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Within an increasingly multimedia-focused society, the use of external representations in
learning, teaching and communication has increased dramatically. Whether in the class-
room, university or workplace, there is a growing requirement to use and interpret a large
variety of external representational forms and tools for knowledge acquisition, problem
solving and to communicate with others.

Use of Representations in Reasoning and Problem Solving brings together contribu-
tions from some of the world’s leading researchers in educational and instructional
psychology, instructional design and mathematics and science education to document
the role that external representations play in our understanding, learning and communi-
cation. Traditional research has focused on the distinction between verbal and non-verbal
representations, and the way they are processed, encoded and stored by different cog-
nitive systems. The contributions here challenge these research findings and address the
ambiguity about how these two cognitive systems interact, arguing that the classical dis-
tinction between textual and pictorial representations has become less prominent. The
contributions in this book explore:

• how we can theorise the relationship between processing internal and external
representations

• what perceptual and cognitive restraints can affect the use of external representa-
tions

• how individual differences affect the use of external representations
• how we can combine external representations to maximise their impact
• how we can adapt representational tools for individual differences.

Using empirical research findings to take a fresh look at the processes that take place
when learning via external representations, this book is essential reading for all those
undertaking postgraduate study and research in the fields of educational and instructional
psychology, instructional design and mathematics and science education.
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Use of representations in
reasoning and problem solving
An overview∗

Lieven Verschaffel, Erik De Corte, Ton de Jong,
and Jan Elen

Background and aims

As a result of recent developments in information and communication
technology (ICT), the use of (external) representations in information pro-
cessing, communicating, and learning and teaching has increased dramatically.
Nowadays, learners must be able to interpret and use a large variety of (external)
representational forms and tools both for their own reasoning, problem solving
and learning, and for communicating with others.

Overviews of state-of-the-art research on the nature and use of (external)
representations can be found in recent (hand)books, including Technology-
enhanced Learning: Principles and Products edited by Balacheff et al. (2009),
the third edition of the Handbook of Research on Educational Communication
and Technology edited by Spector et al. (2007), and the Cambridge Handbook
of Multimedia Learning edited by Mayer (2005).

In the first and second of these books the issue of (external) representations
is essentially addressed as one element of educational information and commu-
nication technology, along with many other issues such as the impact of various
kinds of educational software (e.g., drill-and-practice programs) on students’
learning, teachers’ beliefs about and attitudes towards various kinds of educa-
tional technology, and the implementation of new forms of information and
communication technology in educational settings. Mayer’s (2005) handbook
focuses much more on the (educational) use of (external) representations, but
this topic is approached from a number of theoretical perspectives that have
been typically developed and used within the field of multimedia learning, espe-
cially cognitive load theory (Sweller, 1999) and theories of dual coding (Paivio,
1990). Furthermore, given Mayer’s specific definition of multimedia learning

∗This publication project was supported by Grant GOA 2006/01 ‘Developing adaptive expertise in
mathematics education’ from the Research Fund of the Katholieke Universiteit Leuven, Belgium
and by the International Scientific Network WO.002.07N on ‘Stimulating Critical and Flexible
Thinking’ of the Research Foundation – Flanders.
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and instruction, the book has a strong emphasis on the issue of textual versus
pictorial information.

In one chapter in Mayer’s book, Atkinson (2005) notices that the ‘subject-
matter perspective’ is typically missing in current multimedia research, and
therefore makes a plea for more research on multimedia learning that is deeply
embedded in specific curricular domains such as mathematics or science. In a
more recent reflection on the state-of-the-art in multimedia research, Mayer
(2010) comments that this research has to address three kinds of questions,
namely ‘what works?’, ‘when does it work?’, and ‘how does it work?’; but he
also argues that so far research has principally addressed the first two questions
and that therefore more work is needed on the analysis and description of the
perceptual, thinking, and learning processes that underlie the effectiveness of
multimedia materials and techniques.

Compared with the above-mentioned volumes, the present book puts a
stronger emphasis on the issue of (external) representations as such, paying
ample attention to the similarities and differences between various kinds of
(external) representations and to the relationship between external and inter-
nal representations. Furthermore, it looks at this representational issue not
only from the above-mentioned theoretical perspectives that have been typically
applied within the context of multimedia learning, but also from other theor-
etical perspectives, such as general theories of problem solving and conceptual
change, or domain-specific theories of mathematics and science learning.

By strictly focusing on (external) representations and by including these addi-
tional theoretical perspectives, we have a dual aim. First, we aim to contribute
to a better understanding of how representational forms and tools can – either
alone or in combination with others – foster or hinder thinking and learning
processes in particular subject-matter domains and instructional settings, that
is, the third question emphasised by Mayer (2010). Secondly, we intend to
explore how these findings on the relations between (external) representations,
the associated thinking and learning processes, and the learning outcomes can
be translated into effective and efficient instructional guidelines and methods.

In line with this dual goal, Part 1 addresses the analysis of psychological
processes involved in working with (external) representations when reasoning
and solving problems, and Part 2 the development of external representational
tools and learning environments aimed at the enhancement of the intended
reasoning and problem-solving processes.

The book grew out an international workshop held in Leuven on September
9–12, 2008, organised by the international scientific network ‘Stimulating
critical and flexible thinking’, sponsored by the Research Foundation – Flanders.

Brief overview of the book

Part 1 commences with a chapter in which Schnotz et al. analyse the interplay of
external and internal representations in creative thinking and problem solving
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from the perspective of semiotics and cognitive psychology, using examples from
science and mathematics education. Creative thinking and problem solving are
analysed from the perspective of Gestalt psychology and the psychology of infor-
mation processing, emphasising the roles of structures and procedures. The
authors make a distinction between two basic kinds of representations, namely
descriptive and depictive, which differ in both representational and inferential
power. Their analysis of the use of representations in contexts of science and
maths education shows that a close interaction between descriptive and depic-
tive representations is needed in order to make the best use of both kinds of
representation for successful thinking and problem solving.

In Chapter 2, Vosniadou argues that research on the comprehension of text
and pictures has failed to consider an important distinction between pictures
that are perceptually based depictions, on the one hand, and those that repre-
sent conceptual models, on the other hand. She addresses differences between
these two kinds of external representations and presents some of the diffi-
culties students have when faced with conceptual models. These difficulties
arise, she argues, because understanding a conceptual model is an interpretive
process that can be seriously hampered by students’ lack of essential domain-
specific knowledge and realistic epistemic beliefs. Vosniadou concludes with
some recommendations about how pictures representing conceptual models can
be helpful in the teaching of science and mathematics.

The next chapter by Mason and Ariasi addresses the role of external rep-
resentations in reasoning by examining the epistemic processing of texts and
pictures about a biology topic presented on multiple Internet pages. Based on
the objective measurement of visual attention through eye-fixations, their study
revealed indirect evidence of epistemic processing, that is, processing that takes
into account the source, reliability, and accuracy of the informational content.
University students were asked to read four web pages differing in authoritative-
ness, which provided various types of information. The findings showed that
participants allocated different amounts of visual attention to different texts
and pictures, within and across web pages, according to source credibility. In
addition, students’ individual differences regarding prior knowledge, epistemic
beliefs, and argumentative reasoning played to some extent a role in epistemic
processing.

In Chapter 4, Acevedo Nistal et al. report a study in which they examined
students’ ability to make adaptive or flexible representational choices while
solving linear-function problems. Two secondary school classes solved prob-
lems under a choice condition, where they could choose a table, a graph,
or a formula to solve each problem, and three no-choice conditions where
a predetermined representation (respectively a table, a graph, or a formula)
had to be used. Data concerning representational efficiency (extracted from
the no-choice conditions) and frequency of representational choice (extracted
from the choice condition) were analysed. Students’ representational flexibility
was assessed using two conceptualisations of flexibility. In a purely task-based
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conceptualisation choices were considered flexible if they took into account
only task characteristics. In a task × student conceptualisation, student charac-
teristics were also brought into the equation. The results obtained from the two
approaches are compared.

Chapter 5 by Greer, De Bock, and Van Dooren discusses the role of (external)
representations in mathematical proof using the ‘Isis problem’ as a central case.
The Isis problem asks: ‘Find which rectangles with sides of integral length (in
some unit) have area and perimeter (numerically) equal, and prove the result.’
The problem is notable for the variety of proofs available (empirically grounded,
algebraic, geometrical) and the associated representations; moreover, it provides
an instrument for probing students’ ideas about proof. First, the authors set out
a variety of approaches leading to proofs, showing thereby how proofs can rely
on substantially different mathematical representations, each having its affor-
dances differentially clarifying particular aspects of the mathematical situation.
They also argue that being involved in making transitions from one repre-
sentation to another, and linking various representations can provide deeper
insight. In the second part of the chapter, they discuss a study with nine Amer-
ican and 39 Flemish future mathematics teachers who first attempted to solve
the problem, then studied five given proofs and commented upon them. The
results highlight a preference of the more mathematically advanced students for
algebraic proofs over empirically grounded and visual (geometric) proofs.

In the next chapter, Schneider, Rode, and Stern address the availability and
activation of diagrammatic strategies for learning from texts in secondary school
students. The authors’ starting point is that diagrams are powerful tools for
learning and reasoning, and that people frequently do not use diagrams even
in situations in which they would be very helpful. In two experiments they
investigated whether the reason for this is either a lack of availability or a
lack of activation of diagrammatic representation strategies. A group of sev-
enth graders and ninth graders read texts which could be summarised by a
diagram as well as by keywords. Students were asked to take down notes. The
experimental conditions differed as to whether the instructions for note taking
explained the diagrammatic strategy or whether they explicitly requested its use.
Results revealed that neither availability nor activation was well developed in stu-
dents. Instructions aimed at increasing availability or activation led to increased
diagram use, better memorising of facts, and better inferences. Spontaneous
diagram use improved with grade level, but still remained insufficient even in
grade nine. The authors argue that instruction should encourage students to
use diagrams based on their specific advantages.

Part 2 begins with a chapter by Jaakkola, Nurmi, and Lehtinen who
investigated, using video data, the simultaneous use of a computer simula-
tion and real electrical circuits (a hybrid environment). The central question
is why simultaneous use in a hybrid environment promotes students’ concep-
tual understanding of electrical circuits more effectively than the use of the
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simulation alone. Elementary school students learnt about electrical circuits in
a simulation-alone or a hybrid condition. No differences were found in the
amount of cognitive conflicts and self-explanations between the two conditions.
However, the video data transcripts from the hybrid environment suggested that
analogical encoding of two information resources can improve schema abstrac-
tion and deepen students’ conceptual understanding of electrical circuits. The
authors conclude that, overall, it seems to be beneficial to try to promote stu-
dents’ conceptual understanding of electrical circuits at the early elementary
school level, because they do not yet have deeply rooted misconceptions that
could hamper teaching and learning.

Gerjets et al. provide in Chapter 8 an overview of four studies that compared
static and dynamic visualisations in the context of the biological domain of fish
locomotion. The different learning objectives addressed in these studies com-
prise: (1) understanding the physical principles underlying fish locomotion, (2)
classifying different fish locomotion patterns, and (3) identifying different fish
species based on important static and dynamic features. The results demonstrate
that for all three learning objectives dynamic visualisations were superior to static
ones. These findings were obtained in laboratory settings as well as in the highly
situated learning scenario of using mobile devices during a snorkelling excur-
sion. The authors conclude that their results clearly yield the recommendation
to use dynamic instructional visualisations instead of static ones for supporting
the comprehension of complex dynamic phenomena in the natural sciences.

The next chapter, by Kolloffel, Eysink, and de Jong, reports two stud-
ies in which the effects of external representations on learning combinatorics
and probability theory in an inquiry-based learning environment were inves-
tigated. In the first study, the effects of five representational formats used to
present the domain to students were compared: Tree diagram, Arithmetic, Text,
Text + Arithmetic, or Tree diagram + Arithmetic. The main finding was that
students in the Text + Arithmetic condition obtained the best learning results.
Tree diagrams were found to negatively affect learning and to increase cogni-
tive load. The second study examined the effects of providing support tools
students could use to construct domain representations. Three formats of such
tools (conceptual, arithmetical, or textual) were compared, both in an individ-
ual and collaborative learning setting. Format influenced students’ inclination
to use a tool, with arithmetical representation being the least popular among
the students. Furthermore, the collaborative students obtained better learning
outcomes, but if individuals used the support, their learning outcomes equalled
those of collaborating students.

In Chapter 10, Gravemeijer, Doorman, and Drijvers argue that the problem-
atic character of symbolic representations in mathematics education is tied to
what is called the ‘dual nature of mathematics’ – which is procedural as well
as structural. Historically, procedural conceptions precede structural concep-
tions, whereas mathematics education often starts at a structural level, using
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concrete representations to introduce those structural conceptions. According
to the authors, this is problematic because these representations derive their
meaning from structural conceptions that the students still have to appropriate.
In the alternative they propose, bottom-up learning processes in which symbols
and meaning co-evolve are fostered. They elaborate such an approach known
as the ‘emergent modelling instructional design heuristic’ – for the topic of
algebraic functions. A brief sketch of a teaching experiment on early algebra
elucidates this alternative and suggests that information technology can actually
support the transition from a procedural to a structural conception of functions.

In Chapter 11, Vamvakoussi reviews a series of studies investigating secondary
students’ understanding of the density of numbers, and attempting to bring this
notion within the grasp of students. She presents empirical evidence demon-
strating the adverse effect of the multiple symbolic representations of rational
numbers, as well as the limited, sometimes adverse, effect of the number line,
on students’ judgements on the number of numbers in an interval. Vamvakoussi
argues that students’ difficulty with the notion of density relates to a more gen-
eral problem of conceptual change in the development of the number concept.
Cross-domain mapping between number and the line is proposed as a mech-
anism that could facilitate the restructuring of students’ number concept. This
claim is supported by empirical evidence showing that the number line, a repre-
sentation grounded on the ‘numbers are points’ analogy, can facilitate students’
understanding of density if purposefully employed in instruction.

Next, Wetzels, Kester, and van Merriënboer outline a theoretical frame-
work providing insights into the use of external representations of low
sophistication during prior knowledge activation in the science domain.
This framework distinguishes representations that prompt (i.e., initiate) prior
knowledge activation from representations that reinforce (i.e., facilitate) the
activation process. Prompts that consist of pictorial representations (e.g.,
pictures, animations) are regarded as more suitable than verbal represen-
tations for activating structural and causal models important for science
learning. Furthermore, external representations may reinforce the activa-
tion process. There are limits to the amount of information that can
be activated simultaneously because of humans’ limited working memory
capacity. Self-constructed representations (e.g., note taking) might offload
working memory while activating prior knowledge. It is argued that the
strength of the prompting and reinforcing effects of external representations
during prior knowledge activation is mediated by learners’ level of prior
knowledge. An empirical study that provides support for the framework is
reported.

The final chapter explores the visualisation of argumentation as a shared
activity. Erkens, Janssen, and Kirschner’s starting point is that the use of argu-
mentation maps in computer-supported collaborative learning does not always
provide students with the intended support for their collaboration. They com-
pare two argumentation maps from two research projects, both meant to
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support the collaborative writing of argumentative essays based on external
sources. In the COSAR-project, students could use a Diagram-tool to specify
positions, pro-arguments, con-arguments, supports, refutations and conclusions
in a free graphical format to write a social studies essay. The tool was highly
appreciated by students and teachers, but did not result in better essays. In the
CRoCiCL-project, a Debate-tool allowed students to do the same things but
in a structured graphical format, meant to visualise the argumentative strength
of the positions. This resulted in better history essays. The difference in repre-
sentational guidance between the tools might explain these distinct effects, with
the Debate-tool stimulating students to attend to the justification of positions
and their strengths. Implications for research and instruction are discussed at
the chapter end.
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Chapter 1

Creative thinking and problem
solving with depictive and
descriptive representations

Wolfgang Schnotz, Christiane Baadte, Andreas Müller,
and Renate Rasch

Introduction

Creative thinking and problem solving are higher-order epistemological
activities of humans, which play also a major role as educational objectives in
our schooling system. We consider thinking and problem solving as creative
if they go beyond the reproductive application of previously learned routines.
International assessment studies in learning mathematics and science education
such as TIMSS or PISA have emphasised the relevance of flexible thinking and
problem solving for education and for living in a complex society. We con-
sider flexibility in thinking and problem solving as the amount of different
views and approaches an individual can create to solve a task or a problem.
Although the relevance of flexibility in thinking and problem solving is widely
acknowledged, not very much is known yet about the nature of this flexi-
bility and how it may be improved. We will analyse in this chapter the role
of representations in flexible thinking and problem solving. More specifically,
we will investigate how the construction, manipulation and usage of different
forms of external and internal (i.e., mental) representations, and the interac-
tion of these representations, can contribute to these higher-order cognitive
processes.

First, we will describe different views on creative thinking and problem solv-
ing in psychology. Second, we will analyse more deeply two basic kinds of
representations, which we will call descriptive and depictive representations.
Third, we will investigate the functionality of these different kinds of repre-
sentations in terms of their representational and inferential attributes. Fourth,
we will focus on the interplay between external representations and internal
(mental) representations in thinking and problem solving and we will differen-
tiate between different kinds of mental representations. Fifth, we will analyse the
role of different representations in thinking and problem solving, with examples
from science education and mathematics. Finally, we will draw some conclusions
for the process of teaching in order to foster creative thinking and problem
solving.
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Different views on thinking and problem solving

Gestalt psychology: finding the right representation

Among the different theoretical schools in psychology about productive
thinking and problem solving, the Gestalt psychology and the psychology of
information processing were (and probably still are) the most influential ones.
In Gestalt psychology, the main requirement of problem solving was considered
to be finding the right representation of the problem. In psychology of infor-
mation processing, the main requirement of problem solving was considered
to be finding the right way through a complex problem space. We will briefly
elaborate on these different views of problem solving in the following.

Conforming with the great attention that it devoted to the study of visual
perception, Gestalt psychology also considered problem solving mainly as a
matter of perception (see Wertheimer, 1938). We know that perception is
often constrained by experience. For example, repeated experience of perceiv-
ing an object in one way, such as a pair of tongs as a tool for handcraft, may
hinder its perception in another way, such as seeing the pair of tongs sim-
ply as a possible ballast (see Maier, 1931). Gestalt psychologists coined the
term ‘functional fixedness’ for this phenomenon (Duncker, 1935). According
to this view, problem solving takes place when the perception of the situation
is suddenly reorganised. The new perception (provided it is the ‘right’ one)
makes the solution immediately obvious or, in other words, the solution can be
read off immediately from the new perception. Accordingly, problem solving
is something that takes place all of a sudden. Contrary to a behaviourist view
of solving problems through a gradual approximation of a goal via a process
of trial and error, Gestalt psychology considered problem solving as a matter
of sudden insight, often accompanied by a subjective ‘aha experience’ (Bühler,
1907).

Numerous examples have been cited in the literature to illustrate this view
on problem solving. One of them is the so-called ‘cheap necklace problem’
(Silveira, 1971). Problem solvers are presented with four separate pieces of
chain (A–D) each consisting of three connected links (see Figure 1.1, left side).
These four chains form the initial state of the problem. The goal state (illus-
trated on the right side of Figure 1.1) is a chain that consists of a total of 12
interconnected links.

Additionally, the following instruction is presented: ‘You are given four sep-
arate pieces of chain that are each three chains in length. It costs 2¢ to open a
link and 3¢ to close a link. All links are closed at the beginning of the problem.
Your goal is to join all 12 links of chain into a single circle at a cost of no more
than 15¢’ (Silveira, 1971).

According to the figure and the instruction, one obvious representation of
the goal state is the one that directly refers to the depiction of the four separate
chains, each of which consists of three interconnected links. That is, the problem
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Given state Goal state

Chain B

Chain A

Chain C

Chain D

Figure 1.1 The cheap necklace problem.

solver is likely to construct a representation of the given state in which each of
the four chains is considered as a distinct entity. As a result of this specific rep-
resentation, long-term knowledge is activated that provides the problem solver
with information (operators) on how to connect the four single chains, such as
open link 1 of chain A, connect it with link 3 of chain B and close the link, then
open link 1 of chain B, connect it with link 3 of chain C and close the link, etc.
Note that in applying such a strategy, the four chains, as the original entities,
are still maintained during the process. The problem solver may at some point
become aware that this strategy does not actually meet the constraints of the
problem situation because the achievement of the goal state would exceed the
total cost of 15¢ as incorporating the four chains into one closed chain com-
prises four openings (8¢) and four closings (12¢) of the respective links, which
results in a total cost of 20¢. One of these approaches to solving the cheap neck-
lace problem is to disconnect one of the four short chains into three single links
that can subsequently be used to interconnect the remaining three chains. This
procedure requires the problem solver to open and to close three links respec-
tively leading to a total cost of 15¢ which meets exactly the monetary constraint
of the problem situation.

In other words, a perception of the cheap necklace problem as four chains
to be interconnected leaves the problem unsolvable. However, if the individ-
ual manages to find the following new perception of the problem, its solution
becomes straightforward. One chain (say chain D) can simply be seen as a
set of three elements that can be used to connect the remaining three chains
(A, B and C) instead of seeing D as a chain that has to remain intact. The
problem is perceived in a new way, which means that a new representation of
the given state has been created. To summarise: in the Gestalt psychological
tradition problem solving is predominantly regarded as a matter of a sudden
perceptual reorganisation, namely, seeing the problem situation from a new per-
spective. If the right representation of the problem has been found, the solution
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becomes obvious immediately. Finding a new representation, that is, finding a
new perception of the problem, basically means a restructuring of the problem
representation. For example, in finding the solution of a problem, the problem
solver might suddenly become aware of new relations between elements of the
given material by mentally changing, amplifying or restructuring the material
(Montgomery, 1988). The outcome of such reorganisation is an altered mental
representation of the problem which often enables the problem solver to directly
read off the correct solution. As this solution apparently becomes immediately
obvious, the Gestalt psychologists assumed that the problem solver suddenly
gains a deep insight into the problem, often accompanied by the so-called ‘aha
experience’.

Psychology of information processing: finding the right path

In contrast to Gestalt psychology, the information processing approach
postulates that problem solving is a matter of searching for a path from one
location to another location in a so-called problem space. This space is consti-
tuted by the total set of possible states that can be created during working on the
problem (represented by locations in the space) and the operations that trans-
fer one state into another state (represented by connections between locations).
According to this approach, problem solving has at least four prerequisites: first
the problem solver must have a representation of the initial state at his/her dis-
posal. Second, he/she should have a rather concrete idea about the goal state.
Third, he/she must be able to set up a space (at least a partial one at a specific
time) of the problem at hand. Fourth, the problem solver should have some
operators available that can be applied to the initial state in order to transform
it stepwise into some intermediate states until the goal state is reached. Heuris-
tics such as reducing the difference to the goal state (so-called hill climbing),
means-end analysis or avoidance of loops can help the problem solver to find
his/her way through the problem space, that is, to decide what might be the
best next step.

A frequently used example to illustrate this approach is the so-called Tower of
Hanoi (see Figure 1.2). Within a system of three rods, a set of discs of different
size have to be transferred from one rod (the given state) to a specific other rod
(the goal state). The operation rules are as follows: only one disc can be moved
at any time; a larger disc can never be put onto a smaller disc. The problem
space increases when more discs are introduced: with 2 discs, the space includes
9 states; with 3 discs, it includes 27 states; with 4 discs, it includes 63 states, and
so forth.1 Accordingly, with an increasing number of discs the transformation
of the given state into the goal state quickly becomes a non-trivial task which
clearly falls into the category of problem solving. Good problem solving means
finding a short way rather than a long-winded way.
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Given state

Goal state

Figure 1.2 Example of a Tower of Hanoi problem.

Synthesis: combining structure and process

At first glance the approach of Gestalt psychology and the approach of psychol-
ogy of information processing seem to be based on fundamentally different
theoretical concepts of human thinking and problem solving. As Ohlsson
(1984a, 1984b) delineates, the central concept of the Gestalt theory is restruc-
turing that leads to insight in the problem and hence to its solution. In contrast,
the central concept of the information processing approach is the search for
possible paths that lead from the initial state to the goal state.

However, on closer inspection, these two approaches do not necessarily
act on different assumptions concerning the topic of problem solving. In
fact, they merely focus on different aspects of the problem-solving process:
whereas Gestalt theory emphasises the significance of the problem’s ‘good’
structure for the solution, information processing theory highlights the pro-
cedures that are applied to the material of the initial state in order to achieve
specific intermediate states that finally result in the goal state. Hence, Ohlsson
(1984b, 1992) proposes a theory that consolidates both perspectives in that he
attempts to incorporate some of the Gestalt theory’s central assumptions into
the information processing approach.

Ohlsson (1992) delineates in his Representational Change Theory some core
assumptions that interlink both theoretical approaches by specifying the pro-
cesses that lead to insight and thus to the solution of the problem. A central
aspect of Ohlsson’s theory deals with the question of how the problem to be
solved (the initial state) is represented and structured in the mind of the prob-
lem solver. As the representation is supposed to serve as a memory probe that
activates long-term knowledge via spreading activation, a ‘valid’ representation
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of the initial state leads to the activation of knowledge (operators or actions) that
is relevant for the solution of the problem, whereas an ‘invalid’ representation of
the given situation activates knowledge from long-term memory that is not ben-
eficial for the solution of the problem. Hence, the problem solver has to strive
for the construction of a ‘valid’ representation by changing the ‘invalid’ rep-
resentation in order to solve the given problem. According to Ohlsson (1992)
there are several ways to change a representation, such as elaborating or adding
new problem information to the current representation, relaxing constraints in
order to permit new aspects to unfold or re-encoding, which leads to the rein-
terpretation of the problem at hand. As a consequence of the reinterpretation,
new long-term knowledge structures can be activated including operators that
may be supportive for goal achievement.

We will illustrate this with the cheap necklace problem described above (Sil-
veira, 1971). Remember that the problem solver might first consider connecting
the four single chains by opening link 1 of chain A, connecting it with link 3
of chain B and closing the link. Similarly, he/she might open link 1 of chain B,
connect it with link 3 of chain C, and close the link, etc. Then, he/she might
become aware that this strategy requires four openings and four closings and
therefore exceeds the total cost of 15¢. In this case, the path to the goal state
seems to be blocked. According to Ohlsson’s Representational Change Theory
(1992), such an impasse or block can be overridden if the problem solver suc-
cessfully manages to alter the representation of the problem situation (the initial
state). One way of doing so is a constraint relaxation in which inhibitions on
what is regarded as an acceptable solution are removed from the representation
of the problem. In the case of the ‘cheap necklace problem’ such a situational
constraint may be the assumption that each of the four chains has to be main-
tained as an entity and be integrated as an ensemble into the necklace. This
misinterpretation of the problem situation basically resembles the ‘functional
fixedness’ described by Duncker (1935) which prevents us from solving a prob-
lem because of our knowledge about specific characteristics of some elements in
the problem situation. Constraint relaxation in the ‘cheap necklace problem’ is
achieved if the problem solver abandons the assumption that each of the four
short chains must be maintained as an ensemble. This reinterpretation of the
problem situation allows disconnecting one of the four short chains into three
single links that can subsequently be used to interconnect the remaining three
chains.

Generally speaking, problem solving requires representations with an ade-
quate structure as well as processes that operate on this structure. Gestalt
psychology focused primarily on structures, whereas psychology of information
processing focused primarily on processes. Whereas Gestalt psychology did not
sufficiently take into account that insight problems do also have a problem space
and that they do also require operations within this space, psychology of infor-
mation processing did not sufficiently take into account that problem solving
does sometimes not only require an individual to find a path through a given
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problem space, but also to transform the given problem space into another
problem space (i.e., restructuring the problem representation), which would
enable an easier sequencing of operations.

Both aspects can again be illustrated with the cheap necklace problem. As
long as the individual views the problem as a set of four chains, which should be
interconnected one after the other, the problem space is structured in a way that
requires four openings and four closure operations, and therefore violates the
financial constraints that the total cost must not exceed 15¢ (see Figure 1.3a).
When the unnecessary constraint that all the four chains should remain intact
has been given up, a new problem space with a new structure emerges. In this
space, the initial state of four chains is transformed into a new state, in which
one chain is totally disassembled by three openings. From this intermediate
state, only three closure operations are required to interconnect the remaining
three chains into a full necklace, which also satisfies the financial constraints (see
Figure 1.3b). It should be noticed that although the cheap necklace problem
is considered an insight problem, it is nevertheless associated with a problem
space. Insight corresponds to a restructuring (or amendment) of this space, and
this restructuring provides the key to the solution. However, besides the restruc-
turing, there is still a sequence of processes required to transform the given state

opening 

(a)

closure 

opening 

opening 

opening 

closure 

closure 

closure 

Figure 1.3 Problem spaces of the cheap necklace problem.



18 Wolfgang Schnotz et al.
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opening

opening

closure

closure

Figure 1.3 Problem spaces of the cheap necklace problem (Continued)

into the goal state. In other words, problem solving does not only require an
adequate perception of the problem (which means a problem space structured
as simply as possible for the problem at hand). It also requires operations to be
performed on this structure.

Problem solving is thus a double-sided process. One side, which was empha-
sised by Gestalt psychology, is finding or constructing the right representation
(i.e., a representation with the right structure). The other side, which was
emphasised by psychology of information processing, is operating adequately
on this structure by performing the right processes. Accordingly, good problem
solving implies finding or creating a representation that enables easy perfor-
mance of a sequence of operations that transforms a given state into a goal
state.

The semiotics of representations

What do we mean by the term ‘representations’? We consider a representa-
tion of an object or an event that stands for something else. Texts on paper
describing something, sculptures or pictures of something are examples of objects
that have a representational function. Stage plays, movies or ceremonies (such
as baptism) are examples of events that have a representational function (see
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Petersen, 1996). As a representation stands for something else, it refers to it
and thus adopts the function of a sign, too. Representations can therefore also
be considered as signs and vice versa.

Intentionally produced signs are generally used for communication (see
Bühler, 1934). A series of utterances, a written letter, a painting, a photograph,
for example, can be produced by a speaker, author, painter or photographer in
order to convey knowledge about something (i.e., the represented content) to
a recipient. If a sign producer (i.e., a speaker, author, painter or photographer)
produces a sign, he/she means something that he/she wants to communicate.
In other words, he/she has something in mind about a content to be repre-
sented, and he/she expresses his/her view about this content by producing the
sign. Hence, meaning is a process that creates an external sign on the basis of
what the sign producer knows, that is, what he/she has mentally represented
about the content (i.e., the referent of the sign). The recipient of the sign can
use it to construct a mental representation of the referent of the sign. In this
case, the sign is used in order to reconstruct the knowledge about the rep-
resented content that has previously been externalised by the producer of the
sign. In other words: the recipient comprehends the sign. Comprehension of
signs is therefore a process that creates a mental representation (or knowledge
structure) on the basis of the external sign. In successful communication, the
sign recipient reconstructs in his/her mind what the sign producer has meant
(Hörmann, 1976).

However, intentionally produced signs are not only used for communi-
cation with someone else. They can also be produced as external cognitive
tools for the sign producer, who uses the external sign to infer afterwards
new information about the represented content. This use of external signs
can be considered as communicating with oneself: the individual alternately
takes the role of the sign producer and the sign recipient by, for example,
writing a text and then reading it, or creating a graphic and then observ-
ing it, with the aim of gaining new information. Instead of performing all
cognitive processes in his/her mind, the individual creates an external rep-
resentation, which has the advantage of higher stability than the transient
mental representations in working memory (Baddeley, 1986). In other words,
by creating an external representation, the individual offloads some of the
requirements of problem solving to the environment, namely the cognitive
load of maintaining a complex mental representation in working memory
(Schnotz & Kürschner, 2007; Sweller, 2005; Sweller, van Merrienboer, & Paas,
1998).

Intentionally produced signs can be categorised into two main classes: sym-
bols and icons. The distinction between the two categories of signs was mainly
introduced by Peirce (1931). According to Peirce, symbols have an arbitrary
structure and are associated with the designated object by a convention. Words
and sentences of natural language are examples of symbols. Icons, on the con-
trary, do not have an arbitrary structure, but are associated with the designated
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object by similarity (i.e., a form of concrete analogy, in which, besides a struc-
tural commonality, the represented attributes and representing attributes are the
same) or by a more abstract kind of analogy (i.e., a structural commonality, in
which the represented attributes and representing attributes are different).

Despite numerous variants of representations, one can distinguish only two
basic forms of representations: descriptions and depictions. A description repre-
sents a subject matter with the help of symbols. In a description of an object by
natural language, components are referred to by nouns, are specified by adjec-
tives according to their attributes and set in relation to each other with the
help of verbs and prepositions. Besides sentences of natural language, there are
also other kinds of descriptive representations. Mathematical expressions such
as V = s3 (describing the relation between a cube’s size and its volume) or the
formula F = m × a in physics (describing the relation between force, mass and
acceleration according to Newton’s Second Law) are also descriptive represen-
tations. Descriptive representations consist of symbols, that is, signs that have
no similarity with their referent.

A depiction, on the contrary, is a spatial configuration (i.e., a set of
points in a functional space) that represents a configuration in another space
(Kosslyn, 1994). In other words: it presents a subject matter with the help
of structural commonalities between the respective configurations. Pictures
such as photographs, drawings, paintings and maps are depictive represen-
tations. However, there are also other kinds of depictive representations.
Miniature models of a building or line graphs are also depictive representa-
tions. Depictive representations consist of icons, that is, signs that are associated
with their referent by similarity or by another structural commonality (i.e., anal-
ogy). Depictions do not describe, but rather show the characteristics of an
object.

The representational and inferential power of descriptions
and depictions

Descriptive representations and depictive representations have different uses
for different purposes. Descriptive representations are relatively general and
abstract, whereas depictive representations are more concrete and specific. On
the one hand, descriptions are therefore representationally more powerful than
depictions. There is no problem in formulating general negations or disjunc-
tions by descriptions as, for example, ‘Pets are not allowed’ or ‘High blood
pressure can be caused by nicotine or a lack of movement’. Depictive repre-
sentations, on the contrary, can only show specific negations (with a specific
pet), and they can only show disjunctions with the help of several pictures.
Therefore, descriptive representations are more powerful in expressing abstract
knowledge.
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Depictive representations are always complete with regard to a specific class of
information, whereas descriptive representations are more selective. If we draw
an object, for example, we draw not only its shape, but, necessarily, also its size
and orientation. In a description, on the contrary, one can specify the form of an
object without mentioning its size or orientation (Kosslyn, 1994). A map, for
example, includes all geometric information of the depicted geographical area,
and a picture of a bird of prey eating a mouse does not only include information
about the shape of the bird and the shape of the mouse, but, necessarily, also
about their size, about their orientation in space, how the bird holds its prey, etc.
Depictive representations are therefore more useful to draw inferences. They
have a high computational efficiency, because the new information can be read
off directly from the representation (Johnson-Laird, 1983; Johnson-Laird &
Byrne, 1991; Kosslyn, 1994).

The inferential power of depictive representations has already been referred
to implicitly by Duncker (1935) in his analysis of productive thinking, when
he distinguished between analytic and synthetic reading. A geometric figure
such as a triangle, for example, can be described with specific attributes. Let
us assume that length of side A is 62 cm, length of side B is 70 cm, and the
size of angle Gamma is 30◦. With this description, the triangle is fully deter-
mined and can be constructed unambiguously. After construction has taken
place, the triangle has all the attributes of a triangle, and all these attributes
have specific values. With a ruler or a protractor, a user can identify all these
values: the length of side C, the size of angles Alpha and Beta, the perimeter
of the triangle and, with scaled paper, even the area of the figure. All these
values can be identified just by reading from the figure without any com-
putations. In the previous example, reading the length of side A as 62 cm,
length of side B as 70 cm, and the size of angle Gamma as 30◦ would be
possible, but it would also be trivial, because this information was known
from the beginning. This is what Duncker called ‘analytic reading’. Reading
the length of side C, the size of angles Alpha and Beta or the perimeter,
however, would lead to new information that has been derived from the rep-
resentation. This is what Duncker called ‘synthetic reading’. In other words:
synthetic reading is exactly what makes depictive representations inferentially
powerful.

Descriptive representations are especially useful for characterising objects and
scenarios at higher levels of abstraction, for the explanation or prediction of
events, and for directing the individual’s attention and cognitive processing.
Depictive representations are especially useful for envisioning the appearance
of objects, for comprehension of scenarios and events, for reasoning, arguing
and problem solving. The construction and manipulation of mental depictive
representations – so called mental models – has been described by Johnson-
Laird (1983; see also Johnson-Laird & Byrne, 1991) as the core of conditional
syllogistic reasoning and reasoning about categories.
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External and internal representations in comprehension, thinking
and problem solving

Cognitive psychology considers comprehension as a process of constructing
internal (mental) representations (Kintsch, 1998). If comprehension takes place
as part of communication, it is based on signs such as texts or pictures, which
have been written or drawn by someone. In the latter case, comprehension is a
process of constructing internal representations on the basis of intentionally cre-
ated external representations. The distinction between descriptive and depictive
representations mentioned above applies also to the internal (mental) repre-
sentations constructed during comprehension. A mental representation of the
surface structure of a text, for example, and a propositional representation of the
text’s semantic content are descriptive representations, as they use symbols to
describe the subject matter. A visual image and a mental model, on the contrary,
are depictive representations, as they are assumed to have an inherent structure
that corresponds to the structure of the subject matter (Johnson-Laird, 1983;
Kosslyn, 1994).

The distinction between descriptive and depictive external and internal rep-
resentations is at the core of a theoretical framework developed by Schnotz and
Bannert (2003) for analysing text and picture comprehension, which is usually
referred to as the integrated model of text and picture comprehension. The
basic structure of the model is shown in Figure 1.4. The model consists of
a descriptive (left side) and a depictive (right side) branch of representations.

Descriptions Depictions

propositional
representation

text surface
representation

text picture

visual perception/
visual image

symbol

processing

structure

mapping

text-pict-mapping

pict-text-mapping

model

inspection

model

construction mental
model

Figure 1.4 Outline of the integrated model of text and picture comprehension (Schnotz &
Bannert, 2003).
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The descriptive branch comprises the (external) text, the (internal) mental rep-
resentation of the text surface structure and the (also internal) propositional
representation of the semantic content. The interaction among these descriptive
representations is based on symbol processing. The depictive branch comprises
the (external) picture or diagram, the (internal) visual perception or image of
the graphical display and the internal mental model of the depicted subject mat-
ter. The interaction among these depictive representations is based on processes
of analogue structure mapping.

When an individual understands a text, he/she is assumed to construct three
kinds of mental representations: first, he/she forms a mental representation of
the text-surface structure, which is not an understanding yet, but allows repeti-
tion of what has been read. Second, based on this surface representation, he/she
constructs a propositional representation, which grasps the semantic content of
the text. Third, the reader constructs a mental model of the text content, a
hypothetical internal quasi-object which holds an analogy to the represented
subject matter. Thus, the model integrates the basic assumptions of current
text comprehension theories (Kintsch, 1998; van Dijk & Kintsch, 1983; see
also Graesser, Millis, & Zwaan, 1997; Schnotz, 1994). When a learner compre-
hends a picture, he/she also constructs multiple mental representations. First,
he/she creates a visual perception or image of the graphical display, which is
not understanding yet, but only seeing or imaging the display. Second, he/she
constructs a mental model, which grasps the relevant structural features of the
graphical display and holds an analogy to the represented subject matter. Third,
inspection processes are applied to the mental model, which read off new infor-
mation from it, and the results of the model inspection are encoded in the form
of a propositional representation. Thus, the model integrates the basic assump-
tions of current picture comprehension theories (Kosslyn, 1994; Lowe, 1996;
Schnotz, 2001, 2002).

Propositional representations are descriptive, because propositions are com-
plex symbols which are – similar to the sentences of natural language – assem-
bled of more simple symbols according to specific syntactic rules. Propositional
representations are descriptions in a hypothetical mental language. They repre-
sent the ideas expressed in the text on a conceptual level, which is independent
from the specific wording and syntax of the sentence. Mental models are depic-
tive because they are assumed to be hypothetical internal quasi-objects that hold
a structural or functional analogy to other objects which they represent on the
basis of this analogy (Johnson-Laird, 1983).

Mental models differ in several respects from visual images. First, a mental
model is not a sensory-specific form of mental representation. A mental model
of a spatial configuration, for example, can be constructed with visual, auditory
and haptic information. It is therefore more abstract than a visual image. Sec-
ond, mental model construction implies a task-oriented thematic selection. The
process of structure mapping includes only those parts of the graphical config-
uration which seem to be relevant for some anticipated tasks. Irrelevant details
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of the picture, which are included in the visual image, may be ignored in the
mental model. Third, mental model construction implies an elaboration of the
model based on prior knowledge and therefore the model entails information
about attributes and relations that are not included in the picture or diagram.
Hence, the mental model contains additional information from prior knowledge
that is not included in the visual image.

According to the integrated model, both text comprehension and picture
comprehension result in the construction of multiple mental representations:
a descriptive propositional representation and a depictive mental model. The
propositional representation and the mental model interact continuously via
processes of model construction and model inspection. The integrated model
assumes that pictures have a privileged access to the visual system, because pic-
tures as depictive representations are encoded more directly into mental models,
whereas in text comprehension, a recoding has to take place in order to con-
struct a mental model. Accordingly, a mental model is constructed more easily
with the help of pictures than with the help of texts (see Mayer, 2001).

Text and picture comprehension are not only based on external sources of
information (i.e., the text and the picture), but also on prior knowledge that
is stored in long-term memory as an internal source of information. In text
comprehension, prior knowledge about the graphic pattern of written words,
about the sound pattern of spoken words and about possible syntax structures
is needed for the mental text-surface representation. In picture comprehension,
prior knowledge is needed for the perception of the picture. Prior knowledge
influences how easily pictorial information is categorised. Objects can be recog-
nised faster and more easily, when they are presented from a typical perspective
than when they are presented from an unusual perspective (Palmer, Rosch, &
Chase, 1981). Conceptual prior knowledge about the domain is needed in
text comprehension as well as in picture comprehension for the construction
of a propositional representation and for the construction of a mental model.
Prior knowledge can partially compensate for a lack of external information, for
lower working memory capacity (Adams, Bell, & Perfetti, 1995; Miller & Stine-
Morrow, 1998), and for deficits of the propositional representation (Dutke,
1996; McNamara et al., 1996; Soederberg Miller, 2001). There seems to be a
trade-off between the use of external and internal information sources: pictures
are analysed more intensively if the content is difficult and the learners’ prior
knowledge is low (Carney & Levin, 2002).

If the interaction between a propositional and a mental model is further
extended, the process of comprehension turns into a process of thinking and
problem solving. If the right representation for the problem at hand has already
been constructed, then the right sequence of operations has to be applied in
order to convert the given representational state into the required representa-
tional state. In other words, the mental model has to be transformed from the
given state into the goal state (which corresponds to the information processing
approach to problem solving) in order to read off the required information
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and encode it into a propositional format. If the right representation for the
problem at hand has not been constructed yet, a restructuring of the men-
tal model and the propositional representation is required (which corresponds
to the Gestalt psychology approach to problem solving), before the required
sequence of operations can be applied that will solve the problem.

The framework proposed by Schnotz and Bannert (2003) can be used not
only for the analysis of text and picture comprehension, that is, for investigating
the process of constructing internal (mental) representations from external rep-
resentations such as texts and pictures. It can also be used in a reversed order,
namely for the analysis of producing texts and graphics. For example, if an indi-
vidual has specific ideas in mind, he/she can create corresponding propositional
representations and mental models in his/her working memory. He/she can
then externalise these representations by writing down a corresponding text
or by drawing an external picture or a graph. The externalisation of knowledge
through writing or drawing can be done for the purpose of communicating with
someone else. However, the externalisation can also be done for the purpose of
thinking and problem solving by the individual him/herself: the individual can
reread his/her own text and reconsider his/her own picture or graph, recon-
struct mental representations of the content and then further elaborate his/her
mental representations beyond the previous representations. In other words: the
individual can create external representations as cognitive tools for his/her own
problem solving and, in this way, offload parts of the cognitive requirements of
thinking and problem solving onto the environment. The process of externali-
sation of ideas by creating external representations, and the use of these external
representations for further comprehension, thinking and problem solving, cor-
responds to what we have described above as communication of an individual
with him/herself: the individual alternately takes the role of the sign producer
and the sign recipient, whereby the sign producer uses the external sign to infer
new information about the represented content.

In the remaining part of this chapter, we will analyse how different forms
of representations can be used in math education and in science education by
students of different ages and expertise.

Descriptive and depictive representations in science education
and in mathematics

Science education in physics

Textbooks for science education are full of schematic drawings that show essen-
tial spatial or topological structures of a scenario, which is further analysed in
terms of the thematically scientific concepts. If, alternatively, a descriptive repre-
sentation of the scenario were given, most students (perhaps not even experts)
would not be able adequately to analyse the scenario for answering questions
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or solving tasks. For example, depictive representations such as schematic topo-
logical drawings are often used in the field of electricity, where these drawings
illustrate how the objects involved in the electric circuit are interconnected.
Consider the following description of a part of an electronic circuit:

(1) Point A is connected via resistance R1 to point B. Point B is connected via
resistance R2 to point C. Point C is connected via resistance R3 to point D.
Point A is connected with no resistance to C, and point B is connected with no
resistance to D. All resistances R1, R2 and R3 have the same amount R.

Let us assume that students should answer the following question: which resis-
tance would be a substitute for the combination of the resistances described
above? We can assume that in such a case students would first construct – as an
instance of a ‘reversed order’ usage of the framework of Schnotz and Bannert
(2003) – a depictive representation of this resistance combination as shown in
Figure 1.5a.

The analysis of this depictive representation, however, is not a trivial task
with a straightforward solution, because different students can come up with
different and contradicting answers. Let us assume that three students discuss
their solutions with the following arguments. One of the students, Michel, says:

(2a) Direct connections between two points in an electric circuit have an
extremely small resistance that can be ignored. Therefore, the connections
between A and C and between B and D are not important for the computation
of the substitute resistance. Accordingly, the structure corresponds to a simple
serial combination, and the substitute resistance is 3 R.

Another student, Peter, argues as follows:

(2b) The electric current divides at point A into two partial currents I1 and I2.
The current searches for the lowest resistance. Thus, it will flow at the one hand

R1

R1

R2

R3 R1 R2 R3

A

A

B D B,D

C A,C

a)

b)

C

B D
R2 R3

Figure 1.5 Depictive representations of a complex electric resistance problem.



Creative thinking and problem solving with representations 27

from A to C and from there via R3 to D, and on the other hand from A via R1 to
B and from there to D. Accordingly, there is a parallel combination of resistances
R1 and R3, whereas no current flows through R2. Thus, the substitute resistance
for the combination above is R/2.

Finally, Karin says:

(2c) The described structure is a parallel combination of three equal resistances.
Therefore, the substitute resistance for the above combination is R/3.

All three arguments seem to have a rational core, but only one of them is
correct. The difficulty of finding the right answer in this case is not only due
to the formation of a correct depictive representation and the formation of
a correct descriptive representation. Instead, the difficulty originates from the
specific structure of the depictive representation shown in Figure 1.5a because,
due to its visual similarities with other resistance combinations, the represen-
tation triggers misinterpretations by erroneously reading attributes from the
representation which are not really there.

For example, Michel’s view of a simple linear resistance combination (2a)
seems to be justified by the linear appearance of the structure in Figure 1.5a.
Furthermore, he supports his view by the additional assumption that the con-
nections between A and C and between B and D can be ignored. However,
his assumption is not correct: whereas the resistance of these connections
can be ignored, the connections themselves cannot. Thus, a seemingly minor
modification of a descriptive representation (i.e., the replacement of ‘ignor-
ing of the resistance of connections’ with ‘ignoring the connections’) has
led to a fundamental misreading in the conceptual analysis of the depictive
representation.

Peter gave a description of the flow of the current, which is also correct to
a great extent: the current flows indeed from C to D via R3 and from A to B
via R1. Therefore, R1 and R3 are in fact combined in parallel. However, Peter
incorrectly assumes that no current flows through R2. This seems to be sup-
ported by the depiction in Figure 1.5a, where the total current flows from
A to D, that is, from left to right. The picture suggests that the current can
‘bypass’ R2 on the one hand via the connection A–C and on the other hand
via the connection B–D. Therefore, he incorrectly infers that the substitute
resistance is R2.

It should be remembered that a descriptive representation is always more
general than a depictive representation, because a depiction has necessarily
to be more specific. Accordingly, more than one depictive representation can
be created on the basis of one description. In the case of the electronic cir-
cuit, the depictive representation shown in Figure 1.5a can be transformed (by
reapplying the Schnotz–Bannert framework in reversed order) into the repre-
sentation shown in Figure 1.5b. The transformation is topologically invariant.



28 Wolfgang Schnotz et al.

That is, the result of the transformation has the same topological structure as the
previous depiction in Figure 1.5a. This transformation follows a simple rule: ‘If
two points are directly connected, they can be merged into one point’, which
keeps the topological structure invariant. Contrary to the depictive represen-
tation in Figure 1.5a, the representation in Figure 1.5b allows seeing easily
that the overall structure formed by the three resistances is in fact a parallel
combination. Thus, Karin’s answer (2c) was the correct one.

As the example demonstrates, it is not sufficient to construct any depictive
representation in order to solve a problem. Instead, it is important that the
depictive representation allows reading the relevant features easily. Sometimes,
the specific perceptual structure or other perceptual attributes can obscure
the relevant structural attributes and, thus, prevent application of correct
procedures and stimulate application of other, incorrect procedures.

Mathematics education

Mathematics education in secondary schools emphasises at different points, that
mathematical objects such as functions can be represented in different ways. It
is well known that algebra has a correspondence with geometry and vice versa.
For example, an algebraic function, which maps one variable onto another,
can be represented by a description as well as a depiction. For example, if the
description of the function is made by the term ‘2y+ x=0’, then a correspond-
ing depictive representation can be a straight line in a Cartesian diagram that
crosses the origin (0,0) with a negative slope of −0.5. Although algebra and
geometry form coherent bodies of knowledge by themselves, which can be con-
sidered independently from each other, we suggest that the close relationship
between descriptive and depictive representations should be more elaborated in
mathematics education.

It can be shown already to young students at the earlier levels of primary
school mathematics that there is frequently not only one representation of a
mathematical task, but that there exist different options for representations,
and that each of these representations can have its own advantages and dis-
advantages. Rasch (2003) has investigated how young learners from primary
school spontaneously find their own representations of complex mathematical
text problems. A basic assumption in this project was that knowledge about the
spontaneously created external representations of children provides insight into
their mathematical thinking and serves as a basis for fostering their mathemati-
cal understanding and skills. Let us consider the following task, which was given
to students from grades 3 and 4 of primary school:

(3) Little Ant on the Square:
A square has a side length of 200 m. A little ant walks along the sides of the
square. In the daytime, the ant travels exactly 200 m. In the night, however,
a strong wind blows the ant back one half of the distance that it has travelled
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during the day. The ant starts on Monday morning. It starts from A across B, C
and D back to A. When will the ant arrive at A?

(A drawing of a square is presented to the students as part of the task
description.)

Nearly all students from grade 3 and 4 in primary school participating in the
study used the presented square in order to answer the question. However, they
used different kinds of mental representations and different strategies to solve
the task. Catherine, for example, created the drawing shown in Figure 1.6. She
used only a depictive representation and tried to reproduce the path of the ant
on the pictorial level. She explained her strategy as follows:

(3a) I went from A to B, and then I went 100 m back. I continued this way until
I reached A again. I found that the ant arrives at A after 7 days. So, it arrives at
A on Sunday.

Catherine’s strategy was totally pictorial, because she reconstructed the path
of the ant step by step on the square as a depictive representation. Although
this strategy was successful for her, other students who used the same strategy
came to other solutions such as ‘8 days’ or ‘10 days’. The solution included the
reconstruction of a series of forward steps and backward steps on a depictive
representation, and finally counting the days required to come back to A. Such
a strategy is prone to error, because it is easy to miss one step or to miscount
the steps.

Figure 1.6 The little ant on the square: Catherine’s solution.
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Other students focused more on the mathematical structure of the task and
combined the depictive representation of the square with a descriptive repre-
sentation of the ant’s movement. Robert, for example, described his strategy as
follows:

(3b) The square has four sides. The ant has to walk half of the way twice, because
the wind blows it back half of the distance it has travelled the day before. So,
it needs 4 days for travelling the simple distance: four times 200 m for the total
distance of 800 m. Then it needs another 2 days for travelling half of the distance
a second time. So, it takes the ant 6 days to arrive at A.

Although Robert tried to solve the task on a mathematical symbolic level, he
did not come up with the correct solution. As the verbal protocol revealed, he
had created an incorrect descriptive representation of the task: the ant does not
have to walk half of the way (which is 400 m) twice, but rather a distance of
600 m. With this correct description, Robert had found that a total distance
of 800 m plus 600 m, which equals 1400 m, has to be travelled by the ant. So,
if the ant travels 200 m during the day, it needs 1400 ÷ 200 = 7 days, which
was the correct solution. The example shows that creating a correct descriptive
representation of the task is not a trivial requirement for the students, even if the
basic structure of the situation is already presented as a depictive representation.

Another student, Rebecca, focused exclusively on the mathematical struc-
ture of the task. However, her description of the task differed from Robert’s
description mentioned above. She said:

(3c) The square has four sides. Each side has a length of 200 m. So the ant has
to travel 800 m. The ant travels 200 m in the daytime, but is blown back 100 m
at night. It finally moves forward only 100 m per day. Therefore, the ant needs
8 days, because 8 times 100 equals 800.

In Rebecca’s strategy, the depictive representation of the square played only
a minor role. The picture was used (if it was at all) to verify that the square
with four sides of 200 m each has a total perimeter of 800 m. All the rest was
done essentially on a descriptive (symbolic) representation: 200 m minus 100 m
equals 100 m; 800 m divided by 100 m equals 8. Accordingly, 8 days was con-
sidered as the correct answer. The problem in case of Rebecca’s strategy is that
she does not use a depictive representation as a constraint for her descriptive
(symbolic) representation. Although it is true that someone who travels 100 m
per day needs 8 days to travel 800 m, the situation is different in the case of the
little ant task, because the ant is more advanced on its way in the evening of a day
than it is in the following morning. Therefore, the ant arrives at A already by the
end of the seventh day (i.e., on Sunday), although it might wake up again 100 m
away from A the next morning. Instead, the descriptive symbolic representation
was used in a mechanical way, which ignored the fact that the ant’s position
is more advanced in the evening than it is the next morning. If the descrip-
tive symbolic representation had been mapped on the depictive representation,
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the evening–morning difference might have become more obvious and perhaps
helped Rebecca to find the correct solution also on the symbolic level.

A fourth student, Paul, used a strategy in which a depictive representation
was closely integrated with a descriptive representation by a one-by-one map-
ping of graphical entities onto descriptive terms. This solution is illustrated in
Figure 1.7. Paul placed distance tags on the square (100, 200, 300, . . . , 800).
Then, he created a table which described the beginning and the end of the dis-
tance travelled by the ant for each day: 000–200 for day 1, 100–300 for day 2,
200–400 for day 3, etc. This table is a description (a kind of ‘log file’) of the
ant’s journey around the square. The stepwise elaboration of the table finally
leads to the entry ‘600–800 for day 7’, which answers the question of the task.
Although Paul did not write down a formal procedure, he implicitly applied the
following pair of production rules:

(3d)
RULE 1:

IF: Starting point of day i is xi,

THEN: Endpoint of day i is yi = xi + 200)

RULE 2:

IF: End point of day i is yi,

THEN: Starting point of day i + 1 is xi+1 = yi -100. These rules were reiterated
until the distance tag of the endpoint of the day was 800, which means that
point A in the square was reached again. On the one hand, it seems unlikely
that the extraction of these rules and their repeated use for generating the table
had been possible without an external or internal depictive representation of
the square. On the other hand, the entries of the table (including number of

Figure 1.7 The little ant on the square: Paul’s solution.
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the day, starting point and endpoint) can only be interpreted meaningfully by
reference to the depictive representation. Thus, this kind of solution is a nice
example of a close interaction between a descriptive representation (the text), a
depictive representation (the square elaborated by distance tags) and a descrip-
tive representation in the form of a table, which finally leads to a precise solution
based on insight.

