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Preface

Research on the mathematical thinking and learning of young children is
one of the most productive and exciting areas in educational psychology.
Although mathematics researchers have studied young children’s learning for
some time, much of the research originated in fields such as developmental
psychology. Today, researchers from mathematics, mathematics education,
developmental psychology, cognitive psychology, and neuroscience, among
others, are exploring similar questions, creating a critical mass of theory and
empirical evidence that has the potential to energize each of these fields.

Our goal is to synthesize relevant research on the learning of mathe-
matics from birth into the primary grades from all these complementary per-
spectives. At the core of our theoretical and empirical frameworks are learning
trajectories—descriptions of children’s thinking as they learn to achieve specific
goals in a mathematical domain, and a related, conjectured route through a set
of instructional tasks designed to engender those mental processes or actions
hypothesized to move children through a developmental progression of levels
of thinking. Rooted in basic issues of thinking, learning, and teaching, this
body of research illuminates foundational themes on the learning of
mathematics, with practical and theoretical implications for all ages. Those
implications are especially important in addressing equity concerns. Under-
standing the level of thinking of the class and individuals in that class is key in
serving the needs of all children.

Background

In 1998, we began a four-year project funded by the National Science Founda-
tion. The purpose of Building Blocks—Foundations for Mathematical Thinking,
Pre-Kindergarten to Grade 2: Research-based Materials Development was to
create and evaluate mathematics curricula for young children based on a
theoretically sound research and development framework. More than a decade
later, we are still finding new opportunities for exciting research and develop-
ment in early mathematics.

Funding from the U.S. Department of Education’s Institute of Education
Sciences (IES) has allowed us to work closely with hundreds of teachers and
thousands of children over the past 10 years. All these agencies and individuals
have contributed ideas to these books. In addition, these projects have
increased our confidence that our approach, based on learning trajectories
and rigorous empirical testing at every step, can in turn make a contribution to
all educators in the field of early mathematics. The model for working with
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educators in all positions, from teachers to administrators to trainers to
researchers, has been developed with IES funding to our TRIAD project, an
acronym for Technology-enhanced, Research-based, Instruction, Assessment,
and professional Development.1

The “Companion” Books

We believe that our successes are due to the people who have contributed to
our projects and to our commitment to grounding everything we have done
in research. Because the work has been so heavily researched, we decided to
publish two books. The first book—this one—reviews the research underlying
our learning trajectories. The second book, the companion to this one, Learning
and Teaching Early Math: The Learning Trajectories Approach (Clements &
Sarama, 2009), describes and illustrates how these learning trajectories can be
implemented in the classroom.

Because it is in the classroom that mathematics comes alive, we urge those
most interested in this, the research review book, to read the companion book as
well. The illustrations of children’s wonder, excitement, and especially thinking
and problem-solving, help prevent the research reviews from giving the mis-
impression that the main story of learning trajectories is children marching
through a series of learning levels. Such a dreary picture is the opposite of that
we are trying to paint, which is of children filled with curiosity and creative
ideas, and teachers excited about helping them see the world through
mathematical lenses.

Reading this Book

The first chapter of this research book introduces the area of early mathe-
matics, our theoretical framework, and the construct of learning trajectories.
Most of the chapters are content-specific and follow similar formats. Each
chapter focuses on one or more related domains of early mathematics. For each
domain, we describe theories and empirical evidence on children’s learning of
these ideas, and then on the role of education and experience. Each of these
chapters concludes with a description of the research basis for the learning
trajectory for that specific topic. The focus in this book is on the developmental
progressions of levels of thinking children develop as they learn each topic.
Although the important role of processes such as problem-solving, reasoning,
representing, and communicating mathematics ideas is a consistent theme
throughout the book, Chapter 13 summarizes research focused on these pro-
cesses. The last chapter, 14, discusses the research-based approaches to scaling
up, particularly the critical component of professional development, we used
in the TRIAD projects.

The implications for education are detailed in the companion book. This
book also elaborates the learning trajectories for each topic, emphasizing
multiple instructional tasks matched to each developmental level. It also
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includes chapters on “Cognition, Affect, and Equity”; “Early Childhood
Mathematics Education: Contexts and Curricula”; and “Instructional Practices
and Pedagogical Issues”. Another reason the companion book is an essential
complement to this book is that only the companion book reviews research on
these essential topics.
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Part I
Introduction





1
Early Childhood

Mathematics Learning

“It seems probable that little is gained by using any of the child’s time for
arithmetic before grade 2, though there are many arithmetic facts that he
[sic] can learn in grade 1.”

(Thorndike, 1922, p. 198)

“Children have their own preschool arithmetic, which only myopic
psychologists could ignore.”

(Vygotsky, 1935/1978, p. 84)

For over a century, views of young children’s mathematics have differed widely.
The recent turn of the century has seen a dramatic increase in attention to the
mathematics education of young children. Our goal is to synthesize relevant
research on the learning of mathematics from birth into the primary grades
from multiple perspectives. This reveals a field that is fascinating in its new
findings, that promises practical guidelines and suggestions for teaching and
advances in theory. As just one example, Jean Piaget’s genetic epistemology,
as the study of the origins of knowledge itself, has never been more deeply
developed or empirically tested than in recent research on early mathematics
learning.

In this chapter, we begin with a brief overview of mathematics in early
childhood and young children’s learning of mathematics. In the several
chapters that follow, we discuss children’s learning of mathematical ideas and
skills that are important for young children’s learning (Clements & Conference
Working Group, 2004; NCTM, 2006; NMP, 2008), because it is most fruitful for
teachers and children to focus on the big ideas of mathematics (Bowman,
Donovan, & Burns, 2001; Clements, 2004; Fuson, 2004; Griffin, Case, &
Capodilupo, 1995; Tibbals, 2000; Weiss, 2002).

This organization based on content should not be taken as a de-emphasis
on other critical components of high-quality mathematics education. For
example, processes are discussed within every chapter, because processes are just
as important as “facts” and concepts in understanding mathematics. Further,
Chapter 13 focuses on specific processes. “As important as mathematical con-
tent are general mathematical processes such as problem solving, reasoning and
proof, communication, connections, and representation; specific mathematical
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processes such as organizing information, patterning, and composing, and
habits of mind such as curiosity, imagination, inventiveness, persistence, will-
ingness to experiment, and sensitivity to patterns. All should be involved in a
high-quality early childhood mathematics program” (Clements & Conference
Working Group, 2004, p. 57). This structure of goals is consistent both with
recommendations of the National Council of Teachers of Mathematics
(NCTM, 2000) and with research on young children’s development of a
network of logical and mathematical relations (Kamii, Miyakawa, & Kato,
2004). Finally, it is consistent with the conclusions of another review, that:
“The overriding premise of our work is that throughout the grades from pre-K
through 8 all students can and should be mathematically proficient”
(Kilpatrick, Swafford, & Findell, 2001, p. 10), including conceptual understand-
ing, procedural fluency, strategic competence, adaptive reasoning (capacity for
logical thought, reflection, explanation, and justification), and a productive
disposition.

That last thread—productive disposition—must also be highlighted. The
“habits of mind” named previously, including curiosity, imagination,
inventiveness, risk-taking, creativity, and persistence—are components of
the essential productive disposition. Children need to view mathematics as
sensible, useful, and worthwhile and view themselves as capable of thinking
mathematically. All these should be involved in a high-quality early childhood
mathematics program. (The companion book includes chapters on learning
and teaching contexts, including early childhood school settings and educa-
tion, equity issues, affect, and so forth that speak to developing children’s
productive disposition.)

Mathematics in Early Childhood

There are at least eight reasons for the recent surge of attention to mathematics
in early childhood. First, increasing numbers of children attend early care and
education programs. In 1999, 70 percent of four-year-olds and 93 percent
of five-year-olds were enrolled in preprimary education, up from 62 and 90
percent, respectively, in 1991 (U.S. Department of Education, 2000, p. 7).
Several states are instituting universal pre-K,1 with about 1 million children
enrolled in 1999, and that number is increasing (Hinkle, 2000). In 2001, about
two-thirds of all four-year-olds were enrolled in universal pre-K, with that
ratio increasing (Loeb, Bridges, Bassok, Fuller, & Rumberger, in press;
Magnuson, Meyers, Rathbun, & West, 2004). Various government agencies,
federal and state, provide financial support for pre-K programs designed to
facilitate academic achievement, particularly programs for low-income
children.

Second, there is an increased recognition of the importance of mathematics
(Doig, McCrae, & Rowe, 2003; Kilpatrick et al., 2001). In a global economy with
the vast majority of jobs requiring more sophisticated skills than in the past,
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American educators and business leaders have expressed strong concern about
students’ mathematics achievement.

Third, the mathematics achievement of American students compares
unfavorably with the achievement of students from several other nations,
even as early as first grade and kindergarten (Stigler, Lee, & Stevenson, 1990).
Some cross-national differences in informal mathematics knowledge appear as
early as three to five years of age (Starkey et al., 1999; Yuzawa, Bart, Kinne,
Sukemune, & Kataoka, 1999). Children in East Asia and Europe learn more
advanced math than most children in the U.S. are taught (Geary, 2006).
(Similar contrasts appear between East Asian and other Western countries as
well: Aunio, Ee, Lim, Hautamäki, & Van Luit, 2004.)

Fourth, the knowledge gap is most pronounced in the performance of
U.S. children living in economically deprived urban communities (Geary,
Bow-Thomas, Fan, & Siegler, 1993; Griffin, Case, & Siegler, 1994; V. E. Lee &
Burkam, 2002; Saxe, Guberman, & Gearhart, 1987; Siegler, 1993). That is, dif-
ferences are not just between nations, but also between socioeconomic groups
within countries. A stark example occurred in our own research project when a
child stepped up to research assistant grinning and showing her “Happy Birth-
day” crown. The assistant asked how old she was. The girl stared without
responding. “Can you show me on your fingers?” The girl slowly shook her
head “no.” Cross-cultural differences raise concerns of equity regarding chil-
dren’s pre-K experiences and elementary schools’ readiness to adapt instruc-
tion to children at different levels of mathematical development. Many
government-funded programs serve low-income children, who often
experience difficulties in mathematics and are at increased risk of school failure
(Bowman et al., 2001; Natriello, McDill, & Pallas, 1990). These children need to
build the informal knowledge that provides the basis for later learning of
mathematics. Thus, equity demands that we establish guidelines for quality
early mathematics education for all children.

Fifth, researchers have changed from a position that very young children
have little knowledge of, or capacity to learn mathematics (e.g., Piaget,
Inhelder, & Szeminska, 1960; Piaget & Szeminska, 1952; Thorndike, 1922) to
theories that posit competencies that are either innate or develop in the first
years of life (Baroody, Lai, & Mix, 2006; Clements, Sarama, & DiBiase, 2004;
Doig et al., 2003; Gelman & Gallistel, 1978; Perry & Dockett, 2002). We will
discuss these issues in more depth; here, it suffices to say that it is clear that
young children can engage with substantive mathematical ideas.

Sixth, early knowledge strongly affects later success in mathematics (Denton
& West, 2002). Specific quantitative and numerical knowledge in the years
before first grade has been found to be a stronger predictor of later mathe-
matics achievement than tests of intelligence or memory abilities (Krajewski,
2005). What children know early affects them for many years thereafter
(Horne, 2005; NMP, 2008). Mathematics knowledge on school entry is a
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stronger predictor than any of a host of social-emotional skills. The most
powerful preschool avenue for boosting fifth grade achievement appears to
be improving the basic academic skills of low-achieving children prior to
kindergarten entry (Claessens, Duncan, & Engel, 2007).

Seventh, research indicates that knowledge gaps appeared in large part due
to the lack of connection between children’s informal and intuitive knowledge
(Ginsburg & Russell, 1981; Hiebert, 1986) and school mathematics. This is
especially detrimental when this informal knowledge is poorly developed
(Baroody, 1987; Griffin et al., 1994). High-quality experiences in early
mathematics can ameliorate such problems (Doig et al., 2003; Thomson, Rowe,
Underwood, & Peck, 2005).

Eighth, traditional approaches to early childhood, such as “developmentally
appropriate practice” (DAP) have not been shown to increase children’s
learning (Van Horn, Karlin, Ramey, Aldridge, & Snyder, 2005). We need ways
to keep the probable benefits of DAP, such as socioemotional growth (Van
Horn et al., 2005), and yet infuse the young child’s day with interesting,
equally appropriate, opportunities to engage in mathematical thinking (cf.
Peisner-Feinberg et al., 2001).

For these reasons, there has been much recent interest in, and attention to,
the learning and teaching of mathematics to the young.

Young Children and Mathematics Learning

Given the opportunity, young children possess an informal knowledge of
mathematics that is surprisingly broad, complex, and sophisticated (Baroody,
2004; B. A. Clarke, Clarke, & Cheeseman, 2006; Clements, Swaminathan,
Hannibal, & Sarama, 1999; Fuson, 2004; Geary, 1994; Ginsburg, 1977;
Kilpatrick et al., 2001; NCES, 2000; Piaget & Inhelder, 1967; Piaget et al., 1960;
Steffe, 2004; Thomson et al., 2005). For example, preschoolers engage in
substantial amounts of foundational free play.2 They explore patterns,
shapes, and spatial relations, compare magnitudes, and count objects.
Importantly, this is true for children regardless of income level and gender
(Seo & Ginsburg, 2004). They engage in mathematical thinking and reason-
ing in many contexts, especially if they have sufficient knowledge about the
materials they are using (e.g., toys), if the task is understandable and motiv-
ating, and if the context is familiar and comfortable (Alexander, White, &
Daugherty, 1997).

What do children know about math before they come to school? More than a
century ago, G. Stanley Hall (1891) included specific mathematics skills in his
survey of the “content of children’s minds upon entering school.” About 40
years later, Buckingham and MacLatchy (1930) similarly surveyed the number
abilities of entering first graders. Since then, several reports have described
what children know as they enter school, providing valuable data for writers
of standards, goals, and curricula, as well as for teachers. A brief review
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of previous surveys of mathematics knowledge at school entry indicates that
children generally are acquiring mathematical knowledge at earlier ages, but
that children have never entered schools as tabulae rasae. The following is a
brief discussion; some results are summarized in Table 1.1 to provide another
view of the pattern of these findings.

Number

Of children entering first grade in Berlin, Hall (1891) reported that the per-
centages of children that “had the idea of” two, three, and four were 74, 74, and
73, respectively. Except for a handful of questions on shapes, these were the
only questions asked concerning mathematics. Buckingham and MacLatchy
(1930) reported that entering first graders possessed “remarkable” ability with
counting, reproducing and naming numbers, and number combinations. At
least 90 percent could verbally count to 10, 60 percent to 20. The majority of
the 1,356 children enumerated objects to 20. Success in reproducing numbers
declined with increasing number size, yet over 75 percent were successful with
each of the numbers five, six, seven, eight, and 10 at least once; 70 percent
identified a set of 10 at least once. Similarly, Brownell (1941) concluded that
about 90 percent of first grade entrants could count verbally and count objects
to 10 (his review of previous research revealed that about 10 percent could
verbally count to 100 and between half and two-thirds could count to 20);
about 60 percent could identify groups up to 10 represented concretely without
pattern; over 50 percent could reproduce sets up to 10 given verbal directions;
about 80 percent could identify the number which was “more”; about 75 per-
cent could reproduce a set of four or five given a model set, whereas about 50
percent were successful with a set of seven; and about 75 percent dealt success-
fully with number combinations with small numbers of visible objects and
from 38 to 50 percent with verbal presentations. More recently, Callahan and
Clements (1984), in a survey of 4,722 first graders entering urban schools in
the years 1976 to 1980, found that a relatively high percentage of children
stopped verbal counting in the 10–19, 20–29 and 30–39 intervals, but beyond
50 most counted until the interviewer stopped them at 100.

A recent study found that by the end of the school year, a large percentage
(88 percent) of kindergarten children understood the concept of relative size
(e.g., can count beyond 10 and understand and can use nonstandard units
of length to compare objects). By the spring of first grade, most children (96
percent) mastered ordinality and sequence (the understanding of the relative
position of objects); and about three-quarters (76 percent) demonstrated pro-
ficiency in adding and subtracting basic whole units. Moreover, by the spring
of first grade, about one-quarter (27 percent) demonstrated proficiency in
multiplying and dividing simple whole units (Denton & West, 2002).

In a Netherlands study, entering first graders scored an average of 75 percent
on the researchers’ assessment (Heuvel-Panhuizen, 1996). Most children had
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mastered relational concepts and were quite familiar with numerals (written
symbols, “1,” “2,” “3” . . . ) to 10 (97 percent; 81 percent for “14”). On a
pictured board game, the great majority could identify numbers that come
after or before another number. An even higher percentage could color two
(99 percent) to nine (84 percent) pictured marbles. Performance on addition
and subtraction problems was variable, from 80 percent on a countable board
game problem, to 39 percent on a noncountable, open-ended subtraction
problem, with performance on countable problems solved by about 79 percent,
and others solved by about 50 percent. An interesting addition to this study
was that several categories of experts in education were asked to predict these
scores. They expected mastery of the relational concepts, but their predictions
of number abilities were substantially lower. For example, they thought about
half the children would know numbers to 10, compared to the actual average of
97 percent. They predicted 25 percent for numbers before and after, compared
to the actual 59 percent to 86 percent. Their estimates for addition and sub-
traction were proportionately less accurate, often a mere tenth of the actual
averages. The children’s scores—and substantially lower estimates of them by
experts—were substantiated by replications in Germany and Switzerland
(although the estimations tended to be somewhat higher, proportionately).

Many studies have been conducted of kindergartners (for a review, see
Kraner, 1977). In 1925, children 4.6 to 6 years showed 100 percent perform-
ance for naming the number of items in collections of one and two, from 85
percent to 95 percent on three, 15 percent to 65 percent for four, and 0 percent
to 12 percent for five (Douglass, 1925). When not correct, most children’s
estimates were within one to two for numbers up to 10. These skills improved
with age. Bjonerud (1960) reported the average performance of children (from
a public and university demonstration school) for both rote and rational
counting was 19, although there was little facility with number sequences other
than the sequence of numbers by one (about 25 percent could count by tens).
All were able to recognize sets of less than four immediately; some were able to
recognize sets up to nine, mostly by counting. Almost 90 percent solved simple
addition word problems and approximately 75 percent solved subtraction
problems. Rea and Reys (Rea & Reys, 1971; Reys & Rea, 1970) assessed the
mathematical competencies of 727 entering metropolitan kindergartens.
Skills in counting, recognizing, and comparing small groups were generally
well developed, more so than ordinal concepts. Over 50 percent counted
beyond 14 and over 75 percent beyond 10 (rote and rational). Between 70 and
95 percent successfully identified the number of objects in groups containing
from one to eight objects. The task of forming groups of three, seven, and 13
was performed successfully by 82, 55, and 34 percent respectively. When
three numbers in sequence were provided, approximately 90 percent of the
children could supply the next number; however, providing only one number
cue and asking for the number before or after greatly decreased the percentage
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of correct responses. Kraner (1977) concluded that the average kindergartner
possessed mathematics knowledge on a par with that of the average first grader
of earlier years.

A few studies have surveyed the prekindergarten child’s mathematical
knowledge. McLaughlin (1935) investigated the number abilities of children
from three to five years of age. The average verbal and object counting (without
checking the cardinal principle) was to 4.5 and 4.4 for three-year-olds and
17.6 and 14.5 for four-year-olds (which included children up to 60 months).
There was no substantial ability to count backwards. Only some three-year-
olds could match groups of two or three whereas most four-year-olds were
beginning to count as a means of matching, forming, naming, or combining
number groups (percentages were not provided). In his investigation of the
acquisition age (defined as an 80 percent success rate) of number concepts of
three- to six-year-olds from five middle-class locations, Kraner (1977) reported
the following ages of concept attainment: verbal counting to three, 3-6; to four,
4-0; to nine, 4-6; and to 18, 5-0; object counting to two, 3-6; to eight, 4-6; and to
20, 5-6; recognizing and comprehending cardinal numbers to five, 5-0; to 10,
from 5-6 to 6-0; and identifying more than, 5-6, less than, 6-6, and one more
or less, above 6-6. Clements (1984b) identified the following abilities of
middle-class entering four-year-olds, in average accuracy: object counting to
10, 59 percent; choosing more, 51 percent; after, before, between, 30 percent;
counting on and back, 19 percent; equalizing, 20 percent one-to-one corre-
spondence, 58 percent; identity conservation, 72 percent; equivalence conser-
vation, 62 percent; verbal arithmetic problems, 49 percent; concrete arithmetic
problems, 46 percent.

An Australian study showed that most entering preschoolers could count
eight objects and between 25 and 41 percent could tell what one more or one
less would be (Thomson et al., 2005). Less competence was reported for
Scandinavian prekindergarteners, who did not master any of the assessed
counting skills (Van de Rijt & Van Luit, 1999). Preschoolers show a wide range
of competencies (Aubrey, 1997). Verbal counting ranged from four to more
than 100, with 80 percent counting to at least 10, and 15 percent counting to
within the range of 21 to 30. Reading numerals showed variable performance,
with 50 percent recognizing five to more than eight numerals, a further 31
percent recognizing two to four numbers, and 19 percent recognizing none or
one number. For giving the number after another number, 25 percent could
manage four to seven numbers, 27 percent one to three numbers, and 36
percent eight to 10 numbers. For addition with concrete objects, 51 percent
accurately answered four or five out of five problems. For a simple division by
social sharing task, 73 percent scored four or five out of five on tasks calling for
simple distribution of sweets among two and three bears. For multiplication by
simple addition, 66 percent were able to carry out two simple tasks checking
children’s understanding of a small set being repeated.
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There is a vast related literature on children’s understanding of number (e.g.,
Baroody, 1992; Fuson, 1992; Fuson & Hall, 1982; Gelman & Gallistel, 1978;
Ginsburg & Russell, 1981). For example, Fuson (1988) presented an extensive
report focusing on children’s counting. The reports, especially of children’s
errors, are too complex to summarize here. Fuson summarized, “By age 3
counting is already very organized and exhibits the general structure of mature,
effective, counting” (p. 186). Relevant findings include counting up from a
number well established by age 4-6, errors when counting disorganized arrays
decreasing at about the same age, and most correspondence errors decreasing
sharply while children are four years of age. Because these were not general
surveys, often did not disaggregate by age, and did not assess children explicitly
upon school entrance, they will be discussed in other sections of the book.

Geometry

Although there is less information on geometry than number, we know
something about children’s competencies in that domain. Hall (1891) reported
that the percentage of children entering first grade that “had the idea of” circle,
square, and triangle were 49, 54, and 41, respectively. Brownell (1941) reviewed
research indicating that about 75 percent of first graders understood the terms
square and circle, but few understood triangle.

Bjonerud (1960) reported that 91 percent of entering kindergarteners
named a circle and 76 percent named a square. Although kindergarteners could
easily match shapes (97 percent), Rea and Reys (Rea & Reys, 1971; Reys & Rea,
1970) reported that only slightly more than 50 percent correctly named a circle
and square. The triangle, rectangle, and diamond were named by 38, 11, and
23 percent of the children. Correct identification of line, sides, and corners was
made by over 80 percent. At least 50 percent could tell how many sides these
figures had (children’s difficulties were not in counting, but in leaving out the
side closest to them).

Regarding knowledge of preschoolers, Kraner (1977) reported the average
acquisition age for circle to be 4-6, square and rectangle, 5-0, and number
of sides, 5-6. Fuson and Murray (1978) reported that by three years of age over
60 percent of children could name a circle, square, and triangle. Recently, using
a complex array of shapes of different sizes and shapes, middle-class four-year-
olds’ accuracy of identification was 92 percent for circles, 82 percent for
squares, 60 percent for triangles, and 51 percent for rectangles (Clements et al.,
1999). Apparently, differences in tasks or populations characteristics affect
results.

Young children develop beginning ideas not just about shapes, but also
about congruence and transformations. Although many young children
judge congruence based on whether they are, on the whole, more similar than
different (Vurpillot, 1976), four-year-olds can generate strategies for verifying
congruence for some tasks. Preschoolers often try to judge congruence using an
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edge matching strategy, although only about 50 percent can do it successfully
(Beilin, 1984; Beilin, Klein, & Whitehurst, 1982). They gradually develop a
greater awareness of the type of differences between figures that are considered
relevant and move from considering various parts of shapes to considering
the spatial relationships of these parts (Vurpillot, 1976). Under the right con-
ditions, preschoolers also can apply similarity transformations to shapes. For
example, four-year-olds can identify similar shapes in some circumstances
(Sophian & Crosby, 1998). An Australian study showed that most entering
preschoolers understood the concept of “smaller,” “more,” “longest,” and
“shortest,” but substantial proportions (more than one-third of children)
could also answer far more complex items such as identifying “the shape that
makes the side [sic] of the cube” (Thomson et al., 2005).

Angle is a difficult concept for any age student, but preschoolers use angles
intuitively in their play, such as block building (Ginsburg, Inoue, & Seo, 1999).
They can match angles in correspondence tasks (Beilin, 1984; Beilin et al.,
1982) and perform turns if they have simple tasks and orientation cues (Rosser,
Ensing, Glider, & Lane, 1984). Parallel and perpendicular lines are difficult
concepts; however, children as young as three (Abravanel, 1977) and four years
use parallelism in alignment tasks (Mitchelmore, 1992).

In summary, although data have not always been fully described and tasks,
analyses, and reporting procedures have differed widely, the trend is that enter-
ing kindergarteners and preschoolers are acquiring mathematical knowledge
approaching that of first graders of more than a half-century earlier. In the
domain of numbers, present-day preschoolers appear to have slightly lower
averages, or an acquisition of smaller numbers (e.g., in counting tasks) than
kindergarteners, but they still approach those of first graders of 50 years earlier.
In geometry, there is wide variance across studies on fewer tasks, but those
limited data show entering preschoolers at the same level as previous studies
of kindergarteners and first graders. Preschoolers also have some knowledge of
congruence, transformations, turns, and angles.

Individual and Group Differences: The Equity Issue

Only a few of these studies measured effects of culture and socio-economic
status (SES). As an example, Brownell (1941) reported that children from city
areas generally outperformed those from rural areas by a small but consistent
margin (e.g., 57 vs. 47 percent verbally counted to 20) and there are reports
concluding that low-income children do not achieve as well as higher-income
children (Ginsburg & Russell, 1981). Recent research confirms that culture and
SES can be significant mediating factors. For example, some mathematical
knowledge is more developed in East Asian children than in American children
(Geary et al., 1993; Ginsburg, Choi, Lopez, Netley, & Chi, 1997; K. F. Miller,
Smith, Zhu, & Zhang, 1995; Starkey et al., 1999) and some mathematical
knowledge is more developed in children from middle-income, compared to
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lower-income, families (Griffin & Case, 1997; Jordan, Huttenlocher, & Levine,
1992; Kilpatrick et al., 2001; Saxe et al., 1987; Starkey & Klein, 1992).

Lower-income children show more varied math performance (Wright,
1991). This is an issue of major importance for early childhood educators.
Some children have acquired number knowledge before the age of four that other
children will not acquire before the age of seven. As an example, Peter was at the
higher level of counting (beyond 120, can give the number word before or after
any other). He could read three-digit numbers and count to solve a wide var-
iety of addition and subtraction problems. In contrast, asked for the number
after “six,” Tom said “horse.” He could not count beyond two. Both were
beginning kindergarten (Wright, 1991).

We will return to equity issues repeatedly, but for now will briefly discuss two
recent surveys of preschoolers’ competencies. In an Australian study, there was
a definite trend for students from lower SES backgrounds to perform at a lower
level, and this was more apparent for the difficult items (Thomson et al., 2005;
see also West, Denton, & Reaney, 2001). For example, for the task of counting
eight objects, percentages were 52, 65, and 73 for low, middle, and upper SES
children, respectively. For telling what number is “one less” than eight, the
percentages were 15, 22, and 33.

In Study 1 of the second project (Sarama & Clements, 2008), only entering
preschoolers from low-resource communities in New York and Texas were
interviewed. About 68 percent could count verbally to five, 44 percent to 10
(Sarama & Clements, 2008). From 10 to 13 percent could start counting at four
and continue to 10. Between 50 and 66 percent of the children could maintain
correspondence and enumerate accurately to five. From 37 to 45 percent could
count small groups of objects (two to seven). A somewhat lower proportion of
children, 14 to 34 percent, could count eight objects in a scrambled arrange-
ment or produce a collection of five objects. Only 5 to 15 percent could pro-
duce a group with the same number of objects as a given group of six. From
6 to 22 percent could identify object counting errors. Less than 3 percent could
count 15 objects in a scrambled arrangement and less than 5 percent
could count 30 objects in an array. In the realm of counting-based adding and
subtracting, 2 to 16 percent of the children could perform various nonverbal
addition and subtraction problems and 2 to 12 percent could solve verbal
problems with sums of five or less. Similarly, children had limited competence
recognizing the number in collections, with 0 to 14 percent successful with
four and only a couple with higher numbers. Finally, from 2 to 10 percent
recognized the numerals 1 to 5. Between 75 and 86 percent of the children
could identify prototypical examples of squares, triangles, and rectangles.
Fewer (39 to 74 percent) could identify palpable nonexemplars or categorize
nonprototypical members and nonpalpable distractors (26 to 59 percent).
These preschoolers had some competence in comparing shapes for congruence
at a basic level (from 16 percent for difficult comparisons to 88 percent for
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congruent shapes that resemble real-world objects, with a mean above 50
percent). They are just beginning to learn to compose and decompose
geometry shapes, with 16 to 34 percent operating at the first two levels and
fewer operating at the succeeding two levels.

Study 2 compared lower- and higher-SES children. Children from pre-
schools serving middle SES populations outperformed those serving low
SES populations on the total number score and most individual subtests. The
particular subtests that showed significant differences were, with few
exceptions, those that measure more sophisticated mathematical concepts and
skills. In number, there were no significant differences for simple verbal count-
ing or recognition of small numbers (Clements & Sarama, 2004a; Sarama &
Clements, 2008). There were significant differences on object counting and
more sophisticated counting strategies, comparing numbers and sequencing,
number composition, arithmetic, and matching numerals to dot cards. In
geometry, there were no significant differences on the simple tasks involving
shape and comparison of shapes. (The turns subtest was also relatively simple,
but because it included only a single task, results should be interpreted with
caution.) There were significant differences on representing shapes, composing
shapes, and patterning. Measurement was an exception in that sophisticated
concepts and skills were involved but no significant difference between the
groups was found; development in this domain may be more dependent on
school-based teaching.

Individual Differences: Psychometric Studies

Psychometric researchers are interested in individual differences on assess-
ments and on figuring out whether people possess different types of cognitive
abilities. As with studies of young children’s competencies on school entry,
psychometric research has a history stretching back more than 100 years.
Using factor analysis, which helps groups ability tests into those that are related
and probably share certain cognitive abilities, researchers have consistently
found several areas of mathematical competence, such as numerical facility
and mathematical reasoning (see Geary, 2006, for a review). The numerical
facility is often composed of arithmetical computation and number relation-
ships. The reasoning factor requires the ability to find, apply, and evaluate
quantitative relationships. One study reported a numerical factor for kinder-
garten children that included counting, simple arithmetic, working memory
for number names, and general quantitative knowledge (Osborne & Lindsey,
1967). Reasoning is related to these numerical abilities in younger students
and eventually, with schooling, emerges as a more distinct ability (Geary,
2006).
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what educators know about young children’s mathematical
knowledge

A recurrent theme in these research studies is that young children’s competencies
were a surprise to most preschool educators (Heuvel-Panhuizen, 1996; Thomson
et al., 2005). Why do we keep underestimating? Past research such as Piaget’s
tended to emphasize broad cognitive foundations, and focused overmuch on
conservation as a prerequisite to meaningful work. Also, throughout primary
school, curricula and teachers continue to teach children concepts and skills
they already know. Moreover, studies show that teachers recognize when
tasks are too difficult, but tend to completely overlook tasks that provide no
challenge to children—that do not demand enough (Heuvel-Panhuizen, 1996).
Most children, especially those who have some number knowledge, learn little
or nothing in kindergarten (Wright, 1991). All too often, children “busy
at work” is interpreted as children working at an adequate level. Thus, it is
essential that all educators learn more about children’s learning (Thomson
et al., 2005).

In summary, educators need to know where their children start mathe-
matically and where they can go. This is one of the most important reasons we
put learning trajectories front and center. Let us turn to this critical idea.

Learning Trajectories: Foundation for Effective, Research-based Education

Research suggests that foundational mathematical knowledge begins during
infancy and undergoes extensive development over the first five years of life. It
is just as natural for young children to think pre-mathematically and then
mathematically as it is for them to use language, because “humans are born
with a fundamental sense of quantity” (Geary, 1994, p. 1), as well as spatial
sense, and a propensity to search for patterns.

Young children have the interests and ability to engage in significant
mathematical thinking and learning. Their abilities extend beyond what is
introduced in most programs (Aubrey, 1997; Clements, 1984b; Geary, 1994;
Griffin & Case, 1997; Klein & Starkey, 2004). There are vast opportunities
for early childhood educators to support this thinking, but also significant chal-
lenges. There are so many topics and so many different ways children think and
act concerning those topics, that determining the content, structure, and peda-
gogical approach to early mathematics is a daunting task.

Big Ideas of Mathematics

We believe the research supports two related approaches. First, establishing a
clear picture of the big ideas of mathematics for young children (Bowman et
al., 2001; Clements, 2004; Fuson, 2004; Griffin et al., 1995; Tibbals, 2000; Weiss,
2002). Second, laying down paths for learning that help children develop
those ideas. By the “big ideas of mathematics,” we refer to overarching clusters
and concepts and skills that are mathematically central and coherent, con-
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sistent with children’s thinking, and generative of future learning (Clements &
Conference Working Group, 2004; NCTM, 2006). This organization reflects
the idea that children’s early competencies are organized around several large
conceptual domains.

An Introduction to Learning Trajectories

We have seen that even the youngest children possess powerful beginnings of
mathematical ideas, and they use and develop these ideas to make sense of their
everyday activities. However, their ideas and their interpretations of situations
are particularly different from those of adults. Early childhood teachers must
be particularly careful not to assume that children “see” situations, problems,
or solutions as adults do. Therefore, teachers should interpret what the child is
doing and thinking and attempt to see the situation from the child’s point of
view. Based on their interpretations, teachers conjecture what the child might
be able to learn or abstract from potential educational experiences. Similarly,
when they interact with the child, teachers also consider their own actions from
the child’s point of view. We believe that learning trajectories are the most
powerful tool teachers can use to do this well.

In developing competencies with “big ideas,” children often pass through a
sequence of levels of thinking. These developmental progressions can underlie
hypothetical learning trajectories, a pedagogical construct whose usefulness is
supported by research (Bredekamp, 2004; Clements & Sarama, 2004b; Simon,
1995). Learning trajectories have three parts: a goal (that is, an aspect of a
mathematical domain children should learn), a developmental progression, or
learning path through which children move through levels of thinking, and
instruction that helps them move along that path. Formally, learning trajector-
ies are descriptions of children’s thinking as they learn to achieve specific goals
in a mathematical domain, and a related, conjectured route through a set of
instructional tasks designed to engender those mental processes or actions
hypothesized to move children through a developmental progression of levels
of thinking (Clements & Sarama, 2004c).

Learning trajectories are useful pedagogical, as well as theoretical, con-
structs (Bredekamp, 2004; Clements & Sarama, 2004b; Simon, 1995; Smith,
Wiser, Anderson, & Krajcik, 2006). Knowledge of developmental pro-
gressions—levels of understanding and skill, each more sophisticated than
the last—is essential for high-quality teaching based on understanding both
mathematics and children’s thinking and learning. Early childhood teachers’
knowledge of young children’s mathematical development is related to
their students’ achievement (Carpenter, Fennema, Peterson, & Carey, 1988;
Peterson, Carpenter, & Fennema, 1989). In another study, the few teachers
that actually led in-depth discussions in reform mathematics classrooms saw
themselves not as moving through a curriculum, but as helping students
move through levels of understanding (Fuson, Carroll, & Drueck, 2000).
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Further, researchers suggest that professional development focused on
developmental progressions increases not only teachers’ professional know-
ledge but also their students’ motivation and achievement (B. A. Clarke, 2004;
D. M. Clarke et al., 2001; D. M. Clarke et al., 2002; Fennema et al., 1996; Kühne,
van den Heuvel-Panhulzen, & Ensor, 2005; G. Thomas & Ward, 2001;
Wright, Martland, Stafford, & Stanger, 2002). Thus, learning trajectories
can facilitate developmentally appropriate teaching and learning for all chil-
dren (cf. M. Brown, Blondel, Simon, & Black, 1995). For these reasons, this
review attempts to explicate the developmental progressions in each math-
ematical domain.

Just as important are the correlated instructional tasks. A description of
children’s development is essential, but is, alone, insufficient as it tells what
types of thinking to look for and to facilitate, but not how to facilitate chil-
dren’s development of that “next level.” The entire learning trajectory explains
the levels of thinking, the mental ideas and actions that must be built, the pro-
cesses that will engender those ideas and actions (e.g., promote learning) and
specific instructional tasks and teaching strategies based on those processes.
Tasks are often designed to present a problem that is just beyond the children’s
present level of operating, so they need to actively engage in reformulating
the problem or their solution strategies, often with peers and teacher guidance.
In reflecting on their activity, they see whether they have solved the original
problem, or need to engage in more thinking. This cycle may continue until a
new level of thinking is built. Exemplary series of lessons in Japan follow class
based learning paths that are consistent with the notion of learning trajectories
as described here (Murata & Fuson, 2006). Finally, a focus on both “big ideas”
and the “conceptual storylines” of curricula in the form of hypothetical
learning trajectories is supported by research on systemic reform initiatives
(Heck, Weiss, Boyd, & Howard, 2002).

The learning trajectories we describe were developed as part of the Building
Blocks project. Funded by the National Science Foundation (NSF)3 to develop
PreK to grade 2, software-enhanced, mathematics curricula, Building Blocks
was a curriculum development and research project. Based on theory and
research on early childhood learning and teaching (Bowman et al., 2001;
Clements, 2001), we determined that Building Blocks’ basic approach would be
finding the mathematics in, and developing mathematics from, children’s
activity. To do so, all aspects of the Building Blocks project are based on learning
trajectories. Most of the examples of learning trajectories emerged from our
work developing, field testing, and evaluating curricula from that project
(see Chapter 15 in the companion book for a description of the 10-phase
Curriculum Research Framework model we created, and used, for Building
Blocks’ development).
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Theoretical Frameworks

What theories are most useful in helping us understand and facilitate young
children’s mathematical thinking and learning? We will first briefly describe
existing frameworks, then describe our own, a synthesis of the others we find
particularly consistent with research evidence, and particularly useful for
teaching.

Existing Frameworks

Three main theoretical frameworks for understanding young children’s
mathematical thinking are empiricism, (neo)nativism, and interactionalism.
The introductory quote by Thorndike illustrates an empiricist framework.
In traditional empiricism, the child is seen as a “blank slate,” truth lies in corre-
spondences between children’s knowledge and reality, and knowledge is
received by the learner via social transmission or abstracted from repeated
experience with a separate ontological reality. An extension, traditional infor-
mation processing theory, uses the computer as a metaphor for the mind and
moves slightly toward an interactionalist perspective.

In contrast, nativist theories, in the tradition of philosophical rationalism
(e.g., Plato and Kant), emphasize the inborn, or early developing, capabilities
of the child. For example, quantitative or spatial cognitive structures present
in infancy support the development of later mathematics, and thus innate
structures are fundamental to mathematical development. Many theorists
build on Gelman and Gallistel’s “privileged domains hypothesis” (Rittle-
Johnson & Siegler, 1998). In this view, a small number of innate and/or early-
developing mathematical competencies are privileged and easy to learn.
These are hypothesized to have evolutionary significance and be acquired or
displayed by children in diverse cultures at approximately the same age. This
is in contrast to other perspectives that would explain relative competence as
resulting from frequency of experience. As we shall see in more detail, neither
the empiricist nor nativist position fully explains children’s learning and
development. An intermediate position appears warranted, such as interac-
tionalist theories that recognize the interacting roles of the nature and nurture
(Newcombe, 2002).

In interactionalist, constructivist theories, children actively and recursively
create knowledge. Structure and content of this knowledge are intertwined
and each structure constitutes the organization and components from which
the child builds the next, more sophisticated, structure. In comparison to
nativism’s initial representational cognition, children’s early structures are
prerepresentational.

Constructivist theories take several forms. In all, children are not passive
receivers of knowledge, but active builders of their own intellects. In some
forms, knowledge is seen as learning about an objective reality. In contrast, in
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others (sometimes called “radical constructivism”), cognition is adaptive and
serves to help children organize their experiential world, rather than uncover
or discover a separate, objective ontology. Such constructivism often uses an
evolutionary view of cognitive development, in which the children generate
cognitive schemes to solve perceived problems and test them to see how
well they fit the experiential world. (A scheme is a cognitive unit with three
components: a structure that recognizes a situation, a process that acts on
that situations, and a result.) “Social constructivism,” building on Vygotsky’s
seminal work, holds that individuals and the society are interconnected in
fundamental ways; there is no isolated cognition.

Hierarchic Interactionalism: Our Theoretical Framework

We believe the research reviewed here supports a synthesis of aspects of previ-
ous theoretical frameworks that we call hierarchic interactionalism. The term
indicates the influence and interaction of global and local (domain specific)
cognitive levels and the interactions of innate competencies, internal resources,
and experience (e.g., cultural tools and teaching). Mathematical ideas are
represented intuitively, then with language, then metacognitively, with the last
indicating that the child possesses an understanding of the topic and can access
and operate on those understandings. The tenets of hierarchic interactionalism
follow; research supporting these tenets will be developed throughout the
book.

1. Developmental progression. Most content knowledge is acquired
along developmental progressions of levels of thinking.4 These pro-
gressions play a special role in children’s cognition and learning
because they are particularly consistent with children’s intuitive
knowledge and patterns of thinking and learning at various levels of
development (at least in a particular culture, but guided in all
cultures by “initial bootstraps”—see below), with each level char-
acterized by specific mental objects (e.g., concepts) and actions
(processes) (e.g., Clements, Wilson, & Sarama, 2004; Steffe & Cobb,
1988). These actions-on-objects are children’s main way of operating
on, knowing, and learning about, the world, including the world of
mathematics.

2. Domain specific progression. These developmental progressions often
are most propitiously characterized within a specific mathematical
domain or topic (see also Dowker, 2005; Karmiloff-Smith, 1992; cf.
Resnick’s “conceptual rationalism,” 1994; Van de Rijt & Van Luit,
1999). Children’s knowledge, including the objects and actions they
have developed in that domain, is the main determinant of the thinking
within each progression, although hierarchic interactions occur at
multiple levels within and between topics, as well as with general
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cognitive processes (e.g., executive, or metacognitive processes,
potentialities for general reasoning and learning-to-learn skills,
and some other domain general developmental processes, see
Chapter 13).

3. Hierarchic development. This key tenet contains two ideas. First,
development is less about the emergence of entirely new processes
and products and more an interactive interplay among specific
existing components of knowledge and processes (both general and
specific, often with the formation of an executive procedure con-
trolling others) (Minsky, 1986; cf. Newcombe & Huttenlocher,
2000). Second, each level builds hierarchically on the concepts and
processes of the previous levels (e.g., Goodson, 1982). In a related
vein, developmental progressions within a domain can repeat them-
selves in new contexts (e.g., Siegler & Booth, 2004). Levels of thinking
are coherent and often characterized by increased sophistication,
complexity, abstraction, power, and generality. However, the learning
process is more often incremental and gradually integrative than
intermittent and tumultuous (i.e., occurring mainly between stable
levels, although new experiences can engender rapid change to a new
level). Various models and types of thinking grow in tandem to a
degree, but a critical mass of ideas from each level must be con-
structed before thinking characteristic of the subsequent level
becomes ascendant in the child’s thinking and behavior (Clements,
Battista, & Sarama, 2001). Successful application leads to the
increasing use of a particular level. However, under conditions of
increased task complexity, stress, or failure this probability level
decreases and an earlier level serves as a fallback position (Hersh-
kowitz & Dreyfus, 1991; Siegler & Alibali, 2005). No level of
thinking is deleted from memory (Davis, 1984). That is, re-
recording a mental representation at a more explicit level—an
essential developmental process (of “Representational Redescrip-
tion”) does not erase the earlier representation (Karmiloff-Smith,
1992). (Indeed, replacing or deleting any successful representations
would eliminate “fall-back” strategies that arguably are essential
when new, untested knowledge is being formed, cf. Minsky, 1986;
Vurpillot, 1976). The schemes that constitute the representation are
instantiated dynamically (i.e., their form is interactively shaped by
the situational context, including the task demands); and they can
be modified at this time (or new schemes can be formed), although
schemes that are basic subschemes of many other schemes become
increasingly resistant to alteration because of the disruptive effect
alteration would have on cognitive functioning. The continued
existence of earlier levels, and the role of intentionality and social
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influences in their instantiation, explains why in some contexts even
adults fall back to earlier levels, for example, failing to conserve in
certain situations.5

4. Cyclic concretization. Developmental progressions often proceed from
sensory-concrete and implicit levels at which perceptual concrete
supports are necessary and reasoning is restricted to limited cases
(such as small numbers) to more explicit, verbally-based (or
enhanced) generalizations and abstractions that are tenuous to
integrated-concrete understandings relying on internalized mental
representations that serve as mental models for operations and
abstractions that are increasingly sophisticated and powerful. Again,
such progressions can cycle within domains and contexts.

5. Co-mutual development of concepts and skills. Concepts constrain
procedures, and concepts and skills develop in constant interaction
(Baroody, Lai, & Mix, 2005; Greeno, Riley, & Gelman, 1984). In
imbalanced cultural or educational environments, one of the two
may take precedence, to an extent that can be harmful. Effective
instruction often places initial priority on conceptual understanding,
including children’s creations of solution procedures (e.g., Carpenter,
Franke, Jacobs, Fennema, & Empson, 1998), the importance of
autonomy (Kamii & Housman, 1999), and mathematical dispositions
and beliefs (“Once students have learned procedures without under-
standing, it can be difficult to get them to engage in activities to help
them understand the reasons underlying the procedure,” Kilpatrick
et al., 2001, p. 122). The constructs of concepts and skills include
symbolic representations, utilization competence (Greeno et al.,
1984), and general cognitive skills.

6. Initial bootstraps. Children have important, but often inchoate,
premathematical and general cognitive competencies and predis-
positions at birth or soon thereafter that support and constrain, but
do not absolutely direct, subsequent development of mathematics
knowledge. Some of these have been called “experience-expectant
processes” (Greenough, Black, & Wallace, 1987), in which universal
experiences lead to an interaction of inborn capabilities and
environmental inputs that guide development in similar ways across
cultures and individuals. They are not built-in representations or
knowledge, but predispositions and pathways to guide the develop-
ment of knowledge (cf. Karmiloff-Smith, 1992). Other general cogni-
tive and metacognitive competencies make children—from birth—
active participants in their learning and development (D. Tyler &
McKenzie, 1990).

7. Different developmental courses. Different developmental courses
are possible within those constraints, depending on individual,
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environmental, and social confluences (Clements et al., 2001; Confrey
& Kazak, 2006). Within any developmental course, at each level of
development, children have a variety of cognitive tools—concepts,
strategies, skills, utilization and situation knowledge—which coexist.
The differences within and across individuals create variation that is
the wellspring of invention and development. At a group level, how-
ever, these variations are not so wide as to vitiate the theoretical or
practical usefulness of the tenet of developmental progressions; for
example, in a class of 30, there may be only a handful of different
solution strategies (Murata & Fuson, 2006), many of which represent
different levels along the developmental progression.

8. Progressive hierarchization. Within and across developmental pro-
gressions, children gradually make connections between various
mathematically relevant concepts and procedures, weaving ever more
robust understandings that are hierarchical, in that they employ
generalizations while maintaining differentiations. These generaliza-
tions and metacognitive abilities eventually connect to form logical-
mathematical structures that virtually compel children toward
decisions in certain domains, such as those on traditional Piagetian
conservation of number tasks, that are resistant to confounding
via misleading perceptual cues. Children provided with high-quality
educational experiences build similar structures across a wide variety
of mathematical domains (again, in contrast to instrumental
knowledge, Skemp, 1976). (Maintaining such hierarchical cognitive
structures makes more demands on the educational environment and
the learner as mathematics becomes more complex, beyond the early
childhood years.)

9. Environment and culture. Environment and culture affect the pace and
direction of the developmental courses. For example, the degree of
experience children have to observe and use number and other math-
ematical notions and to compare these uses will affect the rate and
depth of their learning along the developmental progressions. The
degree to which children learn mathematical words, exposure to
which varies greatly across cultural groups (Hart & Risley, 1995),
affects developmental courses. Words alert children to the class of
related words to be learned and to specific mathematical properties,
laying the foundation for learning mathematical concepts and lan-
guage (cf. Sandhofer & Smith, 1999) by providing a nexus on which to
build their nascent constructs (Vygotsky, 1934/1986). Because
environment, culture, and education affect developmental progres-
sions, there is no single or “ideal” developmental progression, nor
learning trajectory. Universal developmental factors interact with cul-
ture and mathematical content, so the number of paths is not
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unlimited. For example, educational innovations may establish new,
potentially more advantageous, sequences.

10. Consistency of developmental progressions and instruction. Instruction
based on learning consistent with natural developmental pro-
gressions is more effective, efficient, and generative for the child than
learning that does not follow these paths.

11. Learning trajectories. An implication of the tenets to this point is that
a particularly fruitful instructional approach is based on hypo-
thetical learning trajectories (Clements & Sarama, 2004c). Based on
the hypothesized, specific, mental constructions (mental actions-on-
objects) and patterns of thinking that constitute children’s thinking,
curriculum developers design instructional tasks that include
external objects and actions that mirror the hypothesized mathe-
matical activity of children as closely as possible. These tasks are
sequenced, with each corresponding to a level of the developmental
progressions, to complete the hypothesized learning trajectory.
Such tasks will theoretically constitute a particularly efficacious
educational program; however, there is no implication that the task
sequence is the only path for learning and teaching; only that it is
hypothesized to be one fecund route. Tasks present a problem;
people’s actions and strategies to solve the problem are represented
and discussed; reflection on whether the problem is solved or par-
tially solved, leads to new understandings (mental actions and
objects, organized into strategies and structures) and actions (the
“cycle of constructive activity” that helps select viable ideas, Confrey
& Kazak, 2006). Specific learning trajectories are the main bridge that
connects the “grand theory” of hierarchic interactionalism to particular
theories and educational practice (Confrey & Kazak, 2006).

12. Instantiation of hypothetical learning trajectories. Hypothetical learn-
ing trajectories must be interpreted by teachers and are only realized
through the social interaction of teachers and children around
instructional tasks. Societally-determined values and goals are sub-
stantive components of any curriculum (Confrey, 1996; Hiebert,
1999; Shavelson & Towne, 2002; R. W. Tyler, 1949); research cannot
ignore or determine these components (cf. Lester & Wiliam, 2002).
“There is no understanding without reflection, and reflection is an
activity students have to carry out themselves. No one else can do it
for them. Yet a teacher who has some inkling as to where a particular
student is in his or her conceptual development has a better chance
of fostering a further reflective abstraction than one who merely
follows the sequence of a preestablished curriculum” (Glasersfeld,
1995, p. 382).
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The Promise and the Broken Promises

Children have an impressive, often untapped, potential to learn mathematics.
For many this has been a potential largely left unrealized. It is not their develop-
mental limitation, but a limitation of the society and its schools. What has
been said of learning in the sciences applies equally well to mathematics: “What
children are capable of at a particular age is the result of a complex interplay
among maturation, experience, and instruction. What is developmentally
appropriate is not a simple function of age or grade, but rather is largely con-
tingent on prior opportunities to learn” (Duschl, Schweingruber, & Shouse,
2007, p. 2).

Final Words

The research and theory described in this chapter indicated that learning
trajectories can facilitate developmentally appropriate teaching and learning
for all children. That is why we planned Chapters 2 to 12 to build learning
trajectories for each critical topic in early mathematics. Part II introduces the
essential topic of number and arithmetic.
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Part II
Number and Quantitative Thinking

For early childhood, number and operations is arguably the most important
area of mathematics learning. Fortunately, learning of this area also may be
one of the best-developed domains in mathematics research, especially in the
early primary grades (Baroody, 2004; Fuson, 2004; Kilpatrick et al., 2001; Steffe,
2004). Learning of number in preschool, although an emergent area, benefits
from a wealth of psychological and early childhood studies.

In the chapters in Part II, we discuss children’s numerical concepts and
operations separately, although they and their components are highly inter-
related. We do not limit “operations” to standard arithmetic operations of
adding, subtracting, multiplying, and dividing, but include counting, com-
paring, unitizing, grouping, partitioning, and composing. The importance of
these ideas is highlighted by their close correspondence to the components of
number sense, including composing and decomposing numbers, recognizing
the relative magnitude of numbers, dealing with the absolute magnitude of
numbers, using benchmarks, linking representations, understanding the effects
of arithmetic operations, inventing strategies, estimating, and possessing a dis-
position toward making sense of numbers (Sowder, 1992b). The competencies
rest on early quantitative reasoning that begins to develop as early as the first
two years of life. Preceding recent cognitive science by half a century, Vygotsky
said, “The first stage is formed by the natural arithmetical endowment of the
child, i.e., his operation of quantities before he knows how to count. We include
here the immediate conception of quantity, the comparison of greater and
smaller groups, the recognition of some quantitative group, the distribution
into single objects where it is necessary to divide, etc.” (Vygotsky, 1929/1994,
p. 67).





2
Quantity, Number, and Subitizing

In 1917, Warren McCulloch’s academic advisor asked him to describe his
research interests. He replied, “What is number, that a man [sic] may know it,
and a man that he may know number?” His advisor responded, “Friend, thee
will be busy as long as thee lives” (McCulloch, 1963, p. 1).

We begin this chapter with a brief historical review of the early development
of quantitative knowledge. For example, is it based in logic, in counting, or in
some other process? As an example of the last, early sensitivity to number, and
the ability the recognize or name a number without counting, has been called
subitizing—the direct and rapid perceptual apprehension of the numerosity of
a group, from the Latin “to arrive suddenly” (named by Kaufman, Lord, Reese,
& Volkmann, 1949, who referred to verbal naming of the numerosity). We
review research on subitizing in this chapter, and turn to counting in the next.

Introduction to the Early Development of Quantity

Over more than 100 years, research on early number knowledge has passed
through four broad phases (cf. Clements, 1984b).1 After a prescient analysis of
early number by Dewey (1898), researchers studied subitizing, counting, and
the relationship between subitizing and counting (e.g., Douglass, 1925;
Freeman, 1912). (Mathematician Bertrand Russell, 1919, asserted that all
traditional pure mathematics could be derived from the natural numbers.)

In the second phase, the wide influence of Piagetian theory redirected
theoretical and empirical study, as it explained the development of number
concepts based on underlying logical operations (Clements, 1984a, 1984c;
Wright, Stanger, Stafford, & Martland, 2006).

“Our hypothesis is that the construction of number goes hand-in-hand
with the development of logic, and that a pre-numerical period corre-
sponds with the pre-logical level. Our results do, in fact, show that
number is organized, stage after stage, in close connection with the
gradual elaboration of systems of inclusions (hierarchy of logical classes)
and systems of asymmetrical relations (qualitative seriations), the
sequence of numbers thus resulting from an operational synthesis of
classification and seriation. In our view, logical and arithmetical
operations therefore constitute a single system that is psychologically
natural, the second resulting from generalization and fusion of the first,
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under the two complementary headings of inclusion of classes and
seriation of relations, quality being disregarded.”

(Piaget & Szeminska, 1952, p. viii).

It may seem at first that this makes little sense—what does number have to
do with a “hierarchy of logical classes”? An argument can be made that number
and counting depend on such logical operations. For example, to understand
counting, children must understand that each number includes those that came
before. Figure 2.1 illustrates this notion.

Similarly, sequencing is an important aspect of meaningful counting. On
the procedural side, children have to both properly produce number words in
sequence and sequence the objects they count so that they count each object
exactly once (no easy task for young children faced with a unorganized group).
Conceptually, children have to understand this and that each counting number
is quantitatively one more than the one before, illustrated in Figure 2.2.

The Piagetians viewed counting as ineffectual, with “no connection between
the acquired ability to count and the actual operations of which the child is

Figure 2.1 The hierarchical classification of numbers—each cardinal number includes
those that came before.

Figure 2.2 The seriation of numbers: Each comes after, and is one more than, the
previous number.
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capable” (p. 61), with the child capable of meaningful counting only upon
reaching the level of reversible operation (p. 184). In support of this notion,
they give examples of children who can count, but still fail the number con-
servation task. For example, although at a certain age they can make a set equal
in number to an interviewer’s set using matching, such as in Figure 2.3, when
the interviewer spreads her or his objects out as in Figure 2.4, the child may
claim that the interviewer now has more. Directly to the point, asking children
to count the two sets, according to Piaget, did not help them determine the
correct answer.

Based on such reasons, many studies in the Piagetian tradition tended to
disregard subitizing as well as counting, which had been the major focus of
earlier studies of number concepts. From this view, children do not acquire a
notion of quantity and then conserve it; they discover true quantification only
when they become capable of conservation. This develops in three stages: stage
1, gross quantity, in which children make global perceptual judgments without
one-to-one correspondence; stage 2, intensive quantity, in which they can
make one-to-one correspondences perceptually but cannot conserve (such as
the example in Figures 2.3 and 2.4); and stage 3, in which they construct the
notion of unit and numerical correspondence and they understand that length
and density compensate each other and that changes are reversible. Spatial
qualities no longer determine number. The elements become equivalent and
interchangeable units (i.e., equivalent members of a class), differing only by
their relative order (i.e., seriation). Each successive element creates a category
containing all previous classes (i.e., hierarchical inclusion).

The result was a broad belief, in research and educational practice, that chil-
dren could not reason logically about quantities until the early elementary
school years. This view appeared to be supported by hundreds of investigations
of the validity of the Piagetian stages. Studies generally supported the existence

Figure 2.3 Children may use 1-to-1 correspondence to build a row with the same
number as another row.

Figure 2.4 If one row is spread out, children who do not conserve believe that row has
“more.” Children who conserve number understand the rows still have the same number.
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of the stages (Clements, 1984a). For example, children scoring lower on tests of
conservation scored significantly lower on tests of problem solving (Harper &
Steffe, 1968; Steffe, 1966).

The third phase began when new perspectives and research methodologies
challenged critical aspects of the Piagetian view. Researchers questioned
whether the Piagetian tasks measured number knowledge or other competen-
cies, such as attending to relevant attributes (R. Gelman, 1969). Others doubted
the Piaget position that without logical operations there is no possibility of
meaningful quantitative reasoning, and, therefore, it makes no sense to attempt
to develop children’s number abilities, such as counting. Supporting the
new perspective, seminal research showed numerical and arithmetic com-
petencies in young children who were not operational in Piagetian assessments
(R. Gelman, 1969; Harper & Steffe, 1968). For example, in Gelman and
Gallistel’s (1978) “magic” experiments, two plates where shown, one with,
for example, two toy mice, called “the loser,” and the other with three mice,
called “the winner.” After a series of identification tasks, the experimenter sur-
reptitiously altered the winner, changing the spatial arrangement in some
experiments (e.g., putting the three mice closer together or in a triangular
arrangement rather than a line), altering the identity of the items or size of the
collection in others (e.g., three smaller mice, or three toy dogs). The result we
emphasize here is that children as young as three, and sometimes two and a
half, years seem to know that transformations involving displacements do
not change the numerical value of a display—an early form of conservation
of number (R. Gelman & Gallistel, 1978). That is, they still called the plate
with three “the winner.” Children preferred to make such decisions based on
equivalence or nonequivalence of verbal numbers, rather than on the one-to-
one object correspondences emphasized in Piagetian studies. Such studies
formed the basis for a nativist view of early number development.

Other researchers built number skills-integration models. Taking an
information-processing approach, these empiricist-oriented models used task
and scalogram analyses to describe sequences of learning numerals, counting
and numeration of small before larger collections, and independence of
counting and one-to-one correspondence (M. Wang, Resnick, & Boozer, 1971).
Other models postulated hierarchic skills-integration sequences (Klahr &
Wallace, 1976; Schaeffer, Eggleston, & Scott, 1974). Numerous studies
supported the contention of a multidimensional concept of number in young
children (Clements, 1984a).

The fourth and present phase is an extension of the third phase. Debates
continue about the meaning of early (and lack of) competence (Baroody et al.,
2006; Cordes & Gelman, 2005; Mix, Huttenlocher, & Levine, 2002; T. J. Simon,
1997; Spelke, 2003; Uller, Carey, Huntley-Fenner, & Klatt, 1999). Some
researchers have attempted to synthesize components of the various theoretical
perspectives or create intermediate positions. Nativist, empiricist, and
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interactionalist accounts have been evaluated both philosophically and
empirically. Number knowledge similarly has been subjected to analysis, result-
ing in more sophisticated conceptualizations. For example, it appears that
number and quantitative knowledge develops substantially earlier than
Piagetian logical operations, but nonetheless appears to be built upon
inchoate foundations, such as unitizing or creating an image of a collection
of objects (classification) and tracking and ordering (seriation).

Issues concerning nativist, empiricist, and interactionalist accounts arise
in this and most all remaining chapters. In the remainder of this section, we
illustrate these issues by focusing on children’s initial competence with
number. For example, using new techniques, some researchers claimed that
infants possessed understanding of cardinality. Many of these researchers built
on Gelman and Gallistel’s nativist position, including the privileged domains
(see Chapter 1, p. 19) of whole-number counting and simple arithmetic,
which necessitated an underlying foundation of both cardinality and ordinal-
ity. The hypothesis predicts that conceptual understanding precedes skilled
execution of the relevant procedures in these domains (R. Gelman & Gallistel,
1978). In contrast, the empiricist skills-integration approach would predict
that exposure frequency determines development, and thus procedural skill
would emerge before conceptual development. The philosophical assumption
appears to be that number is “out there.”

Providing evidence for their position, nativists reported that babies in the
first six months of life, and even in the first day of life, can discriminate one
object from two, and two objects from three (Antell & Keating, 1983; Starkey,
Spelke, & Gelman, 1990). This was determined via a habituation paradigm in
which infants “lose interest” in a series of displays that differ in some ways, but
have the same number of objects. For example, say that infants are shown a
sequence of pictures that contain a small set of objects, such as two circular
regions. The collections differ in attributes such as size, density, brightness,
or color, but there are always two objects, such as those in the top row of
Figure 2.5. The differences between successive pictures initially keep infants’
attention—they continue to look at each picture in turn. Eventually, however,
they habituate to the displays; for example, they begin to look at the screen less,
and their eyes wander and their breathing becomes more relaxed. Then they
are shown a collection of three circular regions that are similar in attributes to
those they had previously seen, such as that in the bottom of Figure 2.5, and
their eyes focus intently on this new collection and their breathing is more
rapid. Such renewed interest when shown a display with a different number of
objects provides evidence that they are sensitive to number (Wynn, Bloom, &
Chiang, 2002). Thus, infants can discriminate among and match small con-
figurations (one to three) of objects. The experiments also indicate that
children’s discrimination is limited to such small numbers. Children do not
discriminate four objects from five or six until the age of three or four years
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(Starkey & Cooper, 1980). Some researchers have therefore suggested that
infants use an automatic perceptual process that people, including adults, can
apply only to small collections up to around four objects (Chi & Klahr, 1975).
(We return to the issue of subitizing as a construct in the next main section.)
Children can also construct quantitative equivalence relations by six- to eight-
months of age through exchange operations (substituting or commuting
objects) (Langer, Rivera, Schlesinger, & Wakeley, 2003).

Some initial competence is generally accepted. What this competence
means, however, remains in dispute. Some studies suggest that infants in
“number” experiments may be responding to overall contour length, area,
mass, or density, rather than discrete number (Feigenson, Carey, & Spelke,
2002; Tan & Bryant, 2000). In one study, infants dishabituated to changes in
contour length when the number of objects was held constant, but they did not
dishabituate to changes in number when contour length was held constant
(Clearfield & Mix, 1999). To illustrate, the researchers showed six- to eight-
month-old infants two squares with a total contour length of 16 in different
spatial arrangements (i.e., the perimeter of each square was 8 cm in the original
display, scaled in the top row of Fig. 2.6a). Once the child habituated on these,
the researchers showed them one of two types of pictures. The first group con-
tained the familiar contour length, but a different number. That is, the two
pictures in Figure 2.6b have three squares, but the total contour length was 16.
The second group contained the familiar number, but a different contour
length. That is, the two pictures in Figure 2.6c have three squares, but the total
contour length was 24—exactly what the contour would have been if a display
had three squares like those of the top, habituation row (3 times 8). The results
were that infants looked more often at the change in contour length, 2.6c, than
they did to the change in number, Figure 2.6b. In another experiment, the
researcher similarly changed area and number. Again, the infants noticed
change in area, but not number.

Figure 2.5 Collections of 2, and 3, that also vary in other attributes.
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Another theory is that infants create mental “object files” that store data on
each object’s properties. They can use these object files to respond differently to
various situations. Thus, some situations can be addressed by using the objects’
individuation or separateness as objects, and others can be addressed by using
the analog properties of these objects, such as contour length (Feigenson,
Carey, & Spelke, 2002). For example, children might use parallel-processed
individuation for very small collections, but continuous extent used when
storage for individuation is exceeded. Note that, from our perspective, even if
such individuation is accepted as an early basis for number, it might not in
itself constitute knowledge of number (cf. Gordon, 2004).

The strongest claim that infants are processing number, rather than per-
ceptual information, is based on two types of evidence. First is the claim that
infants discriminate not just collections of objects, but also temporal sequences
such as sounds, or events such as puppet jumps, as early as six months of age
(Wynn, 1998). Second is the claim that infants show cross-modal number
abilities, that is, they can match visual representations of certain numbers and
auditory sequences consisting of the same number of sounds (Starkey et al.,
1990). For example, if six-month old infants are shown pictures with two dots,
one dot and three dots, and then hear three drumbeats, they look more often at
the picture with three dots.

Such evidence has led to strong nativist claims. More recent evidence, how-
ever, has called into question these results and claims. Even if children do some-
times make these connections, general, nonnumerical processes of comparing

Figure 2.6 Collections that vary in either number or counter length and area.
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inputs from different modalities (e.g., from sounds and their locations) may be
used (T. J. Simon, 1997). More important, one team found opposing results—
either no effect of auditory information and merely a tendency to prefer the
larger contour (consistent with several previous studies), or longer looking
at noncorresponding displays (Moore, Benenson, Reznick, Peterson, & Kagan,
1987). (R. Gelman, 1990a, points out they still appear to be responding to
number, however, there is no theoretical reason to suspect a group would be
predisposed to same vs. difference.) In another study, children as old as three
years performed at chance on an auditory-visual equivalence test (Mix,
Huttenlocher, & Levine, 1996). There is no theoretical reason to justify why
children older than three years old would have difficulty with tasks with
which neonates ostensibly show competence. Consistent with these findings,
more recent data found no evidence that infants notice quantitative equiva-
lence between auditory sequences and visual displays (Mix, Levine, & Hut-
tenlocher, 1997). Thus, there is little reason to believe that infants have the
ability to deal with cross-modal quantitative correspondence or even discrete
quantity (i.e., number). Finally, some cultures without language for number
words above two show low performance on most quantitative tasks (Gordon,
2004).

This is not to say that strict empiricist positions are supported either. Early
quantitative competencies have been demonstrated. However, many, if not all,
of the earliest competencies may be explicable through other frameworks than
those that assume innate number knowledge. Further, researchers have not
yet studied how infants may use a variety of processes and how they may be
weighted or combined, as well as how they may be evoked differently in various
situations (Baroody et al., 2005). We also need to learn more about what role
such processes, even if they are numerical, play in children’s early cognition or
development of later numerical activity (Nunes & Bryant, 1996).

A good part of the problem is, of course, that, infant studies are particularly
difficult to perform and interpret. For example, the frequently employed
habituation methodology, while useful, was developed to study perceptual,
not conceptual issues, leaving open the question of what results mean (Haith &
Benson, 1998). Nevertheless, research suggests that children discriminate col-
lections on some quantitative base(s) from birth. Furthermore, most accounts
suggest that these limited capabilities, with as yet undetermined contributions
of maturation and experience, form a foundation for later connection to
culturally based cognitive tools such as number words and the number word
sequence, so as to develop exact and extended concepts and skills in number.
For example, neuroscience investigations using functional magnetic resonance
imaging (fMRI, “brain scans”) show that the intraparietal sulcus (IPS)
responds selectively to number changes (Piazza, Izard, Pinel, Le Bihan, &
Dehaene, 2004). Such findings suggest that humans, like other animal species,
encode approximate number. The IPS coding for number in humans is
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compatible with that observed in macaque monkeys, suggesting an evolution-
ary basis for human elementary arithmetic (Piazza et al., 2004). Other fMRI
studies show that adults showed a greater response in their IPS to visual arrays
that change in the number of elements than to stimuli that change in shape
(Cantlon, Brannon, Carter, & Pelphrey, 2006). Further, four-year-olds show the
same pattern of responses. Deaf people who knew Japanese but not American
Sign Language, showed no activation in regions associated with numerical
processing when taught ASL for numerals (but only the signs, not the mean-
ings). However, when told what the signs represented, they showed just such
activation—even when they could not accurately code those signs (Masataka,
Ohnishi, Imabayashi, Hirakata, & Matsuda, 2006). Thus, there is a special
neural component of early numerical cognition present in the early years that
may be the foundation for later symbolic numerical development. A
language-independent ability to judge numerical values nonverbally appears
to be an important evolutionary precursor to adult symbolic numerical
abilities.

Early Work on Subitizing

In the first half of the twentieth century, researchers believed counting did not
imply a true understanding of number, but subitizing did (e.g., Douglass,
1925). Many saw the role of subitizing as a developmental prerequisite
to counting. Freeman (1912) suggested that whereas measurement focused
on the whole and counting focused on the unit item, only subitizing focused on
both the whole and the unit—thus, subitizing underlies number ideas. Carper
(1942) agreed subitizing was more accurate than counting and more effective
in abstract situations. (Recall that the term “subitizing” was not created until
later, Kaufman et al., 1949.)

In the second half of the century, educators developed several models of
subitizing and counting. Some models were based on the notion that subitizing
was a more “basic” skill than counting (Klahr & Wallace, 1976; Schaeffer et al.,
1974). One reason was that children can subitize directly through interactions
with the environment, without social interactions. (Consistent with the
inventor of the term, Kaufman et al., 1949, we prefer to restrict “subitizing”
to the verbal naming of the numerosity. Not all researchers include this
requirement.) Supporting this position, Fitzhugh (1978) found that some
children could subitize sets of one or two, but were not able to count them.
None of these very young children, however, were able to count any sets that
they could not subitize. She concluded that subitizing is a necessary precursor
to counting. Research with infants similarly suggested that young children
possess and spontaneously use subitizing to represent the number contained in
small sets, and that subitizing emerges before counting (A. Klein & Starkey,
1988). A longitudinal study showed early recognition of number before several
counting competencies developed (Wagner & Walters, 1982).
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As logical as this position seems, counterarguments exist. In 1924,
Beckmann found that young children used counting rather than subitizing
(cited in Solter, 1976). Others agreed that children develop subitizing later, as a
shortcut to counting (Beckwith & Restle, 1966; Brownell, 1928; Silverman &
Rose, 1980). In this view, subitizing is a form of rapid counting (R. Gelman
& Gallistel, 1978).

Evidence for subitizing as a separate process from “fast counting” includes
reaction time data showing that recognition of one to three objects is faster
and more accurate than larger numerosities. Reaction times increase with the
number of items in a set to be quantified; it takes adults about 250 to 350 msec
longer to quantify a set of seven than six, or six than five. In contrast, the
increase is slight when numbers are small: about 40 to 100 msec longer to
respond to three than two, or two than one, and this may be response choice
time rather than time to process the stimuli. At least some data indicate that
adults can process three within the same exposure time as two or one (Trick &
Pylyshyn, 1994).

Nature of the Subitizing Process and the Early Development of Quantity

Researchers still debate the basis for subitizing ability. Some claim that there are
two distinct types of enumeration: numerical subitizing and nonnumerical (or
figural) subitizing. In addition, some models assume that subitizing is possible
only for sets that are simultaneously displayed, whereas others allow for
sequential enumeration (Canfield & Smith, 1996).

Recognition of spatial patterns, such as triangular arrays, and attentional
mechanisms are the main explanations for those who assume an underlying
nonnumerical process (Chi & Klahr, 1975; Glasersfeld, 1982; Klahr & Wallace,
1976; Mandler & Shebo, 1982). For Mandler and Shebo, these abstract geo-
metric patterns are mapped to specific numerosities using processes like those
for recognizing colors.

For Glasersfeld, the patterns are empirical abstractions, or figural patterns
generated from sensory-motor experience. These occur when the child attends
not to specific sensory content (e.g., three yellow plates), but to the operations
that combine perceptual elements into stable patterns. Patterns are constituted
by motion, either physical or attentional, forming scan-paths. It is motion,
not the specific sensory material used, that determines the patterns’ character.
For example, scanning from one yellow plate to the next and then to the last
is recognized as a similar pattern of moving one’s eyes and focusing one’s
eyes and one’s attention as scanning other groups of three objects. See the
“scan-paths” column in Figure 2.7 for an illustration of this hypothesized way
to subitize. All patterns are taken as figural wholes, not composites of units.
Numerical subitizing requires a subsequent reflective abstraction, which occurs
when the experiencing subject abstracts the mental from the sensory-motor
contexts. Such empirical abstractions can also be temporal and rhythmic
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(Glasersfeld, 1982). They become numerical after reflective abstraction that
focuses attention on their iterative structure raises them to “pure” abstraction
characteristic of the conception of number. In another model, objects are
first individuated by a limited, but parallel, preattentive mechanism associated
with object tracking and then markers are enumerated in a serial process
(Trick & Pylyshyn, 1994). There is a neural mechanism that distinguishes
single, dual, or triple incidences of a given evident, based on inherent temporal
parameters.

Other models consider subitizing to be a numerical process. In the Meck
and Church model (1983), subitizing is a numerical process enabled by the
availability of the functional equivalent of a number line (see Chapter 4 for a
mathematical discussion of number lines and a warning that mental constructs
are not the same as “number line models”) in the brain that operates on both
simultaneous and sequential items (cf. Huntley-Fenner, 2001a). There is a
pacemaker that emits equivalent pulses at a constant rate. When a unitized item
(e.g., a yellow plate taken as “one”) is encountered, a pulse is allowed to pass
through a gate, entering an accumulator—think of a squirt of water entering a
tall glass. The gradations on the accumulator estimate the number in the collec-
tion of units, similar to height indicating the numerosity of squirts in the glass.
This is illustrated in the “accumulator” column of Figure 2.7.

An alternative model postulates an evolutionarily based, abstract module.
A module is a distinct mental component that is dedicated to a particular pro-
cess or task and is unavailable for general processing. A number perception
module would perceive numbers directly (Dehaene, 1997). This counting-like
process is hypothesized to guide the development of whole number counting,

Figure 2.7 Simplified illustrations of different models of subitizing.
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hypothesized to be a privileged domain (see Chapter 1, p. 40). Researchers
use findings from both humans and non-human animals to support this
position (Gallistel & Gelman, 2005).

Research using different methodologies suggests that infants can rapidly
recognize and use the number of sequentially presented pictures to predict the
location of the next picture in the sequence (Canfield & Smith, 1996). That is,
the infants that repeatedly saw pictures appear in a left-left-left-right pattern
were thereafter less likely to look to the right side after the first or second
picture appears on the left. They were more likely to look to the right, anticipat-
ing a picture appearing there, after the third picture was presented on the right.
There was no evidence they had to reaccumulate items by scanning working
memory, supporting subitizing rather than fast counting, models. (G. A. Miller,
1956, agreed that his famous working-memory limit was not related to human
subitizing limits.) Thus, the researchers (Canfield & Smith, 1996) judged the
Meck and Church accumulator model (1983) most consistent with their
results. Because infants never saw more than a single stimulus at any moment
during the session and the items were presented in a manner that was neither
rhythmic nor temporally predictable, the process of combining sequential
events was viewed as numerical.

The Meck and Church model does not require that the accumulator has an
exact representation of number (see also Feigenson, Dehaene, & Spelke, 2004).
The “squirts” and the amount in the “glass” are approximate. Recent reviews
(Baroody et al., 2005; Mix et al., 2002) agree that children younger than three
years tend not to represent any numbers except one and two precisely. For
example, three-day-old to five-month-old infants could discriminate between
collections of one and two, two and three but not between collections of three
and four (Antell & Keating, 1983), and 10- to 16-month-olds successfully dis-
criminated between two and three but not between three and four or even two
and four or three and six (Feigenson, Carey, & Hauser, 2002). Even in studies
that did show success, results are equivocal; for example, 10–12-month-olds
could discriminate between two and three items, but not four and five, with
mixed results for three vs. four (Strauss & Curtis, 1984); and performance of
even two-year-olds drops off on tasks involving three items, with above-chance
levels not necessarily indicating exact representations (Starkey & Cooper,
1995).

There may be developmental differences in the processes that underlie
subitizing (cf. Resnick & Singer, 1993). The mental models view (Huttenlocher,
Jordan, & Levine, 1994; Mix et al., 2002) postulates that children represent
numbers nonverbally and approximately, then nonverbally but exactly, and
eventually via verbal, counting-based processes. (This in contrast to the
accumulator model, which the researchers criticize as unable to account for the
greater difficulty of sequential presentations, use of overall amount, such as
contour length, in early quantification, and representation of cardinality, Mix
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et al., 2002.) In the mental models view, children cannot initially differentiate
between discrete and continuous quantities, but represent both approximately
using one or more perceptual cues such as contour length (Mix et al., 2002).
Children develop the ability to individuate objects, providing the ability to
build notions of discrete number. About the age of two years, they develop
representational, or symbolic, competence (such as shown in symbolic play),
allowing them to create mental models of collections, which they can retain,
manipulate (move), add to or subtract from, and so forth (although the
model does not adequately describe how cardinality is ultimately cognized and
how comparisons are made). (This symbolization differentiates this view from
the related “object files” theory, although the symbols in the mental models
view are grounded in object individuation. See the “object files” column of
Figure 2.7 and compare it to the “mental models” column.) Early nonverbal
capabilities then provide a basis for the development of verbally-based
numerical and arithmetic knowledge (young children are more successful on
nonverbal than verbal versions of number and arithmetic tasks: Huttenlocher,
Jordan et al., 1994; Jordan, Hanich, & Uberti, 2003; Jordan et al., 1992; Jordan,
Huttenlocher, & Levine, 1994; Levine, Jordan, & Huttenlocher, 1992). (One
difficulty with this argument is that calling both “arithmetic tasks” may
unintentionally hide potential differences in children’s schemes.) In this view,
there is no reason to consider early quantitative development solely a number
competence, much less assume that number is a privileged domain (Mix et al.,
2002).

A recent version of this theory (Baroody et al., 2005) suggests that at the
same time children are gaining representational precision, they are also moving
toward more generalized but deeper (more interconnected) concepts.
Approximate mental models serve as a transition between number based on
perceptual cues and one based on an exact, abstract, mental model. Implicit
distinctions between discrete and continuous quantities lie on a continuum
from clearly distinct for collections of one to indistinct in the case of “many”—
more than three or four. Meaningful learning of number words (in contrast to
symbolic ability) causes the transition to exact numerical representations. Such
development may apply to certain numbers at different times, even among very
small numbers. The child can then begin to verbally represent numbers
(beyond one and two, which may be represented nonverbally and exactly and
verbally at about the same time). This may provide the basis for understanding
cardinality and other counting principles, as well as arithmetic ideas (Baroody
et al., 2006). Anywhere from three to six years, depending on the home and
preschool environments, children also make the transition to using written
representations, which helps them develop numerical or abstract reasoning.

The model that we believe is most consistent with the research is similar,
with a few modifications. What infants quantify are collections of rigid objects;
that is, sequences of sounds and events, or materials that are non-rigid and
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non-cohesive (e.g., water), are not quantified (Huntley-Fenner, Carey, &
Solimando, 2002). (Quantification of rigid linear extent develops early, but
not necessarily in the first few months of life, as discussed in the chapter on
measurement.) Such quantifications, including number, begin as an un-
differentiated, innate notion of amount of objects. Object individuation, which
occurs early in preattentive processing (and is a general, not numerical, pro-
cess), helps lay the groundwork for differentiating discrete from continuous
quantity. Multiple systems are employed, including an object file system that
stores information about the objects (the “object file” column of Figure 2.7),
some or all of which is used depending on the situation, and an estimator
(accumulator-type—see that column in Figure 2.7) mechanism that stores
analog quantitative information only (Feigenson, Carey, & Spelke, 2002;
Gordon, 2004; Johnson-Pynn, Ready, & Beran, 2005). This estimator may also
include a set of number filters (a cognitive scheme detects the numerosity of
a group), each tuned to an approximate number of objects (e.g., three), but
overlapping (Nieder, Freedman, & Miller, 2002), that apply to very small
numbers. The child encountering small sets opens object files for each in
parallel. If the situation elicits quantitative comparisons, continuous extent is
retrieved and used except in extreme circumstances. For example, by about a
half-year of age, infants may represent very small numbers (one or two) as
individuated objects (close to the “mental models” column of Figure 2.7, but
only for one or two). Conversely, large numbers in which continuous extent
varies or is otherwise not reliable (McCrink & Wynn, 2004) may be processed
by the analog estimator as a collection of binary impulses (as are event
sequences later in development, see the “analog” column of Figure 2.7), but
not by exact enumeration (Shuman & Spelke, 2005), but rather by a brain
region that processes quantity (size and number, undifferentiated, Pinel,
Piazza, Le Bihan, & Dehaene, 2004). Without language support, these are
inaccurate processes for numbers above two (Gordon, 2004).

To compare quantities, correspondences are processed. Initially, these are
inexact estimates comparing the results of two estimators, depending on the
ratio between the sets (Johnson-Pynn et al., 2005). Once the child can represent
objects mentally, they can also make exact correspondences between these
nonverbal representations, and eventually develop a quantitative notion of that
comparison (e.g., not just that ••• is more than ••, but also that it contains
one more •; Baroody et al., 2005).

Even these correspondences, however, do not imply a cardinal representa-
tion of the collection (a representation of the collection qua a numerosity of a
group of items). That is, we still must distinguish between noncardinal repre-
sentations of a collection and explicit cardinal representations. Indeed, a
neuroimaging study found that brain regions that represent numerical magni-
tude also represent spatial magnitude, such as the relations between sizes of
objects, and thus may not be numerical in function (Pinel et al., 2004). Only for
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the latter does the individual apply an integration operation to create a com-
posite with some numerical index. Some claim that the accumulator yields a
cardinal output; however, it may be quantitative, and even numerical in some
situations, but constituted as an indexing of a collection using an abstract,
cross-modality system for numerical magnitude (Shuman & Spelke, 2005)
without an explicit cardinality. This system would not necessarily differentiate
between ordinal and cardinal interpretations. Comparisons, such as cor-
respondence mapping, might still be performed, but only at an implicit level
(cf. Sandhofer & Smith, 1999). (Anticipating a discussion of cardinality in the
succeeding section on counting, it is possible to connect such an indexing to a
numerical label without attributing explicit cardinality. For example, lower
animal species seem to have some perceptual number abilities, but only birds
and primates also have shown the ability to connect a subitized number with a
written mark or auditory label, Davis & Perusse, 1988). In this view, only with
experience representing and naming collections is an explicit cardinal repre-
sentation created. This is a prolonged process. Children may initially make
word-word mappings between requests for counting or numbers (e.g., “how
many?”) to number words until they have learned several (Sandhofer & Smith,
1999). Then they label some (small number) cardinal situations with the cor-
responding number word, that is, map the number word to the numerosity
property of the collection. They begin this phase even before two years of age,
but for some time, this applies mainly to the word “two,” a bit less to “one,”
and with considerable lower frequency, “three” and “four” (Fuson, 1992a;
Wagner & Walters, 1982). Only after many such experiences do children
abstract the numerosities from the specific situations and begin to understand
that the situations named by “three” correspond; that is, they begin to establish
what adults would term a numerical equivalence class. Counting-based
verbal systems are then more heavily used and integrated, as described in the
following section, eventually leading to explicit, verbal, mathematical abstrac-
tions. The construction of such schemes probably depend on guiding frame-
works and principles developed from interactions with others, especially
parents, teachers, and other knowledgeable people. Our model is supported
by research on speakers of Mundurukú in the Amazon, who lack number
words for numbers above five. They can compare and add large approximate
numbers, but fail in exact arithmetic (Pica, Lemer, Izard, & Dehaene, 2004).

In summary, early quantitative abilities exist, but they may not initially con-
stitute systems that can be said to have an explicit number concept. Instead,
they may be pre-mathematical, foundational abilities (cf. Clements, Sarama et
al., 2004) that develop and integrate slowly, in a piecemeal fashion (Baroody,
Benson, & Lai, 2003). For example, object individuation must be stripped of
perceptual characteristics and understood as a perceptual unit item through
abstracting and unitizing to be mathematical (Steffe & Cobb, 1988), and these
items must be considered simultaneously as individual units and members of a
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collection whose numerosity has a cardinal representation to be numerical,
even at the lowest levels. The explicit, cultural, numeral-based sense of number
develops in interaction with, but does not replace (indeed, may always be based
on, Gallistel & Gelman, 2005), the analog sense of number. Regardless of its
origins in continuous or discontinuous processing, number rather than
amount of substances does achieve a core status in quantitative reasoning for
preschoolers to adults (K. F. Miller, 1995). The human facility with language
probably plays a central role in linking relations between different representa-
tions and thus making early pre-mathematical cognition numeric (cf. Gordon,
2004; Wiese, 2003a). Some have claimed that linguistic factors play an
important bootstrapping role. That is, grammatical structures for plurals
(“dogs”) and quantifiers (“some,” “all,” and “a”) provide a framework that
allows quantitative ideas to develop (Carey, 2004).

Types of Subitizing

Regardless of the precise mental processes, subitizing appears to be phenom-
enologically distinct from counting and other means of quantification and
deserves differentiated educational consideration. Supporting this assertion is
evidence that there is little or no relationship between children’s performance
on counting and subitizing tasks (Pepper & Hunting, 1998). Further, subitizing
ability is not merely a low-level, innate process. As stated previously, in con-
trast to what might be expected from a view of innate ability, subitizing
develops considerably and combines with other mental processes. Perceptual
subitizing (Clements, 1999b; see also a theoretical justification in Karmiloff-
Smith, 1992) is closest to the original definition of subitizing: recognizing a
number without consciously using other mental or mathematical processes
and then naming it.

Perceptual subitizing employs a pre-attentional quantitative process but
adds an intentional numerical process; that is, infant sensitivity to number
is not (yet) perceptual subitizing. The term “perceptual” applies only to the
quantification mechanism as phenomenologically experienced by the person;
the intentional numerical labeling, of course, makes the complete cognitive act
conceptual.

Perceptual subitizing also plays the primitive role of unitizing, or making
single “things” to count out of the stream of perceptual sensations (Glasers-
feld, 1995). “Cutting out” pieces of experience, keeping them separate, and
eventually coordinating them with number words are not trivial tasks for
young children. For example, a toddler, to recognize the existence of a plurality,
must focus on the items such as apples and repeatedly apply a template for an
apple and attend to the repetition of the template application.

A second type of subitizing (a distinction for which there is empirical evi-
dence, Trick & Pylyshyn, 1994), conceptual subitizing (Clements, 1999b) plays
an advanced organizing role, as seeing “10” on a pair of dice by recognizing the
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two collections (via perceptual subiziting) and composing them as units of
units (Steffe & Cobb, 1988). Some research suggests that only the smallest
numbers, perhaps up to three, are actually perceptually recognized; thus, sets of
one to three may be perceptually recognized, sets of three to about six may be
decomposed and recomposed without the person being aware of the process.
Conceptual subitizing as we use the term refers to recognition in which the
person consciously uses such partitioning strategies. Because conceptual sub-
itizing is a composing/decomposing approach to addition and subtraction, we
discuss it more fully in Chapter 6.

Factors Affecting Difficulty of Subitizing Tasks

Subitizing ability develops in a stepwise fashion. That is, in laboratory settings,
children can initially differentiate one from “more than one” at about 33
months of age (Wynn, 1992b). Between 35 and 37 months, they differentiate
between one and two, but not larger numbers. A few months later, at 38 to
40 months, they identify three as well. After about 42 months, they can identify
all numbers that they can count, four and higher, at about the same time. How-
ever, research in natural, child-initiated settings shows that the development of
these abilities can occur much earlier, with children working on one and two
around their second birthdays or earlier (Mix, Sandhofer, & Baroody, 2005).
Further, some children may begin with “two” rather than “one.” These studies
suggest that language and social interactions interact with internal factors in
development, as well as showing that number knowledge develops in levels,
over time (see also Gordon, 2004). Most studies suggest that children begin
recognizing “one,” then “one” and “two,” then “three” and then “four,”
whereupon they learn to count and know other numbers (see R. Gelman &
Butterworth, 2005, for an opposing view concerning the role of language;
Le Corre, Van de Walle, Brannon, & Carey, 2006).

The spatial arrangement of sets also influences how difficult they are to
subitize. Children usually find rectangular arrangements easiest, followed by
linear, circular, and scrambled arrangements (Beckwith & Restle, 1966;
M. Wang et al., 1971). This is true for students from the primary grades to
college in most cases. The only change across these ages is rectangular
arrangements were much faster for the oldest students, who could multiply.

Certain arrangements are easier for specific numbers. Arrangements yield-
ing a better “fit” for a given number are easier (Brownell, 1928). Children make
fewer errors for ten dots than for eight with the “domino five” arrangement,
but fewer errors for eight dots for the “domino four” arrangement.

For young children, however, neither of these arrangements is easier for any
number of dots. Indeed, children two to four years old show no differences
between any arrangements of four or fewer items (Potter & Levy, 1968). For
larger numbers, the linear arrangements are easier than rectangular arrange-
ments. It may be that many preschool children do not use decomposing
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(conceptual subitizing). They can learn to conceptually subitize, though older
research indicated that first graders’ limit for subitizing scrambled arrange-
ments is about four or five (Dawson, 1953). If the arrangement does not lend
itself to grouping, people of any age have more difficulty with larger sets
(Brownell, 1928). They also take more time with larger sets (Beckwith & Restle,
1966).

What skill level do children achieve? Recall from Table 1.1, most Kindergar-
teners appear to have good competence recognizing two and three, with most
recognizing four and some recognizing higher numbers (note that different
tasks were used, some of which did not limit time, so wide ranges are expected).
A recent study of low-income children beginning pre-K, using a short-
exposure subitizing task, report 2 percent to 14 percent accuracy for three,
0 percent to 5 percent for four, and virtually no competence with five, eight, or
10 (Sarama & Clements, 2008). Thus, children appear to be most confident
with very small numbers, but those from less advantaged environments
may not achieve the same skills levels as their more advantaged peers. Some
special populations find subitizing particularly difficult. Only a minority
(31 percent) of children with moderate mental handicaps (chronological ages
six to 14 years) and a slight majority (59 percent) of children with mild mental
handicaps (ages six to 13) successfully subitize sets of three and four (Baroody,
1986). Some children with learning disabilities could not subitize even at 10
years of age (Koontz & Berch, 1996).

Role of Spontaneous Subitizing in Early Mathematics Development

A series of five studies indicated that the child’s tendency to spontaneously
focus on numerosity is a distinct, mathematically significant process (Hannula,
2005). Such a tendency at three years predicted development of cardinality
knowledge a year later. Focusing on numerosity was also related to counting
and arithmetic skills, even when nonverbal IQ and verbal comprehension were
controlled. Some children’s failure to focus on numerosity is not due to their
lack of cognitive requirements of the task (Lehtinen & Hannula, 2006). They
just have not developed the habit of focusing on numerosity. Results suggested
that spontaneous focus builds subitizing ability, which in turn supported the
development of counting and arithmetic skills. Thus, children low in the
tendency to spontaneously focus on numerosity in the early years are at risk for
later mathematical failure (Hannula, 2005). Subitizing small numbers appears
to precede and support the development of counting ability (Le Corre et al.,
2006). To the extent that this is true, subitizing forms a foundation for all
learning of number.

Supporting and extending these findings, spontaneous focus on numerosity
in four-year-olds was shown to be related to verbal counting ability a year later,
but the relationship of focus on numerosity and object counting was mediated
by subitizing (Hannula, Räsänen, & Lehtinen, 2007). Although not causal,
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these findings suggest that spontaneous focus on numerosity promotes interest
in numbers that supports children’s development of verbal counting. It also
supports the development of subitizing skill, which in turn supports the
cardinal aspect of object counting. Finally, better enumeration may increase
children’s interest in using all their quantitative skills, thus increase subitizing
ability as well.

Across development, numerical knowledge initially develops qualitatively
and becomes increasingly mathematical. In subitizing, children’s ability to
“see small collections” grows from preattentive but quantitative, to attentive
perceptual subitizing, to imagery-based subitizing, to conceptual subitizing
(Clements, 1999b; Steffe, 1992). Perceptual patterns are those the child can, and
must, immediately see or hear, such as domino patterns, finger patterns, or
auditory patterns (e.g., three beats). A significant advance is a child’s focusing
on the exact number in these patterns, attending to the cardinality. Finally,
children develop conceptual patterns, which they can operate on, as when they
can mentally decompose a five pattern into two and three and then put them
back together to make five again. These types of patterns may “look the same”
on the surface, but are qualitatively different. All can support mathematical
growth and thinking, but conceptual patterns are the most powerful.

