

Manual for Teachers

B ASIC

GEOMETRY

by GEORGE DAVID BIRKHOFF

Professor of Mathematics in Harvard University

and RALPH BEATLEY

Associate Profesor of Education in Harvard University

Abstract

ACENOWLEDGMENTS The authors of this manual wish to record here thoir indebtednese to all those who sent in criticisms of BASIC GEOLITII 1mmodiately folloring ite publication. The pointe raised by these critics have beon included in this manual. The authors are especially indebted to Professors Norman AnnIng and Iouis C. Karpinaki of the Dopartmont of Matheantics at the Univeroity of Michigan; to Professor A. A. Bonnott of the Dopartmont of Mathomatice at Brown University; to Profeesor Barold Fawcett of the College of Education at Onio State University; to Mr. G. E. Hawkins of the LJons Townahip EIgh School and Junior College, La Grange, Illinois; to Mr. Francis W. Runge of the Now School of Evanston Townhip High School, Eranston, Illinois; and to Mise Margarot Lord of the high echool at Lawrence, Massachusette.

Library of Congress Catalog Card Number 49-2197 International Standard Book Number 0-8218-2692-1

Copyright (C) 1943, 1959 by Scott, Foresman and Company
Printed in the United States of America.
Reprinted by the American Mathematical Society, 2000 The American Mathematical Society retains all rights except those granted to the United States Government.
(0) The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at URL: http://www.ams.org/

$$
10987654321 \quad 050403020100
$$

BASIC GBONETXY ains to give the pupil an appreciation of logical mothod and a silil in logical argurent that ho can and will apply in non-mathenatical eituations. It aims also to present a syeten of demonatrative geometry that, while eorving as a pattorn of all abstract logical syetoms, is much eimpler and more compact than Euclid's geomotry or than any geomotry since Euclid.

The underlying epirit of BASIC GROMEXPY, as geometry, can be set forth best by contrasting it with Buclid's geometry. In Suclid, conEruence and parallelism are fundamental and sidiarity is secondery, being derived from parallelism. But since similarity is used more than parallelim in proofe, and since congruence and eimilarity have anch in common, it ceems more natural to take these two ideas as fundamental and to derive parallelian from them. If wo make an oxchange of this eort, the Parallel Postulate becones a theorem on parallels, and ono of the formor theorems on similar triangles becones a postulate. A geomotric ejston of this sort was augested in 1923 in the Britieh Roport on the Teaching of Coomotry in Schoole, montioned below. BASIC GEOMIRY carries the idea even farther by using only a postulate of eimilarity and treating congruence - ve as equality instead - as a apecial case under sinilarity for which the factor of proportionality 181.

The history of the development of this geometry is of interest, to show how mathematical ideas somotimes come to light, are sidetracked or Porgotton, and como to light again conturies lator. As carly as 1733 Saccheri proved in his Buclides ab omi naevo Vindicatue, Prop. 21, Schol. 3, that a aingle poetulato of oimilarity is eufficiont to establish all the usual ideas concerning parallels. He gives credit* to John Wallis, Savilian Professor of Ceometry at Oxford from 1649 to 1703,

[^0]for announcing this idea and for shoving that Euclid could have rearranged hia Eloments 80 to follow this order. The idea appeared again In Couturat's La Logigue de Loibniz, 1900, and in the British Roport on the Toaching of Coometry in Schoole, which was presented and accopted on Novenber 3, 1923 and publishod before the ond of 1923 by C. Bell and Sons, London.

In the epring of this same year, 1923, Professor Birkhoff was invited to deliver in Boston a series of Lowell Lectures on Relativity. In order to present this subject with as fow tochnicalitios as possible ho decided to devise the simplest possible systom of Euclidean geomotry he could think of, and - without any acquaintance at that time with any earlier enunciation of the idea of a postulate of eimilarity - he hit upon the framowork of the syetom that, with all the dotaile filled in, is now BASIC GBOMSIRY. The postulates of this geosetry vere first printed in Chaptor 2 of Birthoff's book The Origin, Nature, and Influence of Relativity, Macmilian, 1925, wich reporte these lectures of two yeare carlior. It is interesting that John Wallis' idea of a Similarity Postulate should have come to light again in Fagland and in the United Statos in 1923, quite independently and almost eimitaneously. As a rosult of inquiry in Figland the authors beliove that BASIC GBCNAFIRY is the first and only dotalled olaboration of this idea for use in secondary echoole.

The authore reoognize the noed of passing the pupil through two proliminary stages before plunging him into the serious otudy of a logical syatom of geometry. First, the pupil mast acquire a considerable failiarity with the facts of geometry in the junior high school joare in order the bettor to appreciate the chief aim of demonstrative geometry, which $1 s$ not fact but demonstration. In order to omphasize this contrast It 18 voll that there should be a dietinct gap between the factual
geomstry of the junior high school and the demonstrative geometry of the sonior high echsol. Cortain authors of books on demontrative geometry, recognizing that som pupile ontor upon this bubject with very little knowledge of the facts of geometry, try to mate good this defficiency through an introductory chapter on factual geometry. The authore of BASIC GBCADITY have proforred not to do this because they are foarful that the distinction betwoen fact and damonstration will be blurred if the proofs of important but "obvious" propositions follow iraediately aftor an intuitional treatmont of these sam ideas. The proper eolution of this problem ie to provide adequate instruction in informal geometry In the seventh and eighth grades. The educational grounds in eupport of such a program 110 far deoper than more preparation for demonstrative geometry in a lator grade. Fortunately the increasing tondency to give more inetruction in informal geomotry in the seventh and eighth grades is gradually eliminating the need for an introductory treationt of factual geometry at the beginning of demonstrative geonetry.

The second proliminary stage through which the pupil mast pass is a brief introduction to the logical aspecte of demonetrative geometry. This includes discussion of the need of undefined torns, defined terms, and assumptions in any logical systom, and also includes a brief oxempliflcation of a logical treatant of geometry - a miniature demonstrative geometry, in effect - in order to oxhibit the nature of geomotric proof, and to afford an easy transition to the systomatic logical development that is to folloy. It is introductory matorial of this sort that constitutes the first chaptor of BASIC GFOMEIRY.

The logical aims of BASIC GEONEIRI are of two eorte: to give boye and girls an understanding of correct logical method in argumente whose scope 10 narrowly restricted, and to give an appreciation of the nature and requirements of logical systoms in the large. In order to attain the first
of these alms thie book lajs great etress on the nature of proof. It uses geometric ideae ae a source of clear and unambiguoue examples, and as a rich eource of materiale for practice. It also encourages the transfor to non-geometric eituatione of the ekills and appreciations learned first In a geometric setting.

In order to attain the second legical aim this book calls frequent attention to ite own logical etructure; it contrasts its own structure with that of other geometries; and it omphasizes the important foatures ccmon to sil logical systoms. It dares even to call attention to cortain loopholes in its own logic, using footnotes or veiled allusions in the running text to mark the epots where the geometric fox has run to cover from the hot pursuit of the geometric hounds. These are mentioned In thie manual alao, often with additional comment.

BASIC GECMIIRY not only oxhibits a logical oystom that is eimpler and more rigoroua than that contained in any other geometry used in our echoole; ite eystom is also the very aimplest and the most rigorously logical that pupils in our secondary schools can be expected to understand and appreciate. In cne or two inetances the authors have wittingly allowed a slight logical blomiah to romain in the toxt wen the point at 1ssue was of a nature to be apparent only to adults and was so remote from the interests of secondary echool pupila that the substitution of an absolutely correct etatement would have made the bock too involved and too difficult at that point. Each logical blomish recognized as such by the authors will be diecuseed at the proper time in this manual to clarify the logical structure of the toxt as fully ae possible. Teachers who are interested to see what a rigorous treatmont of this geometry demands can find the logical framework in an article by George D. Birkhoff in the Annals of Mathomatics, Vol. XXXIII, Apri], 1932, ontitled "A Set of Postulates for Plane Geometry, Baeed en Scale and Protrector."

An article by Birkhoff and Beatley in The Fifth Yearbook of the National Council of Toachers of Mathematice, 1930, gives a brief description of BASIC CEOMEIRI on an elementary level, and compares it with other geomotries.

The chief advantage of BASIC GFOMEIRY 18 that it guts to the heart of demonstrative geometry more quickly than other texts. It is able to do this by postujating the proposition that if two trieneles have an engle of one equal to an angle of the other and the including eides proportional, the triangles are similer. This leads simultaneously to the basic theorems under equality and similarity and immodiately thereaftor to the theoroms concorning the oum of the anglas of a triangle, the eesence of the perpendicular-bisector locus without using the vord "Jocus," and the Pythagorean Theorem - all within the firet seven theorems. BASIC GBCNEIRY contains only thirty-three "book theorems." A fow of these, at crucial points, ombrace the content of two or more theorems of the ordinary achool texts, as is hinted by the postulate on triangles mentioned above. This accounts for the great condensation of content into brief compass.

If it be objectod that other books could reduce their liste of theorems also by telescoping some and calling others exercises, the proper anewor is that every book recognizes that the chiof instructional value of demonstrative geometry is to be found in the "original" exerciees and tries therefore to reduce the number of its book theorems. But thees other bocke just have to oxhibit the proofs of lote of theorems because othervise the pupils would not figure out how to prove them. They could of course be called oxercises, but the pupils could not hande the exerciser, so-called.

In BASIC GBONISIRY, bovever, the fundamental principles and basic theorens are of such wide applicability that the pupil can actually use
theee tocle to prove es exercises most of the propositions thet other books mat carry as book theorens. With all the usual ideas concerning equal and similar triangles, angle-sum, perpendicular bisector, and Pythagorean Theorem available at the outset, it would be ridiculous for BASIC GEDNETRY to retain as book theorems what other books muet so retain. Wo do indoed require eix book theorems on parallel and perpendicular lines, eix more on the circle, throe or five (depending on the ejetem one follows) on area, four on ccntinuous variation, and the ueual locus theoress. Almost all these book theorems follow vory oasily from the twolve basic postulates and theorems. Not more then five of these book theorems are at all hard, and three of these hard ones are proved In the same way as in other books. In short, there 18 a real reeson for calline this book "Baeic Goometry."

Idenlly, evory exercise in this book can be deduced from the five fundamental principles and the thirty-three book theorems; but there is no objection to using an exercisa, once proved, $\theta 8$ e link in the logical chain on which a later exercise depende. This holds for other geometries as woll.

A further advantage of BASIC CEONEYKY is its willingness to take for granted the real number system, asouming that the pupil has already had some experience with irrational numbers in arithmotic - though not by name - and has a sound intuitive notion of irrationals. In this respect. pupils of the oighth grade in this country today are way ahead of Euclid'e contemporarios and wn ought to capitalize this advantage. The theorems of this geometry, therefore, are oqually valid for incommensurable and comensurable cases without noed of limits.

Although EASIC CEOMEIRY seoms to require five fundamental postulates In Chapter 2 and two more postulatos on area in Chaptor 7, it is clear from pages $50,198,199$, and 222 that this system of gocmotry really
requires only four postulates. These postulates are set forth as Principles 1, 2, 3, and 5. It ahould be noted, as the authore indicate on pege 278, Frercise 4, that Principle 6 of BASIC CAMMEIRI, inatead of Principle 5, could have been taken ac the fundarantal Postulate of 8imilarity. But Principle 5 is to be preforred for this role, for reasons of fundamental simplicity.

Thic diecussion of the order of the estumptions and theorems of this geometry reises the question of how to reconcile the peychologically deairable ideal of allowing the prapile to alugest the propositione they wish to assume at the outeet with the matheratical ideal of inguring that any eystem the pripile construct for themeelves shall be reasonably froe from grose errors. It is probably well to let the pupils opend a little tine in constructing their own systoms provided the teacher is compotent to indicate the major errors and omiseions in each oyatem that the pupils put together; for careful olucidation of the reasons why cortain arrangemonts of geometric ideas will oventually prove faulty can be very instruotive.

This is only one of many eituations in the teaching of mathematics whore paychology and mathematics are in conflict. We have a second inatance in our attenpt to devise a payohologically proper inductive approach to a logically deductive ecience. Many teachers who recogrize the value of trial-and-error in the learning procese heaitate to apply to the learning of so precise a oubject as matheratice the mothod of fwibling and otribling that coess to be the miversal mothod by waich muman beinge learn onything now. The rually good teachor of mathomatice rejoices in this oternal challenge to hin to reconcile irreconcilables. Eo daree to begin precise aubjects 11 ke algebra and demonetrativo geomotry with a cortain degree of nonchalance. He does not try to toll the papil overy detall when considering the firet equation, but prefors to
consider the eolution of eeveral equations in fairly rapid euccession and truste in that manner gradually to build up the correct doctrino. He does not insist on technical verbiage at the outset. He leapfrogs dreary book theorems in geomotry and plunges into a consideration of oasy originale, trusting that by so doing the pupils will acquire inductively a feel for logical deduction. He will not hamper this early learning by insisting on stereotyped procedures, whether with equations In algebra or with proofs in geometry. And yet, with all thie desirable nonchalance at the outset, he muet know when and how to question his early procedures of this sort and must load h1s pupile oventualiy to amplify and amond thom.

BASIC GBCNISIFY was used for seven Jears in regular classes in the h1gh echool at Nowton, Massachnsette, before it vas publiahed in its present form. To a teacher whose eorlior experience with geometry diffors frem this presentation it is admittediy somowht confusing at the outset. Because of this earlior axperience of a different sort the teacher vill often make hard vork of an exercise that sooms atraightforvard and simple to the student. An axcellent axample of this is to be found on page 115, Fxorciee 22. Originally Mg. 11 carried a dottod line EF parallel to AB. This was inserted by one of the authors to lead the pupils toward the proof. But the pupils needed no ouch help, using Principle 5 at once. Thie line $E F$ was a result of the author's earlier training in geometry. Arter this had boen pointed out by Mr. Enoch in one of the first jears of the Newton experiment, the dotted ine was expunged, Dut so reluctantly that the letter F hung on through the firgt printing of the book. The etudents do not have this sort of difficulty. Consequently, a teachor in his first experionce with BASIC GBOLSIRY will do well to observe the methods used by his pupils.

Students of averege ability and bettor, the sort who succeed in ordinary courses in geomotry, will be at least equally successful with BASIC GEOELETRY. It is the common experience of teachers ueing this bcok that classes get into the heart of eeometry much more quickly then when a book of the conventional kind is used. Pupils whose ability is below average, the sort who tond to memorizo under conventional instruction and pick up a mumbo-jumbo of geometric jargon without really knowing what it is all about, will find that BASIC GFONEIRY offors little fiold for momrizing and sote no store by technicel jargon. Such pupils oither catch the spirit of BASIC GECAEIRY and win a moderete euccess, or they drop out early in the race. The real lose under BASIC GFOMEIRY io no greator than In conventional classes; the apparent lose 18 admittedly greator, becaues BASIC CBOMAIRY - with ite brief list of "book theorems" and its insistonce on "original exercises" - offors little refuge and scant reward to a protense of understanding. But anyone who profite genuinely from a conventional course will derive at leest an equal, and probably a greator, profit from BasIC GBCNEIRI.

Studente who use this book and then go on to solid gecmetry are not hendicapped by thoir unveual training in plase geomotry. If andthing, they do better than students who have studied plane geometry in the conventional way. This 18 borne out by the experience of Mr. Mergendahl, head of the department at Nowton High Schcol, who has regulerly taught eolld eeometry to classes composed of pupils some of whem have had a conventional course in plase geometry while cthers were brought up on BASIC GEOMEIRY. This is as nearly impartial ovidonce as we cen eot; for Mr. Mergondahl has not used BASIC GBCAEIKY in hie own claseee, though he vae responsible for initiating this experimert at Nawton and hee onccuraged it and followed it with o highly intelligent intereat.

The following time echedule will eerve to guide the teacher in hie firet experience with this bock.

This schedule is based on a school year of at least 34 solid working veoks, with four 50-minute (or longer) periods a weok devoted to geometry. If the course can be spread over two yeare, with at least 68 periods each year devoted to geometry, the pupils will learn and retain more than 11 the 145 periods of geometry are concentrated in one year. This oxtension of the calendar time during which the pupil is exposed to this eubject will aleo help the other subject with which the geometry presumebly altornates. Ordinarily thie other subject will be second-year algebra. Under this altornative a good procedure is to devote ell four periods for the firet two or three weoke of the firet jear to the geometry until the course is well started and then to altornate with algebra, doing geometry on Monday and Tuosday, for example, and algebra on Thursdey and Friday of each wook.

One last word before we proceed to consider this book chapter by chaptor. The introduction, the foctnotes, the eummaries at the ond s of the chaptors, the Lave of Number, and the index are intended to help the teacher in presenting this novel course in geometry and reasoning to secondary achool pupiis. The authors euggest that teachers make full use of these aids.

Coorge David Eirthoff

Ralph Eeatley

CBAPTER1
 Iesson Plan Outline: 9 leseons

1-2. Through page 19, Ex. 2
3. Exe. 3-7, pages 19-20
4. Discuss theorens A, B, and C in clase and assign page 24, Flx. 1, 2, and 5
5. Fx. 3, 4, and 6, pages 24-25
6. Converec proponitions, and Ere. 1-11, page 28

7-9. Pages 29-36
The authors intend that the pupils will read and discuse this chaptor in class, section by section, doing some of the oxercises in class and others outside of class. The pupils ought also to reread the text quietLy by thamselves outside of class and make a conscious effort to remember the main ideas of the chaptor. Chapter 1 is introductory in character and fundamontally important for all that follovs. Nevertheless, conpleto appreciation of this chaptor will come only after the pupil has gone deeply into the oucceeding chepters. Consequently it vill be bettor not to plod too painstakingly through Chaptor 1 at the start, but to try instoad to take in ite main features fairly rapidly and then roturn to it from time to time for careful study as questions arise concerning the place of undefined terms, defined torme, aseumptions, theorems, converses, and so on, in a logical aystom.

Page 14, line 3: "Equal"versus "Congruent." The eyston of geometry sot forth in Chapters 2-9 makes no use of euperposition and does not require the term "congruent," which some other authors think they need. These other authors take "rigid," "motion," and "coincide throughout" as undefined torms, though they do not declere then to be euch. They then say that if, by a rigid motion, two figurea can be made to coincide throughout, they are "congruent"; and if congruent, that all corresponding
parts of the two figures are "equal." By "perte" they usually moan line-segments and angles. So now wo know what "equal" means, at leat when applied to geomotric figures that are parts of other geometric figures. These authors could have applied the term "equal" to the congruent wholes as woll as to their corresponding parte. But, as wo shall see, many of them do not permit this use of "equal" with respect to two geomotric figures that are momentarily regarded as wholes, even though these same geometric figures can be regarded also as parts of other pigures. In sum, these authors define "congruent" and "equal" in terms of "rigid motion" and "coincide." Whole igures can be congruent; partial figures can be both congruent and equal.

Poseibly this strange diatinction had ite origin in the desire to prove the equality of the measures of line-segments, or angles, by showing the line-segments, or angles, to be corresponding parte of congruent figures. Interest was centered not so much in the geometric configurations as in the numbers that measured them. But Euclidean habit confueod ins-segment and 1 te measure, and angle and 1 te measure; and this habit has persisted to the present time. Though ine-segments are called equal, it is their longthe that are moant. It would appear then that two triangles cannot be called equel unless these geometric figures eleo have some characteristic numerical msasure in common. Since a triangle encloses a part of its plane, its area seoms to be a more eignificant mature than 1 te perimeter, which 18 but a composite of the lengthe of the line-begment eides. If thia is the reason for calling two triangles equal only when they are equal in area, it seome hardly edequate.

The undefined idea - roally two ideas - of rigid motion implies motion without distortion; that is to say, without resulting inequality. Inheront in the undefined torm "rigid" is the idea "equal" that later will be defined in terme of it. If it were proper to challenge the undefined
term "coincide" and inquire what is the criterion for testing perfect fit, in onder to distinguish betweon an apparent fit within some recognized linit of orror and a genuine orrorless fit, can one imagine an angver that does not involve equality? Of these four ideas, rigid motion. coincide, congruent, and equal, does ono stand out as clearly more fundamental then the others? The authore of BASIC CECAFIKRY eay, "Yee, equal." Other authors say, "R1gid motion." Lot us see how these other authors proceod.

If two triangles have an angle of one equal to an angle of the other and the including sides also equal, wo can bid one triangle remain rigid and can move it 80 that certain parte of it fall on - more or 1088 - the corresponding parts of the other triangle. Can these corresponding parte then be made to coincide? It is ao asserted. Why? Bocause they vere given equal. It appeare that if two lino-segmente or angles are equal and stay equal while in motion, then they can be rade to coincide. The rest of the coremony concerning these triangles consiste of showing that the thind pair of eides coincide, and honce are equal; and that the other two paire of angles are equal also, becauee coincident.

We have seen first that three paire of parts coincide because they are equal, and then that three other pairs are equal because they coincide. What then 18 the diatinction botweon congruent and equal? Lot us look further.

Some followers of the "congruent" school insist that two parallelograns that are not congruent can be oqual. When they apply the torm equal to two "whole" flgures of this sort, they mean equal in area. Occasionally the vhole figures may be congruent, but ordinarily not. An adult layman would nover call two euch Pigures equal, whose corresponding parts are ordinarily unequal and whose only common property 18 their area. If this is the ipportant distinction between congruent and equal wholes,
no wonder that pupile who are juet beginaing demonstrative geometry are bafflod by its metories.

The authors of BASIC GEOMgIRY regard the term "equal" (seo pagee 39 and 285) ae familiar to overyone and not requiring to be dofined. Taken as undefined, it can be applied 1 mmodiately to numbers, and aleo to goomotric figures that are wholes, as voll as to figures that are parts of wholes, juet as everybody would normally expect.

Incidentally it mat be clear why the authore of BASIC GECNBTRY are glad to avoid proving a "side-angle-side" thoorom at the vory beginning of domonstrative geomotry, and prefer to include the content of thie proposition in a fundamental assumption, Case I of Sinilarity. Soe BASIC GROMAYIRY, pages 59-60.

Peges 14-15: Circle, diamotor. Unfortunately, mathematicians do not always adhere to thoir own canons of accuracy with respect to torminology. Occasionally they wink at cortain inaccuracies and inconsistencies and agreo, in effoct, to confuse colloquial and technical usage. It is nocossary that pupile should lonow which mathomatical torms aro somotimos ueed loosely; for example, circle, circumforenco, diamotor, radius, altitude, and modian.

At first blueh it soems as though the strict moaning of "diemster" mast be "through-moasure," a number and not a line. But inasanuch as Euclid represented numbers by line-segments, the "through-meaeure" of a circle was to the Grooke a line-segment containing the conter of the circle and torminated by the circle, or ansther line-segment equal to this. Thie ambiguity has probably lod the makers of dictiosarios to put the line idea ahead of the number idea. The ambiguoue torms radius, diamoter, altitude, and modian are treated consistently in thie book.

Page 15: "Thinge oqual to the same thing. . .." We are not oeger that pupile should adopt this wording, but all toachors know it and many of - 14 -
thom will wish their pupils to use it. It 18 a property of the undefined 1dea "equal" and 18 postulated for that prurpose. (See pages 39 and 285.) In this book we do not give any reason in support of statements like "PQ = PQ." Where other books eay "By identity" or "Identical," we eay nothing. One of the postulates governing the uee of the eymbol $=$ for the undefined term "equal" is "a=a." (Seo page 285.)

Pages 16-17: Exorcisos. As noted at the bottom of page 15, the students will need to consult a dictionary here. The teacher should remind his pupils that in mathomatics a dictionary can often be of assistance if only they will think to use one.

Answers are omitted for exercises where the correct anver 18 fair1y obvious to the teacher.
2. "Light cream" is hoavior. "Thin crean" and "thick cream."
3. Sugar dissolves in coffee, and buttor melts in hot oyetor stew.

Solid or frcizen substances whose melting point is below body temperature, namely $98.6^{\circ} \mathrm{F}$.

The 011 diseolves in the gascline.
9. South also.

Page 17: Assumptions. A proposition is meroly an ascertion; it is dovoid of truth value. Propositions are of two sorts: those that we aseume, variousiy called assurptions, postulates, axioms; and those that wo can doduce from the assumptions. These lattor are called theorems. One person's theorem may be another person's asoumption. It is the logical relation, not the verbal content, of any given proposition that classifies it as assumption or theores.

Page 18: " $4 \times 8=28 . "$ If this example leads to momontary consideration of number aystems with base difforent from 10 , let the teecher be warned that expressions like $4 \times 8=52$ and $4 \times 8=57$ mut be avolded; they will not have the meanings that pupils will wieh to ascribe to them.

For, while $4 \times 8=(5 \times 6)+2$ in our ordinary arithmotic, wo cannot write $4 \times 8=52$ in the number aystom to the base 6 because that systom has no 8. Similariy, while $4 \times 8=(5 \times 5)+7$ in our arithmotic, noither 8 nor 7 appears in the number systom to the base 5 . Pages 19-20: Exercises.

1. a, d 2. c, b 3. d, a 4. b, c
2. Solid ludge sinke in molton runk. Or, solid runk ploats on molton ludge.
3. True 11 base 185.
4. That the government chose to test the twelve best of all brands of woathor-atrip mamufactured, and that among these twolve the rating of 93% officiont was very high.

Page 20: The Naturo of Goomotric Proof. It must be amphasized that the three aseumptions on this page, Theorams A, B, and C that follow, and the theorems in the Exercises on pages 24-25 are not part of the official geometry of this book. They constitute a miniature geometry to shov the logical relation betwoen assumption and theorem, and to afford an oxample - intentionalif a bit casual - of the proof of a theorem. This is not the place for the toacher to begin to inaist on certain procedures in proving theoroms, such as soparating statements and reasons into two clearly divided coluwne, or to insist on the use of certain technical torms and phrases. Our goal in teaching goomotry - and it is a difficult ono to attain - is to olicit clear thinking. While there is undoubtediy a definite connection betwoen clear thinking and clear oxpression, the parrot-like repetition by pupile of accurate statemente insisted on by textbook or teacher is all too often an obstruction to thinking. It is admittodly not easy to combine accuracy of thought with informality of expression, but this combination is peychologically desirable at the beginning. Indeed, if the pupil is to be oncouraged to
transfor his skill in reseoning from geomotry to non-mathomatical situations, it vould be well to relieve him for all time of the requirement of learning a rigmarole of proof that 18 peculiar to geometry (under $80 m$ teachers) and has no counterpart in other walrs of ilfo. Specificelly, the ertificial separation of statements and reasons by a vertical ine dram down the page can be a dofinite handicap to the transfor of learning in geometric aituations to other eituations in which the reasons in support of an argumart are coamonly incorporeted in an ordinary paragraph. Adnittediy the vertical line meked it easior for the teacher to check the pupil's vork and this consideration deserves some velght. Posaibly a compromise can be offected here, whereby the pupil 10 asked to subint proofs in paragreph form once or twice a veek, understanding that this 1s the ideal form for submitting argunants in general, and is asked to uee the vertical ilne at other times in order to save the teacher's t1mo.

There 18 no need to add to the three aseunptions on page 20 a fourth esaumption to the offect that the corresponding parts of equal triangles ere equal, for all this 18 implied by the tern "equal," which wo take as undefined. Surely the wcrd "equal" carries univereally the implication that correspording parte of equals are equal. (See pages 57, 59, and 60.)

Page 22: Eypotheais, Conclusion. It is important to noto that ine 7 does not eay that the hypothesis is co-oxtonaive with the "if-part" of the etatement of a proposition. Usually the "if-part" contains the "univeree of diecourse" 28 vell at the particular condition of the proposition. By inplication the univorse of dieocuree is a part aleo of the conclueion, though it is uevally not inoluded in the "then-part." For example, in the proposition "If a quadrilatoral is a parallelogran, the diagonal bisect each other" the universe of diecourse 10 the quadrilatoral, the thing wo are talling about. The universe of discourse is atill
the quadrilateral when the froposition 18 stated in the form "The diagonals of a parallelogram biaect each other."

Unfortunately the Engliah language ofton pormits more than one way of writing a proposition in "If.... then-..."form. There is no hard and fast rule by which the teachor can circumvent these ambiguities. This oubject 10 coneidered at greator length on pages 28-33 of this manual as part of the discussion on the framing of converse propositions.

While it is convenient and important to refer to the "If . . ., then - - -" form, the teacher should note that the "then" 18 usually onitted. Wo have indicated this on page 22 by onclosing the "then" in parenthoses.

Although the "If- . . , then- . . " form is characterietic of deductive reasoning, the teacher should recognize thet it is omployed also in inductive thinking. He should be ready, therefore, to dispel this possible cause of confusion when induction is considered on pages 273-276.

It is not enough that the pupil shall know how to write a geometric proposition in "If- . . , then- . . " form. He must be able alao to translate the vorde of the proposition into a proper goometric figure. To eee that he acquires this ability is only one of the many important Sunctions of the teacher.

Page 21: Theorem A. Some teachers will think that the analyais of this theorem, presumably the first that the pupil has over mot, is disposed of too quickiy; and similarly in Theorems B and C. It is our studied policy, however, to exhibit several proofs in fairly rapid ouccession, so that the pupil may got a rough idea of what is oxpected, and then to provide oxercises immediately thereafter on which he can try his hand. We are much more interested that he "get the hang of the thing" right from the start than that he dwell on detalls. We would omploy an inductive mothod in teaching deduction by showing a fow deductions and
allowing the pupil to induce what he can of deduction from then. Then let him learn more "by doing."

A false lead - but a perfoctly natural one - was purposely introduced into the analyaia of Theorem A. We vant to encourage the pupil in trial-and-error thinking and wish to avoil giving the impreseion that wo are sotting up a model proof in pinal form and axpecting him to follow the pattern closely. It seems to us that the schools have done onough damage by beginning demonstrative geomotry in that vay for the last hundred jears. We are not contont to show the pupil one correct mothod of proof; ve vish also to show him "why it cannot be done hie way," and to indicate that a Pov changes in the proliminary set-up would make his way just as good as ours. A pupil who is trained to consider the relation of overy proof to the body of assurgtions from which he is voring will gain both understanding and appreciation of the nature of proof. Teachers of geometry, comitteos, and comissions say that wo ought to do this. Vory voll, hore it 1s:

Page 23: "Logical rofinoments." Of course, in this miniature geometry which we present here in Chapter 1 in order to give the stadent eome notion of the nature of logical proof, we have already made clear on page 20 that we noed to borrow cortain definitione from the main body of this geometry. Similarly, we noed to borrow certain implications of the Principles of Line Measure and of Angle Measure that appear later in the main geomotry. We have chosen not to be too rigorous here in order not to distract the papil from our main parpose. We have, however, choson to insert a remark on page 23 that implies that oven when wo got serious In developing the main geomotry of this book, wo shall oven then put a ilmit to Figor and aball ignore cortain Mn points. Ne believe, nevertholess, that BASIC GEONFIRT is more Pigorous than othor geomotries propared for eocondary echools, and that it sote a good example in calling
attention openly to those instances where the logical rigor is relaxed, and in indicating in the toxt, or in a footnote, or in the Manual for Tenchers, just what is involved.

The logical refinements that "we usually ignore" concorn the oxistence of the midpoint of a line-segment, the existence of the bleoctor of an angle, the oxistonce of a unique perpendicular to a line at a point of the line, and the five theorems lieted below. In BASIC GBOMETRY the three oxistence theorams Just mentioned are epecial instances of the Principles of Line Moasure and of Angle Measure. As will be shown in the commente on Chaptor 2, thes follow imeodiately from the fact that the Principles of Line Moaeure and of Angle Measure involve the Syetem of Real Niumbers in a fundemental manner. Consequently BASIC GROMSIRY has no difficulty with hypothetical constructions, with which other eystems of geometry are plagued. That 1s, other geometries vould like to prove in advance the oxistonce of certain points and lines that they noed in the proofs of cortain theorens, and not merely take these oxietence 1deas for granted. If they adhere to thie program faithruliy they find it hard to avoid "reasoning in a circle"; or, if they eacape this logical error, it is only by constructing a sequence of theorems that seong to the beginning student to be quite devoid of order and of sense.

The intimate association of the systom of real numbers with the Principles of Line Moacure and of Angle Moasure not only establishes the crucial pointe and inses wo noed at the beginning, and 20 romoves all question of hypothetical constructions from BASIC GBONSIRY; it also onables ue to prove cortain fundamental theorems like the five lieted belov that are assumptions, but unmentioned aseumptions, of Buclid's Eloponte and of ordinary systoms of geomotry since Euclid. In BASIC GBOMEIRY vo choose to 1 gnore fundamental theorems of thie cort because both the contont and proof are remote from the interests of eecondary school pupils.

