ω) + 2Ge(e−iω/2)ψ̂(ω) and

e−iω/2φ̂(ω/2) = 2Ho(e
−iω/2)φ̂(ω) + 2Go(e−iω/2)ψ̂(ω)).

In the time domain, we have the representations

φ(2x) =
∑
n∈Z

h(2n)φ(x+ n) +
∑
n∈Z

g(2n)ψ(x+ n) and

φ(2x− 1) =
∑
n∈Z

h(2n+ 1)φ(x+ n) +
∑
n∈Z

g(2n+ 1)ψ(x+ n),

where g(n) = (−1)nh(2l + 1 − n), for all n ∈ Z. This completes the
proof. �
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We often state Lemma 7.3.2 in the frequency domain as follows: Let
φ be an orthonormal MRA generator satisfying the two-scale equation:

φ̂(ω) = H(e−iω/2)φ̂(ω/2).(3.17)

Let G(e−iω) be defined by (3.12) and ψ defined by (3.13). Then
{ψm}m∈Z is an orthonormal basis of W0. Besides, in applications, the
integer in (3.12) is often chosen to be 0.

From Lemmas 7.3.1 and 7.3.2, we have the following.

Theorem 7.3.3. Let φ be an orthonormal MRA generator satis-
fying (2.2). Then the function ψ defined by (3.11) is an orthonormal
wavelet.

Exercises
1. Complete the proof of Theorem 7.2.2 in the previous section.
2. Let φ ∈ L1 ∩ L2 be an orthonormal MRA generator with the

symbol H(e−iω). Prove the following.
(a) H(1) = 1 and H(−1) = 0.

(b) φ̂(2kπ) = δ0,k, for all k ∈ Z.
(c)

∑
k∈Z φ(x− k) = 1 almost everywhere.

3. Prove that the results in Exercise 2 hold for a stable scaling
function φ.

4. Prove that a stable scaling function φ ∈ L1 ∩ L2 is an MRA
generator.

5. Prove the equivalence of (2) and (3) in Theorem 7.3.1.
6. Prove (3.14), (3.15), and (3.16).
7. Prove that if φ ∈ L1 ∩L2 is an orthonormal MRA generator and
ψ is its corresponding wavelet, then ψ̂(0) = 0.

8. The function ψ defined by

ψ̂(ω) =

{
1, ω ∈ [−2π,−π) ∪ [π, 2π)
0, otherwise

is called the Shannon wavelet.
(a) Prove that {ψnm}n,m∈Z is an orthonormal basis of L2.
(b) Find the corresponding scaling function φ for the Shannon

wavelet.
(c) Find the two-scale equation of φ and the two-scale relation

for ψ.
9. The Lemarié-Meyer wavelet ψ is defined as follows: ψ̂(ω) =
b(ω)eiω/2, where

b(ω) =

⎧⎨⎩ sin(3
4
(|ω| − 2

3
π)), 2

3
π < |ω| ≤ 3

4
π,

sin(3
8
(8

3
π − |ω|)), 4

3
π < |ω| ≤ 8

3
π,

0 otherwise.
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(a) Prove that ψ is an orthonormal wavelet.
(b) Find the Fourier transform of its corresponding scaling

function.
10. Let φ = χ[0,3). Derive an explicit expression for

∑
k∈Z |φ̂(ω +

2kπ)|2 and then show that φ is not an orthonormal scaling func-
tion.

11. Let φ be an orthonormal MRA generator, and ψ the correspond-
ing orthonormal wavelet. Prove that

(a) |φ̂(ω)|2 =
∑∞

j=1 |ψ̂(2jω)|2 a.e.
(b)

∑
k∈Z

∑∞
j=1 |ψ̂(2j(ω + 2kπ))|2 = 1 a.e.

12. Assume that g ∈ L2(R) and {g(· − k) | k ∈ Z} forms an ortho-
normal system. Prove that

|supp ĝ| ≥ 2π,

and equality holds if and only if |ĝ| = χK , where K is a measur-
able set with m(K) = 2π.

4. Orthonormal Spline Wavelets

As an application of the theory of the previous section, we now
derive the construction of orthonormal spline wavelets, which were first
introduced by Battle (in 1987) and by Lemarié (in 1988) independently.
Hence, they are also called Battle-Lemarié wavelets .

4.1. Cardinal B-splines. Splines are piecewise polynomials. Be-
cause they are more flexible than polynomials, splines become an im-
portant tool in numerical analysis and other fields. Cardinal B-splines
are the splines defined on uniform partitions with minimal support.
We now give the definition of cardinal B-splines.

Definition 7.4.1. The cardinal B-spline of order m, denoted
by Nm(x), is inductively defined by the multi-convolution of the box
function:

N1(x) = B(x), Nm(x) = Nm−1 ∗N1(x) =

∫ 1

0

Nm−1(x− t) dt,(4.1)

i.e.

Nm(x) =

m︷ ︸︸ ︷
N1 ∗N1 ∗ · · ·N1(x).

It is easy to verify that cardinal B-splines have the following prop-
erties.
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Theorem 7.4.1. The cardinal B-spline of order m satisfies the fol-
lowing:

(1) supp Nm = [0, m],
(2) Nm ∈ Cm−2(R) and Nm is a polynomial of exact degree m − 1

on each interval [k, k + 1], 0 ≤ k ≤ m− 1,
(3) Nm(x) > 0, for all x ∈ (0, m), and
(4) Nm(x) is symmetric with respect to x = m/2 :

Nm(x) = Nm(m− x).(4.2)

Proof. We leave the proofs of (1) – (3) to the reader. We now
prove (4.2) by mathematical induction. It is trivial that (4.2) is true
for m = 1. Assume that it is true for m − 1 (m > 1). We claim that
(4.2) is also true for m since

Nm(m− x) =

∫ 1

0

Nm−1(m− x− t) dt

=

∫ 1

0

Nm−1((m− 1)− (x− (1− t))) dt

=

∫ 1

0

Nm−1(x− (1− t)) dt

=

∫ 1

0

Nm−1(x− t) dt = Nm(x).

Therefore, (4.2) is true for all m ∈ N. �
We now give the explicit expressions of N2, N3, and N4:

N2(x) =

⎧⎨⎩ x, x ∈ [0, 1),
2− x, x ∈ [1, 2),
0, otherwise,

(4.3)

N3(x) =

⎧⎪⎪⎨⎪⎪⎩
1
2
x2, x ∈ [0, 1),

3
4
− (x− 3

2
)2, x ∈ [1, 2),

1
2
(x− 3)2, x ∈ [2, 3),

0, otherwise,

(4.4)

and

N4(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
6
x3, x ∈ [0, 1),
−1

2
(x− 2)3 − (x− 2)2 + 2

3
, x ∈ [1, 2),

1
2
(x− 2)3 − (x− 2)2 + 2

3
, x ∈ [2, 3),

1
6
(4− x)3, x ∈ [3, 4),

0, otherwise.

(4.5)
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The Fourier transforms of cardinal B-splines are very simple. Since
N̂1(ω) = 1−e−iω

iω
, by the Convolution Theorem (Theorem 6.4.1), the

Fourier transform of NM is

N̂m(ω) =

(
1− e−iω
iω

)m

.(4.6)

We can see that Nm is a scaling function. In fact, by (4.6), we have

N̂m(ω) =

(
1 + e−iω/2

2

)m

N̂m(ω/2)(4.7)

and

N̂m(0) = 1.(4.8)

Going back to the time domain, we have the following two-scale equa-
tion for Nm(x) :

Nm(x) =
1

2m−1

m∑
k=0

(
m
k

)
Nm(2x− k).(4.9)

By (4.2), the center of the cardinal B-spline Nm is at x = m
2
. In appli-

cations, we sometimes prefer the B-splines with center x = 0. Hence,
we define the central B-spline by N c

m(x) = Nm(x + m
2
). However,

only the central B-splines of even orders are scaling functions. For an
even m, we have

N̂ c
m(ω) =

(
sinω/2

ω/2

)m

,

N̂ c
m(ω) =

(
1 + cos(ω

2
)

2

)m/2

N̂ c
m(ω/2),(4.10)

and

N c
m(x) =

1

2m−1

m/2∑
k=−m/2

(
m

k +m/2

)
N c
m(2x− k).(4.11)

For a cardinal B-spline of an odd order, we shift it to the center x = 1/2.
We define

N̂ s
m(ω) =

(
1 + e−iω/2

2

)(
1 + cos(ω

2
)

2

)[m/2]

N̂ s
m(ω/2), m is odd,

where [x] denotes the integer part of x. Then we have

N s
m(x) =

1

2m−1

[m/2]+1∑
k=−[m/2]

(
m

k + [m/2]

)
N s
m(2x− k).
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In applications, the linear splines (order 2) and the cubic splines (order
4) are more popular than those of other orders.

For splines, we have the following

Theorem 7.4.2. The cardinal B-spline of order m is an MRA gen-
erator.

Proof. We prove that Nm satisfies both the stability condition and
the completeness condition. In fact, we have∑

k∈Z

∣∣∣N̂m(ω + 2kπ)
∣∣∣2 =

∑
k∈Z

(
sin (ω/2)

ω/2 + kπ

)2m

.

Recall that
∑

k∈Z
(

sin(ω/2)
ω/2+kπ

)2m

is a 2π-periodic function. By the in-

equality (under the assumption that sinx
x

= 1 for x = 0),

2

π
≤ sin x

x
, x ∈

[
0,
π

2

]
.

We have (
2

π

)2m

≤
(

sin (ω/2)

ω/2

)2m

, ω ∈ [0, π]

and (
2

π

)2m

≤
(

sin (ω/2)

π − ω/2
)2m

, ω ∈ [π, 2π].

Thus, when x ∈ [0, 2π),(
2

π

)2m

≤
(

sin (ω/2)

ω/2

)2m

+

(
sin (ω/2)

π − ω/2
)2m

≤
∑
k∈Z

(
sin (ω/2)

ω/2 + kπ

)2m

.

On the other hand, from the fact that | sin x| ≤ |x| and 1
sin2 ω

=∑
k∈Z

1
(ω+kπ)2

(see (3.5)), we have∑
k∈Z

(
sin (ω/2)

ω/2 + kπ

)2m

=
∑
k∈Z

(
sin (ω/2 + kπ)

ω/2 + kπ

)2m

≤
∑
k∈Z

(
sin (ω/2 + kπ)

ω/2 + kπ

)2

=
∑
k∈Z

(
sinω/2

ω/2 + kπ

)2

= 1.



4. ORTHONORMAL SPLINE WAVELETS 219

Hence, Nm(x) is stable. It is clear that Nm ∈ L1 ∩ L2 and N̂m(0) = 1,
which yield the completeness of Nm. The theorem is proved. �

4.2. Construction of orthonormal spline wavelets. Since car-
dinal B-splines are MRA generators, applying the results of the previ-
ous section, we can construct orthonormal spline scaling functions and
wavelets. Write

Bm(ω) =
∑
k∈Z

(
sin (ω/2)

ω/2 + kπ

)2m

.(4.12)

By Theorem 7.3.2 and Theorem 7.3.3, we have the following:

Theorem 7.4.3. The function Ñm defined by

ˆ̃Nm(ω) =
N̂m(ω)√
Bm(ω)

(4.13)

is an orthonormal MRA generator, which satisfies the following refine-
ment equation:

ˆ̃Nm(ω) = H̃(e−iω/2) ˆ̃Nm(ω/2),(4.14)

where

H̃(e−iω) =

(
1 + e−iω

2

)m √
Bm(ω)√
Bm(2ω)

,

and then the function S̃m defined bŷ̃Sm(ω) = −e−iω/2H̃(−e−iω/2) ˆ̃Nm(ω/2)(4.15)

is the corresponding orthonormal wavelet.

Proof. We have Bm(ω) =
∑

k∈Z

∣∣∣N̂m(ω + 2kπ)
∣∣∣2 . By Theorem

7.3.2, the function Ñm defined by ˆ̃Nm(ω) = Nm(ω)√
Bm(ω)

is an orthonor-

mal MRA generator. Then the equation N̂m(ω) = (1+e−iω/2
2

)mN̂m(ω/2)

yields (4.14). Note that
√
Bm(ω) is a real valued 2π-periodic function.

By Theorem 7.3.3, S̃m(x) in (4.15) is the corresponding orthonormal
wavelet. �

The function Bm(ω) plays an important rule in the construction
of orthonormal spline wavelets. We now give the explicit formula of
Bm(ω).
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Theorem 7.4.4. Let Bm(ω) be the function defined by (4.12). Then

Bm(ω) =
m−1∑

k=−m+1

N2m(m+ k)e−ikω,(4.16)

or, equivalently,

Bm(ω) = N2m(m) + 2

m−1∑
k=1

N2m(m− k) cos kω.(4.17)

Proof. Bm(ω) is a 2π-periodic function. When m > 1, it is differ-
entiable. Hence, Bm(ω) =

∑
k(Bm)∧(k)e−ikω. We have

(Bm)∧(k) =
1

2π

∫ π

−π
Bm(ω)eikω dω

=
1

2π

∫ π

−π

∑
k∈Z
|N̂m(ω + 2kπ)|2eikω dω

=
1

2π

∫
R
|N̂(ω)|2eikω dω

=
1

2π

∫
R
N̂(ω)N̂(ω)eikω dω.

By Parseval’s Formula (see Section 6.4 and Theorem 6.4.2),

1

2π

∫
R
N̂(ω)N̂(ω)eikω dω =

∫
R
Nm(x)Nm(x+ k) dy.

Since Nm(x) is a real-valued function and Nm(x) = Nm(m − x), we
have∫

R
Nm(x)Nm(x+ k) dy =

∫
R
Nm(x)Nm(m− k − x) dx

= (Nm ∗Nm) (m− k) = N2m(m− k).
Thus,

Bm(ω) =
∑
k∈Z

N2m(m− k)e−ikω

= N2m(m) + 2

m−1∑
k=1

N2m(m− k) cos kω.

The theorem is proved. �

Example 7.4.1. Compute the values of Nm(k), k ∈ Z, m > 1, nu-
merically and then derive the formula of Bm(ω).
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Note that the support of Nm is [0, m]. Hence, Nm(k) = 0 if k ≤ 0
or k ≥ m. We only need to compute Nm(k), 1 ≤ k ≤ m− 1. From the
two-scale equation of Nm we have

Nm(1) =
1

2m−1
(Nm(2) +mNm(1))

Nm(2) =
1

2m−1

(
Nm(4) +mNm(3) +

(
m

2

)
Nm(2) +

(
m

3

)
Nm(1)

)
· · · · · ·

Nm(m− 1) =
1

2m−1
(mNm(m− 1) +Nm(m− 2))

which is a homogeneous linear system of [Nm(1), · · · , Nm(m− 1)]. The
system has a non-trivial solution, which is the 0-eigenvector of the sys-
tem. Therefore, if v = [v1, · · · , vm−1] is a solution, so is cv. The
required solution [Nm(1), · · · , Nm(m − 1)] should be normalized by the

condition N̂m(0) = 1. This condition yields
∑

k∈ZNm(k) = 1 (see Ex-
ercise 3).

When m = 2, the system is reduced to the equation N2(1) = N2(1).
Any non-zero real number is a non-trivial solution of this equation. By
the normalization condition, we have N2(1) = 1. Hence, B2(ω) = 1.
This also proves that N1(x) is an orthonormal scaling function.

When m = 4, the system is reduced to

N4(1) =
1

8
(N4(2) + 4N4(1))

N4(2) =
1

8
(4N4(3) + 6N4(2) + 4N4(1))

N4(3) =
1

8
(4N4(3) +N4(2))

which has as a solution (1, 4, 1). Applying the normalization condition,
we have N4(1) = 1/6, N4(2) = 2/3, N4(3) = 1/6. Therefore, B2(ω) =
N2(2)+2N 2(1) cosω = 2

3
+ 1

3
cosω. We leave the computations of B4(ω)

as exercises.

The Fourier transform of Ñm is already given by (4.13). We now
derive the representation of Ñm as the linear combination of the trans-
lates of Nm(x) in the time domain. Since 1√

Bm(ω)
is a differentiable

2π-periodic even function, let
∑

n cne
−ikω be its Fourier series. Then

1√
Bm(ω)

=
∑

n cne
−ikω and the coefficient cn is given by

cn = c−n =
1

π

∫ π

0

cos nω√
Bm(ω)

dω, n ∈ Z+.(4.18)
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This yields

Ñm(x) =
∑
n

cnNm(x− n).(4.19)

Similarly, let

bn = b−n =
1

π

∫ π

0

cosnω
√
Bm(ω) dω, n ∈ Z+.

Then

Nm(x) =
∑
n

bnÑm(x− n).(4.20)

Example 7.4.2. Compute the coefficients (cn) in (4.18) and (bk)
in (4.20) for m = 2. (Round off them to 6 decimal places.)

Recall that

ck =
1

π

∫ π

0

cos kω√
2
3

+ 1
3
cosω

dω, k ≥ 0.

By rounding off ck to 6 decimal places, we have
c0 = 1.291675, c1 = −.174663, c2 = 0.035210, c3 = −.007874, c4 =
0.001848, c5 = −0.000446, c6 = 0.000110, c7 = −0.000027, c8 =
0.000007, c9 = −0.000002, ck = 0, k ≥ 10.

Similarly, bk = 1
π

∫ 2π

0
cos kω

√
2
3

+ 1
3
cosω dω, k ≥ 0. Hence,

b0 = 0.802896, b1 = 0.104705, b2 = −0.006950, b3 = 0.000927, b4 =
−0.000155, b5 = 0.000029, b6 = −0.000006, b7 = 0.000001, bk = 0, k ≥
8.

To obtain the two-scale equation (4.14) in the time domain, we need

the Fourier series of H̃(e−iω). Recall that H̃(e−iω) =
(

1+e−iω
2

)m √Bm(ω)√
Bm(2ω)

.

Let √
Bm(ω)√
Bm(2ω)

=
∑
k

βke
−ikω.

Then

βk = β−k =
1

π

∫ π

0

√
Bm(ω)

Bm(2ω)
cosnω dω, n ∈ Z+.(4.21)
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Assume H̃(e−iω) =
∑

n αne
−ikω. We have

H̃(e−iω) =

(
1 + e−iω

2

)m∑
k

βke
−ikω

=
1

2m

m∑
l=0

(
m
l

)
e−ilω

∑
k

βke
−ikω

which yields

αn = αm−n =
1

2m

m∑
l=0

(
m
l

)
βn−l.(4.22)

Thus, we derive the two-scale equation of Ñm(x) :

Ñm(x) = 2
∑
k∈Z

αkÑm(2x− k).

By (4.15), we have

S̃m(x) = 2
∑
n

(−1)kα1−kÑm(2x− k).

For the central B-spline N c
m (with an even m), its orthonormalization

is Ñ c
m(x) = Ñm(x+ m

2
). Let (αck) be the mask of Ñ c

m. Then we define

S̃cm(x) = 2
∑
n

(−1)kαc1−kÑ
c
m(2x− k).

The function Ñ c
m(x) (with an even m) is an even function, while S̃cm(x)

is symmetric with respect to x = 1
2
. Thus, the function(

Ñ c
m

)
j,k

(x) = 2
j
2 Ñ c

m(2jx− k)
is symmetric about x = 2−jk and(

S̃cm

)
j,k

(x) = 2
j
2 S̃cm(2jx− k)

is symmetric about x = 2−j(k + 1
2
). Note that both Ñ c

m(x) (with an

even m) and S̃cm(x) have their maxima at their centers and both ex-
ponentially decay. Hence, in applications, when m is even, Ñ c

m(x) and

S̃cm(x) are used more often than Ñm(x) and S̃m(x).

Example 7.4.3. Compute the mask of Ñ2, rounding off to 6 deci-
mal places.

We first compute βk in (4.21):
β0 = 1.0394978, β1 = 0.1168288, β2 = −0.1494296, β3 = −0.0134167,

β4 = 0.0293394, β5 = 0.0027392, β6 = −0.0065602, β7 = −0.0006023,
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β8 = 0.0015367, β9 = 0.0001405, β10 = −0.0003706, β11 = −0.0000337,
β12 = 0.0000910, β13 = 0.0000083, β14 = −0.0000226, β15 = −0.0000020,
β16 = 0.0000057, β17 = 0.0000006, β18 = −0.0000014, β19 = −0.0000001,
β20 = 0.0000004.

Applying the formula (4.22), we obtain
α1 = 0.578163, α2 = 0.280932, α3 = −0.048862, α4 = −0.036731,

α5 = 0.012000, α6 = 0.007064, α7 = −0.002746, α8 = −0.001557,
α9 = 0.000653, α10 = 0.000362, α11 = −0.000159, α12 = −0.000087,
α13 = 0.000039, α14 = 0.000021, α15 = −0.000010, α16 = −0.000005,
α17 = 0.000002, α18 = 0.000001, αk = 0, k ≥ 19. αk = α2−k, k ≤ 0.

Exercises

1. Derive the explicit formulas (4.3), (4.4), and (4.5) respectively.
2. Apply the Poisson Summation Formula (Theorem 6.5.1) to prove

that
∑

k∈ZNm(k) = 1.

3. Prove that d
dx
Nm(x) = Nm−1(x)−Nm−1(x− 1), m ≥ 2.

4. Use mathematical induction to prove thatNm(x) = 1
m−1

(xNm−1(x)+
(m− x)Nm−1(x− 1)).

5. Use the formula in Exercise 4 to derive the explicit expressions
of N2(x), · · · , N6(x).

6. Draw the graphs of Nm(x), 2 ≤ m ≤ 6.
7. Prove (4.10) and (4.11).

8. Let Fm(ω) =
∑

k∈Z
1

(ω+2kπ)2m
. Prove that ̂̃N c

m(ω) = 1

ωm
√
Fm(ω)

when m is even, and ̂̃N s
m(ω) = e−iω/2

ωm
√
Fm(ω)

when m is odd.

9. Use the method of Example 7.4.1 to compute the valueNm(k), k ∈
Z, for m = 4.

10. Use the formula in Exercise 4 to compute the valueNm(k), k ∈ Z,
for m = 2, · · · , 8.

11. Let m be an even number and N c
m(x) be the central linear B-

spline of order m. Let Ñ c
m(x) be its orthonormalization. Let

Ñ c
m(x) =

∑
c̄kN

c
m(x − k), Ñ c

m(x) = 2
∑
ᾱkÑ

c
m(2x − k), and

Scm(x) = 2
∑
ḡkÑ

c
m(2x− k).

(a) Find the coefficient relation of c̄k and ck in (4.19).
(b) Find the relations of ᾱk and αk in (4.22).

(c) Let Scm(x) = 2
∑

(−1)kᾱ1−kÑ c
m(2x − k). What is the re-

lation of Scm(x) and Sm(x)?
12. Find the coefficients in the equation

S2(x) =
∑

µkN2(2x− k).
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13. Draw the graphs of Ñ c
2(x) and S̃c2(x) and the graphs of

∣∣∣̂̃N c
2(ω)

∣∣∣
and

∣∣∣̂̃Sc2(ω)
∣∣∣ .

14. Let N4(x) be the cubic B-spline and let Ñ4(x) be its orthonor-
malization. Use a graphing calculator, or mathematical software
such as MAPLE, MATHEMATICA, or MATLAB, to do the fol-
lowing.

(a) Find the coefficient ck, in the form

Ñ4(x) =
∑

ckN4(x− k).
numerically. (Round off to 4 decimal places.)

(b) Find the coefficient bk in the form (round off to 5 decimal
places)

N4(x) =
∑

bkÑ4(x− k).
(c) Find the mask (αk) of Ñ4(x) numerically. (Round off to

5 decimal places.)
(d) Let S4(x) be the orthonormal cubic spline wavelet. Find

the coefficients (wk) and (w̃k) in the relationships (round off to
5 decimal places)

S4(x) =
∑

wkN4(2x− k).
and

S4(x) =
∑

w̃kÑ4(2x− k).

15. Draw the graphs of Ñ c
4(x) and S̃c4(x) and the graphs of

∣∣∣̂̃N c
4(ω)

∣∣∣
and

∣∣∣̂̃Sc4(ω)
∣∣∣ .

5. Fast Wavelet Transforms

Let φ be an orthonormal MRA generator and ψ be the orthonormal
wavelet corresponding to φ. Since {ψn,m}n,m∈Z is an orthonormal basis
of L2, any function f ∈ L2 can be expanded into a wavelet series

f(x) =
∑
n∈Z

∑
m∈Z

bn,mψn,m,(5.1)

where bn,m = 〈f, ψn,m〉. The way to compute the coefficients bn,m of the
wavelet series of f(x) here is similar to that of computing coefficients in
Fourier series. It does not take advantage of the multi-level structure of
wavelets. Stépheane Mallat in 1989 discovered a fast way to compute
the coefficients in wavelet series. We now introduce Mallat’s method.
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5.1. Initialization. Mallat’s method first finds an approximation
of f in a subspace in MRA, say a function fn ∈ Vn. By the property of
MRA, if n is large enough, then the approximation error ||f − fn|| will
be less than a given tolerance. This step is called initialization of
the fast wavelet transform. We may obtain fn by orthogonal projection.
By the orthogonality of the basis (φnm)m∈Z, the orthogonal projection
of f on Vn is

fn =
∑
m∈Z
〈f, φn,m〉φn,m.

However, sometimes the integral 〈f, φn,m〉 is not easy to compute, or f is
obtained experimentally so that only the values of f at sampling points
are known. In these cases, interpolation is often used for initialization.
A function fn ∈ Vn is called an interpolation of f if

fn(2
−nk) = f(2−nk), k ∈ Z.(5.2)

Let us write fn =
∑

m∈Z anmφn,m and bk = 2−n/2f(2−nk). Then equa-
tion (5.2) can be written as

∑
m∈Z anmφn,m(2−nk) = f(2−nk), which

yields ∑
m∈Z

φ(k −m)anm = bk, k ∈ Z.(5.3)

This is an infinite linear system. Assume
∑

k∈Z φ(k)e−ikω is convergent
everywhere. In Chapter 8, we shall prove the following.

Lemma 7.5.1. The linear system (5.3) is consistent (for all (bk) ∈
l1) if and only if

∑
k∈Z φ(k)e−ikω �= 0 for ω ∈ R.

Applying the Poisson Summation Formula (Theorem 6.5.1), from
this lemma we have the following.

Theorem 7.5.1. If φ ∈ L1∩L2 is continuous, the series
∑

k∈Z φ̂(ω+
2kπ) is uniformly convergent, and (φ(k))k∈Z ∈ l1, then the linear sys-
tem (5.3) is consistent if and only if∑

k∈Z
φ̂(ω + 2kπ) �= 0, ω ∈ R.(5.4)

Proof. We leave the proof as an exercise. �
Condition (5.4) is called the interpolation condition for φ. We

say φ ∈ L1∩L2 satisfies that interpolation condition if it is continuous,
(φ(k))k∈Z ∈ l1,

∑
k∈Z φ̂(ω + 2kπ) is uniformly convergent, and (5.4)

holds.
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Example 7.5.1. We have N c
2(k) = δ0,k. Hence,

∑
k∈ZN

c
2(k)e

−ikω =
1, which implies that N c

2 satisfies the interpolation condition. In fact,
we have fn(x) =

∑
k∈Z f(2−nk)N c

2(2
jx−k) =

∑
k∈Z 2−n/2f(2−nk) (N c

2)j,k (x).

Example 7.5.2. We have N c
4(−1) = N c

4(1) = 1
6
, N c

4(0) = 2
3
, and

N c
4(k) = 0 for |k| > 1. Hence,

∑
k∈ZN

c
4(k)e

−ikω = 2
3

+ 1
3
cosω =

1
3

+ 1
3
cos2 ω

2
≥ 1

3
. Therefore, N c

4 satisfies the interpolation condition.

Example 7.5.3. We have N3(1) = N3(2) = 1
2

and N c
3(k) = 0 for

all integers. Hence,
∑

k∈ZN
c
3(k)e

−ikω = 1
2
e−iω + 1

2
e−i2ω, which vanishes

at ω = π. By Lemma 7.5.1, N3 does not satisfy the interpolation con-
dition. We can also use Theorem 7.5.1 to verify the conclusion. Recall

that N̂3(ω) =
(

1−e−iω
iω

)3

. Hence,

∑
k∈Z

N̂3(ω + 2kπ) =

(
1− e−iω

i

)3 ∑
k∈Z

(
1

ω + 2kπ

)3

.

