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Introduction

0.1 Notes about these notes

This book is a one semester course in basic analysis. These were my lecture notes for teaching Math
444 at the University of Illinois at Urbana-Champaign (UIUC) in Fall semester 2009. The course is
a first course in mathematical analysis aimed at students who do not necessarily wish to continue a
graduate study in mathematics. A prerequisite for the course is a basic proof course, for example
one using the (unfortunately rather pricey) book [DW]. The course does not cover topics such as
metric spaces, which a more advanced course would. It should be possible to use these notes for a
beginning of a more advanced course, but further material should be added.

The book normally used for the class at UIUC is Bartle and Sherbert, Introduction to Real
Analysis third edition [BS]. The structure of the notes mostly follows the syllabus of UIUC Math 444
and therefore has some similarities with [BS]. Some topics covered in [BS] are covered in slightly
different order, some topics differ substantially from [BS] and some topics are not covered at all.
For example, we will define the Riemann integral using Darboux sums and not tagged partitions.
The Darboux approach is far more appropriate for a course of this level. In my view, [BS] seems
to be targeting a different audience than this course, and that is the reason for writing this present
book. The generalized Riemann integral is not covered at all.

As the integral is treated more lightly, we can spend some extra time on the interchange of limits
and in particular on a section on Picard’s theorem on the existence and uniqueness of solutions of
ordinary differential equations if time allows. This theorem is a wonderful example that uses many
results proved in the book.

Other excellent books exist. My favorite is without doubt Rudin’s excellent Principles of
Mathematical Analysis [R2] or as it is commonly and lovingly called baby Rudin (to distinguish
it from his other great analysis textbook). I have taken a lot of inspiration and ideas from Rudin.
However, Rudin is a bit more advanced and ambitious than this present course. For those that
wish to continue mathematics, Rudin is a fine investment. An inexpensive alternative to Rudin is
Rosenlicht’s Introduction to Analysis [R1]. Rosenlicht may not be as dry as Rudin for those just
starting out in mathematics. There is also the freely downloadable Introduction to Real Analysis by
William Trench [T] for those that do not wish to invest much money.

I want to mention a note about the style of some of the proofs. Many proofs that are traditionally
done by contradiction, I prefer to do by a direct proof or at least by a contrapositive. While the
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6 INTRODUCTION

book does include proofs by contradiction, I only do so when the contrapositive statement seemed
too awkward, or when the contradiction follows rather quickly. In my opinion, contradiction is
more likely to get the beginning student into trouble. In a contradiction proof, we are arguing about
objects that do not exist. In a direct proof or a contrapositive proof one can be guided by intuition,
but in a contradiction proof, intuition usually leads us astray.

I also try to avoid unnecessary formalism where it is unhelpful. Furthermore, the proofs and the
language get slightly less formal as we progress through the book, as more and more details are left
out to avoid clutter.

As a general rule, I will use := instead of = to define an object rather than to simply show
equality. I use this symbol rather more liberally than is usual. I may use it even when the context is
“local,” that is, I may simply define a function f(x) := x* for a single exercise or example.

If you are teaching (or being taught) with [BS], here is the correspondence of the sections. The
correspondences are only approximate, the material in these notes and in [BS] differs, as described
above.

Section | Section in [BS] Section | Section in [BS]
§0.3 §1.1-§1.3 §3.3 §5.37? B
§1.1 §2.1 and §2.3 §3.4 §5.4

§1.2 §2.3 and §2.4 §4.1 §6.1

§1.3 §2.2 842 §6.2

§1.4 §2.5 §4.3 §6.3

§2.1 parts of §3.1, §3.2, §3.3,83.4 || §5.1 §7.1,87.2
§2.2 §3.2 §5.2 §7.2

823 §3.3 and §3.4 8§53 §7.3

§2.4 §3.5 §86.1 §8.1

§2.5 §3.7 §6.2 §8.2

§3.1 §4.1-§4.2 §6.3 Not in [BS]
§3.2 §5.1 (and §5.27) -

It is possible to skip or skim some material in the book as it is not used later on. The optional
material is marked in the notes that appear below every section title. Section §0.3 can be covered
lightly, or left as reading. The material within is considered prerequisite. The section on Taylor’s
theorem (§4.3) can safely be skipped as it is never used later. Uncountability of R in §1.4 can safely
be skipped. The alternative proof of Bolzano-Weierstrass in §2.3 can safely be skipped. And of
course, the section on Picard’s theorem can also be skipped if there is no time at the end of the
course, though I have not marked the section optional.

Finally I would like to acknowledge Jana Maiikova and Glen Pugh for teaching with the notes
and finding many typos and errors. I would also like to thank Dan Stoneham and an anonymous
reader for spotting typos.
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0.2 About analysis

Analysis is the branch of mathematics that deals with inequalities and limiting processes. The
present course will deal with the most basic concepts in analysis. The goal of the course is to
acquaint the reader with the basic concepts of rigorous proof in analysis, and also to set a firm
foundation for calculus of one variable.

Calculus has prepared you (the student) for using mathematics without telling you why what
you have learned is true. To use (or teach) mathematics effectively, you cannot simply know what is
true, you must know why it is true. This course is to tell you why calculus is true. It is here to give
you a good understanding of the concept of a limit, the derivative, and the integral.

Let us give an analogy to make the point. An auto mechanic that has learned to change the oil,
fix broken headlights, and charge the battery, will only be able to do those simple tasks. He will
not be able to work independently to diagnose and fix problems. A high school teacher that does
not understand the definition of the Riemann integral will not be able to properly answer all the
student’s questions that could come up. To this day I remember several nonsensical statements |
heard from my calculus teacher in high school who simply did not understand the concept of the
limit, though he could “do” all problems in calculus.

We will start with discussion of the real number system, most importantly its completeness
property, which is the basis for all that we will talk about. We will then discuss the simplest form
of a limit, that is, the limit of a sequence. We will then move to study functions of one variable,
continuity, and the derivative. Next, we will define the Riemann integral and prove the fundamental
theorem of calculus. We will end with discussion of sequences of functions and the interchange of
limits.

Let me give perhaps the most important difference between analysis and algebra. In algebra, we
prove equalities directly. That is, we prove that an object (a number perhaps) is equal to another
object. In analysis, we generally prove inequalities. To illustrate the point, consider the following
statement.

Let x be a real number. If 0 < x < € is true for all real numbers € > 0, then x = 0.

This statement is the general idea of what we do in analysis. If we wish to show that x = 0, we
will show that 0 < x < € for all positive €.

The term “real analysis” is a little bit of a misnomer. I prefer to normally use just “analysis.”
The other type of analysis, that is, “complex analysis” really builds up on the present material,
rather than being distinct. Furthermore, a more advanced course on “real analysis” would talk about
complex numbers often. I suspect the nomenclature is just historical baggage.

Let us get on with the show...
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0.3 Basic set theory

Note: 1-3 lectures (some material can be skipped or covered lightly)

Before we can start talking about analysis we need to fix some language. Modern™ analysis
uses the language of sets, and therefore that’s where we will start. We will talk about sets in a
rather informal way, using the so-called “naive set theory.” Do not worry, that is what majority of
mathematicians use, and it is hard to get into trouble.

It will be assumed that the reader has seen basic set theory and has had a course in basic proof
writing. This section should be thought of as a refresher.

0.3.1 Sets

Definition 0.3.1. A set is just a collection of objects called elements or members of a set. A set
with no objects is called the empty set and is denoted by @ (or sometimes by {}).

The best way to think of a set is like a club with a certain membership. For example, the students
who play chess are members of the chess club. However, do not take the analogy too far. A set is
only defined by the members that form the set; two sets that have the same members are the same
set.

Most of the time we will consider sets of numbers. For example, the set

S:={0,1,2}
is the set containing the three elements 0, 1, and 2. We write
1es§
to denote that the number 1 belongs to the set S. That is, 1 is a member of S. Similarly we write
7¢S

to denote that the number 7 is not in S. That is, 7 is not a member of S. The elements of all sets
under consideration come from some set we call the universe. For simplicity, we often consider the
universe to be a set that contains only the elements (for example numbers) we are interested in. The
universe is generally understood from context and is not explicitly mentioned. In this course, our
universe will most often be the set of real numbers.

The elements of a set will usually be numbers. Do note, however, the elements of a set can also
be other sets, so we can have a set of sets as well.

A set can contain some of the same elements as another set. For example,

T:={0,2}

contains the numbers 0 and 2. In this case all elements of 7" also belong to S. We write T C S. More
formally we have the following definition.

*The term “modern” refers to late 19th century up to the present.
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Definition 0.3.2.

(1) A set A is a subset of a set B if x € A implies that x € B, and we write A C B. That is, all
members of A are also members of B.

(i1)) Two sets A and B are equal if A C B and B C A. We write A = B. That is, A and B contain the
exactly the same elements. If it is not true that A and B are equal, then we write A # B.

(iii) A set A is a proper subset of Bif A C B and A # B. We write A C B.

When A = B, we consider A and B to just be two names for the same exact set. For example, for
S and T defined above we have T C S, but T # S. So T is a proper subset of S. At this juncture, we
also mention the set building notation,

(xeA:P(x)).

This notation refers to a subset of the set A containing all elements of A that satisfy the property
P(x). The notation is sometimes abbreviated (A is not mentioned) when understood from context.
Furthermore, x is sometimes replaced with a formula to make the notation easier to read. Let us see
some examples of sets.

Example 0.3.3: The following are sets including the standard notations for these.
(i) The set of natural numbers, N :={1,2,3,...}.
(ii) The set of integers, 7 :={0,—1,1,—2,2,...}.
(iii) The set of rational numbers, Q := {" : m,n € Z and n # 0}.
(iv) The set of even natural numbers, {2m : m € N}.
(v) The set of real numbers, R.
Notethat NC Z C Q C R.
There are many operations we will want to do with sets.
Definition 0.3.4.

(1) A union of two sets A and B is defined as

AUB:={x:x€Aorx€B}.

(i1) An intersection of two sets A and B is defined as

ANB:={x:x€Aandx € B}.
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(iii) A complement of B relative to A (or set-theoretic difference of A and B) is defined as
A\B:={x:x€Aandx ¢ B}.
(iv) We just say complement of B and write B¢ if A is understood from context. A is either the
entire universe or is the obvious set that contains B.
(v) We say that sets A and B are disjoint if ANB = 0.

The notation B may be a little vague at this point. But for example if the set B is a subset of the
real numbers R, then B¢ will mean R \ B. If B is naturally a subset of the natural numbers, then B¢
is N'\ B. If ambiguity would ever arise, we will use the set difference notation A \ B.

A\B B

Figure 1: Venn diagrams of set operations.

We illustrate the operations on the Venn diagrams in Figure 1. Let us now establish one of most
basic theorems about sets and logic.

Theorem 0.3.5 (DeMorgan). Let A, B,C be sets. Then

(BUC) =B°NC",
(BNC) = B°UC",
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or, more generally,

A\ (BUC) = (A\B)N(A\C),
A\(BNC) = (A\B)U(A\C).

Proof. We note that the first statement is proved by the second statement if we assume that set A is
our “universe.”

Let us prove A\ (BUC) = (A\ B)N (A \ C). Remember the definition of equality of sets. First,
we must show that if x € A\ (BUC), then x € (A\ B) N (A\C). Second, we must also show that if
x€ (A\B)N(A\C),thenx € A\ (BUC).

So let us assume that x € A\ (BUC). Then x is in A, but not in B nor C. Hence x is in A and not
in B, that is, x € A\ B. Similarly x € A\ C. Thus x € (A\B)N(A\C).

On the other hand suppose that x € (A\ B) N (A\ C). In particular x € (A\ B) and so x € A and
x¢B. Alsoasx € (A\C), thenx ¢ C. Hencex € A\ (BUC).

The proof of the other equality is left as an exercise. 0

We will also need to intersect or union several sets at once. If there are only finitely many, then
we just apply the union or intersection operation several times. However, suppose that we have an
infinite collection of sets (a set of sets) {A1,A2,A3,...}. We define

UAn :={x:x €A, for some n € N},

n=1

ﬂAn::{x:xGAnforallnEN}.

n=1

We could also have sets indexed by two integers. For example, we could have the set of sets
{AI’I,ALz,AzJ,A173,A2’2,A371,. . } Then we can write

U UAn,m: U (UAn,m>-
n=1m=1 n=1 \um=1
And similarly with intersections.

It is not hard to see that we could take the unions in any order. However, switching unions and
intersections is not generally permitted without proof. For example:

o o0 (oo}

U N{keN:mk<n}=[J0=0.
1

n=1m=1 n=

Howeyver,

0o o

() U{keN:mk <n}= ﬁN:N.
m=1

m=1n=1
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0.3.2 Induction

A common method of proof is the principle of induction. We start with the set of natural numbers
N ={1,2,3,...}. We note that the natural ordering on N (thatis, 1 <2<3 <4< ---) hasa
wonderful property. The natural numbers N ordered in the natural way possess the well ordering
property or the well ordering principle.

Well ordering property of N. Every nonempty subset of N has a least (smallest) element.

The principle of induction is the following theorem, which is equivalent to the well ordering
property of the natural numbers.

Theorem 0.3.6 (Principle of induction). Let P(n) be a statement depending on a natural number n.
Suppose that

(i) (basis statement) P(1) is true,
(ii) (induction step) if P(n) is true, then P(n+ 1) is true.
Then P(n) is true for all n € N.

Proof. Suppose that S is the set of natural numbers m for which P(m) is not true. Suppose that S is
nonempty. Then S has a least element by the well ordering principle. Let us call m the least element
of S. We know that 1 ¢ S by assumption. Therefore m > 1 and m — 1 is a natural number as well.
Since m was the least element of S, we know that P(m — 1) is true. But by the induction step we can
see that P(m — 1 + 1) = P(m) is true, contradicting the statement that m € S. Therefore S is empty
and P(n) is true for all n € N. O

Sometimes it is convenient to start at a different number than 1, but all that changes is the
labeling. The assumption that P(n) is true in “if P(n) is true, then P(n+ 1) is true” is usually called
the induction hypothesis.

Example 0.3.7: Let us prove that for all » € N we have
2l < p.

We let P(n) be the statement that 2"~ ! < n!is true. By plugging in n = 1, we can see that P(1) is
true.
Suppose that P(n) is true. That is, suppose that 2"~! < n! holds. Multiply both sides by 2 to
obtain
2" < 2(n!).

As2 < (n+1) whenn € N, we have 2(n!) < (n+1)(n!) = (n+1)!. That s,
2" <2(n!) < (n+1)!,

and hence P(n+ 1) is true. By the principle of induction, we see that P(n) is true for all n, and
hence 2"~! < n!is true for all n € N.
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Example 0.3.8: We claim that for all ¢ # 1, we have that

l_cn—i-l

l+cte? 4+t =
I—c

Proof: It is easy to check that the equation holds with n = 1. Suppose that it is true for n. Then

l+ct+ 4"+ = (I4+c+ P4+ )+
_ -t +Cn+l
l1—c

1 _c}’l+l + (1 _C)Cn—i—]

1—c
l_cn+2

- l—c
There is an equivalent principle called strong induction. The proof that strong induction is
equivalent to induction is left as an exercise.

Theorem 0.3.9 (Principle of strong induction). Let P(n) be a statement depending on a natural
number n. Suppose that

(i) (basis statement) P(1) is true,
(ii) (induction step) if P(k) is true for all k = 1,2,...,n, then P(n+ 1) is true.
Then P(n) is true for all n € N.

0.3.3 Functions

Informally, a set-theoretic function f taking a set A to a set B is a mapping that to each x € A assigns
aunique y € B. We write f: A — B. For example, we could define a function f: S — T taking
§=1{0,1,2} to T = {0,2} by assigning f(0) :=2, f(1) :=2, and f(2) := 0. That is, a function
f: A — Bis ablack box, into which we can stick an element of A and the function will spit out an
element of B. Sometimes f is called a mapping and we say that f maps A to B.

Often, functions are defined by some sort of formula, however, you should really think of a
function as just a very big table of values. The subtle issue here is that a single function can have
several different formulas, all giving the same function. Also a function need not have any formula
being able to compute its values.

To define a function rigorously first let us define the Cartesian product.

Definition 0.3.10. Let A and B be sets. Then the Cartesian product is the set of tuples defined as
follows.
AxB:={(x,y):x€A,y € B}.
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For example, the set [0, 1] x [0, 1] is a set in the plane bounded by a square with vertices (0,0),
(0,1), (1,0), and (1,1). When A and B are the same set we sometimes use a superscript 2 to denote
such a product. For example [0, 1]? = [0, 1] x [0, 1], or R? = R x R (the Cartesian plane).

Definition 0.3.11. A function f: A — B is a subset of A x B such that for each x € A, there is a
unique (x,y) € f. Sometimes the set f is called the graph of the function rather than the function
itself.

The set A is called the domain of f (and sometimes confusingly denoted D(f)). The set

R(f) := {y € B : there exists an x such that (x,y) € f}

is called the range of f.
Note that R(f) can possibly be a proper subset of B, while the domain of f is always equal to A.

Example 0.3.12: From calculus, you are most familiar with functions taking real numbers to real
numbers. However, you have seen some other types of functions as well. For example the derivative
is a function mapping the set of differentiable functions to the set of all functions. Another example
is the Laplace transform, which also takes functions to functions. Yet another example is the
function that takes a continuous function g defined on the interval [0, 1] and returns the number

fol g(x)dx

Definition 0.3.13. Let f: A — B be a function. Let C C A. Define the image (or direct image) of C
as

f(C):={f(x) eB:xeC}.
Let D C B. Define the inverse image as
YD) :={x€A: f(x) €D}

Example 0.3.14: Define the function f: R — R by f(x) := sin(zx). Then f([0,1/2]) = [0, 1],
“1{0}) =7, etc. ...

Proposition 0.3.15. Let f: A — B. Let C,D be subsets of B. Then
fricup) = (Qus (D),
fienp)y=onf ),
e = ()"

Read the last line as f~!(B\C) =A\ f1(C).

Proof. Let us start with the union. Suppose that x € f~!(CUD). That means that x maps to C or D.
Thus f~'(CuD) c f~Y(C)U f~1(D). Conversely if x € f~1(C), then x € f~!(CUD). Similarly
for x € f~1(D). Hence f~!(CUD) D> f~1(C)U f~1(D), and we are have equality.

The rest of the proof is left as an exercise. [
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The proposition does not hold for direct images. We do have the following weaker result.

Proposition 0.3.16. Let f: A — B. Let C,D be subsets of A. Then

f(CUD) = f(C)Uf(D),
f(€nD) C f(C)Nf(D).

The proof is left as an exercise.

Definition 0.3.17. Let f: A — B be a function. The function f is said to be injective or one-to-one
if f(x1) = f(xz) implies x; = x,. In other words, f~!({y}) is empty or consists of a single element
for all y € B. We then call f an injection.
The function f is said to be surjective or onto if f(A) = B. We then call f a surjection.
Finally, a function that is both an injection and a surjection is said to be bijective and we say it
is a bijection.

When f: A — B is a bijection, then f~!({y}) is always a unique element of A, and we could
then consider f~! as a function f~!: B — A. In this case we call f~! the inverse function of f. For
example, for the bijection f(x) := x> we have f~!(x) = ¥/x.

A final piece of notation for functions that we will need is the composition of functions.

Definition 0.3.18. Let /: A — B, g: B— C. Then we define a function go f: A — C as follows.

(gof)(x) :==g(f(x)).

0.3.4 Cardinality

A very subtle issue in set theory and one generating a considerable amount of confusion among
students is that of cardinality, or “size” of sets. The concept of cardinality is important in modern
mathematics in general and in analysis in particular. In this section, we will see the first really
unexpected theorem.

Definition 0.3.19. Let A and B be sets. We say A and B have the same cardinality when there exists
a bijection f: A — B. We denote by |A| the equivalence class of all sets with the same cardinality
as A and we simply call |A| the cardinality of A.

Note that A has the same cardinality as the empty set if and only if A itself is the empty set. We
then write |A| := 0.

Definition 0.3.20. Suppose that A has the same cardinality as {1,2,3,...,n} for some n € N. We
then write |A| := n, and we say that A is finite. When A is the empty set, we also call A finite.
We say that A is infinite or “of infinite cardinality” if A is not finite.
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That the notation |A| = n is justified we leave as an exercise. That is, for each nonempty finite set
A, there exists a unique natural number n such that there exists a bijection from A to {1,2,3,...,n}.
We can also order sets by size.

Definition 0.3.21. We write
|A| < |B|

if there exists an injection from A to B. We write |A| = |B| if A and B have the same cardinality. We
write |A| < |B|if |A| < |B|, but A and B do not have the same cardinality.

We state without proof that |A| = |B| have the same cardinality if and only if |A| < |B| and
|B| < |A|. This is the so-called Cantor-Bernstein-Schroeder theorem. Furthermore, if A and B are
any two sets, we can always write |[A| < |B| or |B| < |A|. The issues surrounding this last statement
are very subtle. As we will not require either of these two statements, we omit proofs.

The interesting cases of sets are infinite sets. We start with the following definition.

Definition 0.3.22. If |A| = |N|, then A is said to be countably infinite. If A is finite or countably
infinite, then we say A is countable. If A is not countable, then A is said to be uncountable.

Note that the cardinality of N is usually denoted as X (read as aleph—naught)i.

Example 0.3.23: The set of even natural numbers has the same cardinality as N. Proof: Given an
even natural number, write it as 2n for some n € N. Then create a bijection taking 2n to n.

In fact, let us mention without proof the following characterization of infinite sets: A set is
infinite if and only if it is in one to one correspondence with a proper subset of itself.

Example 0.3.24: N x N is a countably infinite set. Proof: Arrange the elements of N x N as follows
(1,1), (1,2), (2,1), (1,3), (2,2), (3,1), .... That is, always write down first all the elements whose
two entries sum to k, then write down all the elements whose entries sum to £+ 1 and so on. Then
define a bijection with N by letting 1 go to (1,1), 2 go to (1,2) and so on.

Example 0.3.25: The set of rational numbers is countable. Proof: (informal) Follow the same
procedure as in the previous example, writing 1/1, 1/2, 2/1, etc. ... However, leave out any fraction
(such as 2/2) that has already appeared.

For completeness we mention the following statement. I[f A C B and B is countable, then A is
countable. Similarly if A is uncountable, then B is uncountable. As we will not need this statement
in the sequel, and as the proof requires the Cantor-Bernstein-Schroeder theorem mentioned above,
we will not give it here.

We give the first truly striking result. First, we need a notation for the set of all subsets of a set.

Definition 0.3.26. If A is a set, we define the power set of A, denoted by Z?(A), to be the set of all
subsets of A.

TFor the fans of the TV show Futurama, there is a movie theater in one episode called an X o-plex.
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For example, if A := {1,2}, then &(A) = {0,{1},{2},{1,2}}. Note that for a finite set A of
cardinality n, the cardinality of 2?(A) is 2". This fact is left as an exercise. That is, the cardinality
of Z(A) is strictly larger than the cardinality of A, at least for finite sets. What is an unexpected
and striking fact is that this statement is still true for infinite sets.

Theorem 0.3.27 (Cantor). |A| < |Z2(A)|. In particular, there exists no surjection from A onto
P(A).

Proof. There of course exists an injection f: A — Z?(A). For any x € A, define f(x) := {x}.
Therefore |A| < |Z(A)].

To finish the proof, we have to show that no function f: A — Z?(A) is a surjection. Suppose
that f: A — Z?(A) is a function. So for x € A, f(x) is a subset of A. Define the set

B:={xcA:x¢ f(x)}.

We claim that B is not in the range of f and hence f is not a surjection. Suppose that there exists
an xq such that f(xo) = B. Either xo € B or xo ¢ B. If xo € B, then xo ¢ f(xo) = B, which is a
contradiction. If xo ¢ B, then xo € f(xo) = B, which is again a contradiction. Thus such an x( does
not exist. Therefore, B is not in the range of f, and f is not a surjection. As f was an arbitrary
function, no surjection can exist. 0

One particular consequence of this theorem is that there do exist uncountable sets, as &?(N)
must be uncountable. This fact is related to the fact that the set of real numbers (which we study
in the next chapter) is uncountable. The existence of uncountable sets may seem unintuitive, and
the theorem caused quite a controversy at the time it was announced. The theorem not only says
that uncountable sets exist, but that there in fact exist progressively larger and larger infinite sets N,

P(N), P(2(N)), 2(P(2(N))), etc. ...

0.3.5 Exercises
Exercise 0.3.1: Show A\ (BNC)=(A\B)U(A\C).
Exercise 0.3.2: Prove that the principle of strong induction is equivalent to the standard induction.

Exercise 0.3.3: Finish the proof of Proposition 0.3.15.

Exercise 0.3.4: a) Prove Proposition 0.3.16.

b) Find an example for which equality of sets in f(CND) C f(C)N f(D) fails. That is, find an f,
A, B, C, and D such that f(CND) is a proper subset of f(C)N f(D).

Exercise 0.3.5 (Tricky): Prove that if A is finite, then there exists a unique number n such that there
exists a bijection between A and {1,2,3,...,n}. In other words, the notation |A| := n is justified.
Hint: Show that if n > m, then there is no injection from {1,2,3,....,n} to {1,2,3,...,m}.
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Exercise 0.3.6: Prove
a) AN(BUC)=(ANB)U(ANC)
b) AU(BNC)=(AUB)N(AUC)

Exercise 0.3.7: Let AAB denote the symmetric difference, that is, the set of all elements that belong
to either A or B, but not to both A and B.

a) Draw a Venn diagram for AAB.

b) Show AAB= (A\B)U(B\A).

c) Show AAB = (AUB)\ (ANB).

Exercise 0.3.8: Foreachn €N, let A, :={(n+ 1)k : k € N}
a) Find A| NA;.

b) Find \J,_| An.

c¢) Find (;_An

Exercise 0.3.9: Determine & (S) (the power set) for each of the following:

a) S=0,
b) S={1},
c) S={1,2},

d) S=1{1,2,3,4}.

Exercise 0.3.10: Let f: A— Band g: B — C be functions.

a) Prove that if go f is injective, then f is injective.

b) Prove that if go f is surjective, then g is surjective.

c) Find an explicit example where g o f is bijective, but neither f nor g are bijective.

Exercise 0.3.11: Prove that n < 2" by induction.

Exercise 0.3.12: Show that for a finite set A of cardinality n, the cardinality of Z?(A) is 2".
1

Exercise 0.3.13: Prove 1]—2 + % 4+ AT = i foralln € N.

2
Exercise 0.3.14: Prove 13+23 + ... 403 = (%) foralln €N,
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Exercise 0.3.15: Prove that n’ + Sn is divisible by 6 for all n € N.

Exercise 0.3.16: Find the smallest n € N such that 2(n+5)> < n® and call it ng. Show that
2(n+5)? < n’ for all n > ny,.

Exercise 0.3.17: Find all n € N such that n*> < 2".

Exercise 0.3.18: Finish the proof that the principle of induction is equivalent to the well ordering
property of N. That is, prove the well ordering property for N using the principle of induction.

Exercise 0.3.19: Give an example of a countable collection of finite sets A1,A, ..., whose union is
not a finite set.

Exercise 0.3.20: Give an example of a countable collection of infinite sets A1,As,. .., with AjNAy
being infinite for all j and k, such that ﬂ;f’:lA j is nonempty and finite.
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Chapter 1

Real Numbers

1.1 Basic properties

Note: 1.5 lectures

The main object we work with in analysis is the set of real numbers. As this set is so fundamental,
often much time is spent on formally constructing the set of real numbers. However, we will take an
easier approach here and just assume that a set with the correct properties exists. We need to start
with some basic definitions.

Definition 1.1.1. A set A is called an ordered set, if there exists a relation < such that
(i) For any x,y € A, exactly one of x <y, x =y, or y < x holds.
(1) Ifx<yandy <z thenx < z.

For example, the rational numbers QQ are an ordered set by letting x < y if and only if y —x is a
positive rational number. Similarly, N and Z are also ordered sets.
We will write x <y if x <y or x =y. We define > and > in the obvious way.

Definition 1.1.2. Let E C A, where A is an ordered set.

(1) If there exists a b € A such that x < b for all x € E, then we say E is bounded above and b is
an upper bound of E.

(i1) If there exists a b € A such that x > b for all x € E, then we say E is bounded below and b is a
lower bound of E.

(ii1) If there exists an upper bound bg of E such that whenever b is any upper bound for E we have
bo < b, then by is called the least upper bound or the supremum of E. We write

sup E := by.

21
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(iv) Similarly, if there exists a lower bound by of E such that whenever b is any lower bound for E
we have by > b, then by is called the greatest lower bound or the infimum of E. We write

inf E := by.

Note that a supremum or infimum for E (even if they exist) need not be in E. For example the
set {x € Q : x < 1} has a least upper bound of 1, but 1 is not in the set itself.

Definition 1.1.3. An ordered set A has the least-upper-bound property if every nonempty subset
E C A that is bounded above has a least upper bound, that is sup E exists in A.

Sometimes least-upper-bound property is called the completeness property or the Dedekind
completeness property.

Example 1.1.4: For example Q does not have the least-upper-bound property. The set {x € Q :
x? < 2} does not have a supremum. The obvious supremum +/2 is not rational. Suppose that x> = 2
for some x € Q. Write x = m/n in lowest terms. So (m/n)? = 2 or m*> = 2n?. Hence m? is divisible
by 2 and so m is divisible by 2. We write m = 2k and so we have (2k)? = 2n?. We divide by 2 and
note that 2k> = n” and hence n is divisible by 2. But that is a contradiction as we said m/n was in
lowest terms.

That Q does not have the least-upper-bound property is one of the most important reasons
why we work with R in analysis. The set Q is just fine for algebraists. But analysts require the
least-upper-bound property to do any work. We also require our real numbers to have many algebraic
properties. In particular, we require that they are a field.

Definition 1.1.5. A set F is called a field if it has two operations defined on it, addition x +y and
multiplication xy, and if it satisfies the following axioms.

(Al) If xe Fandy e F,thenx+y€cF.

(A2) (commutativity of addition) If x+y=y—+xforall x,y € F.

(A3) (associativity of addition) If (x+y) +z=x+ (y+z) forall x,y,z € F.
(A4) There exists an element O € F such that 0+x=xforallx € F.

(AS5) For every element x € F there exists an element —x € F such that x+ (—x) = 0.
M1) If xe Fandy € F, thenxy € F.

(M2) (commutativity of multiplication) If xy = yx for all x,y € F.

(M3) (associativity of multiplication) If (xy)z = x(yz) for all x,y,z € F.
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(M4) There exists an element 1 (and 1 # 0) such that 1x = x for all x € F.
(MS) For every x € F such that x # 0 there exists an element !/x € F such that x(1/x) = 1.
(D) (distributive law) x(y+z) = xy+xz for all x,y,z € F.

Example 1.1.6: The set Q of rational numbers is a field. On the other hand Z is not a field, as it
does not contain multiplicative inverses.

Definition 1.1.7. A field F is said to be an ordered field if F is also an ordered set such that:
(1) Forx,y,ze F,x <yimpliesx+z<y+z.

(i1) For x,y € F such that x > 0 and y > 0 implies xy > 0.

If x > 0, we say x is positive. If x < 0, we say x is negative. We also say x is nonnegative if x > 0,
and x is nonpositive if x < 0.

Proposition 1.1.8. Let F be an ordered field and x,y,z € F. Then:
(i) If x > 0, then —x < 0 (and vice-versa).
(ii) If x > 0andy < z, then xy < xz.
(iii) If x <0andy < z, then xy > xz.
(iv) If x # 0, then x> 0.
(v) If0 <x <y, then 0 < 1/y < 1/x.
Note that (iv) implies in particular that 1 > 0.

Proof. Let us prove (1). The inequality x > 0 implies by item (i) of definition of ordered field
that x+ (—x) > 0+ (—x). Now apply the algebraic properties of fields to obtain 0 > —x. The
“vice-versa” follows by similar calculation.

For (ii), first notice that y < z implies 0 < z —y by applying item (i) of the definition of ordered
fields. Now apply item (ii) of the definition of ordered fields to obtain 0 < x(z —y). By algebraic
properties we get 0 < xz —xy, and again applying item (i) of the definition we obtain xy < xz.

Part (ii1) is left as an exercise.