Experience and Education

A quasi-experimental study (Hannula, 2005) showed that it is possible to
enhance three-year-old children’s spontaneous focusing on numerosity, and
thus catalyze children’s deliberate practice in numerical skills (cf. Ericsson,
Krampe, & Tesch-Römer, 1993). Children in the treatment group showed
increased tendency to focus on numerosity and develop cardinality competen-
cies on a delayed posttest compared to children in the comparison group. It is
not just the subitizing ability that is developed in such programs, but the habits
of mind, such as the predisposition to direct attention to number (Lehtinen &
Hannula, 2006). These habits of mind generate further development of specific
mathematical knowledge and the ability to direct attention to mathematics in
situations in which it is relevant; that is, they generalize and transfer knowledge
to new situations.

Most implications for educational practice are detailed in the companion
book, Learning and Teaching Early Math: The Learning Trajectories Approach
(Clements & Sarama, 2009). This includes research indicating that textbooks
often discourage subitizing (Carper, 1942; Dawson, 1953), and that teachers
often do not do sufficient subitizing work, leading to their students regressing in
subitizing from the beginning to the end of kindergarten (Wright, Stanger,
Cowper, & Dyson, 1994), along with a complete learning trajectory with
multiple activities for each level.
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Learning Trajectory for Recognition of Number and Subitizing

Accepting that the goal of this learning trajectory is sophisticated conceptual
subitizing, this book provides the second component, the developmental pro-
gression. Here we omit the third component, the instructional tasks, because
they are described in detail in the companion book. We do include our
hypothesized mental actions on objects for each level of the developmental pro-
gression (Table 2.1). The ages are estimates based on extant research and
are provided only as a general guide—actual age levels are strongly dependent
on experience.

Table 2.1 A Developmental Progression for Recognition of Number and Subitizing

Age Developmental Progression Actions on Objects

0–1 Pre-Explicit Number
Within the first year, dishabituates to
number, but does not have explicit,
intentional knowledge of number. For
infants, this may include very small
collections of rigid objects.

An initial bootstrap: Implicit
sensitivity to quantity with perceptual
input. An object file system stores
information about the objects (some
or all of which is used depending on
the situation). An estimator
(accumulator-type) mechanism stores
analog quantitative information. If the
situation elicits quantitative
comparisons, continuous extent is
retrieved and used except in extreme
circumstances (e.g., one and maybe
two are processed as individuated
objects; numbers in which continuous
extent varies or is otherwise not
reliable are processed by the analog
estimator as a collection of binary
impulses).

To compare, bootstrap processes
make a correspondence between
estimators.

1–2 Small Collection Namer
Names groups of one to two,
sometimes three.

Shown a pair of shoes, says,
“Two shoes.”

Mental schemes (number filters) act
on perceptions of collections of one to
three. Eventually, mental, nonverbal
representations are developed of each
object in such collections. They become
exact and associated with the verbal
labels (“two” then “one” then “three,”
etc.).

To compare, two such representations
can be placed in mental
correspondence.

48 • Number and Quantitative Thinking



Age Developmental Progression Actions on Objects

3 Maker of Small Collections
Nonverbally makes a small collection
(no more than four, usually one–
three) with the same number another
collection (via mental model; i.e., not
necessarily by matching—for that
process, see Compare Number).
Might also be verbal.

When shown a collection of
three, makes another collection
of three.

Mental representations can be
maintained and direct physical actions
so that one perceived object
corresponds to each represented
object.

4 Perceptual Subitizer to Four
Instantly recognizes collections up to
four briefly shown and verbally names
the number of items.

When shown four objects briefly,
says “Four.”

Schemes act on perceptual input
(including collections, but also
sounds, etc.) to identify sets of zero to
four (schemes may use lower-level
schemes for one-three and combine
them to recognize four), each of which
is associated with the verbal number
name.

5 Perceptual Subitizer to Five
Instantly recognizes briefly shown
collections up to five and verbally
names the number of items.

Shown five objects briefly, says
“Five.”

Schemes act on perceptual input
(including collections, but also
sounds, etc.) to identify sets of zero to
five (schemes may use lower-level
schemes for one-three and combine
them to recognize four; note that
visual patterns used in the following
levels are beginning to be
constructed), each of which is
associated with the verbal number
name.

Conceptual Subitizer to Five
Verbally labels all arrangements to
about five, when shown only briefly.

“Five! Why? I saw three and two
and so I said five.”

An executive process determines
whether an existing scheme can
quantify the perceptual input; if so,
that is used. If not, gestalt visual
principles (for visual collections; see
the geometry chapter) are used to
partition the collection to identify two
or more sets that existing schemes can
quantify; the results of these are
combined with pattern matching to
known compositions.

Continued Overleaf
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Final Words

Subitizing small numbers appears to precede and support the development of
counting ability (Le Corre et al., 2006). Thus, it appear to form a foundation
for all learning of number. Indeed, a language-independent ability to judge
numerical values nonverbally appears to be an important evolutionary pre-
cursor to adult symbolic numerical abilities. Across development, numerical
knowledge initially develops qualitatively and becomes increasingly mathe-
matical. In subitizing, children’s ability to “see small collections” grows from
preattentive but quantitative, to attentive perceptual subitizing, to imagery-
based subitizing, to conceptual subitizing (Clements, 1999b; Steffe, 1992). Per-
ceptual patterns are those the child can, and must, immediately see or hear,
such as domino patterns, finger patterns, or auditory patterns (e.g., three

Age Developmental Progression Actions on Objects

Conceptual Subitizer to 10
Verbally labels most briefly shown
arrangements to six, then up to 10,
using groups.

“In my mind, I made two groups of
three and one more, so seven.”

As in the previous level, with the
addition of other compositions.

6 Conceptual Subitizer to 20
Verbally labels structured
arrangements up to 20, shown only
briefly, using groups.

“I saw three fives, so five, 10, 15.”

As in the previous level, with the
addition of other compositions and
explicit knowledge of teens as ten and
some number more.

7 Conceptual Subitizer with Place
Value and Skip Counting
Verbally labels structured
arrangements shown only briefly,
using groups, skip counting, and place
value.

“I saw groups of tens and twos, so
10, 20, 30, 40, 42, 44, 46 . . . 46!”

As in the previous level, with the
addition of other compositions and
explicit place value knowledge.

8 Conceptual Subitizer with Place
Value and Multiplication
Verbally labels structured
arrangements shown only briefly,
using groups, multiplication, and
place value.

“I saw groups of tens and threes,
so I thought, five tens is 50 and
four threes is 12, so 62 in all.”

As in the previous level, with the
addition of other compositions and
explicit knowledge of multiplication
and place value.

50 • Number and Quantitative Thinking



beats). A significant advance is a child’s focusing on the exact number in these
patterns, attending to the cardinality. Finally, children develop conceptual pat-
terns, which they can operate on, as when they can mentally decompose a five
pattern into two and three and then put them back together to make five again.
These types of patterns may “look the same” on the surface, but are qualita-
tively different. All can support mathematical growth and thinking, but con-
ceptual patterns are the most powerful.

Children can use subitizing to discover critical properties of number, such
as conservation and compensation. They can develop capabilities such as uni-
tizing as well as arithmetic capabilities. Thus, subitizing is a critical competence
in number, but it is not the only way children think and learn about number.
Counting is ultimately a more general and powerful method, and we turn to
this topic in Chapter 3.

Quantity, Number, and Subitizing • 51





3
Verbal and Object Counting

Verbal Counting

As described in Chapter 2, historically some (Dewey, 1898; Thorndike, 1922)
argued that initial mathematics education should emphasize counting,
whereas others (e.g., Piaget et al., 1960; Piaget & Szeminska, 1952; B. Russell,
1919) contended that counting was a rote skill until logical foundations were
acquired (for discussions, see Clements, 1984a; Clements, 1984c; Wright et al.,
2006). Even recent accounts treated counting, at least verbal counting, as a
rote skill (Fuson, 1992a; H. P. Ginsburg, 1977). However, number words can
be meaningful in some contexts and can orient children to numerical mean-
ings (Mix et al., 2002). Further, without language, development of number
appears to be severely restricted. For example, members of a tribe with only a
“one-two-many” system of counting had remarkably poor performance on
number tasks above two or three (Gordon, 2004). Even with language, with-
out a verbal counting system, exact naming of and operations on number
does not appear (Pica et al., 2004). Finally, counting skills and the logical
foundations seem to be separate competencies (Aunio et al., 2004; Aunio et
al., 2006), which become more integrated with learning (Case & Okamoto,
1996). Language is necessary for a systematic conception of number (Wiese,
2003b).

Children’s Development of Verbal Counting

By 24 months of age, many toddlers have learned their first number word
(typically “two”). Words for larger collections usually appear after children use
verbal counting. Depending on their early environment, children begin to try
to count using verbal number names at age two or three years. Important
developments in counting continue during the preschool years. Children from
ages two to five years learn more of the system of number words (“one, two,
three, . . .”) due to a desire to count larger collections and a curiosity about the
number word system itself (Baroody, 2004; Fuson, 1988, 2004; Griffin, 2004;
Steffe, 2004).

We do not use the common phrase “rote counting” for verbal counting,
because children have to learn the principles and patterns in the number
system as coded in their natural language, at least for number words above
twenty (Baroody, 1987a; Fuson, 1992a). Supporting evidence for this position
is that children who could count when given a new point from which to start
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performed better on all numerical tasks, suggesting that fluent verbal counting
does not depend primarily on rote factors, but rather on the recognition that
the system is rule-governed (Pollio & Whitacre, 1970).

Further, cross-cultural studies indicate that learning of counting varies with
the language in which the number system is learned (H. P. Ginsburg et al., 1997;
Han & Ginsburg, 2001; K. F. Miller, Major, Shu, & Zhang, 2000; K. F. Miller
et al., 1995). For example, Chinese, like many East Asian languages, has a
more regular sequence of number words than does English. In both English
and Chinese, the numbers one through 10 are arbitrary and the numbers after
20 follow a regular pattern of naming the decade name and then the digit name
(e.g., “twenty-one”). However, in Chinese (and in many Asian languages
rooted in ancient Chinese), there are two important characteristics. The tens
numbers directly mirror the single digit number names (“two-tens” rather
than “twenty; “three-tens” rather than “thirty”) and the numbers from 11 to 20
also follow a regular pattern (comparable to “ten-one,” “ten-two,” etc.) instead
of the obscure “eleven, twelve. . .”. Languages in Mozambique have a fives-and-
tens structure, so that six is called “five-and-one” and 74 is called “five-and-two
tens, and four” (Draisma, 2000). Through three years of age, children in the
various cultures learn one through 10 similarly; however, those learning
English learn the “teens” more slowly and with more errors. The greatest
number of errors are made on 13 and 15 (Baroody, 1996). Further, Asian
number words can be pronounced more quickly, providing another significant
cognitive advantage (Geary & Liu, 1996). German (and Dutch) children are
one group that has it even more difficult than English children: Their “twenty-
two” is translated to “two and twenty,” putting the ones first through the
number sequence.

Overall, children learning Asian languages show a substantial advantage in
learning verbal counting (Aunio et al., 2004; Aunio et al., 2006). Support for the
notion that this advantage is a direct consequence of language is provided by
parallel findings that Asian children do not differ in other aspects of number
knowledge, including counting small sets and solving simple numerical
problems (Fuson, 1992a; K. F. Miller et al., 2000). One group of researchers
abandoned studying U.S. kindergarteners because they could not count con-
sistently and accurately from one to 50, but Korean kindergarteners had no
such problems (Miura & Okamoto, 2003). Only U.S. children made errors such
as “twenty-nine, twenty-ten, twenty-eleven. . .”; Chinese children do not make
that kind of mistake (K. F. Miller et al., 2000). Although all children tend to
make more mistakes at decade boundaries, for Chinese-speaking children,
these are largely limited to infrequent mistakes with numbers above 60.
Conclusions must be made with caution, however, as other cultural factors,
such as Asian parents’ emphasis on counting in the early years, may affect these
results (Towse & Saxton, 1998; J. Wang & Lin, 2005). Still striking is research
indicating that it is not until 1st grade that many U.S. children recognize
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that the decades sequence mirrors the single-digit sequence and know the
decade transitions (Baroody, 1996).

The deleterious effects of less mathematically coherent languages are not
limited to counting larger numbers, but hamper children’s development of
place value, multidigit arithmetic, and other concepts (Fuson, 1992a; Miura,
Kim, Chang, & Okamoto, 1988). The effects are detrimental in surprising
ways: Even the counting words from one to nine are learned better by Chinese
children, because they practice these exact numbers when learning to count
from 11 to 19 (Miura & Okamoto, 2003).

Fuson and colleagues traced the development of the number word sequence
from its beginnings at age two to its general extension to the notion of base
10 systems at about the age of eight (Fuson & Hall, 1982; Fuson, Richards, &
Briars, 1982). Most middle-class children less than three and a half years of age
are working on learning the sequence to 10 (Fuson, 1992a; Saxe et al., 1987).
For the next year, they develop the sequence from 10 to 20. From four and a
half to six years, they still make errors in the teens, but most also develop the
decades to 70, although a substantial number count to 100 and higher (Bell &
Bell, 1988; Fuson et al., 1982).

Fuson and colleagues also reported two distinct, overlapping phases: an
acquisition phase of learning the conventional sequence of the number words,
and an elaboration phase, during which this sequence is decomposed into
separate words and relations upon these words are established. During the first
phase the sequence is a single, connected serial whole from which interior
words cannot be produced singly. The most common overall structure of the
sequences is: (a) stable conventional, an initial group that is the beginning of
the conventional sequence; (b) stable nonconventional, a group that deviates
from convention but is produced with some consistency, and (c) nonstable, a
final group with little consistency. The acquisition of longer sequences consists
of the extension of the sequence and the consolidation of the extension so that
it is produced reliably.

The sequence itself develops. Five levels were differentiated and empirically
supported (Fuson & Hall, 1982; Fuson et al., 1982): (a) string level—words are
not distinct nor objects of thought; (b) unbreakable list level—words separate
and become objects of thought; (C) breakable chain level—parts of the chain
can be produced starting from an arbitrary number (enabling certain counting
on strategies); (d) numerical chain level—words become units that themselves
can be counted; and (e) bidirectional chain level—words can be produced in
either direction and the unitized embedded numerical sequence allows part-
whole relations (including Piagetian class inclusion—recall the discussion in
Chapter 2 and accompanying Figure 2.1) and a variety of flexible strategies to
be employed. These developments precede and enable changes in addition and
subtraction solution strategies (Fuson, 1992a).

The ability at the breakable chain level to start from an arbitrary number is
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often underappreciated. It may be a prerequisite skill both for counting on
(Chapter 5) and for number composition (Chapter 6) (Martins-Mourão &
Cowan, 1998).

Fuson and colleagues (1982) also claimed that backward verbal counting is
learned in a slow and laborious manner, based on an already-mastered forward
sequence. However, specific instruction may enable children to develop back-
ward counting almost to the same extent as forward counting (Wright,
1991).

A descriptive study of children’s external representations of the numbers
one to 100 suggested that these representations develop in structure from
grades K to 6 (N. D. Thomas, Mulligan, & Goldin, 2002). Initially, children
assign imagistic meanings to mathematical words and symbols, such as a
dinosaur with the numeral 100 on it. Then they develop structure associated
with sequences of numbers (e.g., in a sequence along a spiral) and, eventually,
groupings into tens. Later, they make autonomous inscriptions in which
insightful, mathematical meanings are freely and flexibly found in new
contexts, distinct from those used in representing the number system. For
example, one girl drew an array with the number sequence in rows of 10, each
one moved slightly to the right.

Fuson links verbal to object counting by positing six types of changes in the
counting word sequence that facilitate its development from initial use in the
counting of objects to later use as objects which can themselves be counted.
These included acquisition of: increased speed of production, relations
between the counting words, sequence meanings for the words, ordinal and
cardinal meanings for the words, symbolic and written form of the words, and
linkage of sequence to cardinal or ordinal meanings. Increased production
speed may increase the available M-space (cognitive “space” or capacity in
working memory), allowing the child to do something else; for example,
remember sets already counted, notice relationships, or count the words pro-
duced. Relations between the words can be derived and stored as facts. The
child becomes capable of producing parts of the sequence and of finding the
number that comes “just before N” or just after another. These sequence
relations produce sequence meanings that become associated with the count-
ing words. Ordinal and cardinal meanings arising outside of the counting act
become associated with particular words. By juxtaposing different types of
meanings in time, links become established. In summary, the child first learns
the number word as several different context-dependent words that later
become interrelated, finally resulting in a mature set of meanings for that word
(Fuson & Hall, 1982).

Object Counting1

To count a set of objects, children learn to coordinate the production of
counting words—verbal counting—with indicator actions, such as pointing to
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or moving objects (Dewey, 1898; Fuson, 1988; H. P. Ginsburg, 1977; Judd,
1927). The counting word associated with the last object names the cardinality
of the set. Cognitively, a fully developed object counting scheme has four
components. First, there is a situation that is recognized, say a collection of
countable items. Second is a goal, to find out how many. Third is an activity,
counting, and fourth, the result, a unitary whole of counted items (Steffe &
Cobb, 1988).

How does counting develop? Gelman and Gallistel (1978) hypothesized
that the ease and rapidity that even very young children display in learning
to count indicated that such development was guided by knowledge of
counting principles. In particular, they hypothesized that young children know
five principles. The three how-to-count principles included the stable order
principle (always assign the numbers in the same order), one-one principle
(assign one and only one number word to each object), and cardinal principle
(the last count indicates the number of objects in the set). The two what-to-
count principles were the order irrelevance principle (the order in which
objects are counted is irrelevant) and the abstraction principle (all the other
principles can apply to any collection of objects). The researchers presented
evidence indicating that children understand—explicitly or implicitly—all
these principles by age five, and many by age three years. For example, in the
“magic” experiments described previously, all three how-to-count principles
were followed (not perfectly, as the question was competence, not perform-
ance) by children as young as two and a half years, at least with homogeneous,
linearly arranged collections of no more than five items (R. Gelman & Gallistel,
1978). The one-one errors tended to be over- or undercounting on all set
sizes, or skipping or double counting on the larger of the set sizes. Almost no
children even used the same number word more than once.

As another example, even when children make mistakes, they show
knowledge of the principle. For example, if they do not know the standard
order of number words, the idiosyncratic order they do use is usually stable.
Or, they may make mistakes in executing the one-one rule (Fuson, 1988),
but nevertheless assign exactly one number word to most of the objects (about
75 percent of the objects even for two- and three-year-olds). Thus, these
might reflect performance errors, not conceptual limitations. Preschoolers give
evidence of using the cardinal principle by repeating or emphasizing the last
number. They count events, collections that include different categories of
objects, and even “missing” objects (e.g., eggs not in a carton). The order
irrelevance principle is not demonstrated as widely, but most five-year-olds
will start counting in the middle of a row of objects and count each object.

The principles were expanded and implemented within a computational
model in which it was assumed that implicit understanding of principles
was characterized as conceptual competence, hypothesized to be a set of
action schemata corresponding to those principles (Greeno et al., 1984).
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Theoretically, a main thrust of the nativist argument is that such principles
guide children’s acquisition of counting skills and understandings. This was in
contrast to Piagetians (e.g., Elkind, 1964; Kamii & DeVries, 1993) who main-
tained that counting errors occurred because the child lacked fundamental
understandings; for example, recognizing the logical need to order objects.

Other researchers gave more importance to repeated, often massive, experi-
ence and demonstrations, modeling, or scaffolding from adults in learning
counting competencies (e.g., Fuson, 1988). Supporting this view are findings
that suggest children count skillfully before they understand the principles that
underlie counting (Bermejo, 1996; Briars & Siegler, 1984; Frye, Braisby, Lowe,
Maroudas, & Nicholls, 1989; Wynn, 1992b). From this perspective, children
may abstract features that are common to all acts of counting (e.g., counting
each object exactly once) and distinguish them from those that are incidental
(e.g., starting at the end of a row). Another possibility is that children build on
their verbal number recognition (subitizing) skill to abstract the counting
principles from their own counting experience (Le Corre et al., 2006) or to
make sense of adult efforts to model counting procedures (Baroody et al.,
2006). Specifically, subitizing predicts knowledge of cardinality in counting
(Eimeren, MacMillan, & Ansari, 2007).

Additional research has clarified these issues, especially the main principles.
Fuson and colleagues doubted the validity of the “stable order principle,” pre-
ferring a probabilistic model (Fuson & Hall, 1982; Fuson et al., 1982). Similarly,
other researchers found that children had only limited success recognizing pro-
cedures that violated the stable order of count words or violated the one-one
correspondence, or found no evidence of stable-order use on non-standard
sequences (Wagner & Walters, 1982). They lacked understanding of the order
irrelevance in that they judged valid, nonstandard counting orders as incorrect.

Regarding the one-one principle, researchers agree that early counting
does usually display one-to-one correspondences. About the age 1-8, children
first make one-to-many correspondences, such as applying number words
repeatedly to a collection, “one, two, one, two” (Wagner & Walters, 1982).
About age 2-2, they mix one-one and many-one (sometimes one-many)
correspondences. About age 2-6, they display a rigid one-one correspondence
in which every element in one set must match an element in the second set. In
counting, for example, if they know more counting words than the number of
objects, they may produce the “extra” words quickly at the end of counting. If
on the other hand there are more objects, children “recycle” number words.
This reflects on inflexible list-exhaustion scheme, with a goal of processing
every element of both sets (Wagner & Walters, 1982). With only a few number
words, children must recycle them. Children’s use of “two,” and later, “three,”
to mean “many,” and then using them for only sets of two and three,
respectively, may interrupt the list-exhaustion scheme and allow for the
creation of a stop rule in counting.
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As young as three years of age, children can accurately enumerate small
collections arranged in a straight line (Fuson, 1988). However, they do not do
so in all situations. Although it is common to speak of “one to one corres-
pondence,” there are actually related but distinct competencies, including
coordinating number words with objects and keeping track of counted objects
(Alibali & DiRusso, 1999). Even five-year-olds show difficulty sequencing large
disorganized collections. Further, coordination of words with objects actually
involves a chain of two types of correspondence, that between the production
of a number word and an indicating act such as pointing, and another between
that act and each item to be counted. At age three or four, children violate
the first type of correspondence in two main ways, by pointing to an object
without saying a word and by pointing to an object and saying more than one
number word. They violate the second by skipping over objects or by double-
counting (see Fuson, 1988, for an elaboration of many less frequent errors).
Gesturing helps children maintain both types of correspondences, keeping
track and coordinating number words with objects (Alibali & DiRusso, 1999).
The rhythmic, physical motions may focus children’s attention on the indi-
vidual items, aiding segmentation. Further, the use of touching may lessen the
working memory demands of counting by externally representing some
of the contents of working memory, such as marking the child’s place in the set
of objects.

By five years, most children can count up to 20 to 30 objects, although their
accuracy is affected by their degree of focus and effort. Further, the number
of objects affects different kinds of errors in different ways. Similarly, the type
of counting situation affects errors. Counting as one moves objects, for
example, can engender additional types of errors, such as stopping the pro-
duction of number words altogether due to a focus on building something
with the moved objects, or moving more than one object with each counting
word. Because such errors are not seen in pointing situations, Fuson (1988)
cautioned that assessments using point situations may overestimate
children’s competence. Skim errors, in which the finger skims over objects with
no specific pointing acts and words are uttered in a stream having no apparent
connection with the objects, had previously been considered an early stage.
Evidence showed that, because each child who made such errors pointed at
distinct objects on at least one trial, this was not a stage, but just a degenerate
form of counting.

Evidence regarding the cardinality principle is perhaps most inconsistent
with a strong nativist view. Cardinality does not appear to be a component of
many children’s early counting in most situations, especially with numbers
larger than those they can subitize (Fuson, 1988; H. P. Ginsburg & Russell,
1981; Le Corre et al., 2006; Linnell & Fluck, 2001; Schaeffer et al., 1974). As
previously stated, to these children, the purpose of counting is the action of
enumeration (Fluck, 1995; Fluck & Henderson, 1996). Showing an even more
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limited understanding, some children, when asked why they count, seem per-
plexed by the notion of counting as a purposeful activity (Munn, 1994; 1997).
Children 51–64 months of age answered in four categories: no interpretable
responses or to please myself (74 percent), to conform to others’ expectations
(4 percent), to learn (13 percent) and to know how many (9 percent). After
school entry, many, but not all, moved to more sophisticated responses. Caveats
include a high percentage of uncoded responses, children’s interpretation of
the question, and considerations of implicit and explicit knowledge, but such
results at least highlight the need to be aware of children’s conceptualizations.
Fuson and colleagues also posited that repeating the last number of a counting
act is initially merely the last step in a chain of responses that children learn to
meet adult requests (Fuson & Hall, 1982; Fuson et al., 1982). There is evidence
that even when children respond correct to the cardinality question, they
may not fully understand it (Sophian, 1988). For example, asked to indicate
which object(s) to which their last-number-word response referred, children
often indicate only the last object. As another example, children give the last-
number-word responses even when it is incorrect (e.g., when they were asked
to begin counting with a number other than one, Bermejo, 1996).

One position is that children have to represent, or “redescribe,” the final
number word at an explicit level before it is available to serve the purpose
of establishing a relationship between the counting act and cardinality
(Karmiloff-Smith, 1992). Before that, even when they give a last-number-word
response, they may just “run” the entire counting procedure without thinking
about the individual components of the procedures, such as the “How many”
component (much less each object counted, the cardinality of the whole,
and how they relate). This theory emphasizes internal processes, including
visuo-spatial ability, which plays a greater role than language ability in the
development of cardinality in normally developing young children (although
the reverse is true for children with Williams Syndrome, for whom visuo-
spatial and problem solving abilities are impaired, Ansari et al., 2003). How-
ever, social interaction probably aids this development (Linnell & Fluck,
2001).

This does not mean that cardinality is not understood, only that it is not an
innate notion within the context of counting. Instead, young children’s earliest
notion of the meaning of number words appear to be rooted in subitizing (Le
Corre et al., 2006). This may be generalized to counting with much experience
counting small numbers between the ages of two and three years, so that by
three and a half years, many children begin to use and understand the cardinal
notion in counting (Wynn, 1990, 1995), at least for small numbers, and most
five-year-olds do so consistently in simple counting situations. Examples of
children who modify their number word sequences or 1-1 correspondence
procedures to have the last object be assigned the number word that they
predicted or desired the collection to have (Wagner & Walters, 1982) suggest
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that early concepts of cardinality and counting procedures can operate in
conflict. This is consistent with the hierarchic development tenet of hierarchic
interactionalism, revealing that interacting components (or agents, Minsky,
1986) interact and vie to meet their goals, creating the need for a hierarchically-
higher integrative scheme or agent.

Moreover, knowledge of the cardinality notion develops. For example,
younger children may not maintain cardinal and ordinal meanings in Piagetian
conservation of number tasks in which the child builds a row of objects equiva-
lent to a given row of objects. Most four-year-olds can do so, and will judge the
two rows to be equal in number. However, when one row is spread out, they
may judge the transformed row to have more objects (less frequently, to be less
dense and thus have fewer). Children who conserve maintain that the number
remains the same, and often respond even without counting. Some five-year-
olds, many six-year-olds, and most seven-year-olds conserve in this way. Piaget
and Szeminska (1952) discounted the role of counting, and there are children
in transition who will not conserve even after counting both rows before and
again after the transformation. However, alterations of the tasks reveal greater
competence. Many preschoolers, told the cardinal value of each of two sets, can
determine whether the items would be put in one-to-one correspondence (and
the inverse), providing evidence that they understand the relation between the
number words and quantity and can use number words to reason numerically
about one-to-one correspondences that are not perceptually available (Becker,
1989; Sophian, 1988). This provides evidence that preschoolers have at least
initial integration of the cardinality of the collection as a whole and the indi-
vidual items in the collection. If asked to count, many transitional five-year-
olds will count and use that information to correctly judge equivalence, and
older five-year-olds do so spontaneously (Fuson, 1988; Fuson, Secada, & Hall,
1983). Many four-year-olds will similarly use their counting skills effectively if
provided a visual display of numbers (numerals and dot patterns), and more so
when conflicting perceptual cues are not present (Michie, 1984a). Counting
increases when children are given feedback as to the correctness of their
previous judgments, showing them that relying on counting was valid, but
using length or density was not. Along with evidence on object counting and
addition and subtraction (e.g., Frontera, 1994), this indicates that counting can
be a meaningful quantifier for children before they reach the Piagetian levels of
operational thought about number conservation.

From a consideration of the abstraction principle emerges the question of
what units children can count. Research indicates that another significant
development is to understand fully the unit that one is counting and its role in
fulfilling the purpose of a counting act, such as in measurement (Miller, 1989,
to be discussed in a later section). This is an issue even when counting discrete
objects. Asked to count whole forks when shown some intact forks and some
broken in half, children four to five years of age were reluctant to count two
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halves as a single item (Shipley & Shepperson, 1990). Their counts of classes
were more accurate in the absence of objects, or in the presence of a single
member of each class, than in the presence of several members of each class.
Young children’s bias to process discrete physical objects precedes learning to
count. There was a palpable division between five-year-olds, some of whom
could solve the task, and four-year-olds, who could not (Shipley & Shepperson,
1990). Results were generally confirmed even as language was changed to high-
light classes and more familiar materials that separated into halves (plastic
eggs) were used (Sophian & Kailihiwa, 1998). Some children counted physically
discrete items, some only wholes, some only halves. Some also counted wholes
or parts and included, for example, wholes that were separated into halves, but
where children, especially four-year-olds, had difficulty was in switching units
and in counting the unit they were instructed to count. Although performance
improved from four to seven years, a substantial portion of each age had such
difficulties. Thus, the abstraction principle appears only partially valid. Chil-
dren as young as four to five years of age can count in many-to-one situations,
such as two stickers to each doll (Becker, 1993), so the difficulty is not simply
that children must apply one counting word to each discrete object or that
children have only one skill but little understanding of counting.

A review of research discussed seven types of evidence that might be used
comparing the two broad perspectives, one of which postulates that com-
petence with principles precedes competence with skills, the other the opposite.
Studies with findings in four of these types generally substantiated the skills-
before-concepts position (Rittle-Johnson & Siegler, 1998). Thus, the evidence
favors this position, with three caveats. First, there is little or no evidence of the
three strongest types. Second, Rittle-Johnson and Siegler tend to define a “skill”
as application in a narrow domain and every novel application as requiring
concepts (instead of a generalized skill). That is, concept measures tend to
involve far, and skill measure near, transfer. Third, as the authors discuss, early
mathematics teaching in U.S. homes and schools often can not be characterized
as conceptual instruction, and weak teaching of mostly skills may result in skills
appearing in relative isolation from concepts (cf. multidigit computation, in
which children who used a correct procedure first were likely to have received
conventional, skills-based instruction). Thus, the argument and evidence
against a nativist (privileged domains) position is more compelling than for
the skills-before-concepts position. This is not to say the concepts-before-skills
position is supported, but rather that the evidence reviewed may provide the
most support for an interactive position, in which growth in each of the con-
cepts and skills supports growth in the other (Baroody, 1992; Fuson, 1988). For
example, a skills-first perspective may suggest that very early use of number or
counting is mathematically meaningless (H. P. Ginsburg, 1977; Glasersfeld,
1982); however, early developing quantitative and numerical concepts may
imbue these words and procedures with meaning (Baroody et al., 2005;
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Baroody & Tiilikainen, 2003), and the words may help explicate and dif-
ferentiate the initially syncretic quantities (Clements, Battista et al., 2001b).
Further, humans are sufficiently flexible to permit different paths to learning
(e.g., mostly skills or concepts first), even if they are differentially generative of
future learning (cf. Clements, Battista et al., 2001b). Finally, the extant litera-
ture offers many cases in which conceptual knowledge leads to construction of
procedures (i.e., concepts result in skills). In one illustrative study primary
grade students’ conceptual knowledge relevant to arithmetic predicted not
only their concurrent, but future procedural skill (Hiebert & Wearne, 1996),
Moreover, that literature often does not examine the types of experiences that
have been offered to children; we contend that especially in school, but also at
home, simplistic and reductionistic views of mathematics and mathematics
learning have biased research examining relationships between concepts and
skills. We need better evidence, including solid causal evidence (Rittle-Johnson
& Siegler, 1998), on these issues.

Even researchers supporting a skills-first perspective emphasize that young
children’s knowledge is not limited to the standard counting procedures
(Briars & Siegler, 1984). It is likely that children learn gradually which typical
procedures are essential and which are optional, generalizing from more
experiences and learning from direct feedback. However, there is also reason to
believe that their conceptual knowledge and inquiry guides such learning (e.g.,
Baroody et al., 2005; Briars & Siegler, 1984; Clements & Conference
Working Group, 2004). Even more important, evidence of early learning
indicates the existence of initial predispositions and attentional guides that
direct children to be sensitive to number and number words. Initial evidence
indicates that if such innately-determined (“bootstrap-based”) principles for
counting and number are not put in use early, they may decay (Karmiloff-
Smith, 1992). Put into use, they appear to direct children’s development in
ways that indicate foundational conceptual structures. For example, when
Abby was three years old, her articulations of “th-” and “r” were inaccurate.
When she learned the teen numbers, she said, “ten, eleven, twelve, firteen,
forteen, fifteen . . .” but the fourth and fifth pronunciation, representing 13 and
14, were even closer to the same pronunciation than the spelling indicates.
After a period of being given models for these, she practiced on her own,
and eventually omitted one of the “duplicate” pair. To Abby, the concept that
counting words should not be repeated (probably abstracted from observa-
tions of others’ counting) was more important than the adult model. Once her
articulation improved, and with further adult feedback, she added “thirteen”
and “fourteen” as separate counting words.

Children also develop a wider utilization competence—knowledge and
propensity to use counting in different situations. For example, presented with
three situations, asked (a) “how many?” (b) put n objects, and (c) make two
groups equal, three-year-olds often used counting only in the “how many”
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situation (Sophian, 1998). Children were next most likely to use counting on
“put n objects” problems. The four-year-olds were most likely to count on all
three types. Again, it is likely that both goals of counting, which help structure
the counting process (e.g., “goal sketches,” Siegler & Booth, 2004), and the
principles/procedures of counting, are heavily influenced by social interaction
(Saxe, 1991; Sophian, 1998) and are themselves mutually reinforcing and
generative.

Up to this point, we have dealt with children’s counting of immediately
perceivable objects. As children progress, they become increasingly able to
count things they cannot see or hear (Davydov, 1975), including more abstract
units. This progression not only increases the range of counting situations that
can be addressed, but also supports the understanding of units and composite
units in other domains, such as arithmetic, measurement, and fractions.

Researcher Les Steffe was working with five-year-old Brenda. He showed her
three squares and told her four more were covered under a cloth. He asked
her how many squares there were in all. Brenda tried to raise the cloth. Steffe
stopped her. She counted the three visible squares.

B: One, two, three. [Touches each visible item in turn.]
LS: There’s four here. [Tapping the cloth.]
B: [Lifts the cloth, revealing two squares] four, five. [Touches each and

puts cloth back.]
LS: OK, I’ll show you two of them [shows two]. There’s four here, you

count them.
B: 1, 2 [then counts each visible]: three, four, five.
LS: There’s two more here [taps the cloth].
B: [Attempts to lift the cloth.]
LS: [Pulls back the cloth.]
B: Six, seven [touches the last two squares].

Brenda’s attempt to lift the cloth indicates that she was aware of the hidden
squares and intended to count the collection. But this did not lead to counting
because she was yet to coordinate the utterance of a number word sequence
with the sequential production of figural items. She could take perceived items
as being countable, but could not imagine items. Later, she counted the inter-
viewer’s fingers instead of six items he was hiding. When he pointed out he had
six marbles hidden, Brenda said, “I don’t see no six!”

This episode comes from an interdisciplinary research program with a
bond of shared constructivist philosophy (Steffe, Thompson, & Richards,
1982). Their model views number as a conceptual creation, a double act of
abstraction. Because children usually develop the higher levels only after
kindergarten, this model is described briefly. Levels are distinguished by the
type of unit the child can count. Perceptual unit items are sensory-motor
signals that are abstracted and separated out as experientially separate items.
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Counters of perceptual unit items need a collection of objects, such as marbles,
beads, or fingers, to count. When these items can be re-presented by the child—
that is, reconstructed mentally without actual material, like a “playback”—the
unit is a figural unit item. Counters of motor unit items might use the motor
act (e.g., pointing or putting up fingers), and counters of verbal unit items
an utterance of a number word, as a substitute for a perceptual object or its
figural representation. They can count two collections, even if hidden, by
performing a single sequence of counting acts (i.e., early counting on). How-
ever, they do not make an initial plan; instead, they re-present a particular
pattern after they count the first collection. They usually have to start counting
from “one.” Up to this point, uttering the number words implied the presence
of accompanying tangible items for children. That is, the children use their
object concepts to produce more than one countable item in visualized
imagination, but they still need to actually count as counting is still a sensory
motor activity.

At the next, abstract, stage, they could take any items as the units to be
counted. For example, with eight visible, four screened, and told how many
in all, Merrill counted, “Nine, 10, 11, 12,” and said, “Let’s see, nine is one, 10 is
two . . . . four!” She “stepped back” and took each counting act as a countable
unit itself. She also reflected on potential counting activity and separated it
into two parts, which necessitated the use of the integration operationally
uniting that which can also be viewed as distinct units. Finally, she intended to
count how many counting acts she would perform before beginning to count
(i.e., she anticipated). At that point, she was said to possess an abstract con-
ception of number. Thus, whereas re-presentation and substitution of units to
be counted were previously essential constructions, integrations and anticipa-
tions engendered progression to the abstract stage. At this stage, children have
constructed arithmetical units. That is, counting is an operation in that the
child can imagine counting up to six, without actually engaging in the activity.
The countable items are still visualized images of hidden items, but the
visualized images change in nature from figurative to operative images. The
children can posit collections willfully rather than simply imagine a collection
that is hidden from view, allowing them to imagine counting the posited
collection.

The advent of the three abstract stages marks the completion of the con-
struction of the initial number sequence (via the integration operation), and
the beginning of the construction of part-whole operations. In the first
stage, sequential integration operations, children might apply the integration
operation twice in succession (e.g., Merrill’s aforementioned solution). In the
next stage, progressive integration operations, children might count to 10, take
that result as “one ten,” and then proceed to count four more times. Here, the
integration operation is applied to the composite (pattern) of 10 units that was
itself constructed by applying the integration operation. The child is now aware
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of this composite unit qua unit. “Fourteen” is seen as “one 10 and four more
ones.” Finally, in the stage of part-whole operations, children can apply the
integration operation to the two component units, one of numerosity 10 and
one of four. Thus, they apply the integration operation a third time to the
results of a progressive integration operation. The composite unit can be
viewed simultaneously as a separate unit and as a part of another unit. This
permits additional flexibility and anticipatory planning of solutions.

These developments support the children’s ability to subitize and create
mental images (visualized, operative images) of certain quantities and
numbers that support more sophisticated and efficient strategies. We discuss
these strategies at more length in a following section.

Zero and Infinity

Situations similar to those that engender counting may also lead to children’s
initial encounter with the mathematical notions of zero and infinity. Pre-
schoolers often have a limited understanding of both (Evans, 1983; R. Gelman
& Meck, 1983). However, even three-year-olds represent zero as the absences
of objects more than half the time, and by four years, children did as well with
zero as with small whole numbers (Bialystok & Codd, 2000; similar results are
reported by Hughes, 1986).

Because touching objects is important to young children’s initial counting,
zero is often not encountered in the act of counting. (Resistance to the ideas
of zero and infinity is not merely a developmental limitation, of course. His-
torically, societies have taken considerable time to confront, represent, and
incorporate these ideas.) In comparison, older children and adults judge
numbers zero to nine to be similar based on “counting distances.” Kindergar-
teners solve problems with zero well, although there is a separation between
their knowledge of zero and their knowledge of the counting numbers. In one
study, for example, they showed no evidence of applying counting strategies
to zero problems, and performed better on zero problems than on problems
involving one or two, suggesting that such problems were solved differently
(Evans, 1983).

Another study (Wellman & Miller, 1986) confirmed that zero was a special
number, difficult to learn but generative of deeper reasoning. That is, the
developmental sequence for all children included three levels. First, children
acquire familiarity with the name “zero” and the symbol “0.” Second, they
learn that zero refers to a unique numerical quantity, none or nothing. Third,
children relate zero to the small counting numbers. They learn to compare zero
to those numbers and, lastly, learn that zero is the smallest whole number.
Before reaching this third level, children know that zero denotes nothing,
and is smaller than most other numbers, but still insist that “one” is the
smallest number. Children followed this developmental progression despite
experiencing several different curricula, so it appears to not merely reflect a
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curriculum sequence. Preschool education did, however, increase the devel-
opment of these levels by a full year.

However, probably because zero is difficult to understand and operate
on originally, children develop special rules for its use, and the under-
standings and rules they learn provide a first step towards more general
algebraic rules and towards an expanded conception of number and mathe-
matics. Even children as young as kindergarten could respond to tasks
involving zero and “hidden numbers,” exhibiting nascent knowledge of
algebraic rules, such as a + 0 = a. (About a third responded correctly.) First
to third graders showed increased accuracy. In addition, although younger
children’s justifications exhibited “rule denial” (refusal to respond because
exact numbers were not know), this declined substantially over the early
childhood years. 

In summary, children think about zero in different ways. Children build
special rules to account for this exceptional number.

Preschoolers often have a more limited understanding of infinity (Evans,
1983; R. Gelman & Meck, 1983). Piaget and Inhelder’s early research
focused on subdividing a geometrical figure (including a line segment) as
many times as possible. Pre-operational children (before about seven years of
age in Piagetian theory) could not continue such subdivision far. Concrete
operational children could continue, creating a large, but not infinite number
of subdivisions. Only in the period of formal operations (more than 12 years of
age, approximately) could children understand that such a process could be
continued indefinitely. Different tasks reveal different notions. Asking children
to extend a repeating sequential pattern of shapes on a sheet of blank paper
revealed that some grade K-2 children believed that space is unbounded, but
others belief it to be bounded (Marchini, 2005).

In a game context (e.g., “Each of us say a number. The one whose number
is larger wins. Would you like to be first or second?”), most six- to seven-year-
old children did not show understanding of the boundlessness of integers
(Falk, Gassner, Ben Zoor, & Ben Simon, 1986). Only for students toward 12
years of age could the majority explain why you should play second. More
difficult were the similar games for negative integers and infinitesimals (i.e.,
very small fractions; numbers nearing zero as the limit). Such ideas are not
understood in clear and complete ways at any point in development. For
example, one five-year-old said there were more numbers than grains of sand
in the world because numbers never end, but the grains of sand stay as they are.
However, she chose to go first in the game. Others thought that naming the
numbers was important, that no one could know the largest number.

Counting may play an even larger role in children’s early ideas related to
infinity than it does for zero (Evans, 1983). Children reasoning at what the
researchers called “level 1” showed little or no knowledge of numbers greater
than one hundred, and their answers reflected only limited knowledge of the
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structure of the counting sequence. Children at level 2 showed knowledge of
this structure, including for generating new, larger numbers. Children
reasoning at level 3 had a stable understanding that there was no greatest
number because it was always possible to create a larger number. Most children
were able to give sensible answers about infinite space, time, or number, usually
based on their reasoning that one is always able to add one more. Although
language, and its recursive nature, has been claimed as the root of children’s
initial ideas of infinity, others say that the concept can be shown to develop
before language (R. Gelman & Butterworth, 2005). For example, a child of age
5-9 did not have language for such numbers, but claimed that adding one
more would always result in a larger number (“You still put one and they get
real higher,” p. 9). The fast adoption of English counting words by speakers
of languages with restricted number terms was considered another counter-
example to the foundational role of language (R. Gelman & Butterworth,
2005).

Language, Numerals, and Other Symbols

As the brief history of research on early number knowledge suggested, the
hypothesized role of language has changed through the four historical phases
described in Chapter 2. In the first phase, counting and number words played
a definite, if underspecified, role. The second, Piagetian, phase severely
limited the role of language. In the theories of the nativists and skills-
integration theorists of the third phase, language was important in building
more sophisticated number concepts, but was not central to development per
se, especially in its earliest foundations. However, it was noted that nativist
principles explained very young children’s separation of object labels from
number words (Gelman, 1990a, 1990b; Karmiloff-Smith, 1992). In the fourth
phase, several theorists proposed that language plays a critical role in develop-
ing the concept of cardinal numbers. For example, they claimed that language
sensitizes children to cardinality and helps them move from approximate to
exact representations of number (Spelke, 2002; Van de Walle, Carey, & Prevor,
2000). That is, the word “three” may enable children to create an explicitly
cardinal representation that applies to various triads of objects (Baroody et al.,
2006). One study even provides support for a strong version of the Whorfian
hypothesis (Gordon, 2004). The Pirahã, who live along in the Amazonia region
of Brazil, have words only for “one,” “two,” and many. Moreover, their word for
one, “hòi,” also means small, suggesting there may be little differentiation
between discrete and continuous quantities. and no unique grammar for
singletons. They have little or no ability to enumerate exact quantities when
the set sizes exceeded two or three (they do appear to use analog estimation
processes, supporting early conclusions about subitizing and estimating
mechanisms, but their accuracy is low).

However, language and culture are intricately interwoven (Vygotsky, 1929/
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1994, 1934/1986), and cultural practices in which children and adults are or are
not engaged affect both language and the understanding and employment of
mathematics (Saxe, 1991). Thus, it is not just “words” that are important, but
the language that is used in learning and engaging in cultural practices that
involve mathematics. Language supports, but does not alone account for,
thinking and learning about mathematics.

Empirical evidence indicates that basic verbal number competencies
precede some nonverbal tasks, contrary to the mental models view (Baroody,
Benson et al., 2003). This supports the view that learning number words
facilitates the development of exact representations. Thus, as stated previously,
human language plays an important role in connecting different representa-
tions, helping to make early pre-mathematical cognition numeric (Wiese,
2003a). Much of the research in this section supports this view, as does research
on learning other concepts, such as color words (Sandhofer & Smith, 1999).
Not all language involves the mathematical term for the concept. Often intro-
duction of such sophisticated terms is better delayed until concepts are
developed with informal language and experiences (Lansdell, 1999). Further,
there is still an open debate about the exact role of language, with some arguing
that it is critical for the development of number concepts above four, and
others citing evidence of competence in cultures with limited counting words
and other evidence that language is not the cause of the development of these
concepts (R. Gelman & Butterworth, 2005). For example, there is evidence that
when verbal counting is too slow to satisfy time constraints, nonverbal mental
magnitudes mediate the production of a number word that approximates
that numerosity of a set. It also mediates the ordering of symbolic numbers
(Gallistel & Gelman, 2005). In general, research indicates that the interactions
between language on the one hand, and number concepts and skills on the
other, are more bidirectional, fluid, and interactive than previous accounts
allowed (Mix et al., 2005). For example, one study shows that pre-school
children’s early storytelling abilities are predictive of their mathematical ability
two years later (O’Neill, Pearce, & Pick, 2004). Specifically, it was only
children’s ability to relate all the different events in the story, to shift clearly
from the actions of one character to another, and to adopt the perspective of
different characters and talk about what they were feeling or thinking (aspects
such as mean length of utterance and vocabulary were not predictive).
Thus, both abilities may be related to reasoning about relations. This study
is correlational, so there is no evidence that building storytelling will affect
mathematics learning, but it does connect general language and mathematics
competencies.

Children enter elementary school, and often pre-K, with initial knowledge
of reading and even writing numerals (Bell & Bell, 1988; Bialystok & Codd,
2000; Fuson, 1992a); indeed, very young children differentiate written
numerals and letters before they can read (Karmiloff-Smith, 1992). For
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example, kindergarteners from a range of populations were generally com-
petent with the numerals from 1 to 20, and many from 1 to 100. The early
autumn percentages for reading and writing were: “3,” reading, 95 percent,
writing, 80 percent; “9,” 74 percent, 53 percent; “17,” 54 percent, 21 percent;
“57,” 26 percent, 21 percent; “100,” 41 percent, 31 percent. By the end of the
year, the percentages for numerals 3 and 9 for both reading and writing were
above 93 percent and for the others between 55 percent and 80 percent. Revers-
ing the digits for numbers in the teens was a frequent error, due to the reversal
in English pronunciation. (Reversals in writing digits, e.g., writing numeral 3
“backwards,” were ignored in scoring as common errors that children
outgrow.)

Children’s ability to read or produce numerals or other representations does
not imply a commensurate understanding of what they represent (Bialystok &
Codd, 2000). In one study, about a fourth of the children entering school were
not aware of the function of numerals (Munn, 1998). When asked to represent
how many objects there were, children might produce idiosyncratic, picto-
graphic (representing the appearance of objects as well as their numerosity),
iconic (one-to-one correspondence between objects and marks), or symbolic
(numerals) responses (Ewers-Rogers & Cowan, 1996; Hughes, 1986; Munn,
1998). Similarly, in other studies, preschoolers showed an understanding
that written marks on paper can preserve and communicate information
about quantity (Ewers-Rogers & Cowan). For example, three- and four-year-
olds invent informal marks on paper, such as tally marks and diagrams, to
show how many objects are in a set (Allardice, White, & Daugherty, 1977).
However, children this age did not notice when numerals were missing from
pictures of such objects and rarely said number words in giving fast-food
orders; thus, understanding preceded use of numerals (Ewers-Rogers &
Cowan, 1996).

However, there is evidence that the development of mathematics concepts
on one hand and notational systems on the other interact, each supporting the
other (Brizuela, 2004). So too do invented and conventional mathematical
notions; thus, children’s inventions or reinventions of notations may be
important to their mathematical development, as are their reinventions of
mathematical concepts. Children spontaneously and without hesitation invent
symbols for numbers above 10, such as representing 13 as “03,” “103,” and
“31” (Zhou & Wang, 2004). Similarly, a kindergartener represented 17 as “70”,
saying “there’s the seven (pointing to 7) and there’s the teen (pointing at the
zero) (Brizuela, 2004, p. 11). Another kindergartner made sense of place value
notion by saying the first 3 in 33 a “capital number”, having greater
significance.

When asked to distribute a quantity, create a representation, then recall it
(soon, or three weeks thereafter), children’s productions were global (idio-
syncratic or pictographic), analogue (iconic), and symbolic (Bialystok & Codd,
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2000). Children could represent, and later read their representations of zero
and small whole numbers almost as accurately as they could produce them, but
only seven-year-olds could represent fractions. Global representations were not
well understood; of the others, three- to four-year-olds tended to choose ana-
logue representations, six- to seven-year-olds numerals, and five-year-olds
used both. Numerals were read correctly far better than other representations;
even accurate analogues may not have functioned as symbols for the children.
Thus, children understood quantities before they could represent them, and
produce representations that they were unable to read later, although they
understood the purpose of the representations.

Just as important as learning to read and write representations of number is
learning to use such representations functionally. Except for the idiosyncratic
representations, children use their symbols to remember the amount in collec-
tions, one level of functional use. Children continue to develop competence in
functional use of numerals. For example, children were shown several collec-
tions labeled with symbols. They were told a teddy bear added one object to
only one collection and asked to figure out which one had the extra object.
Only some young children could use the symbol to complete the task (Munn,
1998). Functional use is more likely when children use numerals rather than
pictographic or iconic representations, and nonconventional representations
may not be important precursors to conventional symbol use. However, even
cultures without numeric notional systems use number computations success-
fully, so external number notational systems are not universal, and thus not
requisite to calculation (Karmiloff-Smith, 1992). Children who learn,
appropriate, and invent notational systems do have a powerful tool for
mathematical reflection at their disposal (Brizuela, 2004).

Similar to other domains, there are cultural differences in knowledge of
numerals. In different countries, low-income children exhibit less knowledge
than those from more advantaged backgrounds (Hughes, 1998; Zhou & Wang,
2004). Differences are also found between countries. Whereas 30 percent of
British five-year-olds represented numbers one to six with numerals (Hughes,
1998), 40 percent of Chinese four-year-olds could represent numbers one to 20
(Zhou & Wang, 2004). Whereas 50 percent of British six- to seven-year-olds
represented the numbers one to six with numerals, 85 percent of Chinese
five-year-olds could represent 20 numbers.

In our development of the Building Blocks curriculum and subsequent
summative evaluations, several developmental psychologists questioned our
introduction to numerals in the preschool years as “developmentally
inappropriate.” The evidence reviewed here suggests that, as with many topics,
there is little chance of harm, and much to gain, by introducing and using
numerals functionally in preschool. Such use is related to cardinal understand-
ings (Zhou & Wang, 2004) and is consistent with children’s capabilities and
interests. Such functional use, in line with children’s interests, is not rote
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practice, but rather use of numerals to represent ideas that children find mean-
ingful and motivating.

A simple learning trajectory suggests that children first learn that written
numerals are distinct from other symbols. Written numerals are then
recognized without a full functional understanding. Later, children come to
match numerals to quantities, and then to represent quantities with numerals
they produce.

Young children are less able to represent changes in sets or relationships,
in part because they fail to realize that the order of their actions is not auto-
matically preserved on paper (Allardice et al., 1977). One study indicated that
children needed numbers to refer to certain objects to do well in arithmetic
(Hughes, 1986). Children as old as seven years had a difficult time representing
the actions of +/− in very simple situations—two bricks and two more bricks—
with written symbols. Instead, they represent only the result.

Summary

That meaningful counting is not dependent upon concrete operations, but
is nonetheless closely related to incipient classification and seriation abilities
was anticipated by Dewey’s (1898; see also Judd, 1927) formulation that
counting involves both order and cardinal ideas. Dewey postulated that
difficulties in counting are with successive ordering of units in a series and
that children are first interested in such series when motor recitations break up
a sensory blur into definite states. The continuity of motor adjustments
arranges these states into a series, which become numerical when their parts
are ordered with reference to place and value in constituting the whole group.
In parallel is a developing recognition of “muchness,” made definite through
counting.

Accurate, effortless, meaningful, and strategic counting is an essential early
numerical competence. Initial level of achievement and subsequent growth in
number and arithmetic from preschool into the elementary years are both pre-
dicted better by early counting ability than by other abilities, such as visual
attention, metacognitive knowledge, and listening comprehension (Aunola,
Leskinen, Lerkkanen, & Nurmi, 2004).

Experience and Education

Studies have disproved the Piagetian notion that counting is meaningless
until children achieve logical operations in classification, seriation, and conser-
vation. Piagetian classification and seriation are not prerequisite for learning
counting; the domains of classes, series, and number appear to be inter-
dependent but experiences in number have priority (Clements, 1984c; Fuson,
1988; Fuson et al., 1983; Lesh, 1972; Steffe & Cobb, 1988).

As a reminder, most implications for education are detailed in the com-
panion book, Learning and Teaching Early Math: The Learning Trajectories
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Approach (Clements & Sarama, 2009). This includes research indicating that
kindergarten and first grade teachers often do far too little to develop counting
skills, with many children learning little or nothing during the entire period
(Wright et al., 1994). In a similar vein, too frequently textbooks wait until the
primary grades to “introduce” counting skills that children already possess or
are developing in pre-K and kindergarten (Fuson, 1992a).

Learning Trajectory for Counting

Accepting that the goal of this learning trajectory is sophisticated counting,
this book provides the second component, the developmental progression.
Here we omit the third component, the instructional tasks, because they are
described in detail in the companion book. We do include our hypothesized
mental actions on objects for each level of the developmental progression
(Table 3.1). Recall that the ages are estimates based on extant research and
are provided only as a general guide—age levels are strongly dependent on
experience.

Table 3.1 A Developmental Progression for Counting

Age
(years)

Developmental Progression Actions on Objects

1 Pre-Counter Verbal No verbal
counting.

Names some number words with no
sequence.

Chanter Verbal Chants “sing-song”
or sometimes-indistinguishable
number words.

Initial (bootstrap) sensitivity to
quantity supports the implicit
categorization of words into quantity/
number relevant vs. irrelevant.

A verbal list composed of a string of
paired associates of sounds/syllables is
available (and increasingly expanded
and differentiated). It can be produced
at will.

2 Reciter Verbal Verbally counts with
separate words, not necessarily in
the correct order above “five.”

“one, two, three, four, five, seven.”

Puts objects, actions, and words in
many-to-one (age 1–8) or overly
rigid one-to-one (age one;
correspondence (age 2–6)

Counts two objects “two, two, two.”

If knows more number words than
number of objects, rattles them off

quickly at the end. If more objects,
“recycles” number words (inflexible
list-exhaustion).

The verbal list is differentiated into
distinct numbers words associated with
the term “counting” and the notion of
quantifying (at least in the aspect of
sequencing).

Counting is intuitively connected to
analog estimators of quantity (see
Chapter 2).

Continued Overleaf
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Age
(years)

Developmental Progression Actions on Objects

3 Reciter (10) Verbal Verbally counts
to ten, with some correspondence
with objects, but may either
continue an overly rigid
correspondence, or performance
errors (e.g., skipping, double-
counting). Producing, may give
desired number.

“one [points to first], two [points to
second], three [starts to point], four
[finishes pointing, but is now still
pointing to third object], five, . . .
nine, ten, eleven, twelve, ‘firteen,’
fifteen . . .”

Asked for five, counts out three,
saying “one, two, five.”

The verbal list is produced reliably from
one to ten; after ten, increasing amounts
of the list, sometimes with omissions or
other errors, can be produced.

The procedure to produce the list is,
with more or less strength, associated
with “indicator” acts (frequently
pointing), using an initial bootstrap
process (probably linked to naming
objects and rhythm) to produce a
correspondence (also with more or less
strength to be a one-to-one
correspondence) between the two.

Corresponder Keeps one-to-one
correspondence between counting
words and objects (one word for
each object), at least for small
groups of objects laid in a line.

� � � �

“One, two, three, four.”

May answer a “how many?”
question by recounting the objects,
or violate one-to-one or word order
to make the last number word be
the desired or predicted word.

The counting procedure is further
constrained in producing a
correspondence, both in the
development of the initial bootstrap
process and by developing conceptual
constraints (i.e., the idea to “count each
object once and only once”) so one-to-
one correspondence is maintained in
simple contexts (and is strove for in
most contexts, until other mental
demands, especially fatigue, achieve
prominence).

4 Counter (Small Numbers)
Accurately counts objects in a line
to five and answers the “how many”
question with the last number
counted. When objects are visible,
and especially with small numbers,
begins to understand cardinality.

� � � �

“One, two, three, four . . . four!”

Connection is made between the output
of subitizing processes (see Chapter 2)
and counting process. During object
counting (which can apply to any set of
“objects,” including events, etc.), a
procedure applies to the final counting
word makes a count-to-cardinal
transition, producing a cardinal value
that is associated with the set.

Counter (10) Counts arrangements
of objects to 10. May be able to
write numerals to represent one
to 10.

Accurately counts a line of 9 blocks
and says there are nine.

Processes developed in previous levels
extended to sets of 10 (and verbal skills
to 20) and tracking-of-what-objects-
have-been-counted procedures
extended to structured arrangements
other than lines (e.g., without moving
objects using nascent spatial 

74 • Number and Quantitative Thinking



Age
(years)

Developmental Progression Actions on Objects

May be able to tell the number just
after or just before another number,
but only by counting up from one.

What comes after four? “One, two,
three, four, five. Five!”

Verbal counting to 20 is developing.

structuring, see Chapters 8 and
especially 12; or using a move-and-
count procedure).

If learned motor schemes to produce
written numerals, can use these to
represent a quantity.

Producer (Small Numbers) Counts
out objects to five. Recognizes that
counting is relevant to situations in
which a certain number must be
placed.

Produces a group of four objects.

Using the goal structure developed in
“Maker of Small Collections” (see
Chapter 2), a new executive control
procedure monitors the move-and-
count procedure from the “Counter
(10)” level to check, at the production
of each count word, if that word
matches the goal number; if so, stops
the move-and-count procedure.

5 Counter and Producer (10+)
Counts and counts out objects
accurately to 10, then beyond (to
about 30). Has explicit
understanding of cardinality (how
numbers tell how many). Keeps
track of objects that have and have
not been counted, even in different
arrangements. Writes or draws to
represent one to 10 (then, 20, then
30). Gives next number (usually to
20s or 30s). Separates the decade
and the ones part of a number
word, and begins to relate each part
of a number word/numeral to the
quantity to which it refers.

Recognizes errors in others’
counting and can eliminate most
errors in own counting (point-
object) if asked to try hard.

Counts a scattered group of 19
chips, keeping track by moving each
one as they are counted.

Processes developed in previous levels
extended to sets of 30 and more,
including tracking-of-what-objects-
have-been-counted procedures to any
arrangement (using a move-and-count
procedure or a systematic spatial
plan).

Re-representation of the chain of
number words has allowed the
production of the next (forward)
number in the counting sequence.

Count-to-cardinal transition is
procedurally automatic and conscious
(re-represented at an explicit level).

Similarly, the combination of
automaticity for the counting algorithm
and the re-representation of it to an
explicit level has generated an executive
process that monitors counting of
others and self, detecting and
identifying errors.

Counter Backward from 10 Verbal
and Object

Counts backward from 10 to one,
verbally, or when removing objects
from a group.

“10, 9, 8, 7, 6, 5, 4, 3, 2, 1!”

Production of the number word
sequence is reversed, allowing
backwards counting.

Continued Overleaf
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Age
(years)

Developmental Progression Actions on Objects

6 Counter from N (N+1, N−1) Verbal
and Object Counts verbally and with
objects from numbers other than 1
(but does not yet keep track of the
number of counts).

Asked to “count from five to eight,”
counts “five, six, seven, eight!”

Determines numbers just after or
just before immediately.

Asked, “What comes just before
seven?” says, “Six!”

The procedure to produce number
words is developed to allow a “break” in
the chain of numbers at any point in the
known verbal counting sequence to
procedure from that point forward or
backward.

Understands that each number is one
more than the one before and one less
than the other after (begins to build a
mental model such as illustrated, but
may be constrained to “next to”
relations—immediately before or after).

May develop the level of thinking in
“Counter On Using Patterns” in
constrained situations of plus and
minus one and possibly two with
external support and/or guidance.

Skip Counter by 10s to 100. Verbal
and Object Skip counts by 10s up to
100 or beyond with understanding;
e.g., “sees” groups of ten within a
quantity and counts those groups by
10 (this relates to multiplication and
algebraic thinking; see chapters 7
and 13).

“10, 20, 30 . . . 100.”

The verbal sequence consisting of
multiples of tens is stored and can be
retrieved.

Cardinality concepts are extended (here,
in the limited context of tens) to
recognize that a group of objects can be
named by a number (without needing to
count every object to produce that
cardinality).

These two concepts are combined by an
executive “skip-counting” procedure
that counts groups believed to each
contain ten by tens.

Counter to 100 Verbal Counts to
100. Makes decade transitions
(e.g., from 29 to 30) starting at any
number.

“. . . 78, 79 . . . 80, 81 . . .”

Previous verbal counting skills are
extended to 100 relying on a bootstrap
pattern recognizer; verbal counting by
tens supports the procedure of the next
decade in the counting algorithm.
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Age
(years)

Developmental Progression Actions on Objects

Counter On Using Patterns
Strategy Keeps track of a few
counting acts, but only by using
numerical pattern (spatial, auditory
or rhythmic).

“How much is three more than
five?” Child feels five “beats” as
counts, “five . . . six, seven, eight!”

The concept that each number in the
counting sequence includes the number
before, hierarchically—nascent and
implicit at the “Counter (Small
Numbers)” level—is at least a theorem-
in-action (Vergnaud, 1982) and is
evoked explicitly in some contexts.

This concept supports the use of the
previously-acquired skill of “Counter
from N (N + 1, N − 1)”, and the
knowledge of rhythmic subitizing (see
Chapter 2) in adding a small number
of objects to an existing set.

Skip Counter Verbal and Object
Counts by fives and twos with
understanding.

Child counts objects, “Two, four, six,
eight . . . 30.”

Previous skills from the “Skip Counter
by 10s to 100” level are extended to
include groups of fives and twos.

Counter of Imagined Items:
Strategy Counts mental images of
hidden objects.

Asked, “There are five chips here and
five under the napkin, how many in
all?” says fiiiiive . . . then points to
the napkin in four distinct points,
[corners of an imagined square]
saying, “Six, seven, eight, nine.”

Bootstrap abilities to represent objects
as mental objects (see Chapter 2), re-
represented components of counting
and cardinality, and an implicit part-
part-whole scheme (see Chapters 5
and 6) support the production of an
intended set of a given numerosity,
which can be produced with perceptual
support, such as a known spatial pattern
(e.g., “corners of square” for four) as a
part added on to another part to
determine the whole.

Counter On Keeping Track
Strategy Keeps track of counting
acts numerically, first with objects,
then by “counting counts.” Counts
up one to four more from a given
number.

How many is three more than six?
“Six . . . seven [puts up a finger],
eight [puts up another finger], nine
[puts up third finger]. Nine.”

What is eight take away two? “Eight
. . . seven is one, and six is two. Six.”

Competencies from the previous level
are extended to explicitly represent the
cardinality of an intended set (of
objects, numbers/counting acts) and
keep track of the number in that set,
even without perceptual support. Thus,
a subgoal of explicitly quantifying that
set is established and establishes the
structure of the counting on procedure.

Continued Overleaf
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Age
(years)

Developmental Progression Actions on Objects

Counter of Quantitative Units/
Place Value Understands the base-
ten numeration system and place-
value concepts, including ideas of
counting in units and multiples of
hundreds, tens, and ones. When
counting groups of ten, can
decompose into 10 ones if that is
useful.

Understands value of a digit
according to the place of the digit
within a number.

Counts by tens and one to
determine.

Counts unusual units, such as
“wholes” when shown
combinations of wholes and parts.

Shown three whole plastic eggs and
four halves, counts and says there are
five whole eggs.

A relationship between single digitals
and tens place names is established (e.g.,
“fifty” is five tens).

The counting procedure is reorganized
to include an explicit re-representation
of the hierarchical structuring of
number (see “Counter On Using
Patterns”), allowing numbers to be
understood as embedded within other
numbers.

Counter to 200 Verbal and Object
Counts accurately to 200 and
beyond, recognizing the patterns of
ones, tens, and hundreds.

“After 159 comes 160 because after
five tens comes six tens.”

Previous verbal counting skills are
extended beyond 200, the bootstrap
pattern recognizer is re-applied to
counting above 100.

7 Number Conserver Consistently
conserves number (i.e., believes
number has been unchanged) even
in face of perceptual distractions
such as spreading out objects of a
collection.

Counts two rows that are laid out
across from each other and says they
are the same. Adult spreads out one
row. Says, “Both still have the same
number, one’s just longer.”

Connections among concepts and skills,
including the counting algorithms,
cardinality, ordinality (see also
Chapter 4), and subitizing (see Chapter
2), and explicit representation of the
hierarchical structuring of number (see
“Counter of Quantitative Units/Place
Value”).

Counter Forward and Back
Strategy Counts “counting words”
(single sequence or skip counts) in
either direction. Recognizes that
decades sequence mirrors single-
digit sequence.

Integration of all previous concepts and
skills allow numerical counting with
embedding. Multiple part-part-whole
schemes can be held in memory and
related.
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Final Words

Subitizing and counting are children’s main strategies for quantification. In
many situations, this is only a step in the problem-solving process. Often, what
we wish to do is compare two numbers or sequence several numbers. This is the
topic of the following chapter.

Age
(years)

Developmental Progression Actions on Objects

What’s four less than 63? “62 is one,
61 is two, 60 is three, 59 is four, so
59.”

What is 15 more than 28? “Two tens
and one ten is three tens. 38, 39, 40,
and there’s three more, 43.”

Switches between sequence and
composition views of multidigit
numbers easily.

Counts backward from 20 and
higher with meaning.
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4
Comparing, Ordering,

and Estimating

In this chapter, we discuss comparing, ordering, and estimating quantities,
with an emphasis on discrete quantity (Chapters 11 and 12 in Part IV discuss
continuous quantity).

Comparing and Equivalence

Infants begin to construct equivalence relations between sets, possibly by intui-
tively establishing correspondences (spatial, temporal, or numerical), as early
as 10 months (Brannon, 2002) and at most by 24 months of age (Langer,
Rivera et al., 2003), although the ability continues to develop (Wagner &
Walters, 1982). Studies of early discrimination and conservation of number
(see Chapter 2), also address children’s initial abilities to compare quantities.
To briefly highlight relevant findings, children may base comparisons on
number and may use nonverbal representations of cardinality (Mix et al.,
2002). For example, they may share with monkeys a set of mental filters, each
tuned to an approximate number of objects (e.g., two), but overlapping with
adjacent filters (e.g., those that detect one or three also sensitive to two, but less
so than the “two filter”), which explains why discrimination improves with
greater numerical distance (Nieder et al., 2002). At three years of age, children
can identify as equivalent or nonequivalent static (simultaneously presented)
collections consisting of a few (one to about four) highly similar items (e.g.,
Huttenlocher, Jordan et al., 1994; Mix, 1999). For instance, they can identify

••• and ••• as equal and different from •• or •• (the researchers describe this as
a nonverbal competence, but children may have subitized the arrays). At three
and a half years, they can match different homogeneous visual sets and match
sequential and static sets that contain highly similar items. At four and a half,
they can nonverbally match equivalent collections of random objects and
dots—a heterogeneous collection and a collection of dissimilar items.

Not all comparisons, however, use regions of the brain tuned to number.
A neuroimaging study found that brain regions that represent numerical
magnitude also represent spatial magnitude, such as the relations between sizes
of objects, and thus may not be numerical in function (Pinel et al., 2004).
Judgments of number and size engaged a common parietal spatial code. No
region was specific to judgments for number, size, or luminance, nor was there
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one generic “comparison” region, but rather these functions are distributed
across several regions that overlap.

Another neuroimaging study found both commonalities and differences in
the children’s and adults’ judgments of relative magnitude between two
numerals (Ansari, Garcia, Lucas, Hamon, & Dhital, 2005). They used the well-
known “distance effect”—the more distance between two numbers, the faster
and more accurate are people’s judgments (e.g., of “which is larger”). Children
showed more activation in the right frontal regions that control attention,
working memory, and executive functions, whereas adults show more engage-
ment of intraparietal and posterior parietal regions, which may indicate
increasingly strong and flexible mappings from numerals to the numerical
quantities they represent, as well as more specialization in these regions.

Similarly, a study of three-year-olds found no evidence that preschoolers
use either an analog number magnitude or an object-file mechanism to com-
pare numerosities. They were unable to compare sets controlled for surface
area, suggesting that they rely on perceptual cues. Their development of
numerosity-based representations seems to be related to some understanding
of cardinality (Rousselle, Palmers, & Noel, 2004).

Children’s success with sequentially-presented objects emerges later than
with simultaneously-presented objects, and sequential events are the most
difficult (Mix, 1999). These abilities seem to depend on counting abilities, with
sequential events requiring a mastery of counting. Thus, children appear to use
conventional, or some form of, counting to solve these tasks.

Both infants (R. G. Cooper, Jr., 1984) and preschoolers (Sophian, 1988) do
better comparing sets of equal, rather than unequal, number, presumably
because there are many ways for collections to be unequal (difficulty is also
increased if the task demands unequal collections be ordered in size, as is
discussed in the following section). (Although in an early study, high, but not
low, conservers scored higher on the equivalence than the order relations on a
transitivity test, D. T. Owens & Steffe, 1972.) In brief, children show com-
petence in explicitly comparing simultaneously present, equivalent collections
as early as two or three years of age in everyday, spontaneous, situations, but
show only the beginnings of such competence on clinical tasks at two and a half
to three and a half years of age, with success across a wide range of tasks only
appearing at ages suggested by Piaget (Baroody et al., 2005; Mix et al., 2002).

Clinical studies of equivalence also highlight specific difficulties children
have in number comparison tasks. For example, some children will count the
sets, recognize the number is the same, but still maintain that one set has more
(Piaget & Szeminska, 1952). Children from four to five years of age do compare
set sizes on the basis of misleading length cues, even when the situation is set up
to encourage counting (Fuson, 1988).

Conversely, children cannot always infer number from that of an equivalent
set. In one study, fair sharing was established by dealing out items to two
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puppets, and the experimenter counted one set out loud and asked children
how many the other puppet had. No four-year-old children made the correct
inference that the number was the same; instead, they tried to count the second
set. The experimenter stopped them and asked again, but less than half made
the correct inference (Frydman & Bryant, 1988).

Information-processing demands may help explain why. For example, to
compare the number in two sets, children must count each set, keeping track of
the two numbers, and then compare these numbers’ ordinal values. This may
exceed young children’s information-processing capabilities (e.g., their work-
ing memory). For example, in one study, children were asked two types of
questions about toy animals, one was “Can every big horse have its own baby
horse?” and the other was, “How many animals are there all together?” A
puppet either counted all the animals or the two subsets separately. Both
three- and four-year-olds preferred the puppet to count all the animals on the
“how many in all” task. However, on the comparison tasks, three-year-olds
accepted both types of counting, whereas four-year-olds still preferred count-
ing all the animals. Thus, neither age group was as knowledgeable about using
counting to compare sets as they were about using counting to find a total
amount (Sophian, 1998). The additional information-processing load may be
part of the limitation, but knowledge about the relevance of counting may also
be lacking. This is illustrated in another study, in which two sets were placed in
one-to-one correspondence, and then one was hidden. Children in one con-
dition were told to count the visible set before being asked how many in the
hidden set. In the other condition, they were asked to move the still-visible set,
emphasizing each item, but not the numerosity. Even three-year-olds, when
told to count, made appropriate inferences. Most children in the “move” condi-
tion did not make appropriate inferences, even though the objects were right
there to count. They did not understand the relevance of counting.

Different researchers have given several additional explanations for pre-
schoolers’ reluctance or inability to use counting (Curtis, Okamoto, &
Weckbacher, 2005). Several agree with the explanation of available memory
resources (Pascual-Leone, 1976). For example, one theory is that children have
two conceptual structures that are initially separate and only later become
integrated. The first, a quantity comparison structure, allows young children to
compare two set sizes intuitively (see Chapter 2). The second, the early enu-
meration structure, allows them to count small sets (see Chapter 3). They do
not use this counting structure to compare sets. After six years of age, their
ability to hold these two structures simultaneously in memory allows them to
integrate them, and thus use counting to compare sets (Case & Okamoto,
1996).

Other researchers state that children believe that counting-based strategies
are too difficult or unreliable (Cowan, 1987; Michie, 1984b; Siegler, 1995;
Sophian, 1988). Finally, others say that counting is an activity, embedded in
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situated tasks, and that use of it in other tasks develops only over time (Nunes
& Bryant, 1996; Steffe, Cobb, Glasersfeld, & Richards, 1983), as children come
to trust the results of counting (e.g., relative to conflicting perceptions of
length, Cowan & Daniel, 1989). Most agree that preschoolers do not often use
counting to compare numerosities of collections.

However, presented different tasks, preschoolers can perform such infer-
ences, such as from matching-based to counting-based equivalence. Recall
studies showing that, told the cardinal value of each of two sets, preschoolers
determined whether the items would be put in one-to-one correspondence
and the inverse (Becker, 1989; Sophian, 1988). Thus, success is dependent on
the task, with success appearing first when one-to-one correspondence (rather
than sharing) is used to establish equivalence. Between the ages of three and
five children develop from counting only single collections to being able to use
counting to compare the results of counting two collections (Saxe et al., 1987)
and reason about these comparisons across different situations.

Further, counting is not without positive influence. Even when children use
misleading length cues, from 70 to 80 percent turned to counting when asked
to “do something” to justify their response (Fuson, 1988). Further, while
encouraging four and a half to five-year-old children to match and count
increases their correct judgments of equivalence, children only spontaneously
adopt counting for subsequent problems of the same type (Fuson et al., 1983).
When the counting is performed for them, preschoolers are more likely to
base their comparison decisions on the results of counting (Curtis et al., 2005),
which may imply that counting imposes a large processing load on children
of this age, or that they are uncertain of the reliability of their own counting or
did not initially appreciate the relevance of the counting strategy.

Taken together, research seems to indicate multiple factors that influence
children’s use of counting to compare collections. They do need to develop
sufficient working memory to make a plan to compare, count two collections,
keep the results in mind, relate these results, and draw conclusions about
the two collections. To do so, their counting scheme itself first must be
developed to a particular level. Consistent with the hierarchic development
tenet of our hierarchic interactionalism theory, counting is at first a procedure
to be mastered, not an object from which the child can “step back” and about
which they can think explicitly. Once repeated experience causes the com-
ponents of counting to be “representationally redescribed” and thus available
to other mental processes, it can serve that purpose (Karmiloff-Smith, 1992).

At that point, another aspect of the tenet of hierarchic development
operates (showing that development is less about the creation of entirely new
procedures and more the interplay among existing components of knowledge
and processes); that is, counting can be used in quantitative comparison
because a new mental executive can be formed linking the results of counting
to the requirement for quantification of two collections that are to be com-

84 • Number and Quantitative Thinking



pared. To do so accurately, children also have to learn that the same number
implies the same numerosity and that different numbers imply (and necessi-
tate) different numerosities (Cowan, 1987). That is, many children (some as
old as first graders) need to learn about the significance of the results of
counting in different situations, such as comparing sets or producing
equivalent sets (Nunes & Bryant, 1996). Finally, they may need to have a con-
cept of space that is sufficiently articulated and unitized to reconcile the
perceptual evidence and numerical interpretation of the situation (Becker,
1989). If all these are in place, children’s utilization competence is expanded;
they know more situations in which counting can be profitably used.

Thus, as we previously concluded, counting can be a meaningful quantifier
for children before they reach the Piagetian levels of operational thought about
number conservation. However, children’s ability to solve problems using
counting develops slowly, as they learn counting skills and about the applica-
tion of counting to various tasks.

Ordering and Ordinal Numbers

Ordering numbers is the process of determining which of two numbers is
“larger than” the other. When whole numbers are used to put items in order,
or in a sequence, they are ordinal numbers. When the topic of “ordinality” is
discussed, even by some researchers, it is often assumed that all ordinal notions
must involve the terms “first, second, third . . .” and so forth. This is a limited
view. As was previously discussed, numbers have an ordinal property in
that they are sequenced. A number may be first or second in an order without
considering cardinality, or it may be considered to have a greater or lesser
magnitude than another number. A person who is “number 5” in a line is
labeled by a word that is no less ordinal in its meaning because it is not
expressed as “fifth.” We first address young children’s ability to order collec-
tions by number, then their ability to deal explicitly with traditional ordinal
numbers.

Ordering Numbers

Given that chimpanzees can order numbers (Kawai & Matsuzawa, 2000), this
ability is probably supported by “bootstrapped” abilities. Children can learn
such ordering with high-quality experiences. In most studies of conservation
discussed previously, children needed only to decide whether collections were
equivalent or not, but not to explicitly order them (even determining which
contained more). Evidence indicates that human beings can make perceptual
judgments of relative quantities early, but somewhat later than they evince
other quantitative abilities. As an example, 16- to 18-month-olds were
reinforced for selecting a square containing two dots but not another square
containing one dot, regardless of which side it was on and regardless how big or
bright the dots were (Strauss & Curtis, 1984). Then, presented two new squares
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with three and four dots, respectively, the infants more often chose the square
with more dots, indicating sensitivity to the ordinal concept of “more
numerous.” Other studies confirm that children differentiate between “less
than” and “greater than” relations by 14 months of age (R. G. Cooper, Jr., 1984;
Feigenson, 1999; Haith & Benson, 1998), and possibly earlier, at least with
collections no larger than two (Sophian & Adams, 1987). Even 11-, but not
nine-month-olds, can distinguish between ascending and descending
sequences of quantities (Brannon, 2002). That is, following habituation to
three-item sequences of decreasing numerical displays, in which area was not
confounded with number, only 11-month-olds could then distinguish between
new displays of decreasing vs. increasing sequences.

Seminal research on equivalence, Gelman’s “magic experiments,” showed
that children explicitly recognized which of two sets was the “winner” even if
the length, density, or even properties (color) of one set were altered. However,
when the change involved an addition or subtraction that created equivalent
sets, children correctly responded that there was no winner (R. Gelman &
Gallistel, 1978). These experiments also revealed that children about three
years of age are sensitive to ordinal relations. Shown that two was the winner
compared to one, children selected four as the winner compared to three. In
both experiments, this competence was just emerging at two to three years
of age. By three years of age, children show knowledge of order in comparing
collections, separate from their counting skills (Huntley-Fenner & Cannon,
2000; Mix et al., 2002).

As with cardinal number, children develop the ability to order numbers over
several years by learning the cultural tools of subitizing (Baroody et al., 2006),
matching, and counting (Fuson et al., 1983). For example, children can answer
questions such as “which is more, six or four?” only by age four or five years
(Siegler & Robinson, 1982). Tasks involving smaller numbers and numbers
farther apart are easier (Cowan & Daniel, 1989), suggesting that counting skills
are relevant with numbers larger than four. Unlike middle-income children,
low-income five- and six-year-olds were unable to tell which of two numbers,
such as six or eight, is bigger, or which number, six or two, is closer to five
(Griffin et al., 1994). They may not have developed the “mental number line”
representation of numbers as well as their more advantaged peers. This mental
number line—grounded in spatial representations of numbers—may be the
most direct neural representation of number (Zorzi, Priftis, & Umiltà, 2002).
These representations have several aspects, such as two additional principles
of counting. The “plus and minus one” principle involves understanding the
generative pattern that relates adjacent numerical values (e.g., a collection of
four is a collection of three with one added). The related comparison principle
involves understanding the consequences of each successive number represent-
ing a collection that contains more objects (Griffin et al., 1994). Children
who use and understand these principles can reason that if the counts of two
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collections are nine and seven, the collection with nine has more because nine
comes later in the counting sequence than seven.

Ordinal Numbers

Of children entering their first year of school in Australia, 29 and 20 percent
respectively could identify the third and fifth items in a series (B. A. Clarke,
Clarke, & Cheeseman, 2006). In the U.S., performance for “first” was 60 and 72
percent, and for “third,” was 9 and 13 percent for low- and middle-income
preschoolers, respectively (Sarama & Clements, 2008). As in other areas, differ-
ent languages differentially affect children’s acquisition and use of ordinal
words. Differences in ordinal words are even more distinct across languages.
Beginning right with “first” and “second” compared to “one” and “two,”
English ordinal and counting words often have little or no relation. In com-
parison, Chinese speakers form ordinal words simply by adding a predicate
(di) to the cardinal number name. English-, compared to Chinese-, speaking
children show dramatically lower performance on naming ordinal words from
the first words and from the earliest ages, persisting into elementary school
(K. F. Miller et al., 2000). There is a precipitous decline between 19th and 21st,
with only 30 percent of the English-speaking sample counting to 21st, vs.
nearly perfect performance in Chinese-speaking children. However, this
research also reveals complexities in the relationships between concepts and
language. Although few children understood the unique features of ordinal
numbers, English speakers appear to understand the distinctions between
ordinal and cardinal number concepts sooner, perhaps because struggles with
the different names engendered reflection on these differences (K. F. Miller
et al., 2000).

Estimation

Estimation is a process of solving a problem that calls for a rough or tentative
evaluation of a quantity. There are many types of estimation, including
measurement, numerosity, and computational estimation (Sowder, 1992a).
Measurement estimation will be addressed in Chapters 11 and 12. Computa-
tional estimation has been most widely researched (see Chapter 6). A hybrid,
“number line estimation,” such as the ability to place numbers on a number
line of arbitrary length, appears particularly important for young children, so
we begin there.

Number Line Estimation

Research on assessments of multiple mathematical areas identifying the ability
to quickly tell which of two numerals, 0 to 20, represented the larger number as
one of the only three that predicted later mathematics achievement (Chard
et al., 2005). After learning a mental number list children can learn to form a
linear representation of numbers. That is, in many situations, people represent
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numbers logarithmically, rather than linearly (Dehaene, 1997; Siegler & Booth,
2004). That is, they tend to exaggerate the distances between numbers at the
lower end of a given number line and underestimate the distances between
numbers at the high end. This tendency has been found in all types of esti-
mation tasks, number line, numerosity, and measurement (Siegler & Ramani,
in press). For example, given a line segment is labeled with 0 at one end and 100
at the other, kindergarteners may guess “32” for a position that should be
labeled 11, and guess a number such as “65” for positions from 50 to 100.

Some researchers (e.g., Dehaene, 1997) have postulated that people’s mental
processes are logarithmic ruler representations. Others suggest the accumula-
tor model (see Chapter 2) that yields similar estimates and still others that
different representations are used by children of different ages.

Siegler and Booth (2004) proposed that there are multiple representations
of number and that contextual variables influence which representation
is chosen in a given situation. Experience with formal number systems in
counting, arithmetic, and other contexts leads children to add linear repre-
sentations, as well as such categorical representations as even/odd. Different
representations are used in different contexts (again, consistent with the
context-variable nature of the tenet of hierarchic development). These can be
developmentally adaptive; for example, an early logarithmic representation
may enhance discrimination among the magnitudes of the small numbers
being learned. Evidence supported this proposal: young children have such a
logarithmic representation for 0–10; kindergarteners tend to have a more
linear representation of 0–10, but are logarithmic for 0 to 100; and elementary-
school children are linear for 0–100 and only gradually move to linear
representations for 0 to 1000 or 10,000 (Siegler & Booth, 2004). Thus, people’s
refining of number line estimation is begun with smaller ranges and then
repeated with larger numbers (the tenet of hierarchic development). Further,
this development occurs at the same ages for numerosity estimation and
measurement estimation. Finally, it correlates with magnitude comparison
(e.g., which is bigger, seven or nine?), learning of unfamiliar addition problems,
and overall mathematics achievement. This learning reflects developing
knowledge of numbers in the given range, rather than simple abstract learning
about place value and the base-ten numeration system (J. L. Booth & Siegler,
2006).

Improving children’s number line estimation may have a broad beneficial
effect on their representation, and therefore knowledge, of numbers (Siegler &
Booth, 2004, although most evidence is not yet causal). Estimates of many
children from low-income backgrounds did not even reveal knowledge of the
ordering of the numbers’ magnitudes; 60 percent of children correctly ordered
fewer than 60 percent of the magnitudes of these single digit numbers (Siegler
& Ramani, in press).
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Estimation of Numerosities

Given children’s early competence in subitizing (Chapter 2) and counting
(Chapter 3), it is reasonable to assume that their ability to estimate the number
of objects in a collection would also be an early developing skill. However,
empirical evidence reveals this type of estimating to be challenging for young
children.

Early research indicated that children from five to eight years of age could
operate at a better than chance level in numerosity estimation tasks, and that
this age range represented a period of development of these abilities, although
only slowly at the earlier ages (Hecox & Hagen, 1971). A later series of studies
examined people’s ability to determine the numerosity of colored squares
within square grids. In the first study, researchers used a 10 by 10 grid and
reported that the use of the simplest, addition strategy (count and/or subitize
blocks and add them) decreased with age from second grade to sixth grade to
university students, with a corresponding increase in the use of subtraction
strategy (subtract the number of empty squares from 100 when most squares
were colored) (Verschaffel, De Corte, Lamote, & Dhert, 1998). Also, the com-
bined and adaptive use of both strategies correlated with higher performance
on the task, but only for sixth graders and university students.

Building on this work, a related team of researchers (Luwel, Verschaffel,
Onghena, & De Corte, 2000) used grids that were hypothesized not to provide
as much support for subtraction strategies: seven by seven, eight by eight, and
nine by nine grids. “Experts” were expected to apply the addition strategy for
trials with few blocks (the left-most grid in Figure 4.1) and subtraction strategy
for trials with many blocks (the right most figure). In the middle region, they
were expected apply a subitize-and-accumulate estimation strategy. “Novices”
were expected to apply the addition strategy for trials with small numerosities,
and otherwise use a cognitively less-demanding estimation strategy, even when
the grid was almost filled with blocks.

Second and sixth graders did not differ from sixth graders on the use of the
more sophisticated subtraction strategy, but they did not use it as well. For
example, many second graders, probably due to their use of 100s charts, took

Figure 4.1 Three 8-by-8 grids with different numbers of squares colored gray.
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the total of all grids to be 100. To check this hypothesis, the same researchers
presented second graders with explicit information about the grid size (Luwel,
Verschaffel, Onghena, & De Corte, 2001). This increased children’s accuracy, as
well as the number of tasks to which they applied the subtraction strategy. They
needed to use an estimation strategy for a larger middle region than sixth
graders, who could still solve these problems with arithmetic strategies for all
but the largest grid sizes.

In summary, students from second grade on used similar strategies.
However, there may not be a single estimation strategy, but distinct strategies
whose details are as yet unknown. With increasing age, students rely more
on accurate (here, arithmetic) strategies. It could not be determined if older
students were more adaptive in their strategy choice. A final follow-up
study with older students indicated that the first source of improvement is an
increasing reliance on the subtraction strategy when this is appropriate
(probably due to the greater difficulty younger, third-grader, students had
subtracting, Luwel, Lemaire, & Verschaffel, 2005). The second source was
improved strategy proficiency, with younger students executing subtraction
more slowly. The third source was increasing adaptiveness of strategy choices
with age. That is, older students more frequently used strategies that worked
best for them.

Another early study reported that the type of strategy use was not related
to accuracy in one early study of students in grades two to eight and adults
(A. W. Siegel, Goldsmith, & Madson, 1982). Younger children used
perceptually-based strategies most of the time. The size of the to-be-estimated
collection (TBE), and the available benchmarks, influenced students’
behaviors; for example, if the TBE number was large, students who could tried
decomposition strategies, or just “bailed out” and used perceptually based
strategies. This was reported as more of an affective than a cognitive decision.

A group of high-achieving (potentially mathematically gifted) kindergar-
teners were able to estimate sets of eight between five and 10 reliably, but they
were less accurate with sets of 15 and not competent with sets of 35 (Baroody,
1991). The results suggest that the children had not constructed accurate per-
ceptual anchors, or benchmarks, and may have an exaggerated mental image of
benchmarks such as five, 10, and 20.

Based on the available research, we, along with Gail Brade, produced a
developmental progression as the basis for a learning trajectory for numerosity
estimation. Early, “pre-estimation” developmental levels included “Counting”
(refusing to estimate without counting), “Wild Guessing,” and “Transition to
Spatial Extent” (not wild guesses, usually some counting, followed by an esti-
mate that does not demonstrate evidence of a distinction between small and
large numbers). The remainder of the levels includes increasingly sophisticated
strategies and has been incorporated into the learning trajectory in Figure 4.1.
Brade used it in a study presenting numerosity tasks to children in grades K to 2
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(Brade, 2003). There was a positive and significant correlation between
learning trajectory (strategy) level used and accuracy, but children’s com-
petence with a strategy at any level was also important in determining esti-
mation accuracy. Kindergarteners could estimate collections of eight, but not
larger numbers, consistent with earlier research (Baroody, 1991). First graders
also had some success estimating collections of 15 and 25.

Numerosity estimation may depend on highly developed number skills such
as subitizing and counting, and the mental images their execution creates.
Preschool and kindergarten children who cannot count beyond 60 fail the
estimation and ordering tasks for number words larger than 60. Adults and
children who can count reliably to 100 succeed on all these tasks. Unskilled
counters failed even to correctly order large number words differing by a
2:1 ratio, whereas they performed well on this task with smaller numbers, and
performed well on a nonsymbolic ordering task with the same numerosities.
All children could succeed at those tasks—they showed a linear relationship
between number words and numerosities—when tested with number words
within their counting range (Lipton & Spelke, 2005). Therefore, children appear
to quickly learn to map the words in their counting sequence to nonsymbolic
numerosities. That is, children quickly connect number words to approximate
numerosity representations about the time they learn to count to those words
well. Learning to count accurately and farther along the number word
sequence appears to support a variety of mathematical skills.

Computational Estimation

Estimation of the answers of arithmetic problems is probably related to other
types of estimation—number line, numerosity, and measurement—but also
depends on specific knowledge of arithmetic combinations and procedures
(J. L. Booth & Siegler, 2006). There are few studies on computational
estimation of young children. One reported that six of 17 kindergarteners used
mechanical rules to estimate single-digit addition sums (Baroody, 1989a).
Two each stated one of the addends, added one to an addend and constructed a
teen answer from one of the addends. Five other children appeared to use more
genuine estimation strategies, such as estimating in the range of two more than
the larger addend but not more than 19. Previous practice (forming associ-
ations) would not have led to such estimates; it is more likely that they used
knowledge of numbers. Another study categorized five- to nine-year-olds into
four levels of computational estimation competence (Dowker, 1989, as
reported in Sowder, 1992a). Children at the lowest level, even though they were
given the easiest problems, such as 5 + 2, performed the worst. Many of their
estimates were less than one of the addends or more than double the actual
sum.

It would appear that computational estimation develops slowly, and teach-
ing it to young children before they have developed a firm grasp of concepts,
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skills, strategies, and knowledge of combinations may not be effective or
efficient. Given this assumption, and given that most research, and most
recommendations to teach, computational estimation involve students at
higher grade levels, we will not discuss this type further here (see Sowder,
1992a, for a comprehensive review).

Experience and Education

Comparing Numbers

Research has identified some aspects of effective educational interventions for
comparing numbers. One main implication is that young children need to
learn about the significance of the results of counting in comparison situations
(Fuson, 1988).

Just as important is asking children why and how counting is relevant.
Children in the Yemen, five and a half to seven and a half years of age, who were
given experiences comparing sets improved, but those who had the additional
experience of verifying that counting led to correct judgments improved the
most, with the majority of children counting on every trial (Cowan, Foster, &
Al-Zubaidi, 1993). The emphasis should be on counting as a tool for thinking
and solving problems. Teachers should help young children learn which strat-
egies (counting, comparing length, etc.) are reliable and accurate in which situ-
ations (Michie, 1984a). They might compare amounts counting them into
boxes or piggy banks first (so there are no confusing perceptual cues) and then
into lines. A reminder or meaningful record of each count might also be help-
ful. The situational language in comparing situations is complex and children
need considerable experience solving comparing problems and hearing and
telling comparing stories.