External depictive representations of a problem constrain the possible descrip-
tive representations and vice versa. The verbal description of a task by a written
text often allows the construction of different depictive representations with
specific structures. Sometimes, the depictive representation enables different
procedures to operate on them, whereby some procedures are less complex
(i.e., require less operations or easier operations) than others. Sometimes, one
depictive structure allows operating more easily on it by counting or reading
than another depictive structure. Sometimes, one depictive structure allows the
creation of a simple descriptive representation that allows quick symbolic pro-
cessing. Although the task presented above is relatively simple from an adult’s
perspective, it allows insight into the spontaneous mathematical thinking of pri-
mary schoolchildren. It demonstrates that children can be considerably creative
in representing mathematical content and that they can use different represen-
tational formats with more or less flexibility in order to solve tasks. We consider
the combined use of different representations – especially descriptive and depic-
tive ones – as a key concept for teaching mathematics and for thinking and
problem solving in mathematics.

Conclusion: teaching for flexibility in thinking and problem
solving

The aim of our analysis was to illustrate that flexible thinking and problem
solving require a specific interplay of structures and procedures – that is, two
‘ingredients’ that were formerly investigated by Gestalt psychology and the
psychology of information processing. More specifically, flexible thinking and
problem solving require representations with an adequate structure and proce-
dures that can operate easily on this structure. A structure of a representation
is adequate if it grasps the subject matter correctly and if it allows easy perfor-
mance of the required procedures. Easy performance of the procedures means
that the required operations are not difficult per se and that the sequences of
operations are relatively short (see Ohlsson, 1984a, 1984b; Peterson, 1996).

Our analysis has also shown that a close interaction has to take place between
descriptive representations and depictive representations and vice versa in order
to make the best use of both kinds of representations for successful thinking
and problem solving (Schnotz, 2005; Schnotz & Bannert, 2003). However, as
we have demonstrated above, the creation of a depictive representation such
as a drawing is not sufficient for successful cognitive problem solving, even if
the drawing is correct. Sometimes, the specific perceptual structure or other
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perceptual attributes can obscure the relevant structural attributes and trig-
ger the application of inappropriate procedures. Thus, it is also important that
the individual creates the most useful depictive representation and that he/she
knows how to operate on it. The depictive representation needs to have a struc-
ture that can be used by the individual to apply adequate procedures on it. These
procedures are usually guided by descriptive representations of the subject mat-
ter. Some procedures can elaborate further the depictive representation. Other
procedures can read new information from the depictive representation which
is then encoded again in a descriptive format. Finally, it is important that the
depictive representations are used as a cognitive tool, that is, as something to
operate on as a means of thinking rather than being only a means for illustrating
the results of thinking.

Our considerations suggest the following general guidelines for fostering flex-
ible thinking and problem solving. First, learners should be taught systematically
how to search for adequate forms of representations for the problems at hand.
This also includes the teaching and learning of how to create adequate depictive
representations that allow easy task-oriented performance. Although the corre-
sponding guidelines might be to some extent domain-specific, there could also
exist general heuristics of how to create and operate with different kinds of rep-
resentations. Second, learners should be taught systematically how to analyse
depictive representations and how to operate on them in a task-oriented man-
ner. Operating on depictive representations implies a close interaction between
description and depiction, because procedures on a representation are usually
guided by a descriptive representation and because reading information from a
depiction leads, in turn, to a description (or an elaboration of an already exist-
ing description). Accordingly, learners should be taught to closely interconnect
descriptive and depictive representations when trying to solve problems. Finally,
students need to learn how to transform one representation into another, infor-
mationally equivalent representation. By training the students’ representational
flexibility, they may become more skilled in finding the best representation for
solving specific tasks or problems and, thus, become more creative and flexible
in their thinking and problem solving by combining the right structures with
the right procedures.

Note

1. The number of states in a Tower of Hanoi problem is 9 times the sum of 2i−1 whereby
i increases (by incremenseparatosets of 1) from 1 to the number of discs minus 1.
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Chapter 2

Instructional considerations
in the use of external
representations
The distinction between perceptually based
depictions and pictures that represent
conceptual models

Stella Vosniadou

Existing research on the comprehension of text and pictures

Research on the comprehension of text and pictures has blossomed in recent
years. Most of this research investigates the interaction between verbal infor-
mation and the information contained in pictures in order to understand
the conditions under which pictures are more likely to facilitate the com-
prehension of a given text. Various theories try to explain this text/picture
interaction, such as the Dual Coding Theory (Clark & Paivio, 1991; Paivio,
1986), the Conjoint Processing Theory (Mayer, 1997), and the Integra-
tive Model of Text and Picture Comprehension (Schnotz, 2001, 2002). In
these theories the emphasis is usually placed on understanding the cog-
nitive mechanisms that underlie the interplay between verbal and pictorial
representation.

Mayer and his colleagues (Mayer, 1997, 2003; Mayer & Moreno, 2002,
2003), for instance, argue that students learn better when both words and pic-
tures are present in book-based or computer-based environments, than when
only words are presented to them. They also claim that there are certain
methods or principles that optimise the effectiveness of such multimedia envi-
ronments, such as the coherence effect – in which students learn more deeply
when extraneous material is excluded rather than included – the spatial con-
tiguity effect – in which students learn more deeply when printed words are
placed near rather than far from corresponding pictures – and the personalisa-
tion effect – in which students learn more deeply when words are presented in
conversational rather than formal style.

Schnotz and his colleagues (Schnotz, 2002; Schnotz & Bannert, 2003;
Schnotz & Kürschner, 2008), on the other hand, have looked at the interaction
between internal and external representations, the effects of multiple repre-
sentations, and the relationship between external representations and cognitive
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processes including the amount of cognitive load. They argue that the inclusion
of different pictures in the same text can result in the construction of different
mental representations by the reader and in different patterns of performance in
subsequently presented tasks. They also explain some of the conditions under
which the presentation of external representations may not always be beneficial
for the acquisition of new knowledge.

Finally, Lowe and Schnotz (2007) and Ainsworth (1999; Ainsworth &
VanLabeke, 2004) have investigated dynamic representations and animations,
and have found that it is not always beneficial to have multiple representations,
as students, and particularly young students, may find it difficult to translate
from one representation to another.

The explanatory framework used to interpret these research findings is usually
that of cognitive load theory. In other words, external representations are said
to facilitate performance because they reduce the cognitive load of the task or
because they make specific cognitive processes easier, faster, and more accessible.

The above-mentioned studies have provided a great deal of information about
the ways in which readers comprehend pictures in texts and have generated very
useful recommendations for the improvement of curriculum materials and their
instructional uses. There are two areas, however, where we believe that more
research is needed in order better to understand the interaction between verbal
and pictorial information in text comprehension. The first area concerns the dis-
tinction between external representations that are perceptually based depictions1

and those that represent conceptual models. The existing research has not explic-
itly addressed students’ difficulties in understanding the meaning of these two
types of external representation. As will be explained later in detail, conceptual
models usually have an analogical relationship to the perceptual situation that
they represent and they may differ from that situation substantially in surface
similarity, compared with perceptually based depictions.

The second area where more research is needed has to do with the effects
of prior knowledge. While many researchers are concerned about how pictorial
representations interact with verbal information, there is little discussion of how
external representations may interact with domain-specific prior knowledge.
The interaction between prior knowledge and the comprehension of pictorial
information is particularly relevant in the case of conceptual models, because
conceptual models depend more on domain-specific knowledge in order to be
understood, compared with perceptually based depictions.

In this chapter we attempt to show that a distinction can be made between
perceptually based external representations and those that can be considered
conceptual models. Moreover, we argue that conceptual models are more
difficult to understand than perceptually based representations, because they
demand (a) specific scientific and mathematical domain knowledge, and (b) sub-
stantial epistemological sophistication. For this reason, we claim, it is important
to distinguish between these two kinds of external representations and to be
careful about how each one is used in curricula and instruction.
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Two kinds of external representations: perceptually based
depictions and conceptual models

Many of the pictures used in textbooks, particularly those in the areas of the
physical and biological sciences, are not perceptually based representations, but
conceptual models. In order to understand this distinction better, let us look
at the two representations appearing in Figures 2.1a and 2.1b. The picture
in Figure 2.1a is a perceptually based representation. It shows the sun setting
behind the mountains and the moon up in the sky, signalling the approach of
night. The picture in Figure 2.1b, however, cannot be considered a percep-
tually based representation. It is a conceptual model, representing our current
understanding of the solar system. Conceptual models are usually theory-based
as opposed to being grounded on everyday observations, being the products of
scientific investigation. It took our culture hundreds of years of scientific dis-
covery to come up with a representation of the solar system such as the one
portrayed in Figure 2.1b, the Copernican revolution being considered one of
the most important scientific revolutions in the history of science (see Kuhn,
1957). Even in the present day, we still debate about the exact nature of our
solar system, about the definition of a planet, and about whether the planet
Pluto is in our solar system or not.

It is not easy to give an exact definition of conceptual models. Nevertheless,
we might say that conceptual models have some of the following characteris-
tics, compared with perceptually based depictions: first, they represent entities,
situations or phenomena in ways that are different from those that are perceptu-
ally experienced, at least from our usual egocentric perspectives and without the
help of technological aids. Second, they include theoretical entities that need
to be interpreted on the basis of relevant scientific or mathematical knowledge.
For example, the representation of the solar system usually shows the orbits of
the planets as they revolve around the sun. The movement of the earth and
the other planets is not something that we can observe directly and depict visu-
ally in a static picture, but also the very idea that the earth is a planet and that
planets orbit the sun is a theoretical one. Throughout the ages mankind has
gone through different interpretations of the nature, location and movement
of the sun, the earth and the other planets. This brings us to our third point,
namely that conceptual models are often rather counter-intuitive in the way they
relate to perceptual experience. For example, our everyday experience is that the
earth, and not the sun, is at the centre of the solar system, and that the earth is
stationary and not moving.

As another example, consider the two pictures in Figures 2.2a and 2.2b. The
first is a perceptually based representation of ocean water, while the second is a
conceptual model that depicts hydrogen bonding between water molecules in
liquid water, with the dash lines signifying hydrogen bonds.

It may be argued that the difference between perceptually based depictions
and conceptual models is not as large or as clear-cut as we claim, and that we



Figure 2.1 Perceptually based representations and conceptual models in astronomy.
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(a)

(b)

Figure 2.2 Perceptually based representations and conceptual models in chemistry.

are presenting a very simplified picture of a very complex issue. For example, it
could be claimed that since we can now take pictures of the earth from satellites,
the depiction of a spherical earth in space (if not of the whole solar system) is a
perceptually based depiction and not a conceptual model.

We agree that there can be some cases where it may be difficult to distin-
guish between perceptually based representations and conceptual models. In
fact it appears that the two kinds of external representations may not be clearly
dichotomous but, rather, may represent a continuum, with some cases being
more clearly differentiated than others. But even if we were to consider the
picture of the earth from space as ‘perceptually based’, it still retains many of
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the characteristics of conceptual models. It is a depiction that represents a very
different view from that experienced by an individual living on the earth, and
requires, for its understanding, having sophisticated perspective-taking abilities
and being able to distinguish between ‘appearance’ and ‘reality’. It also requires
the ability to understand that the same entity can have more than one repre-
sentation, an ability that takes time to develop and can be greatly facilitated
through specific instruction (Grosslight et al., 1991; Lehrer et al., 2000). It is
for some of these reasons that children often fail to understand that the picture
of the spherical earth taken from satellites, refers to the same ‘flat’ earth on
which we live. There is in fact a common misconception among young children
that there are two ‘earths’ – a flat one on which we live and a spherical one
which is a ‘planet’ up in space. This is known as the ‘dual earth model’ of the
earth (Vosniadou & Brewer, 1992).

Conceptual models play an important role in science as they are often used
to flesh out the semantics of an axiomatic, syntactic theory, mainly in physics.
An abstract, axiomatised theory can usually give rise to a class of models that
provide the interpretation of the theory and connect it to the physical world.
Giere (1988), following Hesse (1966), argues that conceptual models represent
in some way the behaviour and structure of the physical system they represent,
i.e., they are structural analogues to the physical system. Thinking of the Bohr
atom, for instance, through the model of a system of billiard balls moving in
orbits around one ball, with some balls jumping into different orbits at differ-
ent times, then there are various kinds of analogies that can hold between the
model and the real system. According to Morgan and Morrison (1999), there
can be different kinds of conceptual models, some visualisable, others mathe-
matical. In all cases, however, models are integral components of theories. They
suggest hypotheses, aid in the construction of theories, and are a source of both
explanatory and predictive power.

In this chapter we will discuss only the kinds of conceptual models found
in external representations used in science and mathematics textbooks. Let us
make clear here that we are not talking about an exotic phenomenon that is
not worth paying attention to. The pictures we call conceptual models are not
rare in science textbooks. On the contrary, they are used very commonly as
visual aids to help students understand the theories presented in the text. For
example, a random look at the first 13 pages of the Starr and Taggart (1992)
college textbook entitled Biology: The Unity and Discovery of Life, reveals 22
pictures, all of which represent conceptual models.

Conceptual models are difficult to understand

Science education research has shown that students often fail to understand
external representations that have the form of conceptual models. In some
cases this happens because the students have misconceptions that may inter-
fere with their interpretation of the conceptual model. Take, for example, the
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depiction of hydrogen molecules in Figure 2.2b. Many students have persis-
tent misconceptions about molecules. They may believe that molecules are
indivisible entities that expand when heated, or that molecules of solids are
hard while molecules of gases are soft and weigh less, that molecules are glued
together, etc. (see Andersson, 1990; Novick & Nussbaum, 1981; Wiser &
Smith, 2008). Many students think that molecules (and/or atoms) are found
inside matter rather than being the basic constituents of matter. They think
that they are embedded in a material substrate rather than being the stuff that
things are made out of (Andersson, 1990; Lee et al., 1993; Wiser & Smith,
2008). This ‘molecules or atoms in matter’ model is a very powerful misconcep-
tion found even in college students taking chemistry courses (Pozo & Crespo,
2005).

In some cases misconceptions may be suggested by textbook illustrations in
the form of conceptual models. For example, Wiser and Smith (2008) argue
that the common depiction of molecules or atoms as small black dots inside a
coloured sphere representing a given substance, can be very suggestive of the
‘molecules (or atoms) in matter’ misconception. In yet other cases, the specific
words used to describe atoms and molecules in the context of a conceptual
model, can generate a wrong interpretation. Expressions such as ‘Atoms in
solids vibrate’, ‘Molecules are less free to move in ice than in (liquid) water’
and ‘Bonds are the glue between atoms’ can reinforce the ‘molecules or atoms
in matter’ misconception. The word ‘microscopic’ may suggest that atoms can
be seen with a microscope and thus generate a wrong sense about their scale,
while the word ‘particles’ may suggest that they are particles of dust.

Difficulty in understanding conceptual models has also been documented in
the area of astronomy. Ehrlen (2007) interviewed first-grade elementary chil-
dren in order to ascertain how they understood the model of the earth as a
globe. She found that some of them did not think that the globe had anything
to do with the earth on which we live. One of the children called the globe
‘a map’ and did not seem to regard the earth as a spherical planet. Another
called the globe ‘a statue’ and did not know whether it looked like the earth or
not, while a third thought that the countries that appeared on the outside of
the globe should actually be inside. The following is an excerpt from this last
interview:

Margaret: 1st grader
• I: Does the globe look like the earth?
• M: Yes, but this is inside (points to the surface of the earth)
• I: You are pointing on the outside, on that country there.
• M: It is inside
• I: Yes?
• M: Yes
• I: It is inside. And the people then, where are they?
• M: Inside



Instructional considerations in the use of representations 43

Figure 2.3 External representation used in Vosniadou and Brewer (1994) to investigate
children’s explanations of the day/night cycle.

Research on the development of students’ understanding of the earth and of the
day/night cycle has also revealed a number of cases where external conceptual
models are misunderstood (Vosniadou & Brewer, 1992, 1994). Vosniadou and
Brewer (1994) presented elementary schoolchildren with the drawing shown
in Figure 2.3, told them that it shows a person living on the earth, and asked
them to ‘make it so it is day for that person’ and then ‘to make it night’ for that
person.

As can be seen from the examples shown in Figure 2.4, the children interpreted
the conceptual model of the round earth in different ways. For example, Tamara
(drawing number 1) thought that the drawing was wrong because the person
was ‘outside the earth’. When she was asked to show where the person should
be located, she drew the person inside the earth, at the bottom, and then went
on to explain the day/night cycle in terms of the sun being covered by clouds.
Allison, on the other hand, accepted the drawing and added the sun to make
it day, explaining that the sun ‘goes in space’ and ‘when it gets dark the moon
comes back in’ (drawing number 3). Timothy also accepted the drawing, but
he had a very different model of the day/night than Allison. He thought that
the sun went down to the other side of the earth (drawing number 5).

Difficulty in understanding conceptual models can also be found in the case of
mathematics. The number line is, for example, an external representation widely
used in elementary schools throughout the world to teach young children about
natural numbers. However, the number line as a conceptual model can be inter-
preted differently by young children. Siegler and his colleagues (see Opfer &
Siegler, 2007), for instance, have shown that second graders have a different
mental representation of the number line than older children and adults. When
second graders were asked to place numbers on a number line extending from
0 to 1,000, almost all of them placed the number 150 almost halfway across the
number line!

Studies in our lab, where the number line was used to teach sixth-grade
children about fractions, showed that children’s misconceptions about fractions
influenced their interpretation of the number line. For example, some children
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Allison (No.52, Grade 1) 
The sun moves out into space.
E: Now make it so it is day for that person. 

C: (child makes drawing 3 shown in Figure 4) Right here? 

E: Whatever you think. Now make it night. 

C: It goes in space. 

E: Show me. Tell me how it happens. 

C: The sun comes back down. It goes into space and when it 

gets dark the moon comes back out. 

Timothy (No.47, Grade 1) 
The sun goes down to the other side of the earth (and the 
moon goes up) 
The child makes the drawings shown in Figure 4. 

E: Tell me once more how it happens. 

C: When the moon comes up and the sun goes down. 

E: Where was the moon before? 

C: Under the earth. 

E: Show me. Tell me how it happens. 

C: What time was it when it goes under the earth? 

C: Day 

Tamara (No.9, Grade 5) 
The sun is occluded by clouds or darkness 
E: Now can you make it so it is day for that person? 

C: He’s outside the earth. 

E: Where should he be? 

C: In here (see Figure 4, drawing 1) 

E: . . . OK now, make it daytime for him. 

C: The sun is out here, but it looks like it’s in the earth, when it 

shines . . . 

E: OK. What happens at night? 

C: The clouds covered it up. 

E: Tell me once more how it happens. 

C: Cause at 12 o’clock it’s dark. 

Drawing No. 1

Drawing No. 3

Drawing No. 5

Figure 2.4 Examples of children’s interpretations of the external representation given to them
in order to explain the day/night cycle.

believe that fractions with large numbers are bigger than fractions with smaller
numbers. This belief, which is correct for natural numbers, is transferred to the
domain of fractions, causing children to increase the size of the unit when repre-
senting fractions consisting of larger numbers on the number line (Pantsidis &
Vosniadou, 2006). The child whose response is shown in Figure 2.5, was asked
to place the fractions 3

2 and 8
10 on the number line. As can be seen, although this

child apparently knew that the fraction 2
2 equals the unit, and that the fraction

10
10 also equals the unit, he did not keep the size of the unit constant. Instead, he
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Use the number line to represent the fractions 3/2 and 8/10.

Figure 2.5 Distortion of external representations representing fractions on the number line.

kept the parts of the unit the same and increased the overall size of the unit on
the number line, ending up with a representation where the fraction 8

10 is bigger
than the fraction 3

2 .
The fact that the number line is used in instruction as a representation to help

young children visualise natural numbers but that it is also used later to teach
older students about rational and real numbers, can be very confusing. Students’
early experiences with the number line in the context of discrete natural num-
bers can seriously inhibit their understanding of the continuous number line in
the context of rational and real numbers. The result is that many students come
to think of the line as a ‘necklace of beads’ – as consisting of discrete points
laying the one next to the other. According to English (1993), students con-
ceive the number line as a series of ‘stepping stones’ with an empty space in
between, and thus tend to think that there are no numbers between two whole
numbers.

Why are conceptual models difficult for students to understand?

There are at least two reasons why pictures in the form of conceptual models
may be more difficult to understand than perceptually based depictions. The
first concerns the fact that conceptual models are usually related to complex
domain-specific theories. Thus, understanding conceptual models requires as a
prerequisite to have at least part of this complex, domain-specific knowledge.
The second difficulty concerns the gap between students’ epistemic beliefs and
the epistemic assumptions of conceptual models. Both of these reasons will be
discussed in detail below.

Conceptual models are usually related to complex, domain-specific scientific
theories. In addition to being rather abstract and complex, these domain-
specific theories are difficult for students to understand because they are
counter-intuitive, often violating some very entrenched beliefs in the context
of naive physics or naive mathematics, which are continuously supported by
everyday experience. In contrast, perceptually based depictions usually agree
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with perceptual experience and do not presuppose scientific or mathematical
knowledge.

For example, in the area of chemistry, many students have a naive theory of
matter according to which matter is something continuous, something that can
be touched and seen, and something that exists in different material kinds, such
as solids and liquids (Carey, 1991; Smith, Carey, & Wiser, 1985; Wiser & Smith,
2008). The atomic theory of matter – that matter is made up of atoms far too
small to be seen even with a microscope, that there is empty space between
atoms, and that each atom has mass and is in constant motion – violates prac-
tically all of the beliefs of the initial, perceptually based, naive theory of matter
(Andersson, 1990; Novick & Nussbaum, 1981; Wiser & Smith, 2008).

In interpreting conceptual models, children often transfer to these models
aspects of their prior knowledge which is based on everyday perception in
the context of lay culture. The result of such an implicit transfer is often the
creation of a ‘synthetic’ conception which distorts the conceptual model in
ways that make it consistent with the child’s original beliefs (see Vosniadou,
Vamvakoussi & Skopeliti, 2008, for a detailed discussion of synthetic mod-
els). Wiser and Smith (2008) also argue that misrepresentations such as the
‘atoms in matter’ model represent synthetic conceptions, i.e., attempts by the
students to synthesise information about the atomic theory of matter received
in the context of school science with some of the presuppositions of their
naive theory of matter, such as the presupposition that matter is fundamentally
continuous.

Studies comparing problem solving in experts and novices show that not
only children but also adults who are novices in science have naive theories
which are very different from those accepted by current science and which
may affect their interpretations of conceptual models. For example, accord-
ing to Kozma et al. (1996), when chemists see an unknown reddish-brown
gas, they may see this object as a model of a ‘gaseous system’ of indetermi-
nate composition, consisting of one or more substances. They might infer that
if the vessel contained more than one substance, they could be continually
reacting at certain rates, determined in part by the temperature and pressure
of the system and in part by properties of the substances. They could infer
that at a stable temperature and pressure, these substances would be at ‘equi-
librium’, reacting at equal and opposing rates such that the adjusted ratio
of their partial pressures is a constant. However, when novices see the same
object, they may only form an internal representation of ‘a gas’. Their repre-
sentations of the phenomenon may not include the possible existence of more
than one substance. They might think that one property of the solitary sub-
stance is that it turns colour when heated. Furthermore, these representations
do not usually exhibit the dynamic characteristics of the chemists’ ‘equilibrium
system’.

As domain-specific knowledge is acquired, one’s internal representations of
key concepts in the domain change, increasing the similarity between internal
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representations and external representations in the form of conceptual mod-
els likely to be found in science texts. According to Larkin (1983), significant
changes in internal representations with knowledge acquisition can be found
in experts versus novices in mechanics. When given problems with ‘blocks’
and ‘pulleys’, she argues, experts see conceptual entities like ‘forces’. Novices,
however, only see the real objects. They construct mental representations that
correspond to events or operations in the real world; they envision ‘pushing’
and ‘pulling’ the carts and blocks (Larkin, 1983). Similar observations have also
been made by Chi and her colleagues (see also Chi, Feltovitch, & Glaser, 1981).

Finally, similar changes happen in the representation of number. Novices in
mathematics see numbers as symbols that refer to discrete, physical entities,
such as counting numbers. Experts, on the other hand, have formed a different
representation of number as an abstract point on the number line which can
take the form of different representations (e.g., integers, fractions, decimals)
with the properties of density and continuity (Merenluoto & Lehtinen, 2002;
Merenluoto & Palonen, 2007; Vamvakoussi & Vosniadou, 2010).

As individuals change their internal representations of key concepts in science
and mathematics they become more capable of interpreting correctly external
representations in the form of conceptual models. Such conceptual models can,
however, easily be misunderstood by novices who lack the necessary background
knowledge.

A second, important source of difficulty in understanding conceptual models
has to do with students’ commitment to a naive, realistic epistemology. There is
a great deal of research on students’ epistemological development which shows
that even secondary school students and sometimes college students and pre-
service teachers as well have an underdeveloped epistemological understanding
of science (Grosslight et al., 1991; Hoffer & Pintrich, 1997; Smith & Wenk,
2006). They confuse theory and evidence in many ways (Kuhn, Amsel, &
O’Loughlin, 1988), they do not understand the role of ideas in guiding the
hypothesis-testing process (Carey et al., 1989; Grosslight et al., 1991; Smith
et al., 2000), they know very little about the nature of scientific models and their
relation to perceptual experience and specifically to the observed characteristics
of objects and events (Lehrer et al., 2000; Wiser & Smith, 2008), and they do
not know how to engage in model-based reasoning (Duschl, Schweingruber, &
Shouse, 2007).

Students need systematic instruction in order to move from an unsophis-
ticated perceptually based epistemology to a more advanced, model-based
epistemology. They need to develop from a resemblance-based understand-
ing of models to an understanding of abstract, conceptual models in science
that serve an explanatory function and can be used as reasoning tools. In the
last years a number of innovative curricula and instructional environments have
been designed in order to improve students’ epistemological sophistication and
their abilities to reason with models (Lehrer et al., 2001; Smith & Wenk, 2006;
Smith et al., 1997, 2000; Tytler, Peterson & Prain, 2006). Unfortunately, these
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experimental attempts have not yet influenced mainstream education in a sig-
nificant way. Traditional science instruction at all levels continues to consider
science as an accumulation of facts and fails to provide students with an under-
standing of the role of ideas, models and hypothesis-testing in the scientific
discovery. At the same time, students’ abilities to understand conceptual mod-
els in the form of textbook illustrations, and to reason using these models, are
grossly overestimated.

Instruction to help students understand conceptual models

Various experimental studies provide good suggestions about how to design
learning environments to develop a constructivist epistemology of science even
in elementary school students (see, e.g., Brown & Campione, 1994; Lehrer
et al., 2000; Smith et al., 2000; White, 1993). Some common elements in
all of these are the following: a focus on ideas rather than on facts, on
hypothesis-testing and model-based reasoning rather than on memorisation,
on argumentation and sharing of ideas rather than on individual learning; and
on giving students increasing responsibility for directing their own learning
as opposed to having the teacher telling them what to do.

With respect to domain-specific knowledge, we argued that some domain-
specific knowledge is a prerequisite to understanding many conceptual models.
We must also acknowledge, however, that the use of conceptual models can
be an important tool for developing this domain knowledge in the first place.
Conceptual models in book-based or computer-based environments can help
students understand complex mechanisms and they can help in making invisi-
ble entities and processes visible. They can represent phenomena from different
perspectives, i.e., they can show how things look in everyday up/down space
as opposed to ‘deep’ space, in real time as opposed to evolutionary time, etc.
They can help students understand counter-intuitive concepts by revealing hid-
den constraints and presuppositions, and by relating theoretical entities to their
referents. Such external representations can show, for example, how human
movement measures connect to their graphical representations, or they may
show an experiment where a liquid changes colour and, at the same time, an
animation of an expert’s model of it. They can also show how different represen-
tations of the same phenomenon can be related to each other (e.g., Vosniadou
et al., 1996 and Kozma et al., 1996).

In using conceptual models to develop domain-specific knowledge,
researchers, curriculum developers and teachers should be aware of how
students’ limited background knowledge can influence the way they interpret
these conceptual models. Thus, a great deal of attention should be paid to how
these models are designed so as not to become the source of misconceptions
but, rather, to facilitate knowledge acquisition and text comprehension.

Conceptual models in book-based or computer-based environments are
sometimes designed in ways that do not take into consideration students’
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Figure 2.6 Pictorial explanation of photosynthesis.

conflicting prior knowledge, thus becoming the source of misconceptions. For
example, the external representation shown in Figure 2.6, found in a Greek sci-
ence textbook addressed to elementary schoolchildren, is very misleading. The
purpose of this picture is to help students understand photosynthesis. How-
ever, it does not take into consideration that students often mix up their naive
understanding of plant feeding and development – according to which, plants
take food from the ground through their roots – with the scientific process
of photosynthesis. As a result, such pictures may inadvertently create synthetic
conceptions, such as that plants take food both from the ground through their
roots and from the atmosphere through their leaves (Hershey, 2004; Kyrkos &
Vosniadou, 1997).

In Figure 2.7 we find another conceptual model that is likely to be
misunderstood. This picture was used in a science text that explained the



50 Stella Vosniadou

The earth is always turning. It never stops turning.  You cannot see or feel
it turning. It makes one complete turn every day. How many times does
the earth turn in a week?

Figure 2.7 The earth’s rotation and revolution around the sun.

day/night cycle and shows the earth rotating around its axis and also revolving
around the sun, without explaining which of the two movements is responsible
for the day/night cycle. The picture has the potential to reinforce a common
mistake children make, namely to consider the revolution of the earth around
the sun as the explanation of the day/night cycle (Vosniadou & Brewer, 1994).
Such conceptual models, which show the earth revolving around the sun in an
elliptical orbit, with the earth being closer to the sun some of the time, are
also considered the main source of the widespread misconception regarding
the change of the seasons, namely that summer happens when the earth comes
closer to the sun (Schneps & Sadler, 1988).

Concluding remarks

We have argued that it is important to make a distinction between perceptu-
ally based external representations and those that represent conceptual models.
Although external representations in the form of conceptual models can help
students understand complex and counter-intuitive science and math concepts,
they also have the potential to be easily misunderstood. Students often lack the
necessary domain knowledge or the epistemic sophistication required to inter-
pret conceptual models correctly. For this reason it is important (a) to develop
specific instruction to teach students how to interpret conceptual models, and
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(b) to design external representations that are conceptual models carefully, tak-
ing into account all that is known about students’ prior knowledge, in order to
avoid possible comprehension failures.
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Note

1. Throughout this chapter we will refer to conceptual models and perceptually based
external representations only.

References

Ainsworth, S. (1999). The functions of multiple representations. Computers & Educa-
tion, 33, 131–152.

Ainsworth, S., & VanLabeke, N. (2004). Multiple forms of dynamic representation.
Learning and Instruction, 14, 241–255.

Andersson, B. (1990). Pupils’ conceptions of matter and its transformations (age 12–16).
Studies in Science Education, 18, 53–85.

Brown, Ann L., & Campione, Joseph C. (1994). Guided discovery in a community
of learners. Classroom lessons: Integrating cognitive theory and classroom practice.
In McGilly, Kate (Ed), Classroom lessons: Integrating cognitive theory and classroom
practice (pp. 229–270). Cambridge, MA: The MIT Press, xvi, 317pp.

Carey, S. (1991). Knowledge acquisition. Enrichment or conceptual change? In
S. Carey & R. Gelman (Eds.), The epigenesist of mind (pp. 257–291). Hillsdale, NJ:
Erlbaum.

Carey, S., Evans, R., Honda, M., Jay, E., & Unger, C. (1989). An experiment is when
you try it and see if it works: A study of grade 7 students’ understanding of the
construction of scientific knowledge. International Journal of Science Education, 11,
514–529.

Chi, M., Feltovitch, P., & Glaser, R. (1981). Categorization and representation in physics
problems by experts and novices. Cognitive Science, 5, 121–152.

Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational
Psychology Review, 3, 149–210.

Duschl, R. A., Schweingruber, H. A., & Shouse, A.W., (2007). Taking science to
school: Learning and teaching science in grades K-8. Washington, DC: The National
Academies Press.

Ehrlen, K. (2007). Conceptions and artefacts: Children’s understanding of the earth
in the presence of visual representations. Doctoral dissertation, Stockholm University,
Sweden.



52 Stella Vosniadou

English, L. (1993). Reasoning by analogy in constructing mathematical ideas. In G. Bell,
B. Wright, N. Leeson, & Geake, J. (Eds.), Challenges in mathematics education: Con-
straints on construction (pp. 213–222). Lismore, Australia: Mathematics Education
Group of Australasia.

Giere, R. (1988). Explaining science: A cognitive approach. Chicago: University of
Chicago Press.

Grosslight, L., Unger, C., Jay, E., & Smith, C. (1991). Understanding models and their
use in science. Conceptions of middle and high school students and experts. Journal
of Research in Science Teaching, 28, 799–822.

Hershey, D. R. (2004). Avoid misconceptions when teaching about plants. American
Institute of Biological Sciences, from http://www.actionbioscience.org/education/
hershey.html.

Hesse, M. (1966). Models and analogies in science. Notre Dame, IN: University of
Indiana Press.

Hoffer, B., & Pintrich, P. (1997). The development of epistemological theories: Beliefs
about knowledge and knowing and their relation to learning. Review of Educational
Research, 67, 88–140.

Kozma, R., Russell, J., Johnston, J., Marx., N., & Davis, J. (1996). The use of mul-
tiple, linked representations to facilitate science understanding. In S. Vosniadou,
E. De Corte, R. Glaser, & H. Mandl (Eds.), International perspectives on the design
of technology-supported learning environments (pp. 41–60). Mahwah, NJ: Erlbaum.

Kuhn, D., Amsel, E., & O’Loughlin, M. (1988). The development of scientific thinking
skills. Orlando, FL: Academic Press.

Kuhn, T. (1957). The Copernican revolution: Planetary astronomy in the development of
Western thought. Cambridge, MA: Harvard University Press.

Kyrkos, Ch., & Vosniadou, S. (1997). Mental models of plant nutrition: A study of concep-
tual change in childhood. Poster presented at the Seventh Conference of the European
Association for Research on Learning and Instruction, Athens, Greece.

Larkin, J. (1983). The role of problem representation in physics. In D. Gentner &
A. Stevens (Eds.), Mental models (pp. 75–98). Hillsdale: NJ: Erlbaum.

Lehrer, R., Carpenter, S., Shauble, L., & Putz, A. (2000). Designing classrooms that
support inquiry. In J. Minstrel & E. H. van Zee (Eds.), Inquiring into inquiry learning
and teaching in science (pp. 80–99). Washington, DC: American Association for the
Advancement of Science.

Lowe, R. K., & Schnotz, W. (Eds.). (2007). Learning with animation: Research and
implications for design. New York: Cambridge University Press.

Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions? Educa-
tional Psychologist, 32, 1–19.

Mayer, R. E. (2003). Learning and instruction. Upper Saddle River, NJ: Prentice Hall.
Mayer, R. E., & Moreno, R. (2002). Aids to computer-based multimedia learning.

Learning and Instruction, 12, 107–119.
Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia

learning. Educational Psychologist, 38, 43–52.
Merenluoto, K., & Lehtinen, E. (2002). Conceptual change in mathematics: Under-

standing the real numbers. In M. Limon & L. Mason (Eds.), Reconsidering conceptual
change: Issues in theory and practice (pp. 233–258). Dordrecht, The Netherlands:
Kluwer.



Instructional considerations in the use of representations 53

Merenluoto, K., & Palonen, T. (2007). When we clashed with the real numbers: Com-
plexity of conceptual change in number concept. In S. Vosniadou, A. Baltas, &
X. Vamvakoussi (Eds.), Reframing the conceptual change approach in learning and
instruction (pp. 247–263). Oxford, UK: Elsevier.

Morgan, M. S., & Morrison, M. (Eds.). (1999). Models as mediators: Perspectives on
natural and social science. Cambridge, UK: Cambridge University Press.

Novick, S., & Nussbaum, J. (1981). Pupils’ understanding of the particulate nature of
matter: A cross-age study. Science Education, 65, 187–196.

Opfer, J. E., & Siegler, R. S. (2007). Representational change and children’s numerical
estimation. Cognitive Psychology, 55, 169–195.

Paivio, A. (1986). Mental representations: A dual-coding approach. New York: Oxford
University Press.

Pantsidis, Ch., & Vosniadou, S. (2006). The role of external representations in
the ordering of fractions. Paper presented at the Fifth European Symposium
on Conceptual Change ‘Bridging the Gap between Mental Models and Sit-
uated Cognition? Theoretical and Methodological Considerations’. Stockholm,
Sweden.

Pozo, R. M., & Gomez Crespo, M., (2005). The embodied nature of implicit theories:
The consistency of ideas about the nature of matter. Cognition and Instruction, 23,
351–387.

Schneps, M. H., & Sadler, P. M. (1988). A private universe. New York: Annen-
berg/CPB.

Schnotz, W. (2001). Sign systems, technologies, and the acquisition of knowledge. In
J. F. Rouet, J. J. Levonen, & A. Biardeau (Eds.), Multimedia learning: Cognitive and
instructional issues (pp. 9–29). Amsterdam: Elsevier Science.

Schnotz, W. (2002). Towards an integrated view of learning from text and visual displays.
Educational Psychology Review, 14, 101–120.

Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from
multiple representations. Learning and Instruction, 13, 141–156.

Schnotz, W., & Kürschner, C. (2008). External and internal representations in the acqui-
sition and use of knowledge: Visualization effects on mental model construction.
Instructional Science, 36, 175–190.

Smith, C., Carey, S., & Wiser, M. (1985). On differentiation. A case study in
the development of the concepts of weight, size and density. Cognition, 21,
177–237.

Smith, C., Maclin, D., Grosslight, L., & Davis, H. (1997). Teaching for understand-
ing: A study of students’ preinstruction theories of matter and a comparison of the
effectiveness of two approaches to teaching about matter and density. Cognition and
Instruction, 15, 317–394.

Smith, C. L., Maclin, D., Houghton, C., & Hennesey, M. G. (2000). Sixth-grade stu-
dents’ epistemologies of science: The impact of school experiences on epistemological
development. Cognition and Instruction, 18, 349–422.

Smith, C. L., & Wenk, L. (2006). Relations among three aspects of first-year col-
lege students epistemologies of science. Journal of Research in Science Teaching, 43,
747–785.

Star, C., & Taggart, R. (1992). Biology the unity and diversity of life (6th ed.). Belmont,
CA: Wadsworth Publishing Company.



54 Stella Vosniadou

Tytler, R., Peterson, S., & Prain, V. (2006). Picturing evaporation: Learning science lit-
eracy through a particle representation. Teaching Science, the Journal of the Australian
Science Teachers Association, 52(1), 12–17.

Vamvakoussi, X., & Vosniadou, S. (2010). How many decimals are there between two
fractions? Aspects of secondary school students’ understanding of rational numbers
and their notation. Cognition and Instruction 28, 181–209.

Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of
conceptual change in childhood. Cognitive Psychology, 24, 535–585.

Vosniadou, S., & Brewer, W. F. (1994). Mental models of the day/night cycle. Cognitive
Science, 18, 123–183.

Vosniadou, S., De Corte, E., Glaser, R., & Mandl, H. (1996). International perspectives
on the design of technology-based learning environments. Mahwah, NJ: Erlbaum.

Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008), The framework theory approach
to the problem of conceptual change (pp. 3–34). In S. Vosniadou (Ed.), International
handbook of research on conceptual change. New York: Routledge.

Wiser, M., & Smith, C. (2008). Learning and teaching about matter in grades K-8:
When should the atomic-molecular theory be introduced? In S. Vosniadou (Ed.),
International handbook of research on conceptual change (pp. 205–239). New York:
Erlbaum.

White, B. (1993). ThinkerTools: Causal models, conceptual change, and science
education. Cognition and Instruction, 10, 1–100.



Chapter 3

Critical thinking about biology
during web page reading
Tracking students’ evaluation of sources and
information through eye fixations

Lucia Mason and Nicola Ariasi

Introduction

Our research addresses the role of external representations in reasoning and
problem solving by examining the epistemic processing of texts and pictures
about a biology topic, which are presented on multiple Internet pages. Epis-
temic processing is intended as processing that takes into account the source,
reliability, and accuracy of information (Hofer & Pintrich, 1997). It is manifest
in evaluative processes of the trustworthiness of an informational source and the
veracity of its content, especially in the context of web page reading. As such,
epistemic processing reflects an important aspect of critical thinking (King &
Kitchener, 2002; Kuhn & Weinstock, 2002) activated by a reader who deals
with multiple documents on the same topic.

Since the beginning of the new millennium, the World Wide Web has become
a tool used by almost anyone – at least in western and many eastern countries –
to search information on a huge variety of topics. Although it was not originally
developed for educational purposes, the Web is now the biggest source of infor-
mation for students, who rely on it, rather than on printed material, more and
more for academic and school assignments. Undoubtedly, this is an important
aspect of the democratisation of our current cultural context. At the same time,
however, the infinite body of information made available on this potentially
global learning environment by a simple click of the mouse, poses questions of
locating, selecting, and evaluating the sources of information, as well as about
the information itself, which requires new and complex skills. First of all, infor-
mation sources must be located. The information must then be read, extracted,
integrated, and synthesised into coherent material which can be used to build
new knowledge (Kuiper, Volman, & Terwel, 2005). These crucial processes,
however, do not cover all those required to use Internet-based material effec-
tively. Navigating the Web to learn more about a topic is not only a question of
formulating efficient search queries and applying appropriate reading strategies.
It is also a question of evaluating the credibility of websites and the veracity of
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the information provided. Epistemic processes about the knowledge accessed
and learning from the Web must be activated to deal with multiple sources and
to follow up only the most reliable of these (Stadtler & Bromme, 2008).

In this chapter we focus on the latter question to examine whether university
students take into account the authoritativeness of sources when reading Inter-
net pages on a biology issue and whether their epistemic processing is related
to individual characteristics. In particular, epistemic processing was addressed
indirectly by the analysis of eye fixations during Internet page reading. Method-
ologically, an ‘online’ technique was used that allows objective measurement of
the allocation of visual attention while reading, that is, eye fixation measure-
ment. The analysis of visual attention allocated within various pages makes it
possible to track epistemic evaluation of sources, and their contents.

Information on the Web is presented in a wide variety of representational
formats. In this regard, as the multimedia tool par excellence, the Web is a
wealth of external representations. Web pages may contain graphs, diagrams,
animations, etc. as well as texts and pictures. In this study, we examined visual
attention allocated while processing the texts and pictures appearing on various
web pages. The research focused on evaluative processes of source reliability,
which may lead to concentrating more on certain information and less on other,
or to processing the same information differently according to the epistemic
authority of the source itself.

Epistemic evaluation of web sources

The value of a search is not reflected in the number of documents retrieved
(‘the more, the better’), nor the retrieval speed (‘the faster, the better’). It
does not make sense to find hundreds of documents quickly, although typically
this is what happens when students do not have the necessary skills to access
and manage information meaningfully. A number of studies have been car-
ried out to examine patterns of information-seeking behaviour (Brand-Gruwel,
Wopereis, & Vermetten, 2005; Lin & Tsai, 2007; Tu, Shih, & Tsai, 2008)
and descriptive models of it have been proposed (e.g. Brand-Gruwel et al.,
2005).

Evaluation of the credibility of a web source is included in these models, as a
crucial aspect of information problem solving, although few studies have been
carried out on students’ judgements of the authoritativeness of an electronic
source or the accuracy of its content. In the past, the difficult task of controlling
the truth of information was undertaken by editors and publishing companies,
while today this task must be carried out by the learners themselves when navi-
gating the Internet to learn more about a topic (Bråten & Strømsø, 2006; Tsai,
2004). Difficulty in recognising the epistemic value of an information source can
be expected in younger students, as documented in the literature. Fifth-graders
may believe that all they find on the Web is true (Schacter, Chung, & Dorr,
1998), and together with some seventh-graders, may not be aware that the
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knowledge provided on multiple sites is conflicting because of a one-sided per-
spective, or may be unable to perceive the plurality of the information read
(Mason & Boldrin, 2008). It has also been documented that junior and senior
high school students’ evaluation is limited when assessing the credibility or accu-
racy of websites for their varying authoritativeness (Brem, Russell, & Weems,
2001), or they may not take into account the authority of a web source when
evaluating a theory on a controversial scientific topic (Clark & Slotta, 2000).

Limited ability to evaluate Internet sources is more surprising and worrying
in older students. College students may not necessarily be aware of an explicit
epistemology when evaluating online information (Hofer, 2004). In addition,
they may rely only on a general search engine (Google) to find out more about
an unfamiliar scientific topic and not access any specialised scientific databases.
They might not make judgements about the authoritativeness of a source in
itself, or might appeal to naive criteria (Mason & Boldrin, 2008). Only when
university students are prompted to use evaluation criteria to select web links
and assess web pages, do their quality- and credibility-oriented criteria increase
(Kammerer, Werner, & Gerjets, 2008).

Epistemic beliefs and web navigation

Beliefs about the nature of knowledge and the process of knowing, namely epis-
temic beliefs (Hofer & Pintrich, 1997), have been the focus of research which
has flourished over the last two decades in both developmental and educational
psychology.

From a developmental point of view, the trajectory that characterises the evo-
lution of representations about knowledge and knowing has been indicated
(King & Kitchener, 1994; Kuhn, 2000). The shared developmental sequence
that can be identified across the proposed models leads individuals to shift,
in Kuhn’s (2000) terms, from an absolutist to a multiplist to an evaluativist
position about knowledge and knowing. According to the absolutist view,
knowledge is absolute, certain, non-problematic, right or wrong. It is based
on observations from reality or authority, thus it does not need to be justified
(knowledge as fact). According to the multiplist position, knowledge is ambigu-
ous and idiosyncratic, thus each individual has his or her own views and truths
(knowledge as opinion). At the evaluativist level, knowledge is conceived as plu-
ral and hypothetical but the individual also believes that there are shared norms
of inquiry and knowing, thus some positions may be reasonably more supported
and sustainable than others (knowledge as judgement).

In educational psychology, scholars have identified the various dimensions
around which epistemic beliefs articulate. There is substantial agreement among
scholars about four epistemic dimensions underlying these beliefs, two regard-
ing the nature of knowledge and two regarding the nature of knowing (Hofer,
2000). The first epistemic belief dimension about the nature of knowledge com-
prises convictions about the simplicity vs. the complexity of knowledge (from
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knowledge as a set of discrete and simple facts to knowledge as a complex and
interrelated network of concepts). The second epistemic dimension about the
nature of knowledge concerns beliefs about the certainty vs. the uncertainty of
knowledge (from knowledge as stable and absolute to knowledge as tentative
and evolving). The first epistemic dimension about the nature of knowing con-
cerns the relationship between knower and known (from transmitted knowledge
that resides outside the self to knowledge that it is rationally constructed by the
self). The second epistemic dimension about the nature of knowing concerns
the justification of knowledge (from observation or authority as a source, to
rules of inquiry and standards for the evaluation of a source).

Beliefs about the nature, justification, and source of knowledge are not
extraneous to students’ behaviour during Web use. Research has documented
that epistemic beliefs are related to decision-making processes during informa-
tion searching (Withmire, 2003), search outcomes (Tu, Shih, & Tsai, 2008),
preference for higher-order metacognitive activities in Internet-based learning
environments (Tsai & Chuang, 2005) and discussion and communication activ-
ities (Bråten & Strømso, 2006). In all these studies, more advanced beliefs
about knowledge and knowing are associated significantly with better perfor-
mance. In addition, there is evidence that university students spontaneously
activate epistemic beliefs while reading web sources to acquire information on a
controversial topic, and that this epistemic activation influences Internet-based
learning (Mason, Boldrin, & Ariasi, 2010), favouring students who process the
material at a higher epistemic level. Furthermore, it has been documented that
eighth-graders’ epistemic reflections about the justification of online knowl-
edge during a retrospective interview influence their learning of the debated
topic under consideration, favouring more epistemically sophisticated students
(Mason, Boldrin, & Ariasi, 2008).

Eye tracking and web page reading

In the above-mentioned studies, students’ evaluation of Internet informational
sources was examined by two methods: one online, thinking aloud, and the
other offline, as a retrospective interview. The former is advantageous for pro-
viding a rich source of data but, because of its intrusiveness, can alter the process
of thinking itself, since cognitive resources are diverted from the execution
of the primary task (Veenman, Van Hout-Wolters, & Afflerbach, 2006). Ret-
rospective interviews are not intrusive but cannot reveal what spontaneously
comes to mind since students are solicited to evaluate the web sources accessed.
In the study reported below, a method that combines the positive aspects of
both online and offline measures was used, that is, eye-tracking measurement,
to focus on the allocation of visual attention during Internet page reading.
Although it has been used extensively in several fields of cognitive psychol-
ogy, especially to study lexical access and syntactic parsing (Rayner, 1998), this
technique has very rarely been used in instructional psychology (Verschaffel,
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De Corte, & Pauwels, 1992) until recently (Hyönä, Lorch, & Kaakinen, 2002;
Jarodzka et al., 2010). The theoretical assumption underlying this method is
that saccades (eye movements) and attentional shifts are necessarily linked. If,
in simple discrimination tasks, the locus of attention can be decoupled from
eye location (Posner, 1980), in complex information processing tasks, such
as reading, scene perception, and visual search, the link between the two is
necessarily close (Rayner, 1998). Individuals process in the mind the visual
information that is currently being fixated by the eye (Just & Carpenter, 1980).
Eye movements are, therefore, a strong online indicator of the cognitive pro-
cesses implicated, reflecting them ‘moment-to-moment’ (Liversedge & Findlay,
2000). In this regard, very recent research has clearly indicated that eye-tracking
methodology provides fine-grained data useful for analysing, or even stimu-
lating, information processing in multimedia learning (van Gog & Scheiter,
2010). Eye fixation data, therefore, provide the means for tracking cognitive
processes also while reading Internet pages (Hyönä, Lorch, & Rinck, 2003):
gazes on relevant information have higher densities than gazes on irrelevant
information.

Although several studies have investigated the allocation of visual attention
during web page reading in relation to the utility of electronic resources or web
advertising (e.g., Wang & Day, 2007), very little research has been carried out
on visual behaviour during web page reading in an educational context. One
study examined evaluation processes during online searching, in particular the
effectiveness of prompts in evaluation. Data showed that prompts did not affect
university students’ gaze behaviour, although their verbal utterances expressing
criteria oriented to credibility increased (Kammerer et al., 2008). Another study
focused on the effects of information problem-solving skills on judgement of a
Google search page with 20 results. Findings regarding eye fixations revealed
that students with low information problem-solving skills did not consider all
results, but quickly selected a top-of-page result (Meeuwen, Brand-Gruwel, &
van Gog, 2008).

In the study reported below we were interested in examining whether web
pages would be processed differently according to their different levels of
authoritativeness. Measurement of eye fixations on different types of informa-
tion would make it possible to track information processing at an epistemic level,
in this case in relation to source credibility. An Internet reader allocates more
visual attention to information that is processed as reliable and accurate, while
less attention is allocated to information that is evaluated as scarcely reliable
or not reliable. We were also interested in examining whether individual dif-
ferences, such as prior knowledge, domain epistemic beliefs, and argumentative
reasoning, can influence epistemic processing. Greater prior knowledge can lead
to searching new information and higher awareness of the accuracy of informa-
tion (Hirsh, 1999). More constructivist beliefs about knowledge in a domain
can lead to greater awareness of the complex and changing nature of knowl-
edge (Mason, Gava, & Boldrin, 2010). Higher argumentative reasoning skills
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can lead to a better detection of fallacies in the arguments provided (Weinstock,
Neuman, & Glassner, 2006).

The present study

Research questions and hypotheses

The study was aimed at expanding, theoretically and methodologically, current
research on Internet searching and information processing. Theoretically, we
related issues of research lines that are generally independent, that is, research
on web navigation (Brand-Gruwel et al., 2005; Kuiper et al., 2005; Tsai, 2008)
and research on epistemic beliefs (Hofer, 2000; Hofer & Pintrich, 1997).
Methodologically, an online technique was used that allows objective measure-
ment of the allocation of visual attention during reading, that is, eye-fixation
measurement to track epistemic processing.

During web page reading not all students were expected to be epistemically
involved to the same extent in information processing, depending on the source.
Based on the literature, we examined the role of prior knowledge, domain epis-
temic beliefs, and argumentative reasoning, that is, all the individual factors that
can potentially play a role in epistemic processing.

Specifically, the following research questions guided this study:

– Does information receive attention within the same web source and across
different sources according to the source authoritativeness?

– Is attention allocation influenced by individual characteristics such as prior
knowledge, epistemic beliefs, and argumentative reasoning?

For the first research question, we hypothesised that source reliability would
play a role since it ‘suggests’ to the reader to concentrate more on the type of
information that is relevant to the particular site, that is, the classic informa-
tion on the most expert and reliable page and the less familiar information on
the least competent and reliable page. Specifically, within the most authoritative
source, text 1 and picture 1, which provided information about the classic, bet-
ter known, universal validity of the central dogma of molecular biology, would
be fixated with more attention than text 2 and picture 2, which provided less
familiar information against the dogma. More attention on text 1 and picture 1
would mean that they are elaborated more as they deserve to be followed up.
An opposing pattern of allocation of visual attention should emerge within the
least credible page. In addition, we also expected that students would allocate
attention on the same information differently across web pages according to
their credibility. Specifically, we expected that both text 1 and picture 1 would
receive more attention on the institutional, most reliable page than on the other
pages, likewise text 2 and picture 2 on the alternative, less credible source. More
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relevant information from the unreliable page would be the new, less familiar
issues about the biology dogma, which may conflict with a classic perspective
on the question.

For the second research question, we hypothesised that individual differ-
ences would play a role in the allocation of attention during reading. Higher
prior knowledge, more advanced epistemic beliefs and higher argumentative
reasoning skills would lead to greater attention on less-known information,
especially from authoritative sources, as these personal characteristics would be
resources which help readers evaluate less familiar accounts about the examined
question.

Method

Participants

Thirty-seven college students, from the faculties of biology and psychology,
were involved (F = 19, M = 18). Their mean age was 22.6 (SD = 2.1).

Material

With the simulated aim of collecting information to write a report on the topic,
participants were asked to read four ‘web stimuli’, prepared by taking informa-
tion from real pages. Each was made up of five types of information: headline,
two texts and two pictures (Figure 3.1). One text and picture composed an

Headline

Text 1

Text 2

Picture 1

Picture 2

Figure 3.1 The five areas of interest in each web page that correspond to the different types
of information provided.
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argument for, while the other text and picture made up an argument against
the universal validity of the central dogma of molecular biology, first enunciated
by Crick (1970). It postulates the unidirectional nature of the transfer of genetic
information, that is, from nucleic acids to proteins and not vice versa: DNA can
be copied to DNA (DNA replication), DNA information can be copied into
mRNA (transcription) and proteins can be synthesised using the information
in mRNA as a template (translation). This dogma was considered universally
valid until the discovery of retroviruses, such as HIV. In the case of retroviruses,
the reverse of normal transcription occurs, as genetic information is transferred
from RNA to DNA.