To prove part (iv) first suppose that x > 0. Then by item (ii) of the definition of ordered fields
we obtain that x> > 0 (use y = x). If x < 0, we can use part (iii) of this proposition. Plug in y = x
and z =0.

Finally to prove part (v), notice that 1/x cannot be equal to zero (why?). If 1/x < 0, then —1/x > 0
by (i). Then apply part (ii) (as x > 0) to obtain x(—1/x) > Ox or —1 > 0, which contradicts 1 > 0 by
using part (i) again. Similarly 1/y > 0. Hence (1/x)(1/y) > 0 by definition and we have

(/) (V) < (V) (V).

By algebraic properties we get 1/y < 1/x. O
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Product of two positive numbers (elements of an ordered field) is positive. However, it is not
true that if the product is positive, then each of the two factors must be positive. We do have the
following proposition.

Proposition 1.1.9. Let x,y € F where F is an ordered field. Suppose that xy > 0. Then either both
x and y are positive, or both are negative.

Proof. 1t is clear that both possibilities can in fact happen. If either x and y are zero, then xy is zero
and hence not positive. Hence we can assume that x and y are nonzero, and we simply need to show
that if they have opposite signs, then xy < 0. Without loss of generality suppose that x > 0 and
y < 0. Multiply y < 0 by x to get xy < Ox = 0. The result follows by contrapositive. 0

1.1.1 Exercises

Exercise 1.1.1: Prove part (ii1) of Proposition 1.1.8.

Exercise 1.1.2: Let S be an ordered set. Let A C S be a nonempty finite subset. Then A is bounded.
Furthermore, inf A exists and is in A and sup A exists and is in A. Hint: Use induction.

Exercise 1.1.3: Let x,y € F, where F is an ordered field. Suppose that 0 < x <'y. Show that
2 2
x°<y“

Exercise 1.1.4: Let S be an ordered set. Let B C S be bounded (above and below). Let A C B be a
nonempty subset. Suppose that all the inf’s and sup’s exist. Show that

inf B<infA <supA <supB.

Exercise 1.1.5: Let S be an ordered set. Let A C S and suppose that b is an upper bound for A.
Suppose that b € A. Show that b = sup A.

Exercise 1.1.6: Let S be an ordered set. Let A C S be a nonempty subset that is bounded above.
Suppose that sup A exists and that sup A ¢ A. Show that A contains a countably infinite subset. In
particular, A is infinite.

Exercise 1.1.7: Find a (nonstandard) ordering of the set of natural numbers N such that there
exists a proper subset A C N and such that sup A exists in N but sup A ¢ A.



1.2. THE SET OF REAL NUMBERS 25

1.2 The set of real numbers

Note: 2 lectures

1.2.1 The set of real numbers

We finally get to the real number system. Instead of constructing the real number set from the
rational numbers, we simply state their existence as a theorem without proof. Notice that Q is an
ordered field.

Theorem 1.2.1. There exists a unique* ordered field R with the least-upper-bound property such
that Q C R.

Note that also N C Q. As we have seen, 1 > 0. By induction (exercise) we can prove that n > 0
for all n € N. Similarly we can easily verify all the statements we know about rational numbers and
their natural ordering.

Let us prove one of the most basic but useful results about the real numbers. The following
proposition is essentially how an analyst proves that a number is zero.

Proposition 1.2.2. Ifx € R is such that x > 0 and x < € for all € € R where € > 0, then x = 0.
Proof. If x > 0, then 0 < x/2 < x (why?). Taking € = /2 obtains a contradiction. Thusx =0. [

A more general and related simple fact is that any time we have two real numbers a < b, then
there is another real number ¢ such that a < ¢ < b. Just take for example ¢ = # (why?). In fact,
there are infinitely many real numbers between a and b.

The most useful property of R for analysts, however, is not just that it is an ordered field, but
that it has the least-upper-bound property. Essentially we want Q, but we also want to take suprema
(and infima) willy-nilly. So what we do is to throw in enough numbers to obtain R.

We have already seen that R must contain elements that are not in (Q because of the least-upper-
bound property. We have seen that there is no rational square root of two. The set {x € Q : x> < 2}
implies the existence of the real number /2 that is not rational, although this fact requires a bit of
work.

Example 1.2.3: Claim: There exists a unique positive real number r such that r> = 2. We denote r

by V2.

Proof. Take the set A := {x € R : x> < 2}. First we must note that if x*> < 2, then x < 2. To see this
fact, note that x > 2 implies X2 >4 (use Proposition 1.1.8 we will not explicitly mention its use
from now on), hence any number such that x > 2 is not in A. Thus A is bounded above. As 1 € A,
then A is nonempty.

*Uniqueness is up to isomorphism, but we wish to avoid excessive use of algebra. For us, it is simply enough to
assume that a set of real numbers exists. See Rudin [R2] for the construction and more details.
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Let us define 7 := sup A. We will show that 7> = 2 by showing that 7> > 2 and r> < 2. This
is the way analysts show equality, by showing two inequalities. Note that we already know that
r>1>0.

Let us ﬁrst show that 2 > 2. Take a number s > 1 such that 52 < 2. Note that 2 — s% > 0.
Therefore 2( ) > (0. We can choose an 2 € R such that 0 < h < ( ) Furthermore, we can

assume that 7 < 1.
Claim: 0 < a < b implies b> — a? < 2(b — a)b. Proof: Write

b —a* = (b—a)(a+b) < (b—a)2b.
Let us use the claim by plugging in @ = s and b = s+ h. We obtain
(s+h)?—s* <h2(s+h)
<2h(s+1) (since h < 1)

2_ 2
<252 sinceh<—s .
2(s+1)

This implies that (s +/)? < 2. Hence s+ € A but as h > 0 we have s +h > 5. Hence, s < r = sup A.
As s > 1 was an arbitrary number such that s> < 2, it follows that 7> > 2.

Now take a number s such that s2 > 2. Hence s*

anh € Rsuchthat 0 < h < 2 2S
Again we use the fact that 0 < a < b implies b*> —a® < 2(b —a)b. We plug in a = s — h and
b = s (note that s — & > 0). We obtain

52— (s—h)? < 2hs

2

-2
<st-2 (sinceh<s )

2s

By subtracting s from both sides and multiplying by —1, we find (s — h)? > 2. Therefore s — h ¢ A.
Furthermore, if x > s — A, then x% > (s —h)2 >2 (asx>0ands—h>0)and so x ¢ A and so
s — h is an upper bound for A. However, s —h < s, or in other words s > r = sup A. Thus r2 < 2.

Together, 7> > 2 and r* < 2 imply r* = 2 The existence part is ﬁnished We still need to handle
umqueness Suppose that s € R such that s> = 2 and s > 0. Thus s*> = 2. However, if 0 < s < r,
then s> < r2. Similarly if 0 < r < s implies 7> < s2. Hence s = r. [

The number v/2 ¢ Q. The set R\ Q is called the set of irrational numbers. We have seen that
R\ Q is nonempty, later on we will see that is it actually very large.

Using the same technique as above, we can show that a positive real number x'/" exists for all
n € N and all x > 0. That is, for each x > 0, there exists a positive real number r such that r"* = x.
The proof is left as an exercise.

1/n
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1.2.2 Archimedean property

As we have seen, in any interval, there are plenty of real numbers. But there are also infinitely many
rational numbers in any interval. The following is one of the most fundamental facts about the real
numbers. The two parts of the next theorem are actually equivalent, even though it may not seem
like that at first sight.

Theorem 1.2.4.

(i) (Archimedean property) If x,y € R and x > 0, then there exists an n € N such that

nx >y.

(ii) (Qisdensein R) Ifx,y € R and x <y, then there exists an r € Q such that x < r < y.

Proof. Let us prove (1). We can divide through by x and then what (1) says is that for any real
number ¢ := y/x, we can find natural number n such that n > . In other words, (i) says that N C R is
unbounded. Suppose for contradiction that N is bounded. Let b := sup N. The number b — 1 cannot
possibly be an upper bound for N as it is strictly less than b. Thus there exists an m € N such that
m > b — 1. We can add one to obtain m + 1 > b, which contradicts b being an upper bound.

Now let us tackle (ii). First assume that x > 0. Note that y —x > 0. By (1), there exists ann € N
such that
n(y—x)>1.
Also by (i) the set A := {k € N : k > nx} is nonempty. By the well ordering property of N, A has a
least element m. As m € A, then m > nx. As m is the least element of A, m — 1 ¢ A. If m > 1, then
m—1eN,butm—1¢Aandsom—1<nx.If m=1,thenm—1=0,and m— 1 < nx still holds
as x > 0. In other words,

m—1<nx<m.

We divide through by 7 to get x < m/n. On the other hand from n(y — x) > 1 we obtain ny > 1+ nx.
As nx > m— 1 we get that 1 + nx > m and hence ny > m and therefore y > m/n.

Now assume that x < 0. If y > 0, then we can just take r = 0. If y < 0, then note that 0 < —y < —x
and find a rational g such that —y < g < —x. Then take r = —q. O

Let us state and prove a simple but useful corollary of the Archimedean property. Other
corollaries are easy consequences and we leave them as exercises.

Corollary 1.2.5. inf{1/n:n € N} =0.

Proof. Let A := {1/n: n € N}. Obviously A is not empty. Furthermore, 1/» > 0 and so 0 is a lower
bound, so b := inf A exists. As 0 is a lower bound, then » > 0. If » > 0. By the Archimedean
property there exists an n such that nb > 1, or in other words b > 1/n. However, !/n € A contradicting
the fact that b is a lower bound. Hence b = 0. 0
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1.2.3 Using supremum and infimum

To make using suprema and infima even easier, we want to be able to always write sup A and inf A
without worrying about A being bounded and nonempty. We make the following natural definitions

Definition 1.2.6. Let A C R be a set.

(1) If A is empty, then sup A := —oo.

(i1) If A is not bounded above, then sup A := o,
(ii1) If A is empty, then inf A := oo.
(iv) If A is not bounded below, then inf A := —oo.

For convenience, we will sometimes treat oo and —oo as if they were numbers, except we will
not allow arbitrary arithmetic with them. We can make R* := R U {—eo, o0} into an ordered set by
letting

—o <o and —oeo<x and x<oo forallxeR.

The set R* is called the set of extended real numbers. It is possible to define some arithmetic on R*,
but we will refrain from doing so as it leads to easy mistakes because R* will not be a field.

Now we can take suprema and infima without fear. Let us say a little bit more about them. First
we want to make sure that suprema and infima are compatible with algebraic operations. For a set
A C R and a number x define

x+A:={x+yeR:ycA},
xA:={xyeR:yecA}.

Proposition 1.2.7. Let A C R.
(i) If x € R, then sup(x+A) = x+ sup A.
(ii) If x € R, then inf(x+A) = x +inf A.
(iii) If x > 0, then sup(xA) = x(sup A).
(iv) If x > 0, then inf(xA) = x(inf A).
(v) If x <O, then sup(xA) = x(inf A).
(vi) If x <0, then inf(xA) = x(sup A).

Do note that multiplying a set by a negative number switches supremum for an infimum and
vice-versa.
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Proof. Let us only prove the first statement. The rest are left as exercises.
Suppose that b is a bound for A. That is, y < b for all y € A. Thenx+y <x+b, and so x+ b is
a bound for x+ A. In particular, if b = sup A, then

sup(x+A) <x+b=x+supA.

The other direction is similar. If b is a bound for x + A, then x+y < b for all y € A and so
y < b—x.Sob—xisabound for A. If b = sup(x+A), then

supA <b—x=sup(x+A)—x.
And the result follows. O]

Sometimes we will need to apply supremum twice. Here is an example.
Proposition 1.2.8. Let A,B C R such that x <y whenever x € A andy € B. Then sup A < inf B.

Proof. First note that any x € A is a lower bound for B. Therefore x < inf B. Now inf B is an upper
bound for A and therefore sup A < inf B. [

We have to be careful about strict inequalities and taking suprema and infima. Note that x <y
whenever x € A and y € B still only implies sup A < inf B, and not a strict inequality. This is an
important subtle point that comes up often.

For example, take A := {0} and take B := {1/n: n € N}. Then 0 < 1/x for all n € N. However,
sup A = 0 and inf B = 0 as we have seen.

1.2.4 Maxima and minima

By Exercise 1.1.2 we know that a finite set of numbers always has a supremum or an infimum that
is contained in the set itself. In this case we usually do not use the words supremum or infimum.

When we have a set A of real numbers bounded above, such that sup A € A, then we can use the
word maximum and notation maxA to denote the supremum. Similarly for infimum. When a set A
is bounded below and inf A € A, then we can use the word minimum and the notation minA. For
example,

max{1,2.4,,100} = 100,
min{1,2.4,7,100} = 1.

While writing sup and inf may be technically correct in this situation, max and min are generally
used to emphasize that the supremum or infimum is in the set itself.
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1.2.5 Exercises

1
Exercise 1.2.1: Prove that if t > 0 (t € R), then there exists an n € N such that — <t
n

Exercise 1.2.2: Prove that if t > 0 (t € R), then there exists an n € N such thatn—1 <t < n.

Exercise 1.2.3: Finish proof of Proposition 1.2.7.

Exercise 1.2.4: Let x,y € R. Suppose that x> +y> = 0. Prove that x =0 and y = 0.
Exercise 1.2.5: Show that \/3 is irrational.
Exercise 1.2.6: Let n € N. Show that either \/n is either an integer or it is irrational.

Exercise 1.2.7: Prove the arithmetic-geometric mean inequality. That is, for two positive real

numbers x,y we have
X+y

VI < —=.

Furthermore, equality occurs if and only if x = y.

Exercise 1.2.8: Show that for any two real numbers such that x < y, we have an irrational number
X
s such that x < s < y. Hint: Apply the density of Q to —

and L
V2 V2
Exercise 1.2.9: Let A and B be two bounded sets of real numbers. Let C:={a+b:a € A,b € B}.
Show that C is a bounded set and that

supC =sup A+sup B and inf C =inf A+ inf B.

Exercise 1.2.10: Let A and B be two bounded sets of nonnegative real numbers. Let C := {ab : a €
A,b € B}. Show that C is a bounded set and that

sup C = (sup A)(sup B) and inf C = (inf A) (inf B).

Exercise 1.2.11 (Hard): Given x > 0 and n € N, show that there exists a unique positive real
number r such that x = r"'. Usually r is denoted by x/™.
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1.3 Absolute value

Note: 0.5-1 lecture

A concept we will encounter over and over is the concept of absolute value. You want to think
of the absolute value as the “size” of a real number. Let us give a formal definition.

i X if x >0,
x| =
—x ifx<O0.

Let us give the main features of the absolute value as a proposition.

Proposition 1.3.1.

(i) |x| >0, and |x| = 0 if and only if x = 0.

(ii) |—x| = |x| for all x € R.
(iii) |xy| = |x||y| for all x,y € R.

(iv) |x|* =x% forallx € R.

(v) x| <y ifand only if —y <x <y,

(vi) —|x| <x < x| forall x € R.
Proof. (1): This statement is obvious from the definition.

(ii): Suppose that x > 0, then |—x| = —(—x) = x = |x|. Similarly when x < 0, or x = 0.

(iii): If x or y is zero, then the result is obvious. When x and y are both positive, then |x| [y| = xy.
xy is also positive and hence xy = |xy|. Finally without loss of generality assume that x > 0 and
y < 0. Then |x||y| = x(—y) = —(xy). Now xy is negative and hence |xy| = —(xy).

(iv): Obvious if x = 0 and if x > 0. If x < 0, then |x|> = (—x)? = »2.

(v): Suppose that |x| <y. If x > 0, then x < y. Obviously y > 0 and hence —y < 0 < x so
—y <x <yholds. If x < 0, then |x| <y means —x < y. Negating both sides we get x > —y. Again
y>0and soy>0>x. Hence, —y <x<y. If x=0, then as y > 0 it is obviously true that
—y<0=x=0<y.

On the other hand, suppose that —y < x <y is true. If x > 0, then x < y is equivalent to |x| < y.
If x < 0, then —y < x implies (—x) < y, which is equivalent to |x| < y.

(vi): Just apply (v) with y = |x|. O
A property used frequently enough to give it a name is the so-called triangle inequality.

Proposition 1.3.2 (Triangle Inequality). |x+y| < |x|+|y| for all x,y € R.
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Proof. From Proposition 1.3.1 we have —|x| <x < |x| and — |y| <y < [y|. We add these two
inequalities to obtain

—(x[+ ) < x+y < [x[+]y].
Again by Proposition 1.3.1 we have that |x+ y| < |x| + |y|. O

There are other versions of the triangle inequality that are applied often.
Corollary 1.3.3. Let x,y € R
(i) (reverse triangle inequality) }(|x| - |y|)| <|x—y|
(ii) [x—y| < [x[+]y].
Proof. Letus plug in x = a — b and y = b into the standard triangle inequality to obtain
la|=la—b+b| <|a—b|+]b|.

or |a| — |b| < |a — b|. Switching the roles of a and b we obtain or |b| — |a| < |b—a| = |a — b|. Now
applying Proposition 1.3.1 again we obtain the reverse triangle inequality.

The second version of the triangle inequality is obtained from the standard one by just replacing
y with —y and noting again that |—y| = |y|. O

Corollary 1.3.4. Let x1,x3,...,x, € R. Then
e x4 x | <[ | 4 ]

Proof. We will proceed by induction. Note that it is true for n = 1 trivially and n = 2 is the standard
triangle inequality. Now suppose that the corollary holds for n. Take n+ 1 numbers x1,x7,...,X,11
and compute, first using the standard triangle inequality, and then the induction hypothesis

’x1+_X2—i—u.+_xn—|—xn+1‘ < |X1+X2+"'+xn’+|xn+l‘
<lxr| 4 |x2| 4 - xn] + X0t |-

Let us see an example of the use of the triangle inequality.

Example 1.3.5: Find a number M such that ]xz —9x+ 1| <Mforall -1 <x<5.
Using the triangle inequality, write

X% — x4+ 1] < X%+ 9x] + [ 1] = |x|* +9|x| + 1.

It is obvious that |x|> +9|x| + 1 is largest when |x| is largest. In the interval provided, |x| is largest
when x = 5 and so |x| = 5. One possibility for M is

M=5>4+9(5)4+1="171.

There are, of course, other M that work. The bound of 71 is much higher than it need be, but we
didn’t ask for the best possible M, just one that works.
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The last example leads us to the concept of bounded functions.

Definition 1.3.6. Suppose f: D — R is a function. We say f is bounded if there exists a number
M such that | f(x)| < M forall x € D.

In the example we have shown that x> — 9x + 1 is bounded when considered as a function on
D = {x: —1 <x <5}. On the other hand, if we consider the same polynomial as a function on the
whole real line R, then it is not bounded.

If a function f: D — R is bounded, then we can talk about its supremum and its infimum. We
write

sup f(x) := sup (D),

xeD

inf f(x) :=inf f(D).

xeD
To illustrate some common issues, let us prove the following proposition.

Proposition 1.3.7. If f: D — R and g: D — R are bounded functions and
fx)<g(x)  forallxeD,

then

sup f(x) < supg(x) and inf f(x) < inf g(x). (1.1)
xeD xeD x€D xeD

You should be careful with the variables. The x on the left side of the inequality in (1.1) is
different from the x on the right. You should really think of the first inequality as

sup f(x) < supg(y).
xeD yeD

Let us prove this inequality. If b is an upper bound for g(D), then f(x) < g(x) < b and hence b is
an upper bound for f(D). Therefore taking the least upper bound we get that for all x

f(x) < supg(y).
yeD
But that means that sup,.p, g(y) is an upper bound for f(D), hence is greater than or equal to the
least upper bound of f(D).

sup f(x) < supg(y).
xeD yeD

The second inequality (the statement about the inf) is left as an exercise.

Do note that a common mistake is to conclude that

inf ¢(y). 12
)Sclelgf(X)Sylng(y) (1.2)

The inequality (1.2) is not true given the hypothesis of the claim above. For this stronger inequality
we need the stronger hypothesis

flx) <gl(y) forallxe Dandy € D.

The proof is left as an exercise.
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1.3.1 Exercises

Exercise 1.3.1: Let € > 0. Show that |x —y| < € ifand only if x —€ <y < x+ €.
Exercise 1.3.2: Show that

a) max{x,y} = )%‘x*y'
b) min{x,y} = Hy_TH

Exercise 1.3.3: Find a number M such that |x> — x*> +8x| < M for all =2 < x < 10

Exercise 1.3.4: Finish the proof of Proposition 1.3.7. That is, prove that given any set D, and two
bounded functions f: D — R and g: D — R such that f(x) < g(x), then

inf f(x) < inf g(x).

xeD xeD

Exercise 1.3.5: Let f: D — R and g: D — R be functions.

a) Suppose that f(x) < g(y) for all x € D and y € D. Show that

< inf o(x).
sup flx) < ;ng(X)

b) Find a specific D, f, and g, such that f(x) < g(x) for all x € D, but

inf g(x).
sup f(x) > inf g(x)
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1.4 Intervals and the size of R

Note: 0.5-1 lecture (proof of uncountability of R can be optional)

You have seen the notation for intervals before, but let us give a formal definition here. For
a,b € R such that a < b we define

[a,b] :={x € R:a<x<b},

b):={xeR:a<x<b},
b ={xeR:a<x< b},
[a,b) :={xeR:a<x<b}.

The interval [a, D] is called a closed interval and (a,b) is called an open interval. The intervals of
the form (a,b] and [a, D) are called half-open intervals.

The above intervals were all bounded intervals, since both a and b were real numbers. We define
unbounded intervals,

For completeness we define (—oo,00) :=R.

We have already seen that any open interval (a,b) (where a < b of course) must be nonempty.
For example, it contains the number “—;b. An unexpected fact is that from a set-theoretic perspective,
all intervals have the same “size,” that is, they all have the same cardinality. For example the map
f(x) := 2x takes the interval [0, 1] bijectively to the interval [0, 2].

Or, maybe more interestingly, the function f(x) := tan(x) is a bijective map from (—7, )
to R, hence the bounded interval (—x, ) has the same cardinality as R. It is not completely
straightforward to construct a bijective map from [0, 1] to say (0, 1), but it is possible.

And do not worry, there does exist a way to measure the “size” of subsets of real numbers that
“sees” the difference between [0, 1] and [0,2]. However, its proper definition requires much more
machinery than we have right now.

Let us say more about the cardinality of intervals and hence about the cardinality of R. We
have seen that there exist irrational numbers, that is R\ QQ is nonempty. The question is, how
many irrational numbers are there. It turns out there are a lot more irrational numbers than rational
numbers. We have seen that Q is countable, and we will show in a little bit that R is uncountable.
In fact, the cardinality of R is the same as the cardinality of &(N), although we will not prove this
claim.

Theorem 1.4.1 (Cantor). R is uncountable.
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We give a modified version of Cantor’s original proof from 1874 as this proof requires the least
setup. Normally this proof is stated as a contradiction proof, but a proof by contrapositive is easier
to understand.

Proof. Let X C R be a countable subset such that for any two numbers a < b, there is an x € X such
that a < x < b. If R were countable, then we could take X = R. If we can show that X must be a
proper subset, then X cannot equal to R and R must be uncountable.

As X is countable, there is a bijection from N to X. Consequently, we can write X as a sequence
of real numbers xy,x2,x3,. .., such that each number in X is given by some x; for some j € N.

Let us construct two other sequences of real numbers a;,a»,as,... and by,by,b3,.... Leta; :=0
and by := 1. Next, for each k > 1:

(i) Define a; := x;, where j is the smallest j € N such that x; € (ax_1,bi—1). As an open interval
is nonempty, we know that such an x; always exists by our assumption on X.

(ii) Next, define by := x; where j is the smallest j € N such that x; € (ax, b_1).

Claim: a; < by for all j and k in N. This is because a; < a; for all j and by > by for all k.
If there did exist a j and a k such that a; > by, then there is an n such that a,, > b, (why?), which is
not possible by definition.

LetA={a;:je€N}and B= {b;: j € N}. We have seen before that

sup A <inf B.

Define y = sup A. The number y cannot be a member of A. If y = a; for some j, theny < aj1,
which is impossible. Similarly y cannot be a member of B.

If y ¢ X, then we are done; we have shown that X is a proper subset of R. If y € X, then there
exists some k such that y = x;. Notice however that y € (a,,,by,) and y € (@, by,—1) for all m € N.
We claim that this means that y would be picked for a,, or b,, in one of the steps, which would be a
contradiction. To see the claim note that the smallest j such that x; is in (ax_1,bx—1) or (ax,bx—1)
always becomes larger in every step. Hence eventually we will reach a point where x; = y. In this
case we would make either a; = y or b; =y, which is a contradiction.

Therefore, the sequence x1,x», ... cannot contain all elements of R and thus R is uncountable.
O]

1.4.1 Exercises

Exercise 1.4.1: For a < b, construct an explicit bijection from (a,b] to (0,1].

Exercise 1.4.2: Suppose that f: [0,1] — (0, 1) is a bijection. Construct a bijection from [—1,1] to
R using f.
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Exercise 1.4.3 (Hard): Show that the cardinality of R is the same as the cardinality of & (N). Hint:
If you have a binary representation of a real number in the interval [0, 1], then you have a sequence
of 1’s and 0’s. Use the sequence to construct a subset of N. The tricky part is to notice that some
numbers have more than one binary representation.

Exercise 1.4.4 (Hard): Construct an explicit bijection from (0,1] to (0, 1). Hint: One approach is
as follows: First map (1/2,1] to (0,1/2], then map (1/4,1/2] to (1/2,3/4], etc. ... Write down the map
explicitly, that is, write down an algorithm that tells you exactly what number goes where. Then
prove that the map is a bijection.

Exercise 1.4.5 (Hard): Construct an explicit bijection from [0,1] to (0,1).
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Chapter 2

Sequences and Series

2.1 Sequences and limits

Note: 2.5 lectures

Analysis is essentially about taking limits. The most basic type of a limit is a limit of a sequence
of real numbers. We have already seen sequences used informally. Let us give the formal definition.

Definition 2.1.1. A sequence is a function x: N — R. Instead of x(n) we will usually denote the
nth element in the sequence by x,,. We will use the notation {x,} or more precisely

{0 et

to denote a sequence.
A sequence {x, } is bounded if there exists a B € R such that

|xq| <B forall n € N.

In other words, the sequence {x,} is bounded whenever the set {x, : n € N} is bounded.

For example, {1/n}"_,, or simply {1/}, stands for the sequence 1,1/2,1/3,1/4,1/5,.... When we
need to give a concrete sequence we will often give each term as a formula in terms of n. The
sequence {1/n} is a bounded sequence (B = 1 will suffice). On the other hand the sequence {n}
stands for 1,2,3,4,..., and this sequence is not bounded (why?).

While the notation for a sequence is similar® to that of a set, the notions are distinct. For
example, the sequence {(—1)"} is the sequence —1,1,—1,1,—1,1,..., whereas the set of values,
the range of the sequence, is just the set {—1, 1}. We could write this set as {(—1)" : n € N}. When
ambiguity could arise, we use the words sequence or set to distinguish the two concepts.

Another example of a sequence is the constant sequence. That is a sequence {c} = c,¢,c,c,...
consisting of a single constant ¢ € R.

*[BS] use the notation (x;) to denote a sequence instead of {x, }, which is what [R2] uses. Both are common.

39
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We now get to the idea of a limit of a sequence. We will see in Proposition 2.1.6 that the notation
below is well defined. That is, if a limit exists, then it is unique. So it makes sense to talk about the
limit of a sequence.

Definition 2.1.2. A sequence {x,} is said to converge to a number x € R, if for every € > 0, there
exists an M € N such that |x, — x| < € for all » > M. The number x is said to be the limit of {x,}.
We will write

lim x,, ;= x.
n—yoo

A sequence that converges is said to be convergent. Otherwise, the sequence is said to be
divergent.

It is good to know intuitively what a limit means. It means that eventually every number in the
sequence is close to the number x. More precisely, we can be arbitrarily close to the limit, provided
we go far enough in the sequence. It does not mean we will ever reach the limit. It is possible, and
quite common, that there is no x;, in the sequence that equals the limit x.

When we write lim x,, = x for some real number x, we are saying two things. First, that {x,} is
convergent, and second that the limit is x.

The above definition is one of the most important definitions in analysis, and it is necessary to
understand it perfectly. The key point in the definition is that given any € > 0, we can find an M.
The M can depend on €, so we only pick an M once we know €. Let us illustrate this concept on a
few examples.

Example 2.1.3: The constant sequence 1,1,1,1,... is convergent and the limit is 1. For every
€ >0, we can pick M = 1.

Example 2.1.4: The sequence {!/r} is convergent and

1
lim — =0.
n—oon
Let us verify this claim. Given an € > 0, we can find an M € N such that 0 < 1/m < € (Archimedean
property at work). Then for all n > M we have that

1

n

1<8
i .

1
n

Example 2.1.5: The sequence {(—1)"} is divergent. If there were a limit x, then for € = J we
expect an M that satisfies the definition. Suppose such an M exists, then for an even n > M we
compute

12> |x, — x| = |1 — x| and 12> |xpp1 —x| = |—1—2x].

But
2=[1—x—(—1=x)| <|1=x|+|-1—x|<12+1)2=1,

and that is a contradiction.
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Proposition 2.1.6. A convergent sequence has a unique limit.

The proof of this proposition exhibits a useful technique in analysis. Many proofs follow the
same general scheme. We want to show a certain quantity is zero. We write the quantity using the
triangle inequality as two quantities, and we estimate each one by arbitrarily small numbers.

Proof. Suppose that the sequence {x,} has the limit x and the limit y. Take an arbitrary € > 0. From
the definition we find an M; such that for all n > M, |x, —x| < €/2. Similarly we find an M, such
that for all n > M, we have |x, —y| < €/2. Now take M := max{M;,M,}. For n > M (so that both
n > M; and n > M,) we have

|y =X = xa —x = (xn = y)|

< ot — x|+ x40 — ¥

<8+8—8
2 2

As |y —x| < € for all € > 0, then |y — x| = 0 and y = x. Hence the limit (if it exists) is unique. [
Proposition 2.1.7. A convergent sequence {x,} is bounded.

Proof. Suppose that {x,} converges to x. Thus there exists a M € N such that for all n > M we
have |x, — x| < 1. Let By := |x| + 1 and note that for n > M we have

|x,,| = |xn—x—{—x|

< P — x| + ||

< 14 |x| =B.

The set {|x1]|,|x2|,...,|xp—1]} is a finite set and hence let
By :=max{|x|,|x2|,...,|xm—1]}

Let B := max{Bj,B,}. Then for all n € N we have
|x,| < B.

]

The sequence {(—1)"} shows that the converse does not hold. A bounded sequence is not
necessarily convergent.

41
n24n

Example 2.1.8: The sequence { } converges and

o+
lim 3 =1.
n—eo N +n
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Given any € > 0, find M € N such that MLH < €. Then for any n > M we have

n?+1 | = n?+1—(n>+n)
n?+n - n+n
B 1—n
| n24+n
B n—1
 n2+n
n 1
< -
“n?f4+n n+1
1
< ——<E.
+1

4l 1

Therefore, hmm =

2.1.1 Monotone sequences

The simplest type of a sequence is a monotone sequence. Checking that a monotone sequence
converges is as easy as checking that it is bounded. It is also easy to find the limit for a convergent
monotone sequence, provided we can find the supremum or infimum of a countable set of numbers.

{xn} is monotone decreasing if x, > x, for all n € N. If a sequence is either monotone increasing
or monotone decreasing, we simply say the sequence is monotone. Some authors also use the word
monotonic.

Definition 2.1.9. A sequence {x,} is monotone increasing if x,, < x, for all n € N. A sequence

Theorem 2.1.10. A monotone sequence {x,} is bounded if and only if it is convergent.
Furthermore, if {x,} is monotone increasing and bounded, then

lim x,, = sup{x, : n € N}.

n—oo

If {x,,} is monotone decreasing and bounded, then

lim x, = inf{x, : n € N}.

n—oo

Proof. Let us suppose that the sequence is monotone increasing. Suppose that the sequence is
bounded. That means that there exists a B such that x, < B for all n, that is the set {x, : n € N} is
bounded from above. Let

x:=sup{x,:n €N}
Let € > 0 be arbitrary. As x is the supremum, then there must be at least one M € N such that
xp > x — € (because x is the supremum). As {x,} is monotone increasing, then it is easy to see (by
induction) that x;, > x)s for all n > M. Hence

| —x| =x—x, <x—xy < €.
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Hence the sequence converges to x. We already know that a convergent sequence is bounded, which
completes the other direction of the implication.
The proof for monotone decreasing sequences is left as an exercise. [

Example 2.1.11: Take the sequence {\/%;}
First we note that \/Lﬁ > 0 and hence the sequence is bounded from below. Let us show that it

is monotone decreasing. We start with /n+ 1 > y/n (why is that true?). From this inequality we

obtain

1 1
< —.