It should be omphasized, hovever, that these fundamental ideas that wo choose to ignore for pedagogic reasona are theoreme that can be proved In BASIC GBOMEIRY. Our failure to mention them explicitiy in the book forces them concoivably into the samo category as Principle 4, the converse of Principle 3 (page 84), and the two area assumptions on page 199; lut all of these can be deduced from Principles 1, 2, 3, and 5 of BASIC GEDMSIRY. They are tomporary assumptions by choice, and not - as in other geomotries - permenent assumptions by necessity.

The live fundamental theorems reforred to, each of which is proved by mans of the continuity inherent in the systom of real numbers, are as follows:
(1) That a plane ie divided into two parte by any line in the plane.
(2) That a straight inne joining points A_{1} and A_{2}, on opposite sides of line 1 , mat have a point in common with 1.
(3) That every line that containe a point P on one of the sides of triangle ABC and does not contain a vertox must have a point in common with one of the other two eides of the triangle.
(4) That a ine joining a point inside a circle and a point outeide the circle ruet have a point in common with the circle.
(5) That a circular arc b joining a point inside a circle a to a point outaide circlo a muet have a point in common with circle a.

These five theoroms are proved in the following mannor, making free use of the continuity of the systen of real numbers. The methods ueed will indicate how other similar fundamental ideas can be established that are not montioned hore but that may occur to toachers as they etuis the foundations of geometry.

Pundamental Theorem 1. A plane is divided into two parts by any ine in the plane. That is, the points of the plane are divided by the ine into three classes, those "on one side" of the line, those on the inn,
and those "on the other aide" of the line; whence those points on one side of the line and those points not on this same side of the line constitute the two parts of the plane referred to.

Proof: Consider a random point 0 on line 1. Connect 0 with other points A in the plane that are not on 1. These connecting line segments make angles θ with 1 that differ from $0, \pi$, or 2π because these points A are never on 1 . We can divide these points A into two classes:
(1) those for which $0<\theta<\pi$, and
(2) those for which $\pi<\theta<2 \pi$, where $\theta=\theta$ (modulo 2π). We shall

Fig. A call the points of the first class $A_{1} ' s$, and those of the second class A_{2} 's. From our Principle of Angle Measure (page 47) amplified as on page 231" vo see that as A varies continuously through many ouitably chosen points A_{1}, such as the points of the curve c in Fig. A, θ varies continuously through a range of values that are always between 0 and π.

Now consider another random point O^{\prime} on line 1 and join O^{\prime} to all the points A_{1} just traversed by A. The angle θ^{\prime} varies continuously also, but cen never equal π; for if it did, A_{1} would 110 on 1 , which is imppossible. This means that for all A_{1}, if θ^{\prime} over has a value less than π, It can never take a value greater than π, and conversely; for if it could, then θ^{\prime}, in varying continuously, would have to equal π momentarily. Conequently, as point A traverses a series

Fig.B

[^1]of pointe A_{1}, indeod all the points A_{1}, θ is botween 0 and π, and θ^{\prime} 1s olthor botwoon 0 and π or olso botwoon π and 2π. S1milarly, if $\pi<\theta<2 \pi$, then olther $\pi<\theta^{\prime}<2 \pi$ or olse $0<\theta^{\prime}<\pi$. We can provo that in oach case the first altornative for θ^{\prime} ie correct and the oocond altornative is faleo, as follove.

Consider a particular 1 int A_{1} and regard $A_{1} O^{\prime}$ in Mg. A as playing the role of ver in Fig. B on page 22. 0 plays the role of the roaning point I in Pig. B, where now 0 , instoad of varying along a curve that

Fig. A includee nelther M nor N , will vary alons straight lino 1 and 00 will coincide ovontually with 0^{\prime}. We know that $\theta, \pi-\theta *$, and θ^{\prime} all vary continuously; the flret two botween 0 and π, and θ^{\prime} o1 ther between 0 and π or between π and 2π. But since θ can be montarily equal to $\theta^{\prime}, \theta^{\prime}$ must have at least one value betveen ' O and π and so cannot have any value betreen π and 2π. Thus θ^{\prime}, varying contimouely, mat alvays have values betwoen 0 and π when θ has values betwoen 0 and π.

81milarly, if wo considor anj point A_{2}, wo havo $\pi<\theta<2 \pi$ and $\pi<\theta^{\prime}<2 \pi$.

This moans that the soparation of pointe A into clasess A_{1} and A_{2} with respect to 0 iq unaltered when the separation 18 made with respect to any other point 0^{\prime} on 1. That 18, all the points on 1, and $60 \underline{1} 1$ teelf, soparate the points A that are not on $\underline{1}$ into two clasees in the sase way. The pointe of one clase are said to be on one alde of line 1 ; the pointe of the other class are sald to be on the othor side of line 1.

Pandamontal theores 2. A etraight line joinine pointe A_{1} and A_{2}, on opposite sides of line 1, mast have a point in common with 1 .

[^2]Proof: Corsider a random point 0 on line

1. See Fig. A. Lot 0 vary along line 1. As it does 80 , angle $A_{1} \mathrm{OA}_{2}$ will vary continuousiy, eince it plays the role of angle NXN in Fig. B on page 22. This angle $A_{1} \mathrm{OA}_{2}$, or $\theta_{2}-\theta_{1}$, will vary continuously from 0^{+}radians (whon 0 1e way out to the right) to 2π-radians (when 018 way out to the loft).

Consequently for some position of 0 the value of $\angle A_{1} O A_{2}$ will be π radians and $A_{1} O A_{2}$ will be a otraight inne having point 0 in comon with 1 .

Fundamental Thoorom 3. ("Pasch's Axiom") Through any point P on one side $A B$ of triangie $A B C$, overy line 1 that does not contain a vertex has a point in comon with either BC or AC. See Fig. B.

Proof: Angle BPC 18 botwoen 0 and π; also, the given line 1 contains a half-line with ondpoint P that makes $w i$ th side $A B$ an angle ϕ difforent from $\angle B P C$ and such that $0<\phi<\pi$. Lot point Q trace out the broken line BCA so that

Fig. 8 angle $B P Q$ varies continuously from 0 to π. Por some position of Q angle $B P$ ie equal to ϕ, and $Q 18$ the intersection of 1 and the broken line BCA.

Fundemental Theorem 4. A line joining a point ineide a circie and a point outside a circle met have a point in oomon with the circle.

Proof: If, in Fig. C, Pis inside the circle and Q is outaide, then from the definitions of "circle," "inside," and "oute1de" on page 133 - 1t followe that $O P<r$. Lot D ve the foot of the perpendioular from 0 to the line 1 joining P and Q. Then $O D \leq O P<r$ and $V_{r}{ }^{2^{-}}-\overline{O D}^{-}<r$. Wo can lay off this distanoe

Fig.C
$\sqrt{r^{2}-D^{2}}$ on 1 in two directions from D and thus determine two pointe on 1 that are at a distance r from 0 . These two points will also be on the circle. See page 138.

Fundamental Theorem 2. A circular arc b joining a point inside a circle a to a point outside circle a must have a point in common with circle a.

Proof: Given P inside and Q outside the circular arc a with canter 0 and joined by the circular arc b with center 0^{\prime}, wo see that $O P<r$ and $O^{\prime} P=r^{\prime}$. Consequently O^{\prime} mast be less than $r+r^{\prime}$ and we have the case of two circles inter-

Fig. A $\cdot 0^{\circ}$ secting in two points as shown on pages 142 and 143.

Returning to Theorems A, B, and C, pages 21-23, wo see that the Pinciple of Angle Measure, amplified as on page 231, suffices to establish the unique bisector of angle A and to insure that this bisector meets BC between B and C. For as X varies continuously from B to C in Mg. B, angle BAX varies continuously from 0 to $\angle B A C$, and vice versa. Corresponding to the unique number that is half the sum of the numbers assigned to the points B and C there is a unique numbbor that 1108 between the number assigned to the

Fig. B half-ilnes $A B$ and $A C$. And vice verse, corresponding to the unique number that is half the sum of the numbers assigned to the helf-ilnes $A B$ and $A C$ there is a unique number that 1108 between the numbbors assigned to the pointer B and C. It is the object of Theorems C and B respectively to prove in effect that this "unique number that 1108 between - - -" $11 e 8$ Just midway between. Iron in the main part of this geometry, however, we do not intend to make such conspicuous use of numbbor in discussing or proving theorems. For the most part we shall be
content in the knowledge that the system of real numbers is back of us to help us whenever we may be challenged.

All that 18 expected of the pupil with reepect to Theorems B and C 18 that he shall see for himself that onough parts of two triangles are given equal, or can easily be proved to be equal, to onable him to prove that the triengles are equal. For the teacher to lead the pupil by hint or euggestion to the giet of the proof and then stress the form of the proof that the pupils mat uee is quite the opposite of what the authors deeiro. Thoy much prefor that the pupils see the relations botween these three theoroms than that they use thom as dress rehearsal for a new bit of verbal gymastice. The chief aim of the authors with respect to the three assumptions on pege 20 , the three theorems A, B, C, and the further theorems suggested by Exis. 1-4 on page 24 is that the pupil shall see them as a whole and shall recognize that these propositione, together with cortain undofinod and dofined terme, constitute by themselves a miniature geomotry. This is mentioned on page 25 of the book and is there related to the main system of geometry in this book that begins in Chapter 2.

Pages 24-25: Bxorcisos.

1. Cortain teachers will insist that linos PA and PB ought to be shown in Fig. 5, and that they ought to be full innes and not dotted, in order to conform to a convention that given and required lines, or longths, shall be shown as full lines. The authors do not oppose this convention whenever it coincides with their larger aims, but they do not intend to be bound by it whenever they think that the interests of the pupils can be better served by ignoring it. Often this convention requires that the book show lines that are essential to the proof but are better withheld till the pupil sees the need of them. In ouch cases the authors profor to have the pupil supply the
necessary lines on his own diagram. Sometimes also the authors choose to omphasize the crucial lines of a configuration by suppreseing lines of secondary importance. They regand the diecovery and appreciation of geometric relations, and of logical relations, as more important to the pupil than the preservation of certain conventional proceduros.
2. The word "theorem" is not to be interpreted as meaning only eonerel propositione. The definition of "theorem" on page 19 is broed enough to include propositions that are etated in terms of a particular figure.

Do not suggest the theorem and its proof. We vant pupils to 600 problems as well as to solve problems proposed by other poople. It would be good to tell the pupils precisoly this and to anticipate a good response. We met train pupils to look for relations and not encourage thom to wait till the rolations are handed to them.

In Exe. 2 and 3 they are oxpected to 800 and prove two of the following three theorems: (1) that $\angle A B D=\angle A C D$, by Theorem A; (2) that $A D$, when drawn, will bisect $\angle B A C$, by ABsumption 1 ; and (3) that $A D$ will bisect BC, by Theorem B.
4. The pupil may suggest eeveral relatione between the angles of this figure that are true, but they all involve the relation $\angle A=\angle D$, 80 this mat be proved in anj case. Som pupils will suggest that triangles BAC and BDC are equal. They may even eay that whenever three sides of one triangle are equal to the three sides of a second triangle, the triangles are equal. That is, they may even announce a general theorem, one that 18 independent of the particular diagram shown in Fig. 7.

These first four exercises are well within the powers of pupile in the junior high echool even. The authore believe that this sort of exercise is easier and more significant than the traditional reciting
of proofs of the firet two congruence theorems and of the dreary pronouncoment that vertical enslee are oqual. They wieh their attitude to be interpreted es "Biving the game back to the studente."
6. (a) In e circle, if chords are equal, then the chords are equally dietant from the conter of the circle.
(b) If a quadrilateral is a parallologram, then the opposito angles of the quadrilateral are equal.
(c) If a baby 18 hurgry, then the baby cries.

Puge 25, last ine. The authore wioh to begin usirg the word "demonstration" at this point but know of no definition that would not be paychologicelly ridiculcue. Coneequently they have introduced the word with no explanation except as may be eathered from the eeries of examples of demonetration on the imeodistely precedire pegee. Much of our mother tongue ie learned from encounters of juet thie sort, with nothing but the context to euggeet the meaning.

Fage 26: Converse fropositions. The teacher ehould note that a propoition ie almot never stated in such a form that the converse can be written down merely by ilterally interchenging hypothosie and conclusion. Coneider, for exemple, the proposition "If two oblique lines are drawn from a point to a line, the more remote is the greater." In our coment on page 22 of the book (pege 17 in thie manual) we have called ettention tce the fact that the "univeree of discourse" is ordinarily mentioned in either the hypothesie or the conclueion. Sometimes it ie mentioned in neither, but it ie alweye implicit in both. So long ae it

[^3]is rhetorically a part of oither the hypothesis or conclusion of a propoaltion, but not of both, the proposition that is ordinarily recoenized by mathematicians ae the converse of the given proposition is strictly a pertial converse, the universe of discourse being kept as part of the new hypotheris (conclueion) instead of being made a part of the new concjusion (hypothesie). It is poseible, however, alwaye to separate out the universe of discourse linguistically from the if-part and the then-part. When thet is done, the converse proposition is correctly 6 iven by a complote interchange of hypothosis and conclusion. For oxample, in the proposition just mentioned above, the two oblique lines are not explicitly mentioned in the conclusion, although implied by the worde "more" and "ereater." The perpendicular from the point to the line is not mentioned in elther the hypothesie or the conclueion, although implied by the word "remote" and poseibly also by the word "oblique." The universe of diecourse in thie proposition can be soparated out by writing the proposition in tise following form: "Given the perpendicular and two oblique lines from a point to a line; if one oblique line ie more romoto than the other, it is greater than the other." The converse is "Given the perperdiculer and two oblique lines from a point to e line; if ono oblique line is eroeter than the other, it is more romote than the other."

If books on geometry alwaye took pains to write their fropositions 80 that a litoral interchange of this sort would gield the converse, there would still be the problem of training pupils to frame the converses of non-methematical propositione, where the separation of hypothesis and conclusion calls for considerable diacrimination. The pupile mieht as well face this problem in eeomotry, perticularly since e etudied offort to avoid it would result in very stilted statomonts of mens theorems.

The discuseion in the toxt on pages 26 and 27 1s intonded to be sufficiontly broad to rule out the necessity of mertioning so-called
"partial conversee." For while it is poseible to regard the vording of certain propositiors in such a way thet the hypothesis, or the conclusion, or both, shall eeem to have mare than one part; and while it is poseible then to devise all the partial converses that can roeult from interchanging one or more of these partisl hypotheees and conclusions, it is neither necessery nor desirable to do thie. If we will evoid e too ilterel interpretation of hypothesie and conclusion, and will first set. at one aide thoee idees in the proposition thet are obviously intended to be considered as invariant, then it is possible to frame the converse without raising the question of partial cenverses at all. As we shall eee two paragraphs farther on, a proposition can be so worded that it hae more than one meaning, although the persor who wrote it intended that it ehould have only one. In such cases it ie necessary first to guese the writer's intent. Admittediy it requires a modicure of common sense to do this, and some egreoment as to what is commonse in a given case; but it eesms better in writine converees to rely charitably on a bit of "I know what you meen" and "you know what I mean" than to lose ourselves in the alternative of a maze of partial converses.

It may seem preposterous to some that we insiet regularly on correct thinking and accurate expreseion and then advocate thio apparently lackadaisical tratment of converses. Actually our interest in preciee thought and expression 18 unabated. But wo must boar in mind that the inconeistoncies and colloquialiems of the English language make it a difficult and unnatural vohicle for eustained orderly expression of logically connected 1deas. This is true of other livine languages also, and explains why those who write on logic and on the foundations of mathematics omploy some form of the artificial Pearo notation that was devised for this special purpose. So long as wo continue to use English in our mathomatice classes, we ehall have to forego the complete accuracy of expreseion that
wo should like to demand of our pupils - and of ourselves. A reasonable relaxation in the face of necessity noed not imply - and surely does not imply in this instance - an abandonment of standande in genoral. Wo shall still domand all the accuracy that the pupil can fairly be oxpected to deliver.

Consider, for example, the proposition "In an isosceles triangle the bisector of the vertox angle bisects the base." (Defined on page 245.) It is possible to think of the triangle idea as alone invariant here. In that case there will be three parts to the hypothesis: (1) the 180sceles idea, (2) the inne-through-vertex idea, and (3) the idea that this line bieects the vertex angle; and there will be two parts to the conclusion: (1) the line through the vertox meots the base, and (2) this line bisecte the base. It is then possible to regard as a partial converee of the original proposition any rewording that interchangee one or pore parts of the mpothesis with an equal numer of parts of the conclusion. Thie will yiold nine pertial converses in all; six by interchanging one part of the hypothesis with one part of the conclusion in all posaible ways, and three by interchanging two parts of the hypotheaie with two parts of the conclusion in all possible ways. $0 f$ these nine, five are true and four are false. Of the five partial converses that are true, one is utterly trivial; one differs in only a trivial vay from the original proposition; one is the converse that we regard as "the real converse"; and the last two state essentially that if the bisector of the vertex angle bisects the base, then the triangle is isosceles. This has an interesting proof, involving the so-called ambiguous case. (Soe pages 186-188 of BASIC GEOMSIRY.) It appeare at f1rst that the base angles can be either equal or eupplementary. The latter alternative is then dismisesed as impossible because it requires two sides of the triangle to be parallel. The content of this proposition is as interesting as its proof;
but it is not what we should ordinarily regand as a converse of the original proposition unless, in resding the proposition, we give unusual stress to the word "180eceles."

Now all this seems protty far-fotched. The statement of the original proposition clearly limits the possible eituations to those involving an $1808 c e l e s$ triangle; 80 both the triangle idea and the isosceles idea ought to be regarded as invariant. If then wo think of the number of parte of the hypothesis as being reduced to two, while the conclusion keepe its two parts as before, wo have the possibility of five partial converses: four by interchanging one part of the hypothesis with one part of the conclusion in all possible ways, and one by interchanging both parte of the hypothesis with both parts of the conclusion. Of these five, three are true and two aro false; of the three that are true, one is utterly trivial and another diffors in only a trivial way from the original proposition. The third is the only one that tells us anjthing now; and this is the one that we should ordinarlly regard as the oonverse of the givon proposition.

By keeping the isoscoles idea invariant we have reduced the number of partial converees that met be considered; but wo mast otill pay a coneiderable price in falee and trivial propositions if wo go about the determination of converses in this manner. It is ovident that the singling out of the ideas that the line in question shall go through the vertex and that it shall also moot the base fields nothing of significance and serves only to add annoying complexity to an otherwise simple procedure. If then we refuse to regard the vording of the original proposition as inviting consideration of the possibility that the line in question avoids the vertex, or that it does not moot the base, then wo haveloft only one pert in the hypothesie and only one part in the conclusion; and
the interchange of these fielde the only converse that - from the pupil'e point of viow - can reasonably be ascribed to the original proposition.

In short, if one will read the statement of a proposition charitably, 1t 18 not hard to decide how the converse should be stated. It is quite unnecessary to introduce difficulties here that can be resolved only by the consideration of partial converses. True, there are a fow propoeitions thet are commonly worded in euch a way as seomingly to invite the introduction of partial converses. It 18 possible, hovever, to revord these propositions 80 as to remove this invitation; and that is a much oimpler procedure than holplessly to leave the traditional wording unaltored and expose oneself noedlessly to all the rigmarole of partial converses.

For example, one could say "Given two triangles in which two sides of one are respectively equal to two sides of the other; if the included angle in the first triangle is ereator than the included angle in the second triengle, then the third aide of the first triangle is ereator than the thind side of the second triangle." Inis ie not as clear as the ueusl wording, and requires a charitable inferpretation of the word "included." But the content of the converse 18 undetakable, whatever may be charged against the vay it is morded. Aftor all, every use of English in mathomatical situations requires some loniency in interpretation. In the case just noted it would seem botter to keep the suoother traditional vording and to rely on "You know whet I mean" when citine the converse; for the difficulty here is linguietic rather than logical. But we have indicated a way out for those who wish to avoid challange with respect to partial converses.

Page 28: Exercise8.

1. Converee is true.
2. Converse is false.
3. Converee is falso.
4. Converse is false.
5. Converse 18 fales.
6. Converee is true.
7. Converse is falee.
8. Converse 1s true.
9. Converse is falso.
10. Converse is faleo.
11. Converse is falee.

Page 28: "If and only if...." While the euthcre see no reaeon to mention the phrese "neceseary and sufficiert condition" in this connection, eince nc important use could be mede of it in this geometry, it is woll for the teecher to recognize that overy proposition "If A ..., then B..." can be subjected to two interprotetions: A 18 o eufficient condition for B, and B is a necessery condition for A. For exemple, in the proposition "If o quedrilateral is a parellologram, then two oppoeite eides of the quadrileteral are equel" the fact that the quadrilateral is a parallologram is a sufficient condition - but nct a necessary condition - for the equality of two opposite eides; aleo, the equality of two opposite sides is a necessary condition - but not o sufficient condition for the quadrilateral to be a parallelogram; for coneider in each case an 180Bcelee trapezoid.

Similerly, in the case of the converse proposition "If B, then A...," wo can say: B is o sufficiont condition for A, and A is a nocessary condition for B. Consequently, if anjone vishes to establish thet A is both - neceseary and a sufficiont condition for B, he must be able to prove "If B, then A " in addition to "If A, then B." That is, if a proposition and ite converse proposition are both true, the hypothesis (conclusion) of either proposition is a recessery and sufficient condition for the conclueion (hypothesis) of thie same froposition.

We make no uee of these idees in this book; but if the teecher wishes to use them, he met be warned against the comon error of pupile in conrusing the cclloquial and the ecientific uees of the word "necessery."

The pupil is likely to interpret "necessary condition for B" as meanine "If..., then necsesarily B," which is precisoly the opposito of accopted practice among mathomaticians. For "If..., then necessarily B" morely inteneifies the sufficiont condition for B by ineerting the word "necessarily."

Pagos 30-31: Rxorcises.

8. In a group as large as the total population of the United States, about fifty per cont would be below average.
9. Or wore the Navy and Yale teams atronger than Vornon and Aggio?

Page 32, lines 9, 10. The third stop ought to be $C D=C D$.
Page 33, 11nes 1-4. See comments on page 280, 1xe. 14 and 15, in this manual.

Page 33, lines 9-13 contain two very important ideas for the teacher to emphasize.

Page 33: Indirect Mothod. "Logically it is just as convincing. Logically yes, but not peychologically. Pupils are always dubious about the propriety of the Indirect Mothod. This is hinted at on page 35, innes 15-16 of the text. Logically it is indeed true that a proposition cen be established by showing that denial of the conclusion leads to denial of the hypothesis. That is, it is logically correct to aseert that the proposition "If B is not true, then A is not true" implies the proposition "If A 18 true, then B is true." For if this second proposition does not follow from the first, then ite denial mat follow from the first, namely "If A is true, then B is not true"; and e0, from the first, A is not true. But it is a fundamental principle underlying the sort of reasoning wo use in this book that A cannot be at the same time both true and not true. Consequently the supposition that the second propoaition does not follow from the first is untenable. Our reasoning here depende upon two principles that underlie all the reasoning in thie book
and all reasoning in everyday ife. The first of these prinoiples asserts that every mathematical entity and configuration oither poseseses a given property or else does not poseses it. The second principle aseerts that no mathematical ontity or configuration can posesess both a given property and ite opposito. These principles are often applied so $a s$ to mean, in effect, that every proposition must be either true or untrue; and that no proposition can be both true and untrue.

It 18 clear then that the Indirect Method is but an application of the logic underlying all our reasoning. It 18 clear also that to aseert the logical equivalence of the two propositions "If A is true, then B is true" and "If B 18 not true, then A 18 not true" is but to aseert in other phraseology the validity of the Indirect Mothod and henoe to aesert indirectly the validity of a fundamental principle of our logic. These 1deas will not appeal, of course, to secondary-school pupils. That 18 why on page 247 of the text we use the Indirect Mothod to establish the 1deas sot forth on that page and do not go baok of those ideas as we have just done here.

$$
\begin{aligned}
& \text { CHAPTER } 2 \\
& \text { Leseon Plan Outline: } 15 \text { leesons } \\
& \text { 1-2. Through page 45, line } 7 \\
& \text { 3-4. Through page } 51 \text {, Ex. } 8 \\
& \text { 5. Exs. 9-16, pages 51-52 } \\
& \text { 6-7. Through page } 56 \text { (The exercises on page } 56 \\
& \text { require time for careful conelderation.) } \\
& \text { 8. Page } 57 \text { through Ex. } 6 \text { on page } 61 \\
& \text { 9. Exs. 7-13, peges } 61-63 \\
& \text { 10. Exs. 14, 16-21, pages } 63-64 \\
& \text { 11. Exs. } 15,22-30, \text { pages } 63-64 \\
& \text { 12. Exs. } 31-34, \text { page } 65 \\
& \text { 13. Exs. } 35-38 \text {, page } 66 \\
& \text { 14-15. Pages } 68-69
\end{aligned}
$$

Page 38, line 15: "We shall need only five." See note in this manual, page 6, referring to pages 50, 198, 199, and 222 of the text.

Page 39. The undefined terme on thie page do not include the terme plane, even though the word "plane" appears on that page, because all the pointe and lines of this geomotry are considered as being restricted to an unmentioned and undeecribed domain, as indicated in line 5 and in lines 19 and 20. This domain is reforred to for convenience as a plane, but evory such reference could be roplaced by a circumlocution auch as "the class of all pointe - - -," or the like. If this geomotry included three dimensional material "officially," then we should need to list "plane" as an undefined term, or olse define $1 t$.

Page 39, lines 20-22: "Though it is possible to prove this." This hae alroady been proved in the comente under Chapter 1 in this manual.

Page 40, lines 7-10. These directione are meant to be taken literaily by the pupil.

Page 40: Principle 1. Of the five basic principles, nos. 1, 3, and 5 are the most important. They heve beon given distinctive labels so that they may be conveniently roforred to. Principle 1 says in offoct, "All the pointe on a etraight line can be numbered so as to serve as a ruler*"; and Principle 3 sare in offoct, "All half-11nes having the samo ond-point can be numbered so as to serve as a protractor." Notice the duallty" betwoen these two principles: all the points having a comon line - - -, and all the lines baving a common point - . .-

On pege 39 the undofined idea of straight line is assumed to include the notion that a atraight line is a collection of points. In Principle 1 these pointe are paired with the olements of som number eystom that vill arke an adoquate scale for line moasure. Noithor the syotem of intogere nor the system of rational numbers is adequate for this purpose, for wo alght comotime wioh to moasure the diagonal of a unit square, or the like. Consequently Principlo 1 implios that the pointe of a etraight line can be paired with the real numbers. This means that the properties of continuity and infinito oxtonsibility of the syeten of roal numbers are to be propertios also of any colloction of points that constitutes a straight line. Consoquently this goomotry doos not noed to state oxplicitly that it assumes the infinite extonsibility of straight lines; or that it asemes the oxistence of the mid-point, or any othor point of divieion, of a lino sogmont. These ideas aro all implied by tho intimato aseociation botwoen the syeton of real numbers and the points of a line that is inherent in Principle 1.

In similar manner the oxistence of the bisoctor of an angle is im-

[^4]plied by Principle 3, the Principle of Angle Measure, as otated on page
47. Coneequently, BASIC GBOATETRY is not troubled by the question of "hypothetical constructions" that plagues other geonetries. When wo sot out to prove the first theorem that involves the bisector of an angle, vo do not need to puzzle over the problem of hov to demonstrate the constructibility of the bisector vithout making use of the theoren vo wish to prove, or - foiled in that - to satiefy our conacionces that it vill be all right to prove the theorem first and demonstrate the existonce of the bisector later. For our Principle of Angle Meacure tolls us that in the case of any angle wo can always find the numor that it midway betwoen the numbers assignod to the sides of the angle. In this georetry, therefore, it is no impropriety to postpone all diecuseion of constructions until Chaptor 6.

There are probably other instances in BASIC GBOMdIRY where a traditional logical loophole will seom to be still unplugged and where toachere vill ear of the authors, "Ah, they've miased that one, too!" In moet of these cases, howover, the real number syeten, our over prosent help in time of trouble, will come to our defones. What counts as traly an omisesion or an oversight in other systems of geomotry may seom to be an omiseion or an oversight in this geometry also, whoreas actually it has been cared for under some aspect of the system of real numbers. Ei ther the seoningly umpontioned assurptions of this goomotry are really montioned but are not recognized as being mentioned because of this unueual tie-up vith real numers; or olse they are not aseurptions at all, but ilze the five theorems considered in our comente on Theoren A in Chaptor 1 - are direct, but unmontioned, consequences of more fundemental statements in this geomotry. There ie more moaning packed into the last paragraph of page 4 of the Preface of BASIC GEONEIRI than most teachere vill appreciate until they have poked around a bit in the collar of this
geometry. Nevertheless, deepite our great care to build a firm foundation where others before us have left a crack or two, it ie too much to expect that we have not erred eomewhers, either positively or by omiesion.

Surely ve have not eet down in the text a clear statement of all the properties bestowed upon straight line and angle by associating the syetom of real numbers with them. It is our opinion that explicit mention of these detalls would confuee tbe pupile. We have preferred, therefore, to let these details etand as tacit implications of the Principles of Line Measure and of Angle Measure. To some extent it is a matter of Judgment as to how many of the horrid detalls one can reveal without overwholming the student. We make a clean breast of the matter hore in this manual for teachers and leave the final decision to them. That is what this manual 18 for.

Page 40, line 17: Units of length. The implication here is that "a unit" 18 "an inch" or "a centimoter" or the like; that ie, "linch" or "l centimetor."

Pages 41-42: Bxercises. If in this geometry we were going to employ aigned numbers, directed distances (pages 42-43), and directed angles (pege 47), we should make more of the idea that is barely hinted at in Ex. 1. This idea comes to the surface momentarily in the Review Exercises on page 68, but we cannot do more with it without making the proofe throughout this geometry too fussy. For the most part we shall use uneigned numbers. Birkhoff'e treatment of this geometry in the Annale of Mathomatics uees directed dietances and angles, but it is clear tbat that treatment 18 too difficult for secondary school pupils. Nevertheless the autbors have felt bound in BASIC GBOMETRY to mention directed dietances and directed angles briefly, even though they diemiss the ides imaediately, because it adds to the pupil's appreciation of the difficulties attendent upon the measurement of angles if he considers, even momenterily, how elgned numbers can be ueed to distinguieh the four di-
rected angles of lese than 360° thet are formod by two distinct halfines having a common endpoint. (See page 235 of BASIC GEOMDTRY, and the comment farther along in thie chapter of the manual on Angle (8).)

In Exs. 5 and 6, 137 centimetere and 160 contimotors aro roughly equivalent to 54 inches and 63 incbee reapectively. Ferhape ecme pupile will obeorve this. The second parts of these exercises reveal that the ratio of two measures 18 the same, regandees of the unit that is used.

Page 43, lines 12-18. This 1dea that there are two and only two dietinct pointe on the line at distance $\underset{\sim}{d}$ from Q will prove very helpful leter when wo discuss the intersection of atraight ine and circle, page 138 , and the intersection of two circlee, page 142.

Page 43: Notion of Botweenness. Some of the logical loopholes in Euclid's Eloments are traceable to his fallure to mention oxplicitly certain ideas concerning the order of the pointe on eline, and the order of lines (or half-lines) having e common point; ideas which undoubtedly he would have accepted as a matter of course. In this geometry we use the ideas of order inherent in the system of reel numbers (see Postulates 18-20 on page 287) to establieh the order of pointe on a line and the order of linee through a point. Defining "betweennees" in terms of order - for numbere on page 287, for points on a line on page 43, and for lines through a point on pages 53 and 54 . we have the means of defining "line-8egment," "bisect," and "mid-point" on pago 44, "bisector of anele" on page 48, and "arc of a circle" on page 134. These latter definitions ell stem from the syetem of real numbers.

Page 44: Principle 2. Teachere will be interested to note here the duality betwoen the ideas "not more than one streight line through two givon points" and "not more then one point conmon to two given otraight lines"; to note aleo the breakdown of thie duality when "not more then one" $1 e$ repleced by "et leeet one."

Page 45: Half-11ne. The ecithors heve preferred to use the term
"half-line" Instead of "ray" for two reaecns: ite rejetion the perent endese line ia more cleariy indiceted by "half-ilne" than by "ray"; and neither torm 18 eo commonly used in slementery geometry that the dieplacing of one by the other 18 of any great moment. The teacher will note that it is slso poseible to divide an ondese straight ine into two parte such that one part contains P and all pointe whose numbers are greater than 2 , and the other part containe all the poir.ts whoes numbers are lese than E. But ve do nct call thie latter part a half-ifine. The definition of half-line demanda thet it heve an end-peint. The fhraee "divides the etreight line into two helf-ilnes" is not to be understood In the sense that two helves make a whole, because the point P must do couble duty, serving as end-point of each half-ine.

The pupil may be puzzied alsc by the atetement that the point P may be selected anywhere on the endless atraight line. He mat abondon any 1dea he may have hed that P 1a the mid-point of thia ilre. for the term "mid-point" ie defined on pege 44 of BACIC GEOMETRY - es in other elementery geometriee - with respect to line-segments only.