Number Line Estimation

Number line estimation is clearly an important competence. It correlates with
other types of estimation and general mathematics achievement (Siegler &
Ramani, in press). It is a core competence and, as we shall see in the following
section, probably a good educational place to begin to develop estimation
skills. Numerosity estimation may build upon number line estimation.

One approach to teaching this skill, having children place numerals on a
number line (Siegler & Booth, 2004), was confusing for kindergartners, but
helpful for first and second graders. Another approach, playing line “race”
games, was successful for very young children, having a significant effect in
only four 15-minute sessions (Siegler & Ramani, in press). Preschoolers’
numerical estimates became more linear and accurate. They also increased
their ability to order magnitudes, count, and recognize numerals. These low-
income children were then indistinguishable in these domains from their
middle-class peers. Both three- and four-year-olds benefited. In a connected
study, the researchers confirmed that the more board games the children played
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at home, the greater was their competence in number line estimation (Siegler &
Ramani, in press). Connections between the numerical magnitudes and all the
visual-spatial, kinesthetic, auditory, and temporal cues in the games (i.e., all
magnitudes increase together: numerals, distance moved, number of moves,
number of counting words, etc.) may provide a rich mental model for a mental
number line.

Estimation of Numerosities

There are wide disagreements on when numerosity estimation should be
taught, ranging from early childhood to junior high school. Instructional
activities (admittedly short in duration) did not substantially improve the
estimation skills of K–grade 2 children in one study (Brade, 2003).1 Kinder-
garteners showed the most improvement on a set size of eight; first graders
and second graders on 15 (the instructional treatment affecting first graders’
estimate of 15 the most), 25, and 35, but not 83. There was a positive and
significant correlation between learning trajectory (strategy) level used and
accuracy, but children’s competence with a strategy at any level was also
important in determining estimation accuracy. There was limited movement
along the learning trajectory; however, those who did change moved to
adjacent levels, providing some support for the trajectory.

Math for a Purpose

Across these topics, a pattern similar to previous chapters emerges: effective
learning takes place in situations with meaningful contexts and goals. Those
activities that make sense to children, and in which they make sense of the
mathematical structures of the activities, build solid conceptual under-
standings and skills.

Learning Trajectories for Comparing, Ordering, and Estimating Numbers

As we have in previous chapters, we present the research-based developmental
progressions for these learning trajectories, and the hypothesized mental
actions on objects for each level of each developmental progression, in Table 4.1.

Table 4.1 A Development Progression for Comparing, Ordering, and Estimating
Numbers

Age
(years)

Developmental Progression Actions on Objects

0–1 Many-to-One Corresponder
Comparing Puts objects, words, or
actions in one-to-one or many-to-
one correspondence or a mixture.

Puts several blocks in each muffin
tin.

(See Chapter 2’s learning trajectory for
underlying cognitive mechanisms.)

Continued Overleaf
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Age
(years)

Developmental Progression Actions on Objects

2 One-to-One Corresponder
Comparing Puts objects in rigid
one-to-one correspondence (age
2–0). Uses words to include
“more,” “less,” or “same.”

Puts one block in each muffin tin,
but is disturbed that some blocks left
so finds more tins to put every last
block in something.

Implicitly sensitive to the relation
of “more than/less than” involving
very small numbers (from one to
two years of age).

Underlying mental correspondence
mechanism (see Chapter 2’s learning
trajectory) directs perceptually-guided
physical activity of matching object in
one group to an object in the other.
Innate, inflexible list-exhaustion scheme
motivates matching each object in each
group.

Objects that cannot be matched
intuitively indicate “more” of that group
to the system.

Object Corresponder Comparing
Puts objects into one-to-one
correspondence, although may not
fully understand that this creates
equal groups (age 2–8).

Put a straw in each carton (doesn’t
worry if extra straws are left), but
doesn’t necessarily know there are
the same numbers of straws and
cartons.

As above, with explicit representation
that extra objects following matching
indicate a greater number of that group.
Equality of sets of matched objects is
established at an implicit level, but is not
yet explicitly represented as the “same
number” (and not connected to number
as constructed by the subitizing or
counting operations).

Perceptual Comparer Comparing
Compares collections that are
quite different in size (e.g., one is
at least twice the other).

Shown 10 blocks and 25 blocks,
points to the 25 as having more.

If the collections are similar,
compares very small numbers.
Compares collections using
number words “one” and “two”
(age 2–8).

Shown groups of two and four,
points to the group of four as having
more.

Cognitive mechanisms (see Chapter 2)
make comparisons. Larger collections
different in size are processed by an
analog estimator as a collection of binary
impulses by a brain region that processes
quantity (e.g., bilateral horizontal
segment of the intraparietal sulcus).
These are then compared.

For similar small numbers, object files are
established for each object in each
collection and continuous extent for each
retrieved unless the numbers are very
small or able to be subitized, in which
case exact discrete quantities are
compared by mental correspondence (see
Chapter 2).
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Age
(years)

Developmental Progression Actions on Objects

3 First-Second Ordinal Counter
Ordinal Number Identifies the
“first” and often “second” objects
in a sequence.

The verbal list containing, initially, “first”
and “second,” is connected to innate
notions of positions and event relations/
sequences, with first connected to the
initial event/object, and second to the
next (initially loosely, so that other
succeeding event/objects may also be so
labeled).

Nonverbal Comparer of Similar
Items. (one–four items)
Comparing Compares collections
of one–four items verbally or
nonverbally (“just by looking”).
The items must be the same. May
compare the smallest collections
using number words “two” and
“three” (age 3–2), and “three” and
others (age 3–6) Can transfer a
ordering relation from one pair of
collections to another.

Identifies ••• and ••• as equal and
different from •• or ••.

Quantification procedures produce
nonverbal representations of each
collection, which are placed in mental
correspondence; if correspondence is
one-to-one, the notion of “same” is
activated. If there are items in a group not
matched, the notion of “more” is
activated.

4 Nonverbal Comparer of
Dissimilar Items Comparing
Matches small, equal collections,
showing that they are the same
number.

Matches collections of three shells
and three dots, then declares that
they “have the same number.”

Similar quantification procedures are
extended to apply to dissimilar items.

Matching Comparer Comparing
Compares groups of one to six by
matching.

Gives one toy bone to every dog and
says there are the same number of
dogs and bones.

Implicit scheme that any two collections
can be compared by matching, with the
result of “same number” if there are no
unmatched items and “more” for any
collected with unmatched items guides
explicit matching of collections (at least
up to size six; information-processing
and attentional limitations may
negatively affect the accuracy of the
procedure for larger collections).

Counting Comparer (Same Size)
Comparing Accurate comparison
via counting, but only when
objects are about the same size and
groups are small (about one to
five).

Count-to-compare (executive) scheme
holds results of two (redescribed)
counting acts in (expanded) working
memory and compares them for which
occurs first in the counting word list (the
“mental number list”), based on 

Continued Overleaf
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Age
(years)

Developmental Progression Actions on Objects

Counts two piles of five blocks each,
and says they are the same.

Not always accurate when larger
collection’s objects are smaller in
size than the objects in the smaller
collection.

Accurately counts two equal
collections, but when asked, says the
collection of larger blocks has more.

conceptual knowledge that a later-
occurring count word implies a more
numerous collection. However, the
strength of this result can be
overwhelmed by automatic scanning
processes for continuous quantity
(see Chapters 2, 11, and 12) when the
count-to-scheme is nascent, when the
difference in volume is large (and
counter to the numerosity judgment),
and/or when a question (often
repeated) creates doubt in the correctness
of the outcome (attributed to the
questioner).

Mental Number Line to Five
Number Line Estimation Uses
knowledge of counting number
relationships to determine relative
size and position when given
perceptual support.

Shown a zero at one end of a line
segment and five at the other, places
a “three” approximately in the
middle.

Number word list is connected to
several or all of distinct quantification
schemes, e.g., for discrete number
(subitizing and counting based),
duration, and length, so as to form a
mental image with properties analogous
to a number line (i.e., ruler), in which
distance between numbers is
increasingly in proportion to their
separation in the list.

5 Counting Comparer (Five)
Comparing Compares with
counting, even when larger
collection’s objects are smaller.
Later, figures out how many more
or less.

Accurately counts two equal
collections, and says they have the
same number, even if one collection
has larger blocks.

Strengthening of count-to-compare
(executive) scheme (see above;
strengthening in use of the scheme and
confidence in the reliability of counting
procedure) and explicit
conceptualization of differentiation
between discrete (“counted”) and
continuous (measurable; “how much
stuff”) quantities allows count-to-
compare to operate accurately even when
the volume or mass of the less numerous
collection is far greater than that of other
collection.

Ordinal Counter Ordinal Number
Identifies and uses ordinal
numbers from “first” to “tenth.”

Can identify who is “third in line.”

Extension of actions on objects for First-
Second Ordinal Counter, above,
including additions to the verbal list and
explicit distinction between cardinal and
ordinal notions.
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Age
(years)

Developmental Progression Actions on Objects

Spatial Extent Estimator—Small/
Big Numerosity Estimation Names
a “small number” (e.g., one–four)
for sets that cover little space and a
“big number” (10 to 20 or more;
children classify numbers “little/
big” idiosyncratically, and this may
change with the size of the to-be-
estimated collection, or TBE).

Shown nine objects spread out for
one second and asked “How many?”
responds “Fifty!”

A fast intuitive scanning process (Joram,
Subrahmanyam, & Gelman, 1998, see
also Chapter 2) yields an accumulator-
like record which is implicitly sorted into
a range of “small” or “large” numbers,
one of which is named.

Counting Comparer (10)
Comparing Compares with
counting, even when larger
collection’s objects are smaller, up
to 10.

Accurately counts two collections of
nine each, and says they have the
same number, even if one collection
has larger blocks.

Strengthening of count-to-compare
scheme (see above) and attentional
resources extend the scheme to accurately
apply to situations with larger numbers.

6 Mental Number Line to 10
Number Line Estimation Uses
internal images and knowledge of
number relationships to determine
relative size and position.

Which number is closer to six, four
or nine?

Mental number line (see above) is
strengthened and extended.

Serial Orderer to Six +
Comparing/Ordering Orders
numerals, and collection (small
numbers first)

Given cards with one to five dots on
them, puts in order.

Orders lengths marked into units.

Given towers of cubes, puts in order,
one to 10.

Available comparison and mental
number line and expansion of working
memory resources form an anticipatory
scheme in which multiple objects
(collections, lengths) are placed in order
of size, with the recognition (initially
implicit) that each subsequent item in the
series is more than the item before and
less than the item after.

Spatial Extent Estimator
Numerosity Estimation Extends
sets and number categories to
include “small numbers” which
are usually subitized, not
estimated, “middle-size numbers”
(e.g., 10–20) and “large numbers.”
The arrangement of the TBE
affects the difficulty.

Executive process determines if number
is subitizable; if so, that is the result. If
not, a fast intuitive scanning process
yields an accumulator-like record which
is implicitly sorted into a range of
“small,” “middle-size,” or “large”
numbers, one of which within that
category is named.

Continued Overleaf
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Age
(years)

Developmental Progression Actions on Objects

Shown nine objects spread out for
one second and asked “How many?”
responds “Fifteen.”

7 Place Value Comparer Comparing
Compares numbers with place
value understandings.

“63 is more than 59 because six tens
is more than five tens even if there
are more than three ones.”

Mental number line and embedded
number/place value concepts (see
Chapters 3 and 6) are applied to order
based on larger place value quantities that
differ.

Mental Number Line to 100
Number Line Estimation Uses
internal images and knowledge of
number relationships, including
ones embedded in tens, to
determine relative size and
position.

Asked, “Which is closer to 45, 30 or
50?”says “45 is right next to 50, but
fives, but 30 isn’t.”

Mental number line (see above) is
extended with embedded number (both
in the number word sequence pattern
and in place value quantity) up to 100.

Scanning with Intuitive
Quantification Estimator
Numerosity Estimation

Shown 40 objects spread out for one
second and asked “How many?”
responds “About thirty.”

Fast intuitive scanning process yields an
estimate based on connection between
nonverbal magnitudes and mental
number line.

8 Mental Number Line to 1000s
Number Line Estimation Uses
internal images and knowledge of
number relationships, including
place value, to determine relative
size and position.

Asked, “Which is closer to 3500,
2000 or 7000?”says “70 is double 35,
but 20 is only 15 from 35, so 20
hundreds, 2000, is closer.”

Mental number line (see above) is
extended to place vs. value up to 1000 or
more.

Benchmarks Estimator
Numerosity Estimation Initially, a
portion of the TBE is counted; this
is used as a benchmark from
which an estimate is made. Later,
scanning can be linked to recalled
benchmarks.

An initial count is performed of a visually
salient, intuitively determined
“manageable” proper subject of the
objects. This is used as a benchmark.

Or, the fast scanning process yields an
estimate based on connection to mental
number line, supplemented with
benchmarks (e.g., images of collections
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Final Words

Many mathematical situations involve comparing, sequencing, and/or estimat-
ing number. Another common type of situation involves incrementing/decre-
menting numbers. We begin the discussion of the operations of arithmetic in
Chapter 5.

Age
(years)

Developmental Progression Actions on Objects

Shown 11, says “It looked closer to
10 than 20, so I guess 12.”

Shown 45 objects spread out for one
second and asked “How many?”
responds “About five tens—fifty.”

of 10) that are linked to that number
line and to mental images of collections
of that size. This develops from an
ability to tell if the TBE is close to, more,
or less than the benchmark to estimates
of the TBE’s own numerosity.

Composition Estimator
Numerosity Estimation Initially for
regular arrangements, subitizing is
used to quantify a subset and
repeated addition or
multiplication used to produce an
estimate. Later, the process is
extended to include irregular
arrangements. Finally, it includes
the ability to decompose or
partition the TBE into convenient
subset sizes, then recompose the
numerosity based on
multiplication.

Shown 87 objects spread out and
asked for an estimate responds,
“That’s about 20—so, 20, 40, 60, 80.
Eighty!”

Subitizing (often conceptual subitizing)
is performed to yield a number. An
iterative process is used to determine the
number of such groups and
multiplication is applied to yield an
estimate. Alternatively, the TBE is
partitioned, one unit is subitized,
counted, or estimated, and multiplication
again applied.
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5
Arithmetic

Early Addition and Subtraction and Counting Strategies

For most people in the U.S., arithmetic is arguably the most salient topic in
elementary mathematics education. However, most people would also argue
that this would be an inappropriate topic in preprimary education. We begin
our discussion considering research on the age at which knowledge of and skills
in arithmetic appear to emerge.

The Earliest Arithmetic

Educational practice, past and present, often takes a skills hierarchy view that
arithmetic follows counting and other simple work with number and therefore
is beyond children’s grasp until about first grade. However, decades ago,
researchers illustrated the possibility of arithmetic competence in children
before kindergarten (R. Gelman & Gallistel, 1978; Groen & Resnick, 1977;
Hughes, 1981).

More recently, nativist researchers claimed that even infants have knowledge
of simple arithmetic. Consider evidence that infants and toddlers notice the
effects of increasing or decreasing small collections by one item. For example,
after seeing (a) a hand place one or two dolls on a stage, (b) a screen raised, (c)
a hand place another doll behind the screen, and (d) the screen retracted,
five-month-olds look longer when an incorrect, rather than a correct, result is
revealed (a violation-of-expectations procedure, Wynn, 1992a, see the illustra-
tion in the companion book).

In another study, children placed balls in a box placed high enough that they
could not see into the box. They then watched as balls were added or removed
(Starkey, 1992). Finally, they were asked to remove all the balls. The question
was whether the number of times children reached was the same as the number
of balls they placed. To prevent children from feeling whether or not any
remained in the box, the balls were secretly removed and replaced one-by-one
before each reach. Children did reach the same number of times above chance.
However, a flaw in the design was that these removals might have inadvertently
kept children from reaching in again when they would have (mistakenly) done
so (Mix et al., 2002). This would favor tasks with an answer of one. Note
that children were evaluated as correct on 64 percent of the 4 − 3 trials but only
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14 percent on the 4 − 1 trials, even though the latter would be considered the
easier of the two tasks.

Despite such limitations of the research designs, authors of the original
studies have made strong nativist claims, such as “infants can discriminate
between different small numbers . . . determine numerical equivalence across
perceptual modalities,” and “calculate the results of simple arithmetical
operations on small numbers,” all of which indicates that they “possess true
numerical concepts, and suggests that humans are innately endowed with
arithmetic abilities” (Wynn, 1992a, p. 749). They have “access to the ordering
of and numerical relationships between small numbers, and can manipulate
these concepts in numerically meaningful ways” (p. 750). As one example,
five-month-olds added one object and one tone or one object and two tones
(Kobayashi, Hiraki, Mugitani, & Hasegawa, 2004). A recent study grounded in
that perspective suggested that very young children, viewing dots representing
5 + 5 and 10 − 5 (controlled for area and contour length), could discriminate
between outcomes of 5 and 10 (McCrink & Wynn, 2004).

Possible alternative explanations have been addressed and proposed that do
not imply arithmetic competence. For example, it is possible that infants merely
track locations, but evidence indicates they can track objects or number of
objects (Koechlin, Dehaene, & Mehler, 1997). A different possible confound is
that every outcome in Wynn’s work that was arithmetically impossible was also
physically impossible; however, evidence indicated that three- to five-month
old babies were more upset if an arithmetically impossible result occurred
than if one doll changed to another (T. J. Simon, Hespos, & Rochat, 1995).
Others say that attentional preference for an optimal mix of familiarity and
complexity explain Wynn’s and others’ findings (L. B. Cohen & Marks, 2002).
For example, the unexpected “1” following a “1 + 1” condition is also familiar,
as it was the starting situation.

Other concerns have been raised. In some studies, using standardized pro-
cedures, infants were not found to discriminate between correct and incorrect
results of addition and subtraction (Wakeley, Rivera, & Langer, 2000). Multiple
studies have found that three- but not two-year-olds are successful on non-
verbal addition and subtraction tasks (Houdé, 1997; Huttenlocher, Jordan et al.,
1994). If toddlers do not have the ability, it may be unreasonable to suggest that
infants do (see Huttenlocher, Jordan et al., 1994, for a discussion of these and
other problems with research claiming that infants perform exact arithmetic).

Further, early behaviors often are explicable through other frameworks
(Haith & Benson, 1998). For example, the children might be processing con-
tinuous amounts. Using Wynn’s tasks but different size puppets, infants
were more likely to attend to the display with the unexpected change in amount
and the expected number than the opposite (Feigenson, Carey, & Spelke,
2002; Mix et al., 2002). Children’s success with larger-number arithmetic
(e.g., 10 − 5, McCrink & Wynn, 2004) may involve their use of an estimator
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such as in the “large number exception” situation discussed in Chapter 2 on
subitizing. This is supported by cultures that have number words only up to
five, but can compare and add large approximate numbers beyond that range
(Pica et al., 2004). It is also consistent with the view that infants represent small
collections as individual objects but not as groups and large numbers as groups
but not as individual objects (Spelke, 2003). Thus, analogue estimators may be
innate or early developing, and may mediate (Gallistel & Gelman, 2005), but
not directly determine, later-developing explicit, accurate arithmetic.

Another possible framework for smaller-number problems postulates that
infants are tracking objects via “mental tokens” using general processes of
simple categorization (an early “object concept”) and comparison (Koechlin
et al., 1997; T. J. Simon, 1997; T. J. Simon et al., 1995). Children may possess
neural traces of visual information that are not consistent with the final display,
and thus their “representations” could be literal and knowledge-based.
That is, these babies may not be quantifying a collection of objects, but instead
individuating and tracking separate objects, reacting if one disappears or
appears mysteriously (Koechlin et al., 1997; Sophian, 1998). For example,
infants’ surprising greater sensitivity to subtraction than addition across mul-
tiple studies (Koechlin et al., 1997; Wynn, 1992a, 1995) may indicate that the
smaller the result, the more likely the child will track accurately. Further,
experiments directly comparing two models, numeric/symbolic and object file,
were consistent with the object file model’s predictions (Uller et al., 1999). For
example, infants are much more likely to succeed if the first object in a 1 + 1
task is seen on the floor before the screen is introduced, compared to tasks in
which the screen is introduced first and thus the objects must be imagined
there (Uller et al., 1999). Consistent results from other experiments (Uller et al.,
1999) and the mixed results of various researchers, imply that adults should
remain aware that we often attribute numerosity and arithmetic operations
to reactions to changes in number, but that may be our inability to decenter
and understand this is our projection of number onto the situation, deeply
embedded in our adult cognition (cf. Glasersfeld, 1982).

This does not mean competencies do not exist, or that they are irrelevant to
the foundations of numbers development; in contrast, relevant competencies
are supported in most studies. However, even comparing via an early version of
one-to-one correspondence may be at the service of general goals and not
be numerical for the infant in the sense that it would be for adults. Probably
the most we can confidently say is that infants react to situations that older
children and adults would experience as arithmetical.

Semantic analysis is consistent with this latter interpretation (Glasersfeld,
1982). For example, children may discover, perhaps by putting up two fingers
on each hand, that they can make a configuration of four fingers, but perhaps
only at the sensory-motor level. Through application of subitizing or counting
and reflective abstraction on the attentional patterns whose unconscious
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“automatic” application to sensory material made the figurative compositions
possible, children eventually rebuild these experiences as arithmetical
relationships.

Supporting this constructivist approach is evidence that young children’s
active sensori-motor production may develop before their reactive perceptual
discrimination of adding and subtracting. For example, when exposed to a
standardized violation-of-expectations procedure (Wynn’s were not standard-
ized), 11, 16, and 21-month-olds did not look longer at results for 1 + 1 or 2 − 1
that were incorrect than those that were correct (Langer, Gillette, & Arriaga,
2003). However, 21-month-olds did reach into a box correctly in about three-
fourths of the trials. Thus, pragmatic knowledge of what “works” with objects
may precede “understanding how” or “what.”

Similarly, children discriminate situations of adding or subtracting two to
three objects between ages two and a half to three and a half years (note that
the authors’ conclusions on chance levels appear to be incorrect, see Bisanz,
Sherman, Rasmussen, & Ho, 2005; Houdé, 1997; Vilette, 2002). Wynn reported
no difference on her oculomotor tasks for the impossible situations of 1 + 1 = 1
and 1 + 1 = 3 and used this result to argue against a global perceptual process-
ing interpretation and for exact calculation. However, on verbal versions of
those tasks, two- to three-year-olds succeed on 1 + 1 = 1 before they succeed on
1 + 1 = 3 (Houdé, 1997). Such discrepancies appear to require either complex
phrases of redescription (Karmiloff-Smith, 1990) or simpler nonnumerical
interpretations of infant processing. Training studies support the latter (Vilette,
2002).

When do children explicitly understand the order relations in arithmetic?
An early study showed that children from three to six years show sensitivity
to the effects of adding or subtracting one or two marbles to one or more
containers, initially established to hold an equal (but uncounted) number of
marbles, when exact computations were not required (Brush, 1978). Children
14 to 28 months showed similar sensitivity to insertions and deletions from
hidden sets of numerosity no more than two, with a caveat that results are
affected by children’s bias toward choosing the transformed set (Sophian &
Adams, 1987). Thus, as early as 14 to 24 months of age, children appear to
understand some sense of addition increasing, and subtraction decreasing, the
size of collections, before their counting skills are well established (Bisanz et al.,
2005; Cowan, 2003; Mix et al., 2002).

Preschoolers develop in reasoning about the effects of increasing or
decreasing the items of two collections of objects. Consider preschoolers
watching an adult create two collections created simultaneously by placing
items one-for-one in separate locations. Many preschoolers will correctly judge
that the items in the two collections are equal, even though they do not know
exactly how many objects are in the collections. If items of one collection are
then increased or decreased, children as young as age three correctly judge
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that the collection added to contains more or the collection subtracted from
contains fewer than the collection that was not changed. However, problems
involving two collections that are initially unequal present a difficulty for three-
year-olds. For example, if two collections initially differ by two objects, and one
object is added to the smaller collection, many three-year-olds will incorrectly
say that the collection to which the object was added has more. In contrast,
some five-year-olds know that this collection still has fewer. They know that
both the addition and the initial inequality must be taken into account in
reasoning about the effect of the addition on the collection (R. G. Cooper, Jr.,
1984).

Further, children’s intuitive, approximate arithmetic continues to develop
and may facilitate the development of explicit, exact arithmetic with larger
numbers. A series of studies showed that five-year-olds could mentally com-
bine two successively-presented arrangements of dots and compare them to a
third arrangement (see Figure 5.1, where the arrows indicate the movement of
the dots onto the screen).

Further, children could also compare the dot total to a sequence of sounds.
Two screens were shown, the white dots entered as Figure 5.1, children were
told, “Now you’ll hear the black dots” and then the children heard a sequence
of sounds. Children were successful with this task as well. Because children
could add within a single visual-spatial modality (dots) and across two
modalities and formats (dots and sequences of tones), children’s intuitive,
approximate arithmetic appears to be abstract and may guide the development
of later language-based arithmetic.

Children’s accuracy for exact arithmetic is limited until about three years of
age. Children are initially more accurate with small numbers (operands from
one to three) and nonverbal problems (Hughes, 1981; see also Huttenlocher,
Jordan et al., 1994). For example, children solve nonverbal arithmetic problems
at about three years of age. In such tasks, the experimenter might show a
number of disks, move them behind a screen, add more disks to the now-
hidden collection, and ask the child to make a collection showing the number

Figure 5.1 Approximate addition of larger numbers.
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hidden (Huttenlocher, Jordan et al., 1994). Even when preschoolers develop
this ability, their competencies are approximate and are strongly related to their
general intellectual competence. This is inconsistent with a perspective that
such arithmetical competence is innate. Addition is easier than subtraction for
larger problems (operands five to eight) (Hughes, 1981). Verbal-based addition
develops later, as counting becomes the key basis for understanding verbal
computation above small numbers (Cowan, 2003).

Thus, most agree that children have built an initial, explicit understanding
of addition and subtraction situations by about three years of age. However, it
is not until four years of age that most children can solve addition problems
involving even slightly larger numbers with accuracy (Huttenlocher, Jordan et
al., 1994).

Most children do not solve larger-number problems without the support
of concrete objects until five and a half years of age (Levine et al., 1992).
They have, apparently, not only learned the counting sequence and the cardinal
principle (usually about three and a half years), but also have developed the
ability to convert verbal number words to quantitative meaning (cf. the
ordinal-to-cardinal shift in Fuson, 1992a). However, the need for concrete
materials is probably not so much a developmental, as an experiential,
limitation. With experience, preschoolers and kindergartners can learn
“counting-all” and even beginning “counting-on” strategies (Clements &
Sarama, 2007c; Groen & Resnick, 1977; Hughes, 1986), a point to which we will
return.

Addition and Subtraction Problem Structures (and other factors that
affect difficulty)

Unsurprisingly, the larger the numbers the more difficult the single-digit
problem, due at least in part to the frequency one has experienced in the arith-
metic computations and the strategies one must use (Ashcraft, 2006). Children
use a more sophisticated strategy to solve subtraction combinations whose
minuends (the “wholes” from which a part is subtracted) are larger than 10
than for those that are smaller than 10.

Once children show dependable signs of understanding addition and sub-
traction tasks, they also show a range of strategies for solving them. Research
has shown that categorization of these problems according to their main
semantic structure helps explain to a large extent the level of difficulty,
children’s solutions strategies, and children’s errors (Verschaffel, Greer, &
Torbeyns, 2006). Therefore, this section describes these structures, which will
be discussed through this and the following chapters (Carpenter, Ansell,
Franke, Fennema, & Weisbeck, 1993; Carpenter, Fennema, Franke, Levi, &
Empson, 1999; Fuson, 1992b; Kilpatrick et al., 2001). This categorization is
not exhaustive and only includes simple one-step problems. More complex
situations, such as those involving two or more steps, are important, especially
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for primary grade and older students, but these structures will be adequate for
our needs (see Verschaffel, Greer, & De Corte, 2007, for an extended
discussion).

Semantic structures describe different problem situations. As shown in
Table 5.1, the categories include Join, Separate, Part-Part-Whole, and Compare
(the names in quotation marks are those considered most useful by teachers
and students, as reported in Fuson & Abrahamson, in press). For each category,
there are three quantities that play different roles in the problem, any one of
which could be the unknown. The specific semantic structure is given by
specifying the category and the unknown. For example, the most typical

Table 5.1 Addition and Subtraction Problem Types

Category Start/Part Unknown Change/Difference
Unknown

Result/Whole
Unknown

Join (“Change
Plus”)

start unknown

� + 6 = 11

Al had some balls.
Then he got 6 more.
Now he has 11 balls.
How many did he
start with?

change unknown

5 + � = 11

Al had 5 balls. He
bought some more.
Now he has 11.
How many did he
buy?

result unknown

5 + 6 = �
Al had 5 balls and
gets 6 more. How
many does he have
in all?

Separate (“Change
Minus”)

start unknown

� − 5 = 4

Al had some balls.
He gave 5 to Barb.
Now he has 4. How
many did he have to
start with?

change unknown

9 − � = 4

Al had 9 balls. He
gave some to Barb.
Now he has 4. How
many did he give to
Barb?

result unknown

9 − 5 = �
Al had 9 balls and
gave 5 to Barb.
How many does he
have left?

Part-Part-Whole
(“Collection”)

part (“partner”)
unknown
Al has 10 balls.
Some are blue, 6 are
red. How many are
blue?

part (“partner”)
unknown
Al has 10 balls; 4
are blue, the rest are
red. How many are
red?

whole (“total”)
unknown
Al has 4 red balls
and 6 blue balls.
How many balls
does he have in all?

Compare smaller unknown
Al had 7 balls. Barb
has 2 fewer balls
than Al. How many
balls does Barb
have?

difference unknown
“Won’t get”. Al has
7 dogs and 5 bones.
How many dogs
won’t get a bone?
Al has 6 balls. Barb
has 4. How many
more does Al have
than Barb?

larger unknown
Al has 5 marbles.
Barb has 2 more
than Al. How
many balls does
Barb have?
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problem in U.S. curricula is the “Join, result unknown” problem, such as
“Alissa has three apples, then gets two more. How many does she have now?”
There is a dynamic action of joining, and the problem is to find the resulting
whole, five apples.

In some cases, such as the unknown parts of Part-Part-Whole problems,
there is no real difference between the roles, so this does not affect the
difficulty of the problem. In others, such as the result unknown, change
unknown, or start unknown of Join problems, the differences in difficulty
are large. Result unknown problems are easy, change unknown problems are
moderately difficult, and start unknown are the most difficult. Differences in
the size of the numbers also affects problem difficulty, as does the language
and contexts of the problems. As we shall see, these difficulties are related to
strategies children can use. For example, the three Join problems become
increasingly difficult to model, or “act out,” directly with concrete objects.

There also are other non-semantic variables that also contribute to the
difficulty of problems, such as the presence of particular lexical items (e.g.,
“more” or “both”), the order of the different information elements and the
chronology of events in the situations, and the clarity with which the semantic
elements and relations are stated in the text (Vergnaud, 1982; Verschaffel
et al., 2006). Understanding the language of word problems is no simple
task for young children. In one study, children sort “add,” “more,” and “how
many more” together (Warren, 2003). They similarly thought other terms,
such as “difference” and “different” shared a meaning. They sorted
“altogether,” “equal,” and “many left” together because “they come at the
end” of word problems or expressions (e.g., 3 + 4 =). Many children described
compare as “comparing two groups. . .like adding them together” or said
“compare” is like “plus” because “when you compare a number it has
more.” Such tenuous understandings of the language used could cause serious
difficulties.

Arithmetic Counting Strategies

As stated, children develop a range of strategies for solving additional and sub-
traction tasks (for a thorough review, see Fuson, 1992a; Verschaffel et al., 2007).
Most people of any age can show diversity in solution strategies, as was
recognized for young children more than 50 years ago (Ilg & Ames, 1951).
Strategies of children as young as preschool (perhaps because school has not
yet negatively affected them, cf. Kamii & Lewis, 1993) are notably creative and
diverse (Bisanz et al., 2005; Geary et al., 1993). For example, preschool to first-
grade children use a variety of covert and overt strategies, including counting
fingers, finger patterns (via conceptual subitizing), verbal counting, retrieval,
derived combinations, and covert strategies, some slower and some faster
(Siegler & Jenkins, 1989; Siegler & Shrager, 1984; Steffe, 1983). Children are
flexible strategists; using different strategies on problems they perceive to be

108 • Number and Quantitative Thinking



easier or harder. Preschoolers can invent surprisingly sophisticated arithmetic
strategies without instruction (Groen & Resnick, 1977).

Modeling and the Birth of Strategies

Strategies usually emerge from children’s modeling the problem situation.
Kindergartners can solve a wide range of addition and subtraction problem
types when they represent the objects, actions, and relationships in the
situations (Carpenter et al., 1993). About 90 percent used a valid strategy even
for the basic subtraction and multiplication problems, with half the children
using a valid strategy on every problem. About 62 percent solved more than
three-fourths of the problems accurately.

In another study, four-year-olds solved 91 percent of arithmetic problems
by modeling, 9 percent by counting, and none with number combinations.
Children improved through the grades (Frontera, 1994).

Strategies of Different Groups of Children

Although it is not always possible to ascertain their strategies, children from all
income levels are first able to respond to the simplest tasks, nonverbal addition
and subtraction problems with small numbers (no number greater than four)
(Huttenlocher, Jordan et al., 1994; Jordan et al., 1994). Middle-income children
can also respond verbally to these problems; low-income children find this,
and conventional skills such as counting, more difficult. Thus, early solutions
may use manipulation of nonverbal images when possible, and conventional
skills may be requisite for wider types of response types and solution pro-
cedures, especially for problems that involve larger numbers. Automatic (fast
and accurate) counting skills, such as naming the counting number immedi-
ately after a given number, predicts accuracy of arithmetic performance, which
predicts overall mathematics achievement for kindergartners (Penner-Wilger
et al., 2005). An open question is whether the distinction between nonverbal
and verbal responses is mainly a difference in language competencies or also
includes the children’s possession of a mental figural collection (which may not
have a cardinal representation) versus numerosity (Steffe & Cobb, 1988).

Confirming cultural or experiential influences, Chinese kindergartners
answer three times as many addition problems as U.S. children in a given
period of time (Geary et al., 1993). Language, again, appears to be a substantial
factor. Quicker pronunciation of Chinese number words allows a greater
memory span for numbers which in turn supports more sophisticated verbal
strategies (compared to use of fingers) which in turn support learning number
combinations (because addends and sum are simultaneously in working
memory).

The structure and abstruseness of English (compared to East Asian) counting
words slows early learning of counting, as we saw (Chapter 3). Given the
importance of counting in learning subsequent skills such as addition and
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subtraction, the complexity of the number system may slow learning in those
areas as well (Fuson, 1992a; K. F. Miller et al., 1995). Further, languages such as
Japanese add coherence to problem statements by integrating items into a set
using numeral classifiers (Miura & Okamoto, 2003). A word problem such
as “Joe has six marbles, two more than Tom. How many does Tom have?” in
Japanese, would be “Joe has six-round-small-things, two-round-small-things
more than Tom. How many round-small-things does Tom have?” This may
help children build images and keep the notion of the sets of objects explicit.

Also, some studies have reported that Japanese children move from early,
more primitive counting strategies, to more sophisticated strategies such as
using composition and decomposition of numbers (see Chapter 6) without
progressing through a long use of counting strategies, as described in the
following section. This may have to do with the language and a variety of
cultural and instructional supports for using five as an intermediate anchor
(Verschaffel et al., 2007). These findings may serve as an important counterpoint
to primarily English-based research on children’s development of arithmetic
counting strategies, and as a caution as we draw implications for teaching.

The learning of arithmetic is a key issue for those working with children
with mathematical learning disabilities or mathematical difficulties. This and
related issues are discussed at length in Chapters 15 and 16.

Counting Strategies

Even preschoolers show remarkable competence in relating counting and
arithmetic. For example, they can make reasonable predictions about addition
and subtraction problems and count to check those predictions accurately
(Zur & Gelman, 2004). Other studies have also shown that average four-year-
olds in the U.S. integrate counting with their arithmetic knowledge and, in
doing so, invent counting strategies to compute the effects of addition and
subtraction operations on sets of objects. Most initially use a counting-all pro-
cedure. (This may indicate they are counters of perceptual unit items, see
Chapter 3 and Steffe et al., 1982.) For example, given a problem involving
adding five and two, they count out a set of five items, then count out two more
items, and then count all those and—if they made no counting errors—report
“seven.” These children naturally use such counting methods to solve story
situations as long as they understand the language in the story.

After children develop such methods, they eventually curtail them (Fuson,
1992a). (This may indicate that they are counters of figural unit items if they
count-up using manipulatives, or abstract unit items for more sophisticated
strategies.) In an early study, researchers were surprised that, given only
practice on addition problems and demonstrations of the counting-all strategy,
about half of the five-year-olds moved from a counting-all strategy to a
counting-on-from-larger strategy (also called “min”) by themselves (Groen &
Resnick, 1977). That is, given 2 + 4, they might start with four (possibly
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showing four fingers) and count two more: “Four . . . five, six. Six!” This
illustrates that young children can invent efficient strategies without direct
instruction, or even despite being taught alternative methods (see also
J. Cooper & Gelman, 2007; Siegler & Jenkins, 1989).

Considerable numerical competence underlies such abilities. The child
must possess a meaning for “four” that is more sophisticated than four objects
or four movements—it must consist mentally of four counting acts (Steffe
et al., 1982). For example, given a task in which two collections are hidden from
view but are said to contain six and four items, respectively, children may
put up fingers sequentially while saying, “one, two, three, four, five, six” and
then continue on, putting up four more fingers, “seven, eight, nine, ten. Ten!”
Others may just start by saying “siiiix . . .” and counting up from there. Such
counting-on is a landmark in children’s numerical development. It is not a rote
step, as is true of all such curtailments of processes. It requires conceptually
embedding the six inside the total (Steffe & Cobb, 1988; Steffe et al., 1983).
(Recall the discussion of how subitizing supports beginning arithmetic in
Chapter 2. At first this embedding is implicit, called the tacitly nested number
sequence, Steffe et al., 1982.)

We hypothesize that children accomplish this through a process of psycho-
logical curtailment (Clements & Burns, 2000; Krutetskii, 1976). Curtailment is
an encapsulation process in which one mental activity gradually “stands in
for” another mental activity. Children may pass through a phase in which they
no longer enumerate each element of the first set on the final count, but name
the number of that set with an elongated number word and a sweeping gesture
of the hand and pass on to the second addend. For example, after creating sets
of five and three, they sweep their hand over the five objects, saying “Fiiiiiiiiiive
. . .” and then continue counting as they point to each of the objects in the set
of three, “. . . six, seven, eight!” El’konin and Davydov (1975) claim that such
abbreviated actions are not eliminated but are transferred to the position of
actions which are considered as if they were carried out and are thus
“implicit.” The sweeping movement gives rise to a “mental plan” by which
addition is performed, because only in this movement does the child begin to
view the group as a unit. The child becomes aware of addition as distinct from
counting. This construction of counting on must be based on physically
present objects. Then, through introspection (considering the basis of one’s
own ways of acting), the object set is transformed into a symbol (El’konin &
Davydov, 1975).

This research shows that children can follow different developmental paths,
some illustrating awareness of the new strategies, others not, and most using a
variety of more- and less-advanced strategies at any time. It also shows that
failing to solve tasks is not requisite to inventing new strategies; instead, success
is often the catalyst (DeLoache, Miller, & Pierroutsakos, 1998; Karmiloff-Smith,
1984, 1986), especially if one is not changing a conception, but only changing
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to a more efficient or elegant approach to producing the same answer. After
concentrated experience, four- to five-year-olds showed a variety of strategies,
often the counting-on-from-larger strategy, but their successes, rather than
failures, appeared to catalyze the invention of new strategies. Transitional
strategies were important, such as the “shortcut-sum” strategy, which appears
similar to a counting-all strategy, but involves only one count; for example,
to solve 4 + 3, one, two, three, four, five, six, seven and answer seven. This
often preceded the counting-on-from-larger strategy, which was preferred by
most children once they invented it, especially on problems such as 2 + 23
where it saved the most work (Carpenter & Moser, 1982; Siegler & Jenkins,
1989).

Thus, counting skills—especially sophisticated counting skills—are essen-
tial to developing competence with arithmetic. Counting easily and quickly
predicts arithmetic competence in kindergarten, and that in turn predicts
overall mathematics achievement (Penner-Wilger et al., 2005). In addition,
knowing the next number (see the level, “Counter from N (N+1, N−1),” in
Chapter 3) predicts arithmetic achievement and addition speed in grades 1 and
2 (and number correct in addition at grade 2).

Large-scale research supports most of these claims (Biddlecomb & Carr,
2008). For example, elementary students who used manipulatives were only
at the level of counters of perceptual unit items (e.g., not above the level of
Counter and Producer—Counter To (10+), as defined in Chapter 3) and did
not use more sophisticated strategies.

In the case where the amount of increase (decrease) is unknown, children
often use counting-up-to (counting-backwards-to) to find the unknown
amount. However, counting backwards, especially more than three counts, is
difficult for most children (Fuson, Smith, & Lo Cicero, 1997) unless they have
high-quality instruction in this competence. Instead, many children, especially
in countries other than the U.S., learn counting-up-to the total to solve a sub-
traction situation. This necessitates that children establish the inverse relation-
ship between subtraction and addition. There is little sign that children as
young as two years use or understand the principle (Vilette, 2002), but three-
and four-year-old children use procedures consistent with the inversion
principle (J. S. Klein & Bisanz, 2000; Rasmussen, Ho, & Bisanz, 2003), showing
use of arithmetical (quantitative, not just qualitative) principles before formal
schooling. This use is inconsistent, however, perhaps reflecting children’s
creative tendency to try out a variety of procedures (Shrager & Siegler, 1998),
limits on their information processing capacities (J. S. Klein & Bisanz,
2000), their nascent understanding of the concept (Vilette, 2002) or some
combination. In another study, given a problem with larger numbers, only one
four-year-old, one-fourth of the five-year-olds, and three-eighths of the six-
year-olds used the addition-subtraction inverse principle (Baroody & Lai,
2007).
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Thus, an intuitive, local, and inconsistent use of the inversion principle may
emerge about ages three to four years. This may be based on approximate
estimations (Gilmore, Katz, & Spelke, 2007). This is a weak scheme, which
involves empirical inversion (a computational approach that works only
with small numbers). A verbal representation of numbers may facilitate the
generalization of this idea. Only in the primary grades do many children
understand and use the inversion principle and others (identification and
decomposition) in a conscious and interrelated fashion (P. Bryant, Christie, &
Rendu, 1999, recall most of these findings show what children learn with
traditional instruction, and that is not always ideal). At that time, they often use
addition to solve certain subtraction problems. However, many kindergartners
do use this mathematically significant principle consistently in a quantitative
manner in some situations. Most might be able to do so with good instruction.

As with counting, there is a debate about whether skill or conceptual com-
petence precedes the other. Research shows the two are related; for example,
children who succeed on commutativity tasks are more likely than those
who did not succeed to use the counting-on-from-larger procedure in solving
addition tasks (Rittle-Johnson & Siegler, 1998). Further, children’s work seems
constrained by understanding of the goals and they judge the counting-on-
from-larger as “smart” and incorrect procedures as “not smart.” Most kinder-
gartners understood addition concepts of representing each addend once and
only once and irrelevance of addend order before they generated the counting-
on-from-larger procedure.

However, there is little evidence that creation or use of the counting-on-
from-larger strategy is based on an intentional application of commutativity.
For example, kindergartners showed little or no relationship between their
additional strategies and performance on commutativity tasks (Baroody,
1987b). However, there may be levels of understanding of commutativity that
clarify these relationships (Resnick, 1992; 1994, who uses these progressions
from protoquantitative schemas to illustrate a synthesis of nativist and social
cognitive theories). One recent research review and synthesis (Baroody,
Wilkins, & Tiilikainen, 2003) updated this model and proposed four levels
of development. At level 0, unary conception + noncommutativity, children
possess a unary conception of addition (i.e., having five toys and getting three
more is different from having three and getting five) and do not understand
the principle of additive commutativity. At level 1, unary conception + non-
communativity and binary conception + protocommutativity, children may
build a binary conception of addition that is loosely connected to the unary
concept and thus view order as a constraint in some situations but as irrelevant
in others. These children may use commutativity implicitly to solve problems
(e.g., it seems to minimize effort and appears to “work” to address addends in
any order), but not “trust” commutativity when asked a question about it
explicitly (e.g., they compute 2 + 7 as 7 and 2 more but may not recognize,
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when asked, that 2 + 7 = 7 + 2). At level 2, unary conception + proto-
commutativity and binary conception + part-whole (“true”) commutativity,
children recognize the commutative relation in part-part-whole situations, but
may not in join result unknown situations. At level 3 unary conception + join
result unknown commutativity (“pseudocommutativity”—because they
recognize that the outcomes are the same but do not necessarily transform the
unary to a binary conception) and binary conception + part-whole (“true”)
commutativity, children recognize that commuted unary situations are equiva-
lent, and they abstract and synthesize their knowledge.

Summary

Early in life, babies are sensitive to some situations that older people view as
arithmetic. They may be using an innate subitizing ability that is limited to very
small numbers, such as 2 + 1. Or they may be individuating and tracking
individual objects. In any case, they possess the beginnings of invariance and
transformations and thus have far richer foundations for arithmetic than
traditional Piagetian accounts suggested. Further, as with other areas, young
children’s success in arithmetic does not appear to depend on their ability to
conserve number (Frontera, 1994).

The contents of minds can be categorized as data, information, knowledge,
understanding, and wisdom (Ackoff, 1989). Infants appear to have data, and
perhaps information, but knowledge and understanding develop over con-
siderable time. As for the other areas involving number, calculation first
emerges with very small numbers, and then extends to larger numbers. Exact
calculation is preceded by a period of approximations that are more accurate
than random guessing. Only years later do they extend their abilities to larger
collections that, while still small (e.g., 3 + 2), are amenable to solution
with other methods. These other methods, usually using concrete objects and
based on subitizing and counting, play a critical developmental role, as the
sophisticated counting and composition strategies that develop later are all
curtailments of these early solution strategies (Carpenter & Moser, 1984;
Fuson, 1992a).

Experience and Education

In the U.S., there are many roadblocks to high-quality instruction of
arithmetic.

Roadblocks to High-Quality Experience and Education

limiting beliefs

Most preschool teachers do not believe arithmetic is appropriate, nor do they
even think of it as a topic (Sarama, 2002; Sarama & DiBiase, 2004). In multiple
countries, professionals in multiple educational roles vastly underestimate
beginning students’ abilities (Aubrey, 1997; Heuvel-Panhuizen, 1990).
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typical instruction

One study, from the Netherlands, paints a depressing picture of the effects of
school on children’s arithmetic abilities. As mentioned previously, children did
improve through the grades from kindergarten to second grade (Frontera,
1994). However, comparing the highest quartile of kindergarteners to the
lowest quartile of first and second graders, the kindergarteners do better. The
first and second graders used more sophisticated strategies, but that did not
imply more correct answers. Qualitative analysis shows that even using
more sophisticated numerical strategies, the children did not understand the
semantic relationships in the problems, such as in start unknown problems
(see Table 5-1). Thus, instruction might be helping students perform arithmetic
procedures, but at the expense of conceptual understanding. Instruction was
raising their procedural knowledge, but at the expense of their development of
conceptual knowledge (and the integration of the two).

textbooks

In too many traditional U.S. textbooks, only the simplest meanings are given
for addition and subtraction problems join or separate, result unknown
(Stigler, Fuson, Ham, & Kim, 1986). However, as we have seen, (a) most kinder-
garteners can already solve these problem types and (b) other countries first
grade curricula include all the types in Table 5.1.

Pictures and word problems reflect these and only these interpretations
up to the end of first grade. In later years, the sizes of the numbers increase, but
the types of word problems do not change substantially. Textbooks from the
former Soviet Union, in contrast, posed a great variety of problems, including
various problem types and two-step problems (Stigler et al., 1986). A
recent comparison of the U.S. and Singapore curricula yielded similar results
(A. Ginsburg, Leinwand, Anstrom, & Pollock, 2005).

Given the abilities of even preschool children to directly model different
types of problems using concrete objects, fingers, and other strategies
(Carpenter et al., 1993), these restricted educational beliefs and strategies are
not only unnecessary, but also deleterious. That is, children unfortunately con-
strain the symbols “+” and “−” to these limited interpretations and lose the
flexibility of their intuition-based solution strategies (Carpenter, 1985), and
their confidence in themselves as problem solvers decreases. Textbooks also
present symbols and number sentences too soon and in the wrong ways (i.e.,
before meaningful situations); do little with subitizing or counting, automa-
tization of which aids arithmetical reasoning; and de-emphasize counting
strategies (Fuson, 1992a). The younger the children, the more problematic
these approaches become. The result is that American schooling has a positive
effect on children’s accuracy on arithmetic, but an inconsistent effect on their
use of strategies (Bisanz et al., 2005; Naito & Miura, 2001).
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In addition, textbooks offer an inadequate presentation of problems with
anything but small numbers. In one kindergarten text, only 17 of the 100
addition combinations were presented, and each of these only a small numbers
of times (Hamann & Ashcraft, 1986). Primary students encountered com-
binations with larger numbers, but less frequently than small-number
combinations. Correlational evidence supported that this accounts for dif-
ficulty students of all ages have with addition with larger sums (Hamann &
Ashcraft, 1986).

Teaching Arithmetic Counting Strategies

There are other reasons to believe that present practice is inadequate with
regard to teaching arithmetic counting strategies. For example, longitudinal
studies suggest that in spite of the gains many younger children make through
adopting efficient mental strategies for computation in the first years of school,
a significant proportion of them still rely on inefficient counting strategies
to solve arithmetical problems mentally in the upper years of primary school
(M. Carr & Alexeev, 2008; B. A. Clarke, Clarke, & Horne, 2006; Gervasoni, 2005;
Perry, Young-Loveridge, Dockett, & Doig, 2008). Early strategy use, including
fluency and accuracy in second grade, appears to influence later arithmetical
competence. Children using manipulatives continued to need to use manipula-
tives (M. Carr & Alexeev, 2008). Children need to learn to curtail their early
creations. When asked to explain a concept they are acquiring, children often
convey one procedure in speech and a different procedure in gesture. Such
“discordant” children are in a transitional state and are particularly receptive
to instruction (Alibali & Goldin-Meadow, 1993; Goldin-Meadow, Alibali, &
Church, 1993).

general approaches

When teaching attends explicitly and directly to the important conceptual
issues students are more likely to develop important conceptual under-
standings, as well as procedural skills (Hiebert & Grouws, 2007).

One study compared two approaches to teaching addition. Children taught
using the “atomistic” approach—a traditional sequence—made less progress
than those taught the holistic approach where the focus was on counting and
the number system (Price, 2001). The atomistic approach emphasized small
numbers initially, addition as separate from subtraction, procedural use
of physical manipulatives and only cardinal representations. The holistic
emphasized numbers of different sizes, patterns in number and arithmetic,
inverse relationship between addition and subtraction, and cardinal and
ordinal representations. The holistic involved a good deal of counting,
including skip counting by 10s to 1000. It also featured different ways to solve
problems, including counting strategies. The researchers believe its superior
effects were due to its emphasis on the structure of number, number decom-
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position, and relationships, and thus children’s increased opportunities to
mathematize (Price, 2001).

Other studies confirm the advantages in children inventing, using, sharing,
and explaining different strategies in developing knowledge and especially
adaptive expertise (Baroody & Rosu, 2004). For example, several benefits stem
from children’s invention and discussion of diverse strategies for more
demanding arithmetic problems. The number of different strategies children show
predicts their later learning (Siegler, 1995). When learning to solve problems
involving mathematical equivalence, children were most successful when they
had passed through a stage of considering multiple solution strategies (Alibali
& Goldin-Meadow, 1993; Siegler, 1995). Also, it is too seldom recognized that
the creation and explanation of these strategies are themselves worthwhile
mathematical goals (Steffe & Cobb, 1988). Finally, asking children to “check
your work” is often not helpful, but justification both builds concepts and pro-
cedures and serves as a meaningful introduction to checking one’s work
(Voutsina & Jones, 2001).

counting-on

Research suggests several teaching approaches that encourage children to
invent new strategies. The “Counter from N (N+1, N−1)” level of counting
must be well established (Martins-Mourão & Cowan, 1998). If children,
especially those with a learning disability, need help with the number-after
skill, teacher can provide and then fade a “running start” (Baroody, 1996). If
some children do not then invent counting-on for themselves, encouraging
understanding and use of the subskills can be helpful (El’konin & Davydov,
1975; Fuson, 1992b).

inversion

Kindergartners appear ready for instruction on the inversion principle,
once they can verbally subitize small numbers and understand additive and
subtractive identity principle (Baroody & Lai, 2007). Given high-quality
instruction, children may learn a strong scheme for generalized inversion,
earlier than the middle elementary grades (Rasmussen et al., 2003).

invention or direct instruction?

Some researchers have presented evidence that allowing children to invent
their own strategies, vs. teaching algorithms directly, has superior outcomes,
especially in children’s development of mathematical concepts and problem
solving (Kamii & Dominick, 1998). Children can be asked to use a specific
strategy, and doing so does not affect their accuracy, but it does negatively
affect their response time (Torbeyns, Verschaffel, & Ghesquière, 2001).

Another study reported that children making sense of mathematical relations
is key; the precise pedagogical strategy is sometimes less important. A
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nine-month training experiment evaluated the effectiveness of a number sense
curriculum designed to help at-risk preschoolers develop the prerequisite
knowledge and discover the key mathematical relations underlying
fluency with n + 0/0 + n and n + 1/1 + n combinations (Baroody, Eiland, Su, &
Thompson, 2007). After 12 weeks of core instruction in prerequisite knowledge
for mental arithmetic and mental-arithmetic pre-testing, 80 four- and five-
year-olds at risk for school failure were randomly assigned to one of four con-
ditions, varying from structured discovery learning and explicit instruction on
patterns/relations to haphazard practice. General number sense improved,
such as the ability to perform concrete and semi-concrete (items were seen
then hidden) addition. However, even the best performers struggled trying
to solve non-concrete (mental arithmetic) problems. The type of training did
not make a difference; even the explicit instruction, therefore, was not better in
developing number sense, which probably develops over time as children con-
struct relationships (but instruction can make a difference, see Baroody,
Thompson, & Eiland, 2008, reviewed later in the chapter).

In summary, once children have had the opportunity to invent their own
strategies, and discuss different strategies with their peers, encouraging them
to adopt more sophisticated, beneficial strategies may be possible with no
harmful effects. This is consistent with research with young children up
through the intermediate grades that suggests teaching children conceptu-
ally—emphasizing conceptual knowledge initially, and in parallel to, pro-
cedural knowledge (Rittle-Johnson & Alibali, 1999).

Representations

Here we discuss external representations, from pictures to manipulatives, and
internal, or mental representations, development of which should be the goal
of work with external representations.

representations in curricula

Primary-grade children (Elia, Gagatsis, & Demetriou, 2007) often ignore
external representations such as decorative pictures. Children did attend to
informational pictures (containing information required for solution of the
problem), but rather encountered a cognitive burden in doing so.

Children often ignore the number line as well (Elia et al., 2007). What could
be the problem with such a widely promoted and used mathematical repre-
sentation? An analysis of early NAEP results suggest that there is a mismatch
between children’s understanding of arithmetic and the number line model
of these operations (Ernest, 1985). The number line is a geometrical model
that necessitates connections between a geometric and an arithmetic repre-
sentation. In the geometric domain, the numbers correspond to vectors, but
in the arithmetic domain, the number corresponds to a point. Such dual con-
ceptualizations may limit the effectiveness of the number line (Elia et al., 2007).
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In a follow-up study, two groups of children were taught how to use one of
the two representations to solve arithmetic problems (Elia & Gagatsis, 2006).
The group taught to use informational pictures improved more on tasks
involving that representation than the control group, and similarly for those
taught to use number lines. Both experimental groups also outperformed the
control group on tasks involving other representations, although to a lesser
degree; nevertheless, this indicates a general improvement in arithmetic
problem-solving ability following explicit instruction on the use of relevant
representations.

Supporting these hypotheses, first and second graders perform better on
symbolic arithmetic tasks than on corresponding number-line tasks (Shiakalli
& Gagatsis, 1990). Further, analyses revealed no relationships between
children’s symbolic and number line representations. That is, children did
not understand the two were expressions of the same idea, although the use of
the number line in combination with symbolic representations did not lower
children’s performance. Along with other researchers’ doubts (Dufour-Janvier,
Bednarz, & Belanger, 1987), there is much to be cautious about in considering
the use of the number line as a representation for beginning arithmetic.
However, children in New Zealand do better with the number line (K. Carr &
Katterns, 1984), so it is possible that high-quality teaching would make the
number line a useful tool. This remains to be seen, but if so, research suggests
that students translate in both directions between number line and symbolic
representations (Shiakalli & Gagatsis, 1990).

A final study showed one way the number line might be useful. Peer tutoring
on using the number line to solve missing addend problems was successful in
helping low-performing first graders (Fueyo & Bushell, 1998). The tutors were
taught to use a specific teaching procedure.

manipulatives1

Paradoxically, those who are best at solving problems with objects, fingers, or
counting are least likely to use those less sophisticated strategies in the future,
because they are confident in their answers and so move toward accurate, fast
retrieval or composition (Siegler, 1993). Manipulatives can be necessary at
certain stages of development, such as counters of perceptual unit items (Steffe
& Cobb, 1988). Preschoolers can learn nonverbal and counting strategies for
addition and subtraction (Ashcraft, 1982; Clements & Sarama, 2007c; Groen &
Resnick, 1977), but they may need concrete objects to give meaning to the task,
the count words, and the ordinal meanings embedded in the situations. For the
youngest children, use of physical objects related to the problem, compared to
structured “math manipulatives,” may support their informal knowledge to
solve the arithmetic problems (Aubrey, 1997). In certain contexts, older
students too may need objects to count to create the numbers they need to
solve the problem (Steffe & Cobb, 1988).
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Teaching children to use their fingers as manipulatives in arithmetic
accelerated children’s single digit addition and subtraction as much as a year
over traditional methods in which children count objects or pictures (Fuson,
Perry, & Kwon, 1994).2 If teachers try to eliminate finger use too soon, children
hide their fingers—which are then not as visually helpful—or adopt less useful
and more error-prone methods (Fuson et al., 1994; Siegler, 1993). Further,
the more advanced methods of counting are sufficiently efficient to allow
multidigit and more complex computation and were not crutches that held
children back (Fuson, 1994, see also Price, 2001).

moving beyond manipulatives

Once children have established successful strategies using manipulatives,
they can often solve simple arithmetic tasks without them. In one study
of kindergarteners, there were no significant differences between those
given and not given manipulatives in accuracy or in the discovery of arithmetic
strategies (Grupe & Bray, 1999). The similarities go on: children without
manipulatives used their fingers on 30 percent of all trials, while children
with manipulatives used objects on 9 percent of the trials but used their
fingers on 19 percent of trials for a combined total of 28 percent. Finally,
children stopped using external aids approximately halfway through the
12-week study.

Similarly, in the level of counting figural items, the goal is to encourage
children to reprocess the items of two collections of counted figurative unit
items in categorizing the items of the two collections together into a single
collection, and then count the items of the single collection, but without
perceptual support (Steffe, personal communication).

building mental (internal) representations is the main goal

Consistent with the hierarchic interactionalism framework’s emphasis on men-
tal representation at a more explicit level (i.e., representational redescription,
Karmiloff-Smith, 1992), children appear to reorganize their arithmetic activity
in the context of successful problem solving. For example, given the task of
finding all pairs of whole numbers that sum to a seven, a five-year-old figured
out each separate number combination. Asked if he had them all, he replied,
“There are more but I don’t know them” (Voutsina & Jones, 2001, p. 394).
After several sessions of successfully finding all combinations, marked by
increasingly systematic listings, he answered the same question: “that’s all the
different [combinations] that you can make” (p. 396). He starting using
number patterns to avoid counting to find the second addend and finally used
a strategy of listing n, 0; n − 1, 1; n − 2, 2. . . . Thus, his initial success was
procedural. Using the patterns led him to discover that each new expression
was both correct and preserved the pattern’s regularity. Based on this, he
invented an “ordering” strategy. He “stepped back” and saw the relationships
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among the various steps in his previously successful but separate procedures
and combined them into a more comprehensive strategy. He could justify this
on the basis of its accuracy and efficiency, gaining more understanding and
control of his problem solving (cf. Karmiloff-Smith, 1992).

Teaching Arithmetic Problem Solving

Although general issues about problem solving are discussed at length in
Chapter 13, arithmetic “word problems” play a large and specific role in many
curricula, and we discuss several issues here. The limitations of textbook
presentations—a critical issue—were described previously.

word problems and language development

Attention to language is important, especially as there are many terms about
which children have limited understanding (Warren, 2003). “Math talk” is
essential (Fuson & Murata, 2007 present a complete model). Good teaching
of word problems is also good teaching of valuable aspects of language
and literacy. Good teaching involves the inclusion of all the problems
types (see Table 5.1), as well as two-step problems (Fuson & Abrahamson, in
press).

difficulty levels of the problem types

One of the largest national and international bodies of research (e.g., Car-
penter et al., 1993; Carpenter et al., 1999; Fuson, 1992b; Fuson & Abrahamson,
in press; Kilpatrick et al., 2001) describes a broad developmental progression of
the problem types that children can solve. With the easiest problem types—(a)
join, result unknown (change plus); (b) part-part-whole, whole unknown; and
(c) separate, result unknown (change minus), children directly model the prob-
lem’s actions, as we have seen. One of the reasons these are easiest is that the
problems are usually stated in such a way that the child can duplicate the
actions step-by-step. The major difficulty for some children may be learning
the mathematical vocabulary (e.g., learning that “altogether” means “in all” or
“in total,” Fuson & Abrahamson, in press).

Children then move to the various counting strategies, such as counting-on.
They can use this to solve join, result unknown (e.g., counting-on and report-
ing the total), as well as part-part-whole, total unknown problems. Later,
they use it to solve join, change unknown (e.g., counting on from the “start”
number to the total, keeping track of the number of counts on the fingers,
and reporting that number), as well as part-part-whole, part unknown
problems.

Solving separate, result unknown problems with counting on or back falls
between these two groups in difficulty. There is support for two different
pedagogical approaches in the research literature. One approach accepts
that counting backwards is difficult, and so teaching children to use
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counting-on—reconceptualizing a subtraction problem (11 − 6) as a missing-
addend addition problem (6 +  = 11). Thus, children learn to count on and
keep track of the number of counts to solve this problem type (Fuson &
Abrahamson, in press). The other pedagogical approach is based on the belief
that children need better instruction and practice on counting backwards,
but when they do this, they can count back to solve separate, result unknown
problems directly (Wright et al., 2002).

Most difficult are the “start unknown” problems. Children might use
commutativity so change the join, start unknown problems to those that
yield to counting-on (e.g.,  + 6 = 11 becomes 6 +  = 11, and then count
on and keep track of the counts). Or, reversal is used to change  − 6 = 5 to
6 + 5 = .

At this point, all of these types of problems can be solved by new methods
that use derived combinations, which are discussed in more detail in chapter 6.

One category, comparison problems, presents children with several unique
difficulties, including vocabulary challenges. For example, many children
interpret “less” or “fewer,” as synonyms for “more” (Fuson & Abrahamson, in
press), possibly due to limited exposure to the former terms. Children hear the
larger term in many situations (taller, longer) more frequently than the smaller
term (shorter), so they need to learn several vocabulary terms. Comparisons
can be expressed in several ways, and one way is easier. Following “Jonah has six
candies” with “Juanita has three more than Jonah” is easier than following it
with “He has three fewer than Juanita.” Research shows that for “There are five
birds and three worms,” the question, “How many birds won’t get a worm?” is
easier than “How many more birds than worms are there?” (Hudson, 1983).

To use strategies well, children have to understand the mathematics and
the language, but also, of course, the situation. The situation may involve
characteristics mathematicians often ignore, time (chronology) and dimension
(quantities that are not pure numbers but magnitudes of various kinds), which
also affect the difficulty of problems for children (Vergnaud, 1978).

A study of the just-mentioned comparison problems provides an illustra-
tion (Stern, 1994). Participants were second graders who could solve the easier
compare problems. Children were assigned to control (general reasoning
tasks) or one of two treatments, situational (learning about the contexts and
the language used to describe them) or mathematical (learning part-whole
schemes through numerical tasks, including single-digit combinations “fact
families”—all pairs and addend with a given sum 20 or less or all subtraction
equations that result in a given difference; equivalent equations such as 4 + 2 =
9 − 3; and missing addend problems such as ? + 3 = 8 − 2). The training
improved children’s ability to solve the specific types of exercises. After the first
training period, the situational training improved children’s ability to solve the
easier two types of problems, unknown difference and unknown compare
(Mary has three marbles. John has four marbles more than Mary. How many
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marbles does John have?), but not other types. The mathematical training
showed no benefits. The second training period included giving children feed-
back and another chance to solve the problems, in additional to the specific
treatment. Again, the situational training group improved on the easier two
types, but now (only) the mathematical training improved on the two
more difficult problem types, unknown reference (Mary has nine marbles. She
has four marbles more than John. How many marbles does John have?) and
complex problems (Mary has nine marbles. She has four marbles less than
John. How many marbles do John and Mary have altogether?).

A similar conclusion might be drawn from a study of 10-year-old children
with special needs. Researchers (Van Lieshout & Cornelissen, 1994) postulated
that teaching double counting would enable children with mild mental
retardation or learning disabilities to solve change unknown problems better
(e.g., when manipulatives were not available) than the “visual marker” strategy
in which children use, for example, two different colors of cubes. However,
results showed the two interventions were equally effective. Given that in the
initial testing period children’s main error was using irrelevant numbers, it is
possible that both training conditions served as situational training, showing
children how to interpret the problems with step-by-step modeling.

Thus, children who are novices, poor performers, or who have cognitive
impairments or learning difficulties, may benefit particularly from situational
training. More experienced and high performing children may profit from
mathematical training. Such mathematical training should be combined with
help transferring their part-whole knowledge to compare problem settings,
by including both in the same instructional settings and discussing the
similarities.

One study showed that using a story context for part-whole problems
helped first graders develop an abstract additive scheme (Meron & Peled,
2004). For example, the teacher told stories about a grandfather who sent
presents to his two grandchildren or, later, about the two children sending
presents to him. Another story was about children who live on two islands and
travel by boats to school. Children represented these with a part-part-whole
board. This combination of context and more abstract mathematical structure
helped children learn part-part-whole concepts that transferred to new situ-
ations, although some still needed to use the objects and stories to solve new
problems (Naito & Miura, 2001).

In summary, professional development and curricula should change sub-
stantially based on our present knowledge of research. A full range of activities
appropriate to the age (from three years on) should be provided, covering
subitizing, counting, counting strategies,3 and an increasing range of addition
and subtraction situations (problem types), which should cover all problem
types by the end of first grade. Emphasis should be on meaning and under-
standing, enhanced through discussions. Slow and inefficient learning occur
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when principles are not understood, no matter what their source (innate or
learned). The tedious and superficial learning of school-age children is too
often the product of not understanding goals and causal relations in the
particular domain (Siegler & Crowley, 1994). Meaning for the child must be the
consistent focus.

Learning Trajectories for Adding and Subtracting (Emphasizing
Counting Strategies)

As others we have seen, the learning trajectory for adding and subtracting
is complex because there are many conceptual and skill advancements. The
importance of goals for this domain is clear: Arithmetic is a main focus of
elementary education. Table 5.2 presents the developmental progression and
the mental actions-on-objects for this learning trajectory. A final important
note: Most strategies will be used successfully for smaller numbers (totals 10 or
less) a year or more before they are used successfully for larger numbers
(Frontera, 1994).

Table 5.2 Developmental Progression for Addition and Subtraction (Emphasizing
Counting Strategies)

Age
(years)

Developmental Progression Actions on Objects

1 Pre-Explicit +/− Sensitivity to
adding and subtracting
perceptually combined groups. No
formal adding.

Shows no signs of understanding
adding or subtracting.

Use of initial bootstrap abilities (see
Chapter 2) to track amounts and
approximate the result of joining or
separating.

2–3 Nonverbal +/− Adds and
subtracts very small collections
nonverbally.

Shown two objects then one object
going under a napkin, identifies or
makes a set of three objects to
“match.”

Figural tracking: Identifies or makes a
set of three objects to “match” using
nonverbal (or verbal) representations
(see Chapters 2, 3, and 4).

4 Small Number +/− Finds sums for
joining problems up to 3 + 2 by
counting-all with objects.

Asked, “You have two balls and get
one more. How many in all?” counts
out two, then counts out one more,
then counts all three: “one, two,
three, three!”

Real-world experience provides implicit
scheme of situations of joining two
groups and determining the numerosity
of the composite set. Uses the counting
competencies of Producer (Small
Numbers) (see Chapter 3) to produce
each set, then count the total.

For very small numbers (e.g., 2 + 1), can
count mental representations.
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Age
(years)

Developmental Progression Actions on Objects

4–5 Find Result +/− Finds sums for
joining (you had three apples and
get three more, how many do you
have in all?) and part-part-whole
(there are six girls and five boys on
the playground, how many
children were there in all?)
problems by direct modeling,
counting-all, with objects.

Asked, “You have two red balls and
three blue balls. How many in all?”
counts out two red, then counts out
three blue, then counts all five.

Solves take-away problems by
separating with objects.

Asked, “You have five balls and give
two to Tom. How many do you have
left?” Counts out five balls, then
takes away two, and then counts
remaining three.

Competencies from above are extended
to larger sets. For example, child forms
scheme for combining groups, counts
out five, then counts as adds two more
to the pile (or makes separate pile and
combines piles), then counts all seven.

May use fingers, and attenuate the
counting process with finger patterns,
such as putting up five on one hand and
two on the other immediately
(subitizing), then counting seven.

Make It N Adds on objects to
“make one number into another,”
without needing to count from
“one.” Does not (necessarily)
represent how many were added
(this is not a requirement of this
intermediate-difficulty problem
type, Aubrey, 1997).

Asked, “This puppet has four balls
but she should have six. Make it six,”
puts up four fingers on one hand,
immediately counts up from four
while putting up two more fingers,
saying, “Five, six.”.

A mental representation of the number
in the starting set is formed (via a
cardinal integration, often directly after
counting or subitizing perceptual items)
and the skill of counting up from any
numbers (Counter from N (N + 1,
N − 1, see Chapters 3 and 2) is used to
count to the required amount.

Find Change +/− Finds the
missing addend (5 +  = 7) by
adding on objects.

Join-To—Count-All-Groups. Asked,
“You have five balls and then get some
more. Now you have seven in all. How
many did you get?” counts out five,
then counts those five again starting at
one, then adds more, counting “Six,
seven,” then counts the balls added to
find the answer, two. (Some children
may use their fingers, and attenuate the
counting by using finger patterns.)

The scheme for join operations is
sufficiently re-represented to allow
creation of a mental “placeholder” for
the collection of objects that must be
added to another group to make the
required total. With perceptual support,
this allows the separation of the added
collection.

Continued Overleaf
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Age
(years)

Developmental Progression Actions on Objects

Separate-To—Count-All-Groups.
Asked, “Nita had eight stickers. She
gave some to Carmen. Now she has five
stickers. How many did she give to
Carmen?” Counts eight objects,
separates until five remain, counts
those taken away.

Compares by matching in simple
situations.

Match—Count Rest. Asked, “Here
are six dogs and four balls. If we give
a ball to each dog, how many dogs
won’t get a ball?” counts out six
dogs, matches four balls to four of
them, then counts the two dogs that
have no ball.

5–6 Counting Strategies +/− Finds
sums for joining (you had eight
apples and get three more . . .) and
part-part-whole (six girls and five
boys . . .) problems with finger
patterns and/or by counting on.

Counting-on. “How much is four
and three more?” “Fourrrrr . . . five,
six, seven [uses rhythmic or finger
pattern to keep track]. Seven!”

Counting-up-to May solve missing
addend (3 +  = 7) or compare
problems by counting up; e.g.,
counts “Four, five, six, seven” while
putting up fingers; and then counts
or recognizes the four fingers raised.

Asked, “You have six balls. How
many more would you need to have
eight?” says, “Six, seven [puts up first
finger], eight [puts up second
finger]. Two!”

The counting scheme (especially the
Counter from N (N + 1, N − 1) skill)
is elaborated so that a number is
intuitively conceived simultaneously as
a cardinal amount and a part of the
total. The starting number therefore
represents the number of counting acts
it would take to reach that number
without perceptual support and the
counting continued via a cardinal-to-
count transition so as to constitute the
second number, with temporal
subitizing or perceptual tracking used
to keep track of the numerosity of this
second number (see Chapter 3).

Commutativity, initially a theorem-in-
action, is used to reorder addends to
save effort (counting-on-from-larger);
initially this may be recognized only
when adding one.

6 Part-Whole +/− Has initial part-
whole understanding. Solves all
previous problem types using
flexible strategies (may use some
known combinations, such as 5 + 5
is 10).

Sometimes can do start unknown
(  + 6 = 11), but only by trial and
error.

Schemes for join, separate, and part-
part-whole situations are sufficiently re-
represented and related to form an
explicit, although nascent, part-whole
scheme. These schemes are also related
to various arithmetic strategies,
allowing more flexible counting
strategies, including some derived
combinations.
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Age
(years)

Developmental Progression Actions on Objects

Asked, “You had some balls. Then
you get six more. Now you have 11
balls. How many did you start with?”
lays out six, then three more, counts
and gets nine. Puts one more with
the three, . . . says 10, then puts 1
more. Counts up from six to 11,
then recounts the group added, and
says, “Five!”

6–7 Numbers-in-Numbers +/−
Recognizes when a number is part
of a whole and can keep the part
and whole in mind
simultaneously; solves start
unknown (  + 4 = 9) problems
with counting strategies.

Asked, “You have some balls, then
you get four more balls, now you
have nine. How many did you have
to start with?” counts, putting up
fingers, “Five, six, seven, eight, nine.”
Looks at fingers, and says, “Five!”

The part-whole scheme is re-
represented at an explicit level, to allow
the recognition of additive parts and
wholes in multiple situations and the
use of inverse operations for
calculations.

Deriver +/− Uses flexible
strategies and derived
combinations (e.g., “7 + 7 is 14, so
7 + 8 is 15) to solve all types of
problems. Includes Break-Apart-
to-Make-Ten (BAMT—explained
in Chapter 6). Can simultaneously
think of three numbers within a
sum, and can move part of a
number to another, aware of the
increase in one and the decrease in
another.

Asked, “What’s seven plus eight?”
thinks: 7 + 8 → 7 + [ 7 + 1] → [7 +
7] + 1 = 14 + 1 = 15.

Or, using BAMT, thinks, 8 + 2 = 10,
so separate seven into two and five,
add two and eight to make 10, then
add five more, 15.

Solves simple cases of multidigit
addition (sometimes subtraction)
by incrementing tens and/or ones.

The part-whole scheme, counting
strategies, and compositional strategies
(see Chapter 6) are related to allow
more flexible deployment of strategies.

“What’s 20 + 34?” Student uses
connecting cube to count up 20, 30,
40, 50 plus four is 54. Continued Overleaf
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Final Words

Mirroring the two methods of quantification, counting and subitizing,
children solving arithmetic tasks with counting-based strategies, as discussed
in this chapter, but also composition-based strategies. The latter are discussed
in Chapter 6. As we have already seen, especially in the more sophisticated
strategies such as those of Deriver +/− and above, children can combine these
approaches.

Age
(years)

Developmental Progression Actions on Objects

7 Problem Solver +/− Solves all
types of problems, with flexible
strategies and known
combinations.

Asked, “If I have 13 and you have
nine, how could we have the same
number?” says, “Nine and one is 10,
then three more to make 13. One
and three is four. I need four more!”

Multidigit may be solved by
incrementing or combining tens
and ones (latter not used for join,
change unknown).

“What’s 28 + 35?” Incrementer
thinks: 20 + 30 = 50; +8 = 58; 2 more
is 60, 3 more is 63. Combining tens
and ones: 20 + 30 = 50. 8 + 5 is like 8
plus 2 and 3 more, so, it’s 13. 50 and
13 is 63.
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6
Arithmetic

Composition of Number, Place Value, and
Multidigit Addition and Subtraction

“Almost all, who have ever fully understood arithmetic, have been
obliged to learn it over again in their own way.”

(Warren Colburn, 1849)

In the previous chapter, we showed that children who use counting-on—
understanding that 5 + 3 can be solving by counting up three times from five—
have made a substantial conceptual advance. These children can use increas-
ingly sophisticated arithmetic reasoning. For example, they should be
decomposing and recomposing numbers. This chapter reviews research on
three topics whose shared core is the increasingly sophisticated composition
of number: arithmetic combinations (“facts”), place value, and multidigit
addition and subtraction.

Composing Number

Composing and decomposing numbers is another approach to addition and
subtraction, one that is often combined with counting strategies, as in the
“doubles-plus-one” strategy. Phenomenologically, it can be experienced
similarly to subitizing; indeed, conceptual subitizing, previously discussed in
Chapter 2, is an important case of composition of number. Composing and
decomposing are combining and separating operations that help children
develop generalized part-whole relations, one of the most important
accomplishments in arithmetic (Kilpatrick et al., 2001).

Initial Competencies with Part-Whole Relationships

Toddlers first learn to recognize that sets can be combined in different orders,
but may not explicitly recognize that groups are additively composed of smaller
groups (Canobi, Reeve, & Pattison, 2002). They do learn to recognize part-
whole relations on in nonverbal, intuitive, perceptual situations (Sophian &
McCorgray, 1994) and can nonverbally represent parts that make a specific
whole. Later, often between four and five years of age, children learn explicitly
that (in everyday situations) a whole is bigger than its parts, but may not always
accurately quantify that relationship (Sophian & McCorgray, 1994). They do
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show intuitive knowledge of commutativity, and, measurably later, associativ-
ity, with physical groups (Canobi et al., 2002).

Only then do children evince such understandings in abstract arithmetic
contexts (Baroody et al., 2005). Such thinking continues to develop. As
previously shown, most preschoolers can “see” that two items and one item
make three items; even three-year-olds can solve problems such as one and one
more, at least nonverbally. However, four-year-olds do not appreciate the
part-whole structure of change unknown problems (Sophian & McCorgray,
1994, see Chapter 5 for descriptions of this and other problem structures).
They chose a small number as the answer for both addition (join) and subtrac-
tion (separate) problems. In contrast, children a year or two older responded
with a number that was larger than that given for the final set more often on
addition than on subtraction problems, and they responded with a smaller
number than that given for the final set more often on subtraction than on
addition problems. This is not to say that children always apply such under-
standings in finding precise answers to arithmetic tasks, but rather that explicit
part-whole schemes are developing during the four- to five-year-old range.
Such findings are less pessimistic than the view that this level of part-whole
thinking is not accessible to children until the primary grades. For example,
Piagetian theory might be interpreted as excluding missing-adding tasks until
after first or even second grade (Kamii, 1985). However, children appear to
understand the part-whole relationships of tasks by kindergarten, although
they may not know how or think to apply it to all arithmetic tasks (Sophian &
McCorgray, 1994)—and most U.S. children have not been provided with
high-quality mathematics experiences. In a similar vein, children may not
understand explicitly that the sum of two counting numbers must be larger
than either addend until the primary grades or later (Prather & Alibali, 2007).

A series of studies (Canobi, Reeve, & Pattison, 1998; Canobi et al., 2002)
identified complex relationships between various understandings related to
part-whole schemes, including commutativity, additive composition (“larger
sets are made up of smaller sets”), associativity, and arithmetic problem solv-
ing. For five- to six-year-olds, there was no relationship between knowledge of
commutativity and associativity and accuracy of solving arithmetic problems
(Canobi et al., 2002). However, it was related to the type of strategy children
used. Most children used simple subitizing or counting-all strategies. However,
children who used more accurate counting strategies made more accurate
order (i.e., commutativity) judgments than other children (this did not apply
to their knowledge of the additive composition or associativity principles).
Also, children’s understanding of commutativity appeared important for
their understanding that counters can be used to signify both addends and the
total simultaneously (supporting use of the counting-on-from larger strategy,
see Chapter 5).

In contrast, for older children, individual differences in knowledge of these
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principles were systematically related to their skill in solving school addition
problems. Thus, children develop an early, primitive understanding of com-
mutativity, then additive composition, commutativity of added groups, and,
lastly, associativity, which requires conceptual reasoning concerning how
groups can be decomposed and recombined.

Conceptual knowledge is essential even for single-digit additional and sub-
traction combinations. The more conceptually competent students are, the
faster and more accurately they solve such problems and the greater flexibility
they show in their use of problem-solving strategies (Canobi et al., 1998).
Spontaneous use of concepts predicted procedural skill.

In summary, at least by five years of age, children are ready to engage in tasks
that put a substantive demand on their explicit understanding of part-whole
relationships, such as join or separate, change unknown problems. However,
they may not apply these understandings in all relevant arithmetic tasks
(Sophian & McCorgray, 1994). They may not forge any connections between
their strong understanding of part-whole concepts in the context of the
physical world and school addition problems (Canobi et al., 2002).

How about relationships to counting? In Chapter 5 we described how
counting-on strategies relied on the children’s use of abstract unit items, and at
least the tacitly embedded number sequence (Steffe et al., 1982). Such “nested”
number sequences support composition strategies (Biddlecomb & Carr, 2008).
(See the description of the construction of part-whole operations in Chapter
3.) They are not required for composition of number, just supportive of its
development; however, the “Counter from N (N + 1, N − 1)” level of counting
appears to be surprisingly important for both counting on and number com-
position (Martins-Mourão & Cowan, 1998).

Building on such part-whole understandings, children can learn to separate
a group into parts in various ways and then to count to produce (eventually, all
of) the number combinations composing a given number; for example, eight
as 7 + 1, 6 + 2, 5 + 3, and so on. Eventually, children can generate an image
of eight, and mentally operate on the elements of this image, combining
them flexibly to produce any of the family of addition situations. They can use
such combinations in solving a range of problems (Clements & Conference
Working Group, 2004). This is another approach to solving arithmetic
problems and knowing the arithmetic combinations, issues to which we
now turn.

Learning Basic Combinations (“Facts”) and Fluency

getting the facts straight

Should children memorize the basic facts? Yes . . . but that is misleading as
stated. Knowledge of arithmetic concepts forms an organizing framework for
storing arithmetic combinations (Canobi et al., 1998). Students with greater
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conceptual knowledge are more likely to use sophisticated strategies and
retrieve combinations accurately. That is one reason we do not prefer the
term “fact”—knowing an arithmetic combination well means far more than
knowing a simple, isolated “fact.”

models of retrieval of arithmetic combinations

Models of “fact retrieval” tend to support this “isolated facts” view. It does
appear that skilled people have a “network of associations” in which certain
combinations (8 + 7) are connected to a response (15). These models explain
this. However, two additional issues should be kept in mind: (a) how strong
networks are best formed and (b) the existence of other, more complex, com-
ponents of such networks, including the previously-described properties and
relationships.

To begin, research indicates that children increase their use of retrieval (a
rapid process of gaining access to a result using automatic mental process)
through the years; for example, preschoolers use retrieval on about a fifth of
number combinations with operands five or less (Siegler & Jenkins, 1989),
compared to adults using retrieval in about 80 percent of the situations (oper-
ands less than 10) (LeFevre, Sadeskey, & Bisanz, 1996). Concluding that
retrieval is straightforward access of information stored in long-term memory
must be done cautiously, however, as what appears, and is reported by young
children, to be retrieval often masks covert strategies (Bisanz et al., 2005;
Brownell, 1928) and even “memory access” may involve multiple number
relations (Dehaene, 1997).

The next questions are, how do children choose strategies and how do
they learn to “simply retrieve” a combination? An important component of
intelligence in a domain is the selection and compilation of strategies
(Sternberg, 1985). Siegler and colleagues have created several computational
models of the process (Shrager & Siegler, 1998; Siegler & Shipley, 1995; Siegler
& Shrager, 1984). For example, if an addition task is recognized, retrieval of the
sum is attempted. If it fails, or the result does not pass a confidence criterion
level, back up strategies such as counting-on or counting-all are used (see
Chapter 5). Retrieval probability is based on hypothesized strengths of
associations between combinations and possible results (e.g., 2 + 5 is strongly
associated with seven but also weakly associated with six). The model adjusts
the associations with experience. With more experience accurately relating
2 + 5 to seven, that association become stronger and the associations to
any other potential response such as six become weaker. Later versions also
associate combinations with specific solution backup procedures, direct
attentional resources to inadequately learned procedures, conduct pattern
searching to find and eliminate redundancies to create more efficient
procedures, and use “goal sketches” (knowledge structures embodying the
hierarchy of subgoals required by correct strategies) to ensure that generated
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procedures fit the problem guidelines. For example, an addition goal sketch,
based on metacognitive knowledge of planning and knowledge of counting,
might consist of including each operand once and only once and quantifying
the two representations to yield a single number representing the number in
both. The latest computational model selected counting-based procedures for
combinations that are more difficult, increased efficiency and accuracy, and
learned and invented new procedures such as counting-on-from-larger, via
a metacognitive system that examines the memory traces of a strategy’s
operators following execution (Shrager & Siegler, 1998). This system identifies
potential improvements and generates new strategies by recombining
operations from existing strategies, using heuristics such as eliminating
redundant operators, and choosing sequences that are more efficient. A com-
putational model of this system accurately reflects data on children, giving
credence to its validity.

Other researchers, however, believe that such models are limited and do not
give sufficient attention to fast-but-non-retrieval processes, such as reasoning
strategies (Baroody, 1994; Baroody, Wilkins et al., 2003). Further, children do
more than these models may appear to imply. For example, they use conceptual
knowledge to evaluate strategies they do not yet use but that are more sophisti-
cated than those they presently use. Kindergarteners will judge a shortcut
strategy to be smarter than an equally unfamiliar inaccurate strategy, and just
as smart as counting from one (Siegler & Crowley, 1994). Further, children
use recognition of patterns and relations, to select and design new pro-
cedures (Baroody & Tiilikainen, 2003, in a critical review that questions the
computational model’s assumptions and validity). For example, children
notice that the sum of n and 1 is simply the number after n in the counting
sequence, resulting in an integration of addition with the well-practiced
counting knowledge. From this perspective, conceptual insight, connections,
concepts and procedures, and thus development, consist to a substantive
degree to the increasing integration of conceptual and procedural knowledge.

neuroscientific (brain) research

We see, then, that cognitive research suggests that when children develop from
slow, counting-based strategies, they eventually form long-term representations
of combinations (e.g., 5 + 3) and the answer (eight). This is an essential aspect
of learning mathematics. Several brain-based studies have confirmed that as
children become more fluent with arithmetic their processing shifts from more
frontal activation (e.g., the prefrontal cortex, as well as the hippocampus and
dorsal basal ganglia) to more activation in regions known to be specialized
for arithmetic combinations (parietal regions, Delazer et al., 2004; Rivera,
Reiss, Eckert, & Menon, 2005).

Similarly, studying second and third graders who had not yet mastered
their addition combinations, researchers recorded how much children used
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counting or retrieval (via reaction time and observation). Children who
retrieved answers were faster, as expected (Anguiano, Wu, Geary, & Menon,
2007). They also showed different brain activation patterns. Those learning to
retrieve answers showed increased engagement of brain systems (e.g., medial
temporal lobe) involved in storing information before it is consolidated into
long-term memory (especially the hippocampus). Also activated was the
fusiform gyrus, involved in storing strings of letters or number names (e.g., “5
3 8”). Both these systems would be helping children store the combination in
permanent, long-term memory.

Simply said, as students develop, they start storing combinations and rela-
tionships into long-term memory. Eventually, they apply less conscious effort
and working memory to the task, and they use brain regions more tuned to
automatic retrieval. Note though, that other than such shifts in emphasis,
brain regions that are activated when doing arithmetic are not very different
for children and adults (Kawashima et al., 2004).

One region that seems specialized for arithmetic is the intraparietal sulcus,
or IPS. It is also associated with visuospatial processing, so it may include
a “mental number line” that people use to estimate or compute answers to
addition and subtraction problems (Varma & McDandliss, 2006). Two other
regions that are activated help control mental processes (anterior cingulate and
bilateral inferior frontal gyrus). So, they may control the “mind’s eye” as it scans
this mental number line. What is just as interesting is that these regions are not
activated for multiplication. It appears that completely different processes are
at work (e.g., a specialized “look up table” for multiplication). That does not
mean that all addition and subtraction is performed on the mental number
line. Indeed, the task of this mental number line may be simply to say whether
the answer is positive, zero, or negative—this is not yet known.

However, we suspect that the IPS and its mental number line do more
than this. It may estimate answers, which helps activate associations that
are being formed (see a following section in this chapter on distributions
of associations). The IPS may also help “verify” the final result of any
“look up.”

Several additional studies lend some support to our hypothesis. First, com-
paring two numbers also activates the IPS. (Some children show a preference
for various kinds of visual images in mental calculation, Bills & Gray, 2000.)
Also, the study of second and third graders previously discussed also revealed
activation in the IPS (Anguiano et al., 2007). This implies that learning to
retrieve the answer is a conceptual process too. Development of long-term
memories of addition combinations may be dependent in part on the brain
and cognitive systems that support a sense of quantity and magnitude, which
may have a spatial component. Knowledge of addition combinations may be
infused with conceptual knowledge of the magnitudes associated with the
problem addends and the answer.
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These studies suggest that, at least for addition and subtraction, producing
basic combinations is not just a simple “look up” process. Such retrieval is an
important part of the process, but many brain systems appear to be involved.
One study showed that certain regions of the brain (e.g., cortical networks
including the bilateral prefrontal, premotor and parietal regions) are activated
in mental calculation and non-mathematical tasks, including that these
support general cognitive operations such as working memory, processing
symbolic information, and mental images (Gruber, Indefrey, Steinmetz, &
Kleinschmidt, 2001). However, only calculation activated other regions (the
left dorsal angular gyrus and the medial parietal cortices), suggesting that
exact calculation also involves these specialized regions. Similarly, another
study showed several general regions activated (e.g., anterior cingulated cortex
for attention, executive functions, motor control, spatial working memory,
evaluation of performance). Also, certain regions (right inferior parietal lobule,
left superior parietal gyrus) engaged relatively specifically for subtraction and
the entire network supporting addition also activated for subtraction (Kong
et al., 2005). Thus, there are also common and specific networks for various
arithmetic operations. Consistent with previous studies, other regions are
specific for more complex aspects of arithmetic, such as regrouping (left IPS
and left inferior frontal gyrus).

Implications are that, with so many brain systems involved, it is no wonder
that children need considerable practice, distributed across time. Also, because
counting strategies did not activate the same systems, teachers need to
guide children to move to more sophisticated composition strategies. Finally,
practice should not be “meaningless drill,” but should occur in a context of
number sense.

culture

Brains operate in cultures, and, once again, the structure of English counting
words can interfere with children’s learning. Because the numbers 11 to 19 are
simple composites of the numbers words for one to nine and ten, Asian-
speaking children need only learn the sums to 10 to have usable strategies for
all single-digit combinations. For example, 7 + 8 is thought of as 8 + 2 + 5 or 10
+ 5, which is directly translatable into the answer 15, for which their name is,
simple, “ten-and-five” (this is called the “break apart to make tens” strategy
and will be described later in this chapter). Similarly, 15 − 8 is often thought
of as 10 − 8 + 5 (Miura & Okamoto, 2003). Such 10-based decomposition
strategies were the primary backup strategies of Chinese, compared to U.S.,
children (Geary & Liu, 1996). The speed of pronunciation of the Chinese
words also adds formation of associations. Some Asian countries, such as
Japan, use this strategy of “break apart to make tens” as the main instructional
strategy (Murata, 2004). Students show the same broad developmental
sequence as students in the U.S. (e.g., from counting all, to counting on, to
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de/composition strategies), but move to the de/composition strategies reliably,
under the influence of this consistent instructional focus.

invention and use of a variety of strategies

The research has a strong implication regarding children’s invention and use of
a variety of arithmetic strategies. Such strategies are developmentally adaptive,
both for arithmetic and in general cognition (Alibali & Goldin-Meadow, 1993;
Siegler, 1996; Siegler & Jenkins, 1989); useful for all children (Baroody, 1996);
and an important aspect of mathematics itself (Steffe & Cobb, 1988). Some
might think they are useful only until “facts are memorized.” This is only
part of the story. While fast and accurate number combinations support
mental computation, strong, flexible, computers also know and use number
combination strategies, and apply those strategies to mental computation of
multidigit numbers (A. M. Heirdsfield & Cooper, 2004). If ever educators
needed an argument against teaching “one correct procedure,” this is it.

Experience and Education

Ultimately, children should be able to reason strategically, adapting strategies
for different situations and easily and quickly retrieve the answer to any
arithmetic combination when that is appropriate (Baroody & Tiilikainen,
2003; NMP, 2008). Without accurate, fluid knowledge, students are unlikely to
make adequate progress in arithmetic (M. Carr & Alexeev, 2008). What do we
know about facilitating such adaptive expertise?

how NOT to develop knowledge, fluency, and adaptive expertise

Beginning with a caution, some recent large-scale efforts have been misguided.
In 2008, California was one of four states that had standards calling for
accelerated addition and subtraction basic-combinations memorization.
Textbooks were approved to lead to memorization in first grade, with little
guidance for second grade. The result was that barely 26 pecent of the students
demonstrated retrieval of 50 percent of addition and subtraction com-
binations. Only 7 percent demonstrated adequate progress on California’s
basic-combinations standard by retrieving at least 80 percent of the
combinations (Henry & Brown, 2008).

What instructional practices were related to better basics combinations
knowledge? Not many. Teachers’ reliance on the state-approved textbooks was
negatively correlated with basic-combinations retrieval. Students of teachers
who relied more heavily on California State-approved textbooks achieved
about one-third as well on basic combinations as those who relied less heavily
on these textbooks.