Va+1 ™

So the sequence is monotone decreasing, bounded from below (and hence bounded). We can apply
the theorem to note that the sequence is convergent and that in fact

9

. 1 . 1
,}%ﬁ—lnf{%}'

We already know that the infimum is greater than or equal to 0, as 0 is a lower bound. Take a number

b > 0 such that b < \/Lﬁ for all n. We can square both sides to obtain

b2§ forall n € N.

SY.

We have seen before that this implies that 5> < 0 (a consequence of the Archimedean property). As
we also have b2 > 0, then b2 = 0 and hence b = 0. Hence b = 0 is the greatest lower bound and
hence the limit.

Example 2.1.12: Be careful however. We have to show that a monotone sequence is bounded
in order to use Theorem 2.1.10. For example, take the sequence {1 +1/2+---+1/s}. This is a
monotone increasing sequence that grows very slowly. We will see, once we get to series, that this
sequence has no upper bound and so does not converge. It is not at all obvious that this sequence
has no bound.

A common example of where monotone sequences arise is the following proposition. The proof
is left as an exercise.

Proposition 2.1.13. Let S C R be a nonempty bounded set. Then there exist monotone sequences
{xn} and {yn} such that x,,,y, € S and

sup S = r}grolo Xn and infS§ = r}1_r>r°1° Vn-
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2.1.2 Tail of a sequence

Definition 2.1.14. For a sequence {x,}, the K-tail (where K € N) or just the tail of the sequence is
the sequence starting at K + 1, usually written as

{xnsk bns or k-
The main result about the tail of a sequence is the following proposition.

Proposition 2.1.15. For any K € N, the sequence {x,};_, converges if and only if the K-tail

(oo}

{xnsk}or_ | converges. Furthermore, if the limit exists, then

lim x, = lim x,, 1.
n—soo n—soo
Proof. Define y, := x,1x. We wish to show that {x, } converges if and only if {y,} converges. And
furthermore that the limits are equal.

Suppose that {x,} converges to some x € R. That is, given an € > 0, there exists an M € N such
that |x — x,,| < € for all n > M. Note that n > M implies n+ K > M. Therefore, it is true that for all
n > M we have that

X = yn| = [x =201 k| <€

Therefore {y,} converges to x.

Now suppose that {y,} converges to x € R. That is, given an € > 0, there exists an M’ € N such
that [x —y,| < € for all n > M’. Let M := M’ + K. Then n > M implies that n — K > M’. Thus,
whenever n > M we have

|x — x| = |x —yn—k| < €.

Therefore {x,} converges to x. O

Essentially, the limit does not care about how the sequence begins, it only cares about the tail of
the sequence. That is, the beginning of the sequence may be arbitrary.

2.1.3 Subsequences

A very useful concept related to sequences is that of a subsequence. A subsequence of {x,} is a
sequence that contains only some of the numbers from {x,} in the same order.

Definition 2.1.16. Let {x,} be a sequence. Let {n;} be a strictly increasing sequence of natural
numbers (that is n; < n, < n3 < ---). The sequence

{xni}?:l

is called a subsequence of {x,}.
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For example, take the sequence {1/»}. The sequence {1/3x} is a subsequence. To see how these
two sequences fit in the definition, take n; := 3i. Note that the numbers in the subsequence must
come from the original sequence, so 1,0,1/3,0,1/5, ... is not a subsequence of {1/»}. Similarly order
must be preserved, so the sequence 1,1/3,1/2 1/5 ... is not a subsequence of {1/n}.

Note that a tail of a sequence is one type of subsequence. For an arbitrary subsequence, we have
the following proposition.

Proposition 2.1.17. If {x, } is a convergent sequence, then any subsequence {xy,} is also convergent
and

lim x, = lim x,,.
n—o0 [—>o0

Proof. Suppose that lim,,_, x;, = x. That means that for every € > 0 we have an M € N such that
foralln > M
|, —x| < €.

It is not hard to prove (do it!) by induction that n; > i. Hence i > M implies that n; > M. Thus, for
all i > M we have
|, — x| < €.

and we are done. O]

Example 2.1.18: Do note that the implication in the other direction is not true. For example, take
the sequence 0,1,0,1,0,1,.... Thatis x, = 0if n is odd, and x,, = 1 if n is even. It is not hard to see
that {x, } is divergent, however, the subsequence {x, } converges to 1 and the subsequence {x2,1}
converges to 0. See also Theorem 2.3.7.

2.1.4 Exercises

In the following exercises, feel free to use what you know from calculus to find the limit, if it exists.
But you must prove that you have found the correct limit, or prove that the series is divergent.

Exercise 2.1.1: Is the sequence {3n} bounded? Prove or disprove.

Exercise 2.1.2: Is the sequence {n} convergent? If so, what is the limit.

(="

Exercise 2.1.3: Is the sequence { } convergent? If so, what is the limit.
Exercise 2.1.4: Is the sequence {27"} convergent? If so, what is the limit.

n
Exercise 2.1.5: Is the sequence {?} convergent? If so, what is the limit.
n

Exercise 2.1.6: Is the sequence { } convergent? If so, what is the limit.

n
nz+1
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Exercise 2.1.7: Let {x,} be a sequence.
a) Show that lim x, = 0 (that is, the limit exists and is zero) if and only if lim |x,| = 0.

b) Find an example such that {|x,|} converges and {x,} diverges.

2}’1
Exercise 2.1.8: Is the sequence {—‘} convergent? If so, what is the limit.
n!

1
Exercise 2.1.9: Show that the sequence {—} is monotone, bounded, and use Theorem 2.1.10 to

n
find the limit.

1
Exercise 2.1.10: Show that the sequence {i} is monotone, bounded, and use Theorem 2.1.10
n

to find the limit.

Exercise 2.1.11: Finish proof of Theorem 2.1.10 for monotone decreasing sequences.

Exercise 2.1.12: Prove Proposition 2.1.13.

Exercise 2.1.13: Let {x,} be a convergent monotone sequence. Suppose that there exists a k € N
such that
lim x,, = xy.

n—oo

Show that x, = x for all n > k.
Exercise 2.1.14: Find a convergent subsequence of the sequence {(—1)"}.
Exercise 2.1.15: Let {x,} be a sequence defined by

n ifnisodd,

Xp 1=

I/n ifnis even.

a) Is the sequence bounded? (prove or disprove)

b) Is there a convergent subsequence? If so, find it.

Exercise 2.1.16: Let {x,} be a sequence. Suppose that there are two convergent subsequences
{xn;} and {xm,}. Suppose that
limx,, =a and limx,,, = b,

where a # b. Prove that {x,} is not convergent, without using Proposition 2.1.17.
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2.2 Facts about limits of sequences

Note: 2.5 lectures

In this section we will go over some basic results about the limits of sequences. We start with
looking at how sequences interact with inequalities.

2.2.1 Limits and inequalities

A basic lemma about limits is the so-called squeeze lemma. It allows us to show convergence of
sequences in difficult cases if we can find two other simpler convergent sequences that “squeeze”
the original sequence.

Lemma 2.2.1 (Squeeze lemma). Let {a,}, {b,}, and {x,} be sequences such that
an <x,<b, forallneN.
Suppose that {a,} and {b,} converge and

lim a, = lim b,
n—o0 n—oo
Then {x,} converges and

lim x,, = lim a,, = lim b,,.
n—oo n—oo n—roo

The intuitive idea of the proof is best illustrated on a picture, see Figure 2.1. If x is the limit of
a, and by, then if they are both within £/3 of x, then the distance between a,, and b, is at most 2¢/3.
As x,, is between a,, and by, it is at most 2¢/3 from a,,. Since a,, is at most £/3 away from x, then x,
must be at most € away from x. Let us follow through on this intuition rigorously.

ay X X b,

Figure 2.1: Squeeze lemma in picture.

Proof. Let x:=lima, =lim b,.. Let € > 0 be given.
Find an M; such that for all n > M| we have that |a, — x| < £/3, and an M, such that for all
n > M, we have |b, — x| < €/3. Set M := max{M;,M,}. Suppose that n > M. We compute

X —an| = xXp —an < bp—ay
= |bp —x+x—ay|
< |bp— x|+ |x—ay|
e & 2¢

3 3 3°
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Armed with this information we estimate

|xp — x| = |xn —x+an, —ay|
< |xn — an| + |an — x|
2e &€

< 5 =E&.
3+3

And we are done. L]

Example 2.2.2: A simple example of how to use the squeeze lemma is to compute limits of
sequences using limits that are already known. For example, suppose that we have the sequence
{-1-1. Since \/n > 1 for all n € N we have

n\/n

1
<
nyn —

for all n € N. We already know that lim 1/» = 0. Hence, using the constant sequence {0} and the
sequence {1/} in the squeeze lemma, we conclude that

0<

S| =

. 1
n— n\/ﬁ

=0.

Limits also preserve inequalities.
Lemma 2.2.3. Let {x,} and {y,} be convergent sequences and

Xn < Yn,

foralln € N. Then
lim x, < lim y,.
n—yoo n—yoo

Proof. Letx:=limx, and y := lim y,. Let € > 0 be given. Find an M; such that for all n > M| we
have |x, — x| < €/2. Find an M, such that for all n > M, we have |y, —y| < €/2. In particular, for
n > max{M;,M,} we have x —x, < £/2 and y, —y < €/2. We add these inequalities to obtain

Yn—Xp+x—y<E, or Yn—Xn <y—X+E.
Since x, <y, we have 0 <y, —x, and hence
O<y—x+e, or —Ee<y—nx.

In other words, x —y < € for all € > 0. That means that x —y < 0, as we have seen that a nonnegative
number less than any positive € is zero. Therefore x < y. [
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We give an easy corollary that can be proved using constant sequences and an application of
Lemma 2.2.3. The proof is left as an exercise.
Corollary 2.2.4.

i) Let {x,} be a convergent sequence such that x, > 0, then

lim x, > 0.

n=oo
ii) Let a,b € R and let {x,} be a convergent sequence such that
a<x,<b,
foralln € N. Then

a<limux, <b.

n—oo

Note in Lemma 2.2.3 we cannot simply replace all the non-strict inequalities with strict inequal-
ities. For example, let x,, :== —1/n and y, := 1/n. Then x,, < y,, x, < 0, and y, > 0 for all n. However,
these inequalities are not preserved by the limit operation as we have lim x,, = lim y, = 0. The
moral of this example is that strict inequalities may become non-strict inequalities when limits are
applied. That is, if we know that x,, < y, for all n, we can only conclude that

lim x,, < lim y,,.
n—oo n—oo

This issue is a common source of errors.

2.2.2 Continuity of algebraic operations
Limits interact nicely with algebraic operations.
Proposition 2.2.5. Let {x,} and {y,} be convergent sequences.
(i) The sequence {z,}, where z, := x,, +y,, converges and
,}i_r,?o(x" +yn) = lim z, = lim x, + lim y,,.
(ii) The sequence {z,}, where z, := X, — y,, converges and
lim (x, —y,) = lim z, = lim x, — lim y,.

(iii) The sequence {z,}, where z, := x,yn, converges and

lim (x,y,) = lim z, = ( im xn) (lim yn> .

n—soo —yoo n—sco
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(iv) Iflimy, # 0, and y, # 0 for all n, then the sequence {z,}, where z,, := ﬁ, converges and

n

. Xn . lim Xn
lim — = lim z, = - .
n—eo Y, n—eo lim y,

Proof. Let us start with (i). Let {x,} and {y, } be convergent sequences and let z,, := x,, + y,. Let
x:=limx, and y :=limy,. Let z :=x+y.

Let € > 0 be given. Find an M, such that for all n > M; we have |x, — x| < €¢/2. Find an M; such
that for all n > M, we have |y, — y| < €/2. Take M := max{M,,M,}. For all n > M we have

|z — 2| = [(xn +yn) = (x+Y)[ = [ —x+yu — |
< 2w — X[+ |yn — ¥l
< £ + £_ €
2 2 7
Therefore (1) is proved. Proof of (i1) is almost identical and is left as an exercise.

Let us tackle (iii). Let {x,} and {y,} be convergent sequences and let z,, := x,,y,. Let x := lim x;,
and y :=lim y,. Let 7 := xy.

Let € > 0 be given. As {x,} is convergent, it is bounded. Therefore, find a B > 0 such that

|x,| < B for all n € N. Find an M| such that for all n > M| we have |x, — x| < m Find an M,

such that for all n > M, we have |y, —y| < 55. Take M := max{M;,M,}. For all n > M we have

|20 — 2| = [ (Xnyn) — (xy)]
= ’xnyn_(x‘f’xn—xn)ﬂ
= [xa(yn —y) + (xn —x)y|
< ’xn(yn_Y)‘+|(xn_x)y|
= x| [yn — ¥+ X0 — x| |y|
< Blyn — [+ [xn —x[ ||

<B‘€ﬁL £ y|
2B 2(h|+ 1) ”
<8+8—s
2 2 7

Finally let us tackle (iv). Instead of proving (iv) directly, we prove the following simpler claim:
Claim: If {yn} is a convergent sequence such that lim y, # 0 and y, # 0 for all n € N, then

Once the claim is proved, we take the sequence {1/y,} and multiply it by the sequence {x, } and
apply item (iii).
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Proof of claim: Let € > 0 be given. Let y :=lim y,.. Find an M such that for all n > M we have

. 2 € |yl
o3l <min{ b 5. D11,
Note that
Y[ =1y =yn+yul <[y —Ynl+ |yl

or in other words |y,| > |y| — [y — ya|- Now |y, —y| < % implies that

1yl
Y=l =y1> 3
Therefore
il 2 bl — byl > 2
and consequently
1 2
— <
|yn] 1yl
Now we can finish the proof of the claim,
l B l' _ ‘y_)’n
Yo Y| Y
_ |y =yl
[ [yal
|y =yl 3
[ Iyl
bPs2 |
I
And we are done. O

By plugging in constant sequences, we get several easy corollaries. If ¢ € R and {x,} is a
convergent sequence, then for example

lim ex, = ¢ (hm xn) and  lim (c4x,) = ¢+ lim x,.
n—yoo n—so0 n—so0 n—yo0

Similarly with subtraction and division.
As we can take limits past multiplication we can show that lim x* = (lim x,,)*. That is, we can
take limits past powers. Let us see if we can do the same with roots.

Proposition 2.2.6. Let {x,} be a convergent sequence such that x, > 0. Then

lim /x, = , /lim x,,.
n—oo " n—yoo "
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Of course to even make this statement, we need to apply Corollary 2.2.4 to show that lim x,, > 0
so that we can take the square root without worry.

Proof. Let {x,} be a convergent sequence and let x := lim x;,.
First suppose that x = 0. Let € > 0 be given. Then there is an M such that for all n > M we have
= |x,| < €2, or in other words ,/x, < €. Hence

| VX — Vx| = Vo < .

Now suppose that x > 0 (and hence /x > 0).

N f|]

= XX
1
S % |xn — X| .
We leave the rest of the proof to the reader. 0

A similar proof works the kth root. That is, we also obtain lim x,]l/ f= (lim x;,) 1/k. We leave this
to the reader as a challenging exercise.
We may also want to take the limit past the absolute value sign.

Proposition 2.2.7. If {x,} is a convergent sequence, then {|x,|} is convergent and

lim |x,| =

lim x;,,|.
n—oo n—oo

Proof. We simply note the reverse triangle inequality
[t = ]| < [ =]

Hence if |x,, — x| can be made arbitrarily small, so can ‘ x| — |x| |. Details are left to the reader. [

2.2.3 Recursively defined sequences

Once we know we can interchange limits and algebraic operations, we will actually be able to easily
compute the limits for a large class of sequences. One such class are recursively defined sequences.
That is sequences where the next number in the sequence computed using a formula from a fixed
number of preceding numbers in the sequence.
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Example 2.2.8: Let {x,} be defined by x; := 2 and

x2—2

2x,

Xn+1 = Xp —

We must find out if this sequence is well defined, we must show we never divide by zero. Then we
must find out if the sequence converges. Only then can we attempt to find the limit.

First let us prove that x,, > 0 for all n (then the sequence is well defined). Let us show this by
induction. We know that x; = 2 > 0. For the induction step, suppose that x,, > 0. Then

x%—Z_Zx,%—x%—i—Z_x%—kZ
2x, 2xy O 2x,

Xn+1 = Xpn —

If x,, > 0, then x,% +2 > 0 and hence x,, 11 > 0. Next let us show that the sequence is monotone
decreasing. If we can show that x% —2 >0 for all n, then x,,1 < x,, for all n. Obviously x% —-2=
4 —2 =2 > 0. For an arbitrary n we have that

—2 = +4 — 2
i =2 < : 2) 2— P ka7 8y _xp—4g+4 (52
n+1 '

2y 4x2 4x2 4x2
Since x, > 0 and any number squared is nonnegative, we have that xz 41— 2 = 0for all n. Therefore,

{x,} is monotone decreasing and bounded, and therefore the limit exists. It remains to find out what
the limit is.
Let us write

2XpXp41 = x,% +2.

Since {x,+1} is the 1-tail of {x,}, it converges to the same limit. Let us define x := lim x,,. We can
take the limit of both sides to obtain

2% =2 +2,

or x> =2. As x > 0, we know that x = /2.

You should, however, be careful. Before taking any limits, you must make sure the sequence
converges. Let us see an example.

Example 2.2.9: Suppose x; := 1 and x,,, | := x2 + x,,. If we blindly assumed that the limit exists
(call it x), then we would get the equation x = x* + x, from which we might conclude that x = 0.
However, it is not hard to show that {x, } is unbounded and therefore does not converge.

The thing to notice in this example is that the method still works, but it depends on the initial
value x;. If we made x; = 0, then the sequence converges and the limit really is 0. An entire branch
of mathematics, called dynamics, deals precisely with these issues.
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2.2.4 Some convergence tests

Sometimes it is not necessary to go back to the definition of convergence to prove that a sequence is
convergent. First a simple test. Essentially, the main idea is that {x,} converges to x if and only if
{|xn — x|} converges to zero.

Proposition 2.2.10. Let {x,} be a sequence. Suppose that there is an x € R and a convergent
sequence {ay} such that
lima, =0
n—oo
and
[xn — x| < ay
for all n. Then {x,} converges and lim x,, = x.

Proof. Let € > 0 be given. Note that a, > 0 for all n. Find an M € N such that for all n > M we
have a, = |a, — 0| < €. Then, for all n > M we have

|y — x| <a, <e.
[

As the proposition shows, to study when a sequence has a limit is the same as studying when
another sequence goes to zero. For some special sequences we can test the convergence easily. First
let us compute the limit of a very specific sequence.

Proposition 2.2.11. Let ¢ > 0.

(i) If c <1, then
lim " =0.
n—soo

(ii) If ¢ > 1, then {c"} is unbounded.

Proof. First let us suppose that ¢ > 1. We write ¢ = 1 4-r for some r > 0. By induction (or using
the binomial theorem if you know it) we see that

A'=(1+r">1+nr.

By the Archimedean property of the real numbers, the sequence {1+ nr} is unbounded (for any
number B, we can find an » such that nr > B — 1). Therefore ¢” is unbounded.

Now let ¢ < 1. Write ¢ = 1%,, where r > 0. Then

. Lo 11l
A= ——.
(I+r)" = 14nr ~ rn

As {1} converges to zero, so does {11}, Hence, {¢"} converges to zero. O
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If we look at the above proposition, we note that the ratio of the (n+ 1)th term and the nth term
is c. We can generalize this simple result to a larger class of sequences. The following lemma will
come up again once we get to series.

Lemma 2.2.12 (Ratio test for sequences). Let {x,} be a sequence such that x, # 0 for all n and
such that the limit
n~><><> ||

exists.
(i) If L < 1, then {x,} converges and lim x,, = 0.
(ii) If L > 1, then {x,} is unbounded (hence diverges).

Even if L exists, but L = 1, the lemma says nothing. We cannot make any conclusion based on
that information alone. For example, consider the sequences 1,1,1,1,...and 1,—1,1,—1,1,....

Proof. Suppose L < 1. As |x|"+‘| >0, we have that L > 0. Pick rsuch that L<r < 1. Asr—L >0,
there exists an M € N such that for all n > M we have

Therefore,

Pnl Pentl beal

< |xpg|rr-r = |xag| M = (g | M)
Xn—1] [xn—2] Jea |

The sequence {r"} converges to zero and hence |x3;| ¥~ " converges to zero. By Proposition 2.2.10,
the M-tail of {x, } converges to zero and therefore {x,} converges to zero.

Now suppose L > 1. Pick r such that 1 <r < L. As L —r > 0, there exists an M € N such that
for all n > M we have

s 1 —L‘ <L-r
||
Therefore,
|xn+1| > r.
[
Again for n > M we write
e s

> |xp|rre-r= |xM]r”*M = (\xM]r*M)r”.

| = |
Pn1] a2l ||

The sequence {r”} is unbounded (since r > 1), and therefore |x,| cannot be bounded (if |x,| < B for
all n, then " < Tt rM for all n, which is impossible). Consequently, {x,} cannot converge. [l
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Example 2.2.13: A simple example of using the above lemma is to prove that
21’1

lim = = 0.
n—oo 1!
Proof: We find that
277 (n+ 1)t 2 2
2n/n! 20 (1) n4 L

It is not hard to see that {%} converges to zero. The conclusion follows by the lemma.

2.2.5 Exercises

Exercise 2.2.1: Prove Corollary 2.2.4. Hint: Use constant sequences and Lemma 2.2.3.

Exercise 2.2.2: Prove part (ii) of Proposition 2.2.5.

Exercise 2.2.3: Prove that if {x,} is a convergent sequence, k € N, then

K k
lim x, = (lim xn> .
n—soo n—soo
Hint: Use induction.
Exercise 2.2.4: Suppose that x| := % and X, 1 1= x2. Show that {x,} converges and find lim x,,.

Hint: You cannot divide by zero!

Exercise 2.2.5: Let x, := "=<°")

the limit.

. Use the squeeze lemma to show that {x,} converges and find

Exercise 2.2.6: Let x, := 2 and y, == % Define z,, :== y— and wy, := y_n Does {z,} and {w,}
converge? What are the llmlts ? Can you apply Proposition 2.2.5? Why or why not?

Exercise 2.2.7: True or false, prove or find a counterexample. If {x,} is a sequence such that {x>}
converges, then {x,} converges.

Exercise 2.2.8: Show that

Exercise 2.2.9: Suppose that {x,} is a sequence and suppose that for some x € R, the limit
. X —x
L:= lim Png1 = x|
n—seo |x, —X|
exists and L < 1. Show that {x,} converges to x.

Exercise 2.2.10 (Challenging): Let {x,} be a convergent sequence such that x, > 0 and k € N.

Then Uk
lim x/* = (lim xn> .

n—yoo n—oo

1k
x”/ —X /k

Hint: Find an expression q such that — %.
n
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2.3 Limit superior, limit inferior, and Bolzano-Weierstrass

Note: 1.5-2 lectures, alternative proof of BW optional

In this section we study bounded sequences and their subsequences. In particular we define
the so-called limit superior and limit inferior of a bounded sequence and talk about limits of
subsequences. Furthermore, we prove the so-called Bolzano-Weierstrass theoremi, which is an
indispensable tool in analysis.

We have seen that every convergent sequence is bounded, but there exist many bounded divergent
sequences. For example, the sequence {(—1)"} is bounded, but we have seen it is divergent. All is
not lost however and we can still compute certain limits with a bounded divergent sequence.

2.3.1 Upper and lower limits

There are ways of creating monotone sequences out of any sequence, and in this way we get the
so-called limit superior and limit inferior. These limits will always exist for bounded sequences.

Note that if a sequence {x,} is bounded, then the set {x; : k € N} is bounded. Then for every n
the set {x; : k > n} is also bounded (as it is a subset).

Definition 2.3.1. Let {x,} be a bounded sequence. Let a, := sup{x; : k > n} and b, := inf{x; :
k > n}. We note that the sequence {a,} is bounded monotone decreasing and {b,} is bounded
monotone increasing (more on this point below). We define

limsup x,, := lim a,,
n—yoo n—eo

liminf x, := lim b,,.
n—oo n—sco
For a bounded sequence, liminf and limsup always exist. It is possible to define liminf and
limsup for unbounded sequences if we allow oo and —oo. It is not hard to generalize the following
results to include unbounded sequences, however, we will restrict our attention to bounded ones.
Let us see why {a, } is a decreasing sequence. As ay, is the least upper bound for {x; : k > n}, it
is also an upper bound for the subset {x; : k > (n+ 1)}. Therefore a, |, the least upper bound for
{xx : k> (n+1)}, has to be less than or equal to a,, that is, a, > a,+. Similarly, b, is an increasing
sequence. It is left as an exercise to show that if x,, is bounded, then a, and b,, must be bounded.

Proposition 2.3.2. Let {x,} be a bounded sequence. Define a, and b, as in the definition above.

(i) limsup x, = inf{a, : n € N} and liminf x, = sup{b, : n € N}.
n—soo n—roo

(ii) liminf x, < limsup x;,.
n—ree n—yoo

T Named after the Czech mathematician Bernhard Placidus Johann Nepomuk Bolzano (1781 — 1848), and the
German mathematician Karl Theodor Wilhelm Weierstrass (1815 — 1897).



58 CHAPTER 2. SEQUENCES AND SERIES

Proof. The first item in the proposition follows as the sequences {a, } and {b, } are monotone.

For the second item, we note that b, < a,, as the inf of a set is less than or equal to its sup.
We know that {a, } and {b,} converge to the limsup and the liminf (respectively). We can apply
Lemma 2.2.3 to note that

lim b,, < lim q,,.
n—oo n—roo

Example 2.3.3: Let {x,} be defined by

2l if nis odd,
Xp 1= . .
0 if n is even.

Let us compute the liminf and lim sup of this sequence

liminfx, = lim (inf{x; : k > n}) = 1lim 0 = 0.
n—oo n—oo n—oo

For the limit superior we write

limsupx, = lim (sup{x;:k >n}).
n—soo n—eo

It is not hard to see that

n+1 : :

L ifnis odd,
sup{x; :k>n} = {nb

T if n is even.

We leave it to the reader to show that the limit is 1. That is,

limsupx, = 1.
n—seo

Do note that the sequence {x,} is not a convergent sequence.
We can associate with limsup and liminf certain subsequences.
Theorem 2.3.4. If {x,} is a bounded sequence, then there exists a subsequence {xp,} such that

lim x,, = limsup x,.
k—yo0 n—oo

Similarly, there exists a (perhaps different) subsequence {x,, } such that

lim x,, = liminf x,,.
k—>0 n—oo
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Proof. Define a, := sup{x; : k > n}. Write x := limsup x, = lim a,. Define the subsequence as
follows. Pick n; := 1 and work inductively. Suppose we have defined the subsequence until n; for
some k. Now pick some m > ny such that

A1) =%m < 7

k+1°
We can do this as a(,, 1) is a supremum of the set {xn : x > ny+ 1} and hence there are elements of
the sequence arbitrarily close (or even equal) to the supremum. Set ng,| := m. The subsequence

{xn, } is defined. Next we need to prove that it has the right limit.
Note that a,, ;1) > an, (Why?) and that a,, > x,,. Therefore, for every k > 1 we have

|an]< _xnk’ - ank _xnk

S Ay +1) — Xy
1
< P
Let us show that {x,, } is convergent to x. Note that the subsequence need not be monotone. Let
€ > 0 be given. As {a,} converges to x, then the subsequence {a,, } converges to x. Thus there
exists an M € N such that for all kK > M| we have

£
ay, — x| < <.

2
Find an M, € N such that
1 e
M, — 2
Take M := max{M;,M,} and compute. For all k > M we have

|X —Xn, | = |an, — Xn, +x—ap,|
< |ank _xnk|+|x_ank|
1 &€

<%+§

1
< —+

£ =&
— M, 2 e

<8+8
-2 2

We leave the statement for liminf as an exercise. ]

2.3.2 Using limit inferior and limit superior

The advantage of liminf and limsup is that we can always write them down for any (bounded)
sequence. Working with liminf and limsup is a little bit like working with limits, although there
are subtle differences. If we could somehow compute them, we can also compute the limit of the
sequence if it exists.
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Theorem 2.3.5. Let {x,} be a bounded sequence. Then {x,} converges if and only if

liminf x,, = limsup x;,.
Lt n—soo

Furthermore, if {x,} converges, then

lim x,, = liminf x;,, = limsup x,,.
n—oo n—eo N—so0

Proof. Define a, and b, as in Definition 2.3.1. Now note that

by < xp < ay.

If liminf x,, = limsup x,, then we know that {a, } and {b,} have limits and that these two limits are
the same. By the squeeze lemma (Lemma 2.2.1), {x, } converges and
lim b, = lim x, = lim q,,.
n—eo n—soeo n—soeo
Now suppose that {x,} converges to x. We know by Theorem 2.3.4 that there exists a subse-

quence {x,, } that converges to limsup x,. As {x,} converges to x, we know that every subsequence
converges to x and therefore limsup x,, = x. Similarly liminf x,, = x. [

Limit superior and limit inferior behave nicely with subsequences.
Proposition 2.3.6. Suppose that {x,} is a bounded sequence and {x,, } is a subsequence. Then

liminf x, <liminf x,, <limsup x,, < limsup x,.
n—oo k—yoo k—>c0 n—yoo

Proof. The middle inequality has been noted before already. We will prove the third inequality, and
leave the first inequality as an exercise.

That is, we want to prove that limsup x,, < limsup x,. Define a; := sup{x; : k > j} as usual.
Also define ¢ := sup{x,, : k> j}. It is not true that c; is necessarily a subsequence of a;. However,
as ng > k for all k, we have that {x,, : k> j} C {x;: k> j}. A supremum of a subset is less than or
equal to the supremum of the set and therefore

¢j < aj.
We apply Lemma 2.2.3 to conclude that
limc¢; < limq;
joe = R

which is the desired conclusion. O]
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Limit superior and limit inferior are in fact the largest and smallest subsequential limits. If the
subsequence in the previous proposition is convergent, then of course we have that liminf x,, =
lim x,,, = limsup x,,. Therefore,

liminf x, < lim x,, <limsup x,.
n—oo k—yo0 n—so0
Similarly we also get the following useful test for convergence of a bounded sequence. We leave
the proof as an exercise.

Theorem 2.3.7. A bounded sequence {x,} is convergent and converges to x if and only if every
convergent subsequence {x,, } converges to x.

2.3.3 Bolzano-Weierstrass theorem

While it is not true that a bounded sequence is convergent, the Bolzano-Weierstrass theorem tells us
that we can at least find a convergent subsequence. The version of Bolzano-Weierstrass that we will
present in this section is the Bolzano-Weierstrass for sequences.

Theorem 2.3.8 (Bolzano-Weierstrass). Suppose that a sequence {x,} of real numbers is bounded.
Then there exists a convergent subsequence {xp, }.

Proof. We can use Theorem 2.3.4. It says that there exists a subsequence whose limit is limsup x;,.
]

The reader might complain right now that Theorem 2.3.4 is strictly stronger than the Bolzano-
Weierstrass theorem as presented above. That is true. However, Theorem 2.3.4 only applies to the
real line, but Bolzano-Weierstrass applies in more general contexts (that is, in R") with pretty much
the exact same statement.

As the theorem is so important to analysis, we present an explicit proof. The following proof
generalizes more easily to different contexts.

Alternate proof of Bolzano-Weierstrass. As the sequence is bounded, then there exist two numbers
a; < by suchthat a; <x, <bjforalln e N.

We will define a subsequence {x,, } and two sequences {a;} and {b;}, such that {a;} is monotone
increasing, {b;} is monotone decreasing, a; < x,, < b; and such that lim ¢; = lim ;. That x,,
converges follows by the squeeze lemma.