The four pages included information that was exactly the same in terms of
content, style and structure regarding both texts and pictures. To make these
characteristics as similar as possible across the pages, the information was manip-
ulated slightly and not simply taken from the Internet. Each page provided an
argumentation for and an argumentation against the central dogma of molecu-
lar biology. For conceptual reasons related to the topic, argumentation 1 (pro)
should precede argumentation 2 (con) in all pages. In addition, in all pages
the texts were identical in the numbers of sentences and words, and in the size
of the images. What differentiated the four pages was only their location on
an ‘epistemic continuum’ from the least to the most authoritative: institutional
(the site of the CNR, the National Council for Research in Italy), encyclopaedic
(Wikipedia), popular (Science and Knowledge), and alternative (‘The genet-
ics of chickens’). The epistemic status of the pages could be inferred from the
information at the top of the page, that is, the heading including its URL (e.g.
www.igb.cnr.it) and full name (e.g. Istituto di Genetica e Biofisica, Consiglio
Nazionale delle Ricerche).

To avoid the possibility of order of appearance interfering with the selection
of web sources to be read, four different combinations of results were prepared:
in the first outcome, the first source was institutional; in the second outcome,
the first was the encyclopaedic page; in the third outcome, the first was the pop-
ular site, and in the fourth outcome, the first was the alternative page. One of
these four combinations was presented in a random order to each participant,
who could spend up to 60 seconds reading. This length of time was chosen
for two main reasons, one methodological and the other conceptual. First, we
needed to build an environment that was as controlled as possible to ensure the
most appropriate measurement of visual behaviour during web page reading. In
a pilot study, we asked participants to read each source while their reading times
were measured. The average reading time of all web pages was about 60 sec-
onds; therefore this time limit was chosen as the threshold reading time in the
present study. Second, eye movement data, like response times for other types of
task, can be considered viable indices of the fast and efficient processes involved
in epistemic processing, which takes place at an early stage of reading informa-
tion (Richter, Schroeder, & Wöhrmann, 2009). Of course, we do not maintain
that 60 seconds are enough for a deep learning of the concepts presented in
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the texts and pictures within the pages. Given that no educational studies have
examined epistemic processing of online information using quantitative process
data, we relied on issues of very recent research in social cognitive psychology
and assumed that epistemic processing of information is activated early.

Each type of information within each page represented an ‘area of interest’
for the analysis of eye fixations (see below). Eye movements were recorded
by a 50 Hz Tobii 1750 eye tracker, supported by the software program Clear
View 2.7.1.

Measures

Participants’ prior knowledge about the biology topic was indicated by the
grade obtained in a biology examination.

Epistemic beliefs about the domain of biology were measured by the CAEB
(Connotative Aspects of Epistemological Beliefs, Stahl & Bromme, 2007) – a
semantic differential scale, made up of 17 pairs of items that measure beliefs
about the source, simplicity and certainty of knowledge. The alpha reliability
coefficient of this instrument was .72.

Argumentative reasoning skills were measured by the Argumentative Rea-
soning Task (Neuman, 2003), which introduces six stories to measure skill
in identifying argumentative fallacies. The alpha reliability coefficient of this
instrument was .72.

On the basis of the medians, scores for each individual difference were
dichotomised to obtain two subgroups: one higher and the other lower for
prior knowledge, epistemic beliefs about biology and argumentative reasoning
skills.

Regarding eye measures, the following indices were analysed for each area
of interest within each page: (1) total fixation time (TFT in seconds) as the
summed duration of all fixations on an area of interest (this is an indicator of
the total amount of attention allocated on an area, which reflects the ‘duration’
of elaboration on it), and (2) mean fixation time (MFT in milliseconds) as the
ratio between the TFT on an area of interest and the number of fixations on
it. It therefore reflects the mean ‘duration’ of elaboration on the attended area.
The five areas of interest, which corresponded to the five types of information
provided on each page, varied for size. Therefore, measurement of the MFT
was necessary to compare the visual behaviour on the five areas, and to compare
(in the first analyses, see below) attention allocation on information located
on different page positions (top and bottom), which could be more or less
attended.

Procedure

In a departmental laboratory equipped with Tobii 1750, participants were
first asked to indicate their gender and age, and administered the CAEB and
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Argumentative Reasoning Task via computer. They were then presented with
the sequence of the four web pages to be read in a randomised order. After
the execution of this task, they were asked to indicate the grade received in the
biology exam.

Results

Main findings are presented in relation to each research question.

Attention allocation and source authoritativeness

We first examined attention allocation within each source by focusing on the five
different types of information that appeared on it. Attention allocation across the
different sources was then examined by focusing on the four sources varying in
authoritativeness.

Attention allocation within each source

An ANOVA for repeated measures with the five types of information (headline,
text 1, picture 1, text 2 and picture 2) as independent variables and MFT as
the dependent variable was performed separately for each of the four pages.
Significant differences emerged for the allocation of visual attention in relation
to the type of information within the institutional, more authoritative page,
F (2.589,93.193) = 5.26, p < .05, η2 = .13 (Greenhouse-Geisser), as well as
within the encyclopaedic, more well-known page, F (1.882,65.609) = 6.65,
p < .01, η2 = .16 (Greenhouse-Geisser). For both these pages, post hoc analyses1

revealed that text 1 was fixated for a longer mean time than text 2 (Figure 3.2).

0

50

100

150

200

250

300

350

Headline

Text 1

Picture 1

Text 2

Picture 2

Figure 3.2 Mean fixation time (milliseconds) by type of information on the institutional web
page.
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Figure 3.3 Mean fixation time (milliseconds) by type of information on the alternative web
page.

Significant differences also emerged within the alternative, least reliable
source, F (1.682,60.568) = 13.05, p < .05, η2 = .27 (Greenhouse-Geisser).
Post hoc analyses showed that picture 2 was fixated for a longer mean time than
picture 1 for that source (Figure 3.3).

Attention allocation across sources

An ANOVA for repeated measures with the four web sources (institutional,
encyclopaedic, popular and alternative) as independent variables and TFT
and MFT as dependent variables was performed for each of the five types
of information. Significant differences emerged for the allocation of visual
attention in relation to the source authoritativeness when considering text 2,
F (3,108 = 3.38, p < .05, η2 = .09.

As revealed by post hoc analyses, the alternative, least credible page received
a longer TFT (M = 17.43, SD = 5.48) than the institutional, more credible
page (M = 13.78, SD = 6.28). Moreover, visual attention was also allocated
differently on picture 1, F (3,108) = 2.91, p < .05, η2 = .08.

Specifically, the MFT on this picture was longer when the ency-
clopaedic (M = 278.90, SD = 119.45) and scientific sources (M = 267.12,
SD = 112.50) were read and shorter when the popular (M = 237.64,
SD = 71.05) and alternative pages (M = 241.52, SD = 72.93) were
read. The opposite pattern of visual attention emerged for picture 2,
F (2.279,82.045) = 8.23, p < .001, η2 = .19 (Greenhouse-Geisser). Post hoc
analyses revealed that it was fixated for a longer mean time when the alterna-
tive (M = 342.69, SD = 216.34), unreliable page was read, while it was fixated
for a shorter mean time during the reading of the institutional (M = 210.97,
SD =157.72), more reliable source. Significant differences related to the type of
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Figure 3.4 Total fixation time (seconds) on argument 1 by web page.

source also emerged for argument 1 (both text and picture) about the universal
validity of the central dogma of biology, F (3,108) = 3.84, p < .05, η2 = .10.
Post hoc analyses showed that the institutional page was fixated for a longer total
time than the alternative page (Figure 3.4).

When argument 2 was considered, significant differences again emerged,
F (3,108) = 4.17, p < .05, η2 = .10, but an opposing pattern of visual
attention was identified compared with argument 1 (Figure 3.5). No significant
differences emerged for visual attention allocated to page headings.
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Attention allocation and individual differences

Preliminary analyses revealed a significant difference in prior knowledge
between biology (M =23.35, SD =4.06) and psychology students (M =20.71,
SD = 2.95), t(35) = 2.28, p < .05. In contrast, no differences emerged regard-
ing their epistemic beliefs about biology and argumentative reasoning skills.
When considering the role of the latter characteristics, therefore, we took into
account the former as a covariate in the statistical analyses.

PRIOR KNOWLEDGE

An ANOVA revealed that what students already knew about the transfer of
genetic information influenced the MFT on all argument 1 through the four
pages, F (1,35) = 7.01, p < .05, η2 = .17.

Lower prior knowledge participants (M = 270.75, SD = 45.70) allocated
more attention to the more solid and traditional information in all pages than
higher prior knowledge participants (M = 233.40, SD = 40.10).

EPISTEMIC BELIEFS

From an ANCOVA (with prior knowledge as covariate), it emerged that stu-
dents with less sophisticated beliefs about the biological domain (M = 262.40,
SE = 8.77) fixated text 1 for a longer mean time on all pages than students
with more advanced representations about biology knowledge (M = 230.09,
SE = 8.05), F (1,34) = 7.01, p < .05, η2 = .17. It is interesting to note
that the latter (M = 3.87, SE = .7) dedicated more time to picture 2 than
the former (M = 1.71, SE = .7) only within the institutional, reliable source,
F (1,34) = 4.21, p < .05, η2 = .11.

In contrast, readers with less sophisticated beliefs about biological knowledge
(M = 261.97, SE = 10.52) spent on average more time than readers with less
sophisticated epistemic beliefs about biology (M = 231.50, SE = 9.66) reading
the encyclopaedic, well-known page, idem F (1,34) = 4.33, p < .05, η2 = .11.

ARGUMENTATIVE REASONING SKILL

Another ANCOVA revealed that participants with greater skill in detecting
informal reasoning fallacies (M = 45.68, SE = 1.84) allocated attention to the
alternative page for longer than students less skilled (M = 38.09, SE = 2.42) in
that respect, F (1,34) = 5.730, p < .05, η2 = .14.

Discussion and conclusion

The purpose of this study was to extend current research on the epistemic
processing of online information by using eye tracking as a non-intrusive
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methodology that provides data as an indicator of cognitive processing during
reading (Rayner, 1998). Eye-fixation measures can therefore track the evalua-
tion of the trustworthiness of electronic resources and their contents. We were
particularly interested in examining whether online information would be pro-
cessed differently in relation to the authoritativeness of its source. According
to the literature (Hofer, 2000, 2004), one essential dimension of epistemic
thinking concerns beliefs about the source of knowledge.

Our first research question asked whether students allocated visual atten-
tion differently within each page and across web pages on the basis of source
authoritativeness. As hypothesised, findings indicated that within each page,
the attention paid to the various parts varied significantly. Specifically, atten-
tion patterns for text 1 arguing for the universal validity of the central dogma,
and for text 2 arguing against it, were the same for the scientific, most reli-
able source, as well as for the well-known encyclopaedic source: text 1 had
a longer fixation time than text 2. Another significant attentional variation
was identified for pictures within the alternative web page, where picture 1
illustrating the ordinary genetic transmission was fixated for a shorter mean
time than picture 2 illustrating the reversed genetic transfer. These outcomes
indicate that students look for solid information when reading authoritative
pages, and their classic information about the central dogma and its role in the
basic biological processes of living beings was therefore elaborated with more
attention.

In addition, findings substantially confirmed our hypothesis about opposing
patterns of attention allocation across pages concerning the classic and the new
argumentation about the universal validity of the central dogma in biology. The
former was fixated for a longer total time on the institutional, more reliable
source, the latter on the alternative, less trustworthy page. In particular, the pic-
ture illustrating the reverse genetic transfer received a greater amount of visual
attention on the two sources with a lower epistemic status, while the picture
showing well-known information about the unidirectionality of genetic trans-
fer was fixated more in the two sources with a higher epistemic status. These
findings lead us to infer that if the source in which the information is presented
influences visual behaviour while reading, epistemic processing occurred. Infor-
mation that developed the ‘stable’ and shared basis of the biological issue under
examination was processed with more attention within an official and author-
itative source. In contrast, ‘alternative’ information, which illustrates how the
consolidated explicative model cannot account for new conflicting evidence, was
processed with more attention within a non-official, non-consolidated source.
These data are in line with those regarding spontaneous epistemic activation
during web navigation as revealed by thinking aloud. Although at different
levels of sophistication, university students were able to take source reliability
into account when dealing with multiple, if not conflicting, documents about a
debatable topic (Mason & Boldrin, 2008; Mason et al., 2010).
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Our second research question asked whether individual differences influ-
enced the allocation of attention while reading the four web pages. Findings
substantially support our hypotheses as participants’ examined characteristics,
prior knowledge, epistemic beliefs about biology, and argumentative reasoning
skill differentiated to some extent their visual behaviour in the expected direc-
tion. Specifically, in all pages less knowledgeable students needed to allocate
more attention to the argument that transmitted the basic information about
the transfer of genetic information than students with higher prior knowledge,
who did not need to concentrate so much on the basic principles of the topic.
The favouring role of prior knowledge also emerged in previous research about
Internet searching for information (Kuiper et al., 2005).

As expected, participants with less advanced domain epistemic beliefs, that is,
who believed more in biology knowledge as absolute, certain, and stable, fixated
more the classic argumentation than participants believing more in biological
knowledge as tentative, uncertain, and unstable. On average, lower epistemic
sophistication led to spending more time reading the most well-known source,
the encyclopaedic. Higher epistemic sophistication led to concentrating more
on the picture representing reverse genetic transfer when it was presented on the
institutional, authoritative source. Epistemically more sophisticated students,
who believed in biological knowledge as uncertain and evolving, were more
likely to pay attention to newer information, provided that it comes from an
authoritative source. This outcome is in line with previous data about the role of
epistemic beliefs in Internet-based learning environments (Bråten & Strømso,
2006), especially in processes of online information evaluation (Mason et al.,
2010; Tsai, 2008).

Finally, participants who were more able to identify argumentative fallacies
spent more time reading the alternative page than participants low in argu-
mentative reasoning skills. It can be speculated that the former had a cognitive
resource available allowing them to pay attention even to a scarcely reliable web
page, as they were more able to evaluate the accuracy of information, regardless
of the type of source in which it is presented. To some extent this finding calls
up previous evidence regarding the positive correlation between epistemic belief
and argument generation (Mason & Scirica, 2006) and evaluation (Weinstock
et al., 2006).

In sum, this study shows first that external representations provided within a
web page as information texts and pictures, receive different amounts of atten-
tion. Second, it indicates that the credibility of an information source influences
reading: the same materials receive different attention according to the type of
page in which they are presented. Third, individual differences play a role in
epistemic processing of external representations on the Web.

The study, however, has two main limitations. First, the four web pages were
presented in a linear sequence, with no possibility of returning to a previous
page. In addition, each page was presented for a fixed reading time to avoid
a time variable (which was not investigated), interfering with the task. Future
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research must overcome linearity in accessing the information sources and take
into account the hypertextual nature of the Web. Moreover, reading time can
be taken into account as a covariate if it is not fixed for all participants.

Second, the study did not examine participants’ learning from the multiple
sources. Future studies must reveal the relationship between ocular behaviour
during reading and learning through web sources.

The study makes a contribution to scientific research by providing objective
evidence that web pages are read differently by college students, who allocate
different amounts of attention to various external representations according
to type and source. From a methodological point a view, it documents that
eye-movement measurement provides indices of processing that can be col-
lected simultaneously during the execution of complex tasks, such as those
investigated by instructional psychology. Analyses of eye-fixation patterns can
therefore complement other online methodologies used to investigate atten-
tion allocation and processing demands during reading, such as thinking aloud,
which has the limitation of being intrusive. Eye tracking does not disrupt nor-
mal reading and readers are not interrupted by a secondary task. Moreover, this
methodology may provide input for instructional design, for example by uncov-
ering experts’ cognitive processes when they interact with multiple external
representations, such as texts and pictures, both online and in print.

Finally, some educational implications about critical thinking in relation to
online external representations can be drawn from our study. First, Inter-
net reading requires epistemic evaluation to be able to differentiate multiple
sources of information. This type of evaluation is sustained by individual char-
acteristics, which can be improved dramatically by education. Research on
multiple-document literacy has shown that higher-order processes and skills are
involved in the construction of an integrated and meaningful representation of
an issue, phenomenon or event (Bråten & Strømsø, 2010). These skills include
being able to evaluate multiple sources of information (Bråten, 2008; Rouet,
2006), which are even more crucial when students surf the ocean of informa-
tion available on the Web. Evaluation processes are insufficient if they concern
only relevance to the topic of the information accessed. They should also regard
source reliability and veracity of the information offered.

The second implication is that the Internet can be a powerful tool in help-
ing novice students develop standards for evaluating online texts and other
representations. Through the frequent experience of comparing perspectives
concerning the same issue, the Internet provides the opportunity to reflect
on the credibility of knowledge sources and the accuracy of information (Tsai,
2008). The Internet requires students to be able to evaluate sources without
being overwhelmed, and, at the same time, it develops or refines their evalua-
tive processes by requiring them to reflect on the nature, source and justification
of knowledge, that is, to practise critical thinking.

The third implication is that instructional interventions need to be imple-
mented to teach students to be epistemically active when navigating the Web,
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and equip them with important tools for becoming lifelong learners who use
validated knowledge to make informed decisions. The new literacy skills for
the Internet era imply critical thinking to transform web surfing into web nav-
igation, where ongoing outcomes are monitored and judged with the aim of
building new knowledge intentionally. In the use of the Internet as an infinite
source of information for scientific learning, students’ skills in formulating rea-
soned judgements about the credibility of websites and veracity of arguments
can make a very great difference.

Note

1. All post hoc analyses mentioned in this session have been carried out with Bonferroni
correction.
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Chapter 4

Representational f lexibi l ity
in l inear-function problems
A choice/no-choice study

Ana Acevedo Nistal, Wim Van Dooren, Geraldine
Clarebout, Jan Elen, and Lieven Verschaffel

Theoretical background

Representational fluency and flexibility in mathematical problem solving

In the literature on mathematics education, it is often claimed that the ability to
use external representations facilitates mathematical problem solving (Dienes,
1960; Even, 1998; Yerushalmy, 2006). The literature also mentions several
skills that students need to possess in order to benefit from using external
representations. These skills can be categorised in two groups.

The first group of skills can be called representational fluency. It involves
the ability to interpret or construct representations (Ainsworth, Bibby, &
Wood, 1998), as well as the ability to translate and switch between represen-
tations (on demand) accurately and quickly (Even, 1998). In sum, represen-
tational fluency refers to the efficiency (in terms of accuracy and speed) with
which students can interpret, construct, translate, and switch between external
representations.

The second group of skills involves making appropriate representational
choices in a given problem-solving or learning situation. The way in which
‘appropriateness’ is conceptualised varies across studies. In some studies (e.g.,
Larkin & Simon, 1987; Schnotz & Bannert, 2003), a representational choice is
considered appropriate if it is in line with the demands of the task at hand. In
some studies from the strategy choice literature (e.g., Verschaffel et al., 2007),
a choice is considered appropriate if it matches not only task demands, but
also the characteristics of the subject that has to make the choice, and some-
times even the context in which the choice takes place. The main difference
between these two conceptualisations is that the first one is (purely) based on
a rational evaluation of the to-be-solved task, which results in a series of task-
to-representation(s) matches which are expected to benefit the resolution of
the task at hand, whereas the second conceptualisation also takes into account
the individual’s capacity to use the different representations and the context in
which the choice takes place. What counts as an appropriate or flexible choice
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varies greatly across studies (for a review, see Warner, 2005), but for the
purpose of this study we will focus on the two conceptualisations described
above.

In this chapter, students’ ability to make appropriate representational choices
will be referred to as representational adaptivity or flexibility1, and this skill
will be the focus of this study. The first group of skills described above (and
more specifically: representational efficiency) will be considered insofar as it
relates to representational adaptivity (i.e. choosing the most appropriate rep-
resentation may mean taking into account one’s efficiency in using particular
representations).

Representational choices in mathematical problem solving

Several studies (e.g., Dienes, 1960; Even, 1998; Kaput, 1992; Yerushalmy,
2006) have focused on the possible beneficial effects of creating, interpreting
and combining multiple external representations when solving mathematical
problems. However, research on students’ ability to make appropriate repre-
sentational choices is not as common. As Cox and Brna (1995) explain, ‘to
date, there has been much folk wisdom and speculation but little empirical
work on the issue of representation selection’ (p. 10). We consider this a topic
of utmost importance, since merely confronting students with multiple repre-
sentations does not ensure that problem solving will benefit. As Uesaka and
Manalo (2006) showed, a problem solver confronted with a multitude of repre-
sentations is often unable to decide which representation(s) to choose, and for
what purposes. Interestingly, this inability to choose is not only present in stu-
dents, but also in pre-service mathematics teachers (Even, 1990). Even found
that, for example, in a problem that could easily be solved by means of a graph,
80 per cent of the prospective teachers used a formula and subsequently failed
to reach the correct solution due to their inappropriate representational choice.
Similar results were found by Mousoulides and Gagatsis (2004), who tested
95 pre-service mathematics teachers’ understanding of functions. Their partici-
pants displayed a strong tendency to use an algebraic approach to the resolution
of problems, even in cases where a geometric approach would have been easier
and more efficient.

The purpose of our study was to observe and evaluate students’ representa-
tional choices when solving linear-function problems. We focused on functions
because this concept is considered by many (e.g., Eisenberg, 1992) as a key
notion which supports the development of mathematical learning. Moreover,
functions are a typical subdomain of mathematics where different represen-
tations (mainly tables, graphs, and formulae) can be used (Even, 1998). But
our study also had a methodological purpose: we wanted to test whether a
method that is used very frequently to study flexibility of strategy choices, the
choice/no-choice method of Siegler and Lemaire (1997), could also shed some
light on the complex processes that underlie representational flexibility.
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Design of the study

Participants

Sixty-one Spanish secondary school students participated in the study. The 33
students from 4◦ ESO were aged 14–15, whereas the 28 students from 1◦ de
Bachillerato were aged 15–16. For the sake of simplicity, the two age groups
will be referred to as 10th-graders (14–15-year-olds) and 11th-graders (15–16-
year-olds). Approximately half of the students were female.

Both age groups had prior knowledge about linear functions. In Spain, the
topic is introduced in 9th grade, where students learn how to represent linear
functions by means of formulae, tables, and graphs. In 10th grade, students are
introduced to concepts such as slope, intercept, and intersection. Other types
of functions such as quadratic, radical, and exponential are mentioned briefly at
the end of 10th grade, but they are not studied in detail yet. In 11th grade,
students get a quick review on linear functions at the beginning of the year, and
the focus then moves to quadratic, exponential, rational, radical, trigonometrical
and logarithmic functions.

Task

The problems used differed from each other in terms of two variables:
Variable 1: Problem type. One-third of the problems were related to the

concept of slope (see Figures 4.1, 4.2, and 4.3), one-third to the concept
of y-intercept (see Figure 4.4), and one-third to the concept of intersection
between two functions (see Figure 4.5).

Variable 2: Contextualisation. Half of the problems were contextualised, the
other half were decontextualised. Contextualised problems presented students
with a story that ended with a question concerning the data provided in the
problem (see Figures 4.1, 4.3, and 4.5). Decontextualised problems asked
directly about a concrete mathematical concept (see Figures 4.2 and 4.4).

Method

The method used, namely the choice/no-choice method (Siegler & Lemaire,
1997), was borrowed from the strategy choice literature. This method has been
applied in studies dealing with strategy choices in mathematical topics such
as multiplication (Siegler & Lemaire, 1997), numerosity estimation (Luwel,
Lemaire, & Verschaffel, 2005; Luwel et al., 2003), and addition and subtrac-
tion (Torbeyns, Verschaffel, & Ghesquière, 2004), but to our knowledge it has
never been used before in research on representational choice.

The test administration was computer-based. Participants solved a series of
problems under different conditions: one choice condition (C-condition) where
they could choose either a table, a graph, or a formula to solve each problem,



Maria has a membership for a swimming pool. Maria pays a fixed rate to access

the pool, plus a fee for every hour that she stays in the pool premises. The

following representations express how much she pays in relation to the number

of hours she spends at the pool. Determine the fee that she pays per hour.

Table Algebraic expression Graph

Figure 4.1 Contextualised slope problem in the C-condition.

Given a function f(x), determine its slope

Table Algebraic expressionGraph

Figure 4.2 Decontextualised slope problem in the C-condition.



In a summer day, a meteorological station located near Madrid measures air temperature

every hour for a whole morning. The following table expresses the registered temperature

(in °C) in relation to the time elapsed (in hours) since the temperature started being

measured. Determine by how many degrees the temperature increases per hour.

Hours

The temperature increases °C per hour
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Figure 4.3 Contextualised slope problem from the NC-table condition.

The intercept of f(x) is

Determine the intercept of f(x)
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Figure 4.4 Decontextualised intercept problem from the NC-graph condition.
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Sara would have to work for 

Carlos   f(x) = 4x + 8

Esteban  g(x) = 6x + 8

hours

Sara helps two executives, Carlos and Esteban, in the administrative tasks of their offices.

Both pay her a fixed rate every time she works for them, plus a rate per hour. The following

algebraic expressions express how much each one of them pays her in relation to the

number of hours that she works. Determine how many hours she would have to work

for both of them to pay her the same.

Next

Figure 4.5 Contextualised intersection problem from the NC-formula condition.

and three no-choice conditions (NC-conditions), namely a NC-table condi-
tion, a NC-graph condition, and a NC-formula condition, where students were
forced to use only one of these three representations to solve all the problems.
The problems in the C- and NC-conditions were parallel.

In the C-condition, students received the problem wording together
with three clickable buttons (‘table’, ‘algebraic expression’, and ‘graph’, see
Figures 4.1 and 4.2), which appeared in random order on the screen. To ensure
that students really used the selected representation, data were only provided in
the representation and not in the problem wording itself.

In the NC-conditions, the problem wording was immediately followed by
a predetermined representation: a table, a graph, or a formula, depending on
which NC-condition the problem belonged to (see Figures 4.3, 4.4, and 4.5).

Procedure

As suggested by Siegler and Lemaire (1997), the students were exposed to
the C-condition first, to avoid carry-over and recency effects from the NC-
to the C-condition with regard to representational choice. The NC-test was
administered four days later. Within each condition, half of the students received
the contextualised problems first, and the others received the decontextualised
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problems first. Slope, intercept and intersection problems appeared in random
order.

Students were instructed to solve the problems as accurately and as quickly
as possible. For each student, the program (Macromedia Director Shockwave
Studio 8.5, educational version) logged the following information:

– Accuracy: The answers to all the problems in the C- and NC-conditions were
logged and coded as correct (1) or incorrect (0).

– Speed: The program logged the elapsed time from the moment a student
clicked on a button to access a problem to the moment he/she made
his/her representational choice. The total time spent on a problem was also
logged.

Analysis

From the NC-conditions, we analysed the efficiency (in terms of accuracy and
speed) with which the students used the different representations, as well as the
influence of grade, problem type, contextualisation, and type of representation
on this efficiency.

From the C-condition, we analysed the frequency with which each represen-
tation was chosen. The impact of grade, problem type, and contextualisation
on these choices was also analysed. Students’ representational choices were
examined in detail to determine if choices were made in a flexible way. Two
different conceptualisations and operationalisations of flexibility were adopted:
a task-based flexibility and a task × student-based flexibility.

Task-based flexibility

According to researchers such as Cox (1996) and Larkin and Simon (1987),
students’ ability to successfully interact with external representations depends
highly on their ability to identify the representation that matches the demands of
the task at hand. As Gilmore and Green (1984) argue in their match–mismatch
conjecture, performance is likely to be benefitted if the representation chosen
to solve a particular problem matches the requirements of the problem at hand.
Hereunder we briefly describe what such matches/mismatches between tasks
and representations could look like for the tasks and representations used in our
study. A rational task analysis is used for this purpose.

With regard to the variable problem type, a match could be argued between
the formula and slope problems. In our study, all formulae were provided
in slope/intercept form (f (x)=mx + b), which meant that the slope of
the functions could easily be read off from the provided formulae. Solving
slope problems with tables and graphs requires at least some calculations,
and thus slope problems solved with tables and graphs can be expected to
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require more time and to be more error-prone than problems solved using a
formula.

With regard to intercept problems, two possible matches were considered:
on the one hand, one could argue that tables and graphs are a match to inter-
cept problems, since the term ‘intercept’ translates into Spanish as ‘ordenada
en el origen’. The fact that the word ‘origin’ is mentioned in the term itself
could lead students to the (0, y) value in the table or graph, thus obtaining
a correct answer more straightforwardly than with a formula. It is important
to note that all tables and graphs in our study explicitly included the intercept
point.

On the other hand, since all formulae were provided in slope/intercept form,
students might find it easier to read off the intercept from the formulae. If
this was the case, then formulae could be considered a match to intercept
problems.

Tables and graphs could be argued to be the best matches to intersection
problems, since in all problems the intersection point was given both in the
tables and graphs provided. Using a formula to find the intersection between
two functions requires either extensive algebraic work or a laborious trial-and-
error approach.

Contextualisation was expected to act as a mediating variable which could
influence students’ representational choices. Based on the results of Koedinger
and Nathan (2004), contextualised problems were expected to prompt students
to use more informal representations such as tables and graphs, whereas decon-
textualised problems were expected to elicit the use of more formal/symbolic
representations such as formulae.

As has been pointed out, the representations provided to students to solve
the problems in this study had specific characteristics: all formulae were in
slope/intercept form, and all tables and graphs explicitly displayed the intercept
or intersection points needed to solve the problems. These aspects were con-
trolled for reasons of internal validity. The implication that follows is that the
matches described above might only be applicable to these specific problems,
and thus restrict the external validity of the results.

Task × student-based flexibility

While the first conceptualisation and operationalisation of flexibility was based
on a rational evaluation of the characteristics of and relationships between the
different problems and representations, the second conceptualisation also takes
into account students’ ability to interact with the different representations. This
conceptualisation is based on Siegler and Lemaire’s (1997) model of strategy
choice, as well as on Verschaffel et al.’s (2007) conceptualisation of adaptive
strategy choice as ‘the conscious or unconscious selection and use of the most
appropriate solution strategy on a given mathematical problem, for a given
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individual, in a given sociocultural context’ (p. 19). As opposed to the first con-
ceptualisation and operationalisation of flexibility, which is purely task-based,
flexibility here is understood as a student’s ability to make a representational
choice which is in line not only with task characteristics, but also with stu-
dent characteristics. More specifically, an individual student is said to make
a flexible representational choice if he/she chooses in the C-condition the
representation that, according to the student’s NC-data, is the most likely to
yield the most efficient answer for that particular student in that particular
problem.

Results

Representational efficiency

Our approach to the study of representational efficiency involved analysing the
accuracy and speed data yielded from the NC-conditions. This decision was
based on Siegler and Lemaire’s (1997) claim that the data in the NC-conditions
yield unbiased estimates of students’ fluency with the different representations,
since all students are forced to solve all problems (or parallel problems) with all
the available representations.

Accuracy data

A repeated-measures logistic regression analysis was carried out to determine
which variables had an effect on students’ performance in the NC-conditions.
The dependent variable was NC-accuracy. The independent variables were
grade, representation, problem type, contextualisation, and the interactions
between them.

Grade did not have a main effect on accuracy – both grades performed at
a comparable level in the NC-conditions (10th-graders: 59 per cent correct;
11th-graders: 64 per cent correct). However, the remaining three independent
variables did have a main effect: representation, χ2(2, N =55)=17.84, p < .01,
problem type, χ 2(2, N =54)=7.24, p = .03, and contextualisation, χ 2(1, N =
54) = 24.73, p < .01.

For the representation variable, pair-wise comparisons2 showed that formulae
yielded the lowest accuracy of all, whereas tables and graphs yielded higher (and
similar) accuracies (formula: 51 per cent; table: 64 per cent; graph 68 per cent).

For problem type, the lowest accuracy corresponded to slope problems,
whereas accuracy in intercept and intersection problems was significantly higher
(slope: 55 per cent; intercept: 65 per cent; intersection: 64 per cent).

There was also a significant interaction between problem type and grade,
χ2(2, N =54)= 6.65, p = .04. Both grades performed similarly in slope and
intercept problems, but 11th-graders were significantly better at solving inter-
section problems (see Table 4.1).
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Table 4.1 Accuracy data from the NC-conditions by problem type and grade.

Slope Intercept Intersection

10th grade .57 .63 .56
11th grade .53 .67 .71

With regard to contextualisation, contextualised problems yielded signifi-
cantly higher accuracy (70 per cent correct) than decontextualised problems
(52 per cent correct).

A significant interaction between problem type and representation was found,
χ2(4, N =54)=12.42, p = .01. Pair-wise comparisons showed that, for inter-
cept problems, graphs yielded higher accuracy than tables and formulae. In
slope and intersection problems, graphs and tables yielded higher accuracies
than formulae (see Table 4.2).

A significant interaction between representation and contextualisation was
also found, χ 2(2, N =54)=27.42, p < .01. In contextualised problems, tables
and graphs yielded higher accuracies than formulae. In decontextualised prob-
lems, the three representations yielded comparable accuracies (see Table 4.3).

Speed data

A repeated-measures linear regression analysis was carried out to determine
which variables affected the speed with which students solved the problems
in the NC-conditions. The dependent variable, NC-speed, was operationalised
as the time elapsed from the moment a student started a new problem to the

Table 4.2 Accuracy data from the NC-conditions by problem type and
representation.

Slope Intercept Intersection

Table .66 .60 .67
Graph .56 .75 .71
Formula .42 .59 .52

Table 4.3 Accuracy data from the NC-conditions by representation and
contextualisation.

Table Graph Formula

Contextualised .79 .76 .50
Decontextualised .47 .58 .51
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moment that the student proceeded to the next one. The independent variables
were grade, problem type, contextualisation, representation, NC-accuracy and
the interactions between them.

Two variables did not have a main effect on NC-speed: grade (it took
both grades approximately the same time to solve the problems in the NC-
conditions – 10th-graders: 35s, 11th-graders: 31s) and NC-accuracy (correct
answers were given in approximately the same time as incorrect answers – 31s
and 35s respectively).

The remaining variables had a main effect on students’ NC-speed: problem
type, χ2(2, N =54)=57.89, p < .01, contextualisation, χ2(1, N =54)=15.42,
p < .01, and representation, χ2(2, N =54)=20.47, p < .01.

With regard to problem type, intersection problems took significantly longer
to solve (on average 48s, SD = 51s) than intercept and slope problems
(intercept: 25s, SD = 20s; slope: 27s, SD = 22s).

Decontextualised problems (28s, SD = 37s) were solved significantly faster
than contextualised problems (39s, SD = 33s). This difference in speed is prob-
ably due to the fact that contextualised problems had longer wordings and thus
took longer to read.

With regard to representation, the problems where students were forced to
use a graph were solved significantly faster (27s, SD =30s) than the problems
solved with tables (34s, SD = 33s) or formulae (39s, SD = 42s).

As explained above, grade did not have a main effect on NC-speed. However,
the interaction between representation and grade was significant, χ2(2, N =
54)=6.88, p = .03 (see Table 4.4).

For 10th-graders, the fastest representation was the graph, whereas tables and
formulae were significantly slower. A considerable improvement in the speed of
use of the table was observed from 10th to 11th grade. The 11th-graders were
significantly faster at using tables than the 10th-graders, to the extent that the
table becomes (together with the graph) one of the (two) fastest representations
in 11th grade.

A significant interaction between problem type and representation was also
observed, χ 2(4, N = 54)=37.32, p < .01 (see Table 4.5).

For slope problems, all representations yielded equal NC-speeds. For inter-
cept problems, the graph was the fastest representation. For intersection
problems, the graph and the table were the fastest representations.

Table 4.4 Mean speed (and SD) in seconds in the problems from
the NC-conditions by representation and grade.

Table Graph Formula

10th grade 40 (40) 28 (33) 38 (35)
11th grade 27 (20) 25 (25) 41 (49)
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Table 4.5 Mean speed (and SD) in seconds in the problems from
the NC-conditions by problem type and representation.

Slope Intercept Intersection

Table 28 (18) 27 (20) 46 (48)
Graph 27 (27) 21 (14) 32 (41)
Formula 26 (21) 27 (24) 65 (59)

Representational flexibility

Frequency of representational choice

A t-test was conducted to find out whether students’ overall representational
choices differed from random. The results showed that tables (chosen in 32 per
cent of the cases) were chosen at random level, t(329)=0.35, p = .72, formu-
lae (40 per cent) were chosen above random level, t(329)=2.47, p = .01, and
graphs (28 per cent) were chosen below random level, t(329)=2.34, p = .02.

T-tests, furthermore, showed that the formula was chosen significantly more
often than the table, t(330)=2.03, p = .02, and the graph, t(330)=3.40,
p < .01, while the table and graph did not differ significantly from each
other.

However, when the choice data were analysed per grade, only 10th-graders
chose formulae (45 per cent) significantly more often than graphs (23 per cent),
t(346)=4.41, p < .01, and tables (32 per cent), t(346)=2.44, p < .01.

The representational choices of 11th-graders were distributed equally among
the three representations (table: 33 per cent; graph: 32 per cent; formula:
34 per cent).

Task-based flexibility

Students’ representational choices were analysed per problem type in order
to determine whether they were in line with the matches between problem
tasks and representations suggested by our rational task analysis. The following
significant differences in representational choice were identified:

In slope problems, formulae (44 per cent) and tables (38 per cent) were used
significantly more often than graphs (18 per cent), t(218)=4.23, p < .01 and
t(218)=3.37, p < .01, for formulae and tables respectively. Our rational task
analysis suggested that slope problems might be solved more easily by means of
formulae. Thus, the fact that many students chose the formula to solve slope
problems could therefore be considered a flexible choice if one understands
flexibility from the purely task-based perspective that was explained above.



86 Ana Acevedo Nistal et al.

In intercept problems, formulae (45 per cent) were chosen significantly more
often than graphs (29 per cent), t(218)=2.40, p < .01, and tables (26 per
cent), t(218)=2.86, p < .01, with no differences between the latter two. In our
rational task analysis, one of the possibilities considered was that formulae could
be a good match to intercept problems given the fact that all formulae were
provided in slope/intercept form. The fact that the formula was the representa-
tion chosen the most to solve intercept problems by both grades could thus be
considered a flexible choice from such a purely task-based perspective.

In intersection problems, there were no significant differences in the fre-
quencies with which the three representations were chosen (table: 33 per cent;
graph: 35 per cent; formula: 32 per cent). Our rational task analysis indicated
that tables and graphs would be the best match for intersection problems, but
students’ choices did not reflect this fact.

In contextualised problems, the table (41 per cent) was the representation
chosen the most, significantly more often than the formula (31 per cent),
t(328)=1.84, p = .03, and the graph (28 per cent), t(328)=2.33, p = .01,
with no differences between the latter two. In decontextualised problems,
the formula (49 per cent) was chosen the most, significantly more often
than the table (24 per cent), t(328)=4.83, p < .01, and the graph (27 per
cent), t(328)=4.30, p < .01, with no differences between the latter two.
These choices were in line with our rational task analysis, which means that
students’ choices in contextualised and decontextualised problems could be
considered flexible from the purely task-based perspective elaborated above.
Our results were very similar to those obtained by Koedinger and Nathan
(2004), who found that students preferred to use more informal representa-
tions (such as tables and graphs) to solve contextualised problems and more
formal representations (such as formulae) to solve decontextualised problems.

To sum up, when a purely task-based conceptualisation/operationalisation
of flexibility was used, students’ representational choices turned out to be
mostly flexible. However, as we will see in the next section, a task × student
conceptualisation of flexibility shows a quite different picture.

Task × student-based flexibility

Based on Siegler and Lemaire (1997), students’ representational choices were
compared with the performance that these representations yielded in the NC-
conditions. As a first step, for each problem and on a group level, we computed
the difference between the accuracy of a particular representation (e.g., the
table) and the averaged accuracy of the other two representations (the for-
mula and the graph). These differences were then correlated with the frequency
of representational choice of the first representation (the table) for the same
problems. In both grades, there was a significant negative correlation between
these two measures (10th grade: r = −.49, p = .03; 11th grade: r = −.055,
p = .01).
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According to Siegler and Lemaire (1997), these results of a group-wise anal-
ysis should be interpreted as a sign of students’ lack of flexibility, since most
students failed to select the representations which, according to the NC-data,
would have been the most effective for the problems in question.

As a second step, an individual score was calculated for each student based on
Siegler and Lemaire’s (1997) adaptivity score. This score is calculated combin-
ing individual data from the C- and NC-conditions. From the C-condition, the
frequency of choice of each representation for a particular student (i.e. the per-
centage of times that the student used each representation in the C-condition)
is computed (FC_table, FC_graph, and FC_form). From the NC-condition, the accu-
racy yielded by the different representations is also computed (ANC_table, ANC_graph,
ANC_formula). Siegler and Lemaire (1997) argue that, since the student is forced to
use all representations to solve all problems, the NC-conditions yield unbiased
estimates about students’ fluency with the different representations.

Then, a simulated accuracy in the C-condition (AC_sim) is calculated using the
NC-accuracy of each representation weighed by its frequency of choice. The
resulting formula is as follows:

AC_sim = (FC_table × ANC_table)+ (FC_graph × ANC_graph)+ (FC_form × ANC_form)

AC_sim is the simulated accuracy that a particular student would have obtained if
he/she had chosen each representation with the same frequency as he/she actu-
ally chose them in the C-condition, but applying them to problems randomly
(i.e., without taking into account his/her own performance with each particular
representation in the different problems in the NC-condition). The adaptivity
score is calculated by subtracting AC_sim from the student’s actual performance
in the C-condition (AC_actual).

If AC_sim ≈ AC_actual, then the flexibility score is close to 0, meaning that the
student does not perform better in the C-condition than if he/she had made
random representational choices (but at the same base rates for each representa-
tion). If AC_actual > AC_sim, then the flexibility score is positive, which means that
the student made flexible representational choices and performed better than if
he/she had chosen between the representations randomly. If AC_actual < AC_sim,
then the flexibility score is negative, and this means that the student’s represen-
tational choices were even less effective than if he/she had chosen randomly.
In other words, the student’s choices were not only inflexible – they were
counterproductive.

There were no highly flexible or highly inflexible students in either
of the grades. In 10th grade, the highest flexibility score was 0.33 and
the lowest −0.38. In 11th grade, the highest score was 0.16 and the
lowest −0.33.

In 10th grade, 8 out of 27 students obtained a positive score. These stu-
dents performed 15 per cent higher in the C-condition than the students who
obtained a negative flexibility score: students with a positive score on average
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got 3.8 out of 6 problems (63 per cent) correct; students with a negative
score on average got 2.9 out of 6 problems (48 per cent) correct, but this
difference was not significant, t(23)=1.41, p = .08. The 11th-graders with a
positive flexibility score (6 out of 25) displayed an average performance in the
C-condition that was 16 per cent higher than the performance of students with
a negative score. Those with a positive score on average got 4.0 out of 6 prob-
lems (66 per cent) correct; students with a negative score on average got 3.0
out of 6 problems (50 per cent) correct, and this difference in performance was
significant, t(20)=1.7, p = .05.

The mean flexibility score per grade was very close to 0 in both grades (10th
grade M = −0.08, SD = 0.18; 11th grade M = −0.09, SD = 0.14). There was
no significant improvement in flexibility from 10th to 11th grade, t(50)=0.21,
p = .41. We interpreted these results as a general lack of representational
flexibility.

This general lack of representational flexibility also becomes apparent when
the accuracy data from the C- and NC-conditions are compared. If the two
grades had been adaptive, then they should have performed better in the
C- than in the NC-conditions, since their adaptivity would have allowed them
to choose the representations most likely to yield a correct answer for the
problems at hand. However, in both grades, average performance in the NC-
conditions was better than that in the C-condition (10th-graders, t(26)=1.76,
p = 0.04; 11th-graders, t(24)=2.47, p = 0.01), meaning that, in general
terms, students performed worse when they were given the choice to select
a representation than when they were forced to solve each problem with a pre-
determined representation. This was probably due to their inability to make
flexible representational choices.

Discussion

The main aim of this study was to examine students’ ability to make flexible
representational choices while solving linear-function problems. In addition, the
potential of Siegler and Lemaire’s (1997) choice/no-choice method to study
representational flexibility was assessed.

Representational efficiency

Contrary to our expectations, grade did not have an effect on students’ ability
to interact with the representations. Since 11th-graders had been exposed to
the concept of linear functions for a longer time, we expected them to be more
accurate and faster at interacting with the different representations. However,
this was not the case.

Certain representations were shown to facilitate the resolution of certain
types of problems. Slope problems were solved more efficiently with graphs
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and tables, while the three representations yielded comparable speeds in this
type of problem. Intercept problems were solved more accurately and also
faster with graphs. Intersection problems were solved more accurately and
faster with graphs and tables. With regard to contextualisation, tables, graphs
and formulae yielded comparable accuracies in decontextualised problems,
but contextualised problems were solved more accurately with graphs and
tables.

Representational flexibility

In the C-condition, an interesting shift in frequency of representational choice
was found from 10th to 11th grade. The 10th-graders displayed an overall
preference towards using formulae. However, such preference was no longer
present in 11th grade, where all representations were chosen in a similar
number of occasions. Such a shift in representational preferences could have
been due to instruction, since the books used in 10th grade (and presum-
ably also instruction) focus on the use of formulae to introduce the concept
of linear function, whereas in 11th grade the use of tables and graphs is also
encouraged.

To what extent were the representational choices made by students flexi-
ble? Using a purely task-based approach to flexibility, the conclusion was that
students’ representational choices were mostly flexible in the sense that they
were in line with the matches predicted by our rational task analysis. How-
ever, the accuracy data from the NC-conditions showed that students often
selected representations that were neither the most effective nor the fastest
for the to-be-solved problem. The fact that there was a negative correlation
between the number of times that each representation was chosen to solve a
particular problem in the C-condition and the performance that that repre-
sentation yielded for the corresponding parallel problem in the NC-condition
already hinted that students were not as flexible in their choices as the task-
based measure of flexibility suggested. An understanding of flexibility based
on a mere match between tasks and representations does not seem to cap-
ture the quintessence of flexibility, since it disregards certain variables (e.g.,
students’ fluency with the different representations) that should also be taken
into account when determining whether a student is able to make flexible
choices.

Siegler and Lemaire’s (1997) conceptualisation of adaptivity partly addresses
this issue by bringing into the picture a subject variable, that is, students’ repre-
sentational efficiency, obtained from the data from the NC-conditions. The task
× student-based conceptualisation allowed us to discover that the reason why
most of the students performed better in a NC than in a C setting was because
they were unable to make flexible representational choices. The few students
who did make flexible representational choices displayed a somewhat higher
overall performance in the C-condition than their inflexible counterparts.
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Implications for research

One of the methods used to assess students’ representational flexibility was
Siegler and Lemaire’s (1997) choice/no-choice method, a method which, to
our knowledge, had never been applied to the field of mathematical representa-
tions. Contrary to the traditional, purely task-based understanding of flexibility,
this method allowed us to obtain a more fine-grained view of students’ flexibility
by taking into account not only task, but also subject variables.

However, using the choice/no-choice method to study representational flex-
ibility also had its flaws. One of them is related to the wide variety of flexibility
profiles which are encapsulated under the 0 flexibility score. A student who
obtains an overall performance of 0 both in the C- and in the NC-conditions
always gets a 0 adaptivity score. A student who obtains an overall performance
of 1 in both the C- and NC-conditions also gets a 0 adaptivity score, but the
adaptivity profiles of these two students are very different: in the first case, no
representational choice can be considered flexible, since none of the represen-
tations is bound to yield a correct answer. In the case of the second student,
choosing any of the representations could be considered a flexible choice, since
all the representations are bound to yield a correct answer.

The task × student flexibility score inspired from Siegler and Lemaire (1997)
only took into account the accuracy data yielded by the NC-condition. Further
insight into students’ representational flexibility could be obtained by comput-
ing a flexibility score that combines both accuracy and speed data extracted
from the NC-conditions. By doing so, flexibility could be conceptualised as a
student’s ability to select the representation that leads him/her the fastest to the
correct answer for the problem at hand.

As explained previously, the representations that students used to solve the
problems had very specific characteristics: all formulae were in slope/intercept
form, and in all tables and graphs the intercept or intersection points were
explicitly displayed. This was done to get higher internal validity for our study.
The disadvantage, however, is that the observed trends may only apply to
the specific set of problems and representations that we used. As such, this is
not problematic, since our intention was mainly to show the theoretical and
methodological potential and implications of various conceptions of flexibility
in the use of representations, as well as testing the potential of the choice/no-
choice method in this field. Nevertheless, in order to generalise the findings to
the broader field of function problem solving and to derive instructional impli-
cations from it, it seems worthwhile to do further work using different problem
types, or providing students with representations that are not always in the ideal
format to solve the proposed problems.

Future research in the field of representational choice might also benefit from
combining the data obtained from choice/no-choice studies with one-to-one
interviews with students after the tests, where they are prompted to explain their
choices. Encouraging explicit reflection on representational choices by means
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of interviews might help students to verbalise their criteria, thus providing a
different perspective on the variables that regulate students’ representational
choices.

Implications for instruction

Both the 10th- and 11th-graders who participated in this study had been
exposed to regular instruction about the topic of linear functions, but they had
never received instruction specifically aimed at improving their flexibility. Judg-
ing by the lack of flexibility displayed by the majority of the students, the ability
to choose flexibly does not seem to be a skill that develops spontaneously in the
traditional mathematics class.

Our results show that representational flexibility is a very complex and
nuanced concept: what is considered flexible for a particular problem and a par-
ticular student might be considered inflexible when a different problem and/or
student are involved. Even when a simplistic, task-based-only approach to flex-
ibility is used, it is still challenging to state which representational choices are
flexible and which ones are not, since it is extremely difficult (if not impossi-
ble) to identify clear-cut links between problem types and representations which
are guaranteed to favour performance. Due to the great number of variables
that play a role in determining what can be considered a flexible representa-
tional choice, representational flexibility is a skill that is very difficult to teach
directly and explicitly in the traditional mathematics classroom. Considerable
research effort needs to be invested to design powerful learning environments
which explicitly address representational flexibility if we want our students to be
equipped to make appropriate representational choices.

Notes

1. As it can be noted, we use the terms ‘representational flexibility’ and ‘representational
adaptivity’ as synonyms. We are aware of the fact that some authors do not consider
these terms as synonyms (see Acevedo Nistal et al. (2009) for a discussion on this
issue), but for the sake of simplicity we have decided to use them as such in this
article. For an explanation regarding the different conceptualisations of these terms,
we refer to Verschaffel, Luwel, Torbeyns, and Van Dooren (2009).

2. For purposes of readability, statistical details were only included in text for the main
effects and interaction effects. For the numerous contrast analyses (e.g., the pair-
wise comparisons between grades, problem types, etc.), we only reported whether
differences were statistically significant (p < .05) or not, without mentioning each
time χ2 scores, degrees of freedom and exact p-values.
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Chapter 5

Representations and proof
The case of the Isis problem

Brian Greer, Dirk De Bock, and Wim Van Dooren

Introduction

The Isis problem, so named because of its link with the Isis cult, as recorded by
the Greek author Plutarch, is very simple:

What rectangles with integral sides (in some unit) have area and perimeter
numerically equal? Prove the result.

It is relatively easy to find out that there are precisely two such rectangles,
4 × 4 and 3 × 6. (For convenience, they will be referred to hereafter as the
‘Isis rectangles’.) The interest of the problem lies in the variety of representa-
tions that can be used to support forms of argument that are the bases of proofs,
and also in the fact that the problem is accessible to students of almost all ages.
The focus of this chapter is on the domain of mathematical proving, and, more
specifically, on the crucial roles that (various) mathematical representations play
in proving.

In a first section we set out a variety of approaches leading to proofs, showing
thereby how proofs can rely on substantially different mathematical represen-
tations, each having distinctive affordances. In this section, we will also argue
how representational flexibility (Acevedo-Nistal et al., 2009) can provide deeper
insight into the problem.

In a second section, we report on an experimental study in which student
teachers were asked to construct proofs themselves and to evaluate and com-
ment upon a variety of given proofs. We consider how the results resonate with
major theoretical themes in the psychology of mathematical thinking. Again,
the issue of mathematical representations will come forward as a major theme,
as student teachers seem to attribute differential status to the representational
systems in which a mathematical proof is developed.

Finally, we summarise the main theoretical and pedagogical implications of
our analysis and experimental findings.



Representations and proof 95

Variety of approaches to a proof for the Isis problem

This section can be considered as a ‘rational analysis’ of the task show-
ing the variety of proofs relying on different mathematical representations.
As shown below, each proof uses a particular type of argumentation that
seems intrinsically linked to the representational system in which it occurs.
Given that different representational systems emphasise (and de-emphasise)
different aspects of the situation represented (Lesh & Doerr, 2003), switch-
ing between different representations and linking insights from these rep-
resentations may provide a unique, multifaceted understanding of the Isis
problem that could not occur when only focusing on one proof or stay-
ing within one representation. We will first consider an empirical approach
(grounded in a numerical/tabular representation), then several approaches
within the algebraic representational system, and finally a geometrical
approach.

Empirical

An approach that even young children could use is simply to check a
large number of rectangles. Such exploration is likely to progress from
generation of cases unsystematically to more systematic generation and
recording of cases, for example, by keeping one dimension constant and
increasing the other systematically. Representations may also progress from
drawings of rectangles with dimensions marked (perhaps using squared
paper), to use the formulae for area and perimeter, and thence to record-
ing the results in a tabular representation. From systematically generated
results, particularly when represented in a table, patterns and consequent
hypotheses are likely to emerge, and, in the long run, the basis of a
proof.

One possible path to a proof is the following. First, a two-dimensional table
is constructed in which, for each combination of the dimensions of the rectan-
gle, is recorded A – P where A is the area (numerically) and P the perimeter
(numerically) (see Figure 5.1). The zeroes in this table correspond to the Isis
rectangles. (Note that there are three, since in this representation 3 × 6 and
6 × 3 are not the same.) To complete a proof, it is necessary to show that
infinite extension of the table will not result in any more zeroes. One gen-
eral argument to establish that fact is to consider what happens when an x × y
rectangle grows to an (x + 1) × y rectangle (the reader is invited to construct
a diagram to represent this change). When this happens, the area increases
by y and the perimeter by 2, so A – P increases by y − 2, which explains
the arithmetic progressions in each row and column of the table. From this
result, it is straightforward to construct a proof that there are no more Isis
rectangles.
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length

width

1

2

3 –5 –4 –3 –2 –1 0 1

4 –6 –4 –2 0 2 4 6

5 –7 –1 2 5 8 11–4

6 –8

–9 –4 1 6 11 16 21

0 4 8 12 16–4

7

1 2 3 4 5 6 7

–3 –4 –5 –6 –7 –8 –9

–4 –4 –4 –4 –4 –4 –4

Figure 5.1 Tabular representation of the numerical value of area–perimeter for different
rectangles.

Algebraic

Anyone who has studied algebra is very likely to rely on a symbolic represen-
tation and respond to the problem by writing down an equation using the
formulae for calculating the area and perimeter of a rectangle:

xy = 2x + 2y

(or its equivalent using different symbols). The problem then is to solve this as a
Diophantine equation (i.e., an equation whose solution set is restricted to whole
numbers). From any such equation, an infinite number of equivalent equations
can be generated. When staying within the algebraic representational system,
the ‘trick’ then is to find such equations that are useful in leading to a solution.
Efforts by many people over many years have led to numerous ways of rewriting
the ‘core equation’ that are amenable to arguments that are the bases for proofs.
Here are some of them:

Completing the rectangle (by analogy with completing the square)

A standard move is to convert to an equation with zero on the right-hand
side, thus:

xy − 2x − 2y = 0

By adding 4 to each side, the left-hand side can be factorised:

xy − 2x − 2y + 4 = 4

(x − 2)(y − 2)= 4
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Since x − 2 and y − 2 are integers whose product is 4, there are only a few pos-
sibilities to consider and the proof follows quickly (here and elsewhere, details
are left to the reader).