Timed tests were negatively correlated with knowledge of basic combin-
ations. Flash card use was not correlated with better combination knowledge.
Similarly, there was little relationship between additional activities the teacher
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used as supplemental instruction and combination knowledge. Basic-
combinations worksheets were positively correlated, but only weakly.

Children were apparently trying to memorize without understanding or
strategies, or were still using unsophisticated counting procedures (especially
when the teachers over-emphasized correct answers). Neither helps (Henry &
Brown, 2008).

how TO develop knowledge, fluency, and adaptive expertise

Instead, this study found that using strategies (especially Break-Apart-to-
Make-Ten, or BAMT, see the following section) and derived combinations was
predictive of more difficult basic combinations. The knowledge of “tens com-
plements”—pairs of numbers that add to 10—were more predictive than work
on doubles or on smaller sums (Henry & Brown, 2008). Students who learn to
use derived-combination strategies in concert with memorization are more
likely to develop mathematical proficiency than those who have memorized the
combinations without supplementary strategies. Let us turn to other studies
that point to more positive pedagogical directions.

commutativity and associativity

Arithmetic properties deserve special attention. Recall that, although under-
standings of commutativity and associativity is shown in physical contexts as
early as four years of age, they often do not develop significantly up to six years
of age (Canobi et al., 2002). Commutativity is recognized and explained by
students before associativity (Canobi et al., 1998). If commutativity is explicitly
used in the study of addition combinations, children can then organize their
memories so that both are linked to a single mental representation.

“doubles” and the n + 1 rule

Special patterns such as those involving “doubles” (3 + 3, 7 + 7), also allow
access to combinations such as 7 + 8. Research indicates that properly struc-
tured computer drill and practice activities can help children master arithmetic
combinations. For example, at-risk first graders who practiced using discovery
software, which presented n + 1 and 1 + n problems (e.g., 5 + 1 = 6) improved
significantly more than control children on these combinations (Baroody et al.,
2008). Surprisingly, children in the control group, who practiced doubles and
doubles plus one problems, had little success with any group of problems,
including the ones they had studied. They may have needed to learn the n + 1
rule first. One last finding: The n + 1 children outperformed the control
children on combinations no group studied, such as 3 + 5 and 5 + 3. Here, the
two subgroups of discovery children differed. Those taught with structured
discovery, pointing out the patterns by sequencing the presentation (e.g., what
number comes after six, followed immediately by 6 + 1, 1 + 6, 6 + 0, 0 + 6)
scored higher than the group that practiced the same combinations, but in
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random order. So, careful practice that teaches concepts, problem solving, and
skills simultaneously, can be particularly effective.

break-apart-to-make-ten (bamt) strategy

Japanese students often proceed through the same general developmental pro-
gression as U.S. and other researchers have identified, moving from counting
all, to counting on, and to derived combinations and decomposing-composing
strategies (Murata, 2004). However, their learning trajectory at that point
differs. They begin to coalesce around a single powerful strategy.

Japanese first grade lessons in learning to add using 10 illustrate a powerful
learning trajectory, as well as how hierarchic interactionalism synthesizes
aspects of constructivism and Vygotsky’s Zone of Proximal Development (this
description is based on Murata, 2004; Murata & Fuson, 2006). Before these
lessons, children work on several related learning trajectories, including
numerals, counting, the number structure for teen numbers as 10 + another
number, small number arithmetic (i.e., Find Result +/−; in the learning
trajectory in Chapter 5; then later, what we call “Composer to 4, then 5” . . . up
to Composer to 10 in Table 6–1).

At this point the “break-apart-to-make-ten” (BAMT) strategy is developed.
The entire process (to fluency) follows four instructional phases. In Phase 1,
teachers elicit, value, and discuss child-invented strategies and encourage
children to use these strategies to solve a variety of problems. Supports to con-
nect visual and symbolic representations of quantities are used extensively,
and curtailed and phased out as children learn. In Phase 2, teachers focus on
mathematical properties and mathematically advantageous methods,
especially BAMT. In Phase 3, children gain fluency with the BAMT (or other)
methods. In Phase 4, distributed practice is used to increase retention and
efficiency and to generalize the use of the method in additional contexts and as
a component of more complex methods. Of the means of assistance in Tharp
and Gallimore’s model (1988), the teacher in the case study (Murata & Fuson,
2006) used questioning and cognitive restructuring extensively and used
feeding back, modeling, instructing, and managing to a lesser extent. He also
used an additional strategy, engaging and involving.

combined strategies

In one study, first graders were taught two reasoning strategies, BAMT, and
doubles and doubles ± 1, and then asked to solve a series of near ties, such as
8 + 7 (Torbeyns, Verschaffel, & Ghesquière, 2005). Sometimes the students
could choose between the strategies, sometimes they were asked to use a
specific strategy. Although high-achieving students applied these strategies
more efficiently, they were not more adaptive than their lower achieving peers.
Thus, teachers should support adaptive expertise for all children, because
students of a wide range of abilities levels can deploy strategies adaptively
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and efficiently (Torbeyns et al., 2005). Further, although BAMT is a powerful
strategy and more helpful than others for later multidigit computation, it
should not be the only strategy children learn.

children at risk

If children are not making progress in grade 1, and especially grade 2, intensive
interventions are warranted (Gervasoni, 2005; Gervasoni, Hadden, &
Turkenburg, 2007). See chapters 15 and 16.

achieving fluency

Research establishes several guidelines for helping children achieve fluency
with arithmetic combinations. We define automaticity as correct and accurate
knowledge and fluency as automaticity plus complex understandings that
provide that foundations for that automaticity and for adaptive expertise
(Baroody & Tiilikainen, 2003; Fuson, in press; Fuson & Abrahamson, in press).

First, any such intensive work should be reserved for essential, core skill
areas—addition and subtraction combinations are such areas.

Second, learning trajectories should be followed so that children develop the
concepts and strategies of the domain first. Understanding should precede practice
(Murata & Fuson, 2006).

Third, research-based strategies for practice should be followed. Practice
should be distributed, rather than massed (Cepeda, Pashler, Vul, Wixted,
& Rohrer, 2006). For long-term memory, a day or more should eventually
separate practice sessions.

Fourth, research-based strategies should be followed in any curricular
materials, especially drill and practice software. Such software can be quite
effective. Indeed, it is one of the only applications of educational technology
where it is better for the software to actually replace conventional instruction
rather than just supplement it (NMP, 2008). However, few software programs
are designed based on explicit strategies. As one example, effect sizes in the
National Math Panel’s meta-analysis actually might be an underestimate of
what can be achieved if drill and practice software were more carefully
designed. Few curricula or software packages (or teachers) use empirically-
validated timetables for practice (e.g., Cepeda et al., 2006) or effective strategies
such as increasing ratio review (M. A. Siegel & Misselt, 1984). In increasing
ratio review, if a child makes a mistake, that mistake is corrected, but also the
same problem is presented as the second, fifth, ninth, and fourteenth problem.
This ensures sufficient attention is given to that combination.

Fifth, practice should continue to develop relationships and strategic
thinking. For example, research findings support the notion that automatic
performance is related to separate associations between (in this case) multi-
plication problems and division problems (Rickard, 2005). This suggests that at
least some practice should occur on all forms of all possible combinations
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(e.g., including 5 = 8 − 3). This may help children understand properties,
including commutativity, additive inverse, and equality, as well as supporting
students’ retrieval of basic combinations.

Grouping and Place Value

Experiences, rather than age, account for the development of place value
understanding (Naito & Miura, 2001). Use of the BAMT strategy, for example,
helps children group into tens to solve addition and subtraction problems and
to develop place value concepts (Naito & Miura, 2001). Place value has been
embedded in the discussions of the learning trajectories of Chapter 2, 3, 4, and
5, but in this section we focus specifically on the concepts of grouping and
place value.

Development of Grouping and Place Value Concepts

grouping

For the purposes of this discussion, grouping is defined as the operation (pro-
cess) of combining objects into sets each having the same number of objects.
Preschool children show some foundational understandings in this domain.
For example, in Brazil, 60% of children attained an understanding of units of
different size (four coins of value one vs. four of value 10) before schooling
(five to seven years of age). Fewer, but still 39 percent, could produce an exact
amount given similar value coins (Nunes & Bryant, 1996). These studies also
indicated that competence in counting was not related to understanding of
grouping and place value, but experience with additive composition was.

extending the previous neuroscientific research

There appear to be three regions of the brain that are activated for multidigit
numbers. The first is a sort of visual number word form region (ventral visual
stream), known for processing the orthographic structure of words (e.g., it
activates more for real words than pseudo-words and more for pseudo-words
than random letter strings). Apparently, it also processes visual number forms
(Varma & McDandliss, 2006). The other regions we met previously, for
control, or metacognitive processing, including conflict resolution (Varma &
McDandliss, 2006). These might control visual attention as the complex
structures of place-value numerals are scanned.

students’ knowledge of place value

For example, one system states that students asked about the meaning of “1” in
3156 who say only “one” have weak knowledge of place value. At a more
sophisticated level, children possess an additive sense of place value; that is,
they understand that 546 is equal to 500 plus 40 plus 6. Only later, however,
would children understand that 500 is equal to five times 100, 40 is equal to
four times 10, and so forth (Wright et al., 2006). Children also learn that the
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place value in a given place is 10 times the value of the place to its right. In a
similar vein, a review of several research studies concluded that children in first
grade or younger cannot understand place value (Kamii, 1986, 1989). They
develop over the years from not being able to quantify groups at all, to partial
understanding (but a need to, or preference for, counting by ones), to under-
standing the relationships between places.

Researchers have identified five levels of children’s conceptual structures
about place value (Fuson, in press; Fuson, Smith et al., 1997; Fuson, Wearne
et al., 1997).

1. Unitary multidigit. Students do not separate numbers into place value
groups, nor number words and numerals into their parts. A child who
writes “26” for 26 cubes may say that the “2” stands for two single
cubes. “Twenty-six” and 26 refer to a group of 26 cubes (26 is simply
the number that comes just after 25 and just before 27 and you can
only make a group of 26 cubes by counting by ones).

2. Expanded notion. Students begin to separate the decade and the ones
parts of a number word and relate each part to the quantity to which
it refers. A child understand that “twenty-six” means a group of 20
cubes along with a group of six cubes, but for “twenty-six” might
write “206.”

3. Count by units within sequence. Students view each decade as struc-
tured into groups of 10. Students can count by tens, and mentally
separate out groups of 10 within a quantity so they can count these by
tens. Thus, a group of 26 cubes can be created by counting two groups
of 10 (10, 20), and then counting up by ones (21, 22, 23, 24, 25, 26).

4. Regularized named-value English words. Students think of two-digit
numbers as composed of two distinct units—units of ten and units of
one. They may count “One ten, two tens . . .” (or even “One, two
tens”) and then count the ones as before. Students can view each ten
as a single 10 or as 10 ones.

5. Integrated place value understanding. Students integrate the concep-
tions from levels 3 and 4 so they can switch back and forth between
them effortlessly. The number words (twenty-six), numerals (26), and
quantities (26 cubes) are connected. Students can then use a variety of
strategies for solving multidigit number problems.

In the latest version of this categorization (from which most of the labeling
above came), Fuson emphasizes the understandings that this highest level must
eventually include the following (from Fuson, in press).

• Generalize new places. Create new places to the left by multiplying the
left-most place by ten and to the right by dividing the right-most place
by 10 (multiplying by one-tenth).
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• Symmetry around the ones place for English names of places. The place-
value positions the same number of places in both directions from the
ones place have the same names except that the decimal name has the
fractional suffix “-th”.

• Multiples (powers) of 10. Each place to the left of the ones place is some
number of multiples of 10, and each place to the right is some number
of multiples of 0.1 (1/10).

• Exchanging units. All adjacent places have the same bidirectional
exchange values: exchange one unit to the left for 10 units to the right
and vice versa.

In Fuson et al.’s initial model, students’ understanding of numbers with
three or more digits are direct extensions of these conceptual structures,
although, of course, students may operate at different levels for different ranges
of numbers, and the developmental progression for one range (e.g., one to 100)
is usually not completed before the progression for another (100 to 1000)
is begun. Moreover, all numbers from one to 100 may not be operated on at the
same level. Also, the hundreds and thousands are understood even more as
separate than as sequence structures because of the regularities in the naming
structures, such as “three hundred twenty-four thousand.”

Finally, students’ conceptions and development of them may be strongly
affected by the educational environment. The unitary conception may develop
first, but after that, students’ development may follow different trajectories
through the other levels, developing them separately or together and in
different sequences (Collet, 2004, as reported in Verschaffel et al., 2007).

Thus, all these categorizations show development, emphasizing different
components. Important is the realization that both the “sequence” view and
the “composition” view of numbers must be both developed and connected.
These categorizations discuss sequence, but only in the sense of counting sets
of objects. The “mental number line” notion is often left in the background
(see Chapter 4), but it needs emphasis as well.

language and place value

As discussed previously, the patterns in English and French number words are
complex and do not help children focus on ten (H. P. Ginsburg, 1977; Kamii,
1985; Miura et al., 1988; Ross, 1986). As discussed in Chapter 3, English has
thirteen rather than “threeteen” or, better, “ten-three”; twenty rather than
“twoty” or, better, “two tens.” Other languages, such as Chinese, in which 13
is read as “ten-and-three,” are more helpful to children. Researchers report
negative effects of this in the units (coins) tasks: combinations of 20 and 1 (e.g.,
make 23) were easier than those of 10 and 1 (e.g., make 13) (Nunes & Bryant,
1996).

Research substantiates the effects of language on place value learning (Ross,
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1986). For example, Chinese five- (but not four-) year-olds with good verbal
counting understood tens-and-ones in a task in which a single-digit number
was added to 10, but English-speaking children did not (Ho & Fuson, 1998).
These differences are not limited to the surface, but extend to children’s cogni-
tive representations of number (Miura & Okamoto, 2003; Miura, Okamoto,
Kim, Steere, & Fayol, 1993). For example, Japanese and Korean first graders
showed an initial preference for using a canonical base 10 constructions,
whereas those using non-Asian languages showed an initial preference for
representing numbers with collections of single units. These findings are
mirrored by the superiority of first-grade Asian children in performance on
place value tasks, including those with written numbers (Miura et al., 1993;
Nunes & Bryant, 1996). Their understanding, even in first grade without
specific instruction, contradicts claims of children’s “inability” to understand
place value at young ages (Kamii, 1986), and suggests that helping children
overcome language hurdles is an important pedagogical challenge. Thus, the
years that it takes English-speaking children to learn concepts of tens and ones
and associate them with numerals (Kamii, 1989; Ross, 1986) reflect difficulties
English places on their learning. Claims that children are not cognitively
“ready” to understand place value need to be rethought. Language is a cultural
tool (cf. Vygotsky, 1934/1986) and English is a poor tool compared to other
languages such as Chinese, Korean, or Japanese, in certain respects (Miura &
Okamoto, 2003). We need to know how much sensitive, consistent instruction,
emphasizing the grouping and place value meaning of the words can mitigate
that effect. In this vein, changes in tasks, such as demonstrating to children
with teen rather than only single-digit numbers, have been found to decrease
differences across cultures, led researchers to suggest that differences may be
influenced more by sheer exposure to number work (Towse & Saxton, 1998).

grouping and multiplication

Of course, grouping also forms a foundation for multiplicative thinking. Here
we note that children can make small groups in their early preschool years
(K. F. Miller, 1984), although they may not understand the equivalence of the
groups. They can also reason about many-to-one correspondences that are not
perceptually available. For example, they can associate one doll with the count,
“one, two,” and the next with the count, “three, four,” and so on (Becker, 1993).
Although Becker does not discuss this, it is important to note the role of, and
preschoolers’ competence with, temporal (rhythmic) subitizing in this context.
A caveat is that children had difficulty anticipating the number needed for this
distribution, apparently not aggregating across repeated iterations, arguably
critical to conceptualizing the multiplicative nature of the task. A brief training
procedure that highlighted this iterative nature of many-to-one mappings was
successful with seven-, but not five- or six-year-olds (Sophian & Madrid, 2003).
Still, by kindergarten, children can learn to invent their own solutions to solve
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simple multiplicative tasks by making groups, modeling the structure of the
problem (Carpenter et al., 1999). Counting strategies are usually developed
later for multiplicative problems than for addition and subtraction problems,
probably because of the large processing demands of aggregating mentally
across multiple iterations of many-to-one mappings (cf. Sophian & Madrid,
2003). Thus, many children younger than seven years can solve multiplicative
problems at the sensory-concrete, but not higher, level of thinking.

Experience and Education

Solving simple addition problems in the pre-K and kindergarten years helps
form a foundation for understanding place value. Following the counting,
comparing, and addition learning trajectories in Chapters 3, 4, and 5 is con-
sistent with these findings (Nunes & Bryant, 1996).

There has been debate concerning the relationship between learning
place value and learning arithmetic (Baroody, 1990; Fuson & Briars, 1990). One
view is that learning place value for numbers of a certain range (the teens, or
numbers to 100) first is a prerequisite for learning arithmetic with those
numbers. An emerging view is that arithmetic is a good context for the learning
of place value (Wright et al., 2006). That is, children can learn place
value simultaneously with tackling problems of multidigit arithmetic (Fuson &
Briars, 1990).

Effective instruction often uses manipulatives or other objects to demon-
strate and record quantities. Further, such manipulatives are used consistently
enough that they become tools for thinking (see Chapter 16 in the companion
book). They are discussed to explicate the place-value ideas. Finally, they are
used to solve problems, including arithmetic problems (Hiebert & Wearne,
1992). Such instruction is more effective than conventional textbook instruction
in developing concepts of place value and addition and subtraction with
regrouping (Hiebert & Wearne, 1992). The problem-solving strategies of the
first graders who experienced this instruction more often exploited the place
value structure of the number system than those taught with textbooks.

measurement instruction and place value

Why would instruction in measurement help develop ideas of place value?
More will be said of a measure-based approach to early mathematics in
Chapter 10, but here we note that such a curriculum can help children be
knowledgeable about units (Slovin, 2007). For example, first graders learn to
express relationships about physical quantities such as “P > R.” They then learn
to quantify how much two quantities are unequal. This establishes the need
to identify the unit before number and counting are introduced, because its
definition has an impact on both. As two students noted, when asked to com-
ment on the statement 3 < 8, “You don’t know; you might have three really,
really, really big units and eight small ones, so three is greater than eight. But if
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you’re on a number line, then . . . it’s okay. ’Cause you have equal lengths. So
you can do that” (Slovin, 2007).

The idea that numbers depend on units is basic to place value understand-
ing. Unsurprisingly, then, this approach introduces place value as a new way
of measuring and representing quantities, requiring the construction of new
measures. The ratio between consecutive units is the base of the system (10 in
our case). This builds directly from experience they already have relating one
unit (e.g., a foot) to another (yards . . . or inches), including exchanges between
units. Second graders who experienced this approach were skillful in their
ability to generate and represent counting numbers in multiple bases; how-
ever, they varied in their ability to describe how a place value system works.
The researchers then ascertained that sixth- and seventh-graders from a
traditional curriculum could not do so either. Therefore, the second graders
were apparently making good progress, but more work needs to be done to
help them connect the measurement concepts to the place value concepts and
skills (Slovin, 2007).

Finally, making equivalent groups for various real-world tasks is appropriate
for preschoolers. By kindergarten, children should be modeling simple multi-
plication problems with sensory-concrete objects.

Multidigit Addition and Subtraction

“To understand is to invent.”
(Jean Piaget)

Possessing strong knowledge of arithmetic properties and processes helps
students use algorithms adaptively and transfer their knowledge to new
situations. Without this knowledge, children often make errors such as sub-
tracting the smaller from the larger digit even if the smaller is in the minuend.
Many of these errors stem from children’s treatment of multidigit numbers as
a series of single-digit numbers, without consideration of their place value and
their role in the mathematical situation (Fuson, 1992b). Further, students’
knowledge of these concepts and arithmetic procedures is correlated, and con-
ceptual knowledge predicts not only concurrent, but future procedural skill
(Hiebert & Wearne, 1996). Finally, instruction designed to emphasize concepts
of place value leads to increases in both conceptual and procedural knowledge,
more so than instruction that de-emphasizes concepts or that leaves a gap
between the two types of knowledge (Verschaffel et al., 2007). This section
reviews research on the learning of multidigit arithmetic. Because much
learning of this topic is based on formal school experiences, the following
section on “Experience and Education” contains the bulk of the research and
discussion.
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development of multidigit arithmetic

Stepping back a bit, we see that explicit knowledge of such mathematics as
place value and algorithms are not a prerequisite for the initial understandings
of approximate multidigit arithmetic. Research reviewed in Chapter 2 showed
that even infants have an approximate sense of the results of adding or sub-
tracting items from larger visual collections. Also, when five- to six-year-old
children were given problems such as “If you had 24 stickers and I gave you
27 more, would you have more or less than 35 stickers?” they answered above
chance levels (Gilmore, McCarthy, & Spelke, 2007). This is still less accurate
than their ability to estimate the answers when presented similar problems
with dot cards, rather than words. However, when simple visual displays were
added, including pictures of children and pictures of bags of candies with
numerals (only) on them, children’s performance was just as good. They
appeared to use their existing nonsymbolic number knowledge spontaneously
to manipulate quantities that were presented symbolically, without any
instruction in arithmetic.

The researchers who reported early competence with nonsymbolic arith-
metic suggested that instruction might be enriched by building on these
abilities (Gilmore, McCarthy et al., 2007). However, no such instruction
has been attempted, to our knowledge. On the other hand, neuroscientific
research shows that multidigit mental calculations involve regions of the brain
(left inferior frontal regions) that also serve language and working memory,
suggesting that general cognitive processes are essential for the use of com-
position and decomposition strategies (Gruber et al., 2001).

Strategies involving counting by tens and ones can be altered along with
children’s developing understanding of numeration and place value to lead up
to explicit multidigit addition and subtraction knowledge (see Chapter 3).
To use such strategies, students need to conceptualize numbers both as wholes
(as units in themselves) and composites (of individual units). At this level, a
student is capable of viewing number and number patterns as units of units
(Steffe & Cobb, 1988).

This is one path for moving along the developmental progression for
learning explicit multidigit arithmetic. Recall the development progression
for place value described in the previous section (Fuson, Smith et al., 1997;
Fuson, Wearne et al., 1997). These concepts are key to enabling students’ use of
different strategies. As noted previously, like many developmental progres-
sions, the levels of understanding of place value are not absolute or lockstep.
Students might use a strategy based on integrated sequence and de/com-
position strategies when solving horizontally-formatted arithmetic problems,
but regress to a type of unary level, called the concatenated single-digit concep-
tion in vertical format (Verschaffel et al., 2007). The vertical format can lead
students to just think of each number as singles, even if they understand place
value in different contexts. As we discuss later, this is both the main advantage
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(efficiency) and disadvantage (loss of a conceptual connections) of standard
algorithms. Most of this learning takes place in intentional teaching contexts, to
which we turn.

Experience and Education

Second graders in the U.S., Korea, and Taiwan all appeared to understand place
value concepts in a subtraction task (Okamoto et al., 1999). However, there
were differences among them on representing place value with blocks. For
example, children were given 26 unit blocks and six cups and asked to put four
blocks into each cup and then to give the total number represented by the
blocks. They were then shown the numeral “26” and asked which blocks
made the two and which made the six. Children from the U.S. performed the
worst on this task, manipulating symbols without signs of meaningful under-
standing (Okamoto et al., 1999). Thus, U.S. children learn an algorithm, but
not conceptual understanding of place value.

how should algorithms be taught?

Earlier we saw that some students remain at an unsophisticated level, for
example, remaining counters of perceptual unit items. Even when they learn a
standard algorithm, their understanding lags behind, even through their inter-
mediate grades (Biddlecomb & Carr, 2008). Carrying out that algorithm
should not be considered a success story unless children can use it with under-
standing, and adaptively.

More forcefully, some have argued, with supporting evidence, that
standards algorithms are harmful to children (see Kamii & Dominick, 1998, for
their own statement and a review of other researchers with similar con-
clusions). Algorithms achieve efficiency by separating the place value of, from
the addition of (single-digit), numbers. Because teachers often directly
teach the standard algorithm regardless of their students’ developmental pro-
gressions in counting strategies, children treat the standard algorithm as a
meaningless but prescribed procedure unconnected to their understandings of
counting and other number concepts and processes (Biddlecomb & Carr, 2008;
see also Kamii & Dominick, 1997; 1998).

In contrast, studies indicate that curricula and teaching that emphasizes
both conceptual understanding simultaneously with procedural skill, and
flexible application of multiple strategies, lead to equivalent skill, but more
fluent, flexible use of such skills, as well as superior conceptual understanding,
compared to approaches that initially emphasize mastery of procedures (Fuson
& Kwon, 1992; Hiebert & Wearne, 1996; NMP, 2008).

Thus, explicit teaching of arithmetic does not have to lead to learning
problems. Teaching that develops number concepts, counting and com-
positional strategies, and skills at students’ level in the learning trajectory
benefit students. This teaching must not neglect the connections between, the
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development of place-value understandings and the procedures for doing
multidigit arithmetic. Students’ knowledge of these are correlated, and con-
ceptual knowledge predicts not only concurrent, but future procedural skill
(Hiebert & Wearne, 1996). Also, better instruction, designed to emphasize con-
cepts of place value, leads to increases in both conceptual and procedural
knowledge, better than instruction that de-emphasizes concepts or that leaves a
gap between the two types of knowledge (Verschaffel et al., 2007).

Research supports the notion that inventing one’s own procedures is often a
good first phase in ensuring these advantages (Carpenter et al., 1993; Carpenter
& Moser, 1984; Fennema, Carpenter, & Franke, 1997; Kamii & Dominick, 1997,
1998). As a specific example, a three-year longitudinal study of students’
multidigit number concepts and operations in grades 1–3 showed that about
90 percent of all children used invented procedures to solve multidigit addition
and subtraction problems (Carpenter et al., 1998). Those students who used
invented strategies before they learned standard algorithms demonstrated bet-
ter knowledge of base-ten number concepts and were more successful in
extending their knowledge to new situations than were students who initially
learned standard algorithms. These results support students’ use of invented
procedures first, as reflected in the Curriculum Focal Points.

These results also support the position of some researcher/developers
that place value itself may be best taught in the context of solving multidigit
addition and subtraction problems (Fuson & Briars, 1990). As another specific
example, low SES urban Latino first graders experienced a year-long curric-
ulum that supported their thinking of two-digit quantities as tens and ones.
They worked through a learning trajectory (the UDSSI model) and most could
accurately add and subtract two-digit numbers by using drawings or base ten
blocks. Their performance was on a par with East Asian children (Fuson, Smith
et al., 1997). In contrast to these positive pictures, U.S. students taught standard
algorithms focusing only on mastery of procedures often do not show flexible
or intelligent use of those algorithms or other strategies (Anghileri, 2004).

Some contend that students’ invention at this level is not the critical feature,
but rather the sense-making in which students engage whether or not they
invent, adapt, or copy a method (Fuson, in press; Fuson & Abrahamson, in
press). Sense making is probably the essence; however, the bulk of research
indicates that initial student invention develops multiple interconnecting con-
cepts, skills, and problem solving. This does not mean that children must
invent every procedure, but that conceptual development, adaptive reasoning,
and skills are developed simultaneously and that initial student invention may
be a particularly effective way of achieving these goals.

mental procedures before algorithms

Many researchers believe that use of written algorithms is introduced too soon
and that a more beneficial approach is the initial use of mental computation. A
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recent research review concludes that standard written algorithms intentionally
relieve the user of thinking about where to start, what place value to assign to
digits, and so forth (Verschaffel et al., 2007). This is efficient for those who
already understand, but often has negative effects on initial learning. In com-
parison, mental strategies are derived from and support underlying concepts.
Conventionally taught students usually take a long time to master algorithms
and often never master them. They often find it difficult to relate the algorithm
to problems in which it is relevant and perform badly on assessments that ask
for understanding or insight into the algorithm (Verschaffel et al., 2007).

Through several small case studies, Heirdsfield and her colleagues
(A. Heirdsfield, 2005; A. Heirdsfield, Dole, & Beswick, 2006; A. Heirdsfield &
Lamb, 2006a, 2006b, 2006c) have shown that mental computational procedures
and professional development regarding such practices, can help students
become more accurate, sophisticated, and flexible in their methods for solving
arithmetic problems. The researchers’ model for mental computation includes
a range of metacognitive, cognitive, and affective components, which differ for
flexible and accurate students and those who are inflexible. Flexible students
used more and more efficient mental strategies, had broader numeration
understanding, were more metacognitive (strategies and beliefs, including at
the final, “checking” stage), understood the effects of arithmetic operations on
number understanding, and held strong positive beliefs in their own strategies.
For all students, fluency with arithmetic combinations, including retrieval
but also strategies for combinations (such as derived combinations), was
important. Computational estimation was not important to these mental
calculations (along with the age of the children considered in this book, this
is why we do not review research on that skill, for information, see Verschaffel
et al., 2007). The inflexible students mostly used mental images of standard
paper-and-pencil algorithms. Flexible students instead might compute as
follows: 199 is close to 200; 246 + 200 = 446, take away one; 445. The flexible
students used strategies such as the following to compute 28 + 35: com-
pensation (30 + 35 = 65, 65 − 2 = 63), leveling (30 + 33 = 63), aggregation,
right to left (28 + 5 = 33, 33 + 30 = 63), and separation, right to left (8 + 5 = 13,
20 + 30 = 50, 63).

A separate analysis classified mental calculation strategies into two primary
categories, decomposition (similar to “separation”) and begin-with-one-
number (“jumping” the place values of the other number, similar to “aggrega-
tion”), and a third category of mixed strategies (Fuson, Wearne et al., 1997,
see also T. J. Cooper, Heirdsfield, & Irons, 1997).

As we saw, Heirdsfield and others have identified a compensating category,
wherein the given numbers are altered in a flexible way, such as 48 + 26 = 50 +
25 − 2 + 1 = 75 − 1 = 74, whereas others (Fuson, Wearne et al., 1997) consider
these as subcategories of the main two categories. Decomposition and jump are
the main two strategies, which align with two ways of interpreting two-digit
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numbers, the “collection-based” and “sequence-based” interpretations,
respectively. In turn, the composition strategy is aligned with base ten blocks
and other such manipulatives, whereas the jump strategy is aligned with 100s
charts or number lines (especially the empty number line, discussed later in
this chapter). Further, U.S. and U.K. emphases on base ten blocks and column
addition supports these countries’ emphasis on only decomposition strategies.
In contrast, jump strategies are dominant among continental European stu-
dents, probably due to the greater emphasis on mental calculation and focus on
these strategies in instructional materials. However, in all countries, students
use both, even if both strategies have not been explicitly taught. Importantly,
the jump strategies are more effective and accurate.

The Dutch curriculum, based on the belief that the use of mental arithmetic
helps develop concepts and skills, uses mental arithmetic up through second
grade and only introduces written algorithms in higher grades (Beishuizen,
1993). Some studies compared specific strategies, for example the decom-
position (they call it “10–10”) strategy, in which the tens are split from both
numbers and added (for 46 + 23, 40 + 20 = 60 and 6 + 3 = 9, so, 69), and the
jump (they call it N10) strategy, in which one jumps by tens from the first
(non-decomposed) number (46 + 20 = 66, 66 + 3 = 69). Both strategies do
not process numbers from the right, commonly taught to U.S. children
(although they prefer to process from the left, if encouraged to make sense of
the arithmetic, Kamii & Dominick, 1998). Dutch children appear to prefer the
decomposition strategy initially, possibly because moving along a mental
number line by tens and ones is difficult for them (recall that their counting
words are even less helpful than English, see Chapter 3). However, the decom-
position strategy puts a larger strain on working memory when renaming is
involved, especially for subtraction. For 42 – 15, children may think, 40 – 10 =
30, 2 – 5 = ?, 30 + 2 = 32, 32 − 2 − 3 = 27. Using the jump strategy, they would
think, 42 – 10 = 32, 32 – 2 – 3 = 27. Use of a hundreds chart helped Dutch
children use the jump strategy. In contrast, use of blocks (here, connecting
cubes in 10-blocks and singles) increased lower-achieving students into use of
the decomposition strategy. It also encouraged a passive “reading off the
answer” from the blocks. Blocks still might serve a purpose at some levels, but
their limitations must also be considered (Beishuizen, 1993).

The Dutch more recently promote the use of the “empty number line” as a
support for the jump strategy (Beishuizen, 1993). Use of this model has been
reported as supporting more intelligent arithmetical strategies. For example,
they would use a compensation strategy when adding numbers with “nine” in
the ones place (A. S. Klein, Beishuizen, & Treffers, 1998). Further, children
taught with the empty number line learned procedural knowledge as well as or
better than those taught more procedures. The number line is “empty” in that it
is not a measurement/ruler model, but simply keeps the order of numbers and
the size of “jumps” recorded, such as shown in Figure 6.1.
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Additional research indicates that we should not just teach but also connect
these strategies. For example, the jump strategy may de-emphasize decade
structures, but maintain number sense. Decomposition strategies emphasize
place value, but often lead to errors (Blöte, Van der Burg, & Klein, 2001).

which algorithms?

There are many arguments about whether to teach the standard algorithms.
Too often, such arguments have generated more heat than light, for several
reasons. First, there is no single standard algorithm. Many different ones have
been used in the U.S. and around the world. All are valid (Kilpatrick et al.,
2001). Second, what are taken as different “standard” algorithms by teachers
and lay people are often not viewed as different by mathematicians, who believe
they are all just simple modifications (often in the way numbers are recorded) of
general place-value based algorithms. That is, different algorithms all subtract
in same-place-value columns and compose/decompose as necessary; they just
do these processes and notate them in slightly different ways.

A classic, and still useful, study by Brownell and Moser (1949) compared the
benefits of teaching decomposition and equal addends subtraction algorithms
(see the companion book) either meaningfully or mechanically. The meaning-
ful or conceptual approach used manipulatives for grouping, expanded
notation, connections between representations, and delaying the written
algorithm until the meanings were established. The mechanical approach
taught the algorithm step-by-step and used the saved time for practice. On
the immediate posttest, the mechanical group scored higher on speed and
accuracy. But on retention and transfer, the meaningful approach scored better.
The meaningful approach was better for the decomposition method or for
students who had already learned an algorithm. The main message is that for
retention, transfer, and understanding, meaningful teaching was superior
(Brownell & Moser, 1949).

Given instruction that focuses on flexible application of a variety of
strategies, students are more likely to adaptively fit their strategies to the
characteristics of the problems (A. S. Klein et al., 1998; Verschaffel et al., 2007).
However, many second graders, although they do adapt to item characteristics,

Figure 6.1 The empty number line supporting arithmetic.
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do not frequently take into consideration the characteristics of the strategies
(e.g., accuracy, speed) and themselves (competence with strategies) (Torbeyns,
Verschaffel, & Ghesquière, 2006). This may be due to instructional emphasis on
routines in the instructional environment (Verschaffel et al., 2007). In contrast,
research suggests a consistent emphasis on adaptive expertise.

If teachers are helped to understand students’ thinking, studies show
that they help students invent and use adaptive calculation strategies (e.g.,
Carpenter et al., 1998). Further, if students invent their own strategies first,
they have fewer errors than students who were taught algorithms from the
start.

Finally, a consistent result is that conceptually based instruction supports
mathematical proficiency (Carpenter et al., 1998; Fuson & Briars, 1990; Fuson,
Wearne et al., 1997; Resnick, 1992; Verschaffel et al., 2007). This point is so
critical, that we provide additional research supporting it as “final words” for
this section.

In one study, most of the students who developed conceptual knowledge
either first or simultaneously with procedural knowledge could invent new
solution procedures, or use their knowledge adaptively, whereas those who
learned procedures first could not. They relied on conventional procedures
and, more frequently, on buggy procedures than those receiving non-
traditional instruction. This non-traditional instruction encouraged students
to develop their own procedures and to make sense of others’ procedures.
Thus, conceptual knowledge facilitates procedure selection, procedure
monitoring, and transfer. Also, once again, students’ invented strategies are a
good starting point (Hiebert & Wearne, 1996). Finally, important for us as
early childhood educators, it is important to promote such creativity and
understanding early. Students with strong concepts from the first year were
able to participate more fully in learning mathematics for the three years of
this study.

In contrast, students taught in conventional classrooms, focusing on the
mastery of (only) the standard paper-and-pencil algorithms for solving multi-
digit additions and subtractions, more frequently use erroneous, or “buggy”
procedures and make more systematic errors than students instructed in
non-conventional classrooms (Hiebert & Wearne, 1996).

In another study, second-grade classes were randomly assigned to one of
two instructional programs (Blöte et al., 2001). The first was a reform-based
program based on the Dutch Realistic Mathematics Education, in which
students invent and discuss their solution procedure. From the beginning of
instruction, this program emphasizes developing conceptual understanding
simultaneously with procedural skill, as well as flexible application of multiple
strategies. These students outperformed those in a traditional textbook
program that focused on mastery of procedures initially, and varied appli-
cation of strategies only toward the end of instruction. The reform group
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children more often selected strategies related to the number properties of the
problems and used strategies more adaptively, such as solving problems with
“8” or “9” in the one’s place with compensation strategies. That is, these were
flexible problem solvers who adapted their strategies to the number character-
istics of the problem at hand. For example, they solved 62 − 49 as 62 − 50 = 12,
12 + 1 = 13, but solved 62 − 44 as 44 + 6 = 50, 50 + 10 = 60, 60 + 2 = 62, and
6 + 10 + 2 = 18. Such flexible strategy use indicates both conceptual under-
standing and procedural skill. The traditional group did not use the procedures
flexibly, even after months of instruction in that program emphasized such
flexible use. The reform group scored higher on three measures, showing
superior conceptual understanding. Children in both groups developed con-
ceptual understanding before achieving procedural skill, but the two domains
were more interconnected for the reform group (Blöte et al., 2001).

Although involving intermediate-grade students, a third study indicated
that conceptual instruction led to increased conceptual understanding and to
generation and transfer of a correct procedure. Procedural instruction led to
increased conceptual understanding and to adoption, but only limited transfer,
of the instructed procedure (Rittle-Johnson & Alibali, 1999).

Learning Trajectory for Composing Number and Multidigit Addition
and Subtraction

Table 6.1 provides the developmental progression and the mental actions-on-
objects for this learning trajectory. We first make three brief notes.

• Unlike any other developmental progression, Table 6-1 is split into two
parts: first composing, and then multidigit addition and subtraction.
This was done to emphasize that the second part is a copy of the
developmental progression already included in the learning trajectory
in Chapter 5, enhanced with the information from this chapter.

• Place value is fundamental to all number, so it is embedded in the
learning trajectories in Chapters 2, 3, 4, and 5, as well as this one. This
chapter is merely the most specific focus on place value.

• Recall again that the ages in all the learning trajectory tables are only
approximate, especially because the age of acquisition usually depends
heavily on experience.
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Table 6.1 Developmental Progression for Composing Number and Multidigit
Addition and Subtraction

Age
(years)

Developmental Progression Actions on Objects

Composing Numbers

0–2 Pre-Part-Whole Recognizer Only
nonverbally recognizes parts and
wholes. Recognizes that sets can be
combined in different orders, but
may not explicitly recognize that
groups are additively composed of
smaller groups.

When shown four red blocks and
two blue blocks, intuitively
appreciates that “all the blocks”
include the red and blue blocks, but
when asked how many there are in
all, may name a small number, such
as one.

(See Chapter 2’s learning trajectory for
underlying cognitive mechanisms.)

3–4 Inexact Part-Whole Recognizer
Knows that a whole is bigger than
parts, but may not accurately
quantify. (Intuitive knowledge of
commutativity, and, later,
associativity, with physical groups,
later in more abstract contexts,
including numbers.)

When shown four red blocks and
two blue blocks and asked how
many there are in all, names a “large
number,” such as five or 10.

(See Chapters 2–5 learning trajectories
for underlying cognitive mechanisms.)

4–5 Composer to Four, then Five
Knows number combinations.
Quickly names parts of any whole,
or the whole given the parts.

Shown four, then one is secretly
hidden, and then is shown the three
remaining, quickly says “one” is
hidden.

Chapter 2’s level of “Conceptual
Subitizer to Five” describes initial
underlying cognitive mechanisms for
this level. These are internalized as
networks of mental images—including
partitioned mental objects (e.g.,
abstract mental images of [•••|••]
connected to number line
representations of jumps of three and
two to five—and of abstract
representations of part-part-whole
triads (two, three . . . five). As the
competence develops within this level,
and through later levels, the symbolic
representations attain prominence and
the others recede into supportive roles
in cognition.

154 • Number and Quantitative Thinking



Age
(years)

Developmental Progression Actions on Objects

Composer to Seven Knows
number combinations to totals of
seven. Quickly names parts of any
whole, or the whole given parts.
Doubles to 10.

Shown six, then four are secretly
hidden, and shown the two
remaining, quickly says “four” are
hidden.

As above, extended with other
combinations and increasingly abstract
representations.

Composer to 10 Knows number
combinations to totals of 10.
Quickly names parts of any whole,
or the whole given parts. Doubles
to 20.

“Nine and nine is 18.”

As above, extended with other
combinations and increasingly abstract
representations.

7 Composer with Tens and Ones
Understands two-digit numbers as
tens and ones; count with dimes
and pennies; two-digit addition
with regrouping.

“17 and 36 is like 17 and 3, which is
20, and 33, which is 53.”

As above, extended with other
combinations, especially with fives and
tens and explicit place value knowledge.

Addition and Subtraction (extending the Chapter 5 Learning Trajectory)

6–7 Deriver +/− Uses flexible
strategies and derived
combinations (e.g., “7 + 7 is 14, so
7 + 8 is 15) to solve all types of
problems. Includes Break-Apart-
to-Make-Ten (BAMT). Can
simultaneously think of three
numbers within a sum, and can
move part of a number to another,
aware of the increase in one and
the decrease in another.

Asked, “What’s seven plus eight?”
thinks: 7 + 8 → 7 + [7 + 1] →
[7 + 7] + 1 = 14 + 1 = 15.

Or, using BAMT, thinks, 8 + 2 = 10,
so separate 7 into 2 and 5, add 2 and
8 to make 10, then add 5 more, 15.

Solves simple cases of multidigit
addition (and often subtraction)
by incrementing tens and/or ones.

“What’s 20 + 34?” Student uses
connecting cube to count up 20, 30,
40, 50 plus 4 is 54.

The part-whole scheme, counting
strategies, and compositional strategies
are related to allow more flexible
deployment of strategies.

Continued Overleaf
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Final Words

Research on number and quantitative supports the tenets of the hierarchic
interactionalism framework. For example, cognitive progressions through
levels in the specific domains of number, such as counting, comparing, and
arithmetic, are evident, building on initial bootstraps, yet undergoing signifi-
cant development through the early years. There are different courses for
such development. Two examples, emphasizing experiences in the social
environment, briefly illustrate these possibilities. First, children from low-
income homes may engage in informal premathematical activity and possible
premathematical knowledge (H. P. Ginsburg et al., 1999), but, due to different
experiences, may still lack components of the conceptual structures possessed

Age
(years)

Developmental Progression Actions on Objects

7 Problem Solver +/− Solves all
types of problems, with flexible
strategies and known
combinations.

Asked, “If I have 13 and you have
nine, how could we have the same
number?” says, “Nine and one is 10,
then three more to make 13. One
and three is four. I need four more!”

Multidigit may be solved by
incrementing or combining tens
and ones (latter not used for join,
change unknown).

“What’s 28 + 35?” Incrementer
thinks: 20 + 30 = 50; + 8 = 58; two
more is 60, three more is 63.
Combining tens and ones: 20 + 30 =
50. 8 + 5 is like 8 plus 2 and 3 more,
so, it’s 13. 50 and 13 is 63.

7–8 Multidigit +/− Uses composition
of tens and all previous strategies
to solve multidigit +/− problems.

Asked, “What’s 37 − 18?” says, “I
take one ten off the three tens; that’s
two tens. I take seven off the seven.
That’s two tens and zero . . . 20.
I have one more to take off. That’s
19.”

Asked, “What’s 28 + 35?” thinks, 30
+ 35 would be 65. But it’s 28, so it’s
two less—63.

Flexibly Uses All Strategies, from
compensating to written algorithms.
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by children from more affluent homes (Griffin et al., 1994). Second, edu-
cational emphases on skills, for example, can lead to instrumental knowledge
of, and beliefs about, mathematics (Kamii & Housman, 1999; Skemp, 1976).
More specifically, experiences with sophisticated counting strategies, com-
position/decomposition, and other imagistic approaches lead children to
develop different strategies and understandings of number than, for example,
experiences limited to simple counting strategies and memorization. Relevant
here is the notion, perhaps expressed best by Wittgenstein (1953/1967),
but expressed by several others (e.g., Douglass, 1925; Glasersfeld, 1982), of
weaving together various threads to form number concepts, in which various
different weavings create different number concepts of various strength and
applicability. The tenet of progressive hierarchization is illustrated by the con-
nections children come to make between various mathematically-relevant con-
cepts and procedures (e.g., connecting experiences with nonverbal subitizing,
hearing number words applied to particular situations, and counting to learn
cardinality, Klahr & Wallace, 1976; Sophian & Adams, 1987), creating more
robust understandings (e.g., of number, or, at higher levels, of mathematics)
that are hierarchical in that they employ generalizations (e.g., of additive com-
position) while maintaining differentiations (e.g., discrete vs. continuous
compositions).

The domains of number and geometry share commonalities that emerge
from the loosely-differentiated competencies of the young child. For example,
Mix, Huttenlocher, and Levine suggested that “the quantification of infants
and young children could be accurately termed ‘spatial quantification’ ” (Mix
et al., 2002, p. 139). In this view, spatial thinking is essential in its role in the
development of number and quantification. It is important for many other
reasons. This essential area is introduced next in Part III.
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Part III
Geometry and Spatial Thinking

Geometry and spatial reasoning are inherently important because they
involve “grasping . . . that space in which the child lives, breathes and
moves . . . that space that the child must learn to know, explore, conquer,
in order to live, breathe and move better in it.”

(Freudenthal, in NCTM, 1989, p. 48)

For early childhood, the area of geometry is the second most important area
of mathematics learning. One could argue that this area—including spatial
thinking—is as important as number. Viewed broadly, for example, geometric
and spatial thinking are not only important in and of themselves, but—as we
have seen through Part II—they also support number and arithmetic concepts
and skills (Arcavi, 2003). Indeed, some research suggests that the very ability
to represent magnitude is dependent on visuospatial systems in regions of the
parietal cortex of the brain (Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999;
Geary, 2007; Pinel, Piazza, Le Bihan, & Dehaene, 2004; Zorzi, Priftis, & Umiltà,
2002).

In Part III, we begin with just that space in which the child lives and we
examine how the child learns to know it better (Chapter 7). We then turn
to issues of geometric shape, including identifying and analyzing shapes
(Chapter 8) and the composition and decomposition of shapes (Chapter 9).
The separation of these two basic geometric domains is based on distinct
systems in the primate brain for object perception, or recognizing what an
object is (inferior temporal cortex, ventral pathway) and for spatial perception,
or where an object is (posterior parietal cortex, ventral stream) (Stiles, 2001;
Ungerleider & Mishkin, 1982).





7
Spatial Thinking

Spatial thinking is an essential human ability that contributes to mathematical
ability. It is a process that is distinct from verbal reasoning (Shepard & Cooper,
1982) and that functions in distinct areas of the brain (Newcombe & Hut-
tenlocher, 2000; O’Keefe & Nadel, 1978). Further, mathematics achievement is
related to spatial abilities (Ansari et al., 2003; Fennema & Sherman, 1977; Fen-
nema & Sherman, 1978; Guay & McDaniel, 1977; Lean & M. A. Clements, 1981;
Stewart, Leeson, & Wright, 1997; Wheatley, 1990). As an example, empirical
evidence indicates that spatial imagery reflects not just general intelligence but
also a specific ability that is highly related to the ability to solve mathematical
problems, especially nonroutine problems (e.g., Wheatley, Brown, & Solano,
1994). Finally, we know that girls, certain other groups who are under-
represented in mathematics, and some individuals are harmed in their
progression in mathematics due to lack of attention to spatial skills, and benefit
from more geometry and spatial skills education (e.g., Casey & Erkut, 2005;
Casey, Nuttall, & Pezaris, 2001).

However, the relationship between spatial thinking and mathematics is
not straightforward. For example, some research indicates that students who
process mathematical information by verbal-logical means outperform
students who process information visually (for a review, see Clements &
Battista, 1992). Clearly, the type of spatial competencies matters. Two major
type of competencies are spatial orientation and spatial visualization (Bishop,
1980; Harris, 1981; McGee, 1979). We first discuss spatial orientation, which
involves an extensive body of research, then spatial visualization and imagery.

Spatial Orientation

Spatial orientation involves understanding and operating on relationships
between different positions in space, at first with respect to one’s own position
and your movement through it, and eventually from a more abstract per-
spective that includes maps and coordinates at various scales. This essential
competence is even linked to memory systems (Nadel & Moscovitch, 1998).
Like number, spatial orientation has been postulated as a core domain, for
which competencies, including the ability to actively and selectively seek out
pertinent information and certain interpretations of ambiguous information,
are present from birth (Gelman & Williams, 1997). Infants focus their eyes on
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objects and then begin to follow moving objects (Leushina, 1974/1991).
Toddlers ignore other cues and instead use geometric information about the
overall shape of their environment to solve location tasks (Hermer & Spelke,
1996). Again, however, evidence supports the interaction of inborn endow-
ments, (possibly) maturation, experience, and sociocultural influences.

Piaget maintained that children are born without knowledge of space, or
even permanent objects (Piaget & Inhelder, 1967). His topological primacy
thesis posited that they move through stages of egocentric spatial constructions
(e.g., objects within reach, or those in front of the child, including topological
relations of connectedness, enclosure, and continuity) to allocentric construc-
tions (e.g., objects farther away, including having relationships to one another).
Studies can be interpreted in that light. For example, if six- to 11-month old
children are placed in a maze and repeatedly find a toy by crawling straight and
then turning left at an intersection, then are moved to the other end, most will
incorrectly turn in the same direction that originally led to the toy (Acredolo,
1978). At 16 months of age, children correctly compensate for the change in
their position. Piaget claimed that children’s first notions are of topological
space (e.g., understanding closure and connectedness) and later build notions
of projective (relations between the child and objects, establishing a “point of
view”) and “Euclidean,” or coordinate, space.

Research supports Piaget’s prediction about development of near space
before far space (see Haith & Benson, 1998, for a review). However, Piaget’s
topological primacy thesis appears of limited usefulness. In addition, we shall
see again that research also suggests that young children are more, and adults
less, competent than the Piagetian position indicated, although substantial
development does occur. Young children can reason about spatial perspectives
and spatial distances, although their abilities develop considerably throughout
the school years. In the first year of life, infants can perceive the shape and size
of objects and can represent the location of objects in a three-dimensional
space (Haith & Benson, 1998; Kellman & Banks, 1998). As another example,
“egocentrism” is not displayed if landmarks provide cues (Rieser, 1979).
Between five and nine months, infants develop a geometric mechanism that
allows them to identify an object to which another person is pointing
(Butterworth, 1991). At the other end, older students and adults still display
biases and errors in spatial reasoning (Fischbein, 1987; Uttal & Wellman, 1989)
and do not always perform successfully on tasks designed by Piaget to assess an
underlying Euclidean conceptual system (Liben, 1978; Mackay, Brazendale, &
Wilson, 1972; H. Thomas & Jamison, 1975). Thus, both the topological
primacy thesis and the traditional egocentric-to-allocentric theory should
be replaced. However, Piaget’s constructivist and interactionist positions
remain viable, especially that the representation of space is not a perceptual
“reading off” of the spatial environment, but is built up from active manipula-
tion of that environment (Piaget & Inhelder, 1967). We review research on
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spatial orientation in four categories: spatial location and intuitive navigation,
spatial thought, models and maps, and coordinates and spatial structuring.

Spatial Location and Intuitive Navigation

Although both children and adults develop “mental maps,” these are not like a
mental picture of a paper map. Instead, they consist of private knowledge and
idiosyncrasies. Children learn about space by developing two types of self-
based reference systems and two types of external-based reference systems
(Newcombe & Huttenlocher, 2000). The younger the child, the more loosely
linked these systems are.

self- and external-based systems

Self-based spatial systems are related to the Piagetian construct of egocentric
space and encode the position of the moving self. The most primitive, both in
its early emergence and its limited power, is response learning, or sensorimotor
coding. The child records a location or route to a location by a pattern of
movements that have been associated with a goal (e.g., looking to the left
from a high chair to see a parent cooking). The second is path integration, in
which locations are coded based on the distance and direction of one’s own
movement. One’s location is continually updated based on input regarding
movement (as well as from landmarks encountered-integrated with external-
based systems). Such automatic processes could serve as the foundation for
explicit mathematics (Newcombe & Huttenlocher, 2000).1

External-based reference systems are based on environmental structures
and landmarks. The landmarks are usually salient, familiar, and/or important
objects. Cue learning associates an object with a coincident landmark, such as a
toy on a couch. As with response learning, cue learning is the more limited and
less powerful of two systems. The more powerful, place learning, comes closest
to people’s intuition of “mental maps” (albeit, as we shall see, this is a limited
metaphor), as it builds locations from distances and directions among
environmental landmarks. One example of place learning, taking the edges of a
region or walls of a room as a frame of reference, illustrates a possible early,
implicit foundation for later learning of coordinate systems.

Finally, when information from these four systems is combined, it is
combined hierarchically (e.g., chair in a room, school, city . . .), with different
precisions at each level. This provides a best estimate of locations, but can also
introduce systematic biases (Newcombe & Huttenlocher, 2000). For example,
knowing an object was dropped and lost in the left half of the backyard might
be combined with a memory of a specific location via path integration, but it
may bias the estimate toward the center of the region.

When do these systems emerge? Once they do, how do they develop? Devel-
opment consists of two interrelated aspects. First, children learn through
experience which coding systems are more effective and accurate in which
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situations. (Following Newcombe & Huttenlocher, 2000, we use the term
“coding” to mean a memory trace of some type in the information-processing
system that supports action in the environment without any commitment to a
cognitively accessible “representation” that will, eventually, support explicit
thinking about space.) Second, each of these coding systems becomes more
effective, although the simple systems of response and cue learning only extend
the situations to which they apply. We begin by describing this latter aspect of
development.

response learning and cue learning

In the first year of life, stationary infants rely on response learning to locate
objects in their environment. An example is children who incorrectly turn
in the same direction that originally led to a toy even after being physically
reoriented (Acredolo, 1978; see also Acredolo & Evans, 1980).

In addition to response learning, two other systems, cue learning and path
integration emerge by at least six months of age (Newcombe & Huttenlocher,
2000). As an example of cue learning, seven-month-olds can remember which
of two containers contains an object, even after a minute’s delay filled with
distractions (McDonough, 1999). Landmarks can help children depress an
incorrect response after they are rotated, although six-month-olds were
uncertain of the correct choice; nine- and 11-months olds used the cues suc-
cessfully (Acredolo & Evans, 1980). As another example, infants associate
objects as being adjacent to a parent (Presson, 1982; Presson & Somerville,
1985), but cannot associate objects to distance landmarks. By the age of one
year, they can use a different colored cushion among an array of cushions to
locate a toy (Bushnell, McKenzie, Lawrence, & Com, 1995). Toddlers and three-
year-olds can place objects in pre-specified locations near distant landmarks,
but “lose” locations that are not specified ahead of time once they move. Wang
and Spelke (2002) describe a “view-dependent place recognition” system that
operates similarly in animals such as ants and bees, and argue that in humans
as well, determining location and navigating are based on view-specific
representations.

Such cue learning may seem early, considering the Piagetian notion of
object permanence. In that framework, children still make the A-not-B error at
nine months; that is, after successfully searching for an object at one location,
A (several times), they continue to search for it at that location, even after
observing that the object is hidden at a new location, B. The Piagetian inter-
pretation confounds object permanence with object location, an issue to which
we will return. Experiments varying factors such as measures (infants have
better location knowledge as assessed by looking rather than reaching) have
shown earlier competence under specific conditions and also suggest new
analyses. For example, children must choose between the most frequently
executed look (A) and the most recently executed look (B), whereas in
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reaching, both the most recently and frequently executed action is to location
A. Thus, the correct choice of B requires overcoming considerable conflict from
other sources of input (Newcombe & Huttenlocher, 2000).

Other related models have been proposed. One is a Parallel Distributed
Processing (PDP, aka connectionist) model (see Clements & Battista, 1992;
McClelland, Rumelhart, & the PDP Research Group, 1986). The researchers
propose conflict between traces that are latent (change in weights or strength of
individual connections, stored in long term memory) and active (sustained
activation of connections in short term, or working, memory). Development in
this theory is mainly the increasing ability to maintain and use active traces
(Munakata, 1998). A similar, dynamic systems account provides evidence that
the A-not-B phenomenon does not indicate a unique early level of develop-
ment, but one phase in the development of general and life-long processes that
guide actions to remembered locations (Spencer, Smith, & Thelen, 2001). In
the account, inputs to the system change over the few seconds of the task’s
duration. The repeated activation of location A builds a strong memory trace
that then begins to fade. Later input activating B is stronger at that moment,
but fades more quickly over time, as it was but a single experience. So, the more
delay, the more likely activation will be stronger at A than B. Empirical results
supported this account over other theoretical positions. The center of the
search space was also source of bias, but was not the dominant factor and was
not a consistent effect (as implied in Huttenlocher, Newcombe, & Sandberg,
1994).

This account also explains other tasks and performance at other ages. For
example, two-year-olds’ responses were also biased toward location A.
However, they develop stronger external-based location memory and maintain
information over longer periods and thus perform more accurately than
infants. In addition, children may learn that recency is more important
than frequency in such search tasks and that codings of external frameworks
are more important than response systems when they are in conflict
(Newcombe & Huttenlocher, 2000), as well as developing the efficiency of
those external-based systems. Although the use of the A-not-B tasks (at least
solely) to inform us about the object concept is debated (Haith & Benson,
1998), it does appear to inform the processes of location coding and searching
(Spencer et al., 2001).

path integration (“dead reckoning”)

Infants use response and cue learning when they are stationary. They
ignore movement when they are carried (Acredolo, Adams, & Goodwyn, 1984),
but use path integration (aka “dead reckoning”—see note 1) as early as six
months of age when they have actively moved themselves (Newcombe,
Huttenlocher, Drummey, & Wiley, 1998). By one year of age, they can encode
both distance and direction with some degree of accuracy during self
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movement (Bushnell et al., 1995). Thus, self-movement appears important,
although infants as young as six, but not four months, of age can demonstrate
above-chance performance after training (to localize a fixed location from two
orientations) (see also Haith & Benson, 1998, for a review and statement of
methodological challenges; D. Tyler & McKenzie, 1990). They can internally
represent the amount of rotational movement about their own axis by at least
eight months, and code amount of movement along a straight line by at least
nine months. By 16 months, children are likely to perform path integration
following movements involving both translation and rotation. They sometimes
use this system, even more than other systems for certain tasks (Bremner,
Knowles, & Andreasen, 1994). A general point is that spatial systems that
produce motor activity and spatial representations are intimately connected
(Rieser, Garing, & Young, 1994). Path integration has been identified in
insects, birds and mammals, and findings support that aspects of it are funda-
mental inborn endowments in humans as well (Wang & Spelke, 2002). The
fine calibration of the system, and the ability to ignore distracting visual
information, improves from four years of age to adulthood, probably based
on fine-tuning from the senses, including proprioception and kinesthesia
(Newcombe & Huttenlocher, 2000).

place learning

During their second year, children develop the ability to code locations using
objects in their external environment. They also become capable of spatial
reasoning, in that they can solve problems with that information. They con-
tinue to grow in their abilities in spatial coding, reasoning, and symbolizing
through their elementary school years, as they develop spatial visualization
abilities such as maintaining and operating on mental images (e.g., mental
rotation) and learn to use such tools as language and maps.

The first of these abilities is place learning, which involves creating a frame
of reference by coding objects’ positions with respect to perceptually available
landmarks, using information of their distances and directions. In contrast
to Piaget’s topological primacy thesis, in which children build a “Euclidean
system” only by age nine or 10, research indicates that toddlers are able to
code distance information and use that to locate objects. For example, infants
as young as five months use spatiotemporal information to track and even
individuate objects and from 12 months of age, can code distance to support
the search for hidden objects (Bushnell et al., 1995; Newcombe &
Huttenlocher, 2000); however, in one of these studies they could not use
separate indirect landmarks at one year of age (Bushnell et al., 1995). They
can also use simple geometric properties of a room to guide a search; for
example, looking more often in two corners of a rectangular room with
the long wall on the right and the short wall on the left (Hermer & Spelke,
1996).
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Although some findings support those (Fodor, 1972; Hermer & Spelke,
1996; Wang & Spelke, 2002) who believe that there are innate, encapsulated,
cognitive “modules,” in this case, a “geometric module” (Hermer & Spelke,
1996), results are sufficiently variable to place the existence of such a geometric
module in doubt. For example, Gouteux and Spelke (2001) replicated others’
findings but with variations. They found that early-developing navigational
abilities depend on a mechanism that is sensitive to the shape of the perman-
ent, extended surface layout, but that is not sensitive to geometric or non-
geometric properties of objects in the layout. In addition, when landmarks
appeared to be permanent, toddlers did use this information, even after dis-
orientation (Learmonth, Newcombe, & Huttenlocher, 2001). Children also
used a colored wall, at least in rooms that were larger (12 by 8 feet) than rooms
used in previous research (Hermer & Spelke, 1996). Such findings leave the
relative precedence of the two spatial systems, and the possible domain
specificity of the geometric coding, as open questions. It may be there are
task-specific mechanisms that search, for cues like size, stability, and geometric
configuration of environmental features, just those cues that have ecological
validity for navigating animals (Shusterman & Spelke, 2004). In any case, even
place learning starts early, in the use of a surrounding surface layout as a
framework (and continues to exert influence on searches). However, cues are
also used early in some situations, and use of other geometric information and
more complex place learning follow.

Place learning using multiple objects may appear after 21 months of age
(Newcombe et al., 1998). For example, after shown an object hidden in a
sandbox, children were taken around the other side of it. Children 21 months
or younger were not helped by the availability of landmarks around the
sandbox (that is, they did no worse when these landmarks were hidden by a
curtain), but older children were significantly more accurate with the visible
landmarks. By five years of age, children can represent an object’s position
relative to multiple landmarks, such as an object midway between two other
objects (Newcombe, 1989). From five to seven years, children increase their
ability to keep track of their locations in mazes or open areas.

Functional use of such spatial knowledge for searching, which requires
coding spatial information and forming and utilizing spatial relationships,
develops over the toddler and preschool years (Newcombe & Sluzenski, 2004).
There is a significant growth in the ability to search for multiple objects
between 18 and 24 months of life and an increase in the ability to use relations
among objects between 24 and 42 months (Newcombe & Sluzenski, 2004).
In addition, toddlers can systematically check an array by exhaustively
searching within groupings at three sites. (Note that even in place-based
learning, children need to establish a relationship to themselves: Lourenco,
Huttenlocher, & Vasilyeva, 2005.) Preschoolers can plan comprehensive
searches in a small area, including memory of sites that have been checked,
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often using a circular search path (Cornell, Heth, Broda, & Butterfield, 1987).
Lastly, only five-year-olds can use higher-order spatial configurations or pat-
terns to aid searches, probably because that is the age at which they develop the
ability to perceive spatial figures in more than one way (Uttal, Gregg, Tan, &
Sines, 2001).

selection of systems

As mentioned, the second aspect of development involves learning to select
the coding systems that are more effective and accurate in different situations.
Evidence of early appearance of all systems and gradual growth favor the view
that children change the relative importance they assign to different types of
spatial information when these types provide conflicting information
(Newcombe & Huttenlocher, 2000), possibly through the formation of
metacognitive strategies (Minsky, 1986). Infants’ choices among conflicting
spatial systems depend on a combination of cue salience, complexity of move-
ment, whether or not response learning has been recently reinforced, and
whether the infant is emotionally secure or under stress (N. S. Newcombe &
Huttenlocher, 2000). Further development depends on experience. For
example, when children attain self-mobility by crawling between six and nine
months of age, they can experience failures in response learning. Infants who
crawl, and even those with extensive experience with a walker, succeed more
often in locating objects’ spatial positions (Bertenthal, Campos, & Kermoian,
1994). The longer they have been moving themselves, the greater the
advantage, probably because they learn to attend to relevant environmental
information and update their spatial codings as they move. This is supported
by research showing that when 12-month-old children walk to the other side of
a layout and have the opportunity to look at all times (as opposed to being
guided by their mother or having their vision blocked), they both look more
than children who are guided and also subsequently do better in turning
toward the object from the new position (Acredolo et al., 1984). There is great
variability on the onset of crawling (Bertenthal et al., 1994), which, along with
failures in the codes from response learning, probably leads to developmental
advances via the variation-and-selection process.

This perspective does not deny the possibility of an apparently qualitative,
or general, shift in default propensities (Newcombe & Huttenlocher,
2000), which may be the result of newly available experiences (e.g., crawling) or
of the gradual growth in the effectiveness of a new system that has achieved
ascendance in the overlapping stages of development theory (Minsky,
1986, see also a later but more developed version in Siegler, 1996). Such
shifts may also result from biological maturation, although some argue that
experience may be the cause of the development of the nervous system (Thelen
& Smith, 1994).
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hierarchical combination of systems

Before their second birthday, at about 16 months, children show the begin-
nings of a hierarchical combination of spatial reference frames, including
categorical coding of regions and fine-grained information, although the
categories and combinations of categories develop considerably after that age
(Newcombe & Huttenlocher, 2000). For example, children form categories that
are not physically demarcated (e.g., the left half of a field), beginning in a
limited way at four to six years of age (in small rectangles) and expand to larger
regions at about 10 years. Second, they develop the ability to code hierarchically
along two dimensions simultaneously. For example, to recall the location of a
point in a circular region, people 10 years of age and older code locations for
both the distance from the center of a circle and angle, as well as categorical
information about the quadrant. Children younger than seven years do not
code the categorical information about quadrants in such tasks, whereas seven-
year-olds do code those categories if angle information is requested. In general,
as they age, children divide regions into smaller and more abstract
categorically-coded regions. Such changes, rather than a qualitative shift to
Euclidean space, appear to explain changes in performance. In summary,
hierarchical coding begins at 16 months, but not until 10 years of age do
children reach sophisticated levels (Newcombe & Huttenlocher, 2000).

summary

Children are born with potential abilities in response learning, cue learning,
path integration, and place learning. at least in limited circumstances that
include a simple frame. During the first year of life, these systems are further
integrated, based on feedback from experiences with their physical environ-
ment. During the second year, starting at about 21 months, children develop
place learning proper, that is, they begin to use distance information from
multiple environmental landmarks to define location. Development of
symbolic skills may play an important role. From that point forward, the path
integration and place learning systems develop in effectiveness and accuracy.
Path integration improves from four years of age on. By five years of age, chil-
dren can represent a location in terms of multiple landmarks, and from five to
seven years, develop in their ability to maintain locations in challenging cir-
cumstances such as open areas. All four systems are further reconfigured in
their application and integration. Finally, there are changes in the size and
nature of categories used in hierarchical spatial coding, but these remain
limited in the preschool years.

Further, the systems are used with increasing efficiency. At six months of
age, children are more likely to rely on response learning, but older children,
with more visual and especially self-produced movement experiences, rely
more on cue learning and path integration (Newcombe & Huttenlocher,
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2000). This variation-and-selection approach is similar to Siegler’s (1996)
approach, as previously discussed regarding the learning of number. Again,
we see the phenomenon of increased variability leading eventually to greater
stability and generalizability.

We now turn to what Piaget and Inhelder’s (1967) research focused upon,
representation that would support reflection. They separated representation
that would support action in the world (what we called spatial coding) and that
would support reflection about the world (spatial thought).

Spatial Thought

As children gain the capacity for symbolic thought in their second year, they
begin to gain access to their spatial knowledge and thus build upon spatial
codings to create accessible representations, supporting the emergence of
spatial thought. We first address the question of whether spatial reasoning is
an innate or developed ability, and then consider spatial perspective taking,
navigation through large-scale environments, and the language of space.

development of spatial thought

Some have argued that abilities such as spatial inference are innate, based on,
for example, the finding that children who are blind can infer paths that they
have not been taught (Landau, Gleitman, & Spelke, 1981). Kelli, for example,
a two and a half-year-old blind child, could infer paths to be taken between
novel pairs of locations after moving between other pairs. However, evidence
supports the interpretation that children construct spatial relations. Kelli may
have built her abilities upon other available senses, including those supporting
path integration. Further, in other research, blind children performed less
accurately in the key aspect of the task (accuracy at final position) than age-
matched sighted, but blindfolded, children performed in similar tasks. This
is noteworthy given that the blindfolding created an artificial task for sighted
children (Morrongiello, Timney, Humphrey, Anderson, & Skory, 1995). In add-
ition, congenitally blind people have difficulties with spatial tasks, with
inaccuracy in encoding distance and angle increasing with distance between
objects (Arditi, Holtzman, & Kosslyn, 1988). They also tend to represent routes
as a sequence of landmarks, rather than having an overall path or two-
dimensional representation, the formation of which may require simul-
taneously experiencing multiple locations (Iverson & Goldin-Meadow, 1997).
Thus, at least some visual experience appears important for full development
of spatial knowledge (Morrongiello et al., 1995; Newcombe & Huttenlocher,
2000).

Given that most studies show that blind children and blindfolded sighted
children can point to an inferred location at better than chance levels, and
that they do not differ in accuracy, there are three additional implications
(Newcombe & Huttenlocher, 2000). First, spatial codings and representations
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are spatial rather than visual. Even congenitally blind children are aware of
spatial relationships. By three years, they begin to learn about spatial properties
of certain visual concepts represented in language (Landau, 1988). They
can learn from spatial-kinesthetic practice (Millar & Ittyerah, 1992). They
perform many aspects of spatial tasks similar to blindfolded sighted children
(Morrongiello et al., 1995). Second, visual input is important, but spatial
relations can be constructed without it (Morrongiello et al., 1995). Third, we
see again that Piaget’s notion that early spatial knowledge is not metric
(“Euclidean”) has not been supported. In summary, then, the research indi-
cates that abilities have inborn beginnings, but are realized slowly over years of
development.

spatial perspective taking

A component of Piaget’s topological primacy thesis was that “projective
relations” did not develop until elementary school age. When they developed,
children considered figures and locations in terms of a “point of view.” As an
example, the concept of the straight line results from the child’s act of “taking
aim” or “sighting.” Children perceive a straight line from their earliest years,
but they initially cannot independently place objects along a straight path.
They realize, based on perception, that the line is not straight, but cannot
construct an adequate conceptual representation to make it so. At about
seven years of age, children spontaneously “aim” or sight along a trajectory to
construct straight paths.

The Piagetians confirmed these theoretical claims with other experiments,
such as the “three mountains” task in which children had to construct a scene
from the perspective of a doll. For each new position of the doll, young children
methodically went about their task of re-creating the appropriate viewpoint,
but it always turned out to be from the same perspective—their own! Thus,
Piaget and Inhelder infer that children must construct systems of reference,
not from familiarity born of experience, but from operational linking and
coordination of all possible viewpoints, each of which they are conscious. They
conclude that such global coordination of viewpoints is the basic prerequisite
in constructing simple projective relations. For although such relations are
dependent upon a given viewpoint, nevertheless a single “point of view” can-
not exist in an isolated fashion, but necessarily entails the construction of a
complete system linking together all points of view.

However, other studies have shown conflicting results. For example,
young children do recognize that other observers see something different, and
develop in their ability to construct those viewpoints (Pillow & Flavell, 1986).
They may use a “line-of-sight” idea, in which they reason that people can see
any object for which one can imagine an unobstructed line between their eyes
and the object. Some ability to coordinate perspectives mentally is present in
children as young as 18 months. For example, children perform better than
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chance in retrieving a reward after it was hidden randomly in one of two
identical left-right locations on a turntable, then its location reversed via either
a 180-degree rotation of the turntable by the experimenter or a move by the
child to the opposite side of the table (Benson & Bogartz, 1990).

Several factors affect children’s responses, including attributes of the
subject (intellectual realism, cognitive style), task (naturalism, experience with
difference viewpoints, actual vs. imagined movement, availability of outside
landmarks, attributes of the display), and response mode (Newcombe, 1989).
Several of these factors have implications for children’s coding of location. For
example, perspective-taking tasks are easier if the children move around the
objects or are provided a model of the room, suggesting that the locations of
the objects are coded individually with respect to an external framework of
landmarks. Thus, coding the location of small objects may develop from
association (coincidence) with a single external landmark, to proximity to a
single landmark, to distance from several landmarks. By the age of five, and
possibly as early as three for some situations, children encode the location of
small objects with respect to a framework of landmarks. Starting at age seven,
and more fully by ages nine or ten, children can focus on a single item, imagine
that from a different perspective, and then use this information to choose a
corresponding picture in a three mountains task. Such encoding continues into
adulthood (Newcombe, 1989).

In summary, the development of projective space may involve not just the
coordination of viewpoints but also the establishment of an external frame-
work. That is, a key to solving the three mountains task may be, again, the
conflict between frames of reference, experienced and imagined. Full
competence in dealing with such conflicts is achieved at approximately the ages
Piaget originally claimed. Simultaneously, children are developing additional
knowledge of projective relations. At four years of age, but not three, children
begin to understand that moving objects nearer or farther increases and
decreases its apparent size; they can also indicate how a circular object
should be rotated to make it appear circular or elliptical (Pillow & Flavell,
1986).

navigation through large scale environments

Navigation in large environments requires integrated representations, because
one can see only some landmarks at any given point. Some researchers believe
that people learn to navigate using landmarks; then routes, or connected series
of landmarks; then scaled routes; and finally survey knowledge, a kind of
“mental map” that combines many routes and locations (Siegel & White,
1975). Only older preschoolers learn scaled routes for familiar paths; that is,
they know about the relative distances between landmarks (Anooshian, Pascal,
& McCreath, 1984). Even young children, however, can put different locations
along a route into some relationship, at least in certain situations. For example,
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they can point to one location from another even though they never walked a
path that connected the two (Uttal & Wellman, 1989).

Children as young as three and a half years were able, like adults, to
accurately walk along a path that replicated the route between their seat and the
teacher’s desk in their classroom (Rieser et al., 1994). Self-produced movement
is again important. Kindergartners could not imagine similar movements and
point accurately, but they could imagine and recreate the movements and point
accurately when they actually walked and turned. Thus, children can build
imagery of locations and use it, but they must physically move to show their
competence. However, with no landmarks, even four-year-olds make mistakes
(Huttenlocher & Newcombe, 1984). Kindergartners build local frameworks
that are less dependent on their own position and that constrain paths. They
still rely, however, on relational cues such as being close to a boundary. By third
grade, children can use larger, encompassing frameworks that include the
observer of the situation.

Comparing routes, as in finding the shortest of several routes, is a difficult
task. Children as young as one or two years can plan shortest routes only in
simple situations. For example, one and a half year-olds will choose the short-
est route around a wall separating them from their mothers (Lockman & Pick,
1984). Such early planning may depend on direct sighting of the goal and on
an obvious choice of a shorter or more direct route to the goal (Wellman,
Fabricius, & Sophian, 1985). Children three and a half to four and a half years
of age show a mixture of sighting and planning, that is, considering extended
courses of action taking into account the overall distances of competing routes,
probably based on qualitative distance-relevant aspects of routes, such as the
necessity of backtracking (Wellman et al., 1985). There is some evidence that
young children can compute shortest routes even when the goal is not visible
(Newcombe & Huttenlocher, 2000). A significant proportion (40 percent)
of four-year-olds can not only identify that a direct and indirect route to a
given location are not the same distance, but can explain why the direct route
was shorter (Fabricius & Wellman, 1993). However, ability to plan routes in
situations in which the optimal route involves locations that are not close or in
sight (when others are) appears at five to six years of age.

Considering these results in the context of the broad research on spatial
orientation, it is not surprising that children grow over a number of years in
their ability to form integrated spatial representations. However, evidence does
not support a simple, qualitative shift from “landmark” to “route” to inte-
grated, two-dimensional representations (Newcombe & Huttenlocher, 2000).
Instead, development results from substantive refinements in the effective-
ness and connectedness of already-existing representational systems, includ-
ing hierarchical categorization (e.g., children create more precise embedded
categories as they age). Young children undoubtedly rely on cues (land-
marks) and partially-connected landmark-and-route representations when
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they have limited experience in an environment and when information-
processing demands, such as those on memory, use of strategies (e.g.,
turning around to visualize how a route will look on the return trip), and
inferences required to combine spatial knowledge from different systems,
overwhelm their cognitive abilities. They develop abilities such as recognition-
in-context memory that facilitates acquisition of landmark knowledge (Allen
& Ondracek, 1995).

Also important is the realization that, again, adults do not achieve perfect
accuracy in their ideas about space. Intuitive representations of space are non-
homogeneous and anisotropic (exhibiting properties with different values
when measured along axes in different directions). For example, people tend
to attribute absolutely privileged directions to space, such as “up” and “down.”
They view space as centered (e.g., at one’s home), and as having increasing
density as one approaches the centration zones, with the effect that distances
are increasingly amplified upon approach. Thus, people’s intuitive representa-
tion of space is a mixture of often-contradictory properties, all related to their
terrestrial life and behavioral adaptive constraints (Fischbein, 1987).

the language of space

The development of both geometric domains, the “what” and “where” systems
(Ungerleider & Mishkin, 1982), begins early in life as children represent objects
at a detailed level of shape, and simply as a set of axes (i.e., a representation
of an object allowing a region in front and a region in back, Landau, 1996).
However, spatial relations are not perceived “automatically”; they require
attention (Logan, 1994; Regier & Carlson, 2002). Children learning English
show strong biases to ignore fine-grained shape when learning novel spatial
terms such as “on” or “in front of” or when interpreting known spatial terms,
and equally strong biases to attend to fine-grained shape when learning novel
object names. For example, three-year-olds will ignore shape and generalize
primarily on the basis of an object’s demonstrated location when shown an
unusual object and told, “This is acorp my box” (Landau, 1996). That is, they
interpret that the unknown word “acorp” refers to a spatial relationship
between the object and the box, and thus infer it refers to its location, not
the shape of it. Conversely, if told “This is a prock”, they would attend to the
unusual object’s shape.

Children represent objects in terms of axes by the second year of life; con-
trary to Piagetian theory, the development of regions appears to begin with the
axis and broaden afterward. However, spatial terms are acquired in a consistent
order, even across different languages (Bowerman, 1996), and this is one of
the few sequences that is consistent with the Piagetian topological primacy
thesis. The first terms acquired are “in,” “on,” and “under,” along with such
vertical directionality terms as “up” and “down.” These initially refer to trans-
formations of one spatial relationship into another (“on” not as a smaller object
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on top of another, but only as making an object become physically attached to
another, Gopnik & Meltzoff, 1986). Second, children learn words of proximity,
such as “beside” and “between.” Third, children learn words referring to
frames of reference such as “in front of,” “behind.” The words “left” and
“right” are learned much later, and are the source of confusion for many years.

The consistency of acquisition order, along with early learning of space and
the reliance on spatial understanding in learning new words (e.g., predicting
what new words mean and extending their use to new situations) argue that
spatial language builds upon already-constructed spatial concepts (Bowerman,
1996; Regier & Carlson, 2002; Spelke, 2002). However, that does not mean that
children merely map spatial words directly onto extant spatial concepts. The
concepts may be just forming, and change from attempts to change spatial
relationships of objects (“down” as “get me down”) to references to all such
changes, and finally to static spatial relationships. The words children use
encode concepts that are problematic for the child—that the child is develop-
ing—and are used as a cognitive tool to support that development. In addition,
adult language helps children consolidate their emerging understandings
(Gopnik & Meltzoff, 1986). Further, semantic organization of language appears
to influence children’s development of spatial concepts (Bowerman, 1996). For
example, while English uses “on” for contact with and support by a surface (on
a table and handle on a door) and “in” for containment, Finnish categorizes the
handle on a door and apple in a bowl together; the horizontal support of “on a
table” requires a different construction. In Dutch, the hanging attachment of
“handle on a door” is a separate construct (Bowerman, 1996). Consistent with
the notion that these differences affect children’s special learning, cross-
cultural studies show that, for example, children learning English acquire con-
cepts referring to verticality faster than children learning a language such as
Korean, for which those terms are less central, whereas Korean children learn
different meanings for terms that mean “in” as in “fit tightly” and as in “inside
a larger container”, whereas English-speaking children are slower to learn that
differentiation, with these differences occurring both in production (Choi &
Bowerman, 1991) and in comprehension (Choi, McDonough, Bowerman,
& Mandler, 1999) as early at 18 to 23 months. Thus, even if it does not change
perception at a low level in a Whorfian manner—with language determining
what is perceived and thought—it appears likely that language appears to
affect conceptual growth by affecting what kind of spatial relationships and
categories children attend to and build. As we stated previously, however,
language and culture are intricately interwoven and vocabulary focuses
thought but also reflect cultural practices that may be at the root of these
differences.

By two years of age, children have considerable spatial competence on
which language might be based. Further, in contrast to many who emphasize
children’s naming of objects, children use spatial relational words more
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frequently, and often earlier, than names (Gopnik & Meltzoff, 1986). Moreover,
the use of even a single-word utterance by a 19-month-old, such as “in” may
reflect more spatial competence than it first appears when the contexts differ
widely, such as saying, “in” when about to climb into the child seat of a shop-
ping cart and saying “in” when looking under couch cushions for coins she just
put in the crack between cushions (Bowerman, 1996). However, notions such
as “left” and “right,” whose relative understanding may require mental
rotation (Roberts & Aman, 1993), may not be fully understood until about
six to eight years of age. Between these ages, children also learn to analyze
what others need to hear to follow a route through a space. To a large degree,
however, development past pre-K depends on sociocultural influences on
children’s understanding of conventions, such as negotiating which frame of
reference is used (Newcombe & Huttenlocher, 2000). Such influences have
strong effects. For example, achieving flexible spatial performance is correlated,
and may be caused by, acquisition appropriate spatial vocabulary (Wang &
Spelke, 2002). Indeed, it may be the unique way that people combine concepts
from different inborn spatial systems into mature and flexible spatial under-
standings. Training preschoolers on the spatial terms “left” and “right” helped
them reorient more successfully (Shusterman & Spelke, 2004). Finally, while
language supports simple representations such as cue learning, place learning is
difficult to capture verbally because of the multiple simultaneous relationships,
This leads us to more apropos external representations, such as models and
maps.

Models and Maps

Young children can represent and, to an extent, mathematize, their experiences
with navigation. They begin to build mental representations of their spatial
environments and can use and create simple maps. Children as young as two
years of age can connect oblique and eye-level views of the same space, finding
their mother behind a barrier after observing the situation from above (Rieser,
Doxsey, McCarrell, & Brooks, 1982). In another study, two and a half-, but
not two-year-olds, could locate a toy, shown a picture of the space, even when
two-year-olds are given help (DeLoache, 1987; DeLoache & Burns, 1994).

To make sense of maps, children have to create relational, geometric
correspondences between elements, as these vary in scale and perspective
(Newcombe & Huttenlocher, 2000). It is noteworthy that essential mathemat-
ical notions of representation and symbolization (one thing “stands for” some-
thing else) and specific correspondences appear in a limited form in children as
young as three years (Liben & Myers, 2007). Thus, even three-year-olds may be
able to build simple, but meaningful, models with landscape toys such as
houses, cars, and trees (Blaut & Stea, 1974), although this ability is limited
through the age of six years (Blades, Spencer, Plester, & Desmond, 2004).
However, we know less about what specific abilities and strategies they use to
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do so. For example, kindergartners making models of their classroom cluster
furniture correctly (e.g., they put the furniture for a dramatic play center
together), but may not relate the clusters to each other (Siegel & Schadler,
1977).

Thus, preschoolers have some impressive initial competencies, but these are
just starting to develop. We begin a more in depth look at this development by
considering children’s use, rather than production, of models and maps. One
study confirms that children can use both models and maps by two and a half
to three years of age, but with a twist. Children were shown a location on a scale
model of a room then asked to find same object in the actual room (DeLoache,
1987). For example, a miniature dog was hidden behind a small couch in the
model, and the child was asked to find a larger stuffed dog hidden behind a
full-sized couch. Interestingly, raising a point to which we shall return, three-,
but not two and a half-, year-olds could find the corresponding object (the
authors do not state, but we assume, the two were in alignment). However, both
ages were successful with line drawings or photographs of the room. It may be
that the younger children saw the model as an interesting object, but not as a
symbol for another space, leading to the counterintuitive result that the more
“concrete” model was less useful to them. In support of this notion, having
these children play with the model decreased their success using it as a symbol
in the search task, and eliminating any interaction increased their success. The
threes were successful with either, revealing cognitive flexibility in their use of
the model, as an object per se and a symbol for another space.

In a similar vein, beginning about three, and more so at four, years of age,
children can interpret certain symbols on maps, such as a blue rectangle
standing for blue couch, or “x marks the spot” (Dalke, 1998). Their abilities
lack sophistication; for example, preschoolers recognized roads on a map, but
suggested that the tennis courts were doors (Liben & Downs, 1989). Some
believe that the colors on a map represent colors of the real-world objects
(Liben & Myers, 2007). In another study, four- and five-year-olds criticized
symbols that lacked features (e.g., tables without legs), but could recognize a
plane view of their classroom, so findings such as these may be the result of
children merely voicing preferences. All could distinguish between repre-
sentational (in room) and nonrepresentational (outside of room) paper space
(Liben & Yekel, 1996). In any case, by age five or six, children can consistently
interpret the arbitrary symbolic relationships used in maps (Newcombe &
Huttenlocher, 2000). Yet children may understand that symbols on maps repre-
sent objects but have limited understanding of the geometric correspondence
between maps and the referent space. As we shall see, both understandings are
developing, but have far to go, by the end of the preschool years (Liben & Yekel,
1996).

Shortly after three years of age, children are able to scale distance across
simple spatial representations, a fundamental competence (Huttenlocher,
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Newcombe, & Vasilyeva, 1999). However, they perform better with symmetric
than asymmetric configurations (Uttal, 1996). Children also understand that
a map represents space (Liben & Yekel, 1996). By four years of age, they can
build upon these abilities and begin interpreting maps, planning navigation,
reasoning about, and learning from maps, at least in simple situations
(Newcombe & Huttenlocher, 2000). For example, four-year-olds benefit
from maps and can use them to guide navigation (i.e., follow a route) in simple
situations (Scholnick, Fein, & Campbell, 1990). In a similar study, four- to
seven-year-olds had to learn a route through a six-room playhouse with a clear
starting point. Children who examined a map beforehand learned a route more
quickly than those who did not (Uttal & Wellman, 1989). Children younger
than six, however, have trouble knowing where they are in the space; therefore,
they have difficulty using information available from a map relevant to their
own present position (Uttal & Wellman, 1989). Preschoolers also have dif-
ficulty aligning maps to the referent space, a skill that improves by age five
(Liben & Yekel, 1996). Competencies in geometric distances and scaling are
underway by age six or seven, and primary grade children can recognize
features on aerial photographs and large-scale plans of the same area (Blades
et al., 2004; Boardman, 1990), but these abilities continue to improve into
adulthood. However, even adults do not attain perfect competence.

The ability to use a map to plan routes is more challenging than following
specified routes. This ability is forming at about age five, although the spaces
researchers use are usually simple and rectangular. By six years, children can
plan routes in more complex environments with multiple alternatives,
using distance information. For example, by five to six years of age, children
can use maps to navigate their way around a school, but are less successful
navigating complex streets or a cave (Jovignot, 1995). More research is needed
on naturalistic spaces, as well as on children’s ability to plan efficient routes
(Newcombe & Huttenlocher, 2000).

As we saw, young preschoolers show some ability to create models of
spaces such as their classrooms (Blaut & Stea, 1974; Siegel & Schadler, 1977).
Preschoolers, like older people, could preserve the configuration of objects
when reconstructing a room depicted on a map. However, preschoolers placed
objects far from correct locations and performed worse with asymmetric
than symmetric configurations (Uttal, 1996). Most four-year-olds can locate
clusters of model furniture items in a scale model of their classroom, but get
confused when they must position the items, getting only about half the items
correct (Golbeck, Rand, & Soundy, 1986; Liben, Moore, & Golbeck, 1982).
Much of the difficulty may be not be in coding and producing locations, but
rather in scaling distances, especially as that difficulty is compounded with
multiple elements (Newcombe & Huttenlocher, 2000).

There are individual differences in such abilities. In one study, most pre-
schoolers rebuilt a room better using real furniture than toy models. For some
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children, however, the difference was slight. Others placed real furniture
correctly, but grouped the toy models only around the perimeter. Some
children placed the models and real furniture randomly, showing few
capabilities (Liben, 1988). Even children with similar mental representations
may produce quite different maps due to differences in drawing and map-
building skills (Uttal & Wellman, 1989). Nevertheless, by the primary grades,
most children are able to draw simple sketch-maps of the area around their
home from memory (Boardman, 1990).

What accounts for differences and age-related changes? Maturation and
development may be significant. Children need mental processing capacity to
update directions and location. The older they get, the more spatial memories
they can store and transformations they can perform. Such increase in pro-
cessing capacity, along with general experience, determines how a space is
represented more than the amount of experience with the particular space
(Anooshian et al., 1984). Students continue to learn about the role of symbols,
including understanding the intent of the creator of the symbols, throughout
elementary school (Myers & Liben, 2008). Other learning is also important, as
will be discussed in a following section. For now, we emphasize that although
the modal number correct on a map assessment was zero for kindergarteners,
several were correct on every item (Liben & Myers, 2007). Similarly, some
sixth-graders and adults show little competence with maps. Thus, experience
probably plays a major role in understanding spatial representations such
as maps.

Fundamental is the connection of primary to secondary uses of maps
(Presson, 1987). Even young children can form primary relations to spaces on
maps, once they see them as representing a space at about two and a half to
three years of age (DeLoache, 1987). This ability is probably an initial bootstrap
in that it appears in children and adults in cultures that have no maps or other
explicit representational tools (Dehaene, Izard, Pica, & Spelke, 2006). They
must learn to treat the spatial relations as separate from their immediate
environment. These secondary meanings require people to take the perspective
of an abstract frame of reference (“as if you were there”) that conflicts with the
primary meaning. You no longer imagine yourself “inside,” but rather must see
yourself at a distance, or “outside,” the information. Showing children several
models, and explicitly comparing them using language, and possibly visual
highlights, can help (Loewenstein & Gentner, 2001), probably because it helps
children notice common relationships on subsequent tasks. Such meanings of
maps challenge people from preschool into adulthood, especially when the
map is not aligned with the part of the world it represents (Uttal & Wellman,
1989). For example, successful map use and mental rotation abilities are corre-
lated in four- to six-year olds (Scholnick et al., 1990). Ability to use misaligned
maps, especially those 180° misaligned, shows considerable improvement up to
about eight years of age. In addition, children may learn other strategies to deal
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with the basic problem of conflicting frames of reference (Newcombe &
Huttenlocher, 2000). These findings re-emphasize that we must be careful how
we interpret the phrase “mental (or cognitive) map.” Spatial information may
be different when it is garnered from primary and secondary sources such as
maps.

Coordinates and Spatial Structuring

Young children can learn to relate various reference frames, and they appear
to use, implicitly, two coordinates in remembering direction, either polar or
Cartesian. This appears inconsistent with the Piagetian account of the develop-
ment of two-dimensional space, in which only in later years do children
come to “see” objects as located in a two-dimensional frame of reference. That
is, Piaget and Inhelder (1967) challenged the claim that there is an innate
tendency or ability to organize objects in a two- or three-dimensional reference
frame. Spatial awareness does not begin with such an organization; rather, the
frame itself is a culminating point of the development of Euclidean space.

To test their theory in the case of horizontality, Piaget and Inhelder showed
children jars half-filled with colored water and asked them to predict the spatial
orientation of the water level when the jar was tilted. For verticality, a plumb
line was suspended inside an empty jar, which was similarly tilted, or children
were asked to draw trees on a hillside. Children initially were incapable of
representing planes; a scribble, for example, represented water in a tilted jar.
At the next state, the level of the water was always drawn perpendicular to the
sides of the jar, regardless of tilt. Satisfaction with such drawings was in no way
undermined even when an actual water-filled tilted jar was placed next to the
drawing. It is, then, quite striking “how poorly commonly perceived events are
recorded in the absence of a schema within which they may be organized”
(p. 388). Sometimes, sensing that the water moves towards the mouth of the jar,
children raised the level of the water, still keeping the surface perpendicular to
the sides. Only at the final stage—at about nine years of age—did children
ostensibly draw upon the larger spatial frame of reference (e.g., tabletop) for
ascertaining the horizontal.

Ultimately, the frame of reference constituting Euclidean space is analogical
to a container, made up of a network of sites or positions. Objects within
this container may be mobile, but the positions are stationary. From the
simultaneous organization of all possible positions in three dimensions
emerges the Euclidean coordinate system. This organization is rooted in the
preceding construction of the concept of straight line (as the maintenance of a
constant direction of travel), parallels, and angles, followed by the coordination
of their orientations and inclinations. This leads to a gradual replacement of
relations of order and distance between objects by similar relations between
the positions themselves. It is as if a space were emptied of objects so as to
organize the space itself. Thus, intuition of space is not a “reading” or innate

180 • Geometry and Spatial Thinking



apprehension of the properties of objects, but a system of relationships borne
in actions performed on these objects.