We define the sequence inductively. We will always assume that a; < b;. Further we will always
have that x,, € [a;,b;] for infinitely many n € N. We have already defined a; and b;. We can take
ny := 1, that is x,, = x;.

Now suppose we have defined the subsequence x;,,Xp,, .. ., Xy, and the sequences {a;} and {b;}
up to some k € N. We find y = mzb". It is clear that a; < y < by. If there exist infinitely many j € N
such that x; € [a,y], then set ax;| := ay, bry1 :=, and pick ny1 > ny such that x,,,, | € [ax,y]. If
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there are not infinitely many j such that x; € [ax,y], then it must be true that there are infinitely
many j € N such that x; € [y, by]. In this case pick aiy 1=y, by = by, and pick ng;1 > ny such
that x,, | € [y, bgl.

Now we have the sequences defined. What is left to prove is that lim a; = lim b;. Obviously the

limits exist as the sequences are monotone. From the construction, it is obvious that b; — a; is cut in
b,-—a,-

half in each step. Therefore b; 1 —a;11 = 5. By induction, we obtain that
bl —aj
bi—ai= i1

Let x := lim g;. As {a;} is monotone we have that
x=sup{a;:i €N}

Now let y := lim b; = inf{b; : i € N}. Obviously y < x as a; < b; for all i. As the sequences are
monotone, then for any i we have (why?)

by —a
y—XS bi—al’ = ?
As % is arbitrarily small and y —x > 0, we have that y —x = 0. We finish by the squeeze
lemma. [

Yet another proof of the Bolzano-Weierstrass theorem proves the following claim, which is left
as a challenging exercise. Claim: Every sequence has a monotone subsequence.

2.3.4 Exercises

Exercise 2.3.1: Suppose that {x,} is a bounded sequence. Define a, and b, as in Definition 2.3.1.
Show that {ay,} and {b,} are bounded.

Exercise 2.3.2: Suppose that {x,} is a bounded sequence. Define b, as in Definition 2.3.1. Show
that {b,} is an increasing sequence.

Exercise 2.3.3: Finish the proof of Proposition 2.3.6. That is, suppose that {x,} is a bounded
sequence and {xp, } is a subsequence. Prove liminf x, < liminf x,,,.

n—yoo k—so00
Exercise 2.3.4: Prove Theorem 2.3.7.
. (—1)" . .
Exercise 2.3.5: a) Let x;, := , find limsup x,, and liminf x,,.
n

(n—1)(~1)"

b) Let x;, := , find limsup x,, and liminf x,,.
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Exercise 2.3.6: Let {x,} and {y,} be sequences such that x,, <y, for all n. Then show that

limsupx, <limsupy;,
n—yoo n—yoo

and

liminfx, < liminfy,.
n—oo n—soo

Exercise 2.3.7: Let {x,} and {y,} be bounded sequences.
a) Show that {x,+y,} is bounded.

b) Show that
(liminf x,,) + (liminf y,) <liminf (x, +y,).
n—o0 n—oo

n—soo
Hint: Find a subsequence {x,, + yu.} of {xn+yn} that converges. Then find a subsequence
{xn,, } of {xn;} that converges. Then apply what you know about limits.
¢) Find an explicit {x,} and {y,} such that

(liminf x,,) + (liminf y,) < liminf (x, +y,).
n—o0 n—oo

n—oo

Hint: Look for examples that do not have a limit.

Exercise 2.3.8: Let {x,} and {y,} be bounded sequences (from the previous exercise we know that
{xn+yn} is bounded).

a) Show that
(limsup x,,) + (limsup y,) > limsup (x, + yy)-

n—oo n—soo n—oo

Hint: See previous exercise.

b) Find an explicit {x,} and {y,} such that

(limsup x,,) + (limsup y,) > limsup (x, + yn).

n—yo0 n—o0 n—roo

Hint: See previous exercise.
Exercise 2.3.9: If S C R is a set, then x € R is a cluster point if for every € > 0, the set (x —
€,x+¢&)NS\ {x} is not empty. That is, if there are points of S arbitrarily close to x. For example,

S:={1/n:n € N} has a unique (only one) cluster point 0, but 0 ¢ S. Prove the following version of
the Bolzano-Weierstrass theorem:

Theorem. Let S C R be a bounded infinite set, then there exists at least one cluster point of S.

Hint: If S is infinite, then S contains a countably infinite subset. That is, there is a sequence
{xn} of distinct numbers in S.
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Exercise 2.3.10 (Challenging): a) Prove that any sequence contains a monotone subsequence.
Hint: Call n € N a peak if a,, < ay, for all m > n. Now there are two possibilities: either the
sequence has at most finitely many peaks, or it has infinitely many peaks.

b) Now conclude the Bolzano-Weierstrass theorem.
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2.4 Cauchy sequences

Note: 0.5-1 lecture

Often we wish to describe a certain number by a sequence that converges to it. In this case, it is
impossible to use the number itself in the proof that the sequence converges. It would be nice if we
could check for convergence without being able to find the limit.

Definition 2.4.1. A sequence {x,} is a Cauchy sequence* if for every € > 0 there exists an M € N
such that for all n > M and all k > M we have

X, — x| < €.
Intuitively what it means is that the terms of the sequence are eventually arbitrarily close to each

other. We would expect such a sequence to be convergent. It turns out that is true because R is
complete (has the least-upper-bound property). First, let us look at some examples.

Example 2.4.2: The sequence {!/n} is a Cauchy sequence.
Proof: Let € > 0 be given. Take M > 2/e. Then for n > M we have that 1/» < /2. Therefore, for
all n,k > M we have

I 1
<
n k‘_

Example 2.4.3: The sequence {%} is a Cauchy sequence.
Proof: Given € > 0, find M such that M > 2/e. Then for n,k > M we have that 1/» < €/2 and
1/k < €/2. Therefore

n+1l k+1| |k(n+1)—n(k+1)
n ok ‘_ nk ‘
_ |kn+k—nk—n
N nk
_|k—n
| nk
o i
~ |nk nk
11 e €
—Z+;<§+§—8.

Proposition 2.4.4. A Cauchy sequence is bounded.

¥ Named after the French mathematician Augustin-Louis Cauchy (1789-1857).
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Proof. Suppose that {x,} is Cauchy. Pick M such that for all n,k > M we have |x, —x;| < 1. In
particular, we have that for all n > M
|, —xm| < 1.

Or by the reverse triangle inequality, |x,| — |xu| < |x, —xm| < 1. Hence for n > M we have
x| < 14 |xp].

Let
B :=max{|xi|, |x2|,. .., |xpm|, 1+ |xa]}-

Then |x,| < B forall n € N. O]
Theorem 2.4.5. A sequence of real numbers is Cauchy if and only if it converges.

Proof. Let € > 0 be given and suppose that {x, } converges to x. Then there exists an M such that

for n > M we have
€
|, — x| < 5

Hence for n > M and k > M we have

€ &€
X — Xk | = [0 —x+x — x| < |xp — x|+ |x—x| < 3 + 5 =&

Alright, that direction was easy. Now suppose that {x,} is Cauchy. We have shown that {x,} is

bounded. If we can show that
liminf x,, = limsup x,,
n—eo n—soo

Then {x,} must be convergent by Theorem 2.3.5.

Define a := liminf x,, and b := limsup x,. If we can show a = b, then the sequence converges.
By Theorem 2.3.7, there exist subsequences {x,, } and {x, }, such that

limx,, =a and lim x;,, = b.
[—yoo i—ro0

Given an € > 0, there exists an M such that for all i > M, we have |x,, —a| < €/3 and an M, such
that for all i > M, we have |x,,, — b| < €/3. There also exists an M3 such that for all n,k > M3 we
have |x, — x| < €/3. Let M := max{M;,M,M3}. Now note that if i > M, then n; > M and m; > M.
Hence
|a — bl = |a—xu; +Xn; — Xm; + Xm, — b]
< ‘a_xni’ + |xm _'xmi’ + |xm[ _bl

<8+8+8—8
3 3 3 7

As |a—b| < € for all € > 0, then a = b and therefore the sequence converges. ]
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Remark 2.4.6. The statement of this proposition is sometimes used to define the completeness
property of the real numbers. That is, we can say that R is complete if and only if every Cauchy
sequence converges. We have proved above that if R has the least-upper-bound property, then R
is complete. The other direction is also true. If every Cauchy sequence converges, then R has the
least-upper-bound property. The advantage of using Cauchy sequences to define completeness is
that this idea generalizes to more abstract settings.

The Cauchy criterion for convergence becomes very useful for series, which we will discuss in
the next section.

2.4.1 Exercises

Exercise 2.4.1: Prove that {"251 } is Cauchy using directly the definition of Cauchy sequences.

n

Exercise 2.4.2: Let {x,} be a sequence such that there exists a 0 < C < 1 such that
1 = Xn| < Clay —xp-1]-
Prove that {x,} is Cauchy. Hint: You can freely use the formula (for C # 1)

I_Cn+1

1+C+C* 4. +C" =
+CH+C+--+ C

Exercise 2.4.3: Suppose that F is an ordered field that contains the rational numbers Q. We can
define a convergent sequence and Cauchy sequence in F in exactly the same way as before. Suppose
that every convergent sequence is Cauchy. Prove that F has the least-upper-bound property.

Exercise 2.4.4: Let {x,} and {y,} be sequences such that lim y, = 0. Suppose that for all k € N
and for all m > k we have

m — x| < -
Show that {x,} is Cauchy.
Exercise 2.4.5: Suppose that a Cauchy sequence {x,} is such that for every M € N, there exists a

k > M and an n > M such that x; < 0 and x,, > 0. Using simply the definition of a Cauchy sequence
and of a convergent sequence, show that the sequence converges to 0.
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2.5 Series

Note: 2 lectures

A fundamental object in mathematics is that of a series. In fact, when foundations of analysis
were being developed, the motivation was to understand series. Understanding series is very
important in applications of analysis. For example, solving differential equations often includes
series, and differential equations are the basis for understanding almost all of modern science.

2.5.1 Definition

Definition 2.5.1. Given a sequence {x, }, we write the formal object
Z Xy or sometimes just an
n=1

and call it a series. A series converges, if the sequence {s,} defined by

Spi= Q) Xk =X1HX2 A+ A X,

n
k=1

converges. If x := lim s,,, we write
Y 3 =x.
n=1

In this case, we treat ) .~ ; x, as a number. The numbers s, are called partial sums.
On the other hand, if the sequence {s,} diverges, we say that the series is divergent. In this case,
Y x, 1s simply a formal object and not a number.

In other words, for a convergent series we have
oo n
Z X, = lim Z X
n—yoo
n=1 k=1

We should be careful however to only use this equality if the limit on the right actually exists. That
is, the right-hand side does not make sense (the limit does not exist) if the series does not converge.

Remark 2.5.2. Before going further, let us remark that it is sometimes convenient to start the series
at an index different from 1. That is, for example we can write

i r'ti= i 7L
n=0 n=1

The left-hand side is more convenient to write. The idea is the same as the notation for the tail of a
sequence.
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Remark 2.5.3. It is common to write the series ) x, as
X1 +x2+x3+---

with the understanding that the ellipsis indicates that this is a series and not a simple sum. We will
not use this notation as it easily leads to mistakes in proofs.

Example 2.5.4: The series
i 1
n=1 2"
converges and the limit is 1. That is,
(o) 1 )
PIETRLY

First we prove the following equality

Note that the equation is easy to see when n = 1. The proof follows by induction, which we leave
as an exercise. Let s, be the partial sum. We write

The sequence {5 } converges to zero and so {|1 —s,|} converges to zero. So, {s,} converges to 1.

For —1 < r < 1, the geometric series

n=0
converges. In fact, }." (7" = ;—.. The proof is left as an exercise to the reader. The proof consists
of showing that
n—1 1— "
Z rk - 1—7"
k=0 r

and then taking the limit.
A fact we will use a lot is the following analogue of looking at the tail of a sequence.

Proposition 2.5.5. Let ) x, be a series. Let M € N. Then

Z X, converges if and only if Z X, converges.
n=1 n=M
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Proof. We look at partial sums of the two series (for k > M)

k M—1 k
Z Xp = Z Xn | + Z Xp-
n=1 n=1 n=M
Note that Zﬁi—]l X, is a fixed number. Now use Proposition 2.2.5 to finish the proof. [

2.5.2 Cauchy series

Definition 2.5.6. A series ) x, is said to be Cauchy or a Cauchy series, if the sequence of partial
sums {s,} is a Cauchy sequence.

In other words, } x, is Cauchy if for every € > 0, there exists an M € N, such that for every

n>M and k > M we have
k n
(£4)-(£+)
j=1 j=1

Without loss of generality we can assume that n < k. Then we write

< E.

We have proved the following simple proposition.
Proposition 2.5.7. The series Y x, is Cauchy if for every € > 0, there exists an M € N such that for
every n > M and every k > n we have

k

) ¥

Jj=n+1

< E.

2.5.3 Basic properties

A sequence is convergent if and only if it is Cauchy, and therefore the same statement is true for
series. It is then easy to prove the following useful proposition.

Proposition 2.5.8. Suppose that ¥ x, is a convergent series. Then the sequence {x,} is convergent
and

lim x,, = 0.
n—soo

Proof. Let € > 0 be given. As ) x, is convergent, it is Cauchy. Thus we can find an M such that for

every n > M we have
n+1

Y, X

j=n+1
Hence for every n > M + 1 we have that |x,| < €. O

E> :\xn+1|.
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Hence if a series converges the terms of the series go to zero. However, this is not a two way
proposition. Let us give an example.

Example 2.5.9: The series Z% diverges (despite the fact that lim% = 0). This is the famous
harmonic series®.

We will simply show that the sequence of partial sums is unbounded, and hence cannot converge.
Write the partial sums s, for n = 2 as:

SRS I
4)"\576 7"8)

k 2/ 1
S2k == 1 + Z Z — .
j=1 \m=2i-141""
We note that 1/34+1/4 > 1/4+41/a=1/2and 1/54+1/6+1/7+4+1/8 > 1/841/3+1/3+1/8 =1/2. More
generally
2k 2k
1 I B
L owZ X x-@x=g

m=2k—11 "M g

Therefore
k 2 ko k
=1 z 2 — | >1 2 — =14
Sok + L L )7 + 2> + >
J=1 \um=2k-141 Jj=1

As {4} is unbounded by the Archimedean property, that means that {sy} is unbounded, and
therefore {s,} is unbounded. Hence {s, } diverges, and consequently ¥ 1 diverges.

Convergent series are linear. That is, we can multiply them by constants and add them and these
operations are done term by term.

Proposition 2.5.10 (Linearity of series). Let o € R and Y x,, and Y y,, be convergent series.

(i) Then Y ax, is a convergent series and
Y axi=0a) x.
n=1 n=1

$The divergence of the harmonic series was known before the theory of series was made rigorous. In fact the proof
we give is the earliest proof and was given by Nicole Oresme (1323-1382).
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o) (&)

Proof. For the first item, we simply write the nth partial sum

n n
Z ox, = 0o (Zxk> .
k=1 k=1

We look at the right-hand side and note that the constant multiple of a convergent sequence is
convergent. Hence, we simply can take the limit of both sides to obtain the result.
For the second item we also look at the nth partial sum

We look at the right-hand side and note that the sum of convergent sequences is convergent. Hence,
we simply can take the limit of both sides to obtain the proposition. 0

(ii) Then Y (x,+ yn) is a convergent series and

||M8

Z xn"‘yn = (
n—=1

Do note that multiplying series is not as simple as adding, and we will not cover this topic here.
It is not true of course that we can multiply term by term, since that strategy does not work even for
finite sums.

2.5.4 Absolute convergence

Since monotone sequences are easier to work with than arbitrary sequences, it is generally easier
to work with series ) x, where x,, > 0 for all n. Then the sequence of partial sums is monotone
increasing. Let us formalize this statement as a proposition.

Proposition 2.5.11. If x, > 0 for all n, then Y x,, converges if and only if the sequence of partial
sums is bounded.

The following criterion often gives a convenient way to test for convergence of a series.

Definition 2.5.12. A series Y x, converges absolutely if the series Y |x,| converges. If a series
converges, but does not converge absolutely, we say it is conditionally convergent.

Proposition 2.5.13. If the series ) x, converges absolutely, then it converges.
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Proof. We know that a series is convergent if and only if it is Cauchy. Hence suppose that Y |x,| is
Cauchy. That is for every € > 0, there exists an M such that for all k > M and n > k we have that

n

Y |l =

j=k+1

n
Y |yl <e.

j=k+1

We can apply the triangle inequality for a finite sum to obtain

n

Y X

Jj=k+1

n

= X |ul<e

j=k+1

Hence ) x, is Cauchy and therefore it converges. 0

Of course, if ¥ x, converges absolutely, the limits of ¥ x,, and ¥ |x,| are different. Computing
one will not help us compute the other.

Absolutely convergent series have many wonderful properties for which we do not have space
in these notes. For example, absolutely convergent series can be rearranged arbitrarily.

We state without proof that

= (1
;( )

n

converges. On the other hand we have already seen that
y !
n=1"7
diverges. Therefore ) # is a conditionally convergent subsequence.

2.5.5 Comparison test and the p-series

We have noted above that for a series to converge the terms not only have to go to zero, but they
have to go to zero “fast enough.” If we know about convergence of a certain series we can use the
following comparison test to see if the terms of another series go to zero “fast enough.”

Proposition 2.5.14 (Comparison test). Let Y x,, and Yy, be series such that 0 < x, <y, for all
necN.

(i) If Y.y, converges, then so does Y x;,.

(ii) If Y. x, diverges, then so does Y. y,,.
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Proof. Since the terms of the series are all nonnegative, the sequence of partial sums are both
monotone increasing. We note that since x,, <y, for all n, then the partial sums satisfy

n n
Y <Y w 2.1)
k=1 k=1

If the series )y, converges the partial sums for the series are bounded. Therefore the right-hand
side of (2.1) 1s bounded for all n. Hence the partial sums for ) x, are also bounded. Since the partial
sums are a monotone increasing sequence they are convergent. The first item is thus proved.

On the other hand if ) x, diverges, the sequence of partial sums must be unbounded since it is
monotone increasing. That is, the partial sums for ) x, are bigger than any real number. Putting this
together with (2.1) we see that for any B € R, there is an n such that

n n
<Y m< Y w
k=1 k=1
Hence the partial sums for )}y, are also unbounded, and hence )y, also diverges. O

A useful series to use with the comparison test is the p-series.

Proposition 2.5.15 (p-series or the p-test). For p > 0, the series
i 1
nzlnp

converges if and only if p > 1.

Proof. Asn>1and p <1, then nip > % Since 2}1 diverges, we see that the anp must diverge for
all p < 1.

Now suppose that p > 1. We proceed in a similar fashion as we did in the case of the harmonic
series, but instead of showing that the sequence of partial sums is unbounded we show that it is
bounded. Since the terms of the series are positive, the sequence of partial sums is monotone
increasing. If we show that it is bounded, it must converge. Let s; denote the kth partial sum.

_0 11 11 1 1
=W+l mty )\t tets )

k—1 [/2/t1—1 1
w X (8 )

m=2J
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Instead of estimating from below, we estimate from above. In particular, as p > 1, then 27 < 37,
1,1 L1 Qi 1,1 1 1 1,1 141
and hence 5; + 355 < 55 + 5. Similarly 7 + 55 + & + 55 < 77 + 77 + 75 T 75 Therefore

2/+1 1
w2 (T )

As p > 1, then 5 —L. < 1. Then by using the result of Exercise 2.5.2, we note that

L)

k 1 J oo 1 J
S2k_1<1+Z<F) Sl—i_Z(F) .
j=1 j=1

As {s,} is a monotone sequence, then all s, < sy_, for all n < 2k _ 1. Thus for all n,

The sequence of partial sums is bounded and hence converges. 0

converges. Therefore

Note that neither the p-series test nor the comparison test will tell us what the sum converges
to. They only tell us that a limit of the partial sums exists. For example, while we know that }" 1/x?
converges it is far harder to ﬁndﬁ that the limit is 7T2/ 2. In fact, if we treat Y 1/n” as a function of p,
we get the so-called Riemann ¢ function. Understanding the behavior of this function contains one
of the most famous problems in mathematics today and has applications in seemingly unrelated
areas such as modern cryptography.

Example 2.5.16: The series ), ﬁ converges.
Proof: First note that n21+1

Therefore, by the comparison test, ) ﬁ converges.

< n]—z for all n € N. Note that } nLZ converges by the p-series test.

IDemonstration of this fact is what made the Swiss mathematician Leonhard Paul Euler (1707 — 1783) famous.
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2.5.6 Ratio test

Proposition 2.5.17 (Ratio test). Let Y x,, be a series such that

|xn+1’
n—eo ||

L:= lim

exists. Then

(i) If L <1, then Y x, converges absolutely.
(ii) If L > 1, then Y x, diverges.

Proof. From Lemma 2.2.12 we note that if L > 1, then x,, diverges. Since it is a necessary condition
for the convergence of series that the terms go to zero, we know that ) x,, must diverge.

Thus suppose that L < 1. We will argue that Y |x,,| must converge. The proof is similar to that
of Lemma 2.2.12. Of course L > 0. Now pick r such that L < r < 1. As r — L > 0, there exists an
M € N such that for all n > M

Therefore,

For n > M (that is for n > M + 1) write
ol Pactl bl
|xn71| ’xn72| |xM|

For n > M we can therefore write the partial sum as

n—m __

< x| rre-r = x| M = (g | M

| = x|

n M n
Y bl =X bl |+ ( Y |Xk|>
=1 =1 k=M +1
M n
<Y bl )+ ( Y (!XM|F_M)"")
=1 k=M 41
M n
< | Xl +(|XM|r_M)< ) ’k>-
=1 k=M 41

As 0 <r < 1 the geometric series ) ;~ r* converges and thus of course } ;7 /. r* converges as

well (why?). Thus we can take the limit as n goes to infinity on the right-hand side to obtain.
n
Z k| < (Z |xk|> (beaa| 7= ( Y r”)
k=M+1

s(}im) (el <k_;f>
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The right-hand side is a number that does not depend on n. Hence the sequence of partial sums of
Y |x,| is bounded and therefore Y |x,| is convergent. Thus Y x, is absolutely convergent. O

Example 2.5.18: The series

n=1 ;
converges absolutely.
Proof: We have already seen that
2}’1
lim — = 0.
n—eo !

Therefore, the series converges absolutely by the ratio test.

2.5.7 Exercises

Exercise 2.5.1: Forr # 1, prove

Hint: Let s := Zz;é 1%, then compute s(1 —r) = s — rs, and solve for s.

Exercise 2.5.2: Prove that for —1 < r < 1 we have

Hint: Use the previous exercise.

Exercise 2.5.3: Decide the convergence or divergence of the following series.

> 3
@ ,;19n—|—1
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Exercise 2.5.4:

%)

CHAPTER 2. SEQUENCES AND SERIES

a) Prove that if Z X, converges, then Z (x2n + X2n41) also converges.

n=1

n=1

b) Find an explicit example where the converse does not hold.

Exercise 2.5.5: For j=1,2,...

is convergent. Then show

.n, let {x;}7°_, denote n sequences. Suppose that for each j
Z Xjk
k=1

jnl <;Xj7k> B i

k=1

i)



Chapter 3

Continuous Functions

3.1 Limits of functions

Note: 3 lectures

Before we can define continuity of functions, we need to visit a somewhat more general notion
of a limit. That is, given a function f: § — R, we want to see how f(x) behaves as x tends to a
certain point.

3.1.1 Cluster points

First, let us return to a concept we have previously seen in an exercise.

Definition 3.1.1. Let S C R be a set. A number x € R is called a cluster point of S if for every
€ >0, the set (x —&,x+ &) NS\ {x} is not empty.

That is, x is a cluster point of § if there are points of S arbitrarily close to x. Another way of
phrasing the definition is to say that x is a cluster point of S if for every € > 0, there existsay € S
such that y # x and |[x —y| < €.

Let us see some examples.

(i) The set {1/n: n € N} has a unique cluster point zero.

(ii) The cluster points of the open interval (0, 1) are all points in the closed interval [0, 1].
(ii1) For the set Q, the set of cluster points is the whole real line R.
(iv) For the set [0, 1) U{2}, the set of cluster points is the interval [0, 1].

(v) The set N has no cluster points in R.

79
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Proposition 3.1.2. Let S C R. Then x € R is a cluster point of S if and only if there exists a
convergent sequence of numbers {x,} such that x, # x, x, € S, and lim x,, = x.

Proof. First suppose that x is a cluster point of S. For any n € N, we pick x,, to be an arbitrary point
of (x—1/n,x+1/n) NS\ {x}, which we know is nonempty because x is a cluster point of S. Then x;,
is within 1/» of x, that is,

|x — x| < 1/n.

As {1/n} converges to zero, then {x, } converges to x.

On the other hand if we start with a sequence of numbers {x,} in S converging to x such that
xn # x for all n, then for every € > 0 there is an M such that in particular |x); — x| < €. That is,
xym € (x—g,x+€)NS\ {x}. O

3.1.2 Limits of functions

If a function f is defined on a set S and c is a cluster point of S, then we can define the limit of
f(x) as x gets close to c. Do note that it is irrelevant for the definition if f is defined at ¢ or not.
Furthermore, even if the function is defined at ¢, the limit of the function as x goes to ¢ could very
well be different from f(c).

Definition 3.1.3. Let f: S — R be a function and ¢ be a cluster point of S. Suppose that there exists
an L € R and for every € > 0, there exists a 6 > 0 such that whenever x € S\ {c} and |x —c| < §,
then

If(x)—L| <e.

In this case we say that f(x) converges to L as x goes to c. We also say that L is the limit of f(x) as
x goes to c. We write
lim f(x) := L,

x—c
or

f(x) =L as x—c.

If no such L exists, then we say that the limit does not exist or that f diverges at c.

Again the notation and language we are using above assumes that the limit is unique even though
we have not yet proved that. Let us do that now.

Proposition 3.1.4. Let ¢ be a cluster point of S C R and let f: S — R be a function such that f(x)
converges as x goes to c. Then the limit of f(x) as x goes to ¢ is unique.

Proof. Let Ly and L, be two numbers that both satisfy the definition. Take an € > 0 and find a
01 > O such that | f(x) —L;| < ¢&/2forall x € S, |x —¢| < 8; and x # c. Also find &, > 0 such that
|f(x) —Lp| <¢/2forall x €S, |x—c| < &, and x # ¢. Put § := min{d;, 5, }. Suppose that x € S,
|x —c| < 6, and x # c. Then

L = Lal = 1Ly = () + () — Lal S Ly — f)] +1F(0) — L] < 5+ 5 =,
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As |L| — Ly| < € for arbitrary € > 0, then L; = L,. O

Example 3.1.5: Let f: R — R be defined as f(x) := x*. Then

lim f(x) = limx? = ¢2.
X—>Cf< ) X—C

Proof: First let ¢ be fixed. Let € > 0 be given. Take

€
O0:=min¢q l, ——— 5.
2 )

Take x # ¢ such that |x — ¢| < §. In particular, |x — c¢| < 1. Then by reverse triangle inequality we
get
x| =]l < |x—c| < 1.

Adding 2 |c| to both sides we obtain |x|+ |c| < 2|c| + 1. We can now compute

[f(x) = ¢* = |x* = ¢
=[(x+c)(x—c)|
= |x+c|lx—c|
< (fx] +ef) [x =<
< (2]e|+ 1) |x—¢|

€
<@l + )5 =

E.

Example 3.1.6: Let S:=[0,1). Define

x ifx>0,
)= {1 ifx=0.

Then
lim f(x) =0,

x—0

even though f(0) = 1.
Proof: Let € > 0 be given. Let § := €. Then for x € S, x # 0, and |[x — 0| < § we get

lf(x)—0]=|x| < d=c€.

3.1.3 Sequential limits

Let us connect the limit as defined above with limits of sequences.



82 CHAPTER 3. CONTINUOUS FUNCTIONS

Lemma 3.1.7. Let S C R and c be a cluster point of S. Let f: S — R be a function.
Then f(x) — L as x — ¢, if and only if for every sequence {x,} of numbers such that x, € S,
Xn # ¢, and such that lim x,, = ¢, we have that the sequence {f(x,)} converges to L.

Proof. Suppose that f(x) — L as x — c¢. Now suppose that {x, } is a sequence as in the proposition.
We wish to show that {f(x,)} converges to L. Let € > 0 be given. Find a 6 > 0 such that if
xeSN(x—08,x+6)\ {c}, then we have |f(x) — L| < €. We know that {x, } converges to ¢, hence
find an M such that for n > M we have that |x, —c| < 8. Therefore x,, € SN (x—3d,x+8) \ {c},
and thus

[f () — L] <&.

Thus {f(x,)} converges to L.

For the other direction, we will use proof by contrapositive. Suppose that it is not true that
f(x) = L as x — c. The simple negation of the definition is that there exists an € > 0 such that for
every 0 > 0 there existsanx € S, [x —¢| < 6 and x # c and | f(x) —L| > €.

Let us use 1/x for § in the above statement. We have that for every n, there exists a point x,, € S,
xn # ¢ and |x, — ¢| < /n such that | f(x,) — L| > €. This is precisely the negation of the statement
that the sequence { f(x,)} converges to L. And we are done. U

Example 3.1.8: lim sin(1/x) does not exist, but lim xsin(1/x) = 0. See Figure 3.1.
x—0 x—0

[~

Figure 3.1: Graphs of sin(1/x) and xsin(1/x). Note that the computer cannot properly graph sin(1/x)
near zero as it oscillates too fast.

Proof: Let us work with sin(1/x) first. Let us define a sequence x,, := It is not hard to see

that lim x,, = 0. Furthermore,

1
n+m/2°

sin(1/x,) = sin(wn+7/2) = (—1)".

Therefore, {sin(1/x,)} does not converge. Thus, by Lemma 3.1.7, lim,_,¢ sin(1/x) does not exist.
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Now let us look at xsin(1/x). Let x, be a sequence such that x, # 0 for all n and such that
lim x,, = 0. Notice that |sin(¢)| < I for any # € R. Therefore,

[ sin(1/x,) = Of = | [sin(1/x,) | < |xal

As x,, goes to 0, then |x,| goes to zero, and hence {x, sin(1/x,)} converges to zero. By Lemma 3.1.7,
lin(l)xsin(l/x) =0.
X—

Using the proposition above we can start applying anything we know about sequential limits to
limits of functions. Let us give a few important examples.

Corollary 3.1.9. Let S C R and c be a cluster point of S. Let f: S — R and g: S — R be functions.
Suppose that the limits of f(x) and g(x) as x goes to ¢ both exist, and that

flx) <gx) forall x € S.

Then
lim f(x) < limg(x).

x—c T x—c

Proof. Take {x,} be a sequence of numbers from S\ {c} that converges to c. Let

Ly :=lim f(x), and Ly :=limg(x).

X—C X—C

By Lemma 3.1.7 we know { f(x,,) } converges to L; and {g(x,)} converges to L,. We obtain L; < L,
using Lemma 2.2.3. ]

By applying constant functions, we get the following corollary. The proof is left as an exercise.

Corollary 3.1.10. Let S C R and c be a cluster point of S. Let f: S — R be a function. And suppose
that the limit of f(x) as x goes to c exists. Suppose that there are two real numbers a and b such that

a< f(x)<b forallx € S.

Then
a <lim f(x) <b.

X—C

By applying Lemma 3.1.7 in the same way as above we also get the following corollaries, whose
proofs are again left as an exercise.

Corollary 3.1.11. Let S C R and c be a cluster point of S. Let f: S — R, g: S— R, andh: S - R
be functions. Suppose that

f(x) Sg(x) <h(x)  forallxes,
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and the limits of f(x) and h(x) as x goes to ¢ both exist, and

lim /() = lim ().

Then the limit of g(x) as x goes to ¢ exists and

limg(x) = lim f(x) = lim h(x).

X—C X—C X—cC

Corollary 3.1.12. Let S C R and c be a cluster point of S. Let f: S — R and g: S — R be functions.
Suppose that limits of f(x) and g(x) as x goes to ¢ both exist. Then

(i) lim (f(x) +g(x)) = (lim f(x)) + (limg(x)) .

X—C

(ii) tim (f(x) — g(x)) = (lim /() — (limg(x)).

X—C X—C

(iii) lim (f(x)g(x)) = (lim f(x)> (hmg(x)) .