Let ω = π. We have∑
k∈Z

N̂3(π + 2kπ) =
8i

π3

∑
k∈Z

1

(2k + 1)3
= 0,

which implies the inconsistence of the interpolation.

In general, when m is even, Nm satisfies the interpolation condition,
and when m is odd, it does not. This is why splines of even orders are
more often used in application than splines of odd orders. We leave
the proof of the result as an exercise.

Assume now that φ satisfies the interpolation condition. For realiz-
ing the interpolation, we can construct the Lagrangian interpolating

functions in V0.

Definition 7.5.1. If φ ∈ L1 ∩ L2 satisfies the condition φ(k) =
δ0,k, then it is called an interpolating scaling function.

If an MRA generator φ satisfies the interpolation condition, then
we can construct the interpolating scaling function as follows.

Theorem 7.5.2. Let φ ∈ L1∩L2 be a continuous two-scaling func-
tion, which satisfies the interpolation condition. Then the function
φin(x) defined by

φ̂in(ω) =
φ̂(ω)∑

k∈Z φ̂(ω + 2kπ)
(5.5)
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is an interpolating scaling function. Therefore a function f ∈ Vn can
be represented as

f(x) =
∑
k∈Z

f(2−nk)φin(2jx− k).

Proof. We leave the proof as an exercise. �
Assume now an MRA generator φ satisfies the interpolation condi-

tion. Let f ∈ L2 be a continuous function and fn be the interpolation
of f in Vn. It is known that ||f − fn||2 → 0 as n → ∞. (We will not
show the proof. Readers can refer to [4].) This result allows us to use
the interpolation fn to approximate f.

In many applications, we are not given the sampling data, say
f(2−nm), m ∈ Z, but given a certain average of f around each sampling
point x = 2−nm. Write the given data as (cm)m∈Z. Therefore, we can
approximately assume cm = 〈f, φn,m〉 for a certain function f ∈ L2.
Thus, the function fn :=

∑
cnφn,m represents the data (cm). This is

the initialization for the fast wavelet transform.

5.2. Multi-Scale Decomposition. We now assume the initial-
ization is completed (in a certain way). That is, we have

fn =
∑

anmφn,m,(5.6)

where (anm)m∈Z is a known sequence. By (5.1), fn can also be repre-
sented as

fn =
∑
j<n

∑
m∈Z

bj,mψj,m.(5.7)

Mallat’s algorithm computes (bj,m) from (an,m) . To explain Mallat’s
idea, we adopt a concise expression of (5.7):

fn =
∑
j<n

gj,(5.8)

where gj =
∑

m∈Z bj,mψj,m ∈Wj .
To avoid the infinity of j-indices in (5.8), we apply the relation

Vl =
⊕
j<l

Wj , l ∈ Z.

Therefore, there is a function fl ∈ Vl such that fl =
∑

j<l gj. Thus, for
any l < n, fn can be expanded as

fn = fl+

n−1∑
j=l

gj , fl ∈ Vl, gj ∈Wj ,



5. FAST WAVELET TRANSFORMS 229

or equivalently,∑
an,mφn,m =

∑
m∈Z

al,mφm +

n−1∑
j=l

∑
m∈Z

bj,mψj,m.(5.9)

Particularly,∑
an,mφn,m =

∑
m∈Z

an−1,mφm +
∑
m∈Z

bn−1,mψn,m,∑
an−1,mφn,m =

∑
m∈Z

an−2,mφm +
∑
m∈Z

bn−2,mψn,m,

...
...

...∑
al+1,mφn,m =

∑
m∈Z

al,mφm +
∑
m∈Z

bl,mψn,m.

These equations provide a way to compute (al,m), (bl,m), · · · (bn−1,m)
from (an,m). For convenience, without loss of generality, we always as-
sume n > 0 and set l = 0 in (5.9).

The algorithm used in computing the coefficients (aj−1,m) and (bj−1,m)
from (aj,m) is called a Fast Wavelet Transform (FWT), and its reverse
is called a Fast Inverse Wavelet Transform (FIWT). The algorithm
computing the coefficients (a0,m) and (bj,m), 0 ≤ j ≤ n−1, from (an,m)
is called a decomposition Pyramid Algorithm and its reverse is called
a recovering Pyramid Algorithm. They are also called Mallat’s

algorithms because they are first developed by S. Mallat (in 1989).

5.3. The Fast Wavelet Transform. We now develop FWT and
FIWT. Let fj ∈ Vj have the expansion

fj =
∑

aj,kφj,k(5.10)

which can be represented as

fj(x) = fj−1(x) + gj−1(x),

where

fj−1(x) =
∑

aj−1,kφj−1,k(x) ∈ Vj−1(5.11)

and

gj−1(x) =
∑

bj−1,kψj−1,k(x) ∈Wj−1.(5.12)

Theorem 7.5.3. Let φ be an orthonormal generator of an MRA
{Vn}, which satisfies the two-scale equation (3.10) and let ψ be the
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corresponding wavelet defined by (3.11). Let fj ∈ Vj, aj,k, aj−1,k, and
bj−1,k, be the coefficients in (5.10), (5.11), and (5.12) respectively. Then

aj−1,k =
√

2
∑

h(l − 2k)aj,l(5.13)

and

bj−1,k =
√

2
∑

g(l− 2k)aj,l(5.14)

where

g(k) = (−1)lh(2m+ 1− k) for some m ∈ Z.

Conversely, the coefficient aj,l can be recovered from (aj−1,k)k∈Z and
(bj−1,k)k∈Z by

aj,l =
√

2
(∑

h(l − 2k)aj−1,k +
∑

g(l− 2k)bj−1,k

)
.(5.15)

Proof. By (5.10), we have

φj−1,k(x) = 2(j−1)/2φ(2j−1x− k)
= 2(j+1)/2

∑
i∈Z

h(i)φ(2(2j−1x− k)− i)

= 2(j−1)/2
∑
i∈Z

h(i)φ(2jx− (2k + i))

= 2(j−1)/2
∑
i∈Z

h(i− 2k)φ(2jx− i)

=
√

(2)
∑
i∈Z

h(i− 2k)φj,i(x)

and similarly

ψj−1,k(x) = 2(j−1)/2ψ(2j−1x− k)
= 2(j+1)/2

∑
i∈Z

g(i− 2k)φ(2jx− i)

=
√

(2)
∑
i∈Z

g(i− 2k)φj,i(x)

where

g(i) = (−1)ih(1 + 2m− i) for some m ∈ Z.

Hence we obtain
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aj−1,k = 〈fj , φj−1,k〉 =

〈∑
l∈Z

aj,lφj,l, φj−1,k

〉
=
∑
l∈Z

aj,l〈φjl, φj−1,k〉.

By the orthogonality of the basis {φj,k | k ∈ Z}, we have

〈φj,l, φj−1,k〉 =
√

2
∑
i∈Z

h(i− 2k)〈φj,l, φj,i〉 =
√

2h(l − 2k),(5.16)

which yields equation (5.13). Similarly, we can obtain

〈φj,l, ψj−1,k〉 =
√

2
∑
i∈Z

g(i− 2k)〈φj,l, φj,i〉 =
√

2g(l − 2k),(5.17)

which yields (5.14).
On the other hand, we have

aj,l = 〈fj, φj,l〉 = 〈fj−1 + gj−1, φj,l〉
=
∑
k∈Z

(aj−1,k〈φj−1,k, φj,l〉+ bj−1,k〈ψj−1,k, φj,l〉) .

By (5.16) and (5.17), we obtain (5.15). �
The relationships (5.13) and (5.14) together give a fast wavelet

transform (FWT), while relationship (5.15) gives a fast inverse wavelet

transform (FIWT).

5.4. Pyramid Algorithms. Based on FWT and FIWT, we de-
velop the pyramid algorithms, which perform the multilevel wavelet
decomposition and reconstruction. We start with the decomposition

fn = f0+

n−1∑
j=0

gj, f0 ∈ V0, gj ∈Wj ,

or, equivalently,∑
an,mφn,m =

∑
m∈Z

a0,mφm +
n−1∑
j=0

∑
m∈Z

bj,mψn,m.(5.18)

Let an = (an,m) and a0 = (a0,m),b0 = (b0,m), · · · , bn−1 = (bn−1,m)
be the coefficient sequences in (5.18). Our purpose now is to develop
the algorithms for decomposing an into a0, b0, · · · , bn−1 and recovering
an from a0, b0, · · · , bn−1. For representing the algorithms concisely,
we introduce the following operators.
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Let H and G be two l2 �→ l2 operators defined by

Ha(n) =
√

2
∑
k∈Z

akh(k − 2n),

Ga(n) =
√

2
∑
k∈Z

akg(k − 2n),

where h = (h(n)) and g = (g(n)) are the sequences in (3.10) and (3.11)
respectively. For an operator F : l2 �→ l2, its dual operator F ∗ is
defined by

〈Sa, b〉 = 〈a, S∗b〉, for all a,b ∈ l2.
Then

(H∗a) (n) =
√

2
∑
k∈Z

akh(n− 2k)

and

(G∗a) (n) =
√

2
∑
k∈Z

akg(n− 2k)

respectively. Therefore, the FWT algorithm can be written as

aj−1 = Haj, bj−1 = Gaj ,(5.19)

and the FIWT algorithm can be written as

aj = H∗aj−1 +G∗bj−1.(5.20)

Repeating the FWT, an can be decomposed into a0,b0, · · · ,bn−1 as
follows:

an
H→ an−1

H→ an−2
H→ · · · H→ a0

G

↘
G

↘
G

↘
G

↘
bn−1

bn−2 · · · b0

.

This is called a decomposition pyramid algorithm, or Mallat’s de-
composition algorithm.

Reversing it, we obtain the recovering pyramid algorithm, or
Mallat’s recovering algorithm:

a0
H∗→ a1

H∗→ · · · H∗→ an−1
H∗→ an

G∗

↗
G∗

↗
G∗

↗
G∗

↗
b0 b1 · · · bn−1

.
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5.5. Approximation of Functions by Wavelet Series. Before
we finish this section, we briefly discuss the wavelet series of a function
in an intuitive way. For illustration, we use spline scaling functions
and wavelets as examples. The analysis of them are applied to other
wavelets. Let {Vj} be the MRA generated by Ñm and {Wj} be the

corresponding wavelet subspace sequence. It is known that
∣∣∣ ̂̃Nm(ω)

∣∣∣
is essentially concentrated in [−π, π], while

∣∣∣̂̃Sm(ω)
∣∣∣ is essentially con-

centrated in [−2π,−π]∪ [π, 2π]. (See Section 7.4, Exercises 13 and 15.)
Therefore, for any function f0 ∈ V0, its frequency is essentially con-

centrated in [−π, π] since
∣∣∣ ̂φ(·+ k)(ω)

∣∣∣ = |φ̂(ω)|. Similarly, for any

function g0 ∈ W0, its frequency is essentially in [−2π,−π] ∪ [π, 2π].
After dilation, we can see that, for any function in Wj, its frequency is
essentially in [−2j+1π, 2jπ] ∪ [2j+1π, 2jπ]. Hence, in the decomposition
f = f0 + g0 + g1 + · · · , different functions occupy different frequency
channels. Therefore, we can say that f0 is a course version of f while
g0, g1, · · · , hold the details of f at different levels. Then in some sense
the “cut-tail” approximation f0+

∑n−1
j=0 gj removes high frequency com-

ponents of f, which contain the details of f which can only be seen in
high resolution. This approximation is called linear approximation

of wavelets. Linear approximation of wavelet series functions be-
haves in a similar way as Fourier series.

However, the “local” behaviors of wavelets are quite different from
that of sine and cosine functions. For example, both Ñ c

m and S̃cm are
concentrated about their centers. Hence, although the function S̃cm has
propagated waves, the amplitude of the waves decay exponentially so

that only the main wave around 0 is significant. For j > 0,
(
S̃cm

)
j,k

(x)

shrinks S̃cm(x) horizontally by 2j, stretches it vertically by 2
j
2 , and then

shifts it to the center 2−j(k + 1
2
). That is, for

(
S̃cm

)
j,k

the amplitude

of the main is enlarged while its length is reduced. We now return to
discuss the wavelet series of f ∈ Vn in the form

f(x) = f0(x) +
n−1∑
j=0

gj(x)

=
∑
k∈Z

c0,k

(
Ñ c
m

)
0,k

(x) +
n−1∑
j=0

∑
k∈Z

dj,k

(
S̃cm

)
j,k

(x),(5.21)

where a large |dj,k| indicates that f has a large oscillation around 2−jk.
In other words, a large |dj,k| occurs only if f has a sharp change around
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2−jk. In applications, many functions are often smooth in most parts of
their domains and have sharp changes in a relatively small area. There-
fore, for these functions, most of their wavelet coefficients dj,k are small
and negligible, only a few of them large and significant. These wavelet
coefficients indicate the local sharpness of functions, which is often
called the local singularity of functions (see [18]). In this sense,
wavelet analysis is different from Fourier analysis. As Meyer says [21]:
“Wavelet analysis is a way of saying that one is sensitive to change.”
He also says: “... contrary to what happens with Fourier series, the co-
efficients of the wavelet series translate the properties of the function or
distribution simply, precisely, and faithfully,... the properties that cor-
respond to strong transients: everything that is rupture, discontinuity,
the unforeseen.” Therefore, wavelets are a mathematical microscope,
which detects the details of functions at different resolutions.

Based on the discussion above, we can approximate f by deleting
the wavelet terms in (5.21) with small coefficients. To do so, we set a
threshold ε > 0. By deleting the terms with coefficients less than ε, we
obtain an approximation of f :

f̃(x) =
∑
c0,k≥ε

c0,k

(
Ñ c
m

)
0,k

(x) +
n−1∑
j=0

∑
dj,k≥ε

dj,k

(
S̃cm

)
j,k

(x).

An alternate way to obtain an approximation of f is the following. We
first sort all the terms in (5.21) by descending coefficients. Then we use
the sum of the first N terms as an approximation of f . These approx-
imations are non-linear approximation of wavelets (see [18]).

Exercises
1. Prove Theorem 7.5.1.
2. Prove that when m is even, Nm satisfies the interpolation condi-

tion; when m is odd, it does not.
3. Prove Theorem 7.5.2.
4. Let φ be an orthonormal MRA generator. Prove that φ ∗φ is an

interpolating scaling function.
5. Let {Vn} be the MRA generated by N4. Let Nin be the interpo-

lating scaling function in V0. Do the following.
(a) Get the coefficients (αk) (rounding off to 4 decimal places)

in the representation of Nin(x) =
∑
αkN4(x − k) and draw the

graph of Nin(x).
(b) Find the symbol of Nin and then derive the two-scale

equation of Nin.
6. Derive equation (5.14).
7. Derive equation (5.17).
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8. Let H : l2 → l2 be an operator defined by

Ha(n) =
√

2
∑
k∈Z

akh(k − 2n).

Prove that its dual operator H∗ is

(H∗a) (n) =
√

2
∑
k∈Z

akh(n− 2k).

9. Let φ be an orthonormal generator of an MRA {Vj}, and ψ be the
corresponding orthonormal wavelet, which generates the wavelet
subspaces Wj , j ∈ Z.

(a) Let f ∈ V0 and write

f =
∑

c0kφ0k =
∑

cjkφjk, j > 0.

Develop a formula to compute
(
cjk
)

from (c0k) .
(b) Let g ∈W0 and write

g =
∑

d0
kψ0k =

∑
cjkφjk, j > 0.

Develop a formula to compute
(
cjk
)

from (d0
k) .

10. Use a graphing calculator, or mathematical software, such as
MAPLE, MATHEMATICA, or MATLAB, to calculate the fol-
lowing wavelet decompositions. (Round off to 4 decimal places
for each coefficient.)

(a) Decompose f(x) = Ñ c
2(4x) into the form

f(x) =
∑

akÑ
c
2(x− k) +

∑
bkS̃

c
2(x− k) +

∑
ckS̃

c
2(2x− k).

(b) Decompose f(x) = Ñ c
4(4x) into the form

f =
∑

akÑ
c
4(x− k) +

∑
bkS̃

c
4(x− k) +

∑
ckS̃

c
4(2x− k).

11. Let f(x) = Ñ c
2(x) +

∑3
j=0 S̃

c
2(2

jx). Use a graphing calculator, or
mathematical software such as MAPLE, MATHEMATICA, or
MATLAB to find the coefficients (ak) in f(x) =

∑
akÑ

c
2(2

4x−k).
(Round off to 4 decimal places for each coefficient.)

12. Let {Vn} be the MRA generated by N2. Define f ∈ V4 by

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
16x x ∈ [0, 1/16)
1 x ∈ [1/16, 1]

16(17
16
− x) x ∈ (1, 17

16
]

0 x > 17
16

f(−x) x ≤ 0

.
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Use a graphing calculator, or mathematical software such as
MAPLE, MATHEMATICA, or MATLAB to do the following.

(a) Find the coefficients (a4,k) in f(x) =
∑
a4,k

(
Ñ c

2

)
4,k

(x).

(Round off to 5 decimal places for each coefficient.)
(b) Use the pyramid algorithm to decompose f(x) into the

wavelet series

f(x) =
∑
k

a0,k

(
Ñ c

2

)
0,k

(x) +
3∑
j=0

∑
k

bj,k

(
S̃c2

)
j,k

(x).

(Round off to 5 decimal places for each coefficient.)

(c) Let ε = 10−3. Get a non-linear approximation f̃ of f by
removing the coefficients less than ε.

(d) Use the pyramid algorithm to recover f̃ and then draw
its graph.

(e) Get a non-linear approximation fap of f by finding the 8
terms whose coefficients have the largest absolute values.

(f) Use the pyramid algorithm to recover fap and then draw
its graph.

6. Biorthogonal Wavelet Bases

In the previous section, we discussed how to use FWT and FIWT
to decompose and recover functions. As we already have shown, FWT
algorithm needs an initial function fn ∈ Vn as a staring point. In
some cases, the orthonormal basis of Vn is not consistent with the
initialization. For example, let the MRA {Vn} be generated by the
linear spline N c

2 . Assume we are given the sampling data (f(2−nk))k∈Z
of a function f. If we choose {N c

2(2
nx−k)}k∈Z as a basis of Vn, then the

initialization is simply obtained by setting fn(x) =
∑
f(2−nk)N c

2(2
nx−

k). However, if we choose the orthonormal basis

{(
Ñ c

2

)
n,k

}
, then the

initialization involves a tedious computation for the coefficients (an,k)

in the expansion fn(x) =
∑
an,k

(
Ñ c

2

)
n,k

(x). This motivates us to seek

more flexible wavelet structures than the orthonormal one.
In this direction, we consider FWT and FIWT in a general frame-

work. Assume now the generator φ of the MRA {Vn} is not ortho-
normal. Let the initial function f be in Vn+1 : fn+1 :=

∑
cn+1,kφn+1,k..

FWT will decompose it into fn+1 = fn+gn, where fn =
∑
cn,kφn,k. ∈ Vn

and gn is in a supplemental subspace, say Wn, of Vn (with respect to
Vn+1.) Since {φn,k} is no longer an orthonormal basis, cn,k �= 〈f, φn,k〉.
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To compute cn,k, we need another scaling function φ̃ such that

〈φn,k, φ̃n,l〉 = δk,l, 〈gn, φ̃n,k〉 = 0, k ∈ Z.(6.1)

Then, we have cn,k = 〈f, φ̃n,k〉.
We now discuss the subspace Wn. Let {Ṽn} be the MRA generated

by φ̃. By the second equation in (6.1), we have Wn ⊥ Ṽn. Recall that
Wn ⊕ Vn = Vn+1 and {Vn} is an MRA. Hence, there is a wavelet ψ (it
may not be orthonormal) such that (ψn,k) forms a Riesz basis of Wn.
Thus, the function gn can be expanded as gn =

∑
bn,kψn,k. In order to

compute (bn,k), we need a wavelet ψ̃ ∈ Ṽ1 such that 〈ψn,k, ψ̃n,l〉 = δk,l,

and 〈φn,k, ψ̃n,l〉 = 0. Thus, the wavelet subspace W̃n generated by φ̃

satisfies W̃n ⊥ Vn and Ṽn ⊕ W̃n = Ṽn+1.
In this new structure, we call φ and φ̃ biorthogonal scaling

functions or dual scaling functions, since 〈φn,k, φ̃n,l〉 = δl,k. The

MRA {Vn} and {Ṽn}, which are generated by φ and φ̃ respectively, are

called biorthogonal MRA, or dual MRA. Similarly, ψ̃ and ψ are called
biorthogonal wavelets, or dual wavelets. In this section, we shall
introduce the principle of the construction of biorthogonal scaling func-
tions and wavelets.

6.1. Construction of Biorthogonal Wavelet Bases. We first
give the formal definition of biorthogonal scaling functions.

Definition 7.6.1. Assume the scaling function

φ(t) = 2
∑
k∈Z

h(k)φ(2t− k)(6.2)

generates the MRA {Vj}j∈Z and the scaling function

φ̃(t) = 2
∑
k∈Z

h̃(k)φ̃(2t− k)(6.3)

generates the MRA {Ṽj}j∈Z. If∫ ∞

−∞
φ(t− n)φ̃(t−m) dt = δnm,(6.4)

then φ and φ̃ are called biorthogonal scaling functions, or dual

scaling functions; {Vj}j∈Z and {Ṽ }j∈Z are called biorthogonal

MRA.

From (6.4), we can derive

〈φjn, φ̃jm〉 = δnm, for all j ∈ Z.

Similarly, we give the following.
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Definition 7.6.2. Let ψ and ψ̃ be two functions in L2. If {ψjk}j,k∈Z
and {ψ̃jk}j,k∈Z are both bases of L2 and they satisfy

〈ψi,k, ψ̃j,l〉 = δijδkl, for all i, j, k, l ∈ Z,(6.5)

then ψ and ψ̃ are called biorthogonal wavelets and {ψjk}j,k∈Z and

{ψ̃jk}j,k∈Z are called biorthogonal wavelet bases.

Our purpose is to construct biorthogonal wavelets via biorthogonal
scaling functions. To this end, we first establish the following.

Theorem 7.6.1. If φ and φ̃ are biorthogonal scaling functions with
masks h = (hk) and h̃ = (h̃k) respectively, then

2
∑

h(k)h̃(k − 2l) = δ0l,

which is equivalent to

H(z)H̃(z) +H(−z)H̃(−z) = 1, z ∈ Γ,(6.6)

where H(z) :=
∑
h(k)zkand H̃(z) :=

∑
h̃(k)zk are symbols of φ and

φ̃ respectively.

Proof.We leave the proof as an exercise. �
In a way similar to the construction of orthonormal wavelets via

orthonormal scaling functions, we can construct biorthogonal wavelets
via biorthogonal scaling functions.

Theorem 7.6.2. Let φ and φ̃ be biorthogonal scaling functions
which satisfy the refinement equations (6.2) and (6.3) respectively. Write

g(k) = (−1)kh̃(1− k),
g̃(k) = (−1)kh(1− k).(6.7)

Define

ψ(t) = 2
∑
k∈Z

g(k)φ(2x− k),(6.8)

and

ψ̃(t) = 2
∑
k∈Z

g̃(k)φ̃(2x− k).(6.9)

Then ψ and ψ̃ are biorthogonal wavelets.
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Proof.Let {Vj}j∈Z and {Ṽj}j∈Z be the MRA generated by φ and φ̃
respectively. As usual, for a function f we write fj,k = 2j/2f(2jx− k).
For any j, k, k′ ∈ Z, writing l = k − k′, we have∫ ∞

−∞
φj,k(t)ψ̃j,k′(t) dt

=

∫ ∞

−∞
φ0,k−k′(t)ψ̃0,0(t) dt

=

∫ ∞

−∞
4
∑
m∈Z

h(m)φ(2t− 2m− l)
∑
n∈Z

g̃(n)φ̃(2t− n) dt

= 2

∫
R

(∑
m∈Z

h(m)φ1,m+2l(t)

)(∑
n∈Z

(−1)nh(1− n)φ̃1,n(t)

)
dt

= 2
∑
s∈Z

∑
n∈Z

(−1)nh(s− 2l)h(1− n)

∫
R
φ̃1nφ1s dt

= 2
∑
n∈Z

(−1)nh(n− 2l)h(1− n)

= 2
∑
n∈Z

h(2n− 2l)h(1− 2n)−
∑
n∈Z

h(2n+ 1− 2l)h(−2n).(6.10)

Setting n = l −m in the second sum of (6.10), we get∫ ∞

−∞
φj,k(t)ψ̃j,k′(t) dt = 0, for all j, k, k′ ∈ Z,(6.11)

which implies ψ̃j,k′ ⊥ Vj. In the same way we can prove ψj,k ⊥ Ṽj. It is

clear that ψj,k ∈ Vj+1 and ψ̃j,k ∈ Ṽj+1. Hence we have

〈ψ̃j,k, ψi,k′〉 = 0, i �= j.

The proof that 〈ψ̃j,k, ψj,k′〉 = δkk′ follows the method of the proof of

(6.11). Finally, ψ̃j,k′ ⊥ Vj and ψj,k ⊥ Ṽj (for all j ∈ Z) imply that

{ψ̃j,k}j,k∈Z and {ψj,k}j,k∈Z are bases of L2. We leave the details as
exercises. �

The wavelet subspaces generated by ψ and ψ̃ are constructed in the
normal way. Let

Wj = span
2
{ψj,k | k ∈ Z}, W̃j = span

2
{ψ̃j,k | k ∈ Z}.(6.12)

Then they are wavelet subspaces generated by ψ and ψ̃ respectively.
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Corollary 7.6.1. Let ψ and ψ̃ be defined as in Theorem 7.6.2.
Then

Vj+1 = Vj ⊕Wj, Ṽj+1 = Ṽj ⊕ W̃j, for all j ∈ Z,(6.13)

where

W̃j⊥Vj , Wj⊥Ṽj for all j ∈ Z.(6.14)

Proof. We leave the proof as an exercise. �
Theorem 7.6.2 provides a way to construct biorthogonal wavelets

via the biorthogonal scaling functions φ and φ̃. The construction of
other biorthogonal wavelets via φ and φ̃ are possible. We say that
ψ and ψ̃ are biorthogonal wavelets corresponding to φ and φ̃ if the
wavelet subspaces Wj and W̃j satisfy (6.13) and (6.14). It is trivial

that if ψ and ψ̃ are biorthogonal wavelets corresponding to φ and φ̃,
then for any k ∈ Z, ψ(x−k) and ψ̃(x−k) are also biorthogonal wavelets

corresponding to φ and φ̃. A more general result is the following.

Corollary 7.6.2. Let ψ and ψ̃ be biorthogonal wavelets corre-
sponding to φ and φ̃. Let A(ω) be a continuous 2π-periodic function
such that A(ω)e−ikω > 0 for k ∈ Z and for all ω ∈ R. Let

A(ω) =
∑
k∈Z

ake
−ikω,

1

A(ω)
=
∑
k∈Z

bke
−ikω.

Then µ :=
∑

k∈Z akψ0,k and µ̃ :=
∑

k∈Z bkψ̃0,k are also biorthogonal

wavelets corresponding to φ and φ̃.

Proof. We leave the proof as an exercise. �
We often need the Fourier transforms of (6.8) and (6.9). Since

φ̂(ω) = H(e−iω)φ̂(ω/2),
̂̃
φ(ω) = H̃(e−iω)̂̃φ(ω/2),

we have

ψ̂(ω) = −e−iω/2H̃(−e−iω/2)φ̂(ω/2), ̂̃ψ(ω) = −e−iω/2H(−e−iω/2)̂̃φ(ω/2).

As we have done for orthonormal wavelets, we writeG(ω) = −e−iωH̃(−e−iω/2)
and G̃(ω) = −e−iωH(−e−iω/2). From (6.13) and (6.14), we have the fol-
lowing.

Theorem 7.6.3. Let ψ and ψ̃ be biorthogonal wavelets defined by
(6.8) and (6.9) respectively. Then their masks (and symbols) satisfy the
following:

2
∑

k g(k)g̃(k − 2l) = δ0l,∑
k h(k)g̃(k − 2l) = 0,∑
k h̃(k)g(k − 2l) = 0,

k, l ∈ Z,
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or equivalently,

G(e−iω)G̃(e−iω) +G(−e−iω)G̃(−e−iω) = 1,

G̃(e−iω)H(e−iω) + G̃(−e−iω)H(−e−iω) = 0,

G(e−iω)H̃(e−iω) +G(−e−iω)H̃(−e−iω) = 0.