Theee difficulties are inherent in the concopt "ondless straight ine" and are not peculiar to BASIC CEOMETRY or te the word "haif-ilne." It is quite natural that we should try to apply the familisr rules of finite arithmetic to the erithmetic of infinsto numbers and should try to tranefor the idess aseociated with ended lino-segmerts to situstions involving ondese atraight lines. Nieverthelesa, we have no right to do so. Let the pupil conelder the difference between the finite eraemblageo $i, 2,3$, $4,5,6$ and $2,4,5$ and the infinite ase日mblages $1,2,3,4,5,6, \ldots$ and $2,4, c, \ldots$. . The second finite aesombiage contains helf as many integers as the firet; but there 18 the same number of intugers in both infinite essamblages. For all the integers ir the seccri infinite asamblage can be paired with ail the integery in the first, ard this - by
dofinition - is what wo moan by "the sane number" in the arithmotic of Pinite and of infinito numbers.

The ideas of infinite numbers and of infinite assemblage of pointe are far removed fran overyday 11fo. Neverthelese they are necessary and funderental to owr adult thinking about olemontary arithrotic and geomotry. Because they are fundemental they may arise in class discussions at the very begiming of geonotry. There it no was of avoiding then in any discussion of geonetry that aims to open the pupil's eyes to thinge as they are. Similarly, any pupil in an arithmotic class who inquires why the decimal equivalente of certain fractions contain onfy a few digits, while others 11 ke $\frac{1}{3}$ and $\frac{2}{7}$ have decimal equivalents that "go on forover," ondiessis ropeating a digit or a group of digits, can be anovered only by reference to the infinite divisibility of finite quantities.

Actualls the points of a half-iine, oaitting the ond-point, can be paired with all the points of an ondess straight line. For all the points except A of half-line 1 in Fig. A can be paired, by central projection, with all the points except the ondpoints A and B of the quadrant AB; this quadrant can then be altered to the send-circle $A^{\prime} B^{\prime}$, without end-pointe, of half the radius
 of quadrant $A B ;$ and all the points of this ecil-circlo, ondtting A^{\prime} and B^{\prime}, can be paired with all the points of the ondess straight line E. Consequentis a hals1ine, including ite ond-point, contains

Fig. A One more point than an endleas straight line: Jvidently the fariliar statement concerning finite quantities mine whale is greater than ant

[^5]of ite rarte and equal to the oum of them" is not appliceble to infinite quantities.

Page 46: Angle(e). It will be noted that in thie geometry "angle" 1s an undefined term. If this undefined term connotes - as it does to wot people - a concept that is unique, then the configuration shown in Fig. 5 1s highly ambiguous. For this ccnflguration shows two anglea AVB of lese than 360 degress in absolute value and indefinitely many more of ware than 360 degrees. A possible elternative is to kind ur all this ambiguity in the connotation of the undefined term iteelf, eo that it shall mean all possible angles AVB to all people. A partial paraphrase of Birkhoff's treetment of angle in his article in the Annale exhibite this elternative as follows: "The helf-linse 1 , \underline{m}, . - through eny point V can be put into one-to-one correspondence with the real numbers a, modulo 360, so that, if A (different from V) and B (different from V) are points of $\underline{1}$ and $\underset{\sim}{m}$ respectively, the difference $\underline{a}_{-1}-\underline{a}_{1}$, modulo 360 , is \angle AVB." After adding en important noto concerning continuity and ilnkine $\angle A V B$ with $\angle I V m$, he goes on to eey, "It will

Fig. A be seen that the angle $\angle 1$ Vm as here conceived is the directed angle from the half-line \perp to the half-line $\underline{\underline{E}}$ determining the position of \underline{m} relative to 1. The ordinery eensed angle of the usual type 18 obtained by taking some single algebraic difference $a_{-m}-a_{1}$ which 1 thought of as representative of an angle generated by the continuous rotation of a half-line from 1 to \underline{m}. The ordinary angle $\angle 1 V m$ is then given by the numerical value of the least residue of $a_{m}-a_{1}$, modulo $360 . "$ The meaning of this terminology is explained in the next paregraph for those who are not femiliar with it.

Linking the half-ilne 1 with the real numbers a, modulo 360 , means that if half-11ne 1 has the number 50 , it has the numbers $50 \pm n \cdot 360$,
whore $n=0, \pm 1, \pm 2, \ldots$ Similarly for the half-11ne m. Consequentiy the difforence $a_{m}-a_{1}$ flelds an inflnito sot of numbore having the sare residue (in absolute value) when divided by 360. Each of those algobraic differences correaponds to an "ordinary sensed angle of the ueual type." Thus 11 half-11no \equiv mas the number $470 \pm n \cdot 360$, some of the ordinary soneod angles $\angle 1 V$ are $420,60,-300$, and the ordinary angle $\angle 17$ an 16 60, which is the least residue. This "least residue" is that one of this set whose absolute value 18 leas than 180 . Of the infinite set of ordinary consed anglea $\ldots-\cdots, 590,230,-130,-490, \ldots .$. the ordinary angle is 130 , being that one of this set whose absolute value is lese than 180.

This complexity with respect to sensed angles explains why in BASIC GBOLLLRY we have chosen to deal with ordinary angles almost ontirely. On page 235 we have introduced directed anglea that are liadted for the most part to angles betroen +360 and -360 . Removing this reatriction and adnitting the general sonsed angle introduces further complications that would overwholm a pupil in his first month of damonstrative geomotry. To incorporate in the undefined torn "angle" the miltiple aribiguitiee that so easily asociate themselves with this torm, and then, in reoping with this idea, to define angle moasure so as to embrace the gonoral directed angle, 1e the mathonatician's way of bringing order to this chaotic topic. But the beginner, who ordinarily aees no complications of this sort, does better to associate with the undefined term "angle" a connotation inglying that an angle is unique. This is the connotation of angle that ho has gradually acquired in his previous schooling and wo do voll not to upeet it at this time. That 1 e why the taxt care (page 46, innes 1-3) that two balf-lines having the same end-point form two angles The footnote on page 46 refore to a mothod of distinguishing these two engles AVB by means of the 1dea of betveonness. One way of doing
this is to consider all pointe of the etreight line r through A and B as being numbered, and all the halfIInes heving ondpoint V as boing numbered. One of the angles AVB can be distinguished from the other

Fig. A by the property that eome, or no, half-line between the eides of the angle intersecte line r in a point bearine a number botweon a and b.

In the epecial case of straight angles, about to be considered, this line \underline{r} must be dram so as to intersect $7 A$ obliquely. The two angles $A V B$ can then be dietinguished by the property that som, or no, half-line between the iles of the angle intersecte line \underline{r} in a point bearing a nuwber lese than a .

One important reason for considering straight-angles is that they afford a vay of establishing a und of angle-moasure, as on page 50.

Pages 47-49: Principle 3. The comente pertinont to thie section on angle meature have boen given already in this chapter in other connectiono.

The socond paragraph of the footnoto on page 47 refors to an ambiguity in uase that has a parallel in owr ambiguous use of the toras "altitude," "diametor," and so forth, to denoto line-segronts and also their lengthe.

Page 50: Principle 4. Actually Principle 4 ia a theorem that can be proved by the aid of Principle 5. The proof is in two parts. Wo first
 then $\angle 10 \mathrm{~m}$ is a straight angle. Socond, vo prove that if the half-ilnes 1 and meot at 0 to form a stralght angle, the two half-ilines are "corresponding halves" of the same stralght line. By this proof of theorem and converse ve identify every straight angle with a etraight line.

[^6]Part 1. Given etraight line \underline{n} with point 0 and corresponding halfinnos 1 and ㅌ. Choose A in 1 and B in $m s o$ that $O A=O B$. In the degenorato triangles $O A B$ and $O B A$ we have $O A=O B$, $A B=B A$, and positive (counter-clockrise)
$\angle O A B=$ poiltive (counter-clockwise) $\angle O B A$.

Fig. A

By Principle 5, for consed anglee, ve have positive (countor-clockwiso) $\angle B O A=$ positivo (counter-clockwise) $\angle A O B$. But positivo $\angle B O A=$ negativo $\angle A O B$. Therefore $\angle A O B=-\angle A O B$ and $2 \angle A O B=0$, Indulo 360. It follove that $\angle A O B$ 1s oither 0 or 180 , moduto 360 . If $\angle A O B$ vere 0 , $Q A$ and OB would have to coincide; and this is imposeible becauce A and B vere chosen on dietinct half-1ines. So $\angle A O B$ is 180, atraight angle.

Part 2. Given half-lines 1 and meoting at 0 to form a otraight angle, 180. The other half-line I^{\prime} vith ond-point 0 in the same etraight Ine as 1 also form a etraight angle with 1 , by Part I.

Therefore $\angle 10 \mathrm{~m}=180$
$\angle 1 ' 01=180$
and $\angle 1^{\prime} 01+\angle 10 \mathrm{~m}=360$, modulo $360,=0$.
But $\angle 1^{\prime} 01+\angle 10 m=\angle 1^{\prime} 0 \mathrm{n}$ (se0 page 48,

Fig. B line 4). Therefore $\angle 1^{\prime} 0 m=360$, modulo $360,=0$, and m and 1^{\prime} coin. cide. So $\underline{1}$ and $\underset{m}{ }$ are corresponding halves of the same otraight line.

Pages 50 and 54: Porpandicular 1ines. On the lover half of page 50 it is show that if two lines intersect so that the angle between two of their half-ifnes is 90°, this 90° rolation 18 true of three other angles formed at this intersection. Principle 3 insures that through a point 0 of a given line there exists a half-line such that one of the angles formed at 0 will be 90°. It infures also, as pointed out on page 54 , that thore are only two ways in which thie half-line can appear, follow. ing by analogy the $(q-d)$ and $(q+i)$ reasoning on page 43. Thic ostabliehes the uniqueneas of the perpendicular to a line at a given point of the line. That 18, there 18 one and only one such perpendicular.

1. Balf-line OM' will be numbered 270. Therefore $\angle \mathrm{L}$ 'OM' $=270-180$, and $\angle \mathrm{M} O \mathrm{OL}=360-270$.

3-5.One minute of time corresponds to six degrees.
7. $45+180$, or 225 . (or $225 \pm \mathrm{n} \cdot 360$)
8. $r+180$ or $r-180$. (The "in genoral" refors to the random number \underline{r} and not to the genoralized notation $\underline{\underline{r}}+180 \pm$ n. 360 , though the lattor 18 the porfect anever, of course.)
9. $132,180,312$
10. $a+r, a+180, a+r+180$
12. $180^{\circ}=8^{\circ}, 8^{\circ}, 180^{\circ}=8^{\circ}$
15. $\angle A V C+\angle C V B=180^{\circ}$. $\frac{1}{2} \angle A V C+\frac{1}{2} \angle C V B=90^{\circ}$ 10 eufficient. or oleo, using the numering in the anever to Bx .10 , the bicectors will be numbered $\frac{a+a+r}{2}$ and $\frac{a+r+a+180}{2}$, and the difforence between these numbere is 90.

Page 52: Unite of angle moasure. Por furthor discussion of the history of counting and of masurement see David Hugene Smith, Bistory of Mathomatics, Vol. I, 1923, Ginn.

Page 55: Polygon. The definition of "polygon" ie intentionaliy so worded as to include polygons like those ahown in Mg. A, but we cannot consider the anglee of such polygons without using dirocted angles. Wo light do somothing with this idoa noar the ond of the book, say on page 235, if it wore considered desirable. The last paragraph on page 55 10 intonded to rule out crose poljgons and, ordi-

Fig. A narily, all polygons with re-entrant angles. Consequently the authors folt justified in defining "angle of polygon" higher up on page 558028
to apply only to convex polygons, building up the idea inductively from the reference to Fig. 18.

Page 56: Exorcises. There are only five of these exercises but plenty of time should be allowed for the pupil to make careful drawings and measuremonts and to absorb the important ideas hore.

1. In order to lay off angle CDS proporly with the protractor the pupil will nood to extond CD.
2. $A=15 \mathrm{in}$. (approx.) $\angle D E A=100^{\circ}$ (approx.) $\angle E A B=99^{\circ}$ (apprax.) The pupil chould be pormittod an orror of 1°.
3. $C A=9.0 \mathrm{~cm} . \angle B C A=52^{\circ} . \angle C A B=59^{\circ} . S u m=181^{\circ}$. Mans pupils will have an orrcr of at least 10 in the sur.
4. A convenient scale is $\frac{1}{2}$ inch or 1 cm . to the mile. The propil's second angle will be 64° clockwise; his thind angle 86° counter-clockwise; hie fourth angle 57° clockuleo; his fifth angle 53° clockwieo; hie eixth angle 58° counter-clockwiso. The travelor is approximately 14.6 miles from his etarting-point. Direction from start to finish 1s $\mathrm{mil}^{\circ} \mathrm{H}$, approximatoly.
5. The pupil will noed to construct angles of $22^{\circ}, 70^{\circ}$, and 22°. The vessel caile $15+8+6 \frac{1}{4}$, or $2 \frac{1}{4}_{\frac{1}{4}}$ alles. Page 57: 8indlarity and proportion. The 1deas of correapondence botween point and number and of correspondence between angle and number are fundamontal in this geometry. The words "correapondins" and "correspondence" are oqually fundamontal; they are taken as undofined, following the epirit of page 14, lines 18-19, of BASIC GrONDELRY. We do not wish to limit the phrase "cor-

Fig. A responding eides of two triangles" to "sides opposite equal angles" in these triangles, because it ie ofton possible to consider two triangles
that are related like those shown in FIg. A on page 49 of this manual, in which the vortices, e1des, and angles correspond in pairs despite the absence of equality. In short, Euclidean geomotry can be regarded as a epecial case of projective geometry. The term "correspond" defies deflnition for beginners, but everyone knows what it means.

The word "proportion" is explained here but is not precisely defined. The definition is ascumed from arithmetic. The meaning of proportion is easily eraeped; but the definition is more difficult because it involves the vord "ratio," which seams to bother pupils. It is for this reason In part that the authors have preforred to use the term "factor of proportionality" rather than "ratio of e1militude." The formor hat the advantage also of being purely numorical, which 18 what we want; the latter eeors to be a number that is necessarily linked vith the geometric idea of similarity; and this geometry is based on number oven more than it is based on the idea of similarity. The idea of proportion is bigger than any of its applications.

Ac noted on page 58 of BASIC GBONEIRY, the factor of proportionality \underline{k} can be any real nuriber, rational or irrational (see page 287). Since wo shall not use directed diatences in proving theorems wo shall make no use of negative values of \mathbf{k}; and zero 10 a limiting case that ve do not need to consider.

Section 21 under the Laws of Mumber (page 287) 1mplies the existence of real numbers that are not rational. For if wo should think of the real numbers as being morely the rational numbers under another name, our dream would be rudely shattered by section 21 , since there are an infinite number of vays of separating the totality of ordered rationals as therein prescribed vithout determining a rational - that effects the division. For example, separating the totality of ordered rationals so that C_{1} contains all the rationals whose squares are less than $\frac{7}{3}$ and C_{2}
contains all the rationals whose squares aro not 1088 than $\frac{7}{3}$, produces no rational that effects this separation. This sort of separation of the totality of ordered rationals, deecribed in general torme, can eorve as the definition of irrational numbers. This is the dofinition of irrationale referred to on pege 4 of the Preface. It follows that if the postulate ir section 21 10 to hold true, irrationals as vell as rationals sust te present in the eystom of real numbers.

This being B0, overy irrational factor of proportionality indicates an incomensurable case. But BASIC GBondsiry is not disturbed by this, or required to provide exceptional treatment for incomensurable cases, because its acceptance of the real number ayetem puts rational and irrational cn an equal footing. The pupil can always imaging k to be a rational number, and probably will do 60. But the proofs of the theorams require no alteration to euit one who imgines k to be izrational.

In connection with Principle 5, Case 1 of Similarity, note that the British Report on The Teaching of Goomotry in Schools, G. Boll and Sons, Iondon, 1923, suggests that the newal practice of assuaing oongruence and paralloliem and deducing sinilarity therefrom can profitebly be roplaced by aseumptions concerning congruence and ainilarity, Trom which the formor parallel postulate is deduced as a theorem. In BASIC GFOMSHRY vo go oven further and telescope the two suggested postulates of the Britigh Report into one postulato of aindarity under which congruence or equality, as ve ordinarily prefor to ear - appears as a apecial case. If wo vere to go on into solid geometry, this special case of equality vould be the onlf case undor similarity that vould hold in three dimensions and wo should need to make apecial note in that case to reetrict the factor of proportionality t to the single velue 1 . Wo hint at this In the oxercises following Principles 5, 6, 7, and 8.

The phrasing in italics on page 59, ilnee 7-9, is an adaptation of
eimilar phresing in the Britieh Roport on The Toaching of Geometry, page 35.

We have alroady discussed in this manual on page 7 the poseibility that Principle 6, Case 2 of Similarity, might have been used instead of Case 1 as a basic postulate of this geometry.

Page 60, lines 2-3: "The logical foundation of our geomotry 18 independent of any 1dea of motion." If the scale and protractor wore officially part of this geometry, then the use of these instrumencs, as implied in Fig. 2 on page 42, would require the ideas of "move" and "P1t," and the statement in question would be too swoeping. Actually, however, the scale and protractor are introduced only as pedagogic devices by which the pupil, faniliar with these two instrumente, may come gradually to appreciate the logical foundation of thia geometry, which 1s indeod independent of instruments and requires only the mumbering of all the points on a line and the mumoring of all the half-linos having a common ond-point. For oxample, Ex. 3 on page 601 not logdcally required by this geometry. It serves merely to fix an inplication of Case 1 of Similerity more eurely in the pupil's mind.

Pagos 60-66: Axorcises. On page 40, in Axs. 1 and 3 on page 56, and again on page 60 wo are beginning to wean the pupil avay from his fandiar but untechnical uev of the word "ruler" and to direct his attontion to the more preciee words "etraightedge" and "Bcale." Because of the confusion that is likely to arise if wo should try to turn the pupil from his colloquial use of the vord ruler and should ask him now to use the vord in its technical meaning of straightedge, we shall abandon the term ontirely and shall use straightedge and scale instead. See pages 165 and 28c.
5. The third eide of the second triangle ie not twice the third side of the first triangle; the second and third angles of the second
triangle are not equal to the second and third angles respectively of the first triangle.
6. Yes. Instead of numbering the points on a straight line we can number the points on a great circle in order to meaeure distances on a aphere; and we can meature angles on a aphore by numbering the half-ereat-circles that have a common ond-point. The concept of angle botween two half-great-circles, or minor arce thereof, as the angle betweon correaponding tangent lines, can bo elaborated by the teacher if the pupils seem to demand it. He can point out the relation botween the angle between the tangents to two meridians and the angle betwoen two radil of the aphere that are parallel to these tangents.
7. All that is expected by way of proof is that both peire of triangles of each quadrilatoral shall be treated as indicated in the oxercise. The pupil 18 not expected to consider detalls as to the order or arrangement of the component triangles.

8-12.The informality permitted in Ey. 7 is to be permitted in these exorcises al8o. They are intended to be easy, informing, but not very exciting original exercises based on Case 1 of Similarity. The introduction of formal details that vould make these exercises forbidding to the papils vould be paychologically bed and contrary to the authore' plan. Ere. 11 and 12 are ueually proved in full in other geometries; but we have dissected these theorens and considered them piecemeal in Exs. 7-10, so the proofs of 5xs. 11 and 12 are merely obvious extensions of the preceding exercises.
16. Notice the gradual build-up of the perpendicular-bieector locus in this book as rovealed on pages 63, 81, 88-89, 250-251. Not1ce that all the ideas eseontial to a locus are given rolatively early, but that the use of the word "locus" itself in this connection is withhold until page 250.
17. By no moans toll the pupil which three of the four omall triangles he 18 to work with. Lot him discover thie for himself. Symetry alone should euggest the proper choice; but in ens cese the decieion is easily made. Ho wlll probably take a look at the fourth triangle to eee how that diffors from the othere. This look-see will probebly give him a eroetor appreciation of the proof of Principle 9 vhen he comes to 1 t.
18. You would need to know that two triangles that have their correspondIng eides proportional are eimilar. That 18 , you vould need Principle 8, Case 3 of Sindlerity.

20-37.The teacher hould conelder all these oxercises together and ncto that they establish certain familiar and very important idees concerning proportion. The content of thee exercises is essentially numerical. Hence the treatent 18 numorical throughout and purposely avoide all reforence to "tating a proportion by alternation," or "by composition," or the like.
21. $\frac{2}{3}$
22. 0.2
23. $\frac{\text { n - }}{\text { n }}$
24. $\frac{1}{2}$
25. $\frac{1}{2}$
26. Fach fraction equal e $\frac{2}{1}$.
27. $\frac{A B^{\prime}}{A B}=\frac{B B^{\prime}}{A B}+1$
28. $\frac{5}{3}$
29. $\frac{6}{5}$
30. $\frac{n+m}{m}$
31. The torm "reciprocal" may baffle e fow pupile at first, but the contert here gives them the clue. The authore often like to introduce partially forgotton, or oven now, torms in context in this vey,
regarding this as a thoroughly natural way for the pupil to acquire new worde and moaninge. Frow the pupil's point of view it is just plain common sense that if $\frac{2}{3}=\frac{4}{6}$, then $\frac{3}{2}=\frac{6}{4}$. The authore vish merely to remind the pupil of this; to genoralize this fundamontal numerical idea by using a, b, c, and d; and then to attach a convenient phrasing for later reforence, making as little fuss over it as posisible. The statement "reciprocale of equal numbers are equal" is a theorem in the y otem of real numbers (800 pege 288). It 18 essentially this that the pupil is asked to prove in Bx. 31.
34. Take reciprocals and add 1. The point of Bxe. 20-36 is stated aftor Bxe. 34 and 36; namely to provide Justification - aptly phrased for asserting any proportion that can be derived from a given proportion, and to show the applicability of this to situations involving triangles.
37. $\frac{a+c+e+\cdots}{b+1+f+\cdots}=\frac{k(b+d+f+\cdots--)}{b+d+f+\cdots}=k=\frac{a}{b}$
38. An immodiato application of Ix. 37.

Page 67: Sumary. The eumaries at the ond of Chaptors 2, 3, 4, 5, and 7 give the logical plan of BASIC GEOXEIRY. Each ounmary serves aleo as a rough index of its chaptor. These sumeries vill help teachers who are familiar with other syotoms of geometry to keop the pattorn of this goometry in mind. The authors wish the pupile also to be conecious of the plan of BASIC GBOMBIRY as it unfolde before them, and to see the relation of each theorem to other theorems and to the fundamental postu1ates. The authors hope that in this way aided by pointed questions here and there in this book . the pupils will acquire an apprecietion of c. logical eyetem and will recognize the applicability of what they have learned to other logical eystoms outside the field of geometry.

Pages 68-69: Exercises. To some oxtent these exercises force the pupil to reread the chaptor to discover certain dotalls that are properly

1gnored until now. Even a relatively dull student can find the enswers by rereeding the chaptor faithfully. Almost overyone vill get the right answers whether or not his imaginetion 18 etimulated - as vo hope it vill be - to eee that the $\overline{A B}+\overline{B C}=\overline{A C}$ rolation for directed ilne-segments and the corresponding relation for directed angles serve to link this geomotry vith the algebra of the secondary school.

1. Bee pege 41.
2. See nagee 42 and 43 .
3. 1.5;-1.5

4-6.Theen exercieos oxtond and genoralizo the 1dee of K. 1 on page 41.
4. $(5.1-2.7)+(4.2-5.1)=4.2-2.7$
5. $(4.2-5.1)+(2.7-4.2)=2.7-5.1$
6. $(2.7-3.1)+(4.2-2.7)-4.2-5.1$

7-8.8ee pages 43-44. Line-sogment. BC conelate of the points B and C and all the pointe betwoon them. These pointe will be numbered from 4.2 to 9.1 . Line-sofpant BA conoiote of nll pointe numbered rom 4.2 to 2.7; 1 t may be considered aleo an conmioting of all pointu numbored from 2.7 to 4.2.
9. Beo page 47.
10. 8oe page 49.
11. This exercieo extonde and genoralizes the 1doen of Exi. 1-3 on page 48. $(161-106)+(37-161)=(37-106)$
12. $37 \pm 90+n \cdot 360$
13. About 2 milec 8.E. of Toggenbura
19. $\frac{1}{3}$ and $\frac{3}{4}$

Iesson Plan Outline: 19 lessons

1. Through pages 73-74, Exs. 1-8
2. Exe. 9, 10, 13, 14, page 75; through Exs. 1-2, page 77
3. Page 7久, Ixs. 11-12, page 78, Exe. 4-6, 8
4. Page 78, Ex. 7; pages 80-81, Exs. 1-6
5. Page 82, Exs. 7-8. Prove Principle 9. Page 84, Ex. 1

6-9. Pages 84-87, Ixe. 2-23
10. Principles 10, 11, 12 (excluding converse)
11. Prove converse and corollaries of Principle 12.

12-16. Exorcise8, pages 95-98
17-19. Exercises, pages 100-103; take some throe dimonsional ones each timo.

The five fundamental ascumptions of Chaptor 2 and the seven basic theorems of this chaptor estoblish so many fundamental goomotric ideas that they are called the twolve "principles" of this geomotry. As indicated in the footnote on page 107, the mumbering of assumptions, basic theorems, and later theorems 1s consecutive in this book. The teacher's attention is called to the final paragraph of page 5 in the Proface to BASIC GBOMSIRY and to the note on Principle 11 on page 67 of this mamal.

The twolve principles load lamediatoly to the theoroms concerning parallel lines and rectangular networks in Chapter 4, from which one could proceed to develop analytic goometry if it were considered wise to do so. The twelve principles lead also to the theorems concerning the circle in Chapter 5. And from Ex. 12 on page 75 we could develop the ideas of area of triangle and of polygon, as outlined on page 222 at the ond of Chaptor 7. These throe major geomotric ideas of parallelism, circle, and ares are three independent products of this poverful list of twelve principles.

Page 72: Principle 6, Case 2 of Similarity. Although the proof of Principle 6 euggests superposition, the toachor should noto that actual euporposition 18 not ueed. Instoad, a third triangle is constructed that 18 eimilar to one of the given triangles. The poseibility of this construction - or of the axistence of this third triangle - is established by the fundamental postulates of this goometry.

Teachors of geometry who have been sccustomed to make freo use of eymbols such as. \therefore, \sim, Δ, and s on will notice that this book uses almost no symbols. The authors indicate on page 285 that they use the four undefined symbole $=,\langle, 4, x$. They introduce the symbol $>$ on page 34, which can be defined as cn page 282; they introduce the symbol $<$ on page 21 , and the eymbol \triangle on page 200. These seven, only two of which are geometric, constitute the entire list of aymbols in this book. There are two roasons for minimizing the number of symbols. First, if wo wish to oncourage transfor of training in logic from geomotric to nongoomotric fielde, we do woll to use the language of everyday 11 fo and avoid a highly symbolic mode of expreseion that requires translation when wo pass from goometry to other fiolds. Second, a highly symbolic ritual with reepect to geometry is likely to divert attention from the main object of the instruction. If, however, teacher and pupile wish to introduce other symbols in order to save time there is no harm so long as the symbols do not become an obstruction to thinking. Care must be ueed in introducing a symbol like \sim for similarity, because in BASIC GEOMETRY similar triangles regularly include equal triangles ae a spocial case and the symbol \sim, used in other geometries, doee not have quite this connotation.

Pages 73-75: Exercise日.

4. The reason for epecifyine a particular triangle to be enlarged, rather than letting the pupil chocse hie own triangle, ie to prevent
hie beginning with an isosceles triangle, or right trianele, or other special case. An excellent supplementery exerciso would be to lot the pupil choose the first triarele himself but to insist that it be not a special case.
5. $2 a$
6. $\frac{17}{24} \times 5$ foot, or $3 \mathrm{ft} .6 \frac{1}{2} \mathrm{in}$.
7. The pupil 18 asked to suggest what the foroman on the job would do right on the ground, literally. That 18, oxtend CA its own length and erect a perpendiculer; or, if C is not a right angle, copy $<C$. The dotted ine in Fig. 5 at extrome right gives a hint that 18 probably unnocessary.
8. Approximately 5902' or 59.040. If the fupile do not lnow the tangent relation the teacher may wish to omit this oxercise, though this informal allueion 18 an excellent vay of introducing the pupil to the tangent of an argle and to a table of tangente. An occasional axercise of this cort that requires the pupil to coneult reforence material outside the textbook has the same general oducative value in mathomatics as in other subjects. The pupil mast expect to get help occasionally from a dictionary, an encyclopedia, a table of equare roots, a table of tangents, or the like, available in the achool 11brayy or in cortain claes-rooms. The authors think it more important to reserve the appondix of a mathomatica book for eupplementary material that teacher and pupil cannot easilj find elaownere.

Tho authors are avare that numerical trigonomotry growe immodietoly out of eimilar triangles in geometry. They do not wieh, howevor, to interrupt the development of this logical presentation of geonotry, commonly called demonstrative goomotry, by a digreseion on trigonomotry. Thoy would much prefer that the pupil ohould have mot the chief ideae of the numerical trigonomotry of the right triangle in
an earlier grade, these ideas boing based on an oven oarlior treatmont of sinilar triangles in intuitive geometry. There is growing reoogaition of the fact that all pupils in the seventh and eighth grades ought to moet the important ideas of geometry on an intuitional basis somewhere in these two grades. This is just as important for those who will never go on to demonstrative geometry as for those who will. It is recognized also that the numerical trigonomotry of the right triangle is easior than demonstrative geometry, and easior than most of the algobre commonly taught in the ninth grade. For these and other reasons a little numprical trigonometry is nov taught in many schools in the ninth grade, or oven earlier. This bit of trigonomotry is of particular importance for those pupils whose mathematical oducation will ond with the ninth grade.
10. Triangles ABB and ACF are similar.
12. We could $g \circ$ on from here to develop the idea of area of a triangle, as outlined on page 222.
13. No.
14. No.

Page 74: Definition of altitude. Logically no reference to the altitudes of a triangle can be made until aftor Principle ll. That means that Exs. 10-12 on page 75 and Fre. 14-21 on pages 86 and 87 ought strictly to be deforred until after Principle 11. Any teacher who 80 wishes may do this, since no use has beon made of these ideas thus prematurely introduced. It seems to the authors, hovever, that the "perpendicular" idea in these exercises is less important than rore parely "triangle" ideas, and that these exercises fit in more naturally where they appear in the book than if grouped with exerciees on the Pythagorean Theorem following Principles 11 and 12.

Note that the text atates its intention of using the vord "altitude"
to moan not only the line, but the length of the line-eegment. The same practice 1s adoptod later with reapect to "hjpotonuse," "radius," and the like.

Page 75: Principle 7 is important on its own account, but vould not have been allowed to intervene betweon Case 2 and Case 3 of the Principle of Similarity were it not needed to prove Case 3. The proof given of Principle 7 is unusual in that it applies Principle 5, which was vorded so as to refor to two triangles, to a situation involving only a single isosceles triangle. It is clear from the toxt that an isosceles triangle can be considered to be similar to itself, regardiess of the order in which the equal eides aro road. Had ve mentioned under Principle 5 that vo intended to apply that Principle occasionally in this apecial mannor, the remark would have convejed no moaning. The authors deem it to be good teaching not to refor to this apecial application of Principle 5 until the noed arises, as hore in Principle 7.

Pages 77-78: Bxercises.
4. Prove trianglea $A B C$ and $A D C$ equal.
8. Yos.

Page 78: Principle 8. Note that the preceding exercises contain goomotric conflgurations that resemble those noeded in the proof of this theoram.

Pago 80, 11nes 13 and 15. Read "sum of" both times, and "difference between" both times, to cover both cases show in Mg. 15.

Pagos 80-82: Exorcises.

1. Angles $A B C, A B F$, EFG, EFFB can vary. Albo angles DCB, $D C G, \mathrm{HGF}, \mathrm{HCC}$.
2. Five distinct crose-braces can be made. Only two of those are nooded for rigidity. These two can be chosen in ten different waje.
3. The fact that these ideas on equidistance are usually presented in a locus theorem recelves recognition in Locus Thecrem 4 in Chapter 9.

This has not prevented the authors, hovevor, from oxhibiting the ossential ideas of this locus theorea in several oxercises much earilor in the book in order that pupils may assimilate them gradually and make use of them as neoded. The least useful of these ideas is the vord "locus" iteolf, which in this book is withhold until the very ond.

