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INTRODUCTION

BASIC GBOMETRY aims to give the pupil an appreciation of logical
mothod and a skill in logical argument that he can and will apply in
non-pathematical situations. It aims also to preseant a syetem of demon-
strative geometry that, vhile serving as a pattern of all abstract logi-
cal syetemn, is much simpler and more compact than Euclid's geometry or
than any goomstry eince Euclid.

The underlying spirit of BASIC GEOMETRY, as geometry, can be set
forth bdest by contrasting it with Buclid's geometry. In Buclid, con-
@ruence and parallelism are fundamentsl and similarity ie eecondary, be-
ing derived from parallelism. But since similarity is used more than
paralleliem in proofs, and since congruence and similarity have much in
common, it eeems more natural to take these two ideas as fundamental and
to derive paralleliem from them. If we make an exchange of this eort,
the Parallel Postulate becomes a theorem on parallels, and ons of the
former theorems on similar triangles becomes a postulate. A geometric

eystem of this sort was suggested in 1923 in the British Report on the

Teaching of Geometry in Schools, mentioned below. BASIC GEOMETRY carries

the idea even farther by using only a poetulate of similarity and treat-
ing congruence - ve say equality insteed - as a special case under eimi-
larity for vhich the factor of proportionality ie 1.

The history of the development of this geometry is of interest, to
ehov how mathematical ideas sometimes come to light, are sidetracked or
forgotten, and come to light again centuries later. As early as 1733

Saccheri proved in his Buclides ad omni naevo Vindicatus, Prop. 21,

Schol. 3, that a single poetulate Of eimilarity ie sufficient to estab-
1ish all the usual ideas concerning parallels. EHe gives credit* to
John Wallis, Savilian Professor of Geometry at Oxford from 1649 to 1703,

#See Halated's translation of Seccheri's Buclides ab omni naevo
Vindicatus, Open Court, Chiceago, 1920, pege 105.
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for announcing this idea and for showing that Euclid could have rear-
ranged his Elements 80 as to follow this order. The idea appeared again

in Couturat's la logique de Leidbniz, 1900, and in the British Report on

the Teaching of Geometry in Schools, which was presented and accepted on

Noveaber 3, 1923 and published before the end of 1923 by G. Bell and
Sons, London.

In the spring of this same year, 1923, Professor Birkhoff was invited
to deliver in Boston a series of lowell Lectures on Relativity. In order
to present this subject with as fev technicalities as possidble he decided
to devise the simplest possible syatem of Euclidean geometry he could
think of, and - without any acquaintance at that time with any earlier
enunciation of the idea of a postulate of similarity - he hit upon the
framsvork of the asystem that, with all the details filled in, is now
BASIC GEOMETRY. The postulates of this geometry were firet printed in

Chapter 2 of Birkhoff's book The Origin, Nature, and Influence of Rela-

tivity, Macmillan, 1925, vhich reporte these lectures of two years
earlier. It is intereeting that John Wallis' idea of a Similarity Poe-
tulate should have coms to light again in England and in the United
States in 1923, quite independently and almost eimltanecusly. As a re-
sult of inquiry in England the authors believe that BASIC GEOMETRY 1ise
the firet and only detailed elaboration of this idea for use in second-
ary schools.

The authors recognize the need of passing the pupil through two pre-
liminary stages before plunging him into the serious study of a logical
system of geomstry. First, the pupil must acquire a consideradble famil-
iarity with the facts of geometry in the junior high school years in
order the better to appreciate the chief esim of demonstrative geometry,
vhich is not fact but demonstration. In order to emphasize thie contrast
it ie vell that there should be a dietinct gap between the factual
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geomatry of the junior high school and the demonstrative geometry of the
senior high echool. Certain authors of books on demonstrative geometry,
recognizing that eome pupile enter upon this sudbject with very little
knovledge of the facte of geometry, try to make good this deficiency
through an introductory chapter on factual geometry. The authors of
BASIC GEOMETRY have preferred not to do this because they are fearful
that the distinction dbetween fact and demonstration will dbe dlurred if
the proofs of important but "obvious" propositions follow immediately
after an intuitional treatment of these same ideas. The proper solution
of this prodlem ie to provide adequate instruction in informal geomstry
in the seventh and eighth grades. The educational grounds in support of
such & program lie far deeper than mere preparation for demonstrative
geometry in a later grade. Fortunately the increasing tendency to give
more inetruction in informal geometry in the seventh and eighth grades is
gradually eliminating the need for an introductory treatment of factual
geomotry at the deginning of demonstrative geometry.

The second preliminary stage through which the pupil must paes 18 a
drief introduction to the logical aspects of demonstrative geomstry. This
includes discussion of the need of undefined terms, defined terms, and
assumptions in any logical system, and also includes a drief exemplifica-
tion of a logical treatment of geometry - a miniature demonstrative geom-
etry, in effect - in order to exhidbit the nature of geometric proof, and
to afford an easy transition to the systematic logical development that
18 to follov. It is introductory material of this sort that constitutes
the first chapter of BASIC GEOMETRY.

The logical aims Of BASIC GEOMETRY are of two sorte: to give boys and
girls an understanding of correct logical method in argumente whose scope
is narrovly restricted, and to give an appreciation of the nature and re-
quirements of logical esystems in the large. In order to attain the first
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of theese aims thie book lays great stress on the nature of proof. It uses
geometric ideae ae a source of clear and unambiguoue examples, and as a
rich eource of materiale for practice. It aleo encourages the transfer
to non-gecmetric eituatione of the ekills and appreciations learned first
in a geometric setting.

In order tc attain the second lcgicel aim this book calls frequent
attention to ite own logical etructure; it contrasts its own structure
with that of other geometries; and it emphasizes the important features
ccmon to sll logical systems. It dares even to call attention to cer-
tain loopholes in 1ts own logic, using footnotes or veiled allusions in
the running text to mark the spots where the geometric fox has run to
cover from the hot pursuit of the geometric hounds. These are mentioned
in thie manual aleo, often with additional comment.

BASIC GEOMETRY not only exhibits a logical system that is eimpler
and more rigoroua than that contained in eny other geometry used in our
schoole; ite eystem is also the very simplest and the most rigorously
logical that pupils in our secondary schoole can be expected to under-
stand and appreciate. In cne or two instances the authore have wittingly
allowed a slight logical blemish to remain in the text when the point at
issue was of a nature to be apparent only to adults and was so remote
from the interests of secondary echool pupila that the sudstitution of
an absolutely correct statement would have made the bock too involved
and too difficult at that point. Each logical blemish recognized as
such by the authors will be diecussed at the proper time in this manual
to clarify the logical etructure of the text aes fully ae possible.
Teachers who are interested to see what a rigorous treatment of this
geometry demands can find the logical framework in an article by George D.

Birkhoff in the Annals of Mathematics, Vol. XXXIII, April, 1932, entitled

"A Set of Postulates for Plane Geometry, Baeed cn Scale and Protractor."”
R .



An article by Birkhoff and Beatley in The Fifth Yearbook of the National

Council of Teachera of Mathematice, 1930, gives a brief description

of BASIC GEOMETRY on an elementary level, and compares it with other
geomstries.

The chief advantage of BASIC GEOMETRY 1s that it gute to the heart of
demonstrative geomstry more quickly than other texts. It is able to do
this by postulating the proposition that if two triengles have an engle
of one equal to an angle of the other and the including sidee propor-
tional, the triengles are similer. This leads simultaneouely to the
basic theorems under equality and similarity and immediately thereafter
to the theorems concerning the sum of the anglas of a triangle, the es-
sence of the perpendicular-bisector locus without ueing the word "locus,"”
and the Pythagorean Theorem - all within the firet eeven theorems.

BASIC GEOMETRY contains only thirty-three "book theorems." A few of
these, at crucisl pointe, embrace the content of tvo or more theorems of
the ordinary school texte, as is hinted by the postulate on triangles
mentioned above. This accounts for the great condensation of content
into brief compass.

If 1t be objectod that other books could reduce their liete of theo-
rems also by telescoping some and calling others exercises, the proper
anewer 18 that every book recognizes that the chief instructional value
of demonstrative geometry is to be found in the "original"” exerciees and
tries therefore to reduce the number of its book theorems. But these
other bocks just have to exhibit the proofe of lote of theorems because
othervise the pupils would not figure out how to prove them. They could
of course be called exercises, but the pupils could not handle the exer-
cieses, so-called.

In BASIC GEOMETRY, however, the fundamental principlee and basic
theorems are of such wide applicability that the pupil can actually use
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these tocls to prove ee exercises most of the propositions thet other

books muet carry as book theorems. With all the usual ideae concerning
equal and similar trianglea, angle-sum, perpendicular bisector, and Py-
thagorean Theorem available at the outset, it would be ridiculous for
BASIC GEOMETRY to retain ae book theorems what other books muet 8o re-
tain. We do indeed require eix book theorems on parallel and perpendic-
ular lines, 8ix more on the circle, threes or five (depending on the
system one follows) on area, four on ccntinuous variation, and the usual
locus theorems. Almost all these book theorems follow very easily from
the twelve basic postulatee and theorems. Not more then five of these
book theorems are at all hard, and three of these hard ones are proved
in the same way ae in other books. In short, there i& a real reeeon for
cslling this book "Basic Geometry."

Jdeally, every exercise in this book can be deduced from the five
fundamental principles and the thirty-three book theorems; but there is
no objection to using an exercisa, once proved, es & link in the logical
chain on which a later exercise depends. This holds for other geometries
as well.

A further advantage of BASIC GEOMETRY is its willingnees to take for
granted the real number system, assuming that the pupil has already had
some experience with irrational numbers in arithmetic - though not by
name - and has a sound intuitive notion of irraticnals. In this reepect
pupile of the eighth grade in thie country today are way shead of Euclid's
contemporaries and wn ought to capitalize this advantage. The theorems
of this geometry, therefore, are oqually valid for incommensursble and
commensurable cases without need of limits.

Although BASIC GEOMETRY seems to require five fundamental postulates
in Chapter 2 and two more postulates on area in Chapter 7, 1t is cleer
from pages 50, 198, 199, and 222 that this system of gocmetry really
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requires only four postulates. These postulates are set forth as Prin-
ciples 1, 2, 3, and 5. It should be noted, as the authors indicate on
pege 278, Exercise 4, that Principle 6 of BASIC GEOMETRY, inatead of
Principle 5, could have been taken as the fundamental Postulate of Simi-
larity. But Principle 5 is to be preferred for this role, for reasons
of fundemsntal eimplicity.

Thie discussion of the order of the assumptions and theorems of this
geomotry raises the question of how to reconcile the peychologically de-
siradble ideal of allowing the pupile to suggest the propositions they
wish to assume at the outeet with the mathematical ideal of insuring that
any systea the pupile construct for tbemselves shall be reasonadly froee
from gross errors. It is probably well to let the pupile spend a little
time in constructing their owvn syetems provided the teacher is competent
to indicate the major errors and omissione in each system that the pupils
put together; for careful elucidation of the reasons why certain arrange-
monts of geometric ideas will eventually prove faulty can dbe very in-
struotive.

This is only one of many situations in the teaching of mathematics
wvhere psychology and mathematics are in conflict. We have a second in-
stance in our attempt to devise a psychologically proper inductive ap-
proech to a logically deductive science. Many teachers who recognize
the value of trial-and-error in the learning process hesitate tc apply
to the learning of so precise a subject as mathematice the method of
fumbling and etumbling that seems to be the universal method dy which
human beings leern anything nev. The rvally good teacher of mathematice
rejoices in this eternal challenge to him to reconcile irreconcilables.
Ho dares to begin precise subjects like algedbra and demonstrative geom-
otry with a certain degree of nonchalance. He does not try to tell the
pupil every detail wvhen considering the firet equation, but prefers to
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consider the solution of several equations in fairly rapid euccession
and truste in that manner gradually to build up the correct doctrins.
Be does not insist on technical verbiage at the ocutset. He leapfrogs
dreary dook theorems in geometry and plunges into a coneideration of
easy originals, trusting that dby so doing the pupils will acquire in-
ductively a feel for logical deduction. He will not hamper this early
learning by insisting on stereotyped procedures, vhether with equations
in algedbra or with proofs in geometry. And yet, with all this desiradble
nonchalance at the cutset, he muet knov vhen and hov to question his
early procedures of this sort and must lead his pupils eventually to
amplify and amend them.

BASIC GEOMETRY was used for seven years in regular classes in the
high echool at Newton, Massachusetts, before it was published in 1ite
present form. To a teacher whose earlier experience with geomstry dif-
fers frcm this presentation it is admittedly eomewvhat confusing at the
outset. Because of this earlier experience of a different sort the
teacher vwill often make hard wvork of an exercise that seems straightfor-
vard and simple to the student. An excellent example of this is to de
found on page 115, Exercise 22. Originally Fig. 11 carried a dotted line
EF parallel to AB. Thie was inserted by one of the authors to lead the
pupile toward the proof. But the pupils needed no esuch help, using Prin-
ciple 5 at once. Thie line EF was a result of the author's earlier train-
ing in geomstry. After this had been pointed out dby Mr. Enoch in one of
the first years of the Rewton experiment, the dotted line wes expunged,
but so reluctantly that the letter F hung on through the first printing
of the book. The students do not have thie sort of difficulty. Conee-
quently, a teacher in his first experience with BASIC GEOMETRY will do
well to observe the methode ueed dy his pupils.
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Students of aversge ability and better, the sort who succeed in
ordinary coursee in geometry, vill be at least equally euccessful with
BASIC GEOMETRY. It is the common experience of teachere using this bcok
that classes get into the heart of geometry much mors quickly then when
a book of the conventionsl kind is used. Pupils whose ebility ie below
average, the sort who tend to memorize under conventional instruction and
pick up a mumbo-jumbo of geometric jJargon without really knowing what 1t
is ell edbout, will find that BASIC GEOMETRY offers little field for memo-
rizing and sets no store by technicel jJargon. Such pupils either catch
the spirit of BASIC GECMETRY and vin & moderste euccess, or they drop out
early in the race. The real loes under BASIC GEOMETRY ie no greater than
in conventional classes; the apparent lose 18 admittedly greater, becauee
BASIC GEOMETRY - with ite dbrief 1ist of "book theorems" and its ineist-
ence on "original exercises” - offers little refuge and scant reward to
a protense of understanding. But anyone who profits genuinely from a
conventional course will derive at leesst an equal, and probably a greater,
profit from BASIC GEOMETRY.

Students vho use thie book and then go on to solid gecmetry are nct
hendicapped by their unususl training in plane geomestry. If anything,
they do better than students who have studied plane gaometry in the con-
ventional way. This ie borne out by the experience of Mr. Mergendahl,
head of the department at Newton High Schcol, wvho has regulsrly taught
8011d geometry to clasees composed of pupils some of whcm have had a
conventional course in plene gecmetry while cthers were brought up on
BASIC GEOMETRY. This is as nearly impartisl evidence ae we cen get; for
Mr. Mergendahl has not used BASIC GEOMETKY in hie own cleseee, though he
vas responsidble for initiating this experimert at Nawton and has enccur-
aged it and followed it with e highly intelligent interest.
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The following tims echedule will serve to guide the teacher in hie

firet experience wvith this bock.

Chapter le--e-cccceacaa ceecmnn 9 periods
Chapter 2-e--ce-ceemmccanaa- 15 periods
Chapter 3--e-ececccccccnccaa. 19 periode
Chepter 4--cccecaccmooanaaa. 12 periode
Chepter 5---------cccccncaen 27 periode
Chspter 6--ca--- -----19 periods
Chepter T----e-=c-ceccceacae 17 periods
Chepter B-cecccccca-e ---6 periods
Chapter 9---=---coccoocmcna- 1L periode
Chapter 10------eececmocccaan 7 periods

This schedule is based on a school year of at least 34 80l11d working
weeks, with four 50-minute (or longer) periods a week devoted to geome-
try. If the couree can be spread over two yeare, with at least 68 periods
each year devoted to geometry, the pupils will learn and retain more than
1f the 145 periods of geometry are ccncentrated in one year. This ex-
tension of the calendar time during vhich the pupil is exposed to this
subject will aleo help the other subject with which the geometry presums-
bly alternates. Ordinarily this other subject will be seccnd-year alge-
bra. Under this alternative a good procedure is to devote ell four
periode for the firet two or three veeke of the firet year to the geome-
try until the course is well started and then to alternate with algebra,
doing geometry on Monday and Tuesday, for example, and algebra on Thurs-
dey and Friday of each week.

One last word before we proceed to coneider this book chapter by
chapter. The introduction, the foctnotes, the summaries at the ends of
the chapters, the laws of Number, and the index are intended to help the
teacher in presenting this novel course in geomstry and reasoning to
secondary school pupiis. The authors euggest that teachers make full
use of these aids.

George David Birkhoff
Ralph Beatley
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CBAPTER 1
Lesson Plan Outline: 9 lessons
1-2. Through page 19, Ex. 2
3. Exe. 3-7, pages 19-20

4. Diecuss theorems A, B, and C in class and
assign page 2k, Exs. 1, 2, and S
5. Exe. 3, 4, and 6, pages 2k-25
6. Converse propositions, and Exe. 1-11, page 28
7-9. Pages 29-36
The authors intend that the pupils will read and discuss this chapter

in class, section by section, doing some of the exercises in class and
others outside of class. The pupils ocught also to reread the text quiet-
1y by themselves outside of class and make a conscious effort to remember
the main ideas of the chapter. Chapter 1 is introductory in character
and fundamentally important for all that follows. Nevertheless, complete
appreciation of this chapter will come only after the pupil has gone
deeply into the succeeding chapters. Consequently it will be better not
to plod too painstakingly through Chapter 1 at the start, but to try in-
stead to take in i1te main features fairly rapidly end then return to it
from time to time for careful etudy as questions arise concerning the
Pplece of undefined terms, defined terms, assumptions, theorems, converses,
and 80 on, in a logical system.

Page 14, 1ine 3: "Equal'versus "Congruent.” The system of geometry set

0
—_—

forth in Chapters 2-9 makes no use of superposition and does not require
the term "congruent," which some other authors think they need. These
other authors take "rigid,” "motion," and "coincide throughout” as unde-
fined terms, though they do not declare them to be such. They then say
that 1f, by a rigid motion, two figures can be made to coincide through-
out, they are "congruent"; and if congruent, that all correeponding
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parte of the two figures are "equal."” By "parte” they usually mean
line-segments and anglee. So nov ve know vhat "equal" means, at least
vhen applied to geometric figures that are parts of other geometric
figures. These authore could have applied the term "equal” to the con-
gruent vholes as well as to their correeponding parte. But, as we shall
8ee, many of them do not permit this use of "equal" with respect to two
geomotric figures that are momentarily regarded as wholes, even though
these esame geometric figures can be regarded also as partes of other
figures. In sum, these authore define "congruent” and "equal” in terms
of "rigid motion" and "coincide."” Whole figures can be congruent; par-
tial figures can be both congruent and equal.

Poesidly this strange distinction had ite origin in the desire to
prove the equality of the measures of line-segments, or angles, by showv-
ing the line-eegmente, or angles, to be corresponding parts of congruent
figures. Interest was centered not 8o much in the geometric configura-
tionse as in the numbers that measured them. But Puclidean hadbit confueed
line-segment and ite measure, and angle and its measure; and thie habit
has persisted to the present time. Though line-segmente are called
oqual, it ie their lengths that are meant. It would appear then that
tvo triangles cannot de called equel unless these geometric figures eleo
have some characteristic numerical msasure in common. Since a triangle
encloses a part of its plane, its area seems to be a more significant
mesasure than its perimeter, which is but a composite of the lengthe of
the line-segment sides. If this is the reason for calling two triangles
equal only vhen they are equal in area, it seems hardly adequate.

The undefined idea - really two ideas - of rigid motion implies motion
without distortion; that ie to say, without resulting inequality. Inher-
ent in the undefined term "rigid" is the idea "equal" that later will de
defined in terms of it. If it were proper to challenge the undefined
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term "coincide" and inquire what 1s the criterion for testing perfect
f1t, in order tov distinguish between an apparent fit within some recog-
nized limit of error and a genuine errorless fit, can one imagine an an-
sver that does not involve equality?! Of these four ideas, rigid motion.
coincide, congruent, and equal, does one stand out as clearly more funda-
mental than the others? The authors of BASIC GEOMETRY say, "Yes, equal.”
Other authors say, "Rigid motion." Let us see how these other authors
proceed.

If two triangles have an angle of one equal to an angle of the other
and the including sides also equal, ve can bid one triangle remain rigid
and can move 1t so that certain parts of it fall on - more or less - the
corresponding parte of the other triangle. Can theee corresponding parts
then be made to coincide? It ie so asserted. Why? Because they were
given equal. It appears that if two line-segmeats or angles are equal
and etay equal while in motion, then they can be made to coincide. The
rest of the ceremony concerning these triangles consists of showing that
the third pair of sides coincide, and hence are equal; and that the other
two pairs of angles are equal also, dbecause coincident.

We have seen first that three pairs of parts coincide because they
are equal, and then that three other pairs are equal because they co-
incide. What then ie the distinction between congruent and equal? ILet
us look further.

Soms followers of the "congruent" school insist that two parallelo-
grans that are not congruent can be equal. When they apply the term
equal to two "whole" figures of thie sort, they mean equal in area. Oc-
casionally the vhole figures may be congruent, but ordinarily not. An
adult layman would never call two such figures equal, whoee corresponding
parts are ordinarily unequal and whose only common property is their area.
If thie is the important distinction between congruent and equal wholes,
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no wonder that pupile vho are Jjuet beginning demonstrative geometry are
baffled by ite mysteries.

The authors of BASIC GEOMETRY regard the term "equal" (see pagee 39
and 285) ae familiar to everyone and not requiring to be defined. Taken
as undefined, it can be applied immediately to numbers, and aleo to geo-
metric figures that are vholes, as well as to figures that are parts of
wholes, juet as everybody would normally expect.

Incidentally it muet be clear why the authors of BASIC GEOMBTRY are
glad to avoid proving a "side-angle-side" theorem at the very beginning
of demonstrative geometry, and prefer tc include the content cf thie
proposition in a fundhmental assumption, Case I of Similarity. See
BASIC GROMETRY, pages 59-60.

Peges 14-15: Circle, diameter. Unfortunately, mathematicians do not

alwvays adhere to their own canons of accuracy with respect to terminology.
Occasionally they wink at certain inaccuracies and inconsistencies and
agree, in effect, to confuee colloquial and technical usage. It ie
necessary that pupils should knov wvhich mathematical terms are esometimes
used loosely; for example, circle, circumference, diameter, radius,
altitude, and median.

At first blush it seems as though the strict meaning of "diemester"
must be "through-measure,” a number and not a line. But inasmch as
Euclid represented numbers by line-segments, the "through-meaeure” of a
circle was to the Creeke a line-segment containing the center of the
circle and terminated by the circle, or another line-segment equal to
this. This ambiguity has probably led the makers of dictionaries to put
the line idea ahsad of the number idea. The ambiguoue terms radius,
diameter, altitude, and median are treated consistently in thie dbook.

Page 15: "Thinge equal to the same thing. . .." We are not eeger that

pupils should adopt this wording, but all teachers knovw it and many of
<1k -



them will vish their pupile to use it. It is a property of the undefined
idea "equal” and 18 postulated for that purpose. (See pages 39 and 285.)
In thie book we do not give any reason in support of statements like

"PQ = PQ." Where other books say "By identity” or "Identical,” ve say
nothing. One of the postulates governing the uee of the symbol = for
the undefined term "equal” 1s "a = a." (See page 285.)

Pegos 16-17: Exercises. As noted at the bottom of page 15, the stu-

dents will need to consult a dictionary here. The teacher should remind
his pupile that in mathematice a dictionary can often be of assistance
1f only they will think to use one.

Ansvers are omitted for exercises where the correct answer is fair-
ly obvious to the teacher.

2. "Light creem” is heavier. "Thin cresa" and "thick cream.”

3. Sugar dissolves in coffee, and butter melts in hot oyeter etev.
Solid or frozen substances vhose melting point is belov body tem-
perature, namely 98.6°F.

The oil dissolves in the gascline.

9. South also.

Page 17: Assumptions. A proposition is merely an aseertion; it ie
devoid of truth value. Propositions are of two sorts: those that we as-
sume, veriously called assumptions, postulates, axioms; and those that
we can deduce from the assumptions. These latter are called theoreas.
One person's theorem may be another person's assumption. It is the logi-
cal relation, not the verbal content, of any given proposition that clas-
sifies 1t as assumption or theorem.

Page 18: "k x 8 = 28." If this example leads to momentary considera-
tion of number systems with base different from 10, let the tescher be
warned that expressions like 4 x 8 = 52 and 4 x 8 = 57 must be avoided;
they will not have the meanings that pupils will wish to ascridbe to them.
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For, wvhile b x 8 = (5 x 6) + 2 in our ordinary arithmetic, we cannot
write 4 x 8 = 52 1n the number eystem to the base 6 because that system
has no 8. Similarly, vhile 4 x 8 = (5 x 5) + 7 in our arithmetic, nei-
ther 8 nor 7 appesre in the number system to the base 5.

Pages 19-20: Exercises.

l. a, d 2. ¢, b 3.4, a L. b, ¢

5. Solid ludge einks in molten runk. Or, solid runk floats on molten
ludge.

6. True if base 18 5.

7. That the government chose to test the twelve best of all drands of
wveather-etrip manufactured, and that among these twelve the rating
of 93% efficient vas very high.

Page 20: The Nature of Geometric Proof. It must be emphasized that

the three assumptions on this page, Theorems A, B, and C that follow,
and the theorems in the Exercises on pages 2L.25 are not part of the
official geometry of thie book. They constitute a miniature geometry to
shov the logical relation between assumption and theorem, and to afford
an example - intentionally a bit casual - of the proof of a theorem.
This is not the place for the teacher to begin to insist on certain pro-
cedures in proving theorems, such as separating statements and reasons
into two clearly divided columns, or to insist on the use of certain
technical terms and phrases. Our goal in teaching geometry - and it 1s
a difficult one to attain - ie to elicit clear thinking. While there is
undoubtedly a definite connection between clear thinking and clear ex-
pression, the parrot-like repetition by pupile of accurate statements
ineisted on by textbook or teacher is all toc often an obstruction to
thinking. It is admittedly not easy to combine accuracy of thought with
informality of expression, but this combination ie peychologically de-
sirable at the beginning. Indeed, 1f the pupil is to be encouraged to
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transfer his ekill in ressoning from geometry to non-mathematical situa-
tions, it would dbe well tc relieve him for all time of the requirement of
learning a rigmarole of proof that is peculiar to geometry (under eome
teachers) and has no counterpart in other velkse of life. Specificelly,
the ertificial separation of statements and reasons by a vertical line
drswn down the pege can be a definite handicap to the transfer of learn-
ing in geometric situations to other situations in vhich the ressons in
support of an argument are commonly incorporested in an ordinary para-
graph. Admittedly the vertical line mekes it easier for the teacher to
check the pupil's work and thie consideration deeerves some weight. Pos-
8ibly a compromise can be sffected here, wheredby the pupil is asked to
submit prbofa in paragreph form once or twice a week, understanding that
this is the ideal form for eubmitting arguments in general, and is asked
to use the vertical line at other times in order to save the teacher's
time.

There 18 no need to add to the three sssumptione on page 20 a fourth
assumption to the effect that the corresponding parts of equal triangles
sre equal, for all this 1e implied dy the term "equal," which we take as
undefined. Surely the wcrd "equal" carries universally the implication
that corresponding parts of equals ere oqual. (See pages 57, 59, ‘and 60.)

Page 22: Hypothesis, Conclusion. It ie important to note that line 7

does not say that the hypothesis 18 co-extensive with the "if-part" of
the statement of a proposition. Usually the "if-part” contains the "uni-
verse of discourse"” as well as the particular condition of the proposi-
tion. By implication the universe of disocurse ies a part also of the
conclusion, though 1t is usually not inoluded in the "then-part." For
example, in the proposition "If a quadrilateral is a parallelogram, the
disgonals bisect each other" the universe of discourse i1s the quadrilat-
eral, the thing we are talking about. The universe of discourse is still
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the quadrilateral when the rroposition is stated in the form "The diago-
nals of a parallelogram bisect each other."

Unfortunately the English language often permits more than cne way
of writing a proposition in "If- - - , then- - -"form. There 18 no hard
and fast rule by which the teacher can circumvent these ambiguities.
Thie subject 18 ccneidered at greater length on pages 25-33 of thie manu-
al as part of the discussion on the framing of converee propositions.

While it is convenient and important to refer to the "If - - -,
then - - -" form, the teacher should note that the "then" 1s usually
omitted. We have indicated this on page 22 by enclosing the "then" in
parentheses.

Although the "If- - - , then- - - " form is characterietic of deduc-
tive reasoning, the teacher should recognize that it is employed aleo in
inductive thinking. He should be ready, therefore, to dispel this possi-
ble cause of confusion when induction is considered on pagees 273-276.

It 18 not enough that the pupil shall know how to write a geomstric
proposition in "If- - - , then- - - " form. He must be able also to
translate the words of the proposition into a proper geomstric figure.

To eee that he acquires this ability is only one of the many important
functions of the teacher.

Page 21: Theorem A. Some teachers will think that the analysis of
this theorem, presumadbly the first that the pupil has ever met, is dis-
posed of too quickly; and similerly in Theorems B and C, It is our stud-
ied policy, however, to exhibit several proofs in fairly rapid succession,
8o that the pupil may get a rough idea of what is expected, and then to
provide exercises immediately thereafter on which he can try hie hand.
We are much more interested that he "get the hang of the thing" right
from the start than that he dwell on details. We would employ an in-
ductive method in teaching deduction by ehowing a few deductions and
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allowing the pupil to induce what he can of deduction from them. Then
let him learn more "by doing."

A false lead - dbut a perfectly natural one - was purposely introduced
into the analyeis of Theorem A. We want to encourage the pupil in trial-
and-error thinking and vish to avoid giving the impreseion that we are
setting up a model proof in final form and expecting him to followv the
pattern closely. It seems to us that the schools have done enough dam-
age by beginning demonstrative geometry in that vay for the last hundred
years. VWe are not content to shov the pupil one correct method of proof;
wve vish also to shov him "vhy it cannot be done his way,"” and to indicate
that a fev changes in the preliminary set-up would make his way juet as
good as ours. A pupil who is trained to consider the relation of every
proof to the body of assumptions from which he ie working will gain both
understanding and eppreciation of the nature of proof. Teachers of geom-
etry, comittees, and commissions say that we ought to do this. Very
vell, here it is!