Proof. We leave the proof as an exercise. �
We now discuss a special case of biorthogonal scaling functions and

wavelets. Assume Vj = Ṽj, i.e. φ and φ̃ generate the same MRA. In this

case, Wj = W̃j , Wj ⊥ Vj and Wj ⊕ Vj = Vj+1. Therefore, the structure
of MRA in this case is the same as in the orthonormal case, but φ and
ψ may no longer be orthonormal. Hence, we give the following.

Definition 7.6.3. Let φ and φ̃ be biorthogonal scaling functions
and ψ and ψ̃ be their corresponding biorthogonal wavelets. If φ and
φ̃ generate the same MRA, then φ and φ̃ are called semi-orthogonal

scaling functions and ψ and ψ̃ are called semi-orthogonal wavelets.

Example 7.6.1. Let φ = Nm(x), m ≥ 2. Then its dual scaling

function φ̃ is determined by ̂̃φ(ω) = φ̂(ω)/Bm(ω). Hence, the symbol of

φ̃ is H̃(e−iω) = Bm(ω)
Bm(2ω)

(1+eiω

2
)m. Thus, we have

φ̂(ω) =

(
1 + e−iω/2

2

)m

φ̂(ω/2), ̂̃φ(ω) =
Bmω/2)

Bm(ω)

(
1 + eiω/2

2

)m ̂̃φ(ω/2).

By Theorem 7.6.2, their corresponding biorthogonal wavelets ψ and ψ̃
are determined by

ψ̂(ω) = −e
−iω/2Bm(ω/2 + π)

Bm(ω)

(
1− e−iω/2

2

)m

φ̂(ω/2)(6.15)

and ̂̃ψ(ω) = −e−iω/2
(

1− eiω/2
2

)m ̂̃φ(ω/2).(6.16)

By Corollary 7.6.2, an alternate choice of the biorthogonal wavelets is
the pair of ψ and ψ̃ defined by

ψ̂(ω) = −eiω/2Bm(ω/2 + π)

(
1− e−iω/2

2

)m

φ̂(ω/2),(6.17)

and ̂̃
ψ(ω) = −e−iω/2 1

Bm(ω)

(
1− eiω/2

2

)m ̂̃
φ(ω/2).(6.18)
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Note that ψ in (6.17) is compactly supported with suppψ = [0, 2m−1].
We leave the proof of the results in this example as exercises.

6.2. Decomposition and Recovering of Functions. Biorthog-
onal wavelets can be used to decompose and recover functions in a
similar way as orthonormal wavelets. In this subsection, we derive fast
wavelet transform (FWT) and fast inverse wavelet transform (FIWT)
algorithms based on biorthogonal scaling functions and wavelets. Let
ψ and ψ̃ be the biorthogonal wavelets. Then a function f ∈ L2 can be
expanded as a wavelet series:

f =
∑
j,k∈

b̃j,kψj,k (or f =
∑
j,k∈

bj,kψ̃j,k)

where

b̃j,k =

∫ ∞

−∞
f(t)ψ̃j,k(t) dt (bj,k =

∫ ∞

−∞
f(t)ψj,k(t) dt).

As mentioned before, to perform fast wavelet transform, we need to ini-
tialize functions. Let φ and φ̃ be biorthogonal scaling functions, which
generate biorthogonal MRA {Vn} and {Ṽ }n respectively. Assume ψ

and ψ̃ are biorthogonal wavelets obtained from φ and φ̃ via (6.8) and
(6.9). Let fn ∈ Vn be the initial function for fast wavelet transform.
Following the strategy in Chapter 7 Section 5, we decompose fn into

fn = f0 + g0 + · · ·+ gn−1(6.19)

where

fj =
∑

cj,kφj,k ∈ Vj
and

gj =
∑

dj,kψj,k ∈Wj .

We first develop FWT and FIWT for one-level decomposition and re-
covering. Write cj = (cj,k) and dj = (dj,k). Then we can derive cj and
dj from cj+1 using the following:

FWT algorithm :

cj,k =
√

2
∑
h̃(l − 2k)cj+1,l,

dj,k =
√

2
∑
g̃(l − 2k)cj+1,l.

(6.20)

To recover cj+1 from cj and dj , we use the following:
FIWT algorithm:

cj+1,l =
√

2
∑

h(l − 2k)cj,k +
√

2
∑

h(l − 2k)dj,k.(6.21)

We now generalize the Mallat’s algorithm for the multilevel de-
composition (6.19). This discussion is parallel to that of the previous
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section. Let cn = (cnm) be the coefficient sequence of fn and c0,d0, · · · ,
dn−1 be the coefficient sequences of f0, g0, · · · , gn−1 respectively.

Let H, G, H̃, G̃ be operators on l2 defined by

Ha(n) =
√

2
∑
k∈Z

akh(k − 2n),

Ga(n) =
√

2
∑
k∈Z

akg(k − 2n),

H̃a(n) =
√

2
∑
k∈Z

akh̃(k − 2n),

G̃a(n) =
√

2
∑
k∈Z

akg̃(k − 2n),

respectively. Therefore, the FWT algorithm (6.20) can be represented
as

cj−1 = H̃cj, dj−1 = G̃dj,

and the FIWT algorithm (6.21) can be written as

cj = H∗cj−1 +G∗dj−1.

Finally, the multilevel decomposition can be completed using the fol-
lowing decomposition pyramid algorithm.

cn
H̃→ cn−1

H̃→ cn−2
H̃→ · · · H̃→ c0

G̃

↘
G̃

↘
G̃

↘
G̃

↘
dn−1 dn−2 · · · d0

.(6.22)

The corresponding recovering pyramid algorithm is:

c0
H∗→ c1

H∗→ c2
H∗→ · · · H∗→ cn

G∗

↗
G∗

↗
G∗

↗
G∗

↗
d0 d1 d2 · · ·

,(6.23)

where H∗ and G∗ is the dual operators of H and G respectively.

Definition 7.6.4. Let φ and φ̃ be biorthogonal scaling functions
with the symbols H(z) and H̃(z) respectively. Let ψ and ψ̃ be the corre-
sponding biorthogonal wavelets. In algorithms (6.22) and (6.23), φ and
ψ are called the analysis scaling function and wavelet respec-
tively, while φ̃ and ψ̃ are called the synthesis scaling function

and wavelet respectively.

By definition, a scaling function is an analysis one or a synthesis
one depending on its function in the algorithm. It is obvious that we
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can interchange the analysis pair and synthesis pair, which results in a
new pair of decomposition and recovering algorithms.

Exercises
1. Prove Theorem 7.6.1.
2. Prove that two scaling functions φ ∈ L1∩L2 and φ̃ ∈ L1∩L2 are

biorthogonal if and only if
∑
φ̂(ω+ 2kπ)φ̃(ω + 2kπ) = 1, ω ∈ R.

3. Let ψ and ψ̃ be defined as in Theorem 7.6.2. Complete the proof
of 〈ψj,k, ψ̃j,k′〉 = δk,k′.

4. Let ψ and ψ̃ be defined as in Theorem 7.6.2. Complete the prove
that {ψj,k} and {ψ̃j,k} are bases of L2.

5. Prove Corollary 7.6.1.
6. Prove Theorem 7.6.3.
7. Prove the scaling functions φ and φ̃ in Example 7.6.1 are biorthog-

onal scaling functions, ψ and ψ̃ in the example are their corre-
sponding biorthogonal wavelets.

8. Obtain the mask of φ̃ in Example 7.6.1. Find also the sequences
(αk) and (βk) in ψ(x) = 2

∑
αkφ(2k−x) and in ψ̃(x) = 2

∑
βkφ̃(2k−

x).
9. Let L2m be the interpolating cardinal spline of order 2m. Let
φ = Nm be the cardinal B-spline of order m. Let {Vn} be the
MRA generated by φ and {Wn} be the corresponding wavelet

subspaces. Prove that the mth derivative of L2m, L
(m)
2m (x) ∈ W0.

Write ψ = L
(m)
2m . Find φ̃ ∈ V0 and ψ̃ ∈W0 such that φ and φ̃ are

biorthogonal scaling functions and ψ and ψ̃ are the corresponding
biorthogonal wavelets.

10. Let φ and φ̃ be biorthogonal generators of biorthogonal MRAs
{Vj} and {Ṽj} respectively. Assume they satisfy (6.2) and (6.3)

respectively. Let ψ and ψ̃ be the corresponding biorthogonal
wavelets defined by (6.8) and (6.9), respectively.

(a) Let f ∈ V0 and write

f =
∑

c0kφ0k =
∑

cjkφjk, j > 0.

Develop a formula to compute
(
cjk
)

from (c0k) .
(b) Let g ∈W0 and write

g =
∑

d0
kψ0k =

∑
cjkφjk, j > 0.

Develop a formula to compute
(
cjk
)

from (d0
k) .



CHAPTER 8

Compactly Supported Wavelets

In the previous chapter, we introduced multiresolution analysis and
derived a method to construct orthonormal wavelets via orthonormal
scaling functions. There the orthonormal scaling functions were ob-
tained by orthonormalizing existing scaling functions. This approach
leads to the construction of the orthonormal spline scaling functions.
Note that the mask of an orthonormal spline scaling function form an
infinite sequence. Hence, the corresponding fast wavelet transforms
(FWT) and fast inverse wavelet transforms (FIWT) require the com-
putation of infinite sums, which will cause truncation errors. From
the point of view of numerical computation, the shorter the mask, the
faster the FWT and FIWT algorithms. In this chapter, we introduce
compactly supported orthonormal scaling functions and wavelets which
have finite masks. We will also briefly introduce orthonormal wavelet
packets and compactly supported biorthogonal scaling functions and
wavelets. All of them provide effective FWT and FIWT algorithms.

1. Symbols of Orthonormal Scaling Functions

In the previous chapter, we introduced the orthonormalization ap-
proach to orthonormal scaling functions. That method usually leads
to the orthonormal scaling functions with infinite masks. While seek-
ing orthonormal scaling functions with finite masks, Ingrid Daubechies
introduced the mask (or symbol) approach in 1989 (see [6]). In this
section, we first discuss the structure of the symbol of an orthonormal
scaling function.

Let φ ∈ L1(R) be an MRA generator with a finite mask, i.e. φ
almost everywhere satisfies a two-scaling equation

φ(x) = 2
N∑

k=M

hkφ(2x− k), M < N.

245
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Later we will assume M = 0. Otherwise, writing φ̃(x) = φ(x+M), we
have

φ̃(x) = φ(x+M) = 2

N∑
k=M

hk φ(2x− k + 2M)

= 2
N∑

k=M

hk φ̃(2x− (k −M)) = 2
N−M∑
k=0

hkφ̃(2x− k).

Then the mask of φ̃ starts from 0. Since φ̃ is an integer translate of φ,
φ̃ and φ generate the same MRA. Therefore, φ can be replaced by φ̃.
We now study the scaling function φ given by

φ(x) = 2
N∑
k=0

hkφ(2x− k), N > 0,(1.1)

where we always assume h0hN �= 0. If φ is continuous, then equation
(1.1) holds everywhere. For simplicity, we agree that (1.1) holds every-
where for continuous functions and holds almost everywhere for others.
Recall that if φ generates an MRA, then φ̂(0) �= 0. Hence, we always

assume the function φ satisfies the normalization condition φ̂(0) = 1.
The Fourier transform of (1.1) is

φ̂(ω) = H(e−iω/2)φ̂(ω/2),(1.2)

where H(e−iω) =
∑N

k=0 hke
−ikω is the symbol of φ.

1.1. Basic Properties of the Mask. The first important rela-
tion between the mask h and the scaling function φ is the following.

Theorem 8.1.1. Assume a scaling function φ ∈ L2 satisfies (1.1).
Then supp f ⊂ [0, N ].

We skip the proof of the theorem, for it requires the Paley-Wiener-
Schwarz Theorem (see [29]), which is beyond the contents of this text.

Readers can fin the proof in [6]. By Theorem 8.1.1, φ̂ is an entire

function. Hence, φ̂ is continuous. From (1.1), we have

φ̂(0) =

∫
R
φ(x) dx = 2

N∑
k=0

hk

∫
R
φ(2x− k) dx =

(
N∑
k=0

hk

)
φ̂(0),

which yields the following.
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Lemma 8.1.1. If the scaling function φ in (1.1) is in L2 and φ̂(0) �=
0, then H(1) = 1, i.e.

N∑
k=0

hk = 1.(1.3)

Lemma 8.1.2. If φ in (1.1) is an MRA generator, then∑
h2k =

∑
h2k+1 =

1

2
.(1.4)

Proof. We leave the proof as an exercise. �

Definition 8.1.1. In (1.1), if (1.4) holds, then we say that φ (or
the mask h) satisfies the sum rule.

The sum rule ensures a unit partition of the integer translates of φ.

Theorem 8.1.2. If a scaling function φ ∈ L2 in (1.1) satisfies the
sum rule, then

(1) φ̂(2kπ) = δ0,k k ∈ Z;
(2) the shifts of φ form a unit partition, i.e.∑

k∈Z
φ(x− k) = 1 a.e.

In particular, if φ is continuous, then
∑

k∈Z φ(k) = 1.

Proof. We first prove (1). φ̂(0) = 1 is the assumption for φ. We use

mathematical induction to prove φ̂(2kπ) = 0, for k ∈ N. When k = 1,
we have

φ̂(2π) = H(e−iπ)φ̂(π) = H(−1)φ̂(π) = 0.

Hence, φ̂(2kπ) = 0 is true for k = 1. Assume now φ̂(2kπ) = 0 for all
1 ≤ k ≤ n. We will prove it is true for k = n+ 1. We have

φ̂(2(n+ 1)π) = H(e−i(n+1)π)φ̂((n+ 1)π).

If n is even, then H(e−i(n+1)π) = H(−1) = 0, which yields φ̂(2(n +
1)π) = 0. If n is odd, then there is a positive integer m such that

m = n+1
2

(≤ n). By the induction assumption, φ̂(2mπ) = 0, which

yields φ̂(2(n+ 1)π) = 0. We have already seen that φ̂(2kπ) = 0, for all

k ∈ N. The proof that φ̂(−2kπ) = 0, for all k ∈ N, is similar.



248 8. COMPACTLY SUPPORTED WAVELETS

We now prove (2). Note that f(x) =
∑

k∈Z φ(x− k) is a 1-periodic

function in L̃2
[0,1]. We have∫ 1

0

f(x)e−i2πmx dx =

∫ 1

0

∑
k∈Z

φ(x− k)e−i2πmx dx

=

∫ ∞

−∞
φ(x)e−i2πmx dx = φ̂(2πm) = δ0,m.

Hence f(x) = 1 a.e. The proof is complete. �

1.2. The Symbol of an Orthonormal Scaling Function. We
now study the symbol of an orthonormal scaling function φ. To dis-
tinguish the symbol of an orthonormal one from others, when φ is
orthonormal, we denote its symbol by m(z). As seen in Section 7.3,
m(z) is a conjugate mirror filter. Since now m(z) is a polynomial, we
have (see Exercise 4)

|m(z)|2 + |m(−z)|2 = 1, z ∈ C \ {0}.(1.5)

By Corollary 8.1.1,m(z) must have (1+z
2

) as a factor. Hence, we assume
m(z) has the form

m(z) =

(
1 + z

2

)L

q(z), L ≥ 1,(1.6)

where q(z) is a polynomial with q(1) = 1 and q(−1) �= 0. Since the
mask (hk) is real,

|m(z)|2 = m(z)m(1/z), z ∈ C \ {0}.
Write P (z) = |m(z)|2. By (1.5), we have

P (z) + P (−z) = 1, z ∈ C \ {0} .(1.7)

Applying (1.6), we have

P (e−iω) =

(
1 + e−iω

2

)L(
1 + eiω

2

)L

q(e−iω)q(eiω)

=
(
cos2

(ω
2

))L
q(e−iω)q(eiω).

Note that q(e−iω)q(eiω) is a polynomial of cos(ω). Setting y = sin2(ω
2
),

we have

cos2
(ω

2

)
= 1− y, cos(ω) = 1− 2y.
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Hence, there is a polynomial B(y) such that B(y) = q(e−iω)q(eiω). We
now have

P (e−iω) = (1− y)LB(y)(1.8)

and

P (−e−iω) = yLB(1− y).
Then equality (1.7) becomes

(1− y)LB(y) + yLB(1− y) = 1.(1.9)

The polynomial B(y) is given in the following lemma.

Lemma 8.1.3. The polynomial B(y) in (1.9) has the form

B(y) = BL(y) + yLR

(
1

2
− y

)
,

where

BL(y) =

L−1∑
k=0

(
L+ k − 1

k

)
yk(1.10)

and R(z) is an odd polynomial, chosen such that B(y) ≥ 0 for y ∈ [0, 1].

Proof. It is clear that

B(y) = q(e−iω)q(eiω) = |q(e−iω)|2 ≥ 0.

Since (1 − y)L and yL have no common roots, by Bézout’s Theorem
(see Exercise 5), there exist two unique polynomials r1 and r2 of degree
L− 1 such that

(1− y)Lr1(y) + yLr2(y) = 1.

Substituting 1− y for y, we have

(1− y)Lr2(1− y) + yLr1(1− y) = 1.

The uniqueness of r1 and r2 implies r1(y) = r2(1− y) and therefore

(1− y)Lr1(y) + yLr1(1− y) = 1.

Hence

r1(y) = (1− y)−L[1− yLr1(1− y)].
Applying the Taylor expansion of (1− y)−L (see Exercise 6), we have

(1− y)−L = BL(y) +O(yL),
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where O(yL) stands for a general power series in the form of yL
∑∞

k=0 aky
k.

It follows that the Taylor series of r1(y) has the form:

r1(y) =
(
BL(y) +O(yL)

) [
1− yLr1(1− y)

]
=
(
BL(y) +O(yL)

)
(1− O(yL))

= BL(y) +O(yL).

Since r1(z) is a polynomial of degree L− 1, we obtain r1(y) = BL(y).
Let B(y) be any polynomial of degree ≥ L which satisfies (1.9). Then

(1− y)L[B(y)− BL(y)] + yL[B(1− y)− BL(1− y)] = 0,

which implies that yL is a factor of B(y) − BL(y). Hence, there is a
polynomial A(y) such that

B(y)−BL(y) = yLA(y).

Then

(1− y)L[B(y)−BL(y)] + yL[B(1− y)− BL(1− y)]
= (1− y)LyL(A(y) + A(1− y)) = 0,

which leads to

A(y) + A(1− y) = 0,

i.e. A(y) is antisymmetric with respect to 1
2
. The lemma is proved. �

We now return to a discussion of the symbol m(z). By (1.8), we
have

P (e−iω) = (1− y)LBL(y) + (1− y)LyLA(y),

where A(y) = −A(1 − y). If we choose A(y) = 0, we get P (e−iω) =
(1− y)LBL(y).

Later we only discuss mL(z) such that

|mL(z)|2 = (1− y)LBL(y).

For convenience, we write z = e−iω and PL(z) = (1− y)LBL(y).

By y = sin2(ω
2
), we have 1−y =

(
1+z
2

) (
1+z−1

2

)
and y =

(
1−z
2

) (
1−z−1

2

)
.

Hence,

PL(z) =

(
1 + z

2

)L(
1 + z−1

2

)L

ML(z),(1.11)

where

ML(z) =
L−1∑
k=0

(
L+ k − 1

k

)(
1− z

2

)k (
1− z−1

2

)k

.(1.12)
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Then

mL(z) =

(
1 + z

2

)L

qL(z),(1.13)

where |qL(z)|2 = ML(z).

Lemma 8.1.4. ML(z) satisfies the following condition:

1 ≤ML(e−iω) < 22L−2, ω ∈ R.(1.14)

Proof. We have min|z|=1ML(z) = ML(1) = 1 and

max
|z|=1
|ML(z)| = ML(−1) =

L−1∑
k=0

(
L+ k − 1

k

)
=

(
2L− 1
L− 1

)
=

1

2

{(
2L− 1
L− 1

)
+

(
2L− 1
L

)}
<

1

2

2L−1∑
k=0

(
2L− 1
k

)
= 22L−2.

The lemma is proved. �
All ML(z) are Laurent polynomials, the polynomials which may

have negative integer powers. ML(z), 1 ≤ L ≤ 6, are listed in the
following.

M1(z) = 1,

M2(z) = −1

2
z−1 + 2− 1

2
z,

M3(z) =
3

8
z−2 − 9

4
z−1 +

19

4
− 9

4
z +

3

8
z2,

M4(z) = − 5

16
z−3 +

5

2
z−2 − 131

16
z−1 + 13− 131

16
z +

5

2
z2 − 5

16
z3,

M5(z) =
35

128
z−4 − 175

64
z−3 +

95

8
z−2 − 1825

64
z−1

+
2509

64
− 1825

64
z1 +

95

8
z2 − 175

64
z3 +

35

128
z4,

M6(z) = − 63

256
z−5 +

189

64
z−4 − 4123

256
z−3 +

833

16
z−2 − 13555

128
z−1

+
4335

32
− 13555

128
z +

833

16
z2 − 4123

256
z3 +

189

64
z4 − 63

256
z5.

To find qL(z) by qL(z)qL(1/z) = ML(z), we need the following Riesz
Lemma.
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Lemma 8.1.5. [Riesz Lemma] Assume a real Laurent polynomial
R(z) satisfies R(z) = R(1/z) and R(z) ≥ 0, for all z ∈ Γ. Then there
is a real polynomial c(z) such that

R(z) = c(z)c(1/z), z ∈ C \ {0}.
Proof. We write R(z) =

∑N
k=−N akz

k, where all ak ∈ R. R(z) has
2N complex zeros. Since R(z) is a real Laurent polynomial, if z0 /∈ R
is a zero of R(z), so is z0. By R(z) = R(1/z), if z0( �= ±1) is a zero of
R(z), then so is 1/z0. Because R(z) ≥ 0 on Γ, any zero of R(z) on Γ
must have even multiplicity (Exercise 7). Hence,

R(z) = aNz
−NP1(z)P2(z)(1.15)

where

P1(z) =

M∏
i=1

(z − zi)(z − zi)
(
z − z−1

i

) (
z − zi−1

)
, zi /∈ Γ,

and

P2(z) =
J∏
j=1

(z − eiωj )2(z − e−iωj)2
K∏
k=1

(z − rk)(z − r−1
k ), ωj, rk ∈ R.

Recall that, for z ∈ Γ,∣∣(z − zi)(z − zi−1)
∣∣ = |zi|−1|z − zi|2

and ∣∣(z − rk)(z − r−1
k )

∣∣ = |rk|−1|z − rk|2.
Consequently, for z ∈ Γ, we have

R(z) = |R(z)|

= C2

∣∣∣∣∣
M∏
i=1

(z − zi)(z − zi)
∣∣∣∣∣
2 ∣∣∣∣∣

J∏
j=1

(z − eiωj )(z − e−iωj )
∣∣∣∣∣
2 ∣∣∣∣∣

K∏
k=1

(z − rk)
∣∣∣∣∣
2

,

where C =
√
|aN |

∏M
i=1 |zi|−2

∏K
k=1 |rk|−1. Define

c(z) = C

M∏
i=1

(z − zi)(z − zi)
J∏
j=1

(z − eiωj )(z − e−iωj )
K∏
k=1

(z − rk),

(1.16)

Then c(z) is a real polynomial such that

R(z) = |c(z)|2, for all z ∈ Γ.
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Hence,

R(z) = c(z)c(1/z), for all z ∈ C \ {0}.
The proof is completed. �

The following corollary is a direct consequence of Lemma 8.1.5.

Corollary 8.1.1. There exists a real polynomial qL(z) with qL(1) =
1 and qL(e−iω) �= 0, for all ω ∈ R, such that

qL(z)qL(1/z) = ML(z).

Proof. By Lemma 8.1.5, there is a polynomial qL(z) such that
qL(z)qL(1/z) = ML(z). Recall q2

L(1) = ML(1) = 1 and ML(e−iω) >
0, ω ∈ R. Thus we can select qL(z) so that qL(1) = 1 and qL(e−iω) �=
0, ω ∈ R. �

We have derived the structure of the symbol of an orthonormal
scaling function.

Theorem 8.1.3. Let mL(z) = (1+z
2

)LqL(z). Then mL(z) is a con-
jugate mirror filter.

Proof. The proof is straight forward. We leave it as an exercise. �
Note that degML = 2(L − 1), which has L − 1 different roots

inside the unit circle Γ, say z1, · · · , zL−1, and has another L− 1 roots,
1/z̄1, · · · , 1/z̄L−1, outside the circle. As in the proof of Lemma 8.1.5, we
can freely select one of the pairs (zi, 1/z̄i), 1 ≤ i ≤ L− 1, to construct
qL(z) using formula (1.16). Thus, there are 2L−1 different choices for
qL(z). Hence, there are 2L−1 different conjugate mirror filters (of degree
2L− 1) in the form of mL(z) = (1+z

2
)LqL(z)

Definition 8.1.2. Let mL(z) = (1+z
2

)LqL(z) be a conjugate mirror
filter of degree 2L− 1. If the polynomial qL(z) is selected such that the
magnitudes of all of its roots are ≥ 1, then it is called the Daubechies

filter of order L.

Example 8.1.1. Let L = 2. Then

ML(z) = −1

2
z−1 + 2− 1

2
z = −z

−1

2
(z − (2−

√
3))(z − (2 +

√
3)).

If we choose the zero of q2(z) with the larger magnitude, then we have

q2(z) = −
√

3− 1

2
z +

√
3 + 1

2
,
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and consequently,

mL(z) =

(
1 + z

2

)2

q2(z)

=
1 +
√

3

8
+

3 +
√

3

8
z +

3−√3

8
z2 +

1−√3

8
z3,

i.e.

h2(0) =
1 +
√

3

8
, h2(1) =

3 +
√

3

8
, h2(2) =

3−√3

8
, h3(z) =

1−√3

8
,

(1.17)

which is the Daubechies filter of order 2.

Tables 8.1 and 8.2 list Daubechies filters of order 2 to 10. There the
values

√
2hL(k) are given because they are used in FWT. (See Section

7.6.)
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Table 8.1. Daubechies filters of order 2 to 8.
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k
√

2hL(k) k
√

2hL(k)
L = 2 0 .482962912145 L = 7 0 .077852054085

1 .836516303738 1 .396539319482
2 .224143868042 2 .729132090846
3 -.129409522551 3 .469782287405

L = 3 0 .332670552950 4 -.143906003929
1 .806891509311 5 -.224036184994
2 .459877502118 6 .071309219267
3 -.135011020010 7 .080612609151
4 -.085441273882 8 -.038029936935
5 .035226291882 9 -.016574541631

L = 4 0 .230377813309 10 .012550998556
1 .714846570553 11 .000429577973
2 .630880767930 12 -.001801640704
3 -.027983769417 13 .000353713800
4 -.187034811719 L = 8 0 .054415842243
5 .030841381836 1 .312871590914
6 .032883011667 2 .675630736297
7 -.010597401785 3 .585354683654

L = 5 0 .160102397974 4 -.015829105256
1 .603829269797 5 -.284015542962
2 .724308528438 6 .000472484574
3 .138428145901 7 .128747426620
4 -.242294887066 8 -.017369301002
5 -.032244869585 9 -.044088253931
6 .077571493840 10 .013981027917
7 -.006241490213 11 .008746094047
8 -.012580751999 12 -.004870352993
9 .003335725285 13 -.000391740373

L = 6 0 .111540743350 14 .000675449406
1 .464623890398 15 -.000117476784
2 .751133908021
3 .315250351709
4 -.226264693965
5 -.129766867567
6 .097501605587
7 .027522865530
8 -.031562039317
9 .000553842201
10 .004777257511
11 -.001077301085



1. SYMBOLS OF ORTHONORMAL SCALING FUNCTIONS 257

Table 8.2 Daubechies filters of order 9 and 10.
k

√
2hL(k) k

√
2hL(k)

L = 9 0 .038077947363 L = 10 0 .026670057901
1 .243834674637 1 .188176800078
2 .604823123676 2 .527201188931
3 .657288078036 3 .688459039453
4 .133197385822 4 .281172343660
5 -.293273783272 5 -.249846424326
6 -.096840783220 6 -.195946274377
7 .148540749334 7 .127369340336
8 .030725681478 8 .093057364604
9 -.067632829060 9 -.071394147166
10 .000250947115 10 -.029457536822
11 .022361662123 11 .033212674059
12 -.004723204758 12 .003606553567
13 -.004281503682 13 -.010733175483
14 .001847646883 14 .001395351747
15 .000230385764 15 .001992405295
16 -.000251963189 16 -.000685856695
17 .000039347320 17 -.000116466855

18 .000093588670
19 -.000013264203

Exercises
1. Prove the following: Let φ ∈ L2 be a scaling function satisfying

(1.1). Let B(e−iω) =
∑

k∈Z |φ̂(ω + 2kπ)|2. Then

|H(e−iω)|2B(e−iω) + |H(−e−iω)|2B(−eiω) = B(e−i2ω), ω ∈ R,

which is equivalent to

|H(z)|2B(z) + |H(−z)|2B(−z) = B(z2), |z| = 1.