One good way to take the curse off the word "locus" and at the same time retain the very important locue concept in geomotry is to do What the authors have done in BASIC GBOMEIRY, nemely, to introduce the ideas "a point equidistant from A and B - - -," "any point equidistant - . .," "every point equidistant . . .," and "all points equidistant - - .," and the converses of these, vithout mentioning "locus" at all. See the exerciees on page 24; page 63, Bx. 16; page 81, Fue. 5-6; and page 88, Principlo 10 (page 87 in the firat printing of the book). Granting that the worde "any," "every," "all" can give trouble in this connection, the authore bolleve that they have graded the stops so finely and have given such definite ouggetione thet pupile will easily prove the oxercises and acquire incidentally the desired point of viev. The basic difficulty with "any," "overy," and "all" is that they inply generalization from particular instances, just as the variable x in algebra implies generalization from instances involving particular numbers. Generalization is a very important part of matheratics; it cannot bo omitted. But if it gives difficulty, wo can lead up to it eradually.

The authors regularly use the exorcises as a nediun for the introduction of ideas to be found in subsequent theorems. For although they think that learning from booke it a gradual process, requiring repetition, they prefor to get the necessery repetition through orgenized - but apparentiy casual - proviove than through the ueual mediun of orgenized - but dreary - reviows.

The chief difficulty in teaching demonstrative geonetry is to hold the logical etructure of the aubject clearly in mind and at the sare time allow reasoneble play for the peychology of learning, which unfortunately is sufficiontly formiess to wrock the logical outlinos of the subject if we are not ceroful. Nevertheless, the peychology cannot be denied. More offoctive than attack by solid phalanx is attack by infiltratior, or "eifting through"; but the latter, deapite Its apparent informality, requires greater coördination of plan and operation than the former.
7. Each angle is 90°.
8. No.

Page 82: Principle 9. Note that Principle 8 is needed to prove Principles 9 and 10; that Principle 9 is noeded to prove Principle 11; and that Principles 8, 6, and 9 are noeded to prove the Pythagorean Theorem, Principle 12.

In the proof of Principle 9 the authors do not expect the pupil to give any reason for the statoment " $\angle \mathrm{MBX}=\angle A B C "$; none is noeded. Nor do they axpect the pupil to state that triangles MBX and ABC are sindlar before announcing that $M K=\frac{1}{\angle A C}$ and $\angle B M E=\angle A$; for the alternative atatement of Case 1 of Similarity at the top of page 59 sanctions this shortening of the proof. Alternative statements of Case 2 and Case 3 of Similarity on pages 73 and 80 serve to sanction similar abbreviation eleewhere.

The teacher should understand that the rotating pencil on page 83 is merely an illustrative "aside" that may serve to etimulate the pupil's imagination. It is not an alternative proof. First of all, motion hae no part in the postulates of this geometry. Second, even if it did have, this roteting about one point, moving to a second point and rotating some more, and so on, alvaje keoping the pencil tangent to the ourface
that contains the triangle, could be applied also to a epherical triangle and would seom to show that the sum of the angles of a shorical triangle is 180° aleo, which is not true. Actually the tilting of the pencil as we move from vertex to vertax of the epherical triangle reduces the plane angle that moasures the dihedral at the preceding vertex, so that it 18 the eum of these reduced plane angles that 10 equal to 180°.

Page 84: Converse of Principle 9. In this instance it 18 more 1mportant to reep before the pupil the 1dea that a converse 18 not necessarily true than it is to oxhibit the proof that this particular converse 1e true. If wo do not raise the question at all, almot no one will think of $1 t$.

Pages 84-87: Exercieos.
2. $\angle B C D=180^{\circ}-\angle A C B=\angle A+\angle B$

4-6.Divide into triangles by either one of the mothods shown in Mg. 21 on page 59.
10. $\frac{n-2}{n} \cdot 180^{\circ}$
11. 10
12. Ercept for the tern "right triangle" this theorem could have been proved immediately after Case 2 of Similarity.
13. By Principle 9 and Case 2 of Similarity with k equal to 1. Note: The authors use the torm "mean proportional" instead of "geomotric mean" because they prefor not to attach the adjective "geometric" to an idea that is essontially numorical. When in eom later course in mathematice the pupil finde it necessary to dietingaish arithmotic, geomotric, and harmonic means he will recognize that all three are really numorical. That 10, all three are arithmetic; and the so-called arithmetic mean, with its mid-point connotation, is quite as geometric as the so-called geomotric man.

14-15. Use Ex. 12 in this sot of exercises. Although in their very
definition of the moan proportion relation the authors have shown both vays of vriting it, they purposely have given more omphasis to the form $h^{2}=$ in this toxt because any developent of geometry that makes use of numbers and algebra requires quick recognition of the $h^{2}=\operatorname{lor}$ of man proportion. Euclid, having no algebra, made free use of proportion to handle situations that wo handie more read11y by means of equations. Many topice that he handed by moan proportion wo now handle by a simple quedratic equation. Indeed, several of the thirteen book of Euclid's Elemente are but geometric developents of arithmotic and algebra for use in later books of the Elemente. Apollonius vent mach further in his otudy of conic sections than is covered by mot college courses in analytic geonetry, but be vas obliged to use proportion to disclose the relations that ve now obtain more eanily by algobraic methode.

Bose teachers may vonder why the authors do not use the reaults of Ix. 15 to prove the Pythegorean Theoren at this point. In the note on the definition of altitude on page 74 (page 60 of this mamal) it has alreads been pointed out, however, that N .15 ought atrictis to be deferred until after Principle 11 has been proved; for Principle 11 is needed to establish the undqueness of the altitude from a given vertex of a triangle.
16. $h^{2}=5.8$ and $h=2 \sqrt{10 ;} a^{2}=8.13$ and $a=2 \sqrt{26} ; b^{2}=5.13$ and $b=\sqrt{65}$
17. Some pupils will need not only the suggestion in the book to use similar triangles, but will need the further euggestion to use all threo paire of aimilar triangles to be found in the configuration.

The similarity of the three right

Fig. A
triangles tolls us first that $m=\frac{5}{12} h, n=\frac{12}{5} h$; and then oither that $\frac{h}{12}=\frac{5}{\left(\frac{5}{12}+\frac{12}{5}\right) h}$ or that $\frac{m}{5}=\frac{5}{m+\frac{144 m}{25}}$. We have, therefore, either $h=\frac{60}{13}$ or $m=\frac{25}{13}$. Finally, $n=\frac{144}{13}$.

It 16 not wise to suggest that the pupil got \underline{h} first, because he can get 프 or \underline{n} first oqually voll It vould be proper to suggest, however, that three equations will be needed to determine the three uninows and that these equations can be expected to come from three proportions This is a genoralization in mothod that ovory pupil ought alvays to have as a ready resource.
18. $h=\sqrt{3} \cdot m ; \frac{a}{b}=\frac{m}{h}=\frac{1}{\sqrt{3}}$. Seo PIg. A.
19. $h=\sqrt{x} \cdot m ; \frac{a}{b}=\frac{m}{h}=\frac{1}{\sqrt{x}}$.
20. $\frac{a}{b}=\sqrt{\frac{g}{q}}$

Fig. A
21. This is the same as Ex. 17 with numbers ropresented by lettere. See Mig. $B: m=\frac{a}{b} h$, $n=\frac{b}{a} h$; whence $\frac{m}{n}=\frac{a^{2}}{b^{2}}$. Also $\frac{h}{b}=\frac{a^{b}}{m+n}=$ $\frac{a}{\left(\frac{a}{b}+\frac{b}{a}\right)^{h}}$; whence $h=\frac{a b}{\sqrt{a^{2}+b^{2}}}$.

Fig. B
22. $n\left(180^{\circ}\right)-(n-2)\left(180^{\circ}\right)=2\left(180^{\circ}\right)$
23. 82°. The reflex angle 1s just enough of a novelty to stimulate the pupil'e imagiration and add a bit of zest to an otherwise hundrum oxerciac. It does not make it appreciably hander. The pupil, by merely observing the 87° angle in one direction and the 74° angle in the ofpoite direction, can apply the resulting 13° appropriatoly. The chief application of the exterior angle theorem 18 to this sort of survejing problem - technically known as a closed arimuth traverse - and the application 18 quite ilkely to include one or two reflex angles. The pupil doee not need, and 18 not expected to need, a apecial theorem for polygons with reflex angles.

Pago 88: Analreia for Principle 10. Soe noto on Mr. 6, page 81
(page 61 of this mamuel). In the first and second printinge of the book two mothods of proof are suggested in the Analysis. The first method involves draving a perpendicular from P to $A B$, but this is ingroper because the existence of any such perpendicular is not established until Principle 11 has been proved. In the thind printing of the book the Anelyeis is changed to read as follows:

Analysia: Wo cannot prove thet \underline{P} lies on the perpendicular bisector of AB by drawing a line from \underline{P} perpendicular to $A B$ and showing that the midpoint of AB 1108 on this perpendiculer, for ve are not aure that thie perpendicular exiets until ve have proved Principle il. We may, however, connect \underline{P} and the mdpoint M of $A B$ and show that $P M$ is perpendicular to AB.

Page 89: Principle 11. Here, as in Principles 6, 7, and 8, the authore do not wieh to do violence to the pupil's intuition by asking hin to prove the obvious. In each such case, however, the authore have exhibited the proof in its proper sequence beceuse they thinir that the pupil's inegination is more easily able to sligit or ignore certain details of a whole than to reconetruct the whole from scattered piece0.

Page 90: Principle 12. The teachor should add that, although the 1dea contained in Principle 12 was known as oarly ae 2600 B.C., it was not proved uritil about 550 B.C. Thet proof, by Prthagoras, was quito different from the proof given here in BASIC GBOMLIRY.

The chiof point of the analysis is to indicate that the "mothod of anslysis" 18 somptimes unrowariing and that this 18 one such instance; the pupil can hardiy be oxpected to diecovor the proof by hie own unalded efforts.

The numorical case axhibited on page 9110 meant to be primarily an appeal to the eje. If the pupil will ponder and compare the euccessive onlargoments of the original triangle, including the flgure formod by
placing two of these enlargements side by side, he vill have the essence of the proof. It is to be hoped that he vill appreciate the fow and simple steps by which he has come frow Case 1 of Similarity to a rigorous proof of one of the mot important and famous theorems of all matheatics. This io properly the climax of this section of BASIC GBOMFIRY.

The proof given on page 92 asaumes that the pupil vill easily grant that the figure $A^{\prime} B^{\prime} D^{\prime} C$ ' is indeod a triangle, since angle $A^{\prime} C ' D '$ is the oum of two right angles.

Page 93: Corollary 12a. The proof here is intended to be informal, condensing and telescoping the analysie and proof. Some teachers will think it a blemish that " $\angle C=90^{\circ "}$ and " $\angle C$ " $=90^{\circ}$ n are not reatated formally in the proof, but the authors think it is woll not to waste the time of a clase on formal detalls of this sort.

Corollary 120 18 but a spocial case of Corollary 12a.
Page 94: Corollary 12c. There 18 nothing in the taxt that requires directed inne-segmonts. In the obtuse case shown in Fig. 35, the oun of the undirected segrents $A D+D C 1 s$ greator than $A C$; and the oum $A B+B C$, being greator oven than $A D+D C$, is surely ereator than $A C$. It is true that the relation $A D+D C=A C$ of the acute case can be made to apply to this obtuse case by guarded use of directed distances, but this is quite unnecessary here.

The footnote on page 94 expresses the authors' undilingeses to ask pupile to supply reasons that dopend on the fundemental concepte of the systom of real numbers. This vould be true in any other eystem of geometry and is not a peculiarity of BASIC GBOMEIRY. In BASIC GBOMEIRY, the syatom of real numbers is avowediy a cornerstone of the geometric structure; othor geomotric systoms rely on number also, but do not explicitiy avow it. The authors can think of no adequate explanation that they could reasonably demand of pupils in support of the statoment " $A B=A B$ ";
and they ohrink from the task of building up the logical stope that would ostablish the etatement "If unequal numbers are added to unequal numbers In the same order, the ouns are unequal in the same order."

It is bettor to take the ejetor of roal numbers for granted and not bothor the pupile with explanations that soem not to oxplain. For the convenience of teachers, hovever, the first stops in ostablishing the oystom of real numbers aro given at the ond of BASIC GEOMNRY in a seperate section entitled "Lavs of Number." The authors recognize that teachers who have nover seen these "laws" set down explicitly will be momentarily stunned by the forbidding appearance of certain of ther. These matters are an important part of the professional kit of teachers of algobra and geometry, howover, and cannot be ontirely ignored; furthermore, interest in them among teachers is growing fast. Contrast, for oxample, the exposition of negative number in algobras of twenty years ago and in algebras today. The authors hope that by calling attontion to cortain gape in the logical developmont they can lead the pupils to a better appreciation of the nature of a logical syetem than could be got by glossing over the difficultios that beset overy logical eyston.

It 1s important to noto that Corollary l2c assorts, in offect, that the etraight line dietance between two points is lese then any broken ine distance between these pointe. It is oven more important to note that it does not aseort that the shortest dietance between two points is the length of the etraight line-segment between the two points. BASIC CEOMLSRI makes no pronouncement as to that.

Page 95: Corollary 12d. The "ehortest dietance" means the shortest etralght lino dietance.

Pages 95-98: Frercises. The linitation of anewors to eignificant figures is not intended to 1 mpose a heavy burden on oither teacher or pupil. The authors recognize that a consistent and precise use of
eignificant figures requires a high degree of judgment as vell as of knowledgo. Novertholese, the general spirit of aignificant figures can be oasily acquired oven by pupils in the seventh grade, and flagrant violation of this opirit are obvious. It is these flagrant violations that we wish most of all to avoid. All wo noed is a few simple rules which, though not absolutely roliable in all cases, serve well onough for our purposes. The chiof interest of the authors is that the pupils shall recognize that they themselves can determine the ansvor to their inquiry "How far shall wo carry thia out?" and shall soe that the answor dopende, not on convenience or on teecher's whim, but on the accuracy of the data.

If the length of a rectangle is measured to the nearest foot, the recorded length may be in orror - that is, may differ from the true length - by not more than half a foot. Similarly for the width. If length and width are recorded as 34 and 21 feet respectively, the true area must $11 e$ betwoen the product 33.5 tines 20.5 and the product 34.5 times 21.5; that 18, the true area mast 110 botwoon 686.75 equare feet ond 741.75 square foet. Thus there 18 a range of 55 square foet within vhioh the true area 11es. The product of 34 times 21 1s 714 , which is almost midway in this range. Wo cannot submit the product 714 square foet as the true area without recording the possibility of on orror up to 27.5 square foot o1ther e1de of 714. That 18 , the eecond digit in 714 may be in error by almost 3. Consequently the third digit, 4, is quite meaningless and we ought to roplace it by 0 . If we koep the 4 in the ansver wo are guilty of misroprosenting the accuracy of our result.

From this numorical case it looks as though the product of a twodigit number times a two-digit number (each dorived from measuromont) is itself liable to eerious orror in the second digit. Indeed, in the exarple juat ohown, the first digit of the product is in doubt also; but that is due to our mothod of writing numbere rather than to mattere
pertaining to accuracy. We ought to record the area as 710 square foet, recognizing the possibility of an orror of almost 3 in the second digit and occasional need of altoring the first digit by 1 downande. Further considerations of a similar eort lead us to keep not more than \underline{n} digite in the product of two n-digit numbers; n digits in the quotient of two n-digit numbers; and $\underline{n} d i g i t e$ in the equare root of an n-digit number.

Significant figures are P1gures that give information that is at least fairly reliable. Figures that are only a protonse and are really meaningless mast be replaced by zeros. Zoros of this sort must be distinguished in some vay from zeros that are truly aignificant. The position of the decinal point has nothing to do vith eignifioant figures.

The teacher may find it helpful to regand the product of two moasures from the point of viow of per cent orror. Thus the measure 1 may ropresont a true loneth of $\underline{\underline{l}}(1 \pm \in)$, where ϵ represents the per cent orror in 1. Similarly η may roprosent the per cont orror in \mathbb{V}, $e 0$ that the true product of $\underline{1}$ times w is not \underline{w}, but $\underline{w}(1 \pm \in \pm \eta \pm \in \eta)$. From this it appears that the per cont orror in the product $1 v$ is not greater than $\epsilon+\eta$, the am of the per cent orrors in 1 and w. Either by this method of per cont orrors, or by contemplating the product of the two amallest n-digit numbers and the product of the two lareest n-digit mumbers, ve see that we are justified in keoping not more than n digits in the product of two n-digit numbers. The teacher can tost this in the case of two-digit numbere by considering the products $\left(10 \pm \frac{1}{2}\right) \cdot\left(10 \pm \frac{1}{2}\right)$, $\left(30 \pm \frac{1}{2}\right) \cdot\left(30 \pm \frac{1}{2}\right),\left(33 \pm \frac{1}{2}\right) \cdot\left(33 \pm \frac{1}{2}\right)$, and $\left(99 \pm \frac{1}{2}\right) \cdot\left(99 \pm \frac{1}{2}\right)$, boin as here written and by the method of per cent orrore.

For a more extensive diecussion of elentificant figures see haron Bakst, "Approximate Computation," Bureau of Publications, Teachers College, Columbia, 1937.

Wo purposely ignore the trivial term $\in 7$

1. (d) Expocted enswer is $\sqrt{2}$, or 1.4. If a pup11, havine eignificent figures in mind, submits the anever 2, he 18 wrong; for $\sqrt{2} 18$ not included in the range $2 \pm \frac{1}{2}$.
(m) $p^{2}+q^{2}$
(n) 16.6, or 17
(o) 11.3 , or 11
(p) 486
2. (b) $\sqrt{3}$, or 1.7
(o) $\cdot \sqrt{3}$
(1) 12.4 , or 12
(g) 8.7
(k) 171
3. 20.2 , or 20 , miles
4. First prove in two vaye that one side of a $30^{\circ}-60^{\circ}$ triangle, namoly the eide opposito the 30° angle, is equal in length to half the hypotonuse. Then show by the Pythagorean Thoorem that this is the shortest eide of the triangle, as in EX. 2(g) above.
5. The loft hand diagram in Fig. 38 suggests one mothod. A second mothod 18 to draw from the mid-point M of HK the line NN perpendicular to $\mathbb{I L}$. Prove $\mathbb{E N}=\frac{1}{2} \mathbb{L}$; then $\mathrm{NL}=\mathbf{N N}$; and $\mathrm{ML}=\mathrm{MK}=\mathbf{K L}$; whence $\angle \mathbf{K}=60^{\circ}$.
6. 90°, by converse of Pythagorean Theorem

Fig. A
11. 5 inches, 12.4 inches, 12.6 inches
12. 13 inchos
13. Use converse of Pythagorean Theorem, noting that
$\left(p^{2}-q^{2}\right)^{2}+(2 p q)^{2}=\left(p^{2}+q^{2}\right)^{2}$.
14. $p=2, q=1$
15. $p=3, q=2$
18. By Corollary 12d, the shortost distance from A to $B D$ is AD. Therofore $A B>A D$. Similarly, $C B>C D$. Therofore $A B+B C>A C$.
19. In Mg. $25, \mathrm{~b}^{2}=\mathrm{cm}$

$$
\frac{a^{2}=c n}{b^{2}+a^{2}=c(m+n)=c^{2}}
$$

20. From Corollary 12c, $A B+B C>A C$. Therefore $A B>A C-B C$.
21. $\angle D E P+\angle D P B=\angle D F P+\angle D P F$. $\angle D P S<\angle D P F$. Therefore < DEP > \langle DFP.
22. Fran einilar triangles, $\frac{1}{x}=\frac{x}{2}$
23. x^{2}, area of inner square, equals $\frac{1}{2}$ of 2^{2}, area of outer square.

Pages 100-103: Trorcises.

1. $\frac{33}{19} \times 4$ inches
2. $\frac{7}{5} \times 22 \mathrm{~cm}$.
3. $\frac{5}{4} t+\frac{5}{4} t+t=21$

Sides are 6, $7 \frac{1}{2}, 7 \frac{1}{2}$.
2
4. Take $\angle A O B=30^{\circ}, O B=\frac{3}{16}$ in.;
$\angle A O C=60^{\circ}, O=\frac{3}{8} \mathrm{In} . ;$
and 80 forth.
8. Use result of sx. 10 on page 85. Actually the formala $\frac{n-4}{n}\left(180^{\circ}\right)$ applies only to etare formed by joining each side of the regular polygon to the elde that 18 noxt but one to $1 t$, keoping the same order throughout. To consider the etars formed by joining each eide to the side that is noxt but two, next but three, and so forth, it 10 better to circumecribe a circle about the polygon and use the angle betweon two secante; but this is not available wntil the pupil has arrived at Ix. 6 on page 148. In the case of the regular 9-gon, the several possible tars have angles of $100^{\circ}, 60^{\circ}$, or 20°. The stars that can be formod from a regular 12-gon have angles of 120°, $90^{\circ}, 60^{\circ}, 30^{\circ}$, or 0°.
9. By Caso 2 of Sinilarity
10. Prove by Ix. 9.
11. Given right triangle $A B C$ with right angle at C; M, the md-point of BC; N, the mid-point of $A C$; and I, the intereection of the perpendicular blsectors of the two shorter e1des, assumed to be not on the hypotenuse AB.

$$
I B=I C . \quad \angle I B M=\angle I C M . \angle B I M=90^{\circ}-\angle I B M=
$$

$90^{\circ}-\angle I C M=\angle I C N$.

Therefore right triangles IBM and ICN are equal, and $I M=N C=\frac{1}{2} A C$. Therefore right trianglee IBM and $A B C$ are similar, $\angle I B M=\angle A B C$,

I 1108 on $A B$, and $B I=\frac{1}{2} B A$.
Alternate proof: From kx. 9 of this sot of exercises ve know that
M, the mid-point of the hypotenuse, muet lie on each perpendicular bieector and 80 mat be the point of intersection of both perpendicular bisectors.
12. The diagonals of each face are $8 \sqrt{2}$; the diagonal of the cube are - $\sqrt{3}$.
13. In three dimensional exerciees informal proofs are not only permis8ible but expected. In this case all that 18 expected is that the pupil recognize that in a cube of side 8 the diagonals of a face are perpendicular whoreas two diagonale of the cube, like AG and CE, are diagonals also of a rectangle with unequal sides and hence are not perpendicular. Inasmach as the terme rectangle and square have not jot been offlcially defined in this geometry, these figures and their oomon properties are moant to be taken for granted by the pupil. It 1s not expected that he supply the following dotalle.

In the equare $A B C D$ the isosceles right triangles $A B C$ and $B A D$ are equal; angles $C A B$ and $D B A$ are equal to 45°; therefore $A C$ and $B D$ intersect at right angles.

In the rectangle ACGE the non-18osceles right triangles ACG and CAS are equal; anglea CAC and BCA are equal, but not equal to 45°; therefore AC and CE intersect at some angle other than 90°.
14. Ans two of the four diagonals of the cube are related as are ald and CB in the preceding exercise.
15. In other vorde, find the angle botween the diagonale of the rectanglo ACGE, in which $A C=\underline{\theta} \sqrt{2}, C G=\theta$ and each diagonal $=\underline{s} \sqrt{3}$.
$\operatorname{Tan} \angle G A C=\frac{1}{\sqrt{2}}$. Therefore $\angle \mathrm{CAC}=35.3^{\circ}\left(35^{\circ} 18^{\prime}\right)$ and the desired angle is approximately 70.5°.
17. Hoight of house $=18+6 \sqrt{5}$

$$
\begin{aligned}
(A B)^{2} & =(18+6 \sqrt{5})^{2}+1744 \\
& =2248+216(2.236) \\
& =2248+483
\end{aligned}
$$

$$
A B=52.3
$$

18. $48.2^{\circ}=48^{\circ} 11{ }^{\circ}$
19. $2 \sqrt{7}=5.3$ inches
20. 3.2 inches
21. $500 \times \frac{5}{6}=416^{2}$

Loeson Plan Outlino: 12 10esons

1. Cor. 13a, b; Theoren 14, Cor. 14e
2. Thoorems 15 and 16

3-7. Exorcieos, pages 113-117
8-9. Theoren 17 through page 125
10-12. Frorcises, pagen 126-130, aixing in the threodimansional exercices with the othere

Page 106: Exietence vorsua definition. In Theoran 13 ve first estab11eh the oxfetence of parallel lines and then, on page 108, vo define parallel linea. From a otrictly logical point of viow it is poesible firet to dofine, and then to ostablish the axietence of that wich has been defined. But because this order seams unnetural to most poople we say "In genoral ve prefor not to dofine anything until wo have first ehown that it oxiote."

The statoment of Theorom 13 does not contain the qualification that the secom line is in the eame plane as the given line. It vould make the atatespont too cumbersome to include this, and it ie not nocessery; for it has alroady boon made clear that this is a plane goometry that we are developing. Were we not confined to the plane detornined by the given line and the given point, the second sentonce of the proof (innes $14-15$ on pege 107) would be untrue. Cortain papils may be interestod to ferret this out. In the definition of parallel lines on page 108 the qualification "in the sam plane" is ineorted because it is easy to do $s 0$ and avoide confusion when the pupil goes on to solid geometry. The teacher may wish to tell the class that linee that are not in the same plane and do not moot are called gkow lines.

In the proof of Theoren 13 on page 107, 11nes 14 and 15, wo noed both - 76 -

Principle 3 and Principle 4 to establish the unique perpendicular to a given line at a point of the ino. The word "perpendicular" is defined on page 50 in terme of 90 degrees, which involves the atraight angle and Principle 4. The uniquenese of this perpendicular depende on Principle 3, as set forth on page 54 of BASIC GFCMTHRY.

On page 108 and thoreafter vo use the word "parallel" both as adjective and as noun. Concerning the use of the word "all" in the deflatition of a "syetom of parallels" at the botton of page 108, see the note on "all" as used on page 118, inn 13, farther on in this chaptor of the manual.

Page 109: Transversal is deflnod as a line that cuta "a mivor of other innes." This number of other lines may be only one, or tro, or more than two.

Both teacher and pupil should note that Theoress 14-16 and the exercisen on pages 113-117 are concerned vith parallels that are cut by a goneral trenereral. The next section of this chaptor, beginning with Theoren 17, 1s concerned with parallels that are cut by a perpendicular traneversal.

Fege 109: Theorem 14. Fote that this theorem is so vorded as to embrece all three caces that other geometry texte see ift to distinguiah In thie geometric eituation. In BASIC GBONILRI, however, wo soe no noed of playing up the idea that "vertical angles are equal." We morely call attention to this in Fic. 10, 12, and 13 on page 52 as an obvious reault of mubering balf-lines with conmon end-point so that number differences meacure angles. Consequentiy this goonetry does not noed to distinguish, or evan mation, "altermate-intorior" angles, "corresponding" angles, "exterior-interior" angles, or "interior angles on the same side of the transporeal." Actually the last of these four phrases is reforred to in
the note at the botton of page 109 in order to satisfy teachers who wish to check off the familiar ideas of geometry as they studied it, and to identify the occurrence of these eame ideas in BASIC GFOMESLRY.

Similarly the terms "eupplementary angles" and "complemontary angles" are mentioned on page 111 to satisif toachers who think these terns are valuable. The authors of BASIC GSOMISLRY prefor not to emphasize them.

Pages 113-117: Firercises.

1. Morely insures that the pupil eupply the dotails of the proof reforred to on page 111, lines 1-2.
2. $A B=C D$, from Br. 2
3. Prove BC $=\mathrm{DA}$ and apply En. 5.
4. Since the sum of all four angles of the quadrilateral is 360°, by Ex. 3 on page 84, the eum of two adjacent angles 18180°. See note, bottom of pege 109.
5. Uee Principle 10.
6. $J=1.8 ; K=2.7$
7. It is not necossary that the points of intersection in Fig. 8 be lettered in order to facilitate class discussion. The desired anever 18 morely "All the acute angles are equal and all the obtuese angles are equal. All the shortest distances are equal, and - if both double trecks are equally spaced - all correoponding longer distances are equal."
8. Since $A B=H^{\prime} J^{\prime}, r s=1$, and r and are reciprocals.
9. Morely replace AR and BJ in Fig. 4, page 111, bJ AJ and BH.
10. Use Case 2 of Sinilarity.
11. By draving $A^{\prime} A$ and oxtonding through A, ohow that $\angle A^{\prime}=\angle A$. Similarly for $B^{\prime} B$ and $C^{\prime} C$. Therefore the triangles are aimilar, and $B^{\prime} C^{\prime}=\frac{8}{5} \cdot 4$ and $C^{\prime} A^{\prime}=\frac{8}{5} \cdot 6$.
12. Fret mothod: Ueo Theorven 15.

Second mothod: Drav a eecond parallel through B and apply Theorea 16.
21. Use Case 1 of Sinilarity and Theorem 14.
25. E1thor prove the uppor and lovor triangles alailar, or drav a paral101 through the intereoction of the diagonals and apply Theorem 16.
25. By moans of oqual angles prove that triangle ABR is ieoscelos. Use Bx. 20, page 115.
26. By means of equal angles prove that triangle $A B Q$ is 1 eoscoles.
28. Draw a diagonal of the quadrilatoral and prove that two of the lines In question are parallel to thic diagonal and that each of these two IInes is equal to half the diagonal. Either diagonal will eorvo, whether the four vertices are in the samplane or not. In the lattor case the quadrilatoral is called a "okew quadrilatoral."
29. The pupil will take the random line in the same plane as the parallologram. Use Ex. 24 on page 115. The longth of the perpendicular dram to the randon line from the point of intersection of the diagonale is oqual to one fourth of the ew of the perpendiculare from the vertices.

Question for discussion: What happons if the random lino passes through one vertox of the parallologran and has no other point in coumon with itt What happens if the random line intersecte two adjacent eldes of the parallelogram? If the randon line passes through the point of intersection of the diagonals?

Page 115: Corollary 17s 10 a corollary of the dofinition of rectangle immodiately proceding thit corollary. Prove the corollary by moans of Exs. 2 and 7 on pago 113.

The torm "rectangle" is dofinod on page 118, 11no 5, at a quadrilatoral oach angle of which is a right angle. Thie deflaition and Corollary 17a
perndt the further description of a rectangle (page 118, line 9) as an equiangular parallelogram. The stataments following this description serve to define the torms "rhombus" and "equare."

Page 118, 11no 13: "We have seon"" This refors back to page 110, line 8, and thence to page 108. When ve say "all the lines perpendicular to a given line" (page 118, 11nes 13 and 14) wo have in aind a eystom of perpendiculars - and hence aleo a eystem of parallele - that is as numeroue as the pointe on a line. This means that the maber of lines In the ejstem of parallels reforred to on pege 118, and also on page 108, is the non-denumorable infinity of the continum. The number of lines in "the collection of lines called a rectangular netrork" on page 118 is also equal to this non-denumerable infinity of the continump; for the lines in a rectangular notwork can be paired with the lines in a ejoton of parallels. (See E. V. Buntington, The Continuum and Other Typee of Sorial Order, Barvard University Prese, 1917, 1938.)

Page 119: Coördinates. Wo purposely use "x-coördinate" and "y-coördinate" instead of "abscissa" and "ordinate," becanse the two former are clear, unistakable, and in genoral use anong matheraticians.

Pege 121: Fxorcises.

1. The suggestion "- or any other convenient distance as the unit -" 18 meant to imply that printed equared paper is not necessary for these fov oxercises and that the pupil can drav hie own notwork in each case.
2. Slopes are $\frac{5}{3} ; \frac{2}{4} ; \frac{3}{2} ; \frac{11}{26}$.
3. $O A=\sqrt{34}$

$$
O B=2 \sqrt{5}
$$

$$
\alpha=\sqrt{13}
$$

$$
\begin{aligned}
& O H=2 \sqrt{5} \\
& O I=\sqrt{29} \\
& O I=\frac{\sqrt{65}}{2} \text { or } \sqrt{16.25} \\
& O X=\frac{\sqrt{74}}{2} \text { or } \sqrt{18.5}
\end{aligned}
$$

5. $A C=\sqrt{5}$
$E D=\frac{\sqrt{109}}{4}$
$A C=8 \sqrt{2}$
$\sqrt{x}=\frac{\sqrt{13}}{2}$
$\mathrm{E}=\sqrt{136}$
$E=\frac{\sqrt{130}}{2}$
$\omega=\frac{\sqrt{233}}{2}$
$D=\frac{\sqrt{1285}}{4}=8.96$
$50=\frac{\sqrt{2041}}{4}=11.3$
$J D=\frac{\sqrt{1781}}{4}=10.5^{+}$
6. Slope is $-\frac{1}{2}$.
7. slopet are 2; -1; - $\frac{5}{9}$.
8. slope of CX $10 \frac{1}{3}$; slope of BD 18 $\frac{3}{10}$. The slope of HB 1s 0.
9. IA has etoopest slope, 10. Cr, though inclined more stoeply to the x-axie than IA, has no slope.

Page 122: Theorem 18. Completo the proof by chowing that $\angle I P Q=$ \angle MPR.