Page 23: "logical refinemsnts.” Of course, in this miniature geome-

try vhich ve present here in Chapter 1 in order to give the student some
notion of the nature of logical proof, we have already made clear on
page 20 that we need to borrov certain definitions from the main body of
this geometry. Similarly, we need to borrov certain implications of the
Principles of Line Measure and of Angle Measure that appear later in the
main geometry. We have chosen not to be too rigorous here in order not
to distract the pupil from our main purpose. We have, however, chosen
to insert a remark on pege 23 that implies that even when we got serious
in developing the main geomstry of this dook, we shall even then put e
1imit to rigor and shall ignore certain fine points. We believe, never-
theless, that BASIC GEOMETRY is more rigorous than other gecmetries pre-

pared for escondary echools, and that it sets a good example in calling
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attention openly to those instances where the logical rigor is relaxed,
and in indicating in the text, or in a footnote, or in the Manual for
Teachers, Just vhat is involved.

The logical refinements that "we usually ignore" coacern the exist-
ence of the midpoint of a line-segment, the existence of the bisector of
an angle, the existence of a unique perpendicular to a line at a point
of the line, and the five theorems lieted below. In BASIC GEOMETRY the
three exietence theorems Just mentioned are special instances of the
Principles of Line Measure and of Angle Measure. As will be ehown in
the commente on Chapter 2, they follow immediately from the fact that

the Principles of Line Measure and of Angle Measure involve the System

of Real Kumbers in a fundamsntal . Cc quently BASIC GEOMETRY
has no difficulty with hypothetical constructions, with which other sys-
tems of geometry are plagued. That ie, other geometries would like to
prove in advance the existence of certain points and lines that they
need in the proofs of certain theorems, and not merely take these exiet-
ence ideas for granted. If they adhere to thie program faithfully they
f£ind 1t hard to avoid "reasoning in a circle”; or, if they escape this
logical error, it 1e only by constructing a sequence of theorems that
seems to the deginning student to be quite devoid of order and of sense.
The intimate association of the system of real numbers with the Prin-
ciples of Line Measure and of Angle Measure not only establiehes the
crucial pointe and linee we need at the beginning, and 8o removes all
question of hypothetical constructions from BASIC GEOMETRY; it aleo en-
ables us to prove certain fundamsntal theorems like the five lieted below
that are assumptions, but unmentioned assumptions, of Euclid's Elemente
and of ordinary systems of geomstry since Euclid. In BASIC GEOMBTRY ve
chooss to ignore fundamental theorems of thie sort because doth the con-
tent and proof are remote from the intereste of eecondary school pupils.

- 20 -



It should be emphasized, however, that these fundemental ideas that we
choose to ignore for pedagogic reasons are theorems that can be proved
in BASIC GEOMETRY. Our failure to mention them explicitly in the book
forces them conceivably into the same category as Principle 4, the con-
verse of Principle 7 (page 84), ani the two area assumptions on page 199;
Wt all of these can be deduced from Principles 1, 2, 3, and 5 of BASIC

GEOMETRY. They are temporary assumptions by choice, and not - as in
other geometries - pormanent assumptions by neceesity.

The five fundamental theorems referred to, each of which is proved
by means of the continuity inherent in the system of real numbers, are
as follows:

(1) That a plane ie divided into two parte by any line in the plane.

(2) That a etraight line joining pointe A and Ay on opposite sides
of line 1, mmet have a point in commwon with 1.

(3) That every line that containe a point P on one of the sides of
triangle ABC and does not contain a vertex must have a point in common
with one of the other two sides of the triangle.

(4) That a line Joining a point inside a circle and a point outeide
the circle muet have a point in common with the circle.

(5) That a circular arc b jJoining a point inside a circle a to a point
outeide circle a muet have a point in common vith circle a.

These five theorems are proved in the following manner, making free
use of the continuity of the system of real numdera. The methods used
will indicate how other similar fundamental ideas can be established that
are not mentioned here but that may occur to teachers as they etuily the
foundations of geometry.

Fundamental Theorem 1. A plane is divided into two parts by any line
in the plane. That is, the points of the plane are divided by the line
into three clasees, those "on one side"” of the line, those on the line,
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and those "on the other side"” of the line; whence those points on one
side of the line and those points not on this eame eide of the line con-
stitute the two parts of the plane referred to.

Proof: Coneider a random point O on line 1. Connect O with other
points A in the plane that are not on 1. These connecting line segments
make angles § vith 1 that differ from
0, 7t , or 27 because these points A
are never on 1. We can divide these
pointe A into two clasees:

(1) those for which 0< 8 < X, and

(2) those for which ¥ <6 <27,

Fig.A

vhere § = O (modulo 271). We ehall
call the points of the first clase Al'e, and those of the second class
A,'s. From our Principle of Angle Measure (page 47) amplified as on
page 231* we see that as A varies continuously through many suitably
chosen points Al, such as the points of the curve c¢c in Fig. A, @ varies
continuously through a renge of values that are always between O and 7Y .
Now consider another random point O' on lins 1 and join O' to all the
pointe A; Jjuset traversed by A. The angle §' varies contimiously aleo,
but can never equal J(; for if 1t did, Al would lie on 1, which s im-
possidble. This means that for all Al,
if O' ever has & value less than 7, P X Q
it can never take a value greater than
7(, and conversely; for if it could,

then @' , in varying continuously, would

have to equal 7 momentarily. Conse- .
Fig.B

quently, as point A traverses a series

*Namely, 1f in Fig. B, M and N are fixed vhile X varies continuously
from P to Q, then angles MXN, XNM, and NMX vary continuously also.
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of points Ay, indeed all the points Ay, O 1s between O and Tt , and @'
18 either detween O and 7t or else between 7T and 27r. Similerly, if
T <H§<2T, then either T < §'< 2% or else 0 < @' <T. We can prove
that 1in eech case the first alternative for §' 1e correct and the eecond

alternative is false, as follows.

Consider a particular | int A; and re- Ay
gard A10' in Fig. A as playing the role of
MN in Fig. B on page 22. O plays the role
9'\(1-e/ 6
of the roaming point X in Fig. B, vhere now 0' 0
0, instead of varying along a curve that FIQA

includes neither M nor N, will vary along

straight 1ine 1 and 80 will coincide eventually with O'. We know that

9, T-0+ and §' all wvary continuously; the firet two between O and
T, and 8’ either bPetween O and 7 or between 7t and 271, But since O
can bde momentarily equal to 8', O’ must have at least one value betveen
‘0 and 77 and 8o cannot have eny value between 7 and 2W. Thus &/, vary-
ing continuously, muet always have values between O and 7 when O hae
values between O and 7Y.

Similarly, if we consider any point A,, ve have T <0<27Meand
™ <o'<2w.

Thie means that the separation of pointe A into classes Ay and Ap with
respect to O 1g unaltered when the eeparation is mede with reepect to any
other point 0' on 1. That 1s, all the points on 1, and 80 1 itself, eep-
arate the points A that are not on 1 into two clasees in the same way.

The points of one class are said to be on one side of line 1; the pointe
of the other class are said to be on the other side of line 1.
Fundamental Theorea 2. A straight line joining pointe A; and A, on

opposite eides of 1line 1, must have a point in common with 1.

¥#1.0., angle MIN in Fig. B on page 22.
- 23 -



Proof: Corsider a random point O on line Al
1. See Fig. A. Let O vary along line 1. As

it does 8o, angle A10A2 vill vary continu-

g 8,

ously, eince it plays the role of angle MXN 0
in Fig. B on page 22. This angle A10A2, or 92
6, — 6, , will vary continuously from o* ra-

2 1 A,
dians (vhen O 1a way out to the right) to F'g A

27 -radians (vhen O 18 way out to the left).
Coneequently for some position of O the value of LAj0Ap vill be 7T radi-
ans and A10A2 vill be a straight line baving point O in common with 1.

Fundamental Theorem 3. ("Pasch's Axiom") Through any point P on one

side AB of triangle ABC, every line 1 that does not contain a vertex has
a point in common with either BC or AC. See Fig. B.

Proof: Angle BFC 1s between O and 77; also,
the given 1line 1 contains a half-1ine with erd-

point P that mekes vith eide AB an angle ¢ dif-

ferent from £ BFC and such that 0<¢ <7T.
Lot point Q trace out the broken line BCA o that Fig.8
angle BRQ varies continuously from O to . ¥For

some poeition of Q angle BPQ ie equal to ¢, and Q 18 the intersection
of 1 and the broken line BCA.

Fundemental Theorem 4. A line Joining a point ineide a circle and

a point outside a circle must have a point in ocommon with the circle.

Proof: If, in Fig. C, P ie inside the circle and Q is outeide, then -

from the definitions of "circle,"” "inside," and ~ee.
“outeide" on page 133 - it followe that OP<r. Let Q

D be the foot of the perpendioular from O to the

lire 1 jolning P and Q. Then D < OP < r and

M2 052 <r. We can lay off this dietanoce Flgc
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'r2 - m2 on 1 in two directions from D and thus determine two pointe
on 1 that are at a distance r from O. These two points vill aleo be on
the circle. See page 138.

Fundamental Theorem 5. A circular arc b joining a point inside a
circle a to a point outeide circle a mist have a point in common with
circle a.

Proof: Given P inside and Q outside the cir-

o~
f =}

a
cular arc a with canter O and Joined by the cir-

cular arc b vith center 0', we see that OP<r
and O'P = r'. Consequently OC' must be less than ,
r + r' and ve have the case of two circles inter- FigA -0
secting in two points as shown on pages 142 and 143,

Returning to Theorems A, B, and C, pages 21-23, we see that the Prin-
ciple of Angle Measurs, amplified as on page 231, suffices to establish
the unique bisector of angle A and to insure that this bisector meets BC

between B and C. For as X varies continuously from

B to C in Fig. B, angle BAX varies continuously froa A

O to LBAC, and vice versa. Corresponding to the

unique number that is half the sum of the numbers

assigned to the points B and C there is a unique num- B X C
ber that 1ies between the numbere aesigned to the F'g B

half-lines AB and AC. And vice versa, corresponding

to the unique number that ie half the sum of the numbere assigned to the
half-1ines AS and AC there 1s a unique number that lies between the num-
bers assigned to the pointe B and C. It is the object of Theorems C and
B respectively to prove in effect that this "unique number that lies
between - - -" lies Juet midway between. Even in the main part of this
geometry, however, we do not intend to make such conspicuous use of num-
ber in discussing or proving theorems. For the most part we shall be
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content in the knowledge that the system of real numbers is back of us
to help us whenever we may be challenged.

All that ie expected of the pupil with respect to Theorems B and C
ie that he shall gee for himself that enough parts of two triangles are
given equal, or cen easily be proved to be equal, to enable him to prove
that the triangles are equal. For the teacher to lead the pupil by hint
or suggestion to the gist of the proof and then strees the form of the
proof that the pupile muet uee is quite the opposite of what the authors

desire. They much prefer that the pupils see the relations between these

three theorems than that they use them es dress rehearsal for a new bdbit
of verbal gymnastics. The chief aim of the authors with respect to the
three assumptions on page 20, the three theorems A, B, C, and the further
theorems suggested by Exs. 1-4 on page 24 ie that the pupil shall see
them as a whole and shall recognize that these propositione, together
with certain undefined and defined terms, constitute by themselves a
miniature geometry. This is mentioned on page 25 of the book and is
there related to the main system of geomstry in this book that begins in
Chapter 2.

Pages 24-25: Exerciees.

1. Certain teachers will insist that lines PA and PB ought to be shown
in Fig. 5, and that they ought to be full lines and not dotted, in
order to conform to a convention that given and required lines, or
lengths, shall be shown as full lines. The authors do not oppose
thie convention whenever it coincides with their larger aims, dbut
they do not intend to be dbound by it whenever they think that the in-
terests of the pupils can be detter served by ignoring it. Often
this convention raquires that the book show lines that are essential
to the proof but are better withheld till the pupil sees the need of
them. In such cases the authors prefer to have the pupil supply the
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necessary lines on his own diagram. Sometimes also the authors choose
to emphasize the crucial lines of a configuration by suppreseing linee
of secondary importance. They regard the diecovery and appreciation
of geometric relations, and of logical relations, as more important

to the pupil than the preeervation of certain conventional procedures.
The word "theorem" 1s not to be interpreted aes meaning only generel
propositione. The definition of "theorem" on page 19 ie broad enough
to include propositions that are stated in terms of a particular
figure.

Do not suggest the theorem and its proof. We want pupils to see
problems ae well ae to solve problems proposed by other people. It
would be good to tell the pupile precisely this and to anticipate a
good response. We muet train pupils to look for relations and not
encourage them to wait till the relations are handed to thenm.

In Exe. 2 and 3 they are expected to see and prove two of the fol-
lowing three theorems: (1) that £ABD = £ACD, by Theorem A; (2) that
AD, vhen drawn, will bisect < BAC, by Assumption 1; and (3) that AD
will disect BC, by Theorem B.

The pupil may suggest several relatione between the angles of this
figure that are true, but they all involve the relation <A = 2D, eo
thie must be proved in any case. Some pupils will suggest that tri-
angles BAC and BDC are equal. They may even eay that whenever three
sides of one triangle are equal to the three sides of a second tri-
angle, the triangles are equal. That is, they may even announce &

general theorem, one that ie independent of the particular diagram
shown in Fig. T.

Theee first four exercises are well within the powers of pupile in
the Junior high schocl even. The authors believe that thie sort of
exercise is easier and more eignificant than the traditional reciting
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of proofs of the firet two congruence theorems and of the dreary

pronouncement that vertical englee are equal. They wish their atti-

tude to be interpreted ee "giving the game back to the studente."
6. (a) In e circle, if chords are equal, then the chords are equally
distant from the center of the circle.

(b) If a quedrilateral ie & parallelogram, then the opposite angles

of the quadrilateral ere equal.

(c) If & baby ie hungry, then the baby criee.

Puge 25, last line. The authore wish to begin usirg the word “"demon-
stration"” at thie point but know of no definition that would not be pesy-
chologically ridiculcue. Coneequently they have introduced tke word with
no explanation except as may be gathered from the eeries of examples of
demonetration on the immedistely precedirg pegee. Much of our mother
tongue ie learned frum encounters of just thie sort, with nothing bdut
the context to euggeet the meaning.

Page 26: Converse propositions.* The teacher ehould note that a

propoeition ie almoet never stated in such a form ttat the converse cen
be written down merely by 1 iterally interchanging hypothesie and conclu-
sion. Coneider, for example, the proposition "“If two oblique lines are
dravn from & point to a line, the more remote is the greater." In our
corment on page 22 of the book (pege 17 in thie manual) we have called
ettention t¢ the fact that tte "univeree of discourse” is ordinarily
mentioned in either the hypotheeie or the conclueion. Sometimee it ie
mentioned in neither, but it ie alweye implicit in both. Eo long ae it

*The teacher vill find much inetruction in the eeriee of articlee by
Nethen Lezar entitled "The Importance of Certain Concepte and lawe of
Ilogic for the Study and Teaching of Geometry" that appeared in the Math-
ematice Teacher, Vol. XXXI nos. 3-5, Merch-Msy, 1938. We hope, however,
thet the complexities of this eubject ee sot forth hy Dr. Lazar will not
diasuede the tescher frcm dlecuseing conversee in full at e more elemen-
tery level with hie pupile. The treetment of conversee in thie manual
ie intendod to show the teacher how tc introduce beginnere to this eub-
Ject without overvhelming them with details that intereet adulte.
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is rhetorically a part of either the hypothesis or conclusion of a propo-
sition, but not of both, the proposition that is ordinarily recognized
by mathematicians ae the converse of the given propoeition is strictly a
pertial converse, the universe of discourse being kept as part of the new
hypothesis (conclueion) instead of being made a part of the new conclueion
(hypothesie). It is poseible, however, alwaye to separate out the uni-
verse of discourse linguistically from the if-part and the then-part.
When thet is done, the converse propoeition is correctly given by a com-
plete interchenge of hypothesis and conclueion. For example, in the
proposition just mentioned above, the two oblique lines ere not explic-
itly mentioned in the conclusion, although implied by the words "more"
and "greater." The perpendicular from the point to the line is not men-
tioned in either the hypothesie or the conclusion, although implied dby
the word "remote” and poseibly also by the word "oblique." The universe
of diecourse in thie proposition can be separated out by writing the
proposition in the following form: "Given the perpendicular and two
oblique lines from a point to a line; if one oblique line ie more remote
than the other, it ie greater than the other.” The converse is "Given
the perperdiculer and two oblique lines from a point to e line; if one
oblique line is grester than the other, it is more remote than the other."

If books on goometry alwaye took peins to write their rropositions so
that a 1iteral interchange of this sort would yield the converse, there
would still be the problem of training pupils to frame the converses of
non-mathematical propositions, where the separation of hypothesis and
conclueion c2lls for considerable discrimination. The pupile might ae
well face this problem in geometry, perticulerly since e studied effort
to avoid it would result in very stilted statements of meny theorems.

The discuseion in the text on peges 26 and 27 is intended to be
sufficiently dbroad to rule out the necessity of mertioning so-called
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"partial converses." For while it ie poseible to regard the wording of
certain propositior.s in such a way thet the hypotheeis, or the conclu-
eion, or both, ehall eeem to have mcre than one part; and while it is
poeeible then to deviee all the partial converses that can result from
interchanging one or more of thease partial hypotheees and conclusions,
it 18 neither necesssry nor deeireble to do thise. If we will evoid e too
litersl interpretation of hypothesie and ccnclusion, and will first set
at one side thoee 1dees in the propositior thet are obviously intended
to be considered ae invariant, then it ie poesible to frame the converse
without reieing the question of partisl ccnversea at all. As ve shall
see two paragraphs farther on, a proposition can be 8o worded that it
hae more than one meaning, although the person who wrote it intended
that it ehould have orly one. In such caees it ie necessary first to
guese the writer's intent. Admittedly it requires a modicum of common
sense to do this, and some egreement as to what is common eense in a
given case; but it seems better in writing converees to rely charitably
on a bit of "I know wvhat you meen” and "you know what I mean" than to
lose ourselves in the alternative of a maze of partial converses.

It may seem preposterous to eome that we insiet regularly on correct
thinking and accurate expreseion and then advocate thie apparently lacka-
daisical treatment of conversee. Actually our interest in preciese thought
and expression is unabated. But we must bear in mind that the inconeist-
encies and colloquialiems of the English language make it a difficult and
unnatural vehicle for eustained orderly exrression of logically connected
ideas. This 1e true of other living languages aleo, and explains why
those who write on logic and on the foundatione of mathematics employ
some form of the artificial Pearo notation that was devised for this spe-
cial purpose. So long a8 we continue to use English in our mathematice
clasees, we shall have to forego the complete accuracy of expression that
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we should like to demand of our pupils - and of ourselves. A reasonable
relaxation in the face of necessity need not imply - and surely does not
imply in this instence - an abandonment of standarde in general. We
shall still demand all the eccuracy that the pupil can fairly de expectoed
to deliver.

Consider, for example, the propoeition "In an isosceles triangle the
bisector of the vertex angle bisects the base." (Defined on page 245.)
It ie possible to think of the triangle idea as alone invariant here.
In that case there will be three parts to the hypothesis: (1) the ieos-
celes idea, (2) the line-through-vertex idea, and (3) the idea that this
line bieects the vertex angle; and there will dbe two parts to the con-
clueion: (1) the lins through the vertex meets the base, and (2) thie
line bisecte the base. It ie then possidble to regard as a partial con-
verse of the original propoeition any revording that interchanges one or
more parte of't.ho hypothesis with an equal num“er of parts of the con-
clusion. Thie will yield nine pertial converses in all; six dy inter-
changing one part of the hypotheeis with one part of the conclusion in
all poseible ways, and three by interchanging two parts of the hypothesis
with two parts of the conclusion in all possible ways. Of these nine,
five are true and four are falee. Of the five partial converses that
are true, one is utterly trivial; one differs in only a trivial way from
the original proposition; one is the converse that we regard as "the real
converse”; and the last two state eseentially that if the bisector of the
vertex angle bisecte the base, then the triangle is isosceles. This has
an interesting proof, involving the so-called ambiguous case. (See pages
186-188 of BASIC CEOMETRY.) It appears at first that the base angles can
be either equal or supplementary. The latter alternative is then dis-
missed ae impossible because it requires two sides of the triangle to dbe
parallel. The content of this proposition is as interesting as its proof;
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but it 1s not what wve should ordinarily regard as a converse of the orig-
inal proposition unless, in reading the proposition, we give unusual
streee to the word "isoeceles."

Now all this seems pretty far-fetched. The statement of the original
propoeition clearly limits the possible eituations to those involving an
isosceles triangle; 8o dboth the triangle idea and the isosceles idea
ought to be regarded as invariant. If then we think of the number of
parte of the hypothesis as dbeing reduced to two, while the conclusion
keeps its two parts as before, we have the possibility of five partial
converses: four by interchanging one part of the hypothesis with one part
of the conclusion in all possible ways, and one by interchanging dboth
parts of the hypothesis with both parts of the conclusion. Of these
five, three are true and two are false; of the three that are true, one
18 utterly trivial and another differs in only a trivial way from the
original proposition. The third is the only one that tells us anything
new; and this is the one that we should ordinarily regard as the oonverse
of the given proposition.

By keeping the iesosceles idea invariant we have reduced the number of
partial converees that must be considered; but we must etill pay a con-
eiderable price in falee and trivial propositione i1f we go about the de-
termination of conversee in this manner. It is evident that the singling
out of the ideas that the line in question shall go through the vertex
and that it shall aleo meet the base yielde nothing of significance and
serves only to add annoying complexity to an othervise simple procedure.
If then we refuse to regard the wording of the original proposition as
inviting consideration of the poseidility that the line in question
avoids the vertex, or that it dces not meet the base, then we havelsft

only one pert in the hyrothesie and only one part in the conclusion; and
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the interchange of these ylelde the only converse that - from the pupil'e
point of viev - can reasonably be ascribed to the original propoeition.

In short, if one will read the statement of a proposition charitsdly,
i1t 1s not hard to decide bov the converse should be stated. It is quite
unnecessary to introduce difficulties here tkat cen be resolved only by
the consideration of rartial converses. True, there are a fev propoei-
tions tkat are commonly worded in such a way as seemingly to invite the
introduction of pertial converses. It ies possible, however, to reword
these propositions so as to remove thie invitation; end that i1s a much
simpler procedure than helplessly to leave the traditional wording unal-
tered and expose oneself needlessly to all the rigmarole of partial con-
verses.

For example, one could say "Given two triangles in vhich two sides of
one are respectively equal to two sides of the other; if the included
angle in the first triangle is greater than the included angle in the
second triengle, then the third side of the first triangle is greater
than the third side of the second triangle.” This 1s not as clear ae
the usuel wording, and requires a charitadble interpretation of the word
"included." But the content of the converse is unmistakable, vhatever
may be charged against the wey it is wvorded. After all, every use of
English in mathematical situations requires some leniency in interpreta-
tion. In the case Just noted it vould seem better to keep the smoother
traditional vording and to rely on "You know what I mean" when citing
the converes; for the difficulty here 1s linguistic rather than logical.
But we have indicated a way out for those who wish to avoid challenge
with respect to partial converses.

Page 28: Exercises.

1. Converee 18 true. 2. Converse is false.
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3. Converee is false. 4. Converse is false.
5. Converse is false. 6. Converee 18 true.
7. Converse is fales. 8. Converse 18 true.
9. Converese is false. 10. Converse ie false.

11. Converse is falee.

Page 28: "If and only if . . .." While the euthcre see ro reaeon to

mention the phreese "neceesary and sufficient condition” in this connec-
tion, since nc important use could be mede of it in this geometry, it ie
well for the teecher to recognize that every proposition "If A ..., then
B..." can be sudbjected to two interpretations: A is e sufficient condi-
tion for B, and B is a necessery condition for A. For exemple, in the
proposition "If e quedrilateral ie a parellelogram, then two oppoeite
eides of the quadrileteral are equel" the fact that the quadrilateral is
8 parallelogram is a sufficient condition - dut nct a neceesary condi-
tion - for the equality of two opposite eides; aleo, the equality of two
oppoeite sides ia a neceseary condition - dbut not e sufficient condition -
for the quadrilatersl to be a parallelogram; for coneider in each Caee an
ieoscelee trapezoid.

Similerly, in the case of the converee proposition "If B, then A ...,"
we can say: B is e sufficient condition for A, and A i8 a neceseary ccn-
dition for B. Consequently, if anyone wishes to establish thet A is both
e neceseary and a sufficient condition for B, he must be adble to prove
"1f B, then A" in addition to "If A, then B." That is, if a proposition
and 1te converse proposition are both true, the hypothesie (concluseion)
of either proposition is a necessery and eufficient condition for the
conclueion (hypothesis) of thie same proposition.

We make no uee of these ideee in this book; but if the teecher wishea

to use them, he muet de warned against the common error of pupils in con-

fusing the cclloquial and the scientific ueee of the word "necessery."
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The pupil is likely to interpret "necessary condition for B" as meaning
"If..., then neceesarily B, " which ie preciesely the opposite of accepted
practice among mathematicians. For "If..., then necessarily B" merely
intensifies the sufficient condition for B by ineerting the word "necese-
sarily."

Pages _30-31: Exercises.

8. In a group as large ae the total population of the United States,
about fifty per cent would be below average.
9. Or vere the Navy and Yale teams stronger than Vernon and Aggie?

Page 32; lines 9, 1C. The third etep ought to be CD = CD.

Page 33, lines 1-4. See comments on page 280, Exs. 1k and 15, in
this manual.

Page 33, lines 9-13 contain two very important ideas for the teacher
to emphasize.

Page 33: Indirect Method. "Logically it 1e just as convincing.
Logically yes, but not psychologically. Pupile are always dudbious abdbout
the propriety of the Indirect Method. This i1e hinted at on page 35,
lines 15-16 of the text. Logicelly it ie indeed true that a proposition
can be established by showing that denial of the conclueion leads to de-
nial of the hypothesis. That is, it is logically correct to aseert that
the proposition "If B is not true, then A is not true" implies the propo-
sition "If A 18 true, then B 18 true." For 1f this second proposition
does oot follow from the first, then its denial must follow from the
first, namely "If A is true, then B 1s not true"; and so, from the first,
A is not true. But it is a fundamental principle underlying the sort of
reasoning we use in thie book that A cannot be at the same time both
true and not true. Consequently the supposition that the second propo-
eition does not follow from the first is untenadble. Our reasoning here
depends upon two principles that underlie all the reasoning in thie book
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and all reasoning in everyday life. The first of these prinoiples as-
sorts that every mathematical entity and configuration either possesees
a given property or else does not possese it. The eecond principle as-
serts that no mathematical entity or configuration can poseess both a
given property and its oppoeite. These principles are often applied so
as to mean, in effect, that every proposition muet be either true or un-
true; and that no proposition can dbe both true and untrue.

It i8 clear then that the Indirect Method 1s but an application of
the logic underlying all our reasoning. It 18 clear also that to assert
the logical equivalence of the two propositions "If A is true, then B 1se
true” and "If B is not true, then A is not true" is but to assert in
other phraseology the validity of the Indirect Method and hence to aesert
indirectly the validity of a fundamental principle of our logic. These
ideas will not appeal, of course, to secondary-echool pupila. That is
vhy on page 247 of the text we use the Indirect Method to establish the
ideas set forth on that page and do not go dbaok of those ideas as ve

have just done here.
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CHAPTER 2

Leseon Plan Outline: 15 leesons

1-2. Through page 45, line 7
3-4. Through page 51, Ex. 8
5. Exs, 9-16, pages S1-52

6-7. Through page 5¢ (The exercisee on page 56
require time for careful coneideration.)

8. Page 57 through Ex. 6 on page 61
9. Exs. 7-13, peges 61-63
10. Exe. 1k, 16-21, pages 63-6k
11. Exs. 15, 22-30, pages 63-6L
12. Exas. 31-34, page 65
13. Exs. 35-38, page 66
14-15. Pages 68-69

Page 368, line 15: "We shall need only five." See note in this man-

ual, page 6, referring to pages 50, 198, 199, and 222 of the text.

Page 39. The undefined terms on thie page do not include the term
plans, even though the word "plane" appears on that page, because all
the points and lines of this geometry are considered as being restricted
to an unmentioned and undeecribed domain, as indicated in line 5 and in
1ines 19 and 20. This domain ie referred to for convenience as a plane,
but every such reference could be replaced by a circumlocution such as
"the class of all pointe - - -," or the like. If this geometry included
three dimensional material "officially,"” then we should need to list
"plene"” as an undefined term, or else define it.

Page 39, lines 20-22: "Though it is poesible to prove this." This

hae already been proved in the comments under Chapter 1 in this manual.
Page 40, 1ines 7-10. Theee directione are meant to be taken liter-
aily by the pupil.
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Page 40: Principle 1. Of the five basic principles, nos. 1, 3, and
5 are the most important. They have been given distinctive labels 8o
that they may be conveniently referred to. Principle 1 says in effect,
"All the points on a straight line can be numbered so as to serve as a
ruler*"; and Principle 3 saye in effect, "All half-lines having the same
end-point can be numbered so as to serve as a protractor.” Notice the
duality*® between these two principles: all the points having a common
line - - -, and all the lines having a common point - - -.

On page 39 the undefined idea of etraight line 1s assumed to include
the notion that a etraight line is a collection of points. 1In Principle
1 these points are paired with the elements of some number eystem that
will make an adequate scale for line measure. Neither the system of in-
tegers nor the system of rational numbers is adequate for this purpose,
for ve might sometime vish to measure the diagonal of a unit square, or
the like. Consequently Principle 1 implies that the points of a straight
1ine can be peired with the real numbere. This means that the properties
of continuity and infinite extensidility of the system of real numbers
are to be properties also of any collection of points that constitutes a
straight line. Consequently this geometry does not need to state explic-
itly that it assumes the infinite extensibility of straight lines; or
that 1t assumes the existence of the mid-point, or any other point of di-
vieion, of a lins segment. These ideas are all implied by the intimate
association between the system of real numbere and the points of a line
that 1s inherent in Principle 1.