Writing one variable as a function of the other

Another standard step for an equation with two variables is to rewrite (if
possible) in the form y = f (x)), i.e. y as a function of x. In this case, it
becomes:

y = 2x/(x − 2) or y = 2 + 4/(x − 2)

Whence:

(a) x − 2 is a factor of 2x, or, even more clearly, of 4, again leading to a small
number of cases that can be checked one by one (proof by exhaustion);

(b) The equation can be recognised as that of a hyperbola. In this case, it may
be convenient to switch to a graphical representation (Figure 5.2). When
the graph is constructed, the question then becomes one of the finding
which points on the hyperbola have coordinates that are natural numbers.

9

8

7

6

5

4

(3,6)

(4,4)
(6,3)

3

2

1

0 1 2 3 4 5 6 7 8 9

X

Y

Figure 5.2 Hyperbola y = 2x/(x – 2) showing the points on it whose coordinates are positive
integers.
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Unit fractions

By dividing each term by 2xy, the equation becomes:

1
2

= 1
x

+ 1
y

Now it can be argued that either 1/x and 1/y are both 1/4 or one is less than
1/4 and the other greater than 1/4. Whichever is greater than 1/4 must be 1/3,
1/2 or 1/1 and, again, it is simple to check these three possibilities.

Harmonic mean

The equation can be rewritten as:

2xy
x + y

= 4

The expression on the left-hand side may be recognised as the formula for the
harmonic mean of x and y. (The harmonic mean for two numbers arises in such
situations as the following: if you travel from A to B at x miles per hour, and
back from B to A at y miles per hour, the average speed for the whole journey
is the harmonic mean of x and y.) If the harmonic (or any other) mean of two
numbers is 4, it immediately follows that they are both 4 or one is greater than
4 and one less than 4. Hence to a proof, as above.

A ‘silly’ equation

Some rewritings of the equation might seem unpromising, such as:

yx + xy = 4x + 4y

Yet this equation implies that y and x cannot both be greater than 4, since if
this were the case, yx would be greater than 4x and xy greater than 4y, so the
left-hand side would be greater.

Considerations of equality/inequality

If x and y are equal, then it is easy to see that x = y = 4 is the only solution.
Otherwise, assume x is less than y (a standard move in mathematical arguments
justified by the symmetry of the equation, hence interchangeability of the sym-
bols, and often introduced with the phrase ‘without loss of generality’). Then
2x + 2y < 4y, so if

xy = 2x + 2y, xy < 4y, whence x < 4 (and so on).
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Figure 5.3 For any rectangle made up of unit squares, area of tiles around the perimeter =
P – 4. For the Isis rectangles, the interior area = 4.

Geometrical

A radically different approach is based on the representation of the rectangle as a
set of unit tiles (Figure 5.3). The number of tiles around the outside, as shaded
in the figure, can be seen to be closely related to the length of the perimeter (P).
Indeed, it is easy to see that the number of shaded tiles is P – 4 (the 4 coming
from the ‘overlaps’ at the corners of the rectangle). But the number of shaded
tiles is also equal to their area, which is part of the total area (A) of the rectangle.
For A and P to be equal, therefore, the area of the interior, unshaded, tiles must
be 4 to compensate for the ‘missing’ 4. Hence the interior must either be a 1×4
or 2 × 2 rectangle, leading to the 3 × 6 and 4 × 4 Isis rectangles, respectively
(Figure 5.3).

Thus, while this representation of the rectangle as a set of tiles may first
invite trial and error approaches (constructing several rectangles and checking
whether the required property holds), it may develop from a series of empirical
observations into a general argument which is the basis of a proof. Note also
that the algebraic representation of the condition that the interior has area
4 is (x − 2)(y − 2) = 4, which was arrived at earlier through algebraic
transformations.

An experimental study: student teachers’ initial attempts
to solve the problem and their ideas about proof

A study was carried out with three groups of students/future mathemat-
ics teachers to see, first, how they would approach the problem, working
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individually, and second, how they would react to and evaluate a variety of
proofs. The groups were as follows:

– Group 1: future middle school teachers in a class at a West Coast US urban
university (N = 9).

– Group 2: future lower high school teachers in two classes in the Flemish part
of Belgium (N = 23).

– Group 3: future upper high school teachers in two classes in the Flemish
part of Belgium (N = 16) who already had a degree in mathematics or were
expected shortly to complete it.

All participants were given a task consisting of two parts and on each part they
could work for one hour. First, they were invited to solve the Isis problem,
including proving that there are only two Isis rectangles, and to look for more
than one proof. Having finished that first part, the participants were invited
to study five given proofs, to rank them in ‘order of quality’ (not defined by
the researchers) from best to worst, and to comment on them. The five proofs
were selected among the variety of proofs that are discussed in the previous
sections, taking care that the various types of argument occurring in the dif-
ferent representational systems would all be included. The proofs, provided in
counterbalanced orders, were: (1) the ‘Table Proof’ (see Figure 5.1), including
an argument why extending the table will not produce any more zeroes, (2)
the ‘Graph Proof’ in which the original equation xy = 2x + 2y was rewritten as
y = 2 + 4/(x − 2), the corresponding hyperbola sketched (see Figure 5.2) and it
was argued why (3, 6), (4, 4), and (6, 3) are the only three points with positive
integer coordinates on that hyperbola, (3) the ‘Unit Fractions Proof’ starting
from the equivalent form 1/x + 1/y = 1/2, showing that either x = y = 4 or one
of them is less than 4, then checking the limited number of possible cases, (4)
the ‘Factorisation Proof’ starting from the (x − 2)(y − 2) = 4 equivalent form
and, once more, checking a limited number of possible cases, and (5) the ‘Tiles
Proof’, the geometrical proof explained above (Figure 5.3). In each case, the
essence of the proof was given, with some logical steps ‘telescoped’, rather than
a precise line by line argument.

Generation of proofs

Table 5.1 records the number of complete and partial proofs generated. A proof
was judged partial when the essence of the proof was discernible but an essential
element to complete the argument was missing. Just identifying the two Isis
rectangles was not considered as a proof.

The predominant approach in Group 1 was generation of a large number
of examples, often sketching rectangles on squared paper. In several cases, this
exploration shifted to more systematic recording of results in tables, using the
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Table 5.1 Types of proofs found by the three groups (C = complete, P = partial).

Group 1 Group 2 Group 3

C P C P C P

Graph 1 3
Factorisation 3
Tiles 4
Divisibilitya 1 1 4 2
Exhaustionb 2 2 3
Other 1 5
Total 0 1 4 3 19 5

aThis refers to arguments based on 2x being divisible by x – 2, the natural number x being
one dimension of the rectangle.
bThis refers to arguments considering all the possibilities for 2x/(x – 2) being a positive integer.

formulae for area and perimeter. In a number of cases, regularities were noted
in these tables. The closest to a proof came from a student who wrote as
follows:

There is going to be a limited amount of times where the area and the
perimeter are equal. When you have b × h for the [area] the number is
growing at a much larger rate than perimeter, which is growing by two.
In order for the area and the perimeter to be equal you must wait for the
numbers to cross.

The predominant approach in Group 2 was to write the equation xy = 2x + 2y
(or equivalent) and work on manipulation of that equation. Three complete
and three partial proofs emerged from finding the equivalent equation y =
2x/(x − 2) and either arguing from this that x − 2 must divide 2x, or by
a method of exhaustive searching finding all natural number values of 2x/

(x − 2). One proof was found by arguing from the graph of the hyperbola.
Not surprisingly, most of the complete proofs were found by students in

Group 3. Like Group 2, their predominant approach was through manipulation
of the starting equation, with more success. Moreover, there was also greater
variation in the proofs found, as shown in Table 5.1. Individual differences were
very marked, with 12 of the 19 proofs stemming from just three individuals.

One student in particular produced five different proofs, all coherently argued
(Greer, De Bock, & Van Dooren, 2009). His fourth proof was particularly orig-
inal and interesting. It started from the quadratic equation X 2 − cX + 2c = 0. If
the roots of this equation (the values of X which satisfy the equation) are x and
y, then x + y = c and xy =2c, so xy =2x + 2y. The problem is now changed into
that of finding for what values of c the given equation has roots that are natural
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numbers. The full details are not important; rather, the point is, as discussed
later, that this creative act nicely illustrates the heuristic of ‘think of a related
problem’ (Polya, 1957).

Evaluation of proofs

Table 5.2 lists the mean ratings for students’ rankings of the five given proofs.
The most striking aspect of these data is the marked difference between Group 1
and the other two groups. The students in Group 1 indicated they had much less
fluency in algebraic manipulations, and many of them found some of the proofs
hard to follow, or commented that steps were missing. Students in Groups 2
and 3 found the proofs easy to follow, but some also found them lacking in
rigour (a reasonable comment).

Whereas average rankings (as well as typical comments) showed the prefer-
ence of most students in Groups 2 and 3 for the algebraic proof by factorisation,
this generally got low rankings from the students in Group 1. Several of them
commented that it was not clear where the 4 came from (an interesting point,
indeed). For example, one wrote ‘why adding 4?’ followed by ‘Oh, to fac-
torise . . . to easily factorise. You need to practice a lot to make this format. I
couldn’t see this.’ The students in the other two groups appeared to follow the
factorisation proof easily enough, and liked the fact that it led directly to the
solution. For example, one wrote: ‘In my view, the factorisation proof is the
best because it is the least intuitive. Every step is mathematical’ and another
‘The proof by factorisation . . . is very tight, mathematically correct and easy to
follow. Moreover, no tricks are used; the problem becomes easier by adding 4
on both sides.’ Another student wrote: ‘+ 4 was a good trick! From then on,
it is child’s play.’ A possibly relevant factor is the strong emphasis on factorisa-
tion in the Flemish curriculum (Vlaams Verbond van het Katholiek Secundair
Onderwijs, 2002), and the general appreciation of future (secondary) mathe-
matics teachers for algebraic approaches to mathematical problems as opposed
to (systematic) numerical approaches that are considered as ‘trial and error’ (Van
Dooren, Verschaffel, & Onghena, 2002).

The other case where Group 1 gave markedly lower evaluations was the Tiles
Proof, and several remarked that the proof was not clear. Indeed, this proof

Table 5.2 Mean ranks for proofs, scored from 5 (best) to 1 (worst).

Group 1 Group 2 Group 3 Total

Factorisation 3.4 4.0 4.4 4.0
Unit fractions 2.9 3.4 3.1 3.2
Tiles 2.2 3.5 3.0 3.1
Table 4.1 1.8 2.3 2.4
Graph 2.3 2.4 2.1 2.3
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gave rise to the most varied and interesting responses. Reactions, as judged by
comments from the Flemish students, were ambivalent, reflecting its perceived
simplicity and elegance, yet somehow finding it not ‘properly mathematical’
because of the lack of algebraic expressions in the argumentation. For exam-
ple: ‘Proof with tiles: This is a better proof because it is clear and from the
beginning till the end, it is neatly reasoned. Nevertheless, I miss some equa-
tions and it is a rather intuitive proof.’ Others wrote: ‘A much lower level
and it lacks the real great mathematical thinking’ and ‘very clear and simple
but not enough mathematics to be a real proof’. Others found its intuitive
nature and clarity and the lack of involvement of algebraic expressions appealing:
‘Even a ten years old child can understand it. You don’t need any mathematical
knowledge!’

Many of the Flemish students bracketed the Unit Fractions Proof with the
Factorisation Proof as most convincing merely because of the representational
system they rely on, i.e. algebraic expressions that are manipulated. Thus, ‘you
really prove it with factorisation and unit fractions’, and ‘both proofs are proofs
in which algebraic manipulations are used, which I prefer because, in my view,
it leads to the deepest insight’. Others valued the Unit Fractions Proof less.
The proof is an example of ‘proof by exhaustion’, that is to say, showing that
a finite number of possibilities exist (in this case three) and checking these one
by one; in all groups, some of the students appeared to confuse this logic with
a trial and error approach that can be used to find the solution of an algebraic
equation without the need to manipulate the algebraic expression as such.

By contrast with the other groups, Group 1 ranked the Table Proof highest.
The probable reason for this is that it was most accessible to them, in partic-
ular because they had, in class, been carrying out somewhat similar empirical
investigations. The student who found the germ of a proof based on looking
at rate of increase of area and perimeter wrote: ‘I love this proof! I used [a]
similar proof like this and it was easy for me to keep track visually.’ On the
other hand, many of the students in this group were convinced by studying
the patterns in the table, but did not find clear the explanation of why there
could be no further solutions. Among the Flemish students, the average rank-
ing for the Table Proof was low and, in some cases, it was even rejected as
a proof.

One reason for the low ranking of the Graph Proof was probably again the
representational system it relied on. One response was: ‘Proof with the graph:
I find it very bad because no real mathematical arguments are used. It is just
read off the drawing.’ The reasoning needed to establish the limited number of
points with natural number coordinates on the graph was also very sketchily
presented in the material given to the students. It should, nevertheless, be
noted that one subgroup of Group 2 (with six students) rated the Graph Proof
relatively highly, which can be attributed to the fact that they were accustomed
in class to using graphing software, and were allowed to, and did, use it while
responding to the two parts of the study. The proofs collectively also elicited
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several emotional and aesthetic reactions, which not only related to the sound-
ness of the arguments given in the proofs as such, but also to the representations
relied on. Examples are: ‘Checking by trial and error which number can and
which cannot [work] and I do not find this pleasant. It is indeed a proof, but
it doesn’t look like it’, ‘The factorisation is very simple, clear and beautiful’,
‘The proof with the tiles comes over as a little bit playful’, ‘The proof with
the tiles, I found by far the most creative and funny, but it does not fit very
well with my perception of a mathematical proof’. One reaction pointed to the
difference between proofs that convince logically and proofs that illuminate:
‘The proof with the tiles is the most visual one: you are not only convinced
about the truth of the judgment, you also get the feeling that you “see” why
it is so.’

Because of the limitations of the study, not too much weight should be put
on the results presented here. However, it seems reasonable to claim that they
establish the potential of the problem as a means of probing both students’
thinking in relation to a novel problem, and their conceptions of proof in various
kinds of representations.

Links with theories of problem solving and proof

Here we again go through the empirical, algebraic and geometric approaches to
the Isis problem, pointing out connections with important theoretical elements
that are at the core of this book – the role of representation, interplay of routine
and adaptive expertise, the search through a problem space, the importance of
personal experience, the use of heuristics in the style of Polya.

An empirical approach to the Isis problem, as in many other cases, is good
for generating a conjecture – virtually all the students tested found the two Isis
rectangles. Mathematicians have always worked in this way and, with computers
available, it is becoming even more common, and even changing the conception
of proof, with a resurgence of ‘experimental mathematics’ (Hanna, 2007, pp. 6–
7). The more difficult part is moving from the conjecture, via systematisation
of the cases considered, to an argument that is the basis for a proof (Warner,
Schorr, & Davis, 2009). It is also a subtle part of pedagogy to convince children
that a conjecture that they believe to be true, and that has been verified for a
great many cases, still requires a proof that applies to all cases. In the case of
the Isis problem, one starting point for moving from conjecture to proof might
be by the tabular representation suggested in Figure 5.1, a move that requires
shifting from a simple noticing of the patterns in the table to a systematic analysis
of what underlies those patterns, e.g. through a general argument about what
happens when one dimension increases by 1 (see above).

The various approaches through the algebraic representational system remind
us of a useful distinction made by Hatano (2003, p. xi), who defined routine
expertise as ‘Simply being able to complete school exercises quickly and accu-
rately without understanding’, whereas adaptive expertise means ‘the ability to



Representations and proof 105

apply meaningfully learned procedures flexibly and creatively’. The interplay
between these two forms of expertise can be seen very clearly in how students
approached the problem algebraically. The most obvious and prevalent form of
routine expertise was to write the relationship between (numerical values of)
area and perimeter as an algebraic equation. Almost all the students in all three
groups wrote the equation at some point, though, as mentioned above, most
in Group 1 were unable to develop the equation in useful ways. Having done
this, the problem has been redefined as finding natural number values of x and y
that satisfy xy = 2x + 2y. Given that the algebraic representation is constructed,
solving the problem can be done without reference to rectangles, areas, and
perimeters, exemplifying the power of symbolic algebra in general – particularly
when the method for finding a solution of the equation set-up is known (routine
knowledge):

when we solve an algebraic equation which models a problem, we detach
ourselves from the meaning of the symbols and their referents. Interme-
diate steps are usually not regarded as having meaning with reference to
the situation, they are rather mechanical (and thus efficient) manipulations
towards the solution.

(Arcavi, 1994, p. 30)

From the starting equation a route can be traced through the space of equiva-
lent equations generated by applying allowable transformations. How this works
out for individuals will depend a lot on what is routine expertise for them. Davis
(1985, pp. 89–95) presents a long and winding journey through many repre-
sentations recorded by a mathematics teacher searching through the space of
equivalent equations for the basis of a proof.

As was pointed out above, one routine step led to the equation:

y = 2x
x − 2

Some may recognise this as the equation of a hyperbola (more familiar in the
form (x − 2)(y − 2) = 4 and, if they have graphing facilities available, recur to
the graphical representation (e.g. on a calculator). Others, as with several of the
students in Groups 2 and 3, will stay within the algebraic representation, and
recognise that for 2x/(x − 2) to be an integer (equal to y) x − 2 must divide
exactly into 2x, a tight constraint on x that can be used to find the possible
values. A further simplifying step is to transform to:

y = 2 + 4
x − 2

so that x − 2 must be a factor of 4, whence the proof follows very easily.
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Other pieces that might be more or less routine expertise include the range
of algebraic manipulations of the initial equation allowed, knowledge about
inequalities, about the harmonic mean, and knowledge about unit fractions.
As pointed out by Acevedo-Nistal et al. (2009), representational flexibility
is heavily dependent on subject characteristics, in particular prior concep-
tual and procedural knowledge about representations, and domain-specific
knowledge.

Using symbolic algebra is, thus, an almost routine, automatic response, given
a certain level of experience with it, one that may or may not lead, and with
more or less struggle, to a successful proof. However, as discussed by Arcavi
(1994), there are cases where algebra may be invoked that are rather intractable,
and a strategic shift to a very different kind of representation may be appropri-
ate. With the Isis problem, a shift to a geometrical representation changes the
nature of the problem and the form of the solution. When Brian Greer first
told Bob Davis about what we now refer to as the Tiles Proof (which is cer-
tainly not original but which Brian Greer discovered independently) Davis was
very excited because, he suggested, this was a line of argument available to the
Egyptians, who had not developed symbolic algebra (Davis, 1993). Referring
to a number of different solutions of the Isis problem that had been published
in the Journal of Mathematical Behavior, Davis commented:

[Greer] thought about the concrete square tiles . . . and thought directly in
terms of these tiles. Clearly, the ancient Egyptians could have done that, and
one feels it quite likely that they did. All of the rest of us moved immedi-
ately away from concrete representations of the problem, and dealt instead
with abstract representations. This is characteristic of late-twentieth-century
analysis. (p. 6).

In the various approaches to the problem, a number of examples of heuristic
thinking in the sense of Polya (1957, 1962) have been observed. Davis (1988,
p. 338) asked the question:

How does . . . anyone . . . think of rewriting:
xy = 2(x + y)
in the form (x − 2)(y − 2) = 4?

Based on introspection, we can suggest two reasons. The form of the equation
xy − 2x − 2y = 0 strongly cues the 4 that is missing (as suggested by Gestalt
theorists, for example). So that answers the question raised by Davis (and by
several students in the study). The 4 is needed to ‘complete the rectangle’.

How about the heuristic of considering special cases? A simple application
leads to the result that the only Isis rectangle that is square is the 4 × 4 case.
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More generally, holding one dimension constant while varying the other sys-
tematically forms the basis of an approach through considering rate of change,
as was discussed earlier.

A heuristic that goes to the heart of mathematics is that phrased by Polya
(1957, p. 110) as the deceptively simple question ‘Have you seen it before?’
For the Isis problem, this heuristic more specifically may be ‘Where have I seen
xy and x + y related?’ which may call to mind the quadratic equation x2 +ax + b
in which the sum of the roots is −a and the product of the roots is b (see
the discussion above of one student who found a proof in this way). Another
question that can be asked is ‘Where else do the pairs of numbers (4, 4) and
(3, 6) occur?’ which leads to a very interesting problem devised by Lewis Carroll
(discussed by Polya, 1962, p. 41) where precisely these pairs of numbers are
involved – as two pairs of natural numbers with harmonic mean 4.

These considerations lead more generally to the topic of making connections
in mathematics, which is taken up below within the discussion of educational
implications.

Theoretical and pedagogical implications

In this chapter we have shown how the Isis problem embodies a web of deep
mathematical ideas within a context that does not rely on complex technical
mathematical knowledge. As such, it has much to offer both for the teaching of
mathematics and as a conceptually rich example for the application of theories
of problem solving, notably for probing the roles of representations.

Theoretical implications

Schnotz et al. (this volume) suggest ways in which perspectives of Gestalt
psychology and information-processing psychology may be synthesised. Our
analysis instantiates, and extends, this synthesis. The focus, from Gestalt psy-
chology, on the centrality of the initial representation of the problem, is
illustrated by the differences among the proofs, most markedly the Tiles Proof
and the various proofs emanating from the equation xy = 2x + 2y. Develop-
ment of an algebraic proof may be characterised, in part, as a search through a
problem space of equivalent equations. However, there is more involved than
finding a goal state within that problem space since there is no well-defined
goal state. Rather, the solver has to recognise a state within the problem space
as being tractable as the basis of a proof. As we have seen, both from the task
analysis and from the work of a few exceptional students, there are many such
states, and many forms of argument leading from them to proofs. Thus the
algebraic proofs combine elements of searching a problem space with the need
for insight. There is a further important element to this synthesis, however,
namely that insight does not occur in a vacuum. We have documented, on the
one hand, the roles of routine expertise and domain knowledge and, on the
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other, of flexible expertise through the application of heuristics in the tradition
of Polya (1957, 1962), notably ‘think of a related problem’. The analysis also
illustrates the possible inhibiting effects of certain representations, notably in
this case the algebraic, through processes akin to the Gestalt notion of func-
tional fixedness (Schnotz et al., this volume) and Whitehead’s (1929) notion of
inert knowledge, as discussed below.

Schnotz et al. (this volume) also emphasise the contrast between a descriptive
representation (based on symbols within a conventional symbol system that have
no intrinsic relationship with the mathematical objects represented) and a depic-
tive representation (which embodies some structural commonalities between
the representation and the represented entity). The algebraic solutions for the
Isis problem exemplify the former type, and the geometric solution the latter.
There is also a link here with a distinction made in the literature on proofs
between ‘proofs that prove’ (typically through a sequence of operations on a
descriptive representation) and ‘proofs that explain’ (more usually associated
with depictive representations).

Pedagogical implications

From the perspective of teaching mathematics, a virtue of the Isis problem we
can point to is its interesting extensions. For example:

– What triangles with integer sides (in some unit) have the PANE property
(Perimeter and Area Numerically Equal)?

– More generally, what plane figures have the PANE property?
– Ramping up a dimension, what cuboids (rectangular box-shaped solids) with

integral dimensions have the property that the volume and surface area are
numerically equal?

The quest for extensions provides an additional rationale for finding various
alternative proofs in different representational systems: which proofs are adapt-
able to the new problem, and why are the other proofs not? The reader may
like to consider which proofs for the Isis problem can be adapted for the
three-dimensional analogue at the end of the above list.

A more radical extension starts from the observation that the Isis problem,
and the extensions mentioned above, are of interest mathematically, at least as a
kind of intellectual puzzle, but, as far as we know, do not have important appli-
cations – for a fundamental reason that, in itself, is extremely important. The
opening statement of the problem carefully includes the words ‘in some unit’,
‘numerically’, and ‘integral’, thereby revealing the arbitrariness of the measure-
ments and the sense in which an area and a length cannot be equal. The former
can be seen in the general theorem that, for any plane figure for which area and
perimeter are defined and finite, one and only one suitable change of the unit
of measurement will give that figure the PANE property (and a similar theorem
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applies for three-dimensional figures in relation to volume and surface area).
The problem throws light on fundamental questions about dimensionality. If
the problem is extended to general issues about relationships across dimensions,
then we enter a very important realm, with many biological and engineering
applications (e.g. Galilei, 1638; Haldane, 1928). However, this discussion lies
beyond the scope of this chapter.

As we have demonstrated through task analysis and through examining stu-
dents’ responses to the problem, the Isis problem is notable for the variety of
different approaches to it. Relatively recently, we were alerted (by Abraham
Arcavi) to a paper by Usiskin (1968, p. 388) called ‘Six non-trivial equivalent
problems’ in which he makes exactly this point, commenting that: ‘Equivalent
problems demonstrate perhaps the most important quality of mathematics, the
ability of one theoretical concept to be used as a model for many different ideas’
(for an eloquent exposition of this position, see Poincaré, 1908) and arguing
that suitable examples can be found to introduce understanding of this funda-
mental principle early in a child’s mathematics education. In our experience, not
enough emphasis is put in mathematics education on showing connections – in
Poincaré’s words ‘mathematics is the art of giving the same name to different
things’ (and see Greer & Harel, 1998, p. 16).

For several of the proofs presented, it seems reasonable to assume that the
students, in some sense, ‘had’ the necessary knowledge. That so few of them
generated a proof within an hour (admittedly a short time to investigate an unfa-
miliar problem) suggests that their knowledge was ‘inert’ (Whitehead, 1929).
Another explanation is that representing the problem by means of an algebraic
equation cued familiar techniques, but not the different styles of argument
needed to solve Diophantine equations. The students involved in the study
probably did not very often (if ever) solve such equations. As an example of
inert knowledge, Brian Greer remembers a discussion with a class of university
students, some of whom had taken quite advanced mathematics classes. Having
been presented with the equation 1/x + 1/y = 1/2 they were at a loss how to
proceed to find natural number solutions for x and y, and did not seem to find
it natural to argue that either 1/x and 1/y are 1/4 or one is greater than 1/4
and the other less. It was as if the algebraic representation straitjacketed their
thinking to known algebraic manipulations, so that they were inhibited of think-
ing of 1/x and 1/y as (positive) numbers whose sum is 1/2 (so that both must
equal 1/4 or one must be more and one less, leading to a proof by exhaustion
as discussed above). In other words, this could be characterised as an extreme
case of the phenomenon Arcavi (1994) described as ‘lack of symbol sense’.
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Chapter 6

Secondary school students’
avai labi l ity and activation of
diagrammatic strategies for
learning from texts

Michael Schneider, Catrin Rode, and Elsbeth Stern

Introduction

Visual-spatial knowledge representations such as matrices, Venn diagrams, hier-
archical trees, and path diagrams are valuable tools for illustrating the gist of
texts as well as complex quantitative data patterns. They make abstract concepts
more concrete by mapping them onto spatial layouts with familiar interpreta-
tional conventions, and they clarify and highlight aspects of the problem that
might otherwise be obscured by the text (Novick, 2001). Thus, using appro-
priate diagrams to represent information is an important tool which enables
deeper understanding and facilitates problem solving in academic as well as
non-academic domains.

Stern, Aprea, and Ebner (2003), for example, provided empirical evidence for
the benefits of using spatial representations. They showed that graphical repre-
sentation of the content of texts aids reasoning and transfer of the contents to
new situations. Bauer and Johnson-Laird (1993) found that subjects responded
faster and drew more valid conclusions in a deductive reasoning task when the
premises were presented diagrammatically.

In order to provide students with proficiency in the use of all kinds
of visual-spatial representations, diagrammatic literacy must go beyond sim-
ple diagram reading and construction skills. Students need to understand
how to use diagrammatic representations as tools for thinking. Consequently,
mathematics and science educational research in particular (Greeno & Hall,
1997; Lewis, 1989) has emphasised the need for students to learn to use
such representations and to develop an understanding of the strengths and
weaknesses of various representations for different purposes. Students should
learn to actively create and adaptively use diagrams as tools for prob-
lem solving, as opposed to just reading provided diagrams in preconceived
ways.

Despite the usefulness of diagrams, in Germany, where our study was con-
ducted, as well as in many other countries, school instruction on diagram use
has remained limited (e.g., Hardy et al. 2005; Mevarech & Kramarski, 1997).
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Textbooks, for instance, are often supplemented with highly specific illustrations
which support the understanding of a given problem but do not necessarily
teach students how to generate diagrams to reconstruct or represent novel
information. Moreover, diagrams used in media inside and outside of school
often serve merely illustrative purposes. In many German classrooms, systematic
instruction on graphical representational techniques hardly occurs at all, and,
if it does, it is usually in restricted contexts (e.g., Cartesian graphs represent-
ing linear functions in mathematics classes). Typically, when solving a problem
at school, students either are instructed to draw a pre-specified type of dia-
gram or are given a diagram along with the problem. Thus, there is hardly any
curriculum-based opportunity to learn how to translate a novel problem into a
representation that captures the deep structure of the task at hand (Hardy et al.,
2005).

In spite of the large body of literature indicating that graphs and dia-
grams can support and facilitate problem solving, there is considerably less
research on how people actually use diagrams. Novick, Hurley, and Francis
(1999) studied college students’ ability to select the appropriate type of dia-
gram from a set of alternatives and demonstrated at least some schematic
knowledge about the conditions of applicability for particular spatial struc-
tures. However, other studies suggest that this knowledge is not used spon-
taneously. Schoolchildren’s limitations in using graphical representations as
thinking tools become apparent when they are presented with arithmetic
word problems. Although graphical representations help considerably to high-
light relevant aspects of the described situation, college students show very
limited competencies in depicting appropriately the relevant information of
word problems (Lewis, 1989). Moreover, Stern and Staub (2000) showed
that even elementary school math teachers of relatively high-achieving class-
rooms failed completely in using appropriate spatial representations for word
problems.

In and out of school, students encounter a broad variety of different diagram-
matic representations such as graphs, circles, tables, matrices, tree diagrams,
path diagrams, and so on. But to what extent do the learning conditions typ-
ically encountered by secondary school students enable them to create and
use diagrammatic representations when faced with a new and complex prob-
lem which requires a diagrammatic representation? Tversky, Kugelmass, and
Winter (1991) showed that even without systematic instruction, preschool chil-
dren begin to use linear orderings for representing non-spatial information.
This shows that even young children benefit from instructions on using space
for non-spatial purposes. However, since using space to represent content is
hardly ever practiced outside of limited context in math and science classrooms,
students have few opportunities for strengthening this competence. Thus we
expect serious deficits in diagrammatic competency to occur. These potential
deficits could be attributed to at least two major causes: lack of availability or
lack of activation.
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Availability of diagrammatic strategies

The first possible cause of deficient diagram use is lack of availability. Students
may lack the competencies for constructing diagrams because they do not know
how to use space for non-spatial constructs. Since preschool students already
use linear orderings spontaneously, a lack of availability can hardly be expected
for one-dimensional representations. However, even college students show defi-
ciencies in the use of representational forms that require the integration of two
or more dimensions, such as clusters, crosstabs, matrices, complex path dia-
grams or tree diagrams (Novick & Hmelo, 1994). As such diagrams are used
only rarely in school, students have to develop this knowledge by themselves on
the basis of their background knowledge. Linear graphs are part of the curricu-
lum in Grade Eight mathematics in Germany, where our study took place. This
instruction on coordinate systems might help students of this age also to better
understand other multidimensional diagrams used on other content domains. In
this case, there should be improvements in the availability of strategies making
use of two-dimensional diagrams from Grade Seven to Grade Nine.

Activation of diagrammatic strategies

The second possible cause for students not using diagrams is lack of activation.
Students receive systematic instruction on verbal strategies in representing the
gist of a text, such as underlining core information in a written text or excerpting
keywords. Therefore, diagrammatic representation may be available in principle,
but may not be activated when required. Students may rely on familiar verbal
strategies even if it would be more advisable to represent the core information
by a diagram. The persistence of strategies that are highly familiar but inefficient
for solving the particular problem has been demonstrated repeatedly in various
content areas and may be part of a larger, generally adaptive tendency to main-
tain cognitive variability (Siegler & Stern, 1998). Therefore we expect that even
older secondary school students rely on verbal strategies to represent the gist of
a text that could also be depicted in a diagram. Given the strong familiarity of
verbal strategies, spontaneous use of spatial strategies can rarely be expected.

A lack of explicit knowledge about the potentials of diagrams might further
contribute to this problem: learners may lack the knowledge that visuospatial
representations can sometimes be more efficient than words. Due to this they
do not consider using diagrammatic strategies, even if this method is highlighted
in the instruction.

Students’ competencies and deficits can be inferred by varying the degree
to which the diagrammatic strategy is pointed out to them in the instructions
for solving the problems. When students use the diagrammatic strategy, even in
the absence of any instruction about it, they demonstrate a good availability
and activation of this strategy. When students do not use the diagrammatic
strategy, even after an intervention makes it available to them, only a low level
of activation can account for the finding. On the other hand, when students
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who are asked explicitly to use diagrams still do not use them, then they are
demonstrating a lack of availability.

Experiment 1: spontaneous and evoked diagram use

Experiment 1 consisted of two phases, a reading phase and a test phase. In the
reading phase, the students were presented with six short texts. Students were
asked to take down notes about the contents of the texts and were told that
these notes would help them in the subsequent test phase. The instructions
were given in German (as our participants were German). We were careful to
choose a wording that did not suggest the exclusive use of text or the exclusive
use of diagrams. In the test phase, students were allowed to use their notes,
but not the original texts, to answer a number of questions about the texts.
Each text described the relations between a set of items. These relations can
be represented with keywords or, alternatively, with a diagram (i.e., hierarchical
tree diagram, word clusters, map, or one-dimensional array).

The participants were randomised into two groups: the control group was
asked only to take notes about the texts, without any guidelines about the nature
of these notes. The treatment group, however, received a brief explanation of
two useful strategies before the test: using keywords and using diagrams for
summarising texts.

We hypothesised that students at both age levels would use the diagrammatic
strategy only rarely in the control group but more frequently in the treatment
group, where the availability of the strategy was increased due to the instruction.

Method

Participants

A total of 131 secondary school students participated in the experiment. The
sample consisted of 60 seventh-graders (28 girls; one gender unknown) with
a mean age of 12.7 years (SD = 0.6) and 71 ninth-graders (34 girls) with
a mean age of 14.9 years (SD = 0.6). All students were recruited from the
highest track (Gymnasium) of the German secondary school system, which
is attended by one-third of children in that age group. Deficiencies in dia-
grammatic competencies found in this group of students can be assumed to
be even larger in samples from the two lower educational tracks in Germany.
Participants were compensated with 15 DM (approximately US$7.00).
Students were recruited in their classrooms, but the study did not take place
during class and participation by the students was optional.

Procedure

Groups of six to ten students were tested either in large seminar rooms in
our institute or in a separate room in their school building. Only students
of the same age group and the same instructional conditions were tested
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together. After a short introduction and an explanation of the procedure by the
experimenter, participants were told that they would have to memorise informa-
tion presented in written texts. They were further informed that they would be
asked questions about the texts and would be allowed to consult their written
notes when answering the questions. Next they received instructions according
to the instructional condition to which they were assigned.

After this, booklets containing the texts and booklets for making the notes
were distributed. Students worked through the task booklet at their own pace.
When a student completed the task, the two booklets were collected so that
none of the students would have extra time with the text. After a break, the
booklets containing the notes were redistributed. Participants also received a
booklet containing the questions on the texts. Students were allowed to take as
much time as they wished to answer the questions. The entire procedure took
approximately one hour.

Material

The stimulus material consisted of a booklet with six short written texts (see
texts 1–6 listed in the Appendix), one on each page. Each text described rela-
tionships between seven or eight items. The six texts varied in their content and
in the relational structure of the items described. The texts were constructed to
allow for the representation of structural relationships between the items in the
texts by using a spatial layout or by noting the keywords in a non-spatial way.
For instance, the relationships in text 3 could be represented in a hierarchical
tree diagram. This text described the structure of fictitious beings:

On the faraway planet of Urx, living beings are called pings. There are two
kinds of pings: spotted pings and striped pings. There are also two kinds of
spotted pings: laughing pings and crying pings. Among the striped pings,
there are the noisy ones and the quiet ones. Tip is a crying ping.

Each of the texts described non-spatial relationships that could optimally be
represented in one type of diagram. The only exceptions were text 6, which
described spatial relations, that is, the positions of seven buildings relative to
each other, and text 2, which was entirely episodic, thus offering scant oppor-
tunity for spatial representation. These two texts served as manipulation checks,
as text 6 was expected to evoke a high number of diagrams and text 2 a very
low number of diagrams, assuming that the students adapted their strategy use
to what they read. The remaining four texts required the use of space for rep-
resenting non-spatial information. Two texts required the integration of more
than one dimension: text 1 was about similarities and differences in the breeding
behaviour of different types of frogs, suggesting a cluster representation. As
indicated above, text 3 described a fictitious species which suggested a tree
diagram as the most appropriate representation. Text 4, which was about
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preferences for different items of food, and text 5, which focused on temporal
relations, both required one-dimensional arrays.

Students were provided with a second booklet for taking notes, with one page
designated for each text. A third booklet contained questions about the six texts
(see Appendix). Three questions were asked for each text. Two questions, the
memory questions, referred to relationships explicitly stated in the text. The
third question, the inference question, referred to a relationship that could only
be inferred from the information given in the text, but was not explicitly stated
there. The order of all texts was randomised for each student.

Experimental manipulation

Each student was randomly assigned to one of two instructional conditions. Par-
ticipants in the free-choice condition were informed about the general task and
procedure. They were encouraged to take notes in an efficient manner, but no
suggestions were given as to what an efficient manner might be. This condition
allowed us to observe the degree to which these students spontaneously used
a diagrammatic strategy to summarise the texts. Participants in the keyword-
or-diagram condition received the same information, but were also told about
two different methods of note taking: the keyword strategy and the diagram
strategy. In the keyword strategy the goal was to summarise the text into a list
of keywords. In the diagram strategy the goal was to summarise the relations
described in the text with a diagram. Two examples of diagrammatic representa-
tions were presented, although these examples were different from the diagrams
most appropriate for summarising the texts presented in the experiment.

At the end of the instructions, the participants were asked to choose either
the keyword strategy or the diagram strategy to summarise the texts pre-
sented subsequently. The difference between the two conditions shows the
degree to which students are impeded by a lack of availability of diagrammatic
strategies.

Coding

Two independent raters determined whether a correct spatial representation, a
correct keyword representation, or neither of the two had been used by each
participant for each of the six problems. If a representation had a spatial struc-
ture that matched the structure of the content of the text, and if most of the
items (i.e., all or all but one) were placed correctly into the structure, the notes
were coded as diagram use. We chose this strict coding rule which excludes
incorrect use of diagrams, because in some conditions of Experiments 1 and
2 the students were asked to use diagrams. Students not being able to use
diagrams for summarising a text sometimes responded to this instruction by
drawing random representations, which resemble actual diagrams but do not
spatially organise the content of a text in a useful way. The current coding system
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is useful, because it excludes such random behaviour as being coded as diagram
use. Written keywords or a written copy of the text was coded as keyword use.
The very rare diverging ratings were unified in a discussion.

Results

Figure 6.1 reveals an illustration of the frequency of correct diagrammatic rep-
resentations for the six texts. As expected, students generated very few diagrams
for the episodic text 2 and many more diagrams for the description of a spa-
tial arrangement in text 6. So the manipulation check yielded positive results.
A comparison between the different tasks shows that tree diagrams (text 3),
simple linear arrays (texts 4 and 5), and maps (text 6) are used by about 60 per
cent of students under the keyword-or-diagram condition. In contrast, cluster
representations (text 1) were rarely used.

Frequency of diagram use was determined for each person by computing
the percentage of texts that were summarised by means of a correct diagram.
A score of 0 would mean that a student generated no diagram at all. A score of
100 would indicate that each of the six texts was summarised in a diagram. The
means and standard deviations for the two grade-levels and the two experimen-
tal conditions are displayed in Table 6.1. An ANOVA with these two factors
revealed a significant main effect for grade-level, F (1,127) = 9.4, p = .003,
η2 = .069, as well as for condition, F (1,127) =35.3, p < .001, η2 = .127. There
was no interaction effect, p = .687, η2 = .001.
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Figure 6.1 Percentage of students who correctly used a diagram to represent one of the six
texts presented in Experiment 1.
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Table 6.1 Frequency of correct diagram use by each person in Experiment 1
reported in percentage of problems.

Free-choice
condition

Keywords-or-diagram
condition

Total

M SD M SD M SD

Grade 7 15 23 42 30 28 30
Grade 9 28 27 58 27 45 30
Total 22 25 50 28 37 30

The more frequent diagram use in the keyword-or-diagram condition
suggests that there is a potential for the use of spatial diagrams as represen-
tational tools but that this knowledge is not used spontaneously unless it is
activated by appropriate instructions.

The interpretation of our results is based on the assumption that using dia-
grams is as effective as, or even more effective than, alternative strategies for
summarising the presented texts. In order to test these hypothesised positive
effects of diagrammatic strategy use, we computed for each student the mean
solution rate for the two memory questions and the mean solution rate for the
inference question.

For the entire sample, the partial correlations between the diagrammatic score
on the one hand and the memory scores and inference score on the other hand
were computed while controlling for grade-level. The number of diagrams used
and the solution rate for the memory tasks correlated with r = .25, p= .004. The
number of diagrams used and the solution rate for the inference task correlated
with r = .57, p < .001. The rather high correlation between the diagrammatic
score and the inference score is compatible with the claim that visual-spatial
representations are more helpful than keywords for drawing inferences.

One could object, however, that the correlations are caused by general cog-
nitive competencies. More competent students may be better at answering
inference questions and they may be more inclined to produce diagrams, even
if the diagrams are not used as reasoning tools. This objection, however, can be
toned down if the instruction, which led to an increased use of diagrams, can be
shown to also have a positive effect on the solution rates of the memory tasks
and reasoning task presented at the end of the experiment. Means and standard
deviations of these scores are depicted in Table 6.2. As expected, the experimen-
tal groups differ highly significantly, both in their solution rate for the memory
tasks, F (1,129) = 14.3, p < .001, η2 = .100, and in their solution rate for the
inference task, F (1,129) = 12.7, p = .001, η2 = .090.

These results show that diagrams are more helpful than notes for answer-
ing memory and inference questions about the texts used in this study. We
did not record the individual students’ time on task, so we cannot say whether
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Table 6.2 Mean solution rates in percentage for the memory questions and the inference
question in the two treatment groups in Experiment 1.

Free-choice
condition

Keywords-or-diagram
condition

Total

M SD M SD M SD

Memory questions 86 15 94 9 90 13
Inference question 72 18 83 19 78 19

the mechanism by which diagram use facilitated learning was that diagram use
led to longer learning times or, alternatively, that it changed the nature of
students’ reasoning about a text. However, overall, students not using diagrams
to summarise our texts did not choose the most effective strategy.

Discussion

The participants of Experiment 1 rarely used diagrams spontaneously. However,
the intervention, which pointed out the usefulness of keywords and diagrams,
significantly increased the use of diagrams and improved students’ memorising
and inferences. These results indicate that secondary school students do not
have diagrammatic representational strategies available. When the strategies are
made available to them by means of a short instructional intervention, students
are also able to use them. The intervention had explained the use of keywords
as well as of diagrams for summarising texts. Thus, students did not necessarily
have to use diagrams since the diagrammatic strategy was only one of the two
options presented. The fact that students did use this option also shows that
the diagrammatic strategy can be activated and carried out correctly by students
once they have acquired it.

However, we do not know from Experiment 1 whether students who did not
use diagrams spontaneously lacked the ability to construct diagrams or whether
they did not activate diagrammatic strategies because they lacked the neces-
sary understanding of the potential of diagrammatic representations that would
enable them to abandon the familiar keyword strategy. From research on strat-
egy change (Siegler, 2007) we know that substituting a familiar strategy for
a new one is a prolonged process, even if the new strategy is far more effi-
cient than the old one. Using the keyword strategy was less efficient than using
the diagram strategy, but since the keyword strategy still enabled students to
answer the questions, they may have chosen it based on familiarity. In school,
students typically are not provided with explicit arguments and evidence for
the benefits of using diagrams. Therefore, a reluctance to activate the new dia-
grammatic strategy may persist, even when the students do know the strategy.
To find out the extent to which there is a lack of activation of the diagram
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strategy, we investigated spatial strategy use in a second experiment under the
condition that no alternative strategy was allowed. We also used some new texts
in Experiment 2 in order to investigate students’ competencies and difficulties
with depicting two dimensions.

Experiment 2: the activation of diagrammatic strategies

In order to find out whether students’ performance in using diagrammatic
representations could be boosted further by instruction on how to use this
representational strategy, participants were tested under two conditions: the
keyword-or-diagram condition or the diagram-only condition. In the keyword-
or-diagram condition (the same as in Experiment 1), students were free to
choose the representational form they preferred. In the diagram-only condition,
students had to use diagrams to represent the problem. Four of the prob-
lems from Experiment 1 were used. In addition, four new, complex texts were
presented which described two-dimensional relations. Appropriate spatial repre-
sentations for these new texts were path diagrams and matrices. We hypothesised
that participants would use diagrams more frequently in the diagram-only con-
dition than in the keyword-and-diagram condition. This would indicate that
our participants have the diagrammatic strategy available (i.e., they know it) but
only activate it when explicitly asked to do so.

Method

Participants

A total of 81 volunteers were tested. The 43 seventh-graders (22 girls) and
38 ninth-graders (19 girls) were recruited from the same track of the German
educational system as in Experiment 1. All seventh-graders were 13 years old.
The ninth-graders had a mean age of 15.2 years (SD = 0.6). The students were
compensated with 15 DM (approximately US$15).

Materials

Participants in Experiment 2 were presented with eight texts which included
four of those used in Experiment 1 (texts 3–6 in the Appendix). The four new
problems in Experiment 2 (texts 7–10 in the Appendix) required the use of
common diagrams allowing the representation of more than one dimension,
such as path diagrams or matrices. Two of the new problems were based on
the Cartesian product, that is, they required each element of one set to be
combined with each element of another set. One of these problems (text 10,
adapted from Novick & Hmelo, 1994) dealt with possible combinations of
sweaters and trousers, while the other one, text 8, was about the roads con-
necting three towns on an island. In two problems only some of the elements of
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two sets had to be connected: text 9 (adapted from Schwartz, 1993) was about
fictitious animals in the jungle that eat, or are eaten by, other animals, while text
7 described a group of children with various hobbies, some common and some
different.

Procedure and design

Students in Experiment 2 received basically the same instructions as in Exper-
iment 1. At the beginning of the experiment, the keyword strategy and the
diagram strategy of note taking were explained to all students. A major ques-
tion to be addressed in the second study was whether one can boost students’
diagrammatic performance further. Therefore, all students participating in this
study solved the task under two conditions: for four of the problems they were
free to choose either the keyword or the diagram method; for the remaining
four problems they were specifically instructed to use the diagram method. The
order of the two conditions was counterbalanced, and across the two conditions,
the problems were also counterbalanced.

As in Experiment 1, participants worked through the booklets individually.
After completion of the representation task and a short break, they were allowed
to consult their notes while they answered the questions about the problems.
Diagram use and keyword use in the participants’ notes were categorised as in
Experiment 1.

Results and discussion

Figure 6.2 shows the proportion of each experimental group who correctly used
diagrams for summarising each text. The frequency of correct diagrams varied
between texts. Students had more difficulties when more demanding – specif-
ically two-dimensional – problem representations were required. For instance,
text 6, which required a map-like representation, and text 4, which required a
linear array, yielded more correct diagrams than text 7 or text 10, which both
required a two-dimensional representation. Overall, the students demonstrated
a good understanding of diagrams under the diagram-only condition.

We computed, for each person, the number of texts summarised by means
of a diagram in the keywords-or-diagram condition and the diagram-only con-
dition, respectively. These scores were expressed as percentages of the number
of texts presented under the respective condition. For example, when a person
generated diagrams for three of the four texts presented in the diagram-only
condition the person’s score for this condition would be 75 per cent.

Table 6.3 shows the mean numbers of texts the seventh-graders and
ninth-graders represented in diagrams under both instructional conditions.
A repeated-measure analysis of variance with the within-subjects factor instruc-
tional condition and the between-subjects factor grade-level revealed a signif-
icant multivariate main effect for the instructional condition, F (1,79) = 33.1,



Students’ availability and activation of diagrammatic strategies 123

100
Keyword-or-diagram condition

Diagram-only condition

70

80

90

60

50

40

D
ia

gr
am

 u
se

rs
 (

%
)

30

20

10

0

Text 2 Text 4 Text 5 Text 6 Text 7 Text 8 Text 9 Text 10

Figure 6.2 Percentage of students who correctly used a diagram to represent one of the eight
texts presented in Experiment 2.

Table 6.3 Frequency of correct diagram use by each person in Experiment 2
reported in percentage of problems.

Keywords-or-diagram
condition

Diagram condition Total

M SD M SD M SD

Grade 7 55 25 78 25 65 19
Grade 9 63 30 80 20 71 20
Total 58 28 78 23 68 20

p< .001, partial η2 = .282, but no effect of grade-level, F (1,79) =1.7, p= .195,
partial η2 = .021, and no interaction of the two factors, F (1,79) =0.4, p = .546,
partial η2 = .005.

Students produced more correct diagrams when they were instructed to
produce a diagrammatic representation than when they were free to choose
between diagrams and keywords. Thus, this experiment indicates that even
when students have broad knowledge of a variety of representational forms, they
often do not use it spontaneously, but only when they are instructed to do so.

As in Experiment 1, we tested whether diagram use led to better answers on
the memory tasks or the elaboration tasks. Table 6.4 shows the mean solution
rates for the two conditions. The experimental manipulation had no effect on
the solution rates for the memory tasks or the elaboration tasks (all ps > .4,
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Table 6.4 Mean solution rates in percentage for the memory questions and the
inference question in the two treatment groups in Experiment 2.

Keywords-or-diagram
condition

Diagram condition Total

M SD M SD M SD

Memory questions 95 9 96 8 96 6
Inference question 73 23 76 23 74 14

all partial η2 < .009). This was found in two repeated-measures ANOVAs,
each of which had the within-subjects factor experimental condition and the
between-subjects factor grade-level. However, the total number of diagrams
used in the experiment correlated significantly with the memory score (r = .23,
p = .037) and with the inference score (r = .42, p < .001) after we controlled
both variables for grade-level.

General discussion

Our results indicate that using diagrams pays off. The more diagrams students
used, the better their recall of information or their inference of new information.
In addition, an experimentally induced increase in the frequency of diagram use
also led to increases in the recall and inference of information in Experiment 1.
Despite these advantages of diagrams, they were rarely used spontaneously. In
the free-choice condition in Experiment 1, where students received no instruc-
tions about how to summarise the texts, diagrams were only generated in 22
per cent of all possible cases.

This conforms to our impression, expressed in the introduction, that school
instruction does not help students to use the potentials that diagrams have to
their fullest extent. The spontaneous use of diagrams increased highly signif-
icantly with the grade-level. This shows that students learn something about
diagram use in middle school. However, our participants came from the high-
est educational track in Germany. Even in this relatively high-achieving group,
spontaneous diagram use was still as low as 28 per cent in Grade Nine, indicating
that school instruction needs to be improved.

The strong effects of our short and simple interventions show that such
improvements would not be difficult to achieve. In the diagram-only condition
of Experiment 2, students were able to use diagrams correctly on an average of
78 per cent of all problems. So middle-school students are well able to trans-
form abstract relations described in a text into a visuospatial representation.
Moreover, as demonstrated in both experiments, students do not use diagrams
in a mindless way, but adapt the diagrams they choose to the nature of the
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relations to be visualised. We used a total of ten different texts that differed
strongly in the nature of the described relations. Students recognised this and
flexibly created the appropriate types of diagrams.

When diagram use has positive effects on memory and reasoning, and when
students are able to use diagrams appropriately, then why do they usually fail
to do so? The results of our two experiments demonstrate that both students’
availability and students’ activation of diagrammatic strategies are deficient. In
Experiment 1, students were free to choose between the two strategies in both
experimental conditions. However, diagram use as a strategy for summarising
texts was explained and, thus, made more available only to one group of stu-
dents. This intervention, too, had a highly significant effect on diagram use.
The findings from Experiment 2 show that a lack of activation of diagram-
matic strategies is part of the problem. In both interventions, the diagrammatic
strategy was explained and, thus, made available to all students. However,
students preferred to use keywords instead of diagrams, when they had the
choice.

As a consequence, school instruction needs to focus on the improvement of
both factors. The use of diagrams should not only be discussed in the context
of function graphs in mathematics instruction but in other subjects and con-
tent areas as well. Students need to practise the use of diagrams, so that they
have this strategy available for when it might be useful. In addition, school
instruction should highlight the specific advantages and disadvantages of texts,
pictures, formulae and various types of diagrams. This knowledge can help
students to choose adaptively among alternative external knowledge represen-
tations for solving given problems, instead of just resorting to a familiar default
strategy (Kramarski & Ritkof, 2002). An important topic for further research are
the exact cognitive mechanisms by which diagram use leads to learning gains,
because these mechanisms were not in the focus of our study.

In a discussion of the potential of diagrams, Larkin and Simon (1987) came to
the conclusion that they ‘are (sometimes) worth ten thousand words’. The word
‘sometimes’ is important, because diagrams are no panacea. Each type of exter-
nal knowledge representation has its specific advantages and limitations (De
Bock et al., 2003; Friel, Curcio, & Bright, 2001). The better students under-
stand this, the more adaptively they can employ the different representational
forms to their fullest extent.
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Appendix: texts and test questions presented in the two
experiments

The materials were presented to the participants in German. Here, we show an
English translation.

Problem 1

Text

There are many different kinds of frogs, some of which differ greatly in their
eating and nesting habits. Bullfrogs, wood frogs and stone frogs have quite sim-
ilar eating and nesting habits. Green frogs and leopard frogs also are very similar
in their eating and nesting habits. Leopard frogs and wood frogs, however, dif-
fer greatly as to their eating and nesting habits. The eating and nesting habits
of brown frogs are similar to those of red frogs, but completely different from
those of the other frogs.

Most appropriate diagram: clusters

Questions

(1). Do bullfrogs and stone frogs have similar eating and nesting habits? (2).
Do brown frogs and red frogs have similar eating and nesting habits? (3). Do
green frogs and bullfrogs have similar eating and nesting habits?

Problem 2

Text

Susie and Frank live in Barrington. They are 14 years old, and the school they go
to is Linton College. They enjoy reading, and Frank also likes to play basketball.
Susie’s mother is a photographer. Frank’s father is an optician. In summer, they
both go to Scotland.

Most appropriate diagram: no diagram

Questions

(1). How old are Susie and Frank? (2). What is Susie’s mother doing for a living?
(3). Where do they go to in the summer?

Problem 3

Text

On the faraway planet of Urx, living beings are called pings. There are two kinds
of pings: spotted pings and striped pings. There are also two kinds of spotted
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pings: laughing pings and crying pings. Among the striped pings, there are the
noisy ones and the quiet ones. Tip is a crying ping.

Most appropriate diagram: hierarchical tree

Questions

(1). Are laughing pings spotted or striped? (2). Are the quiet pings spotted or
striped? (3). Is Tip spotted or striped?

Problem 4

Text

Julian likes noodles best, salad not at all, and French fries a little bit. He likes
apples more than salad, but French fries more than apples. He likes rice second
best. He likes potatoes less than French fries, but more than apples. He likes
Cornflakes and crispies less than apples but more than salad.

Most appropriate diagram: linear ordering

Questions

(1). Does Julian prefer potatoes or French fries? (2). What does he like second
best? (3). Does he prefer potatoes or crispies?

Problem 5

Text

Mary wants to go for a swim today. Before she does, however, she buys a book.
After her swim she goes first to the hairdresser’s, then shopping. After that, she
has lunch. But before having lunch, she calls her girlfriend, whom she will meet
after lunch. Then she goes home.