2. Use the result in Exercise 1 to prove Lemma 8.1.2.
3. Let q(z) be the polynomial in (1.6). Prove that q(eiω)q(e−iω) is

a polynomial of cosω.
4. Let P (e−iω) be a trigonometric polynomial. Assume P (e−iω) +
P (−e−iω) = 1 for all ω ∈ R. Prove

P (z) + P (−z) = 1, for all z ∈ C \ {0}.
5. Prove Bézout’s Theorem: Let P and Q be two polynomials such

that degP = n, degQ = m, and let them have no roots in
common. Then there exist two polynomials A (of degree m− 1)
and B (of degree n− 1) such that AP +BQ = 1.
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6. Prove that (1− y)−L =
∑L−1

k=0

(
L+ k − 1

k

)
yk +R(yL), where

R(y) is a power series in the form of yL
∑∞

k=0 aky
k.

7. Assume the Laurent polynomial R(z) ≥ 0 on Γ. Prove that any
zero of R(z) on Γ must have even multiplicity.

8. Find a polynomial c(z) such that |c(z)|2 = 1
6
(z−1 + 4 + z) .

9. Prove Theorem 8.1.3.
10. Compute (numerically) the mask of the Daubechies filter of order

3 and 4.
11. Let mL(z) :=

∑2L−1
k=0 hkz

k be the Daubechies filter of order L.
Let m̃L(z) := (1+z

2
)LqL(z) be the conjugate mirror filter such

that all roots of qL(z) satisfy |z| ≤ 1. Prove that hk = h̃2L−k.
12. Write PL(z) = |mL(z)|2. Prove that

(a) P1(e
−iω) = 1− 1

2

∫ ω
0

sin t dt;

(b) P2(e
−iω) = 1− 3

4

∫ ω
0

sin3 t dt;

(c) P3(e
−iω) = 1− 15

8

∫ ω
0

sin5 t dt.

2. The Daubechies Scaling Functions

Consider the solution of the refinement equation

φL(x) = 2
2L−1∑
k=0

hL(k)φL(2x− k),(2.1)

where
∑2L−1

k=1 hL(k)zk = mL(z) is the Daubechies filter. We have the
following.

Theorem 8.2.1. [Daubechies] Let mL(z) be the Daubechies filter of
order L(≥ 2). Then the refinement equation (2.1) has a unique solution
φL ∈ L2 which is an orthonormal scaling function.

The proof of the theorem is tedious. We will complete it through
several steps. Since these orthonormal scaling functions were first dis-
covered by Daubechies, we give the following.

Definition 8.2.1. For L ≥ 2, the orthonormal scaling function φL
satisfying (2.1) is called the Daubechies scaling function of order
L. Correspondingly, the wavelet defined by

ψL(x) = 2

2L−1∑
k=0

gkφL(2x− k), gk = (−1)kh
k
(2L− 1− k) ,(2.2)

is called the Daubechies wavelet of order L.

We now start to prove Theorem 8.2.1.
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2.1. The Infinite Product Form. To prove Theorem 8.2.1, we
first derive the infinite product form of φ̂L. We will discuss it in a more
general setting where φ satisfies refinement equation (1.1), whose mask

only satisfies the sum rule. Note that φ̂ satisfies the following equation:

φ̂(ω) = H(z)φ̂(ω/2), z = e−iω/2,(2.3)

where H(z) =
∑N

k=0 hkz
k. Iterating (2.3) for n times, we have

φ̂(ω) = H(e−iω/2) · · ·H(e−iω/2
n

)φ̂(ω/2n)

=
n∏
k=1

H(e−iω/2
k

)φ̂(ω/2n).

If the infinite product
∏∞

k=1H(e−iω/2
k
) converges, then we have

φ̂(ω) = lim
n→∞

n∏
k=1

H(e−iω/2
k

) lim
n→∞

φ̂(ω/2n)

=

∞∏
k=1

H(e−iω/2
k

)φ̂(0).

By φ̂(0) = 1, we obtain

φ̂(ω) =
∞∏
k=1

H(e−iω/2
k

),(2.4)

which is an infinite product form of φ̂.

Example 8.2.1. For the mth order cardinal B-spline Nm, we have

N̂m(ω) =

(
1 + e−iω/2

2

)m

N̂m(ω/2).

Therefore

N̂m(ω) =

∞∏
k=1

(
1 + e−iω/2

k

2

)m

N̂m(0).

Since
∫
RNm(x) dx = 1,we have

N̂m(ω) =
∞∏
k=1

(
1 + e−iω/2

k

2

)m

=

(
1− e−iω
iω

)m

.

It follows that

N̂m(ω) = e−imω/2
(

sin ω
2

ω
2

)m

.(2.5)
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We now prove that
∏∞

k=1H(e−iω/2
k
) is always (point-wise) conver-

gent. To this end, we introduce the following lemma.

Lemma 8.2.1. Let (ak) be a positive sequence. Then
∏∞

k=1 ak is
convergent if and only if

∑∞
k=1(ak − 1) is convergent.

Proof. If
∑∞

k=1(ak − 1) is convergent, then limk→∞(ak − 1) = 0.
Without loss of generality, we can assume |ak − 1| < 1, k = 1, 2, · · · .
Since limx→0

ln(1+x)
x

= 1, we have

lim
ak→1

ln ak
ak − 1

= lim
(ak−1)→0

ln(1 + (ak − 1))

(ak − 1)
= 1.

Then, by the limit form of the comparison test the series
∑∞

k=1 ln ak is
convergent if and only if

∑∞
k=1(ak − 1) is convergent. Note that

n∏
k=1

ak = e
n
k=1 ln ak

Hence,
∏∞

k=1 ak is convergent if and only if
∑∞

k=1(ak−1) is convergent.
�

Theorem 8.2.2. Let H(z) be a polynomial with H(1) = 1. Then

for a given R > 0, the infinite product
∏∞

k=1H(e−iw/2
k
) is uniformly

convergent on |w| ≤ R . Consequently, the function f(ω) =
∏∞

k=1H(e−iw/2
k
)

is continuous on R.

Proof.By the inequality |e−iw − 1| ≤ |ω|, ω ∈ R, we have∣∣∣∣H(e−iw)
∣∣− 1

∣∣ ≤ ∣∣H(e−iw)− 1
∣∣

≤
∣∣∣∣∣
N∑
k=0

hk(e
−ikw − 1)

∣∣∣∣∣ ≤
∣∣∣∣∣
N∑
k=0

khk

∣∣∣∣∣ |w|.
Write c = |∑N

k=0 khk|. Then∣∣∣∣∣∣H(e−i2
−jw)

∣∣∣− 1
∣∣∣ ≤ c2−j|ω| ≤ c2−jR, |w| ≤ R,

which yields

lim
j→∞

(∣∣∣H(e−i2
−jw)

∣∣∣− 1
)

= 0

and the limit holds uniformly for |ω| ≤ R. By Lemma 8.2.1,
∏∞

k=1

∣∣∣H(e−iw/2
k
)
∣∣∣

is uniformly convergent for |ω| ≤ R. Hence,
∏∞

k=1

∣∣∣H(e−iw/2
k
)
∣∣∣ is a con-

tinuous function on [−R,R], which implies that
∏∞

k=1

∣∣∣H(e−iw/2
k
)
∣∣∣ is
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bounded on [−R,R]. We write Πn(ω) =
∏n

k=1H(e−iw/2
k
). By the uni-

form convergence of
∏∞

k=1

∣∣∣H(e−iw/2
k
)
∣∣∣ , there is an M > 0 such that

|Πn(ω)| ≤M, n = 1, 2, · · · .
We now prove that

∏∞
k=1H(e−iw/2

k
) is uniformly convergent for

|ω| ≤ R. We have

|Πn(ω)−Πn+1(ω)| = |Πn(ω)||1−H(e−iω/2
n+1

)|
≤ cMR2−n+1, |ω| ≤ R, n ∈ N.

Therefore,

|Πn(ω)− Πn+m(ω)| ≤
m−1∑
k=0

|Πn+k(ω)− Πn+k+1(ω)|

≤ cMR

m∑
k=1

2−n+k ≤ cMR2−n,

which indicates that the sequence (Πn(ω))∞n=1 is a Cauchy sequence

and the infinite product
∏∞

k=1H(e−iω/2
k
) is uniformly convergent on

|w| ≤ R. �

2.2. Proof that φL ∈ L2. We now discuss the conditions under
which the solution φ of (1.1) is in L2. By Fourier transform theory,

φ ∈ L2 if and only if φ̂ ∈ L2. It is known that if |f(ω)| ≤ 1
1+|ω|1/2+ε for

an ε > 0, then f ∈ L2. Based on this fact and
∏∞

k=1

(
1+e−iω/2

k

2

)m
=(

1−e−iω
iω

)m
, which decays as fast as |ω|−m, we have the following.

Lemma 8.2.2. If the symbol of φ :

H(z) =

(
1 + z

2

)m

q(z)(2.6)

satisfies

max
ω∈R
|q(e−iω)| < 2m− 1

2 ,(2.7)

then φ ∈ L2.

Proof. It is clear that

φ̂(ω) =
∞∏
k=1

H(e−iω/2
k

) =

(
1− e−iω
iω

)m

Q(ω),
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where Q(ω) =
∏∞

k=1 q
(
e−iω/2

k
)
∈ C. We now estimate the growth rate

of Q(ω) as |ω| → ∞. Since

max
ω∈R
|q(e−iω)| < 2m− 1

2 ,

there is an ε > 0 such that

max
ω∈R
|q(e−iω)| = 2m− 1

2
−ε.

Write

Q(ω) =

N∏
k=1

q
(
e−iω/2

k
)
Q(2−(N+1)ω), N ∈ N.

For an ω such that 2N ≤ |ω| < 2N+1,∣∣Q(2−(N+1)ω)
∣∣ ≤ C := max

|ω|≤1
|Q(ω)|

and by (2.7), ∣∣∣∣∣
N∏
k=1

q
(
e−iω/2

k
)∣∣∣∣∣ ≤ 2N(m− 1

2
−ε).

Since 2N ≤ |ω|, we have

|Q(ω)| ≤ C2N(m−1/2−ε) ≤ C|ω|m− 1
2
−ε.

Note that ∣∣∣∣1− e−iωiω

∣∣∣∣m ≤ 2m min(1, |ω|−m).

Therefore, we have for any ω ∈ R,∣∣∣φ̂(ω)
∣∣∣ ≤ C|ω|m− 1

2
−ε2mmin(1, |ω|−m)

≤ C2m

1 + |ω| 12+ε
.

Hence φ̂ ∈ L2. �

Lemma 8.2.3. The scaling function φL in (2.1) is in L2.

Proof. We havemL(z) =
(

1+z
2

)L
qL(z). By Lemma 8.1.4, maxω∈R |qL(e−iω)| <

2L−1. By Lemma 8.2.2, φL ∈ L2. �
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2.3. Orthogonality of φL. We now finish the proof of Theorem
8.2.1 by proving the orthogonality of φL. For this, we define

fk(ω) =

[
k∏
j=1

mL(e−iω/2
j

)

]
χ[−2kπ,2kπ](ω), k = 0, 1, · · · .

Then it is clear that

lim
k→∞

fk(ω) = φ̂L(ω), ω ∈ R,

where φ̂L ∈ L2. We first prove that there is a C > 0 such that

|fk(ω)| ≤ C|φ̂L(ω)|, ω ∈ R.(2.8)

Since fk(ω) = 0, |ω| ≥ 2kπ, we only need to prove (2.8) for |ω| ≤ 2kπ.
By Lemma 8.1.4,

min
ω∈R
|qL(e−iω)| ≥ 1,

which yields ∣∣∣∣∣
∞∏
j=1

qL(e−iω/2
j

)

∣∣∣∣∣ ≥ 1.

We also have

min
|ω|≤π

∣∣∣∣(1− e−iω
iω

)∣∣∣∣L = min
|ω|≤π

∣∣∣∣sin ω
2

ω
2

∣∣∣∣L ≥ (
2

π

)L

.

Thus,

min
|ω|≤π

∣∣∣φ̂L(ω
∣∣∣ ≥ (

2

π

)L

,

which implies

|fk(ω)| =

∣∣∣φ̂L(ω)
∣∣∣∣∣∣φ̂L(2−kω)
∣∣∣ ≤

(π
2

)L ∣∣∣φ̂L(ω)
∣∣∣ , |ω| ≤ 2kπ.

Inequality (2.8) is proved. By the Lebesgue Dominated Convergence
Theorem (Theorem 3.3.1), we have

lim
k→∞
||fk − φ̂L|| = 0.(2.9)

Hence,

lim
k→∞

∫
R
|fk(ω)|2 einω dω =

∫
R

∣∣∣φ̂(ω)
∣∣∣2 einω dω, k ∈ Z.(2.10)
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Let

Ik,n :=
1

2π

∫
R

∣∣∣f̂j(ω)
∣∣∣2 einω dω, n ∈ Z, k ∈ N.

We have, for k ∈ N,

Ik,n =
1

2π

∫ 2kπ

−2kπ

k∏
j=1

∣∣∣mL(e−iω/2
j

)
∣∣∣2 einω dω =

1

2π

∫ 2k+1π

0

k∏
j=1

∣∣∣mL(e−iω/2
j

)
∣∣∣2 einω dω

=
1

2π

∫ 2kπ

0

k∏
j=1

∣∣∣mL(e−iω/2
j

)
∣∣∣2 einω dω +

1

2π

∫ 2k+1π

2kπ

k∏
j=1

∣∣∣mL(e−iω/2
j

)
∣∣∣2 einω dω

= I1
k,n + I2

k,n,

where

I1
k,n =

1

2π

∫ 2kπ

0

k∏
j=1

∣∣∣mL(e−iω/2
j

)
∣∣∣2 einω dω

=
1

2π

∫ 2kπ

0

k−1∏
j=1

∣∣∣mL(e−iω/2
j

)
∣∣∣2 ∣∣∣mL(e−iω/2

k

)
∣∣∣2 einω dω

and, by changing ω to 2kπ + ω,

I2
k,n =

1

2π

∫ 2k+1π

2kπ

k∏
j=1

∣∣∣mL(e−iω/2
j

)
∣∣∣2 einω dω

=

∫ 2kπ

0

k−1∏
j=1

∣∣∣mL(e−iω/2
j

)
∣∣∣2 ∣∣∣mL(−e−iω/2k)

∣∣∣2 einω dω.
Recall that

∣∣∣mL(e−iω/2
k
)
∣∣∣2 +

∣∣∣mL(−e−iω/2k)
∣∣∣2 = 1, We have

Ik,n =
1

2π

∫ 2kπ

0

k−1∏
j=1

∣∣∣mL(e−iω/2
j

)
∣∣∣2 einω dω

=
1

2π

∫ 2k−1π

−2k−1π

k−1∏
j=1

∣∣∣mL(e−iω/2
j

)
∣∣∣2 einω dω = Ik−1,n.

It follows that Ik,n = Ik−1,n = · · · = I0,n. Since

I0,n =

∫ π

−π
einω dω = δ0n,
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we have Ik,n = δ0,n, k ∈ N, n ∈ Z. By (2.10), we have∫
R

∣∣∣φ̂L(ω)
∣∣∣2 einω dω = δ0n, n ∈ Z.

That is, φL is an orthonormal scaling function. �
Exercises

1. Prove 1
2

=
∏∞

n=2(1− 1
n2 ).

2. Prove

1

1− x =

∞∏
n=1

(
1 + x2n

)
, |x| < 1.

3. It is known that

sin x = x

∞∏
n=1

(
1− x2

n2π2

)
, x ∈ R.

Use this result to prove the infinite product for π :

π = 2
2 · 2 · 4 · 4 · 6 · 6 · · ·
1 · 3 · 3 · 5 · 5 · 7 · · ·

= 2

∞∏
n=1

4n2

(2n− 1)(2n+ 1)
.

4. Assume the scaling function φ has the symbol H(z) = (1+z
2

)2(5
3
−

2z
3
). Prove that φ ∈ L2.

5. Let h(ω) be a 2π-periodic function satisfying

|h(ω)|2 + |h(ω + π)|2 = 1

and suppose the infinite product
∏∞

n=1 h(2
−nω) is convergent a.e.

to a function f̂ . Write

f̂k(ω) =
k∏

n=1

h(2−nω)χ[−2kπ,2kπ](ω).

Prove the following.

(a)
∫ 0

−2π

∣∣∣f̂1(ω)
∣∣∣2 dω =

∫ 2π

0

∣∣∣f̂1(ω + π)
∣∣∣2 dω, and therefore,

∫∞
−∞

∣∣∣f̂1(ω)
∣∣∣2 dω =

2π.

(b)
∫∞
−∞

∣∣∣f̂k+1(ω)
∣∣∣2 dω =

∫∞
−∞

∣∣∣f̂k(ω)
∣∣∣2 dω for all k ∈ N.

(c) f̂ ∈ L2 and ||f̂ ||2 ≤ 2π.
6. Suppose the 2π-periodic function h(ω) in Exercise 5 is continu-

ously differentiable in [−π
2
, π

2
] and

min
|ω|≤π/2

|h(ω)| > 0.
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Let f be the function whose Fourier transform is f̂(ω) =
∏∞

n=1 h(2
−nω).

Use the Lebesgue Dominated Convergence Theorem to prove
that f is an orthonormal scaling function. (See the method in
the proof of the orthogonality of φL.)

7. Prove the following result: In Theorem 8.2.2 if condition (2.7) is
replaced by

max
ω∈R
|
n∏
k=1

q(e−iω/2
k

)| < 2n(m−1/2), for an n ∈ R,

then φ ∈ L2.
8. Prove the following: Let the symbol (2.6) satisfy

max
ω∈R
|q(e−iω)| < 2m−1.

Then φ̂ ∈ L1.
9. Prove that the condition in Exercise 8 can be replaced by

max
ω∈R

∣∣∣∣∣
n∏
k=1

q(e−iω/2
k

)

∣∣∣∣∣ < 2n(m−1), for an n ∈ N.

10. Prove the following: Let φ be a scaling function satisfying (1.1)
and let its symbol h(z) be (2.6). If

max
ω∈R
|q(e−iω)| < 2(m−s)−1/2,

then φ ∈W s
2 . The condition can also be replaced by

max
ω∈R

∣∣∣∣∣
n∏
k=1

q(e−iω/2
k

)

∣∣∣∣∣ < 2n(m−s−1/2), for an n ∈ R.

11. Assume the scaling function φ has the symbol H(z) = (1+z
2

)2(2
3
+

1
3
z). Prove that φ ∈W 1

2 .
12. Assume φ the scaling function satisfies (1.1) and its symbol H(z)

is in the form of (2.6). Prove that, if

max
ω∈R
|q(e−iω)| < 2m−s−1,

then φ is almost everywhere equal to a function in Cs.

3. Computation of Daubechies Scaling Functions

Daubechies scaling function φL is not given in an explicit expression.
In this section, we discuss how to compute φL from its mask (hL(k)).
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3.1. Cascade Algorithm. We introduce an iterative method to
compute φL(x). We first illustrate the method in a general setting
without consideration for convergence. Let φ be the scaling function
determined by the refinement equation (1.1). The equation yields the
algorithm:

φj(x) = 2

N∑
k=0

hkφ
j−1(2x− 1), j = 1, 2, · · · ,(3.1)

which produces a sequence {φj}∞j=0. If it converges to a function φ ∈
L2 (or ∈ C), then φ is a solution of the refinement equation (1.1).
Algorithm (3.1) is called the Cascade Algorithm. The algorithm needs
an initial function φ0 ∈ L2. We always assume the initial function of a
cascade algorithm satisfies the following.

Condition 1. φ is compactly supported with φ̂0(0) = 1, and
∑

k∈Z φ
0(x−

k) = 1 a.e.

The box function B(x) and the hat function N2(x) are often chosen
as the initial functions. We now denote the cascade algorithm (3.1) by

φj = Thφ
j−1(3.2)

and call Th the transaction operator (with respect to h).
The cascade algorithm has the following properties.

Lemma 8.3.1. Let (φj) be the sequence obtained in (3.1). Then
(1)

∫
R φ

j(x− k) dx = 1,
(2)

∑
k∈Z φ

j(x−k) = 1, a.e. Particularly, if φ0 ∈ C, then ∑k∈Z φ
j(x−

k) = 1 holds everywhere.

Proof. We have
∫
R φ

j(x− k) dx =
∫
R φ

j(x) dx for k ∈ Z, and∫
R
φj(x) dx = 2

∑
hk

∫
R
φj−1(2x− k) dx

=
∑

hk

∫
R
φj−1(x) dx =

∫
R
φj−1(x) dx,

which inductively yields
∫
R φ

j(x−k) dx =
∫
R φ

0(x) dx = 1 for all j ≥ 0.
We now prove (2). Assume∑

k∈Z
φ0(x− k) = 1.
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Recall that in (3.1), h satisfies the sum rule. Thus,∑
k

φj(x− k)

= 2
∑
k

∑
l

hlφ
j−1(2x− 2k − l) = 2

∑
k

∑
s

hs−2kφ
j−1(2x− s)

=
∑
s

(
2
∑
k

hs−2k

)
φj−1(2x− s) =

∑
s

φj−1(2x− s)

which inductively yields∑
k∈Z

φj(x− k) =
∑
k∈Z

φ0(2jx− k) = 1, for all j ≥ 0.

The lemma is proved. �
In practice, to compute the values of φj(x), we write the cascade

algorithm (3.1) in a vector form. For φ, we define the vector-valued
function Φ(x) on [0, 1] by

Φ(x) = (φ(x), φ(x+ 1), · · · , φ(x+N − 1))T , x ∈ [0, 1].(3.3)

Thus, the ith component of Φ(x) is φ|[i−1,i]. Let T0 and T1 be two N×N
matrices defined by

T0 = 2(h2m−n−1)
N
m,n=1 = 2

⎛⎜⎜⎝
h0

h2 h1 h0

· · · · · · · · · · · ·
hN hN−1

⎞⎟⎟⎠(3.4)

and

T1 = 2(h2m−n)Nm,n=1 = 2

⎛⎜⎜⎝
h1 h0

· · · · · · · · · · · ·
· · · hN hN−1 hN−2

hN

⎞⎟⎟⎠(3.5)

respectively. For convenience, we call (T0, T1) the CA-(matrix) pair for
h. By (1.1), we have

Φ(x) =

{
T0Φ(2x), x ∈ [0, 1/2]

T1Φ(2x− 1), x ∈ [1/2, 1].
(3.6)

Let τ : [0, 1]→ [0, 1] be the mapping

τx =

{
2x, x ∈ [0, 1/2),
2x− 1, x ∈ [1/2, 1).
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For 0 ≤ x < 1, define the binary sequence d(x) := (dn(x))
∞
n=1 by

x =

∞∑
n=1

dn(x)2
−n.

Thus,

d1(x) =

{
0, x ∈ [0, 1/2),
1, x ∈ [1/2, 1).

Now (3.6) becomes

Φ(x) = Td1(x)Φ(τx), x ∈ [0, 1).(3.7)

In general,

τ jx =

⎧⎪⎪⎨⎪⎪⎩
2jx, x ∈ [0, 2−j)
2jx− 1, x ∈ [2−j, 2(2−j))
· · · · · ·
2jx− (2j − 1), x ∈ [(2−j − 1)2−j, 1)

,

and

dl(x) = d1(τ
l−1x).

Therefore,

Φ(x) = Td1(x)Td2(x) · · ·Tdj(x)Φ(τ jx), j ≥ 1,

which yields the vector form of the cascade algorithm (3.1):

Φj(x) = Td1(x)Td2(x) · · ·Tdj(x)Φ0(τ jx), j ≥ 1.

Thus, Φj(x) converges to Φ(x) if and only if φj(x) converges to φ(x).

Example 8.3.1. Let us consider the CA-pair for (1.17). We have

T0 =
1

4

⎛⎝ 1 +
√

3 0 0

3−√3 3 +
√

3 1 +
√

3

0 1−√3 3−√3

⎞⎠ ,

T1 =
1

4

⎛⎝ 3 +
√

3 1 +
√

3 0

1−√3 3−√3 3 +
√

3

0 0 1−√3

⎞⎠ .
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Let φ0(x) = N2(x) =

{
x, x ∈ [0, 1]

2− x, x ∈ [1, 2]
. Then Φ0(x) = (x, 1 −

x, 0)T , x ∈ [0, 1], and

Φ1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T0Φ
0(2x) =

⎛⎜⎜⎜⎝
(

1+
√

3
2

)
x(

3+
√

3
4

)
−√3x(

1−√
3

4

)
−
(

1−√
3

2

)
x

⎞⎟⎟⎟⎠ , x ∈ [0, 1
2
]

T1Φ
0(2x− 1) =

⎛⎜⎜⎝
(

−1+
√

3
4

)
+ x(

5−√
3

4

)
− x

0

⎞⎟⎟⎠ , x ∈ [1
2
, 1],

i.e.

φ1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1+

√
3

2

)
x, x ∈ [0, 1

2
](

−1+
√

3
4

)
+ x, x ∈ [1

2
, 1](

3+5
√

3
4

)
−√3x, x ∈ [1, 3

2
](

9−√
3

4

)
− x, x ∈ [3

2
, 2](

5−5
√

3
4

)
−
(

1−√
3

2

)
x, x ∈ [2, 5

2
]

0, x ∈ [5
2
, 3]

.

3.2. The Recursion Algorithm. If the scaling function φ is con-
tinuous, then it is uniquely determined by its values at all dyadic num-
bers, which can be computed by the Recursion Algorithm. We de-
scribe it as follows.

First we compute the values of φ(x) at all integers, i.e. get the value
of Φ(0). By (3.7), we have

Φ(0) = T0Φ(0).

Hence, Φ(0) is the right 1-eigenvector of the matrix T0. Once Φ(0) is
obtained, then the values of φ at half integers can be computed by

Φ

(
1

2

)
= T1Φ(0).

Continuing, we have

Φ

(
1

4

)
= T0Φ

(
1

2

)
,

Φ

(
3

4

)
= T1Φ

(
1

2

)
,
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and so on. In general,

Φ

(
2k + 1

2j

)
=

{
T0Φ(2k+1

2j−1 ), 2k + 1 < 2j−1

T1Φ(2k+1
2j−1 − 1), 2j−1 < 2k + 1 < 2j

.(3.8)

Thus, we can compute the values of φ at all dyadic numbers recursively.
The recursion algorithm starts from Φ(0), which is a right 1-eigenvector

of T0. Since h in (1.1) satisfies the sum rule, then the vector e =
(1, 1, · · · , 1)T is a left 1-eigenvector of T0. The relation between e and
Φ(0) can be derived from the following lemma.

Lemma 8.3.2. Let λ be a simple eigenvalue of an n×n matrix M.
Let u be a left λ-eigenvector of M and v be a right λ-eigenvector of M .
Then uTv �= 0.

Proof. Since M has a simple eigenvalue λ, there is an invertible
matrix S such that

M = S

(
λ 0
0 B

)
S−1,

where B is an (N−1)×(N−1) matrix. The first column of S, denoted
by c, is a right λ-eigenvector of M, and the first row of S−1, denoted
by rT , is a left λ-eigenvector of M. Since S−1S = I, we have rTc =1,
which yields uTv �= 0. �

From the lemma, we have the following.

Corollary 8.3.1. Assume h satisfies the sum rule and (T0, T1)
is the CA-pair of h. Assume also the eigenvalue 1 of T0 is simple. Let
v be the right 1-eigenvector of T0. Then

∑
v(k) �= 0. Besides, for any

vector u ∈RN ,
∑

(T0u)(k) =
∑

u(k).

Proof. Under the condition of the corollary, T0 has the unique left 1-
eigenvector e (up to a constant). By Lemma 8.3.2, eTv =

∑
v(k) �= 0.