In similar manner the exietence of the bdbisector of an angle is im-
T %By "ruler” ve mean here what the pupil means by “ruler.” Eventually
in this book we replace this word by the word "ecale" and denote en un-
marked ruler by the word "etraightedge.” See Chapter 6, pages 165-166.

##For a discuesion of duality see Craustein, W. C., Introduction to

Higher Goo-o?, Macmillan, 1930, or Veblen and Young, Projective
Goo.gg, Vol. I, Cinn, 1910. 38



plied by Principle 3, the Principle of Angle Measure, as stated on page
7. Coneequently, BASIC GEOMETRY is not troubled by the question of
"hypothetical constructions" that plagues other geometries. When we set
out to prove the firet theorem that involves the bisector of an angle,
we do not need to puzzle over the problem of howv to demonatrate the con-
structibility of the bdisector without making use of the theorem we vish
to prove, or - foiled in that - to satiefy our consciences that it will
be all right to prove the theorem firet and demonstrate the existence of
the bisector later. For our Principle of Angle Measure tells us that in
the case of any angle we can always find the mmber that is midway be-
tveen the numbers assigned to the sides of the angle. In this goometry,
therefore, it is no impropriety to postpone all discussion of construc-
tions until Chapter 6.

There are probably other inetances in BASIC GEOMETRY vhere a tradi-
tional logical loophole will seem to be still unplugged and where teachere
will say of the authors, "Ah, they've miesed that one, toco!" In most of
these cases, however, the real number eystem, our ever present help in
tims of trouble, will coms to our defense. What counts as truly an
oaisesion or an oversight in other systems of geometry may seem to be an
omiesion or an oversight in this geometry aleo, whereas actually it has
been cared for under eome aspect of the system of real numbers. Kither

the seemingly umentioned assumptions of this geometry are really men-

tionsd dut are not recognized as being mentioned dbecause of thie unusual
tie-up with real numbers; or else they are not assumptions at all, dbut -
like the five theorems considered in our comments on Theorem A in Chap-

ter 1 - are direct, dut tioned, cc

qQ of more fundamental

statements in this geometry. There ie more meaning packed into the last

paragraph of pege & of the Preface of BASIC GEOMETRY than most teachers

vill appreciate until they have poked around a bit in the cellar of this
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geometry. Neverthelees, despite our great care to build a firm founda-
tion vhere others before us have left a crack or two, it ie too much to
expect that we have not erred eomewhere, either positively or by omiseion.

Surely ve have not set down in the text a clear statement of all the
properties bestowed upon straight line and angle by associating the syse-
tem of real numbers with them. It is our opinion that explicit mention
of these details would confuse tbe pupile. We have preferred, therefore,
to let these details stand as tacit implications of the Principles of
Line Measure and of Angle Measure. To some extent it is a matter of
Judgment as to how many of the horrid details one can reveal without
overvhelming the student. We make a clean breast of the matter here in
thie manual for teachers and leave the final decieion to them. That 1e
wvhat thie manual ie for.

Page 4O, line 17: Units of length. The implication here ie that

"a unit” 18 "an inch" or "a centimeter" or the like; that ie, "1 inch"
or "1 centimeter."”

Pages L1-42: Exercises. If in thie geometry we were going to employ

signed numbere, directed distances (pages L2-L3), and directed angles
(pege 43), we should make more of the idea that is barely hinted at in
Ex. 1. This idea comes to the surface momentarily in the Review Exer-
cises on page 68, but we cannot do more with it without making the proofe
throughout thie geometry too fussy. For the most part we shall uee un-
eigned numbers. Birkhoff'e treatment of this geometry in the Annsle of
Mathematics uees directed diestances ani angles, but it ie clear tbat
that treatment ie too difficult for secondary echool pupile. Neverthe-
less the autbors have felt bound in BASIC CEOMETRY to mention directed
dietances and directed angles bdbriefly, even though they diemiss the idea
immediately, because it adde to the pupil's appreciation of the diffi-
culties attendant upon the measurement of angles if he considers, even
momenterily, hovw eigned numbers can be ueed to diestinguish the four di-
< 4O -



rected angles of lese than 360° thet are formed by two distinct half-
lines having a common endpoint. (See page 235 of BASIC GEOMETRY, and
the comment farther along in thie chapter of the manual on Angle(s).)

In Exe. 5 and 6, 137 centimstere and 160 centimeters are roughly
equivelent to 54 inches and 63 incbee respectively. Ferhape ecme pupile
will obeerve this. The second parts of these exercises reveal that the
ratio of tvo measures ie the same, regardless of the unit that ie used.

Page 43, lines 12-18. This idea that there are two and only two
distinct pointe on the line at a distance ¢ from Q will prove very help-
ful leter when we discuss the interesection of straight line and circle,
page 138, and the intersection of two circlee, page 1L2.

Page U3: Notion of Betweenness. Some of the logical loopholes in

Euclid's Elements are traceable to his failure to mention explicitly
certain ideas concerning the order of the pointe on e line, and the or-
der of lines (or half-lines) having e common point; ideas which undoubt-
edly he would have accepted ae a matter of course. In this geometry we
use the ideas of order inherent in the system of reel numbere (see Postu-
lates 18-20 on page 287) to establieh the order of pointe on & line and
the order of linee through a point. Defining "betweennees" in terms of
order - for numbere on page 287, for pointe on a line on page 43, and
for lines through a point on pages 53 and 54 - we have the means of de-
fining "line-segment,” "bisect," and “mid-point” on page Lb, "bisector
of angle" on page 48, and "arc of a circle" on page 134. These latter
definitions s1l1 stem from the eyetem of real numbers.

Page Ll Principle 2. Teachere will be interested to note here the
duality between the ideas "not more than one streight line through two
given points” and “not more then one point common to two given etraight
1ines"; to note aleo the breakdown cf thie duality when "not more then
one” 1e replsced by "et leeet one."

Page U5: Half-1ine. The euthors heve preferred to use the term
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"half-1ine" instecd cf "ray" for two reasecns: ite reletion tc the pearent
endless line ie more cleariy indiceted by "hslf-line"” than by 'ray";

end neither term ie so cormmonly used in slementery geomstry that the
dieplacing of one by the other 18 of any greet moment. The teacher will
note that it is slso poesible tc divide an endlese straight line intc
twvo parte such that cne part ccntains P end all pointe whose numbers are
greater then p, end the other part containe ell the poirts whoee numbers
are less than p. But we dc nct call this latter part a half-line. The
definition of half-line demanda thet it heve en end-pcint. The phraee
"divides the streight line into two half-l1ines” is not to be understood
in the sense that two helves make & whole, becauase the point P must do
double duty, serving ae end-point of each half-line.

The pupil may de puzzled alsc by the stetement that the point P may
be selected anywhere cn the endless straight line. He must abandon any
idea he may have hed that P is the mid-roint of thia lire, for the term
"mid-point"” ie defined on pege LU of BASIC GEOMETRY - #8 in cther elemen-
tary geometriee - with respect to line-segments only.

Theee difficulties are inherent in the concept "endless straight line”
and are not peculisr to BASIC GEOMETRY or tc the word "haif-line.” It is
quite natural that we should try to apply the familier rules of firite
arithmetic to the erithmetic of infinite numbers end should try to trene-
fer the ideas aseocisted with ended line-segmenrts tc situsticrs involving
endlese atraight lines. DNeverthelesa, we have no right to dc so. Let
the pupil conesider the difference between the finite esacmblages 1, 2, 3,
L, 5 6 and 2, b, & and the infinite apeemblages 1, 2, 3, &, 5, &,
and 2, 4, £, .... . The seccnd finite sesemblage ccntainse helf ac many
integere aa the firet; but there is the same number of intogers !n doth
infinite ~8ssmbleges. For al) the integers ir the seccrnd infinite assen-
blage can be puired with aii the integers in the first, and this - by
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definition - is what we mean by "the same mmber"” in the arithmetic of
finite and of infinite numbers.

The ideas of infinite numbers and of infinite assemblages of points
are far removed from everyday life. Nevertheless they are necessary and
fundamental to our adult thinking about elementary arithmetic and geom-
etry. Because they are fundamental they may arise in class discussions
at the very beginning of gecmetry. There is no way of avoiding thea in
any discusaion of geometry that aims to open the pupil's eyes to things
as they are. Similarly, any pupil in an arithmetic class who inquiree
why the decimal equivalents of certain fractions contain only a few dig-
1ta, while others 1ike 1 and 2 nave dectmal equivalents that "go on for-
ever,"” endlessly repeating a digit or a group of digits, can be answered
only by reference to the infinite divisibility of finite quantities.

Actually the points of a half-line, cmitting the end-point, can de
paired with all the points of an endless straight line. For all the
points except A of half-line 1 in Fig. A can be paired, by central pro-
Jection, with all the points except the end- 0
points A and B of the quadrant AB; this quad-
rant can then be altered to the semi-circle
A'B’', without end-points, of half the radius
of quadrant AB;# and all the points of this
semi-circle, omitting A' and B', can be Aa
paired with all the points of the endless
straight line m. Consequently a half-
1ine, including its end-point, comtains Fig.A
one more point than an endless straight line! BEvidently the familiar

statement concerning finite quantities "The whole ie greater than any

*This can be done by a parallel projection that carries every point
except O and B of the radius 0B into some point detween A' and B' of
diameter A'B'. This will pair every point except A and B of the quad-
rant with every point detween A' and B' of the semi-circle.
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of ite parts and equal to the sum of thex" ie not aprliceble to infinite

quantities.
Page UC: Angle(s). It will be ncted that in thie geometry "angle”

is an undefined term. If this undefined term connotes - ae it does to
moet people - a concept that is unique, then the ccnfiguration shown in
Fig. 5 1s highly ambiguous. For this ccrnfiguration shows two angles AVB
of less than 360 degress in absolute value and indefinitely many more of
mcre than 360 degrees. A poseible elternative 18 to tind ur all this
ambiguity in the connotation of the undefined term iteelf, eo that it
shall mean all possidble angles AVB to all people. A partial pararhrase
of Birkhoff'se treetment of angle in his article in the Annale exhibite
this elternative as followe: "The helf-linees 1, m, - - - through eny
point V can be put into one-to-one correspondencs with the real numbers

a, modulo 360, so that, if A (different from V) and B

m
(a1fferent from V) are points of 1 and m respectively, 8
the difference &, - &,, modulo 360, 18 £ AVB." After 0
adding en lmportant note concerning continuity and F AA
9.

linking < AVB with < 1Vm, he goes on to sey, "It will
be seen that the angle < 1Vm a8 here conceived 1s the directed angle from
the half-line 1 to the half-line m determining the position of m relative

to 1. The ordinery eensed angle of the usual type 1s obtained by taking

some single algebraic difference &t 8 vhich 18 thought of as repre-
sentative of an angle generated by the continuous rotation of a half-line
from 1 to m. The ordinery engle £1Vm 1e then given by the numericel
value of the least residue of &y - 8y modulo 360." The meaning of this
terminology ie explained in ths next paregraph for thoee who are not
femiliar with 1t.

Linking the half-line 1 with the real numbers &, modulo 36C, means
that 1f half-line 1 has the number 50, 1t has the numbers 50 - n-360,
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wvhere n = O, 31, 3'2, -~ - -. Similarly for the half-line m. Consequently
the difference e - L% yields an infinite set of numbere having the same
residue (in abeolute value) vhen divided by 360. Bach of these algebraic
differences corresponds to an "ordinary eensed angle of the usual type."
Thus 1f half-line m has the number 470 % n-360, some of the ordinary
sensed angles .1Vm are 420, 60, -300, and the ordinary angle £1Va 1e
60, wvhich is the least residue. Thie "least residue"” is that one of this
set wvhose absolute value 1s less than 180. Of the infinite set of ordi-
nary eensed sngles - - - -, 590, 230, -130, -490, - - - - the ordinary
angle is 130, being that one of this set wvhoge absolute value 18 less
than 180.

This complexity wvith respect to sensed angles explains vhy in BASIC
GEOMETRY we have chosen to deal with ordinary angles almost entirely.
On page 235 we have introduced directed angles that are limited for the
most part to angles between +360 and -360. Removing this restriction and
admitting the general sensed angle introduces further complications that
would overvhelm a pupil in his firet month of demonstrative geametry. To
incorporate in the undefined term "angle" the multiple ambiguities that
80 oasily associate themselves vith this term, and then, in keeping vwith
this idea, to define angle measure 8o a8 to emdbrace the generel directed
angle, 1s the mathematician's way of bringing order to this chaotic
topic. But the bdeginner, vho ordinarily sees no camplications of this
sort, does better to associate with the undefined term "angle" a conno-
tation implying that an angle is unique. This is the connotation of
angle that he has gradually acquired in his previous echooling and we do
well not to upset it at this time. That 1s why the text says (page k6,
lines 1-3) that two bhalf-lines having the sams end-point form two engles

The footnote on page 46 refers to a method of distinguishing these
tvo engles AVB by means of the idea of betveennsss. One way of doing
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this 1e tc ccneider all pointe of the strsight line r m

through A and B as being numbered, and all the half- v :
lines heving endpoint V as being numbered. One of r t
the engles AVB can be distinguished from the other F'9 A

by the property that eome, or nou, half-line between
the sides of the angle* intersects line r in a point bearing a number

between a and b.

In the special case of straight angles, about to be considered, this
1ine r must be drawn 8o as to intersect VA obliguely. The two angles
AVB can then be distinguished by the property that soms, or no, half-line
between the sides of the angle intersects line r in a point bearing a
number less than a.

One important reason for considering straight-angles is that they
afford a vay of establishing a unit of angle-measure, as on page 50.

Pages 47-49: Principle 3. The commente pertinent to thie section

on angle measure have been given already in this chapter in other con-
nections.

The second paragraph of the footnote on page 47 refers to an ambigu-
ity in ueage that has a parallel in our ambiguous use of the terms "alti-
tude,” "diemoter,"” and so forth, to denote line-segments and aleo their
lengthe.

Page 50: Principle 4. Actually Principle 4 1a a theorem that can bde
proved by the aid of Principle 5. The proof 18 in two parts. We firet
prove that if 1 and m are two half-lines of a eingle straight line n,
then Z£10m 18 a straight angle. Second, ve prove that if the half-lines
1l and m moet at O to form a etraight angle, the two half-lines are "cor-
responding halves” of the same straight line. By this proof of theorem
and converse we identify every straight angle with a straight line.

#1.0, bearing a number that is between the numbers assigned to the
eides of the angle,



Part 1. Given straight line n with point O and corresponding half-
lines 1 and m. Choose A in 1 and B in m 80 that OA = 0B. In the degen-

erate triangles OAB and OBA we have OA = OB, 8 0 A
AB = BA, and positive (counter-clockwise) m n ¢

Fig.A

£ OAB = positive (counter-clockwise) < OBA.
By Principle 5, for eensed angles, ve have positive (counter-clockwise)

4 BOA = positive (counter-clockwiee) £ AGB. But positive <« BOA = negative
L AOB. Therefore < AOB = - £ ACB and 2.A0B = 0, modulo 360. It fol-
love that <£AOB is either O or 180, modulo360. If £ ACB were O, GA and
0B would have to coincide; and this is impossible decause A and B vere
chosen on distinct half-lines. So < ACB i1s 180, a straight angle.

Part 2. Given half-lines 1 and m meeting at O to form a straight an-
gle, 180. The other half-1ins 1' with end-point O in the same etraight
line as 1 also forms a straight angle with 1, by Part I.

Therefore £10m = 180 m 180

£1'01 = 180 l'\Co\ ¢
and £1'01 + £10m = 360, modulo 360, = O. UW

Fig.B

But £1'01 4+ £10m = 2£1'0m (see page 48,

1ine 4). Therefore £ 1'0m = 360, modulo 360, = O, and m and 1' coin-

cide. So 1 end m are corresponding halves of the same straight line.
Pages 30 and 54: Perpendicular lines. On the lower half of page S50

it is shown that if tvo lines intersect so that the angle between two of
their half-lines is 90°, this 90° relation is true of three other angles
formed at thie intersection. Principle 3 insures that through a point O
of a given line there exists a half-line such that one of the angles
formed at O will be $0°. It insures also, as pointed out on page Sh,
that there are only two vaye in wvhich this half-1line can appear, follov-
ing by analogy the (q - 4) and (q + 1) reasoning on page 43. Thie es-
tablishea the uniqueneas of the perpendicular to a line at a given point
of the line. That is, there is one and only one such perpendiculer.
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Pages 51-52: Exercises.

1. Half-line OM' will be numbered 270. Therefore «L'OM' = 270 - 180,

and ZM'OL = 360 - 270.
3-5.0ne minute of time corresponde to six degrees.

7. 45 + 180, or 225. (or 225 ¥ n.360)

8. r +180 or r - 180. (The "in general" refers to the random mumber r
and not to the generalized notation r + 180 ¥ n.360, though the lat-
ter 16 the perfect answer, of course.)

9. 132, 180, 312

10. a +r, a +180, a + r + 180
12. 180° - 8%, 8°, 180° - &°
15. LAVC + £CVB = 180°. 4 £AVC + 3 £CVB = 90° e eufficient. Or elss,

using the numbering in the ansver to Ex. 10, the bisectors will de

numbered & *+ ; Y Tang8 +r ; 8 + 180 apny the difference between
these numbers is 90.

Page 52: Unite of angle measure. For further discussion of the hie-
tory of counting and of measurement see David Bugene Smith, History of

Mathematics, Vol. I, 1923, Ginn.
Page 55: Polygon. The definition of "polygon" 1e intentionally so
wvorded as to include polygons like those shown in Fig. A, but we cannot

consider the angles of such polygons

o
without using directed angles. We c 0
might do something with this idea near D
the end of the book, say on page 235, E 8
A B A

if 1t were coneidered desirable. The

laet paragraph on page 55 is intended .
Fig. A

to rule out croes polygons and, ordi-

narily, all polygons with re-entrant angles. Consequently the authors

folt justified in defining "angle of polygon" higher up on page 55 so as
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to apply only to convex polygons, building up the idea inductively from
the reference to Fig. 18.

Page 2: Exercises. There are only five of these exerciees dut
plenty of time should be allowed for the pupil to make careful drawinge
and measuremente and to absord the important ideas here.

1

.

In order to lay off angle CDE properly with the protractor the pupil

will need to extend CD.

2. BA = ]g in. (approx.) «DEA = 100° (approx.) <EAB = 99° (approx.)
The pupil sbould be permitted an error of 1°.

3.CA=9.0cm. £BCA =5, CAB = 59°. Sum = 161°. Meany pupils
wvill have an errcr of at lesst 1° in the sum.

M. A convenient scale 1s 3 inch or 1 cm. to the mile. The pupil's sec-
ond angle vill be 6L° clockwise; his third angle 86° counter-clock-
vise; his fourth angle 57° clockvise; his fifth angle 53° clockvise;
his sixth angle 58° counter-clockwise. The traveler is approximately
15.6 miles from his starting-point. Direction from start to finish
1s K11°N, approximately.

5. The pupil vill nmeed to construct angles of 22°, 70°, ana 22°. The

vessel sails 15 + 8 + 6%, or 2% ailes. 0

A

Page 57: Similarity and proportion. The M

/1
ideas of correspondence dbetween point and number ALY

and of correspondence between angle and number / 7
are fundamental in this geometry. The words "cor- ! \
reeponding” and "correspondence” are equally fun- I ! ‘C'

damental; they are taken as undefined, following // f \\
/B \
Fig.A

the epirit of pege 14, lines 18-19, of BASIC GE-

OMETRY. We do not wish to limit the phrase "cor-

responding sides of two triangles” to "sides opposite equal angles” in

these triangles, because it is often possible to consider two triangles
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that are related like those shown in Fig. A on page %9 of this manual, in
vhich the vertices, sides, and angles correspond in pairs despite the ab-
sence of equality. In short, Buclidean geometry can be regarded as a
special case of projective geometry. The term "correspond” defies defi-
nition for beginners, but everyone knowe wvhat it means.

The word "proportion" is explained here but 18 not precisely defined.
The definition is assumed from arithmetic. The meaning of proportion is
easily grasped; but the definition is more difficult because it involves
the wvord "ratio," which seems to bother pupils. It is for this reason
in part that the authors have preferred to uee ths term "factor of pro-
portionality” rather than "ratio of eimilitude.” The former has the ad-
vantage also of being purely numerical, which is what we want; the latter
ssens to be a number that is necessarily linked with the geometric idea
of similarity; and this geometry is based on number even more than it is
based on the idea of similarity. The idea of proportion is bigger than
any of ite applications.

As noted on page 58 of BASIC GEOMETRY, the factor of proportionality
k can be any real number, rational or irrational (see page 287). Since
ve shall not use directed distances in proving theorems we shall make no
use of negative values of k; and zero 1s a limiting case that we do not
need to consider.

Section 21 under the Laws of Number (page 287) implies the existence
of real nuzmbers that are not rational. For if ve should think of the
real numbers as being merely the rational numbers under another name,
our dream would be rudely shattered by section 21, since there are an
infinite number of ways of separating the totality of ordered rationals
as therein preecribed without determining a rational s that effects the
division. For example, separating the totality of ordered rationals so
that Cl contains all the rationals whoese squares are less than % and 02
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contains all the rationals vhose squares are not less than %, produces
no rational that effects this eeperation. This sort of separation of
the totality of ordered rationale, descrided in general terms, can eerve
as the definition of irrational nuwbers. This 1s tke definition of ir-
rationale referred to on pege 4 of the Preface. It follows that if the
postulate in section 21 is to hold true, irrationals as well as rationale
must be present in the ayetem of real numbers.

This being 8o, every irretional factor of proportionality indicates
an incommensurable case. But BASIC GEOMETRY ie not disturded by this,
or required to provide exceptional trestment for incommsnsureble cases,
because its acceptance of the real number system ruts rational and irra-
tional cn an equal footing. The pupil can always imagine k to be a ra-
tional number, and probably will do so. But the proofs of the theorems
require no alteration to suit one vho imagines k to be irrational.

In connection with Principle 5, Case 1 of Similarity, note that the

British Report on The Teaching of Gecmetry in Schools, G. Bell and Soms,

London, 1923, suggeate that the usual practice of assuming oongruence
end perallelism and deducing similarity therefrom can profitedbly de re-
placed by assumptions concerning congruence end similarity, from which
the former pearallel postulate is deduced as a theorem. In BASIC GEOMETRY
we go even further and telescope the two suggested postulates of the
British Report into one postulate of similarity under which congruence -
or equality, as ve ordinarily prefer to say - appears as a special case.
If we were to go on into 80lid geometry, this special case of equality
would be the only case under similarity that would hold in three dimen-
sions and we should nsed to make special note in that case to reetrict
the factor of proportionality k to the eingle vzlue 1. We hint at this
in the exercises following Principles 5, 6, 7, and 8.

The phrasing in italics on pege 59, lines 7-9, is an adaptation of
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similar phrasing in the British Report on The Teaching of Geometry,

page 35.

We have already discuseed in this manual on pege 7 the poseibility
that Principle 6, Case 2 of Similarity, might have been used instead of
Case 1 as a basic postulate of this geometry.

Page 60, l1ines 2-3: "The logical foundation of our geometry is in-

dependent of any idea of motion.” If the scale and protractor were of-

ficially part of this geometry, then the use of these instrumencs, as
implied in Fig. 2 on page 42, would require the ideas of "move" and
"£1t," and the statement in question would be too eweeping. Actually,
hovever, the scale and protractor are introduced only as pedagogic de-
vices by vhich the pupil, familiar with these two instruments, may come
gradually to appreciate the logical foundation of thie geomstry, which
is indeed independent of instruments and requires only the numbering of
all the points on a 1ine and the numbering of all the half-lines having
a common erd-point. For example, Ex. 3 on page 60 18 not logically re-
quired by thie gecmetry. It serves merely to fix an implication of Case
1 of Similerity more surely in the pupil's mind.

Pages €0-66: Bxercises. On page 40, in Exs. 1 and 3 on pege 56, and

again on page 60 we are beginning to wean the pupil away from his famil-
iar but untechnical uee of the word "ruler” and to direct his attention
to the more preciee worde "etraight:odgo" and "scale." Because of the
confusion that is likely to arise if we should try to twrn the pupil from
hie colloquial use of the word ruler and should ask him now to use the
wvord in 1ts technical meaning of straightedge, we shall abandon the term
entirely and shall use straightedge and scale instead. See pages 165
ard 28C.

5. The third side of the second trieangle 1e not twice the third side

of the first triangle; the second and third angles of the second
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7.

triangle are not equal to the second and third engles respectively
of the first triangle.

Yes. Instead of numbering the points on a straight line we can num-
ber the points on a great circle in order to measure distances on a
ephere; and ve can measure angles on a sphere by numbering the half-
great-circles that have a common end-point. The concept of angle
between two half-great-circles, or minor arcs thereof, as the angle
between corresponding tangent lines, can be elaborated by the teacher
if the pupile seem to demand it. He can point out the relation de-
tveen the angle between the tangents to two meridians and the angle
between tvo radii of the sphere that are parallel to these tangents.
All that 1e expected by way of proocf is that both paire of triangles
of each quadrilateral shall be treated as indicated in the exercise.
The pupil is not expected to consider details as to the order or ar-

rangement of the component triangles.

8-12.The informality permitted in Ex. 7 1s to be permitted in these

16.

exercises also. They are intended to be easy, informing, but not
very exciting original exerciees based on Case 1 of Similarity. The
introduction of formal detaile that would make these exercises for-
bidding to the pupils would be psychologically bad and contrary to
the authore' plan. Exe. 11 and 12 are usually proved in full in
other geometries; but wve have dissected these theorems and considered
them piecemsal in Exs. 7-10, so the proofs of Exs. 11 and 12 are
merely obvious extensions of the preceding exercises.
Notice the gradual build-up of the perpendicular-bisector locue in
this book as revealed on pages 63, 81, 88-89, 250-251. HNotice that
all the ideas eseential to a locus are given relatively early, but
that the uee of the word "locus" iteelf in thie connection is with-
held until page 250.
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17.

18.

By no means tell the pupil which three of the four emall triangles he
is to vork vith. Let him discover thie for himself. Symmetry alone
should euggest the proper choice; dbut in eny ceee the decieion is
easily made. He will probably take & look at the fourth triangle to
see hov that differs from the others. Thie laook-see will prodebdly
give him a greeter appreciation of the proof of Principle 9 vhen he
comes to 1it.

You would need to know that two triangles that have their correspond-
ing eides proportionsl are eimilar. That 1s, you would need Princi-
ple 8, Case 3 of Similerity.

20-37.The tescher should consider all these exercises together and ncte

2].

23.
2k.

25. 7

27.
28.

30.
31.

that they estadlish certain familiar and very important idees con-
cerning proportion. The content of thess exercises is essentially
numerical. Hence the treatment is numerical throughout and purposely
avoide all reference to "taking a proportion ty alternation,” or “"by

composition,” or the like.

Each fraction equals %
A'.:—.' - ;n;: + 1
AB

o VN Wwhan E

+m
n

The term "reciprocal” may baffle e few pupile at first, dbut the con-

text here gives them the clue. The authors often like to introduce
partially forgotten, or even nev, terms in context in this vey,
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regarding thie as a thoroughly natural way for the pupil to acquire
nev words and meaninge. From the pupil's point of view it is Just
plein common sense that if % = 2, then % = 16: The authore wish
merely to remind the pupil of this; to generalize this fundamental
numerical idea by using a, b, c, and d; and then to attach a conven-
ient phrasing for later reference, making es little fuss over it as
possible. The statement "reciprocals of equal numbers are equal” is
a theorem in the syuétem of real numbers (see page 288). It ie essen-
tially this that the pupil is asked to prove in Ex. 31.

34, Take reciprocals and add 1. The point of Exs. 20-36 is stated after
Bxs. 34 and 36; namely to provide Justification - aptly phrased -
for asserting any proportion that can be derived from a given propor-

tion, and to show the applicability of this to situations involving

triangles.
e+tct+o+--- _kibedefs---)_y _a
37'b¢d+t+--- bed s+l ¢--- k 5

38. An immediate application of Ex. 37.

M. The eummaries at the end of Chapters 2, 3, &4, S,
and 7 give the logical plan of BASIC GEOMETRY. Each summary serves aleo
as a rough index of ite chapter. These summeries will help teachere who
are familiar with other systems of geometry to keep the pattern of this
goomstry in mind. The authors wish the pupile also to be conscious of
the plan of BASIC GEOMETIRY as it unfolds before them, and to see the re-
lation of each theorem to other theorems and to the fundamental postu-
lates. The authors hope that in this way - aided by pointed questions
here and there in this book - the pupils will acquire an appreciation of
& logical system and will recognize the applicability of vhat they have
learned to other logica.l.nyabou outeide the field of geometry.

Pages 68-65: Exercises. To some extent these exercises force the

pupil to reread the chapter to discover certain details that are properly
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ignored until nov. Even a relatively dull student can find the enswvers

by reresding the chapter faithfully. Almoet everyone will get the right

ansvere vhether or not his imaginstion ie stimulated - as we hope it will

be - to see that the AB + BC = AC relation for directed lipe-segments

and the corresponding relation for directed angles serve to link this

geometry vith the slgsbra of the econdary school.

1. Bee page U1,

2. Seo pages L2 and L3.

3. L% -1.%

L-6.Thess oxorcises extend and generalize the idess of Ex. ! on page L1,

b (5.1 - 2.7) ¢ (.2 - %.1) = k.2 -2.7

5, (b2 - 5.1) ¢ (2.7 - 4.2) = 2.7 - 5.1

6. (2.7 - 9.1) ¢+ (L2 -2.7) ~ k291

7-8.800 pages L3-Li. Line-sogment BC consists of the points B and C
ond 8ll the points between them. These [vints will be numbered from
4.2 to 5.1. Line-segment BA consiets of all pointe numbered from
4.2 to 2,7; 1t may bo considered aleo an consisting of all pointae
numbered from 2.7 to 4.2,

9. Bee page 47.

10. Boe page U9.

11. This exercise extends and goneralizes the idees of Exa. 1-3 on
page 48. (161 . 106) ¢ (37 - 161) = (37 - 106)

12. 37 ¥ 90 + n-360

13. About 2 miles 8.E. of Toggenburg

13, ; ona §
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CHAPTER 3

lesson Plan Outline: 19 lessons

1. Through peges 73-Th, Exs. 1-8
2. Exe. 9, 10, 13, 14, pege 75; through Exs. 1-2, pege T7
3. Page 7%, Exs. 11-12, page 78, Exs. 4-6, 8
4. Page 78, Ex. 7; pages 80-81, Exe. 1-6
5. Page 82, Exs. 7-8. Prove Principle 9. Page 84, Ex. 1
6-9. Pages 84-87, Exs. 2-23
10. Principles 10, 11, 12 (excluding converse)
11. Prove converse and corollariee of Principle 12.
12-16. Exercises, peges 95-98

17-19. Exercisee, peges 100-103; take some three dimenaional
ones each time.