Most appropriate diagram: linear ordering

Questions

(1). What does Mary do after lunch? (2). What does she do first after her swim?
(3). What does she do between going to the hairdresser’s and calling her friend?

Problem 6

Text

Louisville is a small town. Facing the church, there is a flower shop. On the
right side of the flower shop, there is a supermarket. Opposite the supermarket,
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beside the church, there is a school. On the right side of the school, there is a
drugstore. Beside the drugstore, there is a hairdresser. On the right side of the
supermarket, there is a playground.

Most appropriate diagram: map

Questions

(1). What is on the right side of the drugstore? (2). What is on the right side of
the flower shop? (3). What is opposite the playground?

Problem 7

Text

The teacher of a fourth-grade class asks her students what hobbies they have.
All the children in her class have different names, but some children have several
hobbies. Anne says that she likes swimming; Monica likes to collect shells, and
Susan and Hannah like to read. Susan also likes to collect shells, and Fanny says
that she, too, likes to collect shells. Alicia says that she likes to read; and Gerald
likes swimming. Alicia and Susan also like swimming.

Most appropriate diagram: two-dimensional representation

Questions

(1). Which activity does Hanna like? (2). Does Fanny like swimming? (3). Which
child has the largest number of activities?

Problem 8

Text

On the island of Mobumbi, there are only three towns. One town is called Adi,
one is called Bedi and one is called Cedi. All the roads from Adi to Cedi run
through Bedi. There are only four roads from Adi to Bedi and only three roads
from Bedi to Cedi.

Most appropriate diagram: Cartesian product in a two-dimensional representation

Questions

(1). How many roads are there from Adi to Bedi? (2). How many roads are
there from Bedi to Cedi? (3). How many roads are there from Adi to Cedi?
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Problem 9

Text

In nature, there are very complicated food chains. In the jungle of Muzumbi,
for instance, Dasings eat Tindals and Sandis. Tindals eat Pondos. Godas eat
Dasings. Faltings eat Rondas. Pondos are eaten by Sandis and by Rondas.

Most appropriate diagram: two-dimensional representation

Questions

(1). What do Dasings eat? (2). What do Faltings eat? (3). Which animal is eaten
by the largest number of other animals?

Problem 10

Text

Susie always gets a birthday parcel from her grandmother. This year, she asked
her grandmother for some clothes. She supposes that her grandmother will buy
her blue or green or red or yellow trousers. In addition, she will probably get
a sweater. The sweater will also be blue or green or red or yellow. Susie hopes
that she will get either a red sweater and green trousers or yellow trousers and a
blue sweater or a yellow sweater and yellow trousers, for those are her favourite
combinations.

Most appropriate diagram: Cartesian product in a two-dimensional
representation

Questions

(1). What does Susie get from her grandmother? (2). What does Susie think goes
well with green trousers? (3). How many possible combinations of trousers and
sweaters are there?
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Chapter 7

Conceptual change in learning
electricity
Using virtual and concrete external
representations simultaneously

Tomi Jaakkola, Sami Nurmi, and Erno Lehtinen

Introduction

Previous research has established that teaching students to understand the
functioning of electric circuits on a qualitative level is a difficult pedagogical
challenge (e.g., Lee & Law, 2001; McDermott & Shaffer, 1992; Reiner et al.,
2000). First, the central concepts, such as voltage, current and resistance, are
very abstract by nature and refer to processes that are dynamic and often intan-
gible in natural situations. Consequently, it is not easy to provide the students
with accurate information about electric circuits in an easily comprehensible for-
mat. Second, students have many misconceptions about electric circuits which
seem to be exceptionally tenacious and resistant to teaching efforts (e.g., Lee &
Law, 2001; McDermott & Shaffer, 1992). The problem is that the students are
not well aware of the limitations of their initial model, which is often coherent
enough for them to feel that they have arrived at a consistent (albeit incorrect)
and satisfactory explanation (Vosniadou, 2002).

According to some of the recent studies, the use of computer simulations
seems to promote students’ conceptual understanding of electric circuits more
effectively than the use of real circuits (e.g., Finkelstein et al., 2005; Jaakkola &
Nurmi, 2008; Zacharia, 2007). Finkelstein et al. (2005), for instance, examined
the effects of substituting a computer simulation for real circuits on learning the
basics of DC circuits in a university physics course. They found that the students
using the simulation outperformed the students using the real circuits, both on
a conceptual knowledge test and in the coordinated tasks of assembling a real
circuit and describing how it works.

One explanation why computer simulations seem to promote conceptual
understanding more effectively than real circuits, seems to be that the devel-
opment of a theoretical understanding of electric circuits through practical
manipulation with real circuits can be problematic; in many cases students can
only see what is happening on the surface level of the circuit, while being unable
to grasp the underlying processes and mechanisms that are important for the-
oretical understanding (e.g., current flow) (Finkelstein et al., 2005; Hennessy,



134 Tomi Jaakkola et al.

Deany, & Ruthven, 2006). In comparison with real circuits, a simulation can
make the functioning of electric circuits more transparent; it can model cir-
cuits on various levels of abstraction (e.g., a circuit in schematic format vs. the
mimicking of real bulbs and wires) and visualise processes that are invisible in
natural systems1 (Finkelstein et al., 2005; Goldstone & Son, 2005; Hennessy
et al., 2006). This visualisation allows the students to become better aware of
the limitations of their initial reasoning (the output of the simulation may be
in conflict with their expectations) and discover the properties of the scientific
model embedded in the simulation (e.g., the electric circuit is a closed system in
which all components interact; Ohm’s law; total resistance in parallel and series
circuits) (e.g., de Jong, 2006; Lehtinen & Rui, 1996). Another distinctive fea-
ture of computer simulations is that the embedded model(s) often highlights
the elements that are important for theoretical understanding (e.g., interde-
pendence between current, voltage, and resistance) and excludes (or hides) the
elements that are irrelevant or potentially misleading (e.g., poor connections,
worn batteries, tangled wires, colour of wires, or even broken wires or bulbs)
(e.g., Finkelstein et al., 2005; Goldstone & Son, 2005).

Our own findings suggest that, at least in the elementary school context,
computer simulations and laboratory activities should be considered as comple-
mentary (rather than competing) instructional tools that, in combination, can
provide appropriate conditions for conceptual change and deeper understanding
of electrical circuits (Jaakkola & Nurmi, 2008; Jaakkola, Nurmi, & Veermans,
in press; see also Ronen & Eliahu, 2000). In our first study (Jaakkola & Nurmi,
2008) fourth- and fifth-grade students solved circuit assignments in three dif-
ferent learning conditions – a computer simulation (using only a simulation),
a hands-on laboratory exercise (using only real circuits) and a simulation–
laboratory combination (using the simulation and the real circuits in parallel).
In each condition the students had 90 minutes to practice with the circuits dur-
ing the intervention. The results showed that the development of conceptual
knowledge was the most notable in the combination condition. Students in the
simulation condition also made clear progress during the intervention, but their
conceptual understanding of electric circuits did not reach the desired level in
the post-test. The progress was the most modest in the laboratory condition
where the students’ conceptual understanding remained at an elementary level,
even after the intervention. In a more recent study (Jaakkola et al., in press)
we investigated the role of implicit and explicit instruction (see the section on
method, page 137) on students’ conceptual learning outcomes when they used
the simulation either on its own (simulation environment) or in parallel with real
circuits (simulation–laboratory hybrid environment) to learn the basic principles
behind the functioning of electric circuits. The main finding was that although
the explicit instruction was able to improve students’ conceptual understanding
of electrical circuits considerably in the simulation environment, their under-
standing did not reach the level of the students who used the simulation and
the real circuits in parallel, even after the amount of time spent on constructing
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Table 7.1 Gain in subject knowledge (pre-test post-test change) in standard deviation units,
proportion of correct models in the post-test and learning efficiency in each
learning condition.

Simulation
implicit

Simulation
explicit

Hybrid implicit Hybrid explicit

Gain in subject
knowledge (da)

.22 .78 1.51 1.24

Proportion of correct
models (%)

17 43 58 67

Learning Efficiencyb 0.572 (1.840) 1.700 (2.101) 3.554 (2.39) 2.232 (1.597)

ad is Cohen’s (1988, p. 48) standardised mean difference effect size for one sample paired observations.
bLearning efficiency (gain in subject knowledge per learning time; cf. Rasch & Schnotz, 2009) controls the
effect of time on learning outcomes. In order to cover the same content in all conditions, the students
were allowed to spend an unlimited amount of time to construct and study the circuits during the
intervention.

and studying the circuits during the intervention was controlled (see Table 7.1
for main results; more details are provided in Jaakkola et al., in press).

The aim of this chapter is to investigate from video data the issues that could
explain why combining and linking the use of virtual external representations
(a computer simulation) with concrete external representations (laboratory
activities) seems to promote students’ conceptual understanding so effectively.
The analysis focuses on the three theoretical issues outlined below.

(1) In our study, the students use the simulation and the real circuits side by
side, in parallel.2 That is, they construct each circuit first with the simulation
and then reconstruct the same circuit using the real equipment immediately
afterwards.3 This means that the students always have two different representa-
tions of electrical circuits available. Although the simulation and the real circuits
are superficially dissimilar, the underlying principles are the same in both. Sev-
eral studies (e.g., Gentner, Loewenstein, & Thompson, 2003; Gick & Holyoak,
1983; Kurtz, Miao, & Gentner, 2001; see also Ainsworth, 2006) have found
that analogical encoding – comparing two instances of a to-be-learned princi-
ple – is a powerful means of promoting learning, even for novices. Gentner and
her colleagues (2003), for instance, examined schema abstraction and trans-
fer among novices learning negotiation strategies. All participants studied two
short case examples dealing with negotiation strategies. Half of the participants
were encouraged to compare the cases, and half were encouraged to study them
one at a time. The outcome was that drawing comparisons led to greater under-
standing of the schema and greater transfer than did reading the cases separately.
The authors explain that drawing comparisons between two complementary
cases can help students focus on the common principles shared by the cases,
and thus result in a more abstract understanding of the phenomena. This finding
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suggests that analogical encoding can be effective even quite early in learning,
when learners lack knowledge of an appropriate base domain. Accordingly, we
assume that the simultaneous use of virtual and concrete representations can
improve students’ understanding of the principles behind the functioning of
electrical circuits.

(2) In line with Piagetian theory many authors have proposed that cognitive
conflict between prior knowledge and the requirements of new tasks is a fun-
damental driving force in learning scientific concepts (e.g., Chinn & Brewer,
1993; Strike & Posner, 1982). However, recent research has shown that a cog-
nitive conflict introduced by pedagogical arrangements is often insufficient to
promote conceptual change and conceptual learning in general (Limón, 2001).
Merenluoto and Lehtinen (2004) have shown that there are inter-individual and
situational differences in students’ sensitivity to unfamiliar aspects of new learn-
ing tasks, and in their cognitive, metacognitive and motivational strategies to
cope with experienced cognitive conflict. We assume that the simultaneous use
of virtual and concrete representations can increase students’ sensitivity to novel
findings, and the richer external support afforded by the hybrid environment
can result in the use of more adequate strategies to deal with the conflict.

(3) Self-explanations may be a factor that helps students’ conceptual under-
standing. In their study on problem solving in physics, Chi and VanLehn (1991)
found that good solvers provided more self-explanations during the problem-
solving process. They defined self-explanations as comments that pertained to
the content of physics. Self-explanations are generated in the context of learning
something new. We assume that the opportunity to move between two external
representations in the hybrid environment triggers students’ self-explanations.
On the other hand, the incidence of self-explanation can also be increased by
explicit guidance to look for explanations.

Based on the above theoretical analysis we present two general research
questions:

– Are there differences between the students participating in the four experi-
mental conditions in terms of experienced cognitive conflicts and presented
self-explanations?

– Is there evidence in the hybrid environment to support the use of reasoning
and learning by analogical encoding?

Method

Some parts of this section are provided in condensed format. More details about
the method can be found in Jaakkola et al. (in press).
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Design

The students constructed various circuits in four different learning conditions
between pre-test and post-test:

– In the simulation implicit condition (SI) the students used a simulation
to construct electric circuits and they received implicit instruction. Implicit
instruction means that the students were provided only with procedural guid-
ance, i.e. they were told what kind of circuit to construct, how to construct
it, and what kind of electrical measurements to conduct, but they were not
told on what aspects of the circuits they should focus.

– In the simulation explicit condition (SE) the students used the simulation
and received explicit instruction. Explicit instruction means that the stu-
dents constructed exactly the same circuits as the students receiving implicit
instruction, but they were given more support and structure for their inquiry
process, i.e. when they constructed the circuits and conducted electrical
measurements they were guided to focus on the circuit elements that are
important for a theoretical understanding (e.g., current flow, changes in volt-
age across the bulbs in various circuits) and asked to explain their findings
(e.g., under which condition there is a current flow).

– In the hybrid implicit condition (HI) the students used the simulation and
the real circuits in parallel and received implicit instruction. Parallel use means
that the students constructed exactly the same circuits as the students in the
simulation conditions (SI, SE), but they constructed each circuit twice in a
row: first using the simulation and then, immediately after succeeding with
the simulation, reconstructing that (same) circuit with the real equipment
(circuits) that was placed next to the computer (see Figure 7.1).4 This means
that they had continuously two different representations of electrical circuits
available.

– In the hybrid explicit condition (HE) the students used the simulation and
the real circuits in parallel and received explicit instruction.

Participants

The participants were 50 fifth- and sixth-grade students (11–12 years old; 31
girls and 19 boys) from three different classrooms of one urban Finnish ele-
mentary school. They had no previous formal education in electricity. Student
allocation into the four conditions was based on matching; sets of four students
were matched on pre-test scores, and from each set one student was allocated
randomly to one of the four learning conditions.5 This was to ensure that the
conditions would have the nearest to equal spread of subject knowledge at
the baseline. After the students were matched into the conditions, pairs were
formed randomly within each condition (each pair worked in the same condi-
tion). Working in pairs is a natural procedure in science classrooms in Finland
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Figure 7.1 Screenshot example of students working in the hybrid environment.

and previous studies have shown that working in pairs can be especially effective
when the work involves computers or requires complex problem-solving pro-
cesses. The students were taught by the same teacher in all conditions, in order
to control for a possible teacher effect.

Materials

Simulation

The simulation used was the ‘Electricity Exploration Tool’ (EET; 2003;
Figure 7.2). The representation level of the EET is semi-realistic; it dis-
plays circuits schematically, but includes light bulbs with dynamically changing
brightness (as the amount of current through the bulb increases, the yellow
area inside (and around) the bulb becomes larger and the colour tone of that
yellow changes as well) and realistic measuring devices. The simulated model is
authentic with some exceptions: unlike real circuits the wires have no resistance,
the battery is always ideal (i.e. there is no change in the potential difference
with time), connections are always proper and measurements always ideal. With
the EET, students are able to construct various virtual DC circuits by using
the mouse to drag wires, bulbs and resistors to the desired location in the
circuits. After constructing the circuit or putting the circuit into a particular
configuration, students can observe the effects of their actions and get instant
feedback. They can, for instance, see how the current flows within the circuit,
and whether and how brightly the bulbs are lit. They can also conduct electrical
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Figure 7.2 The Electricity Exploration Tool (© Digital Brain).

measurements with a multimeter by dragging its probes to the required testing
points. In the present study the students asked to measure the bulb voltages
under the assumption that observing the voltages across the bulbs in different
configurations could help them to understand the variations in bulb brightness
better.

Real circuits

The laboratory equipment kit (LEK) consists of real batteries, wires, bulbs
and a voltmeter. It allows the students to construct various real DC circuits
and conduct electrical measurements. In the LEK, each circuit component is
attached to a base that displays the diagrammatic symbol of that component
(see Figure 7.3). Inclusion of the diagrammatic symbols is believed to make it
easier for the students to relate the real circuits and the virtual circuits and make
translations from one representation to the other. The LEK was used only in
the hybrid condition.

Worksheets

In all conditions the assignments and instructions were given in the form of
worksheets that asked and guided the students to construct various circuits and
conduct various electrical measurements with the simulation (EET) and the
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Figure 7.3 Example of a parallel circuit constructed with the laboratory equipment kit.

real circuits (LEK; hybrid condition only). The worksheets were designed to
promote conceptual change; the students were asked to construct circuits that
would (A) confront common misconceptions of electric circuits that have been
identified in previous studies and (B) introduce an alternative (correct) explana-
tion that is based on the scientific model of electric circuits. In total there were
12 worksheets and they became gradually more difficult; in the beginning the
circuits that the students were asked to construct contained only a single bulb
but later multiple bulbs with mixed configuration. Each worksheet focused on
one topic.

Procedure

Pre-test and post-test

The students completed a subject knowledge assessment questionnaire individ-
ually, before and after the intervention. The questionnaire measured students’
knowledge about the features that affect the lighting and the brightness of the
bulb(s) in simple DC circuits.

Intervention

The actual intervention, when the pairs constructed various circuits in the four
different learning conditions, lasted one session (completion of 12 worksheets
without time limit) and took place in the school’s computer suite. Since this
study was the students’ first formal introduction to the subject of electricity, the
main aim was for the students to establish an understanding of the relationships
between the observable variables, i.e. the number of bulbs, the circuit configu-
ration, and the variations in bulb brightness, as well as the relationship between
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the bulb brightness and the voltage across the bulb. During the intervention
the pairs were working one at the time in the school’s computer suite because
each pair was videotaped. They could take as long as they wanted to solve all
the circuit assignments of the 12 worksheets by either using only the simula-
tion (SI, SE) or the simulation in parallel with real circuits (HI, HE). The pairs
received one worksheet at a time and were required to write down their answers
on the worksheet. They could proceed to the next worksheet only when they
had completed the previous worksheet correctly.

Data collection and analysis

The work of all 25 pairs was video-recorded during the intervention. One
video-recording device captured the action on a computer screen and the other
recorded students’ actions, expressions and talk. These two video streams were
combined into one video output layer in order to synchronise students’ reac-
tions with the related situation (see Figure 7.1). A detailed transcript of each
videotape was constructed. This included students’ conversational interactions,
their answers to the worksheets, and their non-verbal interactions with the
simulation and the LEK.

A method of content analysis was used to analyse the video data and video
data transcripts. The focus of the analysis was on cognitive conflicts, self-
explanations and analogical encodings. Two independent raters rated 20 per
cent of the video data concerning cognitive conflicts and self-explanations.

Cognitive conflict. An incident was categorised as a cognitive conflict if a stu-
dent explicitly expressed disbelief in the results of the simulation or real circuits
and searched for an explanation for the discrepancy between their expectations
and the results. A situation where a student was first surprised by the results of
the simulation or real circuits, but accepted the new result immediately, or paid
no additional attention to the matter, was not categorised as cognitive conflict.
Inter-rater reliability (Cohen’s Kappa) for cognitive conflicts was .88.

Self-explanation. A comment or a comment chain that contained domain-
relevant articulation concerning the behaviour of a particular virtual or real
circuit was categorised as a self-explanation. Inter-rater reliability for self-
explanations was .88.

Analogical encoding. The analysis related to analogical encodings focused on
the use of the simulation and the real circuits in parallel in the hybrid environ-
ment. Analogical encoding was defined as an event where the students linked
and made explicit translations between the simulation and the real circuits.
Because we did not attempt to compare any conditions, instances of analogical
encodings were not categorised nor quantified. Instead, in the results section,
we will provide illustrative examples of the situations where analogical encodings
took place.

It should be noted that there were some problems relating to the video data.
Sometimes the students were only whispering (although they were encouraged
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to speak at a normal conversation level), so it was impossible to make sense of
the conversation. Although in most of the cases both the video and the audio
were flawless, there were also some minor technical problems in the data: the
audio or the video or both were sometimes momentarily disrupted (typically
for one to three seconds). The worse case was in the hybrid implicit condition
where almost half of one video and audio was corrupted (this was the only
incidence with such a large data loss).

Results

We begin the results section by investigating the number of cognitive con-
flicts and self-explanations in each condition. This is followed by a section that
focuses on instances of reasoning and learning by analogical encoding in the
hybrid environment (HI, HE) by presenting excerpts of the translated video
data transcripts.

Excerpts of the transcripts of the video data follow the following conventions:

– [] Words enclosed in square parentheses have been added to aid understand-
ing and readability of the dialogue.

– () Words enclosed in parentheses indicate non-verbal actions, e.g., measuring
of the voltage across a bulb.

The names are pseudonyms.

Cognitive conflicts and self-explanations in different learning conditions

As we can see from Table 7.2, only about a quarter of the students in each
condition experienced a cognitive conflict during the intervention. Only one
student experienced more than one conflict during the intervention. All the
conflicts were experienced with the simulation. Although explicit instruction
(SE, HE) seemed to promote more self-explanations than implicit instruction

Table 7.2 Number of cognitive conflicts and average number of self-explanations (SD) in each
learning condition.

Simulation
implicit (SI)
N = 12

Simulation
explicit (SE)
N = 14

Hybrid
implicit (HI)
N = 12

Hybrid
explicit (HE)
N = 12

Number of cognitive
conflicts (number of
students experiencing a
conflict)

4 (3) 3 (3) 3 (3) 3 (3)

Average number of
self-explanations (SD)

1.33 (1.37) 2.50 (2.21) 1.92 (1.72) 2.75 (2.63)
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(SI, HI), there was no statistical difference in the number of self-explanations
generated during the intervention between the students who received explicit
instruction and those receiving implicit instruction, Kruskall Wallis’ ANOVA,
X2(1) = 1.86, p = .17. There were also no differences between the students
who used only the simulation (SI, SE) and those who used the simulation and
the real circuits in parallel (HI, HE), X2(1) = .286, p = .59. Also, no differences
were detected between the four conditions, X2(3) = 2.39, p = .495.

Some of the students who experienced a cognitive conflict seemed to have
misconceptions that were already quite deeply rooted. In excerpt 1 below, Paula
has a constant current model. In this misconception current (in this case volt-
age) is always shared equally among the circuit components regardless of how
the circuit has been configured; bulb brightness is believed to be negatively
correlated with the number of elements.

Excerpt 1

Paula and Annukka work with the simulation. They have just constructed a
series circuit with two bulbs. All the previous worksheets have included only
single-bulb circuits. Now their task is to measure the voltages across the bulbs.
Paula has earlier told Annukka that when her family was living overseas she
constructed circuits with real equipment in school.

SEQUENCE 1

Paula (SCAFFOLDING): The voltage of those [two bulbs] is not 1.5 volts
because there are two bulbs. That is because the magnitude of the battery, or
whatever that is, is only 1.5 volts and that 1.5 needs to be divided so that there
is enough for both.

The girls measure the voltage across each bulb and they obtain 0.75 volts for
both.

SEQUENCE 2

Now the girls have moved to the next worksheet where they have been asked to
construct a two-bulb parallel circuit.

PAULA: The bulbs are equally bright.
PAULA (MEASURES THE VOLTAGE ACROSS THE FIRST BULB): The voltage of the first bulb

is one point [1.5] . . . no it’s not.
PAULA: How can it be 1.5 because there is that other bulb? [If the voltage across

the first bulb is 1.5 volts] then the other would get nothing.
PAULA: I don’t understand this.
PAULA: The voltage can’t be 1.5, because then the other bulb wouldn’t get any

voltage.
Paula stares for some time at the computer screen.
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PAULA (GROANS): Let’s put that as 1.5 (writes it down as an answer on the
worksheet).

PAULA (CONTINUES WONDERING): I just don’t get how this can be possible!
PAULA (POINTS TO THE VOLTMETER): If it is connected like that, maybe it measures

the whole thing [the voltage across both bulbs].
PAULA: [If the voltage across each bulb is 1.5 volts] Shouldn’t it be 3 volts that

battery?
PAULA (TO TEACHER): This result is not possible!
TEACHER: If you take a look at the circuit configuration, it differs from the previ-

ous circuit [two bulbs in series]. Your results are correct. This circuit is just
different.

In order to be sure, Paula takes the mouse and reconstructs the previous circuit
(two bulbs in series).

Analogical encoding in the hybrid environment

In this section our aim is to illustrate from the video data transcripts from
the hybrid environment (HI, HE) how the students link the use of two rep-
resentations in parallel and how this might contribute to their understanding of
electrical circuits.

Excerpt 2

Here the students have built a single-bulb circuit. The task is to measure bulb
voltage and compare the voltage across the bulb to the battery voltage.

Joni uses the virtual multimeter to measure the bulb voltage in the simulation.
The meter shows 1.5 volts.

Kalle watches from close by.

JONI: The bulb and battery voltages are identical.
Now the students shift to the real circuits.

JONI (AFTER HE HAS MEASURED THE REAL BULB VOLTAGE): 1 . . . about 1.5.
TEACHER (LOOKS AT THE VOLTMETER READING): Yes, about 1.3 volts [to be precise].
TEACHER: Do you have any idea why the voltage is slightly lower in the real

circuit than in the simulation?
JONI (POINTING TOWARDS THE REAL BULB AND EXPLAINING): This wears down the

battery.
TEACHER: Exactly. In the simulation we have a kind of ideal case; it’s as if we

always have a brand new battery.

Joni (going back to the simulation): I’d like to see what would happen if this
[virtual] battery was not full. Joni tries to adjust the virtual battery to 1.3 volts
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to match the real battery. He manages to type in 1 volt instead of 1.3 volts
exactly (in the simulation it is somewhat difficult to adjust the battery voltage
because the virtual battery updates very quickly so you have to type in very fast).
Nevertheless, the boys observe the change in bulb voltage and brightness when
Joni changes the battery voltage.

Excerpt 3

Here Atso and Stiina have built a series circuit with two bulbs. They have mea-
sured the voltages across each bulb alone (0.75 v) and together (1.5 v) in the
simulation. Now they have rebuilt the same circuit with the real equipment.

ATSO: [The overall brightness of the two bulbs connected in series gives] pretty
dim light.

TEACHER: That’s right. Now you can measure the voltages across the bulbs.
ATSO (AFTER MEASURING THE FIRST BULB): 0.6[v].
ATSO: Do we also have to measure the second bulb?
TEACHER: You can measure the voltage across both bulbs.
ATSO (AFTER MEASURING): So that is equal to the total [battery voltage] (Atso had

measured earlier that the real battery voltage was 1.2 volts).
TEACHER: Yes. Good.

In excerpt 2, Joni first learned from the simulation that in a single-bulb circuit
the potential difference across the bulb equals the battery voltage. His theory
was further strengthened when he switched to the real circuits and realised that
the same rule applied there, even though the voltages were slightly different
due to the friction and resistance. In the final step, when he moved back to
the simulation and adjusted the battery voltage, he saw once more that the
voltage across the bulb was identical to the battery voltage. In a similar fash-
ion, in excerpt 3, Atso had first learned from the simulation that when two
bulbs are connected in series the voltage across each bulb is halved and the
voltage across both is equal to the battery voltage. When he then moved to
the real circuits, he learned that, despite slightly lower voltages, the same rules
applied.

Excerpt 4

SEQUENCE 1

Here Meri and Sanna have built a series circuit with three bulbs using the
simulation and they have measured the voltages across each bulb.

MERI: All the bulbs are equally bright.
SANNA: No they aren’t.
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MERI: They all have the same voltage.
SANNA: They don’t.
MERI: Yes they do. Look. (Shows her answers in the worksheet) 0.5, 0.5, 0.5.
SANNA: Oh yes. You’re right.

Now the students move to the real circuits. They are puzzled because one of the
bulbs does not seem to light up or the light seems to be extremely dim (almost
invisible). In the simulation above they had just concluded that all the bulbs
were equally bright.

SANNA: This doesn’t light up.
MERI (BENDS FORWARD TO EXAMINE THE CIRCUIT CLOSER): Yes it does.
SANNA: Does it?
MERI: Just a tiny [light].
TEACHER: It is very dim – it should be dim.
TEACHER: Try another battery.
MERI (AFTER SHE HAS CHANGED THE BATTERY): now it’s even worse [dimmer].
TEACHER: Try to measure the bulb voltages.
MERI (MEASURES THE VOLTAGE ACROSS THE FIRST BULB): Just a little.
MERI (MEASURES THE SECOND BULB): It is the same . . . it is 0.5 [volts].
MERI (MUMBLES HAPPILY AFTER SHE HAS MEASURED THE THIRD BULB): Mmm-m . . .

SEQUENCE 2

Here, just a few moments ago, Meri and Sanna had created a rather com-
plex circuit using the simulation where the bulb brightness can be expressed as
A > B > C = D. They obtained the following results when they measured the
voltages across each bulb: A = 0.9v, B = 0.6v, C&D = 0.3v. Now the girls
have recreated the same circuit using the real equipment. While constructing,
they constantly used the simulation as a point of reference. Because the voltage
across each bulb is low, the bulbs are again very dim. While they inspect the real
circuit, they use the simulation as a point of reference.

SANNA: These two [A & B] light up.
MERI: These two [C & D] may be lit as well. You might not be able to see 0.3.
MERI: Let’s test it [with the voltage meter].
MERI (MEASURES ONE BULB): This would be 0.6 [bulb B].

The girls measure the next bulb.

MERI: Yes, 0.3 [bulb C].
MERI (THIRD BULB): Yeah [bulb D; the same as bulb C].
MERI: Then the last one . . . Yeah [0.9v, bulb A], pretty good [that we were able

to complete this assignment].
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At the beginning of sequence 1 the students learned from the simulation that
when three bulbs are connected in series the voltage across each is identical,
and Sanna in particular understood the relationship between voltage and bulb
brightness when she stated that because the bulbs share the same amount of
voltage they must be equally bright. When the students moved to the real
circuits, their understanding of the relationship was further elaborated; they
understood the relationship between the bulb voltage and the relative bright-
ness of the bulb (or the whole circuit). This issue is nicely demonstrated in
sequence 2 where two of the bulbs did not light up but Meri stated explicitly
that you don’t necessarily see light if the voltage across the bulb is only 0.3 v. In
both sequences the simulation played an important role as it was used as point
of reference when the students constructed real circuits and interpreted their
functions.

Discussion

The aim of this chapter is to explore from the video data the issues that could
explain why combining and linking the use of virtual external representations (a
computer simulation) with concrete external representations (laboratory activi-
ties) seems to promote students’ conceptual understanding of electrical circuits
so effectively. The focus was on the following three issues: cognitive conflicts,
self-explanations and analogical encoding.

During the intervention we found no difference in the amount of cognitive
conflict between the four conditions. In all conditions only about a quarter of
the students experienced a conflict and only one student experienced more than
one conflict. The fact that all the conflicts were experienced with the simulation
is probably due to the fact that in the hybrid environment (HI, HE) the stu-
dents were asked to construct each circuit first with the simulation. The other
explanation is the general lack of conflict and the fact that students’ initial mod-
els concerning electrical circuits were mostly immature and fragmentary; the
overall resistance to change was therefore relatively low because this was the
students’ first formal introduction to electric circuits. The fragmented nature
(cf. diSessa, 1993) of the students’ initial models in the present study becomes
evident when we look at the reliability of the subject knowledge assessment
questionnaire: Cronbach’s alpha for the pre- and post-test was .667 and .822,
respectively (Jaakkola et al., in press). The lower pre-test alpha level means that
the students’ knowledge of electricity was less accurate and systematic before the
intervention than after the intervention. In other words, at this early stage of sci-
ence learning, the students seem to have some correct prior knowledge about
the functioning of electrical circuits, but that knowledge is incomplete. Con-
sequently, learning could be regarded more as gap filling or enriching than as
conceptual change (Chi, 2008). If we consider the proportion of correct models
in Table 7.1, this finding suggests that it is indeed beneficial to try to promote
students’ conceptual understanding of electric circuits as early as the elementary
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school level. At this early stage of science learning the students do not have
deeply rooted misconceptions because their ideas about the functioning of elec-
trical circuits are not yet coherent and consistent. In line with many previous
findings (e.g., McDermott & Shaffer 1992; Reiner et al., 2000), excerpt 1 sug-
gests that as the students acquire more experiences with the electrical circuits,
and their ideas become more coherent, their resistance to new ideas increases
accordingly.

We also found no differences in the number of self-explanations during the
intervention between the four conditions or the two factors (environment and
instruction). However, there was a clear tendency suggesting that explicit guid-
ance increased the amount of self-explanations. The fact that we did not find
statistically reliable differences between any of the conditions might partially
be a function of small sample size and skewed distributions; among the total
sample of 50 students there were 14 students who did not provide a single
self-explanation and 11 who provided only one self-explanation. At the other
extreme, one student provided eight self-explanations. The students’ young
age and inexperience with electrical circuits may have contributed to the fact
that they generally provided so few self-explanations during the intervention;
at this early age it is not easy to articulate ideas about the functioning of
electrical circuits explicitly. However, it is likely that the numbers of reported
self-explanations are underestimations; sometimes the pairs were just whisper-
ing, and due to a few technical problems some pieces of data were missing (see
data analysis section). The worst situation was in the hybrid implicit condition
(HI) where two of the pairs were mostly whispering throughout the interven-
tion. If we look at Table 7.2, we can see that among the students who received
implicit instruction (SI, HI), there seems to be a nascent trend suggesting that
those students who used the simulation and laboratory equipment in parallel
(HI) seemed to generate more self-explanations than the students who used
only the simulation (SI). Without the above kind of problems, this trend could
be more pronounced.

The video data excerpts provided clear evidence about the existence and the
benefits of analogical encodings in the hybrid environment. In all three excerpts
that were presented, the students clearly benefited from the fact that they could
compare simultaneously virtual and concrete representations of electrical cir-
cuits. In excerpts 2 and 3 the students had to deal with discrepant results of
voltmeter readings between the virtual circuits and the real circuits. In order
to understand the alteration in voltmeter readings caused by friction and resis-
tance, they needed to focus on those features that could be generalised across
the two representations. This meant that the students had to first discover the
rules governing each representation based on the data (i.e., voltmeter readings)
and then infer a further abstraction from these rules that would apply to both
representations. In excerpt 4 the simulation played an important role as it was
used as a point of reference when the students constructed real circuits and
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interpreted their functioning; the simulation helped the students to deal with
the discrepant results and understand the functioning of real circuits better. It
also appears that the real circuits introduced more details and deepened stu-
dents’ understanding. In sequence 1, for instance, the students first concluded
from the simulation that because the voltages across the bulbs were identical,
then the bulbs’ brightness must be identical as well. However, they paid no
explicit attention to the overall brightness of the bulbs or the circuit. When
they moved to the real circuits they paid attention spontaneously to the overall
brightness of the bulbs and learned the relationship between the bulb voltage
and the relative brightness of the bulb (or the whole circuit).

This finding suggests that the use of two representations can also cause
slightly different aspects of the content to appear more salient than oth-
ers (cf. Ainsworth, 2006). Had the students used only the simulation, their
understanding of the relationship between the voltage and the bulb bright-
ness might have remained at a more surface level (the bulbs with identical
voltages are equally bright but no attention paid to the overall brightness).
Had the students used only the real circuits, this might have led to a cur-
rent consumption misconception;6 in sequence 1, for instance, the students
might just have concluded that one bulb would be dimmer than the other
two because there is less current left for it. Now they knew from the simu-
lation that all the bulbs should be equally bright and the voltage across each
should be identical (they had learned from earlier tasks that laws they learn in
the simulation also apply to the real circuits). The fact that analogical encoding
did not increase notably the amount of self-explanations in the hybrid environ-
ment as compared with the simulation environment deserves some thought.
As it was discussed above, it could just be that the students’ young age and
inexperience are factors impeding explicit self-explanations. Support for this
interpretation comes from Gentner et al. (2003) who point out that ‘Work-
ing through the comparison of two cases that share a common underlying
principle can be illuminating even if the common principle is only partially
understood in either case’ (p. 394). This implies that learning in an analogical
encoding situation is often implicit and does need to take the form of explicit
comparison, as was the case in the excerpts that were provided in the results
section.

To conclude, the results of this study show that it can be beneficial to try
to promote students’ conceptual understanding of electrical circuits at the early
elementary school level because they do not yet have deeply rooted misconcep-
tions that could hamper teaching and learning. In line with results from other
domains (e.g., Gentner et al., 2003; Gick & Holyoak, 1983; Kurtz et al., 2001),
the results further suggest that it is beneficial to use the simulation and the real
circuits in parallel, because analogical encoding of two information resources
can improve schema abstraction and deepen students’ conceptual understanding
of electrical circuits.
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Notes

1. As an example of a naturally hidden process, the existence of current cannot be
observed in real circuits (you can, of course, measure it), but an electricity simula-
tion can easily show whether or not there is a flow inside a circuit, the path of that
flow and possibly even its magnitude.

2. The way the simulation and laboratory activities are combined in our studies is differ-
ent from earlier attempts. In other studies (e.g., Zacharia, 2007), the students have
been typically using each material at different times.

3. The decision to ask the students to construct each circuit first with the simulation is
based on the assumption that constructing virtual circuits is easier than constructing
real circuits (cf. Finkelstein et al., 2005), and the virtual circuit could then serve as a
point of reference when the students reconstruct the circuit with the real equipment.

4. It would make little sense to ask the students to construct every circuit twice in
the simulation condition. It is highly unlikely that such instruction (constructing the
same circuit twice in a row with the same equipment) would be taken seriously by
any student. In order to match the amount of circuits constructed in the hybrid
conditions the students using the simulation would need to construct twice as many
different (additional) circuits. This would result in unequal coverage of the content
between the simulation and hybrid conditions. Furthermore, if the circuits become
more and more complex, as in our study, it is questionable whether the students could
construct twice as many circuits.

5. Since fifty is not divisible by four, prior to matching, two randomly selected students
were allocated randomly to one of the four learning conditions.

6. According to this view, current flows from the battery and, while it travels through
the circuit, it encounters obstacles (resistors) that gradually consume the current and
slow it down.
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Chapter 8

Using static and dynamic
visual isations to support the
comprehension of complex
dynamic phenomena in the
natural sciences

Peter Gerjets , Birgit Imhof, Tim Kühl, Vanessa Pfeiffer,
Katharina Scheiter, and Sven Gemballa

Introduction

Comprehension difficulties in the natural sciences often seem to result from the
complexity, speed or scale of dynamic phenomena under consideration and from
the necessity to relate the observation of the concrete objects involved in these
dynamic phenomena to the underlying abstract scientific concepts and theor-
ies. To address this type of comprehension difficulty, educators regularly use
external visual representations like graphs, pictures, videos or animations when
teaching scientific concepts and phenomena. From a psychological perspective,
this approach can be justified by referring to the finding that instructional
visualisations enable a direct and parsimonious access to visuospatial informa-
tion (Larkin & Simon, 1987) and facilitate inferences grounded in perception
(Goldstone & Son, 2005). It can thus be postulated that instructional visuali-
sations are particularly well suited to conveying an understanding of complex
visuospatial relations that are an important characteristic of many scientific
domains. Another line of reasoning pertains to the claim that the use of instruc-
tional visualisations is particularly helpful when the entities under consideration
are difficult or even impossible to observe in the real world. Many scientific
phenomena involve this type of entities, which are not directly accessible to
perception because they are too small, too big, too fast, too slow, or too com-
plex (Park & Gittelman, 1992). In this paper, however, we will not cover the
general issue of whether and when visualisations are useful to support (science)
learning. Instead, we will address a more specific question, namely, under what
conditions various types of visualisations turn out to be beneficial (e.g., Tversky,
Bauer-Morrison, & Bétrancourt, 2002). In particular, we will focus on the com-
parison between static and dynamic visualisations with regard to their potential
to support the comprehension of complex dynamic phenomena in the natural
sciences. We will first introduce some theoretical considerations and empirical
findings with regard to the drawbacks and advantages of static and dynamic
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visualisations. In the remainder of the chapter, we will provide an overview of
four studies that we conducted in the biological domain of fish locomotion
to compare static and dynamic visualisations with regard to varying learning
objectives.

Drawbacks and advantages of static and dynamic visualisations

From a theoretical point of view, dynamic visualisations seem to have a strong
potential to support learners in understanding dynamic changes, mainly because
they can reduce specific processing demands that might otherwise (e.g., when
only static visualisations are available) be imposed on learners (e.g., infer-
ring dynamic properties of the depicted phenomenon). However, there are
also drawbacks in learning with dynamic visualisations under certain condi-
tions, namely when the dynamic visualisations themselves impose additional
processing demands on learners (e.g., memorising configurations of objects
that disappear in the visualisation over time). The processing demands that
are relevant for analysing the potential drawbacks and benefits of dynamic
visualisations can be classified according to their relation to transience, visual
complexity, mental animation and the direct depiction of dynamic features.
We assume that our theoretical reasoning with regard to these different
types of processing demands will not only apply to instructional visualisa-
tions in the natural sciences, but also pertain to dynamic phenomena in other
domains.

Transience

A potential drawback of using dynamic as compared with static visualisations
for instructional purposes is their transience. Due to the short-lived nature of
dynamic representations, it may be a perceptually and cognitively demanding
process for learners to identify and extract relevant information and crucial
states from the visualisation before this information disappears or changes (e.g.,
Lowe, 1999). Moreover, learners may be challenged by the necessity to mem-
orise crucial states and relate them to each other (e.g., Van Gog et al., 2009).
The potential detrimental effect of transience on learning, however, may vary
depending on specific characteristics of the learning objective and the instruc-
tional visualisation used. For instance, if the learning objective addressed does
not involve the identification of crucial states of a process, or if the dynamic
visualisation used is presented repeatedly so that relevant information is avail-
able several times, processing demands due to transience will be less severe. The
four studies summarised in this chapter differ with regard to the learning objec-
tives they address, but they share the feature of presenting dynamic visualisations
repeatedly in order to counteract the negative effects of transience. When com-
paring static and dynamic visualisations with regard to their transience-related
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processing demands, it should be noted that multiple static pictures that are pre-
sented sequentially one after the other will also be of a short-lived nature and,
thus, suffer from transience. However, identifying and extracting relevant infor-
mation and crucial states from each single picture of sequentially presented static
visualisations should be perceptually and cognitively less demanding compared
with dynamic visualisations.

Visual complexity

Dynamic visualisations often turn out to be more complex than static visualisa-
tions because usually several elements at different spatial locations change at the
same time. Accordingly, learners can experience difficulties in following the visu-
alisation properly as they have to split their attention between several elements
that change simultaneously. With regard to both transience and visual com-
plexity, dynamic visualisations seem to easily violate the so-called apprehension
principle, which advocates that the structure and content of visualisations should
be designed in a way that the relevant information can be readily and accurately
perceived and understood (Tversky et al., 2002). As a result, dynamic visualisa-
tions might ‘overwhelm’ learners (Ayres & Paas, 2007; Lowe, 2003, 2004; Van
Gog et al., 2009), eventually leading to an incomplete processing. In general,
an appropriate processing of dynamic visualisations presupposes that learners
can cope with the transience and visual complexity of dynamic information. In
particular, competent users need the ability to identify, memorise, and compare
crucial elements and states in dynamic visualisations and to split their attention
across several relevant aspects at the same time (Hegarty, 2004; Lowe, 1999;
Rieber, 1990; Van Gog et al., 2009). Thus, successful knowledge acquisition
from dynamic visualisations can be considered as a resource-intensive process,
which requires the simultaneous and optimised availability of different learning
resources (e.g., competencies of learners, processing capacities of the cognitive
system, appropriate designs of visualisations; Mayer & Anderson, 1992; Mayer
& Moreno, 2002; Scheiter, Gerjets, & Catrambone, 2006). As we argued for
transience, the detrimental effects of visual complexity will be moderated by
learning objectives (e.g., do the learning objectives imply to understand the
relation between changes at different spatial locations) and the design of the
visualisation (e.g., are learners supported in their attention distribution over
time, for instance by means of cueing). In the four studies summarised in this
chapter, we kept in mind not to increase unnecessarily the visual complexity of
the visualisations used.

Mental animation

Dynamic visualisations deliver information on how objects and their posi-
tions change over time (motion; Rieber, 1990) as well as on the directions
of these changes (trajectory; Rieber, 1990). Because dynamic – in contrast to



156 Peter Gerjets et al.

static – visualisations explicitly display the continuity of changes, learners do
not have to infer these changes on their own by means of resource-demanding
processes of mental animation (Hegarty, 1992), which harbour the risk of
building less elaborated or even incorrect mental models of the trajectory,
especially for learners with lower learning prerequisites. Accordingly, dynamic
visualisations can be considered to act as an external substitute for these inter-
nal cognitive processes (cf. supplantation, Salomon, 1979), thereby allowing
for cognitive offloading (Scaife & Rogers, 1996). This is what Schnotz and
Rasch (2005) call the enabling or facilitating function of dynamic visualisations,
respectively. Thus, if the learning objectives require an understanding of the
continuous aspects of a movement (which is clearly the case in the four stud-
ies summarised in this chapter) dynamic visualisations should be superior to
static ones.

Direct depiction of dynamic features

An important advantage of dynamic visualisations is that they are able to directly
represent specific dynamic features of moving objects such as their velocity or
acceleration. Therefore, they should be particularly apt to conveying knowl-
edge with regard to these dynamic features. In contrast, static visualisations
do not allow the property to depict the velocity and acceleration of objects.
Moreover, these dynamic features cannot even be inferred directly from static
visualisations – so that in this respect static visualisations are not informationally
equivalent to dynamic visualisations. Rather, in learning with static visualisa-
tions, this kind of information has to be provided by means of additional
external representations (e.g., text). The required integration of static visual-
isations with verbal information on dynamic features into a coherent mental
model is probably a demanding and resource-intensive process. Thus, whenever
the understanding of specific dynamic features is required, as, for instance, in
Study 1 of this chapter, we expect dynamic visualisations to be clearly superior
to static visualisations. This assumption can be justified by means of the so-called
congruence principle that recommends ensuring a correspondence between the
desired structure and content of a learner’s internal representation and the
structure and content of an external instructional representation (Tversky et al.,
2002).

Taken together, our theoretical considerations suggest the expectation that
dynamic visualisations should outperform static ones with regard to learn-
ing effectiveness when learning objectives are addressed that require a deeper
understanding of continuous aspects of a movement (which might be hard to
animate mentally) or that involve specific dynamic features like velocity or accel-
eration (that cannot be represented directly without dynamic visualisations).
Furthermore, dynamic visualisations should be more effective when problems
of transience and visual complexity are kept tractable, for instance, by means of
an improved instructional design.
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Empirical findings

Up to now, the empirical question of whether dynamic visualisations are better
suited than static ones to conveying knowledge still remains unanswered. Dif-
ferent meta-analyses have come up with different results. In a review by Tversky
et al. (2002), most of the studies failed to show any advantages of dynamic com-
pared with static visualisations. Moreover, in a study by Mayer et al. (2005),
the authors even found static visualisations to be superior to dynamic visual-
isations. A recent meta-analysis by Höffler and Leutner (2007), on the other
hand, revealed a medium-sized overall advantage of dynamic compared with
static visualisations. Although the results of this meta-analysis are in favour of
using dynamic visualisations, the large heterogeneity among the empirical find-
ings also highlights the importance of looking more closely at the conditions
under which dynamic visualisations will aid learning (cf. Bétrancourt, 2005;
Hegarty, 2004; Schnotz & Lowe, 2008). Höffler and Leutner (2007) identi-
fied several factors that moderate the effectiveness of dynamic visualisations. In
particular, the to-be-achieved learning objective appears to play an important
role in this respect. The strongest effects in favour of dynamic visualisations
were observed for those studies that involved procedural-motor knowledge as
a learning objective (see also Ayres et al., 2009; Van Gog et al., 2009; Wong
et al., 2009).

In the four studies summarised in this chapter we used varying learning objec-
tives to compare learning from static and dynamic visualisations. All studies
were related to the same biological domain of fish locomotion in order to keep
the overall domain constant. Within this domain, we addressed learning objec-
tives like the conceptual understanding of the physical principles underlying
fish locomotion, the classification of different fish locomotion patterns, or the
identification of different fish species based on important static and dynamic
features. These learning objectives differ with regard to the task demands they
impose (e.g., how difficult and important is it to animate a movement men-
tally or to extract different multiple features simultaneously), and with regard
to the knowledge tests that are appropriate for their assessment (e.g., factual
knowledge tests, recognition tests, or transfer tests based on verbal or pictorial
stimuli).

Another important consideration with regard to available empirical compar-
isons between dynamic and static visualisations concerns the fact that different
types of static visualisations are often pooled into a single category, whose effects
are then compared with dynamic visualisations. However, as will be argued
next, it can be expected that the effectiveness of static visualisations will depend
on their presentation format (e.g., single versus multiple static visualisations,
sequential versus simultaneous presentation of multiple static visualisations).
Nevertheless, there are only a few studies available that investigate, for instance,
the relative effectiveness of a sequential versus simultaneous presentation of
multiple static visualisations (e.g., Boucheix & Schneider, 2009). In a sequential
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presentation, multiple static pictures are presented one after another, whereby
each picture is replaced with its successor in the sequence of events. In a simul-
taneous presentation, all pictures are presented on one display, representing
different discrete states of a movement at the same time. As the third Exper-
iment summarised in this chapter investigates different presentation formats for
static visualisations, we will provide some additional reflections on the differ-
ences between a sequential versus simultaneous presentation of multiple static
visualisations in the following paragraph.

From a theoretical perspective, a main advantage of a sequential presentation
will be that it supports the identification of corresponding visual elements across
multiple pictures, because these elements will appear in (almost) the same spatial
position on the screen for each picture. However, as each picture is replaced by
its successor in a sequential presentation, this format shares some of the prob-
lems of transience with dynamic visualisation. It has to be considered, though,
that in contrast to dynamic visualisations, the frame rate of sequential static
presentations is usually much lower (for instance, in the studies summarised in
this chapter, the frame rate for sequential presentations of static visualisations is
about 1 frame every four seconds or even slower, whereas it is approximately
15 frames per second in dynamic visualisations). A main advantage of a simul-
taneous presentation, on the contrary, is that the depicted information remains
visible on the screen. Thus, this format might enhance learners’ ability to com-
pare discrete steps of a process in greater detail. Additionally, learners presented
with multiple static visualisations simultaneously can easily control the pacing of
their cognitive processing, whereas in a sequential presentation format the tran-
sience of the information will affect the pacing of the processing. In line with
this reasoning, Boucheix and Schneider (2009) demonstrated in a mechanical
domain that simultaneous static visualisations, allowing for comparisons among
discrete states, improved learning compared with sequential static visualisations
and were as effective for learning as dynamic visualisations. To test whether
simultaneous static visualisations are also better suited than sequential ones to
support learners in understanding complex dynamic phenomena in the natural
sciences, we compared dynamic visualisations with both types of multiple static
visualisations in the third study reviewed in this chapter.

A final issue in comparing dynamic and static visualisations empirically is
related to the question of how well these two types of instructional visualisations
are suited to supporting learners not only in rather artificial learning experiments
in the laboratory, but also in realistic and situated learning scenarios where the
use of instructional materials is intertwined with real-life experiences and in vivo
observations of the to-be-taught phenomenon. According to Stone-Romero
(2002), experimental laboratory settings are obviously useful to investigate basic
psychological processes, as they inform about causal connections that also occur
in field settings. However, it remains often unclear, whether effects found in our
laboratory settings will also show up in more realistic and applied settings. To
investigate the effectiveness of visualisation formats, not only in the laboratory,
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but also in a situated learning scenario, the fourth study reviewed in this chapter
compares static and dynamic learning materials for identifying fish species in the
context of a snorkelling excursion in the Mediterranean Sea.

In sum, based on both theoretical considerations as well as empirical data, it
can be concluded that dynamic as well as static visualisations have their spe-
cific benefits and drawbacks, depending on the concrete learning objectives
addressed, on the task demands imposed by them, and on the knowledge tests
used for their assessment. Accordingly, it is plausible that mixing up studies
addressing different learning objectives in a single meta-analysis might yield
equivocal and unclear overall results. From our perspective, it seems to be more
promising to use a task-analytic approach by first analysing for a particular piece
of instruction, which of the potential advantages and drawbacks of the differ-
ent types of visualisation may be crucial, before deciding on an instructional
format that seems to be effective. In particular, it has to be considered how
important factors like transience, visual complexity, mental animation, depiction
of dynamic features, identification of corresponding objects, and comparisons
between discrete process steps are for this particular piece of instruction. We
will exemplify this approach for different learning objectives in the biological
domain of fish locomotion.

Overview of experiments

In the remainder of this chapter we will review four experiments that com-
pared static and dynamic visualisations for teaching different aspects of fish
locomotion. The first three studies were conducted in the laboratory, whereas
the fourth study was a field study, in which a classroom setting was com-
bined with learning in the field. Fish locomotion is a scientific domain that
is characterised by concrete, complex, partially unperceivable, fast and dynamic
processes, including changes of hidden aspects (e.g., moving body parts that
are visible only from a particular perspective), which may be difficult to observe
during real-world observations. Thus, in teaching fish locomotion the use of
instructional visualisations can, in general, be expected to be helpful. Knowl-
edge about fish locomotion is particularly important for biologists because,
on the one hand, knowledge about different forms of fish locomotion can
be used to classify different fish families or species, and, on the other hand,
the various movement patterns are related to several important principles
in biology (evolutionary adaptation, ecosystems) and principles in other sci-
ences (e.g., physics). Thus, the locomotion behaviour of fish is a complex
and dynamic science content that reflects both dynamic and non-dynamic
aspects.

In our studies we addressed three different types of learning objectives
related to fish locomotion: Study 1 has a conceptual learning objective, namely
understanding the physical principles underlying fish locomotion; Studies
2 and 3 have a perceptual learning objective, that is, classifying different fish
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locomotion patterns according to their characteristic perceptual features, and
Study 4 has an applied learning objective, namely identifying different fish
species in a situated scenario based on important static and dynamic features.
According to the theoretical considerations outlined in this chapter, we expected
dynamic visualisations to be superior to static visualisations for those learning-
outcome measures that have a strong focus on dynamic aspects of the content
domain. This is expected because dynamic aspects may be difficult to animate
mentally or to infer from static visualisations (e.g., speed differences in different
phases of a locomotion cycle, classifying fish species according to their move-
ment pattern). On the other hand, learning-outcome measures that do not
necessitate a dynamic mental model of the phenomenon under consideration
may not benefit from dynamic visualisation (e.g., answering factual knowledge
on scientific terms, understanding biodiversity).

Study 1: Conceptual understanding of the physics of fish locomotion

In the first study (Kühl Scheiter, Gerjets, & Edelmann, in press), we addressed
the effectiveness of static versus dynamic visualisations for supporting a concep-
tual understanding of the physical principles underlying fish locomotion. Eighty
undergraduate students were asked to acquire knowledge on how an undula-
tory (i.e., wave-like) fish movement generates forces under water. This topic
requires the understanding of physical concepts like force vectors in relation
to movement characteristics such as trajectories, velocity, and acceleration. The
learning materials consisted of seven instructional segments, each lasting for 45
seconds. Each instructional segment in the condition with dynamic visualisa-
tions contained an animation showing an undulatory movement of a fish in a
recursive fashion, so the movement of the swimming fish was looped. In the
static visualisation condition, for each segment, nine key frames from the corre-
sponding animations were extracted. The key frames were displayed sequentially
one after another. The nine static key frames represented two repetitions of an
undulatory movement, so that each learner had the chance to see each frame
twice. Both the animations and the sequential static visualisations were system-
paced and accompanied by verbal explanations. The total presentation time was
identical for the conditions. Learning outcomes were measured by means of a
verbal factual knowledge test, a pictorial test as well as by transfer tasks. For the
transfer tasks, learners had to apply their dynamic mental model of fish loco-
motion to new situations and problems (for instance, a new locomotion pattern
was shown and they had to predict in which direction a fish with this pattern
would swim and why). Furthermore, processing demands after learning were
assessed by means of a rating scale for perceived difficulty (‘How difficult was
it for you to understand the contents?’). No differences between the visualisa-
tion conditions were expected for factual knowledge or for pictorial tasks, as
these tasks do not focus on the dynamic aspects of fish locomotion. However,
for the transfer tasks we hypothesised dynamic visualisations to be superior to
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static visualisations. The subjective processing demands measure was expected
to be in accordance with learning outcomes, in that higher processing demands
are related to lower learning outcomes. In line with our hypotheses, the results
of this study showed that there was no difference between static and dynamic
visualisation with regard to either factual knowledge (F < 1) or pictorial tasks
(F (1,76)=1.05, ns), whereas for transfer tasks, dynamic visualisations proved
to be superior (F (1,76)=9.86, p < .01). Moreover, subjects rated processing
demands as being a bit higher when learning with static compared with dynamic
visualisations (F (1,76)=3.41, p = .07). Thus, the results confirm our general
assumption concerning the superiority of dynamic visualisations for achieving
conceptual learning objectives that require a deeper understanding of a com-
plex dynamic phenomenon that is difficult to animate mentally. An important
characteristic of the animations (as well as of the static visualisations) used in this
study might be that showing the same cyclic locomotion pattern several times
reduced the problem of transience associated with both dynamic and sequential
static visualisations.