Pege 123: The oquation of a 11no. The autbors widh to obov at thise point how the ueval ideas concerning the straight ine in analytic geometry can be developed from the sundamontal conoopte of BMSIC CEONDRRY. 81milarly, on pages 133-135, they begin the analytic treataont of the circle. But having made thie connection with analjtic gocuotry, they do not wiah to go farthor; for an accurate and reasonably comploto treatmont of etraight line and circle by the mothode of analytic geomotry would make too lons an interruption in the main them of this book and vould introduce to many difficulties. The atop from the graph of $2 x-3 y-5=0$ in olementary algebra to the genoral equation of the first degree in analytic geometry, namoly ax $+b y+c=0$, is much hardar than moet secondary-school teachers belleve it to be.

In conuldering (near the bottom of page 123) the equation of the line through (a, b) that io parallel to the x -axis, the treatmont in the toxt ought etrictly to follow the pattern for the general etraight line as
set forth in lines 9-12 higher up on this page. That is, it ought to show not only that the y-coordinate of overy point on this line is b , but also that every point whoee y-coondinate 16 b 11es on this line; and eimilarly for the equation of the line through (a, b) that in perpendicular to the x-axis. Since, hovever, these two opecial cases usually give pupila more trouble than the ordinary oblique cases, it soems viser not to indiat on a complication in the development that the pupil vould probably not appreciato.

Page 124: Rorcisen.

1. $X=\frac{4}{5}$
2. $\frac{I}{x}=-\frac{3}{2}$
3. $a y=b x$, or $b x-a y=0$.

Page 125. A brick has three planes of aymotry. A cube hae nine planes of aymatry. A man hat one plane of eymatry.

Tvo aymetric plane triangles vill coincide if one 18 rotated through 180° about the axic of eymetry; two eymetric ephericel trianglee cannot be made to coincide by this sort of rotation.

The thind paragraph on page 125 of BASIC GFOHLIRTY will be revised to read:
"Pig. 25 has no axis of ejmatry. If, hovever, vo rotate thic figure In the plane of the paper about the point 0 through an angle of 180°, it coincides with ite original position. Whenever a 180°-rotation of this sort about a point 0 causes a Plgure to coincide vith its original position, the P1gure 16 said to be symotric vith respect to the point 0 and 0 1s called the centor of eppotry of the f1gure."

Erery equare, every rectangle, overy regular hexagon, has a centor of oy motry. Mo triangle, not oven an equilateral triangle, and no pentagon has a center of aymentry.

Almost every leaf in nature is symetric with reapect to an axis, if - 82 -
we ignore minor diecropancies. But miberry, sassafras, poison ivy, and poicon oak have aejpetric leavee, often symetrically grouped. Thie distinctive charactoristic is particularly important in the case of the poieonous ones.

A geometric figure io eymotric with roopect to a point 0 if orery point P of the fleure (axcept 0) has a corresponding point P in the figure such that PP' is bisected by 0 .

Pages 126-130: Axercises.

1. The seven figures have $2,5,6,4, I, 2,0$ axes of eymotry respectively. All but the second and fifth heve symetry vith reapect to a point. The fourth, fifth, eirth show close relation to a mork.
2. The left leaf, or leaflet, usually arhibite left-handed amymatry; the middle leaf, or leaflet, is aymetric; and the right leaf, or leaflot, usually shows right-handed asymintry.
3. Use Theorem 15 and Principle 6.

Incidentally, the teacher ahould lead the pupils to observe that the three pairs of einilar triangles in Fig. 28 ail bave the soro factor of proportionality, but that no triangle of one peir is eindlar to a triangle of another peir.
4. $\frac{P B}{F B^{\prime}}=\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}=\frac{A B}{C B^{\prime}}$

Therefore $\frac{P B^{\prime}}{F B}-1=\frac{Q B^{\prime}}{Q B}-1$, and $\frac{B B^{\prime}}{P B^{\prime}}-\frac{B B^{\prime}}{Q B}$.
Since $P B=Q B, P$ and Q coincide and the three lines are concurrent.
If $A B=A^{\prime} B^{\prime}$ and $B C=B^{\prime} C^{\prime}$, the three lines are parallel.
5. Use Theorem 15 and Principle 6.
6. Using Mg. 30, assuns that M^{\prime} and $C C^{\prime}$ goot at P and that $M A^{\prime}$ and $B B^{\prime}$ moot at Q.

$$
\begin{aligned}
& \frac{P A}{P A^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}}=\frac{A B}{A^{\prime} B^{\prime}} \\
& \frac{Q A}{C A^{\prime}}=\frac{A B}{A^{\prime} B^{\prime}}
\end{aligned}
$$

Therefore $\frac{P A}{P A^{\prime}}=\frac{Q A}{Q A^{\prime}} ; \frac{P A}{P A^{\prime}}-1=\frac{Q A}{Q A^{\prime}}-1 ;$ and $\frac{A A^{\prime}}{P A^{\prime}}=\frac{A A^{\prime}}{Q A^{\prime}}$.

So P and Q coincide and the throe lines are concurrent.
7. If the triangles are oqual, AA', and BB', and CC' are parallel.
8. Using Fig. 31, follow the proof of Ex . 6 oxcopt that A ' is now replaced by $A^{\prime \prime}$ and that wo now writo $\frac{P A}{P A^{\prime \prime}}+1=\frac{Q A}{Q A^{\prime \prime}}+1$.
9. As indicated in Fig. 32, drav two random lines through P to moot 1 and ㅌ. Complete the triangle as show and drav another triangle similar to the flrst eo that the two triangles have thoir oides respoctively parallel. The line joining P and the corresponding vertox in the second triangle is the desired line. (Or else roplace this explanation by the following: "Use Bx .6 above, as indicatod in Mg. 32.")
10. $\frac{15}{4}$ ailes an hour
11. The perpondicular bisectors of opposite sides of a rectangle coincide. The porpendicular bisectors of adjacent sides meet in a point that is equidietant from all four vertices of the rectangle. Since the diagonals of a rectangle are equal (Principle 5) and bisect each other (page 113, B. 4), their intersection also 18 equidistant from all four vertices of the rectangle and hence mast lie on the perpendicular bisector of each side of the rectangle.
12. If all three planes are porpondicular to a fourth plane and no two of the throe plands are parallel, they intersect two at a timo in three parallel lines. If two of these throe planes aro parallel, the three planes intorsect in two parallel lines. If all three of these planee are parailel, they have no point in common.

The anowere to Bre. 13-21 given below are mach more detailed than can be fairly oxpected of pupils. The point of these exercises is to get the pupil to consider and diecues certain three-dimonsional analogues of the ideas set forth in the earlier part of this chaptor. It is desired that the pupil shall think in three dimoneions oufficiently to see the
relations involved in these exercises. It is not expected that he supply proofe.
13. Call the two given parallel lines 1 and m . If the "other" line, m , and the plane containing 1 have a point in common, this point will 110 not only in this plane but in the plane deternined by 1 and m. That 1s, it will 110 on the intersection of these two planes, namely 1. But this would mean that a point of $\underset{\text { m }}{\text { 1 }}$. 0 aleo on 1 , which is imposeible. So mand the plano containing 1 can have no point in comen.
14. If the two planes have a point in common they also have a ine in common. If any point of this line be joined to the ands of that segrent of the given perpendicular line that is included between the two planes, the resulting triangle will contain two angles of 90°, which is inpossiblo.
15. If the two lines of intorsection have a point in comen, this point mist be common to the two parallel planes, which is impossible.
16. Given innes 1 and $\underline{\min }$ Ing. 33, join tho point of intersection of $\underline{1}$ and the firet plane with the point of intersection of $\underset{\text { m }}{ }$ and the thind plane, forying an auxiliary line shown in the figure. Apply Theoram 16 to 1 and the auriliary line, and again to the auxiliary line and ․ㅡ․
17. Use TI. 15 on this page, Theorem 15, Principle 6, and Ex. 5 on page 127.
18. If "the plane of these lines" is not parallel to the given plane it has a Inse in common with the given plane. This ine of intersection cannot be parallel to both the given intersecting lines; it muet have a point in coman with one of them. This point, therefore, must be common to the given plane and to a line that is parallel to the given plane. This is impossible.
19. One of the given lines and the parallel through any point of it to
the other given line determine a plane that is parallel to "the other given line," by Ex. 13 on page 129. Since there is only one euch parallel through any point of the first given line, there it only one such parallol plane through this "ang point." Furtber, this plane contains the parallel through each of the other points of the firet given line.
20. Through the given point there are two lines one of which is parallel to one of the given skev lines, wile the other is parallel to the other of the given skev lines. These two "parallels" determine a plane, and the only plane, that is parallel to both the given skev innes. If the given point 1108 on one of the given skew inee we have the eituation of Ex .19 on thic page.
21. If there is a comon perpendicular to two given skew iines, it will be perpendicular also to a randon plane that is parallel to the two skev linee. So, of all the perpendiculars to a given skow line wo need consider only those that are perpendicular also to this random plane. Thece perpendiculars ile in the plane that contains the given skev line and is perpendicular to the random plane. Similarly, we need consider only those perpendiculars to the other skev line that $11 e$ in the plane that contains this other skew line and 18 perpendicular to the random plano. The line of intersection of these two planes each of which is perpendicular to the "random parallel plene" is the comon perpendicular to the two skew innes.

```
                    CHAPTER 5
                    Loceon Plan Outline: 27 100sons
    1-3. Through Theoren 20, page }13
            4. Theorem 21, Corollary 21a, and Exa. 1-2,
                pages 139-141
            5-9. Fxe. 3-26, pages 141-145
            10. Theorem 22 and corollaries, pagee 145-146
            11-14. Fxe. 1-25, pagee 147-150
            15-17. Bxe. 26-47, pages 150-152
            18-21. Theoroms 23-24 and Exe. 1-16, pages 152-155
            22. Fre. 1-5, pages 157-158
            23. Exe. 6-10, page }15
            24. Exe. 11-15, page }15
            25-27. Pagee 160-163
```

Page 133: Circle. In order not to cluttor up the definition of "circle" in lines 7-8 with a forbidding array of worde, the authore have used the phrace "all the pointe" to etand for "all the pointe and no other pointe." The "other pointe" are taken care of in a eubsoguent sentence, lines 13-16, that coneldere all pointe vhose dietance from 0 ie oither lese than or greater than r. In the equation discussed in lines 21-23, r varies from circle to circle but is constant for any particular circle. Thic "variable conatant" r is called a paramotor and must not be confused with the true variables, x and y, of the equation.

On page 134 the first paragraph associates the pointe on a circle with half-1inee having a common end-point 0 in ordor to load up to the definition of "are" in the following paragraph. Thic association eorves aleo to establish the fact - not mantioned in the toxt - that the circle is a continuous curre; for in Principle 3 the linking of the ajetea of real numbers with all the half-lines having a common ond-point establishes the continuity of these half-1inee in the same way that in

Principle 1 the linking of the ejeten of real numbers with all the pointe on an endless line establishes the contimity of the ondess line. These ideas concerning continuity are vithhold in this book until Chapter 8, pagee 228-231.

Page 134: Minor arc. In the discuseion of "angle" as a geomotric conflguration on page 46 the 1dea of "lesser angle" was adnittedly used promaturely. This idea vas legalized letor by the discussion of angle moasure under Principle 3. Unfortunately vo cannot Jump vith oqual rapidity from the definition of arc to the definition of arc length. So, although wo mey distinguiah arcs, defined as aggregetse of points on a circle corrosponding to cortain half-lines, by means of their contral angien, wo have no right to allow "losser central angle" to imputo the idea "lesser length" to the corresponding arc. We ment restrict the implication of the term lesser, or minor, arc to this aseociation vith leaser contral angle and met leavo out all idea of longth until vo come to Chapter 7. We do the sare vith reapect to equal ares on page 135. Of course, everyone knows intuitively what the inal decision about arc longthe is to be. But officially vo noed first to make clear what is mant by the length of a circle, and this requires the ueual polygon and linit technique.

Nthough it would be possible at this time to consider directed arce in torms of directed contral angles, the use of aigne in this connection would have to be construed as applying only to the contral angles inrolved and $a s$ carrying no implication concerning the lengthe of the directed arcs. This is 80 unatural that the mattor of directed arcs is deforred until pege 209, where it 18 poseible then to allow the 81 gn of a directed arc to carry aleo an implication as to magnitude. See bracketed ansver to question 5, page 135.

Page 135: Pxercises.

1. (a) $x^{2}+y^{2}=4$
(c) $\mathbf{x}^{2}+\mathbf{y}^{2}=9.61$
(b) $x^{2}+y^{2}=25$
(d) $x^{2}+y^{2}=\frac{4}{9}$
2. (8) 3
(c) 1.9
(0) $\sqrt{2}$
(b) $2 \sqrt{2}$
(d) $\frac{3}{2}$
3. One, the point $(0,0)$
4. None
5. Arc $B C=\operatorname{arc} D E=25 \quad$ Arc $B C=\operatorname{arc} C E=65$
$\operatorname{ArC} B E=\operatorname{arc} P A=90 \quad$ Arc $B F=\operatorname{arc} E A=235$
[Arc $E D=\operatorname{arc} C B=-335]$
6. On the half-line numbered 80 , or 260 .

Page 136: Diamoter. See the discuseion of "circle" and "diameter" on pages 14-15 of BASIC GFOMETRY.

Page 136, third paragraph. Here we have an example of a variable approaching a limit and equeling its limit; and an example also of a variable approaching a limit but never oqualing its limit. The toacher will do vell to emphasize this mattor - though chiofly as an aside because the word limit usually occurs in olemontary gecmotry in caees where the variable does not equal ite limit. This loads the pupil to infer, erroneously, that a variable can never equal 1 ts limit, and it is wise to try to prevent his getting this false impression.

Page 137: Bxercisen.

1. We expect "equally spaced" to be undorstood ae "having equal central angles." The idea of equal arce is not jet available.
2. Apply Case 3 of Similarity, pages 78-80, to the two triangles.
3. Uee Ccrollary 12b, page 93.
4. Uee the Pythagorean Theorem and Ex. 3, page 137.
5. Use the Pythagorean Theorem. The pupil 18 expected to recognize
intuitively that r^{2} - (ehortor) ${ }^{2}$ is greator than $r^{2}-(\text { greator })^{2}$. He 18 not expected to quote the elghth law on page 288 in support of hie argument. Seo page 234.
6. Fach chord corresponde to a central angle of 60°.

Pages 140-145: Exercisos.

1. Use indirect mothod - suppose that perpendicular does not pase through the conter; then Theorem 21, and unique perpendicular 1doa on page 54.
2. Use indirect method - suppose that the perpendicular does not pees through the point of tangency; then Theorom 21 and Principle 11, page 88.

3-4. Use Corollary 15a, page 111, and Corollary 12b, page 93.
5. Use Theorem 21, Corollary 15a, and EY. 2 on page 141 to prove that the diamotor through one point of tangency passes through the other point of tangency also.

6-7. Use Ex. 3 and Theorem 19.
8. Use Corollary 12 b.
9. Ube Bx. 8.
10. The oum of one pair of opposite central anglos is oqual to the oum of the other pair. Draw radil to the four pointe of tencency; uee EX. 8 ond Corollary $12 b$.
11. Ae in Ex. 9.
12. As in Ex. 11, the sum of altgrnate sides of a circumbcribed n-gon is oqual to the sum of the romaining oides when n is oven, but not when n 1 s odd.
13. The authors use the word "ehow" inetead of "prove" in this exercien to Indicate that the pupil 18 oxpocted to oxhibit estisfactory dieErams only, but no proofs. The following etatemente ore for the teecher only. Whenever the expression $r-r^{\prime}$ occurs in these atetomonts it is neoumod that r is greater than r '.

If the circles should have a point in comon when 00^{\prime} is greater than $r+r^{\prime}$, then $-b y$ Corollary $12 c-r+r^{\prime}$ would bo greater than 00': an obvious contradiction.

If the circles should have a point in common when 00^{\prime} is less than $r-r^{\prime}$, then - by Ex .20 on page 78-r - \mathbf{r}^{\prime} vould be 1088 than 00^{\prime} : another contrediction.

If, when $00^{\prime}=r+r^{\prime}$, the circlee ehould have a point in common but not on 00^{\prime}, thon - by Corollary $12 c-r+r^{\prime}$ vould also be greater than 00^{\prime} : impossible.

If, when $0^{\prime}=r-r^{\prime}$, the circles should have a point in common but not on 00^{\prime} extended, then - by Ex. 20 on page $98-r-r$ r would also be lees than 00^{\prime} : impossible.

In these last two cases the circlee can clearly have one point in common, and this common point mast 11 on 00° or on 0° extended. That the circles might have a second point in common, not on 00^{\prime} or on 00^{\prime} extended, has just been shown to be impossible.

Finally, when $r-r^{\prime}<00^{\prime}<r+r^{\prime}$, if the circles should have a point in common on 00^{\prime} or on 00^{\prime} extended, then 00^{\prime} is elther eimultaneously lees than $r+r^{\prime}$ and equal to $r+r^{\prime}$, or else simultancously greator than $r-r^{\prime}$ and equal to r - $r^{\prime}:$ both imposible.
14. By Principle 10, page 87, and Principle 2, page 44.
15. If the two circles should have three distinct pointe A, B, C in common, then $O C^{\prime}$ vould be the perpendicular bisector of $A B$ and of $A C$ at the same time; and this is impossible, as there cannot be two lines from A perpendicular to 00'.

Exs. 13 and 15 establish the existence of two and not more than two pointe common to two circles. It is proper then on page 143 to dePine the torms "points of intersection" and "comon chord."
16. Use Ex. 1.
17. The teacher can vary this by asking for a single diagram showing several interesting steps in the transit of a small circle (mon) across a larger circle (sun). Be can ask also vhether an eclipse of the sun by the moon appears to an observer on the earth to be an example of a small circlo pasing acrose a larger circle.
18. 3.99 inches
19. 0.87 inches
20. $4.8+4.4+4.0=13.2$ inches
21. (a) $00^{\prime}>\boldsymbol{r}+\mathbf{r}^{\prime} \quad$ (c) $\mathbf{r}-\mathbf{r}^{\prime}<0^{\prime}<\mathbf{r}+\mathbf{r}^{\prime} \quad$ (0) $00^{\prime}<\mathbf{r} \cdot \mathbf{r}^{\prime}$
(b) $00^{\prime}=r+r^{\prime} \quad$ (d) $00^{\prime}=r-r^{\prime}$
22. 0^{\prime}. If $r=r^{\prime}$, a second axie of eymetry is the perpendicular bisector of 0^{\prime} in casee (a), (b), and (c).
23. From a point P on the common tangent a tangent to elther circle ie equal to PT, by Ex. 8 on page 141.
24. This is a special case of the preceding oxercise.

25-26. If the common external tangente moet at T, then the angle between these tangente 18 bisected by TO (Ex. 8 on page 141). This same angle 18 bleected also by TO'. Therefore TO and TO' are (parte of) the same 11no, and Tlies on 0^{\prime}.

If the two circles in Ex. 25 have equal radi1, their common oxtormal tangente do not meet.

Pages 145-146: Theorem 22 and Corollar1es 22a, 22b, 22c. We have dofined "arc" (page 134) in intimate connection with "central angie" and have then omployed the phrase "a central angle has an arc." On page 135 vo have defined equal arce as having equal radil and equal contral angles, but have dieavowed any intention of implying at thie time that equal arcs, thue defined, have equal lengthe. When in Corollary $22 a$ we say that equal inscribed angles have equal arcs wo do not make clear juet

[^7]which arcs wo mean, but thie is relativoly unimportant since corresponding arce are equal all around.

Pages 147-152: Exercises.

1. The sum of two opposite angles of the quadrilateral ie equel to half the sum of two contral angles that add up to 360°.
2. In Fig. $24 \angle A B C=90^{\circ}=\angle A B D, 80 C B D 10$ a 6 traight line.
3. For the left-hand fleure:
$\angle C+\angle A B D=180^{\circ}$ and
$\angle A B D+\angle A B F=180^{\circ}$.
Therefore $\angle C=\angle A B F$
$\angle A B F+\angle E=180^{\circ}$.
Therefore $\angle C+\angle E=180^{\circ}$ and chorde CD and EF are parallel (by page 110, lines 1-3).

For the right-hand figure:
$\angle C+\angle A B D=180^{\circ}$ and $\angle A B F+\angle A B D=180^{\circ}$.
Therefore $\angle C=\angle A B F$ and chorde $C D$ and EF are parsilel.
5. $\angle A P C=\angle B+\angle C=\frac{1}{2} \angle A O C+\frac{1}{2} \angle B O D=\frac{1}{2}(\angle A O C+\angle B O D)$, where 0 is the conter of the circle.
6. $\angle A P C=\angle A B C-\angle B C D=\frac{1}{2} \angle A O C-\frac{1}{2} \angle B O D=\frac{1}{2}(\angle A O C-\angle B O D)$
7. Draw the bisector OM of the 1808celes triangle TOB (Fig. 28) and prove that two anglee at M are right anglee. It followe that angle MOT and the angle between the tangent and the chord are both equal to $90^{\circ}-\angle M T O$.
9. Use the fact that the four angles of quadrilateral PSOT add up to 360° and that two of these anglee are right angles.
10. From Ex. $9 \angle S P T=180^{\circ}$ - the lesser angle $S O T=$
$\frac{1}{2}\left(360^{\circ}-\right.$ twice the lesser angle $\left.S O T\right)=$
$\frac{1}{2}$ (greater angle SOT + leseer angle SOT - $2 \cdot$ leseer angle SOT) $=$
$\frac{1}{2}$ (greater angle SOT - leseer angle SOT).
11. $63 \frac{1}{2}^{\circ}$
12. $180^{\circ}-120 \frac{1}{2}^{\circ}=59 \frac{1}{2}^{\circ}$
13. 69°
14. Note that Exe. 14, 17, 23, 24, and 25 eay "ehow" - not "prove" - and "can be regerded." All thet is expected of the etudent in these five oxercises ie an intuitive recogntion of limiting cases.

In Fig. 26, as D approachoe B, $\angle C$ approaches 0° and $\angle A P C$ approaches $\angle B+0^{\circ}$.
15. $27 \frac{1}{2}^{\circ}$
16. 34°
17. See note on Ex. 14.

In Fig. 27, e日 D epprotichee $B, \angle B C D$ approaches 0° and $\angle A P C$ approaches $\angle A B C-0^{\circ}$.
18. In Fig. 28, when $\angle T O B=90^{\circ}, \angle O T B=45^{\circ}=$ the engle between tangent and chord. When $\angle T O B=180^{\circ}, T B$ is a diameter and 10 perpendiculer to the tangent at T.
19. $12 \frac{1}{2}^{\circ}$
20. 52°
21. 43°
22. 222.2° and 137.8°
23. See note on Ex. 14.
24. See note on Bx. 14.

Ae B moves along the circle trwerd T, P moves toward T elong the tangent and $\angle P A T$ approaches 0°.
25. See note on $\mathbb{Z x} .14$.

Lot A and B withdraw from T along the circle until A and B approach coincidence.
27. Use Corollary 22c and Ex. 15, page 86.
28. $2 \sqrt{3}$
29. $\frac{13}{4}$
30. In Fig. 31, lot $D O=x$. Then $A D=4-x, D B=4+x$, and $(P D)^{2}=9=$ $(4-x)(4+x)=16-x^{2}$. Therefore $x^{2}=7$ and $x=\sqrt{7}$.

Alternative solution: Lot $A D=x$. Then $D B=8-x$ and $(P D)^{2}=9=$ $x(8-x)=8 x-x^{2}$ and $x^{2}-8 x+9=0$. Ueine the quadratic formina, $x=4 \pm \sqrt{7}$.
31. $P A=2 \sqrt{6}$ and $P B=2 \sqrt{10}$
32. $P A=4$ and $P B=4 \sqrt{3}$
33. $A B=6$ and $P B=3 \sqrt{3}$
34. $A D=\frac{8}{\sqrt{13}}$ and $P D=\frac{12}{\sqrt{13}}$
37. $\angle P T A=\angle P B T$; therefore triangles PTA ard PBT are similar.
38. Use Ex. 37.
39. $\frac{20}{7}$
40. 7.4
41. $\frac{77}{6}$
42. Letting $C P=x$, we have $x^{2}+5 x=96$. The teacher should tell the pupil in advence that he will meet ar equation of this eort and will be expected to find an approximate solution by trial-and-error. For oxample, 7 is too small, and 8 is too largo; $7 \frac{1}{2}$ soems about right; try 1t. We get $56+\frac{1}{4}+37+\frac{1}{2}=93 \frac{3}{4}$, which is a bit emall. So wo try 7.6 , gettine $57.76+38.0=95.76$, and this is vory close indeed.

Applying the quadratic formula to the equation $x^{2}+5 x-96=0$ flolds $x=\frac{-5+\sqrt{409}}{2}=7.6$ and another value that ve roject becauee it is negative.
43. $2 \sqrt{15}$
44. Lotting $A P=x$, wo have $x^{2}+4 x=64$. The toacher should toll the pupil in advance that he will meet an equation of this sort and will be expected to find an approximate solution by trial-and-error. For
example, 6 ie too small and 7 is too large; $6 \frac{1}{4}$ eooms about right; try $1 t$. We eet $\left(6+\frac{1}{4}\right)^{2}+4\left(\frac{25}{4}\right)=36+3+\frac{1}{16}+25=64 \frac{1}{16}$. So $6 \frac{1}{4}$ 18 very cloee indeed.

Applying the quedratic formala to the equetion $x^{2}+4 x-64=0$ ylolds $x=2 \sqrt{17}-2=6.24$ and another value that we reject becauee it ia negetive.
45. 56.25
47. See note on BX .14 .

In FIg. 33, let A and B move toward eech other along the minor arc $A B$; then let C and D move toward each other along the minor arc $C D$. In the case that both secante beccme tangente we have the eltuation in Ex. 8 on page 141.

Page 152: In Thoorem 23 the fuseieet point of the proof concerne a detell that ie of least interest to the pupil, namely, whother PM and QN intersect or not.

Pages 154-155: Exarciseo.

1. The first two paragraphe of the proof of Theorem 23 on pege 153 cen be appliod to any triangle $A B C$.
2. In Fig. 36, triangles $O A B$ and $O B C$ are equal ieoecolee triangiee; so $\angle A B O=\angle C B O$.
3. If we regerd $\mathrm{Fle}_{\mathrm{E}}$. 36 ae repreeenting part of an inscribed equilateral polygon, the equality of the baee andee of the eeveral equal fececeles trianglee is eufficient to prove that $\angle A=\angle B=\angle C=\angle D=.$. Thue the definition of regular polygon on page 85 te satiefied. If the equilateral polgecn ie formed by joinine every second, or every third, or every fourth,, point of divieion on the circle, then the polygon will be a oter when n le odd.
4. See Fige. A and B on the next page.

Fig. A

Fig. B

Fig. C
5. In Fig. C, polygon ABCDEFGH is equi-angular. The inecribed circle touches the sides of the polygon at R, S, T, U, Bo that triangles $\mathrm{ROB}, \mathrm{BOS}, \mathrm{SOC}, \mathrm{COT}$, . . . are similar. For the anglee at R , S, T, U, . . . are right angles (Theorem 21) and the engles at B, C, D, . . . are halves of equal angles. These triancles are aleo equal, since $O R=O E=O T=O W=$. . . . Therefore $R B=B S=S C=C T=$ $T D=$. . . ., and $B C=C D=.$. . ., 80 that $A B C D E P G H$ is a regular polygon.
6. See Fige. D and I below.

Fig. D

Fig. E
7. Since each angle of the polygon is measured by (see footnote on page 145) the same number of equal arcs, all the angles of the polygon are equal. The sides are all equal also (Theorem 19).

In Bx. 7 and By. 8 the phrase "any number" means "any integer greater then two."
8. If the chorde are dram also, as in Ex. 7, vo have n isoscoles triangles. In each triangle the angle betwoen tangent and chord is the sars, so that the triangles are similar isoscoles triangles. Therefore the angles at the vertices of the circumecribed polygon are all equal. Since the chorde are all equal, these isoscoles triangles are not only eimilar, but equal; so that the eldea of the circumscribed poljgon are all equal.
9. One mothod of proof follove the pattorn of the proof in kx. 8, shovIng first that the ieosceles triangles are all similar, and then that they are all equal.

A eccond mothod is morely to apply the theoren in Ex. 7 on this page.

That the maber of sidee is doubled is sufficiently obvious without oxpecting the student to give a formal proof.
10. This can be proved elther by draving chords and considering the isosceles triangles, as in Ixe. 8 and 9, or by imediato application of the theorem in Ex. 8 on this page.
11. Prove angles equal by Ex. 6 on page 85. Since $A B=B C=C D=\ldots$ and $A^{\prime} B^{\prime}=B^{\prime} C^{\prime}=C^{\prime} D^{\prime}=\ldots \cdot, \frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}=\frac{C D}{C^{\prime} D^{\prime}}=\ldots .$.
12. $\frac{5}{\sqrt{2}}$
13. $7 \sqrt{2}$
14. $\frac{4}{\sqrt{3}}$
15. $7 \sqrt{3}$
16. $30 \sqrt{3}$

Pagos 157-161: Rxorcises.

1. $\angle S R T=\frac{1}{2} \angle 0$
$\angle \mathrm{RST}=\frac{1}{2} \angle \mathrm{O}^{\circ}$
$\angle S R T+\angle \mathrm{RST}=\frac{1}{2}\left(\angle 0+\angle 0^{\prime}\right)=\frac{1}{2}\left(180^{\circ}\right)$
Therefore \angle RTB $=90^{\circ}$.

Fig. A
2. It is nocessary only to prove that the marked angles in each of the diagram bolow are equal.

3. Use the proceding exercise and aleo Ix. 5 on page 127.

Fig. 8
4. In Fig. C, TA' and TB' are random chorde through T. It is eufficient to prove by Ex. 2 on thise page that chords $A B$ and $A^{\prime} B^{\prime}$ are parallel.
5. See Fig. D. In each case $\angle A E D=90^{\circ}$. Therefore $\angle A^{\prime}$ TIB' $=90^{\circ}$ aleo, and A 'B' is a diamoter.

Fig. C

Fig. D
6. It is not necoseary that all papils eaggest the eam property. This is an interesting and eignificant diagram, and the total of all correct
suggestions will onlighten everyone. There are times when the teachor w11l prefor to esk "Bee what you can diecover" rather than "8e0 if you can 800 what the book says you should see."

Soe Fig. A bolow. P is oquidietant from R, S, and T; Q is oquidistant from U, V, and T.
$P Q=R S=U V$. For $P T=\frac{1}{2} R ; Q T=\frac{1}{2} V \mathbb{L}$; and $R S=U V$ because $R M=$ UM and $S M=M M$.
7. Use the thoorem in M. 37 on pege 151.
8. See Fig. B. Triangle ADO 18 a $30^{\circ}-60^{\circ}$ right triangle. Therefore $D O=\frac{1}{2} O=\frac{1}{2} C O$, and $D O=\frac{1}{3} D C$.

Fig. A

Fig. B
9. Since the inscribed angles C and D are measured by one half the same arce respectively, however CD may be drawn, the eizes of these two angles do not vary. Consequentiy angle DBC does not vary in eize.
10. The accompanying diagram shows circles 0 and Q of $F M_{g} .41$, to which the lines $Q A, Q E, Q$, and the comen tangent $3 T$ at C have boen added. By Br. 16 on page 143 OQ passes through C. Since $\angle T C A=$ $\angle S C E, \frac{1}{2} \angle A O C=\frac{1}{2} \angle B C C$ and $O A 18$ paral101 to OF. Similarly, in Fig. 41, PA

Fig. C

is parallel to $Q D$. But $O A P$ is a etraight line. Therefore $B O D$ is straight aleo.
11. In Fig. 42 the angles at A and B are complementary. If the other tangents from A end B are drawn, these angles et A and B will be doubled; that 1s, they will be supplementary, and the now tangents vill be parallel.
12. The length of the segmente in question are either the oum or difference of equal tangents from an external point.
13. If we letter the arce a, b, c, d, θ, . . . In order, then in the case of the equiangular polygon of flve sides the equality of the angles tells us that $a+b+c=b+c+d=c+d+e=d+0+a=$ $0+a+b=a+b+c$. It follows that $a=d, b=e, c=a, d=b$, $0=c$, and hence that $a=b=c=d=e$. Since thie polygon 10 both equilateral and equiangular, it is regular.

If the equiangular polygon has six sides, we get $e+b+c+d=$ $b+c+d+\theta=c+d+\theta+P=d+0+P+\theta=0+P+a+b=$ $f+a+b+c=a+b+c+d$. It followe that $a=e, b=r, c=a$, $d=b, \theta=c, f=d$ and hence that $a=c=0$ and $b=d=f$; but there is no way of equating a, c, or 0 to b, d, or f.