X—C X—C X—cC

(iv) Ifliglg(x) #0, and g(x) # 0 for all x € S, then
X—C

. f(x) . hmx—)cf(x)
o) Timees(n)

3.1.4 Restrictions and limits

It is not necessary to always consider all of S. Sometimes we may be able to just work with the
function defined on a smaller set.

Definition 3.1.13. Let f: S — R be a function. Let A C S. Define the function f|4: A — R by

flalx) :== f(x) for x € A.
The function f|4 is called the restriction of f to A.

The function f|, is simply the function f taken on a smaller domain. The following proposition
is the analogue of taking a tail of a sequence.

Proposition 3.1.14. Let S C R and let c € R. Let A C S be a subset such that there is some o« > 0
suchthat AN (c —o,c+a)=SN(c—o,c+a). Let f: S— R be a function.

(i) The point c is a cluster point of A if and only if c is a cluster point of S.

(ii) Supposing c is a cluster point of S, then f(x) — L as x — c if and only if f|a(x) — L as x — c.
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Proof. First let ¢ be a cluster point of A. Since A C S, then if A\ {c} N (¢ — €,c+ €) is nonempty,
then S\ {c}N(c—&,c+¢€) is nonempty for every € > 0 and thus c is a cluster point of A. On the other
hand, if ¢ is a cluster point of S, then for € > 0 such that € < & we getthat A\ {c} N(c—€,c+¢€) =
S\{c}N(c—€,c+¢€). Thisis true for all € < @ and hence A\ {c} N (c — €, ¢+ €) must be nonempty
for all € > 0. Thus c is a cluster point of A.

Now suppose that f(x) — L as x — ¢. Hence for every € > 0 there is a § > 0 such that if
x€S\{c}and [x—c| < d,then |f(x) —L| <e. AsAC S, thenifxisinA\{c}, thenxisin S\ {c},
and hence f|s(x) — Las x — c.

Now suppose that f|4(x) — L as x — ¢. Hence for every € > 0 there is a § > 0 such that
if x€ A\ {c} and [x—c| < §, then |f|s(x) —L| < €. If we picked & > «, then set 0 := . If
|x—c| < 8, thenx € S\ {c} ifand only if x € A\ {c}. Thus |f(x) —L| = |flax—L| < €. O

3.1.5 Exercises
Exercise 3.1.1: Find the limit or prove that the limit does not exist
a) lim+/x, for ¢ > 0.
X—C
b) limx®>+x+ 1, for any c € R.
X—C
¢) limx? cos(1/x)
x—0
d) lim sin(1/x)cos(1/x)
x—0
e) lim sin(x)cos(1/x)
x—0
Exercise 3.1.2: Prove Corollary 3.1.10.
Exercise 3.1.3: Prove Corollary 3.1.11.

Exercise 3.1.4: Prove Corollary 3.1.12.

Exercise 3.1.5: Let A C S. Show that if c is a cluster point of A, then c is a cluster point of S. Note
the difference from Proposition 3.1.14.

Exercise 3.1.6: Let A C S. Suppose that c is a cluster point of A and it is also a cluster point of S.
Let f: S — R be a function. Show that if f(x) — L as x — ¢, then f|s(x) — L as x — c. Note the
difference from Proposition 3.1.14.

Exercise 3.1.7: Find an example of a function f: [—1,1] — R such that for A := |0, 1], the restric-
tion f|a(x) = 0 as x — 0, but the limit of f(x) as x — 0 does not exist. Note why you cannot apply
Proposition 3.1.14.

Exercise 3.1.8: Find example functions f and g such that the limit of neither f(x) nor g(x) exists
as x — 0, but such that the limit of f(x)+ g(x) exists as x — 0.
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3.2 Continuous functions

Note: 2.5 lectures

You have undoubtedly heard of continuous functions in your schooling. A high school criterion
for this concept is that a function is continuous if we can draw its graph without lifting the pen from
the paper. While that intuitive concept may be useful in simple situations, we will require a rigorous
concept. The following definition took three great mathematicians (Bolzano, Cauchy, and finally
Weierstrass) to get correctly and its final form dates only to the late 1800s.

3.2.1 Definition and basic properties

Definition 3.2.1. Let S C R. Let f: § — R be a function. Let ¢ € S be a number. We say that
f is continuous at c if for every € > 0 there is a § > 0 such that |x—c| < 8, x € S, implies that

[f(x) = fle)| <e.

When f: S — R is continuous at all ¢ € §, then we simply say that f is a continuous function.

This definition is one of the most important to get correctly in analysis, and it is not an easy one
to understand. Note that 6 not only depends on &, but also on c. That is, we need not have to pick
one § forall c € S.

Sometimes we say that f is continuous on A C S. Then we mean that f is continuous at all
¢ € A. Ttis left as an exercise to prove that if f is continuous on A, then f|, is continuous.

It is no accident that the definition of a continuous function is similar to the definition of a limit
of a function. The main feature of continuous functions is that these are precisely the functions that
behave nicely with limits.

Proposition 3.2.2. Suppose that f: S — R is a function and c € S. Then
(i) If c is not a cluster point of S, then f is continuous at c.

(ii) If ¢ is a cluster point of S, then f is continuous at c if and only if the limit of f(x) as x — ¢
exists and

lim £(x) = £(c).

(iii) f is continuous at c if and only if for every sequence {x,} where x, € S and lim x, = c, the
sequence { f(x,)} converges to f(c).

Proof. Let us start with the first item. Suppose that ¢ is not a cluster point of S. Then there exists
a 6 > 0 such that SN (c— 8,c+ 0) = {c}. Therefore, for any € > 0, simply pick this given delta.
The only x € S such that |x —¢| < § is x = c. Therefore |f(x) — f(c)| = |f(c) — f(c)| =0 < €.
Let us move to the second item. Suppose that c is a cluster point of S. Let us first suppose that
limy_,. f(x) = f(c). Then for every € > 0 there is a § > 0 such that if x € S\ {c} and [x—¢| < 6,
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then |f(x) — f(c)| < €. As |f(c) — f(c)| = 0 < g, then the definition of continuity at c is satisfied.
On the other hand, suppose that f is a continuous function at c¢. For every € > 0, there exists a § > 0
such that for x € § where |x —c| < 6 we have |f(x) — f(c)| < €. Then the statement is, of course,
still true if x € S\ {c} C S. Therefore lim,_,. f(x) = f(c).

For the third item, suppose that f is continuous. Let {x,} be a sequence such that x,, € S and
limx, = c¢. Let € > 0 be given. Find 6 > 0 such that |f(x) — f(c)| < € for all x € S such that
|x —¢| < 8. Now find an M € N such that for n > M we have |x, — ¢| < 8. Then for n > M we have
that | f(x,) — f(c)| < €, so {f(x,)} converges to f(c).

Let us prove the converse by contrapositive. Suppose that f is not continuous at c¢. This means
that there exists an € > 0 such that for all 0 > 0, there exists an x € § such that |x —¢| < & and
|f(x) = f(c)| > €. Let us define a sequence x, as follows. Let x,, € S be such that |x, — ¢| < 1/» and
|f(xn) — f(c)| > €. As f is not continuous at ¢, we can do this. Now {x,} is a sequence of numbers
in S such that lim x,, = ¢ and such that |f(x,) — f(c)| > € for all n € N. Thus {f(x,)} does not
converge to f(c) (it may or may not converge, but it definitely does not converge to f(c)). [

The last item in the proposition is particularly powerful. It allows us to quickly apply what we
know about limits of sequences to continuous functions and even to prove that certain functions are
continuous.

Example 3.2.3: f: (0,00) — R defined by f(x) := 1/x is continuous.
Proof: Fix ¢ € (0,00). Let {x, } be a sequence in (0, ) such that lim x, = c¢. Then we know that
1 1 1
lim — = =~ = f(e).

n—eox, limx, ¢

Thus f is continuous at c. As f is continuous at all ¢ € (0,0), f is continuous.
We have previously shown that lim,_,. x> = ¢? directly. Therefore the function x> is continuous.
However, we can use the continuity of algebraic operations with respect to limits of sequences we

have proved in the previous chapter to prove a much more general result.

Proposition 3.2.4. Let f: R — R be a polynomial. That is

f(x) =agx®+ag_1x* '+ +aix+ao,

for some constants ag,ay,...,ag. Then f is continuous.

Proof. Fix ¢ € R. Let {x, } be a sequence such that lim x,, = ¢. Then

lim f(x,) = lim (adxg tagixd T agx, + ao)
N—oo n—yoo

=ay (hm xn)d +ag_1 (hm xn)dfl +---4a (111’1’1 xn) +ag

=ayc?+ay ¢+ +arc+ag = f(c).

Thus f is continuous at c. As f is continuous at all ¢ € R, f is continuous. [
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By similar reasoning, or by appealing to Corollary 3.1.12 we can prove the following. The
details of the proof are left as an exercise.

Proposition 3.2.5. Let f: S — R and g: S — R be functions continuous at c € S.
(i) The function h: S — R defined by h(x) := f(x) + g(x) is continuous at c.
(ii) The function h: S — R defined by h(x) := f(x) — g(x) is continuous at c.
(iii) The function h: S — R defined by h(x) := f(x)g(x) is continuous at c.
(iv) If g(x) # O for all x € S, then the function h: S — R defined by h(x) := % is continuous at c.

Example 3.2.6: The functions sin(x) and cos(x) are continuous. In the following computations
we use the sum-to-product trigonometric identities. We also use the simple facts that [sin(x)| < |x],

|cos(x)| < 1, and |sin(x)| < 1.
2sin e cos xte
2 2

(5o (1)

|sin(x) — sin(c)| =

2
< 2|sin x—c)‘
2

x_
= |x—¢|

2

= |x—c|

2

The claim that sin and cos are continuous follows by taking an arbitrary sequence {x,} converg-
ing to c. Details are left to the reader.

3.2.2 Composition of continuous functions

You have probably already realized that one of the basic tools in constructing complicated functions
out of simple ones is composition. A very useful property of continuous functions is that compo-
sitions of continuous functions are again continuous. Recall that for two functions f and g, the
composition f o g is defined by (fog)(x) := f(g(x)).
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Proposition 3.2.7. Let A\ BCRand f: B— R and g: A — B be functions. If g is continuous at
¢ € A and f is continuous at g(c), then fog: A — R is continuous at c.

Proof. Let {x,} be a sequence in A such that lim x,, = ¢. Then as g is continuous at c, then {g(x,)}
converges to g(c). As f is continuous at g(c), then {f(g(x,))} converges to f(g(c)). Thus fog is
continuous at c. [l

Example 3.2.8: Claim: (sin(l/x))2 is a continuous function on (0, o).

Proof: First note that 1/x is a continuous function on (0, 0) and sin(x) is a continuous function
on (0,00) (actually on all of R, but (0,) is the range for 1/x). Hence the composition sin(1/x) is
continuous. We also know that x? is continuous on the interval (—1,1) (the range of sin). Thus the

composition (sin(l/x))2 is also continuous on (0, ).

3.2.3 Discontinuous functions

Let us spend a bit of time on discontinuous functions. If we state the contrapositive of the third item
of Proposition 3.2.2 as a separate claim we get an easy to use test for discontinuities.

Proposition 3.2.9. Let f: S — R be a function. Suppose that for some c € S, there exists a sequence
{xn}, x4 €S, and lim x,, = ¢ such that {f(x,)} does not converge to f(c), then f is not continuous
at c.

We say that f is discontinuous at c, or that it has a discontinuity at c.

Example 3.2.10: The function f: R — R defined by

1 ifx<o,
)= {1 if x>0,

is not continuous at 0.
Proof: Simply take the sequence {—1/n}. Then f(—1/n) = —1 and so lim f(—1/n) = —1, but
£(0)=1.

Example 3.2.11: For an extreme example we take the so-called Dirichlet function.

1 if x is rational,
o

0 if x is irrational.

The function f is discontinuous at all ¢ € R.

Proof: Suppose that c is rational. Then we can take a sequence {x,} of irrational numbers such
that lim x,, = ¢. Then f(x,) = 0 and so lim f(x,) =0, but f(c) = 1. If ¢ is irrational, then take a
sequence of rational numbers {x,} that converges to ¢. Then lim f(x,) = 1 but f(c) = 0.
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As a final example, let us yet again test the limits of your intuition. Can there exist a function
that is continuous on all irrational numbers, but discontinuous at all rational numbers? Note that
there are rational numbers arbitrarily close to any irrational number. But, perhaps strangely, the
answer is yes. The following example is called the Thomae function® or the popcorn function.

Example 3.2.12: Let f: (0,1) — R be defined by

) 1/k  if x = m/k where m,k € N and m and k have no common divisors,
X) =
0  ifxisirrational.

Then f is continuous at all ¢ € (0, 1) that are irrational and is discontinuous at all rational c. See the
graph of the function in Figure 3.2.

Figure 3.2: Graph of the “popcorn function.”

Proof: Suppose that ¢ = m/k is rational. Then take a sequence of irrational numbers {x, } such
that lim x,, = ¢. Then lim f(x,) = lim0 = 0 but f(c) = 1/k # 0. So f is discontinuous at c.

Now suppose that c is irrational and hence f(c) = 0. Take a sequence {x, } of numbers in (0, )
such that lim x,, = ¢. For a given € > 0, find K € N such that 1/k < € by the Archimedean property.
If m/k is written in lowest terms (no common divisors) and m/k € (0, 1), then m < k. It is then obvious
that there are only finitely rational numbers in (0, 1) whose denominator & in lowest terms is less
than K. Hence there is an M such that for n > M, all the rational numbers x, have a denominator
larger than or equal to K. Thus forn > M

|f(xn) = 0] = f(xn) <k <€

Therefore f is continuous at irrational c.

3.2.4 Exercises

Exercise 3.2.1: Using the definition of continuity directly prove that f : R — R defined by f(x) := x>
is continuous.

*Named after the German mathematician Johannes Karl Thomae (1840 — 1921).
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Exercise 3.2.2: Using the definition of continuity directly prove that f: (0,00) — R defined by
f(x) :==1/x is continuous.

Exercise 3.2.3: Let f: R — R be defined by

X ifxis rational,
-

x*>  ifxis irrational.

Using the definition of continuity directly prove that f is continuous at 1 and discontinuous at 2.
Exercise 3.2.4: Let f: R — R be defined by

{ﬁn@h) if x # 0,

R ifx =0,

Is f continuous? Prove your assertion.

Exercise 3.2.5: Let f: R — R be defined by

_Jasin(l/x)  ifx#£0,
f@y_{o if x = 0.

Is f continuous? Prove your assertion.

Exercise 3.2.6: Prove Proposition 3.2.5.

Exercise 3.2.7: Prove the following statement. Let S C Rand A C S. Let f: S — R be a continuous
function. Then the restriction f|a is continuous.

Exercise 3.2.8: Suppose that S C R. Suppose that for some ¢ € R and a > 0, we have A =
(c—a,c+a) CS. Let f: S— R be a function. Prove that if f|a is continuous at c, then f is
continuous at c.

Exercise 3.2.9: Give an example of functions f: R — R and g: R — R such that the function h
defined by h(x) := f(x)+ g(x) is continuous, but f and g are not continuous. Can you find f and g
that are nowhere continuous, but h is a continuous function?

Exercise 3.2.10: Let f: R — R and g: R — R be continuous functions. Suppose that for all
rational numbers r, f(r) = g(r). Show that f(x) = g(x) for all x.

Exercise 3.2.11: Let f: R — R be continuous. Suppose that f(c) > 0. Show that there exists an
o > 0 such that for all x € (¢ — a,c + &) we have f(x) > 0.

Exercise 3.2.12: Let f: 7Z — R be a function. Show that f is continuous.
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3.3 Min-max and intermediate value theorems

Note: 1.5 lectures

Let us now state and prove some very important results about continuous functions defined on
the real line. In particular, on closed bounded intervals of the real line.

3.3.1 Min-max theorem

Recall that a function f: [a,b] — R is bounded if there exists a B € R such that | f(x)| < B for all
X € |a,b]. We have the following lemma.

Lemma 3.3.1. Let f: [a,b] — R be a continuous function. Then f is bounded.

Proof. Let us prove this by contrapositive. Suppose that f is not bounded, then for each n € N,
there is an x, € [a,b], such that

|f ()| = .

Now {x,} is a bounded sequence as a < x,, < b. By the Bolzano-Weierstrass theorem, there is a
convergent subsequence {xni}. Let x := lim x,,. Since a < x,; < b for all i, then a <x < b. The
limit lim f(x,,) does not exist as the sequence is not bounded as | f(xp,)| > n; > i. On the other hand
f(x) is a finite number and

) =f (.hm x) |

i—o0

Thus f is not continuous at x. 0

The main point will not be just that f is bounded, but the minimum and the maximum are
actually achieved. Recall from calculus that f: § — R achieves an absolute minimum at ¢ € § if

f(x) > f(e) forallx € S.
On the other hand, f achieves an absolute maximum at ¢ € § if
fx) < fle) forallx € S.

We simply say that f achieves an absolute minimum or an absolute maximum on S if suchac e §
exists. It turns out that if S is a closed and bounded interval, then f must have an absolute minimum
and an absolute maximum.

Theorem 3.3.2 (Minimum-maximum theorem). Let f: [a,b] — R be a continuous function. Then
f achieves both an absolute minimum and an absolute maximum on [a,b).
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Proof. We have shown that f is bounded by the lemma. Therefore, the set f([a,b]) = {f(x) : x €
[a,D]} has a supremum and an infimum. From what we know about suprema and infima, there exist
sequences in the set f([a,b]) that approach them. That is, there are sequences { f(x,)} and {f(y,)},
where x,,y, are in [a, b|, such that

lim f(x,) =inff(fa,b])  and  lim f(y,) = supf([a,]).

We are not done yet, we need to find where the minimum and the maxima are. The problem is that
the sequences {x,} and {y,} need not converge. We know that {x,} and {y,} are bounded (their
elements belong to a bounded interval [a, b]). We apply the Bolzano-Weierstrass theorem. Hence
there exist convergent subsequences {x,, } and {y,, }. Let
x:= lim x,, and y:=limy,.
i—o0 i—o0

Then as a < x,,; < b, we have that a < x < b. Similarly a <y < b, so x and y are in [a,b]. Now we
apply that a limit of a subsequence is the same as the limit of the sequence if it converged to get,
and we apply the continuity of f to obtain

it (fa]) = fim f5) = Jim £(3) = (fim, ) = (0.

Similarly,
sup (0, 8]) = Jim £(0n) = lim 103,) = fimy, ) = 70)
n—oo [—yo0 ]—yo0
Therefore, f achieves an absolute minimum at x and f achieves an absolute maximum at y. 0

Example 3.3.3: The function f(x) := x> + 1 defined on the interval [—1,2] achieves a minimum at
x =0 when f(0) = 1. It achieves a maximum at x = 2 where f(2) = 5. Do note that the domain of
definition matters. If we instead took the domain to be [—10, 10], then x = 2 would no longer be a
maximum of f. Instead the maximum would be achieved at either x = 10 or x = —10.

Let us show by examples that the different hypotheses of the theorem are truly necessary.

Example 3.3.4: The function f(x) := x, defined on the whole real line, achieves neither a minimum,
nor a maximum. So it is important that we are looking at a bounded interval.

Example 3.3.5: The function f(x) := 1/x, defined on (0, 1) achieves neither a minimum, nor a
maximum. The values of the function are unbounded as we approach 0. Also as we approach x = 1,
the values of the function approach 1 as well but f(x) > 1 for all x € (0, 1). There is no x € (0,1)
such that f(x) = 1. So it is important that we are looking at a closed interval.

Example 3.3.6: Continuity is important. Define f: [0,1] — R by f(x) := 1/x for x > 0 and let
f(0) := 0. Then the function does not achieve a maximum. The problem is that the function is not
continuous at 0.
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3.3.2 Bolzano’s intermediate value theorem

Bolzano’s intermediate value theorem is one of the cornerstones of analysis. It is sometimes called
only intermediate value theorem, or just Bolzano’s theorem. To prove Bolzano’s theorem we prove
the following simpler lemma.

Lemma 3.3.7. Let f: [a,b] — R be a continuous function. Suppose that f(a) < 0 and f(b) > 0.
Then there exists a c € |a,b] such that f(c) = 0.

Proof. The proof will follow by defining two sequences {a,} and {b,} inductively as follows.
(i) Leta; :=aand by :=b.

(i) If f (#) >0, let apy1 == ay and by 1= 2,

(i) 16 £ (9522) <0, let @y = ©3% and by = by,

From the definition of the two sequences it is obvious that if a, < b, then a4 < by,41. Thus by
induction a,, < b, for all n. Once we know that fact we can see that a,, < a,| and b, > b, for all
n. Finally we notice that

b,—a
bny1—apy1 = . ) Z.
By induction we can see that
b1 —a _
by—an=—— =2"(b-a).

As {a,} and {b,} are monotone, they converge. Let ¢ := lim a, and d := lim b,,. As a, < b,
for all n, then ¢ < d. Furthermore, as a,, is increasing and b,, is decreasing, ¢ is the supremum of a,
and d is the supremum of the b,. Thus d — ¢ < b, — a,, for all n. Thus

ld—c|=d—c<b,—a, <2 (b—a)
for all n. As 21_”(b —a) — 0 as n — oo, we see that ¢ = d. By construction, for all n
fla) <0 and  f(by) >0.

We can use the fact that lim @, = lim b, = ¢, and use continuity of f to take limits in those
inequalities to get

flc)=1lim f(an) <0  and  f(c)=lim f(bn) > 0.

As f(c) > 0and f(c) <0 we know that f(c) = 0. O
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Notice that the proof tells us how to find the c. Therefore the proof is not only useful for us pure
mathematicians, but it is a very useful idea in applied mathematics.

Theorem 3.3.8 (Bolzano’s intermediate value theorem). Let f: [a,b] — R be a continuous function.
Suppose that there exists a y such that f(a) <y < f(b) or f(a) >y > f(b). Then there exists a
¢ € |a,b] such that f(c) =y.

The theorem says that a continuous function on a closed interval achieves all the values between
the values at the endpoints.

Proof. If f(a) <y < f(b), then define g(x) := f(x) —y. Then we see that g(a) < 0 and g(b) >0
and we can apply Lemma 3.3.7 to g. If g(c) = 0, then f(c) = y.

Similarly if f(a) >y > f(b), then define g(x) :=y— f(x). Then again g(a) < 0 and g(b) >0
and we can apply Lemma 3.3.7. Again if g(c) = 0, then f(c) = y. O

Of course as we said, if a function is continuous, then the restriction to a subset is continuous. So
if f: S — Ris continuous and [a,b] C S, then f]| la,b] 18 also continuous. Hence, we generally apply
the theorem to a function continuous on some large set S, but we restrict attention to an interval.

Example 3.3.9: The polynomial f(x) := x> —2x? 4 x — I has a real root in [1,2]. We simply notice
that (1) = —1 and f(2) = 1. Hence there must exist a point ¢ € [1,2] such that f(c) = 0. To find
a better approximation of the root we could follow the proof of Lemma 3.3.7. For example, next
we would look at 1.5 and find that f(1.5) = —0.625. Therefore, there is a root of the equation in
[1.5,2]. Next we look at 1.75 and note that f(1.75) =~ —0.016. Hence there is a root of f in [1.75,2].
Next we look at 1.875 and find that f(1.875) ~ 0.44, thus there is root in [1.75, 1.875]. We follow
this procedure until we gain sufficient precision.

The technique above is the simplest method of finding roots of polynomials. Finding roots of
polynomials is perhaps the most common problem in applied mathematics. In general it is very
hard to do quickly, precisely and automatically. We can use the intermediate value theorem to find
roots for any continuous function, not just a polynomial.

There are better and faster methods of finding roots of equations, for example the Newton’s
method. One advantage of the above method is its simplicity. Another advantage is that the moment
we find an initial interval where the intermediate value theorem can be applied, we are guaranteed
that we will find a root up to a desired precision after finitely many steps.

Do note that the theorem guarantees a single ¢ such that f(c) = y. There could be many different
roots of the equation f(c) = y. If we follow the procedure of the proof, we are guaranteed to find
approximations to one such root. We will need to work harder to find any other roots that may exist.

Let us prove the following interesting result about polynomials. Note that polynomials of even
degree may not have any real roots. For example, there is no real number x such that x*> + 1 = 0.
Odd polynomials, on the other hand, always have at least one real root.

Proposition 3.3.10. Let f(x) be a polynomial of odd degree. Then f has a real root.
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Proof. Suppose f is a polynomial of odd degree d. Then we can write
flx)= agx? +ay 1 x* '+ +aix+ao,
where a; # 0. We can divide by a, to obtain a polynomial
g(x) = x4 by x4 4 bix+ by,
where by = ax/a;. We look at the sequence {g(n)} for n € N. We look at

by -+ bintbo|  |ban 4 bintbol

nd nd
_ [baa|n® o+ by n + [bol
< Jbat[n® 4 [by [+ [bo n
~ n (bgoy |4+ 1|+ |bol)
_ -

1
=~ (JBa1|+ -+ 1]+ o))

Therefore

. by in® 4 4 bin+b
lim =

n—roo nd
Thus there exists an M € N such that

bdflMd_l 4+ +b1M+ by
<1,
Md

0.

or in other words
bg M b M+ by < MC.

Therefore g(M) > 0.

Next we look at the sequence {g(—n)}. By a similar argument (exercise) we find that there
exists some K € N such that —(by_{ (—K)* 1 +---+ by (—K) +bg) < K¢ and therefore g(—K) < 0
(why?). In the proof make sure you use the fact that d is odd. In particular, this means that

(=n)? = —(n).
Now we appeal to the intermediate value theorem, which implies that there mustbe a ¢ € [—K, M|
such that g(c) = 0. As g(x) = %{C), we see that f(c) = 0, and the proof is done. O

Example 3.3.11: An interesting fact is that there do exist discontinuous functions that have the
intermediate value property. For example, the function

o= i e
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is not continuous at 0, however it has the intermediate value property. That is, for any a < b, and
any y such that f(a) <y < f(b) or f(a) >y > f(b), there exists a c¢ such that f(y) = c. Proof is
left as an exercise.

3.3.3 Exercises

Exercise 3.3.1: Find an example of a discontinuous function f: [0,1] — R where the intermediate
value theorem fails.

Exercise 3.3.2: Find an example of a bounded discontinuous function f: [0, 1] — R that has neither
an absolute minimum nor an absolute maximum.

Exercise 3.3.3: Let f: (0,1) — R be a continuous function such that liII(l) flx) = lirr} flx)=0.
X— X—

Show that f achieves either an absolute minimum or an absolute maximum on (0,1) (but perhaps
not both).

Exercise 3.3.4: Let
sin(1 ifx#0,
0 ifx=0,

Show that f has the intermediate value property. That is, for any a < b, if there exists a 'y such that
fla) <y < f(b)or f(a) >y > f(b), then there exists a ¢ € (a,b) such that f(c) =y.

Exercise 3.3.5: Suppose that g(x) is a polynomial of odd degree d such that
gx)=x+ by x4 4+ brx+ by,

for some real numbers by, b1, ...,by_1. Show that there exists a K € N such that g(—K) < 0. Hint:
Make sure to use the fact that d is odd. You will have to use that (—n)¢ = —(n?).

Exercise 3.3.6: Suppose that g(x) is a polynomial of even degree d such that
_ 4 d—1
g(x) =x"4+by_1x" " +---+bix+by,

for some real numbers by,by,...,by_1. Suppose that g(0) < 0. Show that g has at least two distinct
real roots.

Exercise 3.3.7: Suppose that f: [a,b] — R is a continuous function. Prove that the direct image
f([a,D)) is a closed and bounded interval.
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3.4 Uniform continuity

Note: 1.5 lectures

3.4.1 Uniform continuity

We have made a fuss of saying that the § in the definition of continuity depended on the point c.
There are situations when it is advantageous to have a § independent of any point. Let us therefore
define this concept.

Definition 3.4.1. Let S C R. Let f: S — R be a function. Suppose that for any € > 0 there exists
a 6 > 0 such that whenever x,c € S and |x—c| < 8, then |f(x) — f(c)| < €. Then we say f is
uniformly continuous.

It is not hard to see that a uniformly continuous function must be continuous. The only difference
in the definitions is that for a given € > 0 we pick a & > 0 that works for all ¢ € S. That is, §
can no longer depend on c, it only depends on €. Do note that the domain of definition of the
function makes a difference now. A function that is not uniformly continuous on a larger set, may
be uniformly continuous when restricted to a smaller set.

Example 3.4.2: f: (0,1) — R, defined by f(x) := !/x is not uniformly continuous, but it is contin-
uous. Given € > 0, then for € > |1/x—1/y| to hold we must have

y—x|  |y—x|
8>|1/x_1/y|: |xy| = Xy 5

or
|x —y| < xye.

Therefore, to satisfy the definition of uniform continuity we would have to have 6 < xye for all x,y

in (0,1), but that would mean that § < 0. Therefore there is no single 6 > 0.

Example 3.4.3: f: [0,1] — R, defined by f(x) := x* is uniformly continuous. Write (note that
0<x,c<1)
=) = el [x—c] < (el +lel) br— el < (1+1) k—c].

Therefore given € > 0, let § := /2. Then if [x — | < &, then |x* — ¢?| < .

However, f: R — R, defined by f(x) := x? is not uniformly continuous. Suppose it is, then for
all € > 0, there would exist a 0 > 0 such that if |x — ¢| < J, then ‘xz — cz‘ < €. Take x > 0 and let
¢ :=x+8/2. Write

€> |x2—cz| = |x+c||x—c| = (2x+8/2)8/2 > dx.

Therefore x < €/s for all x > 0, which is a contradiction.
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We have seen that if f is defined on an interval that is either not closed or not bounded, then f
can be continuous, but not uniformly continuous. For closed and bounded interval |a, b], we can,
however, make the following statement.

Theorem 3.4.4. Let f: [a,b] — R be a continuous function. Then f is uniformly continuous.

Proof. We will prove the statement by contrapositive. Let us suppose that f is not uniformly
continuous. Let us simply negate the definition of uniformly continuous. There exists an € > 0 such
that for every 6 > 0, there exist points x, ¢ in S with |x —¢| < 8 and |f(x) — f(c)| > €.

So for the € > 0 above, we can find sequences {x, } and {y,} such that |x, —y,| < 1/» and such
that | f(x,) — f(ya)| > €. By Bolzano-Weierstrass, there exists a convergent subsequence {x,, }. Let
¢ := lim x,, . Note that as a < x,, <b, thena <c <b. Write

|C_ynk’ = ‘C_x”k—'—x”k _ynk| < ’C_xnk|+ ’x’lk _ynk’ < |C_x”k‘ +1/”k'

As |c —xy,, | goes to zero as does 1/n; as k goes to infinity, we see that {y,, } converges and the limit
is c. We now want to show that f is not continuous at ¢. Thus we want to estimate

[f(e) = f )| =1 (c) = Fne) +  ne) — f(xn)]
> |f(ynk) SO )= f(c) = (ynk)’
>e—|f(c) = fym)]

Or in other words
|f(c) _f(xnk)| + |f(c) _f(yl’lk)| > E.

Therefore, at least one of the sequences { f(x,, )} or { f(y,)} cannot converge to f(c) (else the left
hand side of the inequality goes to zero while the right-hand side is positive). Thus f cannot be
continuous at c. ]

3.4.2 Continuous extension

Before we get to continuous extension, we show the following useful lemma. It says that uniformly
continuous functions behave nicely with respect to Cauchy sequences. The main difference here is
that for a Cauchy sequence we no longer know where the limit ends up and it may not end up in the
domain of the function.

Lemma 3.4.5. Let f: S — R be a uniformly continuous function. Let {x,} be a Cauchy sequence
inS. Then {f(x,)} is Cauchy.

Proof. Let € > 0 be given. Then there is a § > 0 such that |f(x) — f(y)| < € whenever |x —y| < J.
Now find an M € N such that for all n,k > M we have |x,, — x;| < 6. Then for all n,k > M we have

|f () = f ()| < e O
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An application of the above lemma is the following theorem. It says that a function on an open
interval is uniformly continuous if and only if it can be extended to a continuous function on the
closed interval.