Study 2: Perceptual classification of fish locomotion

In a second study (Gerjets, Scheiter, & Imhof, 2007), we investigated the effec-
tiveness of dynamic and sequential static visualisations for enhancing students’
ability to classify perceptually different fish according to their locomotion pat-
tern. Eighty university students participated in this study. In all experimental
conditions, seven different locomotion patterns were illustrated by means of
non-interactive visualisations that were accompanied by auditory text. Half of
the participants received a dynamic visualisation for each of the seven locomo-
tion patterns, whereas the other half received nine key frames from each of the
dynamic visualisations as static visualisation. The series of static visualisations
was presented successively by the system for two times each. The total presen-
tation time was system-paced and the same for all conditions (72 seconds for
each of the seven locomotion patterns). As a second variable we manipulated
the degree of realism of the visualisations between subjects (realistic videos ver-
sus computer-generated schematic animations and the respective key frames).
However, as there were no differences between corresponding conditions with
realistic and schematic visualisations, and as realism is not at issue in this chap-
ter, we will not go into any further detail with regard to this second factor.
Thus, subgroups with schematic versus realistic visualisations were collapsed
for the statistical analyses referred to in this chapter. Learning outcomes were
measured by means of a factual knowledge test, a pictorial recognition test as
well as by transfer tasks. The factual knowledge test asked for scientific terms
and characteristic features associated with different locomotion patterns. In the
recognition test, participants had to recognise the locomotion patterns of fish
seen during learning, whereas in the transfer test, learners had to classify the
locomotion patterns of novel fish. Both the recognition test and the transfer
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test require a sophisticated mental representation of a complex dynamic pat-
tern. To assess processing demands concerning the learning phase, learners were
asked, immediately after completing the learning phase, to rate the mental activ-
ity required during learning (‘How much mental activity was required? That is,
how demanding was the learning task for you?’), the effort they had to invest
to understand the content (‘How hard did you have to work in your attempt
to understand the contents of the learning environment?’) and the stress during
learning (‘How stressed (insecure, discouraged, annoyed) did you feel during
the learning task?’). Each question had to be answered on a rating scale from
very low to very high. It was hypothesised that static and dynamic visualisations
would not differ for the factual knowledge test, whereas for recognition and
transfer tasks learners receiving dynamic visualisations should outperform those
with static visualisations. As expected, there were no effects for factual knowl-
edge acquisition (F <1). However, dynamic visualisations improved recognition
(F (1,72)=10.30, p < .01) and transfer performance (F (1,72)=4.92, p < .05)
compared with static visualisations. The conditions did not differ with regard to
the assessed processing demands, namely mental activity (F < 1), effort (F < 1)
and stress (F (1,72)=1.60, ns). Thus, this study demonstrates that dynamic
visualisations can outperform static visualisations, not only for conceptual but
also for perceptual learning objectives, if the content domain is characterised
by complex dynamic patterns and the learning objectives require a sophisticated
mental representation of these patterns. Learning objectives in the same content
domain, which do not require such a representation (e.g., factual knowledge
questions on characteristic features of different locomotion pattern), however,
will not benefit from dynamic visualisations.

Study 3: Sequential versus simultaneous presentation of static visualisations

One possible reason for the inferiority of static visualisations in the first two
studies might have been that multiple static visualisations were presented
sequentially in a system-paced way. Thus, characteristic drawbacks of dynamic
visualisations, like their transience, may have applied to the static conditions
in these studies as well. Moreover, specific processing advantages of present-
ing multiple static visualisations, for instance the fact that they may facilitate
comparisons among discrete steps, may be better implemented by presenting
multiple static visualisations simultaneously. Therefore, we conducted a third
study (Imhof, Scheiter, & Gerjets, 2009) with learning materials similar to the
ones used in Study 2, with the exception that only four of the seven locomo-
tion patterns were taught. In addition to the two conditions from Study 2, with
either dynamic or sequential static visualisations, the effectiveness of simultane-
ous static visualisations was investigated to test whether dynamic visualisations
would not only be superior to sequentially presented, but also to simultane-
ously presented static visualisations, and whether simultaneous representations
would show the expected superiority compared with sequential ones. Similar to
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Study 2, the degree of realism was manipulated between participants as a sec-
ond factor. Half of the participants were presented with realistic visualisations
and the other half of the participants received schematic visualisations. As in
Study 2, there were no differences between the subgroups with schematic ver-
sus realistic visualisations and, thus, the data of these subgroups were collapsed
again for the statistical analyses referred to in this chapter. One hundred and
twenty university students participated in this study. The presentation mode for
the dynamic and sequential static visualisations conditions was the same as in
Study 2. In the simultaneous static visualisation condition the nine key frames
extracted from the dynamic visualisations were presented at the same time all
together on a single screen. The total presentation time of the learning materials
was system-paced and the same across conditions (72 seconds per each loco-
motion pattern). As learning outcome measures, the recognition and transfer
tests from Study 2 were adapted. Moreover, processing demands were assessed
after the learning phase with the same three items as in Study 2 (mental activ-
ity, effort, and stress). Furthermore, eye-tracking data were obtained during
learning in order to investigate the cognitive and perceptual processes occur-
ring. Particularly in the static conditions, eye-tracking data can give important
information about how learners use the external representations, for instance,
how often and how long they look at particular static visualisations. Data anal-
yses revealed overall main effects for recognition (F (2,108)=7.18, p < .01)
and transfer performance (F (2,108)=8.08, p < .01). Post hoc tests showed that
the dynamic condition outperformed the sequential static condition for recog-
nition (p < .01) and for transfer (p < .001), thereby replicating the results of
Study 2. The simultaneous static condition, however, did not differ significantly
from either the dynamic or the sequential static condition. Thus, although
simultaneously presented static visualisations were not significantly better than
sequentially presented ones, they were as good for learning as the dynamic visu-
alisations. With regard to processing demands, there was an overall effect for
effort (F (2,108)=3.23, p < .05), a marginal effect for stress (F (2,108)=2.85,
p = .06), but no overall effect for mental activity (F (2,108)=1.79, ns). Post
hoc tests revealed that sequential static visualisations led to a higher rating of
effort (p < .05) and a marginally higher rating of stress (p = .07) than dynamic
visualisations, whereas simultaneous static visualisations did not differ from the
other two conditions in this respect. Finally, analyses of the eye-tracking data
revealed that there were processing differences for sequential and simultaneous
static visualisations. For instance, the number of fixations on the visualisations
revealed that learners in the simultaneous static condition looked more often
at specific pictures than in the sequential static condition, although the overall
number of fixations for all nine pictures did not differ between the two groups.
Thus, it seems that learners in the simultaneous static condition used a differ-
ent strategy to study the pictures, which was particularly effective for learning
the locomotion patterns. The results imply that not only dynamic visualisations
but also a simultaneous presentation of multiple static visualisations might be
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an appropriate way of teaching learners how to classify perceptually different
locomotion patterns.

Study 4: Combining mobile learning with real-life experiences

In the fourth study (Pfeiffer et al., 2009), we investigated how static and
dynamic visualisations interact with real-life experiences. Therefore, we changed
the learning scenario in Study 4 into a combination of classroom learning and
learning in the field, where the learning objective was to identify different
Mediterranean fish species. The standard process of fish species identification is
based on using field guides which rely solely on static features (e.g., a combina-
tion of morphological features and colour patterns), despite the fact that for fish
species identification, not only static features, but also dynamic features (e.g.,
swimming style, typical behaviours or interactions), may be helpful. We hypoth-
esised that providing additional dynamic representations would be advantageous
for this task, because they can provide information on behavioural and locomo-
tory features in an explicit way. Moreover, when observing fish in their natural
habitat, while diving or snorkelling, dynamic features are often more salient
than static ones and hence reflect the real-world experience more appropriately.
In this study, characteristic static and dynamic features of the 18 most com-
mon coastal fish species of a specific Mediterranean region were presented to
35 students by means of either digital videos or single static key frames taken
from the videos. In the dynamic condition, learners were shown digital realistic
videos presenting the species in their natural habitats. Each video pauses either
once or several times while playing in order to emphasise the species’ most rele-
vant features. During these pauses static frames were presented in combination
with written information of two to four words describing the important fea-
tures visible in the static frames. In the static condition, we only used these still
frames from the videos and presented them sequentially to learners. The overall
duration of the sequential presentation of the still frames for each species was
equivalent to the duration of the corresponding video in the dynamic condition
(including the embedded static frames). All visualisations were accompanied by
auditory explanations, which were the same in both conditions. The static as
well as the dynamic visualisations were presented on portable DVD players.
During an initial learning phase (90 min.) in a classroom setting, participants
studied the DVDs containing either the static or the dynamic version of the
visualisations. Subsequently, students’ performance with regard to fish iden-
tification was measured by a first post-test, which asked students to identify
fish species from unknown videos. Subsequently, a real-world learning expe-
rience took place, where students went snorkelling in the Mediterranean Sea
(240 min.). They were told to identify as many as possible of the 18 fish species
introduced to them in the DVD material. For snorkelling, the dynamic and
static groups were assigned to two remote, but nearly equivalent, diving spots.
They were instructed to change locations after half of the snorkelling time.



Using static and dynamic visualisations in the natural sciences 165

During the snorkelling phase, students were allowed to verify their fish species
observations by using the DVD material on the beach and to collaborate with
each other in the water and on the beach. Moreover, experts helped students
in the water to find suitable places for fish observation, but did not help with
fish identification. Immediately after snorkelling, students’ learning outcomes
were tested again by administering the post-test a second time. The results
showed a significant knowledge gain between the first and the second post-test
due to the snorkelling experience (F (1,33)=213.12, p < .001), with learners
achieving higher scores in the second post-test. There was no overall difference
between learners who had studied either the static visualisations or the dynamic
visualisations (including the embedded static frames, F < 1). However, a sig-
nificant interaction showed that students’ knowledge improvement from the
first to the second post-test was significantly greater in the dynamic group than
in the static group (F (1,33)=6.27, p < .05). This interaction could be traced
back to a marginal superiority of dynamic over static visualisations for post-test
2 (p < .10), whereas no differences could be observed for post-test 1 between
the two conditions. Although no main effect was found for visualisations for-
mat, the interaction between both factors suggests that providing learners with
additional dynamic visualisations, which have been shown to be effective in the
first three studies, also seems to possess a higher instructional potential in the
context of a real-world learning scenario.

Discussion

The objective of the four studies summarised in this chapter was to test the rel-
ative effectiveness of dynamic and static visualisation formats for various kinds
of learning objectives in the biological domain of fish locomotion. It could be
shown that the dynamism of visualisations did not influence factual knowledge
acquisition (Studies 1 and 2). This finding confirms a statement by Bétrancourt
and Tversky (2000), claiming that dynamic visualisations are not more advan-
tageous than static visualisations in conveying factual knowledge. However, the
results showed that there was a superiority of dynamic visualisation formats on
transfer tasks (Studies 1, 2, and 3), for instance in questions on the underlying
physical principles (Study 1), and on perceptual tasks, such as recognising loco-
motion patterns and fish species (Studies 2, 3, and 4). These results confirm
our general assumption that dynamic visualisations are an effective instructional
device when conceptual or perceptual learning objectives are addressed that
require a deeper understanding of dynamic phenomena which are difficult to
animate mentally or to infer from static visualisations.

However, in contrast to sequentially presented static visualisations, simul-
taneous static visualisations were not inferior to dynamic visualisations. This
replicates the findings of Boucheix and Schneider (2009), who demonstrated
in a mechanical domain that simultaneously presented static visualisations
improved performance compared with sequentially presented visualisations and
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were instructionally equivalent to dynamic visualisations. Thus, on the one
hand, a sequential presentation of multiple static visualisations does not seem
to use the full potential of static pictures (i.e., being able to compare impor-
tant steps of a process), on the other hand, this format even shows some of the
disadvantages of dynamic visualisations (i.e., information transience).

The results of our fourth study showed that the potential of dynamic learn-
ing materials can even unfold when the instructional scenario is enriched with
real-world experiences. That is, enhancing a real-world learning experience like
snorkelling with dynamic visualisations (and embedded static frames) improved
learning to a greater extent than using only static visualisations in this situa-
tion. Even if the dynamic visualisations did not lead to an improved knowledge
acquisition initially, as reflected in the first post-test before snorkelling, they
nevertheless facilitated learning from the subsequent real-world experience as
indicated by the superiority of the dynamic condition for the second post-
test. A possible explanation for this finding might be that fish observed during
snorkelling could be linked to the videos more easily than to the static frames,
as behavioural patterns and locomotion behaviour (i.e., aspects not visible in
the static visualisations) could be used as cues for memory access. Thus, knowl-
edge acquired from dynamic visualisations may remain rather inert, as long as
it is not used and strengthened in the context of a real-world experience (cf.
Resnick, 1987). Overall, Study 4 stresses the importance of testing the effec-
tiveness of instructional materials not only in the laboratory, but also in the
context of situated learning scenarios, which may act as moderators for their
instructional effectiveness.

The results of our studies are in line with the general claim that research
should not ask for the most suitable visualisation format in general; rather, it
should investigate the conditions under which the specific advantages of vari-
ous visualisation formats unfold best (e.g., Bétrancourt, 2005; Hegarty, 2004;
Schnotz, 2002; Tversky et al., 2002).
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Chapter 9

The role of external
representations in learning
combinatorics and probabil ity
theory

Bas Kolloffel, Tessa H. S. Eysink, and Ton de Jong

Introduction

There are many ways to represent information in educational settings: textual
descriptions, formulae, photographs, drawings and so on. A good match
between the type of representation and learning demands can greatly support
learning and contribute to enhanced levels of performance and understanding
(Ainsworth, 2006; Greeno & Hall, 1997). Often, more than one type of repre-
sentation appears to qualify for being used in a learning situation. An informed
choice for one type of representation or another can be made on several grounds
(Ainsworth, 2006; Scaife & Rogers, 1996). For example, a representation can
be used because it causes less cognitive load compared with other representa-
tions. Representations can also be selected on the basis of the extent to which
they promote clarity or reduce ambiguity (Stenning & Oberlander, 1995).
Furthermore, combining two or more representational formats is assumed to
have some additional effects on knowledge construction processes (Ainsworth,
1999, 2006). Different formats can complement each other or constrain the
interpretation of the other (Ainsworth, 1999, 2006; van der Meij & de Jong,
2006).

External representations can be presented to students, but students can
also construct representations themselves. Cox (1999) argues that the process
of constructing a representation helps students to improve their knowledge,
because the interaction between their internal representation and the external
representation they construct, can make them aware of gaps in their internal
representations they had not noticed before. Examples of activities in which
students construct an external representation are: writing a summary (Hidi &
Anderson, 1986), creating a drawing (Van Meter & Garner, 2005), or con-
structing a concept map (Gijlers & de Jong, submitted; Nesbit & Adesope,
2006; Novak, 1990).

Whether it be external representations presented to students or represen-
tations constructed by students, in either way a clear-cut recipe for which
representational format to use when does not exist. Moreover, some researchers
argue that the effects of representations found in one domain cannot readily be
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generalised to other domains (Cheng, Lowe, & Scaife, 2001). In this chapter
a concise overview is presented of a series of studies that focused on the effects
of representations on knowledge construction in the domain of combinatorics
and probability theory. The effects of different representational formats were
investigated and compared with each other in the context of simulation-based
inquiry learning. In Study I, the effects of different formats used to represent
the subject matter in computer simulations were investigated. In Study II, the
focus was on the effects of format on learning outcomes when learners (indi-
vidually or collaboratively) construct domain representations themselves. (For
more details about the studies, see e.g., Kolloffel, 2008; Kolloffel, Eysink & de
Jong, 2010; Kolloffel et al., 2009.)

Representations in combinatorics and probability instruction

There are several ways of representing information in the domain of combina-
torics and probability theory. Some of the most commonly used formats will be
discussed on the basis of the following problem, which is typical for the domain:

Your bank distributes a random four-digit code as a personal identification
number (PIN) for its credit card. What is the probability that a thief finding
the card and trying to get money with it will guess the correct code in one
go, and will be able to plunder your account?

One of the most common ways to represent the steps towards solving this type
of problem is by means of a diagram. In a diagram, information is indexed by
a two-dimensional location in a plane, explicitly preserving information about
topological and structural relations (Larkin & Simon 1987) (see Figure 9.1).

Figure 9.1 Diagram representing solution PIN-code problem.
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When selecting the first digit of a PIN-code, one can
choose from ten digits: 0, 1, 2, up to 9. The chance that 5
will be selected as the first digit is equal to one out of ten.
When selecting the second digit of the PIN-code, one can
choose from ten digits again, because the digit that was
selected the first time, can be selected again.

The chance that 5 is selected as second digit of the code
is therefore equal to one out of ten possible digits.

The chance that 2 is selected as the third digit of the code is
also equal to one out of ten possible digits, and so is the
chance that 6 is selected as fourth digit.

Figure 9.2 Text representing PIN-code problem.

Diagrams are considered a powerful tool for teaching combinatorics and
probability theory (e.g., Fischbein, 1987; Greer, 2001). They are especially
effective in assessing the probability of various options (Fischbein, 1987).

Another way of representing the steps in the PIN-code problem is displayed
in Figure 9.2.

Textual representations emphasise other relational features than those empha-
sised by diagrams. The use of natural language facilitates relating information
in the text to everyday experiences and situations. In textual representa-
tions information is organised sequentially, preserving temporal and logi-
cal relations rather than topological and structural relations (cf. Larkin &
Simon, 1987). Whereas diagrams allow simultaneous access, accessing and pro-
cessing a text requires the reader to keep certain elements of the text highly
activated in working memory, which is thought to burden working memory
considerably (Glenberg, Meyer, & Lindem, 1987).

A third way to represent the PIN-code problem is by using an arithmetical
representation (see Figure 9.3).

In this representation the underlying principle or concept is not as explicit
as in a diagram or text, and therefore many learners tend to view mathematical
symbols (e.g., multiplication signs) purely as indicators of which operations to
perform on adjacent numbers (see, e.g., Cheng, 1999).

Each representation presented above represents the same information, that is,
all of the information in one representation can be inferred from the others and
vice versa. This is called informational equivalence (c.f. Larkin & Simon, 1987).
Informational equivalence does not necessarily imply that the information can

p(PIN = 5526) = 
1

10 ×

1

10 ×

1

10 ×

1

10

Figure 9.3 Equation representing PIN-code problem.
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be extracted equally easily and quickly from each representation. Therefore,
the so-called computational efficiency (c.f. Larkin & Simon, 1987) can differ
between informationally equivalent representations, which, in turn, can affect
learning and knowledge construction processes.

Types of knowledge

In order to solve problems, learners need to acquire appropriate cognitive
schemas. Sweller (1989, p. 458) defined a schema as ‘a cognitive construct that
permits problem solvers to recognise problems as belonging to a particular cat-
egory requiring particular moves for solution’. A complete schema therefore
rests on three pillars: conceptual knowledge, procedural knowledge, and situ-
ational knowledge. Conceptual knowledge is ‘implicit or explicit understanding
of the principles that govern a domain and of the interrelations between units
of knowledge in a domain’ (Rittle-Johnson, Siegler, & Alibali, 2001, p. 364).
Conceptual knowledge develops by establishing relationships between pieces
of information or between existing knowledge and new information. As learn-
ers’ conceptual knowledge becomes sufficiently advanced, well-integrated, and
automated, their ability to assess meaningful situations and predict the out-
comes of complex events can develop so quickly that learners become incapable
of verbalising the reasoning on which their assessments are based. This kind of
conceptual knowledge is called intuitive knowledge and is assumed to be particu-
larly fostered by simulation-based inquiry learning (for an extensive discussion,
see Swaak & de Jong, 1996). Henceforth, the following terminology will be
used: if a specific distinction is made between non-intuitive and intuitive aspects
of conceptual knowledge, the former will be called formal conceptual knowl-
edge, the latter intuitive knowledge. The term conceptual knowledge refers to
conceptual knowledge in general. Procedural knowledge is ‘the ability to exe-
cute action sequences to solve problems’ (Rittle-Johnson et al., 2001, p. 346).
Situational knowledge (de Jong & Ferguson-Hessler, 1996) enables students to
analyse, identify, and classify a problem, to recognise the concepts that underlie
the problem, and to decide which operations need to be performed to solve the
problem.

Study I: which format is most effective in a computer simulation?

The aim of the first study was to investigate the effects of different represen-
tational formats used to present information to students. Five conditions were
compared:

– Diagram
– Arithmetic
– Text
– Text + Arithmetic
– Diagram + Arithmetic
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In theory, more combinations of representations would have been possible (e.g.,
Text + Diagrams), but due to screen size limitations, these combinations were
not feasible in the electronic learning environments without severely hampering
the readability.

The main focus was on the differential effects of formats on schema con-
struction and cognitive load. It was assumed that the Diagram format would
emphasise conceptual domain aspects and would cause low levels of cogni-
tive load. The Arithmetic format was hypothesised to emphasise procedural
domain aspects and, because of the complexity of this format, to cause rela-
tively high levels of cognitive load. The Text format was anticipated to stress
situational and conceptual domain aspects and, intrinsic to comprehensive read-
ing, to cause much cognitive load. In the case of multiple representations
it was assumed that cognitive load would be relatively low and that Text +
Arithmetic would emphasise conceptual, situational and procedural domain
aspects, and Diagram + Arithmetic to stimulate conceptual and procedural
knowledge.

Method

Participants

A total of 123 students participated in the study: 61 boys and 62 girls. The
average age of the participants was 15.61 years (SD = 0.59). Three participants
were excluded from the analyses because their post-test scores deviated by more
than 2 SDs from the mean scores within their condition. The students partic-
ipated in the experiment during regular school time, so that participation was
obligatory.

Design

The experiment employed a between-subjects pre-test post-test design, with the
representational format in which the domain was presented (diagram (n = 24),
arithmetic (n=25), text (n=24), a combination of text and arithmetic (n = 24),
or a combination of diagram and arithmetic (n = 23)) as the independent
variable.

Measures

KNOWLEDGE MEASURES

Two knowledge tests, a pre-test and a post-test, have been developed and
used by several international research teams. The tests were validated in a
series of pilot studies (see Eysink et al., 2009). The pre-test aimed at measur-
ing the prior knowledge of the participants. The post-test contained 44 items
and was specifically designed to measure the different knowledge types: formal
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conceptual knowledge (12 items), intuitive (13 items), procedural (14 items),
and situational knowledge (5 items).

COGNITIVE LOAD

Cognitive load principles may support or even determine decisions as to which
representational format to use (Leung, Low, & Sweller, 1997). Three types
of cognitive load are distinguished: intrinsic, extraneous, and germane load.
Intrinsic load is generated by the complexity of the learning material. Extra-
neous load is determined by the way in which the material is organised and
presented (e.g., diagrams or text formats). Germane load refers to load caused
by mental activities relevant to schema acquisition, such as organising the
material and relating it to prior knowledge (Paas, Renkl, & Sweller, 2004;
Sweller, van Merriënboer, & Paas, 1998).

After each section in the learning environment students were presented with a
cognitive load questionnaire consisting of six items (see Table 9.1). The students
indicated their amount of mental effort on 9-point Likert scales. Each time the
cognitive load questions were presented, they appeared in a different order.

Instruction

The instructional approach used in this study is based on inquiry learning
(de Jong, 2005, 2006). Computer-based simulation is a technology that is
particularly suited for inquiry learning. Computer-based simulations contain a
model of a system or a process. The student is enabled to induce the concepts
and principles underlying the model by manipulating the input variables and
observing the resulting changes in output values (de Jong & van Joolingen,
1998).

Table 9.1 Cognitive load items.

Type of cognitive load Item

Intrinsic load (IL) How easy or difficult do you consider probability theory at
this moment?

Extraneous load 1 (EL1) How easy or difficult is it for you to work with the learning
environment?

Extraneous load 2 (EL2) How easy or difficult is it for you to distinguish important and
unimportant information in the learning environment?

Extraneous load 3 (EL3) How easy or difficult is it for you to collect all the information
that you need in the learning environment?

Germane load (GL) How easy or difficult was it to understand the simulation?
Overall load (OL) Indicate on the scale the amount of effort you had to invest

to follow the last simulation.
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Figure 9.4 Screen dump Probe simulation (displayed is the Text + Arithmetic version
of Probe).

The learning environments used in the current study, called Probe
(see Figure 9.4), were created with SIMQUEST authoring software (van
Joolingen & de Jong, 2003).

Probe contained simulations and a series of questions (both open-ended
and multiple-choice items) and assignments. In the case of the multiple-choice
items, the students received feedback from the system about the correctness of
their answers. If the answer was wrong, the system offered hints about what was
wrong with the answer.

Procedure

The experiment was carried out in a real school setting in one 3-hour session
including a 15-minute break. Students worked individually. They were told that
they could work at their own pace, and that the three hours would be more than
enough to complete all assignments. The participants started the session by log-
ging on to the electronic pre-test. It was announced that the post-test would
contain more items of greater difficulty than the pre-test, but that the pre-test
items nonetheless would give an indication of what kind of items to expect on
the post-test. After completing the pre-test the participants received a printed
introductory text about the domain. Along with the introductory text the par-
ticipants received information about how to enter the learning environment.
After finishing the last section of the learning environment, the participants
received logon instructions for the post-test environment.
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Results

Test results

A one-way ANOVA performed on the pre-test scores established that there were
no differences between conditions, F (4,119)=0.63, ns. The post-test results
are displayed in Figure 9.5. All post-test measures were analysed by one-way
ANOVAs with representational format as factor.

Analysis of post-test total scores showed a significant effect of representational
format, F (4,119)=2.57, p < .05. A post hoc least significant difference (LSD)
analysis revealed that participants in the Text + Arithmetic condition outper-
formed participants in the Diagram condition (p < .01), and participants in the
Diagram + Arithmetic condition (p < .05). With regard to formal conceptual
knowledge, no main effect of format, F (4,119)=1.56, ns, was found. Neither
was a main effect of format on intuitive knowledge observed, F (4,119)=1.91,
ns, was found.

Analysis of procedural knowledge revealed a significant main effect of represen-
tational format, F (4,119)=2.52, p < .05. A post hoc LSD analysis showed that
participants in the Text + Arithmetic condition outperformed participants in
the Diagram condition (p < .01), and participants in the Diagram + Arithmetic
condition (p < .05).

With regard to situational knowledge items, no main effect of representational
format, F (4,119)=0.66, ns, was found.

Figure 9.5 Post-test scores.
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Cognitive load

Cognitive load measures are displayed in Figure 9.6.
All cognitive load measures were analysed by one-way ANOVAs with condi-

tion as factor.
Regarding intrinsic load, a main effect of representational format was found,

F (4,118)=2.70, p < .05. Post hoc LSD analyses showed that participants in
the Diagram condition experienced more intrinsic load than participants in
the Text + Arithmetic condition (p < .01) and participants in the Diagram +
Arithmetic condition (p < .05). Furthermore, participants in the Textual condi-
tion reported higher levels of intrinsic load compared with participants in the
Text + Arithmetic condition (p < .05).

Differences between conditions with regard to extraneous load were observed
as well, F (4,118)=2.89, p < .05. Participants in the Diagram condition expe-
rienced higher levels of extraneous load compared with participants in the
Arithmetic condition (p < .01), the Text + Arithmetic condition (p < .01),
and the Diagram + Arithmetic condition (p < .01). Analysis of the extrane-
ous load sub-measures (EL 1, EL 2, and EL 3) showed that the differences
between conditions with regard to extraneous load, in general, could be
entirely attributed to EL 1 (F (4,118)=3.55, p < .01); participants in the
Diagram condition reported more EL 1 compared with participants in the
Arithmetic condition (p < .01), the Text + Arithmetic condition (p < .01), and
the Diagram + Arithmetic condition (p < .01).

Figure 9.6 Cognitive load measures.
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With regard to germane load, differences were found between conditions,
F (4,118)=2.89, p < .05. Participants in the Diagram condition reported
having more germane load as compared with participants in the Arithmetic
condition (p < .01), the Text + Arithmetic condition (p < .01), and the
Diagram + Arithmetic condition (p < .05).

Furthermore, a difference between conditions was found concerning the over-
all load, F (4,117)=2.85, p < .05. Participants in the Diagram condition had to
invest more effort than participants in the Arithmetic condition (p < .05), and
the Text + Arithmetic condition (p < .01).

Conclusion

The findings of the study show that the best learning outcomes were obtained
by students who were presented with a combination of text and equa-
tions. Their post-test scores with regard to procedural knowledge and their
post-test overall scores were significantly higher than those of students pre-
sented with tree diagrams or with a combination of tree diagrams and
equations.

Students presented with tree diagrams reported the highest levels of cog-
nitive load compared with students in the other conditions: they considered
the domain more difficult (intrinsic load), found the learning environment
more difficult (extraneous load), had more difficulty understanding the sim-
ulations (germane load), and had to invest more mental effort to complete
their learning task. The students were all familiar with the conventions of tree
diagrams, but they did not have much prior knowledge about the domain
when they entered the instruction. Possibly, tree diagrams are more suited
for people who already have domain knowledge (e.g., math teachers) rather
than learners without domain knowledge. Tabachneck-Schijf, Leonardo, and
Simon (1997) argue that experts, in particular, benefit from diagrams because
for them diagrams serve as an aid to access information stored in long-term
memory. Moreover, diagrams help to decrease the expert’s working mem-
ory load, because elements of information that are displayed in the diagram
do not have to be kept activated in working memory all the time. Further-
more, diagrams could be less suited for learners because the reasoning steps
depicted in tree diagrams are quite implicit and require advanced knowledge
to infer them. This might be a disadvantage in domains like combinatorics
and probability theory, where problem solving requires a set of reasoning
steps to be taken in a specific order. This could explain the advantage of the
Text + Arithmetic format. In the textual part of the representation the learners
are led step by step through an explicit, sequential line of reasoning, followed
by an equation repeating these steps concisely in an arithmetical (and also
sequential) way.
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Study II: do representational tools support understanding in
individual and collaborative learning?

Besides presenting external representations to students, students can also con-
struct representations themselves. This activity has been found to foster deeper
understanding (Cox, 1999). The format (e.g., concept maps, textual summaries,
tables) used to construct a representation has been found to influence knowl-
edge construction. For example, constructing a concept map is assumed to
focus the attention of learners on the identification of concepts and their mutual
relations (Nesbit & Adesope, 2006). With regard to student-constructed repre-
sentations of information in the domain of probability theory, it has been found
that students avoid using formal ways of representing the probability of events
and prefer to use alternative forms of representation, ranging from textual state-
ments to numerical representations (Tarr & Lannin, 2005). This finding indi-
cates that not all formats may be equally suitable for students trying to express
their knowledge. Moreover, in collaborative learning settings it was found that
the format in which students constructed a representation influenced the focus
of students’ discourse and collaborative activities (e.g., Suthers & Hundhausen,
2003; van Drie et al., 2005). A question that has yet to be answered is which
additional learning effects can be expected from constructing representations in
a collaborative learning setting as compared with constructing representations
in an individual learning setting, and which role representational format plays
here.

In this study the effects of three, commonly used formats in the domain of
combinatorics and probability theory have been compared: a conceptual, arith-
metical, and a textual format. The following questions guided this study. Does
the representational format of a tool affect the likelihood that students engage
in constructing representations? Does format have differential effects on the
quality of the representations students construct? Does the construction of a
representation of a domain lead to better learning outcomes than not construct-
ing a representation? The effects were studied in both an individual learning
setting and in a collaborative learning setting.

Constructing a conceptual representation like a concept map is assumed to
direct the students’ attention to identifying concepts and their mutual rela-
tions. Therefore, it is hypothesised that this form will stimulate in particular
the acquisition of conceptual knowledge rather than procedural or situational
knowledge. Constructing a concept map usually does not cause students much
difficulty.

Constructing an arithmetical representation is expected to foster the acquisi-
tion of procedural knowledge more than conceptual or situational knowledge.
It is also expected that many students will have difficulty with this formal format.

The textual format is particularly suited to describing the domain in one’s
own words. This is hypothesised to stimulate the acquisition of especially
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situational and conceptual knowledge, though the conceptual aspects might
not be as emphasised as with constructing a conceptual representation. It is
anticipated that students find text an easy way to express themselves.

Method

Participants

The data collection of the study in the collaborative setting took place exactly
one year after the study with individual students at the same school. In the
collaborative learning study, in total 128 secondary education students entered
the experiment, and the data of 61 pairs could be analysed. The average age
of these 56 boys and 66 girls was 14.62 years (SD = .57). In the individual
learning study, 95 secondary education students, 50 boys and 45 girls, partici-
pated. The average age of the students was 14.62 years (SD = .63). The students
attended the experiment during regular school time; therefore, participation was
obligatory.

Design

The experiments employed a between-subjects design with the format of the
provided representational tool (conceptual, arithmetical, or textual) as the inde-
pendent variable. Students were randomly assigned to conditions. Of the 61
pairs in the collaborative setting, 22 pairs were in the Conceptual condition,
19 pairs in the Arithmetical condition, and 20 pairs in the Textual condition.
Of the 95 students in the individual learning setting, 33 were in the Con-
ceptual condition, 30 in the Arithmetical condition, and 32 in the Textual
condition.

Learning environment

The simulation-based learning environment used in these studies was the Text+
Arithmetic version of Probe that was used previously in Study I.

Representational tools

Students were encouraged to construct a representation in which they sum-
marised what they considered to be the main points of the domain (e.g.,
principles, variables and their mutual relationships). Each student/dyad could
use a representational tool to create the representation. A representational tool
is an electronic on-screen tool designed to construct, discuss, and share exter-
nal representations (Suthers & Hundhausen, 2003). There were three types of
representational tools, one for each experimental condition: (a) a conceptual
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Figure 9.7 Conceptual representational tool.

representational tool, (b) an arithmetical representational tool, and (c) a tex-
tual representational tool. The conceptual representational tool (see Figure 9.7)
could be used to create a concept map of the domain. Students could draw cir-
cles representing domain concepts and variables. Keywords could be entered in
the circles. The circles could be connected to each other by arrows indicating
relations between concepts and variables. The nature of these relations could be
specified by attaching labels to the arrows.

In the arithmetical representational tool (see Figure 9.8), students could use
variable names, numerical data, and mathematical operators (division signs,
equation signs, multiplication signs, and so on) in order to express their
knowledge.

Finally, the textual representational tool (see Figure 9.9) resembled simple
word processing software, allowing textual and numerical input.

In the current studies, the representational tools were intended as means to
support students while learning. Therefore, the use of the representational tools
was not obligatory, although students were strongly advised to use the tool
and they were informed that using the tool would help them to better prepare
themselves for the post-test.



Figure 9.8 Arithmetical representational tool.

Figure 9.9 Textual representational tool.
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Knowledge measures

Two knowledge tests were used in this experiment: a pre-test and a post-test.
The tests contained 12 and 26 items respectively. The post-test was a shortened
version of the one used in Study I.

Procedure

The experiments were carried out in a real school setting in three sessions, each
separated by a one-week interval. The procedures in both the individual and
collaborative setting were identical.

The first session started with a short introduction followed by the pre-test.
In both the individual and the collaborative setting, students completed the
pre-test individually. At the end of the pre-test the students received a printed
introductory text in which the domain was introduced. The duration of the first
session was limited to 50 minutes. During the last 15 minutes of the session,
the students received an explanation of how their representational tool could be
operated and they could practise with the tool.

During the second session, students worked with the learning environment
which contained simulations and a series of questions and assignments. Each
learning environment contained a representational tool that could be used to
construct a domain representation. The duration of this session was set at
70 minutes. Students in the individual learning setting worked alone. In the
collaborative learning setting students were allowed to choose their partner
themselves. Communication between students was on a face-to-face basis: the
collaborating students were sitting next to each other, using the same com-
puter terminal. Despite the possibility of following a non-linear path through
the learning environment, students were advised to keep to the order of sections
because they built upon each other.

The third session was set at 50 minutes. First, students were allowed to use
the learning environment for 10 minutes in order to refresh their memories with
regard to the domain. Then all students had to close their domain representa-
tions and learning environments, and had to complete the post-test. In both
the individual and the collaborative setting, students completed the post-test
individually.

Data preparation

The domain representations constructed by the students were scored by means
of a scoring rubric. This rubric revolved around the principle that scoring of the
domain representation should not be biased by the representational format of
the representational tool, that is, all types of representations should be scored on
the basis of exactly the same criteria. The maximum number of points that could
be assigned on the basis of the rubric was eight points. The rubric was used to
assess whether domain representations reflected the concepts of replacement
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and order, presented calculations, referred to the concept of probability, indi-
cated the effect of size of (sub)sets on probability, and the effects of replacement
and order on probability.

Results

Use of representational tools

The percentages of students in each condition who did or did not use the
representational tool to construct a domain representation are displayed in
Figure 9.10.

The overall picture is that about 50 per cent of the students (both individuals
and dyads) provided with a conceptual or textual tool used the tool. Of students
(both individuals and dyads) provided with the arithmetical tool, about 20 per
cent actually used the tool. A Chi-Square analysis showed that these differences
between conditions were significant (p < .01). Compared with students in the
Arithmetical condition, students in the Conceptual condition used their tool
more often (p < .01) and so did students with a textual tool (p < .05). No
difference was observed between the Conceptual and the Textual condition.

In Figure 9.11 the average quality scores of the constructed representations
are displayed. In the case of representations constructed by pairs, the repre-
sentations are considered a group product and therefore the quality scores are
assigned to pairs and not to individuals. All representations were scored by two
raters who worked independently from each other. The inter-rater agreement
was .89 (Cohen’s Kappa) for the individual setting and .92 for the collaborative
setting.

A two-way ANOVA with setting (individual vs. collaborative learning) and
condition as factors showed that with regard to quality scores there was

Figure 9.10 Percentage of individuals/dyads in each condition who did or did not use their
representational tool.
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Figure 9.11 Quality scores of constructed representations.

no main effect of setting, no main effect of condition, and no interaction
effect.

Knowledge measures

Two measures of knowledge were obtained: prior knowledge (pre-test score)
and post-test score. Both in the collaborative and in the individual setting stu-
dents completed the tests individually. The tests were validated in a series of
pilot studies (Eysink et al., 2009). The reliability, Cronbach’s α, of the pre-
test was .64. This reliability is low, but sufficient for the purpose of verifying
that students did not have too much prior knowledge and that there were no
differences between settings and/or conditions. The reliabilities of the formal
conceptual, intuitive, procedural, and situational knowledge scales were respec-
tively: .76, .74, .74, and .67. Furthermore, students were asked for their latest
school report grade in mathematics. This grade, which can range from 1 (very,
very poor) to 10 (outstanding), was interpreted as an indication of the student’s
general mathematics achievement level.

Three-way ANOVAs with setting (individual or collaborative), condition
(Conceptual, Arithmetical, Textual), and tool-use (Tool-use or No-tool-use) as
factors were performed to test for a priori differences with respect to math grade
(general mathematics achievement level) and pre-test score (prior knowledge).

A difference regarding math grade was observed with respect to setting
(p < .05) and tool-use (p < .01). No main effect of condition was found. An
interaction between setting and tool-use (p < .01) was observed. On average,
the math grades of students in the collaborative learning setting were somewhat
higher compared with the individual students. Furthermore, in the individual
learning setting it was observed that students who used their representational
tool had higher math grades compared with individuals who did not use the
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tool. The math grades of individuals who used the tool were equal to those of
students in the collaborative setting.

With regard to pre-test scores, no main effects were found for setting, condition
or tool-use. No interaction effects were observed either.

Therefore, in the analyses of post-test measures only math grade was entered
as a covariate. In Figure 9.12 an overview of post-test measures is provided.

MANOVAs with setting (individual or collaborative), condition (Conceptual,
Arithmetical or Textual; not separately displayed in Figure 9.12) and tool-use as
factors and math grade as covariate were applied to post-test measures.

The outcomes of the analyses showed a difference with regard to setting
(p < .001). Students in the collaborative learning setting showed higher scores
with respect to intuitive knowledge (p < .001), situational knowledge (p < .01)
and the post-test overall score (p< .001). No difference between individuals and
dyads was found with respect to formal conceptual or procedural knowledge.

No differences were observed for condition.
An interaction was observed between setting and tool-use (p < .05). This

interaction concerned situational knowledge (p < .01) and the post-test over-
all score (p < .05). The interaction indicates that with regard to situational
knowledge and post-test overall scores, students in the collaborative setting
in general outperformed individual students, but in cases where individual
students constructed a representation their scores equalled those of students
in the collaborative setting.

Figure 9.12 Post-test measures.



Representations in learning combinatorics and probability theory 187

Conclusion

With respect to their inclination to use a representational tool, students in both
the collaborative and individual setting were found to be very like-minded: rep-
resentational tools with a conceptual or textual format were used much more
readily (around 50 per cent use) compared with the arithmetical format (around
20 per cent use). In both settings the formats of the tools did not lead to dif-
ferential effects on the quality of the constructed representations. Perhaps the
textual and the conceptual formats are more close to the code in which students
think (and/or talk) and explain the domain to themselves, or maybe students
consider those formats more suited to expressing their knowledge to the outside
world.

With regard to learning outcomes, it was found that, in general, post-test
scores in the collaborative setting were higher than in the individual setting.
Only individual students who engaged in constructing a domain represen-
tation in general equalled post-test scores of students in the collaborative
setting. It was observed that students learning collaboratively and students
constructing domain representations in the individual setting both showed
enhanced levels of situational knowledge. This type of knowledge is a pre-
requisite for going beyond the superficial details of problems in order to
recognise the concepts and structures that underlie the problem (e.g., Fuchs
et al., 2004). Furthermore, students in the collaborative learning setting showed
enhanced levels of intuitive knowledge. The observation that collaborative
students (regardless of whether or not they constructed a representation) out-
performed individuals (even those who did construct a representation), implied
that (a) intuitive knowledge was enhanced by collaborative learning and (b)
the activity of constructing representations was not sufficient for individual
students to equal the levels of intuitive knowledge of students who worked
collaboratively.

Theoretical implications and general conclusions

The overall aim of the studies presented here was to establish if and how repre-
sentational format affects knowledge construction. It was assumed that knowl-
edge of the domain of combinatorics and probability has three components:
conceptual knowledge, procedural knowledge, and situational knowledge. In
the studies presented here it was found that each of these types of knowledge
could be influenced.

Enhanced levels of conceptual knowledge were observed when students
learned in a collaborative setting. In particular, they showed enhanced levels of
intuitive knowledge. Not much is known about how learners acquire intuitive
knowledge, but there are indications that it is fostered particularly by processes
of interpretation and sense-making (Gijlers & de Jong, submitted; Zhang et al.,
2004). However, more research is needed before solid conclusions can be drawn
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about the relation between collaborative learning and the acquisition of intuitive
knowledge.

It was observed that the acquisition of procedural knowledge is influenced by
the representational format in which the domain is presented to the students.
A combination of a textual and an arithmetical format significantly improved
levels of procedural knowledge.

It was observed that the representational format used to present the domain
to students does not affect situational knowledge, but it was found that con-
structing a domain representation, regardless of the format, is associated with
significantly higher levels of situational knowledge. It was also observed that col-
laboration is beneficial for situational knowledge. In that case, it did not make a
difference whether or not students constructed a domain representation; their
situational knowledge scores were equal anyway to individual students who had
constructed a domain representation.
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Chapter 10

Symbolis ing and the
development of meaning
in computer-supported
algebra education

Koeno Gravemeijer, Michiel Doorman, and Paul Drijvers

Introduction

One of the most salient characteristics of mathematics is its logical structure; one
would therefore expect mathematics to be a subject that is easy to teach. Reality,
however, shows that this is not the case. Mathematics proves to be hard to learn
for many students. A common explanation is that mathematics is too abstract.
Sfard (1991) offers a deeper explanation by showing that there is more to math-
ematics than just the rules of logic. She points to the epistemological nature of
mathematical knowledge. Reflecting upon the history of mathematics, she con-
strues a dual nature of mathematical conceptions: a structural conception, and
an operational conception.1 The first concerns mathematical objects, the latter
mathematical processes. We may start by elucidating the structural conception
that encompasses the notion of mathematical objects. Sfard (1991) observes
that, although it is commonplace to speak of ‘a function such that . . .’ in a
similar manner as a physicist speaks about the existence of certain subatomic par-
ticles, mathematical objects are very different from physical or material objects.
Mathematical constructs such as functions are inaccessible to our senses.

[E]ven when we draw a function or write down a number, we are very
careful to emphasise that the sign on the paper is but one among many
possible representations of some abstract entity [. . .].

(Sfard, 1991, p. 3)

She goes on to say that, the fact that such immaterial mathematical objects
are experientially real for mathematicians, while novices may be unable to ‘see’
these objects, may be one of the reasons why mathematics appears practically
inaccessible. In contrast to the static structural conception, the operational con-
ception concerns processes, algorithms and actions. Sfard (1991) argues that
one may speak of the dual nature of mathematics because operational and struc-
tural conceptions are both incompatible and complementary. Following Sfard,
we may elucidate the dual nature with two examples, number, and function.
The operational conception of number concerns the activity of counting. The
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structural aspect of number concerns number as a quantity, or the ‘quantity
number’ that describes a property of a set (or the class of all sets of the same
finite cardinality). A function may operationally be seen as a computational pro-
cess, as a recipe to transform one number into another (or to link one number to
another). Structurally, a function can be thought of as a set of ordered number
pairs.

Sfard (1991) illustrates the operational and the structural conception of
function by discussing three different representations of a function shown in
Figure 10.1. The computer program may be associated with an operational con-
ception rather than with a structural conception, since it presents the function as
a computational process. The graph, on the other hand, can be seen as a concise
depiction of the corresponding set of ordered number pairs. In this manner, the
whole set of number pairs can be grasped as an integrated whole. Moreover,
the graph may be used to talk about certain characteristics of a fourth-order
polynomial function, while treating the function as an object. The algebraic
representation can be interpreted in both ways, as a description of a compu-
tation, or as a relation between two magnitudes. Sfard (1991) observes that,
historically, the operational aspect preceded the structural aspect, and argues
that the same should be the case for the individual learning process, because
the structural approach is more abstract than the operational. To strengthen her
point, she refers to Piaget who argues:

the (mathematical) abstraction is drawn not from the object that is acted
upon, but from the action itself. It seems to me that this is the basis of
logical and mathematical abstraction.

(Piaget, cited by Sfard, 1991, p. 17)

Other scholars come to similar conclusions, e.g., Dubinsky (1991), who speaks
of ‘encapsulation’, Tall (1991), who introduces the term ‘procept’ to stress the
process element that is present in most concepts, and Freudenthal (1991), who
speaks of cumulative process of common sense experiences that are organised in

Graph Algebraic expression Computer program

10 INPUT X
20 Y = 1

30 FOR I = 1 TO 4
40 Y = Y * X

60 Y = 3 * Y
50 NEXT I

y

x

y = 3x4

Figure 10.1 Different representations of a function. (Copied from Sfard (1991, p. 6).)
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rules, which become common sense of a higher order. For reasons of readability,
however, we will stick to Sfard’s terminology. History shows that the transition
from an operational conception to a structural conception is very difficult. Here,
the long history of transition of the so-called rhetorical algebra into the synco-
pated and symbolic algebra may serve as an example. According to Sfard (1991),
we may discern three stages in the transition from an operational conception to
a structural conception:

– interiorisation, which refers to becoming proficient with executing the
process, and becoming able to carry it out in your mind;

– condensation (curtailing and compressing);
– reification (the actual shift to the structural conception, or to the mathemat-

ical object).

To be able to reason with mathematical objects, one must be able to work
with the products of certain processes without bothering about the processes
themselves. This requires a profound insight in those processes, and a certain
amount of proficiency with those processes. Finally, the transition from compu-
tational operations to abstract objects is a long and inherently difficult process.
There has to be a transition stage in which one starts to treat a process as an
object before it has become an object. One must try, for instance, to manipu-
late a function as an object-like entity in order to come to see it as an object.
Sfard observes that this requires a struggle that may appear too challenging
for some.

Visual representations

In this chapter we will advance the view that visual representations and models
can play a significant role in supporting students in this struggle. We want to
stress, however, that this role of visual representations differs significantly from
the conventional manner in which external representations are put to use. In
fact, the use of visual representations and models that we propose can be seen as
a reaction to the problems with the more conventional role of models in math-
ematics education. We will therefore start by discussing the use of conventional
models and their limitations.

For a long time, mathematics educators have been designing and using exter-
nal representations to make the formal, abstract mathematics accessible for
students. These, what we may call ‘didactical’, representations have played a
key role in the kind of mathematics education in which mathematics is seen as
an objective body of knowledge that students have to acquire. Tacit and visual
models were seen as powerful means to support learning for understanding.
By acting with well-designed concrete models, students were expected to dis-
cover the mathematics that was embedded in the models. In relation to this,
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Cobb, Yackel, and Wood (1992) speak of a representational view. Mathemat-
ics educators, who use tactile models and visual representations in this manner,
implicitly or explicitly hold the view that learning is characterised as a process in
which students construct mental representations that mirror the mathematical
features of external representations. But the problem with this approach is that
the meaning of external representations is dependent on the knowledge and
understanding of the interpreter. This creates a problem that is known as ‘the
learning paradox’ (Bereiter, 1985), which can be captured with the question:
how is it possible to learn the symbolisations that you need to come to grips
with new mathematics, if you need to have mastered this new mathematics in
order to be able to understand those very symbolisations?

If we follow Sfard’s (1991) line of reasoning, mathematics educators who
have a structural conception of functions, for instance, conceive functions as
mathematical objects. That is to say, they experience them as real objects that
you can act and reason with – just like most adults experience numbers as
real objects. With the construction of various mathematical objects mathemati-
cians create a body of knowledge that they experience as real. Cobb et al.
(1992) argue that since mathematics educators experience mathematics as an
objective body of knowledge, they are inclined to project their own mathe-
matical knowledge and understanding into external representations that are to
make that mathematics accessible for students. In this manner, they continue,
a dualism is erected between mathematics in students’ heads and mathematics
in the external environment, which then leads to the aforementioned learn-
ing paradox. They go on to say that the representational view is problematic,
since

the assumption that students will inevitably construct the correct internal
representation from the materials presented implies that their learning is
triggered by the mathematical relationships they are to construct before
they have constructed them.

(Cobb et al., 1992, p. 5)

Or, to use Sfard’s terms, the students are to ‘see’ mathematical objects, which
they have not yet constructed.

We may argue, however, that the learning paradox dissolves when we adopt
a more dynamic view of learning that is in line with a learning process in which
operational conceptions transform into structural conceptions. Within such a
view, mathematical symbols and models may be developed in a bottom-up
manner (e.g., Doorman, 2005). Meira (1995) observes that, in the history
of mathematics, mathematical symbols did not suddenly appear in their full-
fledged form. Instead, these symbols grew out of informal situated forms of
symbolising that developed over time in a dialectic process in which symbolisa-
tions (visual representations) and meaning co-evolved. Therefore, he suggests
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that students should develop symbols and meaning in a similar process and
advocates for

[an] activity-oriented view that takes cultural conventions, such as nota-
tional systems, to shape in fundamental ways the very activities from
which they emerge, at the same time that their meanings are continuously
transformed as learners produce and reproduce them in activity.

(Meira, 1995, p. 270)

Following Meira (1995), we may envision a dynamic learning process in which
symbolisations and meaning co-evolve, and in which the ways that symbols are
used and the meanings they come to have, are seen to be mutually constitutive.

A similar observation is made by Latour (1990), who speaks of a ‘cascade of
inscriptions’. He introduces the word inscription to make a distinction between
the material part of a visual representation and the meaning that is attributed
to that inscription in some social practice. Inscriptions will mostly be marks on
paper or on a computer screen, but may also consist of tactile objects. By making
this distinction between inscription and meaning explicit, Latour underscores
that symbols or inscriptions do not come with meaning. In our view, this dis-
tinction is more powerful than the common distinction between internal and
external representations. For the notion of an external representation brings
with it the idea of meaning as something that is represented. In contrast, the
label inscription points to the fact that the inscription as such is devoid of mean-
ing. Meaning is attributed to inscriptions by actors who use a given inscription
in a certain social practice. As a consequence, the same inscription may have
different meanings in different social practices. The letter ‘x’, for instance, has a
different meaning in language lessons or algebra. Moreover, the letter ‘x’ may
have different meanings in various practices in algebra. When solving 8x = 7
for x, for instance, x may be thought of as a given, although unknown, number,
which multiplied by 8 will get you 7. In another social practice, in a mathematics
classroom that is reasoning about ‘p’ as a parameter in f(x)=px+12, x will have
to be thought of as a variable that encompasses all possible values of a domain
set. A complicating element is that the actors may participate on different levels
in such a social practice of mathematics in school. Even if the discourse is about
finding an unknown x in early algebra, some students may (already) be thinking
of a variable that may assume a certain value for which the expression ‘8x = 7’
is true. In another instructional practice with somewhat older students, some of
them may be struggling to make sense of parameters because they only have at
their disposal a conception of x as a placeholder for an unknown number.

We may conclude this analysis by stating that there is a need for a bottom-
up approach to helping students develop meaningful symbols. Following Meira
(1995) and others, such as Roth and McGinn (1998), we may conclude that
the way symbols and meaning emerge has to take the form of a dialectic process
in which symbols and meaning co-evolve.
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Emergent modelling

A heuristic that aims at supporting the design of such a process is that of
‘emergent modelling’ (Gravemeijer, 1999). As a point of clarification, we want
to note that the emergent modelling instructional design heuristic does not
aim at modelling as a goal in and of itself. Instead, modelling is employed
in the service of a long-term learning process in which mathematical mean-
ing and mathematical forms of representation are developed. Consequently,
emergent modelling differs from what is typically referred to as ‘mathematical
modelling’ (as a synonym of ‘applied mathematical problem solving’). Math-
ematical modelling may be described as translating contextual problems into
mathematical models by employing the mathematical tools that are ready at
hand for the problem solver, whereas the kind of modelling that characterises
emergent modelling is better described as a process of organising. The mod-
elling activity, typically, has the character of coming to grips with problem
situations and the embedded mathematics by way of organising and struc-
turing them. In the emergent modelling process there is no such distinction
between the model and the situation model – at least initially. The idea is
that, in the first phase of the learning process, informal ways of modelling
emerge while students are trying to come to grips with contextual problem
situations and the embedded mathematics. Later, subsequent ways of mod-
elling will start to serve as a basis for developing more formal mathematical
knowledge. Finally, this more formal mathematical knowledge may eventually
be experienced as mathematics that is ready to hand in a process of mathematical
modelling.