Once again, however, subsequent research indicates that young children are
more competent, and adolescents and adults less competent, than the theory
might suggest. Regarding the latter, not all high school seniors or college
students perform successfully on tasks designed by Piaget to assess an under-
lying Euclidean conceptual system (Liben, 1978; Mackay et al., 1972;
H. Thomas & Jamison, 1975). On the other hand, it appears that young chil-
dren’s grasp of Euclidean spatial relationships is more adequate than the theory
posits. Very young children can orient a horizontal or vertical line in space
(Rosser, Horan, Mattson, & Mazzeo, 1984). Similarly, in very simple situations,
four- to six-year-old children (a) can extrapolate lines from positions on both
axes and determine where they intersect, (b) are equally successful going from
point to coordinate as going from coordinate to point, and (c) extrapolate as
well with or without grid lines (Somerville & Bryant, 1985). Piagetian theory
seems correct in postulating that the coordination of relations develops after
such early abilities. Young children fail on double-axis orientation tasks
even when misleading perceptual cues are eliminated (Rosser, Horan et al.,
1984). Similarly, the greatest difficulty is in coordinating two extrapolations,
which has its developmental origins at the three- to four-year-old level, with
the ability to extrapolate those lines developing as much as a year earlier
(Somerville, Bryant, Mazzocco, & Johnson, 1987).

These results suggest an initial inability to utilize a conceptual coordinate
system as an organizing spatial framework (Liben & Yekel, 1996). Only some
four-year-olds can use a coordinate reference system, whereas most six-year-
olds can (Blades & Spencer, 1989) at least in scaffolded situations. However,
most four-year-olds can coordinate dimensions if the task is set in a meaning-
ful, guided context in which the orthogonal dimensions are cued by the line
of sights of imaginary people (Bremner, Andreasen, Kendall, & Adams,
1993). Conceptual integration of coordinates is not limited to two orthogonal
dimensions. Children as young as five years can metrically represent spatial
information in a polar coordinate task, using the same two dimensions as
adults, radius and angle, although children do not use categorizations of those
dimensions until age nine (Sandberg & Huttenlocher, 1996).

However, performance on coordinate tasks is influenced by a variety of
factors at all ages. Performance on horizontality and verticality tasks may
reflect bias toward the perpendicular in copying angles, possibly because this
reference is learned early (Ibbotson & Bryant, 1976). Representations of figures
also are distorted either locally by angle bisection, or by increasing symmetry
of the figure as a whole (Bremner & Taylor, 1982). Finally, performance on
these Piagetian spatial tasks correlates with disembedding as well as with
general spatial abilities (Liben, 1978). Such results indicate a general tendency
to produce symmetry or simplicity in constructions that confound the
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traditional Piagetian interpretation (Bremner & Taylor, 1982; Mackay et al.,
1972).

Thus, young children have nascent abilities to structure two-dimensional
space (which they often have to be prompted to use), but older students often
have not developed firm conceptual grounding in grid and coordinate
reference systems. To consciously structure space with such systems requires
considerable conceptual work. Spatial structuring is the mental operation of
constructing an organization or form for an object or set of objects in space
(Battista, Clements, Arnoff, Battista, & Borrow, 1998). Structuring is a form of
abstraction, the process of selecting, coordinating, unifying, and registering in
memory a set of mental objects and actions. Structuring takes previously
abstracted items as content and integrates them to form new structures. Spatial
structuring precedes meaningful use of grids and coordinate systems. On the
one hand, grids that are provided to children may aid their structuring of
space; but children still face hurdles in understanding these grid and coordin-
ate systems. The grid itself may be viewed as a collection of square regions,
rather than as sets of perpendicular lines. In addition, order and distance rela-
tionships within the grid must be constructed and coordinated across the two
dimensions. Labels must be related to grid lines and, in the form of ordered
pairs of coordinates, to points on the grid, and eventually integrated with the
grid’s order and distance relationships so that they constitute numerical
objects and ultimately can be operated upon.

Even as late as fourth-grade, many children still need to learn to spatially
structure two-dimensional grids in this fashion (Sarama, Clements,
Swaminathan, McMillen, & González Gómez, 2003). They need to overcome
conceptual hurdles of (a) interpreting the grid structure’s components as line
segments or lines rather than regions; (b) appreciating the precision of location
the lines required, rather than treating them as fuzzy boundaries or indicators
of intervals and (c) learning to trace vertical or horizontal lines that were
not axes. When using coordinates, children may have needed to reconstruct
the levels of counting and quantification that they had already constructed in
the domain of counting discrete objects.

In summary, even young children can use coordinates that adults provide
for them. However, when facing traditional tasks, they and their older peers
may not yet be able or predisposed to spontaneously make and use coordinates
for themselves. Performance on coordinate tasks progresses uniformly and
continuously from preschool to grade 6 (G. R. Carlson, 1976).

As a final note, we argue that that the term “spatial structuring” be reserved
for this specific construct of organizing such two- or three-dimensional con-
cepts, the context in which the term was created (Battista & Clements, 1996;
Battista et al., 1998; Sarama et al., 2003). Although one could think of all
geometric and spatial activity discussed in this section as “structuring space,”
this would enervate the construct. Furthermore, better, specific local theories
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exist for other areas of geometry and spatial thinking. Building stronger
and more detailed local theories is a superior approach for psychology and
education (Newcombe & Huttenlocher, 2000).

Imagery and Spatial Visualization

Visual representations are central to our lives, including most domains of
mathematics (Arcavi, 2003). In this broad sense, visualization is “the ability, the
process, and the product of creation, interpretation, use of and reflection upon
pictures, images, diagrams, in our minds, on paper, or with technology tools,
with the purpose of depicting and communicating information, thinking
about and developing previously unknown ideas and advancing under-
standings” (p. 56). Data representations are one example (see Chapter 12).

Spatial images are internally experienced, holistic representations of objects
that appear (to the individual) to be similar to their referents. Kosslyn (1983)
defines four classes of image processes: generating an image, inspecting an
image to answer questions about it, maintaining an image in the service of
some other mental operation, and transforming and operating on an image.
Thus, spatial visualization involves understanding and performing imagined
transformations of two- and three-dimensional objects, including motions,
matching, and combining.

To do this, people need to be able to create a mental image and manipulate
it. An image is not a “picture in the head,” although some have argued that the
mental processes are similar to those that underlie the perception of objects
(Shepard, 1978). For example, they are integrated and can be scanned or
rotated as one would do to perceptually available objects, with transitional
images and times in proportion to those of perceptual activity (Eliot, 1987;
S. M. Kosslyn, Reiser, & Ball, 1978). Images are more abstract, more malleable,
and less crisp than pictures. They are often segmented into parts and represent
relationships among those parts (Shepard, 1978). Some images can cause
difficulties, especially if they are too inflexible, vague, or filled with irrelevant
details.

Not everyone agrees with the close comparison between real-world objects
and images. Pylyshyn argues that the cognitive foundation of these images
may be the same kind of conceptual structures that underlie other knowledge
(Pylyshyn, 1973, 2003). For example, when recollections of spatial objects are
vague, certain perceptual qualities are absent, not geometrically definable
components. As another example, children’s difficulty discriminating a figure
and its mirror image may indicate that their mental representations do not
include relations such as “to the left of,” but do include general relations such as
adjacent to.

Pylyshyn also argues that the personal experience of mental images has
fooled researchers into erroneous interpretations of experiments. Some
experiments have found, for example, that it takes longer to mentally scan a
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path on a map from cities that are a greater distance apart. However, it may be
that the tasks themselves suggest or tell subjects to scan, and that they therefore
reproduce the very time lags that they implicitly believe would be charac-
teristic of such scanning (Pylyshyn, 1981). Subjects under different conditions
perform many tasks that do not form linear relationship with time. Thus, the
precise cognitive nature of mental images is still under debate.

Such debates indicate that imagery and visualization are difficult areas to
study. Even more so than other areas, they are high-inference research fields,
in which we often assume that what people discuss or draw is an indication of
what they visualize and provides insight into how it affects their thinking;
however, we have little reliable evidence on the validity of this assumption.

Whatever their precise cognitive basis, spatial visualization abilities are
processes involved in generating and manipulating mental images, as well as
guiding the drawing of figures or diagrams on paper or computer screens
(Presmeg, 1997). For example, children might create a mental image of a shape,
maintain that image, and then search for that same shape, perhaps hidden
within a more complex figure. To do so, they may need to mentally rotate the
shapes, one of the most important transformations for children to learn. These
spatial skills directly support children’s learning of specific topics, such as
geometry and measurement, but they also can be applied to mathematical
problem solving across topics (Battista, 1990; Kersh, Casey, & Young, in press).
This may account for the consistent finding that spatial skills and mathematics
achievement are connected in older students (Casey, Nuttall, & Pezaris,
1997; Casey et al., 2001; Delgado & Prieto, 2004; Friedman, 1995; Hegarty &
Kozhevnikov, 1999). Few studies have investigated this relationship with young
children, but high correlations have been found in mathematically precocious
preschool and kindergarten children (Robinson, Abbot, Berninger, & Busse,
1996).

In Piagetian theory (Piaget & Inhelder, 1967, 1971) children up to four
years of age cannot construct an entire image of a two-dimensional shape after
only tactile-kinesthetic experience (visual experiences were thought to rely
overly on perceptual thinking) because preschoolers are too passive, touching
one part of a shape only. Children aged four to seven would touch another part
and regulate their actions by establishing relations among them, building
a more accurate representation of the shape. Such processes allow them to
accurately distinguish between rectilinear (e.g., a triangle) and curvilinear
(e.g., circle) shapes and build images of simple shapes. Children older than
seven years systematically return to each movement’s starting point, allowing
the parts of the figure to be synthesized into a complete whole. Mental actions
are then reversible, and distinct yet coordinated with other actions, allowing
complete and accurate image building. At this point, children can use antici-
patory schemes that include possible features such as straight or curved lines,
angles, parallels, order, and equal or unequal lengths. In this way, images are
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said to be internal imitations of actions, even perceptual actions such as eye
movements.

Although Piaget argued that most children cannot perform full dynamic
motions of images until the primary grades (Piaget & Inhelder, 1967, 1971),
pre-K children show initial transformational abilities. Some researchers have
reported that second graders learned only manual procedures for producing
transformation images, but could not mentally perform such transformations
(Williford, 1972). In contrast, other studies indicate that even young children
can learn something about these motions and appear to internalize them, as
indicated by increases on spatial ability tests (Clements, Battista, Sarama, &
Swaminathan, 1997; Del Grande, 1986). Slides appear to be the easiest motions
for children, then flips and turns (Perham, 1978); however, the direction of
transformation may affect the relative difficulty of turn and flip (Schultz &
Austin, 1983). Results depend on specific tasks, of course; even four- to five-
year olds can do turns if they have simple tasks and orientation cues (e.g., one
or more markers of orientation are on the edge of a shape and the “flipped”
shape is not a distractor, Rosser, Ensing et al., 1984). Further, some studies
indicate that second-grade students are capable of mental rotation involving
imagery (Perham, 1978; Rosser, Lane, & Mazzeo, 1988). In one study of
children of ages four to eight, there were no significant effects of showing the
motion to reproduce the effects of the transformation for slides and flips (with
the trend being a negative effect for younger children) but a dramatic beneficial
effect for turns. A slide task was at least as easy as a flip, and turns were most
difficult (J. C. Moyer, 1978).

From geometric motions to using maps, children have to be able to perceive
that two shapes or sets of objects in space are the “same” and to make corre-
spondences between them (see the discussion in Chapter 8 on comparing
shapes and congruence). Transformations and perspective taking appear to
follow the development of perceptual and imagistic reproduction. There is a
hierarchical developmental sequence of reproduction of geometric figures
requiring only encoding (i.e., building a matching configuration of shapes,
with the original constantly in sight), reproduction requiring memory (build-
ing a matching configuration from recall), and transformation involving rota-
tion and visual perspective-taking (building a matching configuration either
from recall after a rotation or from another’s perspective), with pre-K children
able to perform at only the first two levels (Rosser et al., 1988). In a similar vein,
a framework of imagery for early spatial mathematics learning that is generally
consistent with the research reviewed here has been proposed by Owens
(1999). In each of three categories, orientation and motion, part-whole rela-
tionships, and classification and language, children develop strategies in five
categories: emergent (beginning to attend, manipulate, and explore), per-
ceptual (attend to features and make comparisons, relying on what they can see
or do), pictorial (mental images and standard language), pattern and dynamic
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imagery (conceptual relationships), and efficient strategies. Preliminary evi-
dence suggests the validity and usefulness of the framework for researchers
and teachers. Using a similar framework, it was found that 11 percent of Aus-
tralian kindergarteners were unable to visualize simple shapes at the beginning
of the year (2 percent at the end of the year in the experimental group), 70
percent were at the level of forming static, pictorial images in conjunction with
models or manipulatives (37 percent of the experimental children at the end),
with only 19 percent at the level of visualizing effects of motions (52 percent by
the end for experimentals) and 1 percent using dynamic imagery (10 percent
by the end for experimentals) (D. M. Clarke et al., 2002). Thus, there is much
room for growth in the earliest year, but helping teachers understand develop-
mental progressions and learning trajectories can promote that growth.

One additional issue regarding transformations deserves attention. First
graders discriminate between mirror-image reversals (b vs. d) better than
kindergarteners (Cronin, 1967). After experience with reading, children regard
orientation as a critical criterion for differences between geometric shapes.
This can work against geometric development (if not discussed).

From experiments on people who are congenitally blind, we know that their
imagery is in some ways similar, and some ways different from normally
sighted people. For example, only sighted people image objects of different size
at different distances, so the image will not overflow a fixed image space. They
image objects at distances so that the objects subtend the same visual angle.
Thus, some aspects of visual imagery are visual, and not present in blind
people’s images, but some aspects of imagery may be evoked by multiple
modalities (Arditi et al., 1988).

types of children and mathematical problem solving

Krutetskii classified gifted children into categories depending on the way
they used mathematical abilities, especially verbal-logical components and
visual-pictorial components (Krutetskii, 1976).

1. Analytic children used strong verbal-logical abilities, which
dominated their weak visual abilities.

2. Geometric children used strong visual abilities, which dominated their
above-average verbal-logical abilities.

3. Harmonic children had both strong verbal-logical and strong visual
abilities. Some could use visual supports but preferred not to, and
others preferred to do so.

This classification system is also relevant for children of all abilities levels
(Presmeg, 1997). This classification returns us to the question of when visual
thinking is helpful and when it is not. The strong visual thinkers synthesized
their visual/concrete and abstract knowledge (Clements, 1999a; we also discuss
this at length in Chapter 16 in the companion book). They had visual
“schemes” (Krutetskii, 1976), leading to our next point.
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types of images and mathematical problem solving

High-achieving children build images that have a spectrum of quality and a
more conceptual and relational core. They are able to link different experiences
and abstract similarities. Low-achieving children’s images tended to be
dominated by surface features. Instruction might help them develop more
sophisticated images (Gray & Pitta, 1999).

The schematic images of high-achieving children are thus more general and
abstract. They contain the spatial relationships relevant to a problem and thus
support problem solving (Hegarty & Kozhevnikov, 1999).

The pictorial images of low-achieving children do not aid problem solving
and actually can impede success. They represent mainly the visual appearance
of the objects or persons described in a problem. Thus, just using pictures
or diagrams or encouraging children to “visualize” may not be at all useful.
Instead, educators should help students develop and use specific types of
schematic images. The diagrams for arithmetic (e.g., Figure 6.1 in this book or
Figures 5.2 and 6.3 in the companion book) illustrate that such images are
useful in many mathematics contexts.

Other categories of images are consistent, but more elaborate. For example,
according to one categorization, images can be automatic or intentional, and
intentional images can be analogical (graphs, geometrical) or not (statements
or formulas) (Duval, 1999).

Experience and Education

Spatial thinking can be learned and should be taught at all educational levels,
according to a report by the National Research Council (NRC, 2006). How-
ever, we are only beginning to learn about specific cultural and educational
experiences and their impact on these capabilities, especially for young
children. Experience-expectant processes (Greenough et al., 1987) appear to
account for much of children’s development. Universal experiences, such as
our physical world provides, lead to an interaction of inborn capabilities and
environmental inputs that guide development in similar ways across cultures
and individuals. However, other competencies, such as spatial reasoning and
the use and creation of external spatial representations, such as language,
models and maps, probably develop via experience-dependent processes
(Greenough et al., 1987), and thus capability differs across cultures and indi-
viduals. For example, preschool teachers spend more time with boys than
girls, and usually interact with boys in the block, construction, sand play, and
climbing areas, and with girls in the dramatic play area (Ebbeck, 1984). Boys
engage in spatial activities more than girls at home, both alone and with care-
takers (Newcombe & Sanderson, 1993). Such differences may interact with
biology to account for early spatial skill advantages for boys (note that some
studies find no gender differences, e.g., Brosnan, 1998; see Chapter 15 for a
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discussion; Ehrlich, Levine, & Goldin-Meadow, 2005; Jordan, Kaplan, Oláh, &
Locuniak, 2006; Levine, Huttenlocher, Taylor, & Langrock, 1999; Rosser, Horan
et al., 1984).

As a more general note, we are not advocating teaching “spatial thinking” as
a part of math instruction divorced from teaching other mathematical content
and processes. Teaching isolated spatial skills, especially to children with special
needs, has a long history, most of which has been unsuccessful (Hofmeister,
1993). Thus, there are important questions not only for cognitive psychology,
but also for mathematics education research.

Spatial Orientation, Navigation, and Maps

Psychological research once again indicates that active experiences, here
emphasizing both physical and mental activity, are appropriate, and, in some
cases, critical, for children, especially as they are just developing a skill, such as
spatial orientation. For example, one-year-olds who walk themselves around a
display are more active observers and better locators than those who are carried
(Acredolo et al., 1984). Similarly, self-directed movement at five years of age led
to superior recall of distances in a spatial layout of a room (Poag, Cohen, &
Weatherford, 1983). As they develop, they become able to perform well under a
greater variety of conditions (e.g., outcomes did not differ among self- or
other-directed movement and viewing conditions for seven-year-olds). These
and other studies (Benson & Bogartz, 1990; Newcombe & Huttenlocher, 2000;
Rieser et al., 1994) emphasize the importance of self-produced movement for
success in spatial tasks and suggest the benefit of maximizing such experience
for all young children.

Given the early competence in foundational spatial representational
systems, there is every reason to assume that rich environments will contribute
to spatial competence at the intuitive and explicit levels. For example, young
children learn practical navigation early, as adults responsible for their care will
agree. Channeling that experience is valuable. For example, when nursery-
school children tutor others in guided environments, they build geometrical
concepts (Filippaki & Papamichael, 1997). Parents vary widely in the quantity
and quality of the experiences they provide their children about space and
spatial relations, and this is related to children’s competence with maps and
other spatial skills (Liben & Myers, 2007). Such environments might include
interesting layouts, experiences with landmarks and routes, and frequent dis-
cussion about spatial relations on all scales, including distinguishing parts of
their bodies (Leushina, 1974/1991) and spatial movements, finding a missing
object, and finding the way back home from an excursion. Verbal interaction is
important. For example, parental scaffolding of spatial communication helped
both three- and four-year-olds perform direction-giving tasks, in which they
had to disambiguate by using a second landmark (“it’s in the bag on the table”),
which children are more likely to do the older they are. Both age groups
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benefited from directive prompts, but four-year olds benefited more quickly
than younger children from nondirective prompts (Plumert & Nichols-
Whitehead, 1996). Control children never disambiguated, showing that inter-
action and feedback from others is critical to certain spatial communication
tasks.

Representing spatial environments with models and maps, as well as
implicitly or verbally, is less likely to be spontaneously developed. Specific
teaching strategies may therefore yield as yet largely unexplored benefits.
Models and maps are sociocultural tools (Gauvain, 1991), but ones whose
development is not well supported in the U.S. culture. For example, school
experiences are limited and fail to connect map skills with other curriculum
areas, including mathematics (Muir & Cheek, 1986).

Such deficits may have negative ramifications past map use. Using and
thinking about maps may contribute to spatial development by helping
children acquire abstract concepts of space, the ability to think systematically
about spatial relationships that they have not experienced directly, and the
ability to consider multiple spatial relations among multiple locations
(Uttal, 2000). Some evidence supports this possibility. As we have seen,
children benefit from exposure to overhead views (Rieser et al., 1982), at least
when children use the information (cf. Liben & Yekel, 1996), and to maps (Uttal
& Wellman, 1989). Indeed, using maps to teach children locations before they
entered the space helped children to identify rooms out of the learned
sequence, thus it improved their mental representation of that space (Uttal &
Wellman, 1989).

Research provides suggestions. Instruction on spatial ability, symbolization,
and metacognitive skills (consciously self-regulated map reading behavior
through strategic map referral) can increase four- to six-year-olds’ competence
with reading route maps, although it does not overcome age-related differences
(Frank, 1987). Using oblique maps aids preschoolers’ subsequent performance
on plan (“bird’s-eye view”) maps, perhaps because symbolic understanding
was developed (Liben & Yekel, 1996). Telling very young children that a
model was the result of putting a room in a “shrinking machine” helped the
children see the model as a symbolic representation of that space (DeLoache,
Miller, Rosengren, & Bryant, 1997). Using structured maps that help pre-
schoolers match the elements on the map with the corresponding elements in
the space facilitated their use of maps (DeLoache, Miller, & Pierroutsakos,
1998).

Similarly, many of young children’s difficulties do not reflect misunder-
standing about space, but the conflict between such sensory-concrete and
abstract frames of reference. Thus, adults might guide children to (a) develop
abilities to build relationships among objects in space, (b) extend the size of
that space, (c) link primary and secondary meanings and uses of spatial infor-
mation, (d) develop mental rotation abilities, (e) go beyond “map skills” to
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engage in actual use of maps in local environments (Bishop, 1983), and (f)
develop an understanding of the mathematics of maps.

There is some research indicating that navigation activities that combine
physical movement, paper-and-pencil, and computer work can facilitate
learning of mathematics and map skills. For example, young children can
abstract and generalize directions and other map concepts working with
the Logo turtle (Borer, 1993; Clements, Battista, Sarama, Swaminathan, &
McMillen, 1997; Clements & Meredith, 1994; Goodrow, Clements, Battista,
Sarama, & Akers, 1997; Kull, 1986; Try, 1989; J. A. Watson, Lange, & Brinkley,
1992; Weaver, 1991) although results are not guaranteed (Howell, Scott, &
Diamond, 1987). The interface must be appropriate and activities must be well
planned (J. A. Watson & Brinkley, 1990/91). Logo can also control a floor turtle
robot, which may have special benefits for certain populations. For example,
blind and partially sighted children using a computer-guided floor turtle
developed spatial concepts such as right and left and accurate facing move-
ments (Gay, 1989). Other simple (non-Logo) navigational programs may have
similar benefits. For example, using such software (with on-screen navigation)
has shown to increase kindergartners’ understanding of the concepts of left
and right (S. L. Carlson & White, 1998).

Such work integrates naturally with Logo experiences in which students
examine shapes from the perspective of movement, as in walking a rectangular
path. This perspective, corresponding roughly with differential geometry, con-
siders the local, or intrinsic, properties of figures. Instructing the computer’s
Logo turtle to define figures using commands such as “forward 100” and “right
90” to help children learn geometric properties is explored in Chapter 8.

Most children probably encounter maps incidentally. Therefore, although
the research reviewed here is suggestive, we know little about the potential of
planned educational opportunities with maps, and the efficiency of intro-
ducing such opportunities to children of different ages. We do know children
develop abilities with navigation, models, and maps early in their life. We need
more research on systematic, research-based education, especially before
recommendations for wide-scale changes can be made. Although children
begin to develop skill with maps by the time they reach elementary school, they
continue to build concepts and skills for many years to come. Most adults do
not really understand maps, and often naively believe that maps are simply
miniaturizations of the world. We do not yet know if early experiences are
effective and efficient (e.g., first grade may be more efficient than earlier, Frank,
1987), and need to learn more about the nature of efficacious educational
experiences.

Similarly, young children can use coordinates on maps or graphs that are
provided for them, but we have too little evidence of the short- and long-range
effects of structured experiences. Across the early childhood and primary
grades, children should learn to (a) quantify what the grid labels represent,

190 • Geometry and Spatial Thinking



(b) connect their counting acts to those quantities and to the labels, (c) sub-
sume these ideas to a part-whole scheme connected to both the grid and to
counting/arithmetic, and eventually (d) construct proportional relationships
in this scheme. Children who do so can mentally structure grids as two-
dimensional spaces, demarcated and measured with “conceptual rulers”
(“mental number lines”—see Chapter 10). To achieve this, they need to learn
to mentally internalize the structure of grids as two-dimensional spaces,
demarcated and measured with conceptual rulers. They must integrate their
numerical and spatial schemes to form a conceptual ruler (Clements, Battista,
Sarama, Swaminathan et al., 1997; Steffe, 1991). They must then integrate con-
ceptual rulers into two orthogonal number lines that define locations in that
space. This integration is a distributive coordination; that is, one conceptual
ruler must be taken as a mental object for input to another, orthogonal, con-
ceptual ruler (Sarama et al., 2003).

Real-world contexts can be helpful in teaching coordinates initially, but
mathematical goals and perspectives should be clearly articulated throughout
instruction and the contexts should be faded from use as soon as students no
longer need them (Sarama et al., 2003). Computer environments can addition-
ally aid in developing children’s ability and appreciation for the need for clear
conceptions and precise work. The ethereal quality of a toggled screen grid can
help scaffold children’s creation of a mental construct that they project on the
plane. Coordinate-based games on computers can help older children learning
location ideas (Sarama et al., 2003). When children enter a coordinate to move
an object but it goes to a different location, the feedback is natural, meaningful,
and nonevaluative.

Research also suggests cautions regarding some popular teaching strategies.
For example, phrases such as “over and up” and “the x-axis is the bottom,”
which we recorded on numerous occasions, do not generalize well to a four-
quadrant grid. The “over and up” strategy also hinders the integration of
coordinates into a coordinate pair (Sarama et al., 2003). Overall, coordinates
can serve as a useful vehicle to develop geometric concepts and divergent
thinking (Arnold & Hale, 1971).

Previously we considered the Logo turtle’s command intrinsic commands
of “FD” and “RT.” This perspective can be contrasted with an extrinsic
perspective, in which one “looks down” on the plane, as in coordinate systems.
Logo also includes coordinate commands, suggesting that a curriculum might
use both to help children learn more about, and distinguish between, intrinsic
and extrinsic conceptualizations. The importance of this can be argued from
a mathematical standpoint—laying the foundation for both differential and
analytic geometry—and from a psychological standpoint—there is evidence
that intrinsic geometry has its developmental roots in a coordination of the
somatic and locomotive sensorimotor subsystems, whereas extrinsic geometry
has it roots in visual subsystems (Lawler, 1985). Research indicates that use of
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Logo’s coordinate commands aid learning, especially mathematical generaliza-
tion and abstraction, in both grid and coordinate systems (Sarama et al., 2003).
Illustrations of these approaches can also be found in the companion book.

Building Imagery and Spatial Visualization

As early as the preschool years, through to first grade, U.S. children perform
lower than children in countries such as Japan and China on spatial visualiza-
tion and imagery tasks (Starkey et al., 1999; Stigler et al., 1990). There is more
cultural support for activities in these countries (e.g., using visual representa-
tions, expecting competency in drawing), and, similarly, within cultural groups
within the U.S., and within higher SES families in all countries (Starkey et al.,
1999; Thirumurthy, 2003). Research shows that even pre-K and kindergarten
children show initial transformational abilities in certain settings. Although
incomplete, research suggests that all children benefit from developing their
ability to create, maintain, and represent mental images of mathematical
objects.

There is limited research on the precise nature of tasks that effectively
develop other spatial visualization and imagery competencies. Research
indicates that several approaches may be beneficial for primary-grade children,
and similar activities may help younger children. For example, primary grade
children whose schools use manipulatives performed better on tests of spatial
ability than in those schools lacking use of such materials (Bishop, 1980). There
is correlational evidence that puzzle play at home, and talk with parents,
improves children’s mental transformation scores, especially for girls (Cannon,
Levine, & Huttenlocher, 2007). Further, play with “boys’ toys” may lead to
higher visual-spatial skills—at least the two are correlated (Serbin & Connor,
1979). Girls more than boys used verbally-mediated strategies to solve spatial
problems, which may have accounted for the facilitation of parent talk.

Educational experiences can help children of almost any age. Spatial
training in identifying a fixed location from two orientations was effective with
infants as young as six (but not four) months of age (D. Tyler & McKenzie,
1990).

In a similar vein, primary-school children who engaged in spatial problem-
solving activities requiring diverse imagery improved in spatial thinking
(Owens, 1999). A unit emphasizing transformational geometry improved spatial
perception of grade 2 students (Del Grande, 1986). Specific training on simple
mental transformations of shapes was not more effective than simple practice
in one study (Ehrlich, Levine, & Goldin-Meadow, 2006). But both increased
competence, suggesting that intentional activities can be valuable, and may be
especially important for girls.

Finally, suggestions can be garnered from tasks included in curricula that
have significant effects on spatial competencies (even though the nature of the
studies do not allow delineating the specific effects of individual tasks). These
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include tactile kinesthetic tasks, geometric “snapshots” activities (Clements &
Sarama, 2003a; Razel & Eylon, 1986, 1990; Wheatley, 1996; Yackel & Wheatley,
1990), constructing shapes from parts with multiple media (C. Edwards,
Gandini, & Forman, 1993), composing and decomposing shapes (Clements &
Sarama, 2003a; Klein, Starkey, & Ramirez, 2002; Razel & Eylon, 1986, 1990) and
geometric motions on the computer (Clements et al., 2001).

How do children learn mental transformations from such activities? There
is some evidence that they curtail physical movement as they slowly develop
mental visualization competence (Clements & Burns, 2000; Krutetskii, 1976).
For example, primary-grade students learn turns by progressively constructing
imagery and concepts related to turns (Clements, Battista, Sarama, &
Swaminathan, 1996). They gain experience with physical rotations, especially
rotations of their own bodies. In parallel, they gain limited knowledge of
assigning numbers to certain turns, initially by establishing benchmarks.
Through a synthesis of these two schemes, they build dynamic, quantitative
mental transformations that they can project onto static figures. They do this
through psychological curtailment (recall Chapter 5’s discussion of curtailment
in the developing of the ability to use counting-on). Curtailment is the gradual
construction of mental images and manipulations of those images to “stand in
for” what was a physical strategy (global, whole body, L-hands, etc.). We posit
that this is an image schema, (M. Johnson, 1987) or a mental model. That is, it
is an internalized dynamic mental image acquired through bodily experience
that allows the individual to “re-present” relevant features of that experience.
So, we see progressive development from movements of large portions of the
body to smaller portions (hand, head); we see movement from pronounced full
movement of these portions to abbreviated movement of them, to no move-
ment but staring at the screen, which we theorize is the enactment of the
mental image-based version of those movements. In a later phase, compilation
process may make these mental processes quicker and more effortless (Ander-
son, 1983). Teachers aware of this process can observe the behavioral signs and
support the curtailment with modeling and discussions. They can also use
environments, like Logo’s turtle math, that support these learning processes.

Building spatial abilities early is effective and efficient. For example, grade 2
children benefitted more than grade 4 children from lessons taught to
develop spatial thinking (Owens, 1992). In 11 lessons, children described the
similarities and differences of shapes, made shapes from other shapes, made
outlines using sticks, compared angles, made pentomino shapes and found
their symmetries. Those children outperformed a control group in a ran-
domized field trial on a spatial thinking test, with differences attributable to
the grade 2 children. No difference was found between groups that worked
cooperatively or individually, with whole-class discussions. Nearly all inter-
actions that led to heuristics about what to do or to conceptualizations were
between the teacher and the student, not between students (Owens, 1992).
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Learning Trajectories for Spatial Thinking

Table 7.1 provides the developmental progression and the mental actions-on-
objects for two learning trajectories for spatial thinking: spatial orientation
(maps and coordinates) and spatial visualization and imagery. However, these
two learning trajectories represent only a small bit of the role of spatial thinking
in mathematics. We saw that spatial and structural thinking is critical in
(visual) subitizing, counting strategies, and arithmetic. Such spatial knowledge

Table 7.1 Learning Trajectories for Spatial Thinking

Age
(years)

Developmental Progression Actions on Objects

a. Spatial Orientation (including maps and coordinates)

0–2 Landmark and Path User Uses a
distance landmark to find an
object or location near it, if they
have not personally moved relative
to the landmark.

Understands initial vocabulary of
spatial relations and location.

To simple response learning
(associating an object with a given
perceptual-motor response), the system
develops and uses cue learning, in
which landmarks are associated with
objects in proximity to that landmark.
The particular, single, visual perspective
of the system (i.e., when the system is
not moved) supports the association in
the first year of life.

When the system is moved,
bootstrapped path integration systems
allow encoding of approximate distance
and direction, especially when the
movement is self-directed.

2–3 Local-Self Framework User Uses
distant landmarks to find objects
or location near them, even after
they have moved themselves
relative to the landmarks, if the
target object is specified ahead of
time.

Orients a horizontal or vertical line
in space (Rosser, Horan et al.,
1984).

Increasing ability to code spatial
information for multiple objects and
form and use spatial relations between
those objects—as long as those objects
include the system’s own position (that
is, the objects are coded in relation to
the self)—allows better use of objects’
locations. This depends on the self’s
own location, which may not be
maintained after movement. Over the
years 3 to 6, the system develops better
coding for the spatial relationships
between the objects independent of the
self, including frameworks using its own
(remembered) position.

Making correspondences between
familiar spaces and aligned, direct
representations (photographs or simple
models) is a bootstrapped ability.
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Age
(years)

Developmental Progression Actions on Objects

4 Small Local Framework User
Locates objects after movement,
even if target is not specified ahead
of time. Searches a small area
comprehensively, often using a
circular search pattern.

Extrapolates lines from positions
on both axes and determines
where they intersect in meaningful
contexts.

Codes the locations of several objects in
a small area, along with their
relationships, and stores and mentally
marks that locations that have been
searched. Path integration improves in
accuracy.

In perceptually supported tasks, creates
an imagistically-guided direction from
given lines and traces these to where they
meet. (May not be able to hold this in
memory or explicitly understand the
process.)

5 Local Framework User Locates
objects after movement (relates
several locations separately from
own position), maintaining the
overall shape of the arrangement
of objects. Represents objects’
positions relative to landmarks
(e.g., about half way in between
two landmarks) and keeps track of
own location in open areas or
mazes.

Some use coordinate labels in
simple situations.

System can retain memory of multiple
objects and relationships without self-
reference and place them into
hierarchically-embedded relationships,
allowing the construction and retrieval
of the general shape of the arrangement
of the objects and locations in the
arrangement. The resulting local
framework is used to encode the
location of each object separately (e.g.,
an object is not tied only to nearby
landmarks). Metric accuracy of place
and path integration systems improves
with age (for years).

6 Map User Locates objects using
maps with pictorial cues.

Can extrapolate two coordinates,
understanding the integration of
them to one position, as well as use
coordinate labels in simple
situations.

Increasing ability to integrate various
systems of spatial orientation, to view
spatial figures from multiple
perspectives, and to hierarchically relate
regions, allows use of higher-order
spatial configurations and patterns to
locate objects or plan searches.

7 Coordinate Plotter Reads and
plots coordinates on maps.

Previous abilities are integrated to allow
spatial structuring, mentally
constructing an organization into two-
dimensional space, the basis of
coordinates.

8+ Route Map Follower Follows a
simple route map, with more
accurate direction and
distances.

Continued Overleaf
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Age
(years)

Developmental Progression Actions on Objects

Framework User Uses general
frameworks that include the
observer and landmarks. May not
use precise measurement even
when that would be helpful, unless
guided to do so.

Can follow and create maps, even if
spatial relations are transformed.

b. Spatial Visualization and Imagery

0–3 Simple Slider Can move shapes to
a location.

Bootstrap abilities.

4 Simple Turner Mentally turns
object in easy tasks.

Given a shape with the top marked
with color, correctly identifies which
of three shapes it would look like if it
were turned “like this” (90° turn
demonstrated) before physically
moving the shape.

With immediate perceptual support,
can build image of object and maintain
it sufficiently to reproduce basic
geometric motions on the image and
enact that on the physical object
represented.

Explicit concepts only about limited
aspects of images (e.g., that moving
objects nearer or farther from self
increases or decreases its apparent size).

5 Beginning Slider, Flipper, Turner
Uses the correct motions, but not
always accurate in direction and
amount.

Knows a shape has to be flipped to
match another shape, but flips it in
the wrong direction.

With perceptual support, builds and
maintains a mental image and
(intuitively) applies slides, flips, or turns
in simple situations (e.g., flip over
vertical axes; 90° turns), but that
intuition can be misdirected by
misleading perceptual cues (e.g.,
specifying a left, rather than the correct
right, turn to get a point at the bottom
of a figure to orient to the left). Also,
stimulus elements (especially those on
edges) rather than wholes may be
moved. Bootstrap sensitivity to
symmetry is represented to allow the
explicit recognition of simple
symmetric figures.

6 Slider, Flipper, Turner Performs
slides and flips, often only
horizontal and vertical, using
manipulatives. Performs turns of
45, 90, and 180 degrees.

Knows a shape must be turned 90°
to the right to fit into a puzzle.

Previous competence extended to resist
misleading perceptual cues and to
increasingly coordinate movement of
multiple elements of the object, leading
to more accurate performance in
similarly simple situations. Anticipates
motions on objects (but not
representational levels).
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is central to geometry, measurement, patterning, data presentation, and the
other topics discussed in chapters to come.

Final Words

Research does not support a qualitative shift in spatial thinking, such as from
egocentric to allocentric representations, nor does development proceed from
topological to “Euclidean.” Instead, children develop several spatial systems,
they develop the effectiveness of each of these systems, and they develop
more powerful ways of selecting or combining the information from each of
the systems. They extend these abilities, especially as they represent space, start-
ing in the second year of life. By connecting spatial representations to each
other and to language, they gain the ability to reason and communicate about
space. They use all these competencies to construct and select increasingly
coordinated reference systems as frameworks for spatial organization.

Further, although infants are endowed with potential spatial competencies,
experience-expectant processes (Greenough et al., 1987) engender their
development. That is, experiences with space are sufficiently similar across
cultures and individuals that developmental processes are almost guaranteed to
have certain environmental inputs. Thus, inborn potentialities are no more or
less fundamental than these expected environmental inputs; rather, the key is
in their interaction. In summary, the infant possesses biologically-provided
tools, which “bootstrap” and guide, but do not determine, development;
instead, they interact with maturation and physical and social experience, with
the role of these differing depending on the subdomain.

Although maps and models appear more apt representations of space than
non-graphic language, it is interesting that children appear to use language to
express and understand spatial concepts earlier and more easily than they use
models and maps. Whether this is the result of language forms being more
fundamental to human development (Newcombe & Huttenlocher, 2000)

Age
(years)

Developmental Progression Actions on Objects

7 Diagonal Mover Performs
diagonal slides and flips.

Knows a shape must be turned and
flipped over a oblique line (45°
orientation) to fit into a puzzle.

Extends abilities to perform diagonal
slides and flips. System can mentally
represent simple slides and turns
without perceptual support, storing
initial state, motion, and ending state.

8+ Mental Mover Predicts results of
moving shapes using mental
images.

“If you turned this 120°, it would be
just like this one.”

Mental representation of initial state,
motion, and final state support the
prediction of various shape
transformations using mental imagery.
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or merely the result of the relative amount of experience children receive with
each form is an open research question.

The view expressed in this chapter clears up some confusion regarding the
role of spatial sense in mathematics thinking. “Visual thinking” and “visual
strategies” are not the same as spatial sense. Spatial sense as we describe it—all
the abilities we use in “making our way” in the spatial sphere—is related to
mathematical competencies (D. L. Brown & Wheatley, 1989; Clements &
Battista, 1992; Fennema & Carpenter, 1981; Wheatley et al., 1994).

Visual thinking, as in the initial levels of geometric thinking, is thinking that
is limited to surface-level, visual ideas. Given high-quality education, children
move beyond that kind of visual thinking as they learn to manipulate dynamic
images, as they enrich their store of images for shapes, and as they connect their
spatial knowledge to verbal, analytic knowledge.

Perhaps most important for mathematics education is that children
develop increasingly integrated representations that synthesize flexible imagery
and geometric conceptualizations. We continue to discuss these issues in the
following two chapters on shape and shape composition.
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8
Shape

Shape is a fundamental construct in cognitive development in and beyond
geometry. For example, young children form artifact categories characterized
by similarity among instances in shape (Jones & Smith, 2002). Even very young
children show strong biases to attend to fine-grained shape when learning
novel object names, at least when directed to a rigid object. We begin by
extending the arguments that opened Chapter 7 concerning the importance of
geometric and spatial thinking. Then we introduce several theoretical perspec-
tives on children’s development of shape concepts, followed by our own
hierarchic interactionist position that we believe is most consistent with
existing evidence.

Background—Why Geometry and Spatial Thinking?

Performance in the U.S. and Other Countries

International comparisons show that (a) the poor performance of U.S.
students in mathematics is as bad or worse in geometry than in most other
topics and that (b) U.S. students do not learn much geometry from grade to
grade (Mullis et al., 1997). In the TIMMS work, U.S. students scored at or
near bottom in every geometry task (Beaton et al., 1996; A. Ginsburg, Cooke,
Leinwand, Noell, & Pollock, 2005; Lappan, 1999). Indeed, geometry and
measurement are the weakest areas in the most recent TIMSS and PISA inter-
national comparisons.

One intensive comparison of the math achievement of eighth-grade
students in 30 countries covered 23 specific content knowledge and processing
subskills. Findings revealed clear differences. U.S. students were particularly
weak in geometry. More important, success in geometry was highly associated
with logical reasoning and other important mathematical skills across the
sampled countries (Tasuoka & Corter, 2004).

These differences emerge in the earliest years of life. In a study of pre-
schoolers’ mathematical knowledge, Chinese children outperformed U.S.
children (matched on SES) on a test of numerical knowledge by 15 percent,
but they outperformed U.S. children in spatial/geometric knowledge twice as
much: 30 percent (Starkey et al., 1999).

A considerable research corpus from psychology and mathematics
education shows that developmental levels of geometric and spatial thinking
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exist (have been empirically supported in many studies) and yet are oft-
neglected in the U.S. (Clements, 2003; Clements & Battista, 1992; van Hiele,
1986). There is every reason, then, to suspect that students in the U.S. are not
prepared for higher levels of thinking and therefore do not benefit from the
(admittedly deficient) geometry education that is offered to them. Further,
there is some research that shows that certain geometric and spatial experi-
ences are achievable by young children and contribute to their mathematical
development.

Professional Judgment

Some mathematicians go even farther than Freudenthal, positing that, except
for simple calculation, geometric concepts underlie all of mathematical
thought (e.g., Bronowski, 1947). Smith (1964) argues that mathematics is a
special kind of language through which we communicate ideas that are essen-
tially spatial; mathematics is a visual language. For Smith, this is increasing
as one reaches college mathematics. From number lines to arrays, even
quantitative, numerical, and arithmetical ideas rest on a geometric base.
Cross-cultural research substantiates that core geometrical knowledge, like
implicit basic number or quantitative knowledge, appears to be a universal
capability of the human mind (Dehaene et al., 2006). For example, people from
an isolated Amazonian community spontaneously made use of foundational
geometric concepts, including points, lines, parallelism, and right angles when
trying to identify intruders in pictures, and used distance and angular relation-
ships in geometrical maps to locate hidden objects. Further, their profiles
of difficulty were similar to those of American adults. They performed
remarkably well in core concepts in topology (connectedness, closed shapes),
Euclidean geometry (points, lines, parallelism, right angles), and geometric
figures (square, circle, triangle). They had more difficulty, but performed above
chance, in detecting symmetries and metric properties (e.g., equidistance
between points). They had the most difficulty with geometric motions and
mirror images, both of which require a mental transformation of one shape
into another, followed by a second-order evaluation of this transformation
(Dehaene et al., 2006).

We should not forget geometry’s relation to science and mathematics. Two
of the most prominent physicists of the last 100 years attributed their
advancements to geometry. As a boy, Einstein was fascinated by a compass,
leading him to think about geometry and mathematics. He taught himself
extensively about geometry by age 12. Later in life, Einstein said that his
elements of thought were always initially geometric and spatial, including
“certain . . . more or less clear images which can be voluntarily reproduced
or combined.” “Conventional words or other signs have to be sought for
laboriously only in a secondary stage, when the associative play is sufficiently
established.” Hawking put it this way: “Equations are just the boring part of
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mathematics. I attempt to see things in terms of geometry.” They are not
exceptions. Visual thinking played a dominant role in the thinking of Michael
Faraday, Sir Francis Galton, Nikola Tesla, James D. Watson, René Thom and
Buckminster Fuller, among others (Shepard, 1978a).

There are mathematicians who study geometry who agree. “Geometry
should be a focus at every age, in every grade, every year. Math curricula are
often criticized for their insularity—‘what does this have to do with the real
world?’ No mathematical subject is more relevant than geometry. It lies at the
heart of physics, chemistry, biology, geology and geography, art and archi-
tecture. It also lies at the heart of mathematics, though through much of the
20th century the centrality of geometry was obscured by fashionable abstrac-
tion. This is changing now, thanks to computation and computer graphics
which make it possible to reclaim this core without loss of rigor. The
elementary school curriculum should give the children the tools they will need
tomorrow” (Marjorie Senechal, personal communication).

Further, a report by a committee including eminent mathematicians
H. S. M. Coxeter and W. W. Sawyer proclaimed that geometry was essential for
all grades, especially because “geometric literacy is lower than numerical
literacy” (K-13 Geometry Committee, 1967). They also stated that geometry
plays a basic role in physical science, engineering, and some role in nearly every
other subject, and that it has strong aesthetic connections.

A major researcher and developer in mathematics, Zal Usiskin, has
repeatedly made strong cases that geometry is the domain that (a) connects
mathematics with the real, physical world (critical for numerous fields),
(b) studies visual structures and patterns, (c) represents phenomena whose
original is not physical or visual (e.g., graphs, networks), and (d) brings co-
herence to all of these, because they all use the same mathematical language
for describing space (Usiskin, 1997). Usiskin argued geometry must start in the
earliest year of schooling.

Research on Geometric Thinking

As seen in Chapter 7 regarding spatial thinking, developing geometric know-
ledge contributes to a growth in mathematical competence and in other cogni-
tive abilities, including IQ (Clements & Battista, 1992; Clements & Sarama,
2007b). Geometric knowledge, in particular, is highly related to mathematical
reasoning and a host of other mathematics concepts and skills (Tasuoka et al.,
2004). This included proportional reasoning, judgmental application of
knowledge, concepts and properties, and managing data and processing skills,
leading the authors to conjecture that geometry may be a gateway skill to the
teaching of higher-order mathematics thinking skills. Further, we know that
spatial ability contributes to cognition in broad and multiple ways (Newcombe
& Huttenlocher, 2000).

Considering these bodies of research and professional judgments, it is
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probable that U.S. students’ learning not only of all topics geometric, but
also of measurement, coordinates, graphs and other visual displays, the large
number of geometric models for arithmetic and algebraic concepts and
operations, and yes, even proof, suffers as a result of inattention to geometric
and spatial thinking from the earliest years. Even less salient, but perhaps just
as important, is the harm such spatial ignorance does to students’ learning of
related topics in other subject-matter domains such as computer graphics,
navigation, geography, the visual arts, and architecture. The U.S. Employ-
ment Service estimates that most technical-scientific occupations such as
draftsman, airplane designer, architect, chemist, engineer, physicist, and
mathematician require persons having spatial ability at or above the 90th
percentile.

Theories of Young Children’s Perception and Knowledge of Shape

Piaget

Piaget and Inhelder (1967) claimed that young children initially discriminate
objects on the basis of “topological” features, such as being closed or otherwise
topologically equivalent, especially when given only tactile, rather than visual,
perceptions of the shapes. Only older children could discriminate rectilinear
from curvilinear forms and, finally, among rectilinear closed shapes, such as
squares and diamonds, via systematic and coordinated explorations. How-
ever, as previously discussed with regard to spatial thinking, there has been
decreasing support for this view. One criticism has been that Piaget and
Inhelder’s use of the terms such as topological, separation, proximity, and
Euclidean, as well as the application of these and related concepts to the design
of their studies, are not mathematically accurate (Darke, 1982; Kapadia, 1974;
Martin, 1976b). For example, proximity, in Piaget and Inhelder’s interpretation
of “nearbyness,” is not topological, for it involves distance. Piaget and Inhelder
also claim that only by the stage of formal operations (11 or 12 years) do
children synthesize notions of proximity, separation, order, and enclosure to
form the notion of continuity. However, continuity is not the synthesis of these
concepts; it is a defining concept of topology. If it does not develop until a late
stage, the argument for the primacy of topological concepts is weakened
(Darke, 1982; Kapadia, 1974). In a similar vein, classifying figures as topological
or Euclidean is problematic, as all figures possess both these characteristics and
many of the figures Piaget and Inhelder used were topologically equivalent (see
Figure 8.1). Decades ago, researchers reported that even at the earliest ages (two
to three years), children can distinguish between curvilinear and rectilinear
shapes, contrary to the theory (Lovell, 1959; Page, 1959).

Other studies showed children a test shape and then, after its removal, asked
children to identify a shape “most like” it. One (Esty, 1970, cited in Darke,
1982) found that four-year-olds classified the topologically-equivalent shapes
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to be most like the original. However, older groups of children chose them as
least like the original. Martin (1976a) used a set of shapes and three variants:
A was topologically equivalent to the model. B and C, though not strictly
equivalent to the model in a Euclidean sense, preserved as many Euclidean
properties of the model as consistent with the fact that they had been altered to
eliminate a particular topological property. Thus, B and C preserved properties
such as straightness, curvature, line segment length, and angle size that A failed
to preserve. But B failed to preserve connectedness and C varied closedness.
Four-year-olds tended to choose the copy that was topologically equivalent as
the “worst” copy of the model less often than older children. But, the “worst”
scores were at or above chance levels and thus did not lend support to Piaget
and Inhelder’s theory. In addition, four-year-olds sacrificed topological
properties in their selections as freely as did eight-year-olds.

A difficulty in designing such experiments is in quantifying the degree of
equivalence of the shapes. Geeslin and Shar (1979) modeled figures via a
finite set of points on a grid. Degree of distortion was defined as the sum of
displacements of these points. The authors postulate that children compare
two figures in terms of the amount of “distortion” necessary to transform one
figure into another, after an attempt at superimposition using rigid motions
and dilations. This model received strong support; however it is more pre-
dictive than explanatory. In agreement with other research, preschool to grade 4

Figure 8.1 Shapes such as those on the left were considered “Euclidean” by Piaget and
Inhelder in their haptic perception experiments; those on the right were considered to
be “topological forms.”
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children were cognizant of both topological and Euclidean properties and
how these properties distinguished variants. A small number of students at
each level favored either topological or Euclidean properties. Note that, as the
authors admit, these studies dealt with perception, whereas Piaget and Inhelder
specifically addressed representation.

In sum, results of many of the Piagetian studies may be an artifact of the
particular shapes chosen and the abilities of young children to identify and
name these shapes (G. H. Fisher, 1965). This does not support a strong version
of the topological primacy thesis. It may not be topological properties as a class
that enable young children to identify certain shapes. Visually salient properties
such as holes, curves, and corners; simplicity; and familiarity may underlie
children’s discrimination.

However, this discrimination is, at least in some sense, mathematical—a
first rendering of considerable capability, the initial bootstraps of hierarchic
interactionalism. That is, children probably have innate knowledge of
(Euclidean/topological) geometric properties. A study of children and adults
from the U.S. and an isolated Amazonian community with no presence of
geometric representations or vocabulary revealed that all groups performed
quite well on geometric oddity task (which one is not like the others).
For example, when shown six shapes, five rectangles and one non-square
rhombus, as in Figure 8.2, 86 percent of the Amazonians chose the rhombus.

Across tasks, they performed remarkably well in core concepts in topology
(connectedness, closed shapes), Euclidean geometry (parallelism, right angles),
and geometric figures (square, circle, triangle). They had more difficulty, but
performed above chance, in detecting symmetries and metric properties (e.g.,
equidistance between points). They had the most difficulty with geometric
motions (e.g., two triangles in a line- or mirror-symmetry relation) and mirror

Figure 8.2 Which of these shapes does not belong with the others?
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images. These both require a mental transformation of one shape into another,
followed by a second-order evaluation of this transformation. This property,
or the difficulty of depicting such transformations in static pictures, may
have caused the low performance. Amazonian children and adults, and U.S.
children, scored about the same on all tasks. U.S. adults performed better.
So, culture and learning make a substantial difference, but core geometrical
knowledge, like implicit basic number or quantitative knowledge, appears to be
a universal capability of the human mind.

Although the topological primacy thesis is not supported, Piaget and
Inhelder’s theory included a second theme. They claim that children’s repre-
sentation of space is not a perceptual apprehension of their spatial environ-
ment, but is constructed from prior active manipulation of that environment.
From this perspective, abstraction of shape is the result of a coordination of
children’s actions. Children “can only ‘abstract’ the idea of such a relation as
equality on the basis of an action of equalization, the idea of a straight line
from the action of following by hand or eye without changing direction, and
the idea of an angle from two intersecting movements” (p. 43). The Piagetian’s
tactile-kinesthetic experiments appeared to support this view.

Gibson

In contrast, Gibson (1969) stated that motor activity plays at most an indirect
role in perception. She also disagreed with the empiricists who believed percep-
tion was a matter of association. Instead, she claimed that perception involves
both learning and development, increasing the person’s ability to (selectively)
extract information from the stimulation in the environment. Her theory is
similar to Gestalt theory, which emphasized (a) wholes, irreducible to parts,
that drive toward “best structures,” and (b) developmental processes including
articulation and differentiation, rather than accretion by association. However,
Gibson emphasizes learning in sensory reorganization through processes of
filtering and abstraction. Perception begins as only crudely differentiated
and grossly selected. With growth and exposure, perception becomes better
differentiated and more precise, as the person learns detection of properties,
patterns, and distinctive features. Gibson suggested that learning is facilitated
by instructors emphasizing distinctive features and by beginning with broad
differences in those features and moving toward finer distinctions.

From this perspective, perception is active, adaptive, internally directed, and
self-regulated. In contrast to a radical constructivist orientation, Gibson
assumes an external reality, including structure and information already
existing in the stimulus, without the need for cognitive mediation. Consistent
with the constructivist interpretation, other research indicates that, although
components such as edge-lines may already be discrete, and basic perceptual
competencies such as size constancy (correcting for variations in distance)
inborn (Granrud, 1987; Slater, Mattock, & Brown, 1990), one cannot claim
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ontological reality is divided into invariants (E. Wright, 1983). That is, there is
no “information” in the environment separate from the individual.

Van Hieles

Also in the constructivist tradition, but addressing later development, the
theory of Pierre and Dina van Hiele posits that students progress through
qualitatively distinct levels of thought in geometry (van Hiele, 1986; van
Hiele-Geldof, 1984). At Level 1, the “visual” level, students can only recognize
shapes as wholes and cannot form mental images of them. A given figure is a
rectangle, for example, because “it looks like a door.” They do not think about
the defining attributes, or properties,1 of shapes. At level 2, descriptive/analytic,
students recognize and characterize shapes by their properties. For instance, a
child might think of a square as a figure that has four equal sides and four right
angles. Students find that some combinations of properties signal a class of
figures and some do not; thus the seeds of geometric implication are planted.
Students at this level do not, however, see relationships between classes of
figures (e.g., a child might believe that a figure is not a rectangle because it is
a square). Many students do not reach this level until middle or even high
school.

Hierarchic Interactionalism

The hierarchic interactionalism perspective builds most directly on
elaborations and revisions of the most educationally relevant theory, that
of the van Hieles, introducing other theoretical and empirical contributions.
To begin, although both theories posit domain specific developmental pro-
gressions, hierarchic interactionalism hypothesizes several revisions of the van
Hiele levels (Clements & Battista, 1992). These revisions have been sub-
sequently supported (Clements, Battista et al., 2001b; Clements et al., 1999;
Yin, 2003).

the first level of geometric thought

A level antecedent to the visual level is required to describe the empirical
corpus. At level 0, pre-recognition, children cannot reliably distinguish circles,
triangles, and squares from nonexampless of those classes. Children at this level
are just starting to form visual schemes for the shapes. These early, unconscious
schemes are formed through several initial bootstrap competencies. For
example, pattern matching through a type of feature analysis (Anderson, 2000;
E. J. Gibson, Gibson, Pick, & Osser, 1962) is conducted after the visual image of
the shape is transformed by heuristics built into the visual system that imposes
an intrinsic frame of reference on the shape, possibly using symmetry (Palmer,
1989).
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building wholes and parts of shapes

Research indicates that even infants can perceive wholes as well as parts of
geometric patterns (Bornstein & Krinsky, 1985) and that children as young as
three years engage in active spatial analysis in both construction (Tada & Stiles,
1996) and in perception (Feeney & Stiles, 1996), a process that changes with
development. That is, children will draw a “+” sign using four separate line
segments, treating intersections as junctions of separate parts, and will even
choose four small segments as being most like the goal object. Older children
produce one long vertical and two short horizontal segments, and adults two
long segments. As another example, when copying a square divided into
fourths (all lines parallel or perpendicular), some young children use all short
segments, and others use multiple closed forms (e.g., four squares drawn inside
the larger square). As early as four and a half years, most children’s con-
structions are similar to those of adults. Thus, the youngest children parse out
simple, well-formed, spatially independent parts and use simple combination
rules such as seriation and adjacency, then organization around a central point,
to connect these parts. Older children relate parts across intersections and
parse out continuous unsegmented parts, coordinating relations across
boundaries (Tada & Stiles, 1996). These first units may be inborn, well-defined,
rigid, unarticulated primary structures that may not follow Gestalt principles.
Indeed, Gestalt processes themselves, and what adults perceive, may be a result
of a developmental process. Development includes both components of
“spatial analysis”—identification of the parts of a geometric form and, most
importantly, integration of those parts into a coherent whole. Whereas four-year-
olds use fragmented strategies, such as drawing segmented forms radiating
around a central point, children as young as six years of age possess multiple
spatial analytic strategies and can, in simple situations, use strategies like those
of adults. The strategy they use is a function of both their capabilities and the
complexity of the pattern they are copying (Akshoomoff & Stiles, 1995).
Throughout development, children process more parts and more difficult
sets of relations, such as intersections and oblique segments, in increasingly
higher-order hierarchical units (Akshoomoff & Stiles, 1995).

Simple, closed shapes may initially tend to form undifferentiated, cohesive
units in children’s phenomenological perceptual experiences (cf. L. B. Smith,
1989). (Research suggests that shapes are perceived holistically with a separate
subsystem: Ganel & Goodale, 2003.) For example, contour is a salient charac-
teristic for young children (e.g., Tada & Stiles, 1996) that, when suggestive of a
spatially continuous object, may direct the perception of the shape as a whole
unit. Nascent schemes may ascertain the presence of the features of closed and
“rounded” to match circles, “pointy” features along a figural scan-path to
match triangles (without necessarily attaching numerical significance to this
path, cf. Glasersfeld, 1982; Piaget & Szeminska, 1952), four near-equal sides
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with approximately right angles to match squares, and approximate parallelism
of opposite “long” sides to match rectangles.

Experiencing multiple examples of a shape begins the formation of a class of
shapes. This often begins with exemplars2 of a shape category, which engenders
the formation of a mental prototype, one form of semanticized episodic
memory in which multiple cases are very similar. The memory of these cases
loses any trace to specific time and place, because the neocortex region of the
brain records similar events/objects in overlapping ensembles of neurons
(Nadel & Moscovitch, 1998).

Research has substantiated that children possess several different prototypes
for figures (e.g., a vertically and a horizontally-oriented rectangle) without
accepting the “middle” case (e.g., an obliquely-oriented rectangle). In one
study, subjects studied a preponderance of rectangles with extreme values and
few intermediate values of variables such as size (Neumann, 1977). Subjects
were presented with test items and asked to rate their confidence that they had
already studied that particular item. Interestingly, the subjects rated the
extremes (e.g., large or small rectangles) much higher than items created
by using the mean of these values (e.g., middle-sized rectangles), showing
that they extracted multiple foci of centrality, thereby creating several visual
prototypes. Thus, they did not cognitively “average” what they had studied.
This finding is consistent with studies on the van Hiele theory (Burger &
Shaughnessy, 1986; Clements & Battista, 1992; Clements, Battista et al., 2001b;
Fuys, Geddes, & Tischler, 1988).

As they refine these prototypes into increasingly elaborated triangle
schemas (cognitive networks of relationships connecting geometric concepts
and processes in specific patterns), children develop, tacitly at first, the ability
to “see” both the parts and the whole so that they do not consider an angle
(e.g., an upside-down “V”) to be a triangle. Similarly, they learn not to focus
only on the enclosing, simple contour of the shape that initially led them to
consider shapes such as chevrons (deltoids) to be triangles (K. Owens, 1999).

Typical “geometry deprived” (Fuys et al., 1988) young children have a
limited number of imagistic schemes for triangle, such as isosceles triangles.
That is, their schemes remain chained to a prototype. One five-year-old, for
example, separated the triangles as in Figure 8.3, arguing that the ones on the
right were “half triangles” and placing them so that, together, they approxi-
mated an isosceles triangle that apparently corresponded to his prototype
(B. A. Clarke, 2004).

Other children may have two imagistic schemes, such as an equilateral
triangle and a right triangle, both with a horizontal base (Hershkowitz et al.,
1990; Vinner & Hershkowitz, 1980). These prototype schemes are not abso-
lutely rigid, but they have constraints. For example, the more the lengths of the
legs of a right triangle differ in length, the less likely it will be assimilated to that
prototype. Such schemes can be thought of as having multivariate distributions
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of possible values (e.g., for the relationships between the side lengths and for
degree of the base’s rotation from the horizontal) in which the nearer to the
mode of the distribution the perceived figure is (equal for the side lengths and
0° rotation of the base for this example), the more likely it will be assimilated to
that prototype (parallel distributed processing, or PDP, networks and other
structural theories model this type of system, see Clements & Battista, 1992;
McClelland et al., 1986).

the role of language

As the initial schemas are developing, so do mappings similar to those of num-
ber, color, and other properties (Sandhofer & Smith, 1999). That is, children
first learn that the question “what shape?” is answered by words such as “circle”
and “square.” They then map these shape words to a few sensory-concrete
examples. Next, they combine these abilities to produce correct shape names
for prototypical examples of common shapes. Only after these experiences do
they build shape categories (probably because the PDP-type networks of each
of these examples contains much more information than geometric shape and
thus property-to-property matching and shape category creation is a slower
developmental process, cf. Sandhofer & Smith, 1999). Thus, shape words and
names help organize and direct attention to the relevant features of objects.

This analysis reveals that the nature of the van Hielian levels also requires
clarification. The “visual” level includes visual/imagistic and verbal declarative
knowledge (“knowing what”) about shapes. That is, it is not viable to con-
ceptualize a purely visual level (1), followed and replaced by a basically verbal
descriptive level (2) of geometric thinking—a common interpretation. Instead,
different types of reasoning—those characterizing different levels—coexist in
an individual and can be developing simultaneously but at different rates.
Consistent with the tenet of progressive hierarchization, levels do not consist
of unadulterated knowledge of only one type. This view is consistent with
literature from Piagetian and cognitive traditions (e.g., Minsky, 1986; Siegler,
1996; Snyder & Feldman, 1984), as well as reinterpretations of van Hielian
theory (Clements & Battista, 1992; Gutiérrez, Jaime, & Fortuny, 1991; Lehrer,
Jenkins, & Osana, 1998; Pegg & Davey, 1998).

Figure 8.3 Two isosceles triangles and two right triangles.
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learning about features, components, and properties

Certain conditions, such as a request to explain one’s decision, may prompt
children, even at early levels, to abstract, attend to, and describe certain features
(“this is pointy”). They might also consciously attend to a subset of the shape’s
visual characteristics and use such a subset to identify geometric shapes. Thus,
their descriptions of shapes may include a variety of terms and attributes
(Clements, Battista et al., 2001b; Lehrer, Jenkins et al., 1998). However, these
are “centrations” in the Piagetian sense, not integrated with other components
of the shape. This supports the recognition of both comparison-to-prototype
and attention-to-attributes in young children’s geometric categorization
(Clements et al., 1999; see also Lehrer, Jenkins et al., 1998). Conditions also
affect how such features and prototype matching are processed. For example,
young children’s overall acceptance rate of both examples and nonexamples
increases with the inclusion of palpable distractors (Hannibal & Clements,
2008).

Thus, even at a very early age children attend to some attribute of their
imagistic scheme, even if it is only its “prickliness” for triangles (cf. Lehrer,
Jenkins et al., 1998). Then, as the scheme becomes better formed, and,
importantly, as the child gains the ability and predisposition to give increased
selective attention to single dimensions when comparing objects (L. B. Smith,
1989), the child is able to discern more attributes (both defining and non-
defining) that s/he uses to construct her or his definition of a triangle. They can
match and identify many shapes (most reliably, exemplars determined by both
biology and culture). However, they often attend only to a proper subset of a
shape’s visual characteristics and are unable to identify many common shapes.
In tactile contexts, they can distinguish between figures that are curvilinear and
those that are rectilinear but not among figures within those classes. Even in
visual contexts, they may not be able to construct an image of shapes, or a
representation of the image. They are unable to rotate shapes and place them
into part-whole relationships (Wheatley & Cobb, 1990). Thus, before level 1,
children lack the ability to construct and manipulate visual images of geo-
metric figures. This example of cyclic concretization is consistent with the
Piagetian tradition of the construction of geometric objects on the “perceptual
plane” before a reconstruction on the “representational” or “imaginal plane”
(Piaget & Inhelder, 1967).

Later in development, additional visual-spatial elements, such as the right
angles of squares, are incorporated into these schemes and thus traditional
prototypes may be produced. Further, older children can attend to these
features separately, whereas younger children are not able or predisposed to
focus on single features analytically (L. B. Smith, 1989; Vurpillot, 1976). There-
fore, younger children can produce a prototype in identifying rectangles
without necessarily attending to the components or specific features that con-
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stitute these prototypes. For children of all ages, the prototypes may be
overgeneralized or undergeneralized compared to mathematical categoriza-
tion, of course, depending on the examples and nonexamples and teaching acts
children experience. Also, progress to strong level 1 and eventually to level 2
understanding is protracted. For example, primary grades continue to apply
many different types of cognitive actions to shapes, from detection of features
like fat or thin, to comparison to prototypical forms, to the action-based
embodiment of pushing or pulling on one form to transform it into another
(Clements, Battista et al., 2001b; Lehrer, Jenkins et al., 1998).

Thus, young children operating at levels 0 and 1 show evidence of recogni-
tion of components and attributes of shapes, although these features may not
be clearly defined (e.g., sides and corners). Some children operating at level 1
appear to use both matching to a visual prototype (via implicit feature analysis)
and reasoning about components and properties to solve these selection tasks.
Thus, level 1 geometric thinking as proposed by the van Hieles is more syn-
cretic (a fusion of differing systems) than visual, as Clements (1992) suggested.
That is, this level is a synthesis of verbal declarative and imagistic knowledge,
each interacting with and enhancing the other. We therefore suggest the term
syncretic level (indicating a fusion of different perspectives), rather than visual
level, because we wish to signify a global combination of verbal and imagistic
knowledge without an analysis of the specific components and properties of
figures. At the syncretic level, children more easily use declarative knowledge
to explain why a particular figure is not a member of a class, because the con-
trast between the figure and the visual prototype provokes descriptions of
differences (S. Gibson, 1985).

Children making the transition to the next level sometimes experience
conflict between the two parts of the combination (prototype matching vs.
component and property analysis), leading to mathematically incorrect and
inconsistent task performance. For example, one girl started pre-K with a stable
concept, a scheme of the triangle as a visual whole. However, when introduced
instructionally to the attributes of triangles, she formed a separate scheme for a
“three-sided shape.” For some time thereafter, she held complex and unstable
ideas about triangles, especially when the two schemes conflicted (Spitler,
Sarama, & Clements, 2003). As another example, many young children call a
figure a square because it “just looked like one,” a typical holistic, visual
response. However, some attend to relevant attributes; for them, a square had
“four sides the same and four points”. Because they had not yet abstracted
perpendicularity as another relevant and critical attribute, some accept certain
rhombi as squares (Clements, Battista et al., 2001b). That is, even if their proto-
type has features of perpendicularity (or aspect ratio—the ratio of height to
base—near 1), young children base judgments on similarity (in this case, near
perpendicularity) rather than on identity (perpendicularity), and therefore
they accept shapes that are “close enough” (L. B. Smith, 1989). The young
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child’s neglect of such relevant (identity) attributes or reliance on irrelevant
attributes leads to categorization errors. This is consistent with early findings
that preschoolers show a slow development of skills, sudden insight, and
regression (Fuson & Murray, 1978).

Mervis and Rosch (1981) theorized that generalizations based on similarity
to highly representative exemplars will be the most accurate. This theory would
account for the higher number of correct categorizations by those children
who appeared to be making categorization decisions on the basis of com-
parison to a visual prototype without attention to irrelevant attributes. Finally,
strong feature-based schemes and integrated declarative knowledge, along with
other visual skills, may be necessary for high performance, especially in
complex, embedded configurations. To form useful declarative knowledge,
especially robust knowledge supporting transition to level 2, children must
construct and consciously attend to the components and properties of geo-
metric shapes as cognitive objects (a learning process that requires mediation
and is probably aided by physical construction tasks as well as reflection often
prompted by discussion, points to which we return).

Thus, the hierarchic interactionalism theory predicts that children are
developing stronger imagistic prototypes and gradually gaining verbal
declarative knowledge. Those culturally popular classes of figures that are more
symmetric and have fewer possible imagistic prototypes (circles and squares)
are more amenable to the development of imagistic prototypes and thus show
a straightforward improvement of identification accuracy. Rectangles and tri-
angles have more possible prototypes. Rectangle identification may improve
only over substantial periods of time. Similarly, shapes such as triangles, the
least definable by imagistic prototypes discussed here, may show complex
patterns of development as the scheme widens to accept more forms, over-
widens, and then must be further constrained.

For example, many children might possess verbal declarative knowledge
that may include the name “triangle” and a few statements of components,
such as “three sides” and possibly “three corners.” However, these statements
are not constrained further; for example, there are few limitations placed on
the nature of these sides (e.g., they might be curved) and corners. Such proto-
types match many forms, so there is a wide acceptance. With repeated exposure
to exemplars in the culture, these prototypes grow stronger; to the extent these
exemplars are limited (e.g., mostly equilateral for many shape categories),
acceptance decreases radically, leading to the child’s rejection of both dis-
tractors and variants that do not closely match the visual prototype, which may
have rigid constraints regarding aspect ratio, skewness, and orientation. This
rejection may be particularly noticeable in situations in which shapes are
drawn (or otherwise cannot be manipulated) and are presented in a canonical
rectangular frame. Nascent declarative knowledge, while developing, does not
gain transcendence in the scheme (consistent with the hierarchic development
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tenet of the theory). (Note this provides an elaboration and mechanism for the
construct of concept images—a combination of all the mental pictures and
properties that have been associated with the concept, Vinner & Hershkowitz,
1980.) Even people who know a correct verbal description of a concept and
possess a specific visual image (or concept image) associated strongly with
the concept may have difficulty applying the verbal description correctly.
Eventually, exposure to a wider variety of examples and a strengthening
of declarative knowledge (“three straight sides”) leads to a wider acceptance of
varieties of geometric figures while rejecting nonmembers of the class. Each
type of knowledge increasingly constrains the other (co-mutual development of
concepts and skills).

Children’s variegated responses (some visual, some verbal declarative) may
be another manifestation of this syncretic level. Further, they substantiate
Clements’ (1992) claim that geometric levels of thinking coexist, as previously
discussed. Progress through such levels is determined by social influences,
specifically instruction, as much or more than by age-linked development,
especially beyond the preschool years. Although each higher level builds on the
knowledge that constitutes lower levels, the nature of the levels does not pre-
clude the instantiation and application of earlier levels in certain contexts (not
necessarily limited to especially demanding or stressful contexts). For each
level, there exists a probability for evocation for each of numerous different
sets of circumstances, but this process is codetermined by conscious meta-
cognitive control, control that increases as one moves up through the levels, so
people have increasing choice to override the default probabilities (progressive
hierarchization). The use of different levels is environmentally adaptive; thus,
the adjective higher indicates a higher level of abstraction and generality, with-
out implying either inherent superiority or the abandonment of lower levels as
a consequence of the development of higher levels of thinking. Nevertheless,
the levels would represent veridical qualitative changes in behavior, especially
the construction of mathematical representations (i.e., construction of geo-
metric objects) from action.

In summary, geometric knowledge at every level maintains nonverbal,
imagistic components; that is, every mental geometric object includes one or
more image schemes—recurrent, dynamic patterns of kinesthetic and visual
actions (M. Johnson, 1987). Imagistic knowledge is not left untransformed and
merely “pushed into the background” by higher levels of thinking. Imagery has
a number of psychological layers, from more primitive to more sophisticated
(each connected to a different level of geometric thinking), which play different
(but always critical) roles in thinking depending on which layer is activated.
Even at the highest levels, geometric relationships are intertwined with images,
though these may be abstract images. Thus, images change over development.
The essence of level 2 thinking, for example, lies in the integration and syn-
thesis of properties of shapes, not merely in their recognition. Through the
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process of progressive hierarchization, children at this level have transcended the
perceptual and have constructed the properties as singular mental geometric
objects that can be acted upon, not merely as descriptions of visual perceptions
or images (cf. Steffe & Cobb, 1988). Ideally, however, these objects are “neither
words nor pictures” (Robert B. Davis, 1984, p. 189), but a synthesis of verbal
declarative and rich imagistic knowledge, each interacting with and supporting
the other. The question, therefore, should not be whether geometric thinking
is visual or not visual, but rather, whether imagery is limited to unanalyzed,
global visual patterns or includes flexible, dynamic, abstract, manipulable
imagistic knowledge (Clements et al., 1999), knowledge has been representa-
tionally redescribed and is available for explicit conceptualization and verbal-
ization. Figures 8.4 and 8.5 illustrate two contrasting conceptualizations of
geometric levels of thinking.

It is important to note that this is educational/experiential, not merely
maturational, growth. We describe the implications to these results in the
following section.

Thinking and Learning about Specific Shapes

With these processes in mind, it is useful to consider children’s learning about
specific shapes. Infants may be born with a tendency to form certain mental
prototypes. When people in a Stone Age culture with no explicit geometric

Figure 8.4 Hypothesized linear view of the levels of geometric thinking.

Note: In the traditional view illustrated above, each level ripens to fruition, engenders the
beginning of the next level—which incorporates and subordinates the earlier level—and finally
fades away.
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concepts were asked to choose a “best example” of a group of shapes, such as a
group of quadrilaterals and near-quadrilaterals, they chose a square and circle
more often, even when close variants were in the group (Rosch, 1975). For
example, the group with squares included square-like shapes that were not
closed, had curved sides, and had non-right angles. So, people might have
innate preferences for closed, symmetric shapes (cf. Bornstein, Ferdinandsen,
& Gross, 1981). Further, symmetry affects shape perception in two ways, on the
global level (e.g., preference for symmetry about the vertical, and to lesser
extent, horizontal axis) and local level (symmetries within a shape even if the
axes are not vertical or horizontal). For example, global symmetries support
the recognition of a prototypical “diamond” (with the long diagonal vertical)
but the local symmetry still affects the recognition of any rhombus, even if
oriented with a horizontal side (Palmer, 1985). Recall that implicit sensitivity to

Figure 8.5 Hypothesized hierarchic interactionalism view of the levels of geometric
thinking.

Note: In the hierarchic interactionalism view illustrated above, types of knowledge develop simul-
taneously. Although syncretic knowledge is dominant in the early years (darker shading indicates
dominance of a particular level of thinking), descriptive knowledge is present and interacts with it,
though weakly (symbolized by the small double arrow at the left). Syncretic knowledge, descriptive
verbal knowledge, and, to a lesser extent initially, abstract symbolic knowledge grow simul-
taneously, as do their connections. When abstract knowledge begins ascendance, connections
among all types are established and strengthened (symbolized by thicker arrows). Indicated only
by the shading are the unconscious probabilities of instantiation associated with each level; in a
related vein, but not illustrated, are the executive processes that also develop over time, serving to
integrate these types of reasoning and, importantly, to determine which level of reasoning will be
applied to a particular situation or task.
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these geometric properties appears to be an initial bootstrap (Dehaene et al.,
2006).

Culture influences these preferences. Educational materials introduce U.S.
children to triangles, rectangles, and squares overwhelmingly in limited, rigid
ways (see the companion book). These results are strikingly consistent with a
similar study conducted in Turkey (Aslan & Aktas-Arnas, 2007a). Such limited
conceptualizations are directly reflected in children’s behaviors (Clements et
al., 1999; Lehrer, Jenkins et al., 1998). In one study, four- to five-year olds con-
sidered rotated squares no longer the same shape or even size, six- to seven-
year-olds retained its characteristics, but lost its category and name—it was no
longer a square, and only by eight to nine years did students achieve invariance
(Vurpillot, 1976). This may reflect systematic bias for horizontal and vertical
lines and a need for perceptual learning and flexibility, but restricted experi-
ences exacerbate such limitations. Research indicates that such rigid visual
prototypes can rule children’s thinking throughout their lives (Burger &
Shaughnessy, 1986; N. D. Fisher, 1978; Fuys et al., 1988; Kabanova-Meller, 1970;
Vinner & Hershkowitz, 1980; Zykova, 1969).

Research also identifies specific prototypes. Decades ago, Fuson and Murray
(1978) reported that by three years of age over 60 percent of children could
name a circle, square, and triangle. More recently, Klein, Starkey, and Wakeley
(1999) reported shape-naming accuracy of middle-income five-year-olds as:
circle, 85 percent, triangle, 80 percent (note all were close to isosceles), square,
78 percent, rectangle, 44 percent (note squares were not scored as correct
choices). About a quarter of five-year-olds in Australia were able to name these
common shapes, including a range of triangles, before any school experience
(B. A. Clarke, 2004).

A study of young children used the same line drawings previously used
with elementary students for comparison purposes (Clements et al., 1999);
replication studies have been conducted in Singapore (Yin, 2003) and Turkey
(Aslan, 2004). Children identified the circles accurately: 92 percent, 96 percent,
and 99 percent for four-, five-, and six-year-olds, respectively in the U.S. (see
the companion book for the figures). Only a few of the youngest children
chose an ellipse and another curved shape. Most children described circles as
“round,” but few could offer any description. Evidence suggests that they
matched the shapes to a visual prototype. Turkish children showed the same
pattern (Aktas-Arnas & Aslan, 2004; Aslan, 2004; Aslan & Aktas-Arnas,
2007b).

Children also identified squares fairly well: 82 percent, 86 percent, and
91 percent for four-, five-, and six-year-olds, respectively. Younger children
tended to mistakenly choose nonsquare rhombi; 25 percent of six-year-olds
and 5 percent of seven-year-olds did so in Singapore. However, they were no
less accurate in classifying squares without horizontal sides. In Singapore,
seven-year-olds were less likely to correctly identify these as squares than were
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six-year-olds (Yin, 2003). Children in all three countries were more likely to be
accurate in their square identification when their justifications for selection
were based on the shape’s defining attributes. In one study, children from
Turkey did not give any property-based justifications until age four; 41 percent
did so by the age of six years (Aktas-Arnas & Aslan, 2004). Further, when
children did use properties they were correct most of the time (compare 70.2
percent correctness for visual responses to 91.3 percent for property
responses).

Children were less accurate at recognizing triangles and rectangles (except
in Turkey, where children identified these shapes only slightly less accurately,
68 percent and 71 percent, than squares, 73 percent, Aslan, 2004). However,
their scores were not low; about 60 percent correct for triangles. Although ages
differed, both the U.S. and Singapore data revealed a phase in which children
chose more triangle examples and distractors, then “tightened” their criteria to
omit some distractors but also some examples. The children’s visual prototype
seems to be of an isosceles triangle. Turkish children found triangles the most
difficult to classify (Aslan & Aktas-Arnas, 2007b).

Young children tended to accept “long” parallelograms or right trapezoids
as rectangles. Thus, children’s visual prototype of a rectangle seems to be a
four-sided figure with two long parallel sides and “close to” square corners.

Additionally interesting are cross-cultural and longitudinal comparisons.
Similarly-aged children in the U.S. were slightly better than Singapore children
on circles and squares, but the reverse was true for triangles, rectangles,
and embedded figures (Yin, 2003)—the more complex tasks. However, these
differences lacked statistical significance, so no conclusions can be drawn as
yet.

Although young children in this study were less accurate recognizing
triangles and rectangles, their performance shows considerable knowledge,
especially given the abstract nature of the test and the variety of exemplars and
nonexemplars employed. Striking was the lack of significant change from
the preschool years to six grade (Clements, Battista et al., 2001b; Clements et
al., 1999) as shown in Figures 8.6 and 8.7 (in addition, many of the elementary
students were from high SES, high-achieving populations). Indeed, for all
shapes assessed two trends were evident. First, as discussed previously, very
young children possess knowledge of geometric figures. Second, children show
a steady, but hardly remarkable, improvement from pre-K through the
elementary grades.

In the follow-up study, children aged three to six were asked to sort a variety
of manipulative forms (Hannibal & Clements, 2008). Certain mathematically
irrelevant characteristics affected children’s categorizations: skewness, aspect
ratio, and, for certain situations, orientation. With these manipulatives,
orientation had the least effect. Most children accepted triangles even if
their base was not horizontal, although a few protested. Skewness, or lack of
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symmetry, was more important. Many rejected triangles because “the point on
top is not in the middle.” Turkish children showed the same pattern (Aslan &
Aktas-Arnas, 2007b). For rectangles, on the other hand, many children
accepted non-right parallelograms and right trapezoids. Also important was
aspect ratio. Children preferred an aspect ratio near one for triangles; that is,

Figure 8.6 Accuracy of identification triangles in two studies.

Figure 8.7 Accuracy of rectangle identification in two studies.
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about the same height as width. Other forms were “too pointy” or “too flat.”
Children rejected both triangles and rectangles that were “too skinny” or “not
wide enough.” These same factors (with an additional one of size in some
cases) similarly affected children’s judgments in Turkey (Aslan, 2004; Aslan &
Aktas-Arnas, 2007b).

Another study addressed recognition of squares at various orientations.
The percentage of primary children recognizing squares was 96.1 for squares
with a horizontal base, and 93.2, 84.5, and 73.8 for rotated squares, the last
45° from the horizontal (Kerslake, 1979). It was not until the age of eight that
children begin to generalize the concept of square. Again, the explanation for
such phenomena may be that shapes are perceived relative to a reference-frame
structure in which the orientation of the axes is taken as the descriptive stand-
ard. The visual system has heuristics for assigning the frame, which usually, but
not always, allows the detection of shape equivalence. However, the reference
orientation results from an interaction of intrinsic structure (e.g., symmetry)
and orientation relative to the environment (verticality or gravity) and the
observer (Palmer, 1989).

A study not designed to test the van Hiele theory also provides evidence
on classification schemes. Children of three, four, five, seven, and nine years of
age, and adults, were asked to sort shapes including exemplars, variants, and
distractors (Satlow & Newcombe, 1998). A substantial change occurred
between four and especially five years of age to seven years, consistent with
Keil’s description of characteristic-to-defining shifts, in which older chil-
dren relied more on rule-based definitions and less on perceptual similarity
than younger children. Younger children were more likely to accept distractors
with characteristic features and reject variants. Development regarding
recognition of variants was incremental, but identification of distractors
showed sudden improvement. Consistent with research discussed, shapes with
multiple variants, such as triangles, were more difficult. The authors state that
this evidence refutes theories of general development, including Piaget’s or
the van Hieles’. However, the shift itself is consistent with our hierarchic
interactionalism reinterpretations of van Hielian theory (Clements, Battista
et al., 2001b).

In their play, children’s behaviors were coded as “pattern and shape” more
frequently than six other categories (Seo & Ginsburg, 2004). About 47 percent
of these behaviors involved recognizing, sorting, or naming shapes. However,
children’s capabilities, in play and other situations, exceed just naming and
sorting shapes. This continues into the primary grades, as we have seen (Lehrer,
Jenkins et al., 1998). As a final example from the U.K., seven-year-olds were
given a set of shapes in random order and asked to match and name each.
More than 90 percent easily matched the shapes, but the percentage naming
each was circle, 97.4, square, 96.4, equilateral triangle, 92.8, rectangle, 78.1,
regular hexagon, 55.3, and regular pentagon, 31.1. They were also less confident
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about drawing those they had more difficulty naming. The percentage able to
name properties of the shapes varied from 92 for the square to 80 for the
pentagon. These data substantiate the conclusion, consistent across the studies
reviewed here, that children can easily distinguish the shapes, but are exposed
to a limited number of shape concepts and names. Although their performance
is lower for unfamiliar shapes, these children can still name properties, further
evidence that they are in “geometrically deprived” environments. We turn to
additional aspects of children’s knowledge of shape and spatial structure.

Representing (Drawing)

According to the Piagetian position, a drawing is an act of representation, not
perception, so it also illustrates children’s understanding of ideas. Young chil-
dren’s inability to draw or copy even simple shapes again argues that this
understanding stems from coordinating their own actions, rather than
passive perception. But could this be due simply to motor difficulties? Such
difficulties do limit children’s drawings. However, Piaget and Inhelder provide
many examples that “motor ability” does not explain, such as the child who
could draw a pine tree with branches at right angles but could not draw a
square with right angles. Also, most children take two years to progress from
drawing a (horizontal) square to drawing a (non square) rhombus. So, chil-
dren need far more than a visual “picture.” Again, we see the importance of
action and exploration. Children benefit from trying to represent shapes in
many ways, from drawing to building specific shapes with sticks or with their
bodies.

Piagetian (Piaget & Inhelder, 1967) stages in drawing have been generally
confirmed by mathematics education researchers. For example, an early study
confirmed a sequence of drawings using scalogram analysis (Noelting, 1979).
By one to two years of age, children may produce different kinds of scribbles
and, after coordinating initially movement-centrated scribbles (Figure 8.8a),
many represent a circle and a line by the end of this time period, coordinating
movement with external cues, as in Figure 8.8b (Brittain, 1976; Noelting,
1979).

By three to four years of age, they can draw more well-formed circles,
disjoint circles, and a “plus” (Figure 8.8c). Thus, they can separate figures in
space and draw segments in reciprocal directions.

At age four, children can draw squares, oblique crossing lines, and inter-
secting circles (Figure 8.8d). This requires recognition of closure, co-
ordination of distance and direction, intuitive representation of vertices, and
coordination of separation and union. An “X” as drawn becomes a plus. More
complex figures are often represented as a square-with-additions. As figures
become more complex, the age at which children can reproduce them varies
considerably.

By five to six years of age, children produce two new elements, oblique lines

220 • Geometry and Spatial Thinking



and curves that include changes in the directions of curvature (e.g., convex to
concave, such as a drawing a “key”; see Figure 8.8e). Thus, they can draw tri-
angles. Later, often at about seven years of age, they can draw a rhombus, which
involves oblique lines and a similar reversal in the directionality. They also
move toward geometric patterning in their paintings, including systematic
repetition of an element or division of the plane resulting in translation,
reflection, or even rotational patterns (e.g., painting one side of the paper as a
“mirror image” of the other) (D. Booth, 1984).

By eight to nine years of age, children create hierarchical figures, made
up of parts of a whole and symmetrical orientation (e.g., a rhombus drawn
inside of a rectangle by connecting the midpoints of the rectangle’s sides; see
Figure 8.8f). Thus, the child has to see line segments as consisting of both a
part and a whole. The hierarchical inclusion of both inclusion and direction
relates to a “good gestalt” in drawings.

These drawings are usually done on rectangular paper. That makes a dif-
ference. In one study, drawing a triangle on triangular-shaped paper was as
easy for children as copying a square on square piece of paper (Brittain, 1976).
Thus, we must be careful about saying the developmental sequence is “circle,

Figure 8.8 Geometric drawings.
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square, triangle” unless we consider the shape of the background (paper).
Nevertheless, the order is fairly consistent, especially the complexity of lines,
the use of oblique lines and intersecting figures. They gradually master
perspective through coordination of part-whole relations and direction.

There is a paucity of research on very young children’s knowledge of three-
dimensional figures. Babies only one or two days old can maintain object
size despite changes in distance (and thus change in size of the retinal image,
Slater et al., 1990). That is, they habituate in looking at a sphere of constant size
that changes in distance from the newborn, but not when both this distance
and the size of the sphere is changed so that the sphere subtends the same angle
on the retina (Granrud, 1987). In addition, infants can perceive three-
dimensional shapes, however, this is limited to continuously moving objects,
rather than single or even multiple static views of the same object (Humphrey
& Humphrey, 1995).

As with two-dimensional figures, children do not perform well in school-
based tasks involving three-dimensional shapes, even into the intermediate
grades (Carpenter, Coburn, Reys, & Wilson, 1976). South African first graders
used different names for solids (such as “square” for cube), but were capable of
understanding and remembering features they discussed (Nieuwoudt & van
Niekerk, 1997). U.S. students’ reasoning about solids was much like that about
plane figures; they referred to a variety of characteristics, such as “pointyness”
and comparative size or slenderness (Lehrer, Jenkins et al., 1998). Students also
treated the solid wooden figures as malleable, suggesting that the rectangular
prism could be transformed into a cube by “sitting on it.” Use of plane figure
names for solids may indicate a lack of discrimination between two and three
dimensions (Carpenter et al., 1976).

Two related studies asked children to match solids with their nets.
Kindergarteners had reasonable success when the solids and nets both were
made from the same interlocking materials (Leeson, 1995). An advanced
kindergartener had more difficulty with drawings of the nets (Leeson, Stewart,
& Wright, 1997), possibly because he was unable to visualize the relationship
with the more abstract materials.

Congruence, Symmetry, and Transformations

Young children develop beginning ideas not just about shapes, but also about
symmetry, congruence, and transformations. The ability to detect symmetry
develops early (Vurpillot, 1976). Infants as young as four months dishabituate
more quickly to symmetric figures than asymmetric figures, at least for vertical
symmetry (Bornstein et al., 1981; Bornstein & Krinsky, 1985; Ferguson,
Aminoff, & Gentner, 1998; C. B. Fisher, Ferdinandsen, & Bornstein, 1981;
Humphrey & Humphrey, 1995). A preference for vertical symmetry seems to
develop between four and 12 months of age and vertical bilateral symmetry
remains easier for children than horizontal symmetry, which in turn is easier
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than diagonal symmetries (Genkins, 1975; Palmer, 1985; Palmer & Hemenway,
1978). Extreme spatial separation of components of the pattern caused infants
to lose the advantage for vertical symmetry (Bornstein & Krinsky, 1985).
Further, they do not dishabituate to horizontal symmetry or different vertical
patterns (C. B. Fisher et al., 1981), so initial competence is limited to “goodness
of organization.”

There appear to be two phases in recognition of symmetry (Palmer &
Hemenway, 1978). The system first selects potential axes of symmetry defined
by symmetric components via a crude, but rapid, analysis of symmetry in all
orientations simultaneously. It maps alignment relations, using detection of
closed loops, (non-)perpendicularity, intersections and protrusions, to pro-
duce structured representations (i.e., structurally consistent matches between
identical attributes and relations of the objects in each). Vertical, and to a lesser
extent, horizontal axes are preferred, because orientation relationships, such
as above and beside, develop early; vertical is preferred because beside is
bidirectional (Ferguson et al., 1998). The system then evaluates specific axes
sequentially in a detailed comparison (Palmer & Hemenway, 1978), which has a
significant influence on shape recognition (Palmer, 1989).

Children often use and refer to rotational symmetry as much as they
do line symmetry in working with pattern blocks (Sarama, Clements, &
Vukelic, 1996). For people of all ages, symmetric shapes are detected
faster, discriminated more accurately, and often remembered better than
asymmetrical ones (Bornstein et al., 1981). However, many explicit concepts
of symmetry are not firmly established before 12 years of age (Genkins, 1975).

Many young children judge congruence (Are these two shapes “the same”?)
based on whether they are, overall, more similar than different (Vurpillot,
1976). As with symmetry, the comparison of two figures may evoke a pair of
structured representations, and the comparison is represented as a mapping
between sets of relations between components of the representations
(Ferguson et al., 1998). Children younger than five and a half years may not
do an exhaustive comparison, and until about seven years of age, may not
attend to the spatial relationships of all the parts of complex figures (Vurpil-
lot, 1976). Shown pairs of figures, some congruent, but all rotated,
kindergartners tend to judge all pairs as “different,” considering orientation a
significant feature (Rosser, 1994a). Even third graders may have difficulty rotat-
ing an entire complex stimulus and may rotate only parts of it, or may ignore
parts of a complex stimulus. Not until later, at age 11, did most children
perform as adults.

With guidance, however, even four-year-olds and some younger children
can generate strategies for verifying congruence for some tasks. Preschoolers
often try to judge congruence using an edge matching strategy, although only
about 50 percent can do it successfully (Beilin, 1984; Beilin et al., 1982). They
gradually develop a greater awareness of the type of differences between figures
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that are considered relevant and move from considering various parts of shapes
to considering the spatial relationships of these parts (Vurpillot, 1976). In
about first grade, they consider both multiple attributes and their spatial
relationships and begin to use superposition. Thus, strategies supersede one
another in development (e.g., motion-based superposition) becoming more
powerful, sophisticated, geometrical, and accurate (recall that rigid motions
were discussed in the section on spatial thinking).

The origins of the symmetry and equivalence concepts, however, may lie in
early actions. Evidence indicates that children as young as 18 months will pick
up two blocks and bang them together and are more likely to choose equivalent
blocks than other available blocks. Children may progress through levels, from
experiencing similar input between two hands (symmetry in action), to
bilateral banging, to relating the block forms (at about two years of age),
stacking equivalent blocks (an early explicit attempt to create a static
expression of equivalence), placing blocks side by side, and eventually spacing
equivalent blocks (Forman, 1982). Thus, human sensitivity to symmetry
and equivalences may be prefigured in the bilateral symmetry of our anatomy,
prefigured in the sense that particular types of object manipulatives are
more likely to occur as a result of our having hands bilaterally opposed, and
the feedback that is thus pleasing, as having identical objects in two hands
(Forman, 1982), perhaps reflecting perception of the equivalence of our own
bodies and even neurological symmetries.