Theorem 3.4.6. A function f: (a,b) — R is uniformly continuous if and only if the limits

L, := lim f(x) and  Lp:=lim f(x)

xX—a x—b

exist and if the function f: [a,b] — R defined by

f(x) ifxe(ab),
fx):=< L, ifx=a,
Ly ifx:b,

s continuous.

Proof. On direction is not hard to prove. If f is continuous, then it is uniformly continuous by
Theorem 3.4.4. As f is the restriction of f to (a,b), then f is also uniformly continuous (easy
exercise).

Now suppose that f is uniformly continuous. We must first show that the limits L, and L,
exist. Let us concentrate on L,. Take a sequence {x, } in (a,b) such that lim x,, = a. The sequence
is a Cauchy sequence and hence by Lemma 3.4.5, the sequence {f(x,)} is Cauchy and therefore
convergent. We have some number L; := lim f(x,). Now take another sequence {y,} in (a,b)
such that lim y,, = a. By the same reasoning we get L, := lim f(y,). If we can show that L; = L,,
then the limit L, = lim,_,, f(x) exists. Let € > 0 be given, find § > 0 such that |x — y| < § implies
|f(x) = f(y)| <¢/3. Now find M € N such that for n > M we have |a —x,| < 6/2, |a—y,| < 9/2,
| f(xn) —L1| < €/3, and |f(yn) — L2| < €/3. Then for n > M we have

X0 =yl = |Xn —a+a—yu| <|xn—al+|a—yu| <8/2+8/2=46.
So

1Ly — La| = |Ly — f(xn) + f (Xn) = f(¥n) + f(¥n) — La|
< ‘Ll _f(xn)‘ + ’f(xn) _f())n)| + ’f(yn) _L2|
<e/3t¢e/3t¢e/3=¢.

Therefore L = L. Thus L, exists. To show that L, exists is left as an exercise.

Now that we know that the limits L, and L;, exist, we are done. If lim,_,, f(x) exists, then
lim, ., f (x) exists (See Proposition 3.1.14). Similarly with L,. Hence f is continuous at a and b.
And since f is continuous at ¢ € (a,b), then f is continuous at ¢ € (a,b). O
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3.4.3 Lipschitz continuous functions

Definition 3.4.7. Let f: S — R be a function such that there exists a number K such that for all x
and y in S we have

f () =FOI < K|x—yl.

Then f is said to be Lipschitz continuous.

A large class of functions is Lipschitz continuous. Be careful however. As for uniformly
continuous functions, the domain of definition of the function is important. See the examples below
and the exercises. First let us justify using the word “continuous.”

Proposition 3.4.8. A Lipschitz continuous function is uniformly continuous.

Proof. Let f: S — R be a function and let K be a constant such that for all x,y in § we have

[F() = fO)] < Klx—yl.
Let € > 0 be given. Take & := €/k. For any x and y in S such that |x — y| < & we have that

fx) = FO) <K |x—»] <1<5:K§ —e.

Therefore f is uniformly continuous. [

We can interpret Lipschitz continuity geometrically. If f is a Lipschitz continuous function with
some constant K. The inequality can be rewritten that for x # y we have

‘f(X):f(y)

‘§K.
XY

The quantity JL;C@) is the slope of the line between the points (x, f(x)) and (y, f(y)). Therefore,

e
f is Lipschitz continuous if every line that intersects the graph of f at least two points has slope less
than or equal to K.

Example 3.4.9: The functions sin(x) and cos(x) are Lipschitz continuous. We have seen the
following two inequalities.

[sin(x) —sin(y)| < [x—y[  and  [cos(x) —cos(y)| < [x—}].
Hence sin and cos are Lipschitz continuous with K = 1.

Example 3.4.10: The function f: [1,o0) — R defined by f(x) := y/x is Lipschitz continuous.

C|x=y | =yl
Vil = | s = s
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1 1
As x> 1andy > 1, we can see that ey < 5. Therefore

1
VRl = | el = Sl

X—Yy
VY
On the other hand f: [0,00) — R defined by f(x) := \/x is not Lipschitz continuous. Let us see
why. Suppose that we have

|\/)_C_\/ﬂ SK’x_y‘7
for some K. Let y = 0 to obtain \/x < Kx. If K > 0, then for x > 0 we then get 1/k < \/x. This
cannot possibly be true for all x > 0. Thus no such K > 0 can exist and f is not Lipschitz continuous.
Note that the last example shows an example of a function that is uniformly continuous but not
Lipschitz continuous. To see that /x is uniformly continuous on [0, o) note that it is uniformly
continuous on [0,2] by Theorem 3.4.4. It is also Lipschitz (and therefore uniformly continuous) on
[1,00). It is not hard (exercise) to show that this means that /x is uniformly continuous on [0, o).

3.4.4 Exercises

Exercise 3.4.1: Let f: S — R be uniformly continuous. Let A C S. Then the restriction f|4 is
uniformly continuous.

Exercise 3.4.2: Let f: (a,b) — R be a uniformly continuous function. Finish proof of Theo-
rem 3.4.6 by showing that the limit lirrll7 f(x) exists.
X—r

Exercise 3.4.3: Show that f: (c,0) — R for some ¢ > 0 and defined by f(x) := 1/x is Lipschitz
continuous.

Exercise 3.4.4: Show that f: (0,00) — R defined by f(x) := 1/x is not Lipschitz continuous.

Exercise 3.4.5: Let A,B be intervals. Let f: A — R and g: B — R be uniformly continuous
functions such that f(x) = g(x) for x € ANB. Define the function h: AUB — R by h(x) := f(x) if
x € A and h(x) := g(x) if x € B\ A. a) Prove that if ANB # 0, then h is uniformly continuous. b)
Find an example where AN B = 0 and h is not even continuous.

Exercise 3.4.6: Let f: R — R be a polynomial of degree d > 2. Show that f is not Lipschitz
Ccontinuous.

Exercise 3.4.7: Let f: (0,1) — R be a bounded continuous function. Show that the function
g(x) :=x(1 —x) f(x) is uniformly continuous.

Exercise 3.4.8: Show that f: (0,00) — R defined by f(x) := sin(1/x) is not uniformly continuous.

Exercise 3.4.9: Let f: Q — R be a uniformly continuous function. Show that there exists a
uniformly continuous function f: R — R such that f(x) = f(x) for all x € Q.



Chapter 4

The Derivative

4.1 The derivative

Note: 1 lecture

The idea of a derivative is the following. Let us suppose that a graph of a function looks locally
like a straight line. We can then talk about the slope of this line. The slope tells us how fast is the
value of the function changing at the particular point. Of course, we are leaving out any function
that has corners or discontinuities. Let us be precise.

4.1.1 Definition and basic properties

Definition 4.1.1. Let / be an interval, let f: I — R be a function, and let ¢ € I. Suppose that the

limit
L TS
xX—c xX—cC
exists. Then we say that f is differentiable at ¢ and we say that L is the derivative of f at ¢ and we
write f’(c) := L.
If f is differentiable at all ¢ € I, then we simply say that f is differentiable, and then we obtain a
function f’: I — R.

f)—f(c)

X—C

The expression is called the difference quotient.

The graphical interpretation of the derivative is depicted in Figure 4.1. The left-hand plot gives
the line through (c, f(c)) and (x, f(x)) with slope FD=10) - A5 we take the limit as x goes to ¢, we

get the right-hand plot. On this plot we can see that 'Echec derivative of the function at the point c is
the slope of the line tangent to the graph of f at the point (c, f (c))

Note that we allow / to be a closed interval and we allow ¢ to be an endpoint of /. Some calculus
books will not allow ¢ to be an endpoint of an interval, but all the theory still works by allowing it,

and it will make our work easier.

103
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Figure 4.1: Graphical interpretation of the derivative.

Example 4.1.2: Let f(x) := x* defined on the whole real line. Then we find that

x? —c?
lim = lim(x+c) = 2c.
x—=c X—C x—c

Therefore f'(c) = 2c.

Example 4.1.3: The function f(x) := |x| is not differentiable at the origin. When x > 0, then

d -0 _,
x—0

and when x < 0 we have
-l _
x—0 '

A famous example of Weierstrass shows that there exists a continuous function that is not
differentiable at any point. The construction of this function is beyond the scope of this book. On
the other hand, a differentiable function is always continuous.

Proposition 4.1.4. Let f: I — R be differentiable at ¢ € I, then it is continuous at c.

Proof. We know that the limits

LT S(e)

x—c XxX—cC xX—c

exist. Furthermore,
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Therefore the limit of f(x) — f(c) exists and

lim (£(x) - £(c)) = /() -0=0.

X—C

Hence 1i_>m_ f(x) = f(c), and f is continuous at c. O

One of the most important properties of the derivative is linearity. The derivative is the approxi-
mation of a function by a straight line, that is, we are trying to approximate the function at a point
by a linear function. It then makes sense that the derivative is linear.

Proposition 4.1.5. Let I be an interval, let f: I — R and g: I — R be differentiable at c € I, and
let o € R.

(i) Define h: I — R by h(x) := o.f (x). Then h is differentiable at ¢ and I'(c) = af'(c).
(ii) Define h: I — R by h(x) := f(x) +g(x). Then h is differentiable at c and h'(c) = f'(c) +g'(c).
Proof. First, let h(x) = af(x). For x € I, x # ¢ we have

hix) —h(c) _ af(x)—aflc) _ flx)-fleo)

X—cC X—cC X—cC

The limit as x goes to ¢ exists on the right by Corollary 3.1.12. We get

fim ") =hE) _ i TH = FLE)

x—c  X—c¢ =c  x—c¢

Therefore £ is differentiable at ¢, and the derivative is computed as given.
Next, define h(x) := f(x) + g(x). For x € I, x # ¢ we have

h(x) —h(c) _ (f(x)+8(x) = (fle)+8(c) _ flx)—f(c) +8(X)-8(C)_

X—C X—C X—C X—C

The limit as x goes to ¢ exists on the right by Corollary 3.1.12. We get

fim M) =)y SO 2SOy, 800 —8(€),
X—C X—cC X—C X—cC x—c X—cC
Therefore 4 is differentiable at ¢ and the derivative is computed as given. [

It is not true that the derivative of a multiple of two functions is the multiple of the derivatives.
Instead we get the so-called product rule or the Leibniz rule*.

*Named for the German mathematician Gottfried Wilhelm Leibniz (1646-1716).
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Proposition 4.1.6 (Product Rule). Let I be an interval, let f: I — R and g: I — R be functions
differentiable at c. If h: I — R is defined by

then h is differentiable at c and

H(c) = f(c)g'(c)+ f'(c)g(c).
The proof of the product rule is left as an exercise. The key is to use the identity f(x)g(x)—
f(e)g(e) = f(x) (g(x) —g(c)) +g(c) (f(x) = £(c))-

Proposition 4.1.7 (Quotient Rule). Let I be an interval, let f: [ — R and g: [ — R be differentiable
atcand g(x) # 0 forall x € I. If h: I — R is defined by

o T
h(x) )
then h is differentiable at ¢ and
/ fle)g'(e) + f'(c)g(c)
h(c)=
(8(c))?

Again the proof is left as an exercise.

4.1.2 Chain rule

A useful rule for computing derivatives is the chain rule.

Proposition 4.1.8 (Chain Rule). Let I, 1, be intervals, let g: I} — I be differentiable at ¢ € I, and
f: b — R be differentiable at g(c). If h: [ — R is defined by

h(x) := (fog)(x) = f(g(x)),

then h is differentiable at ¢ and

Proof. Letd := g(c). Define

fO)—fld) d
u(y) == { v 7
f'(d ify=d,
8(x)—g(c) ifx£c
v(x) = { e . 7_&
g'(c) ifx=c
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By the definition of the limit we see that linclz u(y) = f'(d) and lim v(x) = g’(c) (the functions u and
y—) X—C

v are continuous at d and c respectively). Therefore,

fO)=fld)=uy)(y—d) and  g(x)—g(c) =v(x)(x—c).

We plug in to obtain

Therefore,
h(x) — h(c)

P u(g(x))v(x).
We note that 1i_r>n v(x) = g'(c), g is continuous at ¢, that is liLn g(x) = g(c), and finally that
X—C X—C
lil’I(l )u(y) = f'(g(c)). Therefore the limit of the right-hand side exists and is equal to f’(g(c))g’(c).
y—g(e

Thus h is differentiable at ¢ and the limit is f’(g(c))g'(c). O

4.1.3 Exercises

Exercise 4.1.1: Prove the product rule. Hint: Use f(x)g(x) — f(c)g(c) = f(x)(g(x) —g(c)) +
g(e) (f(x) = f(c))-

Exercise 4.1.2: Prove the quotient rule. Hint: You can do this directly, but it may be easier to find
the derivative of 1/x and then use the chain rule and the product rule.

Exercise 4.1.3: Prove that X" is differentiable and find the derivative. Hint: Use the product rule.

Exercise 4.1.4: Prove that a polynomial is differentiable and find the derivative. Hint: Use the
previous exercise.

Exercise 4.1.5: Let

1) = {xz yael

0 otherwise.

Prove that f is differentiable at 0, but discontinuous at all points except 0.

Exercise 4.1.6: Assume the inequality |x — sin(x)| < x%. Prove that sin is differentiable at 0, and
find the derivative at Q.

Exercise 4.1.77: Using the previous exercise, prove that sin is differentiable at all x and that the
derivative is cos(x). Hint: Use the sum-to-product trigonometric identity as we did before.

Exercise 4.1.8: Let f: I — R be differentiable. Define f" be the function defined by f"(x) :=
(f(x))". Prove that (") (x) = n(f(x))""" f'(x).
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Exercise 4.1.9: Suppose that f: R — R is a differentiable Lipschitz continuous function. Prove
that f" is a bounded function.

Exercise 4.1.10: Let 11,1, be intervals. Let f: I} — I, be a bijective function and g: I — I, be the
inverse. Suppose that both f is differentiable at ¢ € I} and f'(c) # 0 and g is differentiable at f(c).
Use the chain rule to find a formula for g (f(c)) (in terms of f'(c)).



4.2. MEAN VALUE THEOREM 109

4.2 Mean value theorem

Note: 2 lectures (some applications may be skipped)

4.2.1 Relative minima and maxima

Definition 4.2.1. Let S C R be a set and let f: S — R be a function. The function f is said to have
a relative maximum at c¢ € § if there exists a 6 > 0 such that for all x € S such that |x —c| < § we
have f(x) < f(c). The definition of relative minimum is analogous.

Theorem 4.2.2. Let f: [a,b] — R be a function differentiable at ¢ € (a,b), and c is a relative
minimum or a relative maximum of f. Then f'(c) = 0.

Proof. We will prove the statement for a maximum. For a minimum the statement follows by
considering the function — f.

Let ¢ be a relative maximum of f. In particular as long as |x — ¢| < 8 we have f(x) — f(c) <O0.
Then we look at the difference quotient. If x > ¢ we note that

-1 _,
xX—c -

and if x < ¢ we have
o) =1©) -
xX—c -

We now take sequences {x,} and {y,}, such that x,, > ¢, and y, < ¢ for all n € N, and such that
lim x, = lim y, = c¢. Since f is differentiable at ¢ we know that

f () = f(c) >0.

0> tim 25 7Y 0y = fim
n—soo X, —C n—yoo Yp—C

4.2.2 Rolle’s theorem

Suppose that a function is zero on both endpoints of an interval. Intuitively it should attain a
minimum or a maximum in the interior of the interval. Then at a minimum or a maximum, the
derivative should be zero. See Figure 4.2 for the geometric idea. This is the content of the so-called
Rolle’s theorem.

Theorem 4.2.3 (Rolle). Let f: [a,b] — R be continuous function differentiable on (a,b) such that
f(a) = f(b) = 0. Then there exists a ¢ € (a,b) such that f'(c) = 0.
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Figure 4.2: Point where tangent line is horizontal, that is f’(c) = 0.

Proof. As f is continuous on [a, b] it attains an absolute minimum and an absolute maximum in
[a,b]. If it attains an absolute maximum at ¢ € (a,b), then c is also a relative maximum and we
apply Theorem 4.2.2 to find that f’(c) = 0. If the absolute maximum as at a or at b, then we look for
the absolute minimum. If the absolute minimum is at ¢ € (a,b), then again we find that f'(c) = 0.
So suppose that the absolute minimum is also at a or 5. Hence the relative minimum is O and the
relative maximum is 0, and therefore the function is identically zero. Thus f’(x) = 0 for all x € [a, ]
so pick an arbitrary c. [

4.2.3 Mean value theorem

We extend Rolle’s theorem to functions that attain different values at the endpoints.

Theorem 4.2.4 (Mean value theorem). Let f: [a,b] — R be continuous function differentiable on
(a,b). Then there exists a point ¢ € (a,b) such that

f() = fla) = f'(c)(b—a).

Proof. The theorem follows easily from Rolle’s theorem. Define the function g: [a,b] — R by

b—x

g(x) = f(x) = f(b) + (f(b) = fla)) 3 —-

Then we know that g is a differentiable function on (a,b) continuous on [a,b] such that g(a) =0
and g(b) = 0. Thus there exists ¢ € (a,b) such that g’(c) = 0.

Or in other words f'(c)(b—a) = f(b) — f(a). O
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For a geometric interpretation of the mean value theorem, see Figure 4.3. The idea is that the
value M is the slope of the line between the points (a, f(a)) and (b, f(b)). Then c is the

point such that f/(c) = ]W, that is, the tangent line at the point (c, f(c)) has the same slope
as the line between (a, f(a)) and (b, f(b)).

(a, f(a))

Figure 4.3: Graphical interpretation of the mean value theorem.

4.2.4 Applications
We can now solve our very first differential equation.

Proposition 4.2.5. Let [ be an interval and let f: I — R be a differentiable function such that
f'(x)=0forall x € I. Then f is a constant.

Proof. We will show this by contrapositive. Suppose that f is not constant, then there exist x and y
in I such that x < y and f(x) # f(v). Then f restricted to [x,y| satisfies the hypotheses of the mean
value theorem. Therefore there is a ¢ € (x,y) such that

fO)=fx) =f(e)y—x).
Asy#xand f(y) # f(x) we see that f'(c) # 0. O

Now that we know what it means for the function to stay constant, let us look at increasing and
decreasing functions. We say that f: I — R is increasing (resp. strictly increasing) if x < y implies
F(x) < f(y) (resp. f(x) < f(y)). We define decreasing and strictly decreasing in the same way by
switching the inequalities for f.

Proposition 4.2.6. Let f: I — R be a differentiable function.
(i) f is increasing if and only if f'(x) > 0 for all x € I.
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(ii) f is decreasing if and only if f'(x) <0 forall x € L.
Proof. Let us prove the first item. Suppose that f is increasing, then for all x and ¢ in 7 we have

10—

X—C

Taking a limit as x goes to ¢ we see that f’(c) > 0.
For the other direction, suppose that f/(x) > 0 for all x € I. Let x < y in I. Then by the mean
value theorem there is some ¢ € (x,y) such that

f@x)=f) = f(c)(x—y).

As f'(c¢) >0,and x —y > 0, then f(x) — f(y) > 0 and so f is increasing.
We leave the decreasing part to the reader as exercise. [

Example 4.2.7: We can make a similar but weaker statement about strictly increasing and decreas-
ing functions. If f’(x) > O for all x € I, then f is strictly increasing. The proof is left as an exercise.
However, the converse is not true. For example, f(x) := x° is a strictly increasing function but

7(0)=0.

Another application of the mean value theorem is the following result about location of extrema.
The theorem is stated for an absolute minimum and maximum, but the way it is applied to find
relative minima and maxima is to restrict f to an interval (¢ — 6,c+ 0).

Proposition 4.2.8. Let f: (a,b) — R be continuous. Let ¢ € (a,b) and suppose f is differentiable
on (a,c) and (c,d).

(i) If f'(x) <0 forx € (a,c) and f'(x) > 0 for x € (c,b), then f has an absolute minimum at c.
(ii) If f'(x) > 0 for x € (a,c) and f'(x) <0 for x € (c,b), then f has an absolute maximum at c.

Proof. Let us prove the first item. The second is left to the reader. Let x be in (a,c) and {y,} a
sequence such that x < y, < c and lim y,, = c. By the previous proposition, the function is decreasing
on (a,c) so f(x) > f(yn). The function is continuous at ¢ so we can take the limit to get f(x) > f(c)
for all x € (a,c).

Similarly take x € (c,b) and {y,} a sequence such that ¢ <y, < x and lim y, = ¢. The function
is increasing on (c¢,b) so f(x) > f(y,). By continuity of f we get f(x) > f(c) for all x € (c,b).
Thus f(x) > f(c) for all x € (a,b). O

Note that converse of the proposition does not hold. See Example 4.2.10 below.
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4.2.5 Continuity of derivatives and the intermediate value theorem

Derivatives of functions satisfy an intermediate value property. The theorem is usually called the
Darboux’s theorem.

Theorem 4.2.9 (Darboux). Let f: [a,b] — R be differentiable. Suppose that there exists ay € R
such that f'(a) <y < f'(b) or f'(a) >y > f'(b). Then there exists a ¢ € (a,b) such that f'(c) = y.

Proof. Suppose without loss of generality that f'(a) <y < f'(b). Define
g(x) 1= yx— f(x).

As g is continuous on [a, b], then g attains a maximum at some ¢ € [a, b].
Now compute g'(x) =y — f'(x). Thus g’(a) > 0. We can find an x > a such that

¢(a)—$9 =8 _ o,

X—a

Thus £8=8@ < 0 or g(x) — g(a) > 0 or g(x) > g(a). Thus a cannot possibly be a maximum.

X—a
Similarly as g’(b) < 0, we find an x < b such that % —g'(b) < —¢'(b) or that g(x) > g(b),
thus b cannot possibly be a maximum.
Therefore ¢ € (a,b). Then as ¢ is a maximum of g we find g’(c) = 0 and f'(c) = y. O

And as we have seen, there do exist noncontinuous functions that have the intermediate value
property. While it is hard to imagine at first, there do exist functions that are differentiable
everywhere and the derivative is not continuous.

Example 4.2.10: Let f: R — R be the function defined by

[ (xsin(1/)? ifx#0,
Jl) = {o if x =0,

We claim that f is differentiable, but f’: R — R is not continuous at the origin. Furthermore, f has
a minimum at 0, but the derivative changes sign infinitely often near the origin.

That f has an absolute minimum at 0 is easy to see by definition. We know that f(x) > 0 for all
x and f(0) =0.

The function f is differentiable for x # 0 and the derivative is 2sin(1/x) (xsin(1/x) — cos(1/x)).

As an exercise show that for x,, = m we have lim f(x,) = —1, and for y, = m we have
lim f'(y,) = 1. Hence if f” exists at 0, then it cannot be continuous.
Let us see that f” exists at 0. We claim that the derivative is zero. In other words ’%{;(0) — 0‘

goes to zero as x goes to zero. For x # 0 we have

fx)-f0) >sin® (1/x)
S

— 02
. . = |xsin®(1/x)| < |x].
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And of course as x tends to zero, then |x| tends to zero and hence ’J% — 0‘ goes to zero.

Therefore, f is differentiable at 0 and the derivative at O is 0.

It is sometimes useful to assume that the derivative of a differentiable function is continuous. If
f: I — Ris differentiable and the derivative f” is continuous on I, then we say that f is continuously
differentiable. It is then common to write C!(I) for the set of continuously differentiable functions
onl.

4.2.6 Exercises

Exercise 4.2.1: Finish proof of Proposition 4.2.6.

Exercise 4.2.2: Finish proof of Proposition 4.2.8.

Exercise 4.2.3: Suppose that f: R — R is a differentiable function such that ' is a bounded
function. Then show that f is a Lipschitz continuous function.

Exercise 4.2.4: Suppose that f: [a,b] — R is differentiable and ¢ € [a,b]. Then show that there
exists a sequence {x,}, x, # ¢, such that

f'(e) = lim f'(x,).

n—oo
Do note that this does not imply that f’ is continuous (why?).

Exercise 4.2.5: Suppose that f: R — R is a function such that |f(x) — f(y)| < |x— y]z for all x
and y. Show that f(x) = C for some constant C. Hint: Show that f is differentiable at all points
and compute the derivative.

Exercise 4.2.6: Suppose that I is an interval and f: I — R is a differentiable function. If f'(x) >0
for all x € I, show that f is strictly increasing.

Exercise 4.2.7: Suppose f: (a,b) — R is a differentiable function such that f'(x) # 0 for all
x € (a,b). Suppose that there exists a point ¢ € (a,b) such that f'(c) > 0. Prove that f'(x) > 0 for
all x € (a,b).
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4.3 Taylor’s theorem

Note: 0.5 lecture (optional section)

4.3.1 Derivatives of higher orders

When f: I — R is differentiable, then we obtain a function f’: I — R. The function f” is called the
first derivative of f. If f’ is differentiable, we denote by f”: I — R the derivative of f’. The function
f" is called the second derivative of f. We can similarly obtain "/, f”””, and so on. However, with
a larger number of derivatives the notation would get out of hand. Therefore we denote by f () the
nth derivative of f.

When f possesses n derivatives, we say that f is n times differentiable.

4.3.2 Taylor’s theorem

Taylor’s theorem” is a generalization of the mean value theorem. It tells us that up to a small error,
any n times differentiable function can be approximated at a point xg by a polynomial. The error of
this approximation behaves like (x — xp)" near the point xo. To see why this is a good approximation
notice that for a big n, (x —x¢)" is very small in a small interval around xy.

Definition 4.3.1. For a function f defined near a point xo € R, define the nth Taylor polynomial for

f atxg as
n )y
P = Y L0
= k!
as (3) X (n) X
= fx0) +7 ()= 0) 4 L5 g+ L (g LB

Taylor’s theorem tells us that a function behaves like its the nth Taylor polynomial. We can think
of the theorem as a generalization of the mean value theorem, which is really Taylor’s theorem for
the first derivative.

Theorem 4.3.2 (Taylor). Suppose f: [a,b] — R is a function with n continuous derivatives on [a, D]
and such that f"tY) exists on (a,b). Given distinct points xo and x in [a,b], we can find a point ¢
between xq and x such that

f(n+1) (C)

n+1
MNCESIY '

(x—x0p)

"Named for the English mathematician Brook Taylor (1685-1731).
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(n+1) . . .
The term R, (x) := i (Y:HS? (x—x0)" ™! is called the remainder term. The form of the remainder
term is given in what is called the Lagrange form of the remainder term. There are other ways to

write the remainder term but we will skip those.

Proof. Find a number M solving the equation
F(x) = Po(x) +M(x—x0)" .

Define a function g(s) by
g(s) := f(s) = Pals) = M(s —x0)" "

A simple computation shows that P (xo) = f®)(xg) for k =0,1,2,...,n (the zeroth derivative
corresponds simply to the function itself). Therefore,

g(x0) = ¢'(x0) = " (x0) = --- = g (x0) = 0.
In particular g(xp) = 0. On the other hand g(x) = 0. Thus by the mean value theorem there exists
an x| between x( and x such that g’(x;) = 0. Applying the mean value theorem to g’ we obtain that
there exists x, between xg and x; (and therefore between x( and x) such that g”(x;) = 0. We repeat
the argument n + 1 times to obtain a number x,,; between xg and x,, (and therefore between xy and
x) such that g""+1) (x,, 1) = 0.
Now we simply let ¢ := x, 1. We compute the (n+ 1)th derivative of g to find

g™ () = F D (5) — (n+ 1)1 M.

(n+1)
IZ19) "and we are done. O

Plugging in ¢ for s we obtain that M = N

In the proof we have computed that P,gk) (xo) = f®)(xg) for k = 0,1,2,...,n. Therefore the
Taylor polynomial has the same derivatives as f at xo up to the nth derivative. That is why the
Taylor polynomial is a good approximation to f.

In simple terms, a differentiable function is locally approximated by a line, that’s the definition
of the derivative. There does exist a converse to Taylor’s theorem, which we will not state nor prove,
saying that if a function is locally approximated in a certain way by a polynomial of degree d, then
it has d derivatives.

4.3.3 Exercises

Exercise 4.3.1: Compute the nth Taylor Polynomial at O for the exponential function.

Exercise 4.3.2: Suppose that p is a polynomial of degree d. Given any xy € R, show that the
(d + 1)th Taylor polynomial for p at xy is equal to p.

Exercise 4.3.3: Let f(x) := |x|. Compute f'(x) and f"(x) for all x, but show that f®)(0) does not
exist.



Chapter 5

The Riemann Integral

5.1 The Riemann integral

Note: 1.5 lectures

We now get to the fundamental concept of an integral. There is often confusion among students
of calculus between “integral” and “antiderivative.” The integral is (informally) the area under the
curve, nothing else. That we can compute an antiderivative using the integral is a nontrivial result
we have to prove. In this chapter we will define the Riemann integral® using the Darboux integrali,
which is technically simpler than (and equivalent to) the traditional definition as done by Riemann.

5.1.1 Partitions and lower and upper integrals

We want to integrate a bounded function defined on an interval [a,b]. We first define two auxiliary
integrals that can be defined for all bounded functions. Only then can we talk about the Riemann
integral and the Riemann integrable functions.

Definition 5.1.1. A partition P of the interval [a, b] is a finite sequence of points xq,x,X2,...,X,
such that

Aa=x0<x1<Xp <+ <Xp_1 <x,=>b.

We write

We say P is of size n.

*Named after the German mathematician Georg Friedrich Bernhard Riemann (1826—-1866).
TNamed after the French mathematician Jean-Gaston Darboux (1842-1917).
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Let f: [a,b] — R be a bounded function. Let P be a partition of [a,b]. Define
m; = inf{f(x) 1 xi_1 <x <x;},
M; = sup{f(x) 1 xi—1 <x <xi},
n

L(P,f) =) miAx;,
i=1

U(P,f) = iM,-Ax,-.
i=1

We call L(P, f) the lower Darboux sum and U (P, f) the upper Darboux sum.
The geometric idea of Darboux sums is indicated in Figure 5.1. The lower sum is the area of

the shaded rectangles, and the upper sum is the area of the entire rectangles. The width of the ith
rectangle is Ax;, the height of the shaded rectangle is m; and the height of the entire rectangle is M;.

Figure 5.1: Sample Darboux sums.

Proposition 5.1.2. Let f: [a,b] — R be a bounded function. Let m,M € R be such that for all x we
have m < f(x) < M. For any partition P of |a,b] we have

m(b—a) <L(P,f) <U(P,f) < M(b—a), (5.1)

Proof. Let P be a partition. Then note that m < m; for all i and M; < M for all i. Also m; < M, for
all i. Finally Y7 | Ax; = (b —a). Therefore,

m(b—a)=m (i%) = imAxi < imiAxi <
i=1 ' i=1

i=1

<

™=
4

n n
M,-Ax,- S ZMAX, =M (ZAX,) :M(b—a).
i=1 i=1

Hence we get (5.1). In other words, the set of lower and upper sums are bounded sets. [
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Definition 5.1.3. Now that we know that the sets of lower and upper Darboux sums are bounded,
define

/bf(x) dx := sup{L(P, f) : P a partition of [a,D]},
/bf(x) dx :=inf{U (P, f) : P a partition of [a,b]}.

We call [ the lower Darboux integral and T the upper Darboux integral. To avoid worrying about
the variable of integration, we will often simply write

/Lbf::/ibf(x) dx and ff::ff(x) dx.

It is not clear from the definition when the lower and upper Darboux integrals are the same
number. In general they can be different.

Example 5.1.4: Take the Dirichlet function f: [0,1] — R, where f(x) :=1ifx € Q and f(x) :=0

if x ¢ Q. Then o
1 1
/Lf:O and /szl.

The reason is that for every i we have that m; = inf{f(x) : x € [x;_1,x;]} = 0 and sup{f(x): x €
[x,',l,x,-]} = 1. Thus

N

L(P.f) =Y 0-Ax =0,

1

= I

UP.f)=

n
1-Ax =) A =1.
i=1

N
Il
—

Remark 5.1.5. The same definition is used when f is defined on a larger set S such that [a,b] C S.
In that case, we use the restriction of f to [a,b] and we must ensure that the restriction is bounded
on [a,b].

To compute the integral we will often take a partition P and make it finer. That is, we will cut
intervals in the partition into yet smaller pieces.

Definition 5.1.6. Let P := {xo,x1,...,x,} and P := {%), %1, ...,%,} be partitions of [a,b]. We say
P is a refinement of P if as sets P C P.