We also have∑
(T0u)(k) = eT (T0u) = (eTT0)u = eTu =

∑
u(k).

The corollary is proved. �

Lemma 8.3.3. If φ ∈ L2 in (1.1) is a continuous MRA generator,
then

∑
k φ(k) = 1.

Proof. We leave the proof as an exercise. �
Note that Φ(0) = (φ(0), φ(1), · · ·φ(N−1))T is the right 1-eigenvector

of the matrix T0. By Lemma 8.3.3, eTΦ(0) =
∑

k φ(k) = 1. Hence,
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it is uniquely determined. Now φ(0) = 0, Φ(0)=(φ(0), a)T , where

a =(φ(1), · · · , φ(N − 1))T is the right 1-eigenvector of T̃0, i.e.

a =T̃0a(3.9)

where

T̃0 = 2(h2m−n−1)
N
m,n=2 = 2

⎛⎝ h1 h0

· · · · · · · · ·
hN hN−1

⎞⎠ .

Example 8.3.2. Let us still consider the CA-pair for (1.17) in the
previous example. We have

T̃0 =
1

4

(
3 +
√

3 1 +
√

3

1−√3 3−√3

)
.

Solving the equation a =T̃0a, we get a =
(

1+
√

3
2
, 1−√

3
2

)T
, i.e.

Φ2(0) =

(
0,

1 +
√

3

2
,
1−√3

2

)T

.

Then

Φ2

(
1

2

)
= T1Φ2(0) =

⎛⎝ 1
2

+ 1
4

√
3

0
1
2
− 1

4

√
3

⎞⎠ ,

Φ2

(
1

4

)
= T0Φ2

(
1

2

)
=

⎛⎝ 5
16

+ 3
16

√
3

1
8

+ 1
8

√
3

9
16
− 5

16

√
3

⎞⎠ ,

Φ2

(
3

4

)
= T1Φ2

(
1

2

)
=

⎛⎝ 9
16

+ 5
16

√
3

1
8
− 1

8

√
3

5
16
− 3

16

√
3

⎞⎠ ,

i.e. φ2(0) = 0, φ2(
1
4
) = 5

16
+ 3

16

√
3, φ2(

1
2
) = 1

2
+ 1

4

√
3, φ2(

3
4
) = 9

16
+

5
16

√
3, φ2(1) = 1+

√
3

2
, · · · .

3.3. Convergence of the Cascade Algorithm. We now briefly
discuss the convergence of the cascade algorithm (3.1). It is clear that
if the algorithm converges, it is convergent to the solution of equation
(1.1). However, the following example shows that the converse may
not be true.

Example 8.3.3. Consider the refinement equation φ(x) = φ(2x)+

φ(2x + 3). Under the condition φ̂(0) = 1, it has the unique solu-
tion φ(x) = 1

3
χ[0,3) ∈ L2. We consider the cascade algorithm φj(x) =
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φj−1(2x) + φj−1(2x+ 3) with the initial function φ0(x) = χ[0,1). Let

Ij = ∪2j−1
k=0

[
3k

2j
,
3k + 1

2j

)
.

Then φj = χIj , whose range contains only 0 and 1. It is obvious that
φj(x) is not convergent to φ(x).

We now prove a convergence theorem for the cascade algorithm
(3.1).

Theorem 8.3.1. Let (φj) be the sequence generated by the cascade
algorithm (3.1) with φ0 ∈ C. Assume 1 is a simple eigenvalue of T0 and
T1, and the modulus of other eigenvalues of T0 and T1 are less than 1.
Then {φj} uniformly converges to a function φ ∈ C.

Proof. Let

Φj(x) =
(
φj(x), · · · , φj(x+N − 1)

)T
, x ∈ [0, 1]

and e = (1, · · · , 1)T . Then eTΦj(x) =
∑

k φ
j(x − k) = 1. By Lemma

8.3.1, we have

eT (Φn(x)− Φm(x)) = 0, for all x ∈ [0, 1], n,m ∈ N.(3.10)

We denote the orthogonal complement space of e in RN by E. By
(3.10),

Φn(x)− Φm(x) ∈ E, for all x ∈ [0, 1].

Write

A = max(||T0||E, ||T1||E).

Since 1 is a simple eigenvalue of T0 and T1, and the modulus of other
eigenvalues of T0 and T1 are less than 1, we have A < 1, which yields

||Φj+1(x)− Φj(x)||E
≤ ‖Td1(x) · · ·Tdj(x)||E||Φ1(τ jx)− Φ0(τ jx)||E
≤ CAj , for all x ∈ [0, 1]

where

C = max
x∈[0,1]

||Φ1(x)− Φ0(x)||E
≤ max

x∈[0,N ]

(|φ1(x)|+ |φ0(x)|) .
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Hence (Φn(x)) is a Cauchy sequence that uniformly converges to a
vector-valued function Φ(x) on [0, 1]. Hence, there is a continuous func-
tion φ such that

lim
n→∞

max
x∈[0,N ]

|φn(x)− φ(x)| = 0.

Since for any j, φj ∈ C, then φ ∈ C. The theorem is proved. �
Example 8.3.4. We apply Theorem 8.3.1 to study the convergence

of the cascade algorithm for Daubechies scaling function φ2. Recall that
we have

T0 =
1

4

⎛⎝ 1 +
√

3 0 0

3−√3 3 +
√

3 1 +
√

3

0 1−√3 3−√3

⎞⎠ ,

T1 =
1

4

⎛⎝ 3 +
√

3 1 +
√

3 0

1−√3 3−√3 3 +
√

3

0 0 1−√3

⎞⎠ .

T0 has three eigenvalues 1, 1/2, and 1+
√

3
4

and T1 has three eigenval-

ues 1, 1/2, and 1−√
3

4
. By Theorem 8.3.1, the cascade algorithm for

Daubechies scaling function φ2 is convergent and φ ∈ L2.

Exercises
1. Let φ0 be the hat function N2(x). Let Tm be the cascade al-

gorithm created by the binomial filter of order m = 3 and 4,
respectively. (The binomial filter is the mask of N3 and N4.
When m = 3, h =1

8
(1, 3, 3, 1); when m = 4, h = 1

16
(1, 4, 6, 4, 1).

Run the cascade program 20 times (numerically) to obtain φ20
m

(for m = 3 and 4 respectively.) Then draw the graph of φ20
m .

2. Find the maximum error of maxx∈R |Nm(x)− φ20
m (x)| and L2-

error ||Nm − φ20
m ||, m = 3, 4.

3. Let φ0 be the hat function N2(x). Let TL be the cascade al-
gorithm created by Daubechies filter of order L = 2, 3, and 4,
respectively. (See Table 8.1.) Run the cascade program 20 times
(numerically) to obtain φ20

L (for L = 2, 3, and 4 respectively.)
Then draw the graph of φ20

L .
4. Estimate the error ||φ21

L − φ20
L |||C and ||φ21

L − φ20
L ||2.

5. Prove the following without using Theorem 8.1.1: If φ satisfies
(1.1) and the cascade algorithm with respect to h is convergent,
then supp φ ⊂ [0, N ].

6. Let Nm(x) be the cardinal B-spline of order m. Find the CA-pair
for Nm(x), m = 2, 3, and 4. Then use T̃0 to compute the values
Nm(k), k ∈ Z.
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7. Use the recursion algorithm to compute Nm( k
16

), k ∈ Z, m =
2, 3, 4.

8. Let φL(x) be the Daubechies scaling function of order L. Find
the CA-pair for φL(x), L = 3, 4. Then use T̃0 to compute the
values φL(k), k ∈ Z.

9. Use the values in Example 8.3.2 and Exercise 7, and apply the
recursion algorithm to computer φL( k

32
), k ∈ Z, L = 2, 3, 4. Draw

the graph of φL, L = 2, 3, 4.
10. Prove Lemma 8.3.3.
11. Prove that if the cascade algorithm is convergent to a continuous

function φ, then for any vector v ∈RN−1 with
∑

v(k) = 1,

lim
n→∞

(
T̃0

)n
v =(φ(1), · · · , φ(N − 1))T .

12. Let φj be the function obtained in the cascade algorithm (3.1).
Assume φ0 is the initial function of the algorithm. Prove

φ̂j(ω) =

j∏
k=1

H(e−iω/2
k

)φ̂0(2−jω).

13. Let φ0 = N2. Prove the cascade algorithms for Daubechies scal-
ing functions φ3 and φ4 are uniformly convergent.

4. Wavelet Packets

4.1. The Construction of Wavelet Packets. Assume φ is an
orthonormal MRA generator, and its corresponding orthonormal wavelet
is ψ. Then

φ(x) = 2

N∑
k=0

h(k)φ(2x− k),(4.1)

ψ(x) = 2

N∑
k=0

g(k)φ(2x− k),(4.2)

where g(k) = (−1)khn−k for some odd integer n. Both {ψjk}j,k∈Z and
{φ0k, ψjk | j ≥ 0, k ∈ Z} are orthonormal bases of L2. To find other
orthonormal bases with structures similar to these wavelet bases, we
introduce wavelet packets.

To simplify notation, in what follows, we denote{
µ0(x) = φ(x)
µ1(x) = ψ(x)

.(4.3)



276 8. COMPACTLY SUPPORTED WAVELETS

Correspondingly, we write

p0(z) =
∑

h(k)zk, p1(z) =
∑

g(k)zk.

Then the Fourier transform of (4.1) and (4.2) are

{
µ̂0(ω) = p0(e

−iω/2)µ̂0(ω/2)
µ̂1(ω) = p1(e

−iω/2)µ̂0(ω/2)
.(4.4)

Definition 8.4.1. Let the set of functions {µl}∞l=0 be defined in-
ductively by{

µ̂2n(ω) = p0(e
−iω/2)µ̂n(ω/2)

µ̂2n+1(ω) = p1(e
−iω/2)µ̂n(ω/2)

n = 0, 1, · · · .(4.5)

Then {µl}∞l=0 is called a wavelet packet of L2 relative to φ.

To find the infinite product form of µ̂l, 0 ≤ l < ∞, we assume the
dyadic expansion of a nonnegative integer n is

n =

∞∑
j=1

ej2
j−1, ej ∈ {0, 1}.(4.6)

Then we have the following.

Theorem 8.4.1. Let n be a nonnegative integer and let its dyadic
expansion be given by (4.6). Then the infinite product form of µ̂n is
given by

µ̂n(ω) =

∞∏
j=1

pej(e
−iω/2j ).

Proof. We leave the proof as an exercise. �
We now prove the orthogonality of the integer translates of the

wavelet packet.

Theorem 8.4.2. Let µn be defined by (4.5). Then∫
R
µn(x− j)µn(x− k) dx = δjk(4.7)

and ∫
R
µn(x− j)µn+1(x− k) dx = 0.(4.8)

Proof. We prove (4.7) by mathematical induction. It is clear that
(4.7) is true for n = 0. Assume that (4.7) is true for all k, 0 ≤ k ≤
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n − 1. We prove it is also true for n. In fact, since {µk(x− l)}l∈Z is
orthonormal,

∞∑
l=∞
|µ̂k(ω + 2lπ)|2 = 1.

Let the dyadic expansion of n be given by (4.6). We denote the integer
part of x by [x]. Then

n = 2
[n
2

]
+ e1.

By (4.5), we have

µ̂n(ω) = pe1(e
−iω/2)µ̂[n

2
]

(ω
2

)
.

Note that [n
2
] < n for n ≥ 1. Hence,∫

R
µn(x− j)µn(x− k) dx =

1

2π

∫
R
|µ̂n(ω)|2 ei(k−j)ω dω

=
1

2π

∫
R

∣∣pe1(e−iω/2)∣∣2 ∣∣∣µ̂[n
2
](
ω

2
)
∣∣∣2 ei(k−j)ω dω

=
1

2π

∞∑
k=−∞

∫ 4(k+1)π

4kπ

∣∣pe1(e−iω/2)∣∣2 ∣∣∣µ̂[n
2
](
ω

2
)
∣∣∣2 ei(k−j)ω dω.

Recall that
∣∣pe1(e−iω/2)∣∣2 is a 4π-periodic function, so we have∫

R
µn(x− j)µn(x− k) dx

=
1

2π

∫ 4π

0

∣∣pe1(e−iω/2)∣∣2 ∞∑
k=−∞

∣∣∣µ̂[n
2
](
ω

2
+ 2lπ)

∣∣∣2 ei(k−j)ω dω
=

1

2π

∫ 4π

0

∣∣pe1(e−iω/2)∣∣2 ei(k−j)ω dω
=

1

2π

∫ 2π

0

(∣∣pe1(e−iω/2)∣∣2 +
∣∣pe1(−e−iω/2)∣∣2) ei(k−j)ω dω

=
1

2π

∫ 2π

0

ei(k−j)ω dω = δjk,

which is (4.7). We leave the proof of (4.8) as an exercise. �
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4.2. Orthonormal Bases From Wavelet Packets. We now dis-
cuss how to use a wavelet packet to construct various orthonormal bases
of L2. Let {µn}∞n=0 be the wavelet packet relative to the orthonormal
scaling function φ. Write

µn,j,k(x) = 2j/2µn(2
jx− k).

We define

Un
j = clos2 span {2j/2µn(2jx− k) | k ∈ Z}, j ∈ Z, n ∈ Z+.

Let

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · ·
be the MRA generated by φ and {Wj}j∈Z be the wavelet subspaces of
L2 generated by ψ. Then we have

Wj ⊕ Vj = Vj+1, Wj⊥Vj .
Converting to the new notation, we have{

U0
j = Vj, j ∈ Z,

U1
j = Wj , j ∈ Z,

and

U0
j ⊕ U1

j = U0
j+1, U0

j⊥U1
j .

We can generalize these relationships to the subspaces Un
j , n ∈ Z+,

j ∈ Z.

Theorem 8.4.3. For any n ∈ Z+, we have

Un
j+1 = U2n

j ⊕ U2n+1
j , U2n

j ⊥U2n+1
j , j ∈ Z.

Proof. It is obvious that U2n
j ⊂ Un

j+1 and U2n+1
j ⊂ Un

j+1. The

relation U2n
j ⊥U2n+1

j is a consequence of Theorem 8.4.2. We now prove

Un
j+1 = U2n

j ⊕U2n+1
j . Recall that Un

j+1 is spanned by {µn,j+1,k}k,j∈Z. We

only need to prove that each µn,j+1,k ∈ U2n
j ⊕ U2n+1

j . Recall that

|p0(z)|2 + |p1(z)|2 = 1, z ∈ Γ,

which implies∑
k

(h(l − 2k)h(m− 2k) + g(l− 2k)g(m− 2k)) = δlm.
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Thus, for any m, j ∈ Z,

2
∑
k

(
h(m− 2k)µ2n(2

jx− k) + g(m− 2k)µ2n+1(2
jx− k))

=
∑
k

∑
l

(h(m− 2k)h(l) + g(m− 2k)g(l))µn(2
j+1x− 2k − l)

=
∑
k

∑
l

(h(m− 2k)h(l − 2k) + g(m− 2k)g(l − 2k))µn(2
j+1x− l)

= µn(2
j+1x−m).

The theorem is proved. �

By Theorem 8.4.3, we can split each wavelet subspace in various
ways.

Corollary 8.4.1. For each j = 1, 2, · · · , and each k, 1 ≤ k ≤ j,
we have

Wj = U2k

j−k ⊕ U2k+1
j−k ⊕ · · · ⊕ U2k+1−1

j−k , 1 ≤ k ≤ j.

Proof. We leave the proof as an exercise. �

We now may use wavelet packets to construct various orthonormal
bases of L2, by splitting Wj in different ways. We may choose to split
some Wj spaces less often, or to split some of its subspaces more than
others. To obtain the best bases for an application, we set an objective
functional for the application, then choose the bases minimizing the
objective functional.

Example 8.4.1. Let µ0 be the box function and µ1 be the Haar
wavelet. Then

µ2(x) = χ[0,1/4)∪[1/2,3/4)(x)− χ[1/4,1/2)∪[3/4,1)(x),

µ3(x) = χ[0,1/4)∪[3/4,1)(x)− χ[1/4,3/4)(x),

· · · · · ·
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Consider the space S = span{µ0,3,k | k = 0, · · · , 7}. Using the wavelet
packet relative to µ0, we have

S = span{µi,0,0,µ1,1,k, µ1,2,l | i = 0, 1; k = 0, 1; l = 0, · · · , 3}
= span{µi,2,k | i = 0, 1; k = 0, · · · , 3}
= span{µ0,2,k, µ2,1,i, µ3,1,i | k = 0, · · · , 3; i = 0, 1}
= span{µ0,2,k, µi,0,0, | k = 0, · · · , 3; i = 4, · · · , 7}
= span{µi,0,0, µ1,2,k, | k = 0, · · · , 3, ; i = 0, · · · , 3}
= span{µi,1,k | i = 0, · · ·3; k = 0, 1}
= span{µi,1,k, µl,0,0 | i = 0, 1; k = 0, 1; l = 4, · · · , 7}
= span{µi,1,k, µl,0,0 | i = 2, 3; k = 0, 1; l = 0, · · · , 3}
= span{µl,0,0 | l = 0, · · · , 7}
= · · · · · ·

We now set I1 = [0, 1/8) ∪ [1/4, 3/8) ∪ [1/2, 5/8) ∪ [3/4, 7/8), I2 =
[1/8, 1/4) ∪ 3/8, 1/2), and define f(x) = χI1(x)− χI2(x). Then

f = 2−3/2(µ0,3,0 − µ0,3,1 + µ0,3,2 − µ0,3,3, + µ0,3,4 + µ0,3,6)

=
1

2
(µ1,2,0 + µ1,2,1 + µ1,2,2 + µ1,2,3)−

√
2

2
µ0,1,1

= µ5,0,0 −
√

2

2
µ0,1,1.

If we choose the bases minimizing the number of the non-zero coeffi-
cients in the decomposition of f , then one of these bases is {µ0,1,k, µ1,1,k, µi,0,0 |
k = 0, 1; i = 4, 5, 6, 7}.

Exercises
1. Prove Theorem 8.4.1.
2. Prove (4.8) in Theorem 8.4.2.
3. Prove Corollary 8.4.1.
4. Let {µl}l∈Z be the wavelet packet in Example 8.4.1. Prove that

µ2n =
2n−1∑
k=0

µ1(2
nx− k).

5. Let {µl}l∈Z be the wavelet packet in Example 8.4.1. Assume

f(x) =
∑
k∈Z

ckµ0,3,k(x).

Develop an algorithm to computer the coefficients in the series.
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6. Let φ be the Shannon scaling function defined by φ̂(ω) =
χ[−π,π)(ω). Let µl be defined by µ̂l(ω) = χ[−(l+1)π,−lπ)∪{lπ,(l+1)π)(ω).
Prove that {µl}l∈Z is a wavelet packet relative to φ.

7. Let {µl}l∈Z be the wavelet packet in Exercise 6. Let Ij,l =
[2jlπ, 2j(l + 1)π). Let Λ and Ξ be two subsets of Z. Prove that
if ∪j∈Λ,l∈ΞIj,l = [0,∞), and Ij,l ∩ Ii,k = ∅, then {µj,l,k | j ∈ Λ, l ∈
Ξ, k ∈ Z} is an orthonormal basis of L2.

8. Let φ2 be the Daubechies scaling function of order 2. Set µ0 = φ2.
Assume {µl}l∈Z is the wavelet packet relative to φ2. Draw the
graph of µi, i = 2, 3.

9. Let {µl}l∈Z be the wavelet packet in Exercise 6. Assume

f(x) =
∑
k∈Z

ckµ0,3,k(x).

Develop an algorithm to computer the coefficients in the series

f(x) =

7∑
j=0

∑
k∈Z

cj,kµj,0,k

from (ck)k∈Z .
10. Let {µl}l∈Z be the wavelet packet in Exercise 6. Assume f(x) =

µ2,0,0 + µ4,0,0. Write

f(x) =
∑
k∈Z

ckµ0,0,k +
2∑
j=0

∑
k∈Z

djkµ1,j,k

Find the coefficients (ck), (d
j
k).

5. Compactly Supported Biorthogonal Wavelet Bases

The compactly supported orthonormal wavelets offer effective al-
gorithms to decompose functions into wavelet series and recover them
from their wavelet series. In many applications the symmetry of wavelets
plays an important role. But compactly supported wavelets are asym-
metric, except the Haar wavelet (see [6]). In Section 7.6, a more flexible
structure of wavelet bases was obtained from biorthogonal scaling func-
tions and the corresponding wavelets. In this section we study the con-
struction of compactly supported biorthogonal scaling functions and
wavelets, which are symmetric or antisymmetric. In this section, a
scaling function is always assumed to be compactly supported.
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5.1. Symmetry of the Scaling Function and its Mask. We
first discuss the symmetric biorthogonal scaling functions .

Definition 8.5.1. A real function f(x) ∈ L2 is said to be symmetric
(about x = c) if and only if there is a c ∈ R such that

f(c− x) = f(c+ x), a.e.

A sequence h ={hk}∞k=−∞ is said to be symmetric (about N/2) if hk =
hN−k for all k ∈ Z.

As usual, we writeH(z) =
∑

k∈Z hkz
k, which is called the z-transform

of h in engineering. We say that H(z) is symmetric if h ={hk}∞k=−∞ is
symmetric.

Lemma 8.5.1. A real function f ∈ L2 is symmetric about x = c if
and only if eicωf̂(ω) is a real function. A real sequence h is symmetric
about N/2 if and only if eiωN/2H(e−iω) is a real function.

Proof.We have∫
R
f(c− x)e−iωx dx = e−icω

∫
R
f(c− x)eiω(c−x) dx

= e−icω
∫
R
f(y)e−iωy dy = eicωf̂(ω)

and ∫
R
f(c+ x)e−iωx dx = eicωf̂(ω).

Note that

f(c− x) = f(c+ x) if and only if eicωf̂(ω) = eicωf̂(ω),

where the second equation means that eicωf̂(ω) is a real function. We
now prove the second statement. hk = hN−k if and only if∑

hke
−ikω =

∑
hN−ke−ikω.

Note that ∑
hN−ke−ikω = e−iNω

∑
hN−ke i(N−k)ω

= e−iNω
∑

hke −ikω.

Hence h is symmetric about N/2 if and only if∑
hke

−ikω = e−iNω
∑

hke −ikω,

i.e. if and only if eiNω/2h(e−iω) is a real function. �
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For understanding the importance of symmetry, we introduce the
notion of phase. For f ∈ L2 ∩ L1, we write

f̂(ω) =
∣∣∣f̂(ω)

∣∣∣ eiθ(ω).

The function θ(ω) is called the phase of f. Sometimes, in order to keep
the continuity of θ(ω), we often writer

f̂(ω) = R(ω)eiθ(ω),

where R(ω) is a real function such that θ(ω) is continuous. In this case,
θ(ω) is called a generalized phase of f. If the phase (or generalized
phase) function θ(ω) is linear, then we say that f has a linear (or
generalized linear) phase. Lemma 8.5.1 indicates that a symmetric
function has a generalized linear phase.

In applications, when a function is given in the frequency domain,

most devices can only measure
∣∣∣f̂(ω)

∣∣∣ orR(ω).Without the information

of the phase θ(ω), we cannot recover f from |f̂ | or R, except the phase
is linear or (or generalized linear). We will discuss phase in detail in
Section 9.2.

The following theorem describes the relationship between the sym-
metry of a scaling function and its mask.

Theorem 8.5.1. Let φ be a compactly supported scaling function
satisfying (1.1). Then φ is symmetric if and only if its mask h is
symmetric.

Proof. By the lemma, if h is symmetric, then eiNω/2H(e−iω) is a
real function. We write Hr(e

−iω) = eiNω/2H(e−iω). Since

φ̂(ω) =
∞∏
k=1

H(e−iω/2
k

),

and
∑∞

k=1 e
iNω/2k+1

= eiNω/2, we have

eiNω/2φ̂(ω) =

∞∏
k=1

Hr(e
−iω/2k),

which is a real function. It follows that φ(x) is symmetric about x =
N/2. On the other hand, if φ is symmetric about x = a for an a ∈ R,

then eiaωφ̂(ω) is a real function. Because φ is compactly supported, its

Fourier transform is an entire function. Then H(e−iω/2) = φ̂(ω)

φ̂(ω/2)
holds

almost everywhere. We now have that

eiaω/2H(e−iω/2) =
eiaωφ̂(ω)

eiaω/2φ̂(ω/2)
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is a real function. Hence, amust be an integer and h is symmetric about
a/2. Recall that h(k) = 0, for k > N and k < 0, and h(0)h(N) �= 0.
Hence a must be equal to N. The theorem is proved. �

When h is symmetric, it is convenient to set its symmetric center at
0 or 1.Thus, if in (1.1)N is even, by settingM = N/2, p(k) = h(M+k),
and ϕ(x) = φ(x+M), we have

ϕ(t) = 2
M∑

k=−M
p(k)ϕ(2t− k), p(k) = p(−k),(5.1)

which is an even function. Similarly if, in (1.1), N is odd then by
setting N = 2M + 1, p(k) = h(M + k), and ϕ(x) = φ(x+M), we have

ϕ(t) = 2

M+1∑
k=−M

p(k)ϕ(2t− k), p(k) = p(−k + 1),(5.2)

which is symmetric about x = 1
2
.

5.2. The Construction of Symmetric Biorthogonal Scaling
Functions and Wavelets. We now discuss how to construct symmet-
ric biorthogonal scaling functions and wavelets. Assume φ and φ̃ are
biorthogonal scaling functions. From the discussion above, we see that
we may always assume φ and φ̃ are even or symmetric about x = 1

2
.

Let h̃ and h be the masks of φ̃ and φ respectively. By Theorem 7.6.1,
we have

2
∑

h(k)h̃(k − 2l) = δ0l,(5.3)

which is equivalent to

H(z)H̃(z) +H(−z)H̃(−z) = 1,(5.4)

which is a necessary condition for φ and φ̃ to be biorthonormal scaling
functions.

Similar to the construction of Daubechies scaling functions, we can
construct the biorthogonal scaling function starting from (5.4). Set

H(z)H̃(z) = P (z).

Then P (z) satisfies (1.11). That is

PL(z) =

(
1 + z

2

)L(
1 + z−1

2

)L

ML(z),

where

ML(z) =
L−1∑
k=0

(
L+ k − 1

k

)(
1− z

2

)k (
1− z−1

2

)k

.
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To construct φ and φ̃, we factor P (z) into H(z)H̃(z). Recall that we

want both φ and φ̃ to be even or symmetric about x = 1
2
. By Theorem

8.5.1, we may choose H(z) and H̃(z) as follows.
Let φ be a cardinal B-spline function of order p. Thus, if p is even,

we choose

Hp(z) :=

(
1 + z

2

)r (
1 + z−1

2

)r

, r =
p

2
,

which yields

H̃2L−p(z) =

(
1 + z

2

)L−r (
1 + z−1

2

)L−r
ML(z).

In this case, both Hp(z) and H̃2L−p(z) are symmetric about 0. If p is
odd, we choose

Hp(z) :=

(
1 + z

2

)r (
1 + z−1

2

)r−1

, p = 2r − 1,

which yields

H̃2L−p(z) =

(
1 + z

2

)L−r (
1 + z−1

2

)L−r+1

ML(z).

In this case, Hp(z) is symmetric about 1/2 while H̃2L−p(z) is symmetric

about −1/2. We now set p̃ = 2L − p and H̃p̃,p(z) = H̃2L−p(z). It is
known that Hp(z) is the symbol of φcp. Let the scaling function with

the symbol H̃p̃,p(z) be denoted by φ̃p̃,p, where we assume L is so large

that φ̃p̃,p ∈ L2. Then, φ̃p̃,p is the dual scaling function of φcp. Different
L will create a different version of dual scaling functions of φcp.

We call φcp and φ̃p̃,p the spline biorthogonal scaling functions

of order (p, p̃). Table 8.2 gives the symbols H̃p̃,p(z) of φp̃,p.