Under the right conditions, children of all ages can apply similarity trans-
formations to shapes. Even four- and five-year-olds can identify similar shapes
in some circumstances (Sophian & Crosby, 1998). The coordination of height
and width information to perceive the proportional shape of a rectangle (fat
vs. skinny, wide or tall) might be a basic way of accessing proportionality
information. This may serve as a foundation for other types of proportionality,
especially fractions. Similarly, other research shows first graders can engage in
and benefit from similarity tasks (Confrey, 1992).

In early childhood, children also progress in drawing transformations
of two-dimensional shapes (Gagatsis, 2003; Gagatsis, Sriraman, Elia, &
Modestou, 2006). Children asked to draw a “stairway” of specific shapes, such
as rectangles, used one of three strategies: (approximate) similarity trans-
formations (increasing both dimensions, Figure 8.9a), increasing one
dimension only (Figure 8.9b), and producing defective series.

From four to eight years of age, children moved from defective series to
either of the other two strategies (note that similarity may be a visually or
analytically based transformation). Similarly, higher-IQ children used more
sophisticated strategies. However, older children more often increased only
one dimension. The strategy of increasing one dimension only may appear to
indicate a pre-recognition level of geometric thinking in which children
attended to only a subset of a shape’s characteristics, whereas increasing
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both dimensions indicated a syncretic level of thinking (Gagatsis, 2003).
Thus, another interpretation is that increasing one dimension signifies a global
visual view with partial analysis, placing it in transition between the syn-
cretic and descriptive levels (Gagatsis et al., 2006). (Similarly, increasing both
dimensions may reflect a visual/syncretic or descriptive/analytic cognitive
basis; the studies could not distinguish between these possibilities.) Lack
of recognition of shapes was associated with defective strategies (which
reflected a pre-recognition level of thinking), but did not differentiate among
more sophisticated strategies.

Thus, teaching both shape recognition and transformations may be impor-
tant to children’s mathematical development. Traditional teaching of separate
categories of “squares” and “rectangles” was assumed to underlie children’s
difficulties in relating these shape classes and their characteristics. The use of
the strategy of increasing one dimension of a rectangle may allow children to
develop dynamic intuition that a square may thus be produced.

Experience and Education

Around 300 bc, a king named Ptolemy I ruled in Alexandria, Egypt, a center of
science, culture and learning of those times. A learned man himself, Ptolemy
asked Euclid, the father of geometry, to teach him. Euclid began this “13 steps”
but Ptolemy became impatient. He proposed to Euclid that a shortcut would be
desirable. Euclid responded, “Sire, there is no royal road to geometry.”

Figure 8.9 Children’s “stairways” of rectangles.
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Hierarchical Interactionalism and Different Educational Paths

Consistent with the tenet of different developmental courses and the evidence
that children possess multiples types of geometric knowledge, we suggest that
children’s knowledge of geometry might be enhanced in different ways. First,
their imagistic prototypes might be vastly elaborated by the presentation of a
variety of variants, via the systematic variation of irrelevant and relevant
attributes (e.g., through dynamic media such as the computer). Children
must actively attend to the examples and connect them as through verbal
labeling. Such enhancement is accomplished mainly through a usually
unconscious visual induction process. Second, through the presentation of
particular tasks and engagement in dialogue about them, children’s verbal
declarative knowledge might be refined to extend, elaborate, and constrain
their visual knowledge. Preschoolers exposed to such discussions consciously
used and were excited about their ability to tell if any figure was a triangle
just by counting to see if it had three straight sides (Clements & Sarama,
2007).

We hypothesize that each of these two paths toward enhancing knowledge
of geometry can be followed separately or together. If separately, knowledge of
one type can “substitute” for knowledge of another type on certain tasks,
within certain limits (including a performance decrement, in accuracy or speed
of execution). For example, a rich and varied exposure to various examples
could allow near-perfect performance on triangle discrimination tasks such
as those discussed previously. Performance would suffer only if a figure were
presented that fell outside the range of any of the multiple imagistic proto-
types developed by the children, or if the task demanded reasoning based on
properties not supported by such imagistic-oriented schemes (e.g., calculations
regarding angle relationships), in which case the schemes would be inadequate
to the task.

Similarly, well-developed verbal declarative knowledge, even in the absence
of exposure to various examples could allow perfect performance on such
simple discrimination tasks. However, performance would suffer (at least in
speed of execution) because a chain of reasoning would be required for every
figure that could not be immediately assimilated into the (hypothesized-
limited) range of imagistic prototypes. In each of these cases, the characteristics
of the figures would have to be “read off” the figure and compared to those that
are held in verbal declarative knowledge as characteristics of the class. This type
of verbal knowledge would support more sophisticated analysis of geometric
figures. Without the imagistic knowledge, however, the range and flexibility of
the application of this knowledge would be limited. Research on the learning
of geometry shows that students limit their conceptualizations to studied
exemplars and often consider common but nondefining features (e.g., an
altitude of a triangle is always located inside the triangle) as essential features
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of the concept (Burger & Shaughnessy, 1986; Fisher, 1978; Fuys, Geddes, &
Tischler, 1988; Kabanova-Meller, 1970; Zykova, 1969). Further, students who
know a correct verbal definition of a concept but also have a limited visual
prototype associated with it, may have difficulty applying the verbal descrip-
tion correctly (Clements & Battista, 1989; Hershkowitz et al., 1990; Vinner &
Hershkowitz, 1980). This is consistent with the theory of simultaneous and
sequential processing. In this view, pictorially-presented materials may be
more likely to evoke the visual/holistic/simultaneous processing, whereas
aurally-presented materials would be more likely to evoke verbal/sequential/
linear processing. The type of presentation may interact with individual
differences in abilities in these two domains.

This view is consistent with the work of Karmiloff-Smith (1984; 1986;
1990), who postulates a repeating three-phase cycle of representational re-
description. Phases, in contrast to structurally-constituted stages or levels, are
recurrent, general (across-domain) processes that people work through during
development or learning. At phase 1, the building of mental representations
is predominantly driven by interactions of the children’s goal-directed
schemes with the environment. The children’s goal is behavioral success, or the
reaching of that goal, which sometimes is evaluated by consistency with adult
responses and feedback.3 Such success leads to the recording of isolated
correspondences between environmental situations that do or do not allow or
aid the attainment of the goal in a form inaccessible to the system (i.e., input-
output correspondences along with their contexts in compiled form). In this
form, any relationship between bits of knowledge is, at best, implicit.

When behavioral success is achieved, a phase 2 metaprocess (a procedure
that operates on internal knowledge structures) evaluates the knowledge
base. Now, the goal is not to behave successfully, but to gain control over the
representational forms (Vygotsky, 1934/1986, similarly stated that the develop-
ment of thought cannot be derived from the failure of thought and postu-
lated a genetic predisposition to gain control of mental representations). The
first operation of phase 2 is to re-record phase 1 representations in a form
which can be accessed, though not yet consciously. The implicit representations
are analyzed into semanticized components, linking them into a simplified
but growing network structure that is predicated on the usefulness of the
initial correspondences to goal attainment. The second operation is to form
relationships between bits of knowledge. These two new operations place
demands on cognitive processing, which, together with the (over)simplified
structure and the need to test the mental representation in new situations,
often leads to new “errors”— ostensibly a step backward to phase 1 (or earlier)
from an adult’s perspective—that mask the progress in explicating representa-
tions of the domain. Finally, these two operations constitute an internalization
of relationships and processes that were previously only implicit (cf. Steffe &
Cobb, 1988).
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Once successful re-representation is achieved, children develop phase-3
control mechanisms that integrate and balance consideration of the external
environment and the new internal representational connections forged in
phase 2. At the end of phase 3, these connections are re-recorded again in
abstract symbolic form, the first form accessible to conscious thought. Now,
performance improves beyond that which was achieved at either of the two
earlier phases.

At the syncretic level of geometric thinking, children are implicitly recogniz-
ing the properties of shapes. For example, their schemes for squares and for
rectangles both contain patterns for right angles. However, these are patterns in
spatial subsystems that emerge when instantiated, they are not conceptual
objects (mental entities that can be manipulated or scrutinized, Davis, 1984).
Right angles are not represented explicitly and, therefore, no relationship is
formed between them. In general, this type of representation explains how
operation at one level can presuppose knowledge from the succeeding level,
without allowing access to knowledge at the higher level because the form
of such knowledge is proceduralized or schematized behaviorally and is,
therefore, inaccessible to the rest of the cognitive system.

When shapes are dealt with successfully on the level of behavior, meta-
processes re-record the mental representations, creating a mental geometric
object for the visual image of the right angles and a link between these mental
objects for different cases of right angles, including links between those in
rectangles and those in squares. Because children in phase 2 are seeking control
over their representations of these geometric forms, some increases in “errors”
(from an adult’s point of view) may occur (e.g., maintaining the notion that a
nonrectangular parallelogram is a rectangle “because you’re only looking at it
from the side”).

Eventually, the properties become conceptual objects that are available as
data to conscious processes. That is, visual features become sentient in isolation
and are linked to a verbal label; and the child becomes capable of reflecting
on the visual features and thus can explicitly recognize the shape’s properties.
At first, however, the flexibility of application is limited. Indeed, children can be
expected not only to think at different levels for different topics (Clements &
Battista, 1992), but also to think at different phases for different topics.
Problem solving and discussion involving the geometric objects help build
connections between the constructed knowledge (e.g., of right angles) and
other similarly-accessible knowledge (e.g., of parallelism and side lengths of
rectangles and squares). Eventually, connections are built between properties
of figures such as rectangles and squares and of properties of other geometric
objects. In this manner, children’s geometric knowledge can become increas-
ingly abstract, coherent, and integrated, because it is freed from the constraints
of compiled, and thus inflexible, mental representations. At each level, the
degree of integration increases as the connections span greater numbers of
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geometric, and eventually, nongeometric topics (cf. Gutiérrez & Jaime, 1988).
As another example, recall children’s creations of “stairways” of specific shapes
(Gagatsis, 2003). Defective series would be signs of developing (but not yet
achieving) behavioral success. Early use of similarity transformations would
indicate achieving that success (cf. Gagatsis, Sriraman, Elia, & Modestou,
2006). A shift to increasing only one dimension might indicate phase 2
redescriptions, but at first only on one dimension, with two-dimensional,
similarity transformations eventually signaling the development of phase-3
control mechanisms.

Here again, instruction has a strong influence. Ideally, it encourages unifica-
tion; however, the instruction of isolated bits of knowledge at low levels retards
such development. Unfortunately, the latter is pervasive in both curriculum
materials (Fuys et al., 1988) and teaching (Clements & Battista, 1992; Porter,
1989; B. Thomas, 1982).

To place instructional implications in a different light, it is only after the
third phase that children become explicitly aware of their geometric con-
ceptualizations; therefore, it is after phase 3 that the last three instructional
steps in the van Hiele model (explicitation, free orientation, and integration)
can begin.4 An implication is that short-circuiting this developmental sequence
(e.g., by beginning with explicitation) is a pedagogical mistake. Deprived of the
initial construction of their own mental geometric objects and relationships
(images), children construct phase 1 (behaviorally “correct”) verbal responses
based on “rules without reason” (Skemp, 1976). A more viable goal is the con-
struction of mathematical meaning from actions on geometric objects and
subsequent reflections on those actions.

In summary, development of geometric properties as conceptual objects
leads to pervasive level 2 thinking. This development represents a reconstruc-
tion on the abstract/conscious/verbal plane of those geometric conceptualiza-
tions that Piaget and Inhelder (1967) hypothesized were first constructed on
the perceptual plane and then reconstructed on the representational/imaginal
plane. Thus, level 2 thinking requires what Piaget called the construction of
articulated mental imagery, which develops most fully via the combined
enhancement of both imagistic and verbal declarative knowledge, as previously
discussed. We posit that the same recurrent phases explain the reconstruction
on each new plane (level), but that the role of social interaction and instruction
increases in importance with higher levels.

The theory of reiterated phases of re-representation applies equally to
children and adults, regardless of their overall stage of cognitive development
(Karmiloff-Smith, 1990). This is consonant with reports of low van Hiele levels
among high school students and preservice teachers (Burger & Shaughnessy,
1986; Denis, 1987; Gutiérrez & Jaime, 1988; Mayberry, 1983; Senk, 1989). We
now turn to the effects of experiences on particular shape concepts.
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shapes: 2-d

Research indicates the importance of educational experiences. If the examples
and nonexamples children experience are rigid, not representing the range
of the shape category, so will be their concepts. This is not a developmental
limitation; one of the youngest three-year-olds scored higher than every
six-year-old on shape recognition tasks (Clements et al., 1999). Concepts of
two-dimensional shapes begin forming in the pre-K years and stabilize as early
as age six (Gagatsis & Patronis, 1990; Hannibal & Clements, 2008), so early
experiences are important. This learning will be more effective if it includes a
full range of examples and distractors to build valid and strong concept images,
including dynamic and flexible imagery (Owens, 1999).

Language should also be developed. Many children describe triangles as
having “three points and three sides,” but up to half were not sure what a
“point” or “side” was (Clements et al., 1999). As with the number word
sequence, the English language presents more challenges than others, such as
East Asian languages. For example, in those languages, every “quadrilateral” is
called simply, “four-side-shape.” For most terms, judges evaluated the East
Asian versions to have more mathematical clarity; for example, “sharp angle”
vs. English’s “acute angle”; or, “parallel-four-sided-shape” vs. English’s “paral-
lelogram” (Han & Ginsburg, 2001).

Typical U.S. instruction in geometry is not of high quality. One early study
found that kindergarten children had a great deal of knowledge about shapes
and matching shapes before instruction began. Their teacher tended to elicit
and verify this prior knowledge but did not add content or develop new know-
ledge. That is, about two-thirds of the interactions had children repeat what
they already knew in a repetitious format as in the following exchange:

Teacher: Could you tell us what type of shape that is?
Children: A square.
Teacher: Okay. It’s a square (B. Thomas, 1982).

When teachers did elaborate, their statements were often filled with math-
ematical inaccuracies.

A more recent study confirmed that current practices in the primary grades
also promote little conceptual change: First grade students in one study were
more likely than older children to differentiate one polygon from another by
counting sides or vertices (Lehrer, Jenkins, & Osana, 1998). Over time, children
were less likely to notice these attributes, given conventional instruction of
geometry in the elementary grades. Such neglect evinces itself in student
achievement. Students are not prepared for learning more sophisticated
geometry, especially when compared to students of other nations (Carpenter,
Corbitt, Kepner, Lindquist, & Reys, 1980; Fey et al., 1984; Kouba et al., 1988;
Stevenson, Lee, & Stigler, 1986; Stigler et al., 1990). In one TIMMS study, U.S.
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students scored at or near bottom in every geometry task (Beaton et al., 1996;
Lappan, 1999).

Such comparisons may be present even among preschoolers in various
countries (Starkey et al., 1999). On a geometry assessment, four-year-olds from
America scored 55 percent compared to those from China at 84 percent. Thus,
cultural supports are lacking from the earliest years in the U.S.

The work of the ENRP project similarly shows that children learn geometry
considerably earlier and better in educational environments based explicitly
on children’s development of geometric thinking (B. A. Clarke, 2004). Clarke’s
“growth points” are consistent with the developmental levels discussed here
and are based on the same notion that the van Hiele levels need to be further
delineated to serve educational needs, especially in early childhood. The
instructional approach is that there is little value in extensive formal naming
of shapes until children are beginning to classify by properties, which helps
children organize their knowledge of shapes in a categorization structure.
Second graders using this approach were at levels of thinking beyond those in a
comparison second grade group; indeed, children as young as kindergarten,
provided these high-quality learning experiences, were achieving what the
comparison second graders achieved.

In a similar vein, early childhood curricula traditionally introduce shapes in
four basic level categories: circle, square, triangle, and rectangle. The idea that a
square is not a rectangle is rooted by age five (Clements et al., 1999; Hannibal &
Clements, 2008). It is time to re-think our presentation of squares as an isolated
set. If we try to teach young children that “squares are rectangles,” especially
through direct telling, confusion is likely. If, on the other hand, we continue
to teach “squares” and “rectangles” as two separate groups, we will block
children’s transition to more flexible categorical thinking (cf. Gagatsis, 2003).

In our study (Clements et al., 1999), four-year-olds were more likely to
accept the squares as rectangles, possibly because they were less predisposed
(because their prototype of rectangles was less distinguished from that of
squares) or able to judge equality of all sides. Although the squares were
included in the rectangle-recognition task (by the original task designers) to
assess hierarchical inclusion, we did not expect or find such thinking in these
young children. Their responses do show, however, that the path to such
hierarchical thinking is a complex and twisting one with changes at several
levels. This again raises the question of whether the strictly visual prototype
approach to teaching geometric shapes is a necessary prerequisite to more
flexible categorical thinking or a detriment to the early development of such
thinking. Kay (1987) provided first graders with instruction that (a) began
with the more general case, quadrilaterals, proceeded to rectangles, and then
to squares; (b) addressed the relevant characteristics of each class and the
hierarchical relationships among classes; and (c) used terms embodying these
relationships (“square rectangle”). At the end of instruction, most children
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identified characteristics of quadrilaterals, rectangles, and squares, and about
half identified hierarchical relationships among these classes, although none
had done so previously. Although the depth of these first-graders’ under-
standing (especially of hierarchical relations) and the generalizations made on
the basis of the empirical results must be questioned (Clements & Battista,
1992), so too should we question the wisdom of the traditional, prototype-only
approach, which may lay groundwork that must be overturned to develop hier-
archical thinking.

Probably the best approach is to present many examples of squares and
rectangles, varying orientation, size, and so forth, including squares as
examples of rectangles (with double naming—“it’s a square rectangle”). Older
children can discuss “general” categories, such as quadrilaterals and triangles,
counting the sides of various figures to choose their category. Also, teachers
might encourage them to describe why a figure belongs or does not belong to a
shape category.

Logo microworlds can be evocative in generating thinking about squares
and rectangles for young children. In one large study (Clements et al., 2001),
some kindergarteners formed their own concept (e.g., “it’s a square rectangle”)
in response to their work with the microworlds. This concept was applied only
in certain situations: squares were still squares, and rectangles, rectangles,
unless you formed a square while working with procedures—on the computer
or in drawing—that were designed to produce rectangles. The concept was
strongly visual in nature, and no logical classification per se, such as class
inclusion processes, should be inferred. The creation, application, and dis-
cussion of the concept, however, were arguably a valuable intellectual exercise.

Many researchers have studied the effects of Logo on students’ understand-
ing of two-dimensional geometric shapes in general (for reviews, see Clements
et al., 2001; Clements & Sarama, 1997a). More recent studies are relatively
positive; for example, McCoy (1996) stated that: “Logo programming, par-
ticularly turtle graphics at the elementary level, is clearly an effective medium
for providing mathematics experiences. . .when students are able to experi-
ment with mathematics in varied representations, active involvement becomes
the basis for their understanding. This is particularly true in geometry . . . and
the concept of variable” (p. 443). In the area of geometry, research has focused
on concepts of plane figures, especially students’ levels of geometric thinking
about those figures; angle and angle measurement; and motion geometry.

Guided Logo experience can significantly enhance students’ concepts of
two-dimensional figures (Butler & Close, 1989; Clements, 1987). When asked
to describe geometric shapes, students with Logo experience give more
statements overall and more statements that explicitly mention geometric
properties of shapes than students with no Logo experience (Clements &
Battista, 1989, 1990; Lehrer & Smith, 1986). In one study, students were able to
apply their knowledge of geometry better than a comparison group, but there
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was no difference in their knowledge of basic geometric facts. The researchers
concluded that the use of Logo influenced the way in which students mentally
represented their knowledge of geometric concepts (Lehrer, Randle, & Sancilio,
1989).

Similarly, Logo experience appears to affect students’ ideas about angle
significantly. Responses of control students in one study reflected common
usage, such as describing an angle as “a line tilted,” or no knowledge of angle.
In comparison, the Logo students indicated more mathematically oriented
conceptualizations, such as “Like where a point is. Where two lines come
together at a point” (Clements & Battista, 1989). Several researchers have
reported that Logo experience has a positive effect on students’ angle concepts
(Clements & Battista, 1989; du Boulay, 1986; Frazier, 1987; Kieran, 1986a;
Kieran & Hillel, 1990; Noss, 1987; Olive, Lankenau, & Scally, 1986). However, in
some situations, benefits do not emerge until students have more than a year of
Logo experience (Kelly, Kelly, & Miller, 1986–87).

On the other hand, Logo experiences may also foster some unintended con-
ceptions of angle measure. For example, students may confuse angle measure
with the amount of rotation along the path (e.g., the exterior angle in a
polygon) or the degree of rotation from the vertical (Clements & Battista,
1989). In addition, concepts generated while working with Logo do not replace
previously-learned concepts of angle measure. For example, students’ con-
ceptions about angle measure and difficulties they have coordinating the
relationships between the turtle’s rotation and the constructed angle have per-
sisted for years, especially if not properly guided by their teachers (Clements,
1987; Cope & Simmons, 1991; Hoyles & Sutherland, 1986; Kieran, 1986a;
Kieran, Hillel, & Erlwanger, 1986). In general, however, appropriately designed
Logo experience appears to facilitate understanding of angle measure.
After working with Logo, students’ concepts of angle size are more likely to
be mathematically correct, coherent, and abstract (Clements & Battista, 1989;
Kieran, 1986b; Noss, 1987), while showing a progression from van Hiele Level 0
to Level 2 in the span of the Logo instruction (Clements & Battista, 1989). If
Logo experiences emphasize the difference between the angle of rotation and
the angle formed as the turtle traces a path, confusions regarding the measure
of rotation and the measure of the angle may be avoided (Clements & Battista,
1989; Kieran, 1986b).

Generally, then, studies support the use of Logo as a medium for learning
and for teaching mathematics.5 Results especially support Logo as a medium
for learning and teaching geometry (Barker, Merryman, & Bracken, 1988;
Butler & Close, 1989; Clements & Meredith, 1993; Hoyles & Noss, 1987;
Kynigos, 1991; Miller, Kelly, & Kelly, 1988; Salem, 1989). However, not all
research has been positive. First, few studies report that students “master” the
mathematical concepts that are the teachers’ goals for instruction. Second,
some studies show no significant differences between Logo and control groups
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(Johnson, 1986). Without teacher guidance, mere “exposure” to Logo often
yields little learning (Clements & Meredith, 1993). Third, some studies have
shown limited transfer. For example, the scores of students from two ninth-
grade Logo classes did not differ significantly from those of control students on
subsequent high school geometry grades and tests (Olive, 1991; Olive et al.,
1986). One reason is that students do not always think mathematically, even if
the Logo environment invites such thinking (Noss & Hoyles, 1992). For
example, some students rely excessively on visual/spatial cues and avoid ana-
lytical work (Hillel & Kieran, 1988). This visual approach is not related to an
ability to create visual images but to the role of the visual “data” (i.e., the stu-
dents’ perceptions) of a geometric figure in determining students’ Logo con-
structions. Although helpful initially, this approach inhibits students from
arriving at mathematical generalizations if overused. Further, there is little rea-
son for students to abandon visual approaches unless teachers present tasks
that can only be resolved using an analytical, generalized, mathematical
approach. Finally, dialogue between teacher and students is essential for
encouraging predicting, reflecting, and higher-level reasoning.

In sum, studies showing the most positive effects involve carefully planned
sequences of Logo activities. Appropriate teacher mediation of students’ work
with those activities is necessary for students to construct geometric con-
cepts successfully. This mediation must help students forge links between Logo
and other experiences and between Logo-based procedural knowledge and
more traditional conceptual knowledge (Clements & Battista, 1989; Lehrer &
Smith, 1986). Care must be taken that such links are not learned by rote
(Hoyles & Noss, 1992).

A large project addressed these concerns with a carefully sequenced
curriculum in Logo (Clements et al., 2001). The findings were clear that Logo
programming can help students construct elaborate knowledge networks
(rather than mechanical chains of rules and terms) for geometric topics. One
main effect was increasing students’ ability to describe, define, justify, and
generalize geometric ideas. Students’ greater explication and elaboration of
geometric ideas within the Logo environments appear to facilitate their pro-
gression to higher levels of geometric thinking. For example, in programming
the Logo turtle, there is a need to analyze and reflect on the components and
properties of geometric shapes and to make relationships explicit. In addition,
the necessity of building Logo procedures encourages students to build under-
standable, implicit definitions of these shapes. Students construct more viable
knowledge because they are constantly using graphical manifestations of their
thinking to test the viability of their ideas. There is also support for the linkage
of symbolic and visual external representations.

In a similar vein, there was a positive effect on students’ flexible consideration
of multiple geometric properties. As we previously hypothesized (Clements &
Battista, 1994), computer environments can allow the manipulation of specific
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screen objects in ways that assist students to view them as geometric (rather
than visual/spatial) and to recognize them as representatives of a class of
geometric objects. The power of the computer is that students simultaneously
confront the specific and are concrete with the abstract and generalized (as
represented by the Logo code). Students treat a figure both as having charac-
teristics of a single shape and as one instance of many such figures.

Logo environments appear to demand and thus facilitate precision in
geometric thinking. In contrast, there is imprecision when students work
with paper and pencil, and they can be distracted by the actual effort of draw-
ing. The need in Logo environments for more complete, exact, and abstract
explication may account for students’ creation of richer concepts. That is,
by using Logo students have to specify steps with thorough specification and
detail to a noninterpretive agent. The results of these commands can be
observed, reflected on, and corrected; the computer serves as an explicative
agent. In noncomputer manipulative environments, a student can make
intuitive movements and corrections without explicit awareness of mathe-
matical objects and actions. For example, even young children can move
puzzle pieces into place without conscious awareness of the geometric motions
that can describe these physical movements. In noncomputer environments,
attempts are sometimes made to promote such awareness. Still, descriptions
of motions tend to be generated from, and interpreted by, physical action of
students (Johnson-Gentile, Clements, & Battista, 1994). This interpretation of
the results is consonant with previous research indicating prolonged retention
and continuous construction of early Logo-based schemes for geometric
concepts (Clements, 1987).

Finally, computer and classroom environments that promote a problem-
solving approach to education appear to have benefits for the development
of both mathematical concepts and processes (e.g., reasoning, connecting,
problem-solving, communicating, and representing). They seem especially
beneficial for developing student competence in solving complex problems.
Further, because students test ideas for themselves, computers can aid them to
move from naive to empirical to logical thinking and encourage them to make
and test conjectures. Thus, it can be argued that high-quality implementations
of Logo experiences places as much emphasis on the spirit of mathematics—
exploration, investigation, critical thinking, and problem solving—as it does
on geometric ideas. We believe that it has the potential to develop valid
mathematical thinking in students (Clements et al., 2001).

shapes: 3-d

Less is known about teaching concepts of three-dimensional shapes. Certainly,
consistent experience with building materials such as building blocks appears
warranted (Leeb-Lundberg, 1996), especially as children engage in considerable
pre-mathematical play with these materials (Seo & Ginsburg, 2004) and can
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build general reasoning skills in this geometric context (Kamii et al., 2004).
However, it is critical that teachers mathematize such activity. Using specific
terminology for solids, faces, and edges makes such discussion particularly
beneficial (Nieuwoudt & van Niekerk, 1997). Much more is known about
building with blocks and other three-dimensional shapes—see Chapter 9.

geometric motions, congruence, and symmetry

There is mixed evidence regarding young children’s ability with geometric
motions. Pre-K to kindergarten children may be limited in their ability to
mentally transform shapes, although there is evidence that even these sophisti-
cated processes are achievable (Ehrlich et al., 2005; Levine et al., 1999). Further,
these children can learn to perform rotations on objects (physical or virtual),
and a rich curriculum, enhanced by manipulatives and computer tools, may
reveal that knowledge and mental processes are valid educational goals for
most young children. For example, interventions improve the spatial skills
of low-income kindergartners, especially when embedded in a story context
(Casey, 2005). Computers are especially helpful, as the screen tools make
motions more accessible to reflection, and thus bring them to an explicit level
of awareness for children (Clements & Sarama, 2003b; Sarama, Clements, &
Vukelic, 1996).

Children’s painting and constructions, discussed previously, might be used
as models in introducing symmetry, including two-dimensional creations of
painting, drawing, and collage, and three-dimensional creations of clay and
blocks (Booth, 1984)

Computer environments also can be helpful in learning congruence and
symmetry (Clements et al., 2001). Indeed, the effects of Logo microworlds on
symmetry were particularly strong for kindergarten children. Writing Logo
commands for the creation of symmetric figures, testing symmetry by flipping
figures via commands, and discussing these actions apparently encouraged
children to build richer and more general images of symmetric relations
(with possibly some overgeneralization). Children had to abstract and
externally represent their actions in a more explicit and precise fashion in Logo
activities than, say, in free-hand drawing of symmetric figures.

Research supports the use of manipulatives in developing geometric and
spatial thinking in young children (Clements & McMillen, 1996). Using a
variety of manipulatives is more beneficial than the typically abstract-verbal
textbook-only presentation. For example, an experiment with random assign-
ment of both students (seven to nine years of age) and teachers compared a
textbook-only lessons on geometry to the same lessons with additional con-
crete and pictorial materials systematically incorporated (across visual,
auditory, and tactile modes). Even with lessons and total time held constant,
the group participating in the lessons with a wider variety of stimuli performed
significantly better on the geometry posttest (Greabell, 1978).
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Such tactile-kinesthetic experiences as body movement and manipulating
geometric solids help young children learn geometric concepts (Gerhardt,
1973; Prigge, 1978). Children also fare better with solid cutouts than printed
forms, the former encouraging the use of more senses (Stevenson & McBee,
1958). If manipulatives are accepted as important, what of pictures? Pictures
also can be important; even children as young as five or six years (but not
younger) can use information in pictures to build a pyramid, for example
(Murphy & Wood, 1981). Thus, pictures can give children an immediate, intui-
tive grasp of certain geometric ideas. However, pictures need to be sufficiently
varied so that children do not form limited ideas. Further, research indicates
that it is rare for pictures to be superior to manipulatives. In fact, in some cases,
pictures may not differ in effectiveness from instruction with symbols (Sowell,
1989). But the reason may not lie in the “nonconcrete” nature of the pictures as
much as it lies in their “nonmanipulability”—that is, that children cannot act
on them as flexibly and extensively. Research shows that manipulatives on
computers can have real benefit.

Instructional aids help because they are manipulable and meaningful. In
providing these features, computers can provide representations that are just
as real and helpful to young children as physical manipulatives. In fact,
they may have specific advantages (Clements & McMillen, 1996). For example,
children and teachers can save and later retrieve any arrangement of computer
manipulatives. Similarly, computers allow us to store more than static con-
figurations. They can record and replay sequences of our actions on manipula-
tives. This helps young children form dynamic images. Computers can help
children become aware of, and mathematize, their actions. For example, very
young children can move puzzle pieces into place, but they do not think about
their actions. Using the computer, however, helps children become aware of,
and describe, these motions (Clements & Battista, 1991; Johnson-Gentile et al.,
1994).

Further, computer manipulatives can facilitate students’ thinking about the
properties of geometric shapes (P. S. Moyer, Niezgoda, & Stanley, 2005; Sarama,
Clements, & Vukelic, 1996).

In general, research indicates that Logo experiences can also aid the learning
of motion geometry and related ideas such as symmetry. Working with a Logo
unit on motion geometry, students’ movement away from van Hiele Level 0
was slow. There was, however, definite evidence of a beginning awareness of
the properties of transformations (A. T. Olson, Kieren, & Ludwig, 1987). In
another study, middle school students achieved a working understanding of
transformations and used visual feedback to correct overgeneralizations when
working in a Logo microworld (L. D. Edwards, 1991). Logo experiences may
also help develop notions of symmetry. Students as young as first grade have
been observed using such mathematical notions as symmetry (Kull, 1986). In
addition, symmetry concepts are learned by students involved in Logo through
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middle school (Edwards, 1991; Gallou-Dumiel, 1989; (J. K. Olson, 1985). One
student used a specially designed Logo symmetry microworld to learn such
concepts and effectively transferred her mathematical understandings to a
paper and pencil problem (Hoyles & Healy, 1997).

angle, parallelism, and perpendicularity

Angles are critical but often are not learned or taught well. Many children
young and old believe that an angle must have one horizontal ray, a right angle
is an angle that points to the right, two right angles in different orientations
are not equal in measure, or even that angles have wings (Clements &
Battista, 1992). Children may describe an angle as “a shape,” a side of a figure, a
tilted line, an orientation or heading, a corner, a turn, and a union of two
lines (Clements & Battista, 1990). Children do not find angles to be salient
properties of figures (Clements et al., 1996; Mitchelmore, 1989). When copying
figures, children do not always attend to the angles. As described in the
following section, children ignore angles during early levels of development of
shape composition abilities.

To understand angles, children must discriminate angles as critical parts
of geometric figures, compare and match angles, and construct and mentally
represent the idea of turns, integrating this with angle measure. Children
possess intuitive knowledge of turns and angles and five-year-olds can match
angles in correspondence tasks (Beilin et al., 1982).

Research has not adequately compared different approaches to teaching
angle, but some teaching strategies have been suggested based on studies.
Mitchelmore and colleagues have proposed a sequence of tasks, described in
the companion book (Mitchelmore, 1989, 1992, 1993, 1998), and summarized
as follows.

Begin by providing practical experiences with angle in various contexts,
including corners, bends, turns, openings, and slopes. The first examples for
each should have two “arms of the angle” physically present, such as in scissors,
roach junctions, a corner of a table. Corners are the most salient for children
and should be emphasized first. The other physical models can follow. Experi-
ence with bending (e.g., a pipe cleaner) and turning (e.g., doorknobs, dials,
doors) would be introduced last in this early phase.

Then help children understand the angular relationships in each context by
discussing the common features of similar contexts, such as bends in lines or in
paths on maps.

Next, help students bridge the different contexts by representing the
common features of angles in each context. For example, that they can be
represented by two line segments (or rays) with a common endpoint. Once
turns are understood, use the dynamic notion of turning to begin measuring
the size of the angles.
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Learning Trajectory for Shapes

As others we have seen, the learning trajectory for shapes is complex. First,
there are several conceptual and skill advancements that makes levels more
complicated. Second, there are four subtrajectories that are related, but can
develop somewhat independently. (a) The Comparing subtrajectory involves
matching by different criteria in the early levels and determining congruence.
(b) The Classifying subtrajectory includes recognizing, identifying (“naming”),
analyzing, and classifying shapes. (c) The Parts subtrajectory involves dis-
tinguishing, naming, describing, and quantifying the components of shapes,
such as sides and angles. (d) The closely related Representing subtrajectory
involves building or drawing shapes.

Table 8.1 provides the developmental progression and the mental actions-
on-objects for this learning trajectory. Given the poor educational experiences
provided most children in the studies on which this is based, the age of acquisi-
tions are particularly variable.

Table 8.1 Learning Trajectory for Shapes

Age
(years)

Developmental Progression Actions on Objects

0–2 “Same Thing” Comparer
Comparing Compares real-world
objects (Vurpillot, 1976).

Says two pictures of houses are the
same or different.

Shape Matcher—Identical
Comparing Matches familiar shapes
(circle, square, typical triangle) with
same size and orientation.

Matches to .

“Bootstrap” competences encourage
active engagement (physically and
perceptually) with shape, including
parsing objects and figures into
implicitly-recognized components such
as edges, maintenance of size
constancies, pattern matching through
feature analysis (guided by heuristics
that use symmetry or other features to
impose an intrinsic framework on the
perceptual input), bias toward
symmetry, and regularity detection.

—Sizes Matches familiar shapes
with different sizes.

Matches to .

—Orientations Matches familiar
shapes with different orientations.

Matches to .

Match based on meaning of objects;
e.g., two houses. Congruence: 3s,*
responses, to comparison task with
verbal instructions show little relation
to the characteristics of the stimulus;
first “same” judgments express a
communality of representational
meaning between two objects; there
does not appear to be any extraction of
a common part or attribute (all houses
are the same).

*It must be acknowledged that there are no
present studies which might tell us what it
is in the perceived object that makes it
possible for the two to three-year-old child
to identify the house or duck. (Vurpillot,
1976).

Continued Overleaf

Shape • 239



Age
(years)

Developmental Progression Actions on Objects

3 Shape Recognizer—Typical
Classifying Recognizes and names
typical circle, square, and, less often,
a typical triangle. May physically
rotate shapes in atypical
orientations to mentally match
them to a prototype.

Names this a square .

Some children correctly name
different sizes, shapes and
orientations of rectangles, but also
call some shapes rectangles that
look rectangular but are not
rectangles.

Names these shapes “rectangles”
(including the non-rectangular

parallelogram) .

The above competencies, along with
repeated social experience with the
culturally-determined shape classes
generates networks sensitive to the
exemplars for those classes. Salient
perceptual characteristics (e.g., contour
or a angle with the vertex at the top)
may activate these nascent schemes.

“Similar” Comparer Comparing
Judges two shapes the same if they
are more visually similar than
different.

“These are the same. They are pointy
at the top.”

Implicit quantification of the
similarity of objects being compared via
salient characteristics results in
judgments of two objects as “the same
shape” when they are computed to be
more similar than they are different.

3–4 Shape Matcher—More Shapes
Comparing Matches a wider variety
of shapes with same size and
orientation.

—Sizes and Orientations Matches
a wider variety of shapes with
different sizes and orientations.

Matches these shapes

.

—Combinations Matches
combinations of shapes to each
other.

Matches these shapes .
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Age
(years)

Developmental Progression Actions on Objects

4 Shape Recognizer—Circles,
Squares, and Triangles+ Classifying
Recognizes some less typical squares
and triangles and may recognize
some rectangles, but usually not
rhombuses (diamonds). Often
doesn’t differentiate sides/corners.

Names these as 
triangles

.

Schemes for shapes are expanded to
includes multiple prototypes that are
more flexible, but nevertheless operate
within constraints. Each shape name
serve as nexus for attention to the
relevant characteristics which
(especially under favorable social
interactions) are increasingly
representationally redescribed.

Part Comparer Comparing Says two
shapes are the same after matching
one side on each (Beilin, 1984;
Beilin et al., 1982).

“These are the same” (matching
the two sides).

Constructor of Shapes from
Parts—Looks Like Parts Uses
manipulatives representing parts of
shapes, such as sides, to make a
shape that “looks like” a goal shape.
May think of angles as a corner
(which is “pointy”).

Asked to make a triangle with sticks,
creates the following

Scanning of images results in
identification of sides of approximately
the same length. This guides the
matching of those edges of the physical
shapes, and if they approximately
coincide, a “match” is determined
(mathematically inaccurately
generalized to indicate congruent
shapes). If the physical match is
rejected, the process is repeated.

Perceptually available model (or, for
familiar forms, global and static mental
image), implicitly analyzed, guides the
physical placement of manipulatives to
create an approximate configuration for
a given shape. Initially, the implicit
analysis considers each component
(even lines transversed by others)
separately (integration is limited to
approximate relative location and
orientation). These gradually become
more integrated into a coherent whole.

Some Attributes Comparer
Comparing Looks for differences in
attributes, but may examine only
part of shape.

“These are the same” (indicating the
top halves of the shapes are similar
by laying them on top of each
other).

Items scanned to compare attributes. A
result of “the same” is produced if there
is an absence of relevant differences and
“not the same” by presence of at least
one relevant difference. However,
scanning is not necessarily
comprehensive of all the items’
attributes and not all scanned attributes
are necessarily compared;
comprehensiveness of both processes
increases with age.

Continued Overleaf
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Age
(years)

Developmental Progression Actions on Objects

4–5 Shape Recognizer—All Rectangles
Classifying Recognizes more
rectangle sizes, shapes, and
orientations of rectangles.

Correctly names 
these shapes

“rectangles” .

The right angle is more firmly
embedded in schemes for rectangles
(especially in favorable environments in
which children are encouraged to focus
on this and other single characteristics).

Side Recognizer Parts Identifies
sides as distinct geometric objects.

Asked what this shape is ,
says it is a quadrilateral (or has four
sides) after counting each, running
finger along the length of each side. 

Most Attributes Comparer
Comparing Looks for differences in
attributes, examining full shapes,
but may ignore some spatial
relationships.

“These are the same.”

System explicitly can “pull out” each
side as a separate conceptual object
while simultaneously considering it part
of the whole shape.

Scans shapes comprehensively and
compares most attributes (more
accurately than in previous levels). After
the scan of the shapes, most likely
component is selected and physical
match is attempted. The other
components are then visually estimated
(for some, all components are physically
matched). If all components match, the
result is “the same shape.” However,
physical and especially visual matching
may not be exact and the spatial
relationships among components (i.e.,
what we call “properties” of shapes)
may be ignored (e.g., only a small
percentage begin to conceptualize such
properties as right angles).

Corner (Angle) Recognizer—Parts
Recognizes angles as separate
geometric objects, at least in the
limited context of “corners.”

Asked, why is this a triangle, says, “It
has three angles” and counts them,
pointing clearly to each vertex.

System explicitly can “pull out” each
angle as a separate conceptual object
while simultaneously considering it part
of the whole shape.

5 Shape Recognizer—More Shapes
Classifying Recognizes most familiar
shapes and typical examples of
other shapes, such as hexagon,
rhombus (diamond), and trapezoid.

Correctly identifies and names all the
following 
shapes, .

Schemes for shapes, even those with few
prototypes (circle, square) are
developed based on the synergistic
combination of rich visual/constructive
experiences and verbal declarative
knowledge that constrains the visual
components of the scheme.
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Age
(years)

Developmental Progression Actions on Objects

6 Shape Identifier Classifying Names
most common shapes, including
rhombuses, avoiding mistakes such
as calling ovals circles. Recognizes
(at least) right angles, so
distinguishes between a rectangle
and a parallelogram without right
angles.

Correctly names all the following
shapes

.

Verbal declarative knowledge is evoked
in more contexts to constrain visual/
spatial aspects of shape schemes and to
analyze geometric shapes. Visual/spatial
knowledge is more differentiated and
specific. Thus, children are more
accurate in classifications.

7 Angle Recognizer—More Contexts
Parts Can recognize and describe
contexts in which angle knowledge
is relevant, including corners (can
discuss “sharper” angles), crossings
(e.g., a scissors), and, later, bent
objects and bends (sometimes
bends in paths and slopes). Only
later can explicitly understand how
angle concepts relate to these
contexts (e.g., initially may not
think of bends in roads as angles;
may not be able to add horizontal or
vertical to complete the angle in
slope contexts; may even see corners
as more or less “sharp” without
representing the lines that
constitute them). Often does not
relate these contexts and may
represent only some features of
angles in each (e.g., oblique line for
a ramp in a slope context).

Parts of Shapes Identifier
Classifying Identifies shapes in
terms of their components.

“No matter how skinny it looks,
that’s a triangle because it has three
sides and three angles.”

Congruence Determiner
Comparing Determines congruence
by comparing all attributes and all
spatial relationships.

Verbal declarative knowledge is evoked
deliberately to analyze geometric
shapes. Visual/spatial knowledge is
increasingly specific and under
metacognitive control. Cognitively,
components are explicitly separated out
from a figure while remaining
integrated with other components.

Scans shapes and compares attributes
comprehensively. Increasing visual
inspection of sides and angles 

Continued Overleaf
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Age
(years)

Developmental Progression Actions on Objects

Says that two shapes are the same
shape and the same size after
comparing every one of their sides
and angles.

Congruence Superposer
Comparing Moves and places
objects on top of each other to
determine congruence.

Says that two shapes are the same
shape and the same size because they
can be laid on top of each other.

integrated into a totality producing a
superposition strategy; i.e., system
directs the use of physical motions to
produce superposition; if all
components (do not) match, the result
is a determination of (non) congruence
(note that “same” and “not the same”
may regain two different structures,
Vurpillot, 1976).

Constructor of Shapes from
Parts—Exact Representing Uses
manipulatives representing parts of
shapes, such as sides and angle
“connectors,” to make a shape that
is completely correct, based on
knowledge of components and
relationships.

Asked to make a triangle
with sticks, creates the
following.

Perceptually available model or mental
image now supplemented with explicit
knowledge of geometric properties
guides the physical placement of
manipulatives to create an accurate
(within perceptual-motor limits)
configuration for a goal shape. With age
and experience, components and
relations, such as intersections and
oblique orientations, are increasingly
organized hierarchically.

8+ Angle Representer Parts
Represents various angle contexts as
two lines, explicitly including the
reference line (horizontal or vertical
for slope; a “line of sight” for turn
contexts) and, at least implicitly, the
size of the angle as the rotation
between these lines (may still
maintain misconceptions about
angle measure, such as relating
angle size to the length of sides
distance between endpoints and
may not apply these understandings
to multiple contexts).

Congruence Representer
Comparing Refers to geometric
properties and explains with
transformations.

“These must be congruent, because
they have equal sides, all square
corners, and I can move them on top
of each other exactly.”

As above with explicit concepts for
angles and their measure.

As previously, but with explicit
knowledge of geometric properties and
criteria for mathematical explanations
(e.g., congruence of all properties,
superimposition), produces accurate
determination of congruence and
explanation.
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Final Words

Geometric thinking are essential human abilities that contribute to mathe-
matical ability. Their importance is highlighted by findings that infants
assign greater weight to spatiotemporal information than color or form in
their definition of what an object is (Newcombe & Huttenlocher, 2000).

Age
(years)

Developmental Progression Actions on Objects

Shape Class Identifier Classifying
Uses class membership (e.g., to
sort), not explicitly based on
properties.

“I put the triangles over here, and
the quadrilaterals, including squares,
rectangles, rhombuses, and
trapezoids over there.”

Schemes for shapes are organized
hierarchically, based on a combination
of visual imagery and “double-naming”
and other linguistic aids (e.g., “a square
is a special type of rectangle”).

Shape Property Identifier
Classifying Uses properties
explicitly. Can see the invariants in
the changes of state or shape, but
maintaining the shapes’ properties.

“I put the shapes with opposite sides
parallel over here, and those with
four sides but not both pairs of sides
parallel over there.”

Schemes for shapes are organized
hierarchically, based on a combination
of flexible visual imagery and especially
analysis of shared and non-shared
components and properties.

Property Class Identifier
Classifying Uses class membership
for shapes (e.g., to sort or consider
shapes “similar”) explicitly based on
properties, including angle measure.
Is aware of restrictions of
transformations and also of the
definitions and can integrate the
two. Sorts hierarchically, based on
properties.

“I put the equilateral triangles over
here, and scalene triangles over here.
The isosceles triangles are all these
. . . they included the equilaterals.”

Classes are connected to, and can be
operated in terms of, their properties.

Angle Synthesizer Parts Combines
various meanings of angle (turn,
corner, slant), including angle
measure.

“This ramp is at a 45° angle to the
ground.”

A network for various meanings of
angles is established, interrelating these
meanings.
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Thereafter, toddlers use the shape of objects as the essential cue used in learn-
ing the identity and names of objects. For example, training 17-month-olds to
attend to shape led them to generalize that objects with similar shape have the
same name, and engendered a dramatic increase of 350 percent in learning new
words outside of the laboratory (L. B. Smith, Jones, Landau, Gershkoff-Stowe,
& Samuelson, 2002). 

Although far less developed than our knowledge of number, research
provides guidelines for developing young children’s learning of geometric and
spatial abilities. However, we do not know the potential of children’s learning if
a conscientious, sequenced development of spatial thinking and geometry were
provided to children throughout their earliest years. This can also be seen as a
caveat. Research on the learning of shapes and certain aspects of visual literacy
suggest the inclusion of these topics in the early years. We have insufficient
evidence on the effects (efficacy and efficiency) of including topics such as con-
gruence, similarity, transformations, and angles in curricula and teaching at
specific age levels. Such research, and longitudinal research on many such
topics, is needed.

Finally, competencies in these first two major realms, spatial/geometric and
quantitative/number, are connected, probably at deep levels, throughout
development. The earliest competencies may share common perceptual and
representational origins (Mix et al., 2002). Infants are sensitive to both amount
of liquid in a container (Gao, Levine, & Huttenlocher, 2000) and distance a toy
is hidden in a long sandbox (Newcombe, Huttenlocher, & Learmonth, 1999).
Visual-spatial deficits in early childhood are detrimental to children’s devel-
opment of numerical competencies (Semrud-Clikeman & Hynd, 1990; Spiers,
1987). Other evidence shows specific spatially-related learning disabilities in
arithmetic, possibly more so for boys than girls (Share, Moffitt, & Silva, 1988).
Children with Williams Syndrome, who show impairment on visuo-spatial
construction tasks, can learn reading and spelling, but have difficulty learning
mathematics (Bellugi, Lichtenberger, Jones, Lai, & St. George, 2000; Howlin,
Davies, & Udwin, 1998). Primary school children’s thinking about “units” and
“units of units” was found to be consistent in both spatial and numerical prob-
lems (Clements, Battista, Sarama, & Swaminathan, 1997). In this and other
ways, specific spatial abilities appear to be related to mathematical competen-
cies (D. L. Brown & Wheatley, 1989; Clements & Battista, 1992; Fennema &
Carpenter, 1981; Wheatley et al., 1994). Geometric measurement connects the
spatial and numeric realms explicitly and is the topic of Chapters 10 and 11.
First, we complete the discussion of shapes with Chapter 9’s focus on shape
composition.

246 • Geometry and Spatial Thinking



9
Composition and Decomposition

of Shapes

The ability to describe, use, and visualize the effects of composing and
decomposing geometric regions is significant in that the concepts and actions
of creating and then iterating units and higher-order units in the context of
constructing patterns, measuring, and computing are established bases for
mathematical understanding and analysis (Clements, Battista, Sarama, &
Swaminathan, 1997; Reynolds & Wheatley, 1996; Steffe & Cobb, 1988). Add-
itionally, there is suggestive evidence that this type of composition corresponds
with, and may support, children’s ability to compose and decompose numbers
(Clements, Sarama, Battista, & Swaminathan, 1996).

In this chapter we examine three related topics. First, we discuss com-
position of three-dimensional shapes in the restricted but important early
childhood setting of building with blocks. Second, we discuss composition
and decomposition of two-dimensional shapes. Third, we discuss disembed-
ding of two-dimensional shapes, such as in embedded (hidden) figure
problems.

Composition of 3-D Shapes

Block building provides a view of children’s initial abilities to compose three-
dimensional objects (as well as their formation of a system of logic, cf. Forman,
1982). Children initially build structures from simple components and later
explicitly synthesize three-dimensional shapes into higher-order three-
dimensional shapes. In their first year, children either engage in little systematic
organization of objects or show little interest in stacking (Forman, 1982;
Kamii et al., 2004; Stiles & Stern, 2001). Instead, they pound, clap together, or
slide the blocks (Goodson, 1982) or use single blocks to represent an object,
such as a house or vehicle (Reifel, 1984). The first composite constructions are
simple combinations of pairs.

Even when combining more than two blocks, children remain in one
dimension. Stacking begins at one year, thus showing use of the spatial rela-
tionship of “on” (Kamii et al., 2004). Occasionally, children balance blocks
intuitively as a stack of rectangular prisms, for example, but often they place a
block off center or on an edge of a triangular prism. In the latter case, they
recognize lack of success when the block falls, but do not attempt to understand
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it. The next-to relation, creating structures such as a road or “train,” develops
at about one and a half years (Goodson, 1982; Stiles-Davis, 1988).

At about two years, children place each successive block congruently on or
next to the one previously placed (Stiles-Davis, 1988), respectively, shown
in Figure 9.1. They appear to recognize that blocks stacked vertically do not
fall when so placed. At this point, children begin to reflect (think back) and
anticipate (Kamii et al., 2004). Around two to three years of age, children begin
to extend their building to two dimensions, covering to an extent a plane in
creating a floor or wall (Guanella, 1934).

At three to four years of age, children regularly build vertical and horizontal
components within a building (Stiles & Stern, 2001). They can use the relations
only in sequence at age two and a half or three years, creating multicomponent
structures, but within a limited range, such as the simple arch. This involves
the simplest hierarchical integration, in that blocks are combined to create
increasingly complex structures using blocks to integrate other blocks, as in the
case of a horizontal block in an arch spanning and thus uniting, two vertical
blocks (Goodson, 1982; Guanella, 1934; Reifel, 1984; Sluss, 2002).

When asked to build “a tall tower,” they use long blocks vertically, because
they have added to the goal of making a stable tower, making a stable tall tower,
first using only one block in this fashion, then several (Kamii et al., 2004).
At four years, they can use multiple spatial relations, extending in multiple
directions and with multiple points of contact among components, showing
flexibility in how they generate and integrate parts of the structure. A small
number of children will build a tower with all blocks; for example, by com-
posing the triangular blocks, making subparts to coordinate with the whole
(Kamii et al., 2004). For example, a four-year-old built the tower in Figure 9.2,
intuitively classifying the blocks by stability, and ordering them by that cate-
gorization, using the more stable blocks at the bottom, combining triangular
prisms in the layer near the top and another triangular prism in unstable
position at the top.

Figure 9.1 At two years, children place blocks, often congruent blocks, on or next to
other blocks.
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This developmental progression was used to study children’s processes in
relation to task complexity (Stiles & Stern, 2001). Three-year-olds could not
produce the more complex constructions, including an enclosure, “+,” and
horizontal corner (illustrated respectively in Figure 9.3). Their strategy was
simple and unsystematic accretion of parts. Children of four or five years could
use a more sophisticated strategy organized around main construction com-
ponents, but they regressed to simpler strategies for the most difficult tasks.
Children of six years did not differ from adults on these tasks. The authors
concluded that spatial processing in young children is not qualitatively
different from that of older children or adults. However, with age, children
produce progressively more elaborate constructions. The way they analyze
spatial arrays also changes; they segment out different elements and relational

Figure 9.2 A children’s building shows evidence of using blocks that will build a stable
tower.

Figure 9.3 Slightly higher levels of block composition show working in two directions.
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structures. For example, to make a “+,” adults often complete one long segment
and add two short segments, but children build four components around a
point. Finally, as children develop, they choose more advanced strategies, but
this is influenced by the task.

Consistent with our theoretical standpoint, this development reflects pro-
gressive hierarchization. There is some evidence that at about four to five years
of age, children develop an internalized representation of a spatial arrangement
before and during a block construction, without needing to refer to a per-
ceptually available model (e.g., Goodson, 1982). Before that level of thinking,
their reproductions mirror a global aspect of a model or capture isolated parts,
but only later do they reproduce individual parts (without organization) and
then, finally, integrate the parts and the whole. For example, children learn to
build an arch, such as Figure 9.4, by two and a half to three years, and most
three-year-olds can build a row of arches. By four years of age, they could relate
arches in two dimensions (Fig. 9.5), and between four and five years, can build
a simple hierarchical structure of arches: an “arch of arches” as shown in Figure
9.6. Only children more than five years of age could build more complex hier-
archical figures, in which, for example, eight arches on three levels related in
two dimensions, as in Figure 9.7 (an arch of arch-of-arches). This implies a
mental plane that organizes substructures. For example, building an arch
of arches is related to building a “arch” as a mental unit and then organizing
multiple copies of those units (Goodson, 1982). For the construction of
Figure 9.7, children might build the arches in each layer, then follow the same
strategy on the next higher layer, or build by layers.

In summary, to develop, children have to understand and relate both parts
and whole, by analyzing the structure into component parts and organizing
those parts to reconstruct the whole. Such understanding of the whole inte-
grates the hierarchical relationships between the parts, units composed of
parts, and the whole. For example, children understand how individual blocks
combine (both in spatial position and functional relationship) to make an arch,
similarly understand how individual arches can combine to make an arch-of-
arches, and can simultaneously recognize the individual parts and their role in
the structure of the whole. Their ability to build and manipulate individual

Figure 9.4 A building blocks arch.
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(blocks) and composite (arches) units mentally allows them to build and follow
a mental plan for construction.

Kamii (2004) argues for focusing on children’s general reasoning with a
Piagetian perspective. From a different perspective, children’s performance on
a block design task was consistent with Vygotskian theory, predicted both
by preschoolers’ initial abilities and a dynamic assessment of their learning
potential (Day, Engelhardt, Maxwell, & Bolig, 1997). Both these areas were
domain-specific, supporting the position that cognition is multidimensional.

Figure 9.5 Relating arches in two dimensions.

Figure 9.6 An arch of arches.
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A related study asked children to make cube buildings from two-
dimensional representations or determine the number of cubes in a pictured
cube building. An included case study indicated that an advanced kinder-
gartner could do the former, but not the latter. It may be that he was unable to
visualize the shapes and needed manipulatives (Leeson et al., 1997). Thus, less
advanced children in pre-K and kindergarten may require hands-on materials
to help them interpret two-dimensional representations of three-dimensional
shapes. (More on the related notion of spatial structuring can be found in the
section on “Spatial Thought” on pp. 296–299.)

Composition and Decomposition of 2-D Shapes

More research on actual shape composition has been conducted with two-
dimensional shapes. The following is a research-based developmental progres-
sion, which approximately spans ages three to eight years (Clements, Sarama,
& Wilson, 2001; Sarama, Clements, & Vukelic, 1996). This learning trajectory,
first noted in Sarama, Clements, & Vukelic, 1996, has been explicated by these
researchers in and for the Buildings Blocks project (Clements, Sarama et al.,
2001). From lack of competence in composing geometric shapes, children
gain abilities to combine shapes—initially through trial and error and grad-
ually by attributes—into pictures, and finally synthesize combinations of
shapes into new shapes (composite shapes). The basic competence is combin-
ing shapes to produce composite shapes. We hypothesized the following levels
of thinking.

Figure 9.7 An arch of arches of arches.
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pre-composer

Children manipulate shapes as individuals, but are unable to combine them
to compose a larger shape. Children cannot accurately match shapes to even
simple frames (closed figures that can be filled with a single shape).

piece assembler

Children at this level are similar to Pre-composers, but they place shapes con-
tiguously to form pictures, often touching only at vertices. In free form “make a
picture” tasks, for example, each shape used represents a unique role, or func-
tion in the picture (e.g., one shape for one leg). Children can fill simple frames
using trial and error (Mansfield & Scott, 1990; Sales, 1994), but have limited
ability to use turns or flips to do so; they cannot use motions to see shapes from
different perspectives (Sarama, Clements, & Vukelic, 1996). Thus, children at
the first two levels view shapes only as wholes and see few geometric relation-
ships between shapes or between parts of shapes (i.e., a property of the shape).

picture maker

Children can concatenate shapes contiguously to form pictures in which
several shapes play a single role (e.g., a leg might be created from three
contiguous rhombuses, as in Figure 9.8), but use trial and error and do not
anticipate creation of new geometric shapes. Shapes are chosen using gestalt
configuration or one component such as side length (Sarama, Clements, &
Vukelic, 1996). If several sides of the existing arrangement form a partial
boundary of a shape (instantiating a schema for it), the child can find and place
that shape. If such cues are not present, the child matches by a side length. The
child may attempt to match corners, but does not possess angle as a quantitative

Figure 9.8 Children at the Picture Maker level can concatenate several blocks to make
one part of a construction, such as an arm or leg.
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entity, so they try to match shapes into corners of existing arrangements in
which their angles do not fit (a “picking and discarding” strategy). Rotating
and flipping are used, usually by trial-and-error, to try different arrangements
(Sarama, Clements, & Vukelic, 1996; Wheatley & Cobb, 1990). Thus, children
can complete a frame that suggests that placement of the individual shapes but
in which several shapes together may play a single semantic role in the picture.

shape composer

Children combine shapes to make new shapes or fill puzzles, with growing
intentionality and anticipation. Shapes are chosen using angles as well as side
lengths. Eventually, the child considers several alternative shapes with angles
equal to the existing arrangement. Rotation and flipping are used intentionally
and mentally (i.e., with anticipation) to select and place shapes (Sarama,
Clements, & Vukelic, 1996; Wheatley & Cobb, 1990). They can fill complex
frames (figures whose filling requires multiple shapes) (Sales, 1994) or cover
regions (Mansfield & Scott, 1990). Imagery and systematicity grow within this
and the following levels. In summary, there is intentionality and anticipation,
based on the shapes’ attributes, and thus, the child has imagery of the com-
ponent shapes, although imagery of the composite shape develops within this
level (and throughout the following levels).

substitution composer

Children deliberately form composite units of shapes (Clements, Battista,
Sarama, & Swaminathan, 1997) and recognize and use substitution relation-
ships among these shapes.

shape composite iterater

Children construct and operate on composite units (units of units) intention-
ally. They can continue a pattern of shapes that leads to a “good covering,”
but without coordinating units of units (Clements, Battista, Sarama, &
Swaminathan, 1997).

shape composer with superordinate units

Children build and apply (iterate and otherwise operate on) units of units of
units.

Three sources of evidence supported the validity of this theory (Clements,
Sarama et al., 2001; Clements, Wilson et al., 2004). First, the original hypo-
thetical learning trajectory and the developmental progression underlying it
emerged from naturalistic observations of young children composing shapes
(Clements, Battista, Sarama, & Swaminathan, 1997; Mansfield & Scott, 1990;
Sales, 1994; Sarama, Clements, & Vukelic, 1996, Sarama & Clements, in
preparation). Second, the levels of the developmental progression were tested
iteratively in formative research that involved researchers and teachers. Their
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case studies indicated that about four-fifths of the children studied evinced
behaviors consistent with the developmental progression (using an early ver-
sion of the instrument). By the end of this phase, all participants believed the
developmental progression and the items retained to measure levels in the pro-
gression to be valid and that they could reliably classify children as exhibiting
thinking on the progression. Third, a summative study employed the final
instrument with 72 randomly selected children from pre-K to grade 2. Analyses
revealed that the level scores fit the hypothesized structure in which scores
from one level would be more highly correlated with scores immediately
adjacent to that level than to scores on levels nonadjacent to the given level.
Further, the developmental progression showed development across ages, with
children at each grade scoring significantly higher than those at the preceding
grade. In addition, support for this theory lies in its consistency with previ-
ously discussed research on children’s perceptions of shape. In both, parts are
related to wholes, with each part initially playing a single functional role in the
pattern structure (cf. Tada & Stiles, 1996). Indeed, children spatially isolate
parts at first, then arrange them contiguously, and later combine them in an
integrative manner, eventually creating more complex units within different
structural layers. In both cases, mature cognition is an end result of a
developmental process in which parts and wholes are interrelated across
hierarchical levels.

Disembedding 2-D Shapes

Children develop over years in learning how to separate structures within
embedded figures. Visual discrimination, including figure-ground dis-
crimination, appears to be innate, and visual stimuli are perceptually organized
in the first year of life (Vurpillot, 1976). Vurpillot’s work is grounded in Gestalt
theorists, who, as we briefly described previously (e.g., p. 205), argue that the
mind organizes input into a limited number of perceptual structures, called
primary structures, essentially determined by the laws of “good” continuity
and “good” form (closure, symmetry, internal equilibrium). For Vurpillot,
the primary perceptual structures operate as rigid, indivisible, unanalyzable
and unarticulated up to about four years of age, but between six and eight
years they become flexible, decomposable and composable. Eventually these
concepts and operations operate hierarchically (i.e., units can be combined,
each one serving as a whole to the smaller units of which it is composed
and, at the same time, as a component part of the comprehensive structure).
Thus, in this age range, children develop the ability to break down line
figures and reassemble them in new forms (as in embedded-figures problems),
link up isolated perceptual units by means of imaginary lines to identify
the more complex structures of incomplete figures, and pass from one
structure to another when these are reversible figures (like Necker’s cube in
Figure 9.9).
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Logically, a line segment has an infinite number of points, and the number
of elements into which a line drawing can be broken is infinite. Even assuming
every segment is perceived as a whole, there are a large number of possible
combinations among those elements. Therefore, there is a large number of ways
in which a perceiver might organize any line drawing of at least moderate
complexity.

Gestalt theory leads to the following principles. (Figure 9.10 provides
illustrations of the terms used, including primary and secondary structures for
contours and areas.)

1. All the line segments of a figure are involved in construction of the
primary contour structures (PCS; see Figure 9.10, rows 1 and 2).

2. No segment or part can belong to more than one primary structure.
3. A segment belongs in its entirety to a single primary contour

structure.
4. The PCS are preferably symmetrical or at least as regular as possible.
5. The number of PCS must be the fewest possible.
6. Each area entirely surrounded by the line segments of a figure and not

crossed by another line segment constitutes a primary area structure
(PAS; see Figure 9.10, row 3).

Solving embedded-figures problems requires going beyond the primary
structure to create secondary structures, which include segments borrowed
from one or more PCS.

The preschooler can thus find a figure identical to a given PCS, but in other
cases will incorrectly designate a PCS as the solution, as empirical findings
suggest. The following problems present increasing degrees of difficulty, the
first three primary levels of organization, the second three secondary levels of
organization (in which parts can belong simultaneously to several structures,
allowing the construction of new units).

Figure 9.9 Necker’s cube, a reversible figure in which the dot can be seen on the front
or the back face of the cube.
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1. The PCS that is the frame, or external contour (e.g., largest square,
or outside contour, in the 3 by 3 arrangement of squares shown in
Figure 9.11).

2. A PCS of a complex figure (triangle of Star of David, such as the PCS
of Figure 9.10, row 1).

3. A PCS other than the frame (e.g., the tic-tac-toe layout of the
arrangement of squares in Figure 9.11, that is, all but the largest
square).

4. A figure that is not a PCS, but encloses a PAS (e.g., one of the smallest
squares of the arrangement of squares in Figure 9.11.

5. Similar, but a sum of several PASs (e.g., a block “L” of squares, or a
2 by 2 square, from Figure 9.11.

6. A nonclosed figure that is not a PCS.

In finding a secondary structure, children less than six years of age often iden-
tify a PCS instead. Circles appear to be the easiest shapes to disembed, with
rectangles, and then squares, more difficult (Ayers, Cannella, & Search, 1979).

Figure 9.10 Rows 1 and 2 show contour structures (row one overlapping, row 2 juxta-
posed) and Row 3 shows area structures.

Figure 9.11 A 3-by-3 grid.
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No gender differences were found. Even seven- to ten-year-olds may have
difficulty finding embedded triangles (Bright, 1975).

There is limited recent research on this topic, but one study confirmed
that few four-year-olds could find embedded circles or squares embedded in
square structures (Clements et al., 1999). However, five-year-olds were more
likely to do so.

In sum, before six years of age, what children perceive is organized in a rigid
manner into structures whose form is determined by Gestalt principles.
Children grow in the flexibility of the perceptual organizations they can create.
They eventually integrate parts and use imaginary components, with antici-
pation. Beyond a certain level of complexity, people of any age cannot perceive
secondary structures, but must construct them piece-by-piece.

Experience and Education

Composition of 3-D Shapes

Research indicates that block building is important for development of shape
and shape composition ability, to say nothing of the general reasoning that it
may also facilitate (Forman, 1982; Kamii et al., 2004; Stiles & Stern, 2001).
A longitudinal study indicated that block building may help lay a foundation
for mathematics achievement in later years (Wolfgang, Stannard, & Jones,
2001). Ratings of the sophistication of block building in preschool had no
signification relationship to achievement in grades 3 and 5, but did correlate to
standardized math scores in grade 7 and, at high school, positive and signifi-
cantly correlated with all assessments, including number of mathematics
courses taken, number of honors courses, advanced math courses taken and
grades (Wolfgang et al., 2001). This evidence is only correlational, and the
ratings were not solely based on mathematical aspects of block building, but
they are suggestive.

Block building also has been linked to spatial skills. Most studies again have
been only correlational; for example, nine-year-olds who build a specific model
out of Lego blocks scored higher in spatial ability (e.g., mental rotation) than
those who did not complete the model (Brosnan, 1998). The amount of time
children spent in spatial-manipulative play has been correlated with perform-
ance on a spatial visualization test, here, reproducing patterns using the tops of
small red and white cubes (Serbin & Connor, 1979). Similarly, in a preschool
population, two types of block building skills—the complexity of block struc-
tures built during an open-ended task and reproducing a model of a block
structure—were associated with two measures of spatial visualization, block
design and analyzing and reproducing abstract patterns (Caldera et al., 1999).

Peers may have a positive influence on children’s block building ability. For
example, three-year-olds in a classroom with four- and five-year-olds showed
more rapid development in block building than those in classrooms without
more experienced peers (Gura, 1992).
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These studies could not test for causal relationships. An experimental study
provided one group with spatial-manipulative instruction. Only this group
improved in spatial visualization skills (Sprafkin, Serbin, Denier, & Connor,
1983), providing evidence that the relationship is one of cause and effect.

Research suggests that teachers should not only provide materials, facilitate
peer relationships, and time to build, but also incorporate planned, systematic
block building into their curriculum, which they rarely do (Kersh et al., in
press). Children should have open exploratory play and solve semi-structured
and well-structured problems, with intentional teaching provided for each.
Preschoolers who are provided such scaffolding display significant increases in
the complexity of their block building (Gregory, Kim, & Whiren, 2003).
Important to our learning trajectories approach, the teachers’ scaffolding was
based on professional development in recognizing developmental progressions
in the levels of complexity of block building. They provide verbal scaffolding
for the children based on those levels, but do not directly assist children, or
engage in any block building themselves. Other studies intervened with full
learning trajectories—that is, a goal, a developmental progression, and
matched activities. Groups of kindergarteners who experienced such a learning
trajectory improved in block-building skill more than control groups who
received an equivalent amount of block-building experience during
unstructured free play sessions (Kersh et al., in press). Thus, research provides
guidelines, but we have only a few studies that compare approaches. We
need additional research comparing strategies as well as more research on
complementary approaches.

As we saw previously, spatial training may be more important for girls than
boys (Connor, Serbin, & Schackman, 1977). Block building is another case in
point. Girls and boys often differ in the ways they engage in block building
(Farrell, 1957; Farwell, 1930; Kersh et al., in press; Margolin & Leton, 1961;
Saracho, 1995). A smaller proportion of girls play with blocks. Boys tend to
approach block building as an engineering task, often balancing a complex
edifice upon a small, and thus risky, base (Kersh et al., in press). Thus, boys
challenge themselves to create more spatially complex structures (Erikson,
1963; Kersh et al., in press). These differences are observed from the earliest
years into adolescence (B. Casey, Pezaris, Anderson, & Bassi, 2004). The greater
experience often leads to advantages for boys in measures of block-building
ability, in middle-income children (Goodfader, 1982; Kersh et al., in press;
Sluss, 2002). (Some authors argue that both experience and innate, psycho-
analytic, factors play roles in gender differences, e.g., Goodfader, 1982.) How-
ever, in a three-year longitudinal study that exposed children to equal amounts
of block building, no similar gender differences were found (Hanline, Milton,
& Phelps, 2001). No differences were found in a university early childhood
program either (Caldera et al., 1999). It may be that tasks were different, an
issue to which we turn next, but it may also be that such programs attempt to
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involve girls in block play (Kersh et al., in press). Thus, children from higher-
income, compared to lower-income, subcultures and boys, compared to girls,
may often be provided more experience in block building.

Whatever the reason for the differences in girls’ and boys’ engagement in
activities such as block play, it is reasonable to assume that planned, systematic
activities will be relatively more beneficial for girls in today’s U.S. culture. Girls
tend not to engage in as much, or as spatially complex, block play during free
choice activities as boys (Kersh et al., in press). Further, girls score lower on
tasks in such settings. That is, gender differences favoring males appear in
open-ended, unstructured block building tasks (Goodfader, 1982; Sluss, 2002),
whereas there are little or no gender differences in semi-structured tasks that
pose more specific problem-solving challenges (Reifel, 1984) or in highly struc-
tured tasks, for instance, in copying a building (Caldera et al., 1999). However,
they can solve problems in structured activities and seem to gain from them as
much as do boys. Thus, girls may develop valuable spatial and geometric know-
ledge and abilities if teachers are intentional about providing them with
opportunities and encouragement for block play, intervening during block play
based on developmental progressions, and especially engaging them in a
sequence of semi- and well-structured construction tasks, based on a learning
trajectory for block building.

These findings lead to an important implication: more structured and
sequenced block-building interventions will help provide boys and girls with
equitable, beneficial opportunities to learn about the structural properties of
blocks and thus spatial skills. Research confirms that block-building skills
improve more if kindergartners experience systematic interventions (Kersh et
al., in press).

Learning Trajectory for Composition of 3-D Shapes

Table 9.1 provides the developmental progression and the mental actions-on-
objects for this learning trajectory. This is only for the set of unit blocks;
composition of more complex and less familiar three-dimentional shapes
would follow the same developmental progression but at later ages and with
more dependence on experiences.

Composition and Decomposition of 2-D Shapes

The content and effects of one program illustrate the importance of shape and
shape composition. An artist and collaborating educational researchers
developed the Agam program to develop the “visual language” of children ages
three to sevem years (Eylon & Rosenfeld, 1990). (A description of the activities
is provided in the companion book.) The results of using the program,
especially for several consecutive years, are positive. Children gain in geometric
and spatial skills and show pronounced benefits in the areas of arithmetic
and writing readiness (Razel & Eylon, 1990). These results support systematic
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Table 9.1 A Developmental Progression for the Composition of 3-D Shape

Age
(years)

Developmental Progression Actions on Objects

0–1 Pre-Composer (3-D) Manipulates
shapes as individuals, but does not
combine them to compose a larger
shape. May pound, clap together, or
slide blocks or use single blocks to
represent an object, such as a house
or truck.

1 Stacker Shows use of the spatial
relationship of “on” to stack
blocks, but choice of blocks is
unsystematic.

See the learning trajectory for motions
and spatial sense.

1½ Line Maker Shows use of
relationship of “next to” to make a
line of blocks.

See the learning trajectory for motions
and spatial sense.

2 Congruency Stacker Shows use of
relationship of “on” to stack
congruent blocks, or those that
show a similarly helpful relationship
to make stacks or lines.

See the learning trajectories for
matching shapes and for motions and
spatial sense.

With immediate perceptual support of
and feedback from action upon physical
3-D shapes, selects a shape that appears
to correspond to another shape and
moves it into correspondence.

2 Piece Assembler (3-D) Builds
vertical and horizontal components
within a building, but within a
limited range, such as building a
“floor” or simple “wall.”

With the perceptual support of concrete
objects, uses trial and error strategy to
apply slide and turn motions to shapes
so the shapes correspond with a model
(or perceptually supported mental
image).

Recognition of the composite is based
on a provided visual gestalt and is post
hoc.

3–4 Picture Maker (3-D) Uses multiple
spatial relations, extending in
multiple directions and with
multiple points of contact among
components, showing flexibility in
integrating parts of the structure.
Produces arches, enclosures, corners,
and crosses, but may use
unsystematic trial and error and
simple addition of pieces.

In addition to previous actions-on-
objects, with perceptual support of
concrete objects, mentally fills in one or
two missing components of a simple
building, at least maintaining a length
and global shape, then finds an
approximately corresponding shape
from a provided set of concrete shapes.
Visualizes extent in two and three
dimensions.

Continued Overleaf
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long-term instruction in the domain of geometry and spatial thinking in early
childhood (Razel & Eylon, 1990). Children are better prepared for all school
tasks when they gain the thinking tools and representational competence of
geometric and spatial sense.

Two studies using puzzles found some success in raising children’s ability
to compose with two-dimensional shapes (M. B. Casey, Erkut, Ceder, & Young,
2008). In the first, kindergarteners were given a story-based geometry inter-
vention. Compared to a control group, girls, but not boys, increased their
scores on a near- but not a far-transfer test. In the second study, low-income
kindergarteners increased both near-and far-transfer test scores more in a
storytelling-context than in a de-contextualized format. Girls again benefited
more than boys from the geometry-content interventions (both with and
without a story context). Caveats include that this was a quasi-experimental
study, whose analyses treated the student as the unit of analyses, even though
children were clustered in classrooms.

Supporting these results, emphasis on the learning trajectory for com-
position of shape in the Building Blocks program led to strong effects in this area.
The first study revealed that preschoolers in the Building Blocks curriculum,

Age
(years)

Developmental Progression Actions on Objects

4–5 Shape Composer (3-D) Composes
shapes with anticipation,
understanding what 3-D shape will
be produced with a composition of
two or more other (simple, familiar)
3-D shapes. Can produce arches,
enclosures, corners, and crosses
systematically. Builds enclosures
and arches several blocks high
(Kersh et al., in press).

A turning point in shape composition,
builds, maintains, and manipulates
mental images of 3-D shapes and builds
images of how these combine to create
other shapes. For simple combinations,
relates the image’s parts to wholes.

Uses the three rigid motions with
anticipation.

5–6 Substitution Composer and Shape
Composite Repeater (3-D)
Substitutes a composite for a
congruent whole. Builds complex
bridges with multiple arches, with
ramps and stairs at the ends.

Uses, and synthesizes, composition and
decomposition strategies mentally and
intentionally, allowing the composition
or decomposition of shapes and
substitution of a composition of shapes
for other shapes (and vice versa).

6–8+ Shape Composer—Units of Units
(3-D) Makes complex towers or
other structures, involving multiple
levels with ceilings (fitting the
ceilings), adult-like structures with
blocks, including arches and other
substructures.

Builds, maintains, and manipulates
units of units of units.
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compared to those in a control group, developed competencies in two-
dimensional composition, with effect sizes greater than two dimensions—
equivalent to effects usually found for individual tutoring (Clements &
Sarama, 2007c). In a follow-up, large-scale randomized field trial with 36
classrooms, the Building Blocks curriculum (Clements & Sarama, 2007a) made
the most substantial gains compared to both a non-treatment and another
preschool math curriculum, the Pre-K Mathematics Curriculum (A. Klein et al.,
2002) and other groups in shape composition (and several other topics).
Especially because the Pre-K Mathematics Curriculum also included shape
composition activities, we believe that the greater gains caused by the Building
Blocks curriculum can be attributed to its explicit use of the sequenced activ-
ities developed from, and the teachers’ knowledge of, the learning trajectory, to
which we turn.

Learning Trajectories for Composition and Decomposition of Geometric
Shapes (2-D)

Because the developmental progressions for the composition and decom-
position of two-dimensional geometric shapes are closely connected, we
present them together, in Table 9.2 along with the mental actions on objects.

Table 9.2 A Developmental Progression for the Composition of 2-D Shapes

Age
(years)

Developmental Progression Actions on Objects

0–3 Pre-Composer Manipulates shapes
as individuals, but is unable to
combine them to compose a larger
shape.

Make
a
picture

Pre-DeComposer Decomposes
only by trial and error.

Given only a hexagon, can
break it apart to make
this simple picture,
by random placement.

See the learning trajectories for shapes
and matching shapes. (Assumes
perceptual support.)

4 Piece Assembler Makes pictures in
which each shape represents a
unique role (e.g., one shape for each
body part) and shapes touch. Fills
simple “Pattern Block Puzzles”
using trial and error.

Sees the learning trajectories for
matching shapes and for motions and
spatial sense.

Intuitively recognizes a manipulative
shape that corresponds to a distinct
outlined shape, with continuous
perceptual support.

Continued Overleaf
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Age
(years)

Developmental Progression Actions on Objects

Make
a
picture.

With the help of concrete objects and
visual outlines, uses trial and error to
apply slide and turn motions to shapes
so as to match a provided outline.

Recognition of the composite is based
on a provided visual gestalt and is post
hoc.

5 Picture Maker Puts several shapes
together to make one part of a
picture (e.g., two shapes for one
arm). Uses trial and error and does
not anticipate creation of new
geometric shape. Chooses shapes
using “general shape” or side length.
Fills “easy” “Pattern Block Puzzles”
that suggest the placement of each
shape (but note below that the
child is trying to put a square in the
puzzle where its right angles will
not fit).

Make
a
picture.

In addition to previous actions-on-
objects, completes a (gestalt) shape by
mentally filling in one or two missing
components (e.g., to build an image of a
hexagon from the figure below), then
finds a corresponding shape from a
provided set of concrete shapes.

Similarly, especially when such a gestalt
is unavailable, but with consistent
perceptual supports, maintains an
approximate visual image of a side
length, using this to choose a shape that
matches the side of another shape or
one line segment of an outline (as in
selecting the square to fit in the non-
square rhombus-shaped region in the
“main” on the right).

Simple DeComposer. Decomposes
(“takes apart” into smaller shapes)
simple shapes that have obvious
clues as to their decomposition.

Given hexagons,
can break it
apart to make
this picture.

Given the support of a concrete shape
with perceptual cues as to a canonical
decomposition, acts on the immediate
visual field to direct the physical
decomposition.
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Age
(years)

Developmental Progression Actions on Objects

Shape Composer Composes shapes
with anticipation (“I know what
will fit!”). Chooses shapes using
angles as well as side lengths.
Rotation and flipping are used
intentionally to select and place
shapes. In the “Pattern Block
Puzzles” below, all angles are
correct, and patterning is evident.

Make a
picture.

A turning point in shape composition
actions-on-objects, builds, maintains,
and manipulates mental images of
shapes and begins to build similar
images of how they combine to create
other shapes.

Use the three rigid motions with
anticipation.

6 Substitution Composer Makes new
shapes out of smaller shapes and
uses trial and error to substitute
groups of shapes for other shapes to
create new shapes in different ways.

Make a
picture
with
intentional
sub-
stitutions.

Use, and synthesizes, composition and
decomposition strategies, allowing the
composition or decomposition of a
shape and the substitution of a
composition of shapes for other shapes
(and vice versa).

Shape DeComposer (with Help)
Decomposes shapes using imagery
that is suggested and supported by
the task or environment.

Given hexagons,
can break one
or more apart
to make this
shape.

Given the support of a concrete shape
with cues as to a decomposition, acts on
the immediate visual field to direct the
physical decomposition.

7 Shape Composite Repeater
Constructs and duplicates units of
units (shapes made from other
shapes) intentionally; understands
each as being both multiple small
shapes and one larger shape. May
continue a pattern of shapes that
leads to tiling.

Children use a shape composition
repeatedly in constructing a design
or picture.

Builds, maintains, and manipulates
mental images of composite shapes,
structuring them as composites of
individual units and as a single entity
(a unit of units).

Continued Overleaf
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Age
(years)

Developmental Progression Actions on Objects

Shape DeComposer with Imagery
Decomposes shapes flexibly using
independently generated imagery.

Given hexagons, can break one or
more apart to make shapes such as
these.

Builds, maintains, and manipulates
mental images of shapes and their
constituent components, using a
synthesis of decomposition and
composition actions to direct those
interacting processes.

8 Shape Composer—Units of Units
Builds and applies units of units
(shapes make from other shapes).
For example, in constructing spatial
patterns, extend patterning activity
to create a tiling with a new unit
shape—a unit of unit shapes that
they recognize and consciously
construct.

Builds a large structure by making a
combination of pattern blocks over
and over and then fitting them
together.

Builds, maintains, and manipulates
units of units of units.

Shape DeComposer with Units of
Units Decomposes shapes flexibly
using independently generated
imagery and planned
decompositions of shapes that
themselves are decompositions.

Given only squares, can break them
apart—and then break the resulting
shapes apparent again—to make
shapes such as these.

As above.
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Disembedding 2-D Shapes

There is a limited amount of research on the educational importance of the
topic of disembedding two-dimensional shapes. Clearly, students need to do so
to solve complex geometric problems. For example, success in geometry proofs
often depends on the ability to see geometric figures in new ways (including
extending and adding line segments). It may be that there are other advantages,
in supporting composition and decomposition processes in general and in
examining geometric structures. At least some researchers report that success
on such tasks is directly related to children’s overall success in school (Ayers et
al., 1979), but they also report that (very simple) instructions did not raise com-
petence. Thus, more research is needed before a confident recommendation
could be made to spend a substantial amount of instructional time on this
topic in the early years. As mentioned, however, the ability and predisposition
to see embedded figures in different ways, and to construct—physically or
mentally—extensions and additions to geometric diagrams, is necessary
for the successful solution of many geometric problems, especially proofs.
Thus, this is an important, under-appreciated skill (Schoenfeld, personal
communication, June 6, 2008), and we need research to see when and how it
can be best developed.

The primary task we use is a direct application of the skill: find figures in
increasingly complex geometric figures, including embedded figures. Some
research suggests that, pedagogically, it would be wise to have children embed
figures themselves before finding already-embedded figures (Bright,
1975).

Learning Trajectories for Embedded Geometric Figures (2-D)

There is also little research from which to build a learning trajectory for
disembedding. Relying heavily on older research, we present our development
progression and mental actions-on-objects in Table 9.3.

Table 9.3 A Developmental Progression for Embedded Geometry Figures (2-D)

Age
(years)

Developmental Progression Actions on Objects

3 Pre-Disembedder Can
remember and reproduce only
one or small collection of
nonoverlapping (isolated)
shapes.

4 Simple Disembedder
Identifies frame of complex
figure. Finds some shapes in
arrangements in which figures

Maintains a visual trace or path along sides or
curves of familiar shapes (with perceptual
support), even if they are interrupted by the
sides of another figure.

Continued Overleaf
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Final Words

The ability to describe, use, and visualize the effects of composing, decom-
posing, embedding, and disembedding shapes is an important mathematical
competence. Recall that the concepts and actions of creating and then iterating
units and higher-order units in the context of constructing patterns,
measuring, and computing are established bases for mathematical under-
standing and analysis (Clements, Battista, Sarama, & Swaminathan, 1997;
Reynolds & Wheatley, 1996; Steffe & Cobb, 1988). Additionally, this type of

Age
(years)

Developmental Progression Actions on Objects

overlap, but not in which
figures are embedded in
others.

5–6 Shapes-in-Shapes
Disembedder Identifies
shapes embedded within
other shapes, such as
concentric circles and or a
circle in a square. Identifies
primary structures in
complex figures.

Creates and maintains a visual trace or path
of familiar shapes (with perceptual support),
even if they are interrupted by the sides of
another figure.

7 Secondary Structure
Disembedder Identifies
embedded figures even when
they do not coincide with
any primary structures of the
complex figure.

Creates, maintains, and manipulates a mental
image of a familiar “well-structured” (e.g.,
symmetric) shape (the embedded figure)
while superimposing it against a complex
figure, or re-constructing it as a path within
the complex figure simultaneously
dampening the tendency to follow primary
structures (e.g., depressing the Gestalt
principles such as good continuity and good
form).

8 Complete Disembedder
Successfully identifies all
varieties of complex
arrangements.

As above, extended to include not just
familiar or “well-structured” shapes, but any
shape or path.
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composition corresponds with, and supports, children’s ability to compose and
decompose numbers (Clements, Sarama et al., 1996). More directly, the abil-
ities serve people well in solving a wide variety of problem, from geometric
proofs to the design of a floor space. Of course, such designs also require
geometric measurement, the topic of Part IV.
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Part IV
Geometric Measurement

“Really to interpret the child’s present crude impulses in counting,
measuring, and arranging things in rhythmic series, involves mathe-
matical scholarship—a knowledge of the mathematical formulae and
relations which have, in the history of the race, grown out of such crude
beginnings.”

(Dewey, 1902/1976, p. 282)

“Geometry” means “earth measure.” Geometric measurement is an essential
part of people’s lives. This alone justifies an emphasis on this topic.

Also, geometric measurement can serve as a bridge between the two critical
domains of geometry and number, with each providing conceptual support to
the other. Indications are, however, that this potential is usually not realized, as
measurement is not taught well. Many children use measurement instruments
or count units in a rote fashion and apply formulas to attain answers without
meaning (Clements & Battista, 1992). For some attributes, children have
difficulty establishing a proper unit for measurement, such as area (some
erroneously count lengths), volume (some count faces) and, especially, angle
(some use distance between rays, length of rays, etc., Clements & Battista, 1990;
Clements, Battista, & Sarama, 2001a). In international comparisons, U.S.
students’ performance in measurement was low (NCES, 1996).

There are also equity concerns. Boys outperform girls, and higher SES
children outperform lower SES children by a large amount, 20–30 percent
(Vasilyeva & Casey, 2007, in a fourth grade sample). Boys had no such advan-
tage on number tests, so their spatial abilities, or experience with measurement
outside of school, may account for their better performance in measurement.





10
Geometric Measurement, Part 1

Length

We begin with a brief consideration of children’s development of geometric
measurement competencies from the earliest years. We then turn to measure-
ment of length.

Children’s Development in Geometric Measurement

Children’s understanding of measurement has its roots in infancy and the
preschool years, but grows over many years, as the work of Piaget and his
collaborators has shown (Piaget & Inhelder, 1967; Piaget et al., 1960). As
with number, however, Piagetians underestimated the abilities of the youngest
children. For example, shown an object that was then occluded by a draw-
bridge, infants looked longer when the drawbridge rotated past the point where
the object should have stopped it (Baillargeon, 1991). Thus, even infants are
sensitive to continuous quantity (Gao et al., 2000), and even comparisons
(Spelke, 2002) and accumulations (Mix et al., 2002) of continuous quantity at
least in some conditions (cf. Huntley-Fenner et al., 2002). These studies show
that early cognitive foundations of mathematics are not limited or unique to
number. As with number, however, these abilities have limits. Infants and
toddlers can discriminate between lengths of dowels, but only when a salient
standard (a same-length dowel or container) was present; four-year-olds could
discriminate with or without such a standard (Huttenlocher, Duffy, & Levine,
2002). Infants and toddlers may lack the ability to create and maintain a mental
image of a length in all but special situations.

As we discussed, some believe that humans may be sensitive to amounts of
continuous quantity and not discrete number (Clearfield & Mix, 1999). How-
ever, they do make distinctions. For example, when a small number of objects
or portions of a substance is hidden and then revealed, 12- to 13-month-old
infants expect that the former cannot be combined to make a larger object but
that the latter can be coalesced into larger portions (Huntley-Fenner, 1999a).
Recall that 11-, but not nine-month-old infants could discriminate sequences
of number (Brannon, 2002). Noteworthy here is that the nine-month-olds
could discriminate sequences of size; therefore, non-numerical ordinal
judgments may develop before the capacity for numerical ordinal judgments.

Preschool children know that continuous attributes such as mass, length,
and weight1 exist, although they cannot quantify or measure them accurately.
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Children two to four years of age can use the same three types of standards
when judging “big” and “little” that adults use: perceptual (object is compared
to another physically present object), normative (object is compared to a
class standard stored in memory, such as a chihuahua is small for a dog), and
functional (is this hat the right size for this doll?) (Ebeling & Gelman, 1988).
Children also can coordinate these, preferring the perceptual to the normative
if there is a conflict (asked if an object is larger than an egg, but then given an
even larger egg, children will compare to the larger egg) and preferring either of
these to the functional (which must be brought to the attention of three-, but
not four-year-olds) (S. A. Gelman & Ebeling, 1989). Finally, children can
switch within contexts and from a normative context to the others, but have
difficulty switching to a normative context. The normative context may differ
from the perceptual and functional contexts in that there are not physically
present stimuli and thus may be accessible only when no other context has been
recently experienced (Ebeling & Gelman, 1994).

As young as three years of age, children know explicitly that if they have
some clay and then are given more clay, they have more than they did before.
However, preschoolers cannot reliably make judgments about which of two
amounts of clay is more; they use perceptual cues such as which is longer.
Children do not reliably differentiate between continuous and discrete
quantity, for example, basing equal sharing on the number of cookie pieces
rather than the amount of substance (K. F. Miller, 1984; Piaget et al., 1960).

Further, they have not yet integrated their counting (e.g., of discrete entities)
with measurement (counting units of continuous quantity). For example,
four- and five-year olds were more likely to count when asked which group had
“more glasses” than if asked which had “more sand,” even though in each
comparison the same sand was in the same glasses (Huntley-Fenner, 1999b).
Younger children responded inaccurately when asked to compare sand that was
not in glasses. When children observed cupfuls of sand poured into boxes they
again did not use counting, and used the rate, not duration, of pouring as the
basis of judgment (if the pouring acts were hidden, younger children per-
formed the worst). Thus, children must learn to apply their counting skills to
unitized measures of continuous quantities. They appear to do so first for small
numerosities. For example, six-year-olds were more accurate in addition tasks
when red blocks were placed in cylinders, instead of liquid, but only for small
numerosities (five or less). To measure, children have to overcome a natural
inclination to quantify continuous substances with mental processes that are
analogously continuous (i.e., that do not involve discrete units and counting).
In a striking example, three- to five-year-old children were no less successful
comparing amounts of sand in piles than when the same amount was shown in
three vs. two discrete glasses (Huntley-Fenner, 2001b).

Despite such challenges, young children can be guided to have appropriate
measurement experiences. They naturally encounter and discuss quantities
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(Seo & Ginsburg, 2004). They initially learn to use words that represent
quantity or magnitude of a certain attribute. Then they compare two objects
directly and recognize equality or inequality (Boulton-Lewis, Wilss, & Mutch,
1996). At age four to five years, most children can learn to overcome perceptual
cues and make progress in reasoning about and measuring quantities. They are
ready to learn to measure, connecting number to the quantity (even though the
average U.S. child, with limited measurement experience, exhibits limited
understanding of measurement until the end of the primary grades). We next
examine this development in more detail for the attribute of length.

Length Measurement

Length is a characteristic of an object found by quantifying how far it is
between the endpoints of the object. “Distance” is often used similarly to
quantify how far it is between any two points in space. The discussion of the
number line is critical here, because this defines the number line used to
measure length (see Chapter 4—both in this and in the companion book).
Measuring length or distance consists of two aspects, identifying a unit of
measure and subdividing (mentally and physically) the object by that unit,
placing that unit end to end (iterating) alongside the object. Subdividing and
unit iteration are complex mental accomplishments that are too often ignored
in traditional measurement curriculum materials and instruction. Therefore,
many researchers go beyond the physical act of measuring to investigate chil-
dren’s understandings of measuring as covering space and quantifying that
covering.