That is, P is a refinement of a partition if it contains all the points in P and perhaps some other
points in between. For example, {0,0.5, 1,2} is a partition of [0,2] and {0,0.2,0.5,1,1.5,1.75,2}
is a refinement. The main reason for introducing refinements is the following proposition.
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Proposition 5.1.7. Let f: [a,b] — R be a bounded function, and let P be a partition of |a,b]. Let P
be a refinement of P. Then

LPASLP.F) and  UP.f)<UPS).

Proof. The tricky part of this proof is to get the notation correct. Let P := {%,%1,...,%,} be
a refinement of P := {xg,x1,...,x,}. Then xo = %y and x, = %,,. In fact, we can find integers
ko < ki <--- <kysuchthatx; =%, for j=0,1,2,....n

Let Ax; = X;_1 —X;. We get that

j
Axj = Z Axp.
p:kj,1+l

Let m; be as before and correspond to the partition P. Let /i1; := inf{ f(x) : ¥;_1 <x < x;}. Now,
mj < myp fork;_ | < p <kj. Therefore,

kj
mjAx; = mJ Z Aty = ), mAT, < Z 1pAT)p.
j 1+1 kj_1+1 ] 1+1
So
n n j
=ijij§Z mprp—Zm] i =L(P,f).
j=1 = p=ka+1
The proof of U (P, f) < U(P, f) is left as an exercise. O

Armed with refinements we can prove the following. The key point of this proposition is the
inequality that says that the lower Darboux sum is less than or equal to the upper Darboux sum.

Proposition 5.1.8. Let f: [a,b] — R be a bounded function. Let m,M € R be such that for all x we
have m < f(x) <M. Then

mo—a)< [[r< [r<m-a) (52)

Proof. By Proposition 5.1.2 we have for any partition P

m(b—a) <L(P,f) <U(P,f) <M(b—a).

The inequality m(b —a) < L(P, f) implies m(b —a) < fff. Also U(P,f) < M(b — a) implies

. f <M(b—a).
The key point of this proposition is the middle inequality in (5.2). Let P;, P be partitions of [a, b].
Define the partition P := Py UP,. P is a partition of [a,b]. Furthermore, P is a refinement of P} and it
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is also a refinement of P. By Proposition 5.1.7 we have L(P;, f) < L(P, f) and U (P, f) < U (P, f).
Putting it all together we have

L(P,f)<L(P,f) <U(P,f) <U(P, f).

In other words, for two arbitrary partitions P; and P, we have L(Py, f) < U(P,, f). Now we recall
Proposition 1.2.8. Taking the supremum and infimum over all partitions we get

sup{L(P, f) : P a partition} <inf{U (P, f) : P a partition}.

In other words f_ab f< f_ab f- [

5.1.2 Riemann integral

We can finally define the Riemann integral. However, the Riemann integral is only defined on a
certain class of functions, called the Riemann integrable functions.

Definition 5.1.9. Let f: [a,b] — R be a bounded function. Suppose that

/Lbf(x) dx :ff(x) dx.

Then f is said to be Riemann integrable. The set of Riemann integrable functions on [a, b] is denoted
by Z[a,b]. When f € Z]a,b] we define

/abf(x) dx = /Lbf(x) dx:ff(x) dx.

/abf::/abf(x)dx.

The number | f f 1is called the Riemann integral of f, or sometimes simply the integral of f.

As before, we often simply write

By appealing to Proposition 5.1.8 we immediately obtain the following proposition.

Proposition 5.1.10. Let f: [a,b] — R be a bounded Riemann integrable function. Let m,M € R be
such that m < f(x) < M. Then

m(b—a)g/abng(b—a).

Often we will use a weaker form of this proposition. That is, if | f(x)| < M for all x € [a,b], then

[

<M(b—a).



122 CHAPTER 5. THE RIEMANN INTEGRAL

Example 5.1.11: We can also integrate constant functions using Proposition 5.1.8. If f(x) := ¢ for
some constant ¢, then we can take m = M = c. Then in the inequality (5.2) all the inequalities must
be equalities. Thus f is integrable on [a,b] and f f=clb—a).

Example 5.1.12: Let f: [0,2] — R be defined by

1 ifx <1,
fx):=< 12 ifx=1,
0 if x> 1.

We claim that f is Riemann integrable and that foz f=
Proof: Let 0 < € < 1 be arbitrary. Let P:=0,1—¢,1+¢&,2 be a partition. We will use the
notation from the definition of the Darboux sums. Then

=inf{f(x):x€[0,1 —¢€|} =1, M, =sup{f(x):x€ 0,1 —¢|} =1,
mzzinf{f(x) xe[l—gl+¢]} =0, M, =sup{f(x):xe[l—g,1+¢€|} =1,
=inf{f(x):x €[l +¢€,2]} =0, Ms =sup{f(x):xe€[l+¢€,2]} =0.

Furthermore, Ax; = 1 — €, Ax, = 2¢€ and Ax3 = 1 — €. We compute

Mm

LPF) =Y mibxi=1-(1—€)+0-26+0-(1—€) =1 —¢,

U(P,f) = i Ax=1-(1—g)+1-26+0-(1—¢)=1+e¢.

Thus, — )
/ f—/ fF<UPS)—LPf)=(1—¢€)—(1+¢)=2e.
0 0

By Proposition 5.1.8 we have fozf < f_ozf. As € was arbitrary we see that f_ozf = fozf. So fis
Riemann integrable. Finally, o

1e=1f)< [ reupn=1te

Hence, l f— l‘ < €. As € was arbitrary, we have that fol f=1

5.1.3 More notation

When f: S — R is defined on a larger set S and [a,b] C S, we write | Cf’ f to mean the Riemann
integral of the restriction of f to [a,b] (provided the restriction is Riemann integrable of course).
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Furthermore, when f: S — R is a function and [a,b] C S, we say that f is Riemann integrable on
[a, D] if the restriction of f to [a,b] is Riemann integrable.
It will be useful to define the integral | f fevenif a < b. Therefore. Suppose that b < a and that

f € Z[b,al, then define
b a
| r==[r.

/aaf::().

At times, the variable x will already have some meaning. When we need to write down the
variable of integration, we may simply use a different letter. For example,

Also for any function f we define

bf(s) ds := bf(x) dx.
J o ds= |

5.1.4 Exercises

Exercise 5.1.1: Let f: [0,1] — R be defined by f(x) := x> and let P := {0,0.1,0.4,1}. Compute
L(P.f) and U(P. ).

Exercise 5.1.2: Let f: [0,1] — R be defined by f(x) := x. Compute fol f using the definition of the
integral (but feel free to use Proposition 5.1.8).

Exercise 5.1.3: Let f: [a,b] — R be a bounded function. Suppose that there exists a sequence of
partitions { P} of [a, D] such that

k—o0
Show that f is Riemann integrable and that
b
/f:thGbﬁ:hmM&j)
a k—voo k—so0

Exercise 5.1.4: Finish proof of Proposition 5.1.7.

Exercise 5.1.5: Suppose that f: [—1,1] — R is defined as

)1 ifx>0,
f@y_{o if x <0,

Prove that f € Z[—1,1]| and compute f_ll f using the definition of the integral (feel free to use
Proposition 5.1.8).
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Exercise 5.1.6: Let ¢ € (a,b) and let d € R. Define f: [a,b] — R as

. d ifx=c
f(x)'_{o ifx#c.

Prove that f € Z|a,b] and compute ff f using the definition of the integral (feel free to use
Proposition 5.1.8).

Exercise 5.1.7: Suppose that f: [a,b] — R is Riemann integrable. Let € > 0 be given. Then show
that there exists a partition P = {xo,x1,...,x,} such that if we pick any set of points {cy,ca,...,cn}
where c¢j, € [x;_1,X], then

< E.

[7-¥ flev
a k=1
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5.2 Properties of the integral

Note: 2 lectures

5.2.1 Additivity

The next result we prove is usually referred to as the additive property of the integral. First we prove
the additivity property for the lower and upper Darboux integrals.

Lemma 5.2.1. Ifa<b < cand f: [a,c] — R is a bounded function. Then

=L+ s
ff=ff+ff-

Proof. If we have partitions P; := {xg,x1,...,x;} of [a,b] and P := {xg, X+ 1,-..,Xs } Of [b,c], then
we have a partition P := {xg,x1,...,x,} of [a,c] (simply taking the union of P; and P»). Then

and

n

n k
L(Pf)=Y mjAx;=Y mjAxj+ Y mjAx;=L(P,f)+L(Py,f).
j=1 j=1 j=k+1

When we take the supremum over all P; and P>, we are taking a supremum over all partitions P of
[a,c] that contain b. If Q is a partition of [a,c] such that P = QU {b}, then P is a refinement of Q
and so L(Q, f) < L(P, f). Therefore, taking a supremum only over the P such that P contains b is
sufficient to find the supremum of L(P, f). Therefore we obtain

(&
/ f =sup{L(P, f) : P apartition of [a,c]|}
Ja

)
= sup{L(P, f) : P a partition of [a,c], b € P}
= sup{L(Py, )+ L(Ps, f) : P apartition of |a,b], P, a partition of [b,c]|}
(

= sup{L(Py, f) : P a partition of [a,b]} 4+ sup{L(P>, f) : P, a partition of [b,c]|}
b c

Similarly, for P, P;, and P, as above we obtain

n k n
UPf)=) MjAx;=Y MjAxj+ Y MjAx;=U(P,f)+U(Py,f).
=1 =1 j=k+1
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We wish to take the infimum on the right over all P; and P», and so we are taking the infimum over
all partitions P of [a, c] that contain b. If Q is a partition of [a,c] such that P = QU {b}, then P is a
refinement of Q and so U(Q, f) > U(P, f). Therefore, taking an infimum only over the P such that
P contains b is sufficient to find the infimum of U (P, f). We obtain

ff=ff+Zf-

Theorem 5.2.2. Let a < b < c. A function f: [a,c] — R is Riemann integrable, if and only if f is
Riemann integrable on [a,b] and |b,c]. If f is Riemann integrable, then

/acf=/abf+/bcf-

Proof. Suppose that f € Z[a,c], then [f = [f = [ f. We apply the lemma to get

/acf=/icf=/ibf+/icf§ff+ff=ff=/acf-

Thus the inequality is an equality and

O

/Lbf+/icf=/ahf+ff-

As we also know that [”f < f_: fand [{f < J£f, we can conclude that

/Lbfsz and /icfsz-

Thus f is Riemann integrable on [a,b] and [b, c| and the desired formula holds.
Now assume that the restrictions of f to [a,b] and to [b, c| are Riemann integrable. We again
apply the lemma to get

£f:/ibf+/icf:/aber/bcf:ffJFZf:Zf.

Therefore f is Riemann integrable on [a, c|, and the integral is computed as indicated. 0

An easy consequence of the additivity is the following corollary. We leave the details to the
reader as an exercise.

Corollary 5.2.3. If f € %[a,b] and [c,d] C [a,b], then the restriction f|. 4 is in Z[c,d].
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5.2.2 Linearity and monotonicity
Proposition 5.2.4 (Linearity). Let f and g be in Z|a,b] and o € R.
(i) of isin Zla,b] and
/abocf(x) dx — a/abf(x) dx.

(ii) f+gisin Z|a,b] and
b b b
[ 1o+ st dr= [ g0 avr [ gt ax

Proof. Let us prove the first item. First suppose that o > 0. For a partition P we notice that (details
are left to reader)

L(P,af) = aL(P,f) and U(P,of)=0aU(P,f).

We know that for a bounded set of real numbers we can move multiplication by a positive number
o past the supremum. Hence,

/baf(x) dx = sup{L(P,af) : P a partition}

Ja_
= sup{aL(P, f) : P a partition}
= asup{L(P, f) : P a partition}

= a/ibf(x) dx.

Similarly we show that

/abaf(x) dx = aff(x) dx.

The conclusion now follows for o > 0.

To finish the proof of the first item, we need to show that [ f —f(x)dx=— f f(x) dx. The
proof of this fact is left as an exercise.

The proof of the second item is also left as an exercise (it is not as trivial as it may appear at first
glance). [

Proposition 5.2.5 (Monotonicity). Let f and g be in Z[a,b] and let f(x) < g(x) for all x € [a, D).

Then
b b
/fé/ g
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Proof. Let P be a partition of [a,b]. Then let
m; = inf{f(x) : x € [x;i_1, x|} and s :=inf{g(x) : x € [x;_1,x]}.

As f(x) < g(x), then m; < ;. Therefore,
L(P.f) =) miAx; < ) imiAx; = L(P,g).
i=1 '

We can now take the supremum over all P to obtain that

£f§£g-

As f and g are Riemann integrable, the conclusion follows. [

5.2.3 Continuous functions

We say that a function f: [a,b] — R has finitely many discontinuities if there exists a finite set
S:={x1,x2,...,x} C la,b], A :=[a,b]\ S, and the restriction f|4 is continuous. Before we prove
that bounded functions with finitely many discontinuities are Riemann integrable, we need some
lemmas. The first lemma says that bounded continuous functions are Riemann integrable.

Lemma 5.2.6. Let f: [a,b] — R be a continuous function. Then f € Z|a,b).

Proof. As f is continuous on a closed bounded interval, therefore it is uniformly continuous. Let
€ > 0 be given. Then find a § such that [x —y| < & implies |f(x) — f(y)| < 3.

Let P := {x0,x1,...,%,} be a partition of [a,b] such that Ax; < § for all i =1,2,...,n. For
example, take 7 such that !/» < § and let x; := £(b—a) +a. Then for all x,y € [x;_,x;] we have
that [x —y| < Ax; < & and hence

As f is continuous on [x;_1,x;] it attains a maximum and a minimum. Let x be the point where
f attains the maximum and y be the point where f attains the minimum. Then f(x) = M; and
f(y) = m; in the notation from the definition of the integral. Therefore,

M;—m; <

€
b—a
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And so

=Y (M;—m;)Ax;
i=1
e n
< Ax
b—a ; l
E
,—ab—a)
As € > 0 was arbitrary,
b b
r=[r
a Ja_
and f is Riemann integrable on [a, b]. O

The second lemma says that we need the function to only “Riemann integrable inside the
interval,” as long as it is bounded. It also tells us how to compute the integral.

Lemma 5.2.7. Let f: [a,b] — R be a bounded function that is Riemann integrable on [d',b'] for
all d' b such that a < a' <b' <b. Then f € Z|a,b). Furthermore, if a < a, < by, < b are such that
lim a,, = a and lim b,, = b, then

/f—hm f

Proof. Let M > 0 be a real number such that |f(x)| < M. Pick two sequences of numbers a <
an < b, < b such that lim a,, = a and lim b,, = b. Then Lemma 5.2.1 says that the lower and upper
integral are additive and the hypothesis says that f is integrable on |a,,b,]. Therefore

/abf:/aanf—i-/:f—i-/bffz—M(an—a)—|— bnf_M(b_bn).

an

Note that M > 0 and (b —a) > (b, —a,). We thus have

“M(b—a) < —M(by—ay) < e M(bn —ay) < M(b—a).

bl‘l

Thus the sequence of numbers { [,” f} is bounded and hence by Bolzano-Weierstrass has a con-

bn
vergent subsequence indexed by ny. Let us call L the limit of the subsequence { [o,* f}. We look
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at , .
[ £z =M=+ [ r-mb-b,)

and we take the limit on the right-hand side to obtain
b
/ f>—M-0+L—-M-0=L.
Ja_

Next use the additivity of the upper integral to obtain
b T bo b by
[r=["r+["s+ [ 1<m@—ay+ ["f+mo-b)
a a an bn an

bn o . .
We take the same subsequence { fank" f} and take the limit of the inequality

:Z3SMWW—@+ATf+Mw—mJ

to obtain

b
/fSM-O—l—L-l—M-O:L.
a

Thus f_ab =/ f f =L and hence f is Riemann integrable and | f f=L.
To prove the final statement of the lemma we note that we can use Theorem 2.3.7. We have

bﬂ
shown that every convergent subsequence { [, f} converges to L. Therefore, the sequence { [, abn” f}
is convergent and converges to L. 0

Theorem 5.2.8. Let f: [a,b] — R be a bounded function with finitely many discontinuities. Then
feZla,b).

Proof. We divide the interval into finitely many intervals [a;,b;] so that f is continuous on the
interior (a;,b;). If f is continuous on (a;,b;), then it is continuous and hence integrable on [c;, d;]
for all a; < ¢; < d; < b;. By Lemma 5.2.7 the restriction of f to [a;,b;] is integrable. By additivity
of the integral (and simple induction) f is integrable on the union of the intervals. 0

Sometimes it is convenient (or necessary) to change certain values of a function and then
integrate. The next result says that if we change the values only at finitely many points, the integral
does not change.

Proposition 5.2.9. Let f: [a,b] — R be Riemann integrable. Let g: [a,b] — R be a function such
that f(x) = g(x) for all x € [a,b]\ S, where S is a finite set. Then g is a Riemann integrable function

and . )
fe=)s
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Sketch of proof. Using additivity of the integral, we could split up the interval [a,b] into smaller
intervals such that f(x) = g(x) holds for all x except at the endpoints (details are left to the reader).

Therefore, without loss of generality suppose that f(x) = g(x) for all x € (a,b). The proof
follows by Lemma 5.2.7, and is left as an exercise. 0

5.2.4 Exercises
Exercise 5.2.1: Let f be in #Z|a,b|. Prove that —f is in #Z|a,b] and

b b
/a —f(x) dx = —/a f(x) dx.
Exercise 5.2.2: Let f and g be in #|a,b|. Prove that f + g is in #|a,b| and
b b b
[ e dx= [ sy ax+ [ gt ax

Hint: Use Proposition 5.1.7 to find a single partition P such that U (P, f) — L(P, f) < €¢/2 and
U(P,g) — L(P,g) <&/

Exercise 5.2.3: Let f: [a,b] — R be Riemann integrable. Let g |a,b] — R be a function such that
f(x) = g(x) for all x € (a,b). Prove that g is Riemann integrable and that

feefs

Exercise 5.2.4: Prove the mean value theorem for integrals. That is, prove that if f: [a,b] — R is
continuous, then there exists a ¢ € [a,b| such that | ab f=fl)(b-a).

Exercise 5.2.5: If f: [a,b] — R is a continuous function such that f(x) > 0 for all x € [a,b] and
fff = 0. Prove that f(x) = 0 for all x.

Exercise 5.2.6: If f: [a,b] — R is a continuous function for all x € |a,b] and |, : f =0. Prove that
there exists a ¢ € [a,b] such that f(c) = 0 (Compare with the previous exercise).

Exercise 5.2.7: If f: [a,b] — R and g: [a,b] — R are continuous functions such that | f =1 f g
Then show that there exists a ¢ € |a,b] such that f(c) = g(c).

Exercise 5.2.8: Let f € #|a,b|. Let o, B3,y be arbitrary numbers in [a,b] (not necessarily ordered

in any way). Prove that
Y B 14
[
o o B

Recall what |, f f means if b < a.
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Exercise 5.2.9: Prove Corollary 5.2.3.

Exercise 5.2.10: Suppose that f: [a,b] — R has finitely many discontinuities. Show that as a
function of x the expression | f(x)| has finitely many discontinuities and is thus Riemann integrable.

Then show that .
/ f(x) dx

a

< (17001 ax.

Exercise 5.2.11 (Hard): Show that the Thomae or popcorn function (See also Example 3.2.12) is
Riemann integrable. Therefore, there exists a function discontinuous at all rational numbers (a
dense set) that is Riemann integrable.

In particular, define f: [0,1] — R by

£x) Ik if x =m/k where m,k € N and m and k have no common divisors,
X):=
0 if x is irrational.

Show that [y f = 0.

If I C R is a bounded interval, then the function

(x) 1 ifxel,
X) =
o 0 otherwise,

is called an elementary step function.

Exercise 5.2.12: Let I be an arbitrary bounded interval (you should consider all types of intervals:
closed, open, half-open) and a < b, then using only the definition of the integral show that the
elementary step function @ is integrable on [a,b|, and find the integral in terms of a, b, and the
endpoints of 1.

When a function f can be written as

£ =Y oo ()
k=1

for some real numbers @, 0, ..., &, and some bounded intervals I, 1,...,1,, then f is called a
step function.

Exercise 5.2.13: Using the previous exercise, show that a step function is integrable on any interval
[a, D). Furthermore, find the integral in terms of a, b, the endpoints of Iy and the 0.
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5.3 Fundamental theorem of calculus

Note: 1.5 lectures

In this chapter we discuss and prove the fundamental theorem of calculus. This is the one
theorem on which the entirety of integral calculus is built, hence the name. The theorem relates the
seemingly unrelated concepts of integral and derivative. It tells us how to compute the antiderivative
of a function using the integral.

5.3.1 First form of the theorem

Theorem 5.3.1. Let F: [a,b] — R be a continuous function, differentiable on (a,b). Let f € %Z|a,b]
be such that f(x) = F'(x) for x € (a,b). Then

b
/a F=F(b)—F(a).

It is not hard to generalize the theorem to allow a finite number of points in [a, b] where F is not
differentiable, as long as it is continuous. This generalization is left as an exercise.

Proof. Let P be a partition of [a,b]. For each interval [x;_j,x;], use the mean value theorem to find
a cj € [xi_1,x;] such that

f(C,')Axl' = F/(C,') (xi —xi,l) = F(x,-) — F(xi,l).
Using the notation from the definition of the integral, m; < f(c;) < M;. Therefore,
miAx; < F(x;) — F(xi—1) < MiAx;.

We now sum overi = 1,2,...,n to get

M=

anmiAxi < zn: (F(xi) —F(x,'_l)) < M;Ax;.
=1 i=1 j

i=1

We notice that in the sum all the middle terms cancel and we end up simply with F(x,,) — F(xg) =
F(b) — F(a). The sums on the left and on the right are the lower and the upper sum respectively.

L(P,f) <F(b)—F(a) <U(P,f).

We can now take the supremum of L(P, f) over all P and the inequality yields

/abng(b)—F(a).
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Similarly, taking the infimum of U (P, f) over all partitions P yields

FKb)—l%a)gbléﬁ

As f is Riemann integrable, we have

/abf=/ibf§F(b)—F(a)S/abf=/abf-

And we are done as the inequalities must be equalities. [

The theorem is often used to solve integrals. Suppose we know that the function f(x) is a
derivative of some other function F(x), then we can find an explicit expression for [ f f

Example 5.3.2: For example, suppose we are trying to compute

1
/ x% dx.
0

) ) .. 3 )
We notice that x2 is the derivative of %, therefore we use the fundamental theorem to write down

1 0 13 1
2

dx = — — — = —.
/oxx333

5.3.2 Second form the theorem

The second form of the fundamental theorem gives us a way to solve the differential equation
F'(x) = f(x), where f(x) is a known function and we are trying to find an F that satisfies the
equation.

Theorem 5.3.3. Let f: [a,b] — R be a Riemann integrable function. Define

m@:éﬁ.

First, F is continuous on [a,b]. Second, If f is continuous at ¢ € [a,b), then F is differentiable at c

and F'(¢) = f(c).

Proof. First as f is bounded, there is an M > 0 such that | f(x)| < M. Suppose x,y € [a,b]. Then
using an exercise from earlier section we note

[r=[1-

[F(x) = F(y)|=

X
/ ﬂ§Aﬂx—ﬂ-
y
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Do note that it does not matter if x < y or x > y. Therefore F is Lipschitz continuous and hence
continuous.

Now suppose that f is continuous at c¢. Let € > 0 be given. Let § > 0 be such that |x —c| < &
implies | f(x) — f(c)| < € for x € [a,b]. In particular for such x we have

fle)—e < fx) < flc)+e

Thus "
(f(c)—S)(x—c)S/c F<(flO)+€)(x—c).

Note that this inequality holds even if ¢ > x. Therefore

flo)-e< 3oL < pep
As
F)—F(e) _ [if—JSf _ Jif
we have that F -
(X))C:C(C) fle)| <€

]

Of course, if f is continuous on [a,b], then it is automatically Riemann integrable, F is differen-
tiable on all of [a,b] and F'(x) = f(x) for all x € [a,b].

Remark 5.3.4. The second form of the fundamental theorem of calculus still holds if we let d € [a, D]

and define .
_ / 7.
d

That is, we can use any point of [a,b] as our base point. The proof is left as an exercise.

A common misunderstanding of the integral for calculus students is to think of integrals whose
solution cannot be given in closed-form as somehow deficient. This is not the case. Most integrals
we write down are not computable in closed-form. Plus even some integrals that we consider in
closed-form are not really. For example, how does a computer find the value of Inx? One way to
do it is to simply note that we define the natural log as the antiderivative of 1/x such that In1 = 0.
Therefore,

X
Inx := / 1/s ds.
1

Then we can numerically approximate the integral. So morally, we did not really “simplify” [{" /s ds
by writing down Inx. We simply gave the integral a name. If we require numerical answers, it is
possible that we will end up doing the calculation by approximating an integral anyway.
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Another common function where integrals cannot be evaluated symbolically is the erf function
defined as
2 [ o
erf(x) := — / e* ds.
T Jo

This function comes up very often in applied mathematics. It is simply the antiderivative of (2/x) e
that is zero at zero. The second form of the fundamental theorem tells us that we can write the
function as an integral. If we wish to compute any particular value, we numerically approximate the
integral.

5.3.3 Change of variables

A theorem often used in calculus to solve integrals is the change of variables theorem. Let us prove
it now. Recall that a function is continuously differentiable if it is differentiable and the derivative is
continuous.

Theorem 5.3.5 (Change of variables). Let g: [a,b] — R be a continuously differentiable function.
If g([a,b)) C [c,d] and f: [c,d] — R is continuous, then

b . s o) ds
[ Hlet)geyar= [ rs)as

Proof. As g, g, and f are continuous, we know that f(g(x)) g’(x) is a continuous function on [a, b],
therefore Riemann integrable.
Define

By second form of the fundamental theorem of calculus (using Exercise 5.3.4 below) F is a
differentiable function and F’(y) = f(y). Now we apply the chain rule. Write

(Fog)'(x) = F'(g(x)g'(x) = f(g(x))&'(x)
Next we note that F (g(a)) = 0 and we use the first form of the fundamental theorem to obtain
() b , b /
[ ) ds = F(s(8) = F(s(0) ~ F(gta)) = [ (Fog)/(9dx= [ r(s())g/() .
g(a) a a
]

The substitution theorem is often used to solve integrals by changing them to integrals we know
or which we can solve using the fundamental theorem of calculus.
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Example 5.3.6: From an exercise, we know that the derivative of sin(x) is cos(x). Therefore we
can solve

NG T T . i
/ xcos(x?) dx = / cos(s) ds = 1/ cos(s) ds = sin(7) — sin(0) =0.
0 o 2 2 Jo 2

However, beware that we must satisfy the hypothesis of the function. The following example
demonstrates a common mistake for students of calculus. We must not simply move symbols
around, we should always be careful that those symbols really make sense.

Example 5.3.7: Suppose we write down

U In|x|
— dx.
[ e
1

It may be tempting to take g(x) := In|x|. Then take g’(x) = ~ and try to write

X

g(1) 0
/ sds:/ sds=0.
g(=1) 0

This “solution” is not correct, and it does not say that we can solve the given integral. First problem
is that lnxﬁ is not Riemann integrable on [—1, 1] (it is unbounded). The integral we wrote down
simply does not make sense. Secondly, Il is not even continuous on [—1,1]. Finally g is not

X
continuous on [—1, 1] either.

5.3.4 Exercises

) d x 0
Exercise 5.3.1: Computed— / e ds).

X —Xx
2

d X
Exercise 5.3.2: Compute = ( / sin(s?) ds).
0

X

Exercise 5.3.3: Suppose F: [a,b] — R is continuous and differentiable on |a,b]\ S, where S is a
finite set. Suppose there exists an f € #|a,b] such that f(x) = F'(x) for x € [a,b]\ S. Show that

J2 f =F(b)—F(a).

Exercise 5.3.4: Let f: [a,b] — R be a continuous function. Let ¢ € [a,b] be arbitrary. Define

Flx) = / f

Prove that F is differentiable and that F'(x) = f(x) for all x € |a, D).
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Exercise 5.3.5: Prove integration by parts. That is, suppose that F and G are differentiable
functions on [a,b] and suppose that F' and G' are Riemann integrable. Then prove

b b
/a F(x)G(x) dx = F(b)G(b) — F(a)G(a) — / F'(x)G(x) dx.

Exercise 5.3.6: Suppose that F, and G are differentiable functions defined on |a,b] such that

F'(x) = G'(x) for all x € [a,b]. Show that F and G differ by a constant. That is, show that there
exists a C € R such that F (x) — G(x) = C.

The next exercise shows how we can use the integral to “smooth out” a nondifferentiable
function.

Exercise 5.3.7: Let f: [a,b] — R be a continuous function. Let € > 0 be a constant. For x €
l[a+¢€,b— €], define
1 xr

sw=— "7

2 x—¢

(i) Show that g is differentiable and find the derivative.

(ii) Let f be differentiable and fix x € (a,b) (and let € be small enough). What happens to g'(x) as
€ gets smaller.

(iii) Find g for f(x) :=

x|, € = 1 (you can assume that [a,b) is large enough).

Exercise 5.3.8: Suppose that f: [a,b] — R is continuous. Suppose that [ f = fxb f forall x € [a,b].
Show that f(x) =0 for all x € |a,b).

Exercise 5.3.9: Suppose that f: [a,b] — R is continuous and [ f = 0 for all rational x in |a,b].
Show that f(x) =0 for all x € |a,b).



Chapter 6

Sequences of Functions

6.1 Pointwise and uniform convergence

Note: 1.5 lecture

Up till now when we have talked about sequences we always talked about sequences of numbers.
However, a very useful concept in analysis is to use a sequence of functions. For example, many
times a solution to some differential equation is found by finding approximate solutions only. Then
the real solution is some sort of limit of those approximate solutions.

The tricky part is that when talking about sequences of functions, there is not a single notion of
a limit. We will talk about two common notions of a limit of a sequence of functions.

6.1.1 Pointwise convergence

Definition 6.1.1. Let f,: S — R be functions. We say the sequence { f,,} converges pointwise to
f: S — R, if for every x € S we have

f(x) = lim f;,(x).

n—oo

It is common to say that f;,: S — R converges to f on T C R for some f: T — R. In that case
we, of course, mean that f(x) = lim f,(x) for every x € T. We simply mean that the restrictions of
fa to T converge pointwise to f.

Example 6.1.2: The sequence of functions f;(x) := x*" converges to f: [~1,1] — R on [~1,1],
where

flx) =

1 ifx=—1lorx=1,
0 otherwise.

See Figure 6.1.

139
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Figure 6.1: Graphs of fi, f>, f3, and fg for f,(x) := x*".

To see that this is so, first take x € (—1,1). Then x*> < 1. We have seen before that
’xzn —0| = (x2)" = 0 as n — oo.

Therefore lim f;,(x) = 0.
When x = 1 or x = —1, then x> = 1 and hence lim f,(x) = 1. We also note that f;(x) does not
converge for all other x.

Often, functions are given as a series. In this case, we simply use the notion of pointwise
convergence to find the values of the function.

Example 6.1.3: We write

to denote the limit of the functions

When studying series, we have seen that on x € (—1, 1) the f, converge pointwise to

1
1—x

The subtle point here is that while ﬁ is defined for all x # 1, and f;, are defined for all x (even
at x = 1), convergence only happens on (—1,1).
Therefore, when we write

flx) = i xk
k=0

we mean that f is defined on (—1,1) and is the pointwise limit of the partial sums.
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Example 6.1.4: Let f,(x) := sin(xn). Then f,, does not converge pointwise to any function on any
interval. It may converge at certain points, such as when x = 0 or x = 7. It is left as an exercise that
in any interval [a, b], there exists an x such that sin(xn) does not have a limit as n goes to infinity.

Before we move to uniform convergence, let us reformulate pointwise convergence in a different
way. We leave the proof to the reader, it is a simple application of the definition of convergence of a
sequence of real numbers.

Proposition 6.1.5. Let f,: S — Rand f: S — R be functions. Then { f,,} converges pointwise to f
if and only if for every x € S, and every € > 0, there exists an N € N such that

[fu(x) = f(x)| <&
foralln> N.

The key point here is that N can depend on x, not just on €. That is, for each x we can pick a
different N. If we could pick one N for all x, we would have what is called uniform convergence.