If the equiangular polygon hes seven eides, we get $a=P, b=g$, $c=a, d=b, \theta=c, f=d, g=0$. This is like the eeries of equations for the pentagon, except that in each equation we now skip four letters instead of two. Since in each of these two cases the total number of letters is odd, this skipping of an even number of letters linke all the letters and equations together. The same is true of any polygon having an odd number of sides. Whereas in the case of any polygon having an evan number of eides, like the hexagon, wo skip an odd number of lettors in each equation of the serios; and eince the total number of letters is even, we succeed in linking only half the letters into one seriee of equations, and the other half into a second series of equations; wo can never bring the two eories together.
14. In the case of the equilateral polygon of five sides, or of any odd number of sides, the segmente of the tangente are equal in paire around the polygon, as marked, baginning at vortex A, until there is overlap; that 1s, until an a cogrent is coen to be equal to a b sogrant. Consequently each vertex of the polygon is at

Fig. A the eame dietance r^{\prime} from the contor of the given circle (Principle 12) and the polygon can be inecribed in a circle of redius r'. By Er. 3 on page 154 the polygan is regular.

Or, having proved an a eegmit equal to a b eegmont, we can prove $\angle O B T$ equal to $\angle O C T$, and hence $\angle B=\angle C$. In thie var the equilateral polyeon is proved to be equiangular aleo, and therefore regular.

In oase the circumecribed equilateral polygon hat an oven number of cides, the segents of the tangonte are equal in paire but without ovorlap. It is impoesible to prove that the polygon ie regular. II. 6 on page 155 afforde axamplos of cirouncoribed equilatoral polygons that are not regular.
15. In Mg. 43, $10 \cdot O B=C O \cdot C D$;

$$
\begin{aligned}
& A O \cdot O B=E O \cdot O P ; \\
& C O \cdot O D=10 \cdot O Q ;
\end{aligned}
$$

therefore $O P=\infty$.
Note: His. 16-23, like the other axerciees on three-dimenoional goomotry in thic book, are not moant to be logically connected with the two-dimencional geometry. They are incluad principaily to challonge the pupil's imagination.
16. A circle. It is assumed, of course, that the pupil will thint only of a right circular cone. To include a tochnical phrase of this eort in the question would add quetery rether than clarity.
17. A circle. Hore aleo it is aseused that the pupil will consider onls a right circular cylindor.

The coin must be held horizontal; parallel to the tilted cover. Tho coin will cast an olliptic shadow if the plane of the coin 16 not parallel to the ploor (cover) and doen not contain the perpendioular from the ligit to the floor (cover). In the lattor case the shadow would be a "broad" ilne segrent.
18. Circle. Moridian and equator are equal circles. Conters of all Great circlee are at the centor of the ophere. Parallele of latitude are mallor circles than "great circlec" and dirinish as the latitude increases from equator to pole. The centert of all these circlee are on the axie joining the two polee of the aphere.
19. The center of the ephere and the two given points on the ourface of the ephere ordinarily detorndne a plane. Mis plane intersecte the ephere in a great cirole. Three pointe in a straight ilne do not "deterying" a plano: this line can 11e in a multitude of planes. Whis altuation ariceo when the two given pointe are the extrealties of a diameter. For oraple, there are aititude of maridiane through the north and couth polee of the earth.
20. Cape Race, Iewtoundiand; Sonthern Ireland.
21. 75° in both caces
22. 5 hours. The ann's apparent motion around the earth covers 360 degrees in 24 houre; that 18, 15 degrees in 1 hour.
23. One equilateral opherical triangle that is likely to ocour to the student 10 the triangle each of whoee siden 16 a quadrant $\left(90^{\circ}\right)$ of a Groet circle. If euch a triangle be drawn on a tennia ball and then an equilatoral triangle vith abortar aldes - ear 600 - be drann ine1de the firyt triangie, the angleo of the ecoond triangle will obviously be emallor than the 900 anglec of the first triangle.

Pagee 161-163: Rxerciees.

1. It doee not follow; for consider the triangles show in Mg. A, in which $J K=P Q, K L=Q R$, and $\angle J=\angle P$.

Fig. A
2. To say "draw FM parallel to $C D$ "
domands too mach. Bither one should drav a line through F parallel to $C D$ and then prove that $1 t$ moets $B D$ at M; or else draw M and prove that DM_{1} is parallel to CD.
3. This is a case of "begging the question"; for the idea of equally distant lines has no meaning for the atudent without the idea of parallelism and so cannot be used in a dofinition of parallelism.
4. If it is reasorable to expect a team to win a majority of its games, Is it not equally reasonable that each of its opponente should expect to vin a majority of ite games?
5. Are there any linite to the right of the taxpayers to 800 their property?
6. It 18 neceseary to know first how many heat units one ton of gae works' coke fields. If it jielde at least 9900 heat units per ton, the Seacoal salesman's argument is worthles.
7. Or else the public school graduates do their college vork more faithInliy than do the private school graduates. There may be oconomic and social reasons for this, quite apart from the oarlior training in school subject.
8. Deapito Blank'e mistare, as he called it, ho seems to have been very succeseftal in the vorld of business.
9. It is asemmed that a solf-amptying ash tray is an important onough item to determine the choice of an automobile.
10. It is ascumed that mon's choices dotermine styles, rather than the other was around.
11. It is assumed that the usual risk in a now bueinese venture is not vory groat.
12. It 18 aesumed that the prosperity referred to was attributabie to the party in power rather than to economic forces that would have been operating regardless of party politice.
13. It is assums that those whose taxes remein unpaid for eeveral yeers aro poor widows and tho like.
CIAPTER 6
Lesson Plan Outline: 19 leoson:
1-2. Through pace 170
3. Fis. 1-4, pages 171-172
4-5. Pagen 172-175
6. Pagee 176-177
7-8. Page 178 through Ix. 5, page 181
9-10. Page 181 through Fraroises on page 185
11-12. Through Frorcisee on page 189
13-16. Through Ex. 5 an page 195
17-19. Through page 196Conetructione vith etralghtedge and compaeses are not necessary toBABIC GBOMyRIT, Other geomotries are plagued by the neceesity of demon-etrating the existence of midpointe of line-eegnonte, bisectore of an-elee, and the like before they may mize nse of these pointe and 11 nee.They are plagued aleo by the neceselty of showing how these midpointe andbieecting lines can be constructed, uling only the two instruments towhich Euclid and his enccessor decided to rostrict themelves. Theauthors of other geasetries heve alvay been embarrassed $1 f$ they feltobllged to mploy the bieactor of the vertex angle of an isosceles tri-angle in order to prove the equality of the angles opposite the equaleidee. For they planned to use this theoren about isosceles trianglesin order to prove the equality of triangles having mitually equal e1des,and they required this lattor theoren in tarn to enpport the constructionfor the bisector of an angle: obviounly a "vicions circle."
In mont geometries logic demande demonetrations of constructibility in advance of use. But it is impoesible to provide for the constraction of overy point and line in advance of ite use in the logical deduction of a (isee Chaptor 2, page 39, of this manual.
geomotric eystom without cerioualy upeetting the syeten. BASIC CrowniRY, on the other hand, is $s 0$ deaigned ae to be free of this logical compuleion; for in BASIC CPMLIFIY the exietence of required pointe and ines is eatabliahed by the fundamental aseumptione, or by propositione derivable therefrom. Other geometries have usually deomed it better not to aliow the noed of fundamental conetruction to derange their logical eyatea too eorioualy. They have ucually preforred to save a cemblance of onder in the geomotric ayatom by taking a fow fundamental construction for granted at the outset, and - if challenged - by adritting the lapse in logic required by theee "hypothotical constructione."

BASIC Gronsury is quite untroubled by considerations of this sort. Prinoiples 1 and 3 inply the exiatonce of the aidpoint of a line-segrent and the axistence of a half-1ine that bisecte an angle. The arietence of other geometric conflgurations required in this geometry is demonetrated as the geometry develope. Strictiy, all of BASIC GROMAMRI is developed in the realn of the imagination. The marized ruler and protractor, however, afford practical embodiment of Principles 1 and 3 for those who wish actually "to go through the motions." The authors themselves quito approve of every effort to give practical offect to thic eyretom of geomptry thirough free use of the marked ruler, the protractor, and the conpaseen. But thoy would make clear that their intorest in constructions is based on obvious educational considerations and 16 not required by this aytan of geomptry itself. Put in another way, it can be eaid that BABIC Gresixisi was intentionally devised to be suecoptible of inmodiate interpretation by means of ecale and protractor, but that its logical atructure is indopendent of auch interprotation and applioation. That is why the authors of BASIC CuMaIRI have had no qualm about doveloping the buit of this geometry before considering constructions at all. That, too, is why they did not need to scatter constructions through the
earlier chapters of this book, but could present all the material on constructions in one chapter and could put this chaptor ae late ae they chose.

Now that the subject of conetructione ie at last before us, the authors insist that only the marked ruler, the protractor, and compasees are neceseary. But the question of liniting geometric constructions et111 further to those constructions that can be performed by unmarked etraightedge and compaeses has been regaried ae a part of geometry for 80 long a time that the authors of EASIC GEONETRY would not owit consideration of this problem. Conetructione with straightedge and compaeses are logically not a part of BASIC GEOMSTRY; at this point they are indeed a digreseion. But the authors of BASIC GEONEIRY recognize the fascinating geometric content of this subject and, with this explanation, welcome this digreesion.

Page 168, 11ne 5: 1.4 inches
Pages 169-170: Exerciees.

1. The length of CD 10 a trifle more than 5 centimetere and a trifle less than 2 inches. It ie easior to lay off 1 centimeter "plue a hair" than to lay off $\frac{2}{5}$ of an inch "minus a hair." Neverthelees with a scale of inches divided to eixteenthe the student can approximate to $\frac{2}{5}$ of an inch. He mest not collapse and quit becaues he hasn't a scale divided precisely into fifthe or tenthe of inches. This queetion, therefore, 10 to some oxtent a test of the etudent's initiative and resourcefulness.
2. The length of EF 18 a scant $2 \frac{3}{4}$ inches, or 6.96 centimetere. The latter 18 more easily divided by 6 . Indeed the decision to call the length 6.96 centimetors rather than 6.95 or 6.97 is influenced by the desired divisibility by 6.
3. $3.737,4.010,4.283$
4. If $\frac{1}{m}=\frac{3}{2}$, morely uee the third point of division in the answer to B. 1.
5. Uaing millimeters, r:e:t $=36: 28: 20=9: 7: 5$. So we neod to lay off $\frac{3}{7}, \frac{1}{3}, \frac{5}{21}$ of 7 centimeters, scant.
6. $\frac{14}{9}$ contimetere
7. $5.0(4)$ contimeters
8. $\angle A O B=63^{\circ}$. Fach third is 21°.
9. $\angle C O D=94^{\circ} ; \angle B O F=29^{\circ}$. The two parts are approximately 48° and 15°
10. About $43 \frac{1}{2}^{\circ}$

11-12. Use method described on page 168.
Page 171, iines 20-25, aro an intentional repetition of lines 8-13 on page 166.

Pages 171-172: Rxorcises.

1. Mare anglee of 135° at each ond of $A B$ and lay off lengthe $B C$ and $A B$ equal to $A B$; and so on around.
2. Make angles of 140° at oach ond of $A B$ and lay off lengthe $B C$ and $A I$ oqual to AB; and so on around.

3-4. Central angles mast be 45° and 40° respectively.
Page 173, 1ino 9. Soe note in this manual rolating to Ixs. 13-15 on pages 142, 143 of BASIC GROMSIRY. Buclid, using in his Proposition 1 a construction eimilar to the one shown in Fig. 17 on page 172, falled to demenstrate that the two circles must have at least one point in common; and if one, then two.

Page 175. The third method described here involves fover operations than any other construction known to the authors for draving through a given point a line that 1 s parallel to a given lino. Their knowledge of it is due to their colleague J. L. Coolidge, who attributes it to the Italian mathematician, Maschoroni (pronounced Maskeroni).

Page 176, line 10. In any pair of triangles Principle 5 ostabliahes
paire of correapondine anglee equal. Theee equal angles establiat the parallellem, by Theorma 14.

Page 176, 11nee 14-16. Draw parallele to DS through P, Q, and R. Proof of the conatruction depende on theoran 16.

Pege 178, line 8. By Ix. 21 on page 115.
Pege 178, 112e 12. Proof depende on Ix. 20 on page 115.
Pege 178, line 18. Proof doponde on Principle 8.
Page 180, lipes 9 and 20 . Wote three waye of writing the mean proportional relation.

Pegee 180-181: Brerciees.

1. Construot the perpendicalar biecctor of the chord of the are and find where it intersecte the arc.
2. Drav the perpendsoular through E to $A B$ and find whore the perpendicular intarecote the diagonal AC.
3. $\sqrt{7}$ 10 the diequnal of a equere of alde $\sqrt{3.5}$.

At thile point the teacher may wioh to ahov the clese the
 accompanyine construction for $\sqrt{\mathrm{F}}$:

Fig. A
4. The unit of macure 10 not
opecifled, alnce it makee no difformace what the unit 18.
5. Mg. 28 involves throe equilatoral triangles. Mg. 29 involves a triangle baving one angle equal to 60° and the aldee inciuding this angle in the ratio 2:1. Fig. 30 involvee an angle inecribed in a conicirele. 8ee Corollary 22c, page 146.

Pege 183, 11 ne 7. Note that vo do not ask for proof hore, although all that it nooded it Prinoiple 9 and Bx .13 on page 85, as indicated in the footante on page 182. The proof is demanded later, in Ex. 19, page 256.

Page 185, line 10. OP and O'R are both perpondicular to the required
coman internal tangent PR. A parallel through O ' to PR vill be perpendicular to OP extended and will moot it at M. O'M vill then be tangent at M to the circle heving O as contor and redius equal to $O P+P M$, or $\boldsymbol{r}+\boldsymbol{r}^{\prime}$.

Page 185, 11no 14. Wo uee the vord "eides" hore to denote lengthe, Just an eleevhere on occasion ve have used "altitude" and "radiue" to denote lengthe.

Page 186, 11no 22: Case 2. At one and of a line eegnent of length 1 conetruct an angle equal to $\angle A$ or to $\angle B$. At the other and of the line segant construct an ancle equal to $\angle C$ by firet constructing an axterior angle equal to $\angle A+\angle B$. See Fig. A. There are two cases, according as e1de 1 is given opposite angle B or opposite anele A.

Fig. A

Page 186, line 25 and Page 187, 11ne 4. The Etudent mat obserte that the given eltuation varies acconding to the eize of the given angle A and acconding to the rolative size of 1 and m. The authore vant the student to figure out for himeelf how man different eitnatione can occur. They profor the etudent's poseibly incomplete appraieal besed on hie oun inquiry to a completo appraieal arrived at moroly by filing in a table or follouing a procedure outilined in the book.

Page 188, line 3. The Fifth and sixth eituations in Fig. 46 on page 187.

Whother the dotted right triangle shown in the eeventh eituation in Fig. 46 ie admiesible or not can open long argument. The question 1e, can the dotted triangle be said to contain the given angle A, or 16 this a thind case in vhich "two triangles seen at firat to be poseible; but
closer examination shovs that one triangle containg, not angle A, but an angle equal to $180^{\circ}-A^{\prime \prime} 9$ The important thing is to have the pupils discuse this, no matter how they decide it.

Page 188, Ix. 2. Iot the pupils discover for theaselvee the beat places to put the Rlape. Thie calls for a bit of threedimensional Fisualization of a cort ve vish to encourage. If a plapil discovers on his first atterpt that he is trying to fit two stick flape dow infide tvo faces at the sars timo and then puabes the flape in a bit too far, it may occur to hia to mke a second attempt, vith the llape attaohed to the recoiving faces, leeving the folding face unflapped. The draving is so easy that it is no hardahip to be obliged to make a second one, eapecially if the pupil learns comothing in the process.

Page 191, line 11. Most atudente vill be interested to mow this simple construction for an inscribed regular pentagon. Relatively fow vill vish to mastor the detaile of the proof on page 192, 193.

Page 194, 11ne 7. Profonsor fiforman Anning of the University of Mchigan points out that the circle with contor C and redius CH (Fig. 54) cute the givon circle in two vertices of an inecribed regular pentagon; that the circle with contor C and radius $C K$ cuts the given circle in two more vertices of this same pentagon; and that the fifth vertax 10 given by the other and of the diametor through C.

Page 195, 1ine 3. For proof that it is impossible in general to trisect an angle by mans of straightedge and conpasses se0 L. E. Dicrann, Plrst Course in the Theory of Equations, Chapter 3, pages 29-35, John W1ley and Sons, New York, 1922.

Pages 195-196: Ixercises.

1. Construct tangente to the circle at the verticpe of an inocribed regular hexagon and axtend these tangente until they goet (the bisectors of the central angles of the hexagon).
2. Trisect a right angle and bisect one of the 30° angles.
3. Inscribe a reguler polygon of 15 sides and bisect a central angle. Then bisect again.
4. Inscribe a regular pentagon. The radius dram to a vertax makes an angle of $54^{\circ} \mathrm{w}$ th each edjacent side of the pentagon.
5. 108°
6. Construct an angle of 108° by drawing a circle of any radius and inecribing a regular pentagon. Then, at cach ond of the given elde $A B$ construct an angle equal to 108°. And $s 0$ on around.
7. At each and of the given side AB construct an angle of 135°, preawnably by orecting perpendiculars at A and B and bisecting the right angle betweon each perpendicular and $A B$ axtended.
8. Ae in Mr .7.
9. From one vertex of the given polygon drav $n-3$ diagonals and copy the appropriate angles. This is easior than uaing the construction for the fourth proportional to three given line segments.
10. In equilatoral triangle ABC (Mg. A), construct the three medians, meeting in 0 . The bisector of angle BFO vill moet BO at a point G that 10 equidietant fron ED, BF, DO, and 70. Therefore $G 16$ the center of one of the deaired circles. Another and much harder mothod 1s to rark off on BO the distance BC

Fig. A equal to $\frac{A B}{\sqrt{3}+1}$.
12. Draw the diagonals of the equare. The Idpoint of each half of a diagonal will be the center of one of the desired circles.
13. In the giren equare ABCD (see Fig. A on the next page) drav the diagonals AC and BD, moting at 0 . Construot the bisectors of angles OAB and CBA. These blaectors meet at Q, the centor of one of the dealred circles.

A elightiy easior construction, but eomowhat harder to justify, is
to drav the diagonale AC and ED, moeting at O; draw arce with contore C and D and radil $C O$ and DO reapectively to deternine the points E, P, Q, and E and thon determine the intorecction R of IF and CI. R is the center of on of the desired circles. For if the side of the fiven equare be and $1 f$ the radiue of one of the desired circles be r, thon M8. B ahow that $\frac{1}{2} m+r \sqrt{2}$. But M8. B aleo ahow that $1 f$ It one aide of the regular octagon CIII $\cdots \cdots$, then $\frac{1}{2}=\frac{t}{2}+\frac{t}{\sqrt{2}}=$ $\frac{t}{2}(1+\sqrt{2})$. Consequently $r=\frac{t}{2}$ and wo can ut1lise the regular octacon to locate the ceatere of the desired circles.

It is olear Prom Fg. A that $D O=D G=D A=\frac{0}{\sqrt{2}}$ and that $D G+F C=$ - + 10. That 1e, $2\left(\frac{0}{\sqrt{2}}\right)=+7$ and $70=(\sqrt{2}-1)$. Bat $\cdot=$ $t+2\left(\frac{t}{\sqrt{2}}\right)=t(1+\sqrt{2})$, and $t=\frac{t}{\sqrt{2}+1}=t(\sqrt{2}-1)$. Therefore $F=t$.

Fig. A

Fig. B
15. The single-marised Plape chould be pactod firet, then the doublerarised Nlape. The face marked I will be the last to bo atrack down.

800 F1g. A at the top of page 115.
16. Fret drav a randon circle, inecribe a regular pentagon ABCDE, and Arev diagonal AC. Then at each end of the given lino-segent $A^{\prime} C^{\prime}$ conatruct an angle equal to angle BAC and thens dotoriline B'.

Fig. A

If instead of uning anglee one wichee to nee lengthe, it it neceesary to pote that all the acute-angled trianglec formed by the eldee and diagonale of regular pentagon are 1eoscoles trianglee vith anglee 720-360-720. In
overy triangle of thie cort, euch as triangle FBG In F. B. B, the ahort e1de 10 to one of the longer e1dee as $\sqrt{5}-1$ 1e to 2. (800 pago 192). If

Fig. 8
ve tate IC as $\sqrt{5}-1$ and $B F$ as 2 , then $A P=C C=2 ; A B=A Q=\sqrt{5}+1$; and $A C=\sqrt{5}+3$. So the ratio of the deelrad lougth AB to the given length AC 10 ae $\sqrt{5}+1$ 1e to $\sqrt{5}+3$.
17. If 5 be the radius of the given circle, drav a circle vith center 0 that ihall have a rediue equal to $\sqrt{r^{2}+1^{2}}$. Thie oirole vill out the given line in two pointe fron ofther of wioh tangente to the given circle vill be of length 1.

There 10 no on ary at the and of thie ohaptar becanee, an already explained, this chapter 1 e not part of the logdcal framonort of BABIC Cronmist. The main outhine of thic geonetry is given in the garion of Chapters 2, 3, 4, 5, and 7 .
Lesson Plan Outline: 17 1essons
1-3. Through page 202
4-5. Through Exercise 11, page 205
6-7. Through Exercise 9, pege 208
8-9. Through Exercise 6, pago 213
1C-12. Through Exorcise 25, pege 215
13-17. Through page 221

The title of this chapter moane "area of any closed figure lying in one plang and the length of an arc of a circle." Ercopt for the idea of length of a straight line segrent, with which this geomotry bogins, the idea of longth in general is mach more difficult than the idea of aroa. That is why this chaptor takes up first the subjoct of aroa, and why it is able to oxtend the idea of area to any plane figure whatsoever while boing unable to extend the idea of longth, beyond the straight line, to any plane curve except the simplest case of all, the circle.

Pago 198, 11no 17, and Pago 199, 1ine 16. Ono can saj that for the beginnor this geometry requires five assumptions (Principles 1-5), plue five more tontative assumptions (Principles 6, 7, 8, 11 and Theorem 13), plus two area assuaptions: that 1s, twolve assumptions in all. Actually, hoveror, this geomotry requires only four assumptione, eince Principle 4 has been ahown to be a theoren (Soe BASIC GBONGIRY, page 50, and this manual, pages 46-47), and eince area can be treated, as shown on page 222, so as to require no nov asaumptions.

Page 199, line 8. The word "unit" is not dofined in this book. Howover, the second paragraph on page 40 implies that difforent unite of length are associated with difforent nodee of numbering the points of a straight line.

Page 199: Exorcisos.

1. 137 equare unite

Page 200: Axorcises.

1. In the similar triangles $A B C$ and $C B E$, $\frac{A C}{A B}=\frac{C E}{B C}$. Therefore $\frac{1}{2} A C \times B C=\frac{1}{2} A B \times C E$.
2. Seo Fig. A. The area of a rectangle $A B P G=A B \times C B . \quad$ But, since $\triangle A C B=\triangle A C G$ and $\triangle B C B=\triangle B C F$, the area of triangle

$A B C$ is half the aroa of rectangle ABFC.
Page 201: Theorem 26. If D falls to the left of A in Fig. 3 on page 201, the given triangle is equal to one in which D falls to the right of C. Of course, if D falls on C or on A we have the right triangle case covered in Theorem 25.

Pagos 202-203: Exercisos.

1. 905 equare units, where the unit of area is one of the smallest squares of the equared paper. This can be found oither by assigning coordinates to each vertex of the diagram as in $\mathbb{E x} .1$ on page 199, or by counting the number of squares inside the boundary.
2-3. The area of the loft-hand triangle in Fig. 3 is $\frac{1}{2} \times \frac{26}{16} \mathrm{in} . \times \frac{8 \frac{1}{6}}{16} \mathrm{in} .=$ $\frac{1}{2} \times \frac{221}{256} \mathrm{sq}$. in., using $\frac{1}{2 A C} \times B D$; or $\frac{1}{2} \times \frac{20 \frac{1}{2}}{16} \mathrm{in} . \times \frac{11}{16} \mathrm{in} .=\frac{1}{2} \times \frac{225 \frac{1}{2}}{256} \mathrm{sq}$. in., using $\frac{d}{} A B$ times the altitude from C. In oithor case the area 10 approximately $\frac{7}{16}$ of a square inch. The area of the right-hand triangle is $\frac{1}{2} \times \frac{18 \frac{1}{16}}{16} \mathrm{in}$. $\times \frac{1}{2} \mathrm{in}$. $=\frac{37}{128}$ eq. in., uaing $\frac{1}{2} \mathrm{AC} \times \mathrm{BD}$; or $\frac{1}{2} \times \frac{26}{16} \mathrm{in} . \times \frac{3}{8} \mathrm{in} .=\frac{39}{128}$ eq. in., using $\frac{1}{2} A B$ times the altitude from C. In of ther case the area is approximatoly $\frac{19}{64}$ of a equare inch.
2. 29 millimotors $\times 17$ millimotors $=493 \mathrm{sq}$. $\mathrm{mm} .$, or $\frac{18}{16} \mathrm{in} . \times \frac{10 \frac{1}{2}}{16} \mathrm{in} .=$ $\frac{189}{256}$ eq. in. $=0.738$ sq. in.
3. Area equals $\frac{\frac{1}{\frac{1}{2}\left(29+10 \frac{1}{2}\right)}}{16} \mathrm{in} . x \frac{1}{2} \mathrm{in} .=\frac{79}{1208}$ sq. in., or about $\underset{8}{5}$ of a square inch.
4. $\frac{e^{2}}{4} \sqrt{3}$
5. $0^{2} \sqrt{3}$
6. Add the area of the three parallelogram faces to the area of both
triangular basen. If the prian is a right prian, the three faces are rectanglee, and their area is equal to the altitude of the prise times the perimeter of one of the triangular bases.
7. $\frac{\frac{1}{5} h}{b^{\prime} h^{\prime}}=\frac{b^{\prime} b}{b^{\prime} \cdot b^{\prime}}$, aince $\frac{h}{h^{\prime}}=\frac{a}{a^{\prime}}=\frac{b}{b^{\prime}}=\frac{c}{c^{\prime}}$
 veget $\frac{\triangle A B C}{\triangle A B E}=\frac{A B \times A C}{D \times N}$.

Pagen 204-205: Earcisen.

2. Apothen $=\frac{5}{2} \sqrt{3}$ inches; area $=\frac{75}{2} \sqrt{3}$ equare inches
3. Area $-\frac{3}{2} \sqrt{3} r^{2}$
4. Porimoter $=3 \sqrt{3} r$; area $=\frac{3}{4} \sqrt{3} r^{2}$
5. Apothen $=\frac{0}{2 \sqrt{3}} ;$ radius $=\frac{\theta}{\sqrt{3}}$
6. On page 193 the apothen $r-y$ 10 ahom to be $r\left(\frac{1+\sqrt{5}}{4}\right)$. Therefore the aree is $\frac{5}{2} \cdot \frac{r}{2} \sqrt{10-2 \sqrt{5}} \cdot \frac{r}{4}(1+\sqrt{5})$. This equale ${ }_{16} r^{2} \sqrt{(10-2 \sqrt{5})(6+2 \sqrt{5})}$, or $\frac{5}{8} r^{2} \sqrt{10+2 \sqrt{5}}$.
7. Ueing the measuraments shown in the accompanying diagram, the area of the left-hand polygon 1s 455 eq. men. and the area of the right-hand polyson 1s 456 eq. \#. The nubere

Fig.A inside the triangles are altitudee.
8. Counting ng, ve have $20+108+120+110+93-451$ eq. .
9. Counting from left to right ve have $48+105+103+65+40+49+$ $70+61+2=543$ eq. .
10. If the lengthe of the eldes of the given polygone are c_{1} and 0_{2}
respectively, then $\frac{P_{1}}{P_{2}}=\frac{1}{s_{2}}=\frac{r_{1}}{r_{2}}$.
11. From Ix. 1 and $\frac{\text { Ex. }}{r_{2}} 10$ vo knov that $\frac{A_{1}}{A_{2}}=\frac{\frac{1}{p_{1} a_{1}}}{\frac{1}{2 p_{2} a_{2}}}=\frac{r_{1} a_{1}}{r_{2} a_{2}}$ Therefore $\frac{A_{1}}{A_{2}}=\frac{r_{1}^{2}}{r_{2}^{2}}$.

Page 206, line 9. The lotter $\underline{\underline{k}}$ is used here in the same way at in II. 37 on page 66, referred to farther down on page 206. It ie poesible, hoverer, that eomo studente will confuse this \underline{x} with the \underline{x} ueed in Principle 5 on page 59. In that case they would have expeoted to eee the \underline{x} on page 206 roplaced by $\frac{1}{k^{2}}$. The teacher abould explain that it is quite imentorial whother wo use k or k^{2} or $\frac{1}{k}$ or $\frac{1}{z^{2}}$ here to represent the ratio of the areas of these tro trianglec.

Pagee 207-208: Fxercices.

1. 1 to 400
2. $\frac{81}{64}$
3. It is aesused in this oxercise, of coureo, that the three oldes of the right triangle are correeponding siden of the three ainilar polygone. If the lengthe of the three aidee of the triangle, arranged In order of increasing magitude, are $\underline{\text { a }}, \underline{b}, \underline{c}$, and if the corresponding poljgons are deelerated I, II, III, then, by theorem 27, $I I=\frac{a^{2}}{b^{2}}$ and $\frac{I}{I I I}=\frac{a^{2}}{c^{2}}$. Thie mane that if area I 10 equal to $m \cdot a^{2}$, then ares II $10 m \cdot b^{2}$, and aree III $10 m \cdot c^{2}$. But $a^{2}+b^{2}=c^{2}$, by Principle 12. It follow that $m^{2}+m b^{2}=a^{2}$ and that I + II $=$ III .
4. An edge of the now cube mast be $\sqrt[3]{2}$ time the edge of the givon cube.
5. The area of the nev cube mist be $\sqrt[3]{4}$ times the area of the given cube.
6. The ratio of the volumes of the two e1zes of cup 10 64:125. So two 5-cont cupe are the botter buy.
7. The old aree is to the nov aree as 1600 is to 3025 . So the increace In the amount of sheet iron $10 \frac{1425}{1600}$ of the old arount, or 89.1%. The old volume is to the now volum as 64,000 ie to 166,375 . So
the increase in capacity is $\frac{102,375}{64,000}$ of the old capacity, or just a trifle under 160%.
8. The sum of the equares on the other two sides of the right triangle 1s equal to the outelde square minus two rectancles; and these two rectenglee are equal to four right triangies.
9. The equare on the bypotemuse is equal to the inner tilted equare plus four right triangles. The sum of the squares on the other two oides is equal also to the inner tilted square plue four right triangles.

Page RO9, lino 3: "without dofining it procisoly." Every book on demonstrative goomotry is oblieed to defino "circumference" at thie point. Nothing we can sey by way of definition, however, will carry more conviction than the pupil'e vell-establiehed intuition on thise eubject, which In hit aind is probably linked with the idea of "wrapping a string around the circle, uminding, and holding it taut alongeide a scale." Consequently we do well to get past the necessary definition of circumforence as quickly and painlessiy as possible, taking care, hovevor, to mate the definition pot only einple, but accurate as well.

Page 209, line 8: Circumforence as upper linit. The perinoter of an inecribed poljgion of n sides obviously increases as n increses. It 1e obvious aleo that the perimoter of every inecribed polygon is less than the perimoter of evory circumacribed polygin. Corollary 12c, page 94, 1e the authority for each of these obvious statemente. So as $n \operatorname{in}$ creases indefinitely the perimoter of an inacribed polygon of n sides nast have an uppor linit; for a variable that alvaje incroases while romining less than a cortain number (in this case the porimoter of some circumacribed poljgin) cannot increase without linit.

Page 210, line 11: Area of circle as uppor limit. The argument in thie case ie oinilar to that juet given for the circuaforence. The
obvioue statemente concerning area ere supported by Area Aeeumption 1b, page 199.

In the discussion on pegee 210-212 ve arrive at the area of a circle by considering inscribed reguier polygons and by allowing the number c.p sides to increase indefinitely by euccessive doubline. In the note on pages 224-225, irregular polygons are admitted and the manner in which the number of sides varies is not restricted to successive doubling.

Page 212, line 9. The dote after the numbers 6.2832 and 3.1416 are meant to indicate that each of these numbere is a non-ending decimal. Unfortunately, hovever, they give the impression that each of these numbers ie correct so for as printed and continuee indefinitely bejond the last printed digit. This is not true. The numbers vould be correctly given as 6.28318 . . . end 3.14159 . . . The more common form 3.1416 ought to be printed without dots and ought to be recognized ae the rounded form of the non-ending decimal 3.14159. . . .