We discuss length in the following three sections. First, we identify several
key concepts that underlie measuring (from Clements & Stephan, 2004;
Stephan & Clements, 2003). Second, we discuss early development of some of
these concepts. Third, we describe research-based instructional approaches
that were designed to help children develop concepts and skills of length
measurement.

Concepts in Linear Measurement

At least eight concepts form the foundation of children’s understanding of
length measurement. These concepts include understanding of the attribute,
conservation, transitivity, equal partitioning, iteration of a standard unit,
accumulation of distance, origin, and relation to number.

understanding of the attribute

Understanding of the attribute of length includes understanding that lengths
span fixed distances (“Euclidean” rather than “topological” conceptions in the
Piagetian formulation).
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conservation

Conservation of length includes the understanding that as an object is moved,
its length does not change. For example, if children are shown two equal length
rods aligned, they usually agree that they are the same length. If one is moved to
project beyond the other, children 4.5 to 6 years often state that the projecting
rod is longer. At 5 to 7 years, many children hesitate or vacillate; beyond that,
they quickly answer correctly. Conservation of length develops as the child
learns to measure (Inhelder, Sinclair, & Bovet, 1974).

transitivity

Transitivity is the understanding that if the length of object X is equal to
(or greater/less than) the length of object Y and object Y is the same length as
(or greater/less than) object Z, then object X is the same length as (or greater/
less than) object Z.

equal partitioning

Equal partitioning is the mental activity of slicing up an object into the
same-sized units. Asking children what the hash marks on a ruler mean can
reveal how they understand partitioning of length (Clements & Barrett,
1996; Lehrer, 2003). Some children understand “five” as a single hash mark,
not as a space that is partitioned into five equal-sized units. As children
come to understand that units can also be partitioned, they come to grips
with the idea that length is continuous (e.g., any unit can itself be further
partitioned).

units and unit iteration

Unit iteration requires the ability to conceptualize the length of a small
unit such as a block as part of the length of the object being measured and to
place the smaller block repeatedly along the length of the larger object (Kamii
& Clark, 1997; Steffe, 1991), tiling the length without gaps or overlaps, and
counting these iterations. Such tiling, or space-filling, is implied by partition-
ing, but that is not well established for young children, who also must see the
need for equal partitioning and thus the use of identical units.

accumulation of distance and additivity

Accumulation of distance is the understanding that as you iterate a unit along
the length of an object and count the iteration, the number words signify the
space covered by all units counted up to that point (Petitto, 1990). Piaget et al.
(1960) characterized children’s measuring activity as an accumulation of dis-
tance when the result of iterating forms in nesting relationships to each other.
That is, the space covered by three units is nested in or contained in the space
covered by four units. Additivity is the related notion that length can be
decomposed and composed, so that the total distance between two points is
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equivalent to the sum of the distances of any arbitrary set of segments that
subdivide the line segment connecting those points.

origin

Origin is the notion that any point on a ratio scale can be used as the origin.
Measures of Euclidean space conform to ratios (the distance between 45 and 50
is the same as that between 100 and 105), implying that any point can serve as
the origin.

relation between number and measurement

Children must reorganize their understanding of the items they are counting
to measure continuous units. They make measurement judgments based
upon counting ideas, often based on experiences counting discrete objects.
For example, Inhelder et al. (1974) showed children two rows of matches.
The matches in each row were of different lengths, but there was a different
number of matches in each so that the rows were the same length. Although,
from the adult perspective, the lengths of the rows were the same, many
children argued that the row with shorter matches was longer because it had
more matches. One needs to understand the relationship between the units and
the number of units to understand measurement situations, unlike counting
discrete items. In addition, measurement contexts may differ from the discrete
cardinal situations in other ways. For example, when measuring with a ruler,
every element should not necessarily be counted and in those cases, the order-
irrelevance principle does not apply in the same way (i.e., you can count units
out of order if and only if they are units on the ruler corresponding to the
length of the object you are measuring, Fuson & Hall, 1982).

Another relation children must learn is the proportionality of measure-
ments, including the inverse relationship between the size of a unit and the
number of units in a given measure.

Researchers debate the order of the development of these concepts and the
ages at which they are developed; it may be that education and experience has
a large effect on both. Researchers generally agree that these ideas form the
foundation for various aspects of measurement. Traditional measurement
instruction is insufficient for helping children build these conceptions.

Early Development of Length Measurement Concepts

The same landmarks that aid children in cue or place learning also can affect
their representations of the distances separating objects. Piaget, Inhelder, and
Szeminska (1960) reported that after placing a third object between two
objects, young children claim that the distance is smaller or larger than before.
In another study, children judged that two routes, one direct and one indirect,
cover the same distance. Subsequent studies have confirmed that most
four-year-olds, and about half of five- and six-year-olds, show such patterns
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(Fabricius & Wellman, 1993; K. F. Miller & Baillargeon, 1990). Thus, the
Piagetian position was that young children did not possess understanding of
distance and length.

However, mistakes on tasks may not be due to the misconceptions of space
that Piagetian theory assumed. First, children can encode and apply distance
information. For example, preschoolers do well at simple distance judgment
tasks, with this competence appearing as early as 12 to 16 months of age
(Huttenlocher et al., 1999).

Second, there are inconsistencies in the literature on Piagetian tasks. About
40 percent of four-year-olds could avoid errors on direct and indirect routes,
including giving correct explanations (Fabricius & Wellman, 1993). Further,
children three and a half to five years of age appear to understand both the
direct-indirect principles and the same-plus principle (if two routes are the
same up to a point, but only one continues, it is longer), in a task modification
in which the items were screened, so responses would not be the result of
perceptual scanning (Bartsch & Wellman, 1988).

In a variation of the conservation-of-length task, children were asked which
of five boxes a stick would fit into (Schiff, 1983). Children’s judgments
remained consistent after sliding. Thus, they correctly judged that a stick would
go into the same box after it was moved (e.g., apparently believing that sliding
the stick across the table did not change the physical dimensions of the stick).
In another study, children were asked to choose a stick to bridge a gap. They
appeared to understand that occlusion of the stick did not affect the length
(K. F. Miller & Baillargeon, 1990). Children first understand affordances, such
as “will this stick fit here,” and later integrate knowledge between length and
distance (K. F. Miller, 1984).

Across several experiments, then, there is little empirical support for the
notion, such as in the Piagetian topological primary thesis, that conceptualiza-
tions underlying children’s reasoning about distance and length differ from
those of adults. Preschoolers understand that lengths span fixed distances.
Still, some researchers hold that complete conservation is essential for, but
not equivalent to, a full conception of measurement. Piaget, Inhelder, and
Szeminska (1960) argued that transitivity is impossible for children who do not
conserve lengths because once they move a unit, it is possible, in the child’s
view, for the length of the unit to change. Many researchers agree that children
develop the notion of conservation before transitivity (Boulton-Lewis, 1987).
Further, although researchers agree that conservation is essential for a complete
understanding of measurement, children do not necessarily need to develop
conservation before they can learn some measurement ideas (Boulton-Lewis,
1987; Clements, 1999c; Hiebert, 1981; Petitto, 1990). Two measurement ideas
that seem to depend on conservation and transitivity are the inverse relation
between the size of the unit and the number of those units and the need to use
equal length units when measuring. However, there are several anecdotal
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reports of preschoolers understanding the inverse relation in reform curricula
contexts, and one study (Sophian, 2002) showed an increase in the understand-
ing of effect of object size on measurement of volume in three- and four-year-
olds, when children are given the opportunity to compare the result of
measurements made with different units.

Most researchers argue that children must reason transitively before they
can understand measurement adequately (Boulton-Lewis, 1987). Some
researchers conclude that the ruler is useless as a measuring tool if a child
cannot yet reason transitively (Kamii & Clark, 1997). As with conservation, this
may only be true for some tasks. Further, as we have seen before, understanding
is not a dichotomous phenomenon. Children as young as pre-K and kinder-
garten age use transitivity in simple measurement tasks. For example,
given two holes and a marked stick, they can compare the depth of the holes
by inserting the stick and comparing the marks (Nunes & Bryant, 1996).
Such abilities appear in even younger children on some tasks (K. F. Miller,
1989).

On many tasks that appear to require general logical reasoning, children
find their own strategy to measure, and they do so correctly. These solution
strategies do not necessarily match the structural logic of the task. For example,
children use intermediate measurements to compare two lengths without
explicitly asking the transitivity question. They move a unit to measure the
length of an object and do not worry about whether the length is being con-
served. Finally, children of all developmental levels solve simple measurement
tasks that do not appear to rely heavily on general reasoning.

In summary, children have an intuitive understanding of length on which to
base reasoning about distance and length, but that reasoning develops con-
siderably. They may have difficultly mapping words such as “long” onto the
adult concept, instead assuming it means end point comparison (Schiff,
1983). They need to learn to coordinate and resolve perceptual and conceptual
information when it conflicts. Finally, they need to learn to use measurement,
understanding that units of lengths can be iterated along successive distances
and these iterations counted to determine length. Thus, young children know
that properties such as length (as well as area, volume, and mass, and weight)
exist early, but they do not initially know how to reason about these attributes
or to measure them accurately. Using an example outside of length, if three-
year-olds have some amount of quantity (e.g., clay) and then are given an
additional amount of quantity (more clay), they know that they have more
than they did before. Three- and four-year-olds encounter difficulty, how-
ever, when asked to judge which of two amounts that they currently have
(e.g., which of two mounds of clay) is more. They tend to use perceptual
cues to make this judgment. For example, when one of two identical balls of
clay is rolled into a long sausage-like shape, children do not “conserve” the
initial equivalence of the clay balls, and instead judge that the sausage has
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more clay than the ball because it is longer. Nevertheless, when there are no
perceptually conflicting cues, preschoolers are accurate comparing objects
directly.

Before kindergarten, many children lack measurement rules such as lining
up an end when comparing the lengths of two objects (Piaget & Inhelder, 1967;
Piaget et al., 1960), although they can learn about such ideas. Even five- to six-
year-olds, given a demarcated ruler, wrote in numerals haphazardly with little
regard to the size of the spaces. Few used zero as a starting point showing a lack
of understanding of the origin concept. At age four to five years, however, many
children can, with opportunities to learn, become less dependent on perceptual
cues and thus make progress in reasoning about or measuring quantities.
From kindergarten to grade 2, children significantly improve in measurement
knowledge (Ellis, Siegler, & Van Voorhis, 2000). They learn to represent length
with a third object, using transitivity to compare the length of two objects that
are not compared directly in a wider variety of contexts (Hiebert, 1981). They
can also use given units to find the length of objects and associate higher counts
with longer objects (Hiebert, 1981, 1984). Some five-year-olds, and most
seven-year-olds, can use the concept of unit to make inferences about the
relative size of objects; for example, if the numbers of units are the same, but
the units are different, the total size is different (Nunes & Bryant, 1996). How-
ever, even the seven-year-olds found tasks demanding and conversion of units
challenging.

Kindergarteners can become fairly proficient with a conventional ruler and
understand quantification in measurement contexts, but their skill decreases
when features of the ruler deviate from the convention. Thus, measurement
is supported by characteristics of measurement tools, but children still need to
develop understanding of key measurement concepts. In one study, all K-2
understood several measurement concepts. But there were significant age
differences on understanding concepts such as iterating a standard unit and the
cardinality principle (Ellis et al., 2000). Children initially may iterate a unit
leaving gaps between subsequent units or overlapping adjacent units (Horvath
& Lehrer, 2000; Lehrer, 2003), therefore, it is a physical activity of placing units
along a path in some manner, not an activity of covering the space/length of
the object with no gaps or overlaps. Furthermore, students often begin count-
ing at the numeral “1” on a ruler (Lehrer, 2003) or, when counting paces heel-
to-toe, start their count with the movement of the first foot, missing the first
foot and counting the second foot as one (Lehrer, 2003; Stephan, Bowers, Cobb,
& Gravemeijer, 2003). Students probably are not thinking about measuring as
covering space. Rather, the numerals on a ruler (or the placement of a foot)
signify when to start counting, not an amount of space that has already been
covered (i.e., “one” is the space from the beginning of the ruler to the hash
mark, not the hash mark itself). Many children initially find it necessary to
iterate the unit until it “fills up” the length of the object and will not extend the
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unit past the endpoint of the object they are measuring (Stephan et al., 2003).
Finally, many children do not understand that units must be of equal size. They
will even measure with tools subdivided into different size units and conclude
that quantities with more units are larger (Ellis et al., 2000). This may be a
deleterious side effect of counting, in which children learn that the size of
objects does not affect the result of counting (Mix et al., 2002, although we
disagree with the authors’ claim that units are always “given” in counting con-
texts—along with most teachers, Mix et al. do not consider counting contexts,
such as counting whole toy people constructed in two parts, top and bottom,
when some are fastened and some are separated, cf. Sophian & Kailihiwa,
1998).

A study of second graders’ understanding of rules supports these points.
Before formal instruction, most children had a subjective impression of rulers
(Nührenbörger, 2001). They drew pictures that indicated they had a mental
picture of rules and key aspects of measuring. For example, a third drew rulers
with equal-interval unit markings, a starting point, subdivisions, and
numerals. Drawings of another third suggested equal intervals, markings, and
numerals, but subdivisions and other aspects were not represented as well. The
bottom third either used marks and numerals but with the marks appearing as
“decorations” or numerals only. After instruction, most students in the lowest
two-thirds increased their levels of thinking. However, students often remained
unaware of the concepts underlying the construction, iteration, and sub-
division of units. Their actions often reflect dominance of their experience
with counting discrete items and reading of numerals.

Children are also learning accumulation of distance. Some, for example,
measured the lengths of objects by pacing heel to toe and counting their steps
(Stephan et al., 2003). As one child paced the length of a rug, the teacher
stopped the child mid-measure and asked her what she meant by “eight”. Some
children claimed that eight signified the space covered by the eighth foot, while
others argued that it was the space covered from the beginning of the first foot
to the end of the eighth. These latter children were measuring by accumulating
distances. This type of interpretation may not appear until students are nine or
10 year old (Clements, 1999c; Kamii & Clark, 1997). However, with meaningful
instruction, children as young as six years old can learn to measure by accumu-
lating distance (Stephan et al., 2003).

Finally, young children are developing the foundational ideas of origin and
relation between number and measurement. As Piagetian research indicated,
they draw on their counting experiences to interpret their measuring activity,
to which the “starting at one” error may be related. If children understand
measuring only as “reading the ruler,” they may not understand this idea
(Lehrer, 2003; Nührenbörger, 2001). Children also have to understand and
apply counting concepts, including one-to-one correspondence and the
cardinality principle.
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Thus, significant development occurs in the early childhood years. By first
or second grade, most children understand the inverse relationship between
unit size and number of units, although they may have difficulty applying
these concepts (Carpenter & Lewis, 1976; Lehrer, Jenkins et al., 1998). Many
children develop these concepts before instruction. However, the foundational
length ideas are usually not integrated. For example, children may still not
understand the importance of, or be able to create, equal size units, even into
the primary grades (Clements, Battista, Sarama, Swaminathan et al., 1997;
Lehrer, Jenkins et al., 1998; K. F. Miller, 1984). This indicates that children have
not necessarily differentiated fully between counting discrete objects and
measuring. Even if they show competence with rulers and are given identical
units, children may not spontaneously iterate those they have if they do not
have a sufficient number to measure an object (Lehrer, Jenkins et al., 1998)—
even when the units are rulers themselves (Clements, 1999c). Even up to the
primary grades, some children cannot or do not mentally partition the object
to be measured.

Another important aspect of measurement that we shall only briefly
mention is that of precision. In one study, explicit attention to the ways of
ordering and structuring trial-to-trial variability in measuring helped second
graders make sense of that variation by suggesting representative values of sets
of trials of measures (Lehrer, Schauble, Carpenter, & Penner, 2000).

Estimation

Real-world applications of length often involve estimation. There is little
research on measurement estimation, and most of it is with older students and
adults (see Sowder, 1992a). Briefly, research suggests that skilled estimators
move fluently back and forth between written or verbal linear measurements
and representations of their corresponding magnitudes on a mental number
line (Joram et al., 1998). Although having real-world “benchmarks” is useful,
instruction should also help children build understandings of scales and con-
cepts of measurement into their estimation competencies.

Measurement estimation depends on concepts and skills with physical
measurement, so that foundations should be laid first. One group of
researchers applied the accumulator model to build a theory of measurement.
They hypothesize that people can obtain a verbal or written numerical repre-
sentation of a magnitude in three ways. In the direct verbal way, people
mentally divide the magnitude under consideration into discrete intervals and
verbally count the intervals (the authors do not say much about the process of
mentally dividing the magnitude, a weakness of the model). In an indirect way,
people divide the magnitude into discrete intervals, counting the interval non-
verbally to obtain a mental magnitude that represents numerosity, and then
access a verbal representation of the corresponding numerosity. Another
indirect way is used when the magnitude (e.g., a length) directly generates a
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nonverbal magnitude (a perceived magnitude) for which a measurement has
been already learned (this rug is about the length of an eight-foot plank). This
relates the magnitude to the magnitudes that represent a given numerosity.
This third way is only available to someone with repeated estimating
experiences of the first two ways, because it is only those kinds of experiences
that can establish the scaling factor that relates perceived magnitudes to
numerical magnitudes.

Most people probably use the iteration strategy. Research indicates that the
number of “iterations” of this mental unit predicts the time it takes people to
make an estimate, rather than the total length of the object. The unit can be
large (e.g., a six-foot person), decreasing the number of iterations necessary.
The so called “mental number line” actually becomes a mental number line,
with all that implies (actual length units, and possibly multiply interrelated
units), when students develop this skill.

Students may not have the ability to generate and manipulate such con-
strained mental units and number lines well until third grade (Joram et al.,
1998). How should estimation abilities be developed? One popular approach is
guess and check (practice with feedback). This can be effective, but the skills
taught are often fragile and limited to the contexts in which people were taught
(i.e., it does not transfer). Guess and test does not improve what strategies they
use. More promising might be training strategies and “measurement sense” by
prompting students to learn reference or benchmark (e.g., an inch-long piece
of gum and also a six-inch dollar bill) lengths; order points along a continuum;
and build up mental number lines (“mental rulers”) (Joram, Gabriele,
Bertheau, Gelman, & Subrahmanyam, 2005).

Experience and Education

Young children naturally encounter and discuss quantities in their play
(H. P. Ginsburg et al., 1999). They first learn to use words that represent
quantity or magnitude of a certain attribute. Facilitating this language is
important not only to develop communication abilities, but for the develop-
ment of mathematical concepts. Simply using labels such as “Daddy/Mommy/
Baby” and “big/little/tiny” helped children as young as three years to represent
and apply higher-order seriation abilities, even in the face of distracting visual
factors, an improvement equivalent to a two-year gain. Language provides an
invitation to form comparisons and a method to remember the newly repre-
sented relational structure (Rattermann & Gentner, 1998). Thus, language can
modify thought (cf. Vygotsky, 1934/1986). Along with progressive alignment,
in which children are presented with easy literal similarity matches prior to
difficult matches, language provides powerful scaffolding potential (Kotovsky
& Gentner, 1996).

Next, children compare two objects directly and recognize equality or
inequality, for example, of the length of two objects (Boulton-Lewis et al.,
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1996). Following this, children can to learn to measure, connecting number to
length. Again, language, such as the differences between counting-based terms
and continuous-quantity terms can help children form relationships between
counting and continuous measurement (Huntley-Fenner, 2001b). Before
turning to measurement proper, we should recall a related competence, order-
ing or seriating multiple objects by length. Piagetian theory (1952) held that
this was one of the two foundational concepts that lead to number, as discussed
previously. While it may not function in that central role, it remains important
to measurement, to learning number, and to general thinking (Ciancio,
Rojas, McMahon, & Pasnak, 2001; Lebron-Rodriguez & Pasnak, 1977; Pasnak,
Madden, Malabonga, & Holt, 1996).

Kamii and Clark (1997) argue that comparing lengths is at the heart of
developing the notions of conservation, transitivity, and unit iteration, but
most textbooks do not have these types of tasks. Textbooks tend to ask
questions such as “How many paper clips does the pencil measure?” rather
than “How much longer is the blue pencil than the red pencil?” Although
Kamii and Clark advocate beginning instruction by comparing lengths with
nonstandard or standard units (not a ruler), they caution that such an activity
is often done by rote. Teachers must focus children on the mental activity of
transitive reasoning and accumulating distances. One type of task that involves
indirect comparisons is to ask children if the doorway is wide enough for
a table to go through. This involves an indirect comparison and transitive
reasoning.

Many recent curricula advise a sequence of instruction in which children
compare lengths, measure with nonstandard units, incorporate the use of
manipulative standard units, and measure with a ruler (Clements, 1999c;
Kamii & Clark, 1997). The basis for this sequence is, explicitly or implicitly,
Piaget et al.’s (1960) theory of measurement. The argument is that this
approach motivates children to see the need for a standard measuring unit.
Researchers who advocate this approach argue that, when classroom discus-
sions focus on children’s meaning during measuring, they are able to construct
sophisticated understanding (Lehrer, 2003; McClain, Cobb, Gravemeijer, &
Estes, 1999; Stephan et al., 2003).

Although such an approach has shown to be effective, it may not be
necessary to follow a nonstandard-to-standard units approach. For example,
Boulton-Lewis et al. (1996) found that children used nonstandard units
unsuccessfully, but were successful at an earlier age with standard units and
measuring instruments. The researchers concluded that nonstandard units are
not a good way to initially help children understand the need for standardized
conventional units in the length measuring process. Just as interesting were
children’s strategy preferences. Children of every age, especially in Years 1
and 3, preferred to use standard rulers, even though their teachers were
encouraging them to use nonstandard units. One teacher did not allow use of
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rulers in her classroom, saying they had become a distraction because children
wanted to use them. Further, children measured correctly with a ruler before
they could devise a measurement strategy using nonstandard units.

As another example, a substantial number of first and second graders do not
recognize that using a smaller unit increases number of units in measurement
of a fixed quantity (Carpenter & Lewis, 1976). These children acquire the
knowledge that the number of units measured is inversely related to the size of
the unit, at least in some form, but they still did not recognize the importance
of maintaining a standard unit of measure (Carpenter & Lewis, 1976).

Taken as a whole, these studies suggest that early experience measuring
with different units may be the wrong thing to do. To realize that arbitrary
units are not reliable, a child must reconcile the varying lengths and numbers
of arbitrary units. Emphasizing nonstandard units too early may defeat
the purpose it is intended to achieve. That is, early emphasis on various
nonstandard units may interfere with children’s development of basic
measurement concepts required to understand the need for standard units. In
contrast, using manipulative standard units, or even standard rulers, is less
demanding and appears to be a more interesting and meaningful real-world
activity for young children (Boulton-Lewis et al., 1996). These findings have
been supported by additional research (Boulton-Lewis, 1987; Clements &
Battista, 2001; Clements, Battista, Sarama, Swaminathan et al., 1997; Héraud,
1989).

Another study (Nunes, Light, & Mason, 1993) suggests that children can
meaningfully use rulers before they “reinvent” such ideas as units and iteration.
Children six to eight years of age communicated about lengths using string,
centimeter rulers, or one ruler and one broken ruler starting at 4 cm. The
traditional ruler supported the children’s reasoning more effectively than the
string; children’s performance almost doubled. Their strategies and language
(it is as long as the “little line [half] just after three”) indicated that children
gave “correct responses based on rigorous procedures, clearly profiting from
the numerical representation available through the ruler” (p. 46). They even
did better with the broken ruler than the string, showing that they were not
just “reading numbers off” the ruler. The unusual context confused children
only 20 percent of the time. The researchers concluded that conventional
units already chosen and built into the ruler do not make measurement more
difficult. Indeed, children benefitted from the numerical representation
provided even by the broken ruler.

Further, their research has led several authors to argue that early rule use
should be encouraged, not avoided or delayed (Clements, 1999c; Nühren-
börger, 2001; Nunes et al., 1993). Rulers allow children to connect instruc-
tion to their previous measurement experiences with conventional tools. In
contrast, dealing with informal, three-dimensional units de-emphasizes the
one-dimensional nature of length and unfortunately focuses on counting of
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discrete objects. Thus, both the zero point and the iteration of line segment
lengths as units is de-emphasized (Bragg & Outhred, 2001).

With typical instruction, no first graders and only 21 percent of second
graders could construct a ruler that used the length of a paper clip as a
measure (Bragg & Outhred, 2001). Slightly more could measure a length by
iterating a paper clip and accurately indicate that the result involved a
fraction of the unit. However, even those students who could perform these
tasks could not identify units as linear in various contexts, such as indicating
what a “5” meant on a ruler, or that part of a 1 cm cube used when measuring
a length. Thus, children’s understanding of unit is weak under typical
instruction.

The Piagetian-based argument, that children must conserve length before
they can make sense of ready-made systems such as rulers (or computer tools,
such as those discussed in the following section), may be an overstatement.
Findings of these studies support a Vygotskian perspective (Ellis et al., 2000;
K. F. Miller, 1989), in which rulers are viewed as cultural instruments children
can appropriate. That is, children can use rulers, appropriate them, and so
build new mental tools. Not only do children prefer using rulers, but they can
use them meaningfully and in combination with manipulable units to develop
understanding of length measurement. In general, measurement procedures
can serve as cognitive tools (K. F. Miller, 1989) that develop to solve certain
practical problems and organize the way children think about amount.
Measurement concepts may originally be organized in terms of the contexts
and procedures used to judge, compare, or measure specific attributes
(K. F. Miller, 1989). If so, transformations that do not change length but do
change number, such as cutting, may be particularly difficult for children, more
so than traditional conservation questions. Children need to conceptually
distinguish the different attributes and learn which transformations affect
which attributes. Children should be helped to introduce measurement
problems, introduce such tools, and use children’s solutions as a way to extend
their thinking about the attributes and their measure.

Another Piaget-based idea, from the field of social cognition, is that conflict
is the genesis of cognitive growth. One series of studies, however, indicated this
is not always so. If two strategies, measurement and direct comparison, were in
conflict, children learned little. They benefited little from verbal instruction.
However, children who saw that the results of measurement and direct com-
parison agreed were more likely to use measurement later than were children
who observed both procedures but did not have the opportunity to compare
their results (P. E. Bryant, 1982). Here, then, is another case that engaging
children in conflict (between strategies, or between results of measuring with
different units) too soon is unhelpful or deleterious.

Based on this research corpus, Clements (1999c) suggests a sequence of
instruction we have enhanced here and in the companion volume. Children
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should be given a variety of experiences comparing the size of objects. Next,
children should engage in experiences that allow them to connect number to
length, using both conventional rulers and manipulative units using standard
units of length, such as centimeter cubes (specifically labeled “length-units”
with the children, from Dougherty & Slovin, 2004). As they explore with these
tools the ideas of length-unit iteration, correct alignment, (with a ruler) and
the zero-point concept are developed. In second or third grade, teachers
might introduce the need for standard length-units and the relation between
the size and number of length-units. The early use of multiple nonstandard
length-units would not be used until this point (cf. Carpenter & Lewis, 1976).
Instruction focusing on children’s interpretations of their measuring activity
can enable children to use flexible starting points on a ruler to indicate
measures successfully (Lubinski & Thiessen, 1996). Without such attention,
children just read off whatever ruler number aligns with the end of the object
into the intermediate grades (Lehrer, Jacobson et al., 1998).

Based on the work of Russian researchers, the Measure Up curriculum
emphasizes abstract, algebraic thinking early (Dougherty & Slovin, 2004, see
also Chapters 6 and 13). For example, first graders might solve problems in
which they have to physically compare two lengths A and B and then represent
how to equalize them. They might draw a diagram and explain how C could be
added to A or taken away from B, as in Figure 10.1.

Students also solve numerical problems using similar diagrams. For
example, one problem tells second or third graders that a girl had 43 volume-
units of water in one container and eight volume-units less in another and
asks how many volume-units she would have if she combined the containers.
Students might solve this at three levels of sophistication, illustrated in
Figure 10.2.

Second graders who experience this approach showed skillfulness in count-
ing and representing the numbers, but analysis of their responses showed
different levels of generalization of method and explanation of underlying
principles (Slovin, 2007).

Children must eventually learn to subdivide length-units. Making one’s
own ruler and marking halves and other partitions of the unit may be helpful
in this regard. Children could fold a unit in halves, mark the fold as a half, and
then continue to do so, to build fourths and eighths.

Figure 10.1 A possible diagram illustrating a part-part-whole relationship of lengths.
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Computer experiences also can help children link number and geometry
in measurement activities and build measurement sense. Even young children
can abstract and generalize measurement ideas working with computers
(Clements, Battista, Sarama, Swaminathan et al., 1997; Clements & Meredith,
1994; Kull, 1986; Try, 1989) if the interface is appropriate and activities well
planned (J. A. Watson & Brinkley, 1990/91). In a combination of these
approaches, eight- and nine-year-old students learned about units, subdividing
units and fractions, as they made maps of their playground (Lehrer &
Pritchard, 2002). They used their previous experience with Logo to build these
and other concepts and skills, including polar coordinates and scaling.

Cross-cultural research has shown that influences of other experiences can
affect measurement practices. For example, Filipino children’s rounding of
monetary transactions to include only whole numbers probably is the cause
of their rounding measurement of a length to the whole numbers. Other
differences in the student’s performance on the measurement tasks may be
related to differences in curricula. In addition, children from two cultures
were equally competent at measuring, but Filipino children were not as
successful as the New Zealand children on tasks requiring visualization,
probably reflecting curricular differences, such as the New Zealand
Curriculum’s emphasis on informal measurement and visualization (Irwin,
Vistro-Yu, & Ell, 2004).

Learning Trajectory for Length Measurement

Table 10.1 provides the developmental progression and the mental actions-on-
objects for this learning trajectory.

Figure 10.2 Possible solution strategies at different levels of sophistication.
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Table 10.1 A Developmental Progression for Length Measurement

Age
(years)

Developmental Progression Actions on Objects

2 Pre-Length Quantity Recognizer
Does not identify length as
attribute.

“This is long. Everything straight is
long. If it’s not straight, it can’t be
long.”

Action schemes, both physical/
kinesthetic and visual, implicitly trace
linear extents. In certain situations,
from infancy children are sensitive to
linear extent, including comparisons
and accumulations. These are initially
not, and later only partially, connected
to explicit vocabulary.

3 Length Quantity Recognizer
Identifies length/distance as
attribute. May understand length as
an absolute descriptor (e.g., all
adults are tall), but not as a
comparative (e.g., one person is
taller than another).

“I’m tall, see?”

May compare non-corresponding
parts of shape in determining side
length.

Action schemes are connected to length
vocabulary. In some situations, such
vocabulary is connected to categories of
linear extent, such as “tall/long” or
“short.” In others, action schemes are
used to compare lengths—one object is
longer if a scan lasts perceptibly longer
than the scan of another object. Thus,
intuitive comparisons are made on
direct perceptual, normative (one object
can be a class standard stored in
memory, such as a doll’s length), or
functional (if guided/prompted; e.g., is
this block long enough?) bases.
However, in some situations salient
differences at one end of the objects are
substituted for a scan (potentially
leading to inaccuracies if the other
endpoints are not aligned) Also,
irrelevant details such as the shape of
objects can affect these categorizations
and comparisons.

4 Length Direct Comparer Physically
aligns two objects to determine
which is longer or if they are the
same length.

Stands two sticks up next
to each other on a table
and says, “This one’s
bigger.”

The scheme addresses length as a linear
extent from endpoint to endpoint of a
path. Shape of the objects and path can
affect the application of the scheme.
With perceptual support, objects can be
mentally and then physically slid and
rotated into alignment and their
endpoints compared.

Indirect Length Comparer
Compares the length of two objects
by representing them with a third
object.

Compares length of two objects with
a piece of string.

A mental image of a particular length
can be built, maintained, and (to a
simple degree) manipulated. With the
immediate perceptual support of some
of the objects, such images can be
compared. For some, explicit transitive

Continued Overleaf
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Age
(years)

Developmental Progression Actions on Objects

When asked to measure, may assign
a length by guessing or moving
along a length while counting
(without equal length units).

Moves finger along a line segment,
saying 10, 20, 30, 31, 32.

May be able to measure with a ruler,
but often lacks understanding or
skill (e.g., ignores starting point).

Measures two objects with a ruler to
check if they are the same length, but
does not accurately set the “zero
point” for one of the items.

reasoning may be applied to the images
or their symbolic representations
(i.e., object names).

If asked to measure, a counting scheme
operates on an intuitive unit of spatial
extent or amount of movement,
directing physical movements (or,
less frequently, eye movements) along
a length while counting (resulting in
a “trace-and-count” or “point-and-
count” strategy). The sensory-concrete
mental actions require the perceptual
support of the object to be measured.

5–6 Serial Orderer to 6+ Orders
lengths, marked in one to six units.
(This develops in parallel with
“End-to-End Length Measurer.”)

Given towers of cubes, puts in order,
one to six.

A scheme organized in a hierarchy, with
the higher-order concept a (possibly
implicit) image of an ordered series.
Ability to estimate relative lengths
(driving a trial and error approach)
is eventually complemented by a
scheme that considers each object in
such a series to be longer than the one
before it and shorter than the one after
it (resulting in a more efficient
strategy).

End-to-End Length Measurer Lays
units end-to-end. May not
recognize the need for equal-length
units. The ability to apply resulting
measures to comparison situations
develops later in this level. (This
develops in parallel with “Serial
Orderer to 6+”).

Lays nine inch cubes in a line
beside a book to measure how
long it is.

An implicit concept that lengths can be
composed as repetitions of shorter
lengths underlies a scheme of laying
lengths end to end. (This scheme must
overcome previous schemes, which use
continuous mental processes to evaluate
continuous extents, and thus are more
easily instantiated.) This is initially only
applied to small numerosities (e.g., five
or fewer units). Starting with few
restrictions (i.e., only weak intuitive
constraints to use equal-size units or to
avoid gaps between “units”) the scheme
is enhanced by the growing conception
of length measuring as covering
distance (or composing a length with
parts) with further application of these
constraints.
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Age
(years)

Developmental Progression Actions on Objects

7 Length Unit Relater and Repeater
Measures by repeated use of a unit
(but initially may not be precise in
such iterations). Relates size and
number of units explicitly (but may
not appreciate the need for identical
units in every situations).

Relates size and number of units
explicitly.

“If you measure with centimeters
instead of inches, you’ll need more
of them, because each one is
smaller.”

Can add up two lengths to obtain
the length of a whole.

“This is five long and this one is
three long, so they are eight long
together.”

Iterates a single unit to measure.
Recognizes that different units will
result in different measures and that
identical units should be used, at
least intuitively and/or in some
situations. Uses rulers with minimal
guidance.

Measures a book’s length accurately
with a ruler.

Actions schemes include the ability to
iterate a mental unit along a
perceptually-available object. The image
of each placement can be maintained
while the physical unit is moved to the
next iterative position (initially with
weaker constraints on this placement).
With the support of a perceptual
context, scheme can predict that fewer
larger units will be required to measure
an object’s length. These action schemes
allow the application of counting-all
addition schemes to be applied to
measures.

8 Length Measurer Considers the
length of a bent path as the sum of
its parts (not the distance between
the endpoints). Measures, knowing
need for identical units, relationship
between different units, partitions
of unit, zero point on rulers, and
accumulation of distance. Begins to
estimate.

“I used a meter stick three times,
then there was a little left over. So, I
lined it up from 0 and found 14
centimeters. So, it’s 3 meters, 14
centimeters in all.”

The length scheme has additional
hierarchical components, including the
ability simultaneously to image and
conceive of an object’s length as a total
extent and a composition of units. This
scheme adds constraints on the use of
equal-length units and, with rulers, on
use of a zero point. Units themselves
can be partitioning, allowing the
accurate use of units and subordinate
units.

Continued Overleaf
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Final Words

This chapter described children’s development of geometric measurement
competencies from the earliest years and their learning of length measurement.
Chapter 11 addresses other domains of geometric measurement: area, volume,
and angle.

Age
(years)

Developmental Progression Actions on Objects

Conceptual Ruler Measurer
Possesses an “internal”
measurement tool. Mentally moves
along an object, segmenting it, and
counting the segments. Operates
arithmetically on measures
(“connected lengths”). Estimates
with accuracy.

“I imagine one meter stick after
another along the edge of the room.
That’s how I estimated the room’s
length is nine meters.”

Interiorization of the length scheme
allows mental partitioning of a length
into a given number of equal-length
parts or the mental estimation of length
by projecting an image onto present or
imagined objects.
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11
Geometric Measurement, Part 2

Area, Volume, and Angle

As with length, measurement of area, volume, and angle connects to other
areas of mathematics and to children’s experience with the physical world.
Developing concepts and skills therefore builds a foundation for understand-
ing topics from multiplication to fractions and for solving real world problems
from deforestation to navigation.

Area Measurement

Area is an amount of two-dimensional surface that is contained within a
boundary. Area measurement assumes that a suitable two-dimensional region
is chosen as a unit, congruent regions have equal areas, regions do not overlap,
and the area of the union of two regions (disjoint union; i.e., regions that do
not overlap) is the sum of their areas (Reynolds & Wheatley, 1996). Thus,
finding the area of a region can be thought of as tiling (or equal partitioning) a
region with a two-dimensional unit of measure.

As with number, sensitivity to area is present in the first year of life. How-
ever, infants’ approximate number sense may be more accurate than their
corresponding sense of area (Xu & Spelke, 2000).

These area understandings do not develop well in traditional U.S. instruc-
tion and have not for a long time (Carpenter, Coburn, Reys, & Wilson, 1975),
not only for young children, but also preservice teachers (Enochs & Gabel,
1984). A study of children from grades 1, 2, and 3 revealed little understanding
of area measurement (Lehrer, Jenkins et al., 1998). Asked how much space a
square (and a triangle) cover, 41 percent of children used a ruler to measure
length. When asked what “nine” would mean in that context, they said it would
be “inches.” The second most frequent response, 22 percent, was “I don’t
know.” Only 11 percent said they would find an area unit to cover the region.
About a third of the children did not suggest any way of measuring the areas.
When these children were provided with manipulatives, including small
squares, 78 percent used some combination of the manipulatives to cover
the square region and 22 percent persisted with the idea of area as length.
Some treated area as “iterated length,” measuring a length of a side of a square,
then moving the ruler to a parallel position slightly toward the opposite side,
and repeating this process, adding the values of the lengths. Those who used
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manipulatives as units of covering were split between those who used only
squares (45 percent) and those who used both squares and another shape,
such as triangles (55 percent). When measuring triangles, 70 percent preferred
triangular shapes as the covering shape; for rectangles, 68 percent used only
rectangles and only 16 percent also used squares. Thus, children used resem-
blance to choose a unit of measure.

Concepts of Area Measurement

Understanding of area measurement involves learning and coordinating many
ideas (Clements & Stephan, 2004). Many of these ideas, such as transitivity and
relation between number and measurement, operate in area measurement in a
manner similar to length measurement, as discussed in the previous chapter.
Other foundational concepts for the domain of area measurement include
understanding the attribute of area (including comparison of areas), equal par-
titioning, units of area and unit iteration, structuring an array, conservation,
and linear measurement.

understanding the attribute of area

Understanding the attribute of area involves giving a quantitative meaning to
the amount of bounded two-dimensional surface. Initially, preschoolers may
use only one dimension or one salient aspect of the stimulus to compare the
area of two surfaces (Bausano & Jeffrey, 1975; Maratsos, 1973; Mullet & Paques,
1991; Piaget et al., 1960; Raven & Gelman, 1984; J. Russell, 1975; Sena &
Smith, 1990). For example, four- and five-year-olds may match only one side of
figures when attempting to compare their areas (Silverman, York, & Zuidema,
1984). Others claim that children can integrate more than one feature of a
region, but judge areas with additive combinations, for example, making
implicit area judgments based on the longest single dimension (Mullet &
Paques, 1991) or height + width rules (Cuneo, 1980; Rulence-Paques & Mullet,
1998). Children from six to eight years use a linear extent rule, such as the
diagonal of a rectangle. Only after this age do most children move to explicit
use of spatial structuring of multiplicative rules to solve those studies’ tasks.
(Spatial structuring, the mental operation of constructing an organization into
rows and columns, is discussed in more detail in a following section.) Note this
does not imply formal use of multiplication, but only that their estimates are
best modeled (approximated) by the normative multiplicative rule.

In most of these studies, children did not interact with the materials. Doing
so often changes their strategies and improves their estimates. Children as
young as three years are more likely to make estimates consistent with multi-
plicative rules when in a problem-solving setting using manipulatives than
when just asked to make a perceptual estimation. For example, they are more
accurate when asked to count out the right number of square tiles to cover
a floor and put them in a cup (K. F. Miller, 1984). Similarly, children of five to
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six years of age were more likely to use strategies consistent with multiplicative
rules after playing with the stimulus materials (Wolf, 1995). Children were to
estimate the size of rectangular pieces of baking chocolate on a graphic rating
scale. Control group children estimate using a height + width rule; however,
children who played with the materials first used a multiplicative rule.

Wolf (1995) argues that more complex rules are often used when people are
more familiar with the materials involved in a task. This may be so, however,
children did better when their manipulation followed their estimation of sizes.
Thus, it may be that small numbers of objects and familiarity with materials
is beneficial, but that also familiarity with the task (the conceptual goal) and
the physical and cognitive actions applied to the materials encourage more
accurate strategies, such as scanning one length through another.

Although some researchers imply multiplicative thinking on the part of the
child, we take the conservative position that there is little evidence of true
two-dimensional spatial structuring in these studies. Children may be using
linear or additive strategies that are more consistent with the result of accurate
multiplicative rules or other implicit estimation strategies. We return to this
issue in the discussion of “structuring an area.”

A more accurate strategy for comparing areas than visual estimation is
superimposition. Children as young as three years have a rudimentary concept
of area based on placing regions on top of one another, but it is not until five or
six years that their strategy is accurate and efficient. As an illustration, asked to
manipulate regions, preschoolers in one study used superimposition instead of
the less precise strategies of laying objects side-by-side or comparing single
sides, both of which use one dimension at best in estimating the area (Yuzawa,
Bart, & Yuzawa, 2000). Again the facilitative effect of manipulation is shown.
Children were given target squares or rectangles and asked to choose one which
was equal to two standard rectangles in area. They performed better when they
placed the standard figures on the targets than when they made perceptual
judgments. They also performed better when one target could be overlapped
completely with the standard figures (even in the perceptual condition, which
suggests they performed a mental superposition).

Higher levels of thinking about area may have their roots in the internaliza-
tion of such procedures as placing figures on one another, which may be aided
by cultural tools (manipulatives) or scaffolding by adults (cf. Vygotsky,
1934/1986). For example, kindergartners who were given origami practice
increased the spontaneous use of the procedure of placing one figure on
another for comparing sizes (Yuzawa et al., 1999). Because origami practice
includes the repeated procedure of folding one sheet into two halves, origami
practice might facilitate the development of an area concept, which is related
with the spontaneous use of the procedure.
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equal partitioning

Partitioning is the mental act of “cutting” two-dimensional space into parts,
with equal partitioning requiring parts of equal area (usually congruent).
Teachers often assume that the product of two lengths structures a region into
an area of two-dimensional units for students. However, the construction of a
two-dimensional array from linear units is non-trivial. Young children often
use counting as a basis for comparing (K. F. Miller, 1984) and do not partition
two-dimensional surfaces into equal units of area.

units and unit iteration

Children often do not accurately tile the region with units and initially do not
extend units over the boundaries when a subdivision of that unit is needed to
fill the surface (Stephan et al., 2003). Even more limiting, children often choose
units that physically resemble the region they are covering (Lehrer, 2003;
Lehrer, Jenkins et al., 1998; Nunes et al., 1993). They sum the number of shapes
used to cover, even if the covering shapes were of different sizes (84 percent of
primary-grade children, Lehrer, Jenkins et al., 1998).

accumulation and additivity

Research suggests that primary-grade children may attempt to use mental
superimposition to compare areas. However, even within a single session,
about a fourth represented the area of two figures as a composition of shapes to
compare areas, suggesting that such operations would be easily learned given
appropriate experiences (Lehrer, Jenkins et al., 1998).

structuring space

Spatial structuring is the mental operation of constructing an organization
or form for an object or set of objects in space, a form of abstraction, the pro-
cess of selecting, coordinating, unifying, and registering in memory a set of
mental objects and actions. Based on Piaget and Inhelder’s (1967) original
formulation of coordinating dimensions, spatial structuring takes previously
abstracted items as content and integrates them to form new structures. It
creates stable patterns of mental actions that an individual uses to link sensory
experiences, rather than the sensory input of the experiences themselves. Such
spatial structuring precedes meaningful mathematical use of the structures,
such as determining area or volume (Battista & Clements, 1996; Battista et al.,
1998; Outhred & Mitchelmore, 1992).

The point is that working with lengths is often done too soon. In this
study, eight- to nine-year-old students were more successful if they used
tiles than if they used rulers (Nunes et al., 1993). With the latter, many
students simply added the lengths. With tiles—especially in the condition in
which students had tiles but not enough to cover the rectangles they were to
measure—students were more likely to multiply with conceptual understand-
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ing. These constructions by the students were “isomorphism of measures”
type of multiplicative concept, compared to the formula of multiplying
length, which is the “product of measures” concept type (Vergnaud, 1983).
That is, students’ constructions were thinking about arrays of squares, not
about multiplying one-dimensional measures to create a two-dimensional
measure.

Spatial structuring involves the primitive notion that the region must be
filled, with no gaps or overlaps; 73 percent of primary-grade students did not
display this understanding, accepting circles placed within a square region
as a viable way to measure area. They appear to use boundedness rather than
space filling to judge adequacy of covering (Lehrer, Jenkins et al., 1998).
Children develop through a series of levels in developing the difficult com-
petence of learning to understand and spatially structure arrays of squares.
These include the following (Battista et al., 1998; Mulligan, Prescott,
Mitchelmore, & Outhred, 2005; Outhred & Mitchelmore, 2000; Outhred &
Mitchelmore, 1992).

Area pre-recognizer Children at this level have not developed the ability to
structure two-dimensional space. In a rectangular tiling task, they may not be
able to tessellate the rectangle with squares, even with physical objects such as
squares. In representational tasks, they may draw approximations of circles or
other figures (Mulligan, Prescott et al., 2005).

Incomplete coverer Children understand that the goal is to cover the space.
However, they have little or no ability to organize, coordinate, and structure
two-dimensional space. They may be able to cover a rectangular space with
physical tiles, because the tiles provide strong scaffolding for structuring the
space and thus the task. However, they cannot represent that in a drawing. That
is, these children cannot represent covering a rectangle with tiles without over-
laps or gaps. This indicates that they are not interpreting arrays as composed of
rows and columns, and they do not understand the need for units of equal size.
Thus, their drawings capture a concatenation of approximately rectangular
shapes, but their size (to be equal) and space-filling (to leave no gaps) are not
constrained. Some fill the space only along the edges of the region, others
attempt several rows of shapes, but leave gaps and do not align shapes between
rows.

Primitive coverer Children can represent a complete covering of a region by
drawing, without gaps or overlaps. Their alignment of shapes in one or two
dimensions is intuitive, not constrained by a specific shape (square) or sizes or
by an explicit concept of a row or column; therefore, rows and columns are not
always accurately aligned. For similar reasons, children can not accurately
count their shapes. For example, they lose track of which shapes were counted.
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They may count around the border and then unsystematically count the
internal shapes.

Primitive coverer and counter Children can cover as in the previous level, but
also count more accurately, but again with no row or column structuring. The
local, incomplete use of rows or columns (e.g., counts some, but not all, rows as
a unit) and the use of written labels provides structure that aids keeping track
in counting.

Partial row structurer Children make a significant advance when they
structure the rectangle as a set of rows, understanding the collinearity of
rows and the constraint that each row must have the same number of units.
Some children revert to drawing individual squares (thus their drawing
leaves gaps), others use repeated lines to demarcate rows. The entire array is
not constructed (in geometric representation or in counting) as an iteration
of rows; children are making progress with local structuring, but have not
yet structured the array globally. They have begun the coordinating action
of seeing a square as both a unit and a component of a unit of units (the
row). Moreover, in tasks specific to measuring area that do not provide
model units but provide a ruler, children may create rectangular shapes that
are unrelated to the dimensions of the region (Outhred & Mitchelmore,
2000).

Row and column structurer Children now have a mental construct of a
row as consisting of a composite of aligned, congruent unit squares. They
determine the number of squares by iterating those rows (e.g., counting each
row of five, “five, 10, 15 . . .”). Within this level, they move from an intuitive
iteration (based on the number of visual units in a column or an estimation) to
iteration based on the number of squares in a column (e.g., skip counting by
five or multiplying). At this level, they apply the concept of collinearity to both
rows and columns and display the important advance of distributing the row
over the elements of a column. They move from local to global structuring of
the array, in which squares are seen as individual units, and as component of a
unit of unit (e.g., a row; and also, eventually, they see it as a component of a
column as well). To do so, they must coordinate the iteration of the unitized
row (or column) with each unit element of an orthogonal column (or row).
Alternatively, children may make a composite of two or more rows (e.g., com-
bine two rows of five into a two-row unit of 10 and iterate that composite unit
over each two-unit component of a column). In measurement contexts, they
may measure one dimension to determine the size of the iterated squares and
eventually both, to determine the number of rows needed, usually by marking
off the units and drawing parallel lines using these marks. Thus, they apply the
concept that the length of a line specifies the number of unit lengths that will fit
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along that line, but they still create a perceptual array to support their
reasoning.

Array structurer Children at this level understand that the rectangle’s dimen-
sions provide the number of squares in rows and columns and thus can
meaningfully calculate the area from these dimensions without perceptual
support. They have interiorized the spatial structuring, related the linear
measures to their representation of each dimension, and thus can mentally
decompose or recompose an array into rows, columns, or individual squares
while retaining the array structure, even if provided only the linear measure-
ments. Each square can thus be viewed as a unit, a component of at least two
unit of units (a row and a column) and the unit of unit of units—the array.
The distributive operation of iteration may be done on mental images that
are spatial or symbolic in nature and eventually develops past iteration to a
fully multiplicative concept. The area formula is understood and used as an
abstraction of these operations.

Without this competence, students cannot use the area formula meaning-
fully. They are also more likely to confuse concepts such as perimeter and
area; for example, believing that counting the units around a figure gives its
area.

Students also must restructure the region to determine how to use known
area measures to find the areas of non-rectangular areas. Only 20 percent
of primary grade students in one study could do this (Lehrer, Jenkins et al.,
1998).

conservation

Students have difficulty accepting that when they cut a given region and
rearrange its parts to form another shape, the area remains the same (Lehrer,
2003). When shown two shapes, a square and a rhomboid, consisting of identi-
cal congruent right triangles, only 43 percent of children in grades 1–3 judged
them as equal. One of the only cross-sectional developmental differences in
area found was that children in grades 2–3 were more likely to conserve area
mentally (Lehrer, Jenkins et al., 1998).

There are many other issues, including strategies for measuring irregular
figures, subdividing the unit to fill a region, estimation, and so forth.

Experience and Education

As stated previously, the experiences of children in traditional U.S. instruction
do not sufficiently build area concepts and skills. One group of children in
typical instruction were followed for several years (Lehrer, Jenkins et al., 1998).
They improved in space-filling and additive composition by grade 4, but not in
other competencies, such as the confusion of area and length, using identi-
cal area-units, and finding measures of irregular shapes. In comparison,
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research-based activities taught second graders a wide range of area concepts
and skills (Lehrer, Jacobson et al., 1998, see the companion book for details of
the instructional activities).

Work with origami, because it involves folding and matching of multiple
edges, may encourage children to use superimposition and see both dimen-
sions in a figure (Yuzawa et al., 1999). In this study, the most effective use was
folding to determine shape congruence. Girls were more interested and atten-
tive than boys, and particularly increased their superimposition strategies;
thus, origami may be an especially good geometric experience for girls.

The long developmental process usually only begins in the years before first
grade. However, we should also appreciate the importance of these early con-
ceptualizations. For example, three- and four-year-olds’ use of a linear rating
scale to judge area, (even if) using an additive rule, indicate an impressive level
of quantitative ability, and, according to some, nascent mental structures for
algebra at an early age (Cuneo, 1980).

Learning Trajectory for Area Measurement

Table 11.1 provides the developmental progression and the mental actions-on-
objects for this learning trajectory.

Table 11.1 A Developmental Progression for Area Measurement

Age
(years)

Developmental Progression Actions on Objects

0–3 Area/Spatial Structuring: Pre-Area
Quantity Recognizer Shows little specific
concept of area. Uses side matching
strategies in comparing areas (Silverman,
York, & Zuidema, 1984). May draw
approximation of circles or other figures
in a rectangular tiling task. (Mulligan,
Prescott, Mitchelmore, & Outhred, 2005)

Draws mostly-closed shapes and
lines with no indication of covering
the specific region.

Perceives space and objects within
the space.

4 Area Simple Comparer May compare
areas using only one side of figures, or
estimating based on length plus (not
times) width.

Using perceptual objects, internal
bootstrap competencies compare
extent.
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Age
(years)

Developmental Progression Actions on Objects

Asked which rectangular “candy” is
the “same amount” as a bar 4 cm by
5 cm, one child chooses the 4 by 8
by matching the sides of the same
length. Another child chooses the
2 by 7, intuitively summing the side
lengths.

Measures area with ruler, measuring
a length, then moving the ruler and
measuring that length again,
apparently treating length as a 2-D
space-filling attribute (Lehrer et al.,
1998).

May compare areas if task suggests
superposition or unit iteration.

Given square tiles and asked how
many fit in a 4 by 5 area, child
guesses 15.

A child places one sheet of paper
over the other and says, “This
one.”

Area/Spatial Structuring: Side-to-Side
Area Measurer Covers a rectangular
space with physical tiles. However, can
not organize, coordinate, and structure
2-D space without such perceptual
support. In drawing (or imagining and
pointing to count), can represent only
certain aspects of that structure, such as
approximately rectangular shapes next
to one another.

Covers a region with physical tiles,
and counts them by removing them
one by one.

Draws within the region in an
attempt to cover the region. May fill
only next to existing guides (e.g.,
sides of region).

With perceptual support, can
visualize that regions can be
covered by other regions. With
strong guidance and perceptual
support from pre-structured
materials, can direct the covering
of that space and recognize that
covering as complete. Can
represent approximate
concatenations of rectangular
shapes, aligning them (applied
concept of collinearity), but often
only intuitively and in one
dimension.

Continued Overleaf
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Age
(years)

Developmental Progression Actions on Objects

May attempt to fill region, but leave
gaps and not align drawn shapes (or
only align in one dimension).

5 Area/Spatial Structuring: Primitive
Coverer

Draws a complete covering, but with
some errors of alignment. Counts
around the border, then
unsystematically in the interiors,
counting some twice and skipping
others.

Applies explicit understanding
that entire region must be covered
with shapes. Implicit visual
patterning of multiple
concatenations of rectangles (and
constraints of physical materials
in physical tiling task) guides
placement of squares in rows,
approximately aligned with
parallel rows.

Area/Spatial Structuring: Area Unit
Relater and Repeater

Draws as above. Also, can tile area
with manipulatives, and counts
correctly aided by counting one row
at a time and, often, by perceptual
labeling.

Stronger constraints on object
counting (counts all objects once
and only once; see the Counting
learning trajectory), and use of
rows as an intuitive structure or
explicit application of labeling as
marker, allows child to keep track.

6 Area/Spatial Structuring: Partial Row
Structurer

Draws and counts some, but not all,
rows as rows. May make several rows
and then revert to making individual
squares, but aligns them in columns.
Does not coordinate the width and
height. In measurement contexts,
does not necessarily use the
dimensions of the rectangle to
constrain the unit size.

Builds, maintains, and
manipulates mental images of
composite shapes, structuring
them as composites of individual
shapes and as a single entity—a
row (a unit of units). Applies this
composite unit repeatedly, but not
necessarily exhaustively, as its
application remains guided by
intuition.
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Age
(years)

Developmental Progression Actions on Objects

7 Area/Spatial Structuring: Row and
Column Structurer

Draws and counts rows as rows,
drawing with parallel lines. Counts
the number of squares by iterating
the number in each row, either using
physical objects or an estimate for the
number of times to iterate. Those who
count by ones usually do so with a
systematic spatial strategy (e.g., by row).

If the task is to measure an
unmarked rectangular region,
measures one dimension to determine
the size of the iterated squares and
eventually measures both, to
determine the number of rows
needed in drawing. May not need to
complete the drawing to determine
the area by counting (most younger
children) or computation (repeated
addition or multiplication).

Builds, maintains, and
manipulates mental images of
composite shapes, structuring
them as composites of individual
shapes and as a single entity—a
row (a unit of units) of congruent
squares. Applies this composite
unit repeatedly and exhaustively to
fill the array, possibly using
mental imagery to “move” a row
repeatedly over the rectangle to
“fill” the array (or instantiating
this operation symbolically)—
coordinating this movement in
1-1 correspondence with the
elements of the orthogonal
column. If in a measurement
context, applies the concept that
the length of a line specifies the
number of unit lengths that will
fit along that line. May apply a
skip counting scheme to
determine the area.

Area Conserver Conserves area and
reasons about additive composition of
areas (e.g., how regions that look different
can have the same area measure) and
recognize need for space-filling in most
contexts (Lehrer et al., 1998).

(NOTE: Without high-quality
instruction, this may not occur until nine
years. E.g., there are serious deficiencies in
many nine-year-olds’ understanding of
some of the most elementary concepts
of area measurement. Students do not
intuitively recognize the consequences
of partitioning regions into units of
measure. (Carpenter, Coburn, Reys, &
Wilson, 1975).)

Continued Overleaf
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Volume

Volume not only introduces a third dimension and thus a significant challenge
to students’ spatial structuring, but also complexity in the nature of the
materials measured. That is, solid units are “packed,” such as cubes in a three-
dimensional array, whereas a liquid “fills” three-dimensional space, taking the
shape of the container. For the latter, the unit structure may be psychologically
one-dimensional for some children (i.e., simple iterative counting that is not
processed as geometrically three-dimensional), especially, for example, in fill-
ing a cylindrical jar in which the (linear) height corresponds with the volume
(Curry & Outhred, 2005).

For children in grades 1–4, competence in “filling” volume (e.g., estimat-
ing and measuring the number of cups of rice that filled a container) was
about equivalent with their competence in corresponding length tasks (Curry
& Outhred, 2005). The relationship is consistent with the notion that the struc-
ture of the task is one-dimensional, exemplified by some students’ treating the
height of the rice in the container as if it were a unit length and iterating it,
either mentally or using their fingers, up the side of the container. Some
students performed better on length, others on filling volume, giving no evi-
dence of a developmental relationship between the two. The task contained
some extra demands, such as creating equal measurements; even many
first graders made sure that the cup was not over- or under-filled for each
iteration.

On the other hand, “packing” volume is more difficult than length and area
(Curry & Outhred, 2005). Most students had little idea of how to estimate or
measure on packing tasks. There were substantial increases from grades 2 to 4,
but even the older students’ scores were below the corresponding scores for the

Age
(years)

Developmental Progression Actions on Objects

8 Area/Spatial Structuring: Array
Structurer With linear measures or other
similar indications of the two
dimensions, multiplicatively iterates
squares in a row or column to determine
the area.

Drawings are not necessary. In
multiple contexts, children can
compute the area from the length
and width of rectangles and explain
how that multiplication creates a
measure of area.

Builds, maintains, and
manipulates composites (units of
units of units) that operate in two
dimensions. Mentally de/
composes array into rows by
columns or individual squares.
The mental image may be of a
spatial array or, at this level
especially, a symbolic array.
Applies repeated addition or
multiplication to composites.
Curtails these processes to apply
multiplication and area formulas
with understanding.
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area task. Further there was a suggestion that understanding of area is a
prerequisite to understanding packing volume.

This implies that a measure of packing volume requires that children build
another layer onto their competence in spatial structuring, because the units
must be defined, coordinated, and integrated in three dimensions. Work on spa-
tial structuring described a variety of strategies students use to structure a three-
dimensional array of cubes (Battista & Clements, 1998). Younger U.S. students
often count only the faces of the cubes, often resulting in counting some cubes
(e.g., those at the corners) multiple times and not counting cubes in the interior.
The majority of fifth graders, but only 20 percent of third graders, structure the
cubes constituting a rectangular prism as a series of layers, each of which is struc-
tured into rows and columns (similar to the two-dimensional structuring for
area previously discussed). This spatial structuring strategy allows students to
determine the number in one layer and then multiple or skip-count to obtain the
total number of cubic units in the rectangular prism.

There is little research on volume that involves younger children. In one
study, of all the measurable attributes tested (including number), one of the
only relationships that was significant was surprising: number and volume.
This may be because each task used a single basic strategy (different for
number and volume), neither of which required units, for children from three
years to nine years (K. F. Miller, 1984). That is, most children of all ages visually
compared the levels of fluid. However, there are developmental differences.
Younger children hold on to this strategy inappropriately, whereas older
students will change to a more accurate strategy.

Another study indicated that three- and four-year-olds understand that
object size affects the measurement of the volume of the object (Sophian,
2002). That is, they could tell that fewer larger than smaller objects would fit
in a container. Children improved significantly from pre to posttest, with
demonstrations in between, involving the experimenter saying “Let’s see” and
placing one object of each size in their respective containers, and saying, “This
one (filled with large objects) is starting to get full, isn’t it?” The degree of
improvement was similar for three- vs. four-year olds and for Head Start
children vs. children who attended private preschools. Head Start children,
however, were less likely than peers attending private preschools to be able to
articulate relevant quantitative features when asked to explain the outcomes
that they observed during the training trials.

Experience and Education

As with length and volume, how students represent volume influences how
they think of structuring volume. For example, compared to only a fifth of
students without focused work on spatial structuring, all third graders with a
wide range of experiences and representations of volume measure successfully
structured space as a three-dimensional array (Lehrer, Strom, & Confrey,
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2002). Most even developed the conception of area as the product of the area
(i.e., length times width) and height. One third grader, for example, used
squared grid paper to estimate the area of the base of a cylinder, then found the
volume by multiplying this estimate by the height of the cylinder “to draw it
[the area of the base] through how tall it is.” This indicates that a develop-
mental progression for spatial structuring, including packing volume, could
reasonably be far more progressive than some cross-sectional studies of
students in traditional instructional contexts would indicate.

Learning Trajectory for Volume Measurement

Table 11.2 A Developmental Progression for Volume Measurement

Age
(years)

Developmental Progression Actions on Objects

0–3 Volume/Capacity: Volume Quantity
Recognizer Identifies capacity or
volume as attribute.

Says, “This box holds a lot of
blocks!”

Perceives space and objects within the
space.

4 Capacity Direct Comparer Can
compare two containers.

Pours one container into another to
see which holds more.

Using perceptual objects, internal
bootstrap competencies to compare
linear extent (see the length trajectory
for “Direct Comparer”) or recognize
“overflow” as indicating the container
“poured from” contains more than that
“poured into.”

5 Capacity Indirect Comparer Can
compare two containers using a
third container and transitive
reasoning.

Pours one container into two others,
concluding that one holds less
because it overflows, and the other is
not fully filled.

A mental image of a particular amount
of material (“stuff”) can be built,
maintained, and manipulated. With the
immediate perceptual support of the
containers and material, such images
can be compared. For some, explicit
transitive reasoning may be applied to
the images or their symbolic
representations (i.e., object names).

6 Volume/Spatial Structuring:
Primitive 3-D Array Counter
Partial understanding of cubes as
filling a space.

Initially, may count the faces of a
cube building, possibly double-
counting cubes at the corners and
usually not counting internal cubes.

Eventually counts one cube at a time
in carefully structured and guided
contexts, such as packing a small box
with cubes.

With perceptual support, can visualize
that 3-D space can be filled with objects
(e.g., cubes). With strong guidance and
perceptual support from pre-structured
materials, can direct the filling of that
space and recognize that filling as
complete, but often only intuitively.
Implicit visual patterning and
constraints of physical materials guides
placement of cubes.
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Age
(years)

Developmental Progression Actions on Objects

7 Capacity Relater and Repeater
Uses simple units to fill containers,
with accurate counting.

Fills a container by repeatedly filling
a unit and counting how many.

With teaching, understands that
fewer larger than smaller objects or
units will be needed to fill a given
container.

See the learning trajectory level, Length
Unit Relater and Repeater.

7 Volume/Spatial Structuring: Partial
3-D Structurer Understands cubes
as filling a space, but does not use
layers or multiplicative thinking.
Moves to more accurate counting
strategies e.g.:

Counts unsystematically, but
attempts to account for internal
cubes.

Counts systematically, trying to
account for outside and inside
cubes.

Counts the numbers of cubes in one
row or column of a 3-D structure
and using skip counting to get the
total.

Builds, maintains, and manipulates
mental images of composite shapes,
structuring them as composites of
individual shapes and as a single
entity—a row (a unit of units), then a
layer (a “column of rows” or unit of
unit of units). Applies this composite
unit repeatedly, but not necessarily
exhaustively, as its application remains
guided by intuition.

8 Area/Spatial Structuring: 3-D Row
and Column Structurer

Counts or computes (row by
column) the number of cubes in
one row, and then uses addition or
skip counting to determine the
total.

Computes (row times column) the
number of cubes in one row, and
then multiplies by the number of
layers to determine the total.

Builds, maintains, and manipulates
mental images of composite shapes,
structuring them as composites of
individual shapes and as a single
entity—a layer (a unit of units of units)
of congruent cubes. Applies this
composite unit repeatedly and
exhaustively to fill the 3-D array—
coordinating this movement in 1-1
correspondence with the elements
of the orthogonal column. If in a
measurement context, applies the
concept that the length of a line
specifies the number of unit lengths that
will fit along that line. May applies a
skip counting scheme to determine the
volume.

Continued Overleaf
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Relationships Among Length, Area, and Volume

As the previous discussions show, length, area, and volume measurement have
many similar cognitive features, such as general principles of measurement
(unit iteration). They are also all geometric measurement, with the addition of
similar features of conservation of units under spatial transformations,
the inverse relation between unit size and the number of units, and spatial
structuring. The measurement of area and volume leads to multiplicative
relationships involving the lengths of the sides.

In a similar vein, developmental progressions for length, area, and volume
measurement share features (Curry & Outhred, 2005). Early errors including
difficulties with unit iteration, such as overlapping units, leaving gaps, using
different size “units,” and counting units twice or skipping units. Later, they
have difficulty moving from physically filling space to using visualization and
more abstract approaches (Battista & Clements, 1996, 1998; Bragg & Outhred,
2001; Curry & Outhred, 2005; Outhred & Mitchelmore, 2000).

Many curricula assume that children must learn length first, then area, then
volume. However, research does not indicate there is a strict prerequisite
relationship (K. Hart, 1984). The general developmental ordering has been
found in other research (Curry & Outhred, 2005; Vasilyeva & Casey, 2007).
Similarly, estimates of linear measurement are more accurate than for weight,
liquid capacity, and volume, but poorer than for temperature. (Joram et al.,
1998). However, there are several qualifications to this ordering. First, only
“packing” volume is more difficult than length and area. Indeed, competence
regarding “filling” volume seems to develop in parallel to competence
regarding length (confirming that both involve one-dimensional thinking).
Second, aspects of all three tasks are developing through the primary grades.

Age
(years)

Developmental Progression Actions on Objects

9 Area/Spatial Structuring: 3-D Array
Structurer With linear measures or
other similar indications of the two
dimensions, multiplicatively iterates
squares in a row or column to
determine the area.

Constructions and drawings are not
necessary. In multiple contexts,
children can compute the volume
of rectangular prisms from their
dimensions and explain how that
multiplication creates a measure of
volume.

Builds, maintains, and manipulates
composites (a 3-D array—units of units
of units of unit) that operate in two
dimensions. Mentally de/composes 3-D
array into layers, which themselves are
de/composed into rows by columns.
The mental image may be of a spatial
array or, at this level especially, a
symbolic array. Applies repeated
addition or multiplication to
composites. Curtails the process to use
volume formulas with understanding.
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As another example, performing in the early levels of the developmental
progressions in both length and area may be affected by how carefully
children place iterated units and record the positions (Curry & Outhred, 2005),
indicating the influence of a common feature of measurement for these
domains. Therefore, it appears that it is the spatial structuring aspects of geo-
metric measurement that could be effectively sequenced in learning length,
then area, then volume. For example, most articles explicitly mention that a
good foundation in linear measurement is a necessary condition for under-
standing area measurement. This seems clear in students’ ability to understand
the covering of one-dimensional space with units, as well as in later levels of
understanding of area and volume, given that each, in their more sophisticated
form, can be computed as the product of linear measurements. Similarly, a
good understanding of two-dimension spatial structuring appears important
to extend this competence to three dimensions (e.g., in stacking volume). But
other aspects (e.g., using a filling unit to measure liquid volume) could develop
in parallel (e.g., to measure length) and relatively independently. In summary,
except for the development of spatial structuring in one, then two, and finally
three dimensions, there seems to be no strict developmental sequence for
length, area, and volume, but overlapping progress.

Angle and Turn Measure

As with length and area, children need to understand concepts such as
equal partitioning and unit iteration to understand angle and turn measure.
Whether defined more statically as the measure of the figure formed by the
intersection of two rays or as turning, angle measure involves a relation-
ship between components of shapes and therefore is a property as defined
here. Given the complexity, it is unsurprising that students in the early and
elementary grades often form separate concepts of angles as figures and turns
(Lehrer, Jenkins et al., 1998), and may have separate notions for different turn
contexts (e.g., unlimited rotation as a fan vs. a hinge) and for various “bends”
(Mitchelmore, 1998; Mitchelmore & White, 1998).

Especially receiving only traditional instruction, students’ misconceptions
about angle and their measure abound. Children in grades 1, 2, and 3 believe
that “straight” means no “bumps” or “bends” but many of those in grades 1
and 2 also believe that a line segment oriented 50° from the vertical is not
straight (Lehrer, Jenkins et al., 1998). When discussing “bends,” students are
influenced by the lengths of the intersecting lines or their orientation, with the
latter decreasing from grades 1 to 5, but the former a persistent error. That is,
67 percent of primary grade students claim that 30° and 60° angles are more
similar to each other than to a 120° angle when the line segments of all three
are equal in length, but when the length of the line segments of the 60° angle
are decreased, only 43 percent judge the acute angles as most similar (see the
illustration in the companion book). The influence of the irrelevant length of
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the line segments may be persistent (and orientation less so) because many
students continue to believe that angles can be measured by the distance
between the endpoints of two line segments that form angle. Even in contexts
designed to evoke a dynamic image of turning, such as hinges or doors, most
students used a static measure of the length between the endpoints.

A final rule-assessment task showed that most students in grades 1 and 2
(given traditional instruction) do not differentiate between angles based on
their measure, although some do differentiate between small (e.g., 30° or 60°)
and large (90° and 120°) angles. By grade 3, most children (69 percent)
mentally decomposed figures to compare angles and could reliably compare all
but the two most similar angles (30° and 60°). By grade 5, most could compare
most angle pairs, but still only 9 percent even at this age could coordinate the
relationships among all these angles.

Other research shows that students often hold other misconceptions, such
as that a right angle is an angle that points to the right, or two right angles in
different orientations are not equal in measure (Clements & Battista, 1992).
They relate angle measure to not only the lengths of the line segments and
distance between the endpoints, as already discussed, but also the slope or tilt
of the top line segment, the area enclosed by the triangular region defined by
draw sides, and the proximity of the sides (Clements & Battista, 1989). Some
misconceptions decrease over the elementary years, such as orientation; but
others, such as the effect of segment length, do not change, and some, such as
the distance between end points, actually increase (Lehrer, Jenkins et al., 1998).
By the third grade, most children can mentally decompose figures to allow
identifying and distinguishing of one or more angles. Children’s concept of
images (Vinner & Hershkowitz, 1980) can be adversely affected by inappropri-
ate instruction such as the limited illustrations they are shown.

Related topics include parallel and perpendicular lines. Both are difficult
concepts for children in some applications. Children as young as three
(Abravanel, 1977) and four years use parallelism in alignment tasks and
six-year-olds can name parallel and non-parallel lines, although they have
difficulty locating parallels in complex figures (Mitchelmore, 1992). Further,
preschoolers use perpendicularity and parallelism in their informal play
(H. P. Ginsburg et al., 1999). For example, they place blocks parallel and per-
pendicular to each other and even implicitly understand that the same length
block will always bridge two long parallel blocks.

However, there appear to be initial foundations on which children can build.
For example, children in pre-K use angles implicitly as in block building
(H. P. Ginsburg et al., 1999). Children as young as five can use angles to repre-
sent locations of objects in a circle (i.e., an intuitive use of polar coordinates,
Sandberg & Huttenlocher, 1996). In an early study, while five-year-olds showed
no evidence of attention to angle in judging congruence, they could match
angles in correspondence tasks (Beilin, 1984; Beilin et al., 1982). So, helping
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children mathematize their intuitive use of angle size, matching shapes by
angles, and using angles to complete puzzles are all within the competence of
most children from a very young age.

Thus, children do much more than recognize that geometric figures
have corners. They can learn to reliably distinguish among angles of different
measure, and can mentally decompose a figure into separate attributes of
length and angle (Lehrer, Jenkins et al., 1998). Still, as noted previously, they
often confound angle and length measures, so careful instructional attention
must be given to angle and turn measure.

Experience and Education

This research might lead to the argument that angle and turn measure are both
difficult and relatively esoteric mathematical concepts and therefore need not
be introduced to young children. However, (a) children can and do compare
angle and turn measures informally, (b) angle size is necessary to work with
shapes, and (c) although only a small percentage of students learn angles well
through elementary school in the U.S., young children can learn these concepts
successfully (Lehrer, Jenkins et al., 1998).

Perhaps the most difficult step for students is to integrate turns, and, in
general, a dynamic understanding of angle measure-as-rotation, into their
understandings of angles. Computer manipulatives and tools can help children
bring the concept of a turn to an explicit level of awareness (Sarama, Clements,
& Vukelic, 1996).

Logo’s turtle geometry involves specific angles measures. Logo use does not
immediately develop strong angle concepts. Students’ misconceptions about
angle measure and difficulties coordinating the relationships between the
turtle’s rotation and the constructed angle have persisted for years, especially
if not properly guided by their teachers (Hershkowitz et al., 1990; Hoyles &
Sutherland, 1986; Kieran, 1986a; Kieran et al., 1986). In general, however,
Logo experience appears to facilitate understanding of angle measure.
Logo children’s conceptualization of larger angles are more likely to reflect
mathematically correct, coherent, and abstract ideas (Clements & Battista,
1989; Findlayson, 1984; Noss, 1987) and show a progression from van Hiele
level 0 to level 2 in the span of the treatment (Clements & Battista, 1990). If
Logo experiences emphasize the difference between the angle of rotation and
the angle formed as the turtle traced a path, misconceptions regarding the
measure of rotation and the measure of the angle may be avoided (Clements &
Battista, 1989; Clements, Battista et al., 2001b; Lehrer et al., 1989).

Research indicates that the traditional Logo philosophy of body syntony,
or connections with one’s physical movements—is a critical instructional
component. One study showed that children learned turn measure first
through physical rotations, especially rotations of their own bodies
(Clements, Battista et al., 1996). During the same time, they gained limited
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knowledge of assigning numbers to certain turns with turtle geometry, initially
by establishing benchmarks. A synthesis of these two domains—turn-as-body-
motion and turn-as-number—constituted a critical juncture in learning about
turns for many primary-grade children. In a follow-up study, this develop-
mental order was confirmed in students of above average ability and also
extended it, revealing a process of psychological curtailment in which students
gradually replace full rotations of their bodies with smaller rotations of an arm,
hand, or finger (Clements & Burns, 2000). As they do this, they build mental
images that can represent these physical movements. Eventually, these mental
images become operational; that is, they can be created, maintained, and trans-
formed internally. At this point, children have a “conceptual protractor” that
they can mentally project onto objects and contexts to measure turns. Various
factors (e.g., initial heading) affect students’ strategy choice, with curtailment
happening within each of several categories of problems.

These and other studies have used the Logo turtle to help children
mathematize their physical experiences. In one study across grades K–6, the
youngest children improved on certain turn and angle tasks the most relative
to controls (Clements, Battista et al., 2001b). These tests involved difficult dis-
tracters, which demanded, for example, that children differentiate between
greater angle measure and greater side length. Thus, thinking about angles and
turns in turtle geometry helped children as young as kindergarten develop
robust concepts of their measure. Again, the Logo activities were embedded in
an instructional program designed to teach mathematics. In addition, Logo
software specially designed to show the sweep of the ray as the turtle turns and
provide other measurement tools has shown to be especially useful (Clements,
Battista et al., 2001b; Clements & Sarama, 1995).

Learning Trajectory for Angle and Turn Measurement

To understand angles, children must understand the various aspects of the
angle concept. They must overcome difficulties with orientation, discriminate
angles as critical parts of geometric figures, and construct and represent the
idea of turns, among others. Furthermore, they must construct a high level
of integration among these aspects. A developmental progression, including
the mental actions on objects, for angle and measurement is provided in
Table 11.3.

312 • Geometric Measurement



Table 11.3 A Developmental Progression for Angle (and Turn) Measurement

Age
(years)

Developmental Progression Actions on Objects

2–3 Intuitive Angle Builder Intuitively
uses some angle measure notions in
everyday settings, such as building
with blocks.

Places blocks parallel to one another
and at right angles (with the
perceptual support of the blocks
themselves) to build a “road.”

See the learning trajectory for motions
and spatial sense.

4–5 Implicit Angle User Implicitly uses
some angle notions, including
parallelism and perpendicularity, in
physical alignment tasks,
construction with blocks, or other
everyday contexts (Mitchelmore,
1989, 1992; Seo & Ginsburg, 2004).
May identify corresponding angles
of a pair of congruent triangles
using physical models. Uses the
word “angle” or other descriptive
vocabulary to describe some of
these situations.

Moves a long unit block to be
parallel with another block after
adjusting the distance between them
so as to accurately place a
perpendicular block across them, in
anticipation of laying several other
blocks perpendicularly across them.

See the learning trajectories for
matching shapes and for motions and
spatial sense.

With immediate perceptual support of
and feedback from action upon physical
objects, places objects in approximate
alignment (e.g., parallel). Such
placement is influenced by an inborn
sense of verticality and horizontality;
for oblique placements, “not touching”
is more heavily relied upon.

6 Angle Matcher Matches angles
concretely. Explicitly recognizes
parallels from non-parallels in
specific contexts (Mitchelmore,
1992). Sorts angles into “smaller” or
“larger” (but may be misled by
irrelevant features, such as length of
line segments).

Given several noncongruent
triangles, finds pairs that have one
angle that is the same measure, by
laying the angles on top of one
another.

With immediate perceptual support of
and feedback from action upon physical
objects, maintains an approximate
visual image of a an angle, using this to
choose another shape or angle that
matches it. Similarly can create and
maintain a visual trace of two separate
lines, deciding that they are not parallel
if the traces meet and that they are if the
traces are approximately in the same
direction according to an external
framework.

7 Angle Size Comparer Differentiates
angle and angle size from shapes
and contexts and compares angle
sizes. Recognizes right angles, and

Builds, maintains, and manipulates
mental images of angles in which size is
maintained even if those images
undergo rigid motions.

Continued Overleaf
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Final Words

Measurement is one of the principal real-world applications of mathematics.
It bridges two critical realms of mathematics, geometry and real numbers.
Number and operations are essential elements of measurement. The measure-
ment process subdivides continuous quantities such as length to make them
countable. Measurement provides a model and an application for both number
and arithmetic operations. In this way, measurement helps connect the two
realms of number and geometry, each providing conceptual support to the
other.

Research on linear, area, volume, and angle and turn measurement indicates
that measuring in general is more complex than learning the skills or pro-
cedures for determining a measure. The conceptual, mental activities of
children as they engage in measuring contexts should be the focus of
instruction. Learning specific measurement concepts and skills is intrinsically
important, and it also helps children differentiate between two basic types of
quantity, discrete and continuous, which are often confused by young children

Age
(years)

Developmental Progression Actions on Objects

then equal angles of other measures,
in different orientations
(Mitchelmore, 1989). Compares
simple turns. (Note that without
high-quality instruction, this and
higher levels may not be achieved
even by the end of the elementary
grades.)

“I put all the shapes that have right
angles here, and all the ones that
have bigger or smaller angles over
there.”

Turns Logo turtle, using degree
measurements.

8+ Angle Measurer Understands angle
and angle measure in both primary
aspects and can represent multiple
contexts in terms of the standard,
generalizable concepts and
procedures of angle and angle
measure (e.g., two rays, the
common endpoint, rotation of one
ray to the other around that
endpoint, and measure of that
rotation).

Forms connections among, and
eventually integrates, notions of angle
(as intersection of two rays) and angle
measure (as rotation between rays)
across different contexts.
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(K. F. Miller, 1984; Piaget et al., 1960). That is, representing exact discrete
quantities by counting, and more precise continuous quantities by measuring,
may be instrumental in children’s development of the distinction between and
attributes of these two basic categories (Mix et al., 2002). This gradual inte-
gration and differentiation across domains supports the previously-described
principle of progressive hierarchization, which appears consistently in studies
of measurement. For example, recall that children who observed agreement
between measurement and direct comparison were more likely to use
measurement later than were children who observed both procedures but did
not have the opportunity to compare them (P. E. Bryant, 1982). Children tend
to learn about different aspects of measures of different attributes, and only
with time do they form a set of related concepts. Only with high-quality
instruction do they form generalizations about measurement across attributes.
Such instruction integrates development of procedures and concepts. Finally,
we repeat the caveat that although young children can develop early ideas
in measurement of various attributes, such as area and angle, there is little
research on how valuable it would be to invest instructional time in these areas
rather than others. We believe that certain concepts, such as “right angle versus
not right angle” are essential, but the age at which it is best to introduce more
complex angle measurement concepts remains an open question.

This chapter concludes the main discussion of the three central content
domains for early childhood mathematics: number, geometry, and geometric
measurement. Part V contains two chapters that address (a) content domains
not previously covered, and (b) processes.

Geometric Measurement, Part 2: Area, Volume, and Angle • 315





Part V
Other Content Domains and Processes

Part V contains two chapters that address content domains and processes
not previously covered. In both cases, the areas have already been discussed,
sometimes extensively, in the context of the previous chapters. However, they
are sufficiently important to require chapters focused exclusively on them.
Chapter 12 describes two general areas, patterns—including repeating
patterns, structure, and algebraic thinking—and data analysis. Chapter 13
focuses on the processes of reasoning, problem solving, classification, and
seriation.





12
Other Content Domains

Patterns and Structure (Including Algebraic Thinking)

Previous chapters have discussed perceptual patterns, such as subitized
patterns (Chapter 2); patterns in the number words of counting (Wu, 2007,
see also Chapter 3); “one-more” pattern of counting (Chapter 3), which also
connects counting with arithmetic, numerical patterns (see Chapters 2, 3, 5,
and 6); arithmetic patterns (see Chapter 6, as well as other examples in Parker
& Baldridge, 2004); and spatial patterns (Chapters 8 and 9), including array
structures (Chapter 11). Noteworthy is that none of these are examples of the
typical early childhood practice of patterning—repeated sequential patterns.
However, they all reflect Lynne Steen’s definition of mathematics as the
“science of patterns”; that is, patterns in number and space (1988). The theory
of mathematics, according to Steen, is built on relations among patterns and on
applications derived from the fit between pattern and observations.

Because these chapters have dealt with these aspects of patterning exten-
sively, we limit discussions of patterning in this chapter to sequential and other
types of repeated patterns, and extend this focus only to include algebraic
thinking, that content domain most clearly linked to early work with patterns.
Our own, however, is the broader view, that patterning is the search for mathemat-
ical regularities and structures, to bring order, cohesion, and predictability to
seemingly unorganized situations and facilitate generalizations beyond the infor-
mation directly available. In this view, patterning is a domain of study, a process,
and a habit of mind.

Pre-K children often engage in pattern-related activities and recognize
patterns in their everyday environment. Recall that in the observational study
of children at play, the category of mathematics, “pattern and shape” was the
most frequently observed, 30 percent of the observed time (Ginsburg et al.,
1999; Seo & Ginsburg, 2004). However, research also has revealed that an
abstract understanding of patterns develops gradually during the early
childhood years (B. A. Clarke et al., 2006; Klein & Starkey, 2004). Of children
entering their first year of school in Australia, 76 percent could copy a repeating
color pattern, but only 31 percent could extend or explain it (B. A. Clarke et al.,
2006). Little else is known, except that patterns are one of many elements of
teaching visual literacy with positive long-term impact in the Agam program
(Razel & Eylon, 1990).

The recognition and analysis of patterns have been considered important
components of the young child’s intellectual development because they
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provide a foundation for the development of algebraic thinking. For example,
early connections lie in the correspondences discussed in previous chapters—
primitive versions of the basic algebraic notion of mapping (e.g., functions),
at least developmentally. For example in counting (Chapter 3), people map
each item of the “source” or “departure” set—the counting words—to items in
the “arrival” set—the group of objects to be counted (Wagner & Walters,
1982).

Another key foundational ability for all topics in mathematics is the alge-
braic insight—the conscious understanding that one thing can represent
another. Children develop this key idea at about three years of age in the
simplest form; for example, as we have seen, understanding that a map or
picture can represent another space. This ability develops considerably over the
next several years, as children interact with symbols, and with other people
using these symbols, in a variety of situations, from maps to spatial patterns to
numerical patterns. (Early algebraic thinking is not early algebra.)

From this perspective, algebraic thinking can permeate much of the instruc-
tion of all the content domains, especially arithmetic (and the smaller amount
of research done on such thinking should not determine its importance to the
curriculum; more research is needed on that issue). That is, one common,
albeit often underappreciated, route to algebra begins with a search for pat-
terns. For example, the later months of kindergarten, it is possible that with
guidance children can begin analyzing numerical patterns, just as primary
grade students can do. These students learn to find and extend numerical
patterns—extending their knowledge of patterns to thinking algebraically
about arithmetic (Baroody, 1993). For example, even preschoolers and kinder-
gartners can generalize that subtracting zero from any number gives that num-
ber, or that subtracting a number from itself gives zero (Baroody & Lai, 2007).

Moving into the primary grades, children can learn to find and extend
numerical patterns—extending their knowledge of patterns to thinking
algebraically about arithmetic (Baroody, 1993). Two central themes are making
generalizations and using symbols to represent mathematical ideas and to
represent and solve problems (Carpenter & Levi, 1999). For example, children
might generalize that when you add zero to a number the sum is always that
number or when you add three numbers it does not matter which two you
add first (Carpenter & Levi, 1999). The ability of children to invent, learn,
apply, justify, and otherwise reason about arithmetic problems, described
extensively in Chapters 5 and 6, arguably demonstrates that algebraic thinking
can be an implicit but significant component of early and primary children’s
learning of arithmetic. For example, children draw upon the fundamental
properties of addition, subtraction, and multiplication, as well as the relations
among the operations. They use the commutativity of addition to create
counting-on-from-larger strategies. Similarly, associativity and the inverse
relation between addition and subtraction are used extensively, if implicitly, in
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many of children’s arithmetic strategies. The caveat of implicit use is impor-
tant—children may not make these properties explicit, especially without
guidance from the teacher. However, this, too, is possible (Carpenter & Levi,
1999).

Further, without teachers who understand young children’s development
of algebraic thinking, and are willing to promote it, children do not develop
flexible, algebraic habits of thinking and, more unfortunately, develop
limited and erroneous ideas. For example, they believe that the equal sign
represents a one-way operation that produces an answer of the right side (and
thus reject even simple number sentences such as 4 = 9 − 5). One child said,
“It’s telling you, that, um, I think, the, um, the end is coming up . . .”
(Ginsburg, 1997, p. 24). Similarly, children often do not recognize the commu-
tative and distributive properties in situations in which it is important to do so.
Some researchers have explained such difficulties as cognitive developmental
constraints. However, there are reasons to believe that a lack of experience, or
mis-educative experiences (Dewey, 1938/1997), are the cause; that is, the source
of this misconception is almost certainly that children never experience equal
signs used in other ways than “give the answer.” The first reason is that primary
to intermediate grade children can and do recognize that equality is preserved
if equivalent transformations are made on both “sides” of a situation, from
balance scales to sets of objects, verbal problems, and written equations
(Schliemann, Carraher, & Brizuela, 2007). High-SES children could give logical
justifications for all contexts, but verbal contexts educed more logical and
transformational justifications than the other contexts for all children, who
tended to justify their responses based on calculations whenever possible. For
example, if all numbers are known, children compute, whereas they would
solve problems in which some quantities were unknown using other strategies,
more likely to employ algebraic thinking.

A second reason to believe that cognitive developmental constraints are
not a valid reason to postpone algebraic reasoning is that existence of success-
ful educational interventions in which young children engage in algebraic
thinking belie such an explanation (Schliemann et al., 2007). We discuss such
interventions in the “Experience and Education” section of this chapter.

Consistent with such arguments, some mathematicians and researchers
have claimed that an overemphasis on simple patterns can impede children’s
development (Blanton & Kaput, 2004). By emphasizing a single numeric
progression, it may make it more difficult for children to learn the more
mathematically important idea of co-variance between two variables. They
describe functional thinking as representational thinking that relates two
different quantities. For example, they asked children to suppose they were in a
dog shelter and figure out, for a given number of dogs, how many eyes (or eyes
and tails) they would see. Preschoolers (ages three to five) could use concrete
representations to count, as the teacher wrote the numbers in a “t chart” such
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as in Table 12.1. Note how the two quantities relate. However, there was no
sign they looked for patterns.

Kindergarteners used dots and numerals to represent this situation. The
teacher again recorded the information in a t-chart and some students identi-
fied the pattern in the number of eyes as “counting by twos” or “every time we
add one more dog, we get two eyes” (p. 137). In one class, children noticed that
“We’re skipping all the odd numbers” (p. 138). This is a further generalization
and abstraction.

First graders also noticed counting by twos or threes (for eyes + tails) and
skip-counted to find how many for seven dogs. Describing how quantities
correspond is covariational thinking. Second graders provided multiplicative
relationships using natural language: “You have to double the number of dogs
to get the number of eyes” (p. 138). Third graders used letters as variables.
Thus, even primary grade students could learn to use representations such as
t-charts—fluently, by second or third grade—and show signs of functional
thinking emerging in kindergarten. Note that first graders were often
redirected to examine the pattern in just one column, perhaps because too
much patterning work only deals with one quantity (Blanton & Kaput, 2004).

Note that the goal of this body of work is not to do algebra earlier but to
develop toward algebraic thinking—the “ability to make effective and purpose-
ful use of symbols in ways that are inherently sensible and meaningful. At
times this means operating on symbols in ways that are purely syntactical.
At times this means making meaningful use of the contexts and relations that
gave rise to the symbols. The act of symbolizing itself may serve purposes
of generalization, classification, or abstraction. Thinking algebraically means
having access to various forms of representation, including symbolic represen-
tation; being able to move flexibly from one representation to another when
one representation or another provides better affordances for the task at hand;
being able to operate on the symbols meaningfully in context when called for,
and according to the relevant syntactic rules when called for . . . algebraic
thinking is a particular form of mathematical sense-making related to symbol-
ization. It involves meaningful symbol use, whether the meaning is ‘simply’
guided by the syntactical rules of the symbol system being used or the meaning

Table 12.1 A T-Chart for Number of Dogs and Ears

Dogs Eyes

1 2
2 4
3 6
4 8
. . .
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is related to the properties of a situation that have been represented by those
symbols, or related to other representations of it” (Schoenfeld, 2008).

One final study in this section examined kindergartners’ and first graders’
knowledge of using symbols to represent number sentences (Mark-Zigdon &
Tirosh, 2008). Kindergarteners could recognize legitimate number sentences,
but had much difficulty producing them. First graders generally succeeded
on both these tasks, although recognition was also easier for them than
production. However, they found it difficult to recognize number sentences
not written in the canonical form. Thus, there is a need for students to
discuss the nature of addition and subtraction number sentences and the
different symbols, the role they play, and their defining and nondefining
properties.

In summary, students in the primary grades can learn to formulate, repre-
sent, and reason about generalizations and conjectures, although their justifica-
tions do not always adequately validate the conjectures they create (Davis,
1984; Kaput, Carraher, & Blanton, 2008; Schifter, 1999). This body of research
on young children’s understanding of patterns can be used to establish learning
trajectories for pattern instruction in early mathematics education, more
reliably for the simple case of sequential repeated patterns. Such a perspective
on patterns and algebra as habits of mind or ways of thinking can form
potentially useful connections between early and later school mathematics.
That is, it creates a framework within which early work from correspondences,
to analyzing relationships between quantities, noticing structure, studying
change, generalizing, problem solving, modeling, justifying, proving, and
predicting can be seen as building a bridge between these mathematical
foundations and later formal algebraic work (see Kieran, 2006, for a detailed
discussion). Again, the research is sparse regarding algebraic thinking and pre-
algebra (arithmetic using letters to represent numbers, Parker & Baldridge,
2004). Some have argued that functional thinking within algebraic reasoning
activities should be in the earliest of the elementary years (Blanton & Kaput,
2004). Although we believe this to be a fruitful perspective, we caution that
little research is available that indicates whether this perspective—and the
implied focus for curricula and teaching—is more efficacious and efficient
than others. We need rigorous studies to test whether such an emphasis
would be superior to other curricular approaches. The section on “Experience
and Education” in this chapter describes some promising educational inter-
ventions based on this perspective.

Experience and Education

“When done properly (i.e., with understanding), engaging in mathe-
matics is a coherent, sense-making activity. Actions are not arbitrary; one
does what one does for good reason. If one understands those reasons,
everything fits together.
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Algebra represents one of humankind’s great intellectual achieve-
ments—the use of symbols to capture abstractions and generalizations,
and to provide analytic power over a wide range of situations, both pure
and applied.