6.1.2 Uniform convergence

Definition 6.1.6. Let f,: S — R be functions. We say the sequence {f,} converges uniformly to
f: S — R, if for every € > 0 there exists an N € N such that for all » > N we have

[fa(x) = f(x)] <&

Note the fact that N now cannot depend on x. Given € > 0 we must find an N that works for
all x € S. Because of Proposition 6.1.5 we easily see that uniform convergence implies pointwise
convergence.

Proposition 6.1.7. Let f,: S — R be a sequence of functions that converges uniformly to f: S — R.
Then {f,} converges pointwise to f.

The converse does not hold.

Example 6.1.8: The functions f,(x) := x*" do not converge uniformly on [—1, 1], even though they
converge pointwise. To see this, suppose for contradiction that they did. Take € := 1/2, then there
would have to exist an N such that x>V < 1/2 for all x € [0,1) (as f,(x) converges to 0 on (—1,1)).
But that means that for any sequence {x;} in [0, 1) such that lim x; = 1 we have x3" < 1/2. On the
other hand x?" is a continuous function of x (it is a polynomial), therefore we obtain a contradiction
1=1?N = lim xN < 1/2.
k—yoo

However, if we restrict our domain to [—a,a] where 0 < a < 1, then f, converges uniformly to
0 on [—a,a]. Again to see this note that > — 0 as n — 0. Thus given & > 0, pick N € N such that
}az”“ < g for all n > N. Then for any x € [—a,a] we have |x| < a. Therefore, forn > N
ZN‘ _

2N < a2N

|x |x| <E.



142 CHAPTER 6. SEQUENCES OF FUNCTIONS

6.1.3 Convergence in uniform norm

For bounded functions there is another more abstract way to think of uniform convergence. To
every bounded function we can assign a certain nonnegative number (called the uniform norm).
This number measures the “distance” of the function from 0. Then we can “measure” how far two
functions are from each other. We can then simply translate a statement about uniform convergence
into a statement of a certain sequence of real numbers converging to zero.

Definition 6.1.9. Let f: S — R be a bounded function. Define

1£1l, == sup{[f(x)] : x € S}
||-|| is called the uniform norm.

Proposition 6.1.10. A sequence of bounded functions f,,: S — R converges uniformly to f: § — R,
if and only if

lim | f = f1],, = 0.

n—oo

Proof. First suppose that lim || f, — ||, = 0. Let € > 0 be given. Then there exists an N such that
for n > N we have || f, — f||, < €. As || fu — f]|, is the supremum of |f,(x) — f(x)|, we see that for
all x we have |f,,(x) — f(x)| < €.

On the other hand, suppose that f,, converges uniformly to f. Let € > 0 be given. Then find N
such that | f,(x) — f(x)| < € for all x € S. Taking the supremum we see that || f,, — f]|,, < €. Hence
tim |, — £ = 0. =

Sometimes it is said that f,, converges to f in uniform norm instead of converges uniformly.
The proposition says that the two notions are the same thing.

(2
Example 6.1.11: Let f,: [0,1] — R be defined by f,(x) := "HSITH("X) Then we claim that f,
converge uniformly to f(x) := x. Let us compute:

nx + sin(nx?
an—fHu:SUP{ %H—x X € [0,1]}
= sup{—‘sm(:xz)} :x €0, 1]}

<sup{l/n:x€[0,1]}
= 1/n.

Using uniform norm, we can define Cauchy sequences in a similar way as Cauchy sequences of
real numbers.
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Definition 6.1.12. Let f,,: S — R be bounded functions. We say that the sequence is Cauchy in the
uniform norm or uniformly Cauchy if for every € > 0, there exists an N € N such that for m,k > N
we have

Hfm_kau <E.

Proposition 6.1.13. Let f,,: S — R be bounded functions. Then {f,} is Cauchy in the uniform
norm if and only if there exists an f: S — R and { f,} converges uniformly to f.

Proof. Let us first suppose that { f,} is Cauchy in the uniform norm. Let us define f. Fix x, then
the sequence { f,,(x)} is Cauchy because

(%) = i) < {1fom = Sill,-

Thus { f,,(x)} converges to some real number so define

£(x) = lim f,(x).

n—oo

Therefore, f,, converges pointwise to f. To show that convergence is uniform, let € > 0 be given
find an N such that for m,k > N we have || f,, — fi||, < €. Again this implies that for all x we have
| fin(x) — fr(x)| < €. Now we can simply take the limit as k goes to infinity. Then |f,(x) — fi(x)|
goes to | fi(x) — f(x)|. Therefore for all x we get

[fn(x) = F(x)] <&.

And hence f, converges uniformly.
For the other direction, suppose that { f,, } converges uniformly to f. Given € > 0, find N such
that for all n > N we have |f,(x) — f(x)| < &/4 for all x € S. Therefore for all m,k > N we have

[fin () = S| = [ fin (%) = f () + f (5) = fe(0) | < [ fm(x) = f )|+ f(x) = fie(x) < &/a+e/a.

We can now take supremum over all x to obtain

| fn = fill, < €2 < €.

6.1.4 Exercises

Exercise 6.1.1: Let f and g be bounded functions on |a,b]. Show that

1F +&ll, < A1+ Tlgll, -

x/n

Exercise 6.1.2: a) Find the pointwise limit forx e R.

n
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b) Is the limit uniform on R.
c) Is the limit uniform on [0, 1].

Exercise 6.1.3: Suppose f,: S — R are functions that converge uniformly to f: S — R. Suppose
that A C R. Show that the restrictions f,|a converge uniformly to f|a.

Exercise 6.1.4: Suppose that { f,} and {g,} defined on some set A converge to f and g respectively
pointwise. Show that { f,, + gn} converges pointwise to f + g.

Exercise 6.1.5: Suppose that { f,} and {g,} defined on some set A converge to f and g respectively
uniformly on A. Show that {f, + gn} converges uniformly to f + g on A.

Exercise 6.1.6: Find an example of a sequence of functions { f,} and {g,} that converge uniformly
to some f and g on some set A, but such that f,g, (the multiple) does not converge uniformly to fg
on A. Hint: Let A :=R, let f(x) := g(x) :=x. You can even pick f,, = g,

Exercise 6.1.7: Suppose that there exists a sequence of functions {g,} uniformly converging to 0
on A. Now suppose that we have a sequence of functions f, and a function f on A such that

[fa(x) = f(X)] < gn(x)
for all x € A. Show that f,, converges uniformly to f on A.

Exercise 6.1.8: Let {f,}, {gn} and {h,} be sequences of functions on [a,b]. Suppose that f, and
hy converge uniformly to some function f: [a,b] — R and suppose that f,,(x) < gn(x) < hy,(x) for
all x € |a,b]. Show that g, converges uniformly to f.

Exercise 6.1.9: Let f,: [0,1] — R be a sequence of increasing functions (that is f,(x) > f,(y)
whenever x > y). Suppose that f(0) = 0 and that li_r>n fn(1) = 0. Show that f,, converges uniformly
n—soo

to 0.

Exercise 6.1.10: Let { f,} be a sequence of functions defined on [0,1]. Suppose that there exists a
sequence of numbers x, € [0, 1] such that

Jn(xn) = 1.
Prove or disprove the following statements.
a) True or false: There exists { f,,} as above that converges to O pointwise.

b) True or false: There exists { f,,} as above that converges to 0 uniformly on [0, 1].
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6.2 Interchange of limits

Note: 1.5 lectures

Large parts of modern analysis deal mainly with the question of the interchange of two limiting
operations. It is easy to see that when we have a chain of two limits, we cannot always just swap the

limits. For example,
. . n/k . k
0= lim lim / = lim lim / =
n—eok—soofk+ 1 7 kmoon—eonf/k+ 1
When talking about sequences of functions, interchange of limits comes up quite often. We treat
two cases. First we look at continuity of the limit, and second we will look at the integral of the
limit.

6.2.1 Continuity of the limit

If we have a sequence of continuous functions, is the limit continuous? Suppose that f is the
(pointwise) limit of f,. If x; — x, we are interested in the following interchange of limits. The
equality we have to prove (it is not always true) is marked with a question mark.

lim f(xe) = lim lim £, (x) = lim lim f, (o) = lim f,(x) = £(x).

In particular, we wish to find conditions on the sequence { f,,} so that the above equation holds. It
turns out that if we simply require pointwise convergence, then the limit of a sequence of functions
need not be continuous, and the above equation need not hold.

Example 6.2.1: Let f,,: [0,1] — R be defined as

l—nx ifx<1/n,
fn(x) = {0 ifx> 1/n.

See Figure 6.2.
Each function f, is continuous. Now fix an x € (0, 1]. Note that for n > 1/x we have x < 1/n.

Therefore for n > 1/x we have f,,(x) = 0. Thus
nlgrolofn (x) =0.

On the other hand if x = 0, then
lim £,(0) = lim 1 = 1.
n—soo n—soo
Thus the pointwise limit of f, is the function f: [0,1] — R defined by
1 ifx=0,
X) =
S () {0 if x> 0.

The function f is not continuous at 0.
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Figure 6.2: Graph of f,(x).

If we, however, require the convergence to be uniform, the limits can be interchanged.

Theorem 6.2.2. Let f,: [a,b] — R be a sequence of continuous functions. Suppose that {f,}
converges uniformly to f: [a,b] — R. Then f is continuous.

Proof. Letx € [a,b] be fixed. Let {x,} be a sequence in [a,b] converging to x.
Let € > 0 be given. As f; converges uniformly to f, we find a k € N such that

i) = f(y)] < ¢/3

for all y € [a,b]. As f; is continuous at x, we can find an N € N such that for m > N we have

| fi(om) — fr(x)| < €/3.

Thus for m > N we have

|f Cem) — f ()| = | f () — S (m) + fi(xm) — fie(x) + fre(x) — f(x)]
<N (xm) = fieom) | + | fie(om) = fie ()| + | fi(x) = f(x)]
<E&/3tef3t+ef3=¢.

Therefore {f(x,)} converges to f(x) and hence f is continuous at x. As x was arbitrary, f is
continuous everywhere. [

6.2.2 Integral of the limit

Again, if we simply require pointwise convergence, then the integral of a limit of a sequence of
functions need not be the limit of the integrals.
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Example 6.2.3: Let f,,: [0,1] — R be defined as

0 ifx=0,
fu(x) =S n—n’x if0<x<1/n,
0 if x > 1/n.
See Figure 6.3.
n
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Figure 6.3: Graph of f,(x).

Each f, is Riemann integrable (it is continuous on (0, 1]). Furthermore it is easy to compute that

[ = /Ol/"fn —1p.

Let us compute the pointwise limit of f,,. Now fix an x € (0,1]. For n > 1/x we have x < 1/ and
thus f,,(x) = 0. Therefore
lim f,(x) = 0.

n—oo

We also have f,(0) = 0 for all n. Therefore the pointwise limit of { f,,} is the zero function. Thus

1 1 1
1/ = lim M@M#/(mm@ﬁa:/om:a
n—eo [ 0 n—oo 0
But, as for continuity, if we require the convergence to be uniform, the limits can be interchanged.

Theorem 6.2.4. Let f,: [a,b] — R be a sequence of Riemann integrable functions. Suppose that
{fu} converges uniformly to f: [a,b] — R. Then f is Riemann integrable and

(Abf::hm, 5@.

n—oo J,
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Proof. Lete >0 be given As Jfn goes to f uniformly, we can find an M € N such that for all n > M
we have |f,(x) — f(x)| < 5 3 forallx e [a,D]. Note that f, is integrable and compute

[ [

b
— $0) + £ dr— [ (F6) = Fule) + o))

[
Z(f() fulx dx-i—/fn ) dx — /Lb(f(X)—fn(x)) dx—/ibfn(X) dx
7(]‘( )—

) det [0 e /_b (0~ ) e [ fy(2)

= [0 as= [ (709 - 1) v

—a)+ (b—a)=c¢.

€
= 2(b—a) b=+ 35—

The inequality follows from Proposition 5.1.8 and using the fact that for all x € [a,b] we have
2(;—;) < fx) = fulx) < ﬁ. As € > 0 was arbitrary, f is Riemann integrable.

Now we can compute | : f- We will apply Proposition 5.1.10 in the calculation. Again, for
n > M (M is the same as above) we have

b b
- [ = | =) dx
E
< 2(b—a> (b—a) = E <E.
Therefore { [ : fn} converges to [ ab f O

Example 6.2.5: Suppose we wish to compute

, ! nx + sin(nx?)
lim [ —————— dx.
n—oo J n

It is impossible to compute the integrals for any particular 7 using calculus as sin(nx?) has no closed-
H 2
form antiderivative. However, we can compute the limit. We have shown before that "x++n("x)
converges uniformly on [0, 1] to the function f(x) := x. By Theorem 6.2.4, the limit exists and
1 . 2
. nx + sin(nx
fim [ Hsin0e)
n—oo [ n

1
dxz/ xdx=1/2.
0

Example 6.2.6: If convergence is only pointwise, the limit need not even be Riemann integrable.
For example, on [0, 1] define

1 if x = p/qin lowest terms and g < n,
In (x) = .
0 otherwise.
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As f, differs from the zero function at finitely many points (there are only finitely many fractions in
[0, 1] with denominator less than or equal to n), then f,, is integrable and fo] fu= fol 0=0.Itisan
easy exercise to show that f,, converges pointwise to the Dirichlet function

£) = {1 ifx € Q,

0 otherwise,

which is not Riemann integrable.

6.2.3 Exercises

Exercise 6.2.1: While uniform convergence can preserve continuity, it does not preserve differen-
tiability. Find an explicit example of a sequence of differentiable functions on [—1,1] that converge
uniformly to a function f such that f is not differentiable. Hint: Consider |x|1+1/ ", show that these
functions are differentiable, converge uniformly, and the show that the limit is not differentiable.

Exercise 6.2.2: Let f,(x) = 2 Show that f, converges uniformly to a differentiable function f on

n
0,1] (find f). However, show that f'(1) # lgrl fi(1).
n—oo
Note: The previous two exercises show that we cannot simply swap limits with derivatives, even
if the convergence is uniform. See also Exercise 6.2.7 below.

1
Exercise 6.2.3: Let f: [0,1] — R be a bounded function. Find lim / fx) dx.
0o n

n—oo

2

. . —nx? .
Exercise 6.2.4: Show lim [ e ™ dx=0. Feel free to use what you know about the exponential
n—o Jq
function from calculus.

Exercise 6.2.5: Find an example of a sequence of continuous functions on (0, 1) that converges
pointwise to a continuous function on (0,1), but the convergence is not uniform.

Note: In the previous exercise, (0, 1) was picked for simplicity. For a more challenging exercise,
replace (0, 1) with [0, 1].

Exercise 6.2.6: True/Fualse; prove or find a counterexample to the following statement: If {f,} is a
sequence of everywhere discontinuous functions on [0, 1] that converge uniformly to a function f,
then f is everywhere discontinuous.

Exercise 6.2.7: For a continuously differentiable function f: [a,b] — R, define

Ifller = IF I+ 1], -

Suppose that { f,} is a sequence of continuously differentiable functions such that for every € > 0,
there exists an M such that for all n,k > M we have

||fn _kaC‘ <E&.

Show that { f,,} converges uniformly to some continuously differentiable function f: |a,b] — R.



150 CHAPTER 6. SEQUENCES OF FUNCTIONS

For the following two exercises let us define for a Riemann integrable function f: [0,1] — R
the following number

1
1f ]l = /0 F()] dx.

(It is true that | f| is always integrable if f is even if we have not proved that fact). This norm defines
another very common type of convergence called the L!-convergence, that is however a bit more
subtle.

Exercise 6.2.8: Suppose that { f,} is a sequence of functions on [0, 1] that converge uniformly to 0.
Show that
tim 13,1 = 0.

Exercise 6.2.9: Find a sequence of functions { f,,} on [0, 1] that converge pointwise to 0, but

lim || f,||,1 does not exist (is o).
n—oo

Exercise 6.2.10 (Hard): Prove Dini’s theorem: Let f,,: [a,b] — R be a sequence of functions such
that
0< frr1(x) < fulx) <--- < fi1(x) foralln e N.

Suppose that f,, converges pointwise to 0. Show that f,, converges to zero uniformly.
Exercise 6.2.11: Suppose that f,: [a,b] — R is a sequence of functions that converges pointwise

to a continuous f: [a,b] — R. Suppose that for any x € [a,b] the sequence {|f,(x) — f(x)|} is
monotone. Show that the sequence { f,} converges uniformly.
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6.3 Picard’s theorem

Note: 1.5-2 lectures

A course such as this one should have a piece de résistance caliber theorem. We pick a theorem
whose proof combines everything we have learned. It is more sophisticated than the fundamental
theorem of calculus, the first highlight theorem of this course. The theorem we are talking about is
Picard’s theorem” on existence and uniqueness of a solution to an ordinary differential equation.
Both the statement and the proof are beautiful examples of what one can do with all that we
have learned. It is also a good example of how analysis is applied as differential equations are
indispensable in science.

6.3.1 First order ordinary differential equation

Modern science is described in the language of differential equations. That is equations that involve
not only the unknown, but also its derivatives. The simplest nontrivial form of a differential equation
is the so-called first order ordinary differential equation

Yy =F(x,y).

Generally we also specify that y(xp) = yo. The solution of the equation is a function y(x) such that
¥(x0) = yo and y'(x) = F (x,y(x)).

When F' involves only the x variable, the solution is given by the fundamental theorem of
calculus. On the other hand, when F' depends on both x and y we need far more firepower. It is not
always true that a solution exists, and if it does, that it is the unique solution. Picard’s theorem gives
us certain sufficient conditions for existence and uniqueness.

6.3.2 The theorem

We will need to define continuity in two variables. First, a point in R> = R x R is denoted by
an ordered pair (x,y). To make matters simple let us give the following sequential definition of
continuity.

Definition 6.3.1. Let U C R? be a set and F: U — R be a function. Let (x,y) € U be a point. The
function F is continuous at (x,y) if for every sequence {(x,,y,)} of points in U such that lim x,, = x
and lim y,, = y, we have that

lim F (x,,yn) = F(x,y).

n—oo

We say F is continuous if it is continuous at all points in U.

*Named for the French mathematician Charles Emile Picard (1856-1941).
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Theorem 6.3.2 (Picard’s theorem on existence and uniqueness). Let I,J C R be closed bounded
intervals and let Iy and Jy be their interiors. Suppose F: I X J — R is continuous and Lipschitz in
the second variable, that is, there exists a number L such that

|F(x,y)—F(x,z)| <L|y—z| forally,zeJ x€l.

Let (x0,y0) € Iy X Jo. Then there exists an h > 0 and a unique differentiable f: [xo —h,xo+h] — R,
such that

f(x) =F(x,f(x)) and  f(x0) = yo. 6.1)

Proof. Suppose that we could find a solution f, then by the fundamental theorem of calculus we
can integrate the equation f”(x) = F (x, f(x)), f(x0) = yo and write it as the integral equation

F(x) :yo+/xxF(t,f(t)) dr. 6.2)

The idea of our proof is that we will try to plug in approximations to a solution to the right-hand
side of (6.2) to get better approximations on the left hand side of (6.2). We hope that in the end
the sequence will converge and solve (6.2) and hence (6.1). The technique below is called Picard
iteration, and the individual functions f} are called the Picard iterates.

Without loss of generality, suppose that xo = 0 (exercise below). Another exercise tells us that
F is bounded as it is continuous. Let M := sup{|F (x,y)| : (x,y) € I x J}. Without loss of generality,
we can assume M > 0 (why?). Pick o > 0 such that [—o, ] C I and [yg — a,yo + a] C J. Define

hi= min{a,L}. 6.3)
M+ La

Now note that [—h,h] C I.

Set fo(x) := yo. We will define f; inductively. Assuming that f;_([—h,h]) C [yo — o, yo +
we see that F (t, fe—1 (t)) is a well defined function of # for t € [—h, h|. Further assuming that fj_ is
continuous on [—h, k], then F (¢, fy—(t)) is continuous as a function of 7 on [—h, /] by an exercise.
Therefore we can define

Jie(x) 3:yo+/0xF(t7fk_1(t)) dt.

and fj is continuous on [—h, i by the fundamental theorem of calculus. To see that f; maps [—h, A]
to [yo — a,yo + o], we compute for x € [—h, k]

<Mlx|<Mh<M

| fie(x) = yo| = ‘/()XF(tafk—l(t)) dt M+ Lo <a

We can now define f;,; and so on, and we have defined a sequence {f; } of functions. We simply
need to show that it converges to a function f that solves the equation (6.2) and therefore (6.1).
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We wish to show that the sequence { f;} converges uniformly to some function on [—#, h]. First,
for t € [—h,h] we have the following useful bound

|F (6, fa(t)) = F (6, fe(0) | < LIfu(0) = i) < LI fo = fil
where || f,, — fx|,, is the uniform norm, that is the supremum of | f,(¢) — fi()| for t € [—h,h]. Now

note that |x| <h < 5% Therefore

o) — ful) = \ [ Flfia@) @ [ F(si0) a

_ ] [ R 0) = F (1 fia0)
<L\ fu=1— fi—1ll, x|

Lo
< = fll
S Wi | fuo=1— frz1ll,,

Let C := 2% and note that C < 1. Taking supremum on the left-hand side we get

T M+La
1o = ficllu S Cllfa=1 = fi—tlly-
Without loss of generality, suppose that n > k. Then by induction we can show that

”fn —kau < Ck an—k_fOHu‘

Now compute for any x € [—h,h] we have

[fa—k(x) = fo(O)| = |fu—k(x) —yo| < cx.

Therefore
fn = fillu < C¥ Nl fromi = foll, < Crax.

As C < 1, {f,} is uniformly Cauchy and by Proposition 6.1.13 we obtain that {f,} converges
uniformly on [—A,h] to some function f: [—h,h] — R. The function f is the uniform limit of
continuous functions and therefore continuous.

We now need to show that f solves (6.2). First, as before we notice

|F (2, fa()) = F (1, £0)| < LIfut) = FOI < LI = 1l

As || fu — f1l, converges to 0, then F (r, f,(¢)) converges uniformly to F (z, f(¢)). It is easy to see
(why?) that the convergence is then uniform on [0,x] (or [x,0] if x < 0). Therefore,

yo+ [ Fef@) dr=yo+ [ P lim £,(0) di

X
=0 +/ lim F(t,fn(t)) dt (by continuity of F)
0 h—e

X
= lim (yo + / F(t, /(1)) dt) (by uniform convergence)
0

n—oo

= lim fo1(x) = f(x).
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We can now apply the fundamental theorem of calculus to show that f is differentiable and its
derivative is F (x, f(x)). It is obvious that f(0) = yo.

Finally, what is left to do is to show uniqueness. Suppose g: [—h,h] — R is another solution.
As before we use the fact that |F (r, f(¢)) — F (r,8(t))| < L||f— g, Then

yo+/0xF(t,f(t)) dt — <yo+/OxF(t,g(t)) dt)’
— ‘/OXF(t,f(Z)) —F(t,8(t)) dt

<LIf—gll, x| < Lhllf —gll, <

f(x) —g(x)] =

Lo
M+ Lo

1f —gll, -

As we said before C = A% < 1. By taking supremum over x € [—h, h] on the left hand side we
obtain

1f =gl <ClIf =gl
This is only possible if || f — g||, = 0. Therefore, f = g, and the solution is unique. O

6.3.3 Examples

Let us look at some examples. We note that the proof of the theorem actually gives us an explicit
way to find an & that works. It does not however give use the best 4. It is often possible to find a
much larger & for which the theorem works.

The proof also gives us the Picard iterates as approximations to the solution. Therefore the proof
actually tells us how to obtain the solution, not just that the solution exists.

Example 6.3.3: Let us look at the equation

fx)=fx), fO)=1

That is, we let F(x,y) =y, and we are looking for a function f such that f'(x) = f(x). We pick
any / that contains O in the interior. We pick an arbitrary J that contains 1 in its interior. We
can always pick L = 1. The theorem guarantees an 4 > 0 such that there exists a unique solution
f+ [=h,h] — R. This solution is usually denoted by

e = f(x).

We leave it to the reader to verify that by picking / and J large enough the proof of the theorem
guarantees that we will be able to pick & such that we get any 7 we want as long as h < 1/3.

Of course, we know (though we have not proved) that this function exists as a function for
all x. It is possible to show (we omit the proof) that for any xy and yq the proof of the theorem
above always guarantees an arbitrary & as long as h < 1/3. The key point is that L = 1 no matter
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what xo and yo are. Therefore, we get a unique function defined in a neighborhood [—#, A] for any
h < 1/3. After defining the function on [—h, k] we find a solution on the interval [0, 2hA] and notice
that the two functions must coincide on [0, /] by uniqueness. We can thus iteratively construct the
exponential for all x € R. Do note that up until now we did not yet have proof of the existence of
the exponential function.

Let us see the Picard iterates for this function. First we start with fy(x) := 1. Then

filx) = 1+/0xf0(s) ds=x+1,

x2

X X
fz(x)zl-l-/o fl(s)ds:l—i—/o s—l—lds:E—i-x—i—l,
X xs2 x3 x2
f3(x):1+/ fz(s)dszl—}—/ —+4s+1lds=—+—=+x+1.
0 0o 2 6 2

We recognize the beginning of the Taylor series for the exponential.

Example 6.3.4: Suppose we have the equation

2
f@)=(fx)" and  fO)=1
From elementary differential equations we know that

1
Cl—x

f(x)

is the solution. Do note that the solution is only defined on (—eo, 1). That is we will be able to use
h < 1, but never a larger h. Note that the function that takes y to y* is simply not Lipschitz as a
function on all of R. As we approach x = 1 from the left we note that the solution becomes larger
and larger. The derivative of the solution grows as y?, and therefore the L required will have to be
larger and larger as yy grows. Thus if we apply the theorem with x( close to 1 and yg = we
find that the £ that the proof guarantees will be smaller and smaller as xo approaches 1.

The proof of the theorem guarantees an £ of about 0.1123 (we omit the calculation) for xg = 0,
even though we see from above that any 4 < 1 should work.

1
1 —X0

Example 6.3.5: Suppose we start with the equation

fl)=2vIfx)],  f0)=0.

Note that F'(x,y) = 2+/|y| is not Lipschitz in y (why?). Therefore the equation does not satisfy the
hypotheses of the theorem. The function

ﬂﬂ:{ﬁz if x>0,

—x*  ifx <0,

is a solution, but g(x) = 0 is also a solution.
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6.3.4 Exercises

Exercise 6.3.1: Let I,J C R be intervals. Let F: I xJ — R be a continuous function of two
variables and suppose that f: I — J be a continuous function. Show that F (x, f (x)) is a continuous
function on I.

Exercise 6.3.2: LetI,J C R be closed bounded intervals. Show that if F: I x J — R is continuous,
then F is bounded.

Exercise 6.3.3: We have proved Picard’s theorem under the assumption that xo = 0. Prove the full
statement of Picard’s theorem for an arbitrary x.

Exercise 6.3.4: Let f'(x) = xf(x) be our equation. Start with the initial condition f(0) =2 and
find the Picard iterates fy, f1, f2, f3, fa.

Exercise 6.3.5: Suppose that F: I xJ — R is a function that is continuous in the first variable,
that is, for any fixed y the function that takes x to F (x,y) is continuous. Further, suppose that F is
Lipschitz in the second variable, that is, there exists a number L such that

|F(x,y)—F(x,z)| <L|y—z| forally,zeJ xel.

Show that F is continuous as a function of two variables. Therefore, the hypotheses in the theorem
could be made even weaker.
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absolute convergence, 72

absolute maximum, 92

absolute minimum, 92

absolute value, 31

additive property of the integral, 125
Archimedean property, 27
arithmetic-geometric mean inequality, 30

bijection, 15

bijective, 15

Bolzano’s intermediate value theorem, 95
Bolzano’s theorem, 95
Bolzano-Weierstrass theorem, 61
bounded above, 21

bounded below, 21

bounded function, 33, 92

bounded interval, 35

bounded sequence, 39

Cantor’s theorem, 17, 35
cardinality, 15

Cartesian product, 13

Cauchy in the uniform norm, 143
Cauchy sequence, 65

Cauchy series, 70

chain rule, 106

change of variables theorem, 136
closed interval, 35

cluster point, 63, 79

comparison test for series, 73
complement relative to, 10
complete, 67

completeness property, 22
composition of functions, 15

conditionally convergent, 72
constant sequence, 39
continuous at ¢, 86

continuous function, 86
continuous function of two variables, 151
continuously differentiable, 114
converge, 40

convergent sequence, 40
convergent series, 68
converges, 80

converges absolutely, 72
converges in uniform norm, 142
converges pointwise, 139
converges uniformly, 141
countable, 16

countably infinite, 16

Darboux sum, 118

Darboux’s theorem, 113
decreasing, 111

Dedekind completeness property, 22
DeMorgan’s theorem, 10
density of rational numbers, 27
difference quotient, 103
differentiable, 103

differential equation, 151
Dini’s theorem, 150

direct image, 14

Dirichlet function, 89
discontinuity, 89
discontinuous, 89

disjoint, 10

divergent sequence, 40
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divergent series, 68
diverges, 80
domain, 14

element, 8

elementary step function, 132

empty set, 8

equal, 9

existence and uniqueness theorem, 152
extended real numbers, 28

field, 22

finite, 15

finitely many discontinuities, 128

first derivative, 115

first order ordinary differential equation, 151
function, 13

fundamental theorem of calculus, 133

graph, 14
greatest lower bound, 22

half-open interval, 35
harmonic series, 71

image, 14

increasing, 111
induction, 12

induction hypothesis, 12
infimum, 22

infinite, 15

injection, 15

injective, 15

integers, 9

integration by parts, 138
intermediate value theorem, 95
intersection, 9

interval, 35

inverse function, 15
inverse image, 14
irrational, 26

Lagrange form, 116
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Leibniz rule, 105

limit, 80
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limit of a function, 80

limit of a sequence, 40

limit superior, 57

linearity of series, 71
linearity of the derivative, 105
linearity of the integral, 127
Lipschitz continuous, 101
lower bound, 21

lower Darboux integral, 119
lower Darboux sum, 118

mapping, 13

maximum, 29
Maximum-minimum theorem, 92
mean value theorem, 110

mean value theorem for integrals, 131
member, 8

minimum, 29
Minimum-maximum theorem, 92
monotone decreasing sequence, 42
monotone increasing sequence, 42
monotone sequence, 42
monotonic sequence, 42
monotonicity of the integral, 127

n times differentiable, 115
naive set theory, 8

natural numbers, 9

negative, 23

nonnegative, 23

nonpositive, 23

nth derivative, 115

nth Taylor polynomial for f, 115

one-to-one, 15
onto, 15
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open interval, 35
ordered field, 23
ordered set, 21

p-series, 74

p-test, 74

partial sums, 68

partition, 117

Picard iterate, 152

Picard iteration, 152
Picard’s theorem, 152
pointwise convergence, 139
polynomial, 87

popcorn function, 90, 132
positive, 23

power set, 16

principle of induction, 12
principle of strong induction, 13
product rule, 106

proper subset, 9

quotient rule, 106

range, 14

range of a sequence, 39

ratio test for sequences, 55
ratio test for series, 76
rational numbers, 9

real numbers, 21

refinement of a partition, 119
relative maximum, 109

relative minimum, 109

remainder term in Taylor’s formula, 116

restriction, 84

reverse triangle inequality, 32
Riemann integrable, 121
Riemann integral, 121
Rolle’s theorem, 109

second derivative, 115
sequence, 39
series, 68

set, 8

set building notation, 9
set theory, 8

set-theoretic difference, 10
set-theoretic function, 13
squeeze lemma, 47

step function, 132
strictly decreasing, 111
strictly increasing, 111
subsequence, 44

subset, 9

supremum, 21
surjection, 15

surjective, 15

symmetric difference, 18

tail of a sequence, 44
Taylor polynomial, 115
Taylor’s theorem, 115
Thomae function, 90, 132
triangle inequality, 31

unbounded interval, 35
uncountable, 16

uniform convergence, 141
uniform norm, 142

uniform norm convergence, 142
uniformly Cauchy, 143
uniformly continuous, 98
union, 9

universe, 8

upper bound, 21

upper Darboux integral, 119
upper Darboux sum, 118

Venn diagram, 10

well ordering principle, 12
well ordering property, 12
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