Page 212, 11nes 15-16. The error 1s 3.142857-3.141592, or $0.0012(6)$.
Paees 213-217: Exercises. Exs. 1-6 make considereble demands upon arithmetic. The answers given here below heve been computed with proper regard for aigificant figuree. The teacher will do vell, hovever, to express in edvance his willingness to accept approximate answers that are leee accurate than those here given.

There 18 virtue in carrying through occasional computations of coneiderable length. On the other hend there is danger that for aome pupils protracted computations vill obscure the main mathematical pattorn. The ideal is that the pupil should be eble to carry out a protracted computation and at the same time keep the main pattern clearly in mind. The teacher must judge how close to this ideal he can fairly expect his pupile to come.

1. $45.5 \mathrm{in}. ; 58.6(4)$ feot or $58 \mathrm{ft},. 8 \mathrm{in.;} 22 \mathrm{~cm}$.
2. 165 eq. in.; 274 eq. Pt.; 38.5 eq. cm.
3. $1.138 \mathrm{in} . ; 14.4 \mathrm{~cm}$.
4. 2.489 ft ; 9.46 cm.
5. 18.4 eq. ft.; $38 \mathrm{eq}. \mathrm{in.;} \frac{o^{2}}{4 \pi}$ eq. in.
6. $C=2 \sqrt{\pi} \sqrt{A}=3.54 \sqrt{\text { A }}$. $87.1 \mathrm{~cm} . ; 15.4 \mathrm{ft}$.; 32 in .
7. The two central anglee in the triangles in Fig. 23 are equel, by Principle 8. Therefore each of the corresponding arce 10 the eame fractional part of ite cirouaforence. Since the circumforencee have the mam ratio ae their radil, the arce do aleo.
8. $\frac{A_{1}}{A_{2}}=\frac{r_{1}{ }^{2}}{r_{2}{ }^{2}}=\frac{o_{1}{ }^{2}}{o_{2}{ }^{2}}$
9. 4
10. 50 eq. in.
11. $\frac{1}{4}$
12. $\frac{3}{2 \sqrt{2}}$ or $\frac{3}{4} \sqrt{2}$
13. $\frac{15^{2}}{16^{2}} \times 20=17.6$ sq. 10.
14. 4
15. $\sqrt{5}$, ar 2.236
16. $4 r^{2}-\pi r^{2}=\frac{6}{7} r^{2} ; \pi r^{2}-2 r^{2}=\frac{8}{7} r^{2}$.
17. $\left(\frac{22}{7} \times 3 \times 7\right)+2\left(\frac{22}{7} \cdot \frac{9}{4}\right)=80 \frac{1}{7}$ eq. 1 n .
18. 7.6 inches
19. 4π
20. $\frac{4}{3} \pi$
21. $\frac{64}{3} \pi+32 \sqrt{3}$
22. Since $c^{2}=a^{2}+b^{2}, \frac{\pi}{2} \cdot \frac{o^{2}}{4}=\frac{\pi}{2} \cdot \frac{a^{2}}{4}+\frac{\pi}{2} \cdot \frac{b^{2}}{4}$. Inst 18, the aree of the largest eenicirole io equal to the cum of the areas of the other two sendcircles.

Both the area of the triangle and the sum of the arese of the two chaded figuree are equal to the arse of the largest senicircle minue
the areas of two circular eegents. (The torm "ciroular eegent" is not need in the text but vill be clear to teachors at this point.)

Profeseor Norman Anning of the University of Mchigan eugeents thet it is pertinent for teachers to point out that the Greeks, in their search for a mans of computing the area of a circle, believed they vere on the way to succese vhen they could compate the area of a Ifgure bounded ontirely by arce of circles. We now bnow that mecees wan pot to be attained in this vay.
23. On page 211, $p_{8}=6.1232 \times 12$. Therefore $8=9.18$.
 ${ }_{12}=\sqrt{2 r^{2}-r^{2} \sqrt{3}}-r^{\sqrt{2-\sqrt{3}}}=.518 r$. Therefore $p_{12}=6.216 r$, which falls short of the circumforence by a 11 ttle less than 0.07 r .
25. Perimpter $=14 \times 5$ ain $\left(\frac{360^{\circ}}{14}\right)=70$ ain $25.7^{0}=30.36$
26. The radius of the 0110 is about 8.3 foet. The aine of half the angle at the vertex ie approximately $\frac{8.3}{11.2}$, or 0.741 . Therefore the angle at the vertex is about 96°.
27. The tern "lateral area" is probably new to the pupil, but clear onough from the context, The pupil hae morely to add the areas of all the lateral faces of the prim. The theorea is not true undese all the lateral faces of the priter are perpendicular to each base; that is, unless the prisin 18 a right prian. The basee need not be regular polygona.
28. The pupil can thini of the cylindrical eurface ae elit parallel to the axis, unfolded, and laid ont flat. The bases of the cylinder need not be circlee, but the axis of the cylinder anet be perpendic. ular to each baee.
29. The tern "slant height" should be clear Irom the formila and Fig. 30.
30. If the papil vill think of the conical surface ac elit along an "element" of the cone, unfolded, and laid out flat, he vill eee that
he 18 asked to find the area of a sector of a circle of radius 1 and of arc length c. The formula for the area of a eector, $\frac{1}{2} r$, given on page 213, becomes in this case $\frac{1}{2} 1 \mathrm{c}$, or π rl.

Another way of regarding the lateral area of the cone is as the limit of the lateral area of circumscribed regular pyramids as the number of faces 18 indefinitely increased. That 18 , the limit of $\frac{1}{2 p 1} 10 \frac{1}{2} \mathrm{cl}$, or Trrl.
31. Bxtend one of the eidee of the given polygon to form an exterior angle. Reproduce this angle at the conter of the given circle, thus determining two vortices of the now polygon.

Fig. A

32. (See note following Ex. 36) If the radius of the given circle 18 r , the radius of the inner circle will be $\frac{r}{\sqrt{2}}$. This leneth is $O C$ in each of the suggested constructions shown in Fig. A, in which all the points except 0 are determined in alphabetical order.
33. Determine r_{1} and r_{2} so that $r_{1}: r_{2}: r=1: \sqrt{2}: \sqrt{3}$. That is, $r_{1}=\frac{r}{\sqrt{3}}$ and $r_{2}=\sqrt{2} r_{1}=\frac{\sqrt{2}}{\sqrt{3}} r$. F1g. B, in which the points are determined in alphabetical order, shows one way of constructing $A C$ oqual to $\frac{r}{\sqrt{3}}$. AC timos $\sqrt{2}$ vill give r_{2}
34. Since $r_{1}: r_{2}: r_{3}: . . .: r=1: \sqrt{2}: \sqrt{3}: \ldots \cdot \sqrt{n}$, the radius r_{k} of the $k^{\text {th }}$ inner circle 18 given by the equation $r_{k}=\frac{\sqrt{k}}{\sqrt{n}} \cdot r$.
35. Multiply any side of the given polygon by \sqrt{n}

Fig. B
to get the corresponding side
of the desired polygon.
36. Multiply the radius of the given circle by $\sqrt{\frac{1}{n}}$.

Ncto: Exercises 32-36 can be

Fig. A
solved also by means of the
diagram at the right.
37. Their volumes have the ratio 1 to 8 .
38. Their radil have the ratio 1 to $\sqrt[3]{2}$.
39. Since $r_{1}: r_{2}: r_{3} \ldots: r=1: \sqrt[3]{2}: \sqrt[3]{3}: \ldots, \cdot \sqrt[3]{n}$, the radiue r_{k} of the $k^{\text {th }}$ inner ephere 18 given by the equation $r_{k}=\frac{\sqrt[3]{2}}{\sqrt[3]{n}} \cdot r$. The teacher can add othor questions eimilar to the. 37 and 38, euch as the followine:

If a vatermelon 15 inches long can be bought for 40 cents, about Whet should jou expect to pay for a vatormolon 20 inches long? Ans. 95 If e salmon 35 inches long weighs 19 pounds, about how mach will a 25-inch salton woigh? Ane. 7 pounds

If a boat 30 foet long weighs 3 tons, about how much will a similar boat woigh that is 35 foet long? Ans. 4.8 tons

Page 219, linos 5-7. The friction betwoen the vater and the pipe will be least when, for a given crose-section of area, the perimeter is as small ae poesible.

Page 219, lines 8-9. Pinching the outer end of the exhaust pipe reduces the area of crosesection of the pipe. This increases the velocity of the exhaust gases, interforing with the vibration in ouch e way as to reduce the noise of the exhaust. (It is not oxpected that pupile will be able to answer this question from their knowledge of geometry alcne. It is expected that they will ask someone who knows something obcut automobile engines.)

Page 219, inos 12-14. Since the opherical one has less surface it vill be lees exposed to the diesolving offect of the sallva.

Page 21.3, 11 no 17. Profeseor Forman Anning of the University op Mchigan points out that the phrase "any polyhedron" ought to be quallfied to read "any polyhedron that you are likely to think of." There oxist polyhedra, with holea, for which Buler's formala 10 not true.

Page 220, IInes 1-3. Pouri Yen, the regular octabedron. Five? Yes, the regular icosahedron. See Pago 139. Six? No; for if so, then eix faces vould have a comion vertex vith eix 60° angles at that point and the corner would be plattened down until the vertex ceased to exist.

Page 220, 11 nes 4-6. Three regular pentagons? Yes, the regular dodecabedron, page 176. More than three? No. Three regular hexagone? No.

Page 220, lines 7-10. The ilve oonvax regular polyhedre are:

1. The regular tetrabedron, four faces, in which three equilateral trianglee moot at each vertex. See page 188.
2. The cube, ix faces, in which three equares meot at ench vertex.
3. The regular octabodron, elght faces, in which four equilateral triangles mot at each vertex.
4. The regular iodecahedron, twelve faces, in which throo regular pentagons meot at each verter.
5. The regular icosahedron, twenty faces, in which five equilateral triangloe meet at sach vertex.

Page 221: Roviou Exorcises.

1. Through each midpoint drev a line parallel to the inne through the other two aldpointe.
2. In trianglee $B C D$ and CBE (Fig. A) two angles of one are equal reapectively to two angles of the other. Therefore these triangles, heving $B C$ in comen, are equal, and $C D=B E$. Since $E D$

Fig. A
divideo $A B$ and $A C$ proportionally, it is parallel to BC. (By Ix. 21 on page 115, or directly by moan of Principle 5, Case 1 of Sirilarity.)

Fig. A

Fig. 8
3. Nake a regular fire-pointed star by oxtanding the eides of a regular pentagon, as shown in Fig. A. Fach anglo of the pentagon 1s 1080; each interior angle is 72°; the angle at each point of the etar 1036°.
4. Since in Fig. $B \angle B=\angle D=90^{\circ}, \angle A+\angle C=180^{\circ}$, and $\angle A$ magt be $108 s$ than 180°. Consequently As, the bisector of angle A, met neet side $D C$ at a point G which vill be botwoen D and C, or at C, or bsyond C. In any case, $\angle A C D=90^{\circ}$ - $\frac{1}{2 A}$ by Principle 9. But $\angle B C F=90^{\circ}$.効 also, since $\angle A+\angle C=180^{\circ}$. Therefore the bisectore AS and CF moot DC at the same angle and 60 are oither parallel or coincident, by Theores 14.
5. In Mg. C lot H be the mid-point of $A D$. Then BM 18 parallel to $D C$, and consequently also to AB. Sirilarly En, not ascumed to contain the point M, is par-

Fig. C allel to $A B$, and consequently also to DC. Therefore HM and EN mast coincide (by Theoram 13), and Mis parallel to $A B$ and $C D$.
6. Following the eort of argument used in Ex. 4 on page 127, let the ine joining the mid-points M and N in Fig. A on the next pege noet
$A D$ oxtonded at P and moot $B C$ oxtonded at Q.
Then $\frac{P M}{P N}=\frac{A M}{D N}=\frac{M B}{N C}=\frac{Q M}{Q N}$
$\frac{P M}{P N}-1=\frac{Q M}{Q N}-1$,
$\frac{N M}{P N}=\frac{N M}{Q N}$, and $P N=Q N$.
Therefore P and Q mast coincide at the point R which ie comeon to $A D$ oxtonded and $B C$ oxtonded.
7. In Fig. B lot the line joining the midpoints

Fig. A of M and N moot $A C$ at P and moot $B D$ at Q.

Then $\frac{P M}{P N}=\frac{A M}{C N}=\frac{B M}{D N}=\frac{Q M}{Q N}$,
$\frac{P M}{P N}+1=\frac{Q M}{Q N}+1$,
$\frac{M N}{P N}=\frac{M N}{Q N}$, and $P N=Q N$.
Therefore P and Q must coincide

Fig. B
at point S which is comon to both $A C$ and $B D$.
First alternative proof:
Make the proof depend on Ex. 4, page 127, which etates that if three lines cut off proportional segmonte on two parallel lines, they are olther parallel or concurrent. In this case two of the three lines are diagonals of the trapezoid and hence must intersect. Consequently ell three lines $A C, B D$, and M, met intersect. Second alternative proof:

In Mg. C the diagonals AC and BD Intersect at 0 . Lines $O M$ and $O N$ Join 0 to the midpointe of $A B$ and CD. Wo mast prove that MON is a straight line.

By Thoorem 15 and Case 2 of Similarity, trianglo OAB 18 aigilar to triangle $O C D$. Therefore $O C=k \cdot O A ; C D=k \cdot A B ;$ and $C N=k \cdot A M . B y$

Case 1 of Similarity, triangles OM and OCA are ainilar and triangles 018 and OiD are ainilar. Consequently $\angle y=\angle J^{\prime}, \angle z=\angle z^{\prime}$; $\angle x+\angle y+\angle z^{\prime}=\angle I+\angle y^{\prime}+\angle z=280^{\circ} ;$ and Mar is a atraight ino.
8. The line joining the midpoints of the bases of a trapesoid passes through the point of intereaction of the diagonal and through the point of intereection of the non-parallel siden axtended. 8ee Fig. A.
9. In Fig. B, arc AB - arc CD (by meorea 19) and arc AC arc BD (by Ex. 3, page 141). inerefore arc $A B+$ arc $A C=$ aro $C D+$ arc $B D=180^{\circ}$.

Fig. A

Fig. 8

Fig. C
10. From any point P vithin the regalar polygon drav lines to the vertices A, B, C, . . and drav perpendiculare to the eidee, axtending the eidee If neceseary. Let the leagthe of theeo perpendioulare from P to AB, BC, CD, . . . be called h_{1}, h_{2}, h_{3}, . . . reopectively. Lot the length of each alde be e. Then the area of the polfeon is equal to $\frac{6}{2}\left(h_{1}+h_{2}+h_{3}+..\right)$. But the area of the poly80n 10 also equal to half the perimotor tines the apothen, a; that is, the area 10 equal to thea. It follows that $\left(h_{1}+h_{2}+h_{3}+\ldots\right)=n$.
Page 223, 1ine 1: "It can be proved." The proof is set forth in Killing and Eovestedt, Fandbuoh doe Matheratieohen Unterrichte, Vol. I, Tonbner, Loipsig, 1910, pagee 339-344.

Page 223, 11ne 12: "as n increasen indefinitely." Bere wo are no
longer constrained to allow \underline{n} to increase by doubling, as on pagee 210-212, but may allow \underline{n} to incraace at will through integral valuec.

Page 224, 11nos 13-14: "ae tho number of sides is increased indof1nitely." Here aleo \underline{n} is Freed of the restriction to increase by doubling, and may increace at will through integral valuol.

Page 226, Fig. 43. The equaree with solld lined for borders are the orighal equares of the erid. The squares with partially dotted bordors are the reault of halving the sidee of each original equare. Fg. 43 ohove that, for the region dopicted, this halving causes the difference between the two approximations to shrink from square units to 8 quartor equare unite.

CAAPTER 8
 Loseson Plan Outline: 6 lessong

1-3. Through page 234
4-6. Through page 240
suclid wae obliged to recognize the exietence of lengthe which could not be reprecented by rational mubere. He had, moreover, no other numbere by vhich to represent these lengthe. For example, the Pythagoreen Theoren required that Enclid recognize the length of the diagonal of a rectangle vhose length and widh wore 2 unite and 1 unit reapectively, even thougi he had no nurber by which to expreas this length. The beet he could do vas to "close in" upon thie length by aeane of paire of rational mabers, one maner of the peir having its equare leas than 5 and the othor having ite equare greator than 5 . Fo could apprehend lengthe of this sort onfy by moan of inequalities, indefinitely many inequalities.

Consequently, when saclid cane to the point wbere he had to frame a definition of proportion, he was obliged to atate it in ouch a vas that som of the tern of the proportion could be "inexpreseible" nmbers 11ze the leagth of this diagonal. This forced hin to define proportion by moans of equalitiee and inequalitios, indefinitoly many of each. That is why his Elemente had to demonetrete many theoren concerning inequelities, a fow of wich etill remain in our modern books on geometry, partiy because of their traditional importance and partly because they are neesul in othor waye.

Buclid' definition of proportion, usuelly attributed to sudoxus, is cubetantially as followe. Four quantities, a, b, c, d, are sald to be in proportion - that is, $\frac{a}{b}=\frac{c}{d}-1 f$ equal miltiplea of a and c are both lese than other equal multiplee of b and d; or if not lese than, then both equal to, or both greator than. Stated algebraically, if overy
choice of integers m and n that mares ma<nb also marea $m c<n d$ if overy choice of m and n that makes ma $=n b$ also makes $m=n d$ and if overy choice of mand n that makes ma>nb aleo makes me>nd, then vo can vrite $\frac{a}{b}=\frac{c}{d}$ and can say that a, b, c, d aro in proportion.

This is an overvhelming array of words and much more complicated than our modern dofinition of proportion, which 18 meroly the oxpressed equality of two equal ratios. But in our modern definition vo permit the numbers in our ratios to be irrational as vell as rational, without oxpecting our pupils to have at hand an adequate definition of irrational numbers. In fact, when vo came to grips with the mattor wo find that wo ourselves mut accept as definition of overy irrational number a etatoment that involves inequalities in the same vay as Euclid's (and Eudoxus') definition of proportion.

Euclid, lacking irrational mumbers, had to face the difficulty occaeioned by this lack when he vas defining proportion. Wo have simplified the treatment of proportion by transforring the difficulty, together with Suclid's vay of meoting it, to the definition of irrational numbers.
(See the notes on page 133 of this manual concerning page 229 of BASIC CEOMITRY.)

By taking the roal number oyetem, which consista of all the rational numbers and all the irrational numbers, as one of the bases of our geomotry, wo may ignore the treditional place of inequalitios in geomotry and may reserve only so much mention of thom as other considerations Beom to require. The first assumption of BASIC GEONSIRY, Principle 1 , adopts the syetem of real numbers. So, from the very beginning, BASIC GEONDIRY applies allke to commenurable and incomensurabla caees without requiring that these two sorte of cases be distinguished; and any montion ve may wish oventually to make of inequalitiee may bo witheld as long as we please.

In Chapter 8 ve do not confine the diecueeion to inequalities; ve show also the relation between goometric continuity and the contimuty of the real number system. That 18 why this chapter 18 entitied "Contimous Veriation."

Page 229, lines 15-16: "It can be proved..." For suppose thet two integere p and q exiet such that $\frac{p^{2}}{q^{2}}=5$, whore p and q have no cormon factor other then 1. Then one of the following three alternatives muet be true: p alone conteint 5 as a factor; a alone containg 5 a a factor; noithor p nor q contains 5 as a factcr. But each of these three alternatives contradicte the relation $p^{2}=5 q^{2}$. Therefore no one of the three 1s possible, and there is no rational muber whose equare 185.

Page 229, last tro 11nes. The dofinition of $\sqrt{5}$ as a separation of the rational numbers reads eubstantially as follows: If the entire clase of rational mumers be separated into two sub-classes ouch that every retional number is in one of these two oub-classes, and euch that every positive rational number whose square is less than 5 is in one sub-clase, tcgether with zero and all the negative retionale, and every positive retional number whose equare 10 not 1088 than 5 is in the other eubclass, this very separation of the entire class of rationals in this manner deflnes a now number, not a rational, whose equare 1s 5 . We call it the positive square root of 5 and write it $\sqrt{5}$.

Page 231: Continuous variation of an angle. The contimuoue variation of angles $A B X$ and YAB in Mg. 4 is obvious. The continnous variation of angle $B X A$ follows from the fact that $\angle B X A=180^{\circ}-(\angle A B X+\angle X A B)$. $A B X$ varies continuously from C to $D, \angle B X A$ may have a mumerical value thet 1108 outside the range of values $\mathrm{from} \angle \mathrm{BCA}$ to $\angle B D A$. It is necessary only that it begdn vith the mumorical value of $\angle B C A$ and ond with the mumerical value of $\angle \mathrm{BDA}$, varying contimuously in some vay from one to the other.

If the curve along which X varies heppens to be a circular arc thet passes through A and B, the 8120 of angle $B X A$ does not change, and the oum of angles $A B X$ and $X A B 10$ constant. Noverthelose vo may etill epeak of the continuous variation of angle BXA. For the mathematician regande both $y=a x$ and $y=c$ as examplee of the continuous variation of I. It 10 not lack of variability in the colloquial sonse that ve mat guand againet, but lack of continuity.

Page 232, 11nes 13-14: "9 varies continuouely towerd 0°," perhape marely decreasing from its initial value, perhaps first increasing and then decreacine.

Page 232, Theoren 29. If a is not greetor than b, then either $a=b$ or $0<b$. But each of these alternativos hes a consequence that contradicte the given rolation $\angle p><q$. Therefore the aseumption that a is not greator than b is false.

Page 233, 11ne 20: "Why ${ }^{\prime \prime}$ " If b ' $=b$, then $\angle q$ ' $=\angle q$, by Principle 8.
But thie contradicte the given relation $\left\langle q><q^{\prime}\right.$.
Page 233: Theoren 31. If $\angle q 10$ not greater than $\angle q^{\prime}$, then o1ther $\angle q=\angle q^{\prime}$ or $\angle q<\angle q^{\prime}$. But each of these alternatives has a consequence that contradicte the given relation $b>b^{\prime}$. Therefore the aseumption that
$\angle q$ is not greator than $\angle q^{\prime}$ is false.

Page 234: Txercieos.

1. The central angles corresponding to the two minor arce are unequal.

Apply Theorem 30.
2. Apply Theoren 31 and consider the minor arcs that correspond to the two angles of the triangles at the conter of the circle.
3. In Mg. 10, $A B<B C$. Therefore $\frac{1}{2} A B<\overline{1} B$; that $1 e, M B<B N$. It follows from theore 28 that $\langle p\rangle\langle q$. Consequently $\langle J\rangle\langle x$ and MO>NO.
4. In Me. 10, MO>NO. Therefore $\angle y>\angle x, \angle p>\angle q$, $B N>M B$, and $A B<B C$.
5. See Fig. A at the top of the next page.
5. $a+b>x$
$c+d>x$
a $+\mathbb{d}>\boldsymbol{J}$
$b+c>J$
$2 a+2 b+2 c+2 d>2 x+2 y$
$a+b+c+d>x+j$

Fig. A

Pege 235, lines 10-12. In Chaptor 2, page 49, ve made nc use of directed anglee there described. It wculd have been 1mpossible at that time to have considered the oum of the anglos of a "crose polygon" of the sort abown here in Mg. B. Indeod, in the case of euch polygone, it 10 not easy to decide wich angle at each vortax aball be called the interior angle of the poljgon. The etudent can show that the oun of the counter-clockwise angles at the vertices of any polygon, whether convex or crose, is (n-2) $180^{\circ} \pm \mathrm{k} 360^{\circ}$, where t io olther zero or eose positive or nogative integer. An exerciee of this sort show the increased genoralization thet is possible under the concept of directed aneles.

Pagee 236-240: Frorcieen. Most of these axercisos require merely that the pupil verify by his own thinicing the results already eot down In the bock in the form of statemonts, or illuetrated by Fig. 13 on page 239 of BASIC GEDCNETRY.

1. More axaggerated form of Mg. 13 a and Fig. 13 h will show this.
2. In enowering this question the pupil anticipates by his own offorte the coriea of diagrame ahown in Mig. 13.
3. The directed angle $x_{+}-\frac{1}{2}\left(\angle B O D_{+}-\angle C O A_{+}\right)=\frac{1}{2}\left(\angle B O D_{+}+\angle A O C_{-}\right)=$ $\frac{1}{2}\left(\widehat{B D}_{+}+\widehat{A C}_{-}\right)$, whore $\widehat{B D}_{+}$is used to repreeent the measure of the directed contral angle correaponding to the directed arc $\widehat{E D}_{+}$.
4. The directed angle $x_{+}=\frac{1}{1}\left(\angle B D_{+}\right)=\frac{1}{2}\left(\widehat{B D}_{+}\right)$. Since C coincider with A,
$\angle C O A=\angle A O C=0^{\circ}$. Consequently $\widehat{A C}$, intentionally printed vithout a subecript aign because $\overparen{A C}$ is zero, may be ineorted in the paronthesis In order to preserve the form of the algebra. See page 236, innes 21-23.
5. The pupil mat see that $360^{\circ}-\overparen{D A}_{+}$can be repleced by $\widehat{A D}_{+}$.
6. The directed angle $x_{+}=\frac{1}{2}\left(360^{\circ}\right)-J_{+}=\frac{1}{2}\left(360^{\circ}-\widehat{C A}_{+}+\widehat{B D}_{+}\right)=$ $\frac{1}{2}\left(\widetilde{A C}_{+}+\widehat{B D}_{+}\right)$.
7. In circle $1, \frac{1}{2}\left(\widehat{B D}_{+}+\widetilde{A C}_{+}\right)=\frac{1}{2}\left(360^{\circ}\right)$.

In oircle $\mathrm{J}, \angle \mathrm{X}_{+}=180^{\circ}+\frac{1}{2}\left(\widehat{B D}_{+}+\widehat{A C}_{-}\right)$, from Ex. 3. But $360^{\circ}+\overparen{A C}=\widehat{A C}_{+}$Therefore $\left.x_{+}=\frac{1}{2} \widehat{B D}_{+}+\widehat{A C}_{+}\right)$.

In circle $k, \overparen{A C}+$ represente the measure of the contral angle corresponding to the completo circumforence, directed poitively.
12. $\overline{P A}$ is positive, decreasing tovard zero; $\overline{P B}$ is positivo, approaching $\overline{A B} ; \overline{P A} \times \overline{\mathrm{PB}}$ 1e positive, decreasing tovand zero.
13. Zero
14. $\overline{\mathrm{PA}} 18$ negative, decreasing algobraically tovand $\overline{\mathrm{BA}}$; $\overline{\mathrm{PB}}$ is positive, decreasing tovand zero; $\overline{P A} \times \overline{P B}$ 10 zero when P is at A, negative vhen P 1s between A and B; zero agein vhen P is at B.
15. 2ero
16. $\overline{P A}$ and $\overline{P B}$ are both negative and decreasing algobraically; $\overline{P A} \times \overline{P B}$ is positive and increasing.
17. Covered by ansvers to Exs. 12-16.
18. The perimetors of the rectangled in Fig. 14 are all equal; so the equare has the largest area and the product re 18 greatost when $r=s$. By the second euggested method, $\overline{A P} \times \overline{P B}=\left(\frac{\overline{A B}}{2}-\overline{P M}\right) \times\left(\frac{\overline{A B}}{2}+\overline{P M}\right)=$ $\frac{(\overline{A B})^{2}}{4}-(\overline{P M})^{2}$. This hae its greatest value, namely $\frac{(\overline{A B})^{2}}{4}$, when $\overline{P M}=0$. Therefore the largest negative value attalned by $\overline{P A} \times \overline{P B} 18-\frac{(\overline{A B})^{2}}{4}$. Thit occure when $P 10$ at M, midway botwoen A and B.

$$
\begin{gathered}
\text { C EAPTER } 9 \\
\text { Lesson Plan Outline: } 14 \text { 108sons } \\
\text { 1-6. Through page } 253 \\
\text { 7-13. Exorcises, pagos } 254-261 \\
\text { 14. Pagos 261-266 }
\end{gathered}
$$

Page 241. The two 9:14 p.e. lines on the chart ought, etrictly, to be arce of ereat circles.

Page 243, 1ino 16. The locue is a circular cjlindor of radiue 2 in .
Pege 24, line 1. The locus is composed of four straiget line segmonts, each equal in length to a side of the equare, and four quadrents of a circle whose redius is equal to the radius of the rolling circle.

Page 244, line 3. An example of a locus that consiste of only one point is the locus of all points in a plane that aro equidistant from three given pointe in the plano. An erample of a locus that consists of a curro and a single isolated point is the locue of all pointa in a plane at a distance r from a circle of redius r that $l 108$ in the plane.

Pages 244-246: Frorcises.

1. A circle, center at 0 , radius 5 inches.
2. Two parallel lines, each 4 inches from the given line. Whon the fred line is perpondicular to the plane, the locus is a circle of radius 4 inches.
3. The four pointe in which the circle vith centor 0 and radius 5 inches intersects the two lines that are parallel to $A B$ and 4 inches from AB . These four points are the corners of a rectangle, 8 inches by 6 inches.
4. The three points common to the circle and to the two lines that are parallel to $A B$ and 4 inches from 1t. One of these lines is tangent to the circle. These throe points are the vertices of a triangle of base 8 inches and altitude 8 inches.
5. A etraight line midvay betwoen the two given lines.
6. Two lines parallel to the given lines, one on each side of the plane of the given lines and dietant $\sqrt{5}$ inches from this plane.
7. Two lines, each parallel to the base of the triangle and at a distance equal to the altitude.
8. A ilne perpendicular to the chord and midvay between one oxtrealty of the chord and 1 te perpendicular bisector.
9. Two ines, each maring an angle of 30° with the given ine.
10. A straight line perpendicular to the diamoter (extended) through P. This straight lino moots the diametor oxtonded at a point D such that $O D \cdot O P=r^{2}$, vhere O is the conter of the circle and r its rediue. All that 10 expected of the pupil 10 that he shall plot onough pointe of the locus to surmise that it is a stralght inno. Ae P approachee 0 , the locus recedes from 0 ; when P ie at 0 , the locus hae ranishod.

The proof, which is not expected of the pupil, vill be of interest to the teachor. The eimilar right triangles $O A D$ and $O P A$ in F18. A tell ue that $\frac{O D}{r}=\frac{r}{O P}$. Another pair of einilar trianglea tolle us that $\frac{O T}{r}=\frac{r}{O M}$. Therefore $O D \times O P=O N \times O M$ and $\frac{O D}{O T}=\frac{O M}{O P}$. Since triangles ODF and OMP have angle MOP in corion and the ides including this angle

Fig. A
proportional, the two triangles are elmilar. Consequently angie ODT 10 equal to angle OMP, which is 90°.

This locue can be thought of as the inverse of the circle on OP as diamoter, ueing the given circle as circle of inversion. See pagee 263-264. So considered it involves the converee of the theorem on page 264, linos 17-27, namoly Ex. 2 on pege 265.

Fig. A

Fig. B
11. If one side of the equare 16 , the locue 10 a quadrant of a circle of radius e, a quadrant of a circle of radius $\sqrt{2}$, and another quadrant of a circle of radiue s.
12. A circle concontric with the given circle and of radius 8. Bee Mig. A.
13. A parabola. of couree, the papil is not expected to bov anytining about the curve he has plotted, not oren 1 te name. The teacher can toll hin. See Mg. B.
14. Both branches of a hypertola. Mas atudente will draw only the right-hand branch. See Ex. 13 and Mg. C.
15. An ellipse, as ahown in M8. D.
16. Four atraight line segmonte, each 1 inch long, and four quadrants of a circle of radius $\frac{3}{2}$ inches. In Mg. E, M 18 the mid-point of the hypotomuse of a right triangle; consequently $M 18$ at a distance $\frac{3}{2}$ inches from the vertex of the right angle.

Fig.C

Fig. D

Fig.E

Page 246, fifth inne from bottom. The wording "is a point of" is mathomatically procice and is in harmons with the definition of locue on
page 242. The vording "point lies on curve," "lise on line," "lies in plane" is morely a mathomatical colloquiallem. We use it hore bocause it 18 faniliar.

Page 247. The etudent may noed to look back at the discussion of Indirect Mothod on pages 33-35 of BASIC GEDMESIRY. There is a commont on page 35 of this manual concorning pageo $33-35$ of BASIC GFONESRI that 10 pertinent here.

Page 248: Locue Theorem 1. Actually on page 133 ve do not define "circle" in the strictly precise locus torminology involving "all the pointe, and no other pointe" bocause it is too avkard to bring it in there. Instoad, ve do what amounts to the same thing by deacribing "all other pointe" as boing inaide or outaide the circle.

Page 248: Fig. 5. To have put the point R on the line $P Q$ rould have been to bos the question, to aserme what mest be proved. Placing R on one alde of ling $P Q$ seess to assume what can be proved to be false. In all such cases geometers prefor to lead pupils to reason correctly from incorrect figuree than to lead pupile, by mans of correct figures, to mate premature and incorrect inforences.