The fundamental purpose of early algebra should be to provide
students with a set of experiences that enables them to see mathe-
matics—sometimes called ‘the science of patterns’—as something they
can make sense of, and to provide them with the habits of mind that will
support the use of the specific mathematical tools they will encounter
when they study algebra. With the right kinds of experiences in early
algebra, students will no longer find algebra to be a new and alien body
of subject matter. Rather, they will find it to be the extension and
codification of powerful modes of sense-making that they have already
encountered in their study of mathematics.”

(Schoenfeld, 2008, pp. 506–507)

The Building Blocks learning trajectories for this type of pattern is presented in
Table 12.2. Such an approach could be successful, if teachers have the know-
ledge to build the mathematics learning from them, but several observational
studies from Australia suggest caution. Teachers need to understand how to
take advantage of the opportunities such vehicles present. Case studies of two
teachers revealed that both thought patterning was important and that they
knew enough about the patterning process. However, observations of their
classrooms indicated that there were limited worthwhile patterning opportun-
ities (Waters, 2004). For example, one teacher asked children to make clothing
patterns; however, the examples of clothing she showed were colorful, but con-
sisted of complex random designs that did not have any regularities. Other
teachers ignored or did not elaborate on children’s patterning (Fox, 2005, see
specific examples in the companion volume).

Extending the conclusions of these research projects, we believe that
teachers need to understand the learning trajectories of patterning in all its
forms and the wider implications of patterning as a habit of mind. We agree
that in patterning, as in all mathematical areas, there is a need to help teachers
plan specific experiences and activities, capitalize on relevant child-initiated
activities, and elicit and guide mathematically generative discussions in all
settings (cf. Fox, 2005).

In reaction to these, innovative programs from Australia indicate that early
patterning, algebraic thinking, and the learning of structure in mathematical
thinking are important to young children’s mathematical development and are
best considered general cognitive characteristics (Mulligan, Mitchelmore, &
Prescott, 2006; Mulligan, Prescott, Papic, & Mitchelmore, 2006). Descriptive
studies have shown that the perception and representation of mathematical
structure in children aged four to 6.7 years generalize across a range of
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mathematical domains, such as counting, partitioning, unitizing, patterning,
measurement, space and graphing (Mulligan, Prescott, & Mitchelmore, 2004).
The researchers also described four levels of development of patterning and
structural thinking. At the first level, children might reproduce a clock as a
picture with no math and a triangular arrangement of 6 chips as circles with no
triangular shape, numerical pattern, or correct quantity of circles (levels of
understanding of rulers are similar to those in Chapter 10 and levels of spatial
structuring are similar to those in Chapter 11). The second level is emergent,
with some elements of structure, such as a triangular form drawn as a
“Christmas tree” without correct quantity or the correct number of dots but
without the triangular shape. The third level shows partial structure, such as a
clock face with numerals but not canonically arranged. The fourth level
integrates mathematical and spatial structural features accurately. Between
80 percent and 95 percent of all responses could be unambiguously sorted into
the four levels across all tasks—an impressive consistency of structural repre-
sentations over quite different tasks. A longitudinal investigation supported
these findings and showed that many low-structuring children continued to
allow superficial features to “crowd” their images, so that some actually
reverted to less sophisticated levels, as their higher-structuring peers moved
up one or two levels. These studies imply that structuring is an important
mathematical process that supports mathematics development across domains
(Mulligan, Mitchelmore, & Prescott, 2005).

Preschoolers participating in the Australian Pattern and Structure
Mathematics Awareness Program (PASMAP) show significant development of
concepts and skills in mathematical structuring and patterning. The
researchers are unsure whether children’s awareness and use of pattern and
structure is the cause or the effect of their learning of mathematical concepts
and skill, but do claim that the more children have developed internal repre-
sentations that are developed structurally, the more coherent, organized, and
stable their external representations, and the more mathematically competent
they are (Mulligan, Prescott et al., 2006). A quasi-experimental design showed
that, on pretest, children in the comparison group were the more successful on
all but one of the tasks, but after the PASMAP, the intervention group was more
successful on all the tasks. This trend was maintained a year after the program
ended (Papic & Mulligan, 2007). These were not randomized controlled trials
designs, but strongly suggest that this approach contributed substantially to
young children’s mathematical development.

Generalizations about fundamental properties of number and arithmetic
may arise spontaneously as students solve problems (Carpenter & Levi, 1999).
However, this did not occur regularly in first and second grade classrooms,
so the researchers used Bob Davis’ activities from the Madison Project, in
particular his activities involving true/false sentences (e.g., 22 − 12 = 10, true or
false?) and open number sentences (x + y = 12 or x + x = 48, see the companion
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book for elaborations). Results showed that such activities were successful.
Students could make generalizations from the specific cases. Generalizations
about zero were generated most easily. Some students made conjectures about
arithmetic properties with “open sentences” such as a + b − b = a. Most of the
students learned to deal with the equal sign as a relation, not just as indicating
“here comes the answer”; however, they needed repeated experience with the
number sentences with more than a single number after the equal sign. Further,
many students had difficulty creating justifications that went beyond merely
providing examples. With carefully guided conversations, however, second
graders could make their implicit knowledge explicit in making and discussing
conjectures (Carpenter, Franke, & Levi, 2003). The researchers believe that
young children are capable of learning important, unifying ideas of mathe-
matics that serve as the foundation for both arithmetic and algebra (Carpenter
et al., 2003).

More recently, these researchers emphasize the importance of the content
that is to be generalized and represented, including equality as a relation,
relational thinking, articulating fundamental properties of number and
operations, and justification (Franke, Carpenter, & Battey, 2008). We already
discussed equality as a relation—understanding the equal sign not merely in a
fixed, procedural (and often erroneous; e.g., for 7 + 3 =  + 4 saying “14”)
manner, but as indicating a structural relationship. Relational thinking involves
examining expressions and equations in their entirety rather than as just a
step-by-step process. For example, solving 65 − 42 + 5 + 42 =  relationally,
students might understand that 42 − 42 = 0, so add the 65 and 5, rather than
computing from left to right. Or, to solve 7 + 3 =  + 4, students might not
only answer correctly, but reason that given 4 is one more than 3, the answer
should be one less than 7. This involves using the associative property of
addition—implicitly. Articulating such fundamental properties of number
and operations is the third content emphasis. Previously discussed true/false
sentences can catalyze such dialog. The fourth emphasis, justification of con-
jectures, is the most difficult. At the lowest level, students appeal to authority,
the teacher or textbook. More autonomous is the use of examples. Such use can
be deceiving, but, appropriated pedagogically, it can help educe the highest
level, the use of generalization. Naïve generalizations may appeal to ideas that
appear self evident, such as n + 0 = n. Other arguments may use properties or
generalizable models, such as a rotation of a rectangular array to show com-
mutativity of multiplication. Such emphases are substantive extensions (from
simple arithmetic) for teachers of the mathematical ideas and processes, and
the pedagogical strategies that might be used.

These researchers have found that sequences of problems can be particularly
important. For example, if a student correctly solves 43 + 28 =  + 42, but using
full computation, she might offer 14 + 15 − 14 + , then 28 + 32 = 27 + .
Students soon realize how they can use relational thinking (Franke et al., 2008).
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These and other studies (see the companion book) support the position that
we stated previously, that one of the reasons to believe that cognitive develop-
mental constraints are not a valid reason to postpone algebraic reasoning is that
existence of successful educational interventions in which young children
engage in algebraic thinking belie such an explanation (Schliemann et al.,
2007). For example, children in grades 1 to 4 learned to use algebraic notation
to solve verbal problems and performed better than the control children
throughout their school years (Bodanskii, 1991). At the end of fourth grade,
they showed better performance in algebra problem solving than sixth and
seventh grades in traditional programs who were introduced to algebra only in
sixth grade.

Similarly, although schools’ introduction of algebra strongly affects the
representations children use to solve algebraic problems, some primary-grade
students also invented representational schemes (Brito-Lima & da Rocha
Falcão, 1997). For example, one problem involved two groups of children, one
of which built a number of kits in the morning and three times that number in
the afternoon and the second built 24; knowing the two groups built the same
number of kites, how many did the first group build in the morning (e.g., x + ax
= b)? After a teacher wrote letters for morning, afternoon and the whole day, a
second grader drew a kite to represent the number built in the morning, three
identical kites for the afternoon, and correctly determined the number each
kite represented. Another second grader drew one, then three more circles, and
placed dots under each one until he reached 24; the number under the first, six,
gave him the answer. Thus, although older children introduced to algebraic
representations showed more sophistication and success, some students from
all grades, first to sixth, developed written representations for algebraic
problems, and, with guidance, solved linear equation problems using multiple
solution strategies (Brito-Lima & da Rocha Falcão, 1997).

Third graders in the U.S. could use their understandings of equality to solve
algebraic problems (Schliemann et al., 2007). For example, they were asked to
solve problems such as Brito Lima’s equations, 8 + x = 3x and 7 + y = 2 + y + x.
On one problem, two of 15 children solved it independently, but refused
notation, using mental reasoning only, nine solved it with guidance from the
adult, two tried to start a solution but could not complete it, and two said it
could not be solved. Across all the problems, children showed two problems: a
lack of familiarity with using notation to represent unknowns and a lack of
experience approaching problems with unknown quantities. However, with
guidance, many showed signs that they could develop trial-and-error
strategies, and could remove an unknown from both sides of an equation,
which may constitute initial steps toward algebraic procedures.

Instruction in algebra was provided to these children based on three ideas:
arithmetic operations can be viewed as functions; generalizing lies at the heart
of algebraic reasoning; and children can and should use letters to stand for
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unknown amounts and for variables. Pilot testing in the third grade classroom
revealed that they could successfully solve “guess my rule” problems and
understand notation such as n—> n + 3. They also learned to fill in tables
representing relationships between unknown quantities using variables.
Although they struggled, in their initial attempts, with the reference and mean-
ing of the letter that represents those quantities, they came to understand it as
representing “any number.”

A particular difficulty of which educators should be aware is that of seeing
numbers as the distance between (“space between”) other numbers, that is, as
differences. This has been reported in several projects (e.g., Wright, Stanger,
Stafford, & Martland, 2006) and thus is probably a serious challenge to
children, and to curriculum developers and teachers. In this study (Schliemann
et al., 2007), for example, some children interpreted differences in heights as
the absolute heights. Others learned to interpret as a difference in heights, but
not initially as an interval along the dimension; instead, they had to reenact the
act of comparing.

Representing quantities with letters was another challenge. After the class
agreed to represent Tom’s height as “T”, some students resisted representing
Mary’s height as T + 4, instead representing it as “M.” Two students solved
the general case, but still said “T” stood for “Tall” or “10” (earlier, students’
interpreted “n” as standing for “none,” “nine,” or “19”).

Part of their difficulty was thinking of any letter as a variable amount, when
the concrete situations used in the instruction implied that there was a par-
ticular quantity—unknown, perhaps, but not one that varies. That is, children
could think of the value of a height, or the amount of money in a wallet as
unknown, or a “surprise,” but had difficulty thinking of it as a range of values.
Thus, it should not be surprising to us to find that they benefitted from
working with numerical relations unassociated with any physical context. A
fecund activity was “guess my rule” games in which the focus was on number
relationships. (A related suggestion was not to have input-output tables always
in order, because children then used column-based strategies only; in “guess
my rule” without ordered tables, they begin to formulate a general rule.) This is
not to say that context does not help, but that pure number activities play a
critical role, and that some contexts might be used as students are challenged to
adapt their algebraic thinking to a variety of situations.

Finally, this was not an efficacy study, and there was no comparison group,
much less random assignment. Nevertheless, it is interesting that scores on the
state test showed these children performed better than students in other class-
rooms in the same school. Thus, the instruction appeared not only to improve
students’ algebraic thinking, but also and did no harm to their ability to solve
more traditional mathematical problems and even enhanced the latter ability.

Another promising approach is to use measurement and “generalized
diagrams” as a way to develop problem-solving ability and promote algebraic
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thinking (Dougherty & Slovin, 2004). Based on the work of Russian
researchers, the notion is that children can think algebraically at a very young
age, especially if they are given the opportunity to link concrete, pictorial
(e.g., diagrams), and abstract (including symbolic) representations by
having experiences that present all these simultaneously. The examples from
Chapter 10 (pp. 287–288) illustrate this approach.

Other projects have reported similar results (with similar limitations;
most all of these projects were, appropriately, exploratory only). An Australian
project worked with children from second to sixth grade (“year,” in Australia).
The teaching included focus on algebra involving a variety of representation,
such as natural language, figures/diagrams, symbols and, in later years, graphs,
and to build students’ abilities to switch between them. Children were to act
out situations with physical materials and connect particular representations
emerging from different perspectives, particularly an “arrow symbol system”
for change with the equation system for relationships (T. J. Cooper & Warren,
2007). The first lessons taught the compensation principle for addition and
subtraction. The addition compensation principle entails a notion of
opposites, for example, if the first number is increased/decreased, then the
second number is oppositely decreased/increased the same amount respec-
tively to keep the sum of two numbers the same—algebraically a + b = (a + n) +
(b − n). The subtraction compensation principle is different; if the first
number is increased/decreased, then the second number is increased/decreased
the same amount to keep the difference between two numbers the same—
algebraically, a − b= (a + n) − (b + n). This was taught in five steps. Step one
used the length model (lengths that were not measured or numbered). Two
strips of paper were cut so that together they were the same length as the third.
A piece was cut off one of them, and the students asked what had to happen to
the third strip to keep it equal to the combined length of the other two. Step 2
used the set model (a numbered activity). Sets of five and four counters were
compared with nine counters, a counter was removed from the set of four, and
students were asked what had to happen to the five. In steps 3 and 4, the activity
was repeated for equations, first with small and then larger numbers, asking the
students what would have to happen if one of the numbers was increased and
the sum remained the same. Step 5 repeated Steps 1 to 4 but here the quantities
were increased rather than decreased.

Initial findings were that the unnumbered lengths model was the easiest for
students to understand (yet another study supporting this Russian approach).
Addition compensation was best illustrated by a relay race context, with
students acting it out (if the first walker went farther, the second one walked a
shorter distance). (See the research report for information about other grades
and other representations, such as the balance beam with different colored
small cans of food and cloth bags used to motivate study of equations.) In
general, students could determine pattern rules for growing patterns from
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tables of numbers and visual structures of counters, with tables easier to teach.
Development seemed to move from factual to contextual to algebraic. Analyz-
ing pattern in terms of visuals resulted in better process generalization.

In summary, early algebra is not algebra done early; instead, it should be
about teaching arithmetic and other mathematical topics more deeply, so that
misconceptions and inflexible thinking are replaced with nascent algebraic
thinking, developing from the earliest years. Typical, procedural-only instruc-
tion in arithmetic and procedural use of signs such as “=” does not provide a
foundation for such generalization and symbolization, but appropriate
instruction does (Kaput et al., 2008). Students in the primary grades can learn
to formulate, represent, and reason about generalizations and conjectures,
although their justifications do not always adequately validate the conjectures
they create (Davis, 1984; Schifter, 1999). This body of research on young
children’s understanding of patterns can be used, in turn, to establish
developmentally appropriate learning trajectories for pattern instruction
in early mathematics education. We must also remember that patterning in
mathematics goes beyond simple linear and arithmetic situations, to involve
other knowledge and competencies we have discussed, such structuring of
rectangular arrays (see pp. 296–299), and numerical and spatial structures in
counting, partitioning, subitizing, grouping, and unitizing.

Learning Trajectory for Pattern and Structure

Table 12.2 provides the developmental progression and the mental actions-on-
objects for this learning trajectory. As stated previously, this mostly concerns
the simple, typical case of sequential repeated patterns, and the sequence here
comes mainly from the few studies on patterning with young children, mostly
our Building Blocks and TRIAD projects. Research is needed to extend this

Table 12.2 Developmental Progression for Patterns and Structure

Age
(years)

Developmental Progression Actions on Objects

2 Pre-Explicit Patterner Detects and
uses patterning implicitly, but may
not recognize sequential linear
patterns explicitly or accurately.

Names a striped shirt with no
repeating unit a “pattern.”

Initial (bootstrap) sensitivity to
regularity supports the implicit
detection of patterns and expectations
based on them.

Connection is made between the term
“pattern” and some visual, rhythmic,
and other regularities.

3 Pattern Recognizer Recognizes a
simple pattern.

“I’m wearing a pattern” about a
shirt with black, white, black white
stripes.

The implicit cognitive capacity (and
predisposition) to recognize patterns is
representationally redescribed to allow
explicit processes to operate on
perceptual input and note regularities.
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Age
(years)

Developmental Progression Actions on Objects

4 Pattern Fixer Fills in missing
element of pattern, first with ABAB
patterns.

Given objects in a row with one
missing, ABAB BAB, identifies and
fills in the missing element.

The ability to name or describe the
repeated items from perceptual input
is used to continue the naming by
continuing to produce the verbal
sequence stored in the phonetic
“buffer” (or, visually, through a
visuospatial sketch pad).

Pattern Duplicator AB Duplicates
ABABAB pattern. May have to work
close to the model pattern.

Given objects in a row, ABABAB,
makes their own ABABAB row in a
different location.

The processes named above are
sufficiently explicit to allow the
reproduction of short pattern core
units, as long as perceptual support is
available for “checking” the duplication
(although the core units themselves may
not yet have been redescribed).

Pattern Extender AB Extends AB
repeating patterns.

Given objects in a row, ABABAB,
adds ABAB to the end of the row.

As above, but with less need for
constant (duplicative) perceptual
support.

Pattern Duplicator Duplicates
simple patterns (not just alongside
the model pattern).

Given objects in a row,
ABBABBABB, makes their own
ABBABBABB row in a different
location.

As above, extended to longer and more
complex core units.

5 Pattern Extender Extends simple
repeating patterns.

Given objects in a row,
ABBABBABB, adds ABBABB to the
end of the row.

As above, extended.

6 Pattern Unit Recognizer Identifies
the smallest unit of a pattern. Can
translate patterns into new media.

Given objects in an ABBABBABB
pattern, identifies the core unit of
the pattern as ABB.

The pattern’s core unit is
representationally redescribed so that
patterns are perceived not just as
regularities and repetitions but
explicitly conceived as repetitions of a
core unit.

7 Numeric Patterner Describes a
pattern numerically, can translate
between geometric and numeric
representation of a series.

Given objects in a geometric pattern,
describes the numeric progression.

A new executive process connects the
processes of patterning and the
patterning of number and arithmetic
processes.
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limited aspect of patterning to include other types of patterns (e.g., geometric
patterns based on other symmetries, growing patterns) as well as patterning
and algebraic thinking as habits of mind.

Data Analysis

There is a dearth of research on children’s learning of data analysis in the
early childhood years. From a small amount of research conducted with older
students, we can describe in broad strokes the developmental continuum
for data analysis. Importantly, the foundations for data analysis lie in other
areas, such as counting and classification.

To understand data analysis per se, students must learn the dual concepts of
expectation (averages and probabilities) and variation (uncertainty, “spread”
of values; e.g., standard deviations). Data analysis has been called the search for
signals (expectations) within the noise (variation) (Konold & Pollatsek, 2002).
Children often initially see only the individuals in a data display. Children in the
late primary or early intermediate grades can learn to view ranges in data or
view the mode. Eventually, students can focus on features of the data set as a
whole, including the relative frequencies, density, and location.

A large analysis of Australian students’ understanding of both expectation
and variation revealed that it was not until third grade that the majority of
students even achieved level 3, called “inconsistent,” in which they acknow-
ledged both expectation and variation but had only initial notions of these
concepts (J. M. Watson, Callingham, & Kelly, 2007). For example, they thought
of expectation when asked to think about a container with 50 red, 20 yellow,
and 30 green lollipops mixed up it in and how many would be red if you pulled
out 10. They may have said “more red” but used inconsistent reasoning, with
no explicit mention of proportion. Of variation, they might just say, “anything
can happen” or they may use the same language of “more” to address this
concept as well. In response to “Have you heard ‘the winds are variable?” they
might respond that this means they are “changing or something.” There are
few or no connections between the ideas of expectation and variation. Entering
first graders are at the authors’ level 1, a pre-recognition level in which neither
concept is appreciated, or level 2, with only primitive or limited concepts of
either. For example, children at level 1 might answer a problem because of the
position that the red lollipops had in the container, or they might just say their
age or favorite number. Regarding variation (what would happen if six children
did this), the response might be, “5, because 5 + 5 = 10.” “Will it be the same
every time?” “No. The red up the top will be gone. . . . You might get other
colors.” At level 2, termed “informal,” students were just beginning to show
thought about expectation and variation within the situations. Regarding
expectation, they might say, after observing two different data sets, that one
shows “more.” They might make that decision based on visual comparison or
summing up the values of two sets of equal size. They usually have little notion
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of variation and asked about repeated sampling of the lollipops, might draw
pictures, single numbers, or draw a graph unrelated to the situation.

These authors present a complete developmental progression for these con-
cepts (see J. M. Watson et al., 2007). Given the lack of evidence regarding
the impact of complete learning trajectories (e.g., including instructional
activities) for young children, and the low level of performance by young
children on these and other measures, we decided not to present such a
learning trajectory here. However, those wishing to investigate data analysis,
statistics, and graphing should consult the work of Watson, Callingham, Kelly;
Schwartz, and Cliff Konold.

Similarly, there is no consistent, complete body of research on young
children’s learning of probability concepts and processes and the usefulness
of teaching such competencies to young children. There is intriguing data
that probabilistic judgments, not unlike number and space, may be innate or
early developing (“bootstrap”) competencies, not based on sampling of
past experiences (Téglás, Girotto, Gonzalez, & Bonatti, 2007). Also, some
curriculum developers and teachers report success with beginning concepts
such as classifying events into broad categories such as “must happen,”
“impossible—can’t happen” and “might happen,” or with activities such as use
of spinners and dice. However, there is too little data to guide educational
decisions in this area.

Experience and Education

The educational role of most of the processes has been described in previous
chapters as it relates to specific topics (classifying and other processes are dis-
cussed in Chapter 13). The key issue is how much data representation in the
canonical forms of graphs should be present in early childhood education.
Research on data analysis in the classroom during the primary years, and
especially before the primary years, is sparse. Most of what we have seen consists
of anecdotal reports. They are promising, but limited. There is some evidence
that preschoolers can understand discrete graphs as representations of
numerosity based on one-to-one correspondence (Solomon, 2003). Similarly,
although five- to six-year-olds were more accurate than four- to five-year-olds
on most, but not all graphing tasks, all children could interpret the graphs and
use them to solve mathematical problems (J. Cooper, Brenneman, & Gelman,
2005). Children performed better than in previous research, possibly because
they were provided examples and given feedback, and that they were motivated
by the task. Children performed better with discrete rather than continuous
formats.

An exploratory study revealed a range of mathematical understandings and
skills in over 1,000 inner-city four-year-olds (see Schwartz, 2004). The logical
thinking skills and growing number sense evidenced in their work as they
recorded data included: (a) coordinating one response to one data entry,
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(b) sorting and grouping recorded information, (c) transforming information
from verbal responses and concrete materials collections into graphs, (d) using
a variety of ways to represent information, and (e) using numbers to
summarize findings and interpret results. Children demonstrated varying
levels of ability to interpret their recorded findings, identify missing
information, and plan changes in their recording strategies. Many had the
mathematical competencies to allow meaningful use of data and representa-
tions in graphs. (See the companion book for a description of the instruction,
as well as a description of other projects.)

Final Words

As we saw, the “other topics” in mathematics discussed in this chapter are as
much general habits of mind as they are about specific content. Teachers
should appreciate that ideas such as pattern as expectation and pattern as a
predisposition to search for and use mathematical regularities and structures
needs to be considered beyond ideas of “more” or seasonal changes
(J. M. Watson et al., 2007). Explicitly comparing and contrasting the use of
pattern in pre-algebra and expectation in data settings may be useful. Similarly,
the processes that are the focus of Chapter 13 are arguably best viewed as habits
of mind that should pervade early childhood mathematics.
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13
Mathematical Processes

“As important as mathematical content are general mathematical
processes—problem solving, reasoning and proof, communication, con-
nections, and representation; specific mathematical processes such as
organizing information, patterning, and composing, and habits of mind
such as curiosity, imagination, inventiveness, persistence, willingness
to experiment, and sensitivity to patterns. All should be involved in a
high-quality early childhood mathematics program.”

(Clements, Sarama et al., 2004, p. 57)

Throughout this book, mathematical processes have been interwoven with
content, as they should be. In this chapter, we focus on some of the core pro-
cesses to synthesize those findings, describe research that addressed processes
directly (with less attention to content), and to highlight the importance of
these processes.

Reasoning and Problem Solving

“Reasoning is not a radically different sort of force operating against
habit but the organization and cooperation of many habits, linking
facts together. Reasoning is not the negation of ordinary bonds, but the
action of many of them, especially of bonds with subtle elements of the
situation. Almost everything in arithmetic should be taught as a habit
that has connections with habits already acquired and will work in an
organization with other habits to come. The use of this organized
hierarchy of habits to solve novel problems is reasoning.”

(Thorndike, 1922, pp.193–194)

Thorndike accurately reflects turn-of-the-century perspectives that learning
mathematics was like mental exercising, building the mind like a muscle. This
perspective was perhaps most problematic in generalizing that reasoning could
be explained as stimulus-response bonds.

In contrast, others have thought that reasoning was merely logic, with
uneducated people less knowledgeable of that domain. Descartes entitled
his 1701 book on algebra, Rules for the Operation of the Mind. George Boole
considered his research on pure mathematics and symbolic logic a central con-
tribution to psychology as well, entitling his 1854 book, An Investigation of the
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Laws of Thought. The Piagetians agreed. “In short, reasoning is nothing more
than the propositional calculus itself” (Inhelder & Piaget, 1958, p. 305). Instead,
as has already been illustrated in previous topically oriented sections, young
children’s reasoning is a complex cognitive process that depends on local and
global knowledge and procedures. Space constraints prevent our doing more
than the briefest of overviews of young children’s mathematical processes in
general, including reasoning, problem solving, and communication, with the
goal of illustrating their complexity, impressive extent, and importance.

As some vignettes throughout this book have illustrated, even very young
children can reason and solve problems if they have a sufficient knowledge
base, if the task is understandable and motivating, and if the context is familiar
(Alexander et al., 1997; DeLoache et al., 1998). Consistent with hierarchical
interactionalism, there is no cogent evidence that these processes undergo
substantive qualitative shifts. Instead, development occurs in interactive inter-
play among specific components of both general and specific knowledge and
processes, together with an increasing effectiveness of these components.

Multiple types of reasoning processes can be identified in young children,
although the various types overlap. Perceptual reasoning begins early, as
similarity between objects is the initial relation from which children draw
inferences, but it remains an important relation throughout development
(see DeLoache et al., 1998, on which this summary is largely based). Once con-
cepts are formed, children as young as toddlers build structural similarity
relations, even between perceptually dissimilar objects, giving rise to analogies
(Alexander et al., 1997). Analogies in turn increase knowledge acquisition,
which increases information processing capacity through unitizing and
symbolizing. Myriad represented relations give birth to reasoning with rules
and symbolic relations, freeing reasoning from sensory-concrete experience
and encouraging the appropriation of cultural tools, that vastly expand the
possible realms of reasoning. Again, then, we see the mutual development of
concepts and skills, with knowledge catalyzing new processes, which in turn
facilitate knowledge growth.

A relatively sophisticated reasoning process is distinguishing between
indeterminant and determinant evidence (i.e., situations in which evidence is
sufficient for drawing conclusions). Children as young as four and five years
perform surprisingly well except in one situation—an instance of positive
evidence is presented simultaneously with an as-yet unexplored source of
evidence (Klahr & Chen, 2003). For example, which of three closed boxes of
same-colored beads was used to make a red necklace? When a box is opened
with blue beads, most children know that one still can’t tell which of the other
two it could be. But when another box of red beads is opened, many mistakenly
claim they know (not recognizing that the last closed box might also be red
and this might actually be the one). Children (and in some situations, older
students and adults) often mistakenly claim that the evidence is sufficient in
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this indeterminant situation. Giving a more meaningful context did not help
children solve these types of problems correctly. However, repeated experience
with feedback did, especially for five-year-olds, who also retained and trans-
ferred their knowledge better than four-year-olds (many of whom also
benefited, but not to the same degree). This reveals that educational experi-
ences can help children learn reasoning skills that are significant throughout
the lifespan, and suggests that children can learn from exposure to problems,
figuring the solution out for themselves, and also from corrective feedback.
Further, using multiple examples that vary in surface structure, but have the
same underlying structure, may be an important path to developing reason
abilities (in contrast to another popular approach of rich and varied content
and structure).

In solving problems, children may often use most of these types of reason-
ing, highlighting the overlap, and even lack of real distinction (except for adult
purposes of classification or research) among them. One illustration
researchers use is the task (described in the “Models and Maps” section of
Chapter 7) in which children were shown a location of a toy on a scale model of
a room and then asked to find the toy in the actual room (DeLoache, 1987).
Perceptual similarity and concepts supported children’s relating the model and
room. Symbols were important—indeed, the picture was more useful to the
youngest children because it served as a symbol. Children’s inferring the toy’s
location was analogical, mapping a relationship in one space onto a similar
relationship in the other.

Such strategies develop in generality and flexibility during the toddler
and preschool years, enabling children to address problems of increasing
complexity. For example, recall that kindergartners can solve a wide range of
addition, subtraction, multiplication and division problems when they are
encouraged to represent the objects, actions, and relationships in those
situations (Carpenter et al., 1993). The researchers argue that modeling is a
parsimonious and coherent way of thinking about children’s mathematical
problem solving that is accessible to teachers and children. An Australian study
supported the notion that kindergartners could learn to solve a variety of quite
difficult word problems (Outhred & Sardelich, 1998). Children used physical
objects but were also required to draw and explain their representations,
including the relationships among the elements. By the end of the year, they
could pose and solve complex problems using a variety of strategies to repre-
sent aspects of the problem, including showing combining and partitioning
groups, and using letters and words to label elements of sets.

The ability to choose among alternative problem solving strategies also
emerges early in life; for example, in early spatial planning (Wellman et al.,
1985). At 18 months or earlier, for example, children can use multiple strategies
to pull a toy into reach with a third object (DeLoache et al., 1998). As an
example in a different domain, recall that young children from all income
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levels can make adaptive choices among arithmetic strategies, especially if the
situations and strategies are meaningful for them (Siegler, 1993). In another
study (Outhred & Sardelich, 1997), by the end of their kindergarten year, all
children modeled arithmetic problems using sensory-concrete materials and
accurately solved them. Their drawings showed a variety of strategies for repre-
senting the situations, including displaying properties (e.g., size), separating
groups or crossing out items, partitioning sets, and drawing lines to indicate
sharing relationships, drawing array structures to show equal groups, and
using letters and words to label items in collections. They could write their own
problems and represent problem situations symbolically (they only struggled
to accurately represent multistep problems with symbols). All this was accom-
plished despite the small amount of time the teacher engaged the children in
problem solving.

Classification and Seriation

The complex relationship between seriation and classification and the develop-
ment of number concepts (Piaget & Szeminska, 1952) has already been dis-
cussed (see Chapters 2 and 3). Piagetian theory held that these operations also
underlie logic and reasoning (Piaget, 1964). For example, the claim that the
abilities to seriate, construct a correspondence between two series, and insert
an element into a series developed synchronically was an argument for the
Piagetian operational theory of intelligence. The research literature on these
constructs is vast (Clements, 1984a); we will describe only some relevant
findings.

Although research militates against any simple, direct causal relation-
ship, there is also evidence that these processes do play important roles in
the development of mathematical reasoning and learning (cf. Kamii,
Rummelsburg, & Kari, 2005; Piaget, 1971/1974). For example, children who do
not acquire basic competencies in classification (oddity—which one is not like
the others), seriation, and conservation by kindergarten do not perform as well
in mathematics in later schooling (Ciancio, Rojas, McMahon, & Pasnak,
2001; Lebron-Rodriguez & Pasnak, 1977; Pasnak et al., 1987). Similarly,
assessments of Piagetian reasoning tasks in kindergarten were related to
children’s mathematics concepts years later (Silliphant, 1983).

Classifıcation

At all ages, children classify informally as they intuitively recognize objects or
situations as similar in some way (e.g., differentiating between objects they
suck and those they do not at two weeks of age), and eventually label what
adults conceive of as classes. Often, functional relationships (the cup goes
with a saucer) are the bases for sorting (Piaget, 1964; Vygotsky, 1934/1986). In
addition, even infants place objects that are different (six months), then alike
(12 months), on some attribute together (Langer, Rivera et al., 2003). By 18
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months, they form sets in which objects in each set are identical and objects in
the other sets are different, and by two years, form sets with objects that are
similar on some properties, but not necessarily identical. Some two-year-olds
and all three-year-olds will substitute elements to reconstruct misclassified
sets (Langer, Rivera et al., 2003). These are often partial arrangements with
fluid criteria; nevertheless, they play an essential role in number, through the
unitizing process.

Not until age three can most children follow verbal rules for sorting. For
example, told two simple rules for sorting pictures, children aged 36 months
could sort regardless of the type of category, but children even a few months
younger could not (Zelazo & Reznick, 1991). Having relevant knowledge or
having fewer memory demands were not significant in this case.

In the preschool ages, many children learn to sort objects according to a
given attribute, forming categories, although they may switch attributes during
the sorting (Kofsky, 1966; Vygotsky, 1934/1986). The end result may appear to
reflect adult categorizations, but often has a different conceptual basis, such as
general resemblance (Vygotsky, 1934/1986, calls these “pseudoconcepts”).
Preschoolers appear to encode examples holistically, distributing their atten-
tion nonselectively across many stimulus features, and then generalize to new
stimuli on the basis of their overall similarity to the stored examples (Krascum
& Andrews, 1993). Even pre-K children can “hold fast” to a criterion for sorting
and recognize that alternative bases for classification exist; however, they are
not free from circumstantial constraints, nor predispositions to respond in
certain ways (Clements, 1984a).

Not until age five or six years do children usually sort consistently by a single
attribute and re-classify by different attributes. At this point they can sort con-
sistently and exhaustively by an attribute, given or created, and use the terms
“some” and “all” in that context (Kofsky, 1966). It is not until age nine that
most master the hierarchical inclusion relationship (Inhelder & Piaget, 1958;
Kofsky, 1966; Piaget & Szeminska, 1952). Children learn these skills in varying
orders. School-age children may learn to simultaneously classify and count;
for example, counting the number of colors in a group of objects. They may
understand that the total number of objects in the subclasses is equal to the
extension of the superordinate class. Further, they can learn to conscientiously
sort according to multiple attributes, naming and relating the attributes,
understanding that objects could belong to more than one group. This allows
the completion of two-dimensional classification matrices or the formation of
subgroups within groups.

Seriation

Young children also learn seriation from early in life. Preverbal infants are able
to make perceptual size comparisons and from the age of 18 months or so, are
able to respond to and use terms such as big, small, and more in ways that show
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they appreciate quantity differences (Resnick & Singer, 1993). By two or three
years of age, children can compare numbers and number pairs on the basis of a
common ordering relation (Bullock & Gelman, 1977). At three years, children
can make paired comparisons, and four-year-olds can make small series, but
may not seriate all objects (Clements, 1984a). Piaget & Inhelder reported that
55 percent make no attempt at seriation, and 47 percent build partial
uncoordinated series (Inhelder & Piaget, 1958; 1967). At age five, 18 percent
make no seriation, 61 percent build partial series, and 12 percent solve the
problem, but only by trial and error. In a recent study, 43 percent of five-year-
olds put six lengths in order by length (A. Klein et al., 1999, but note that
Piaget’s lengths were more difficult to distinguish perceptually). Most five-
year-olds can insert elements into a series.

Children exhibit many strategies in seriation. Some choose the smallest (or
largest) object to begin, then continue to select the next smallest (largest).
Some place randomly selected objects in place. Others begin with the largest
block, then select a proximate block, accepting it only if order is preserved,
switching if it is not. Some analyses have claimed that those with less sophisti-
cated, or even incorrect, strategies are not qualitatively different from seriators;
they are just missing one or more rules (such as accepting any monotonic
increase, rather than only unit differences).

There is also evidence that children can make transitive, deductive
inferences, often considered to be the most difficult of the seriation tasks (if A is
longer than B and B is longer than C, then A is longer than C). For example,
four-year-olds do so if they are trained to code and retrieve the relevant
information (Trabasso, 1975). The authors claim, as we claimed with reasoning
and problem solving, that the cognitive processes of even young children are
not that much different from those of the adults, at least in the nature of the
strategies used. Surprisingly, kindergartners who conserved number did not
perform better on a transitivity of order relations in number comparison tasks
(D. T. Owens & Steffe, 1972). They did perform better on transitivity of the
equivalence relation (“as many as”). Children performed better with “neutral”
(objects arranged with no perceptual bias) than either screened or conflictive
(items in columns in which the longer row contained fewer objects). Thus,
conservation does not seem a prerequisite for developing some transitivity
relations, and such reasoning does not develop at the same time, but appears
to be acquired in one restricted situation at a time (D. T. Owens & Steffe,
1972), consistent with the hierarchic development tenet of hierarchic
interactionalism.

As mentioned, Piaget claimed that seriation and serial correspondence
(between two series) and reconstruction of ordinal correspondences (a
similarity that has become numerical) are solved at approximately the same
time (Piaget & Szeminska, 1952). Young children make global comparisons
with seriation or correspondences. They then develop the ability to construct
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series and correspondences intuitively, but often fall back on perceptual
correspondences. Only at the stage of concrete operations do they solve all the
problems. They understand correspondences numerically, that is, the element
n represents both the position n and the cardinal value n. Seriation and
multiple seriation follow the development of classification and multiple
classification, respectively. Generally, the developmental progressions within a
domain (such as seriation) are supported, but few developmental concurrences
across domains have been found (Clements, 1984a).

Studies involving both classification and seriation suggest that young
children are more likely to abstract a property represented through literal com-
parisons. For example, both four- and six-year-olds can match three circles
increasing in size with three squares that similarly increased in size, but only
six-year-olds could match the circles to three circles that increased in color
saturation, that is, match seriations across dimensions (Kotovsky & Gentner,
1996). If the four-year-olds are trained to mastery on the former, they can
match across dimensions. Thus, as with counting and comparing number, we
see a relational shift, in which children’s early reliance on physical similarity
develops into the ability to perceive purely relational commonalities, and the
facilitative effects of both domain knowledge and language (Kotovsky &
Gentner, 1996).

Experience and Education

“A curriculum focal point may draw on several connected mathematical
content topics described in Principles and Standards for School
Mathematics (NCTM 2000). It should be addressed by students in the
context of the mathematical processes of problem solving, reasoning and
proof, communication, connections, and representation. Without facility
with these critical processes, a student’s mathematical knowledge is likely
to be fragile and limited in its usefulness.”

(NCTM, 2006, p. 5)

Reasoning

Some have argued that developing reasoning and problem-solving abilities
should be the main focus in any attempt to help babies and toddlers develop in
mathematics (see, e.g., Kamii et al., 2004). Encouraging language can support
the growth of reasoning abilities. For example, labeling situations (“big/little”)
led to a two-year-age gain in use of relational mapping in three-year-old
children. The language invited children to form comparisons and provided
a system of meanings and an index upon which to base these comparisons
(Rattermann & Gentner, 1998). Presenting children with easy literal similarity
matches also helps them solve more difficult analogical matches.

Similarly, helping preschoolers learn the properties and relationships in a
mathematical situation allows them to solve analogies of various types, such as
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geometric analogy items (Alexander et al., 1997). The analogical processes
themselves, encoding, inferring, mapping, and applying (Sternberg, 1985), may
contribute to early mathematics reasoning and learning.

As other chapters have shown, having children explain and justify their solu-
tions to mathematical problems is an effective way to develop mathematical
(and general) reasoning.

Problem Solving1

Problem solving can also be facilitated. Even for the very young, there are
substantial benefits of varied situations, encouragement of diverse strategies,
discussions, simple justifications, and prompts and hints as needed (DeLoache
et al., 1998). Children benefit from modeling a wide variety of situations and
problem types with concrete objects, and also from drawing a representation to
show their thinking, from explaining and discussing their solutions, and from
connecting representations (Carpenter, Ansell, Franke, Fennema, & Weisbeck,
1993; Clements & Sarama, 2007, 2008; Dougherty & Slovin, 2004; Outhred &
Sardelich, 1997; van Oers, 1994). Such direct modeling, along with reflection
and discussion, probably elicits and develops schema for addition, subtraction,
multiplication and division operations as well as developing positive beliefs
about problem solving and mathematics in general. There is suggestive
evidence that diagrams are especially useful in teaching children to link con-
crete and abstract representations and thus facilitate learning (e.g., Dougherty
& Slovin, 2004).

Similar to this research, and to research from previous chapters, another
study showed that young (five- to six-year-old) children successfully learned
arithmetic problem solving when allowed to build on their invented strategies
(Anghileri, 2001). Consistent with our theory of hierarchic interactionalism,
they modified initially successful strategies to a more organized-oriented
phase during which they exerted better control over the features of the addition
tasks. Their procedures became more explicit, flexible, and organized when the
children were given the opportunity to build on their own knowledge and
inventions (Anghileri, 2001).

One study indicates that, besides the structure of the problem (e.g., see
Chapter 5) the representation in which problems are given to children can
affect their difficulty. Problems presented just with text, with decorative
pictures, or with number lines, were of similar difficulty (Elia, Gagatsis, &
Demetriou, 2007). Apparently, children ignored those two pictorial representa-
tions. This indicates that decorative pictures do not facilitate problem solving,
as many critics of them assert. However, number lines do not help either—per-
haps because children are confused by the dual representation of number as
points and distances (or vectors). Solving problems presented with infor-
mational pictures was more difficult for these children. Therefore, presenting
problems with written or oral text may be most effective and efficient, and
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specific instruction might be offered if the goal is to teach children to use
number lines or to solve problems presented with informational pictures
(Elia et al., 2007).

A final point is that concrete objects often make an important contribution,
but are not guaranteed to help (Baroody, 1989b; Clements, 1999a). Children
must see the structural similarities between any representation and the prob-
lem situation to use objects as tools. (These issues are discussed in Clements,
1999a, as well as Chapter 16 of the companion book.)

Classifıcation and Seriation

Simple strategies for teaching classification and seriation can have a significant
effect, especially for children with special needs. Pasnak and colleagues
(Ciancio et al., 2001; Kidd & Pasnak, 2005; Lebron-Rodriguez & Pasnak, 1977)
have used a simple learning set procedure, including demonstration, practice,
and feedback with many varied concrete examples, to a variety of children,
including blind and sighted, at-risk pre-K children and at-risk kindergarten
children, and older blind children. All apparently enjoyed positive effects on
instruments measuring intelligence quotient and mathematics achievement.
(Other instructional approaches may also have these and other benefits as we
shall see, Clements, 1984c; Kamii et al., 2005.)

A research review (DeLoache et al., 1998) stated that solving oddity
problems requires making multiple comparisons, and, for children below the
age of six, is difficult. Consistent with the learning set procedure, however,
they also stated that telling the children the oddity rule quickly leads to success.
Thus, children do not have difficulty following the rule, but inducing it. Game-
like instruction may help children learn to induce simple rules. Again, evidence
indicates that giving children clues concerning discussing a rule enables them
to represent and follow it.

Beyond the youngest ages, many educational approaches have been tried,
including direct verbal instruction, contingent feedback, and modeling by
peers just one level above the target child’s assessed level. Researchers disagreed
as to the theoretical position their results supported, but all methods were
found to be effective in at least some situations (Clements, 1984a). For
example, between 28 percent and 66 percent of kindergarten children in a
transitional level learned all classification including class inclusion following
six training sessions on various classification competencies (P. Miller, 1967).
The researcher claimed the training might have catalyzed cognitive reorganiza-
tion. Approaches such as modeling, as well as verbal training (e.g., labeling,
discussing attributes and classifying by more than one attribute) have been
found to be effective for children from two to five years of age, but more con-
sistently effective for the older children (Clements, 1984a).

Most of these approaches do not teach problem solving “in general”
(Hofmeister, 1993). They embed problem solving in a specific domain of
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mathematics, and develop multiple components of knowledge of the content
and processes simultaneously.

Children have to classify, at least implicitly, whenever they quantify a col-
lection. We believe that counting proper subsets, such as all the blue marbles
in a group of mixed colors, is valuable experience for young children. Research
is lacking, unfortunately, on how competencies in quantification and classifica-
tion co-develop (including number as a class, B. Russell, 1919) and if such
educational experiences are particularly worthwhile. Research does suggest
that teachers begin with literal representations, such as matching, classifying,
and seriating in one dimension, and thereby help children build competencies
before moving to two dimensions (Kotovsky & Gentner, 1996).

Several educational approaches have also been found effective in teaching
seriation, which is often easier to teach than classification or number concepts
such as conservation (Clements, 1984a). These approaches include televised
modeling; developmentally sequenced lessons; use of Montessori materials;
combinations of corrective feedback, attention to task stimuli, and cuing and
cue fading; and discussion of children’s own seriation strategies. Some studies
report that only children in Piagetian transition stages make substantial gains.

A final issue is whether training in Piagetian foundational areas such as
classification and seriation aids the development of number. Evidence is mixed.
Several studies show positive effects. For example, teaching classification and
seriation to kindergarten children improved their performance on tests of
number concepts. (Lesh, 1972). Similarly, kindergarteners taught classification,
seriation, and conservation with simple teaching procedures (Pasnak, 1987)
made twice the gains of children receiving “traditional mathematics instruc-
tion” on measures of general learning and reasoning ability, and matched
their gains on reading and mathematics achievement. These gains have held
longitudinally (Pasnak et al., 1996). Other interventions had similar positive
results (see Chapter 15 in the companion book for a discussion of the work of
Adey, Robertson, & Venville, 2002).

Findings similar to those of Lesh and Pasnak et al. were reported for pre-K
children. Four-year-old children were randomly assigned to one of three
educational conditions for eight weeks: logical foundations (classification and
seriation), number (counting), and control (Clements, 1984b). After engaging
in activities teaching classification, multiple classification, and seriation
operations, the logical foundations group significantly outperformed the
control group both on measures of conservation and on number concepts and
skills. However, inconsistent with Piagetian theory, the number group also per-
formed significantly better than the control group on classification, multiple
classification, and seriation tasks as well as on a wide variety of number tasks.
Further, there was no significant difference between the experimental
groups on the logical operations test and the number group significantly
outperformed the logical foundations group on the number test. Thus, the
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transfer effect from number to classification and seriation was stronger than
the reverse. The domains of classes, series, and number appear to be inter-
dependent but experiences in number have priority (Clements, 1984b).
Note that some number and logical foundation activities were structurally
isomorphic, so children received implicit experience with classification and
seriation in number activities. For example, in one activity, children counted
the blue cars, the red cars, and all the cars. Thus, in meaningful counting
situations, the child may have a familiar cognitive tool with which to construct
the logical structures required.

Final Words

Research suggests that, especially for younger children, mathematical topics
should not be treated as isolated topics; rather, they should be connected to
each other, often in the context of solving a significant problem or engaging
in an interesting project (Clements, 2001; Fuson, 2004). Thus, this book’s
main organization based on mathematical content should not be considered a
de-emphasis on other aspects of mathematics.

This concludes the chapters on specific learning trajectories and those
aligned with corresponding chapters in the companion volume. The last three
chapters of the companion volume address issues essential to implementing
the learning trajectories. The last chapter of this book, Chapter 14, addresses
the critical issues of professional development: how teachers can be helped to
learn and implement the learning trajectories.

Mathematical Processes • 345





14
Professional Development

and Scaling Up

“Educational change depends on what teachers do and think—it’s as
simple and as complex as that.”

(Fullan, 1982, p. 107).

Every chapter of this book has been concerned with professional development,
directly or indirectly. Here we describe teachers’ beliefs and opinions, as well as
professional development strategies that have been verified by empirical
research, especially those directly relevant to helping teachers use learning
trajectories. We also provide references for those who perform professional
development.

Teachers’ Beliefs

Given the diversity of the teacher/caregiver population, professional develop-
ment in early childhood mathematics is especially challenging. Teachers
have quite different beliefs, and these beliefs affect their practice (Stipek &
Byler, 1997), although not always in a straightforward manner (Sarama,
Clements, Henry, & Swaminathan, 1996). For example, preschool and kin-
dergarten teachers who had child-centered beliefs were less likely to engage in
basic skills practice and more likely to have positive social climates than
those who had a basic skills orientation (Stipek & Byler, 1997). They tended
to polarize about those practices as well, compared to first grade teachers,
who were less resistant to believing that both children-centered and basic
skills were incompatible (Stipek & Byler, 1997). In another study, the overall
quality of teachers’ classrooms was lower for teachers with more adult-
centered beliefs (Pianta et al., 2005). (Quality was also lower in classrooms
with more than 60 percent of the children from homes below the poverty
line, when teachers lacked formal training (or a degree) in early childhood
education.)

A survey of early childhood care providers, including on issues concerning
professional development provides some guidance (Sarama, 2002; Sarama &
DiBiase, 2004). The providers included hundreds of teachers and caregivers
from family and group day care, daycare centers, public and parochial schools,
traditional nursery schools, and Head Start centers. The first question was:
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“Are you at all interested in professional development in mathematics?”
Ninety-four percent of the early childhood educators responded that they
were. What is the best way to reach these busy professionals? Forty-three
percent receive their information through mailings, and 31 percent from their
workplace via supervisors, bulletin boards, and so forth. Of those who receive
educational magazines or journals, 43 percent of respondents receive trade
publications, such as Mailbox, and 22 percent receive the main journal
published by the National Association for the Education of Young Children,
Young Children.

Thirty-nine percent would prefer to meet every two weeks; an almost equal
number (24 percent and 23 percent respectively) preferred to meet monthly
or weekly. This was surprising, as expert advisors had suggested that monthly
meetings might be “too much.”

Although 60 percent of the participants preferred to meet in their work-
place, 58 percent also chose a local college. Previous research has indicated
that the collegiate atmosphere can be intimidating to providers (Copley &
Padròn, 1999) Other popular choices included schools (44 percent) and
teacher training centers (35 percent). Most respondents felt that attending in-
service was not too difficult (63 percent), with fewer than 10 percent choosing
either “very difficult” or “easy.” Transportation did not seem to be an issue;
only 14 percent stated that it would influence their decision on whether or not
to attend a professional development opportunity. Ninety-two percent said
that they would use their own car to attend.

Expert advisors have suggested that financial rewards and job advancement
would be key motivators. Although 30 percent of the respondents did choose
“increased pay” and 14 percent chose “job advancement,” 66 percent chose
“curriculum materials” and 43 percent chose “personal satisfaction.” Forty-
one percent of the respondents also chose a credential as a motivator and
31 percent chose college credit. (A caveat is that these are people who agree to
respond.)

Another set of questions dealt with beliefs about mathematics education,
answers to which could help inform any professional development effort.
Asked at what age children should start large group mathematics instruction,
the family and group care providers chose ages two or three most often, while
the other group felt large group instruction should not start until age four. The
survey asked whether teachers should have a “standard list of math topics that
should be taught to preschoolers.” Respondents agreed that it was important:
39 percent said “very important” and 47 percent said it was “important.”
Open-ended responses indicated a desire for general guidelines for the age-
appropriateness of topics.

When asked about their main mathematics activities, 67 percent chose
counting, 60 percent, sorting, 51 percent, numeral recognition, 46 percent,
patterning, 34 percent, number concepts, 32 percent, spatial relations, 16
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percent, making shapes, and 14 percent, measuring. Unfortunately, geometry
and measurement concepts were the least popular.

Most teachers use manipulatives (95 percent), number songs (84 percent),
basic counting (74 percent) and games (71 percent); few used software
(33 percent) or workbooks (16 percent). They preferred children to “explore
math activities” and engage in “open-ended free play” rather than participate
in “large group lessons” or be “doing math worksheets.” Other data for tech-
nology are promising in that 71 percent of the respondents have access to the
Internet, 67 percent have a computer available for use by the children whom
they teach, and 80 percent would be interested in some sort of distance
learning.

Finally, respondents said they would be interested in attending professional
development at a center specifically designed for mathematics and tech-
nology. Ninety-three percent were interested in visiting a model classroom.
Having an outside agency keep track of professional development credits
was more important to the respondents than was receiving credit for every
course.

Another survey asked Head Start staff to identify practices that facilitate the
transfer of their learning to their work with children (Wolfe, 1991). They
recommended small group discussion and demonstration/modeling, followed
by handouts, lecture, observing actual practice, games/simulations, role play,
and video/movies. The least recommended instructional strategies were
assignments and follow-up phone calls. Observing actual practice and follow-
up assistance were ranked highest when participants were asked what
strategies they felt would have the largest effect on their work with children.
They ranked worksheets, follow-up letters, and panel discussions as the least
likely to have an effect. These results confirm that what teachers desire and
believe to be effective is not consistent with the current system of delivery
(Cohen & Hill, 2000).

Another study interviewed prekindergarten teachers about their beliefs
about early math education. All teachers shared the beliefs that there was
pressure to teach children more number and arithmetic, that teaching and
learning of it should be enjoyable and not pressured (e.g., involve interesting
materials and be conducted in small groups with teachers sensitive to
children’s emotional well-being) (J. S. Lee & Ginsburg, 2007). Compared to
those working with middle-SES children at private pre-kindergartens, those
teaching low-SES children at publicly funded pre-kindergartens, believed that
teachers needed a strong focus on specific goals so that children were prepared
for kindergarten and primary school. Those teaching middle-SES children, in
contrast, supported flexible mathematics education relying on a child-centered
curriculum and child-initiated learning and opposed the instructional use of
computers. They believed that even children behind in mathematics would be
able to catch up later,
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“My advice would be to not underestimate the importance of socializa-
tion. . . . The math concepts, if we had to give up one thing, ultimately it
would be those because the social piece is the piece that seems to be what
we have with them at this age and what we can do. . . . If the children are
not as interested, you let it go. Maybe they’ll be interested in it in a month
from now. Maybe they’re not ready developmentally. . . . Maybe
reintroduce it in another way, at another time, when they’re more ready.
. . . If I feel that the children aren’t ready for something, I’ll do it at
another time, another day, or I’ll put off for another month or two.”
(p. 13).

Given the differences between the typical low- and middle-SES child’s prep-
aration and backgrounds, Lee and Ginsburg (2007) claim that different
emphases on academics vs. socialization reflect parental preferences and are
reasonable.

However, much might stem from the lack of experience with mathematics
and mathematics education. The authors state that “Some of the participating
prekindergarten teachers commented on their somewhat careless attitude
toward mathematics, especially when compared to literacy,” quoting another
teacher as saying: “Overall I’m feeling, I don’t know much about teaching
math. I know a little bit, you know, enough that, I know which materials to
provide the children. But I really, you know, there are a lot of uh . . . This has
made me think a lot about different aspects of teaching math that I haven’t
really thought of before in preschool.” (p. 21).

The evidence suggests that teachers’ preferences may hide (a) a dislike of
mathematics, (b) a lack of reflection on its role, (c) a rationalization that it is
already “covered” by providing materials and incidental exposure, and (d) a
tendency to emphasize other domains. Consider this quote: “Well, math, it’s
hard. I don’t think we actually do as much math as we should. You know,
now that we’re doing this [interview], I realize we don’t . . . We do it. It’s
incorporated into everything that we do. But I don’t think there’s as much of a
focus on it as there probably should be. There seems to be more reading, and
writing, and knowing your letters, and colors” (p. 21).

Thus, professional development must illuminate children’s interests and
capabilities in mathematics. Teachers need to learn that appropriate mathe-
matics for young children is wider and deeper than usually realized. Teachers
of low-income children need help in how to achieve these goals (J. S. Lee &
Ginsburg, 2007). They need to understand the learning trajectories of early
mathematics, and how to move beyond superficial use of “themes” into which
a random set of activities are often thrown. Teachers of middle-SES children
need to understand that although their children tend to know more than low-
SES children about mathematics, most children in the U.S. are not given the
enriched opportunities offered to children in other countries (Starkey et al.,
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1999). Further, limited beliefs in free play may limit their understanding and
pedagogical use of the development of mathematical idea. Their rejection of
computers shows a lack of knowledge of types of computer activities and the
research on their effectiveness.

Research-Based Professional Development

“Really to interpret the child’s present crude impulses in counting,
measuring, and arranging things in rhythmic series, involves mathe-
matical scholarship— a knowledge of the mathematical formulae and
relations which have, in the history of the race, grown out of such crude
beginnings.”

(John Dewey 1902/1976, p. 282)

Teachers make a difference. Professional development—high-quality pro-
fessional development—makes a difference for teachers. However, across the
grades, what we know with certainty about professional development is slim.
There are indications that certification alone is not a reliable predictor of
high-quality teaching (Early et al., 2007; NMP, 2008), undoubtedly due to the
wide variety of certification programs and the low quality of too many of them.
For example, preservice education on math in early childhood/child develop-
ment is often negligible or nonexistent. Most early childhood teacher training
institutions require their teacher candidates to take only one course in
mathematics, compared to several courses in language and literacy (Ginsburg
et al., 2006). More direct measures of what the teachers know about mathe-
matics and the learning and teaching of mathematics do predict the quality
of their teaching (NMP, 2008). For example, first and third graders’ math
achievement gains were significantly related to their teachers’ knowledge (Hill,
Rowan, & Ball, 2005).

In a similar vein, a review of over 1,300 studies yielded only nine rigorous
studies involving the effect of professional development on student achieve-
ment, and only four that had math outcomes (Yoon, Duncan, Lee, Scarloss, &
Shapley, 2007). However, those yielded a significant effect size of .57. The aver-
age time given to professional development across the studies was 53 hours.
This is important: Few teachers receive such intensive, sustained, and content-
focused professional development in mathematics (Birman et al., 2007). The
average most teachers received was 8.3 hours of professional development on
how to teach mathematics and 5.2 hours on the “in-depth study” over a year.
For early childhood teachers, the amount is even less, usually zero.

Thus, there is a critical need for professional development in early child-
hood mathematics education. Teachers and caregivers of young children have
limited knowledge of mathematics and mathematics education and are not
disposed to enjoy mathematical activity or learn more about it. Further, this is
a serious equity concern, as teachers serving students who are lower SES,
limited in English proficiency, or lower achieving de-emphasize mathematics

Professional Development and Scaling Up • 351



in general and higher-level thinking in particular. Finally, most available pro-
grams do not focus on early childhood mathematics at all.

The good news is that we do have a growing research base regarding pro-
fessional development. Research indicates that a focus on teachers’ behaviors
has less positive effect that a focus on teachers’ knowledge of the subject, on the
curriculum, or on how students learn the subject (Carpenter et al., 1988;
Kennedy, 1998; Peterson et al., 1989). Successful professional development
projects emphasize research on children’s learning, made meaningful to
teachers (Sarama, 2002). Most do this in the context of curriculum and
reflection upon that curriculum. Most also involve collaborative efforts that
involve extensive interactions among teachers and university professors,
with some providing substantial modeling and mentoring in early childhood
classrooms. Others balance summer programs with support provided during
the school year. All integrate research and theory, connecting it closely to
teachers’ practice.

Prospective, or preservice, teachers appear to benefit from the same
emphasis: How children learn mathematics (Philipp et al., 2007). In one study,
the beliefs of college students who just observed classrooms changed less than
those in a control group, but both of these groups changed their beliefs and
knowledge less than a group who studied children’s mathematical thinking,
either through video or working with children on specific tasks, both designed
to focus on what we call developmental progressions. Preservice teachers in
Singapore had low mathematics pedagogical content knowledge at the begin-
ning of their coursework, but improved substantially to desired levels, after the
courses emphasizing inquiry, reflection, and constructive criticism (Kwong
et al., 2007).

Research also supports an approach of encouraging sharing, risk taking, and
learning from and with peers. This approach prepares participants to teach a
specific curriculum and develops teachers’ knowledge and beliefs that the
curriculum is appropriate and its goals are valued and attainable. It situates
work in the classroom, formatively evaluating teachers’ fidelity of imple-
mentation and providing feedback and support from coaches in real time.
(Bodilly, 1998; Borman, Hewes, Overman, & Brown, 2003; D. Clarke, 1994;
Cohen, 1996; Elmore, 1996a; Garet, Porter, Desimone, Birman, & Yoon, 2001;
Guskey, 2000; G. E. Hall & Hord, 2001; Kaser, Bourexis, Loucks-Horsley, &
Raizen, 1999; Klingner, Ahwee, Pilonieta, & Menendez, 2003; Schoen, Cebulla,
Finn, & Fi, 2003; Showers, Joyce, & Bennett, 1987.)

As we have said, success with Building Blocks is largely attributable to the
focus on learning trajectories (Clements & Sarama, 2008). Several other projects
also report success with variations of that approach (Bright, Bowman, & Vacc,
1997; Wright, 2000; Wright et al., 2002). All these projects were long term,
with far more extensive and intensive professional development than the usual
one-shot workshop, ranging from five to 14 full days (although one found
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diminishing returns, in that biweekly meetings were not enhanced by 30-
minute meetings directly after lessons, McPhail, 2004).

Other successful projects also had similar characteristics (Bobis et al., 2005).
First, they had research-based frameworks, including the use of develop-
mental progressions of learning trajectories. Second, teachers learned about
mathematics and the teaching and learning of early mathematics, in these
cases, especially by conducting one-to-one interviews of children. Third,
ongoing, reflective, professional development was conducted school wide
(Bobis et al., 2005). Related research reports emphasized the combination of
workshops, in-school support and modeling (G. Thomas & Tagg, 2004; Young-
Loveridge, 2004).

Several reviews provide additional information (especially D. Clarke, 1994;
Copley, 2004; Sarama & DiBiase, 2004, see also those cited previously and
Seidel & Shavelson, 2007). They include, in addition to those already described,
suggestions to emphasize cognitive models (Seidel & Shavelson, 2007),
solicit teachers’ commitment to participate actively, allow time for planning,
reflection, and feedback, recognize that change is gradual, difficult, and often
painful, and provide for support from peers and critical friends (D. Clarke,
1994). Across several studies, including the TRIAD/Building Blocks work, there
is a sign that targeted coaching and mentoring is an essential piece (Certo,
2005; Clements & Sarama, 2008). Coaching reminds teachers that the project
is a priority, that a commitment has been made to it, and that somebody
cares about them (Hord, Rutherford, Huling-Austin, & Hall, 1987). Research
indicates that when staff development includes ongoing coaching, class-
room innovations continue at a 90 percent level after external funding ceases
(Copley, 2004; Costa & Garmston, 1994; Nettles, 1993). A combination of use
of theory, demonstrations, practice, and feedback, especially from coaches,
may quadruple the positive effects of information-only training (Showers et al.,
1987).

Survey research indicates that those in professional development have to
branch out from the traditional publications, including not only trade publica-
tions but also such techniques as direct mailing. Although only a third of early
childhood teachers used computers with their children, they had access to
computers and the Internet, so professional development educators may be
able to reach them through non-traditional means. Results strongly suggested
that participants receive high-quality mathematics curriculum materials
when attending professional development. Instructors should take care that
participants receive enough experience with the materials to make sure they
can be used effectively. Tying professional development to carefully docu-
mented credits that lead to a credential (early mathematics specialist) may also
be a potent motivator. Finally, those who responded to the surveys had a
limited view of appropriate and fun mathematics activities, which professional
development educators might address.
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In brief, we recommend those planning professional development in early
childhood mathematics consider the following guidelines:

• Address both knowledge of, and beliefs about, mathematics and
mathematics education.

• Develop knowledge and beliefs regarding specific subject-matter con-
tent, including deep conceptual knowledge of the mathematics
teachers are to teach as well as the processes of mathematics.

• Respond to each individual’s background, experiences, and current
context or role.

• Be extensive, ongoing, reflective, and sustained.

• Actively involve teachers in observation, experimentation, and
mentoring.

• Focus on common actions and problems of practice, and, as much as
possible, be situated in the classroom.

• Focus on making small changes guided by a consistent, coherent,
grand vision.

• Ground experiences in particular curriculum materials and allow
teachers to learn and reflect on that curriculum, implement it, and
discuss their implementation.

• Consider approaches such as research lessons and case-based teacher
education.

• Focus on children’s mathematical thinking and learning, including
learning trajectories.

• Include strategies for developing higher-order thinking and for
working with special populations.

• Address equity and diversity concerns.

• Involve interaction, networking and sharing with peers/colleagues.

• Include a variety of approaches.

• Use the early childhood professional career lattice as a means of
encouraging professional development at all levels.

• Ensure the support of administration for professional development
to promote sustained and wide-scale reform.

• Consider school-university partnerships, especially collaborative
efforts involving extensive interactions among teachers and university
professors.

• Sustain efforts to connect theory, research, and practice

• Investigate the use of non-traditional publications, including trade
publications, direct mailing, and distance learning for
communications.

• Provide participants with high-quality mathematics curriculum
materials and ensure that participants receive adequate experience to
use the materials effectively.

• Address economic, institutional, and regulatory barriers.
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Professional development in early childhood mathematics is a national
concern. Most professional development is not ongoing, continuous, reflective,
and motivating. Research-based suggestions and models (such as the TRIAD
model of professional development) hold the potential to make a significant
difference in the learning of young children by catalyzing substantive change in
the knowledge and beliefs of their teachers.

The TRIAD/Building Blocks Model

The TRIAD/Building Blocks projects are based on research from a variety
of fields. The Building Blocks research model was presented above. How-
ever, although the successes of research-based, visionary educational
practices such as Building Blocks have been documented, equally recognized
is the “deep, systemic incapacity of U.S. schools, and the practitioners
who work in them, to develop, incorporate, and extend new ideas about
teaching and learning in anything but a small fraction of schools and class-
rooms” (see also Berends, Kirby, Naftel, & McKelvey, 2001; Cuban, 2001;
Elmore, 1996a, p. 1; Tyack & Tobin, 1992). There may be no more challeng-
ing educational and theoretical issue than scaling up educational programs
across a large number of diverse populations and contexts in the early child-
hood system in the U.S., avoiding the dilution and pollution that usually
plagues such efforts to achieve broad success. That is the reason that we
created the research-based TRIAD model (Technology-enhanced, Research-
based, Instruction, Assessment, and professional Development) for successful
scale up.

The goal of the TRIAD intervention is to increase math achievement in all
young children, particularly those at risk, by means of a high-quality imple-
mentation of the Building Blocks math curriculum, with all aspects of the
curriculum—teacher’s guide, technology, and assessments—based on a
common core of learning trajectories through which children develop math-
ematically. The TRIAD intervention provides (a) these curriculum materials
and (b) ongoing professional development, including scalable distance educa-
tion, an innovative BBLT site with extensive support for teaching based on
learning trajectories, and classroom-based support by coaches during the
school year; and (c) supportive roles and materials for parents and
administrators. Building on this theoretical and empirical research base in the
previous section, we summarize principles and guidelines that underlie the
TRIAD model.

TRIAD Research-Based Guidelines for Scaling Up

The following are 10 research-based guidelines for successful scale up (Sarama,
Clements, Starkey, Klein, & Wakeley, 2008):
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• Involve, and promote communication among, key groups around a
shared vision of the innovation (G. E. Hall & Hord, 2001). Emphasize
connections between the project’s goals, national and state standards,
and greater societal need. Promote clarity of these goals and of all
participants’ responsibilities. School and project staff must share goals
and a vision of the intervention (Cobb, McClain, de Silva, & Dean,
2003). This institutionalizes the intervention, for example the on-
going socialization and training of new teachers (Elmore, 1996a;
Fullan, 2000; Huberman, 1992; Kaser et al., 1999; Klingner et al., 2003;
Sarama, Clements, & Henry, 1998).

• Promote equity through equitable recruitment and selection of par-
ticipants, allocation of resources, and use of curriculum and
instructional strategies that have demonstrated success with under-
represented populations (Kaser et al., 1999).

• Plan for the long term. Recognizing that scale up is not just an increase
in number, but also of complexity, provide continuous, adaptive
support over an extended time. Use a dynamic, multilevel, feedback,
and self-correction strategy (Coburn, 2003; Fullan, 1992; Guskey,
2000). Communicate clearly that change is not an event, but a process
(G. E. Hall & Hord, 2001).

• Focus on instructional change that promotes depth of children’s thinking,
placing learning trajectories at the core of the teacher/child/curriculum
triad to ensure that curriculum, materials, instructional strategies, and
assessments are aligned with (a) national and state standards and a
vision of high-quality math education, (b) each other, and (c) “best
practice” as determined by research (Ball & Cohen, 1999; Bodilly,
1998; Clements, 2002; Fullan, 2000; Kaser et al., 1999).

• Build expectations and camaraderie to support a consensus around
adaptation. Promote “buy-in” in multiple ways, such as dealing with
all participants as equal partners and distributing resources to support
the project. Establish and maintain cohort groups. Facilitate teachers
visiting successful implementation sites. Build local leadership by
involving principals and encouraging teachers to become teacher
leaders (Berends et al., 2001; Borman et al., 2003; Elmore, 1996a;
Fullan, 2000; G. E. Hall & Hord, 2001).

• Provide professional development that is ongoing, intentional, reflective,
focused on children’s thinking, grounded in particular curriculum
materials, and situated in the classroom. Encourage sharing, risk taking,
and learning from and with peers. Aim at preparing to teach a specific
curriculum and develop teachers’ knowledge and beliefs that the
curriculum is appropriate and its goals are valued and attainable.
Situate work in the classroom, formatively evaluating teachers’ fidelity
of implementation and providing feedback and support from coaches
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in real time (Bodilly, 1998; Borman et al., 2003; Cohen, 1996; Elmore,
1996a; Garet et al., 2001; Guskey, 2000; G. E. Hall & Hord, 2001; Kaser
et al., 1999; Klingner et al., 2003; Schoen et al., 2003; Showers et al.,
1987).

• Ensure school leaders are a central force supporting the innovation and
provide teachers continuous feedback that children are learning what
they are taught and that these learnings are valued. Leaders must show
that the innovation is a high priority, through statements, resources,
and continued commitment to permanency of the effort. An
innovation champion leads the effort within each organization
(Bodilly, 1998; Elmore, 1996a; G. E. Hall & Hord, 2001; Rogers, 2003,
p. 434; Sarama et al., 1998).

• Give latitude for adaptation to teachers and schools, but maintain
integrity. Emphasize the similarities of the curriculum with sound
early childhood practice and what teachers already are doing. Do not
allow dilution due to uncoordinated innovations (i.e., productive
adaptations, not lethal mutations, A. L. Brown & Campione, 1996;
Fullan, 2000; Huberman, 1992; Sarama et al., 1998; Snipes, Doolittle,
& Herlihy, 2002).

• Provide incentives for all participants, including intrinsic and extrinsic
motivators linked to project work, such as external expectations—from
standards to validation from administrators. Show how the inno-
vation is advantageous to and compatible with teachers’ experiences
and needs (Berends et al., 2001; Borman et al., 2003; Cohen, 1996;
Darling-Hammond, 1996; Elmore, 1996b; Mohrman & Lawler III,
1996; Rogers, 2003).

• Maintain frequent, repeated communication, assessment (“checking
up”), and follow-through efforts emphasizing the purpose, expect-
ations, and visions of the project, and involve key groups in continual
improvement through cycles of data collection and problem solving
(Fullan, 1992; G. E. Hall & Hord, 2001; Huberman, 1992; Kaser et al.,
1999; Snipes et al., 2002).

TRIAD/Building Blocks Professional Development

The key guideline concerns professional development: high-quality pro-
fessional development is ongoing, intentional, reflective, focused on children’s
thinking, grounded in particular curriculum materials, and situated in the
classroom. That may sound promising, but what are the details? In TRIAD,
teachers receive comprehensive, effective professional development, including
training and coaching/mentoring. They participate in two full days of pro-
fessional development during the summer, three days during the school day
in the Fall and three days during the Spring for each of the first two years of
the project. These sessions address learning trajectories for each math topic;
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using learning trajectories for observation and other authentic formative
assessment strategies; supporting mathematical development in the classroom;
recognizing and supporting math throughout the day; setting up math
learning centers; teaching with computers (including use of the management
system and research-based teaching strategies); small-group activities; and
supporting mathematical development in the home. The sessions include
hands-on experience in rooms set up to mirror the structure of early childhood
classrooms, with an emphasis on interactions with peers around common
issues. The main technological tool is Building Blocks Learning Trajectory
(BBLT) web application. BBLT provides scalable access to the learning
trajectories via descriptions, videos, and commentaries. Each aspect of the
learning trajectories—developmental progressions of children’s thinking and
connected instruction—are linked to the other. We describe this tool in a
subsequent section.

Discussions of BBLT’s best practice videos make explicit how such practice
exemplifies research-based principles and will emphasize that even exemplary
teachers continue to struggle—illustrating that high-quality teaching for
understanding is both rewarding and challenging, and everyone can continue
to improve and contribute to the profession (Heck et al., 2002; Weiss, 2002).
Such virtual visits and discussion communicate the vision of the curriculum in
action and make the ideas and processes accessible, memorable, engaging, and
therefore usable.

coaches and mentors

Coaches and mentors work with teachers throughout the two-year period,
visiting teachers in their classrooms no less than once per month. Coaching
reminds teachers that the project is a priority, that a commitment has been
made to it, and that somebody cares about them (Hord et al., 1987). The
TRIAD coaching model is dynamic. Initial questionnaire data are helpful, but
not sufficient, for knowing who will need additional assistance from coaches
and mentors. For example, some teachers present themselves well and even
misrepresent how much of the curriculum they are teaching; only coaching
visits reveal and address such problems (with apologies to Leo Tolstoy, most
happy classes resemble one another, but each unhappy class is unhappy in its
own way, see Teddlie & Stringfield, 1993). Therefore we created a dynamic
model in which additional attention by both mentors and coaches is given
immediately until adequate fidelity of implementation is achieved. Several
additional features also encourage sensitivity to individual needs of
teachers, including (a) time to learn and work with cohort groups; (b) job-
embeddedness—addressing concrete, immediate concern with practical
problems of implementation; (c) opportunities for practice, receiving indi-
vidual, non-threatening feedback from coaches; and (d) software and BBLT
resources that facilitate individualization. Mentors will also coach teachers and
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will complete implementation fidelity evaluations and give immediate
feedback to teachers on those evaluations.

building blocks learning trajectories (bblt) web application

At the core of the TRIAD/Building Blocks model are the learning trajectories
that have been the focus of this book (Clements & Sarama, 2008). The most
important tool we have used to develop teachers’ knowledge of the learning
trajectories is the Building Blocks Learning Trajectories web application, BBLT
(for a demonstration, see www.ubtriad.org). BBLT presents and connects all
components of the innovation. Organized according to Learning Trajectories
(LTs) (Clements & Sarama, 2004a), it encourages teachers to view the LTs
through a curriculum or developmental (children’s thinking) perspective.
Each view is linked to the other. That is, teachers might choose the

 view (below), then click an activity and not only see an
explanation and video of the activity “in action,” but also immediately see the
level of thinking that activity is designed to develop, in the context of the
entire LT. For example, below the user has selected Week 11. The activities are
listed by type and a suggested weekly schedule is provided.

The user reads the description that appears on the right. If she chooses “More info”
( ) the screen “slides over” to reveal the expanded view shown below.
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Alternatively, the user may have been studying developmental sequences
themselves. After viewing the full list of the number topics on the left, she may
have selected the same level of the Counting LT as above.

Here she can see multiple video examples, with commentary. Clicking on the related
developmental level (child’s level of thinking), ringed here, yields the view on the next
page.

This developmental view likewise provides a description, video, and commentary on
the developmental level—the video here is of a clinical interview task in which a child
displays that level of thinking.
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Pressing “More info” results in the same developmental view as above. The
video commentary shown is just one of three commentaries, some by
researchers, some by assessors, and still others by teachers. Further, the level is
illustrated with assessment tasks and video of classroom activities in which
children illustrate thinking at each level (the icons above the video allow the
selection of alternative video), an approach that has received empirical support
(Klingner et al., 2003).

Finally, this developmental level is connected to all correlated activities.
Thus, a user in this view could jump to the “Make Buildings” activity or any of
the activities whose goal is to develop that level of thinking.

Teachers also can test themselves over the developmental progressions
component of the LTs by seeing videos and attempting to classify the level of
thinking displayed; assistive feedback is offered on these attempts.

In this way, teachers may view a piece of video as an example of a
curriculum activity and, later, when studying developmental sequences, see it
again as an example of a particular child’s level of thinking within. In each case,
supporting text directs attention to each perspective and the connections
between them. Such rich learning experiences promote flexible, integrated
knowledge, as teachers learn to see and to integrate, the teaching and learning
aspects of education. This results in multiple representations of, and perspec-
tives on, complex phenomena that research shows is necessary for successfully
applying concrete cases and the theories in which they are embedded in
ill-structured domains (Feltovich, Spiro, & Coulson, 1997). The resulting
cognitive flexibility positively impacts the variety of teaching strategies that
people develop and ease with which they acquire new repertoires. (Showers et
al., 1987).

BBLT provides professional development by bringing participating teachers
into intimate contact with “best practice” classrooms, including instruction
and assessment. On-line discussions (in a Blackboard-based course connected
to BBLT) of the videos of best practice make explicit how such practice
exemplifies research-based principles and emphasize that teachers considered
exemplary continue to struggle—illustrating that high-quality teaching for
understanding is both rewarding and challenging, and everyone can continue
to improve and contribute to the profession (Heck et al., 2002; Weiss, 2002).
Such “virtual visits” communicate the vision of our curriculum in action and
make the ideas and processes accessible, memorable, engaging, and, therefore,
usable. Results of project assessments are also interwoven.

BBLT is used in four related ways. The first two are main components support-
ing the course for teachers. First, it aids presentations of the trajectories and
activities to teachers. Second, teachers observe, react to, test themselves on, and
discuss (often online) specific trajectory levels, activities, or the relationship
between the two. Third, coaches and mentors use the site in talking to teachers,
often in their classrooms, about the trajectories, activities, or the relationship
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between the two. This is especially valuable in situations in which a teacher
says, or demonstrates, that she or he did not fully understand a given activity’s
goals or structure. Fourth, teachers may voluntarily consult BBLT when they
wish to refresh their memories on a particular activity they are to teach, or
delve more deeply into understanding their children’s thinking.

In summary, the TRIAD/Building Blocks professional development follows
research-based guidelines and provides a combination of experiences. Multiple
studies indicate it has had strong positive effects on both teachers and their
children.

The first study was a “proof of concept” study in which we used a random-
ized field trial design to evaluate the first version of the TRIAD model.
Children made substantially greater gains in mathematics achievement in the
TRIAD, compared to the control, children, with an effect size of .62 (Sarama,
Clements, Starkey, et al., 2008).

The second study was a randomized-trials design in which 36 preschool
classrooms were assigned to experimental (TRIAD), comparison (a different
preschool mathematics curriculum), or control conditions (Clements &
Sarama, 2008). Only the TRIAD classroom had learning trajectories at the core
of all components. Observational measures indicated that the curricula were
implemented with fidelity, and the experimental condition had significant
positive effects on classrooms’ mathematics environment and teaching. The
experimental group score increased significantly more than the comparison
group score (effect size 0.47) and the control group score (effect size = 1.07).

Our present study is the largest evaluation of the TRIAD model. We are
working with hundreds of teachers and more than 1000 children in three cities.
The first year results are equally promising, with an effect size on children’s
mathematics achievement of .69. We are collecting longitudinal data at the
time of this writing (see UBTRIAD.org for recent information).

Final Words

Research

Research in early mathematics has and continues to lead the way in investi-
gating fundamental issues in epistemology, psychology, and education.
Number and space are common topics of investigations by psychologists
engaged in a debate among empiricist, nativist and interactionalist positions
(Haith & Benson, 1998; Spelke, 2000). Further, researchers in mathematics
education have emphasized the need to specify children’s abilities to
learn, and learn to learn, as well as the ecological influences on such learning,
from sociocultural background to school learning experiences. There is as
yet no consensus about exactly when knowledge begins, what it consists of,
how it manifests itself, what causes it to emerge, or how it changes with
growth and experience in the earliest years of life. Furthermore, reminiscent of
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introspective psychology of a century ago (Anderson, 2000), researchers’
empirical evidence is consistent with their own theoretical orientation with
uncomfortable frequency.1 This is another reason why mathematics education
research emphasizing curriculum research will be so valuable (Clements,
2007). Because it is result-centered, rather than theory-centered, curriculum
research minimizes seductive theory-confirming strategies that tend to
insidiously replace the intended theory-testing strategies, and maximizes
strategies that attempt to produce specified patterns of data and thus mitigate
confirmation bias, stimulating creative development of theory (Greenwald,
Pratkanis, Leippe, & Baumgardner, 1986). Nevertheless, we already have a
growing body of knowledge that is at the least suggestive about early com-
petencies on which to build mathematics learning.

Through more than a century, research has moved from a cautious assess-
ment of the number competencies of children entering school, to a Piagetian
position that children were not capable of true numeric thinking, to the dis-
covery of infant sensitivity to mathematical phenomena, to the present
debate about the meaning of these contradictions and an attempt to synthesize
ostensibly opposing positions. Frequent in the last two of these phases is the
paradox of contradictions to Piagetian findings and confirmation of the
basic constructivist Piagetian framework, the influence of which has been so
fundamental that even substantive new theories were born in reaction to the
monumental Piagetian corpus.

Often due to their reactions against certain Piagetian functions and the
nature of their methods, researchers tended to create increasingly specialized
and local theories. Recently, similarities among those theories have laid the
groundwork for new hybrid theories that provide general frameworks, but are
replete with local detail, including specific innate predispositions as well as
competencies, conceptualizations, and strategies along developmental pro-
gressions. These progressions are at various levels of detail, both topical
(e.g., “number” vs. “counting” vs. “specific counting competencies and errors
at the nth level of development”) and social-psychological (e.g., a broad level
for goals, deeper for teachers, deeper for curriculum developers, deeper for
researchers).

To develop such theories, we need to synthesize psychological and clinical
approaches with others, such as those used in mathematics education research.
The theoretical framework of hierarchic interactionalism that we proposed here
is one such attempt. This framework connects initial bootstraps with a gradual
development of conscious knowledge of systems of mathematical knowledge,
depending on educational experiences. Thus, intellectual development results
from an interplay between internal and external factors, including innate
competencies and dispositions, maturation, experience with the physical
environment, sociocultural experiences (as opposed to only “social trans-
mission”), and self-regulatory processes (reflective abstraction). To be useful
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educationally, the roles and interactions of each of these factors must be
described in detail within specific domains. The field of early mathematics is
fortunate to include several research programs in which the development of
such descriptions is underway. We need similar proposals and increased clin-
ical, longitudinal, and educational studies of the usefulness of the theories.
Studies and specific theories must avoid eclecticism (Newcombe & Hutten-
locher, 2000), in which “everything matters,” and garner empirical evidence
that details development and the factors that influence it. Evaluating the
theories’ usefulness requires well-designed studies that connect specific
pedagogical processes and contexts to outcomes to identify moderating and
mediating variables and to compare the immediate and long-term outcomes of
different approaches. Researchers should avoid the common mistake of limit-
ing research to number and arithmetic so as to investigate young children’s
mathematical thinking.

Policy and Practice

There is much to gain, and little or nothing to lose, in engaging children from
birth to elementary school, in foundational and mathematical experiences in
number, space, geometry, measurement, and patterning, as well as the pro-
cesses of mathematical thinking (Stewart et al., 1997). Piaget had reason to
call the most important, most foundational type of knowledge “logico-
mathematical knowledge” (Piaget, 1971/1974).

We need more and better early childhood programs (Barnett, 1995). We
need relevant and rigorous professional development programs, both preservice
and inservice. We need to use research-based curricula and develop better
methods for evaluating all of these components.

Remember the girl in Chapter 1 who didn’t know how old she was? After
working in Building Blocks for a year, the research assistant who had talked to
her at the beginning of the year asked her (purposively) about her age. She
responded, “Oh, I’m four now. See [shows four fingers]. Next year I’ll be five,
then in, ummm, two years I’ll be six. It’s just counting.”
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Notes

Preface
Like most acronyms, TRIAD “almost” works; Julie Sarama always reminds people1.
of the “silent p” from Professional Development.

Chapter 1
Terms for the preprimary years are not used consistently in the literature. We use1.
“pre-K” for prekindergarten, the year before kindergarten entrance (in the U.S.
pre-K children are usually four years of age); “pre-K children” and “preschoolers”
are often used interchangeably, with plural phrases such as “the preschool years”
explicitly meaning the pre-K year and the year before this year (three-year-olds);
“toddlers” refers to one- to two-year-olds and “infants” to children below one
year of age.
Such everyday foundational experiences form the intuitive, implicit conceptual2.
foundation for later mathematics. Later, children represent and elaborate these
ideas—creating models of an everyday activity with mathematical objects, such as
numbers and shapes; mathematical actions, such as counting or transforming
shapes; and their structural relations. We call this process “mathematization.” A
distinction between foundational and mathematized experiences is necessary
to avoid confusion about the type of activity in which children are engaged
(Kronholz, 2000).
Building Blocks—Foundations for Mathematical Thinking, Pre-Kindergarten to3.
Grade 2: Research-based Materials Development was funded by NSF to create and
evaluate mathematics curricula for young children based on a theoretically sound
research and development framework. We describe the framework and research
in detail in Chapter 15 of the companion book. (National Science Foundation
Grant No. ESI-9730804 to D. H. Clements and J. Sarama “Building Blocks—
Foundations for Mathematical Thinking, Pre-Kindergarten to Grade 2: Research-
based Materials Development.”) For the purposes of full disclosure, note that we
have subsequently made this curriculum available through a publisher, and thus
receive royalties. All research was conducted with independent assessors and
evaluators.
This is the theory, of course. The developmental progressions described in this4.
book range from those with considerable supportive evidence, to descriptions
that are a “best professional judgment” of such a progression. Indeed, “pro-
gressions” may be determined by “natural ways of learning” more in some topics
(e.g., number/counting) than others (geometric and spatial understandings).
Further, even at best they are general descriptions and can be modified by cultural
and individual differences. See the “frequently asked questions” section of the
companion book for additional discussion and caveats.
Levels of thinking are theoretically nonrecurrent (Karmiloff-Smith, 1984); how-5.
ever, people not only can, but frequently do, “return” to earlier levels of geometric
thinking in certain contexts. Therefore, we postulate the construct of nongenetic
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levels (Clements et al., 2001). Nongenetic levels have two special characteristics.
First, progress through nongenetic levels is determined more by social influences,
and specifically instruction, than by age-linked development. (At this point, this
only implies that progression does not occur by necessity with time, but demands,
in addition, instructional intervention. Certain levels may develop under matur-
ational constraints; further research is needed on this issue.) Second, although
each higher nongenetic level builds on the knowledge that constitutes lower levels,
its nongenetic nature does not preclude the instantiation and application of earlier
levels in certain contexts (not necessarily limited to especially demanding or
stressful contexts). For each level, there exists a probability of evoking each of
numerous different sets of circumstances. However, this process is codetermined by
conscious metacognitive control, and this control increases as one moves up
through the levels. Therefore, people have increasing choice to override the default
probabilities. The use of different levels is environmentally adaptive; thus, the adjec-
tive “higher” should be understood as a higher level of abstraction and generality,
without the implication of either inherent superiority or the abandonment of lower
levels as a consequence of the development of higher levels of thinking. Neverthe-
less, the levels would constitute veridical qualitative changes in behavior, especially
in regard to the construction of mathematical schemes out of action.

Chapter 2
For a complementary review of historical changes in views of preschoolers’1.
informal mathematics knowledge, see (Baroody et al., 2006).

Chapter 3
We also avoid the term “rational counting,” as it was invented by Steffe to differen-1.
tiate simple object counting from the ability to count on with understanding, but
is now often used merely to mean “object counting” or “understanding object
counting” (L. P. Steffe, personal communication, May 20, 2004).

Chapter 4
These were only computer activities, tested as the first working draft of possible1.
Building Blocks activities. Given their limited impact, they were eliminated for
future development or inclusion in the Building Blocks curriculum, illustrating
the importance of following a model including substantive formative assessment
(see Chapter 15 in the companion book).

Chapter 5
Several important and complex issues regarding manipulatives are discussed at1.
length in Chapter 15 in the companion book.
Note that different cultures, such as Korean, Latino, and Mozambican have2.
different methods for representing numbers with fingers (Draisma, 2000; Fuson,
Perry, & Kwon, 1994).
Although simple counting practice transfers to addition and subtraction3.
(Malofeeva, Day, Saco, Young, & Ciancio, 2004), counting skills should also
include effortlessly (achieving automaticity on) counting forward and back-
ward, counting in either direction starting with any number, naming the
number before or after another number, counting-on-using-patterns, counting-
on-keeping-track of the number of counts, and eventually embedded quantities
within counting sequences.
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Chapter 7
We use Wang and Spelke’s (2002) term rather than Newcombe and Hutten-1.
locher’s (2000) term “dead reckoning” because the root of the latter is “deductive
reasoning.” With magnetic compasses, sailors could take compass bearings, or
headings. Bearings on two landmarks were used to construct two intersecting
lines, which determined a location. This starting point was then iteratively
updated based on movement—direction and distance (speed times time). In both
its implicit beginnings and navigational application, the difficulty is “drift”—
small errors lead to increasingly inaccurate calculations. The common written
abbreviation of deductive reckoning, “ded. reckoning,” was misread by an early
mariner and the name stuck as “dead reckoning.” As a term, “path integration”
has no implication of conscious deduction.

Chapter 8
We reserve the term “property” for those attributes that indicate a relationship1.
between parts, or components, of shapes. Thus, parallel sides, or equal sides, are
properties. We use “attributes” and features interchangeably to indicate any
characteristic of a shape, including properties, other defining characteristics
(e.g., straight sides) and nondefining characteristics (e.g., “right-side up”).
We define “exemplars” as theoretically- and empirically-determined common2.
forms of the class, and “variants” are other members of the class; “examples” are
members of the class (and thus include exemplars and variants). We will call
shapes that are not members of the class “distractors” (“palpable distractors” or
“palpable nonexamples,” are those without overall resemblance, such as ovals vs.
triangles; “difficult distractors” are those that are highly visually similar to
exemplars but lack at least one defining attribute); see the companion book for
illustrations.
This sentence could be misconstrued to mean that students are controlled by3.
the external environment. We assume students are always sense-making beings;
however, during this phase in building a representation, they are actively making
sense of their social and physical environments, rather than their representations,
of which they are not yet conscious. This active sense-making is critical, in that it
allows the students to differentiate between environments that do and do not
assist goal attainment.
The first two steps, Information and Guided Orientation, of the van Hiele model’s4.
five-step instructional sequence would be, with some modification, consonant
with the three phases of development described here. This topic is related to, but
different from, the topics addressed here and will not be examined.
For more complete recent reviews, see (Clements, 1999b; Clements & Sarama,5.
1997b; McCoy, 1996).

Chapter 10
We focus on the geometric attributes here, but preschoolers can reason about1.
other attributes in science, such as weight (see, e.g., Metz, 1993; Smith, Carey, &
Wiser, 1985).

Chapter 13
Most of the information regarding teaching problem solving is integrated within1.
the content chapters.
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Chapter 14
A similar and contributing problem is the theoretical and empirical insularity1.
of the various research communities. Research reviewed here indicates that
mathematics education researchers are aware of some, but not all, of research
from other fields, but those in various branches of psychology are not aware of
relevant work in mathematics education research, even making discoveries or
inventing “new” research methods that have a long history in mathematics
education.
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300–4; developmental
sequence, 309; volume, 305,
306–8

spatial thinking, 161–98, 199–202;
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subitizing, 29–51, 58; early work on, 37–8;

experience and education,
47–8; factors affecting difficulty
of subitizing tasks, 45–6;
learning trajectory, 48–50;
nature of process and early
development of quantity,
38–44; spontaneous, 46–7;
types of, 44–5

substitution composer, 254, 262, 265
subtraction, 101–28; compensation

principle, 329; counting
strategies, 108–14; earliest
arithmetic, 101–6; experience
and education, 114–24;
learning trajectories, 124–8;
multidigit, 145–53, 153–6;
problem structures, 106–8

superimposition, 295
symbolic representations, 70–1,

118–19
symbols: algebraic thinking, 322–3;

counting, language and
numerals, 68–72; models and
maps, 177; reasoning and, 336,
337

symmetry, 215, 222–5, 236–8
symmetry around the ones place, 142

syncretic level, 211–13, 214, 215, 228
Szeminska, A., 29–30, 61

t-charts, 321–2
teachers’ beliefs, 114, 347–51
temporal sequences, 35
textbooks, 115–16
theoretical frameworks, 19–24;

constructivism, 19–20;
empiricism, 19, 32, 36;
hierarchic interactionalism
see hierarchic interactionalism;
nativism, 19, 32, 33–6,
101–2

Thompson, P.W., 64–5
Thomson, S., 14
Thorndike, E.L., 3, 335
three-dimensional (3-D) array structurer,

308
three-dimensional (3-D) row and column

structurer, 307
three-dimensional (3-D) shapes, 222;

composition, 247–52, 258–60,
261–2; experience and
education, 335–6

“three mountains” task, 171, 172
Tiilikainen, S.H., 113–14
topological equivalence, 202–4
topological primacy thesis, 162, 166,

202–5
towers, building, 248–9
tracking objects, 39, 103
transformations, 185–6, 192–3, 222–5,

236–8
transitivity, 276, 278–9, 340
TRIAD/Building Blocks model, 355–63;

BBLT web application, 358,
359–63; coaches and mentors,
358–9; professional
development, 357–8; research-
based guidelines for scaling up,
355–7

triangles, 208–9, 212–13, 216, 217–19,
241, 258

turns, 185, 193, 196; angle and turn
measurement, 309–14

Index • 409



two-dimensional shapes: composition
and decomposition, 252–5,
260–6; disembedding, 255–8,
267–8; education and
experience, 230–5; see also
shape

unbreakable list level, 55
understanding the attribute: area, 294–5;

length, 275
unit iteration: area measurement, 296;

length measurement, 275, 276,
279, 280–1, 283

unitary multidigit, 141
units: area measurement, 296; length
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