Table 8.2: The Symbols of φcp and φ̃p̃,p.
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p Hp p̃ H̃p̃,p

1 1
2
(1 + z) 3 1

16
(−z−2 + z−1 + 8 + 8z + z2 − z3)

5
1

256
(3z−4 − 3z−3 − 22z−2 + 22z−1 + 128
+128z + 22z2 − 22z3 − 3z4 + 3z5)

2 1
4
(z−1 + 2 + z) 2 1

8
(−z−2 + 2z−1 + 6 + 2z − z2)

4
1

128
(3z−4 − 6z−3 − 16z−2 + 38z−1 + 90

+38z − 16z2 − 6z3 + 3z4)

6
1

1024
(−5z−6 + 10z−5 + 34z−4 − 78z−3

−123z−2 + 324z−1 + 700 + · · · )

8

1
215 (35z−8 − 70z−7 − 300z−6 + 670z−5

+1228z−4 − 3126z−3 − 3796z−2

+10718z−1 + 22050 + · · · )
3 1

8
(z−1 + 3 + 3z + z2) 3 1

64
(3z−3 − 9z−2 − 7z−1 + 45 + 45z + · · · )

5
1

512
(−5z−5 + 15z−4 + 19z−3 − 97z−2

−26z−1 + 350 + 350z + · · · )

7

1
214 (35z−7 − 105z−6 − 195z−5 + 865z−4

+363z−3 − 3489z−2 − 307z−1

+11025 + 11025z + · · · )

9

1
217 (−63z−9 + 189z−8 + 469z−7 − 1911z−6

−1308z−5 + 9188z−4 + 1140z−3 − 29676z−2

+190z−1 + 87318 + 87318z + · · · )
Using the method in Section 7.6, we can construct the correspond-

ing biorthogonal wavelets for the pair of φp and φ̃p̃,p. Write

Gp̃,p(z) = zH̃p̃,p(−z),
G̃p(z) = zHp(−z).

We define ψp̃,p by

ψ̂p̃,p(ω) = Gp̃,p(e
−iω/2)φp(ω/2)(5.5)

and define ψ̃p̃,p by ̂̃ψp̃,p(ω) = G̃p(e
−iω/2)̂̃φp̃,p(ω/2).(5.6)

Then ψp̃,p and ψ̃p̃,p are biorthogonal wavelets. They are symmetric or
antisymmetric. It is clear that the scaling function φcp and the wavelet

ψp̃,p are spline functions (but φ̃p̃,p and ψ̃p̃,p are not).

Definition 8.5.2. Let φcp and φ̃p̃,p be the spline biorthogonal scal-
ing functions of order (p, p̃). Then their corresponding biorthogonal

wavelets ψp̃,p and ψ̃p̃,p are called spline biorthogonal wavelets of
order (p, p̃).
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Exercises
1. Assume a real function f ∈ L2 ∩ L1 is antisymmetric, i.e. there

is a c ∈ R, such that f(c− x) = −f(c+ x) a.e. Prove that f has
a generalized linear phase and find its phase function.

2. Prove that if φ ∈ L1 ∩ L2 is an MRA generator, then it cannot
be antisymmetric.

3. A sequence (ak)k∈Z ∈ l1 is said to be antisymmetric if there is an
integer m ∈ Z such that am−k = −ak for all k ∈ Z. Let f ∈ L2 be
a compactly supported symmetric function and (ak)k∈Z ∈ l1 be
an antisymmetric sequence. Prove that the function

∑
akf(x−

k) is antisymmetric.
4. A Laurent polynomial P (z) is called reciprocal if P (1/z) =
zkP (z) for a k ∈ Z. Prove that the coefficient of a reciprocal
Laurent polynomial is symmetric.

5. Assume P (z) is a reciprocal Laurent polynomial. Under what
conditions is P (−z) also reciprocal? Under what condition are
the coefficients of P (−z) antisymmetric?

6. Apply the result in Exercise 7 of Section 8.2 (setting n = 2) to

prove φ̃2,2 ∈ L2.

7. Prove that for even p, ψp̃,p and ψ̃p̃,p are both symmetric, and for
odd p, they are antisymmetric.

8. Obtain the masks for the biorthogonal scaling functions φ̃p̃,p for
(a) p = 4, p̃ = 4.
(b) p = 5, p̃ = 5.

9. Use the cascade algorithm to draw the graphs of the biorthogonal
scaling functions φ̃1,3, φ̃1,5, φ̃2,2, φ̃2,4, φ̃3,7, and φ̃4,4.

10. Use the results in Exercise 9 to draw the graphs of ψ̃1,3, ψ̃1,5, ψ̃2,2, ψ̃2,4, ψ̃3,7,

and ψ̃4,4.
11. Based on the graphs of the central cardinal B-splines φc1, φ

c
2, φ

c
3,

and φc4, draw the graphs of ψ1,3, ψ1,5, ψ2,2, ψ2,4, ψ3,7, and ψ4,4.
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CHAPTER 9

Wavelets in Signal Processing

In this chapter, we introduce an application of wavelets in signal process-
ing: How to use wavelet bases to transform signals. Signals exist every-
where in our world. Speeches, images, geological data, even records of
stock price fluctuations, can be considered as signals. In our contem-
porary scientific and technological activity, we often need to transmit
signals (as in telecommunications), analyze them (for satellite or med-
ical images, or for stock price fluctuations), and compress or synthesize
them (as in computer vision and visualization). These tasks are the
objectives of signal processing. As Yves Meyer mentions [21]: “The ob-
jectives of signal processing are to analyze accurately, code efficiently,
transmit rapidly, and then to reconstruct carefully at the receiver the
delicate oscillations or fluctuations of this function of time. This is
important because all of the information contained in the signal is ef-
fectively present and hidden in the complicated arabesques appearing
in its graphical representation.” To accomplish these tasks, we need to
transform signals (also called code/decode) into a particular form for a
certain task. Fast wavelet transformation provides effective algorithms
for signal coding and decoding.

1. Signals

In this section, we introduce the basic concepts of signals. Mathe-
matically, a one-dimensional signal appears as a function of time, say
x(t). If the time variable is changed continuously, then the signal x(t) is
called an analog signal or a continuous signal. If the time variable
runs through a discrete set, then x(t) is called a discrete signal, or
a digital signal, which is a numerical representation of an analog
signal. (In a strict sense, a digital signal means a quantized discrete
signal, whose range is a finite number set. However, we often do not
distinguish digital signals from discrete signals since the discrete signals
are more conducive to a mathematical framework.). We often use the
short term signals for discrete digitals because in signal processing,
we mainly deal with discrete digitals.

289
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1.1. Analog Signals. Let x(t) be an analog signal. If x ∈ L2,
then x is called an analog signal with finite energy and ‖x‖ is called

the energy of x. If x ∈ L̃2
2σ, then x is called a periodic analog

signal and its energy is ||x||L̃2
2σ
. In this chapter we mainly discuss

the analog signals in L2. The term “function” is often used to stand
for “analog signal.” Oscillations or fluctuations are very important fea-
ture of analog signals. We use frequency to characterize this feature.
The term “frequency” originally comes from the study of waves. It is
known that the frequency of the cosine wave

c(t) = A cos(2πft− θ)(1.1)

is f (which is the reciprocal of the period). If the unit of time t
in (1.1) is seconds, then we say that the frequency of c(t) is f Hz.
The circular frequency of c(t) is 2πf rad/s. The frequency of a
complex-valued wave is defined in the same way. For example, the
complex simple harmonic oscillator eiωt has frequency ω

2π
Hz and its

circular frequency is ω rad/s. If an analog signal x is a combina-
tion of several simple harmonic motions with different frequencies, say
x(t) =

∑n
k=0Ak cos(kωt− θk), then x has a frequency spectrum which

covers the frequency set {kω
2π
| k = 0, 1, · · · , n}, where the highest fre-

quency is nω
2π
. In general, if x ∈ L̃2

2σ, then the frequency spectrum of x

is exhibited by its Fourier series
∑∞

k=−∞ cke
ik π
σ
t. If a function x(t) ∈ L2,

then its Fourier transform x̂(ω) provides the frequency information of

x. Note that, for a real valued function x(t), x̂(−ω) = x̂(ω). Hence, a
real-valued function is uniquely determined by x̂(ω), ω ≥ 0.

Frequency information is important in analyzing an analog signal.
In Chapter 6, we saw how to use Fourier series to analyze periodic
functions and how to use the Fourier transform to analyze the functions
on R. An important principle in frequency analysis is: High frequency
indicates violent oscillations or fluctuations. For example, we can use
this principle to analyze noise. An analog signal often carries noise.
Let x(t) be a received or observed analog signal. It can be written as

x(t) = y(t) + n(t)

where y(t) is the proper function and n(t) is the noise. Noise is
broadly defined as an additive contamination. It is not predictable.
Hence we often use the term “random noise” to describe an unknown
contamination added on a function. Intuitively, noise has violent fluc-
tuations, i.e. its frequency spectrum occurs in the high frequency re-
gion. Removing high frequency components from a function results in
a smooth function with less noise.
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1.2. Approximation. Changing an analog signal to a discrete
signal is called discretization. A popular way to discretize an ana-
log signal is sampling. In many applications, the analog signals are
continuous functions. Let x ∈ L2 be continuous. Then an observer
records a value of an analog signal x(t) after a time step T to obtain a
discrete signal {x(nT )}n∈Z. This method is called sampling. We call
T the sampling period, call νs = 1

T
the sampling rate (or sampling

frequency), and call {x(nT )}n∈Z the sampling data (of the signal x).
If x(t) can be completely recovered from its sampling data {x(nT )}n∈Z,
then the sampling is called a lossless sampling, and x is called well

sampled. Otherwise it is called a lossy sampling and x is said to be
under-sampled. If {x(nT )}n∈Z has a proper subsequence which forms
lossless sampling data of x, then we say x is over-sampled .

In general, a function in L2 cannot be well sampled. Only functions
in some subspaces of L2 can. Among these subspaces, shift invariant
spaces play an important role.

Definition 9.1.1. A subspace Uh ⊂ L2 is called a (h-)shift
invariant space, if there is an h > 0 such that f ∈ Uh if and only if
f(·+ h) ∈ Uh.

In general, we can create shift-invariant spaces as follows. Let φ ∈
L2 be a function such that

∑
ckφ(t−k) is convergent almost everywhere

for any (ck) ∈ l2. Let

U = span L2{φ(t− k) | k ∈ Z}.(1.2)

Then U is a 1-shift invariant space, and

Uh =

{
f | f

(
t

h

)
∈ U

}
is an h-shift invariant space. For x ∈ L2, we denote its orthogonal
projection on Uh by xh. We have the following.

Theorem 9.1.1. If φ in (1.2) is an MRA generator, then limh→0 ||x−
xh|| = 0.

Proof. Let {Vn}n∈Z be the MRA generated by φ and let φ∗ be the
orthonormal scaling function in V0. Then for any y ∈ L2,

y2−j(t) =
∑
〈y, φ∗

j,k〉φ∗
j,k(t)

is the orthogonal projection of y on Vj . Since {Vn}n∈Z is an MRA, for
ε > 0, there is a J > 0 such that

||y(t)− y2−j(t)|| < ε, j ≥ J.
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Let h > 0 satisfy h ≤ 2−J . Let j ∈ N and c > 0 be numbers such
that c = 2−j

h
and 1 ≤ 2−j

h
< 2. Hence j ≥ J. For x ∈ L2, we define

y(t) = x(ct). Let

x̄h(t) =
∑
〈y, φ∗

j,k〉φ∗
j,k(t/c) = y2−j (t/c).

Then x̄h ∈ Uh, and for h ≤ 2−J ,

||x(t)− xh(t)|| ≤ ||x(t)− x̄h(t)|| = ||y(t/c)− y2−j(t/c)|| ≤
√

2ε.

The theorem is proved. �
It is clear that, if {φ(x− k)}k∈Z is an orthonormal basis of U, then{

1√
h
φ( t

h
− k)

}
k∈Z

is an orthonormal basis of Uh and

xh(t) =
∑
k

1

h

〈
x, φ

( ·
h
− k

)〉
φ

(
t

h
− k

)
is an approximation of x as h → 0. Similarly, if φ∗ ∈ U is a dual
function of φ, then {

1√
h
φ

(
t

h
− k

)}
k∈Z

and {
1√
h
φ∗
(
t

h
− k

)}
k∈Z

are biorthonormal bases in Uh and

xh(t) =
∑
k

1

h

〈
x, φ∗

( ·
h
− k

)〉
φ

(
t

h
− k

)
is an approximation of x as h→ 0.

Speeches and sounds are important signals. They can be considered
as frequency bounded signals, which are defined as follows.

Definition 9.1.2. If the Fourier transform of a signal is com-
pactly supported, then the signal is called a frequency bounded signal.
Let x ∈ L2 be a frequency bounded signal such that

ω0 = max{|ω| | ω ∈ supp x̂}.
Then ω0

2π
is called the highest frequency of x.

It is clear that the space

Sσ = {f ∈ L2 | f̂ ∈ [−σπ, σπ]}
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is a shift invariant space (for any h > 0). For x ∈ L2, let xσ be the
orthogonal projection of x on Sσ. Then x̂σ(ω) = x̂(ω)χ[−σπ,σπ](ω) and

lim
σ→∞

||x− xσ|| = 0.

Hence, x ∈ L2 can be approximated by frequency bounded functions.

Example 9.1.1. Let

sinc(t) :=
sin πt

πt
,

where sinc(0) = 1. It is an entire function on R. The Fourier transform
of sinc(t) is

ŝinc(ω) =

{
1, |ω| ≤ π,
0, |ω| > π.

(1.3)

Hence, sinc(t) is a frequency bounded function with highest frequency
1
2
.

1.3. Sampling Theorems. Sampling theorems state the well-sampling
conditions for analog signals. The following theorem is for frequency
bounded functions.

Theorem 9.1.2. [Shannon Sampling Theorem] Let x ∈ L2 be a
frequency bounded analog signal, which satisfies

x̂(ω) = 0, |ω| > πσ, σ > 0.(1.4)

Write T = 1
σ
. Then

x(t) =
∑
n

x(nT )
sin πσ(t− nT )

πσ(t− nT )
=
∑
n

x(nT )sinc (σ(t− nT )) .(1.5)

Proof.Let x̂p(ω) be the 2πσ-periodization of x̂(ω). Then x̂p ∈ L̃2
2πσ

and x̂p can be expanded as a Fourier series

x̂p(ω) =
∑

Cne
−inTω,

where

Cn =
1

2πσ

∫ πσ

−πσ
x̂p(ω)einTω dω

=
1

2πσ

∫ ∞

−∞
x̂(ω)einTω dω

=
1

σ
x(nT ).
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Therefore, we have

x̂(ω) =
1

σ

∑
x(nT )e−inTω, |ω| ≤ πσ.(1.6)

Hence,

x(t) =
1

2π

∫
R
x̂(ω)eitω dω =

∑
n

Cn

(
1

2π

∫ πσ

−πσ
e−inTωeitω dω

)
=
∑
n

Cn
sin πσ(t− nT )

π(t− nT )
=
∑
n

x(nT ) sinc (σ(t− nT )) .

The theorem is proved. �

Let σ̄ be the smallest number such that (1.4) holds. Then the
number σ̄ is called the Nyquist rate of x (or the Nyquist frequency
of x). Since the highest frequency of x is

ν =
πσ̄

2π
=
σ̄

2
,

the Nyquist rate is twice of the signal’s highest frequency. The Shannon
Sampling Theorem confirms the following.

Corollary 9.1.1. In order to get a lossless sampling for a fre-
quency bounded signal, the sampling rate must be equal to or greater
than the Nyquist rate.

Example 9.1.2. If we want to sample a speech signal with the
highest frequency 4 kHz without distortion, then the sampling rate is
at least 8 kHz. High quality music signals are assumed to have highest
frequency 22.05 kHz, then the sampling rate for them has to be at least
44.1 kHz.

Note that sinc(t) is a Lagrangian interpolation function in the space
S1, that is sinc(k) = δ0,k. Then (1.5) can be considered as a Lagrangian
interpolation formula for functions in Sσ. From the interpolation point
of view, we can generalize the Shannon sampling theorem to other shift
invariant spaces. Recall that (see Section 7.5) a function φ is said to

satisfy the interpolation condition if
∑

k∈Z φ̂(ω+2kπ) �= 0 for all ω ∈ R.

In this case, the function φ̃ defined by

̂̃φ(ω) =
φ̂(ω)∑

k∈Z φ̂(ω + 2kπ)
(1.7)

is a Lagrangian interpolation function in U = spanL2{φ(t−k)}k∈Z. The
general sampling theorem is the following.
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Theorem 9.1.3. Assume φ satisfies the interpolation condition.
Let U = spanL2{φ(t− k)}k∈Z and Uσ = {f | f( ·

σ
) ∈ U}. Then for any

function f ∈ Uσ, we have

f(t) =
∑
k∈Z

f(k/σ)φ̃(σt− k),(1.8)

where φ̃ is the Lagrangian interpolation function defined by (1.7).

Proof. We leave the proof as an exercise. �
Later, we call φ (or φ̃) the underlying function for the sampling.

1.4. Discrete Signals. A discrete signal (or shortly, a signal)
is a number sequence. In this chapter we assume any signal x =
(x(n))∞−∞∈l2, which is also called a finite energy signal. Then ‖x‖2
is called the energy of x. If x has finite nonzero terms, then it is called
a finite signal. Most signals are sampling data of analog signals.

To recover an analog signal from its sampling data, we need to know
the sampling period and the underlying function. For example, assume
the signal x is the sampling data of a function f(t) in the space Uh
generated by φ. Let φ̃ be the Lagrangian interpolation function in U.
Then x represents the function

f(t) =
∑

x(n)φ̃

(
t

h
− n

)
∈ Uh.(1.9)

In applications, usually the underlying function φ̃ is unknown. Hence,
we have to guess φ̃ according to known properties of x(t). For example,
if x is sample data of a speech signal, then x(t) can be considered as a
frequency bounded function.

Definition 9.1.3. The z-transform of a signal x is the Laurent
series

X(z) =
∑
n∈Z

x(n)zn.

The math reduced notation (or Fourier form) of the z-transform
of x is

X(ω) =
∑
n

x(n)e−inω, z = e−iω,

which is also called the symbol of x.

By (1.9), when the sampling period h and the underlying function
φ are given, we can obtain the Fourier transform of f(t) by the formula

f̂(ω) = hX(hω)
̂̃
φ(hω).(1.10)
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Example 9.1.3. If x is the sampling data of a frequency bounded
analog signal x with supp x̂(ω) ⊂ [−π, π], then x represents the func-
tion

x(t) =
∑
n

x(n) sinc (x− n) .(1.11)

It follows that

x̂(ω) = X(ω), |ω| ≤ π.(1.12)

By (1.12), the frequency property of the signal x(t) is totally de-
termined by the z-transform of x. It is reasonable to use X(ω) to
characterize the frequency property of the signal x.

Exercises
1. Let I = [nσπ, (n + 1)σπ] ∪ [−(n + 1)σπ,−nσπ], σ > 0. Assume

the Fourier transform of the signal w(t) is ŵ(ω) with supp ŵ ⊂
I. Find the formula that represents w(t) by its sampling data
{w(n/σ)}n∈Z.

2. Let Iσ = [−σπ, σπ] and fσ be defined by f̂σ(ω) = f̂(ω)χIσ . Write
hσ(t) = σ sinc(σt). Prove that fσ(t) = (f ∗ hσ) (t).

3. Let the Fourier transform of x(t) be x̂(ω) = cos(ω)χ[−π,π](ω).
Derive the formula for x(n).

4. Let the Fourier transform of x(t) be x̂(ω) = |ω|χ[−π,π](ω). Derive
the formula for x(n).

5. Prove Theorem 9.1.3.
6. Assume the digital signal f = (f(n))n∈Z is the sampling data of

the function f ∈ L2 which satisfies the condition for the Pois-
son Summation Formula. Let X(z) =

∑
k∈Z f(n)zn be the z-

transform of f . Prove that

X(e−iω) =
∑
k∈Z

f̂(ω + 2kπ).

7. Let the z-transform of a signal x be H(z) =
∑
x(n)zn. As-

sume the z-transform of the signal y is H(z2). Represent y(n)
by (x(j))j∈Z.

8. Let x(n) = f(n/2j), j ≥ 0, and the z-transform of x be X(z).
Find the z-transform of {f(n)}.

9. Prove formula (1.10).
10. Let x be the sampling data (with sampling period 1) of a fre-

quency bounded function x with supp x̂ ⊂ [−π, π]. Prove that
||x||2 = ||x(t)||.

11. Let x be the sampling data (with sampling rate σ) of a frequency
bounded function x with supp x̂ ⊂ [−σπ, σπ]. What is the rela-
tion of ||x||2 to ||x(t)||?
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12. Assume x is sampling data of an analog function x(t). If x is a
finite signal, then is x(t) compactly supported?

13. Let the continuous function x(t) be compactly supported. Is
there a finite signal x that can completely represent x(t)?

14. List a condition so that a compactly supported function can be
lossless sampled by a finite signal x.

2. Filters

To analyze, code, reconstruct signals and so on, spacial operators
on signals are needed. Among these operators, a filter is the most
important one. In this section, we introduce linear filters, which are
convolution operators on l2. We first introduce the natural basis in l2.
Let δk = (δk,j)j∈Z, which vanishes everywhere except that the kth term
has value 1. Then {δk}k∈Z is an orthonormal basis of l2. Any x ∈ l2

can be represented as

x =
∑
k∈Z

x(k)δk.(2.1)

In signal processing, δk is called a unit impulse at time k.

Definition 9.2.1. An operator S on l2 is called a shift operator

(also called a time-delay operator) if

(Sx)(n) = x(n− 1), x ∈l2,
an operator T on l2 is called time-invariant if

ST = TS,

and an operator T on l2 is called a linear operator if for any x ∈ l2,
Tx =

∑
k∈Z

x(k)Tδk.(2.2)

A linear and time-invariant operator is called a filter. If F is a filter,
then Fx is called the response of x.

Example 9.2.1. Let T be the operator defined by

(Tx) (n) = [x(n)]2.

Then T is a time-invariant operator, but not a linear one. Let L be
the operator such that

(Lx) (n) = x(2n).

Then L is a linear operator, but not time-invariant.
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Definition 9.2.2. The (discrete) convolution of two sequences
h and x is a sequence h ∗ x given by

(h ∗ x)(n) =
∑
k

h(k)x(n− k), n ∈ Z,(2.3)

provided the series in (2.3) is convergent for each n ∈ Z.

The following theorem identifies the filter with a sequence.

Theorem 9.2.1. H is a filter if and only if there is a sequence h
such that Hx = h ∗ x.

Proof.We first prove that the convolution

y = h ∗ x, for all x ∈ l2,
defines a filter H : y = Hx. It is clear that Hδk(n) =

∑
k h(k)δk(n −

k) = h(n− k). Hence,

Hx(n) =
∑
k

h(k)x(n− k) =
∑
k

h(n− k)x(k)

=
∑
k

x(k)Hδk(n), for all n ∈ Z.

Hence H is linear. We also have

(HSx) (n) =
∑
k

h(k)x(n− k − 1) =
∑
k

h(k − 1)x(n− k)

= (SHx) (n),

which implies that H is time-invariant. Hence H is a filter and Hx = h ∗ x.
We now prove the converse. Assume H is a filter. Let h = Hδ. We
claim that

Hx = h ∗ x, for all x ∈l.
In fact, we have

x =
∑
k

x(k)Skδ.

Since H is linear and time-invariant,

Hx =
∑
k

x(k)HSkδ =
∑
k

x(k)SkHδ =
∑
k

x(k)Skh.

Therefore

(Hx) (n) =
∑
k

x(k)
(
Skh

)
(n) =

∑
k

x(k)h(n− k),

i.e. Hx = h ∗ x. �
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Since a filter can be identified with a sequence, we shall directly
call h a filter. From the computational point of view, finite filters are
desirable.

Definition 9.2.3. If h is finite, then h is called a finite impulse

response filter (FIR filter), otherwise it is called an infinite

impulse response filter (IIR filter). A filter h with h(n) = 0,
for all n < 0, is called a causal filter.

The following lemma gives a sufficient condition for filters on the
space l2.

Lemma 9.2.1. If h ∈l1, then it is a filter from l2to l2, and for
x ∈l2,

||h ∗ x||2 ≤ ||h||1||x||2.
Proof.We leave the proof as an exercise. �

Example 9.2.2. The moving average filter, h0, is defined by

h0(0) = 1/2, h0(1) = 1/2,

h0(k) = 0, k �= 0, 1.

Let

x = (· · · , 0, 1, 2, 1, 0, · · · ),(2.4)

and y = h0 ∗ x. Then y(n) = 1
2
(x(n) + x(n− 1)) and

y =
1

2
(· · · , 0, 1, 3, 3, 1, · · · ).

Example 9.2.3. The moving difference filter, h1, is defined
by

h1(0) = 1/2, h1(1) = −1/2,

h1(k) = 0, k �= 0, 1.

Let x be the signal in (2.4) and z = h1∗x. Then z(n) = 1
2
(x(n)−x(n−

1)) and

z =
1

2
(· · · , 0, 1, 1,−1,−1, · · · ).

The Identity filter is the sequence δ since δ ∗ x = x. The shift
operator S is also a filter, which is called the shift filter . We have
Sx = δ1 ∗ x.
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2.1. Representing Filters in the Time Domain. In the time
domain, a filter is represented as a bi-infinite Toeplitz matrix.

Definition 9.2.4. A bi-infinite matrix Th is called a Toeplitz

matrix relative to a sequence h if

Th =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · · · · · · · · · · · · · · · · ·
· · · h(0) h(1) · · · · · · · · · · · ·
· · · h(1) h(0) h(−1) · · · · · · · · ·
· · · · · · h(1) h(0) h(−1) · · · · · ·
· · · · · · · · · h(1) h(0) h(−1) · · ·
· · · · · · · · · · · · h(1) h(0) · · ·
· · · · · · · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Let x = (· · · , x(−1), x(0), x(1), · · · )T . Then h ∗ x = Thx.

Example 9.2.4. The moving average filter h0 performs

y(n) =
1

2
(x(n) + x(n− 1)).

It can be represented by⎛⎜⎜⎜⎜⎜⎝
...

y(−1)
y(0)
y(1)

...

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
...

...
...

...
...

...
· · · 1/2 1/2 0 · · · 0
· · · 0 1/2 1/2 · · · 0
· · · · · · 0 1/2 1/2 0
...

...
...

...
...

...

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
...

x(−1)
x(0)
x(1)

...

⎞⎟⎟⎟⎟⎟⎠ .

Similarly, the moving differences filter h1 performs z(n) = 1
2
(x(n) −

x(n− 1)). It can be represented by⎛⎜⎜⎜⎜⎜⎝
...

z(−1)
z(0)
z(1)

...

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
...

...
...

...
...

...
· · · −1/2 1/2 0 · · · · · ·
· · · 0 −1/2 1/2 0 · · ·
· · · · · · 0 −1/2 1/2 · · ·
...

...
...

...
...

...

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
...

x(−1)
x(0)
x(1)

...

⎞⎟⎟⎟⎟⎟⎠ .

2.2. Filters in the Frequency Domain. Using the z-transform
of signals in l2, we can obtain the representation of filters in the fre-
quency domain. The following Discrete Convolution Theorem plays
the central role.

Theorem 9.2.2. [Discrete Convolution Theorem] Let h be a filter
and

y = h ∗ x.
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Then

Y (z) = H(z)X(z),

or, in the math reduced notation,

Y(ω) = H(ω)X(ω).(2.5)

Proof.We leave the proof as an exercise. �
By Lemma 9.2.1, we know that h ∈l1 is a filter on l2. But there exist

filters on l2 which are not sequences in l1. From the discrete convolution
theorem, we can characterize filters on l2.

Theorem 9.2.3. A filter h is a bounded operator from l2 to l2 if
and only if H(ω) ∈ L̃∞.

Proof.Note that ‖x‖2 = ‖X(ω)‖L̃2 and ‖y‖2 = ‖Y(ω)‖L̃2. Hence,
to prove the theorem we only need to prove the following. For any
X(ω) ∈ L̃2, H(ω)X(ω) ∈ L̃2 if only if H(ω) ∈ L̃∞. We now assume
X(ω) ∈ L̃2 and H(ω) ∈ L̃∞. Then

‖H(ω)X(ω)‖L̃2 ≤ ‖H(ω)‖L̃∞‖X(ω)‖L̃2,

which implies that H(ω)X(ω) ∈ L̃2. Conversely, assume X(ω) and H(ω)X(ω)

both are in L̃2. If H(ω) /∈ L̃∞, then there is a strictly increasing sequence
(nk)

∞
k=1, nk ∈ N, such that the set

Ek = {ω ∈ [−π, π] | nk ≤ |H(ω)| < nk+1}
has positive measure for each k. Let mk be the Lebesgue measure of
Ek. We define a 2π-periodic function X(ω) as:

X(ω) =

{ 1
k
√
mk
, ω ∈ Ek, k ∈ N,

0, otherwise.