The long-term process of emergent modelling may be described in the follow-
ing manner. First a model is constituted as a context-specific model of acting in a
given situation. Then, gradually, the students are stimulated to shift their atten-
tion towards the mathematical relations involved. As a result, the students may
start to build a framework of mathematical relations. Then, the model begins
to derive its meaning for the students from this emerging framework of mathe-
matical relations, and the model becomes more important for them as a base for
reasoning about the mathematical relations involved than as a way to symbolise
mathematical activity in a particular setting. In this sense, the role of the model
gradually changes as it takes on a life of its own. As a consequence, the model
can become a referential base for more formal mathematical reasoning.

Within the above developmental progression, we can discern four types of
activity, which we may denote as levels even though they do not involve a strictly
ordered hierarchy (Gravemeijer, 1999):

– activity in the task setting, in which interpretations and (situation-specific)
solutions depend on understanding of how to act in that setting;

– referential activity, in which models-of refer to activity in the setting described
in instructional tasks;
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– general activity, in which an orientation on mathematical relations and
strategies makes it possible to act and reason independently of situation-
specific imagery, and models start to function as models for more formal
mathematical reasoning;

– formal mathematical reasoning that is no longer dependent on the support
of models-for mathematical activity.

In conclusion, we may observe a transition from a model of informal situated
activity to a model for more formal mathematical reasoning. Thus, we may char-
acterise the emergent models heuristic as a model-of/model-for transition, in
which ‘the model’ is understood as a global overarching concept. In the con-
crete elaboration of an instructional sequence, this overarching model takes on
various manifestations, which we may call sub-models. The idea is that the stu-
dents will use those sub-models as tools, and that each activity with a newer
sub-model or tool is experienced as a natural extension of the activity with the
earlier sub-model/tool. Consequently, the formal mathematical symbols that
will eventually be introduced will be rooted in concrete activities of the stu-
dents. The dynamic character of this process justifies the term emergent models.
The meaning of the label, however, is broader. It refers both to the process by
which models emerge, and to the process by which these models support the
emergence of more formal mathematical knowledge.

In summary, we may observe that there are three interrelated processes. First,
there is the overarching model, which first emerges as a model of informal math-
ematical activity, and then gradually develops into a model for more formal
mathematical reasoning. Second, the model-of/model-for transition involves
the extension of the mathematical reality, which can be called formal in rela-
tion to the original starting points of the students. This extension (which is
new for the students, not for the teachers) consists of mathematical objects that
derive their meaning from a network of mathematical relations. In other words,
the model-of/model-for transition coincides with a shift towards a structural
conception (Sfard, 1991). Third, in the concrete elaboration of the instruc-
tional sequence, there is a series of sub-models, which build on each other.
And, although the term ‘emergent modelling’ may suggest differently, these
sub-models or inscriptions will – in practice – not be invented by the stu-
dents. Instead, the emergent modelling process is organised by an instructional
sequence and by the teacher who introduces each new sub-model when he or
she thinks the development of the students allows for it. That is to say, their
mathematical understanding has progressed to a level at which they could, in
principle, invent that sub-model themselves. So even though the goal is to sup-
port a bottom-up process, reality may be different. In practice there may be a
tension between the planning of the instruction, which – at least in part – will
be done in advance, and the actual development of the students. The teacher
therefore has to carefully monitor whether the students experience each new
sub-model as fitting their own current thinking. In this respect, Gravemeijer,
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Bowers, and Stephan (2003) introduced the term ‘imagery’; the students have
to be able to ‘see’ the earlier activity of working with the former sub-model
in their way of working with the new model (e.g., Doorman & Gravemeijer,
2009).

Emergent modelling applied to functions

In the following we will discuss briefly how the emergent modelling heuristic
may be applied to the design of instruction on mathematical functions. In doing
so, we will zoom in on a part of a potential learning route in which a computer
applet is used as a means of support for fostering the transition from a concep-
tion of a function as a calculational recipe to that of a set of ordered number
pairs (Drijvers et al., 2007).

An important guideline that the emergent modelling heuristic offers instruc-
tional designers is the advice to analyse the potential endpoints of the instruc-
tional sequence under consideration in terms of mathematical objects and a
corresponding framework of mathematical relations. To use Sfard’s (1991)
terms, we will be aiming for a transition from an operational to a structural con-
ception. So the question arises, what is the mathematical object we are aiming
for? In the case of functions, a static description is offered by Sfard’s historical
analyses, which show that we are aiming for an object that fits the formal defi-
nition of a function as a set of ordered number pairs. She further found that the
structural conception manifests itself in the way one operates with function as an
object. According to the exposition on the emergent modelling design heuristic
presented above, eventually the students will have to reach a level of more for-
mal mathematical reasoning, which is no longer dependent on the support of
models-for mathematical activity. We may, however, have a closer look at what
the latter implies. In some cases, the more elaborate sub-models slide under
some formal notation. In the instructional sequence for addition and subtrac-
tion up to 100, for instance, a tactile representation of numbers with beads on
a so-called arithmetic rack2 is at the core of the sequence (Gravemeijer, 2008).
Towards the end of the sequence, actions with the beads on the arithmetic
rack, and the corresponding forms of reasoning, are described schematically on
paper. Then, gradually, those inscriptions on paper start to function as the next
sub-model, which, finally, is replaced by a description with standard numerical
expressions. In other cases, some graphical representations are never completely
abandoned. The latter will also be the case with functions, since it is quite com-
mon to revert to tables or graphs to support one’s reasoning, even if one is
working at a very abstract level.

When we start to look for an overarching model, we find that the notion of
a function is intimately tied to three different representations, algebraic expres-
sions, tables and graphs (Janvier, 1987). It will be clear that all three forms of
representation have to be part of the learning process, and part of what it means
to have a structural understanding of functions. At first sight this seems to ask
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for three emergent models. In our view, however, tables are rather straightfor-
ward representations that do not require an elaborated learning process. This
leaves us with two models. We will, therefore, need two learning routes, one on
the topic of algebraic expressions and one on graphs. The latter, which concerns
Cartesian graphs as a tool to reason about the covariation of two variables, may
start with empirical functions, that is to say, with the representation of empiri-
cal data – with common examples such as graphing the outside temperature, a
child’s height or a company’s sales against time. Although we will not go into
detail here, we want to note that this encompasses the development of both the
notion of variable and the notion of covariation. In relation to this, we point
to the fact that the idea of measures as a possible value on a variable does not
come naturally. Instead, students tend to see measures as attributes of individ-
uals (Hancock, Kaput & Goldsmith, 1992). Nevertheless, notions of variable
and covariation may be further developed when the students start graphing
functions that are defined by mathematical prescriptions.

The second learning strand concerns the development of algebraic expres-
sions. Here, the starting point may lay in functions that are described by
series of arithmetical operations. Those series of operations may be represented
with so-called arrow chains in which each arrow signifies one operation, as in
Figure 10.2.

× 0.15 0.15.a + 25+ 25a

Figure 10.2 Arrow chain.

Working with arrow chains as tools for repeated calculations may constitute
the first phase of such a learning route. Early in such a learning route students
will be asked to investigate arrow chains that are used for solving contextual
problems. Further topics of investigation will be the order of the operations,
curtailing arrow chains, looking for input–output patterns and linking arrow
chains to algebraic expressions, tables and graphs.

In the second phase, more condensed algebraic expressions will replace the
chains of arrows representing individual operations. Then the attention may
shift towards exploring the role of parameters and structuring algebraic expres-
sions into smaller units that can be treated as variables in and of themselves.
This is what Wenger (1987) calls the global substitution principle, according to
which an expression such as

2 · v ·√(u − 1)+v ·√(u + 1)= 0

for instance, can be transformed into

2 · A · v + B · v = 0
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We assume that such explorations will foster the development of a structural
conception. In contrast with Sfard (1991) we do not link the reification of the
structural conception of number to one specific moment that is tied to the intro-
duction of an adequate definition. We tend to see reification as a gradual process
in which input–output relationships are explored extensively and become part
of a network of mathematical relations in connection with which functions may
acquire an object-like entity. It is against this background that we want to dis-
cuss the partial sequence that involves the computer applet ‘AlgebraArrows’ in
more detail.

Computer applet

The computer tool AlgebraArrows allows for the construction of chains of oper-
ations, which are represented by individual arrows that signify ‘machines’ that
each carry out one operation (Boon, 2008). Students can create arrow chains in
such a manner that they can be used to execute a given calculational procedure,
and, if desired, to repeat the same calculation for a series of input values. The
applet has a variety of features to support investigations. One allows for creating
tables that show a series of input and output values. Another feature allows for
the chains to be extended, linked, compared and compressed. Further, a valu-
able feature of the computer tool is that the input and output values can be
labelled. This enables the students to tie the calculation with the arrow chain
explicitly to the contextual problem for which a solution is sought. Moreover,
these labels already signify categories, and, as such, refer to values that may vary.
Thus when the students start to reason about variables, the names for those
variables are already ready to hand. Finally, a graph can be created, with the
input value on the horizontal axis and the output value on the vertical axis.

We will illustrate the potential use of the computer applet with a short instruc-
tional sequence of eight lessons that was tried out in a teaching experiment.
The sequence starts with asking the students to solve contextual problems that
require them to specify the series of operations with which the answers can be
calculated. Next, arrow chains are introduced as a means for describing such
series of operations. Then the AlgebraArrows applet is introduced as a tool that
can carry out a series of calculations, which a student may define by putting
arrow chains together in the window of the AlgebraArrows applet. This makes
it easy for them to produce output values for a series of input values. Then the
students are made familiar with the option of producing input and output tables
with the AlgebraArrows applet. This enables them to inspect such tables for pat-
terns. In relation to this, students are asked to compare the input and output
tables of two arrow chains to solve contextual problems. Here, the students may
be asked to look for critical values – such as break-even points – or trends. Sub-
sequently the students are acquainted with the tool option to produce graphs
that correspond with such input and output tables. This then allows for tasks
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that ask for reasoning with graphs as visual representations of sets of ordered
number pairs that are linked by some calculational recipe.

In line with the emergent modelling heuristic, we discern a series of sub-
models that the students are expected to use as tools. What is aimed for is that
the students experience each activity with a newer sub-model or tool as a natural
extension of the activity with the earlier sub-model. The idea is that the students
will ‘see’ the earlier activity of working with the former sub-model in their way
of working with the new model. We have elaborated this in more detail for
this sequence in the first two columns of Table 10.1. The next two columns of
the table describe the activity for the students and the mathematical issues that
constitute the goals aimed for.

This short sequence will have to be followed by a variety of activities that
involve the use of graphs, which is seen as instrumental for developing the
notion of a function as an object (Slavit, 1997). Other activities may focus
on investigating the arrow chains themselves, e.g., looking at the order of the
operations, or curtailing arrow chains. Later on, a feature of the applet may
be exploited, that allows for a letter to be inserted in the input box, which
results in an algebraic expression in the output box. This opens up a vari-
ety of possibilities for exploring the relation between algebraic expressions and
arrow chains. We cannot describe a complete instructional program here, but
we will limit ourselves to noting that we gradually move into an area where
the students may use computer algebra as a tool for further investigations
(see, e.g., Kieran & Drijvers, 2006). We would argue, however, that there is a
need for tailor-made computer algebra systems for mathematics education that

Table 10.1 Cascade of sub-models.

Tool/sub-model History/imagery Activity Mathematical issues

Written
calculation

Finding output values Calculational recipe &
notion of variable

Machine/arrow
language

Written
calculation

Finding output values Calculational recipe &
notion of variable

Arrow chain in
AA-applet

Machine/arrow
language

Identifying input &
output variables and
finding output values

Calculational recipe &
notion of variable

Tables in
AA-applet

Arrow chain in
AA-applet

Investigating
dependency
relationships

Notion of variable
relation between
input–output values

Graphs in
AA-applet

Tables and
arrow chains in
AA-applet

Investigating relations
between functions

Treating a function as
an object (set of
ordered number
pairs) characteristics
of input–output
relationships
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would, for instance, allow for Wenger’s (1987) ‘global substitution’ in a more
straightforward manner.

The teaching experiment was conducted with three grade eight (13–14-year-
olds) classes at three different schools. Teaching sessions and group work in
two classes were videotaped, and screen-audio videos of three pairs of stu-
dents working with the computer tool were collected. Students’ answers to the
computer activities were saved on a central server. In addition, the researchers
collected students’ written work and the results of a written assessment at
the end of the teaching experiment. The data analyses started with organi-
sation, annotation and description of the data in a multimedia data analysis
tool. Initially, the tasks in the instructional sequence served as the unit of anal-
ysis for clipping the videos. Codes were used to organise and document the
data, and to produce conjectures about patterns in the teaching and learn-
ing process following the principles of grounded theory (Strauss & Corbin,
1998).

Central in the instructional sequence are mathematical tasks that involve the
repeated execution of arithmetical operations. In the first phase of the sequence,
the students are expected to find out how the repetition – that is inherent in
such tasks – can be organised most effectively. In this manner, functions will
come to the fore as recipes for transforming one number into another – which
corresponds with the operational conception of functions. The objective of the
next phase is to shift the attention of the students, with the help of the computer
tool, from the calculations that have to be executed to the relation between
input and output values. This shift is facilitated by the computer tool that takes
care of the calculations.

In the following, we will give a brief impression of how this instructional
sequence actually evolved during the teaching experiment. Activities with the
computer applet were preceded with some activities to orient the students on
repeatable calculational procedures. It took the students some time to figure
out which quantity they could use as the independent variable.3

The first activities with the computer concerned contextual problems that the
students were asked to solve with the help of the computer applet. To do so,
they had to translate the contextual problem into a series of operations that
could be represented with an arrow chain. It was found that it was not self-
evident for the students in which order the operations had to be sequenced.
When designing the arrow chain for the costs of a mobile phone, for instance,
most students were inclined to start with the fixed costs. Only when working
this out did they realise that this would not work because in this manner the
fixed costs would be multiplied with the variable costs. Another complication
arose when they had to compose the arrow chain in such a manner that it could
be used for a series of calculations with a variety of input values. To make this
possible, the arrow chain had to start with the variable, which meant that the
students had to identify the independent variable in the contextual problem.
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Figure 10.3 Enacting a chain of operations.

This, too, required a small explorative learning process. This process was sup-
ported with whole-class activities in which carton board operations were used
that each signified an individual operation (or ‘machine’ that would carry out
that operation), which had to be placed in the order of execution that would fit
a given task (see Figure 10.3).

An important step in the sequence involved tasks, which required the students
to make comparisons between two functions, such as the following.

To get some jobs done in the house we can choose from two compa-
nies. Company Pietersen charges ¤92 starting costs and an hourly rate of
¤30. Company TweeHoog charges ¤45 starting costs and an hourly rate of
¤32.75.

QUESTION a: A job takes 9 hours. Which company do you choose?
QUESTION b: After how many hours is Pietersen cheaper?

Question a asks the students to calculate and compare the output values of
two functions for a given value. In question b the students are asked to look
at a range of values. We present an excerpt of the protocol of Lisa and Romy,
after they created the corresponding arrow chains, added tables of input and
output values, and inserted ‘9’ in the input box to answer question a. For
question b they enter ‘rate’ in the input box and ask for the table tool (see
Figure 10.4).
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Figure 10.4 ArrowApplet with chains for two contractors.

[They read question b, after how many hours is Pietersen cheaper?]
[They start to scroll up in the table of the input values.]
R: No, here he is still more expensive.
L: Oh, yes.

[She starts to scroll down.]
R: I think it is after the nine . . .

L: I should TweeHoog . . . oh yes, of course . . . [she looks again at the output
values of 9, and then quickly scrolls down]

R: I look at Pieters . . .

L: Here he is still more expensive [scrolls along 13, 20].
L: Here he is cheaper.
R: . . . cheaper . . .

[They scroll up again.]
L&R: And there, and there too . . . [select 19, 18, 17]
L: No, here he is more expensive.
L&R: From 18 hours. [They return to 18 and type their answer ‘from 18 hours’

in the answer box of question b.]

Note that the arrow chains fulfil two different roles when the students answer
questions a and b. To answer question a, the students have to design an arrow
chain that fits the calculation that has to be carried out. In question b, their
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attention shifts towards comparing series of input and output values. We believe
this to be an important shift. Using Saxe’s (2002) terminology, we may speak
of a ‘form–function shift’. Initially, the arrow chain is constructed as a means to
calculate an output value for a given input value, whereas later the arrow chain is
taken as a given, when the students investigate the patterns of input and output
pairs. It is exactly this kind of shift that we try to foster with the AlgebraArrows
applet. A systematic analysis of the work of 155 students involved in a second
teaching experiment, with basically the same goal and design as the first one,
showed that a substantial number of them made this shift (Doorman et al.,
submitted).

Given these results, we may argue that the short instructional sequence with
the AlgebraArrows applet matched the kind of instruction we aimed for, in that
it fostered a dynamic learning process in which symbolisations and meaning co-
evolved, and in which the ways that symbols were used and the meanings they
came to have were mutually constitutive.

Conclusion

We observed that one of the reasons why it is so difficult to learn mathematics
originates in what Sfard (1991) calls the dual nature of mathematics. Math-
ematical concepts have both a procedural and a structural nature. The history
of mathematics shows that new mathematical concepts emerge as procedures
first and then gradually transform into objects. Trying to teach mathematics
on the basis of the structural conceptions will cause problems if students only
have a procedural conception of the topic that is being taught. Such instruction
asks of the students to reason in terms of mathematical objects they have not
constructed yet. The alternative is to foster a bottom-up process that starts with
a procedural conception of a given topic and tries to support the transition
to a structural conception of that topic. Nevertheless, learning mathematics in
this manner is not easy either, since students eventually have to begin to treat
procedures as objects before they have constructed those objects.

We observed that the problems caused by the dual nature of mathematics are
conflated with issues that relate to the use of symbolic representations in math-
ematics. We argued that the so-called learning paradox cannot be overcome by
concretising mathematical concepts by means of didactical models. For as long
as the students have not developed a structural conception, they will not be
able to interpret concrete representations in a structural manner. It showed that
the alternative here is, again, a bottom-up approach. Following Meira (1995),
one may try to take the historical process in which symbolic representations and
meaning co-evolve in a dialectic process, as a source of inspiration for the design
of instruction. An instructional design approach that can be seen as an instanti-
ation of this recommendation is the instructional design heuristic of emergent
modelling.
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We elaborated the emergent modelling approach for instruction on algebraic
functions, and we illustrated this with a brief sketch of a teaching experiment
that involved the use of a computer applet that enabled the students to represent
calculations that consisted of a series of operations in the form of a series of
arrows in an arrow chain, in which each arrow signified one operation. Analysing
the way the students interacted with the tool, we observed a form–function
shift (Saxe, 2002). This form–function shift can be seen as a first step in the
development of a structural conception of algebraic functions, and we can argue
that the activities with the computer applet supported this first step. In relation
to this, we want especially to highlight the role of visual representations in the
shape of an arrow chain, which the students first put together as a series of
operations for specific calculations, but which gradually took on the role of a
machine that produced output values for arbitrary input values and that afforded
the construction of the notion of input–output relationships.
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Notes

1. We will follow Sfard (1991) in the distinction she makes between a concept (a math-
ematical idea in its ‘official’ form) and a conception (the internal, subjective cluster of
internal representations and associations).

2. The arithmetic rack is a scaffolding device that allows for representing basic number
facts in such a manner, that they can function as means of support for deriving more
advanced number facts in addition and subtraction up to 20.

3. Although we use the term ‘independent variable’ here, this term was not used in the
teaching experiment which had the character of an informal exploration.
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Chapter 11

The ‘numbers are points on
the line’ analogy
Does it have an instructional value?

Xenia Vamvakoussi

Problems of conceptual change in the development of the
rational number concept

In the past few years, we have conducted a series of studies investigating the
development of the number concept from a conceptual change perspective
(Vamvakoussi & Vosniadou, 2004, 2007, 2010). A key assumption of our
theoretical framework is that students, before they are exposed to instruction
about non-natural numbers, have already formed complex and relative coher-
ent explanatory frameworks for numbers; these are tied around their knowledge
and experience with natural numbers, which are shaped initially in the context of
their socio-cultural environment and further confirmed and strengthened dur-
ing the first years of instruction which focuses on natural number arithmetic.
Among the background assumptions underlying students’ initial number con-
cept is the idea that numbers are discrete, i.e. they obey the successor principle
(see also Gelman, 2000; Smith, Solomon, & Carey, 2005). It is amply docu-
mented that the idea of discreteness constrains students’ understanding of the
density property of rational and real numbers not only at elementary and sec-
ondary education (Hartnett & Gelman, 1998; Merenluoto & Lehtinen, 2002),
but at tertiary education level as well (Giannakoulias, Souyoul & Zahariades,
2007; Tirosh et al., 1999).

However, it is not the only constraint on students’ understanding of the
density of numbers. Consider the following examples, coming from individ-
ual interviews with ninth-graders, who were asked how many numbers there
are between 3/8 and 5/8 (Vamvakoussi & Vosniadou, 2004).

Example 1. ‘There is one number, 4/8. . . Just a moment! There is also 4.0/8,
isn’t it? And

√
16/4, right? There are many, many numbers in between.’

Example 2. ‘There is no other number, because if you simplify 4/8 you get 1/2.
And this is not in between.’

Then consider the example of a ninth-grader who answered that there are nine
numbers between 0.001 and 0.01, but stated without hesitation that there are



210 Xenia Vamvakoussi

infinitely many numbers between 3/8 and 5/8. Following a prompt by the
interviewer, he explained:

Example 3. ‘Between 0.001 and 0.01 there are nine numbers. Or maybe ten –
I’m not so sure about that. But if you convert them to fractions, you can find
more numbers in between. You can find infinitely many numbers.’

These students have been exposed to intensive instruction about decimals and
fractions, including ordering, operations and conversions, starting from the
third grade and throughout the elementary school. They have been introduced
to the term ‘rational’ and ‘real’ numbers in the eighth grade, and have been
using variables with real values ever since. However, the above excerpts show
that when they are faced with a relatively unfamiliar task their judgements are
constrained by natural number knowledge interference, which leads them to
refer to a finite number of intermediate numbers; in addition, there is also a
clear issue of interpretation of rational number notation. All three students seem
to treat different symbolic representations of the same numbers as if they were
different numbers (for similar results in the context of ordering see Markovits
& Sowder, 1991). This tendency was further investigated in subsequent stud-
ies (Vamvakoussi & Vosniadou, 2007, 2010) and the results corroborated the
above: students were reluctant to accept that there can be decimals between
fractions and vice versa, even when they answered that there are infinitely many
intermediate numbers; they also gave different patterns of responses for dif-
ferent symbolic representations (e.g., infinitely many intermediates between
decimals, but a finite number between fractions). As Kilpatrick, Swafford, and
Findell (2001) also note, it seems that students deem rational numbers a set of
different, unrelated ‘sets’ of numbers (integers, decimals, fractions).

In treating the different symbolic representations as if they were different
numbers, students seem to confuse between the representations and the math-
ematical object (Duval, 2006). In a pure or advanced mathematical context, a
rational or real number can be viewed as an abstract, not tangible entity, which
takes its meaning within a formal system, i.e. as a mathematical object. This
perspective is, typically, not fostered in school contexts, where students struggle
to construct meaning for decimals and fractions (Dörfler, 1995). Besides violat-
ing the expectations based on their initial number concept, these new constructs
are presented in different contexts and accompanied by a large number of differ-
ent concrete, graphical and symbolic representations. For example, the number
‘one half’ can be represented graphically in ways that emphasise the part-whole
meaning of the fraction – like the pie – or its measure aspect, like the number
line; depending on the context, it can be represented symbolically as a per-
centage (e.g., ‘50 per cent discount’), in the form a/b, or in various decimal
forms (e.g., ¤0.50 or 0.500 kg). It can also be related to a collection of discrete
objects, via the ‘one out of two’ interpretation of its meaning. For these dif-
ferent meanings and representations to be coordinated in an integrated whole,
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students have to realise that they are all connected to the same quantitative rela-
tion – or, at a more abstract level, the same (rational) number. This requires
conceptual restructuring within the initial number concept, involving represen-
tational changes (see also Ni & Zhou, 2005; Smith et al., 2005). Given that
the initial number concept does not support the development of the rational
number concept, what are the learning mechanisms via which efficient learning
can be accomplished?

Cross-domain mapping: a mechanism to foster conceptual
restructuring

Analogical reasoning, and, in particular, cross-domain mapping, is considered an
important mechanism for conceptual restructuring (Vosniadou, 1989). Gentner
et al. (1997) describe the comparison between two domains (usually termed
base and target domain) as a process that may highlight their common fea-
tures and reveal unnoticed commonalities. They suggest that the projection of
inferences adds to the knowledge of the target domain and that in the pro-
cess, re-presentation of the target or of both domains may occur, to improve
the match. They also propose that the use of analogies may lead to concep-
tual restructuring, i.e. a large-scale rearrangement of the target domain. They
present examples drawing on detailed analysis of the use of analogies by sci-
entists, in the context of discovery (see also Nersessian, 1992). Carey and her
colleagues (Carey, 2004; Smith et al., 2005) view cross-domain mapping as a
‘bootstrapping process’ which supports learning when what is to be learned
transcends what is already known not merely in a quantitative way, but also
in some qualitative way. They focus on the rational number concept, arguing
that the bootstrapping process through which this concept is created involves
modelling numbers in terms of representations of physical quantity, i.e. a cross-
domain mapping between matter and number. Their findings suggest that there
is a close relation between elementary school children’s understanding of mat-
ter and of number as infinitely divisible, the first slightly preceding the second.
Smith et al. also refer to the work of Moss and Case (1999) as a promising
example of a bootstrapping curriculum to foster the development of the rational
number concept. The intent of this curriculum was to help fourth-graders to
coordinate between an assumed global representation of proportions related
to physical quantity and a numerical structure supporting splitting and halv-
ing. Students began representing, via percentages, the notions of full, nearly
full, half-full and nearly empty, as these applied to a beaker of water, for
instance. Then they were led to associate their intuitive understanding with
numerical halving strategies, before they were introduced to decimal and frac-
tional notation. Smith et al. argue that the mapping between number and
physical quantity might be instrumental in children’s appreciating the existence
of rational numbers, e.g., between 0 and 1, and that any rational number is
repeatedly divisible.
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Taking a step forward in terms of the age of students, as well as the level of
abstraction of the intended mathematical meanings, one could pose the follow-
ing question: what would be an appropriate cross-domain mapping that would
help secondary school students to (a) conceptualise numbers as individual enti-
ties, invariant under different forms of representation, and (b) re-represent
them as a dense array, instead of sequences of numbers that preserve locally
the ordering of natural numbers?

I will argue that the comparison between number and the geometric line
entails a cross-domain mapping which is worth investigating in this respect.
There are two reasons to support this claim: first, exploring the relations
between the two domains has been instrumental in the historical development
of both mathematical concepts (i.e. number and the line). Second, a product
of this long interplay between number and the line, namely the number line, is
commonly used in school settings to model the real numbers.

Number and the line: a case of long-term cross-domain mapping

Number and the line began as two inherently different objects of study
and ended up as two objects between which, in certain mathematical con-
texts, there is no useful distinction (see, e.g., Schechter, 2006). In ancient
Greek mathematics, the line was deemed inherently continuous, whereas num-
ber was viewed as a collection of units, discrete in nature. Moreover, the
unit was viewed as a generator of numbers, but not a number itself (Klein,
1968/1992). The exploration of relations between number and the line was
initiated by a theoretical question regarding measurement: can any length
be captured by a number? The answer to this question depends crucially on
what counts as a number. Within ancient Greek mathematics, ratios of com-
mensurable and incommensurable quantities were not deemed numbers, thus
the possibility of a correspondence between lengths and numbers was not
thinkable.

The concept of number as a collection of units proved extremely robust for
many centuries to follow; indeed, although ratios (rational as well as irrational)
were used extensively for calculation purposes, it proved very difficult to con-
ceptualise them as individual entities, let alone as members of the same family
as the natural numbers. It is quite revealing that Stevin, the sixteenth-century
mathematician who borrowed and adjusted the Arabic digital and positional
system, felt obligated to state explicitly in his Arithmétique that (a) the unit is a
number, (b) the fractional parts of the unit are also numbers, and (c) every ‘root’
is a number (Klein, 1968/1992). There emerges the possibility of assigning to
number, properties that have been attributed before only to continuous quan-
tities, precisely in attempts to describe continuity. These include the notion of
infinite divisibility (already expressed by Aristotle) and the possibility to always
find a third point between any two that implies the infinity of intermediate
points, which was stated explicitly by Occham, a fourteenth-century philosopher
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(Bell, 2005). From the point of view of today’s mathematics, infinite divisibility,
as well as the infinity of intermediate points, relates to the notion of density and
is not sufficient to describe continuity. A clear differentiation between density
and continuity was made possible by comparison with the domain of number,
as late as the nineteenth century, through the attempts to describe continuity in
terms of number (Boyer, 1959).

However, the fact that neither continuity nor the real numbers were ade-
quately defined did not prevent the development of mathematical domains and
tools that made use of both. In particular, intuitions of geometric continuity
and assumptions as to the relation between geometrical magnitude and number
were at the heart of calculus and analytic geometry.

This complex interplay between number and the line reached a crucial point
with the foundation of real numbers by Dedekind and Cantor in the nineteenth
century. It is interesting to see in Dedekind’s own words (quoted in Dantzig,
1930/2005) how he refers to the cross-domain mapping that sustained his con-
ceptualisation of continuity, which led him to define the real numbers so as to
have this property:

The comparison of the domain of rational numbers with a straight line has
led to the recognition of the existence of gaps, of a certain incomplete-
ness or discontinuity, in the former; while we ascribe to the straight line
completeness, absence of gaps, or continuity. (p. 177)

Rather than lengths, numbers are now viewed as points on the line; the fact that
the points corresponding to rational numbers do not exhaust the totality of the
points is acknowledged (thus density is clearly differentiated from continuity).

However, the question remained: how can one be sure that irrational num-
bers indeed fill all the remaining ‘gaps’, i.e. that there is indeed a one-to-one
correspondence between the real numbers and the points of the line? It
turns out that the one-to-one correspondence between points and real num-
bers had to be postulated by what is now known as the Cantor–Dedekind
axiom.

The school number line: affordances and limitations

The number line is a representation of the real numbers commonly used in
school settings, grounded on the analogy ‘numbers are points on the line’.
As such, it calls for a reconceptualisation for numbers, which, arguably, might
help students conceive of rational numbers as individual entities, and also
facilitate their understanding that, for instance, 0.5 and 1/2 are interchange-
able representations of the same number, rather than different numbers, since
they correspond to the same point. It may also facilitate conceptualising infi-
nite decimals, and in particular irrational numbers, as entities rather than
unending processes (Sirotic & Zazkis, 2007). This could promote students’
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understanding of rational (and real) numbers as a unified number system and
facilitate their understanding of their structure in this respect (Kilpatrick et al.,
2001).

In addition, the geometrical features of the number line could be used to
confront students’ belief that numbers are discrete in nature. More specifically,
it would be worth investigating whether an understanding of density could be
fostered in a geometric context (i.e. as density of points) and then be transferred
to an arithmetic context via the ‘numbers are points’ analogy. Besides preceding
the emergence of the notion of the density of numbers in the course of historical
development, density of points could be more accessible to students, due to
the fact that it does not involve any symbolic notation, which proved to be an
additional burden for students in our previous studies.

This should not be taken to imply that the ‘numbers are points’ analogy is
deemed transparent to students, nor that the conceptualisation of the segment
as a dense array of points is immediately triggered by the intuitively perceived
continuity of the line. This point has been put forward by Núñez and Lakoff
(1998), who make a sharp distinction between the notion of the ‘holistic line’,
which can be conceptualised as the trace of a moving object (e.g., the pencil,
when it does not leave the paper) and is continuous in an everyday sense, and the
notion of the line as a set of points, which they characterise as a mathematically
elaborated metaphor of the line. In fact, describing the line as a set of points is
compatible with the idea of a series of points laying the one immediately next
to the other.

There is yet another distinction that has to be taken into consideration,
namely the distinction between abstract, geometrical objects and their physical
representations. There is the possibility that students assign to the line, as well
as to the points, properties such as width, or length, which do not apply in the
case of their idealised counterparts. Conceptions of points as material spots are
at odds with the infinite number of points on a line segment. Such conceptions
may underlie the conception of a segment as ‘a necklace of beads’ (Sbaragli,
2006) and the belief that longer segments have more points (Fischbein, 1987,
pp. 138–139). In addition, it has been shown that conceiving of actual infin-
ity, as well as infinite divisibility, in a geometrical context may be constrained
by pragmatic considerations (e.g., Tirosh & Stavy, 1996). On the other hand,
Smith et al.’s (2005) findings suggest that children conceive matter as infinitely
divisible slightly before assigning this property to number.

Students’ early experiences with the number line at elementary school, when
the number line represents the natural numbers, may also have an adverse effect.
Quoting Dufour-Janvier, Bednarz, and Belanger (1987), English (1993) points
out that students tend to see the number line as a series of ‘stepping stones’ with
an empty space in between, commenting that this could explain why so many
secondary students say that there are no numbers, or at the most one, between
two whole numbers. Another common metaphor for the number line in school
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settings, namely that of the ruler (e.g., Doritou & Gray, 2007), may also convey
the idea that the amount of intermediate numbers is finite.

Investigating the effect of the number line on students’
judgements about the number of numbers in an interval

We asked two ninth-graders who had responded that there are no other num-
bers between two given decimals, to place them on the number line (unreported
data from the Vamvakoussi & Vosniadou (2004) study). Both students drew a
line and placed the two decimals, allowing for a small, yet obvious distance
between them. The question was again posed: are there any numbers between
the two given ones?

STUDENT A: ‘No, there are no numbers in between. There is space, but there are
no numbers.’

STUDENT B: ‘There are . . . I don’t remember how they’re called . . . Thousandths?
You know these little lines . . . Like there are on the ruler.’

In Vamvakoussi and Vosniadou (2007), we tested for possible effects of the pres-
ence and the order of appearance of the number line on students’ judgements
on the number of numbers in an interval. We used a questionnaire consist-
ing of two parts. Both parts consisted of items asking how many numbers
there are between two rational numbers a, b. In one of the parts, the num-
bers a and b were demonstrated on a number line. All participants received
both parts, but half of them received the items with the number line first,
whereas the other half received first the items without the number line. In both
cases, the first part was withdrawn before the second one was administered.
We found no significant effects of the presence and the order of appearance of
the number line on students’ performance. Sometimes the number line helped
students to move from a ‘no other number answer’ to a ‘there is a finite num-
ber of numbers’ one (like Student B), but only rarely did they move to an
‘infinitely many numbers’ answer. Moreover, the presence of the number line
sometimes had an adverse effect, leading students to move from the infinite to
the finite side.

In order to investigate this phenomenon further, we designed a questionnaire
consisting of 16 multiple-choice items. The first 15 were three item blocks, tar-
geting (a) the number of numbers in an interval, (b) the number of numbers
between two given numbers placed on the number line, and (c) the number
of points on a segment. The 16th item was posed as a thought experiment.
The scenario was that a mathematics teacher asked her students to imagine
that they had the possibility of unlimited magnification of a line segment AB.
How would they ‘see’ with their mind’s eye the point A and its neighbouring
points? The segment before the magnification was presented in a figure and then
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our participants were offered three choices, in the form of drawings produced
by these imaginary students: in the first the magnified segment had grown in
length and also in width, in the second it was presented as a ‘necklace of beads’,
whereas in the third it remained continuous, increasing in length, but not in
width. We administered this questionnaire to 229 secondary school students,
from seventh to eleventh grade (Vamvakoussi & Chatzimanolis, 2008). Similar
to the Vamvakoussi and Vosniadou (2007) study, the results showed no sig-
nificant difference in students’ performance with or without the number line.
On the other hand, all age groups performed significantly better in the items
of the third block relating to points, that is, students were more apt to accept
that there are infinitely many points on a segment, than numbers in an inter-
val, either with or without the number line. However, this finding should not
be taken to imply that students showed a firm understanding of the infinity of
points in an interval. On the contrary, they were susceptible to variations in the
length of the segments, i.e. they moved from an ‘infinite’ to a ‘finite’ answer
for shorter segments. For example, 58 students (25.33 per cent in the sample)
answered that there are infinitely many points in the case of the longest seg-
ment presented in the questionnaire, but 25 out of them answered that there is
a finite number of points in the case of the shortest segment. Only 24 students
(10.5 per cent in the sample) were found to answer consistently that there are
infinitely many intermediate points in all five items. When we examined these
students’ responses to the thought experiment, we found that 12, i.e. half of
them, described the segment as consisting of discrete points. Eight of these stu-
dents (33.3 per cent) described the segment as a physical object that grows in
width as it gets magnified.

These findings suggested that the geometrical features of the line could be
a good starting point for introducing the idea of density, since students were
found on the ‘infinite’ side more often in the case of points than in the case
of numbers. Obviously, this does not imply that they have a deep understand-
ing of the infinity of points. The fact that they were susceptible to variations of
the length of the presented segments, suggests that ‘infinitely many points’ may
be interpreted by students as ‘a very large amount of very small spots’, which
is compatible with the conceptualisation of points as material spots (Fischbein,
1987). What is interesting is that, whatever understanding students have of the
number of points on a segment, it does not transfer to the domain of numbers,
even when these are presented on the number line. Revisiting the example of
Student A, it seems that either the presence of intermediate points on the seg-
ment is not acknowledged if not specifically asked for, or the correspondence
between numbers and points is not evoked. The first could be explained assum-
ing, as Núñez and Lakoff (1998) do, that from the students’ point of view, the
‘holistic’ line has primacy over the points, which are called into existence only
as ‘locations’ on the line.

Finally, our findings indicated that the ‘infinity of points’ on a segment might
not necessarily imply their ‘denseness’, from the students’ point of view. Indeed,
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students who were consistently on the ‘infinite side’ with respect to the num-
ber of points on a segment, regardless of its length, still described the segment
as an array of points lying the one next to the other, given the possibility of
unlimited magnification. This could again be attributed to a misinterpretation
of the term ‘infinity’ to mean a very large amount. But there is also the possi-
bility that these students believe that the points are infinitely many, yet discrete.
Data obtained by a questionnaire cannot provide enough information to sup-
port this claim. However, we had the opportunity to investigate this assumption
further in a microgenetic study, where we provided tenth- graders with infor-
mation about the infinity of numbers in a specific interval and also about the
numbers-to-points correspondence, and studied how they employed this infor-
mation in solving density-related tasks (Vamvakoussi, Christou, & Vosniadou,
in preparation). Consider the following excerpt from the individual interview of
student C, who is dealing with two tasks. The first task asks if it is possible to
know how many numbers there are between a, b ∈ 	, a < b, without knowing
which these numbers are. The second task asks whether it is possible to specify
the first (smallest) value that the variable a ∈	 takes, given that a > 10.

The student answers that it doesn’t matter whether or not we know which
numbers a and b stand for, since there are infinitely many intermediates. She
explains that ‘if we place a and b on the number line, no matter where, this segment,
big or small, always consists of infinitely many numbers’. However, when it comes
to the second task, she says:

STUDENT C: I would say 11, but there are more numbers between 10 and 11:
10.5, 10.1, 10.01, 10.001 and so on.

RESEARCHER: So what do you think, is there such a number?
STUDENT C: There is, but I do not know precisely which. It is what we were

talking about before, there are infinitely many numbers in between, and so
we may not be able to define the one immediately after 10.

RESEARCHER: So, let me draw a line and place 10 here. You say that 11 is not
immediately after 10, since there are infinitely many others in between. But
are you saying that there is some number immediately next to 10?

STUDENT C: Yes, it is the one that is immediately after 10, the immediately next
point, the successive point.

This student refers to the infinity of numbers in an interval, as well as to
the infinity of points on a segment. In fact, she uses the numbers-to-points
correspondence to explain that there are infinitely many numbers in any inter-
val. She also employs a recursive process in order to present examples of decimal
numbers between 10 and 11, by adding more decimal digits. However, she
seems convinced that the successor of 10 exists in principle. Moreover, she
again draws on the number-to-points correspondence and refers specifically to
the immediately next point. For this student, ‘infinitely many’ means some-
thing more than a ‘large amount’ – it presumably means an unending amount
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of numbers (or points), in the sense that there is always one more to be found.
However, this process does not necessarily produce a dense array of numbers
or points that can never be found the one immediately next to the other.
This interpretation relates to the distinction between potential or dynamic and
actual infinity. To illustrate the difference between these two aspects of infin-
ity, one can compare the following sentences: (a) ‘there are infinitely many
natural numbers’, (b) ‘the cardinality of the set of natural numbers is aleph
null’.1 One can conclude the first by drawing on the possibility of always find-
ing one more natural number by adding one unit, a process that can repeat ad
infinitum. On the other hand, the second presupposes that the totality of nat-
ural numbers is conceptualised as a single entity. Both conceptual analysis and
research-based evidence show that the notion of potential infinity is far more
accessible, even to young children (e.g., Hartnett & Gelman, 1998; Singer &
Voica, 2008), than the notion of actual infinity (e.g., Fischbein, 1987; Lakoff
& Núñez, 2000; Tsamir & Tirosh, 1999). In line with this consideration, it
could be argued that it might be easier to infer the infinity of number in an
interval, than to conceptualise the interval as a dense array on numbers, i.e. that
‘infinity’ does not necessarily imply ‘denseness’ from the point of view of the
learner.

To summarise, the findings of the Vamvakoussi and Chatzimanolis (2008)
study, in line with findings from previous research, indicated that (a) students
confuse between geometrical objects and their physical representations, (b) stu-
dents may conceptualise points as ‘locations’ on the line that are present only
when the location is indicated, and (c) the conception of the segment as an
aggregate of points might come down to thinking of it as a ‘necklace of beads’.
In addition, these results showed that students were more apt to accept the
infinity of points on a segment, than the infinity of numbers in an interval, indi-
cating that the numbers-to-points correspondence was not employed, even in
the presence of the number line. Finally, there were indications that two aspects
of density, namely the ‘infinity of intermediates’ and the ‘no successor’ aspect,
may not be equivalent from the learner’s point of view.

Bridging the gap between discreteness and density with the
‘rubber line’

It is probably evident by now that we are dealing with a situation where the
idea of density is not adequately developed, neither in the domain of points nor
in the domain of numbers. Nevertheless, there was evidence suggesting that
the idea of density might be more accessible to students in a geometric than
in an arithmetic context. The question arises: how can the gap between the
segment as conceived by students and the segment as a dense array of points
be bridged? A promising approach is the ‘bridging analogy’ one, developed by
Clement and his colleagues (Brown & Clement, 1989; Clement, 1993), with
the purpose of dealing with the problem of the gap that often exists between



The ‘numbers are points on the line’ analogy 219

students’ initial understanding of a situation and the intended scientific idea.
They propose that this gap can be bridged via the interpolation of one or
more intermediate anchoring situations which are accessible to students’ cur-
rent understanding and have the potential to trigger a correct intuition, i.e. one
that can be developed toward understanding the target situation.

We employed the ‘rubber line’ as anchor, presenting the line as an imaginary
rubber band that never breaks, no matter how much it may be stretched. The
idea of an elastic line that one can stretch or shrink is not new. It has been
employed, for example, to model multiplication and division on the number
line (e.g., Kilpatrick et al., 2001). In the present case it serves as an intermediate
anchoring situation between students’ initial understandings of the line segment
and the intended idea of the segment as a dense array of points: on the one hand,
it is grounded on students’ experience with a real-world object; on the other, it
is grounded on a recursive process, which is likely to be supportive for students,
as discussed in the previous section. The ‘rubber line’ aims at conveying the idea
that no matter how close two points seem to be, there is always a line segment
(thus, more points) to be found in between, by stretching the rubber line.

In order to test the added value of this approach, we designed a short,
text-based intervention (Vamvakoussi, Katsigiannis, & Vosniadou, 2009). We
assumed that if we provided students with explicit information about the infin-
ity of numbers in an interval, they would improve their performance in similar
tasks; however, such information would not be sufficient for them to deal with
the ‘no successor’ aspect of density. We hypothesised that students exposed
to the ‘rubber line’ analogy would perform better in items related to the ‘no
successor’ aspect of density.

One could ask why we chose to base this short intervention solely on the
use of texts, rather than creating a richer learning environment, allowing for
interaction among the students, interventions by the teacher, and possibly for
the use of manipulatives or virtual manipulatives. Of course, this would be a
much better choice from an instructional design perspective. However, it would
be very hard to tell which features of the environment could account for the
possible learning gains. On the other hand, Greek students at the secondary
level spend much of their time trying to deal with tasks on the basis of explicit
information provided either by the teacher or by texts; dynamic representations
and manipulatives are, typically, not used in mathematics classrooms at this level.
Thus, this minimal design was close to their everyday classroom experiences.

We constructed three expository texts. All three texts had a common part
referring to the number of numbers in the interval defined by 0 and 1,
which provided the correct answer (‘there are infinitely many numbers between
0 and 1’), differentiating between ‘infinitely many’ and ‘a very large amount’.
This common part also reminded students of the one-to-one correspondence
between the infinitely many points of the line and the real numbers. The first
text continued by evoking the notion of space between 0 and 1 on the number
line and presented several examples of finite as well as infinite decimals lying in
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the interval. This last paragraph was varied in the second text with the insertion
of two figures illustrating the interval and the given examples of intermediate
numbers. Finally, the third text (thereafter, ‘rubber line text’) was identical to
the first and included, in addition, a paragraph introducing the rubber line as a
way to explain how it is possible for infinitely many numbers to lie on the line
segment.

These texts were administered to three classes of eighth-graders (a total of
66 students) and three classes of tenth-graders (a total of 74 students), all in
the same school in the suburbs of Athens. The students were pre-tested with a
multiple-choice questionnaire, which, similar to the questionnaire used in the
Vamvakoussi and Chatzimanolis (2008) study, asked about the number of num-
bers in an interval, with or without the number line, and the infinity of points
on a segment. Then they received a text (students in the same class received the
same type of text). Finally, they were administered the post-test, which consisted
of two parts: the first was identical to the pre-test and the second included five
items, asking students to evaluate a statement about the existence of two succes-
sive numbers or points, and to justify their answer. The procedure lasted about
45 minutes.

No significant performance differences were found between the students
assigned to the different text-type conditions in the pre-test, nor in the first
part of the post-test (within grade). As expected, students under all conditions
improved their performance significantly after the intervention; in fact, there
was a considerable shift from ‘a finite number of intermediates’ to ‘infinitely
many intermediates’ answers after the intervention, under all conditions.

The added value of the ‘rubber-line’ text was manifested in students’
responses to the additional items of the post-test. The students assigned to
this condition outperformed the students in the other two conditions, whereas
no significant difference was found between the other two texts. The rubber-
line students were far more consistent in denying the possibility of any of the
given pairs of numbers being successive; and similarly for points, even given
the possibility of unlimited magnification. Figure 11.1 presents the percent-
age of students who managed to answer correctly all five additional items of
the post-test, per grade. The students who were not exposed to the rubber-
line text are grouped together and the percentages are calculated within each
group (rubber line/ other), per grade. The great majority of the students who
were not exposed to the rubber-line text were found at least once to deem two
numbers or points successively. The reverse holds for the rubber-line students,
even eighth-graders.

The findings of this study showed that the ‘rubber line’ helped students to
deal with the ‘no successor’ aspect of density, which seems to be more diffi-
cult than the ‘infinitely many intermediates’ one. This is an encouraging result,
given that, besides being short, the intervention was rather conservative in
the sense that it was text-based and did not allow for any interaction in the
classroom.
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Figure 11.1 Percentage of students who responded correctly to all five items of the post-test,
in the ‘rubber-line’ condition and in the other two conditions combined.

Concluding remarks

In this chapter I have presented an overview of studies that began with the
investigation of secondary students’ understanding of density with respect to
ordering, and concluded with the attempt to bring this concept within the grasp
of students. Students’ difficulties with the density of numbers revealed the inter-
ference of natural number knowledge and the difficulty with the interpretation
of rational number notation, both of which are closely related to the problem
of conceptual change in the development of the rational number concept (see
also Ni & Zhou, 2005; Smith et al., 2005). Cross-domain mappings could be
instrumental in facilitating students’ attempts to construct meaning for rational
number notation and perceive properties and relations that were not ‘visible’
before – and could not be through the lenses of their current number concept.
Based on historical considerations and also some empirical evidence, we chose
to invest on the cross-domain mapping between number and the line. Unlike
the association between physical quantity and number, proposed by Smith et al.
(2005) and a number of other researchers such as Moss and Case (1999) as
instrumental in younger children’s understanding of the rational numbers, in
this case both domains are abstract, and students’ intuitions of the denseness
of points in a segment had to be built in what Clement (1993) would call an
‘anchoring situation’, namely the ‘rubber line’. This approach produced some
encouraging results.

It should be stressed that an intervention, such as the one described in the
previous section, is not deemed sufficient to bring about conceptual changes in
students’ number concept. Rather, what is argued is that purposeful, long-term
use in instruction of the number line, and in particular of the numbers-points
correspondence, may be valuable – provided that it is accompanied by adequate
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explanations and representations that help students to develop and coordinate
their understandings in the domain of number and geometrical magnitude,
and bridge the gap between students’ initial conceptions and the intended
mathematical meanings.
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Note

1. The aleph numbers are a sequence of numbers used in set theory to denote the
cardinality of infinite sets. Aleph null denotes the cardinality of the set of natural
numbers and is the first in the sequence of the aleph numbers.
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Chapter 12

Use of external representations
in science
Prompting and reinforcing prior knowledge
activation

Sandra A. J. Wetzels , Liesbeth Kester, and
Jeroen J. G. van Merriënboer

Introduction

Prior knowledge activation has strong facilitative effects on learning. De Grave,
Schmidt, and Boshuizen (2001), for example, prompted students to activate
their prior knowledge by means of problem-based discussion. Before studying
a text that described the process of blood pressure regulation, medical stu-
dents collaboratively analysed either a problem of blood pressure regulation or a
problem of vision. When formulating hypotheses regarding a specific problem,
students relied on their prior knowledge to account for it in terms of an underly-
ing process. Students who activated text-relevant prior knowledge about blood
pressure regulation recalled more information from the text than students who
activated text-irrelevant prior knowledge about vision. Prior knowledge activa-
tion functioned as a bridge between prior knowledge and knowledge still to
be acquired. More specifically, problem-based discussion facilitated the integra-
tion of new information into the existing knowledge base, resulting in higher
recall.

This chapter will focus on the use of external representations of low sophis-
tication (i.e., simple pictures and animations, or brief notes with few interrela-
tions) during prior knowledge activation in the science domain. Research on the
use of external representations in prior knowledge activation is still quite lim-
ited and therefore, a theoretical framework that provides more insights into the
effects of external representations on the process of prior knowledge activation
is described. More specifically, it is assumed that external representations can be
used to prompt (i.e., initiate) prior knowledge activation as well as reinforce (i.e.,
facilitate) the activation process. In addition, these prompting and reinforcing
effects of external representations are hypothesised to be mediated by learners’
level of prior knowledge (see Figure 12.1).

The structure of this chapter is as follows. First, the facilitative effects of prior
knowledge activation on learning are described. What is prior knowledge activa-
tion and how does it facilitate learning? While answering this question, one prior
knowledge activation strategy (i.e., mobilisation) is outlined. Second, the use
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Prompting external representations

(e) (b)

(a)

(d)

(c)

(f)

Level of prior knowledge

Self-construct
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Prior knowledge activation

Reinforcing external representations

Learning

Figure 12.1 Theoretical framework illustrating the use of low-sophistication external repre-
sentations in prior knowledge activation.

of external representations in prior knowledge activation is explored, address-
ing the question of how prior knowledge activation can be optimised through
the use of external representations. Here, the different functions of external
representations in prior knowledge activation are outlined. Third, the role of
learners’ level of prior knowledge on the effects of external representations in
prior knowledge activation is explored. Finally, an empirical study is presented
that provides support for specific parts of the theoretical framework.

Prior knowledge activation

In line with De Grave et al. (2001), many studies have provided evidence for a
strong positive impact of prior knowledge activation on learning (see arrow
(a) in Figure 12.1) (e.g., Goetz et al., 1983; Ozgungor & Guthrie, 2004;
Verkoeijen et al., 2005). According to Mayer (1979, p. 134), learning involves
‘relating new, potentially meaningful material to an assimilative context of exist-
ing knowledge’. This implies that it is not sufficient merely to possess prior
knowledge. In order to reach higher learning outcomes, the available knowl-
edge should be used actively during information processing in order to establish
relationships between the already available knowledge and new information
provided to learners (Mayer, 1979).

The accuracy and efficiency with which knowledge can be activated and
used as a framework for integrating new information is influenced by the way
knowledge is represented in memory. Existing knowledge is represented by an
associative network of nodes and links (Kintsch, 1988). The nodes represent
concepts, which are important units of knowledge. A concept is an idea about
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a phenomenon or object (e.g., cat, burglar) that is related to other concepts
(e.g., animal, crime). The relations between different concepts are represented
by the links that connect different nodes. This interconnected pattern of nodes
(i.e., network) enables learners to meaningfully organise knowledge contained
in these connections. If prior knowledge is activated, specific nodes in the net-
work are activated. Because of the links between nodes, activation can easily
spread from a specific node (e.g., heart) to other connected nodes (e.g., blood
flow, love). The more often particular links between nodes are used, the stronger
these links become. As a result of frequent use, learning takes place through
strengthening of connections. In addition, the network provides a framework in
which new information can be integrated, resulting in new links between nodes.
This framework facilitates learning because it offers the opportunity to establish
connections between new information and the existing knowledge contained
in the pattern of nodes (Anderson, 1983). This bridges the gap between the
existing knowledge base and new information that is provided to the learner.

A well-known technique for activating prior knowledge is mobilisation, where
learners are encouraged to bring to mind all knowledge they have in a certain
domain (Peeck, 1982). Machiels-Bongaerts, Schmidt, and Boshuizen (1993)
asked students in two experimental groups to mobilise either names of US
states or names of US presidents. A control group mobilised names of com-
posers. Subsequently, all students studied a list containing the names of 32 US
states and presidents. Time to study the list and individual items on the list were
fixed. The experimental groups showed higher recall scores than the control
group. This higher recall was caused entirely by enhanced recall of items of the
mobilised category (i.e., states or presidents). Especially, items of the mobilised
category that were not explicitly mobilised (e.g., less well-known president
names, such as Coolidge or Polk) benefitted from mobilisation. So, the benefi-
cial effects of mobilisation seemed to spill over to items that were not previously
mobilised. During mobilisation, activation from mobilised items spread to items
that were not retrieved but were nevertheless processed to some extent. Because
of this spreading activation, non-mobilised items of the mobilised category also
benefitted from mobilisation.

In another study, Machiels-Bongaerts, Schmidt, and Boshuizen (1995)
encouraged students to mobilise all knowledge they had about the fishery policy
of the European Union and its consequences. A control group activated prior
knowledge about a neutral topic (i.e., tennis). Subsequently, all students stud-
ied a text about the consequences of the EU fishery policy for a fictitious fishery
village. The text contained information that matched the activated prior knowl-
edge of the experimental group (e.g., a rise in unemployment) and additional,
new information (e.g., an alternative income source) that became important in
light of the activated prior knowledge. The experimental group outperformed
the control group in recall of information from the text. This higher recall was
caused by enhanced recall of information that was explicitly activated and of
the new information. By relating the activated prior knowledge to the new
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information, new links are established which facilitate the integration of this
information into the existing knowledge base.

Until now, researchers have mainly used verbal instructions (e.g., ‘bring to
mind . . .’) to activate learners’ prior knowledge. External representations, such
as pictures, animations, and notes, are rarely used for this purpose. The next
section will explore this type of prior knowledge activation.

The use of external representations in prior knowledge activation

Before exploring the use and effectiveness of external representations in prior
knowledge activation, several dimensions of external representations (i.e., ver-
bal/pictorial, provided/self-constructed) and their effects on learning are
outlined. Then, the different functions of external representations in prior
knowledge activation are explored.