The five fundamental assumptions of Chapter 2 and the seven basic
theorems of this chapter esteblish so many fundemental geometric ideas
that they are called the twelve "principles” of this geometry. Ae indi-
cated in the footnote on pege 107, the numbering of assumptions, basic
theorems, and later theorems is consecutive in thie dbook. The teacher's
attention is called to the final parsgraph of page 5 in the Preface to
BASIC GROMETRY and to the note on Principle 11 on page 67 of this manual.

The twelve principles lead immediately to the theorems concerning
parallel lines and rectangular networks in Chapter 4, from which one
could proceed to develop analytic geometry if it were considered wise to
do so. The twelve principles lead also to the theorems concerning the
circle in Chapter 5. And from Ex. 12 on page 75 we could develop the
ideas of area of trisngle and of polygon, as outlined on pege 222 at the
end of Chapter 7. Theee three major geometric ideas of perallelism,
circle, and area are three independent products of this powerful liet of
tvelve principles.
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Page T2: Principle 6, Case 2 of Similarity. Although the proof of

Principle 6 suggests superposition, the teacher should note that actual
superrosition is not ueed. Instead, a third triangle is constructed that
is similar to one of the given triangles. The poeeibility of this con-
struction - or of the existence of this third triangle - is established
by the fundamental postulates of thie geometry.

Teachers of geometry who have been sccustomed to make free use of
symbols such as .'.,~v ,0\, and 80 on will notice that this book uses
almost no symbols. The authors indicate on page 285 that they use the
four undefined symbole =, <, ¢, X, They introduce the symbol > on page
34, which can be defined as cn pege 282; they introduce the symbol £ on
pege 21, and the symbol /\ on page 200. These seven, only two of which
are geometric, constitute the entire list of symbols in this book. There
are tvo reasons for minimizing the number of esymbols. First, if we
wieh to encourage transfer of training in logic from geometric to non-
goometric fields, we do well to use the language of everyday life and
avoid a highly symbolic mode of expression that requires translation
when we pass from geometry to other fields. Second, a highly symbolic
ritual with respsct to geometry ie likely to divert attention from the
main object of the instruction. If, however, teacher and pupile wish to
introduce other symbols in order to save time there i1s no harm sc long
ae the symbols do not become an obstruction to thinking. Care must be
used in introducing a symbol like ~~ for similarity, because in BASIC
GEOMETRY similar triangles regularly include equal triangles ac a spe-
cial case and thes symbol ~_, used in other geometries, doee not have
quite this connotation.

Pages 73-75: Exercises.

L. The reason for epecifying a particular triangle to be enlarged,
rather than letting the pupil chooese his own triangle, ie to prevent
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hie deginning with an isosceles triangle, or right triangle, or other
special case. An excellent supplementery exercise would de to let
the pupil choose the first triangle himself but to insist that 1t de
not a special case.

2a

-15% x 5 feet, or 3 ft. 6% in.

The pupil 1e asked to suggest wkat the foreman on the job would do
right on the ground, literally. That is, extend CA its own length
and erect a perpendiculer; or, if C ie not a right angle, copy < C.
The dotted 1line in Fig. 5 at extrems right gives a hint that is
prodbadbly unnecessary.

Approximately 59°2' or 59.04°. If the pupile do not know the tangent
relation the teacher may wish to omit this exercise, though thie in-
formal allusion is an excellent way of introducing the pupil to the
tangent of an angle and to a teble of tangents. An occasional exer-
cise of this sort that requires the pupil to consult reference mate-
rial outside the textbook has the samo general educative value in
mathematice as in other subjects. The pupil must expect to get help
occasionally from a dictionary, an encyclopedia, a table of square
roots, & tadble of tangents, or the like, availsdle in the school 1i-
brary or in certain class-rooms. The authors think it more impor-
tant to reserve the appendix of a mathematics dook for supplementary
material that teacher and pupil cannot eaeily find elsevhere.

The authors are aware that numerical trigonometry grows immedietely
out of similar triangles in geometry. They do not wish, howevor, to
interrupt the development of this logical presentation of geoaetry,
commonly called demonstrative goometry, dby a digression on trigono-
motry. They would much prefer that the pupil ehould have mat the

chief idese of the numerical trigonometry of the right triangle in
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10.

12,

13.
1k,

an earlier grade, these ideas being based on an even earlier treat-
ment of similar triangles in intuitive geometry. There ie growing
reoognition of the fact that all pupils in the seventh and eighth
grades ought to meet the important ideas of geometry on an intui-
tional dasie somevhere in these two grades. This is just as impor-
tant for those who will never go on to demonstrative geometry as for
those wvho will. It is recognized also that the numerical trigonometry
of the right triangle is easier than demonstrative geometry, and
easier than most of the algebra commonly taught in the ninth grade.
For these and other reasons a little numerical trigonometry is now
taught in many schools in the ninth grade, or even earlier. This bit
of trigonometry is of particular importance for those pupils whose
mathematical education will end with the ninth grade.

Triangles ABE and ACF are similar.

We could go on from here to develop the idea of area of a triangle,
as outlined on page 222.

No.

Ro.

Mh: Definition of altitude. Logically no reference to the al-

titudes of a triangle can be made until after Principle 11. That meens

that Exe. 10-12 on page 75 and Exs. 1k-21 on pages 86 and 87 ought

strictly to be deferred until after Principle 11. Any teacher who so

vishes may do this, since no use has been made of these ideas thus pre-

maturely introduced. It seems to the authors, however, that the "per-

pendicular” idea in these exercisees is lees important than more purely

"triangle" ideas, and that these exercises fit in more naturally where

they appear in the book than if grouped wvith exercises on the Pythagorean

Theorem following Principles 11 and 12.

Note that the text states its intention of ueing the word "altitude"
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to mean not only the line, but the length of the line-eegment. The same
practice is adopted later with respect to "hypotenuse,” "radius,” and
the like.

Eﬁz T5: Principle 7 is important on its own account, but would not
have been allowed to intervene between Case 2 and Case 3 of the Principle
of Similarity were it not needed to prove Case 3. The proof given of
Principle T is unusual in that it appliee Principle 5, which was worded
80 as to refer to two triangles, to a situation involving only a single
isosceles triangle. It ie clear from the text that an isosceles triangle
can be considered to be similar to itself, regardless of the order in
vhich the equal eides are read. Had we mentioned under Principle 5 that
ve intended to apply that Principle occasionally in this special manner,
the remark would have conveyed no meaning. The authors deem it to be
good teaching not to refer to this special application of Principle 5
until the need arises, as here in Principle 7.

Pages T7-78: Exercises.

4. Prove triangles ABC and ADC equal.
8. Yes.

Page 78: Principle 8. Note that the preceding exercises contain
geometric configurations that resemble those needed in the proof of this
theorem.

Page 80, 1ines 13 and 15. Read "sum of” both times, and "difference

between” both times, to cover both cases shown in Fig. 15.

Pages 80-82: Exercises.

1. Angles ABC, ABF, EFG, EFB can vary. Also angles DCB, DCG, HGF, HGC.

4. Five distinct cross-braces can be made. Only two of these are needed
for rigidity. These two can be chosen in ten different waye.

6. The fact that these ideas on equidistance are usually presented in a

locus theorem receives recognition in lLocus Thecrem 4 in Chapter 9.
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This has not prevented the authors, however, from exhibiting the es-
sential ideas of this locus theorea in several exercises much earlier
in the book in order that pupils may assimilate them gradually and
make use of them as neesded. The least useful of these ideae is the
word "locue" itself, vhich in this book is withheld until the very end.

One good way to take the curse off the word “locus" and at the same
time retain the very important locus concept in geometry is to do
vhat the authore have dons in BASIC GEOMETRY, namely, to introduce
the ideas "a point equidistant from A and B - - -," "any point equi-
distant - - -,"” "every point equidistant - - -," and "all points
oquidistant - - -,” and the converses of these, vithout mentioning
"locus" at all. Sees the exercises on page 2k; page 63, Ex. 16; pege
81, Exe. 5-6; and page 88, Principle 10 (page 87 in the firat print-
ing of the book). Granting that the wordes "any,"” "every," "all" can
give troudble in this connection, the authore believe that they have
graded the steps éo finely and have given such definite suggestions
that pupile vill easily prove the exercises eand acquire incidentally
the desired point of viev. The basic difficulty vith "any,” “every,"
and "all" is that they imply generalization from particular in-
stances, Just as the variable x in algebra implies generalization
fron instances involving particular numbers. Generalization is a
very important part of mathematics; it cannot be omitted. But 1f it
gives difficulty, we can lead up to it gradually.

The authore regularly use the exercises as a medium for the intro-
duction of ideas to be found in sudsequent theorems. For although
they think that learning from books is a gradual process, requiring
repetition, they prefer to get the necessary repetition through or-
ganized - but apparently casual - previeve than through the usual
medium of organized - but dreary - revieve.
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The chief difficulty in teaching demonstrative geometry is to hold
the logical structure of the subject clearly in mind and at the same
time allow reasonsble play for the psychology of learning, which un-
fortunately is sufficiently formless to wreck the logical outlines
of the subject if we are not careful. Nevertlieless, the psychology
cannot be denied. More effective than attack by eolid phalanx is
attack by infiltratior, or "eifting through"”; but the latter, despite
ite apparent informality, requires greater coordination of plan and
operation than the former.

7. Each angle is 90°.
8. No.

Page 82: Principle 9. Note that Principle 8 ie needed to prove Prin-
ciples 9 and 10; that Principle 9 is needed to prove Principle 11; and
that Principles 8, 6, and 9 are needed to prove the Pythagorean Theorem,
Principle 12.

In the proof of Principle 9 the authors do not expect the pupil to
give any reasson for the statemsnt " ZMBK = < ABC"; none is needed. Nor
do they expect the pupil to state that triangles MBK and ABC are similar
before announcing that MK = #AC and < BMK = Z A; for the alternative
statement of Case 1 of Similarity at the top of page 59 sanctions this
shortening of the proof. Alternative statements of Case 2 and Case 3 of
Similarity on pages 73 and 80 serve to eanction similar abbreviation elee-
vhere.

The teacher should understend that the rotating pencil on page 83 is
merely an illustrative "aside” that may serve to stimulate the pupil's
imagination. It is not an alternative proof. First of all, motion has
no part in the postulates of this geometry. Second, even if it did have,
this roteting about one point, moving to a second point and rotating

some more, and 80 on, always keeping the pencil tangent to the surface
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that contains the triangle, could be applied also to a spherical tri-
angle and would seem to shov that the sum of the angles of a spherical
triangle is 180° aleo, which ie not true. Actually the tilting of the
pencil as we move from vertex to vertex of the spherical triangle reduces
the plane angle that measures the dihedral at the preceding vertex, so
that 1t ie the sum of thess reduced plane angles that e equal to 180°.

Page 84: Converee of Principle 9. In this instance it 1s more im-

portant to keep before the pupil the idea that a converse ie not neces-
sarily true than it is to exhidbit the proof that this particular converse
ie true. If wve do not raise the question at all, almost no one will
think of 1it.

Pages 84-87: Exercises.

2. ¢ BCD=180° - LACB= CA+ ¢B
b-6.Divide into triangles by either one of the methods shown in Fig. 21

on page 59.
n -2
10, —{— - 18¢°
11. 10

12, Except for the term "right triangle" thie theorem could have been

proved immediately after Case 2 of Similarity.

13. By Principle § and Case 2 of Similarity with k equal to 1.
Note: The authors use the term "mean proportional"” instead of "geo-
metric mean” because they prefer not to attach the adjective "gecmet-
ric” to an idea that is essentially numerical. When in some later
course in mathematice the pupil finde it necessary to distinguish
arithmetic, geometric, and harmonic means he will recognize that all
three are really numerical. That is, all three are arithmetic; and
the so-called arithmetic mean, with its mid-point connotation, is
quite as geometric as the so-called geometric mean.

14-15, Use Ex. 12 in this set of exercises. Although in their very
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16.

17.

definition of the mean proportion relation the authors have shown
both ways of writing it, they purposely have given more emphasis to
the form h2 = En in this text because any development of geometry
that makes use of numbers and algebra requires quick recognition of
the h2 = mn form of mean proportion. BRuclid, having no algebra, made
free use of proportion to handle situations that we handle more read-
11y by mesans of equations. Many topics that he handled by mean
proportion ve now handle by a simple quadratic equation. Indeed,
several of the thirteen books of Euclid's Elements are dbut geomstric
develomments of arithmetic and algebra for use in later books of the
Elements. Apollonius vent much further in his study of conic sec-
tions than is covered by most college courses in analytic geometry,
but he was obliged to use proportion to disclose the relations that
we now obtain more easily by algebraic methods.

Some teachers may wonder wvhy the authors do not use the resulte of
Ex. 15 to prove the Pythagorean Theorem at this point. In the note
on the definition of altitude on page 74 (page 60 of this manual)
it has already been pointed out, however, that Ex. 15 ought strictly
to be deferred until after Principle 11 has been proved; for Princi-
Ple 11 is needed to establish the uniqueness of the altitude from a
given vertex of a triangle.
b2 = 58 and b = 2+/10; a2 = 8:13 and & = 2 V/%6; b2 = 5:13 and
b = V65
Some pupils vill need not only the suggestion in the book to use
similar triangles, dbut will need the

further suggestion to use all three 5 h 12

paire of similar trianglee to be found m n

in the configuration. '-sih %h
The similarity of the three right Fig. A
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18.

19.

21.

23,

SINE

trianglee tells us first that m = -?—2 h, n= }.g h; and then either

that B_ = > or that 3= _9 . We have, therefore,
1 (l + ‘125" 5 @+ 10%
12 5 25

either h = % orme % Pinally, n = 1_;_“3

It is not vise to suggest that the pupil get h first, because he
can get m or n first equally well It would be proper to suggest,
hovever, that three equations will be needed to determine the three
unknowns and that these equations can be expected to come from three
proportions This is a generalization in method that every pupil

ought alvays to have as a ready resource.

hs= 3 S ., 1, See Hg_ A.

\/— a .
- . s 8 4 B, -

h \/_k' LY b h \/T

This is the same as Ex. 17 with numbers rep-
resented by lettere. See Fig. B: m = %h,
2
nelh; vhenco®=2 . AlsoB s _8
a n 2 P m+n
; vhence h = ab

§ 2 AR Fig.B

. n(180°) - (n - 2)(180°) « 2(180°)

82°. The reflex angle is just enough of a novelty to stimlate the
pupil'e imagiration and add a dit of zest to an otherwise humdrum
exercise. It does mot make it appreciably harder. The pupil, by
merely observing the 87° angle in one direction and the 7&0 angle in
the orpoeite direction, can arply the resulting 13° appropriately.

The chief application of the exterior angle theorem ie to this
sort of surveying problem - technically known as a closed azimuth
traverse - and the application 1s quite likely to include one or two
reflex angles. The pupil does not need, and is not expected tc need,
a special theorem for polygons with reflex angles.
Page 88: Analysis for Principle 10. Soe note on Ex. 6, page 81
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(page 61 of this manuel). In the first and second printings of the book
tvo methods of proof are suggested in the Analysie. The first method
involves drawing a perpendicular from P to AB, but thie is improper be-
cause the exiestence of any such perpendicular is not established until
Principle 11 has been proved. In the third printing of the book the
Anelysies is changed to read as followse:

Analysis: We cennot prove thet P 1ies on the perpendicular bisector
of AB by drawing a line from P perpendicular to AB and shoving that the
midpoint of AB 1ies on this perpendiculer, for ve are not sure that this
perpendicular exists until we have proved Principle 11. We may, however,
connect P and the midpoint M of AB and shov that PM is perpendicular
to AB.

Page 89: Principle 11. Here, ae in Principles 6, 7, and 8, the
authors do not wish to do violence to the pupil's intuition by asking
him to prove the obvious. In each such case, however, the suthors have
exhibited the proof in its proper sequence becezuse they think that the
pupil's immgination is more easily able to slight or ignore certain de-
tails of a vhole than to reconstruct the whole from scattered piecec.

Page 90: Principle 12. The teacher should edd that, although the
idea contained in Principle 12 was known as early as 2600 B.C., it wvas
not proved urtil about 550 B.C. Thet proof, by Pythagores, was quite
different from the proof given here in BASIC GEOMETRY.

The chief point of the analysis 18 to indicete that the "method of
analysis" is eometimes unrewarding and that this is one such instance;
the pupil can hardly be expected to discover the proof by bis own unaided
efforts.

The numericel case exhibited on page 91 is meant to be primarily an
appeal to the eye. If the pupil will ponder and compare the successive
enlargements of the original triangle, including the figure formed by
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placing tvo of theee enlargements side by side, he will have the essence
of the proof. It is to be hoped that he will appreciate the few and
eimple steps by which he has come from Case 1 of Similarity to a rigor-
ous proof of one of the most important and famoue theorems of all mathe-
matics. Thie is properly the climex of this section of BASIC GEOMETRY.

The proof given on page 92 assumes that the pupil will easily grant
that the figure A'B'D'C' ie indeed a triangle, since angle A'C'D' is the
sum of two right angles.

Page 93: Corollary 12a. The proof here is intended to bde informal,

condensing and telescoping the analysis and proof. Some teachers will
think it a blemish that " £C = 90°" and "ZC' = 90°" are not restated
formelly in the proof, but the authors think it ie well not to waaste the
time of a clase on formal details of this sort.

Corollary 12b ie but a special case of Corollary l2a.

Page 9k: Corollary 12c. There is nothing in the text that requires

directed line-segments. In the obtuse case shown in Fig. 35, the sum of
the undirected segments AD ¢+ DC is greater than AC; and the sum AB + BC,
being greater even than AD + DC, is surely greater than AC. It is true

that the relation AD + DC = AC of the acute case can be made to apply to
this odbtuse case dy guarded use of directed distances, dbut this is quite
unnecessary hers.

The footnote on page Sk expresses the authors' unwillingness to ask
pupile to supply reasons that depend on the fundemsntal conceptes of the
system of real numbers. This would be true in any other system of geome-
try and is not a peculiarity of BASIC GEOMETRY. In BASIC GEOMETRY, the
system of real numbers ie avowedly a cornerstone of the geometric struc-
ture; other geometric systems rely on number also, but do not explicitly
avow it. The authors can think of no adequate explanation that they
could reasonably demend of pupils in support of the statement "AB = AB";
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and they shrink from the task of building up the logical steps that would
ostablish the statement "If unequal numbers are added to unequal numbers
in the same order, the sums are unequal in the sams order."

It is better to take the system of real numbers for granted and not
bothor the pupile with explanations that seem not to explain. For the
convenisnce of teachers, however, the firet steps in establishing the
system of real mumbers are given at the end of BASIC GEOMETRY in a sepa-
rate section entitled "laws of Number.” The asuthors recognize that
teachers who have never seen these "laws" set down explicitly will be
momentarily stunned by the fordbidding appearance of certain of them.
These matters are an important part of the professional kit of teachers
of algedbra and geometry, however, and cannot be entirely ignored; fur-
thermore, interest in them among teachers ie growing fast. Contraet, for
example, the exposition of negative number in algebras of twenty years
ago and in algebras today. The authors hope that by calling attention to
certain gaps in the logical development they can lead the pupils to a
better appreciation of the nature of a logical system than could be got
by glossing over the difficulties that beset every logical eystem.

It 1s important to note that Corollary 12c asserts, in effect, that
the straight line distance between two points is lese than any broken
line distance between these points. It is even more important to note
that 1t does not assert that the shortest distance detween two points is
the length of the straight line-segment between the two pointa. BASIC
CEOMETRY makes no pronouncement as to that.

Page 95: Corollary 12d. The "shortest distance” means the shortest

straight line distance.

Pages 95-98: Exercises. The limitation of answers to eignificant

figures is not intended to impose a heavy burden on either teacher or
pupil. The authors recognize that a consistent and precise use of
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significant figures requires a high degree of judgment as well as of
knovledge. Nevertheless, the genoral epirit of significant figures can
be easily acquired even by pupils in the seventh grade, and flagrant vi-
olations of this spirit are obvious. It ie these flagrant violations
that ve wish most of all to avoid. All we need ie a few simple rules
wvhich, though not absolutely reliable in all cases, serve well enough for
our purposes. The chief interest of the authors is that the pupile shall
recognize that they themselves can determine the answer to their inquiry
"How far shall we carry this out?” and ehall see that the anewer depends,
not on convenience or on teecher's whim, but on the accuracy of the data.

If the length of a rectangle is measured to the nearest foot, the
recorded length may be in error - that is, may differ from the true
length - by not more than half a foot. Similarly for the width. If
length and width are recorded as 34 and 21 feet respectively, the true
area must lie between the product 33.5 times 20.5 and the product 34.5
times 21.5; that 18, the trus area must 1ie between 686.75 equare feet
end T4hl.75 equare feet. Thus there is a range of 55 square feet within
vhioh the true area lies. The product of 34 times 21 is 714, which is
almost midway in this range. We cannot submit the product 714 square
feot as the true area without recording the possidbility of esn error up
to 27.5 square feet either eide of 71h. That is, the eecond digit in Tlh
may be in error by almost 3. Consequently the third digit, 4, ie quite
meaninglees and we ought to replace it by O. If we keep the 4 in the
anever ve are guilty of misrepresenting the accuracy of our result.

From this numerical caee it looks as though the product of a two-
digit number times a two-digit number (each derived from measuremsnt) is
iteelf liable to eerious error in the sscond digit. Indeed, in the ex-
ample Juet shown, the first digit of the product is in doudbt also; dut
that 18 dus to our method of writing numbers rather than to mattere
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pertaining to accuracy. We ought to record the area as 710 square feet,
recognizing the possibility of an error of almost 3 in the second digit
and occasional need of altering the first digit by 1 downwards. Murther
considerations of a similar sort lead us to keep not more than n digite
in the product of two n-digit numbers; n digits in the quotient of two
n-digit numbers; and n digite in the square root of an n-digit number.

Significant figures sre figures that give information that is at
least fairly reliable. Figures that are only a protense and are really
meaningless must dbe replaced by zeros. Zeroe of this sort must be dis-
tinguished in esome vay from zeros that are truly eignificant. The poei-
tion of the decimal point has nothing to do with eignifioant figures.

The teacher may find it helpful to regard the product of two measures
from the point of view of per cent error. Thue the msasure 1 may repre-
sent a true length of 1(1 ¥ ¢), vhere € represents the per cent error in
1. Similarly 7 may represent the per cent error in v, 6o that the
true product of 1 times v s not lv, but lw(1 * € * N¥cm). From this
1t appears that the per cent error in the product lv is not greater than
€ +7), the sum of the per cent errors in 1 and v.* Bither by this method
of per cent errors, or by contemplating the product of the two smallest
n-digit pumbers and the product of the two largest n-digit numbers, we
soo that we are justified in keeping not more than n digits in the prod-
uct of two n-digit numbers. The teacher can test this in the case of
two-d1git numbers by considering the products (10 ¥ 3)-(10 ¢ j),

(30 3):(30%3), (332 4):(33%3), end (992 2):(99 * ), doth as hore
written and by the method of per cent errors.

For a more extensive discussion of significant figures see Aaron
Bakst, "Approximate Computation," Bureau of Publications, Teachers Col-
lege, Columbia, 1937.

T *We purposely ignore the trivial term €y
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b

14,
15.
18

19.

20.

. (a) Expected enswer 18 ~/2, or 1.4. If a pupil, having eignificent

figures in mind, submits the anever 2, he is wrong; for /2 1s not

included in the renge 2 ¥ 3.

(m) p2 + q2 (n) 16.6, or 17
(0) 11.3, or 11 (p) 486

. () V3, or 1.7 (o) /3 (1) 12.4, or 12
(3) 8.7 (x) 171

. 20.2, or 20, miles

Firet prove in two wvays that one side of a 30° - 60° triangle, namely
the eide opposite the 30° angle, 1s equal in length to half the hy-
potenuse, Then show by the Pythagorean Theorem that thie 1s the

shortest side of the triangle, as in Ex. 2(g) above.

The left hand diagram in Pig. 38 suggests one method. n

A second method is to drav from the mid-point M of HK M

the 1line MN perpendicular to KL. Prove KN = 3KL; then

NL = XN; and ML = MK = KL; vhence £ K = 60°. KL
90°, by converse of Pythagorean Theorem Fig'A

5 inches, 12.4 inches, 12.6 inches

13 inches

Use converse of Pythagorean Theorem, noting that

(2 - 02 + (2)% = (p° + 72

p=2,q=1

Pp=3,49=2

By Corollary 12, the shortest distance from A to BD is AD. There-
fore AB > AD. Similarly, CB > CD. Therefore AB + BC > AC.

In Fg. 25, b2 = cm

az-cn

bzoagsc(non)-c

2

From Corollary 12c, AB + BC > AC. Therefore AB > AC - BC,
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21. L DEP + LDPR = LDFP + L DFF. < DPE < L DPF. Therefore

23

1

2.

9
10

.

11.

£ DEP > £ DFP.

1
Prom similar triangles, T = 2

12, area of inner square, equals 5 of 22, area of outer square.

Pages 100-103: Exercises.

£ x & nches b. Take £ AGB = 30°, @B = 3¢ tn.;
%x&cl. s 2 A = 60°, o€ = 3 1n.;
ftefrer=at and so forth.

Sides are 6, T3, T3. 6. 36°

Use result of Ex. 10 on page 85. Actually the formla ‘% (180°)
applies only to etars formed by joining each side of the regular
polygon to the side that is next but one to it, keeping the same or-
der throughout. To consider the stars formed by Joining each eide
to the side that is next dut two, next dbut three, and so forth, it
is bettsr to circumscridbe a circle about the polygon and use the an-
gle between twvo secants; but thie i1s not available until the pupil
has errived at Ex. 6 on page 148. In the case of the regular 9-gon,
the several possible stars have engles of 100°, 60°, or 20°. The
stars that can be formed from a regular 12-gon have angles of 120°,
90°, 60°, 30°, or O°.
By Case 2 of Similarity
Prove by Ex. 9.

Given right triangle ABC with right angle at C;

M, the mid-point of BC; N, the mid-point of AC;

and I, the intersection of the perpendicular

disectors of the two shorter eides, assumed to

be not on the hypotenuse AB.

IB=IC. LIBM = £ICM. £BIM = 90° - L IBM =

90° - £ ICM = £ ICR.
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12.

13.

1k,

15.

Therefore right triangles IBM and ICN are equal, and IM = NC = ¥ AC.
Therefore right trianglee IBM and ABC are similar, < IBM = £ ABC,
I 11es on AB, and BI = § BA.

Alternate proof: TFrom Ex. 9 of this sot of exerciees ve know that
M, the mid-point of the hypotenuse, must 1ie on each perperdicular
bisector and 8o must be the point of intersection of both perpendicu-
lar bisectores.

The diagonals of each face are c‘\/2-; the diagonals of the cube are
V3.

In three dimensional exercises informal proofs are not only permis-
sible but expected. In this case all that i1s expected 18 that the
pupil recognize that in a cube of side & the diagonale of a face are
perpendicular whereae two diagonals of the cube, like AG and CE, are
diagonals also of a rectangle with unequal sides and hence are not
perpendicular. Inasmuch as the terms rectangle and square have not
Yot been officially defined in thie geometry, these figures and their
oommon properties are meant to be taken for granted by the pupil. It
is not expected that he supply the folloving details.

In the square ABCD the 1sosceles right triangles ABC and BAD are
equal; angles CAB and DEA are equal to 45°; therefore AC and ED in-
tersect at right angles.

In the rectangle ACGE the non-isosceles right triangles ACG and CAX
are equal; anglee GAC and ECA are equal, dbut not equal to k5°; there-
fore AG and CE intersect at some angle other than 90°.

Any tvo of the four diagonals of the cube are related as are au and
CE in the preceding exercise.
In other words, find the angle between the diagonale of the rectan-
gle ACGE, in wvhich AC = 8+/2, CG = 8, and each diagonal = 8V/3.
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Tan £GAC = :/_% Therefore £ CAC = 35.3° (35° 18') and the desired
angle is approximately 70.5°.
17. Height of house = 18 + 6V5
(AB)2 = (18 + 6+/5)2 + 174k
= 2248 + 216(2.236)
= 2248 + 483
AB = 52.3
18. 48.2° = 48011¢
19. 2+/7 = 5.3 inches

20. 3.2 inches
21, 500 x g = u6§



CEAPTER &

Lesson Plan Outline: 12 lessons

1. Cor. 13a, b; Theorem 1k, Cor. 1ika
2. Theorems 15 and 16

3-7. Exercises, pages 113-117

8-9. Theorem 17 through page 125

10-12. Exercises, pages 126-130, mixing in the three-
dimensional exercises with the others

Page 106: Existence versus definition. In Theorem 13 we first estab-

1ieh the existence of paraliel lines and then, on page 108, we define
parallel lines. From a etrictly logical point of view it 1s poseible
firet to define, and then to establish the existence of that which has
been defined. But because this order seems unnatural to most people we
say "In general we prefer not to define anything until we have first
shovn that it exists.”

The statemsnt of Theorem 13 does not contain the qualification that
the second line ie in the eame plane as the given 1line. It wvould make
the statement too cumbersoms to include this, and it 1e not necessary;
for 1t has already been made clear that this is a plane geometry that we
are developing. Were we not confined to the plane determined by the
given line and the given point, the second sentence of the proof (1lines
14.15 on page 107) would de untrue. Certain pupils may be interested to
ferret this out. In the definition of parallel lines on page 108 the
qualification "in the same plene" 1s inserted because it ie easy to do
8o and avoids confusion vhen the pupil goee on to solid geometry. The
teacher may vish to tell the class that lines that are not in the same
plane and do not meet are called skew lines.