Since ∫ π

−π
|X(ω)|2 dω =

∞∑
k=1

∫
Ek

1

k2mk
dω =

∞∑
k=1

1

k2
,

we can claim X(ω) ∈ L̃2. However, since nk ≥ k,∫ π

−π
|H(ω)X(ω)|2 dω ≥

∞∑
k=1

∫
Ek

n2
k

k2mk
dω =

∞∑
k=1

n2
k

k2
=∞,

which implies that H(ω)X(ω) /∈ L̃2. Therefore, X(ω) must be in L̃2. The
theorem is proved. �
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Example 9.2.5. Let H0 be the moving average filter and x be the
signal in Example 9.2.2. Then

H0(z) =
1

2
(1 + z), X(z) = 1 + 2z + z2,

and

Y (z) = H0(z)X(z) =
1

2
(1 + 3z + 3z2 + z3),

which yields

y =
1

2
(· · · , 0, 1, 3, 3, 1, · · · ).

Let H1 be the moving difference filter. Then

H1(z) =
1

2
(1− z)

and

Z(z) = H1(z)X(z) =
1

2
(1 + z − z2 − z3),

which yields

z =
1

2
(· · · , 0, 1, 1,−1,−1, · · · ).

2.3. Lowpass Filters and Highpass Filters. Filters are often
used to extract required frequency components from signals. For ex-
ample, high frequency components of a signal usually contain the noise
and the fluctuations, which often have to be removed from the sig-
nal. We use lowpass filters and highpass filters to decompose signals
by their frequency bands. A lowpass filter attenuates high frequency
components of a signal while a highpass filter does the opposite job.
Since a signal represents a frequency bounded signal with the bound
|ω| ≤ π, then its low frequency region is centered at the origin and the
high frequency region is near π. For example, we can divide the fre-
quency domain into two regions: |ω| ≤ π/2 and π/2 < |ω| ≤ π, where
the former is the low frequency region and the latter is the high fre-
quency region. Then the simplest pair of lowpass and highpass filters
is defined as follows.

Definition 9.2.5. The ideal lowpass filter h =(h(k)) is de-
fined by

H(ω) =
∑

h(k)eikω =

{
1, |ω| < π/2,
0, π/2 ≤ |ω| ≤ π,

(2.6)
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and the ideal highpass filter g = (g(k)) is defined by

G(ω) =
∑

g(k)eikω =

{
0, |ω| < π/2,
1, π/2 ≤ |ω| ≤ π.

By the Shannon Sampling Theorem 9.1.2, the coefficients of the
ideal lowpass filter are sampling data of 1

2
sinc(πt

2
), i.e.

h(k) =
1

2
sinc

(
πk

2

)
=

⎧⎨⎩
1
2
, k = 0,

(−1)m

kπ
, k = 2m+ 1, m ∈ Z,

0, k is even
,

which decays very slowly as |k| → ∞, and so does g(k). Hence ideal
filters are not practical. By Fourier analysis, the slow decay of the ideal
filters is caused by the discontinuity of H(ω) and G(ω). To design fast
decay lowpass filters and highpass filters, we replace H(ω) and G(ω) by
smooth symbols.

Let H be a filter with a continuous symbol H(ω). If H is a lowpass
filter, then it is assumed that H(0) �= 0 and H(π) = 0. It is also clear that
if H is a lowpass filter, then the filter G with the symbol G(ω) = H(ω+π)
is a high filter, since the graph of |G(ω)| is the shift of |H(ω)| by π.

Example 9.2.6. The moving average filter h0 is a lowpass filter,
while the moving difference filter h1 is a highpass filter. Assume the
signal x is the sampling data of a differentiable function f(t) with the
time step h : x(n) = f(hn). When h is very small, 2

h
(h1 ∗ x) is the

approximation of the sampling data of f ′(t) and
∑n

k=0 h (h0∗x) is the

approximation of
∫ n/h
0

f(t) dt.

Example 9.2.7. Let hid be the ideal lowpass filter and x be the
sampling data of a function f(t) with the time step T : x(n) = f(Tn).
Assume f is a bounded frequency signal with the highest frequency π

T
.

Then x ∗ hid represents the low frequency component of f with the
Fourier transform f̂χ[− π

2T
, π
2T

].

Example 9.2.8. The lowpass filter Hn = 1
n

∑n−1
k=0 Sk is used to

obtain averages of n terms in a signal. Assume x is the record of the
daily prices of a stock. Then (H50)x is the data of 50-day averages and
(H200)x is the data of 200-day averages for the stock. They indicate
the mid-term and long-term tendency of the stock.

The following theorem is an important result in wavelet analysis.

Theorem 9.2.4. Let φ generate an MRA {Vn}n and ψ be any
wavelet in W0 :

ψ(t) = 2
∑

g(k)φ(2t− k).
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Then the mask of φ is a lowpass filter and the mask of ψ : g = (g(k))
is a highpass filter.

Proof. We leave the proof as an exercise. �

2.4. Dual Filters.

Definition 9.2.6. Let H be a filter from l2 to l2. A filter HT is
called the dual filter of H if

〈Hx,y〉 = 〈x,HTy〉, for all x,y ∈l2.
Theorem 9.2.5. Assume the matrix form and the sequence form

of a filter H is Th and h = (h(k)) respectively. Then the matrix form

and the sequence form of its dual filter HT is (Th)
T and hT=(h(−k))

respectively. Thus, (
hT∗x) (n)=

∑
k∈z

h(k − n)x(k)(2.7)

and the z-transform of HT is H(z).

Proof. We leave the proof as an exercise. �
It is also clear that if H is a lowpass (or highpass) filter, so is its

dual.

2.5. Magnitude and Phase. In Chapter 8, we introduced the
phase of a function in L2 ∩ L1. We now define phases for signals and
filters.

Definition 9.2.7. Let x ∈ l1 be a discrete signal and X(z) =∑
X(n)zn be its symbol. Write

X(e−iω) =
∣∣Xx(e−iω)∣∣ eiφ(ω).

Then φ(ω) is called the phase of x. Particularly, for a filter H, we
write

H(ω) = |H(ω)|e−iφ(ω).(2.8)

Then |H(ω)| is called the magnitude of H and φ(ω) is called the phase

of H. If φ(ω) is linear, then we say x has a linear phase .

The phase of H is not unique, they are congruent with a 2kπ con-
stant. To get the uniqueness of φ(ω), we usually require a continuous
phase function φ(ω). However, in some cases, this requirement cannot
be satisfied even by a continuous H(ω). For example, let H(ω) = ω.
Then

H(ω) = |ω| e−iφ(ω),
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where

φ(ω) =

{
π, x < 0
0, x ≥ 0,

which has a jump π at x = 0. It is easy to see that φ(ω) always has
a jump π at ω0 as long as H(ω) is real in the neighborhood of ω0 and
H(ω) changes its sign as ω goes across ω0. Hence, the phase function
φ(ω) in (2.8) may have a discontinuity. To avoid it, we introduce the
generalized phase function as follows.

Definition 9.2.8. Let x ∈ l1 be a discrete signal and x(z) =∑
x(n)zn be its symbol. Write

x(e−iω) = R(ω)eiφ(ω)

where R(ω) = ±|H(ω)| and the sign ± is so chosen that φ(ω) is contin-
uous. Then φ(ω) is called the generalized phase of x. If the gener-
alized phase is a linear function, then we say that x has generalized
linear phase .

Theorem 9.2.6. If a filter h is symmetric or antisymmetric with
respect to an integer or half-integer, i.e. h(k) = h(N − k) or h(k) =
−h(N − k) for some N ∈ Z, then it has a generalized linear phase.

Proof.Assume h(k) = h(N − k) for some N ∈ Z. Then, if N = 2n,
we have

h(n− k) = h(n + k) := c(k)

and

H(ω) =
∑

h(k)e−ikω = e−inω
∑

h(k)ei(n−k)ω

= e−inω
(
h(n) +

−1∑
l=−∞

h(n− l)eilω +
∞∑
l=1

h(n− l)eilω
)

= e−inω
(
h(n) +

∞∑
l=1

h(n + l)e−ilω +

∞∑
l=1

h(n− l)eilω
)

= e−inω
(
h(n) +

∞∑
l=1

h(n + l)e−ilω +

∞∑
l=1

h(n− l)eilω
)

= e−inω
(
h(n) + 2

∞∑
l=1

cl cos lω

)
.

Since the function h(n)+2
∑∞

l=1 cl cos lω is real, h has generalized linear
phase nω. Similarly, if N = 2n+ 1, we have

h(n + 1− k) = h(n + k) := d(k)
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and

H(ω) =
∑

h(k)e−ikω = e−i(n+ 1
2
)ω
∑

h(k)ei(n+ 1
2
−k)ω

= e−i(n+ 1
2
)ω

( −1∑
l=−∞

h(n− l)ei(l+ 1
2
)ω +

∞∑
l=0

h(n− l)ei(l+ 1
2
)ω

)

= e−i(n+ 1
2
)ω

( ∞∑
l=1

h(n+ l)e−i(l−
1
2
)ω +

∞∑
l=1

h(n+ 1− l)ei(l− 1
2
)ω

)

= e−i(n+ 1
2
)ω

(
2

∞∑
l=1

dl cos(l − 1

2
)ω

)
,

which implies that h has linear phase (n + 1
2
)ω. In the case that h is

antisymmetric, the proof is similar. We leave it as an exercise. �

2.6. Inverse Filters.

Definition 9.2.9. A filter H from l2 to l2 is said to be invertible,
if there exists a filter D from l2 to l2 such that DH = I. The filter D
is called the inverse filter of H and denoted by H−1.

It is clear that if DH = I, then HD = I. From Theorem 9.2.6, we
derive the following.

Theorem 9.2.7. An l2 → l2 filter H is invertible if and only if

ess inf ω∈[−π,π] |H(ω)| > 0.(2.9)

In this case, the symbol of the inverse filter H−1 is 1
H(ω)

.

Proof. If (2.9) holds, then D(ω) := 1
H(ω)
∈ L̃∞. Let D be the filter,

whose symbol is D(ω). Then it is a filter from l2 to l2. Since D(ω)H(ω) =
1 a.e., D is the inverse of H. The converse is trivial. �

By Theorem 9.2.7, we have the following.

Corollary 9.2.1. A filter h ∈l1 is invertible if and only if its
symbol H(ω) �= 0 for all ω ∈ R.

Proof. We leave the proof as an exercise. �
Note that

H(ω) �= 0 for all ω ∈ R if and only if H(z) �= 0 for all z ∈ Γ.

Hence, in order to determine whether H is invertible, we only need to
check whether H(z) = 0 for some z ∈ Γ. When h is an FIR, H(z) is
a Laurent polynomial. Hence, the question is whether H(z) has zeros
on Γ.
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Example 9.2.9. Let H(z) = 2
3
+ 1

3
z be the z-transform of the filter

H. The root of H(z) is z0 = −2 /∈ Γ. Hence H is invertible. To find
the inverse filter H−1, we expand 1/H(z).

1/H(z) =
3

2

1

1 + 1
2
z

=
3

2
(1− 1

2
z +

1

4
z2 − 1

8
z3 + · · · )

=
3

2

∞∑
k=0

(−1)k
(

1

2

)k

zk.

The following result is often used to convert signals.

Theorem 9.2.8. Assume φ ∈ L2 is a continuous function which
satisfies the interpolation condition. Let V = span2{φ(t − k) | k ∈
Z} and φ̃ be the interpolation function in V. Let a function f ∈ V be
represented by

f(t) =
∑
k∈Z

ckφ(t− k)

and

f(t) =
∑
k∈Z

f(k)φ̃(t− k).

Denote c = (ck), fd = (f(k)) and h = (φ(k)). Then h is invertible,
fd = h ∗ c, and c = h−1 ∗ fd.

Proof. We leave the proof as an exercise. �
Exercises

1. Prove Lemma 9.2.1.
2. Prove that if T is a linear operator on l2, then for any x1,x2 ∈ l2

and λ, µ ∈ R, T(λx1 + µx2) = λTx1 + µTx2.
3. Prove that if h = (hk) is a lowpass filter (highpass filter), then

g = ((−1)kh1−k)

defines a highpass filter (lowpass filter).
4. Construct a filter h from l2 to l2, which is not in l1.
5. Let the filter h be defined by h(0) = 1, h(1) = 4, h(2) = 6, h(3) =

4, h(4) = 1. Find its dual filter.
6. Prove that a filter is a lowpass (highpass) filter if and only if its

dual filter is a lowpass (highpass) filter.
7. Prove that the convolution of two lowpass filters is a lowpass

filter.
8. Prove Theorem 9.2.4.
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9. Prove Theorem 9.2.5.
10. Prove that a filter is invertible if and only if its dual is invertible.
11. Prove Corollary 9.2.1.
12. Find the formula of g(k) for the ideal highpass filter.
13. Prove that a finite filter s = (s(k))Nk=0 has linear phase if and

only if sk = sN−k and the polynomial S(z) =
∑
s(k)zk has zeros

only of even multiplicity on the unit circle Γ.
14. Prove Theorem 9.2.6 for antisymmetric filters.
15. Prove that a filter has a linear phase (or generalized linear phase)

if and only if its dual filter has a linear phase (or generalized
linear phase).

16. Prove that the symbol of the filter h ∗ hT has linear phase.
17. Let h and f be filters with linear phases (or generalized linear

phases). Prove the following.
(a) h ∗ f has a linear phase (or generalized linear phase).
(b) If h is invertible, then h−1 has a linear phase (or generalized

linear phase).
18. Write the matrix representation and the z-transform of the filter

S + S−1. Is it invertible?
19. Assume that the impulse response of filter H is

h(n) =

{
αn n ≥ 0,
βn n < 0,

where 0 < α < 1 and β > 1.
(a) Find the output y = y(k), k ∈ Z, of H for the input

x(n) = (−1)n

n
.

(b) Is H invertible ? If it is, find H−1.
20. Prove that neither lowpass filters nor highpass filters are invert-

ible.
21. Let H be a finite filter with symbol H(ω). Assume H is not in-

vertible. Prove that Th has at least a zero eigenvalue, and one of
its 0-eigenvectors has the form v = (ck)k∈Z, where c is a nonzero
complex number.

22. Prove Theorem 9.2.8.

3. Coding Signals by Wavelet Transform

In this section, we discuss how to use wavelet bases to transform
(i.e. code) signals. The purpose of coding is to transform a sampling
data x ∈l2 to a new sequence (called the codes of x) in l2. The codes
reveal the hidden information of a signal so that they can be effectively
used in signal processing.
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3.1. Coding Signals Using Shannon Wavelets. To understand
the wavelet coding method, we first study the coding of signals using
the Shannon wavelet.

Lemma 9.3.1. The function sinc(t) satisfies the following scaling
equation:

sinc(t) = 2
∑
k∈Z

h(k) sinc(2t− k),(3.1)

where h = (h(k)) is the ideal lowpass filter.

Proof. We leave the proof as an exercise. �

Theorem 9.3.1. The function sinc(t) is an orthonormal MRA gen-
erator. Its corresponding orthonormal wavelet can be represented as

ψs(t) = 2
∑
k∈Z

g(k) sinc(2t− k),(3.2)

where g = (g(k)) is the ideal highpass filter.

Proof. We leave the proof as an exercise. �

Definition 9.3.1. The function ψs in (3.2) is called the Shannon

wavelet and sinc(t) is called the Shannon scaling function.

Let {Vn} be the MRA generated by sinc(t) and {Wn}n∈Z be the
corresponding wavelet subspaces. Assume the signal x is the sampling
data of the function f(t) ∈ Vn, that is x(k) = f(2−nk). By the Shannon
Sampling Theorem,

f(t) =
∑
kiZ

x(k) sinc(2nt− k).

Let

f(t) = f1(t) + g1(t), f1(t) ∈ Vn−1, g1(t) ∈ Wn−1.

Then

f1(t) =
∑
kiZ

y(k) sinc(2n−1t− k), . y(k) = f1(2
−(n−1)k),

g1(t) =
∑
kiZ

z(k)ψs(2n−1t− k), z(k) = g1(2
−(n−1)k).

We can use FWT algorithm to compute {y, z} from x and use FIWT
algorithm to recover x from {y, z}. Let h be the mask of sinc(t) in
(3.1) and g be the mask of ψs in (3.2). Using FWT algorithm, we get

y(n) =
∑
h(k − 2n)x(k) =

∑
hT (2n− k)x(k)

z(n) =
∑
g(k − 2n)x(k) =

∑
gT (2n− k)x(k) ,(3.3)
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which is also called the coding algorithm. Using FIWT algorithm, we
get

x(n) = 2
(∑

h(n− 2k)y(k) +
∑

g(n− 2k)z(k)
)
,(3.4)

which is the decoding algorithm. Formulae (3.3) and (3.4) show that
although x may be the sampling data of a particular analog signal
with a sampling period T and a underlying function φ, the coding and
decoding algorithms are independent of T and φ. They only involve the
filters h and g. To link these algorithms to convolutions, we introduce
the following.

Definition 9.3.2. A downsampling (operator) (↓ 2) on l2 is
defined by

(↓ 2)x = (· · · ,x(−2), x(0), x(2), · · · ).
Correspondingly, an upsampling (operator) (↑ 2) on l2 is defined by

(↑ 2)x = (· · · , 0, x(−2), 0, x(−1), 0, x(0), 0, x(1), 0, x(2), 0, · · ·).
By definition, (3.3) now can be written as

y =(↓ 2)u =(↓ 2)
(
hT ∗ x) = (↓ 2)HTx

z =(↓ 2)v =(↓ 2)
(
gT ∗ x

)
= (↓ 2)GTx

,

and (3.4) gives

x = 2(h∗(↑ 2)y + g∗(↑ 2)z) = 2 (H(↑ 2)y + G(↑ 2)z) ,

which recovers x from y and z. Combining these two steps together,
we have

H(2(↑ 2)(↓ 2)HT )+G(2( ↑ 2)(↓ 2)GT = I.

We now explain the meaning of the coded signals y and z directly. We
first establish the following.

Lemma 9.3.2. If a continuous function v ∈ L2 satisfies supp v̂ ⊂
[−π,−π/2] ∪ [π/2, π], then

v(t) =
∑

v(2n)

(
2 sinc(t− 2n)− sinc

(
t

2
− n

))
.(3.5)

Proof. We leave the proof as an exercise. �
Let u = hT ∗ x and v = gT ∗ x. Since h is the ideal lowpass fil-

ter, hT ∗x represents a frequency bounded function u(t) with supp û ⊂
[−π

2
, π

2
]. Similarly, v represents a function v(t) with supp v̂ ⊂ [−π,−π/2]∪

[π/2, π]. By the Shannon Sampling Theorem (Theorem 9.1.2), u(t) can
be represented by its sampling data (u(2n)) . Similarly, by Lemma 9.3.2,
v(t) can also be represented by (v(2n)). Recall that y(n) = u(2n) and
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z(n) = v(2n). Hence, y and z are the sampling data of u(t) and v(t),
where y is in the low-frequency channel and z is in the high-frequency
channel.

The coded signals reveal the information of x regarding its fre-
quency bands. If we want to get a blurry version of x using nearly half
of its codes, then y is much better than (x(2n)). Using y and z to code
x is called two-channel coding.

We now give a summary for the signal flows in these two channels:

1. In the low frequency channel:

x→ u
(
= hT ∗ x)→ ũ (= 2(↑ 2)(↓ 2)u)→ xl(= h ∗ ũ).

2. In the high frequency channel:

x→ v
(
= gT ∗ x

)→ ṽ (= 2(↑ 2)(↓ 2)v)→ xh(= g ∗ ṽ).

3.2. Alias Cancellation. We now analyze the alias in the above
coding/decoding procession. We first analyze the low frequency chan-
nel. The symbol of u is

U(ω) = H(ω)X(ω) =

{
X(ω), |ω| ≤ π

2
0, π

2
≤ |ω| ≤ π

.

Since ũ =2(↑ 2)(↓ 2)u, we have

~U(ω) = U(ω) + U(ω + π),

where U(ω + π) is in the high frequency channel. Hence, it is an alias
in the low frequency channel. This alias will be canceled in the next
step. In fact, by xl = h ∗ ũ, we have

Xl(ω) = H(ω)~U(ω) = H(ω)U(ω) = U(ω).

Similarly, the high frequency channel is the following. The symbol
of v is

V(ω) = G(ω)X(ω) =

{
0, |ω| ≤ π

2
X(ω), π

2
≤ |ω| ≤ π

.

For ṽ =2(↑ 2)(↓ 2)v, we have

~V(ω) = V(ω) + V(ω + π),

where V(ω+ π) is in the low frequency channel. Hence, it is an alias in
the high frequency channel. This alias will be canceled by xh = g ∗ ṽ,
since we have

Xh(ω) = G(ω)~V(ω) = G(ω)V(ω) = V(ω).
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3.3. Coding Signals Using Other Wavelets. The ideal filters
h = (h(k)) and g = (g(k)) decay very slow as |k| → ∞. Hence, algo-
rithms (3.3) and (3.4) are not practical. To design fast coding/decoding
algorithms, we turn to other wavelets. Let φ be an orthonormal scal-
ing function and ψ be its corresponding orthonormal wavelet. Assume
h is the mask of φ and g is the mask of ψ. It is known that h is a
lowpass filter and g is a highpass filter. Then for a signal x, the FWT
algorithm (3.3) decomposes x into y and z, while the FIWT algorithm
(3.4) recovers x from y and z. However, the low frequency channel and
high frequency channel now are different from what we discussed above.
We still denote the symbol of h by H(ω) and the symbol of g by G(ω).
The low frequency channel in this coding method is enveloped by H(ω).
That is, a signal is in the low frequency channel if its symbol can be
written as H(ω)S(ω), where S(ω) is a 2π-periodic function. Similarly,
the high frequency channel in this coding method is enveloped by G(ω).

Now in the low frequency channel, the symbol of u is

U(ω) = H(ω)X(ω),

and for ũ =2(↑ 2)(↓ 2)u, we have

~U(ω) = U(ω) + U(ω + π) = H(ω)X(ω) + H(ω + π)X(ω + π).

Since G(ω) = e−iωH(ω + π), we have

U(ω + π) = eiωG(ω)X(ω + π),

which is in the high frequency channel and therefore is an alias in the
low frequency channel. This alias will be canceled by xl = h ∗ ũ, for

Xl(ω) = H(ω)~U(ω)

is a signal in the low frequency channel.
Similarly, the high frequency channel is the following. The symbol

of v is

V(ω) = G(ω)X(ω).

For ṽ =2(↑ 2)(↓ 2)v, we have

~V(ω) = V(ω) + V(ω + π),

where

V(ω + π) = G(ω + π)X(ω + π) = eiωH(ω)X(ω + π)

is in the low frequency channel and therefore it is an alias in the high
frequency channel. This alias will be canceled by xh = g ∗ ṽ, since we
have

Xh(ω) = G(ω)~V(ω)
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which is in the high frequency channel.
We can also use FWT and FIWT algorithms created by biorthogo-

nal scaling functions and wavelets to perform two-channel coding/decoding.

Theorem 9.3.2. Let φ and φ∗ be biorthonormal scaling functions.
Let ψ and ψ∗ be the corresponding biorthonormal wavelets. Assume the
masks of φ and ψ are h and g, and the masks of φ∗ and ψ∗ are h∗and
g∗. Then the algorithms

y =(↓ 2)HTx, z =(↓ 2)GTx

and

x =2 (H∗(↑ 2)y + G∗(↑ 2)z)

perform two-channel coding and decoding respectively. There the signal
flow in the low frequency channel is

x→ u
(
= hT ∗ x

)→ ũ (= 2(↑ 2)(↓ 2)u)→ xl(= h∗∗ũ),

and the signal flow in the low frequency channel is

x→ v
(
= gT ∗ x

)→ ṽ (= 2(↑ 2)(↓ 2)v)→ xh(= g∗∗ṽ).

Proof. We leave the proof as an exercise. �

3.4. Sampling Data Coding. Let φ, φ∗, ψ, ψ∗, h, g, h∗, and g∗

be given as in Theorem 9.3.2. Let

Uh = span L2

{
φ

(
t

h
− k

)
| k ∈ Z

}
, h > 0.

Assume a signal x is the sampling data of a function f ∈ Uh: x(n) =
f(hn). We now discuss two channel codes of x. Recall that f ∈ Uh if
and only if f(ht) ∈ U1. Let x(t) = f(ht). Then x(n) is the sampling

data of x(t). Let φ̃ be the Lagrangian interpolation function in U1. We
have

x(t) =
∑

x(n)φ̃(t− n).

Let p = (φ(k))k∈Z. If φ is compactly supported, then p is a finite filter.
Let c = (cn) be the sequence in

x(t) =
∑

c(n)φ(t− n).

We have

p ∗ c = x, p−1 ∗ x = c.
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Then the two channel coding for x is the following

c = p−1 ∗ x,

y = (↓ 2)HTc, z =(↓ 2)GTc,

and the decoding is

c = 2 (H∗(↑ 2)y + G∗(↑ 2)z) ,

x = p ∗ c.

The programs are independent of the sampling period h. We point out
that, c and x become very close as h→ 0.

Theorem 9.3.3. Assume φ∗ ∈ L1∩L2 is an MRA generator (with

φ̂∗(0) = 1). Let x ∈ L2 be uniformly continuous on R. Then

lim
h→0

∣∣x(hk)− 〈x, φ∗( t
h
− k)〉∣∣

h
= 0,(3.6)

and the limit in (3.6) uniformly holds for k ∈ Z.

Proof. If x ∈ L2 is uniformly continuous on R, then lim|t|→∞ x(t) =
0. It follows that maxt∈R |x(t)| <∞. Since φ∗ ∈ L1, for an ε > 0, there is
anM > 0 such that

∫
|t|>M |φ∗(t)|dt < ε.We have

∫∞
−∞

1
h
φ∗( t

h
−k) dt = 1.

Hence,

1

h

∣∣∣∣x(hk)− 〈
x, φ∗

(
t

h
− k

)〉∣∣∣∣ =

∣∣∣∣∫ ∞

−∞
(x(hk)− x(t)) 1

h
φ∗
(
t

h
− k

)
dt

∣∣∣∣
≤
∫ h(k+M)

h(k−M)

∣∣∣∣(x(hk)− x(t)) 1

h
φ∗
(
t

h
− k

)∣∣∣∣ dt
+

(∫ h(k−M)

−∞
+

∫ ∞

h(k+M)

)∣∣∣∣(x(hk)− x(t)) 1

h
φ∗
(
t

h
− k

)∣∣∣∣ dt.
We have∫ h(k+M)

h(k−M)

∣∣∣∣(x(hk)− x(t)) 1

h
φ∗
(
t

h
− k

)∣∣∣∣ dt
≤ max

t∈[h(k−M),h(k+M)]
|x(hk)− x(t)|

∫ ∞

−∞

1

h

∣∣∣∣φ∗
(
t

h
− k

)∣∣∣∣ dt
≤ max

t∈[h(k−M),h(k+M)]
|x(hk)− x(t)| ||φ∗||1,

where

lim
h→0

max
t∈[h(k−M),h(k+M)]

|x(hk)− x(t)| = 0
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and the limit uniformly holds for k ∈ Z. We also have∫ ∞

h(k+M)

∣∣∣∣(x(hk)− x(t)) 1

h
φ∗
(
t

h
− k

)∣∣∣∣ dt
≤ 2 max

t∈R
|x(t)|

∫ ∞

h(k+M)

1

h

∣∣∣∣φ∗
(
t

h
− k

)∣∣∣∣ dt
= 2 max

t∈R
|x(t)|

∫ ∞

M

|φ∗(t)|st < 2 max
t∈R
|x(t)| ε.

Similarly,∫ h(k−M)

−∞

∣∣∣∣(x(hk)− x(t)) 2Jφ∗
(
t

h
− k

)∣∣∣∣ dt < 2 max
t∈R
|x(t)| ε.

Thus, (3.6) is proved. �
Before we end this section, we briefly explain the advantage of the

two-channel coding method. Recall that the analog model of this cod-
ing is the wavelet decomposition. Then each code in this coding corre-
sponds to a wavelet atom. As we pointed out in Chapter 7, a wavelet is
“local” in both the time domain and the frequency domain. (In signal
procession, we say it is a time-frequency atom.) Besides, the multi
level structure of wavelet bases provides the “zooming” property of a
wavelet. Readers can learn more from [18] and [32]. Hence, this coding
method offers well-structured codes for signal processing.