Dimensions of external representations

Verbal and pictorial external representations

Although external representations can come in many variants, there are only two
basic forms: verbal (descriptive) and pictorial (depictive) representations. Ver-
bal representations consist of symbols and are powerful in expressing abstract
knowledge. Pictorial representations consist of icons and have the advantage of
being ‘informationally complete’. Because information can be directly inferred
from them, pictorial representations are more useful for drawing inferences
(Schnotz, 2005). This implies that the processing of pictorial representations
may require less mental effort than the processing of verbal representations
(Cox, 1999; Mayer, 2001). Larkin and Simon (1987) explain this by mak-
ing a distinction between the informational and computational equivalence of
external representations. Two representations are informationally equivalent if
information that can be inferred from one representation can also be inferred
from the other. For example, the manual of a DVD recorder may contain a
text and a sequence of pictures that provide users with equivalent information
on how to program the recorder. Informational equivalence is a precondition
for computational equivalence. Representations are computationally equivalent
if inferences that can be easily and quickly drawn from information given in
one representation can also be easily and quickly drawn from the information
that is explicitly provided in the other. Two representations that are informa-
tionally equivalent may, however, differ in their computational equivalence. For
example, many users may have experienced that it is easier and quicker to use
the pictures when programming the DVD recorder as compared with using the
text. In this case, the pictures are more computationally efficient.

Although pictorial representations are often considered to be more compu-
tationally efficient than verbal representations, this may depend on the type
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of information (e.g., conceptual, spatial) that is contained in the representa-
tion. Pictorial representations that correspond on a one-to-one basis (i.e., are
analogue) to the subject may indeed be more efficient when conveying spatial
and temporal relations. Verbal representations that use symbols to represent the
subject may be more efficient when conveying information about conceptual
relations and logical sequences (Larkin & Simon, 1987; Schnotz, 2005).

Provided and self-constructed external representations

In addition to the verbal–pictorial dimension, external representations can be
provided to learners or they can be self-constructed by the learner. Provided
external representations have to be interpreted by learners (Cox, 1999). If
learning materials are enriched with familiar external representations, this might
facilitate learning because information can be coded both verbally and visually
(Mayer, 2001). However, if learners are provided with a representation they are
unfamiliar with, they might experience cognitive overload as a result of having to
integrate, verbally and visually, this unfamiliar representation. This may enhance
cognitive load which hampers learning. In these situations, it might be more
beneficial for learners to self-construct a representation because learners can use
the type of representation they prefer and are familiar with. De Westelinck and
Valcke (2005) showed that students who were actively engaged in construct-
ing external representations while studying learning materials scored higher on
retention and transfer tests than students who studied the learning materials
with provided external representations they were not familiar with.

Self-constructed external representations reveal learners’ knowledge and the
structure of that knowledge (i.e., its internal representation) by externalising
this knowledge through the use of symbols and objects (Lee & Nelson, 2005).
In addition, they can be used for clarification and elaboration of learners’ own
conceptual understanding. The process of constructing an external represen-
tation and interacting with it may foster learners’ understanding, especially if
the representation has a high level of sophistication (i.e., many interrelations).
Therefore, self-constructing external representations can be an important com-
ponent of learning. This is in line with the active processing assumption (Mayer,
2001) and the focused processing stance (Renkl & Atkinson, 2007), according
to which, actively building external representations might promote organisation
and integration processes that foster the development of mental models. This
implies that constructing external representations may enhance cognitive load,
which is beneficial for learning.

A well-known example of self-constructing external representations is tak-
ing notes. The overall effects of note taking on learning are positive (cf.,
Kiewra, 1985; Kobayashi, 2005). Note-taking research has primarily focused
on learning from taking notes while attending a lecture (e.g., Austin et al.,
2002; Kiewra et al., 1991) or reading a text (e.g., Kobayashi, 2009; Slotte &
Lonka, 1999). Most studies have shown that learners who take notes reach
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higher learning outcomes than learners who do not take notes (e.g., Barnett,
Di Vesta & Rogozinski, 1981). Externally representing information by means
of note taking might support the organisation of information and the establish-
ment of idiosyncratic relations between prior knowledge and the information
provided in the lecture or text. This facilitates the comprehension of a lecture
or text with beneficial effects on learning (Castelló & Monereo, 2005).

Research on the use of external representations for activating prior knowl-
edge in the science domain is rather limited. However, external representations
might serve important functions in the process of prior knowledge activation,
prompting prior knowledge activation and reinforcing the activation process. It
is important to emphasise here that external representations can differ in their
level of sophistication on a continuum from low to high sophistication. Rep-
resentations of low sophistication consist of simple pictures or brief notes with
few interrelations that primarily help to activate possibly relevant knowledge by
offloading memory. High-sophistication external representations are more elab-
orate pictures and notes that support learners to activate their prior knowledge
and construct this knowledge by establishing many interrelations. These repre-
sentations help learners to elaborate on their prior knowledge. In this chapter,
the focus is on low-sophistication external representations for two reasons. First,
external representations that are used to prompt prior knowledge activation
should activate learners’ prior knowledge and not provide information to learn-
ers. Second, low-sophistication external representations can be constructed by
learners regardless of their level of prior knowledge. In contrast, learners need
a considerable amount of prior knowledge to construct a high-sophistication
external representation.

Prompting prior knowledge activation

Low-sophistication external representations could be used to prompt prior
knowledge activation (see arrow (b) in Figure 12.1). Learners could be pro-
vided with an external representation of low sophistication and asked to activate
their prior knowledge about a specific topic using this representation. Learners’
understanding of the organisation and functioning of objects, events or activities
(e.g., the structure of the circulatory system and the functioning of the heart)
is an important part of science learning (Chi et al., 1994). Structural mod-
els are internal, pictorial models that describe how objects, events or activities
are spatially or temporally related to each other. These models support learn-
ers’ understanding of how a particular domain is organised. Causal models are
internal, pictorial models that focus on how objects, events, or activities affect
each other and help to interpret processes, give explanations, and make predic-
tions. In these models, cause and effect relations play an important role which
enables learners to see how a particular domain functions and how changes in
one component are related to changes in other components (Van Merriënboer
& Kirschner, 2007).
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Structural and causal models are important for elaborating and refining
knowledge in the science domain. Because pictures and animations correspond
on a one-to-one basis to the subject they represent and are informationally
complete (Schnotz, 2005), they might be better able to represent these kinds
of models than verbal representations. Therefore, low-sophistication pictorial
representations are expected to be more suitable to prompt prior knowledge
activation. More specifically, pictures may be very useful to illustrate how a
domain is organised in space, whereas animations may be very useful for illus-
trating how changes in one component affect changes in other components.
This would imply that pictures might be most suitable for activating struc-
tural models, and animations for activating causal models. It is important to
emphasise here that only pictorial representations of low sophistication are
considered suitable for prompting prior knowledge activation. Although these
representations contain more information and are thus more sophisticated than
verbal representations, they do not contain any labels or additional explana-
tive text. However, more sophisticated pictorial representations do contain
accompanying text and thus convey more information. This implies that these
representations are more susceptible for deducing information from, which may
interfere with prior knowledge activation.

Reinforcing prior knowledge activation

Low-sophistication external representations might not only prompt prior
knowledge activation, but might also reinforce the activation process. The
reinforcing effect of external representations arises if learners are given an
opportunity to self-construct a low-sophistication representation of their prior
knowledge (see arrow (c) in Figure 12.1). When considering the beneficial
effects of prior knowledge activation on learning, working memory is an impor-
tant factor. Learners can hold about seven elements at a time in working
memory (Baddeley, 1992; Miller, 1956). When required to process elements
simultaneously, the capacity of working memory is even more severely limited;
about two to three elements can be related or manipulated at any given time
in working memory (Sweller, van Merriënboer, & Paas, 1998). If learners acti-
vate their prior knowledge, information is brought from long-term memory
to working memory. As a result of the limited capacity of working memory,
there are limits to the amount of information (i.e., the number of elements)
that can simultaneously be held and processed in working memory (Baddeley,
1992; Miller, 1956). This implies that learners might be overwhelmed by the
activation process, leading them to experience cognitive overload. If learners are
overloaded, there is not enough capacity to activate all elements in the existing
knowledge base, which will hamper the activation process (Van Merriënboer &
Sweller, 2005).

Cognitive overload might be prevented if learners are given an opportunity
to represent their prior knowledge externally by means of taking notes. Note
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taking enables learners to activate many concepts and to relate these concepts to
one another without having to keep all the concepts active in working memory.
This will facilitate the activation process by reducing the load imposed on work-
ing memory during prior knowledge activation (see arrow (d) in Figure 12.1).
In addition, learners might be enabled to easily retrieve and hold these con-
cepts in working memory when confronted with new information. If relations
are built between the concepts activated during prior knowledge activation
and new information provided to the learner, new links between nodes can be
established. This facilitates the integration of new information into the existing
knowledge base, with beneficial effects on learning.

Although externally representing prior knowledge by means of taking notes
is primarily expected to have a reinforcing effect on the activation process,
it may also serve as a prompt for additional prior knowledge activation. By
taking notes, new ideas might be triggered in long-term memory because of
the spreading of activation to interconnected nodes in the knowledge base
(Anderson, 1983). If these ideas are subsequently written down, this may again
reinforce the activation process. This implies that the prompting and rein-
forcing effects of low-sophistication external representations might be closely
intertwined.

External representations, prior knowledge activation, and level of
prior knowledge

In prior knowledge activation, low-sophistication external representations
might serve as a prompt to activate prior knowledge and reinforce the activation
process. However, the effects of external representations in prior knowledge
activation might be mediated by learners’ level of prior domain knowledge. If
learners’ prior domain knowledge is limited, low-sophistication external rep-
resentations may be less effective in prompting correct and relevant prior
knowledge than if learners possess more prior knowledge or more elaborate
prior knowledge (see arrow (e) in Figure 12.1). Although pictorial representa-
tions might be more suitable to prompt prior knowledge activation than verbal
representations for all learners, the effectiveness of pictures and animations as
prompts might also depend on learners’ level of prior knowledge. Pictures may
be very useful for activating structural models, and animations for activating
causal models. Before learners are able to build causal models, they need to
possess some knowledge about how the domain is organised. Learners with rela-
tively limited prior knowledge might possess knowledge about how the domain
is structured but do not yet know how changes in one component result in
changes in other components. For example, they know that the heart consists
of atria, ventricles and valves, but they do not yet know that if the ventricles con-
tract, the valves between atria and ventricles close. Animations might therefore
be less beneficial for learners with limited prior knowledge, because such learn-
ers do not yet possess the knowledge that is triggered by the animations. For
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learners with high levels of prior knowledge who possess sophisticated structural
and causal models, animations might be more effective than pictures, because
they prompt both structural and causal knowledge.

The reinforcing effect of low-sophistication external representations may also
be mediated by learners’ level of prior knowledge (see arrow (f) in Figure 12.1).
If learners have limited prior domain knowledge, it may be more difficult
to self-construct a low-sophistication external representation which, in turn,
might influence the beneficial offloading effect of note taking. For these learn-
ers, prior knowledge is not meaningfully organised because their knowledge is
not yet represented in an interconnected pattern of nodes (Anderson, 1983).
This makes it difficult for them to build an external representation by taking
notes, because they cannot distinguish relevant from irrelevant concepts or draw
relations between concepts (Anderson, 1977). Therefore, self-constructing
low-sophistication external representations is not expected to have beneficial
offloading effects on working memory for learners who have only limited prior
domain knowledge.

In sum, as the framework presented in Figure 12.1 illustrates, low-
sophistication external representations are assumed to play different roles in
prior knowledge activation. They can be used to prompt prior knowledge
activation and they can be used to reinforce the activation process. If low-
sophistication external representations are used to prompt prior knowledge
activation, the representation is provided to learners and preferably pictor-
ial, because these representations may be more suitable to represent and
activate structural and causal models that are important for learning in the sci-
ence domain. Low-sophistication external representations are also assumed to
reinforce the activation process. If learners self-construct a low-sophistication
external representation of their prior knowledge by means of taking notes, the
activation process is facilitated by reducing the load imposed on working mem-
ory. In addition, the effects of low-sophistication external representations are
expected to be mediated by learners’ level of prior knowledge. The prompting
and reinforcing effects of external representations in prior knowledge activa-
tion are assumed to be stronger for learners who already possess sufficient prior
domain knowledge.

A study by Wetzels, Kester, and van Merriënboer (2009) provided support
for the mechanism of reinforcing prior knowledge activation (see the bottom
part of Figure 12.1). This study investigated the effects of note taking on learn-
ing during prior knowledge activation, depending on learners’ level of prior
knowledge. High school students completed a prior knowledge test about the
circulatory system (i.e., the structure of the circulatory system and the function-
ing of the heart). Students were assigned to a low prior knowledge or a high
prior knowledge group based on the median score of the prior knowledge test.

About one week later, the experimental session took place. Before working
on tasks about the circulatory system, students activated their prior knowledge
prompted by two prior knowledge activation pictures that represented (a) the
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structure of the circulatory system and (b) the functioning of the heart. Because
the same prompts were used for all students, the prompting effect was not inves-
tigated in this study. First, students were provided with the picture representing
the structure of the circulatory system and encouraged to bring to mind (i.e.,
mobilise) all knowledge they had about how blood flows through the body.
Think-aloud protocols were recorded to check what knowledge was being acti-
vated and whether this knowledge was correct. Subsequently, students worked
on learning tasks about this topic. Students were, for example, given the follow-
ing problem that had to be solved: ‘A child cuts itself in its finger with a piece
of glass resulting in bacteria entering the blood stream. What way do the bacteria
travel through the circulatory system before they reach the kidneys?’

After activating prior knowledge about the structure of the circulatory system
and working on tasks about this topic, students activated their prior knowledge
about the functioning of the heart. The picture illustrated in Figure 12.2 was
used to activate students’ causal model of heart functioning. Students were pro-
vided with this picture and encouraged to bring to mind all knowledge they had
about the electrical system and the functioning of the heart. Again, think-aloud
protocols were recorded. Subsequently, students worked on learning tasks about
this more refined aspect of the circulatory system. An example of a learning task
in this context was: ‘How does the electrical system of the heart work?’ Half of
the participants were allowed to represent their prior knowledge externally by
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Figure 12.2 Picture used to activate prior knowledge about the functioning of the heart.
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means of taking notes while activating their prior knowledge, whereas the other
half were not allowed to take notes.

Finally, students worked on a number of transfer tasks concerning the struc-
ture of the circulatory system and the functioning of the heart. These tasks
provided an indication of how well students understood what they had learned
during the learning phase. More specifically, transfer tasks assessed whether stu-
dents were able to transfer the principles (e.g., blood flows from the atria to
the ventricles) they had learned while working on the learning tasks. Students
had to apply these principles both in familiar situations (e.g., blood flow in a
healthy individual) as well as in unfamiliar situations (e.g., blood flow in a child
with a congenital heart defect). Students who took notes while activating their
prior knowledge were not allowed to review or elaborate on their notes while
working on the learning and transfer tasks. Students were also not allowed to
take notes while working on the tasks.

Learning effectiveness and efficiency were measured by means of perfor-
mance, mental effort, and mental efficiency. Mental effort represented the
amount of effort students had to invest to solve a task as rated on a subjective
rating scale. Mental efficiency was a combination of transfer test performance
and invested mental effort during transfer. A high efficiency indicated a trans-
fer test performance that was higher than expected based on the amount of
invested mental effort during the transfer phase, whereas a low efficiency indi-
cated a transfer test performance that was lower than expected based on invested
mental effort (Paas & van Merriënboer, 1993). So, mental efficiency is a learn-
ing measure that provides information that goes beyond information provided
by performance and mental effort measures alone.

Results showed that the efficiency of note taking (i.e., the reinforcing effect of
external representations) during prior knowledge activation was influenced by
the amount of prior domain knowledge learners already possessed. For learners
with higher levels of prior knowledge about the circulatory system, note tak-
ing lowered mental effort while working on transfer tasks and increased mental
efficiency during transfer. For learners with lower levels of prior knowledge,
note taking yielded the opposite effect on mental effort and efficiency during
the transfer phase. Figure 12.3 illustrates the interaction effect between level of
prior knowledge and note taking on mental effort (A) and mental efficiency (B)
during the transfer phase.

By representing their prior knowledge externally, learners with higher levels
of prior domain knowledge are enabled to activate concepts and relate these
concepts to one another without having to keep them active in working mem-
ory. The resulting low-sophistication external representation reduces the load
imposed on working memory, while activating prior knowledge. This offloading
effect of taking notes facilitates the activation process which enhances learning
for high prior knowledge learners. However, if prior knowledge is very limited,
learners might not be able to distinguish relevant from irrelevant concepts or
draw relations between activated concepts. This makes it difficult for them to
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Figure 12.3 Interaction effect between level of prior knowledge and note taking for mental
effort (A) and mental efficiency (B) during transfer.

build a low-sophistication external representation of their prior knowledge by
taking notes. Therefore, note taking might not have had any offloading effects
on working memory for low prior knowledge learners.

Surprisingly, high prior knowledge learners did not construct a more sophisti-
cated external representation of their prior knowledge than low prior knowledge
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learners. The number of (correct) relations described in the notes was very low,
regardless of learners’ level of prior knowledge. This is consistent with Kiewra’s
(1985) observation that relational note taking is difficult for learners.

There was some support for the assumption that the prompting effect of
external representations is mediated by learners’ level of prior knowledge.
Learners with higher levels of prior knowledge generated more concepts, more
relations between activated concepts, and more correct relations in the think-
aloud protocols than learners with lower levels of prior knowledge. High prior
knowledge learners also generated more concepts in their notes compared with
low prior knowledge learners. These results seem to suggest that pictorial rep-
resentations prompt more elaborate and more organised knowledge in learners
with more prior domain knowledge. In sum, both the prompting and the rein-
forcing effects of external representations seem to be influenced by how much
prior domain knowledge learners already possess.

General discussion

In this chapter, a theoretical framework was outlined that described the effects
of low-sophistication external representations during prior knowledge activation
in the science domain. First, it was suggested that low-sophistication external
representations can be used to prompt prior knowledge activation. External
representations that are used as prompts to activate prior knowledge can be
provided to learners. In addition, these representations are preferably pictorial;
pictorial representations are assumed to be more suitable for representing and
prompting structural and causal models that are important for science learning.
Second, low-sophistication external representations were considered to rein-
force the activation process. By self-constructing an external representation of
learners’ prior knowledge, the load imposed on working memory during prior
knowledge activation is reduced. This was expected to facilitate the activation
process and consequently learning. Third, it was outlined that the prompting
and reinforcing effects of external representations might be mediated by learn-
ers’ level of prior knowledge. More specifically, these effects were assumed to
be more pronounced for learners with relatively higher levels of prior domain
knowledge. Finally, the mechanism for reinforcing prior knowledge activation
and the influence of learners’ prior knowledge on the reinforcing effect of
low-sophistication external representations was supported by the results of an
empirical study.

The theoretical framework described in this chapter is based on prior knowl-
edge activation in the science domain in which the activation of structural and
causal models are important for learning. This implies that the framework, and
especially the prompting part of it, might be less applicable for more conceptu-
ally oriented domains in which the organisation and the functioning of objects,
events, or activities are not essential for learning. Another limitation of the
framework is that it does not consider any other learner characteristics than
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prior knowledge. For example, learners with different levels of prior knowledge
may also differ in intelligence, motivation, or interest, which may influence the
activation process and learning.

Despite these limitations, the framework provides interesting insights into
the various variables that may be involved in prior knowledge activation. In
addition, the theoretical framework broadens the note-taking research. The tra-
ditional note-taking research focused on the encoding and the external storage
effect of note taking (Di Vesta & Gray, 1972). The encoding function of note
taking signifies that the process of taking notes while attending a lecture or
reading a text is beneficial for learning. So, the encoding effect represents the
effects of note taking during learning. The external storage function signifies
that having notes available for review after attending a lecture or reading a text
is beneficial for learning. So, the external storage function represents the effects
of note taking after learning. However, in this chapter, the effects of note taking
before learning are investigated. Learners take notes while activating their prior
knowledge before they are provided with learning materials.

In this chapter, it is argued that self-constructing external representations
by means of note taking externalises the internal representations of knowl-
edge. Note taking enables learners to represent their prior knowledge externally,
which reduces the load imposed on working memory. However, for learners
with relatively high levels of prior knowledge, note taking may result in an active,
constructive process. They build a high-sophistication external representation
that not only represents prior knowledge externally, but also reconstructs this
knowledge. If this happens, cognitive load may increase as a result of effortful
learning.

Future research should focus on several aspects of the framework. The first
line of research could focus on the prompting effect of external representations
and how this is mediated by learners’ level of prior knowledge. It would be
interesting to explore whether, and under which circumstances, pictures and
animations are more efficient in prompting prior knowledge activation. Are
pictures, indeed, more suitable for activating structural models, and anima-
tions more suitable for activating causal models? And how is the effectiveness
of pictures and animations influenced by learners’ prior knowledge? When
investigating the prompting effect of pictures and animations, the possibil-
ity that learners learn from an external representation should be considered.
Even if low-sophistication pictorial representations are used to prompt prior
knowledge activation, learners may deduce information from it. This implies
that the prompt might provide learners with new knowledge, which may
result in learning even though this probably will not exceed the recogni-
tion level. Therefore, it should be investigated how genuine prior knowledge
activation can be discerned from information that is deduced from pictures and
animations.

A second line of research is related to self-constructing external rep-
resentations by taking notes. More specifically, self-constructing external
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representations might not only have reinforcing effects but also serve as a
prompt for prior knowledge activation. Prior knowledge might initially be
prompted by the provided pictorial representation, with further prompts result-
ing both from the provided pictorial representation and the self-constructed
representation. The extent to which self-constructing an external representa-
tion may serve as a prompt for further prior knowledge activation may again
depend on learners’ level of prior knowledge.

Although this seems a very plausible and interesting idea, it might be quite
difficult to disentangle the prompting effect resulting from the provided pic-
torial representation from the prompt that results from the self-constructed
representation. This implies that it is also important to explore if and how these
prompting effects could be differentiated.

A third line of research might further investigate the influence of learners’
level of prior knowledge on the reinforcing effect of self-constructed exter-
nal representations. The study of Wetzels et al. (2009) showed that externally
representing prior knowledge by means of taking notes was more beneficial
for learners with sufficient prior knowledge. However, all participants in this
study were high school students. So, all participants might have been on the
low end of the expertise continuum. The question is how increasing and
stronger differentiated levels of prior knowledge affect the reinforcing effect
of external representations. Does this effect get stronger for learners who are
on the higher end of the expertise continuum (e.g., medical students)? Or
perhaps self-constructing external representations has no beneficial offloading
effects on working memory for learners with higher levels of prior knowl-
edge because these learners may easily hold a representation of their prior
knowledge in working memory without overloading it. This might imply that
these learners will not benefit from self-constructing external representations
and that the reinforcing effect is not as strong as for learners with inter-
mediate levels of prior knowledge. These issues could be tackled in future
research.

A practical implication that follows from the presented framework is related
to teaching practices. Encouraging learners to represent their prior knowledge
externally might facilitate the activation process and learning, but only for learn-
ers who already have sufficient prior domain knowledge. For learners with
too little prior knowledge, self-constructing external representations might not
have any beneficial offloading effects on working memory. Therefore, teachers
should take their students’ level of prior knowledge into account when asking
them to self-construct a low-sophistication external representation of their prior
knowledge.

In sum, the presented framework provides more insights into how low-
sophistication external representations can be used to support the process of
prior knowledge activation and how this is influenced by learners’ level of prior
knowledge. However, future research is necessary to elaborate and refine the
framework further.
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Chapter 13

Visualisation of argumentation
as shared activity

Gijsbert Erkens, Jeroen Janssen, and Paul A. Kirschner

Introduction

Computer Supported Collaborative Learning (CSCL) systems are assumed
to have the potential to enhance the effectiveness of peer learning interac-
tions (Andriessen et al., 1996; Dillenbourg, 1999). Groupware programmes
are used for CSCL as they generally support and integrate three functions:
task support, communicative support, and group support. Computer tools in
groupware programmes are either task-oriented (information sharing, cooper-
ation and coordination), communication-oriented (interpersonal exchange) or
group-oriented (Andriessen, 2003). They are meant to support collaborative
group work by sharing tools and resources between group members, by sup-
porting group dynamics, and by giving communication opportunities within
the group and to the external world.

Shared argumentation maps are task-related tools that are often used in
CSCL. They are constructed by the collaborating students and are designed to
be helpful in completing the inquiry task at hand (e.g., CSILE: Scardamalia,
Bereiter & Lamon, 1994; Belvédère: Suthers et al., 1995). The maps visu-
ally represent the argumentative structures the students agree upon. The aim
of this chapter is to investigate the effects of argumentative maps or dia-
grams on students working on collaborative writing tasks. Often, inconsistent
or disappointing results are found in the way argumentative diagrams support
reasoning and discussion in CSCL (Van Drie et al., 2005). We will present
two research projects that investigated the effects of two types of argumen-
tative diagrams for supporting collaborative writing and inquiry. In both the
COSAR (Computer Support for Collaborative and Argumentative Writing) and
the CRoCiCL (Computerized Representation of Coordination in Collaborative
Learning) projects, argumentative diagrams were used to support collaboration
and argumentation on inquiry tasks. In the COSAR project the effectiveness
of the argumentative diagram for the quality of the students’ group products
was disappointing. For the CRoCiCL project we redesigned the representa-
tional features of the argumentative diagram. Although the purpose of the two
tools was similar, the effectiveness of the diagram for stimulating the quality
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of the students’ group products improved. For the explanation of these differ-
ences in effectiveness, we offer some ideas but no definitive answers, as the two
projects differed in more aspects and the two tools were not compared directly.
However, we hypothesise that the representational guidance (Suthers, 2003;
Suthers & Hundhausen, 2003) the two tools offer to collaborating students
differs substantially. The differences in guidance may have resulted in differ-
ences in the effectiveness of the argumentative tools on the quality of students’
group products.

Representational guidance of two argumentative maps

Representational guidance refers to the fact that different representations
are capable of expressing different information, making different information
salient or stimulating different cognitive processes than others (Suthers &
Hundhausen, 2003). Several studies investigating the effects of different argu-
mentation tools showed that representational guidance can influence students’
behaviour and learning process (e.g., Schwarz et al., 2003; Suthers, 2001;
Van Amelsvoort, Andriessen & Kanselaar, 2007). Van Bruggen, Boshuizen and
Kirschner (2003) distinguish five characteristics of representation tools that
affect representational guidance: ontology (i.e., the type of representing ele-
ments), perspective (i.e., the view on the subject matter the representation
allows), specificity (i.e., the categorical choice the representation forces, see also
Suthers, 2001), precision (i.e., the accuracy of representation) and modality
(i.e., form of expression: graph, text, list, matrix etc.).

In the COSAR project, we examined the effects of the Diagram, a tool
used for constructing argumentation maps (see Figure 13.1). The Diagram is
a shared tool for generating, organising and relating arguments in a graph-
ical knowledge structure comparable to Belvédère (Suthers & Hundhausen,
2003; Suthers et al., 1995). The tool was conceptualised to the students as
a graphical summary of the arguments in an essay. Students were instructed
that the information contained in the diagram had to faithfully represent the
information in the final version of their essay. This requirement was meant
to help students notice inconsistencies, gaps, and other imperfections in their
texts, and encourage them to review and revise. In the Diagram, several types
of text boxes can be used: information (‘informatie’), position (‘standpunt’),
argument pro (‘voorargument’), support (‘onderbouwing’), argument contra
(‘tegenargument’), refutation (‘weerlegging’), and conclusion (‘conclusie’).

In the CRoCiCL project, we investigated the effects of the Graphical Debate
tool (GD tool, see Figure 13.2). In this project, students were required to
co-construct a representation of a historical debate. Comparable to the COSAR
project, this activity precedes a writing task where students have to co-author
an essay. The GD tool was designed after our experiences with the Diagram in
the COSAR project.



Figure 13.1 The Diagram and outline in the TC3 programme (translated from Dutch).

Figure 13.2 Screenshot of the graphical debate-tool (translated from Dutch).
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The boxes labelled Martyrs and Propaganda represent both positions of the
debate. While working with the GD tool, students can add arguments to either
of the positions. These arguments can be found in the given sources. The
sources also contain information that supports or refutes the arguments stu-
dents add to the tool. Elements that represent supporting information have a
white background, while elements that represent refuting information have a
grey background.

The GD tool visualises how well positions are supported by arguments and
supporting information. Each time an argument or a supporting piece of evi-
dence is added to a position, it moves closer to the central flag. Conversely,
when a refutation is added, the position moves away from the flag. Thus, when
a position is located closer to the flag, it is better supported by arguments: the
argumentation is more strongly in favour of the position. The embedded repre-
sentational guidance of the GD tool may help students draw a conclusion about
the debate and thus may contribute to computational offloading (Ainsworth,
2006). The GD tool also visualises students’ progress through the problem
(Cox, 1999). For example, the boldness of the lines around the position and
argument boxes serves as an indication for their elaborateness and complexity.
Finally, in the GD tool students have the option to rate the quality of argu-
ments, supports, and refutations. Students can express this by giving ratings to
arguments, positions, and refutations (indicated by the star in the correspond-
ing boxes). A rating influences the distance of the position from the flag. When
a rating is given to an argument, support or refutation, its corresponding posi-
tion moves closer to or away from the flag. The rating functionality of the GD
tool stimulates students to think about and discuss the importance of arguments
and may help them to see which arguments are more important than others.

Table 13.1 contains a comparison between the Diagram used in the COSAR
project and the GD tool used in the CRoCiCL project. From this Table impor-
tant differences in the representational guidance offered by both tools become
apparent. The most important differences concern the perspective, specificity
and precision of both tools. The Diagram offers a perspective on argumenta-
tion comparable to a concept map: students can construct a map containing
their own arguments and arguments found in the sources. The GD tool offers
a battlefield perspective on argumentation: arguments advance or retract based
on how well they are supported. It can also be argued that the GD tool gives
more specific guidance than the Diagram does, because it gives feedback about
the strength of argumentation and because it draws attention to the relative
weight of arguments. On the other hand, it can be argued that the specificity
of the Diagram is greater because students can use a larger number of different
elements to construct their argumentation map.

It can be hypothesised that the differences in representational guidance
offered by the Diagram and the GD tool will affect students’ collaborative pro-
cess (Suthers, 2006; Van Drie et al., 2005). In the remainder of this chapter
we will describe two studies that – separately – investigated the effects of the
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Table 13.1 Features of the argumentation maps compared between the two studies.

Features of the
argumentation map

COSAR-project: Diagram CRoCiCL-project: Graphical
Debate tool

• Positioning of elements Free – anywhere on screen Constrained by tool
• Guidance – ontology Elements of an

argumentation (position,
argument pro, argument
contra, support, refutation,
conclusion) and relations
between them

Elements of a debate
(position, argument,
support, refutation)

• Guidance – perspective Argumentation as concept
map: Construction of own
arguments and arguments
found in sources

Argumentation as battle
field: Reconstructing a
debate from arguments
found in sources

• Guidance – specificity No feedback about strength
of argumentation

Feedback about strength of
argumentation, attention for
weight of arguments

• Guidance – precision Larger number of elements Smaller number of elements
• Guidance – modality Graphical and textual Graphical and textual

Diagram and GD tool. Although both studies were similar in certain aspects,
other features of the studies differed (see Table 13.2). In spite of these differ-
ences, we offer tentative suggestions in the general discussion for why the effects
of Diagram and GD tool differed.

The COSAR project

The COSAR project investigated the effects of using argumentative diagrams for
argument generation and organisation, compared with outlining tools for argu-
ment linearisation in collaborative writing of source-based argumentative texts.
In argumentative writing (in contrast to narrative writing) the generation and
organisation of arguments and ideas and the linearisation of the collected argu-
ments in a linear text are the biggest problems for novice writers (Andriessen
et al., 1996). A Diagram tool and an Outline tool were developed to support
these specific writing processes.

A groupware environment called TC3 (Text Composer, Computer sup-
ported & Collaborative) was developed with which pairs of students collab-
oratively write argumentative essays (Erkens et al., 2005). This environment
combines a shared word processor, a chat facility, and access to a private notepad
and online information sources. Each partner works at his/her own computer,
and wherever possible partners were assigned to different classrooms. The basic
TC3 environment, shown in Figure 13.3, contains four main windows, of which
the upper two windows are private and the lower two are shared:
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– INFORMATION (upper right window): This private window contains tabs
for the assignment (‘i’), sources (‘bron’) and TC3 operating instructions.
Sources are divided evenly between students. Each partner has three or five
different sources plus one – fairly factual – common source.

– NOTES (upper left window, ‘AANTEKENINGEN’): A private notepad
where students can make non-shared notes.

– CHAT (lower left, three small windows): The student adds his/her chat mes-
sage in the bottom box. Every letter typed is immediately sent to the partner
via the network, so that both boxes are WYSIWIS: What You See Is What
I See. The middle box shows the incoming messages from the partner. The
scrollable upper chat box contains the discussion history.

– SHARED TEXT (lower right window, ‘GEMEENSCHAPPELIJKE
TEKST’): A simple word processor (also WYSIWIS) in which the shared text
is written while taking turns.

In addition, two representational tools and a supporting facility were developed
for the experimental conditions: the Diagram (described above), the Outline,
and the Advisor. The Outline (see Figure 13.1) is a shared tool for generating
and organising information units as an outline of consecutive arguments in the
text. This tool was conceptualised to the students as producing a meaningful
outline of the paper, and as is the case for the Diagram, the participants were

Table 13.2 Comparison of the features of the COSAR- and CRoCiCL-study.

Features of the study COSAR-study: Diagram CRoCiCL-study: Graphical
Debate tool

• Assignment to groups Random Random
• Group size Dyads Mostly groups of three
• Task Writing task based on

sources
Writing task based on
sources

• Duration 4–6 lessons 8 lessons
• Subject Humanities: Social studies Humanities: History
• Control condition(s) Basic environment

augmented with Outline
and/or Advisor or basic
environment only

Basic environment
augmented with Textual
Debate-tool

• Dependent variables Quality of written texts,
collaborative process
focused on task-related and
meta-cognitive activities

Quality of written texts,
collaborative process
focused on task-related,
meta-cognitive, social, and
meta-social activities, quality
of representation, post-test
performance

• Control variables Pre-test of writing and
argumentation skills

Pre-test on subject matter
knowledge
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Figure 13.3 The Interface of the basic TC3-environment (translated from Dutch).

required to have the information in the Outline faithfully represent the infor-
mation in the final text. The Outline tool was designed to support planning and
organisation of the linear structure of the texts. In addition, the Outline tool
has the pedagogic function of making the user aware of characteristics of good
textual structure, thus allowing the user to learn to write better structured texts.
The Outline has a maximum of four automatically indented, numbered levels.
Both planning windows are WYSIWIS.

The Advisor is an extra help facility that provides advice on how to use the
Diagram and/or Outline before and during task fulfilment. The Advisor consists
of a tab sheet added to the information window, with tips and instructions for
optimum use of the representational tools: the Diagram or the Outline.

Method

Design

The experiment was executed in two phases. In the first year, a control group
(39 dyads) fulfilled the collaborative writing task in the basic TC3 environment
without Diagram, Outline, or Advisor. In the second year, six experimental
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Table 13.3 Experimental design.

Abbreviation Condition Tools & facilities No. dyads Year

C Control Basic TC3 39 1
D Diagram Basic TC3 + Diagram 17 2
DA Diagram Advisor Basic TC3 + Diagram +

Advisor
26 2

DO Diagram Outline Basic TC3 + Diagram +
Outline

23 2

DOA Diagram Outline Advisor Basic TC3 + Diagram +
Outline + Advisor

11 2

O Outline Basic TC3 + Outline 18 2
OA Outline Advisor Basic TC3 + Outline +

Advisor
11 2

groups (106 dyads in total) fulfilled the same task in the basic TC3 environ-
ment in which the planning tools and/or advising facility added were varied
(see Table 13.3).

To control for school effects, classes from different schools were assigned to
each condition. To control for differences in writing and argumentation skills,
two pre-tests were administered individually before students worked on collab-
orative writing tasks. No systematic differences between students from different
school classes were found in writing or argumentative competencies.

Participants

Participants were 290 students, aged 16–18, from six secondary schools in the
Netherlands. The assignment was completed during four to six lessons. The
analysed sample included 151 girls and 139 boys. All students from a class
were randomly assigned to pairs by the experimenter on the basis of the list
of names provided by the teacher. As the writing task for the students was part
of the school curriculum (the essays were graded), it was not possible to strat-
ify the group formation on argumentative competence. Mixed gender dyads
comprised 58 pairs of the total sample; 46 dyads were all female and 41 were
all male.

Task

The collaborative writing task was to write an argumentative essay of 600–1,000
words in Dutch on cloning or organ donation. The assignment was to convince
the Minister of Health, Welfare, and Sport of the position the students chose to
defend. The arguments for or against the position had to be based upon facts
and discussions about the issue presented in external information sources. The
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sources were taken from the Internet sites of Dutch newspapers. Each student
had access to one common source and half of the remaining sources. By dividing
the sources between the students, they were stimulated to discuss the relevance
of the information for their common text. In all dyads, partners were seated
in separate computer rooms to encourage them to only communicate through
TC3. The students received grades for their texts from their teachers as part of
their normal school work. These grades were separate from the scoring of the
essays by two of the experimenters.

Analyses

Each of the 145 essays was coded on several dimensions. Before coding, the
experimenters manually divided the texts into segments, largely based on the
existing paragraph structure. The texts were scored on four variables on a
scale of 1–10:

– Textual structure: formally defined by introduction, body, and conclusion;
– Segment argumentation: argumentative quality of the paragraphs;
– Overall argumentation: quality of the main line of argumentation in the text,

and
– Audience focus: presentation towards the reader and level of formality of the

text.

The interrater reliability for these measures was very high, with correlations
between two independent raters for the four text scores on five texts ranging
from .71 to 1.00 (p < .01).

Results

Quality of essays

First, the tool conditions in relation to the quality of the essays will be discussed.
Table 13.4 shows the means and standard deviations of quality scores of the
argumentative texts for all conditions separately and for the sample as a whole.

The table shows that the scores were quite similar for all groups. Independent
samples t-tests showed no differences between the two topics – organ donation
and cloning – and there were no significant gender differences between female,
male or mixed groups. The mean quality of the texts was 6.2 on a scale of 1–10.
We only found a few differences in a multiple comparison analysis (Bonferroni)
on the conditions: the Diagram-Advisor group had significantly lower scores on
textual structure of the essays in comparison with the Control, the Diagram and
the Diagram-Outline-Advisor conditions (mean differences: −.73, −.68 and
−1.12, all p < .05) and had a significantly lower score on segment argumenta-
tion in comparison with the Control condition (mean difference: .70, p < .05).
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Table 13.4 Descriptive statistics for text quality per condition.

Condition n Textual
structure

Segment
argumentation

Overall
argumentation

Audience focus

Mean SD Mean SD Mean SD Mean SD

Control 39 6.76 1.13 6.19 1.36 5.75 2.37 6.20 2.10
Diagram 17 6.71 .97 5.63 1.34 6.81 2.29 5.81 1.84

Diagram +
Advisor

26 6.03 .82 5.49 1.34 6.41 2.07 6.01 1.64

Diagram +
Outline

23 6.44 .83 5.64 1.32 6.16 2.25 6.20 1.60

Diagram +
Outline+
Advisor

11 7.15 .88 5.42 .84 5.76 1.69 5.57 1.00

Outline 18 6.59 1.00 5.90 1.06 5.74 1.80 6.04 1.95
Outline +

Advisor
11 6.49 .83 6.34 .94 5.76 1.52 6.59 1.90

Total 145 6.56 1.00 5.83 1.28 6.06 2.13 6.08 1.81

In general, we can say that the representation tool conditions in themselves did
not have a positive effect on the quality of the resulting texts.

However, the availability of a tool is no guarantee of adequate use. Com-
paring the frequency of use of the Diagram with the frequency of use of the
Outline, the Outline tool was more successful. Use of the Outline tool was
weakly positively related with text quality (r = .13, p < .05). The use of the
Diagram was even negatively correlated with text quality (r = −.25, p < .01),
except for the last phase of writing (r = .17, p > .05). These relations were even
stronger when the use of the Advisor was correlated to text quality (Diagram-
Advisor, r = −.21, p < .05 and Outline-Advisor, r = .44, p < .01). Correlation
analyses showed that the frequency of using the Diagram to specify supports
and refutations of positions tended to be weakly positively related to segment
argumentation (r = .21, p < .05 and r = .13, p < .07). Furthermore, the more
the Diagram was used for specifying arguments from the sources instead of
self-generated arguments, the less the overall argumentative quality of the texts
proved to be (r =−.21, p < .05), ending up in an enumeration of arguments in
the text. As for the Outline tool, a positive effect was found of the proper use of
the Outline (especially in outline-text congruence) and its Advisor on segment
argumentation in the resulting argumentative text (r = .26, p < .01 and r = .23,
p < .01).

Contrary to these findings, however, an evaluation survey of students and
teachers showed that both groups evaluated both tools, but especially the
Diagram, as useful and helpful.
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Online collaboration

All utterances in the chat discussions were coded with a coding system consist-
ing of three main levels: metacognitive (planning and monitoring), cognitive
(executive) and non-task or social. In this Task Act coding system 34 different
categories were distinguished in total. Reliability analyses showed Cohen’s κ’s
of .57 and 64. Both Diagram and Outline affected the collaborative chat dis-
cussion of the students in a substantial way: 70 per cent of the utterances versus
only 47 per cent in the control condition were on a metacognitive level. That
is, both the Diagram and Outline increased by how often students deliberately
planned and monitored the task completion.

In order to find an explanation of these findings, a qualitative analysis of the
discussion of the students while using the tools was undertaken. Analyses of the
chat protocols showed that the Diagram often functioned as a visual represen-
tation for arguments mentioned, but not as a basis for discussion or as a tool
for idea generation. Thus, the Diagram only functioned as a visual summary,
and not as a basis for discussion of the argumentative structure or as a tool for
generating and organising new ideas and arguments. When a diagram stimulates
and reflects the discussion itself, it can be a valuable starting point for writing
the text, and can benefit the textual structure. A more guiding function of the
representation tool might encourage the students to use it as it was intended,
and thus lead to different results.

Conclusions for COSAR project

In the COSAR project, a complex relationship between the use of representa-
tion tools, like the Diagram and Outline, and the argumentative quality of the
texts was found. Inconsistent, small and even negative relations existed between
using the argumentative Diagram and the final argumentative text. Positive rela-
tions, although small, were found between the use of the Outline linearisation
tool and text quality. However, both representation tools seemed to stimulate
discussion and coordination on a planning level in the collaborative chat of
the students. Furthermore, both students and teachers evaluated the Diagram
tool as very valuable and useful (more useful than the ‘more effective’ Outline
tool). The question therefore remains, why the argumentative Diagram did not
help students write better-grounded texts. We assumed that the tool offered
too little representational guidance to students. The free, unrestricted manner
in which the arguments can be displayed in the Diagram by the students, pre-
vents them from getting a systematic insight in the argumentative structure and
organisation of the debate they study. Furthermore, the loose graphical struc-
ture of an argumentative map gives no indication of the relative strength of the
positions depicted. In the CRoCiCL project, we tried to develop an argumenta-
tive diagram tool that offers more representational guidance with regard to the
argumentative structure of the debate and the argumentative strength of the
positions.
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The CRoCiCL project

The aim of CRoCiCL was to examine how the representational guidance offered
by an argumentative diagramming tool influenced the collaborative process. To
answer this question, the Graphical Debate tool (described above) was com-
pared with a Textual Debate tool (TD tool, see Figure 13.4). In this version
of the tool, students also add arguments to the corresponding positions. No
distinction is made, however, between arguments, supports and refutations.
Instead, information is added to the TD tool in a list-wise manner (cf., Erkens
et al., 2005; Van Drie et al., 2005). On the other hand, this makes the TD tool
somewhat comparable to the Outline tool from the COSAR project, because
both tools stimulate students to organise arguments in a list. However, the TD
tool also differs from the Outline tool because it uses – like the GD tool –
given positions. The process of co-constructing representations (i.e., reading
and processing historical sources, extracting relevant information, placing this
information in the appropriate position in the representation) is almost the same
for both versions of the Debate tool.

The main difference between the GD tool and the TD tool concerns
the representational guidance they offer (Suthers, 2001, 2003; Suthers &
Hundhausen, 2003; Suthers, Hundhausen, & Girardeau, 2003). Compared

Figure 13.4 Screenshot of the textual debate-tool (translated from Dutch).
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with the TD tool, the GD tool uses several visualisation techniques to make
information salient and help students complete the representation more effec-
tively and efficiently. For example, the GD tool discerns between arguments,
supports and refutations. This feature may stimulate and guide students to find
supporting and refuting information, and to formulate arguments, since it is
immediately clear to them whether this information is present or not. Further-
more, the GD tool visualises how well positions are supported by arguments
and supporting information. It is more difficult to infer this from the TD tool
because no distinction is made between arguments, supports and refutations.
Finally, the option to rate the quality of arguments, supports and refutations
available in the GD tool may stimulate students to think about and discuss the
importance of arguments and may help them to see which arguments are more
important than others.

Method

Design

We used a single-factor, between-subjects design, with two different groups
defined by the type of representation used: GD or TD tool. We randomly
assigned three classes to the GD condition, and two classes to the TD con-
dition. In total, 79 students in 24 groups worked in the GD condition, and 45
students in 15 groups formed the TD condition. Before the start of the study,
students completed a 15-item knowledge pre-test. No differences were found
between the two conditions with respect to their subject matter knowledge.

Participants

The participants were students from five different history classes from two sec-
ondary schools. The total sample consisted of 124 eleventh-grade students (55
male, 69 female), with an average age of 16.24 years (SD = 0.57). Their teach-
ers randomly assigned them to different groups. Due to uneven class sizes and
student drop-out, this resulted in 1 two-person group, 30 three-person groups
and 8 four-person groups.

CSCL environment: VCRI

Students worked in a CSCL environment named Virtual Collaborative Research
Institute (VCRI). VCRI is the successor to the TC3 used in the COSAR project.
Students use the Chat tool to communicate synchronously with other group
members. To read the description of their group task or to search and read
relevant information, students can use the Sources tool. This tool lists a number
of sources that can be opened and read from the screen. Group members use
the Cowriter as a shared word processor. Using the Cowriter, group members
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can work simultaneously on different parts of their texts. VCRI contains several
other tools designed to support the inquiry process.

Task

Students collaborated on an inquiry group task in the domain of history. Stu-
dents were given 14 historical and contemporary information sources and were
asked to explore and discuss the different sources with respect to the debate.
Students were required to co-construct a representation of this debate in either
the GD or TD tool. After they had completed their representation, they had to
co-author an argumentative essay based on their findings.

Analyses

To determine whether groups in the GD condition constructed argumentative
diagrams of higher quality than groups in the TD condition, we rated all the
items placed in the tool on a 5-point scale (ranging from 0 to 4). Interrater
reliability of the rating process was assessed by two independent coders. Cohen’s
κ was .69.

To determine whether groups in the GD condition wrote better essays than
groups in the TD condition, we analysed the quality of these essays with respect
to quality of grounds used for argumentation, and conceptual quality of the
argumentation. The evidence provided by students to back up the claims and
opinions in their texts formed the starting point for the analyses of grounds
quality. Each text segment was judged on a 4-point scale, ranging from 0 to 3, in
terms of how well and how elaborately it was supported by evidence or explan-
ations (Clark et al., 2007). The conceptual adequacy of the arguments given by
the students constituted the basis for the analyses of conceptual quality (Clark
et al., 2007). Each segment was judged in terms of its conceptual correctness;
thus segments containing, for example, flawed conclusions, misinterpretations
or incorrect statements received lower scores for conceptual quality than seg-
ments containing no errors. Conceptual quality was also rated on a 4-point
scale (0–3). Two independent judges assessed the quality of seven essays to
establish the interrater reliability. Cohen’s κ was .85 for grounds quality and .88
for conceptual quality.

To investigate whether students in the GD condition learned more than those
in the TD condition, knowledge pre- and post-tests were developed. Both tests
consisted of the same 15 multiple-choice items addressing topics covered in the
inquiry group task.

Finally, to investigate the impact of representational guidance on the col-
laborative process, we used a coding scheme to analyse the online collaboration
between group members (see Janssen, Erkens, & Kanselaar, 2007; Janssen et al.,
2007). The online collaboration process was captured in log files, containing
all actions performed by the students. This coding scheme consists of four
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main categories: task-related activities, regulation of task-related activities, social
activities and regulation of social activities. Like the Task Act coding scheme for
the COSAR study, this coding scheme distinguished between metacognitive
and task-related activities, but also focused on the social aspect of collaboration.
Interrater reliability of this coding scheme was determined by two independent
coders. Cohen’s κ was found to be .90.

Results

Quality of constructed argumentative diagrams

Groups in the GD condition made argumentative diagrams of significantly
higher quality than groups in the TD condition, t(37) = 3.90, p< .01, d =1.28.

Additionally, we correlated the number of items produced with the average
quality of these items and found a significantly negative correlation, r = −.66,
p = .00, meaning that when groups attempted to include a large number of
items in their representations this had a negative effect on the quality of their
representations.

Quality of essays

Analyses show that GD groups wrote significantly better essays than TD groups
in terms of grounds quality and conceptual quality, F (1,39) = 6.15, p < .01,
η2 = .15 and F (1,39) = 8.30, p < .01, η2 = .19, respectively.

Additional analyses showed that groups that received high scores for grounds
quality also received high scores for conceptual quality (r = .89, p < .01).

Post-test performance

To determine the effect of condition, while controlling for prior knowledge,
condition and pre-test score were added to a multilevel model. The first step
in this analysis was to examine the results of a model without any independent
variables, the so-called null model. This model contained two levels. Because
students were nested in groups, the individual student constituted the lowest
level, while the group constituted the highest level. Next, condition and pre-test
score were added to the multilevel model. This model explained significantly
more variance compared with the null model, χ 2 = 11.07, p < .01.

Both pre-test performance and condition had a significant effect on students’
post-test performance. As expected, a higher pre-test score contributed to a
better post-test performance, β = 0.28, p < .01.

Furthermore, condition contributed significantly to post-test performance,
indicating a positive effect of working with the GD tool, β = 0.42, p < .05.
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Online collaboration

When we examined the collaboration protocols, we expected to find that GD
groups would be less busy coordinating, regulating, and monitoring their task
performance. This, however, was not the case. Students who worked with
the GD tool were engaged in planning, monitoring and evaluating their task
progress as much as students who worked with the TD tool. In sum, we did not
find evidence that the GD tool facilitated the coordination of collaboration.

Conclusions for the CRoCiCL project

Based on the results, we conclude that the representational guidance offered
by the GD tool has a positive effect on the quality of shared products students
construct. First, the GD tool helps students construct better argumentative dia-
grams. Furthermore, the GD tool also helps group members write better essays.
Finally, students who worked with the GD tool performed better on a knowl-
edge post-test. These findings contrast with other studies that found limited
effects of representational guidance (e.g., Suthers & Hundhausen, 2003; Toth,
Suthers, & Lesgold, 2002; Van Drie et al., 2005). An explanation may lie in the
representational guidance offered by the GD tool compared with the guidance
offered by the tools in the work of other researchers. Our tool directs students’
attention to the distinction between arguments, supports, and refutations, and
this may stimulate students to incorporate these elements in their diagrams and
essays. It has been argued that tools that support linearisation, that is the order-
ing of content and arguments into an essay, may be better supported by tools
specifically designed to support the planning of the linear structure of essays
(e.g., the Outline tool used in the COSAR project). Although the GD-tool
was not specifically designed to support the process of linearisation, it may be
the case that stimulating students to systematically address all arguments, sup-
ports and refutations of a position also facilitates the process of converting a
representation into an essay.

Interestingly, representational guidance has been found to affect students’
collaborative process in previous research. In this study, this result was not repli-
cated. Our study offers no support for the expectation that representational
guidance decreases group members’ need to coordinate and regulate their task
performance in the online discussions. Students could use the representations
in both the GD tool and the TD tool to exchange information (Van Drie et al.,
2005). Because both tools were shared, adding an element to the representation
equates to exchanging information with group members. Thus, there might be
less need to engage in extensive information exchange in the chat discussions,
and the need to coordinate this process may also be diminished.

Although the GD tool seems to help students write better texts, it is note-
worthy that the students evaluated the GD tool somewhat less positively than
the TD tool.
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Conclusions and discussion

In this chapter we compared two tools meant to help collaborating students
understand and represent arguments and positions from different external
sources within a societal or scientific debate. The Diagram in the COSAR
project provided students with a graphical mapping tool in which they could
collaboratively specify positions, pro-arguments, con-arguments, supports, refu-
tations and conclusions, and could draw links or arrows between these elements.
No restrictions on spatial structure and representation were made. Although the
Diagram tool was highly valued by the students and did effect their collabora-
tive deliberation, no effects or even negative effects were found on the quality
of the argumentative essays they wrote. The Graphical Debate tool in the CRo-
CiCL project is also a tool for argument mapping by which students could
collaboratively specify pro-arguments, con-arguments, supports and refutations
with regard to two (given) positions. However, the spatial structure and repre-
sentation of the connections between the elements were fixed and the relative
argumentative strength of the positions was visualised. Furthermore, students
could differentiate between the relative weights of supporting or refuting argu-
ments. The Graphical Debate tool resulted in better-grounded and conceptually
correct argumentative essays, and in learning effects on a knowledge post-
test, but did not significantly affect the collaborative deliberation between the
students and was not valued very highly.

We assume that these differences can be – at least partly – explained by the
representational guidance both tools offer. The specificity of the weighting of
the arguments available in the GD tool directs the students towards the relative
strength of the arguments. The feedback given by the GD tool about the relative
strength of positions and arguments and the complexity of the representation
further heightens the representational guidance. Furthermore, the perspective
of the debate as a sort of battlefield with advancing and retracting units supports
the view of a debate as competing positions with justifications and supports for
each side. In our view, the greater representational guidance offered by the
GD tool may partly explain why students in the CRoCiCL project performed
better than students working with the Diagram in the COSAR project. Further
research on whether these changes in specificity and perspective actually can
be observed in the understanding and thinking of students working with the
Graphical Debate tool could support the representational guidance hypothesis.

It should be kept in mind that the Diagram and Graphical Debate tools were
not compared directly in an experiment. As Table 13.2 shows, there were dif-
ferences and similarities between both studies. The question as to whether the
differences between both studies can account for the difference in effectiveness
is difficult to answer. Looking at Table 13.2, the most important differences
concerned the size of the groups, the duration of the project, the subject of the
task and the operationalisation of the dependent variables. It is, of course, pos-
sible that the difference in, for example, group size (dyads for COSAR, mostly
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triads for CRoCiCL) influenced the effectiveness of the tools. However, it is
regularly found that smaller groups perform better than larger groups (e.g.,
Schellens & Valcke, 2006), possibly due to the fact that in larger groups coor-
dination is more difficult. This would mean that the working condition in the
COSAR project would have been better – not worse.

In the COSAR project the students had to use the Diagram tool to organise
positions and arguments found in internet and newspaper sources with regard
to societal debates (organ donation and cloning). In contrast, in the CRoCiCL
project the students had to use the GD tool to organise positions and arguments
found in historical sources about a debate on early Christianity. Although the
subject differed (social sciences and history), the task was similar (writing an
argumentative essay) and meant for the same class level in secondary education.
So it is unlikely that differences in subject can explain the differences in effect.

Further research is needed, however, to ascertain the precise impact of
representational guidance on collaborative construction of argumentation maps.
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