Page 249, line 22. First "Why:" by Corollary 14a. Second "Why:" by IX. 2 on page 113.

Pago 250, linos 8-9. The locus is a plane perpendicular to the plane of the given parallel lines, parailel to then and midvay botwoen them.

Page 251, line 19. The locus is a plane perpendicular to the line segment joining the two given pointe and blsecting this line segnont.

Page 252, lines 13-16. In each case the locus 1s a pair of planes which bisect the angles formed by the given lines or planes.

Pagos 254-261: Fxarcises.

1. The perpendicular bleector of the base.
2. A straight line midvay betvoen the two given parallele.
3. A straight line parallel to the given ilne and midvay botwoen it and the givon point.
4. Two parallel lines, one on each side of BC, both equally dietent from $1 t$.
5. Two straight linos through A, each making an anglo of 45° with $A B$. Nost students will think of AB as horizontal and will construe "upper" ilterally. Iot thon euppose that $A B$ is vortical.
6. A straight line perpondicular to II at P.
7. A circle having the given point as conter and the given radius 48 its radius.
8. The perpendicular bisector of the line segment joining the two points.
9. A circle concentric vith the given circle. Its radius will be $\sqrt{r^{2}-\frac{1^{2}}{4}}$, where $r 18$ the radius of the given circle and 110 the length of the chords.
10. A straight line midway betwoen the two fixed parallels. This is true whother the exercise is intorpreted an moaning that each circle cuts a pair of equal chords, the pairs themselves being unequal, orwhether the pairs also mast be equal.
11. Both the center of the circle and the point of intersection of the two tangents are equidistant from the pointe of contact. Hence they rust 11 on the perpendicular bisector of the chord of contact.
12. Bince each mid-point is equidistant from the ends of the chord, the two mid-points mast 110 on the perpendicular bisector of the chord.
13. The center and the ild-points of the arcs are all equidistant from the onds of the chord; consequently they mest 110 on the perpendicular bisector of the chord.
14. The contor of each circle is equidistant from the onds of the common chord. Hence the two centers nat 110 on the perpendicular bisector of the common chond.
15. By Ex. 13, the centor of the circle liee on the perpendicular bisector of each chord. But the perpendicular bisectcr of one chord mast be perpendicular to the other chord also, 80 the two perjendicular bisectore mast coincide.
16. The diametor perpendicular to ony chord of the eystom, by Ex. 15 .
17. Drav any two chords. Their perfendicular bisectors vill moot at the contor.
18. The perpendicular bisectors of two sides $A B$ and $B C$ of any triangle ABC cannot be parallel; for if they vere, the tro eides would be parallel, or coincident. It follows that the two perpendicular bieectore mact have a point in comon. This point must be oquidietant from A and B, and equidietant also from B and C. Since it is equidietant from A and C, it met 110 on the perpendicular bisector of the third side, $A C$, also.
19. The bisectors of two angles A and B of any triangle $A B C$ cannot be parallel; for $1 f$ they vere, angles A and B vould end up to 180°. It follows thet the two bisectors must have a point in comm. This point must be equidistant from $A B$ and $A C$, and equidistant also from $B A$ and $B C$. Since 1t is equidistant from $A C$ and $B C$, it must 110 on the bisector of the thind angle C, also.
20. In contrast with the construction on pege 181 of BASIC GBOMINARY, the emphasis in thie exercise is now on the phrase "and only one." The proof follows 1mmodiately from Ex. 18 in this set of arercises.
21. Ordinarily the point of intersection of the first and second perpendicular bisectors will not coincide with the point of intersection of the second and third perpendicular bisectors.
22. A segment of the bisector of each angle of the triangle, each segment extendine from vertex to incontor. Soe Br. 19.
23. A pair of lines parallel to the given ilnes. If the distancee from
the given ilnes 1 and mespectively are in the ratio p to q, ane of the new lines will be at the diatance $\left(\frac{p}{p+q}\right)$ d from 1 and the other vill be at the dietance $\left(\frac{p}{q-p}\right)$ d from 1 , whare d is the diatanoe between 1 and m. The second part of thie anaver can be eot by colvIng the equation $\frac{J}{J+d}=\frac{p}{q}$.
24. With P as conter drav a circle that will out the given circle in two pointe A and B. Drav the perpendicular bieector of AB. Finally, drav at P the perpendicular to thie perpendicular bieector.
25. A circle concentric vith the given circle and having redine oquad to $\sqrt{r^{2}+t^{2}}$.
26. An arc of the circle that has for ite diantor the line cegingt joining the conter and the givon external point. Fvery point of thie arc is inside the given circle.
27. The circle that bae for its diamater the line segnant joining the conter O of the concentric circles and the given arternal point P. Points O and P do not belong to the locus.
28. A circle concentric vith the given circle and having eredine of 10 foet.
29. Tro equad circles, each having half the base for its diameter. the add-point of the base does not belong to the locus.
30. Same locue as in Er. 29, excopt that now the ond-points of the bese are also exclinded from the locus.
31. A circle having for diamotor the ine eegnent joining the given point and the center of the given circle. The given point doen not belong to the locus.
32. Sam locue as in Ex. 31, axcopt that nov the given point 18 included in the locus.
33. A oircle vith center at the intereaction of the two rized rode and Nith rediue equal to $\frac{1}{2}$, where 1 ie the length of the moving rod.

The mid-point M of the moving rod is alvaye the mid-point of the hypotenues of a right triangle and so 10 alvaye the samo distance, $\frac{1}{2}$, from the onde of the moving rod and from the point of intersection of the two fired rods.
34. Asoun that the theoran is not true. It is etill poseible to pase a circle through throe vortices of the given quadrilateral; the fourth vertex will be elthor ingide or outaide the circle. The two angles that are given as having the eum 180° met be equal to two central angles that add up to 360°. But under the assumption that the fourth vertex is not on the circie, the two given expplemontary angles are equal to two central angles that add up to somothing more or less than 360°. a contradiction. Therefore the fourth vertex melat be on the circle.
35. A circle having $A B$ al chord. Ito center Q will be outelde the given circle, on the perpendicular bisoctor of $A B$, and ouch that angle $A @ B$ is equal to 180° minue the contral angle in the given circle corresposding to the minor arc AB. The proof dopende on Locue Theorem 7 and Exc. 5 and 6, pages 147 and 148.
36. The phrase "segment of a circle" has not been deflned previouely; the description in parenthesis is sufficient to show ite moaning.

If O is the center of the given circle, if P is the point of intersection of $A C$ and $B D$, and if P is the point of intorsoction of $A D$ and $B C$, then angle APB is alvays 30° and angle AP'B is alvays 90°.
(a) The locus of P is an arc of a socond circle having $A B$ as chord and such that the minor arc $A B$ of this socond circle has a central angle of 60°. This means that the centor Q of the second circle is "above" $A B$, on the perpondicular bisector of $A B$, and anch that angle $A Q B$ is equal to 60°. Consequentis Q is on the given cirole, trioe ae far above 0 as 0 is above AB. The axtent of the arc that constitutec the locus of P can be detornined as followe.

One limiting position of $C D$ makes C coincide with A. In this position $\angle B A D=90^{\circ}$ and $B D$ axtonded moots the socond cirole at A^{\prime}, so that $\angle B A^{\prime}=120^{\circ}$ and $A^{\prime} Q$ is parallel to $A B$. The other ilmiting position of $C D$ makes D coincide with B. In thie position AC extonded meots the second circle at B^{\prime}, so that $\angle A B B^{\circ}=120^{\circ}$ and $9 B^{\prime}$ is parallol to AB. Tho etraight lino A'OB' 18 tangent to the given circle and 1a a diamoter of the second circle. Except for the and-pointe A' and B', all points of the second circle "above" this dianoter constitute the locus of P. That 1s, the locus is a semicircle minu 1te and-pointo.
(b) The locue of P^{\prime} is an arc of a thind cirole having $A B$ as chord and euch that arc $A B$ of this thind circle has a central angle of 90°. Thie mans that the center R of this third circle 10 the $\begin{aligned} & \text { mep-point }\end{aligned}$ of $A B$, and the locus of P ' is the "upper" eadeircle of this third cirole, including the and-pointe A and B.
37. Fach of the given triangles has ite vertar V on one of two equal arce of the cort ohown in Fig. 11, page 253, in connection with Iocue Theore: 7. For all positions of V on one of these aros the doeired loous is the cocplete cirole that contains the other arc, except for that point on the major arc $A B$ that is equidietant from A and B. Whis oxcepted point is approeched on eaoh alde by the point of intereection P of the perpendioulars ac V approaches firet A and then B. But thie excepted point cannot bolong to the locue because V cannot coincide with oither A or B.

Whon $\angle V A B=90^{\circ}$, A 18 seon to bolong to the locus. Similarly for B, when $\angle V B A=90^{\circ}$. When V is botwoen theee two positione, $\angle A P B$ is the eupplament of the given angle. Whon ∇ is outaide these two poeitione, $\angle A P B$ is equal to the givon angle.

The ontiro locus, then, is made up of the two equal circies containing the arcs to which vertex ∇ is alvay restrioted, eroept for
the point on each circle that is farthest rom AB.
38. The line cegmont joining the ald-point of the base to the oppoeito vertex. This line is defined on page 259 as a gedian of the triangie.
39. The center will be at the point where the bisector of the 114° angle Intersecte a parallel to one of the given linee that is 100 feet distant fron this given line.
40. For every position of GD angle C ie unaltered in eize; eimilarly for angle D. Consoquently angle DBC mast be constant aleo.
41. Drop $A D$ perpendicular to MR and continue it to A^{\prime} to that $A^{\prime} D=A D$. The interaection of $A^{\prime} B$ and R it the deeired point.
42. Baro at Ex. 41.
43. In F1g. 21 on page 259 of BASIC CPONYRI, quadrilatoral ABCB' it a parallologram in wioh $\angle B^{\prime}=\angle B, A B^{\prime}=B C$, and $A B=B^{\prime} C$. 8inilarly for quadrilatorale BCAC' and CABA'. Consequontly triangle A'B'C' is ainilar to triangle ABC and cides $A^{\prime} B^{\prime}, B^{\prime} C^{\prime}$, and $C^{\prime} A^{\prime}$ an bieoted by C, A, and B reapectively. So the altitudee of the given triangle are the perpendicular bisectore of the sides of the new triangle, and honoe (by E. 18, page 255) moet in a point.
4. The engeetion given in the arercise is enough.
45. The point of intereaction of aach pair of tangente is on a bisector of an angle of the triangle formed by joining the centers of the three circles. Bince it mitet be on all three bisectors, it mat be the point that is comon to all three bisectore (by Ex. 19, page 256).
46. The locus consiste of two linee, wich can be constracted ae follows. Drev e line parallel to AB and two unite away from AB. Dray two lines at a diatance of one nadt from AC, one on each side of AC. Thees two lines will intorsect the first ine at P

and Q, ac in Fig. A. The ilnos AP and AQ, axtonded, constituto the locus.

It 10 easy to prove that overy point on AP 10 tuice ae far from AB as from $A C$, and that overy point on $A Q$ is tuice as far from $A B$ as from AC. In each case one needs only two paire of einilar right triangles.

The difficulty in thie exerciee consiste in proving the converse, namoly: if $\frac{P B}{E_{C}}=\frac{2}{I}$ and if $\frac{P^{\prime} B^{\prime}}{P^{\prime} C^{\prime}}=\frac{2}{I}$, then P^{\prime} not 110 on AP (oxtonded). Anglee BPC and B'P'C' are equal, elince each it the supplement of angle A. Consequently triangles BPC and B'P'C' are sindlar, and $\angle P B C=\angle P^{\prime} B^{\prime} C^{\prime}$. It follows that $B C$ and $B^{\prime} C^{\prime}$ are parallel, since sach moote AB' at the camo angle. Therefore $\frac{A B}{A^{\prime}}=\left(\frac{B C}{B^{\prime} C}\right)=\frac{B P}{B^{\prime} P^{\prime}}$; the right trianglec ABP and AB'P' are elanlar; $\angle B A P=\angle B ' A P ' ;$ and P' llos on AP.

The proof for Q and Q' follove the pattarn of the preceding proof for P and P^{\prime} with only one change: angles BaC and B'Q'C' are now equal to argle A instoed of to 1 te cuppleasent.
47. $\frac{A R}{K B}=\left(\frac{A P}{F B}\right)=\frac{Q A}{A B}=\frac{\text { m }}{n}$. See noto following $\overline{E x}$. 26 on page 116.
48. It 10 ovident from the preceding exorciee that B and Q are two pointe on the deeired locus. Any other point P on the locul mat be euch that $\frac{A P}{F B}=\frac{M}{n}=\frac{A R}{R B}=\frac{Q A}{A B}$. This moans that $\angle Q P R$ zust equal 90°, by Ex. 27, page 117. So the loous of P is the circle on QR at diamotar.
49. Wo can think of the given parallel lines as boing perpendicular to the plane of page 260, so that these linet - when fioved ond-on are reprecented by the pointe A and B of Fig. 23 on that page. Irom Ix. 48 on page 260 ve know that the locus of points whose distances from A and B are in a given ratio is the circle that hae $Q R$ for
diamotor. So in this Ex. 49 the locus menst be a cylinder with axis through the midpoint of $Q R$ and perpendicular to the plane of page 260. That 10, the locue 18 a cylinder with axie parallel to the given parallel lines.
50. The locue is a circle in the given place with centor D and radius 3 . Por ovory point in the plane that is 5 inches from P mast be 3 inches from D.
51. The intersection is a circle with center at D, the foot of the porpondicular dropped to the plane from P, the conter of the sphere. Soe Fig. 24, page 261. For if the radius of the ophore is r, overy point of the intersection of plane and sphere will be at the same distance, $\sqrt{r^{2}-(P D)^{2}}$, from D.
52. Erory point of the interection of two epheree with centers 0 and O^{\prime} will 11e in a plane perpendicular to 00'. See IX. 14, page 143. So the intersection of the two spheres can be regarded as the intorsection of this plane and olther one of the opheres. By the preceding oxercieo thit is a circle.

Pago 261, 11ne 16. Seo Ix. 37, page 151. In this connection Profescor Morman Anning of the Oniversity of Michigan eaggests that ve write $P A \cdot P B=(P T)^{2}=(P O)^{2}-r^{2}=(P O+r)(P O-r)$ and shov that this last way of writing the product is valid oven when P is inside the circle. It 10 cloar from Mg. 25 on page 261 that when P is inalde the cirole, PA' P PR' = $(P O+r)(P O-r)$ and the pover is nogativo, as atated in the text. It is interesting to add to thie the noto that when P is outside the circle, the pover of the point ie equal to the square of the tangent from P to the cirole; and when P is inside the circle, the pover of the point ie equal to minue the equare of half the ahortest chord through P.

Page 262: Exorcises.

1. The proof follow ismediatoly from the definition of pover of a point
with reapect to a circle on page 261. For every point P on the common chord, and on the common chord extended, the product PA PB 10 the same for both circles.
2. This is a ligiting case of the proceding oxercieo. If the circloe are axternally tangent at T, the power of any point P on the cormon internal tengent is (PT) with respect to both circles.
3. If the circles are internally tangent at T, the pover of any point P on the common external tangent is the same, namoly (PI) ${ }^{2}$, with reepect to both circles.
Fege 262, fourth ine fron bottom. The eubetitution of (TP) ${ }^{2}$ for $(T ' P)^{2}$ is intentional. By euppreseing this detall the eubtraction of the equation in this ine from the equation in the line above is more casily followed.

Page 263: Fronciser.

1. The foregoing proof can be applied without alteration to the case of two intersecting circles. It followe Prom Ex. 1 on page 262 that each of the two pointe of intersection of the two circles has the cano power with reapect to both circles. Both of these points Eust 11 on PD, therefore, and PD must be the common chord (axtonded).
2. Both in the case of two circles that are axternaliy tangent and of two circles that are internally tangent, it seem reasonable and helpiul to define the radical axis as the comnon tangent of the tro circles.
3. A plane perpendicular to the line of centers of the two epherea. The student is not expected to be able to prove this. Actually the proof follows the same pattarn as the proof in the case of two circles, on pagen 262-263. Givan a point P having the same pover with reapect to two epheres with contore at 0 and $0^{\prime} ; ~ M g . ~ 27$ on page 262 can be considered as representing the section made by the plane POO', except
that pointe T and T ordinarily will not be in thie plane. But the relations $(P O)^{2}=(O)^{2}+(T P)^{2}$ and $\left(P^{\prime}\right)^{2}=\left(O^{\prime} T^{\prime}\right)^{2}+\left(T^{\prime} P\right)^{2}$ hold Juat as before.

Page 264, 11no 13. The inverse of the circle of inveraion 10 the cirole of invereion 1teelf.

Page 26t, lime 16. The radins of circle with center at 0 times the reding of the circle that is ite inverse is equal to the equare of the redine of the circle of inversion. The center of all three circles ere at the center of inversion, 0 .

Pege 264, lime 26: "Whyt" Becanse trianglec $09 P$ and OP'Q' are e1-dlar by the Principle of Simiarity, Case 1, and angle OP'Q' 10 givon a right angle.

Pree 264-265: Parcisee.

1. The foregoing proof applios in each cene without alteration. When $P^{\prime} 10$ on the cirole of inversion it coinciden $v i t h P$, and the radiue OP' of the cirole of inveraion is the diameter of the circle that is the invere of the streleft line through P^{\prime}.
2. The inferee is a otralgt line perpendicular to the line of contors 00' of the two circlen. In Jig. A, let $O P$ be the dianeter of the diven circle that paceee through 0 . If P^{\prime} 10 the inveree of P, and Q 'the inverse of a randon point Q on the given oircie, then $O P \cdot O P^{\prime}=r^{2}=\alpha^{2} \cdot Q^{\prime}$ and $\frac{O P}{O Q}=\frac{Q^{\prime}}{O P^{\prime}}$. Tharefors triangles POQ and $\mathrm{Q}^{\prime} \mathrm{OP}^{\prime}$ are aid. Lar (Principle of 81diarity, Case 1) and

Fig. A $\angle O P P^{-} \angle O P^{\prime} Q^{\prime}$. But $\angle O Q P=90^{\circ}$, being insoribed in a cencirole. Therefore $Q^{\prime} P{ }^{\prime}$ is perpendicular to $O P^{\prime}$ at P^{\prime}, wee $Q 10$ ang point of the given oirole except 0 or P. So the locus of the inverees of all pointe of the given circle it the staralfot line through P^{\prime} perpendicular to OP.

Pege 265, ilnos 10-11. A line eagment equal in leagth to the diamotar of the circle.

Page 265, linoe 12-15. A circle equal to the circular edge of the coin. Uecrally an ellipee; but when the two plases are perpendicular, the projection is a line segmont equal in longth to the diamoter of the coin. Pege 265, lipee 26-18. A cirole. 50.

C BAPTER10

Loseon Plan Outiline: 7 lessons
1-2. Puges 268-278
3-6. Irorcises, page 278-280
7. Pages 280-283

It is irportant for the teacher to note that Chapter 10 artende the idean of Chapter 1, but that the papil noede the beckground of the interraning ohaptere in order to appreciate thie Inal chapter. Thie oonnection between Chapter 10 and all that precedee it 18 eot forth on pagee 268-269, 273, 277-278, 280, and 283.

Oo alm of thie final chapter 10 to reconelder the logical etruoture of this geometry and to look more olocely at the part played by certain becio principlee and theorens of thit geonetry. Another ain in to consider the logioal struoture of other geometries; to consider then the atrnotrare of logical syotem in genoral; and finsily to recognite that this geonotry afforde an instructive arample of a logioal ejutem and is a oonvenient and proper pattern for all logical thintang.

Pase 268, 11pe 18. The "ton otatempnte" 1s correct here, because three of the thirtean exerciees on pagen 161-163 do not ooncern nonmathenatical oituations.

Pagee 270-273: Frorcises. As explalned on page 269 the pup11 is not erpected to find "the oorreot anever" to these axercises.

Pasee 274-276: Mrezo1een.

1. 80
2. Fo. It fegt bo an ollipeoid or other ourved surface.
3. Foop it corered and ohilled.
4. Cat a loaf into ellces. Foep two llioen dry and covered, but one ware and the other cold; reep two more alicen molet and covered, but one wark and the other oold; lreep two more dry and uncovered, but
one vars and the other cold; keep two more moist and uncovered, but one warn and the other cold. Then observe which slice of each pair becomes moldy sooner. Test four more pairs with respect to moist and dry, and four more with respect to covered and uncovered.
5. Evidently it is not the air by itself that causes fermentation, but something is: the air that is more commonly found in thickly settled regions than on mountain tops.
6. Heat the milk oufficientiy to kill the ferment, or to kill most of it. Then chill the milk to discourage the growth of any of the formont that romains alive. Also, loop air away from tho milk.
7. The object is to drive out as much of the air as possible and then to kill the harmful bacteria that may be loft inside the jars.
8. Because the pus-forming bacteria in the air were killed in passing through the carbolated gauze.
9. In the ice cream.
10. In the canned lobster.

Pages 278-280: Exorcises.
1, 2, 3, 5, 6. In lines $17-19$, on page 278 , the student 18 reminded that he skipped the proofs of Principles 6, 7, 8, 11 and perhaps of Theerem 13 also. These proofs are given in the book on the pages mentinned in these exercises.
4. Given: Triangles $A B C$ and
$A^{\prime} B^{\prime C}$ ($\mathrm{Fig}_{\mathrm{g}} \mathrm{A}$) in which $\angle A=\angle A^{\prime}, A^{\prime} B^{\prime}=\mathbf{L} \cdot A B$, and $A^{\prime} C^{\prime}=k^{\prime} \cdot A C$.

To Prove: Triangle $A^{\prime} B^{\prime} C^{\prime}$ similar to triangle ABC.

Fig. A

Proof: At B' draw B'C" so
that $\angle A^{\prime} B^{\prime} C^{\prime \prime}$ equals $\angle B$. This line will moot $A^{\prime} C^{\prime}$ (extended beyond the point C' if necessary) in the point C". By Case 2 of Similarity,
which for the moment is being taken as a fundamental postulate, triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime \prime}$ are almilar and $A^{\prime} C^{\prime \prime}=\mathbf{r} \cdot A C$. But $A^{\prime} C^{\prime}=\mathbf{r} \cdot A C$ (Given). Therefore $A^{\prime} C^{\prime \prime}=A^{\prime} C^{\prime}$ and $C^{\prime \prime}$ met coincide vith C^{\prime}. It follove that $\angle A^{\prime} B^{\prime} C^{\prime}=\angle B$ and trianglen $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ aro oimilar.

Caee 3 can nov be proved, juet ac on pagee 79-80 of BASIC GEOMISIRY.
7. Noat of the sasver 1a given on page 106 of BASIC GBowsiry. The anover there given and the form in which this Ex. 7 is worded both imply that our chiof interest hore is in getting back to Principle 5. Actually Principles 4 and 3 aro aleo required in the proof of Theorem 13. Schematically the dependence of theorem 13 upon these three principlea can be shown as followe.

8. The dependence of Theorem 16 on Theoreme 15,14 , and 13 and so back to Principle 5 1s shown in the following diagram.

9. The dependence of Theorem 20 on earlier theorems is shown in the diagram on the noxt page (FIg. A).
10. On page 247 we have eeen that if a proposition is true, its opposite converev is true also. So, insteed of proving Theorem 21 directis

by shoving that a given tangent is perpendicular to the radius, wo abow instead that a line through T (page 139, Fig. 13) that is not perpendicular to the radiue OT cannot be tangent. Thie is as much es is oxpected of the student.

The teacher will observe that the proof on page 140 of BASIC GEONT: TRY proceeds on the tentative asoumption that 1 , given tangent, 18 not perpendicular to OT. Under this tentative assumption it conaidore the poosibility that $O X$ equals $O T$ and then that $O U$ is lese than Or. In oach case it arrives at a contradiction. Consequently the tentative ascurption of non-perpendicularity is incompatible wh the given condition that 1 is tangent.
11. The proof of Theorem 22 depende upon eariler theorems as indicated below.

Fig. B
12. The dependence of Theorem 23 upon the fundamental principles of thie geomotry 18 shown in the diagram on the noxt page (Mg. A).
13. Any parallelogram having one aide equal to b and the altitude upon this side equal to h can be divided into two trianglee, each of eide b and altitude h, by drawing oither one of the diagonals of the parallelogram. Consequently the area of the parallelogram 1 e $2\left(\frac{1}{2} b h\right)$, or bh. Every rectangle is a secial sort of parallologram and 80 its

area 18 equal to bh also. The area of any polygon can now be found Just ae described on peges 203-204 of BASIC GEOMETRY.

The contrast in procedure here 18 between the order rectangle -
right triangle - any triangle - parallologram - polygon and the order triangle - parellelogram (rectangle) - polygon.
14. In FY. 9, page 32, of BASIC GEONBTRY, MO 18 the perpendicular bisector of $A B$ and $C O$ bleocte angle $A C B . \triangle A M O=\triangle B M O$ (by Case 3 of Similarity), and so $\angle \mathrm{MAO}=\angle \mathrm{MBO}$.
$\triangle A D O=\triangle$ BEO (by the Pythagorean Theorem and Case 3 of similarity), and so $\angle O A D=\angle O B E$.

Consequentiy $\angle M A O+\angle O A D=\angle M B O+\angle O B E ; \angle B A C=\angle A B C:$ and triangle ABC 18 1eoeceles.
15. Starting with triangle ABC in Fig. A in which $C B<C A$, wo wieh to expose the fallacy in the foregoing "prcof" that purports to show that $C B=C A$. Since the fault probably liee in the diagram show in Fig. 9 on page 32 of BASIC GEOMEIRY, we had bettor give careful consideration to the eort of triangle we draw.

Fig. B

We know from Theorem 28 that $\angle C A B$ mest be lose than $\angle C B A$. Consequently $\angle C A B$ mast be acute and $\angle C B A$ might concoivably bo acute, right, or obtuse. We dismise the obtuse possibility at once, because if we should succeod in "proving" the theorem under this condition, $\angle C A B$ would have to be obtuse also, which 18 inpossible. For the same reason ve dismiss the possibility that $\angle C B A 18$ a right angle.

Let us consider next whother the bisector of angle ACB intersects $A B$ to the right or to the left of the mid-point M. If we draw perpendiculars HR and HS from H to CA and CB respectively, then $\triangle C H R=$ $\triangle C E S, C R=C S$, and $A R>B S$. Consequently, by the Pythagorean Theorem, $A B>B B$ and H is to the right of M. It follows that the intorsection O of $M O$ and $C O$ met be outside the triangle, below $A B$, and not inside the triangle, as shown in Fig. 9 on page 32 . This is the chief orror in Fig. 9. If the atudent seos this, that is all that can fairly be oxpected of him.

Lastly, vo must consider whother the perpondiculars OD and OE moot CA and CB respectively in two points D and E that are both between C and the corresponding vertex of the triangle; or both outside the triangle, on CA and CB extended; or one inside and the other outside. In the first case the purported proof appears still to hold if ve subtract the angles instoad of adding; namely $\angle O A D-\angle M A O=\angle O B E$ \angle MBO. In the second case the purported proof appears still to hold, Just as given in Ex. 14, by adding the anglos. Actually, howover, noither of these cases is possible and the apparent proofe have no standing.

We turn now to the thind case, shown in Fig. B, in which D lies betweon C and A and E lies on CB oxtended. Thie case is possible. But now we get nothing sensible oither by adding or subtracting the angles. If $\angle C A B$ vore indeed oqual to $\angle C B A$, then $\angle O A D-\angle M A O$ would equal $180^{\circ}-(\angle O B E+\angle M B O)$. This vould require that $\angle O A D$
chould equal 1800 - $\angle O B E$; navely, that the equal angles OAD and OBE should be oupplementary, and consequently right anglea. Thie would moan that triangles ADO and BEO vould each contain two right angles, which is impossible.

Evidently we cannot prove triangle ABC ieoscoles so long as ve retain the initial condition that $C A$ and $C B$ are unequal.

Page 281: Frercises.

1. (a) Ch1ld say cake.
(b) Child did not eat cako.
(c) Children eoe cakes.
(d) Ch1ldren will eat cares.
2. (a) Man caught boy.
(b) Man did not epank boy.
(c) Man catch boye.
(d) Man vill epant boye.
3. (a) Circle was outeide of triancle.
(b) Circle was not inside of triangle.
(c) Circles aro outside of triangles.
(d) Circles will be inside of triangles.
4. (a) Quotient was greator than divisor.
(b) Quotient was not less then divisor.
(c) Quotionts are greater than divisors.
(d) Quotiente vill be less than divieors.

Pagos 282-283: Exorcisos.

1. Let ue sesure at the outset that $A<B$. When we shall bave completed the proof under thit assumption we shall noed only to interchange A and B throughout to cover the case B $<\mathbf{A}$.

Given: $A<B ; X<L ; A<E<B ; A<L<B ;$ and $X<E<L$.
To prove: $A<I<B$.
Proof: Since $A<K$ and $I<I$ (both given), ve lonov that $A<\mathbf{X}$ (Assumption 2). Since $\mathrm{I}<\mathrm{L}$ and $\mathrm{L}<\mathrm{B}$ (both given), we bnow that $X<B$ (Assumaption 2). Therefore $A<X<B$ (Assumption 2).

2. Assumptions:

(1.) A 16 oldor than B, or tho 20 age as B, or jounger than B.
(2.) If A is older than B and B is older than C, then A ie older than C.
(3.) If A is the samo ago as B and B is the samo ago as C, then A 1s the samo age ae C.

Thooreme:

(1.) If A is oldor than B and B 1e oldor than C and C 10 older than D, then A is oldor than D.
(2.) If A is the same ago as B and B is oldor than C, then A is older than C.

3. Assurptions:

(1.) A is lese than B, or equal to B, or ereator than B.
(2.) If A is less than B and B is lese than C, then A is lees than C.
(3.) If A equals B and B equals C, then A equale C.

Thooreman:
(1.) If A is lose than B and B is loss than C and C is lose than D, then A 1s lose than D.
(2.) If A equale B and B is lees than C, then A ie less than C.
4. Asounptions:
(1.) A procedes B, or coincides with B, or followe B.
(2.) If A procedes B and B procedes C, then A procedes C.
(3.) If A coincides with B and B coincides with C, then A coincides with C.

Theorome:
(1.) If A procodos B and B precedos C and C procedos D, then A procedes D.
(2.) If A coincides vith B and B procedes C, then A procedes C.

LAWS OT NUMBER

Page 285, line 19: "Roal numbers." These are not defined here. The real numbere a, b, c, . . are otrictiy morely the undefined elements of this systam. Since the system ve propose to build is to be concerned vith numbers, vo think of the oleronts as numbers and call the eystem a "number eystom." The properties these numbers acquire from the syeten aro such that oventually wo aro moved to call thom "real numbers." Thus, although etrictiy the real numbere remain undefined throughout, in effect the whole eystom serves, through ite postulates and theorems, to characterize them in juet the way vo vant.

ISBN: 0-8218-2692-1

917808211826928
CHEL/34.S

[^0]: "See Balated's translation of Saccheri's Suclides ab omi neovo Vindicatus, Open Court, Chicago, 1920, pege 105.

[^1]: Namely, if in Fig. B, M and N are fired while X varies continuously from P to Q, then angles MKN, XNM, and NNX vary continuously also.

[^2]: "1.0., angle Man in Fig. B on page 22.

[^3]: The teacher will find much inetruction in the eeriee of articlee by Nethen Lezar entitiod "The Importance of Certain Concepte and Laws of Logic for the Stuig and Teaching of Ceometry" that appeared in the Mathematice Teacher, Vol. XXXI nos. 3-5, March-May, 1938. We hope, however, thet the complexitios of this eubject oe sot forth hy Dr. Lazar will not dissuede the tescher from diecuseine convereee in full at o more elementery level with hie pupile. The treetment of conversee in thie manual ie interdod to show the teacher how to introduce beginners to this eubject without overwhelmine them with details that intereet adulte.

[^4]: "By "ruler" ve mean here what the pupil moans by "ruler." Eventually in this book we replace this vord by the word "ecale" and denote on unmarked ruler by the word "etraightedge." See Chapter 6, pages 165-166.

 - Tor a diecuseion of duality soe Graustoin, W. C., Introduction to H1ehor Goomotry, Macmillan, 1930, or Veblen and Young, Projective Goomeryy, Fol. I, Ginn, 1910.

[^5]: WThie can be done by a parallel projection that carries overy point axcopt O and B of the radius $C B$ into some point between A^{\prime} and B^{\prime} of diamoter A'B'. This will pair every point oxcept A and B of the quadrant with overy point botween A^{\prime} and B^{\prime} of the seai-circle.

[^6]: "1.e, bearing a number thet is between the numbers assigned to the sides of the angle.

[^7]: "Suggested by Profeseor Norman Anning of the Univereity of Michigan.