Exercises

1. Prove Lemma 9.3.1.
2. Prove Theorem 9.3.1.
3. Prove the Downsampling Shannon Theorem: If a signal x is half

banded, i.e.

X(ω) = 0, π/2 ≤ |ω| < π,

then (↓ 2)x uniquely determines x by the formula

x(n) =
∞∑
−∞

x(2k)
sin((n− 2k)π

2
)

(n− 2k)π
2

=
∞∑
−∞

x(2k) sinc (
1

2
n− k).

4. If x is a half banded signal, can we determine x using (x(2n +
1))n∈Z? If we can, how is x(n) computed from (x(2k + 1))k∈Z?

5. Let x and y be two signals such that Y(ω) = X(ω)χ[−π/2,π/2](ω), ω ∈
[−π, π]. Prove y(n) = 1

2

∑∞
−∞ x(k) sinc (n−k

2
).
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6. Prove the following. For any x,y ∈ l2,
〈( ↑ 2)x,y〉 = 〈x,(↓ 2)y〉,
( ↓ 2)(↑ 2)= I,

( ↑ 2)(↓ 2)+S−1(↑ 2)(↓ 2)S = I,

( ↓ 2)(x ∗ y) =(↓ 2)x∗(↓ 2)y+(↓ 2)Sx∗(↓ 2)Sy.

7. Prove Lemma 9.3.2.
8. Let x be the signal such that X(ω) = 0, |ω| < π/2. Develop the

formula to compute x(n) from (x(2k))k∈Z.
9. Let x be the signal such that X(ω) = 0, |ω| < π/2. Can we

determine x using (x(2n+1))n∈Z. If we can, how do we compute
x(n) from (x(2k + 1))k∈Z?

10. Let x and y be two signals such that Y(ω) = X(ω)χ[−π,−/2]∪[π/2,π](ω), ω ∈
[−π, π]. Prove y(n) = x(n)− 1

2

∑∞
−∞ x(k) sinc (n−k

2
).

11. Let f(t) be the function with the Fourier transform f̂(ω) =
|ω|χ[−π,π](ω). Let x be the signal with x(n) = f(n). Find (↓ 2)x.

4. Filter Banks

The wavelet coding method leads to filter banks.

Definition 9.4.1. A filter bank is a set of filters, linked by
downsampling and upsampling. In particular, let L be a lowpass filter
and H be a highpass filter. Then the operator on l2 defined by[

(↓ 2)LT

(↓ 2)HT

]
is called an analysis filter bank created by {L,H}, and the oper-
ator defined by [

2L(↑ 2) 2H(↑ 2)
]

is called a synthesis filter bank created by {L,H}. In the filter
bank, C =(↓ 2)LT is called a lowpass channel and D =(↓ 2)HT

is called a highpass channel. If an analysis filter bank created by
{L,H} and a synthesis filter bank created by {F,G} satisfy the condi-
tion

2F(↑ 2)(↓ 2)LT+2G(↑ 2)(↓ 2)HT = I,(4.1)

then the analysis filter bank and the synthesis filter bank are called
biorthogonal filter banks. Particularly, if in (4.1) F = L and
G = H, then {L,H} is said to create an orthonormal filter bank.
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For convenience, we often directly call {L,H} and {F,G} filter
banks. By the results in Chapter 7, we have following theorems.

Theorem 9.4.1. Let φ and φ̃ be biorthonormal MRA generators
such that

φ(x) = 2
∑
k

hkφ(2x− k),

and

φ̃(x) = 2
∑
k

h̃kφ̃(2x− k),

and let ψ and ψ̃ be corresponding biorthonormal wavelets such that

ψ(x) = 2
∑
k

gkφ(2x− k),

where

gk = (−1)kh̃1−k

and

ψ̃(x) = 2
∑
k

g̃kφ̃(2x− k),

where

g̃k = (−1)kh1−k.

Then the filter sets {h, g} and {h̃, g̃} generate biorthogonal filter banks.

Proof. We leave the proof as an exercise. �
Similarly, we have the following.

Theorem 9.4.2. Let φ be an orthonormal scaling function defined
by

φ(x) = 2
∑
k

hkφ(2x− k).

Let ψ be the corresponding orthonormal wavelet given in

ψ(x) = 2
∑
k

gkφ(2x− k),

where

gk = (−1)kh2l+1−k, for an l ∈ Z.

Then {h, g} creates an orthonormal filter bank.

Proof. We leave the proof as an exercise. �
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4.1. Conditions for Biorthogonal Filter Banks. We already
know that wavelets lead to filter banks. We now ask the question: Do
there exist biorthogonal filter banks other than the masks of biortho-
normal scaling functions and wavelets? To answer this question, we
derive the conditions for biorthogonal filter banks.

We first analyze the analysis filter bank. Let {L,H} be an analy-
sis filter bank, where L is a lowpass filter and H is a highpass fil-
ter. Assume x is the signal to be coded. Assume v0=(↓ 2)LTx and
v1=(↓ 2)HTx. Then

v0(n) =
∑
k

lT (2n− k)x(k)(4.2)

and

v1(n) =
∑
k

hT (2n− k)x(k).(4.3)

The z-transforms of (4.2) and (4.3) are

V0(z) =
1

2
(L(z1/2)X(z1/2) + L(−z1/2)X(−z1/2))(4.4)

and

V1(z) =
1

2
(H(z1/2)X(z1/2) +H(−z1/2)X(−z1/2)).(4.5)

We now analyze the synthesis filter bank. Assume {F,G} creates the
synthesis filter bank, where F is a lowpass filter and G is a highpass
filter. Let y0 = 2F(↑ 2)v0 and y1 = 2(↑ 2)v1. Then after upsampling,
the signal 2(↑ 2)v0 has the z-transform

V0(z
2) = (L(z)X(z) + L(−z)X(−z)),

where the second term causes an alias in the low frequency channel.
Similarly, the signal 2(↑ 2)v1 has the z-transform

V1(z) = (H(z)X(z) +H(−z)X(−z)),
where the second term causes an alias in the high frequency channel.
Similarly, after filtering, we have

Y0(z) = F (z)L(z)X(z) + F (z)L(−z)X(−z))(4.6)

and

Y1(z) = G(z)H(z)X(z) +G(z)H(−z)X(−z)).(4.7)

If {L,H} and {F,G} create a biorthogonal filter bank, then

X(z) = Y0(z) + Y1(z),
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which yields the no-distortion condition.

F (z)L(z) +G(z)H(z) = 1,(4.8)

and the alias cancellation condition

F (z)L(−z) +G(z)H(−z) = 0.(4.9)

We summarize these conditions in the following theorem.

Theorem 9.4.3. Let L and F be two lowpass filters and H and G
be two highpass filters. Then the analysis filter bank {L,H} and the
synthesis filter bank {F,G} are biorthogonal if and only if they satisfy
the alias cancellation condition (4.9) and the no-distortion condition
(4.8), i.e. the following holds.[

L(z) H(z)

L(−z) H(−z)
] [

F (z)
G(z)

]
=

[
1
0

]
.(4.10)

We now use (4.10) to derive the relations among L,F,H, and G.
From (4.10), we have[

F (z)
G(z)

]
=

[
L(z) H(z)

L(−z) H(−z)
]−1 [

1
0

]
=

1

∆(z)

[
H(−z) −H(z)

−L(−z) L(z)

] [
1
0

]
where ∆(z) = L(z)H(−z)−L(−z)H(z) is an odd Laurent polynomial.

Since both F (z) and G(z) are Laurent polynomials, ∆(z) must be
equal to cz2l+1 for a c �= 0 and an l ∈ Z. Then

F (z) =
H(−z)
cz2l+1

, G(z) = −L(−z)
cz2l+1

,(4.11)

where

c = ∆(1) = L(1)H(−1)− L(−1)H(1) = L(1)H(−1).

We now have the following.

Theorem 9.4.4. The FIR filter banks {L,H} and {F,G} are biorthog-
onal if and only if

F (z)L(z) + F (−z)L(−z) = 1, z ∈ Γ,(4.12)

and

H(z) = −L(1)H(−1)

2
z2l+1F (−z),(4.13)

G(z) = − 2

L(1)H(−1)
z−(2l+1)L(−z), l ∈ Z.(4.14)
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Proof. If {L,H} and {F,G} are biorthogonal, by (4.11), we have

F (z)L(z) + F (−z)L(−z) =
H(−z)
∆(z)

L(z) +
H(z)

∆(−z)L(−z)

=
L(z)H(−z)

∆(z)
− L(−z)H(z)

∆(z)

= 1

and

H(z) = F (−z)∆(−z) = −L(1)H(−1)

2
z2l+1F (−z),

G(z) = −L(−z)
∆(z)

= − 1

L(1)H(−1)
z−(2l+1)L(−z).

The proof of “only if” is left as an exercise. �
The values L(1) and H(−1) in the theorem can be freely selected. A
standard selection is L(1) = H(−1) = 1. Then F (1) = G(−1) = 1.

By Theorem 9.4.4, we have the following.

Corollary 9.4.1. The pair of filters {h, g} creates an orthonor-
mal filter bank if and only if {h, g} forms a conjugate mirror filter, i.e.
g = ((−1)kh2N−1−k) for an N ∈ Z and

|H(z)|2 + |H(−z)|2 = 1.

Proof. We leave the proof as an exercise. �
Although some conjugate mirror filters may not be the masks of or-

thonormal scaling functions and wavelets, most useful conjugate mirror
filters are. A similar conclusion can be obtained for the biorthogonal
case. Hence, the masks of biorthogonal (including orthonormal) scal-
ing functions and wavelets contain the most useful biorthogonal filter
banks. Readers can learn more about filter banks from [28] and [31].

Exercises
1. Let H0 be the moving average filter and H1 be the moving differ-

ence filter. That is H0 = 1
2
(I + S−1) and H1 = 1

2
(I− S−1). Use

Definition 9.4.1 to prove that {H0, H1} create an orthonormal
filter bank.

2. Prove Theorem 9.4.1.
3. Prove Theorem 9.4.2.
4. Assume {h, g} creates an orthonormal filter bank. Let hk =

S2kh and gk=S2kg. Prove that {hk, gk}k∈Z forms an orthonormal
basis of l2.
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5. Prove that the pair {I,S}, where I is the identity filter and S
satisfies

I(↑ 2)(↓ 2)IT+S(↑ 2)(↓ 2)ST = I.

6. Give an example of an orthonormal filter bank that is not created
by the masks of any orthonormal scaling function and wavelet.

7. A signal x =
∑
x(n)δn can be written as x =

∑
x(2n)δ2n +∑

x(2n+1)δ2n+1, which yields a decomposition of x: x = xe+xo,
where xe = (↑ 2)(↓ 2)x and xo = (↑ 2)(↓ 2)STx. We call
this decomposition the polyphase of x. The z-transform of the
polyphase form of x is

X(z) = Xe(z
2) + zXo(z

2).

Write the coding/decoding procession in the polyphase form.
8. Write the conditions of the biorthogonal filter bank in the polyphase

form.
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APPENDIX A

List of Symbols

Z : The set of integers.
Z+ : The set of all non-negative numbers.
N : The set of natural numbers.
R : The set of real numbers.
C : The set of complex numbers.
R0: the class (ring) of intervals (a, d].
I: the class of all intervals of open, closed, or half-open and half-closed)
of R.
Pn: the vector space of all polynomials of degree n or less.
P(A) or 2A: the power set of A.
AC[a, b]: the class of absolutely continuous functions on [a, b].
BR: the class of Borel sets.
BV [a, b]: the class of functions of bounded variation on [a, b].
C[a, b]: the class of continuous functions on [a.b].
fn → f a.e.: fn converges to f almost everywhere.
fn ⇒ f : fn converges to f uniformly.
fn

m→ f : fn converges to f in measure.
m(E): the Lebesgue measure of set E.
T ba(f): the total variation of f on [a, b].
σr(C): the σ-ring generated by the class C.
σa(C): the σ-algebra generated by the class C.
M: the class of all Lebesgue measurable sets.
Γ := {z ∈ C | |z| = 1}: The unit circle on the complex plane.
L2 (or L2(R)):= {f | ∫R |f(x)|2dx <∞}.
‖f‖ (or ‖f‖L2) :=

(∫
R |f(x)|2dx)1/2

.

〈f, g〉 (or 〈f, g〉L2) :=
∫
R f(x)g(x)dx.

‖f‖p :=

{ (∫
R |f(x)|pdx)1/p

, if 1 < p <∞,
esssup x∈R|f(x)|, if p =∞.

Lp (or Lp(R)) := {f | ‖f‖p <∞}.
‖f‖I =

(∫ 1

0
|f(x)|2dx

)1/2

.

〈f, g〉I :=
∫ 1

0
f(x)g(x)dx.
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‖f‖L̃2 =
(

1
2π

∫ π
−π |f(x)|2dx

)1/2

.

〈f, g〉L̃2 := 1
2π

∫ π
−π f(x)g(x)dx.

L̃2 (or L̃2
2π):= {f | f(x) = f(x+ 2π), ‖f‖L2 <∞}.

L̃2
I := {f | f(x) = f(x+ 1), ‖f‖I <∞}.

l = {(cn)n∈Z | cn ∈ C}.
lp =

{
{(cn) ∈ l |

(∑
n∈Z |cn|p

)1/p
<∞}, 1 ≤ p <∞

supn∈Z |cn| <∞ p =∞ .

span V := {∑k∈Z ckvi(x) | (ck) ∈ l,vi ∈ V }, where
V = {vi, i ∈ Z}, and the series

∑
k∈Z ckvi(x) is a.e. convergent.

span LpV := ( span V ) ∩ Lp.
f̂(ω) : The Fourier transform of the function f defined by

f̂(ω) :=

∫
R
f(x)e−ixωdx.

∨
F (ω) : The inverse Fourier transform of F defined by

∨
F (ω) :=

1

2π

∫
R
F (ω)eixωdω.

Ff(ω): The normalized Fourier transform defined by

Ff(ω) :=
1√
2π

∫
R
f(x)e−ixωdx.

F−1F (x) : The normalized inverse Fourier transform defined by

F−1F (x) =
1√
2π

∫
R
F (ω)eixωdω.

f ∗ g(x) The convolution of f and g defined by

f ∗ g(x) =

∫
R
f(x− y)g(y)dx.

Lploc = {f | f ∈ Lp(a, b) for any finite interval (a, b) ⊂ R}
ACloc = {f | f(x) =

∫ x
0
φ(t)dt, φ ∈ L1

loc}.
ACs

loc = {f ∈ C | f (k) ∈ ACloc, 0 ≤ k ≤ s}
W r
Lp = {f ∈ Lp | f = φ, a.e, φ ∈ ACr−1

loc , φ
(k) ∈ Lp, 0 ≤ k ≤ r}

W [Lp; (iω)r] = {f ∈ Lp | (iω)rf̂(ω) = ĝ(ω), g ∈ Lp}.
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Birkhäuser, 1971.
[3] C.K. Chui, Multivariate Splines, SIAM, Philedelphia, PA, 1988.
[4] C.K. Chui, An Introduction to Wavelets, Academic Press, San Diego, CA

1992.
[5] C.K. Chui, editor. Wavelets: A Tutorial in Theory and Applications, Acad-

emic Press, New York, NY, 1992.
[6] I. Daubechies, Ten Lectures on Wavelets, SIAM Publications, 1992.
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alias cancellation, 319
almost everywhere, 53
analog signal, 289
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periodic, 290

analysis scaling function, 243
analysis scaling wavelet, 243
Archimedean Axiom, 10

auto-correlation, 172, 182
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Axiom of Completeness, 10
Axioms of Addition, 9
Axioms of Multiplication, 9
Axioms of Order, 9

B-splines, 80
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Baire space, 26
Banach space, 132
basis, 107
Battle-Lemarié wavelets, 215
Bernstein polynomial, 28
Bernstein Theorem, 13
Bessel’s Inequality, 118
binary operation, 105
binary relation, 7

antisymmetric, 8
reflexive, 8
symmetric, 8
transitivity, 8

biorthogonal MRA, 237
biorthogonal scaling functions, 237

spline, 285
symmetric, 282

biorthogonal wavelet bases, 238
biorthogonal wavelets, 237, 238

spline, 286
Bolzano-Weierstrass Theorem, 26, 132
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Borel sets, 35
Borel-Canteli Lemma, 95
Bounded Convergence Theorem, 64
bounded variation, 147
box function, 192, 267, 279

Cantor diagonalization argument, 15
Cantor set, 25
Carathéodory condition, 44
cardinal B-spline, 215, 259, 274
cardinal number, 12
cardinality, 12

same, 12
cardinality of the continuum, 15
Cartesian product, 8
cascade algorithm, 267, 274, 275

initial function, 267
Cauchy criterion, 28
Cauchy sequence

in a metric space, 29
causal filter, 299
central B-splice, 217
channel

highpass, 316
lowpass, 316

characteristic function, 12, 192
Chebyshev’s Inequality, 70, 98
closed set, 22
compact set, 24
compactly supported function, 185
complete metric space, 29
complex conjugate, 10, 142
conditional probability, 96
conjugate mirror filter, 209
continuity at a point, 22
continuity from above, 38
continuity from below, 38
continuous function

at a point, 6
on a set, 7

continuous signal, 289
Continuum Hypothesis, 15
convergence

almost everywhere, 56
almost surely, 100
in measure, 56
in probability, 100
of order r, 100
uniform

almost everywhere, 56
weak, 100

convergence factor, 165
convergent in mean, 74
convolution, 79, 154, 162

discrete, 298
on L1, 164

Convolution Theorem, 154, 175
correlation, 172
countable additivity, 37
countable set, 14
countable subadditivity, 37, 38, 43
counting measure, 38

Daubechies filter, 253
Daubechies scaling function, 258, 275
Daubechies wavelet, 258
de Morgan’s Laws, 3
dense, 26
dense set, 124
density function, 95
differentiable function, 81
digital signal, 289
dimension, 109
Dini derivatives, 81
direct sum, 126
Dirichlet function, 31, 51, 60
Discrete Convolution Theorem, 300
discrete filter

linear phase, 304
discrete measure, 41
discrete probability measure, 41
discrete signal, 289, 295

generalized phase of, 305
phase of, 304

discretization, 291
distance, 19
distribution function, 94
Distribution Law, 9
double integral, 76
Downsampling Shannon Theorem, 315
dual MRA, 237
dual operator, 232
Dual scaling functions, 237
dual scaling functions, 237
dual wavelets, 237
dyadic expansion, 276

Egoroff’s Theorem, 57
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eigenvector, 114
energy, 295
entire function, 185
equivalence class, 11
equivalence relation, 8
Euclidean space, 18
Euler formula, 141
event, 93
extended real numbers, 36

Fast Haar Wavelet Transform, 195
Inverse, 195

fast inverse wavelet transform, 231,
232, 242

fast inverse wavelet transform (FIWT),
229

fast wavelet transform, 231, 232, 242
recovering, 232

fast wavelet transform (FWT), 229
Fatou’s Lemma, 73
field, 105
filter, 297

dual, 304
generalized linear phase, 305
identity, 299
invertible, 306
lowpass, 302
magnitude of, 304
phase of, 304
shift, 299

filter bank, 316
analysis, 316
biorthogonal filter banks, 316
orthonormal, 316
synthesis, 316

finely covered, 82
finite additivity, 37, 38
finite field, 106
Finite Fourier transform, 144
finite impulse response filter, 299
finite measure, 93
finite-measure monotone covering, 66
first category set, 26
first moving average, 162
Fourier analysis, 141
Fourier coefficient

complex Fourier coefficient, 144
real Fourier coefficients, 143

Fourier partial sum, 146

Fourier Series
convergence, 146

Fourier series
Complex Fourier series, 144
real Fourier series, 143

Fourier sum
partial Fourier sum, 153

Fourier transform
inverse, 165
normalized, 166
normalized inverse, 166
on L1, 160
on L2, 174
phase, 283

Fourier, Joseph, 141
frequency, 290

circular, 290
frequency bounded signal, 292
frequency domain, 148
function, 5

absolutely continuous, 90
bijective, 6
codomain of, 6
complex valued, 6
composition, 6
convex, 92
domain of, 6
function, 82
increasing, 82
jump, 82
monotone, 82
one-to-one (injective), 6
onto (surjective), 6
range of, 6
real valued, 6

Fundamental Theorem of Finite Di-
mensional Vector Spaces, 110

Fundamental Theorem of Infinite Di-
mensional Vector Spaces, 130

general Parseval formula
Parseval formula, 155

Gibbs’ phenomenon, 148, 189
Gram-Schmidt process, 127
greatest integer function, 53
greatest lower bound, 10
group, 105

Hölder’s Inequality, 134, 140
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Haar basis, 193
Haar frequency, 193
Haar function, 192
Haar space, 193
Haar wavelet, 279
Hamel basis, 112
hat function, 267, 274
Hausdorff Maximal Principle, 9
Heine-Borel Theorem, 23, 131
highest frequency, 292
Hilbert space, 119

isomorphism, 130
separable, 129

ideal highpass filter, 303
ideal lowpass filter, 302
image of a set, 6
image of an element, 6
imaginary part, 10, 142
indefinite integral, 90
independent events, 95
infinite impulse response filter, 299
infinite matrix, 131
infinite product, 276
infinite product form, 259
initialization, 226
inner product, 19, 114
inner product space, 114

complete, 119
interior point, 26
interpolating two-scale function, 227
interpolation, 226
interpolation condition, 226
inverse image of a set, 6
iterated integrals, 77

Jensen’s Inequality, 92
joint probability distribution, 96

Kronecker’s symbol, 142

Lagrangian interpolating functions, 227
Laplace transform, 78, 79
Laurent polynomial

reciprocal, 287
Laurent polynomials, 251
least upper bound, 10
Lebesgue Dominated Convergence The-

orem, 70
Lebesgue integrable, 66

Lebesgue integrable function, 61
with f+ and f− integrable, 67

Lebesgue measure, 45
Lemarié-Meyer wavelet, 214
linear approximation of wavelets, 233
linear functional, 138

bounded, 138
norm, 138

linear transformation, 111
Hilbert space to Hilbert space, 131
kernel of, 114

Lipschitz function, 28
local singularity, 234
lower Lebesgue integral, 62
Lusin’s Theorem, 54, 55

Mahler measure, 139
Mallat’s algorithm

decomposition, 232
recovering, 232

Mallat’s algorithms, 229
Mallat’s method, 226
mapping, 5
Markov’s Inequality, 98
mask, 200
measurable function, 50

on R2, 76
measurable space, 93
measure

of an interval, 39
on a ring, 37

measure space
finite, 93

metric, 26
metric space, 26
Minkowski’s Inequality, 133, 140
modulus, 10
monotone class

generated by a set, 35
monotone class of sets, 35
Monotone Convergence Theorem, 72
monotone sequence, 21
monotonicity, 37, 38
moving average filter, 299
moving difference filter, 299
MRA generator, 199

orthonormal, 199
multiresolution analysis (MRA), 199
multiset, 1
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mutually independent events, 95

negative part, 66
no-distortion condition, 319
noise, 290
nonlinear approximation of wavelets,

234
norm, 115
normalization condition, 246
normed linear space, 132
nowhere dense, 26
Nyquist frequency, 294
Nyquist rate, 294

one-to-one correspondence, 6
open ball, 20, 26
open covering, 23

finite covering, 23
subcovering, 23

open rectangle, 20
open set

in a metric space, 26
operator

downsampling, 310
linear, 297
shift, 297
time-delay, 297
time-invariant, 297
upsampling, 310

ordered pairs, 5
orthogonal complement, 124
orthogonal sets, 124
orthogonality, 142
orthonormal set, 126
orthonormal wavelet, 193
orthonormal wavelet basis, 193
outer measure, 43

pairwise independent events, 95
Paley-Wiener-Schwarz Theorem, 246
Parallelogram Law, 120
parallelogram law, 26
Parseval formula, 155
Parseval’s Formula, 175
partial ordering, 8
partition, 7

knots of, 7
partition of an interval, 59

meshsize of, 59

perfect set, 25
phase, 283

generalized linear, 283
linear, 283

Plancherel Theorem, 177
Plancherel’s Theorem, 177
Poisson’s Summation Formula, 179
Poisson’s summation formula, 181, 182
Polarization Identity, 120
polynomial function, 7
positive part, 66
power set, 4
preimage of an element, 6
Principle of Mathematical Induction,

12
probability space, 93
projection, 124

onto a subspace, 126
proper function, 290
pyramid algorithm, 229, 243

decomposition, 232
recovering, 243

Pythagorean Theorem, 117

random variable, 94
continuous, 94

expected value of, 97
standard deviation of, 97
variance of, 97

covariance of, 99
finite valued

expected value of, 97
mean value of, 97
standard deviation, 97
variance, 97

moment of, 97
ransom variable

absolutely continuous, 94
real part, 10, 142
recovering Pyramid Algorithm, 229
recursion algorithm, 270, 275
refinable function, 200
refinement equation, 194, 199
relation, 5
repeated integrals, 77
response, 297
Riemann-Lebesgue Lemma, 146, 151
Riesz basis, 199
Riesz bound, 199
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Riesz Lemma, 251
Riesz’s Theorem, 57
ring of sets, 32

sample space, 93
sampling, 291

lossless, 291
lossy, 291
over-sampled, 291
sampling data, 291
sampling period, 291
sampling rate, 291
under-sampled, 291
well sampled, 291

scaling function, 200
orthonormal, 200

Schauder basis, 112
Schwarz Inequality, 19, 135
Schwarz’s Inequality, 115
second category set, 26
semi-orthogonal scaling functions, 241
semi-orthogonal wavelets, 241
sequence

antisymmetric, 287
Cauchy, 20, 119
Cauchy in measure, 57
cluster point of, 22
convergent, 20, 119
limit, 20
of sets, 3

decreasing, 3
increasing, 3
limit, 4
limit inferior, 4
limit superior, 3

subsequence, 20
uniformly convergent, 28

series
absolutely summable, 135
partial sum, 135
summable, 135

set, 1
accumulation point of, 21
bounded, 20
closed, 22
closure of, 21
complement, 3
diameter, 20
difference, 2

element of, 1
empty, 2
indexing, 2
intersection, 2
isolated points of, 21
lower bound, 8
maximal element, 8
minimal element, 8
open in Rn, 22
proper subset of, 2
smallest element, 8
subset of, 2
union, 2
universal, 3
upper bound, 8

sets
Cartesian product of, 5
cross product of, 5
disjoint, 2
relative complement, 2
symmetric difference of, 2

Shannon Sampling Theorem, 293
Shannon scaling function, 281, 309
Shannon wavelet, 214, 309
shift invariant subspace, 291
signal, 289

discrete, 295
finite, 295
finite energy, 295
polyphase of, 321

simple function, 53
smaller order, 149
smoothness, 148, 149
spatial domain, 148
spline, 7
splitting condition, 44
stable condition, 199
stable function, 199
standard basis, 126
standard basis of Fn, 111
step function, 28, 59
Strong Law of Large Numbers, 103
subfield, 106
subgroup, 105
sum rule, 247
superable metric space, 29
support, 184
symbol, 200
symmetric function, 282
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symmetric sequence, 282
synthesis scaling function, 243
synthesis scaling wavelet, 243

time domain, 148
time-frequency atom, 315
Toeplitz matrix, 300
total ordering, 8
transaction operator, 267
translation invariance, 37
triangle inequality, 19, 116
trigonometric polynomial, 142
trigonometric series, 142
two-channel coding, 311
two-scale equation, 194, 199
two-scale relation, 194

unconditional basis, 199
uniformly continuous, 28
unit impulse, 297
unit partition, 247
upper Lebesgue integral, 62

variation
bounded, 86
total, 86

vector
linear combination, 107
linearly independent set of, 107
normalized, 117
orthogonal, 117
orthonormal collection of, 117
span of a set of, 107

vector space, 106
finite dimensional, 107
intersection of, 114
isomorphic, 110

Vitali cover, 82
Vitali’s Covering Theorem, 82

wavelet, 194
wavelet packet, 276
Weak Law of Large Numbers, 102
Well Ordering Principle, 9
well ordering relation, 8

z-transform, 295
Fourier form of, 295
math reduced notation, 295
symbol, 295

Zorn’s Lemma, 9, 17
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