In the proof of Theorea 13 on page 107, lines 14 and 15, we need both
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Principle 3 and Principle & to establish the unique perpendicular to a
given line at a point of the lins. The word "perpendicular” is defined
on page 50 in terms of 90 degrees, which involves the straight engle and
Principle 4. The uniqueness of thie perpendicular depends on Princi-
ple 3, as set forth on page 5k of BASIC GEOMETRY.

On page 108 and thereafter we use the word "parallel” both se adJjec-
tive and as noun. Concerning the use of the word "all" in the definition
of a "system of parallels" at the bottom of page 108, see ths note on
"all" as used on page 118, line 13, farther on in this chapter of the
manual.

Page 109: Transversal is defined as a line that cuts "a mumber of
other lines.” This number of other lines may de only ome, or two, or
more than two.

Both teacher and pupil should note that Theorems 14-16 and the exer-
cises on pages 113-117 are concerned with parallels that are cut dy a
general transversal. The next section of this chapter, beginning with
Theorea 17, is concerned vith parallels that are cut dy a perpendicular
transversal.

Page 109: Theorem 1L. Note that this theorem 1s so worded as to em-
brace all three cases that other geometry texte see fit to distinguish
in this geometric situation. In BASIC GEOMETRY, howvever, we see no need
of playing up the idea that "vertical angles are equal." We merely call
attention to thie in Exs. 10, 12, and 13 on page 52 as an obviocus result
of numbering balf-lines vith common end-point so that number differeaces
measure angles. Consequently this geometry does not need to distinguied,
or even mantion, "alternate-interior” angles, "corresponding"” angles,
"exterior-interior" angles, or "interior angles on the eame side of the
transversel.” Actually the last of these four phrases 1s referred to in
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the note at the bottom of page 109 in order to satisfy teachers who wish
to check off the familiar ideas of geometry as they studied it, and to
identify the occurrence of these samo ideas in BASIC GEOMETRY.

Similarly the terms "supplementary angles” and "complementary angles"
are mentioned on page 111 to satisfy teachers who think these terms are
valuable. The authore of BASIC GEOMETRY prefer not to emphasize them.

Pages 113-117: Exercises.

-~

Morely insures that the pupil eupply the detalls of the proof re-

ferred to on page 111, lines 1-2.

4. AB = CD, froa Bx. 2

6. Prove BC = DA and apply Ex. 5.

7. 8ince the sum of all four angles of the quadrilateral is 360°, by
Ex. 3 on page 84, the sum of two adjacent angles 1s 180°. See
note, bottom of pege 109.

9. Use Principle 10.

12. JK = 1.8; KL = 2.7

15. It 1s not necessary that the points of intersection in Fig. 8 de
lettered in order to facilitate class discussion. The desired an-
ever 18 merely “"All the acute anglee are equal and all the obtuse
angles are equal. All the shortest distances are equal, and - 1if
both doudble tracke are equally epaced - all corresponding longer

distances are equal."

&

Since AB = H'J', r8 = 1, and r and s are reciprocals.
17. Merely replace AH and BJ in Fig. 4, page 111, by AJ and BH.
18. Use Case 2 of Similarity.

19, By dreving A'A and extending through A, show that £ A' = £A. Simi-

larly for B'B end C'C. Therefore the triangles are eimilar, and
8 8
B'C' =2 - band C'A’ =2 . 6.
5 5
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20. FMret method: Use Theorem 15.

Second method: Drav a second parallel through B and apply Theoream 16.

21. Use Case 1 of Similarity and Theorem 1lb.

23. Either prove the upper and lover triangles similar, or drav a paral-
lel through the intersection of the diagonale and apply Theorem 16.

25. By means of equal angles prove that triangle ABR is isosceles. Use
Bx. 20, page 115.

26. By means of oqual angles prove that triangle ABQ is isosceles.

28. Drav a diagonal of the quadrilateral and prove that two of the lines
in qQuestion are parallel to this diagonal and that each of these two
1ines is equal to half the diagonal. Either diagonal will serve,
whethur the four vertices are in the same plane or not. In the lat-

ter case the quadrilateral is called a "ekew quadrilateral.”

8

The pupil will take the random line in the same plane as the paral-
lelogram. Use Ex. 2k on pege 115. The length of the perpendicular
drawvn to the random line from the point of intersection of the di-
agonals 1s equal to one fourth of the eum of the perpendiculare from
the vertices.

Question for discussion: What happens 1f the random line passes
through one vertex of the parallelogram and has no other point in
common with {t? What happens if the random line intersects two ad-
Jacent sides of the parallelogram? If the random line passes through
the point of intersection of the diagonals?

Page 118: Corollary 17a ie a corollary of the definition of rectan-

gle immediately preceding this corollary. Prove the corollary by means
of Exe. 2 and 7 on page 113.
The term "rectangle” 1s defined on page 118, line 5, as a quadrilateral
each angle of vhich is a right angle. This definition and Corollary 17a
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pormit the further description of a rectangle (page 118, 1ine 9) as an
equiangular parallelogram. The statements following this description
serve to define the terms "rhombus" and "sequare."

Page 118, 1ine 13: "We have seen - - -." This refere back to page

110, 1ine 8, and thence to page 108. When we say "all the lines perpen-
dicular to a given line" (pege 118, 1inee 13 and 14) we have in mind a
eystem of perpendiculers - and hence aleo a system of parallels - that ie
as numerous as the points on a line. Thie means that the mumber of lines
in the system of parallels referred to on page 118, and also on page 108,
is the non-denumerable infinity of the continuum. The number of lines

in "the collection of lines - - - - called a rectangular network” on

page 118 1s also equal to this non-deaumereble infinity of the continuum;
for the lines in a rectangular network can be paired with the linees in a
system of pearallels. (See X. V. Huntington, The Continuum and Other

Types of Serial Order, Harvard University Preee, 1917, 1938.)

Page 119: Coordinates. We purposely use "x-coordinate” and
“y-coordinate” instead of "abscissa” and "ordinate,” because the two

formsr are clear, umistakable, and in generel use among mathematicians.

Pege 121: Exercises.
1. The suggestion "- or any other convenient distance as the unit -"
is meant to imply that printed squared paper is not necessary for

these fev exercisee and that the pupil can drav hie own network in

each case.
2. Slopes are g; %; %; %
k. oa = V3h oF = 2/5
B = 25 oI = /29
oC = 371_3_ oJ -\[g-; or m&
7
@ _—? oK -\/—? or V18.5

OB = OF = 0G = V34



5. AC =5 Vi
B = Y109 Jx._fz
%
A = 8V2 D - Y13 . 8.96
=138 D-m-u.3
x - VIP -
Jp = V1781 _ 40,5+
cJ-‘V_"’g} 0

6. 8lope 1s -%.

7. Slopee are 2; -1; - g.

8. Slope of GX 1e %; slope of ED 18 §5. The slope of EB 1s O.

9. IA has steepest slope, 10. GX, though inclined more steeply to the
x-axie than JA, has no slope.

Page 122: Theorem 18. Complete the proof by shoving that £ LR -

L MPR.

Page 123: The equation of a line. The authore vish to ehov at this
point hov the usual ideas concerning the straight line in analytic gecms-
try can be developed from the fundamsntal concepts of BASIC GEOMETRY.
8imilarly, on pages 133-135, they dbegin the analytic treatmsnt of the
circle. But having made thie connection with analytic geometry, they
do not wish to go farther; for an accurate and reasonably complete treat-
mont of straight 1line and circle by the msthods of analytic geometry
would make too long an interruption in the main theme of this dook and
would introduce too many difficulties. The step from the graph of
2x - 3y - 5 = 0 in elemontary algebra to the general equation of the
first degree in anslytic goometry, namely ax + by + ¢ = O, is much harder
than moet secondary-school teachers believe it to de.

In considering (near the bottom of page 123) the equation of the line
through (a,b) that is parallel to the x-axis, the treatment in the text
ought strictly to follov the pattern for the general etraight line as
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set forth in lines 9-12 higher up on this page. That is, 1t ought to
shov not only that the y-coordinate of every point on this line 18 b,
but also that every point whose y-coordinate ie b lies on this 1line; and
similarly for the equation of the line through (a, b) that is perpendicu-
lar to the x-axis. Since, hovever, these two special cases usually give
pupils more troudble than the ordinary oblique cases, it seems wiser not
to insist on a complication in the develomment that the pupil would prob-

ably not appreciate.

Page 124: Exercises.

¥

2.
3. ay = bx, or bx - ay = O.

1.

LI ]
\M &

Page 125. A bdrick has three planes of symmetry. A cube has nine
planes of symmetry. A man has one plane of symastry.

Tvo symastric plane triangles will coincide if one is rotated through
180° about the axie of symmetry; two symmetric spherical triangles cannot
be made to coincide by this sort of rotation.

The third paragraph on page 125 of BASIC GROMETRY will be revised
to reed:

"Fig. 25 has no axis of symmetry. If, hovever, ve rotate this figure
in the plane of the paper about the point O through an angle of 180°, 1t
coincides vwith its original position. Whenever a 180°-rotation of this
sort about a point O causes a figure to coincide with its original posi-

tion, the figure 18 said to be symmetric with respect to the point O and

0 is called the center of symmetry of the figure.”

Every square, every rectangle, every regular hexagon, has a center of
symmetry. No triangle, not even an equilateral triangls, and no pentagon
has a center of symmetry.

Almost every leaf in nature is symmetric vwith respect to an axis, 1if
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ve ignore minor discrepancies. But mulberry, sassafras, poison ivy, and

poison oak have asymmetric leaves, often symmetrically grouped. Thie

distinctive characteristic is particularly important in the case of the

poisonous onese.

A geometric figure is symmetric with respect to a point O if every

point P of the figure (except O) has a corresponding point P' in the

figure such that FP' is bisected dy O.

1.

2

.

k.

5.

Pages 126-130: Exerciees.

The seven figures have 2, 5, 6, &, I, 2, O axes of symmetry respec-
tively. All dut the second and fifth have symmetry vith respect to
a point. The fourth, fifth, eixth show close relation to a netwvork.
The left leaf, or leaflet, usually exhidits left-handed asymmetry;
the middle leaf, or leaflet, is symmetric; and the right leaf, or
leaflet, usually shovs right-handed asymmetry.

Use Theorea 15 and Principle 6.

Incidentally, the teacher should lead the pupils to observe that
the three pairs of similar triangles in Fig. 20 all have the seme
factor of proportionality, but that no triangle of one pair is simi-
lar to a triangle of another peair.

B ., AB _, BC

B A® BCY %"

Thoroforo%-l-%-l, m%-%

Since FPB = QB, P and Q coincide and the three lines are concurrent.
If AB = A'B' and BC = B'C', the three lines are parallel.

Use Theorem 15 and Principle 6.

Using Fig. 30, assume that AA' and CC' meet at P and that AA' and BB'

moot at Q.
PA__ AC _ AB
PAT " AT T ATBY
QA _ AB
QT " ATBT
PA . . PA . AM' _ AA'
Thmforoﬁ_' %,ﬁ.’ 1 -1,.mﬁ_'-w,

-
”1
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8o P and Q coincide and the three lines are concurrent.

7. If the triangles are equal, AA', and BB', and CC' are parallel.

8. Using Mg. 31, followv the proof of Ex. 6 except that A' 18 now re-
placedbyA"mdt.hatvenovvrito;%w+l=%n+l.

9. As indicated in FMig. 32, drav two random lines through P to meet 1
and m. Complete the triangle as shown and drawv another triangle
similar to the first eo that the two triangles have their sides re-
spoctively parallel. The line joining P and the corresponding vertex
in the second triangle 1s the desired line. (Or else replace this
explanation by the following: "Use Ex. 6 above, as indicated in
Fg. 32.")

10. 12 atles an hour
L

11. The perpendicular bisectors of opposite sides of a rectangle coin-
cide. The perpendicular bisectors of adjacent sides meet in a point
that 18 equidistant from all four vertices of the rectangle. Since
the diagonals of a rectangle are equal (Principle 5) and bisect each
other (page 113, Ex. ), their intersection also is equidistant from
all four vertices of the rectangle and hence mmst lie on the perpen-
dicular bisector of each side of the rectangle.

12. If all three planes are perpendicular to a fourth plane and no two
of the three plan¢s are parallel, they intersect two at a time in
three parallel lines. If two of these three planes are parallel,
the three planes intersect in two parallel lines. If all three of
these planes are parallel, they have no point in common.

The answers to Exs. 13-21 given belov are much more detailed than
can be fairly expected of pupils. The point of these exercises is to get
the pupil to consider and discues certain three-dimensional analogues of
the idess set forth in the earlier part of thie chapter. It ie desired

that the pupil shall think in three dimensions sufficiently to see the
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relations involved in these exercises. It is not expected that he supply

proofs.

13. Call the two given parallel lines 1 and m. If the "other" line, m,
and the plane containing 1 have a point in common, this point will
lie not only in this plene but in the plane determined by 1 and m.
That is, it will 1ie on the intersection of these two planes, namely
1. But this would mean that a point of m 1ies aleo on 1, which is
imposeible. So m and the plane containing 1 can have no point in
common.

1k. If the two planes have a point in common they also have a line in
common. If any point of thie line dbe Joined to the ende of that
segment of the given perpendicular line that is included between the
tvo planes, the resulting triangle will contain two angles of 90°,
vhich is impossibdle.

15. If the twvo lines of intersection have a point in common, this point
must be common to the two parallel planee, vhich is impossible.

16

.

Given lines 1 and m in Fig. 33, Join the point of imtersection of 1

and the first plane with the point of intersection of m and the third

plane, forming an auxiliary line shown in the figure. Apply Theorem

16 to 1 and the auxiliary line, and again to the auxiliary line and m.

17. Use Ex. 15 on this pege, Theorem 15, Principle 6, and Ex. 5 on
page 127.

18. If "the plane of theee lines" is not parallel to the given plane it
has a line in common with the given plane. This 1ine of intereection
cannot be parallel to both the given intersecting lines; it muet have
a point in common with one of them. Thie point, therefore, maet dbe
common to the given plane and to a line that ie parallel to the given
plane. This is impoesible.

19. One of the given lines and the parallel through any point of it to
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21,

the other given line determine a plane that 18 parallel to "the other
given line," by Ex. 13 on page 129. Since there 1s only one euch
parallel through any point of the firet given line, there ies only one
such parallel plane through this "any point." Furtber, this plane
contains the parallel through each of the other points of the firet

given line.

. Through the given point there are two lines one of which is parallel

to one of the given skev lines, while the other ie parallel to the
other of the given skew lines. These two "parallels" determine a
plane, and the only plane, that is parallel to both the given skew
lines. If the given point 1ies on one of the given skew linee we
have the situation of Ex. 19 on thie page.

If there is a common perpendicular to two given skew lines, it will
be perpendicular also to a random plane that is parallel to the two
skev lines. So, of all the perpendiculara to a given skev line we
need consider only those that are perpendicular aleo to this random
plane. Theee perpendiculars lie in the plane that contains the given
skev 1ine and is perpendicular to the random plane. Similarly, we
need consider only those perpendiculars to the other skev line that
lie in the plane that contains thie other skew line and ie perpen-
dicular to the random plane. The line of intersection of these two
planes each of which ie perpendicular to the "random parallel plane"

i8 the common perpendicular to the two skew lines.



CEHAPTER 5

Losson Plan Outlins: 27 lessons

1-3. Through Theorem 20, page 139

4. Theorem 21, Corollary 21a, and Exs. 1-2,
pages 139-1k1

5-9. Exs. 3-26, pages 1h1-1kS
10. Theorem 22 and corollaries, pages 145-146
11-14. Exe. 1-25, pages 147-150
15-17. Exe. 26-47, pages 150-152
18-21. Theorems 23-2% end Exs. 1-16, pages 152-155
22. Exs. 1-5, pages 157-158
23. Exs. 6-10, page 158
2k. Bxe. 11-15, page 159
25-27. Pages 160-163

Page 133: Circle. In order mot to clutter up the definition of
"circle” in 1ines 7-8 with a forbidding array of words, the authors have
used the phrase "all the points" to etand for "all the points and no
other points.” The "other points" are taken care of in & subsequent een-
tence, lines 13-16, that conseiders all points whose distance from O is
either less than or greater than r. In the equation discussed in lines
21-23, r varies from circle to circle dbut is constant for any particular
circle. This "variable constant” r is called a parameter and must not
be confused with the true variadles, x and y, of the equation.

On page 134 the first paragraph associates the points on a circle
vith half-1ines having a common end-point O in order to lead up to the
definition of "arc” in the folloving paragraph. This association serves
also to establish the fact - not mentioned in the text - that the circle
is a continuous curve; for in Principls 3 ths linking of the system
of real numbers vith all the half-lines having a common end-point es-
tablishes the continuity of thess half-lines in the same vay that in
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Principle 1 the linking of the system of real numbers with all the points
on an endlees line establishee the continuity of the endless line. These
idees concerning continuity are vithheld in this book until Chapter 8,
pages 228-231.

Page 1}’&: Minor arc. In the discussion of "angle" as a geometric
configuration on page 46 the idea of "lesser angle" was admittedly used
proematurely. This idea was legalized leter by the discuesion of angle
measure under Principle 3. Unfortunately we cannot jump with equal ra-
pidity from the definition of arc to the definition of arc length. So,
although ve may distinguish arcs, defined as aggregates of points on a
circle corresponding to certain half-lines, by means of their central
angles, we have no right to allov "lesser central angle” to impute the
idea "lesser length" to the corresponding arc. We must restrict the
inplication of the term lesser, or minor, arc to this association with
leaser central angle and must leave out all idea of length until ve come
to Chapter 7. We do the same vith respect to equal arcs on page 135.

Of course, everyone knows intuitively what the final decision about arc
lengths 1s to be. But officially ve need firat to meke clear vhat is
moant by the length of a circle, and this requires the usual polygon end
limit technique.

Although it would de possidble at this time to conseider directed arcs
in terms of directed central angles, the use of signs in this connection
would have to be construed as applying only to the central angles in-
volved and as carrying no implication concerning the lengthe of the di-
rected arcs. Thie is 80 unnatural that the matter of directed arcs is de-
ferred until pege 209, where it ie poesible then to allow the sign of a
directed arc to carry also an implication as to magnitude. See dracketed

ansver to question 5, page 135.
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Page 135: Exercises.

1L (@) 22+ 5%t (c) x% + 32 = 9.61
) x2 +y2 =25 (d)x20y2-g

2. ()3 (c) 1.9 (o) V2
(v) 2v2 (@ 3

3. One, the point (0, 0)

4. None

5. Arc BC = arc DE = 25 Arc BC = arc CB = 65
Arc BE = arc FA = 90 Arc BF = arc EA = 235

(Arc ED = arc CB = -335]
6. On the half-line numbered 80, or 260.

Page 136: Diameter. See the discussion of "circle” and "diameter”
on pages 14-15 of BASIC GEOMETRY.

Page 136, third paragraph. Here we have an example of a variable

approaching a 1imit and equaling its limit; and an example also of a
variable approaching a limit but never equaling ite limit. The teacher
will do well to emphasize this matter - though chiefly as an seide -
because the word 1limit usually occurs in elementary gecmetry in caees
vhere the variable does not equal ite limit. Thie leade the pupil to
infer, erroneously, that a variable can never equal 1ts limit, and it ie
vise to try to prevent hie getting this false impression.
Page 137: Exercises.
1. We expect “equally espaced” to be understood ae "having equal cen-
tral angles." The idea of equal arcs 18 not yet available.
2. Apply Caee 3 of Similarity, pages 78-80, to the two triangles.
. Uee Corollary 12b, page 93.

. Use the Pythagorean Theorem and Ex. 3, page 137.

o v w

. Use the Pythagorean Theorem. The pupil 18 expected to recognize
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6-7.
8
9

10.

11.
12.

13.

intuitively that r2 - (shorter)2 is greater than r2 - (greater)2.
He is not expected to quote the eighth lav on page 288 in support
of hie argument. See page 23k.

Each chord corresponds to a central angle of 60°.

Pages 1L0-145: Exercises.

Use indirect method - suppose that perpendicular does not pass through
the center; then Theorem 21, and unique perpendicular idea on vage 5i.
Use indirect method - suppose that the perpendicular does not paes
through the point of tangency; then Theorem 21 and Principle 11,

page 88.

Use Corollary 15e, pege 111, and Corollary 12b, page 93.

Use Theoream 21, Corollary 15a, and Ex. 2 on page 1kl to prove that the
diameter through one point of tangency pasese through the other point
of tangency also.

Use Ex. 3 and Theorem 19.

Use Corollary 12b.

Use Bx. 8.

The sum of one pair of opposite central angles is equal to the eum

of the other pair. Draw radii to the four pointe of tangency; uee
Ex. 8 end Corollary 12b.

Ae in Ex. 9.

A8 in Ex. 11, the sum of alternate sides of a circumscribed n-gon is
equal to the sum of the remaining sides vhen n is even, but not wvhen
n is odd.

The authors use the word "ehow" instead of "prove" in this exercies
to Indicate that the pupil ie expected to exhibit eetisfactory die-
grams only, but no proofs. The following etatemente ere for the
teecher only. Whenever the expression r - r' occurs in these atate-

ments it is sesumed that r is greater than r'.
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1k,
15.

16.

If the circles should have a point in common vhen O0' is greater
than r + r', then - by Corollary 12c - r + r' would be greater than
00': an obvious contradiction.

If the circles should have a point in common when OO' 18 less than
r-r', then - by Ex. 20 on page 78 - r - r' would be lees than 00':
another contradiction.

If, vhen 00' = r + r', the circlee ehould have a point in comnon
but not on 00', then - by Corollary 12c - r + r' would also dbe
greater than 00': impossible.

I1f, wvhen 00' = r - r', the circles should have a point in common
but not on 00' extended, then - by Ex. 20 on page 98 - r - r' wowld
also be lees than 00': impossible.

In these last two cases the circlee can clearly have one point in
common, and this common point must lie on 00' or on 00' extended.
That the circles might have a second point in common, not on 00' or
on 00' extended, has just been shown to be impossidble.

Finally, wvhen r - r' < 00' < r + r', 1f the circles should have

a point in common on 00' or on 00' extended, then 00' 1s either
eimultanecuely leee than r + r' and equal tor + r', or elses simul-
taneously greater than r - r' and equal to r - r': both impossible.
By Principle 10, page 87, and Principle 2, page kk.
If the two circles should have three distinct pointe A, B, C in com-
mon, then OC' would be the perpendicular bisector of AB and of AC at
the same time; and thie 18 impossible, as there cannot be two lines
from A perpendicular to 00'.

Exs. 13 and 15 establish the existence of two and not more than two
pointe common to two circles. It ie proper then on page 143 to de-
fine the terms "points of intersection" and "common chord."

Use Ex. 1.
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17. The teacher can vary thie by asking for a single diagram showing
several interesting steps in the traneit of a small circle (moon)
across a larger circle (sun).® He can ask also whether an eclipse
of the sun by the moon appears to an observer on the earth to be an
example of a small circle peseing acroes a larger circle.

18. 3.99 inches

19. 0.87 inches

20. 4.8 + L.4 + 4.0 = 13.2 inches

21. (a) 00' > r ¢+ r' () r-r'<00'<r+r' () 00} r - r'
(b) 0O' = r +r' (@) 00' =r - r'

22. 00'. If r =r', a second axis of symmetry ie the perpendicular bi-
sector of 00' in casee (a), (b), and (c).

23. From a point P on the common tangent a tangent to either circle ie
equal to PT, by Ex. 8 on page 1U41.

2k. Thie 16 a special caee of the preceding exercise.

25-26. If the comuon external tangents meet at T, then the angle between
these tangents 18 bisected by TO (Ex. 8 on page 141). Thie same angle
18 bieected also by TO'. Therefore TO and TO' are (parte of) the same
line, and T lies on 00'.

If the two circles in Ex. 25 have equal radii, their common external
tangentes do not meet.

Pages 145-14%6: Theorem 22 and Corollaries 22a, 22b, 22c. We have

defined "arc" (page 134) in intimate conmection with “"central angle' and
have then employed the phrase "a central angle hes an arc.” On page 135
we have defined equal arce as having equal radii and equal central
angles, but have dieavowed any intention of implying at thie time that
equal arcs, thue defined, have equal lengths. When in Corollary 22a we
say that equal inscribed angles have equal arcs we do not make clear juet
T ¥Suggested by Profeseor Norman Anning of the Univereity of Michigan.
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which arcs ve mean, but this is relatively unimportant since corresponding
arce are equal all around.

Pages 147-152: Exercises.

1. The sum of two opposite angles of the quadrilateral ie equel to half
the sum of two central angles that add up to 36C°.

3. In Fig. 24 L ABC = 90° = £ ABD, 8o CBD 18 a etraight line.

4. For the left-hand figure:
£ C + £ ABD = 180° and
Z ABD + £ ABF = 180°,

Therefore £ C = £ ABF

L ABF + £ E = 180°.

Therefore £C + £ E = 180° and chords CD and EF are parallel (by
page 110, lines 1-3).

For the right-hand figure:

ZC + £ ABD = 180° and £ AEF + £ ABD » 180°.

Therefore £ C = £ AEF and chords CD and EF are parsllel.

5. LAPC = LB+ £C = 3 LAOC +  £BOD = 3( £ AOC + £ BOD), vhere O 18
the center of the circle.

6. LAPC = LABC - LBCD = 5 LAOC - 3 £BOD = ¥( £ AOC - £ BOD)

7. Drav the bisector OM of the isosceles triangle TOB (Fig. 28) and
prove that two angles at M are right anglee. It followe that angle
MOT and the angle between the tangent and the chord are dboth equal to
90° - £ Mro.

9. Use the fact that the four angles of quadrilateral PSOT add up to
360° and that two of these anglee are right angles.

10. From Ex. 9 £SPT = 180° - the lesser angle SOT =
2(360° - twice the leeser angle SOT) =
if(g;reator angle SOT + lesser angle SOT - 2 - lesser angle SOT) =
z(greater angle SOT - lesser angle SOT).
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11. 638
12. 180° - 1204° = 594°
13. 69°

1L, Note that Exs. 14, 17, 23, 24, and 25 say "ehow" - not "prove" - and

"can be regerded.” All thet is expected of the etudent in these
five exercises ie an intuitive recognition of limiting cases.
In Fig. 26, as D approachee B, ZC approaches 0° and < AFC ap-
proaches £ B + 0°.
15. 274°
16. 3u°
17. See note on Ex. 1.
In Fig. 27, ee D epproschee B, £ BCD approaches 0° and £ APC ap-
proaches < ABC - o°.
18. In Fig. 28, vhen £TOB = 90°, L OTB = 45° » the engle between tangent
and chord. When £ TOB = 180°, TB 1e a diameter and ie perpendicular
to the tangent at T.
19. 125°
20. 520
21, L3°
22, 222.2° and-137.8°
23. See note on Ex. 1k.
2k, See note on Ex. 1k.
Ae B moves along the circle towerd T, P moves toward T elong the
tangent and < PAT approaches o°.
25. See note on Ex. 1k.
Let A and B withdraw from T along the circle until A end B approach
coincidence.
27. Use Corollary 22c and Ex. 15, page 86.

28. 23
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29.
30.

31.
32,
33
34,

36.
39.
bo.
b1,
¥2,

u43.

3

In Fig. 31, et DO = x. ThenAD = b - x, DB = 4 + x, and (PD)2 = 9 =
(h-x)(hox)-16-x2. neretorex2-7a1|dx-\/7.
Alternative solution: Let AD = x. ThonDB=8-xand(P‘D)2=9=
x(8 - x) =8 - x2 and x2 - 8x + 9 = O. Using the quadratic formula,
x = b ¥T\/T.

PA = 26 end PB = 2410

PA = b and FB = U3

AB = 6 and PB = 3+/3

m=%mm=%

£ PTA = £ PBT; therefore triangles PTA ard PBT are eimilar.

Use Ex. 37.
20

7
7.4

g
Letting CP = x, we have x> + 5x = 96. The teacher should tell the
pupil in advance that he will meet an equation of this sort and will
be expected to find an approximate solution by trial-and-error. For
exemple, 7 is too emall, and 8 18 too large; 73 seems about right;
try 1t. Vogot560%0370§--93%. vhich ie a bit small. So
ve try 7.6, getting 57.76 + 38.0 = 95.76, and thie is very close
indeed.

Applying the quadratic formula to the equation x2 + 5x - 96 = 0
-5 + Vo9
==

yields x = 2 7.6 and another value that we reject because

it 18 negative.
215

. Letting AP = x, ve have x2 + Ubx = 64. The teacher should tell the

pupil in advance that he will meet an equation of this eort and will
be expected to find an approximste solution by trial-and-error. For
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exemple, 6 ie too emall and 7 i8 too large; 6{— eeems about right;
try 1t. We get (6411:)2»h(2§)= 3643»1%02‘;':6%%. 806%
is very cloee indeed.

Applying the quedratic formula to the equetion x2 +lx - 6L =0
ylelde x = 2V/1I7 - 2 = 6.24 and another value that we reject becauee
it ie negetive.

k5. 56.25
47. See note on Ex. 1k.

In Fig. 33, let A and B move toward eech other along the minor arc
AB; then let C and D move toward each other along the minor arc CD.
In the case that both secants beccme tangents we have the eituation
in Ex. 8 on page 141.

Page 152: 1In Thecrem 23 the fussieet point of the proof concerne a

deteil that ie of least interest to the pupil, namely, whether PM and QN
intersect or not.

Peges 154-155: Exercisee.

1. The first two paragraphe of the proof of Theorem 23 on page 153 can
be applied tc any triangle ABC.

2. In Fig. 36, triangles OAB and OBC are equal iececelee trianglee; 8o
£ ABO = £ CBO.

. If ve regerd Fig. 36 ae repreeenting part of an inscribed equilateral

w

pclygon, the equality of the baee anglee of the eeveral equel iececeles
trianglee is eufficient to prove that L A = £ B = LC = LD = .
Thue the definition of regular polygon on pege 85 1e satiefied.

If the equilateral rolygcen ie formed by joining every second, or
every third, or every fourth, . . . ., pcint of divieion on the circle,
then the polygon will be a eter when n le odd.

4. See Fige. A and B on the next pege.
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5. In Fig. C, polygon ABCDEFCH is equi-angular. The inecribed circle
touchee the sides of the polygon at R, S, T, U, . . . . eo that tri-
angles ROB, BOS, SOC, COT, . . . . are similar. For the anglee st R,

S, T, U ... .are right angles (Theorem 21) and the engles at B, C,

D, . . . . are halves of equal angles. These triangles are also equsl,
s8ince (R = S = OT = QU = . . . . . Therefore RB = BS = SC = CT =
™M=....,and BC=CD=. .. ., so that ABCDEFCH is a regular
polygon.

6. See Figs. D and E belov.

7. Since each angle of the polygon is measured by (eee footnote on page
145) the same number of equal arcs, all the angles of the polygon are
equal. The sides are all equal also (Theorem 19).

In Bx. 7 and Bx. 8 the phrase "any mmber" means "any integer
greater than two."
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8.

10.

11.

If the chorde are drawn also, as in Ex. 7, wve have n isosceles tri-
angles. In each triangle the angle between tangent and chord is the
samo, 80 that the triangles are similar isosceles triangles. There-
fore the angles at the vertices of the circumscribed polygon are all
equal. Since the chorde are all equal, these isosceles triangles
are not only similar, but equal; so that the sides of the circum-

scridbed polygon are all equal.

One method of proof follows the pattern of the proof in Ex. 8, show-
ing first that the isosceles triangles are all similar, and then
that they are all equal.

A second method 19 merely to apply the theorem in Ex. 7 on this
page.

That the mumber of sides is doudbled is sufficiently obvious without
expecting the student to give a formal proof.
This can be proved either by drawing chords and considering the
isosceles triangles, as in Exs. 8 and 9, or by immediate application
of the theorem in Ex. 8 on thie pege.
Prove angles equal by Ex. 6 on page 85. Since AB=BC =CD = . . . .
and A'B' = B'C' =C'D' = . . . "FA%""B%'E%" L
2
vz
™2
L
V3
™3
303 R
Pages 157-161: Exercises. Y S
£ SRT = %40 ﬂ
ZBST = $£0'

ZSRT + ZRST = $(£0 + 20') = $(180°)
Therefors £ RTS = 90°. Fig. A
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2. It is necessary only to prove that the marked angles in each of the
diagrams delov are equal.

/l qu.A /

3. Use the preceding exercise and also Ex. 5 on page 127.

A
s \ C
8 8
C A
Fig. B

L. In Fig. C, TA' and TB' are random chords through T. It is sufficient
to prove by Ex. 2 on this page that chords AB and A'B' are parallel.
S. See Fig. D. In each case £ ATB = 90°. Therefore £ A'TB' = 90° also,

and A'B' is a diameter.

Fig.C

6. It is not necessary that all pupils suggest the same property. This
is an interesting and significant diagram, and the total of all correct
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10.

suggestions will enlighten everyone. There are times when the teach-
er will prefer to esk "eee what you can discover" rather than "see
if you can eee what the book saye you should see.”

See Fig. A below. P is equidietant from R, S, and T; Q 18 equi-
distant from U, V, and T.

PQ = RS = UV. For PT = RS; QT » 3UV; and RS = UV because RM =

UM and SM = VM.

. Use the theorem in Ex. 37 on pege 151.
. See Fig. B. Triangle ADO 1s a 30° - 60° right triangle. Therefore

Do=ho-ico,mano-%nc.

N
(LN
NUPZ
Fig. A Fig.B

Since the inacribed angles C and D are measured by one half the same
arce respectively, however CD may be drawn, the eizes of these two
angles do not vary. Consequently angle DBC does not vary in size.
The accompanying diagram showe circles
O and Q of Fig. 41, to vhich the lines
OA, QE, OQ, and the common tangent ST
at C have been added. By Ex. 16 on pege
143 OQ passes through C. Since LTCA =

L SCE, $ZAOC = 3 LBQC and OA is peral- Fig. C E
lel to QE. Similarly, in Pig. 41, PA
is parallel to QD. But OAP is a straight line. Therefore EQD is
etraight aleo.
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11. In Fig. 42 the angles at A and B are complementary. If the other
tangents from A end B are drawn, these angles et A and B will be
doubled; that is, they will be supplementary, and the new tangents
will be parallel.

12. The lengths of the segments in question are either the eum or

.

difference of equal tangente from an external point.

13. If we letter the arce a, b, c, d, o, . . . . in order, then in the
case of the equiangular polygon of five sides the equality of the
angles telle us that a + D+ c=d+c +d=c+d+e=d+e+a-=
e+a+d=a+d+c. It follove thata=d, b =9e, c=a,d=0»,
e = c, and hence that a = b = ¢ =d = e. Since thie polygon ie both
equilateral and equiangular, it is regular.

If the equiangular polygon has six sides, we get e + b + ¢ + d =
b+4ct+dte=c+dt+oe+f=dtoe+f+to=e+f+a+d=
f+a+db+rc=a+d+c+d. It followve thata =9e, b =1, c = a,
d=b, e=c, f=dand hence that a = c = e and b = d = f; but there
i8 no vay of equating a, c, or e to b, 4, or f.

If the equiangular polygon has seven eides, we get a = £, b = g,
c=a,d=b, e=c, f=d, g=e. This 1s like the eeries of equa-
tione for the pentagon, except that in each equation we now skip four
lettere instead of two. Since in each of these two cases the total
number of letters is odd, thie ekipping of an even number of letters
linke all the letters and equatione together. The same is true of any
polygon having an odd number of sidee. Whereas in the case of any
polygon heving an evan number of sides, like the hexagon, we skip an
odd number of letters in each equation of the series; and since the
total number of letters 18 even, we succeed in linking only half the
letters into one seriee of equations, and the other half into a sec-
ond series of equations; we can never bring the two eeries together.
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1N, In the case of the equilateral polygon of five
sides, or of any odd numder of sides, the seg-
ments of the tangents are equal in paire around
the polygon, as marked, deginning at vertex A,
until there is overlap; that is, until an a

segment 1s seen to bde equal to a b aegment.

Consequently each vertex of the polygon is at
the same distance r' from the center of the given circle (Principle 12)
and the polygon can be inscrided in a circle of radius r'. By Ex. 3
on page 154 the polygon is regular.

Or, having proved an a segment equal to a b segment, we can prove
£ GBT equal to L OCT, and hence £ B = £ C. In thie way the equilat-
eral polygon ie proved to be equiangular also, and therefore regular.

In cass the circumscrided equilateral polygon has an even number
of sides, tho segments of the tangents are equal in pairs dut without
overlsp. It is impossidle to prove that the polygon ie regular.

Ex. 6 on page 155 affords examples of circumscribed equilateral
polygons that are not regular.
15. In FMg. 43, AO * 0B = CO * OD;
AO ° OB = BO * OP;
CO° 0D =320 " OR;
therefore OF = OQ.
Note: Exs. 16-23, like the other exercises on three-dimsnsional
goometry 1n this book, are not meant to be logically connected with
the two-dimensional geometry. They are included principally to chal-
lenge the pupil's immgination.
16. A circle. It 1s assumed, of course, that the pupil will think only
of a right circular cone. To include a technical phrase of this sort

in the question would add mystery rather than clarity.
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17. A circle. BHere aleo it is assumed that the pupil vill consider
only a right circular cylinder.

The coin must be held horizontal; parallel to the tilted cover.
The coin will cast an elliptic shadow if the plane of the coin is
not parallel to the floor (cover) and does not contain the perpen-
dioular from the light to the floor (cover). In the latter case the
shadov would de a "droed” line segment.

18. Circle. Meridian and equator are equal circles. Centers of all
great circles are at the conter of the sphere. Parallels of latitude
are smaller circles than "great circles” and diminish as the latitude
increases from equator to pole. The centers of all these circles are
on the axis Joining the two poles of the ephere.

19. The center of the sphere and the two given points on the surface of
the sphere ordinarily determine a plene. This plane intersects the
sphere in a great circle. Three points in a straight line do not
"determine” a plane: this line can lie in a multitude of planes.
This situation arises vhen the two given points are the extremities
of a diameter. Jor example, there are a multitude of meridians
through the north and south poles of the earth.

20. Cape Race, Newfoundland; Southern Ireland.

21. 75° 1n both cases

22. 5 hours. The sun's apparent motion around the earth covers 360
degrees in 24 hours; that 1s, 15 degrees in 1 hour.

23. One equilateral spherical triangle that is likely to ocour to the
student 1s the triangle each of vhose sides 1s & quadrant (90°) of a
great circle. If such a triangle de drawn on a tennis ball and then
an equilateral triangle vith shorter sides - say 60° - be drawn in-
eide the first triangle, the anglee of the second triangle vill
obvicusly be smaller than the 90° angles of the first triangle.
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3.

[ ]
.

0
.

10.

Pages 161-163: Exercisea. K Q

It doee not follow; for coneider the
triangles shown in Fig. A, in which

JK =R, EL=QR, and £J = £LP. Fiq.A

. To eay "drsw FM parallel to CD"

demends too much. Either one should drav a line through F parallel
to CD and then prove that it meets ED at M; or else drav FM and prove
that M 18 parallel to CD.

This 18 a case of "begging the question"; for the idea of equally
distant lines has no meaning for the student without the idea of
parallelism and so cannot be used in a definition of paralleliem.

If it i reasonable to expect a team to win a majority of its games,
ie 1t not equally reasonable that each of its opponents should expect
to win a majority of ite games?

Are there any limits to the right of the taxpayers to see their

property?

. It is necessary to knov first how many heat units one ton of gae

wvorke' coke yields. If it yielde at least 9900 heat units per ton,
the Seacoal saleeman's argument is worthlese.

Or else the public school graduates do their college work more faith-
fully than do the private school graduates. There mey ds economic
and social reasons for this, quite apart from the earlier training
in school subjects.

Deaspite Blank'e mistake, as he called it, he seems to have been very
successful in the world of bdbusinese.

It is assumed that a self-emptying ash tray is an important enough
item to determine the choice of an automobile.

It is assumed that men's choices determine styles, rather than the

other way around.
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11. It 1s assumed that the usual risk in a new bueinese venture is not
very great.

12. It 18 aesumed that the prosperity referred to wae esttridbutable to
the party in pover rather than to economic forces that would have
been cperating regardless of party politics.

13. It 1s assumad that those whoee taxes remein unpaid for eeveral yeers

are poor widows and the like.
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CEAPTER 6
Lesson Plan Outline: 19 leesons
1-2. Through page 170
3. Exs. 1-k, pages 171-172
4-5. Pages 172-175
6. Pages 176-1T7
7-8. Page 178 through Ex. 5, page 181
9-10. Page 181 through Exercises on page 185
11-12. Through Exercisee on pege 189

13-16. Through Ex. 5 on page 195
17-19. Through page 196

Constructions with straightedge and compasses are not necessary to
BASIC GEOMETRY.* Other geometries are plagued by the neceesity of demon-
otrating the existence of midpoints of line-segments, dbisectors of an-
glee, and the like before they may make use of these points and lines.
They are plagued aleo by the necessity of showing hov these midpoints amd
dleecting lines can be constructed, using only the two instruments to
which Buclid and his successore decided to restrict themselves. The
authors of other gecmetries have always been embarrassed if they felt
obliged to employ the dieector of the vertex angle of an isosceles tri-
angle in order to prove the equality of the angles opposite the equal
sides. TFor they planned to use this theorem about isosceles triangles
in order to prove the equality of triangles having mutuslly equal sides,
and they required this latter theorem in turm to support the construction
for the bdisector of an angle: obdvicusly a “"vicious circle.”

In most geometries logic demande demonstrations of constructidility
in advance of use. But it is impoesidle to provide for the construction
of every point and line in advance of its use in the logical deduction of a
T #3ee Chapter 2, page 39, of this manual.
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goomotric system without seriously upeetting the systea. BASIC GEOMEIRY,
on the other hand, 1s 8o designed as to be free of this logical compul-
eion; for in BASIC GEOMETRY the existencs of required points and lines
ie estadblished dy the fundamental assumptions, or by propositions deriv-
able therefrom. Other geometries have usually deemsd 1t detter not to
allow the need of fundamental constructions to derange their logical
system too seriously. They have usually preferred to save a semblance
of order in the geomotric system dy taking a few fundamental construc-
tions for granted at the cutset, end - if challenged - by admitting the
lapse in logic required by these "hypothetical constructions.”

BASIC GEOMETRY is quite untroudbled by considerations of this eort.
Principles 1 and 3 imply the existence of the midpoint of a line-eegment
and the existence of a half-line that bisects an angle. The existence
of other geometric configurations required in this geometry is demon-
strated as the geometry develops. Strictly, all of BASIC GBOMETRY is
developed in the realm of the imagination. The marked ruler and protrec-
tor, however, afford practical embodiment of Principles 1 and 3 for those
vho wish actually "to go through the motions.” The authors themselves
qQuite approve of every effort to give practical effect to this system of
gecmetry through free use of the marked ruler, the protractor, and the
compasses. But they would make clear that their interest in comstruc-
tions is based on obvious educational considerations and is not required
by this system of geometry itself. Put in another way, it can de said
that BASIC GEOMETRY was intentionally devised to be susceptible of im-
mediate interpretation by means of scale and protractor, dbut that ite
logical structure is independent of such interpretation amd applicaiion.
That is vhy the authors of BASIC GEOMETRY have had no qualms about devel-
oping the bulk of this geometry before considering constructions at all.
That, too, is wvhy they 41d not need to scatter constructions through the
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earlier chapters of thise book, but could present all the material on
constructions in one chapter and could put this chapter ae late ae they
chose.

Nov that the subject of conetructione ie at last before us, the
authors insist that only the marked ruler, the protractor, and compaeees
are necessary. But the question of limiting geometric constructions
8till further to those constructions that can be performed by unmarked
straightedge and compaeses has been regarded ae a part of geometry for
80 long a time that the authores of BASIC GEOMETRY would not omit con-
sideration of this problem. Conetructione with straightedge and com-
passes are logically not a part of BASIC GEOMETRY; at thie point they
are indeed a digreseion. But the authors of BASIC GEOMETRY recognize
the fascinating geomstric content of this subject and, with this ex-
planation, welcome this digreesion.

Page 168, 1ine 5: 1.k inches

Pages 169-170: Exercises.

1. The length of CD 18 a trifle more than 5 centimetere and a trifle
less than 2 inches. It 1e eaeler to lay off 1 centimeter "plue a

hair® than to lay off g of an inch "minue a hair." Neverthelees

3.

vith a ecale of inches divided to sixteenths the student can approxi-
mate to § of an inch. He muet not collapse and quit becauee he hasn't
a scale divided precieely into fifthe or tenthe of inches. This quee-
tion, therefore, ie to soms extent a test of the student's initiative
and resourcefulness.

The length of EF is a scant 2% inches, or 6.96 centimetere. The lat-
ter 18 more easily divided by 6. Indeed the decision to call the
length 6.96 centimeters rather than 6.95 or 6.97 1e influenced by the
desired divieidbility by 6.

3.737, 4.010, 4.283
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L. I7 % = %, merely use the third point of division in the answer to
Ex. 1.

5. Using millimeters, r:e8:t = 36:28:20 = 9:7:5. So we need to lay off
%, %, 2% of 7 centimeters, ecant.

6. % centimetere

7. 5.0(k) centimeters

[o ]

. £AGB = 63°. Each third s 21°.

. £COD = 94°; £ BOF = 29°. The tvo parts are approximately 48° and 15°

0

10. About 434°
11-12. Use method described on page 168.
Page 171, 1lines 20-25, are an intentional repetition of lines 8-13
on page 166.

Pages 171-172: Exercises.

1. Make anglee of 135o et each end of AB and lay off lengthe BC and AH
equal to AB; and 8o on around.
2. Make anglee of 140° at each end of AB and lay off lengths BC and AI
equal to AB; end so on around.
3-4. Central angles must be 45° and 40° respectively.

Page 173, 1ine 9. See note in this manual relating to Exs. 13-15
on pages 142, 143 of BASIC GROMETRY. Buclid, using in his Proposition 1
a construction eimilar to the one shown in Fig. 17 on pege 172, failed
to demcnetrate that the two circles must have at least one point in com-
mon; and if one, then two.

Page 175. The third method descrided here involves fewer operations
than any other construction known to the authors for drawing through a
given point a 1line that ie parallel to a given line. Their knowledge
of it ie due to their colleague J. L. Coolidge, who attributes it to the
Itelfian mathematician, Mascheroni (pronounced Maskeroni).

Page lﬁ, 1line 10. In any pair of triangles Principle 5 establishes
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pairs of corresponding anglee equal. Thoee oquel angles establish the
parellelism, by Theorem 1h.

Page IE, 1inee 14-16. Drav parallels to BS througk P, Q, and R.
Proof of the construction depends on Theorea 16.

Page 178, 1ine 8. By Ex. 21 on pege 115.

Page 178, 1ine 12. Proof depends on Ex. 20 on page 115.

Page 178, 1ine 18. Proof depende on Principle 8.

Page 180, 1ines 9 and 20. Bote three waye of writing the mean pro-

portional relation.
Pugee 180-161: Exerciees.

1. Construot the perpendicular disector of the chord of the arc and find
vhere it intersects the arc.

2. Drev the perpendicular through E to AB and find where the perpendicu-
lar intersects the diagonal AC.

3. 2/7 16 the diegonel of a o
square of side \/3.5. | i
At this point the teacher ,//
may vieh to ehow the clase the 0 I V2 V3¥4+6 etc.
accompenying construction for A/k: Flg A

4. The unit of measure 1e not
specified, since it makee no difference what the unit is.

5. 71g. 28 involves three equilateral trisngles. TFig. 29 involves a tri-
angle Baving one angle equal to 60° and the eides including this an-
gle in the ratio 2:1. Fig. 30 involvee an angle inecrided in a
eemicircle. Bes Corollary 22c, pege 146.

Page 183, 1ine 7. Note that ve do not ask for proof here, although
all that ie needed ie Prinociple 9 and Ex. 13 on page 85, as indicated in
the footnote on page 182. The proof is demanded later, in Ex. 19,
page 256.

Page 185, 1line 10. OP and O'R are both perpendicular to the required
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common internal tangent FR. A perallel through O' to FR will be perpen-
dicular to OP extended and will meet it at M. O'M vill then de tangent
at M to the circle heving O as center and radius equal to OP + PX, or
rer'.

Page 185, line 14. We use the wvord "sides” here to denote lengtds,
Just as eleevhere on occesion ve have used "altitude” and "redius” to

denote lengths.
Page 186, line 22: Cass 2. At one end of a 1ine sogment of length 1

construct an angle equal to LA or to £ B. At the other end of the line
segment construct an angle equal to ZC by first constructing an exterior
angle equal to L A + £ B. See Fig. A. There are two cases, according es

side 1 1s given opposite angle B or opposite angle A.

Aékj BA_{_\%TN__-

Fig. A

Page 186, line 25 and Page 187, line 4. The student must observe

that the given situation varies according to the size of the given angle A
and according to the relative size of 1 and m. The authors vant the stu-
dent to figure out for himself how many different situations can occur.
They prefer the student's poseidly incomplete appraisal dased on his own
inquiry to a complete appraisal arrived at merely by filling in a tadle
or folloving a procedure outlined in the bdook.

Poge 188, line 3. The fifth and sixth situations in Fig. & on
page 187.

Whether the dotted right triangle shown in the seventh eituation in
Fig. 46 1e admissidle or not can open a long argument. The question is,
can the dotted triangle bde said to contain the given angle A, or is this

a third case in vhich "two triangles seem at first to de possidle; dut
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closer examination shove that one triangle contains, not angle A, dbut an
angle equal to 180° - A"? The important thing 1s to have the pupile
discuss this, no matter how they decide 1it.

Page 188, Ex. 2. Let the pupils discover for themselves the best
places to put the flape. This calls for a dbit of three-dimensional
visualization of a sort ve vish to encourage. If a pupil discovers on
his first attempt that he is trying to fit two sticky flaps down inside
two faces at the eame time and then pushes the flaps in a dbit too far,
1t may occur to him to make a second attempt, vith the flaps attached to
the receiving faces, leaving the folding face unflapped. The draving is
80 eagy that it is no hardship to de odliged to make a second one, espe-
cially if the pupil learns something in the process.

Page 191, line 11. Most students vill de interested to knov this
simple construction for an inscrided regular pentagon. Relatively few
will vish to master the details of the proof on page 192, 193.

Page 194, line 7. Professor Norman Anning of the University of
Michigan points out that the circle with center C and redius CH (Fig. 54)
cute the given circle in two vertices of an inscrided regular pentagon;
that the circle with center C and radius CK cuts the given circle in two
more vertices of this same pentagon; and that the fifth vertex ies given
by the other end of the diameter through C.

Page 195, 1line 3. For proof that it is impossible in general to
trisect an angle by means of straightedge and compasses see L. E. Dickson,

First Course in the Theory of Equations, Chapter 3, pages 29-35, John Wi-

ley and Sons, New York, 1922.
Pages 195-196: Exercises.
1. Construct tangents to the circls at the verti of an inscrided
regular hexagon and extend these tangents until they meet (the disec-
tors of the central anglees of the hexagon).

3. Trieect a right angle and bisect one of the 30° angles.
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b

B

10.

11.

12.

13.

Inecride a regulaxr polygon of 15 sides and disect a central angle.
Then bisect again.

Inscride a regular pentagon. The radius drawvn to a vertex makes an
angle of 54° with each adjacent side of the pentagon.

108°

Construct an angle of 108° by drawing a circle of any radius and in-
soriding & regular pentagon. Then, at each end of the given side AB
construct an angle equal to 108°. And so on around.

At each end of the given side AB construct an angle of 135°, prosum-
ably dy erecting perpendiculare at A and B and disecting the right
engle between each perpendicular and AB extended.

As in Ex. T.

From one vertex of the given polygon drav n-3 diagonals and copy the
appropriate angles. This is easier than using the construction for
the fourth proportional to three given line segments.

In equilateral triangle ABC (Fig. A), con-

struct the three medians, meeting in O. The A
bisector of angle BFO will meet BO at a point

G that 1s equidistant from ED, BF, DO, and F E

0. Therefore G 1s the center of one of the

desired circles. Another and much harder 8 D ¢

mothod 1s to mark off on BO the distance BG Fig. A
AB

‘\/3 +1
Drav the diagonals of the square. The midpoint of each half of a

equal to .
diagonal will be the center of one of the desired circles.

In the given square ABCD (see Fig. A on the next page) draw the di-
agonals AC and BD, meeting at 0. Construot the bisectors of angles
OAB and (BA. These bisectors meet at Q, the center of one of the

desired circles.
A slightly easier comstruction, but somevhat harder to Justify, 1is
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to drav the diagonals AC and BD, mooting at O; draw arcs vith centers
C amd D and radii CO and DO respectively to determine the points X,
P, G, and B and thus determine the intersection R of EF and GH. R 1s
the ceater of one of the desired circles. JFor if the side of the
given square de s and 1f the radius of coe of the desired circles de
T, then Pig. B shovs that 3 = r + r~/2. But Fig. B also shovs that
1f ¢ be one side of the regular octagon GFIH - - -, M;-;»%-
;(1 +4/2). Consequeatly r = 2 and ve can utilize the regular octa-
gon to locate the centers of the desired circles.

It s clear from Mg. Aumno-m-m-;;—iun that DG + IC =
s + JO. That fs, 2(\_;_.5)..010.:4”-.(\/5- 1). Bate =

t,z(ﬁ). t(1+/2), and t = 8 = g(\/2 - 1). Therefore

M2+t
G = ¢t.
F <]
D LN 7 ¢ Y
N s
N ,’ 1
\ SR/
| ‘-~\\ v’r r‘,( [}
AN
’ AN
e (] N
7’ AY
’ N N
Vi Py ‘\\ \\
HE--— Q e [ H
vl
-7 0~
4 N N
A . : A
Fig.A Fig.8

15. The single-marked flaps should be pasted first, then the double-
marked flaps. The face marked L will be the last to be stuck down.
Bee Fig. A at the top of page 115.

16. Firet drav a raniom oircle, inscribe a reguler pentagon ABCDE, and
drsv diagonal AC. Then at each end of the given line-segment A'C'
construct an angle equal to angle BAC and thus determins B'.

- 11k -



Fig.A

If instead of using angles one vishes to ues lengths, it ie necees-
sary to note that all the acute-angled triangles formed by the eides
and diagonals of a regular pentagon are isosceles triangles vith
angles 720-360.720. 1In
every triangle of thie
eort, such as triangle
¥8G in Fig. B, the short

eide 1s to one of the A 3 F{E-|G 5
longer sides u«/;-iu FlgB
to 2. (Bee page 192). 1If
ve take ¥G a8 /5 - 1 and BF as 2, then AP = OC = 2; AB = AG = /5 ¢ §;
and AC = A/5 + 3. B0 the ratio of the desired length AB to the given
length AC 16 a8 V/5 ¢+ 1 18 to V5 ¢ 3.

17. If r be the radius of the given circle, drav a circle vith ceanter 0
that shall have a redins equal to Vr2 4+ 12 | mie circle vill cut
the given 1line in two points from either of which tangents to the
given circle will de of length 1.

There 1s no summary at the end of this chapter decause, as already
explained, this chapter 1s not part of the logical fremewvork of BASIC
GEOMETRY. The main outline of this geomstry is givea in the summaries of
Chapters 2, 3, 4, 5, and 7.
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CHAPTER 7

Lesson Plan Outline: 17 lessons

1-3. Through pege 202

L.5. Through Exercise 11, page 205

6-7. Through Exercise 9, pege 208

8-9. Through Exercise 6, pege 213
1C-12. Through Exercise 25, page 215
13-17. Through page 221

The title of this chapter means "area of any closed figure lying in
one plane, and the length of an arc of a circle.” Except for the idea
of length of a straight line segment, vith which this geometry bdegins,
the idea of length in general ie much more difficult than the idea of
area. That is why thie chapter takes up first the subject of area, and
vhy it 18 able to extend the idea of area to any plans figure whatsoever
vhile being unable to extend the idea of length, deyond the straight line,
to any plane curve except the simplest case of all, the circle.

Page 198, 1line 17, and Pago 199, line 16. One can say that for the
beginner this geometry requires five assumptions (Principles 1-5), plus
five more tentative assumptions (Principles 6, 7, 8, 11 and Theorem 13),
plus two area assumptions: that is, twelve assumptions in all. Actually,
hovever, this geometry requires only four assumptions, eince Principle L
hae been shown to be a theorem (See BASIC GEOMETRY, pege 50, and this
manual, pages 46-47), and since area can be treated, as shown on
page 222, 8o as to require no nev assumptions.

Pege 199, line 8. The vord "unit" 1s not defined in this dook. How-
ever, the second paragraph on page 40 implies that different unite of
length are associated with different modes of numbering the points of a
straight line.

Page 199: Exercises.

1. 137 square units
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Page 200: Exercises.

1. In the eimilar triangles ABC and CBE,

AC _ CE
AB ~ BC’
2. See Fig. A. The area of a rectangle

Therefore %AC x BC = #B x CE.

ABFG = AB x CE. But, eince & ACE = A ACG K .

and A BCE = A\ BCF, the area of triangle G Fig. A

ABC is half the area of rectangle ABFG.

Page 201: Theorem 26. If D falls to the left of A in Fig. 3 on page
201, the given triangle ie equal to one in which D falls to the right of
C. Of course, if D falle on C or on A ve have the right triangle case
covered in Theorem 25.

Pages 202-203: Exercises.

1. 905 equare units, where the unit of area is one of the emallest
squares of the squared paper. This can be found either by aseigning
coordinates to each vertex of the diagram as in Ex. 1 on page 199, or
by counting the number of squares inside the boundary.

2-3. The area of the left-hand triengle in Fig. 3 18 3 x %g in. x gg in. =
ix%eq. in., ueing #AC x BD; orix%g*m. x%in. - i1225 8q.
in., ueing B times the altitude from C. In either caee the area is
approximately :1,'6 of a square inch. The area of the right-hand tri-

angle is ix%-gtin. x ¥ in. E}ng”' in., using ##C x BD; or
$x %g in. x g in. = 1%!93 8q. in., using ZAB times the altitude from C.
In either case the area is approximately é% of a square inch.

4., 29 millimeters x 17 millimeters = 493 sq. mm., or %g in. x io in. =
%% 8q. in. = 0.738 eq. in.

5. Area oquals ﬂ%g_mﬁ in. x ¥ in. = % s8q. in., or about g of
a square inch.
2

6. TV3

7. 62+5

8. Add the area of the three parallelogram faces to the area of both
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10.

10.

. Using the measuremsnts shown in the

triangnler bases. If the prism is a right prism, the three faces are
rectangles, and their area is equal to the altitude of the priem times

the perimeter of one of the triangular dbases.
1)

e .

QDaxc hnxh %'u,oé% *F‘;_‘_:_: A . mitiplying,

AABC _ AB x AC
“”tm-mﬁ: .

Pages 204-205: Exercises.

. Apothem = gsﬁ inches; area = g\/S- square inches
. Aru-g‘\/i r2
.Porintor-%/ir;nm-é\/srz

Apothem = _ 2 __; redius = &

3 3
. On pege 193 the apothem r - y is showvn to bde r(l_ﬁ) . Therefore

ﬂ:ou\nug-s 10 - 2+/5 ~§(10\/§). This equale

;5# V(10 - 24/5)(6 + 2V5) ,orgrz Mo+ 25 .

accompanying diagrams, the aree of
the left-hand polygon is 455 sq. mm.
and the area of the right-hand

polygon is A56 sq. mm. The numbers
inside the triangles are altitudes.

. Counting up, ve have 20 + 108 + 120 + 110 + 93 = 451 sq. mm.

Counting from left to right we have 48 + 105 + 103 + 65 + b0 + 49 +
70 + 61 + 2 = 53 sq. mm.

If the lengthe of the sides of the given polygons are s, and 8

1 2
P [} r
respectively, then e Y - ;1 - ;l
P %2 T2
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1Pq8 r.a
u.mm-m:.1.mam.1o‘r.tm>\vu.m.ﬁ-131—1-Ll
2 Ay dpap T
A r
m“roro—"-—l'?.
Az 1'2

Page 206, 1ins 9. The letter k is used here in the same way as in
Ex. 37 on page 66, referred to farther down on page 206. It ie possibdle,
hovever, that some students will confuse this k with the k used in Prin-
ciple 5 on page 59. In that case they would have expected to see the k
on page 206 replaced by —5 The teecher should explain that it is quite
immaterial vhether we use k or X2 or — or -3 here to represent the ratio
of the areas of these tvo trianglee.

Pages 207-208: Exercises.

1. 1 to k0O
81
2. 5
3. It 1o aesumsd in this exercise, of course, that the three eides of

the right trisngle are correeponding 8ides of the three similar poly-
gons. If the lengths of the three sides of the triangle, arranged

in order of increasing megnitude, are a, b, ¢, and if the correspond-
2

a
3

ing polygons are deeignated I, 1I, III, then, by Theorem 27, %f =
®

2
1 a a2
mm-?.nummzttnmliooqmtona,thcn

area II ieo I'bz, and area III ie l-cz. But n2 +* b2 = 02, by Prin-

ciple 12. It follows that _2 + l’b2 = ‘2

and that I + II = III.

k. An edge of the nev cube must bo\a/_'c’ times the edge of the given cube.

5. The erea of the new cube must bo-\:y_h times the area of the given
cube.

6. The ratio of the volumes of the two sizes of cup ie 64:125. 8o two
5-cent cupe are the dbetter duy.

7. The old area is to the nev ares as 1600 is to 3025. 8o the increese
1n the amount of sheet tron 18 1322 of the ol amount, or 89.1%.

The 0ld volume is to the nev volume as 64,000 1e to 166,375. So
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the increase in capacity is lg%’% of the old capacity, or just a
trifle under 160%.

8. The sum of the squares on the other two sides of the right triangle
is equal to the outeide square minus tvo rectangles; and these two
rectengles are equal to four right triangles .

9. The equare on the hypotenuse is equal to the inner tilted square
plus four right triengles. The sum of the squaree on the other two
eides is equal also to the inner tilted square plus four right tri-
angles.

Page 209, line 3: "without defining 1t precisely.” Every book on

demonstrative geometry ie obliged to define "circumference" at this point.
Nothing we can say by way of definition, however, will carry more convic-
tion than the pupil'e well.established intuition on thie sudbject, which
in his mind is prodadbly linked with the idea of "wrapping a etring around
the circle, unwinding, and holding it taut alongeide a scale."” Conse-
quently we do vell to get past the necessary definition of circumference
as qQuickly and painlessly as poseidle, taking care, howvever, to make the
definition not only simple, but accurate a8 well.

Page 209, line 8: Circumference as upper limit. The perimeter of

an inscribed polygon of n sides odbviously increaeee as n incresses. It
160 obvious also that the perimeter of every inscrided polygon is lesse
than the perimeter of every circumscridbed polygon. Corollary 12c, page
94, 1e the authority for each of these obvious statements. So as n in-
creases indefinitely the perimeter of an inscrided polygon of n sides
mst have an upper limit; for a variable that always increases while
remaining less than a certain number (in thie case the perimeter of soms
circumscribed polygon) cannot increase without limit.

Page 210, 1ine 11: Area of circle es upper limit. The argument

in thie case is eimilar to that juet given for the circumference. The
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obvioue statemente concerning area ere supported by Area Aeeumption 1b,
page 199.

In the discussion on pegee 210-212 we arrive at the area of a circle
ty coneidering inecribed reguler polygons and by allowing the number cf
sides to increase indefinitely by eucceseive doudbling. In the note on
pages 22L4-225, irregular polygons ere admitted and the manner in which
the number of sides varies is not restricted to succeseive doudbling.

Page 212, line 9. The dots after the numbers 6.2832 and 3.1416 are
meant to indicate that each of these numbere ie a non-ending decimal.
Unfortunately, hovever, they give the impreesion that each of these num-
bere ie correct 8o faer as printed and continuee indefinitely dbeyond the
last printed digit. Thie is not true. The numbers would be correctly
given as 6.28318 . . . end 3.14159 . . . . The more common form 3.1416
ought to be printed without dots and ought to be recognized ae the rounded
form of the non-ending decimal 3.14159 . . . .

Page 212, 1ines 15-16. The error 1s 3.142857 - 3.1k1592, or 0.0012(6).

Pages 213-217: Exercises. Exa. 1-€ meke considerable demande upon

arithmetic. The ansvers given here below have been computed with proper
regerd for significent figures. The teacher will do well, however, to
exprese in sdvance his willingness to accept approximate answvers that
are leee accurate than thoese here given.

There 1s virtue in carrying through occasional computations of con-
eideradble length. On the other hand there is danger that for some pupils
protracted computatione will obscure the main mathematical pattern. The
ideal is that the pupil should be eble to carry out a protracted computa-
tion and at the same time keep the main pettern clearly in mind. The
teacher must judge hov close to this ideal he can fairly expect his
pupile to come.

1. 45.5 1n.; 58.6(4) feet or 58 ft., 8 in.; 22 cm.
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2. 165 8q. in.; 274 eq. ft.; 38.5 nq. cm.

3. 1.138 in.; 1h. b cm.

b, 2,889 £t.; 9.46 ca.

5. 18. 4 sq. ft.; %8 &q. 1n.; g—iroq. in.

6. C = 2VTA/K = 3.54VR. B7.1 cm.; 15.4 ft.; 32 1n.

T. The two central anglee in the trisangles in Fig. 23 are equsal, by
Principle 8. Therefore eech of the corresponding arce ie the same
fractional part of its circumference. Since the circumferencee have

the same retio as their radii, the arcs do also.
o.M r? o1

Aa !‘22 022
9. &
10. 50 sq. in.

1. %

12, =— or g'\@
ENEY

13. !'1%: x 20 = 17.6 sq. ib.

PN

15. V35, or 2.236

16. b2 -T2 « g 2 - . g 2.

17.(%?: 3x 7) + 2(22 9) 8()7 8q. in.

18. 7.6 inches

19. &

=

21. .3.-;r¢ 323

22. Since c2 = a2 + 13, T . °2-"’- ‘205!' »? . That 18, the ares of

2 ¥ 2 % py
the largest eemicircle ie equal to the sum of the areas of the other
tvo semicircles.
Both the area of the triangle and the sum of the arese of the two
shaded figures are equal to the area of the largest semicircle minue
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23.

2k,

25.

27.

30.

the areas of two circular segments. (The term "circular segment” is
not ueed in the text dut will be clear to teachers at this point.)
Professor Normen Anning of the University of Michigan suggests
thet it is pertinent for teachers to point out that the Creeks, in
their search for a means of computing the area of & circle, delieved
they vere on the way to success vhen they could compute the erea of
a figure bounded entirely by arcse of circles. We novw knov that suc-
cess vas not to be attained in this way.
On page 211, pg = 6.1232 x 12. Therefore sg = 9.18.
On page 211, s, = '\/&2- rVire . (ln)2 . When n = 6 ve have
" 22 - 123 = rV2 -v/3 = .518r. Therefore P,
vhich fells short of the circumference by a little less than 0.07r.
Porimeter = 1k x 5 sin (%.ﬁf) = 70 oin 25.7° = 30.36
The redius of the silo 1s about 8.3 feet. The sine of half the

> = 6.216r,

angle at the vertex is approximstely 8: , or 0.7hl. Therefore the
angle at the vertex is about 96°.
The term "lateral area” is probably nev to the pupil, but clear
enocugh from the context, The pupil hae merely to add the areas of
all the lateral faces of the prism. The theorem is not true unless
all the lateral faces of the priem are perpendicular to each daese;
that is, unless the prisa is a right priem. The bases need not de
regular polygons.
The pupil can think of the cylindrical surface as slit parallel to
the axis, unfolded, and laid out flat. The bdases of the cylinder
need not de circles, but the axis of the cylinder mmet de perpendic-
ular to each bdase.
The term "slant height" should be clear from the formula and Pig. 30.
If the pupil will think of the conical surface as elit along an
"elemsnt" of the cone, unfolded, and laid out flat, he vill eece that
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he 1s asked to find the area of a sector of a circle of radius 1 and
of erc length c. The formula for the area of a eector, e, given
on page 213, becomes in thie case 3lc, or 7rrl.

Another way of regarding the lateral erea of the cone ie as the
1limit of the lateral area of circumscribed regular pyramids as the
number of faces 18 indefinitely increaeed. That is, the limit of
#l Je x1, or 7rrl.

31. Extend one of the sides of the given polygon to form an exterior
angle. Reproduce this angle at the center of the given circle, thus

determining two vertices of the new polygon.

S

A~ _E

Fig.A

32. (See note following Ex. 36) 1If the radius of the given circle is r,
the radiue of the inner circle will be 5_ This length is OC in
each of the suggeeted constructions shovnem Fig. A, in wvhich all
the pointe except O are determined in alphabetical order.

33. Determine rjy and rp 8o that ry:rp:r = 1:4/2 :v/3. That s, ry = 7’%
end rp = ~?2 ry -:/L-; r. Fig. B, in vhich the points are determined
in alphabetical order, shows one way of C
constructing AG equal to L_. AG times V2

/\/3
will give Toe

34. Since ry:rpirg: . . . irse 1:3/2:3: . . .1,
the radiue ry of the k*™® fnner circle 1s
given by the equation ry -j-\-/—E [ D
25. Multiply any side of the given polygon byv/n Fig. B
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to get the corresponding side ’
of the desired polygon. | L7
36. Multiply the radius of the ,//
4
n
given circle by\/- . "
n 0 I V2 V34 V8 etc.
Ncte: Exercises 32-36 can be Fig. A

solved also by means of the
diagrem at the right.
37. Their volumes have the ratio 1 to 8.
38. Their radii have the ratio 1 t.o‘\S/?.
39. Since rl:rzzr3. . .ir = 1:,\3/5 :,\3/3 e . .:,\3/1_1, the redius ry cf the

k*® inner ephere 18 given by the equation ry -'\z/*_k. . r.

The teacher can add other questions eimilar to k:. 37 end 38, such
a8 the folloving:

If & vatermelon 15 inches long can be bought for 40 cents, about
wvhet should you expect to pay for a watermelon 20 inches long? Ans. 95%¢

If e salmon 35 inchee long veighs 19 pounde, about how much will a
25-inch salmon veigh? Ane. 7 pounde

If a boat 30 feet long weighe 3 tons, about how much will a similar
boat weigh that 1s 35 feet long? Ans. 4.8 tons

Page 219, linee 5-7. The friction between the water and the pipe
vill be least when, for a given croes-section of area, the perimeter ie
as emall ae poesible.

Page 219, lines 8-9. Pinching the outer end of the exhaust pipe re-
duces the area of croses-section of the pipe. This increases the veloci-
ty of the exhaust geees, interfering with the vidration in euch e way as
to reduce the noise of the exhaust. (It is not expected that pupils will
be able to answer this gquestion from their knowledge of yomtry' alene.
It s expected that they will ask someone who knows something ebcut

automobile engines.)
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Page 219, lines 12-14. Since the spherical one has less surface it
vill bo less exposed to the dissolving effect of the saliva.

Page 213, line 17. Professor Rorman Anning of the Univeraity of
Michigan points out that the phrase "any polyhedron" ought to be quali-
fied to read "any polyhedron that you are likely to think of." There
exist polyhedra, with hc;loo, for which Buler's formula ie not true.

Page 220, 1ines 1-3. TFour? Yes, the regular octahedron. Five?
Yes, the regular icosahedron. See Page 139. Six? No; for if so, then
six faces would have a common vertex with eix 60° angles at that point
and the corner would be flattened dovn until the vertex ceased to exist.

Page 220, lines 4-6. Three regular pentagons? Yes, the regular do-
decahedron, page 136. More than three? No. Three regular hexagons? No.

Page 220, lines 7-10. The five oonvex regular polyhedrs are:

1. The regular tetrahedron, four facee, in which three equilateral
trianglee meot at each verter. See page 158.

2. The cube, eix faces, in vhich three squares meet at each vertex.

3. The regular octabedron, eight faces, in which four equilateral
triangles meet at each vertex.

L. The regular dodecahedron, twelve faces, in which three regular
pentagons meet at each verterx.

5. The regular icosahedron, twenty faces, in which five equilateral
triangles meet at sach vertexz.

Page 221: Reviev Exercises.

1. Through each midpoint drav a line parallel to
the 1ine through the other two miipoints.

2. In triangles BCD and CBE (Fig. A) two angles of
one are equal respectively to two angles of the
other. Therefore theee triangles, having BC in

Fig. A

common, are equal, and CD = BE. Since ED
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divides AB and AC proportionally, it is parallel to BC. (By Ex. 21 on

page 115, or directly by means of Principle S, Case 1 of Similarity.)

[
Y
=

Fig.A Fig. B

3. Make a regular five-pointed star by extending the sides of a regular
pontagon, as shown in Pig. A. Each angle of the pentagon 1s 108°;
each interior angle ie 72°; the angle at each point of the star 1s 36°,

k. Since In Fig. B /B = 4D = 90°, LA + £C = 180°, and £ A must be
lees than 180°. Consequently AE, the bisector of angle A, must meet
side DC at a point G vhich will be detween D and C, or at C, or dbeyond
C. 1In any case, ZAGD = 90° - ¥ by Principle 9. But ZBCF = 90° -
i aleo, eince £A + «C = 180°. Therefore the bisectors AE and CF

meet DC at the same angle and so are either perellel or coincident,

by Theorem 1k.
5. In Fig. C 1ot H be the mld-point of AD. ) ¢
Then HM is parallel to DC, and conse- H N
quently also to AB. Similarly EN, not A 8
assumed to contain the point M, 1e par- Fig. C

allel to AB, and consequently aleo to
DC. Therefore HM and EN must coincide (by Theorem 13), and MN is
parallel to AB and CD.
6. Following the sort of argument used in Ex. 4 on page 127, let the
1ine joining the mid-points M and N in Fig. A on the next page meet
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AD extended at P and meet BC extended at (. Q

M_AM, MB, UM
Then &N " D © AT T Q¥ \
-1,%‘-1,

- MM 2 QN.
ﬁ,amil’li Q¥ D N c

32 9

Therefore P and Q must coincide at the point

R wvhich ie common to AD extended and BC extended.
. In Fig. B let the line Jolning the midpoints Fig. A

of M and N meet AC at P and meet BD at Q.
Then M . AM _ BM _ QM

01:“01,

Q’%’ and PN = QN. A M

Therefore P and Q mst coincide
at point S which is common to doth AC and BD.
First alternative proof:

Make the proof depend on Ex. 4, page 127, which etates that if
three lines cut off proportional segmente on two parellel lines, they
are either parallel or concurrent. In this case two of the three
lines are diagonals of the trapezoid and hence must intersect. Con-
sequently ell three lines AC, BD, and MN, muet interaect.

Second alternative proof:

D A\ c
In Fig. C the diagonale AC and BD 2’ y/
intersect at 0. Lines OM and ON 9\2
Join O to the midpointe of AB and A N B
CD. We must prove that MON is a Flg C

straight line.
By Theorem 15 and Case 2 of Similarity, triangle QAB is similar to
triangle OCD. Therefore OC = k.CA; CD = k.AB; and CN = k.AM. By
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Case 1 of Similarity, triangles OAM and OCN are similar and tri-

angles OMB and OND are similar. Consequently Ly = Ly', Lz = J2';

Lx +Ly+ L3 mLx+ LYy + Lz = 180°; and MON 16 & etraight line.
8. The line joining the midpoints of the bases of a trapezoid pesses

through the point of intersection of the diagonals and through the

point of intersection of the non-parallel sides extended. See Pig. A.
9. In Fig. B, arc AB = arc CD (by Theorem 19) and arc AC = arc ED (by

Ex. 3, page 141). Therefore arc AB + arc AC = aroc CD + arc ED = 180°,

R
A 8
F
D C
c 0
A M B

Fig.A Fig. 8

10. From any point P within the regular polygon drav lines to the verti-
ces A, B, C, . . . and drav perpendiculars to the sides, extending the
eides if necessary. Let the lengthe of these perpendiculars froam P
to AB, BC, CD, . . . . be called b, h,, ha, .+ « . Tespectively. Lot
the length of each side be s. Then the area of the polygon is equal
eo%(h1¢h2¢h3¢. « ). But the area of the polygon is also
equal to half the perimeter times the apothem, a; that is, the area

1s equal to jnsa. It follovs that (by ¢y ¢b  +. . .) = na.

3
Page 223, line 1: "It can be proved.” The proof is set forth in

Killing and Bovestedt, Handbuch des Mathematischen Unterrichts, Vol. I,

Teubner, Leipsig, 1910, pages 339-3hk.

Page 223, line 12: "as n increases indefinitely.” Eere we are no
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longer constrained to allov n to increase by doudling, as on pages 210-212,
but may allov n to increase at vill through integral valuss.

Page 224, 1ines 13-1hk: "as the number of sides 1s increassd indefi-

nitely." Here also n is freed of the restriction to increase by dou-
bling, and may increase at will through integral values.

Page 226, Fig. 43. The squares vith solid lines for borders are the
original squares of the grid. The squares vith partially dotted borders
are the result of halving the sides of each original square. Pig. 43
shows that, for the region depicted, this halving causes the difference
between the two approximations to shrink from & square units to 8 quarter

square units.
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CEAPTER 8
Leseon Plan Outline: 6 lessons
1-3. Through pags 23k&

4-6. Through page 240

Buclid wvas obliged to recognize the existencs of lengths vhich could
not be represented by rationsl numbers. He had, moreover, no other num-
bers by vhich to represent these lengths. For example, the Pythagoreen
Theorem required that Euclid recognize the length of the diagonal of a
rectangle vhose length and width vere 2 units and 1 unit respectively,
even though he had no number by vhich to express this length. The dest
he could do was to "close in" upon this length by means of pairs of
rational mmbers, one member of the peir having its square lees than 5
and the other having its squars greater than 5. He could apprehend
lengths of this sort only by means of inequalities, indefinitely many
inequalities.

Consequently, vhen Euclid came to the point where he had to frame a
definition of proportion, he was obliged to stats it in such a vay that
some of the terms of the proportion could de "inexpressidle” numbers
1ike the length of this diagonal. This forced him to define proportion
by msans of equalities and inequalities, indefinitely many of each. That
is vhy his Elements had to demonstrate many theorems concerning inequali-
ties, a fev of vhich still remain in our modern books on geometry, partly
because of their traditional importance and partly because they are use-
ful in other ways.

Euclid's definition of proportion, usually attriduted to Budoxus, is
sudbstantially as follows. Four quantities, a, D, ¢, 4, are said to de
in proportion - that is, % - % - 1f equal multiples of a and ¢ are both
less than other equal multiples of b and d; or if not less than, then
both equal to, or both greater than. Stated algebraically, if every
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choice of integere m and n that makes ma <nb also makee mc<nd; if
overy choice of m and n that makes ma = nb also makes mc = nd; and if
every choice of m and n that makes ma >nb aleo makes mc> nd, then we
can vrite E = g and cen say that a, b, ¢, d are in proportion.

This ie an overvhelming array of wvords and much more complicated
than our modern definition of proportion, which is merely the expressed
equality of tvo equal ratios. But in our modern definition ve permit
the numbers in our ratios to be irrational as well as rational, without
expecting our pupils to have at hand an adequate definition of irrational
numbers. In fact, vhen we come to grips with the matter we find that we
ourselves must accept as definition of every irrational number a state-
ment that involves inequalities in the same vay as Euclid'e (and Eudoxus')
definition of proportion.

Euclid, lacking irrational numbers, had to face the difficulty occa-
eioned by this lack when he vas defining proportion. We have simplified
the treatment of proportion by traneferring the difficulty, together
vith Buclid'e way of meeting it, to the definition of irrational numbers.

(See the notes on page 133 of thie manual concerning page 229 of BASIC
GEOMETRY. )

By taking the real number syetem, which consiests of all the rational
numbers and all the irrational numbers, ae one of the bases of our geom-
etry, ve may ignore the traditional place of inequalities in geometry
and may reserve only so much mention of them as other considerations
soom to require. The first assumption of BASIC GEOMBTRY, Principle 1,
adopte the system of real numbers. So, from the very beginning, BASIC
GEOMETRY applies alike to commensurable and incommensurabla caees with-
out requiring that theee two sorte of cases be distinguished; and any
montion ve may wish eventually to make of inequalities may te withheld
as long ae we please.
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In Chapter 8 we do not confine the discussion to inequalities; ve
shov also the relation between geometric continuity and the continuity of
the real number system. That is vhy this chapter is entitled "Continuous

Veriation."

Page 229, lines 15-16: "It can be proved. . ." IFor suppose that two
integers p and q exist such that 2; = 5, vhere p and q have no common
factor other than 1. Then one ofqt.ho following three alternatives muet
be true: p alone contsins 5 as a factor; q alone contains 5 as & factor;
neither p nor q contains 5 as a factcr. But each of these three al-
ternatives contradicts the relation Pe - 5112. Therefore no one of the
three is possidle, and there 18 no rational number whoss square is 5.

Page 229, last two lines. The definition of V/5 as a separation of

the rational numbers reads subetantially as followe: If the entire class
of rational numbers be separated into two sub-clasees such that every
rational number is in one of these two sub-claeses, and such that every
positive rational number whose equare ie less than 5 18 in one sub-class,
tcgether vith zero and all the negative rationals, and every positive
rational number vhose square is not less than 5 is in the other sub-
class, this very separation of the entire clase of rationals in this
manner defines a nev number, not a rational, vhose square is 5. We

call 1t the positive square root of 5 and write 1t /5.

Page 231: Continuous variation of an angle. The contimuous variation

of angles ABX and XAB in Fig. M 1e obvious. The continuous variation of
angle BXA follows from the fact that ZBXA = 180° - (LABX + ZIAB). As X
varies continuously from C to D, ZBXA may have a numerical value that
1ies outside the range of values from £ BCA to ZBDA. It ie necessery
only that {t begin with the numerical value of £ BCA and end vith the mu-
morical value of ZEBDA, varying continuously in some way from one to the
other.
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If the curve along vhich X varies heppens to be a circular arc thst
passes through A and B, the eize of angle BXA does not change, and the
sum of angles ABX and XAB ie constant. Nevertheless ve may etill speak
of the continuoue variation of angle BXA. For the mathematician regards
both y = ax and y = c as examples of the continuous variation of y. It
18 not lack of variebility in the colloquial sense that wve must guard
against, dut lack of continuity.

Page 232, lines 13-1k: "q varies continuously towerd 0°," perhape

merely decreasing from its initial value, perhaps first increaeing and
then decreseing.

Pago 232, Theorem 29. If a is not grester than b, then either a = b
or a<bd. But eech of these alternatives has a consequence that contra-
dicte the given relation £ p> £q. Therefore the assumption that a is
not greater than b is false.

Page 233, line 20: "Why!" If b' = b, then Zq' = £q, by Principle 8.

But this contrsdicts the given relation Zq > <£q'.

Page 332‘ Theorem 31. If «q 1e not greater than /q', then either
249 = £q' or £q <«£q'. But each of theee alternatives has a consequence
that contradicts the given relation b>bd'. Therefore the assumption that
£q 18 not greater than /q' is falee.

Page 234: Exerciess.

The central angles corresponding to the two minor arcs are unequal.

.
4

Apply Theorem 30.
2. Apply Theorem 31 and consider the minor arcs that correspond to the
tvo angles of the triangles at the center of the circle.
3. In FMg. 10, AB<BC. Therefore AB<3BC; that 1s, MB<BN. It followvs
from Theorem 28 that Zp > £q. Consequently £y ><Zx and MO> NO.
. In Fig. 10, MOD>NO. Therefore £y >4Lx, £p > <£q, BNDMB, and AB<BC.
5. See Fig. A at the top of the next page.
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5. a ¢+ bd>x L

c +d4d>x
a
a+d>y C
b +c>y
d
20 +2> +2c + > + 2y .
Fig.A

a+dD+c+ddx+y
Page 235, lines 10-12. In Chspter 2, page 49, ve made nc use of di-
rected anglee there descrided. It wculd have been impossidle at that
time to have considered the sum of the angles of a "cross polygon" of
of such polygons, it 1e not easy to decide which an- 340
gle at each vertex shall de called the interior angle ‘
AS—INg

the sort shown here in Fig. B. Indeed, in the case

of the polygon. The student can shov that the sum Fiq.B

of the counter-clockvwise angles at the vertices of any

polygon, vhether convex or cross, 18 (n - 2)180° ¥ x  360°, where k is
either zero or some positive or negative integer. An exerciee of this
sort shows the increesed genorslizstion thst is possidle under the ccn-
cept of directed angles.

Pagee 236-240: Exercises. Most of these exercises require merely

that the rupil verify dy hie owvn thinking the results already eet down

in the dock in the form of statements, or illustrated by Fig. 13 on page

239 of BASIC GEOMETRY.

1. More exaggerated forms of Fig. 13a and Fig. 13h vill show this.

2. In enswering this question the pupil anticipates by his own efforts
the series of diagrame shown ip Fig. 13.

3. The directed angle x, = }(£BAD - 4COA,) = $(£BAD, + £ACC) =
$(BD, + AC_), vhere ED, 1s used to represent the measure of the di-
rected central angle corresponding to the directed arc 3’.

4. The directed angle x = {(LDGD’) = *‘30)' Since C coincides with A,
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11

12.

13.

1k,

15.

16.

17
18.

LCOA = LAOC = o°. Consequently ;?:, intentionally printed vithout a
subscript eign because aC 1s zero, may be ineerted in the parenthesis
in order to preserve the form of the algebra. See page 236, lines
21-23.

The pupil must see that 360° - a, can be replaced by AT)’.

The directed angle x, = #(360°) - y, = 3(360° - CA, + BD,) =
(4, + BD,).

In circle §, §®’ + ﬁ) = $(360°).

In oircle J, <x, = 180° + i(fﬁ. + ﬁ.), from Ex. 3. But

+

360 + AC_ = AC,. Therefore x, = 3(BD, + AC,).

In circle k, AC. represents the measure of the central angle cor-
responding to the complete circumference, directed positively.
FA 18 positive, decreaeing tovard zero; PB s positive, approaching
A_B; PA x E is positive, decreasing tovard zero.
Zero
PA 18 negative, decreasing algedbraically tovard fA; PB 1s poeitive,
docreesing tovard zero; PA x PB 18 zero vhen P 18 at A, negative
vhen P is between A and B; zero again vhen P is at B.
Zero
PA and PB are both negative and decreasing algebraically; PA x PB 1e
positive and increaeing.
Coversd by ansvers to Exs. 12-16.

The perimeters of the rectangles in Fig. 14 are all equal; so the
square has the largest area and the product re 18 greatest vhen r = a.
By the second suggested method, AP x PB -(2@ - ﬁ)x (A.;é + P—M)-
L{ﬁi - (P—M)e. Thie has its greatest value, namely .(_A::.;f, vhen ™M = 0.

Therefore the largest negative value attained by PA x 7B 1s -(_“_i,):i

Thie occure when P ie at M, midway between A and B.
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CHAPTER 9
Lesson Plan Outline: 14 lessons

1-6. Through pege 253
7-13. Exercises, pages 254-261

1k, Pages 261-266
Page 2il. The two 9:1h p.m. lines on the chart ought, strictly, to

de arcs of great circles.

Page 243, 1ins 16. The locus is a circular cylinder of redius 2 in.
Pege 24k, line 1. The locus is composed of four straight line seg-

ments, each equal in length to a side of the square, and four quadrants

of a circle vhose radius is equal to the radiue of the rolling circle.

Page 2k4, 1ine 3. An example of a locus that consists of only one

point is the locus of all points in a plane that ere equidistant froam

three given points in the plans. An example of a locus that consists of

a curve and a single isolated point is the locus of all points in a plans

at 8 disteance r from a circle of radius r that lies in the plane.

1.

Pages 244-2k6: Exercises.

A circle, centsr at O, radius 5 inches.
Tvo perallel lines, each & inches from the given line. When the
fixed line is perpendicular to the plane, the locus is a circle of
redius & inches.
The four points in vhich the circle vith center O and radius 5 inches
intersects the two lines that ere parallel to AB and 4 inches from
AB. These four points are the corners of a rectangle, 8 inches by
6 inches.
The three points common to the circle and to the two lines that are
parallel to AB and b inches from it. Ome of these lines is tangent
to the circle. These three points are the vertices of a triangle of
base 8 inches and altitude 8 inches.
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5. A etraight line midvay between the two given lines.

6. Tvo lines parallel to the given lines, one on oach side of the plane
of the given lines and distant V5 inches from this plane.

7. Tvo lines, each parallel to the base of the triangle and at a dis-
tance equal to the altitude.

8. A line perpendicular to the chord and midway between one extremity
of the chord and its perpendicular bisector.

9. Tvo lines, each making an angle of 30o vith the given line.

10

A straight line perpendicular to the diameter (extended) through P.
Thie straight line meets the diameter extended at a point D such

that OD - OP = r?

, vhere O is the center of the circle and r its
radiue. All that ie expected of the pupil ie that he ahall plot
enough points of the locus to surmise that it is a straight line.
As P approaches O, the locus recedes from O; when P ie at O, the
locus hae vanished.

The proof, vhich is not expected of the
pupil, will be of interest to the teacher.
The eimilar right triangles OAD and OPA in
Fig. A tell ue that 2« I Another patr
or

of similar trisngles telle us that - = é

Thonforo@xornarxwm%:g—:.

Since triangles ODT and OMP have angle MOP
in common and the eides including this angle
proportional, the two triangles are eimilar. Consequently angle ODT
1e equal to angle OMP, which is 90°.

This locus can be thought of as the inveree of the circle on OP as
diameter, ueing the given circle as circle of inversion. See pagee
263-264. So considered it involves the converse of the theorem on
page 264, lines 17-27, namely Ex. 2 on page 265.
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1k,

15.

Fig. A Fig.B

If one side of the square ie e, the locus ie a quadrant of a circle
of radius s, a quadrant of a circle of radius c‘\/2-, and another quad-
rant of a circle of radius s.

A circle concentric with the given circle and of radius 8. Bee Fig. A.
A parabola. Of course, the pupil is not expected to knov anything
about the curve he has plotted, not even its name. The teacher can
tell him. See Fig. B.

Both dranches of a hyperdola. Many studente will drav only the
right-hand dbranch. See Ex. 13 and Fig. C.

An ellipse, as shown in Fig. D.

Four straight line segmente, each 1 inch long, and four quadrants of
a circle of radius % inches. In Fig. B, M is the mid-point of the
hypotenuse of a right triangle; consequently M is at a distance g

inches from the vertex of the right angle.

M
¢

Fig.C Fig. D 3 Fig.E

Page 246, fifth line from bottom. The wording "is a point of" is

njw

mathemntically precise and is in harmony with the definition of locus on
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page 242. The wording "point lies on curve,” "lise on line," "lies in
plane” is merely a mathematical colloquialiam. We use it here because
it is familiar.

Page 247. The student may need to look back at the discussion of
Indirect Method on pages 33-35 of BASIC GEOMETRY. There is a comment on
page 35 of thie manual concerning pages 33-35 of BASIC GEOMETRY that ie
pertinent here.

Page 2i8: locus Theorem 1. Actually on page 133 ve do not define

"circle” in the strictly precise locus terminology involving "all the
points, and no other points™ decause it is too avkwvard to dring 1t in
there. Instead, wve do vhat amounts to the same thing by desacriding "all
other points” as being inside or outside the circle.

Page 248: Fig. 5. To have put the point R on the 1line I would have
been to deg the question, to assume vhat must be proved. Placing R on
one eide of line IQ seems to assums vhat can be proved to be false. In
all such cases geometers prefer to lead pupils to reason correctly from
incorrect figures than to lead pupils, by means of correct figures, to
make premature and incorrect inferences.

Page 249, line 22. First "Why:" by Corollary 1lka. Second "Why:" by
Ex. 2 on page 113.

Page 250, 1lines 8-9. The locus 1s a plane perpendicular to the plane
of the given parallel lines, parallel to them and midway between them.

Page 251, 1ine 19. The locus is a plane perpendicular to the line
segment joining the two given points and bisecting this line segment.

Page ggz, lines 13-—16. In each case the locus 1s a pair of planes
vhich bisect the angles formed by the given lines or planes.

Poges 254-261: Exercises.

1. The perpendicular disector of the base.

2. A straight line midway betveen the two given parallels.
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0

10.

11.

12

13.

1k,

A straight lins parallel to the given line and midvay between it and
the given point.

Tvo perallel lines, one on each side of BC, both equally distant

from 1t.

Tvo straight lines through A, each making an angle of 45° with AB.
Most students will think of AB as horizontal and will construe "upper"

literally. Let them suppose that AB 1s vertical.

. A straight line perpendicular to XY at P.

A circle having the given point as center and the given redius as
its radiue.

The perpendicular dbisector of the line segment joining the two points.
A circle concentric vith the given circle. Its radius will dbe

‘\'r2 - }:, vhere r is the radius of the given circle and 1 ie the
length of the chords.

A straight line midwvay detween the two fixed parallels. This is
true vhether the exercise is interpreted as meaning that each circle
cute a pair of equal chords, the pairs themselves being unequal, or-
vhether the paires also must be equal.

Both the center of the circle and the point of intersection of the
tvo tangents are equidistant from the points of contact. Hence they
must lie on the perpendicular bdbisector of the chord of contact.
Since each mid-point 18 equidistant from the ends of the chord, the
two mid-points must 1lie on the perpendicular dbisector of the chord.
The center and the mid-points of the arcse are all equidistant from
the ende of the chord; consequently they must 1ie on the perpendicu-
lar disector of the chord.

The center of each circle is equidietant from the ende of the common
chord. Hence the two centers muet lie on the perpendicular disector
of the common chord.
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15.

16.
17.

18.

19.

21.

23.

By Ex. 13, the center of the circle liee on the perpendicular bisec-
tor of esch chord. But the perpendicular disectcr of one chord must
be perpendicular to the other chord also, 8o the two perpendicular
bileectore mst coincide.

The diameter perpendicular to sny chord of the system, by Ex. 15.
Drav any twvo chords. Their perrendicular dbisectores will meet at the
center.

The perpendicular disectores of two sides AB and BC of any triangle
ABC canmnot bde parsllel; for if they wvere, the two sides would bde
parallel, or coincident. It follows that the two perpendicular bdi-
soctors must bave a point in common. Thie point must dbe equidistant
from A and B, and equidistant also from B and C. Since 1t is equi-
distent from A and C, it muet 1ie on the perpendicular disector of
the third side, AC, alsoc.

The disectors of two engles A and B of eny triangle ABC cannot be
perallel; for if they vere, angles A and B would edd up to 180°. It
follows thet the two bisectors must bave a point in common. Thie
point must de equidistant from AB and AC, and equidistant aleo from
BA and BC. Since it is equidistant from AC and BC, it must lie on
the disector of the third angle C, also.

In contrast with the construction on pege 181 of BASIC GEOMETRY, the
emphasis in thie exercise 1s nov on the phrase "and only one." The
proof follows immediately from Ex. 18 in this set of exercises.
Ordinarily the point of intersection of the first and second perpen-
diculer disectors will not coincide with the point of intersection
of the second and third perpendicular dbisectors.

A segment of the bisector of each angle of the triangle, each esgment
extending from vertex to incenter. See Ex. 19.

A pair of lines parallel to the given lines. If the distancee from
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%

30.

31.

32.

33.

the given lines 1 and m respectively are in the ratio p to q, one of
P

pP+tq

)drronl, vhere 4 1s the distance

the nov lines vill de at the dutanco( )d from 1 and the other
P

Q-P

between 1 and m. The second part of thie ansver can de got by solv-

ing the equation -’—%-a- = -:1-

With P as center drav a circle that will cut the given circle in two

wvill be at the Monnco(

points A and B. Drav the perpendicular bdbisector of AB. Finally,
drav at P the perpendicular to thie perpendicular dieector.

A circle concentric vith the given circle and having & radius equal
to Vr2 4 ¢2 .,

An arc of the circle that has for its diamster the line segment Jjoin-
ing the center and the given external point. Bvery point of thie
arc is inside the given circle.

The circle that has for its diameter the line segment jJoining the
center O of the concentric circles and the given external point P.
Foints O and P do not bdelong to the locus.

A circle concentric wvith the given circle and having & redius of

10 feot.

Tvo equal circles, each having half the base for its diamster. The
mid-point of the bdase does not delong to the locus.

S8ame locue as in Ex. 29, except that now the end-points of the dase
are also excluded from the locus.

A circle having for diameter the line segment joining the given point
and the center of the given circle. The given point does nmot delong
to the locus.

Same looue as in Ex. 31, except that nov the given point is included
in the locus.

A oircle vith center at the intersection of the two fixed rode and

vith radius equal to %, vhere 1 1o the length of the moving rod.
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35

N

The mid-point M of the moving rod ie alwvays the mid-point of the hy-
potenuse of a right triangle and so is alwvays the same distance, %,
from the ends of the moving rod and from the point of intersection
of the two fixed rods.

Assume that the theorem is not true. It is etill possidle to pase a
circle through three vertices of the given quadrilateral; the fourth
vertex will be either inside or ocutside the circle. The two angles
that are given as having the sua 180° miet be equal to two central
angles that add up to 360°. But under the assumption that the fourth
vertex is not on the circle, the two given supplementary angles are
equal to two central angles that add up to something more or less
than 360°+ a contradiction. Therefore the fourth vertex must be on
the circle.

A circle having AB as chord. Ite center Q will de outeide the given
circle, on the perpemdicular disector of AB, and such that angle AQB
is equal to 180° minus the central angle in the given circle corres-
ponding to the minor arc AB. The proof depends on locue Theorem 7
and Exe. 5 and 6, pages 147 and 148.

The phrase "segment of a circle” has not been defined previcuely;
the description in parenthesis is sufficient to shov ite meaning.

If O is the center of the given circle, if P is the point of inter-
section of AC and BD, and 1f P’ is the point of intersection of AD
and BC, then angle AFB is always 30° and angle AP'B 1s alvays 90°.

(a) The locus of P is an arc of s second circle having AB as chord
and such that the minor arc AB of this second circle has a central
angle of 60°. This means that the center Q of the second circle is
“above” AB, on the perpendicular bisector of AB, and such that angle
AQB is equal to 60°. Consequently Q is on the given circle, twioe as
far above O as O is above AB. The extent of the arc that constitutes

the locus of P can bde determined as follows.
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37.

One limiting position of CD makes C coincide with A. 1In this
position £BAD = 90° and ED artended mests the second circle at A', o
that £BAA' = 120° and A'Q 1s parallel to AB. The other limiting
position of CD makes D coincide vith B. In this position AC extended
meots the second circle at B', so that LABB' = 120° and QB' s par-
allel to AB. The etraight line A'QB' 18 tangent to the given circle
and is a diameter of the second circle. Except for the end-points
A' and B', all points of the second circle "above" this diameter
constitute the locus of P. That is, the locus is a semicircle minus
its end-pointe.

(b) The locus of P' 1s an arc of a third circle having AB as chord
and such that arc AB of this thind circls has a central angle of 90°.
Thie means that the center R of this third circle is the mid-point
of AB, and the locus of P' is the "upper” semicircle of this third
circle, including the end-points A and B.

Each of the given triangles has its vertex V on one of two equal
arcs of the sort shown in Fig. 11, pege 253, in connection with Io-
cus Theorem 7. For all positions of V on one of these arce the de-
sired locus is the coaplete circle that contains the other arc,
except for that point on the major arc AB that is equidistant from A
and B. This excepted point ie approached on each side dy the pqint
of intersection P of the perpendioulars as V approaches firet A and
then B. But this excepted point camnot delong to the locus decause
V cannot coincide with either A or B.

Whon LVAB = 90°, A is seen to belong to the locus. Similarly for
B, vhen LVBA = 90°. When V 1e between these two positions, LAPB is
the supplement of the given angle. When V is outside these two po-
sitions, LAPB 1s equal to the given angle.

The entire locus, then, is made up of the two equal circles con-
taining the arcs to which vertex V is always restrioted, exoept for
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39.

&

b1,

1.

b5,

the point on each circle that is farthest from AB.

The 1line segmsnt joining the mid-point of the dase to the opposite
vertex. Thie line is defined on page 259 as a median of the triangle.
The center will be at the point vhere the bisector of the 11k° angle
intersects a parallel to one of the given lines that is 100 feest
distant from thie given line.

For every position of CD angle C is unaltered in size; eimilarly for
angle D. Consequently angle DBC must de constant also.

Dxop AD perpendicular to MR and continue it to A' so that A'D = AD.
The intersection of A'B and MR is the desired point.

Same as Ex. b1.

In Fig. 21 on page 259 of BASIC GEOMETRY, quadrilatersl ABCB' 1s a
parallelogram in vhioh £B' = £ 3B, AB' = BC, and AB = B'C. Similarly
for quadrilaterals BCAC' and CABA'. Consequently triangle A'B'C’' ie
similar to triangle ABC and eides A'B', B'C', and C'A' are bisected
by C, A, and B respectively. So the altitudee of the given triangle
are the perpendicular disectorse of the sides of the nev triangle,

and hence (by Ex. 18, page 255) meet in a point.

The suggestion given in the exercise is encugh.

The point of intersection of each pair of tangents is on a bisector
of an angle of the triangle formed by joining the centers of the
three circles. Since it must de on all three disectors, it must de
the point that is common to all thres bisectors (by Ex. 19, pege 256).
The locus consists of two lines, wvhich N

can be constructed as follows. Drav Q-

& 1lins parallel to AB and two units
away from AB. Drav two lines at a
distance of one unit from AC, one on

each side of AC. Theese two lines
will intersect the first line at P
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h7.

&

4.

and Q, as in Fig. A. The lines AP and AQ, extended, constitute the
locus.

It 1ie easy to prove that every point on AP ie tvice as far from AB
as from AC, and that every point on AQ is tvice as far from AB as
from AC. In each case one noeds only two pairs of eimilar right
triangles.

The difficulty in this exercise consists in proving the converse,
namely: “E %m 1t ;.2.} 2, then P' mst 116 on AP (extended).
Angles BPC and B'P'C' are equal, eince
each is the supplement of angle A.
Consequently triangles BFC and B'P'C'
are similar, and L PBC = ZP'B'C'.

It follows that BC and B'C' are paral-

lel, einco each meets AB' at the same

AB ./ BC \_. BP .
angle. Therefore P (f"é"') 0 2
the right triangles ABP and AB'P' are similar; ZBAP = £B'AP';

and P' lies on AP.

The proof for Q and Q' follovs the pattsrn of the preceding proof
for P and P' with only one change: angles BQC and B'Q'C' are now
equal to angle A instead of to its supplement.

Aﬁ?'(g)‘%'% See note following Ex. 26 on page 116.

It 1e ovident from the preceding exercise that R and Q are tvo points
on the deeired locus. Any other point P on the locus must de such
ﬂnt%-s-%-%. This means that <QPR mst equal 90°, by

Ex. 27, page 117. Bo the locus of P is the circle on QR as diameter.
We can think of the given parallel lines as deing perpemdicular to
the plane of page 260, so that these lines - vhen viewed end-on -
are represented dy the points A and B of Fig. 23 on that page. IFrom
Ex. k8 on page 260 we know that the locus of points whose distances
from A and B are in a given retio is the circle that has QR for
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diameter. So in this Ex. 49 the locus must be a cylinder with axis
through the midpoint of QR and perpendicular to the plane of page 260.
That 18, the locus is a cylinder vwith axis parallel to the given
parallel lines.

50. The locus is a circle in the given plaue with center D and radius 3.
Yor every point in the plane that is 5 inches from P must de 3 inches
from D.

51. The intersection is a circle vith center at D, the foot of the per-
pendicular dropped to the plane from P, the center of the sphere.

See Tig. 2k, page 261. For 1f the radius of the sphere is r, every
point of the intersection of plane and sphere will de at the same
distance, \/m , from D.

52. Bvery point of the intereection of two spheres with centere O and O'
will 1ie in a plane perpendicular to 00'. See Ex. 1k, page 143. So
the intersection of the two spheres can be regarded as the intersec-
tion of this plane and either one of the spheres. By the preceding
exercise thie is a circle.

Page 261, line 16. See Ex. 37, page 151. In this connection Pro-
fessor Norman Anning of the University of Michigan suggests that we wvrite

2 2 (PO + r)(PO - r) and shov that this last

P8 (Pr)2 . (P0)2 -y
way of writing the product is valid even vhen P 18 inside the circle. It
18 clear from Fig. 25 ob page 261 that vhen P is inside the circle,
PA' * PB' = (PO + r)(PO - r) and the pover is negative, as stated in the
teaxt. It is interesting to add to thie the note that when P is outside
the circle, the power of the point is equal to the square of the tangent
from P to the circle; and when P 1e inside the circle, the power of the
point is equal to minus the square of half the shortest chord through P.
Page 262: Exercises.
1. The proof follows immediately from the definition of power of a point
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2.

vith respect to a circle on page 261. TFor every point P on the

common chord, and on the common chord extended, the product PA - PB
is the sams for bdoth circlee.

This is & limiting case of the preceding exercise. If the circles
are externally tangent at T, the pover of any point P on the common
internal tengent 1s (PT)2 with respect to both circles.

If the circles are internally tangent at T, the pover of any point P
on the common external tangent is the same, namely (PT)2, with re-
spect to both circles.

Page 262, fourth line from bottom. The sudstitution of ('rr)"’ for

(“l"!’)2 18 intentional. By suppreseing thie detail the sudtraction of

the equation in thie line from the equation in the line above is more

easily followed.

1.

2.

3.

Page 263: Exercises.
The foregoing proof can de applied without alteration to the case of
two intersecting circles. It follows from Ex. 1 on pege 262 that
each of the two points of intersection of the two circles has the
same pover vith respect to doth circles. Both of these points must
11e on PD, therefore, and PD muet be the common chord (extended).
Both in the case of two circles that are externally tengent and of
twvo circles that are internally tangent, it eseems reasonsdble and
helpful to define the radical axis ae the common tangent of the two
circles.
A plane perpendicular to the line of centers of the two spheres. The
student is not expected to de adble to prove this. Actually the proof
followe the same pattern as the proof in the case of tvo circles, on
pages 262-263. Given a point P having the same powver vith respect
to two spheres with centere et O and 0'; Fig. 27 on page 262 can be
considered es representing the section made dy the plane POO', except
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that points T and T' oxdinarily will not be in thaie plane. But the
relaticas (P0)2 = (01)2 + (17)% ana (P0*) = (0'7")% + (1'P)? bo1a
Just as defore.

Page &l, 1ine 13. The inverse of the circle of inversion ie the

circle of inversion itself.

Page 264, 1ine 16. The rsdius of s cirole vith center at O times

the redius of the circle that is its inverse is equal to the square of

the rediue of the circle of inversion. The centsrs of all three circles

are at the center of inversion, O.

Page 264, 11ne 26: “Why!" Because trianglee OQP and OP'Q' are simi-

lar by the Principle of 8imilarity, Case 1, and angle OP'Q‘' ie given a
right angle.

1.

2.

Pages 264-265: Exercises.

The foregoing proof applies in each case wvithout alteration. When
P' 1s on the circle of inversion it coincides wvith P, and the radiue
OP' of the circle of inversion is the diameter of the circle that s
the inverse of the streight line through P'.
The inverse 18 a straight line perpendicular to the line of centers
00' of the two circles. In Fig. A, let OP be the diemeter of the
given circle that paeeee through O. If P'
1e the inverse of P, and Q' the inverse of .Q
a random point Q on the given oircle, then
OP - OP' =r2 = 0Q *+ OQ' and OP « OR' |

o orP'
Therefors triangles POQ and Q'OP' are simi-

lar (Principle of Similarity, Case 1) and Fig. A
ZOQP = £LOP'Q'. But LOQP = 90°, being
inscrided in s semicircle. Therefore Q'P' is perpenmdicular to OP'
at P', vhen Q 10 any point of the given oircle except O or P. So
the locus of the inverses of all points of the given circle is the
strajight line through P' perpendicular to OP.
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265, 1ines 10-11. A line segment egual in length to the diame-
ter of the circle.
Page 265, lines 12-15. A circle equal to the circuler edge of the
coin. Usually an ellipse; dut when the two planes ere perpendicular, the
projection 1s a line segment equal in length to the diameter of the coin.

Page 265, lines 16-18. A circle. Bo.
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CBEAPTEBR 10
Lesson Plan Outline: 7 lessocns
1-2. Pages 268-278
3-6. Exercises, pages 278-280
7. Pages 280-283
It is important for the teacher to note that Chapter 10 extends the

ideas of Chapter 1, dut that the pupil needs the background of the inter-
vening ohapters in order to appreciate thie final chapter. This oonnec-
tion between Chapter 10 and all that precedes it is set forth on pages
268-269, 273, 277-278, 280, and 263.

Ooe aim of this final chapter is to reconsider the logical struoture
of this geometry and to look more oloSely at the part played dy certain
deeio principles and theorems of this gecmetry. Another aim is to con-
sider the logiocal struoture of other geometries; to consider then the
struoture of logical systems in genersl; and finally to recognize that
thie gecmetry afforde an instructive example of a logioal system and 1
a oonvenient and proper pattern for all logical thinking.

Page 268, 1ine 16. The "ten statements” is correct here, becauss
three of the thirteen exercises on pages 161-163 do not ooncern non-
mthemntical eituations.

Pages 270-273: Exercises. As explsined on page 269 the pupil 1s
not expected to find "the correct answer” to these axercises.

Pages 274-276: Exercises.

1. Bo.
2. No. It might bde an ellipsoid or other ourved surface.
3. Keep 1t covered and ochilled.

L

« Cut a loaf into slices. Keep two slices dry and covered, dut one
vara and the other cold; keep two more slices moist and covered, dut
one wvarm and the other oold; keep two more dry and uncovered, dut
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5.

1,

one varm and the other cold; keep two more moist and uncovered, bdut
one varm and the other cold. Then observe which slice of each pair
becomes moldy sooner. Test four more pairs with respect to moist
and dry, and four more with respect to covered and uncovered.
Evidently it 18 not the air by itself that causes fermentation, dut
something 111 the air that 18 more commonly found in thickly settled
regions than on mountain tops.

Heat the milk eufficiently to kill the ferment, or to kill most of
it. Then chill the milk to discourage the growth of any of the fer-
ment that remains alive. Aleo, keep air awvay from the milk.

The object 18 to drive out as much of the air es poesidble and then
to kill the harmful bacteria that may de left ineide the Jars.
Because the pus-forming bacteria in the air were killed in passing
through the carbolated gauze.

In the ice creanm. 10. In the canned lobater.

Pages 278-280: Exercises.

2, 3, 5 6. In lines 17-19, on page 278, the student is reminded that
he ekipped the proofs of Principles 6, 7, 8, 11 and perhaps of Theo-
rem 13 also. These proofe are given in the book on the pages men-

tioned in these exercises.

Given: Triangles ABC and
"
'C
A'B'C' (Fig. A) 1n which 'C
(Fig C C' Ir
ZA = ZA', A'B' = k°AB, i
!
and A'C' = k°AC. ) W,
BA 8
To Prove: Triangle A'B'C' .
Fig.A

similar to triangle ABC.
Proof: At B' drev B'C" eo
that £ A'B'C" equale £B. This line will meet A'C' (extended beyond
the point C' 1f neceesary) in the point C". By Case 2 of Similarity,
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vhich for the moment is being teken as a fundamental postulate, tri-
angles ABC and A'B'C" are similar and A'C" = k*AC. But A'C' = k°AC
{(Given). Therefore A'C" = A'C' and C" must coincide vith C'. It fol-
love that £ A'B'C' = £ B and triangles ABC and A'B'C' are similar.
Caee 3 can nov be proved, just as on pagee 79-80 of BASIC GEOMETRY.

T. Most of the answver is given on page 106 of BASIC GEOMETRY. The an-
sver there given and the form in wvhich this Ex. 7 is vorded doth
imply that our chief interest here is in getting back to Principle 5.
Actually Principles 4 and 3 are also required in the proof of Theorea
13. Schematically the dependence of Theorem 13 upon theee three

principles can dbe showvn as follows.

g:{‘{(

3 Fig. A

8. The dependence of Theorem 16 on Theorems 15, 14, and 13 and so back

to Principle 5 is shown in the following diagraa.

i

oermmou OF PARALLEL LINES
3 S (AS SHOWN IN EX.7)
T Figs

9. The dependence of Theorem 20 on earlier theorems is shown in the

7—5

16—IS

diagram on the next page (Fig. A).
10. On page 247 we have seen that if a proposition is true, ite opposite
converse is true also. So, instead of proving Theorem 21 directly
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11.

12,

13. Any
thie eide equal to h can de divided into tvo trianglee, each of side b

S
B
9 —5 (As N €x.8)
8 —5 (As IN €x.8)
DEFINITION OF TANGENT

Fig. A
by shoving that a given tangent is perpendicular to the radius, ve
shov instead that a line through T (page 139, Fig. 13) that is not
perpendicular to the radius OT cannot bde tangent. This ie ae much
as ie expected of the student.

The teacher will observe that the proof on page 14O of BASIC GEOME-
TRY proceeds on the tentative assumption that 1, given tangent, is
not perpendicular to OF. Under this tentative aessumption it consid-
ors the poesidility that OU equals OT end then that OU is lees than
OT. 1In each case it arrives at a contradiction. Consequently
the tentative assumption of non-perpendicularity is incompatidble
with the given condition that 1 is tangent.

The proof of Theorem 22 depends upon earlier theorems as indicated

belov.

9—S (As IN EX.8)
22
7—S5
Fig.B

The dependence of Theorem 23 upon the fundamental principles of this
geometry 18 shown in the diagram on the next page (Fig. A).
parallelogram having one side equal to b and the altitude upon

and altitude h, by drawing either one of the diagonals of the paral-
lelogram. Consequently the area of the parallelogram is 2(zbh), or

bh. Every rectangle 1s a special sort of parallelogram and so its
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1L,

—— DEFINITION OF CIRCLE

—|o—e—{____:—s

23 — DEFINITION OF PARALLEL LINES
—15a — IS

Y4 (AS IN EX.8)
3
L—11—5 (As 1N £x.8)
—7—35
5 Fig.A

area 18 equal to bh also. The area of any polygon can now be found
Just ae described on pages 203-204 of BASIC GEOMETRY.

The contrast in procedure here is between the order rectangle -
right triangle - any triangle - parallelogram - polygon end the order
triangle - parellelogram (rectangle) - polygon.

In Fig. 9, page 32, of BASIC GEOMETRY, MO is the perpendicular bisec-
tor of AB and CO bleecte angle ACB. /\ AMO =A\BMO (by Case 3 of
Similarity), and eo ZMAO = Z MBO.

A ADO =\ BEO (by the Pythagorean Theorem and Case 3 of Similarity),
and so ZOAD = £ GBE.

Consequently £ MAO + LOAD = £ MBO + L OBE; £ BAC = £ ABC. end tri-

angle ABC 1e ieoceceles.

<

Starting vith triangle ABC in Fig. B
in which CB < CA, we wieh to expose

the fallacy in the foregoing ‘prcof”
that purports to show that CB = CA.

Since the fault probably liee in

the diagram shown in Fig. 9 on page

32 of BASIC GEOMETRY, we had better

give careful consideration to the

eort of triangle we draw.
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Ve kmowv from Theorem 23 that < CAB must be lese than ZCBA. Conse-
quently <CAB mst be acute and ZCBA might conceivadbly be acute,
right, or obtuse. We diesmiss the obtuse possidility at once, dbecause
if wve should succesd in "proving” the theorem under thie condition,
ZCAB would have to be obtuse aleo, vhich is impossidble. For the same
reason ve diemisa the possibility that L CBA is a right angle.

Let us consider next vhether the bisector of angle ACB intersects
AB to the right or to the left of the mid-point M. If we draw perpen-
diculare NR and S from H to CA and CB respectively, then ACHR =
ACES, CR = CS, and AR > BS. Consequently, by the Pythagorean Theo-
rem, AH > HB and H 16 to the right of M. It follows that the inter-
section O of MO and CO muet be outside the triangle, below AB, and
not inside the triangle, as shown in Fig. 9 on page 32. This 1e the
chief error in Fig. 9. If the student sees this, that is all that
can fairly be expected of him.

lastly, ve must consider vhether the perpendiculare OD and OE meet
CA and CB respectively in two points D and E that are both between C
and the corresponding vertex of the triangle; or both outside the
triangle, on CA and CB extended; or one inside and the other outeide.
In the firest case the purported proof appears still to hold if we
subtract the angles instead of adding; namely £OQAD - £ZMAO = ZOBE -
£LMBO. In the second case the purported proof appears still to hold,
Just as given in Ex. 1k, by adding the angles. Actually, however,
neither of these cases 1s possible and ths apparent proofs have no
standing.

We turn now to the third caee, shown in Fig. B, in which D lies
between C and A and E 1ies on CB extended. Thie case is possibdle.
But now we get nothing sensible either by adding or subtracting the
angles. If LCAB were indeed equal to ZCBA, then LOAD - £MAO

would equal 180° - (LOBE + £ MBO). Thie would require that £ OAD
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should equal 1800 - Z(BE; namely, that the equal angles OAD and CBE
should be supplemsntary, and consequently right angles. This would
mean that triangles ADO and BEO would each contain two right angles,
vhich is imposeidle.

Evidently we cannot prove triangle ABC isosceles 8o long as we

retain the initial condition that CA and CB are unequal.

Page 261: Exercises.

(a) Child saw cake. 2. (a) Man caught dboy.

(b) Child did not eat cake. (b) Man di1d not spank doy.
(c) Children see cakes. (c) Men catch boys.

(d4) Children will eat cekes. (d4) Men vill epank boys.

(a) Circle vas outeide of triangle.
(b) Circle was not inside of triangle.
(c) Circles are outside of triangles.

(4) Circles vill be inside of triangles.

. (a) Quotient was greater than divisor.

(b) Quotient was not less than divisor.
(c) Quotients are greater than divisors.
(d) Quotients will be less than divisors.

Pages 282-203: Exercises.

1et us assumo at the outset that A <B. When we shall have completed
the proof under this assumption we shall need only to interchange A
and B throughout to cover the case B < A.
Given: A<B; K<L; ACK<B; ACL<CB; and X<X<L.
To prove: A< X <B.
Proof: Sinte A < K and K < X (both given), we know
that A < X (Assumption 2).
Since X <L and L < B (both given), we knov
that X < B (Assumption 2).

Therefore A < X < B (Assumption 2).
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2. Assumptions:
(1.) A 18 older than B, or the same age as B, or younger than B.

(2.) If A 18 older than B and B is older than C, then A is older
than C.

(3.) If A 18 the sams age ae B and B is the same age as C, then A
is the same age as C.

Thoorems:

(1.) If A 16 older than B and B 1s older than C and C 1e older than
D, then A is older than D.

(2.) If A 18 tho same age as B and B 18 older than C, then A 1s
older than C.

3. Assumptions:

(1.) A 1s less than B, or equal to B, or greater than B.

(2.) If A 18 less than B and B is less than C, then A 1s less than C.

(3.) If A equals B and B equals C, then A equals C.

Theorems:

(1.) IT A 10 less than B and B 18 less than C and C is less than D,
then A ie less than D.

(2.) If A equale B and B is lees than C, then A 1s less than C.

4. Assunptions:

(1.) A precedes B, or coincides with B, or follows B.

(2.) If A procedes B and B precedes C, then A precedes C.

(3.) If A coincides with B and B coincides with C, then A coincides
wvith C.

Theorems:

(1.) If A precedes B and B precedes C and C precedes D, then A pre-
cedes D.

(2.) If A coincides vith B and B precedes C, then A precedes C.
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LAWS OF NUMBER

Page 285, 1ine 19: "Real numbers.” These are not defined here. The

real numbere a, b, c, . . . are etrictly merely the undefined elements
of thie system. Since the system we propose to build ies to be concerned
wvith numbers, wve think of the elements ae numbers and call the eystem a
“number system." The properties these numbers acquire from the system
are such that eventually we are moved to call them "real numbers." Thus,
although etrictly the real numbere remain undefined throughout, in effect
the vhole system serves, through jts poetulates and theorems, to charac-

terize them in Juet the way we want.
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