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Foreword

One of the most intriguing questions about the new computer technology
that has appeared over the past few decades is whether we humans will
ever be able to make computers learn. As is painfully obvious to even
the most casual computer user, most current computers do not. Yet if
we could devise learning techniques that enable computers to routinely
improve their performance through experience, the impact would be
enormous. The result would be an explosion of new computer
applications that would suddenly become economically feasible (e.g.,
personalized computer assistants that automatically tune themselves to the
needs of individual users), and a dramatic improvement in the quality of
current computer applications (e.g., imagine an airline scheduling
program that improves its scheduling method based on analyzing past
delays). And while the potential economic impact of successful learning
methods is sufficient reason to invest in research into machine learning,
there is a second significant reason: studying machine learning helps us
understand our own human learning abilities and disabilities, leading to
the possibility of improved methods in education.

While many open questions remain about the methods by which machines
and humans might learn, significant progress has been made. For
example, learning systems have been demonstrated for tasks such as
learning how to drive a vehicle along a roadway (one has successfully
driven at 55 mph for 20 miles on a public highway), for learning to
evaluate financial loan applications (such systems are now in commercial
use), and for learning to recognize human speech (today's top speech
recognition systems all employ learning methods). At the same time, a
theoretical understanding of learning has begun to appear. For example,
we now can place theoretical bounds on the amount of training data a
learner must observe in order to reduce its risk of choosing an incorrect
hypothesis below some desired threshold. And an improved
understanding of human learning is beginning to emerge alongside our
improved understanding of machine learning. For example, we now
have models of how human novices learn to become experts at various
tasks -- models that have been implemented as precise computer
programs, and that generate traces very much like those observed in
human protocols.
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The book you are holding describes a variety of these new results. This
work has been pursued under research funding from the Office of Naval
Research (ONR) during the time that the editors of this book managed
an Accelerated Research Initiative in this area. While several
government and private organizations have been important in supporting
machine learning research, this ONR effort stands out in particular for
its farsighted vision in selecting research topics. During a period when
much funding for basic research was being rechanneled to shorter-term
development and demonstration projects, ONR had the vision to continue
its tradition of supporting research of fundamental long-range
significance. The results represent real progress on central problems of
machine learning. I encourage you to explore them for yourself in the
following chapters.

Tom Mitchell
Carnegie Mellon University



Preface

The two volumes ofFoundations ofKnowledge Acquisition document the
recent progress of basic research in knowledge acquisition sponsored by
the Office of Naval Research. This volume you are holding is subtitled:
Cognitive Models ofComplex Learning, and there is a companion volume
subtitled: Machine Learning. Funding was provided by a five-year
Accelerated Research Initiative (ARI) from 1988 through 1992, and made
possible significant advances in the scientific understanding of how
machines and humans can acquire new knowledge so as to exhibit
improved problem-solving behavior.

Previous research in artificial intelligence had been directed at
understanding the automation of reasoning required for problem solving
in complex domains; consequent advances in expert system technology
attest to the progress made in the area of deductive inference. However,
that research also suggested that automated reasoning can serve to do
more than solve a given problem. It can be utilized to infer new facts
likely to be useful in tackling future problems, and it can aid in creating
new problem-solving strategies. Research sponsored by the Knowledge
Acquisition ARI was thus motivated by a desire to understand those
reasoning processes which account for the ability of intelligent systems
to learn and so improve their performance over time. Such processes
can take a variety of forms, including generalization of current
knowledge by induction, reasoning by analogy, and discovery
(heuristically guided deduction which proceeds from first principles, or
axioms). Associated with each are issues regarding the appropriate
representation of knowledge to facilitate learning, and the nature of
strategies appropriate for learning different kinds of knowledge in diverse
domains. There are also issues of computational complexity related to
theoretical bounds on what these forms of reasoning can accomplish.

Knowledge acquisition, as pursued under the ARI, was a coordinated
research thrust into both machine learning and human learning. Chapters
in Cognitive Models of Complex Learning thus include summaries of
work by cognitive scientists who do computational modeling of human
learning. In fact, an accomplishment of research previously sponsored
by ONR's Cognitive Science Program was insight into the knowledge
and skills that distinguish human novices from human experts in various
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domains; the Cognitive interest in the ARI was then to characterize how
the transition from novice to expert actually takes place. Chapters
particularly relevant to that concern are those written by Anderson,
Kieras, Marshall, Ohlsson, and VanLehn.

Significant progress in machine learning is reported along a variety of
fronts in the companion volume, Machine Learning, also published by
Kluwer Academic Publishers. Included is work in analogical reasoning;
induction and discovery; learning and planning; learning by competition,
using genetic algorithms; and theoretical limitations.

The editors believe these to be valuable volumes from a number of
perspectives. They bring together descriptions of recent and on-going
research by scientists at the forefront of progress in one of the most
challenging arenas of artificial intelligence and cognitive science.
Moreover, those scientists were asked to comment on exciting future
directions for research in their specialties, and were encouraged to reflect
on the progress of science which might go beyond the confines of their
particular projects.

Dr. Susan Chipman
ONR Cognitive Science Program

Dr. Alan L. Meyrowitz
Navy Center for Applied Research
in Artificial Intelligence
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Acquisition ofLISP Programming SkillI

JohnR. Anderson and Albert T. Corbett

Department ofPsychology
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

The acquisition of a complex skill like writing LISP code can be
decomposed into the learning of an underlying set of production rules. Each
production rule appears to have a simple learning trajectory and its acquisition
is independent of the acquisition of other production rules. These basic results
do not appear to be dependent on the instructional modality under which one
learns. Learning under amore directive modality only reduces the amount of
time students spend debugging their errors.

INTRODUCTION

This chapter provides a review of our work. on the acquisition of LISP
programming skill in the context of various intelligent tutoring systems we
have developed. This work can be seen as a general test of the ACT*
(Anderson, 1983) theory of skill acquisition. That theory of skill acquisition is
actually quite simple. It asserts that

(1) The knowledge underlying a skill begins in declarative form.
Knowledge in this form must be interpreted to produce performance. The
initial declarative knowledge commonly takes the form of an encoding of
illustrative examples of the skill. These examples are used by analogy to
guide the problem solving. For example, when first learning how to
perform arithmetic in LISP, the student may encode that the sequence:

(* 27 32)

IThis research was supported by contracts NOOO14·87·K-0103 and NOOO14-91-J-1597
from the Office ofNaval Research
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calculates the product of 27 and 32. The student may proceed to use this as
an analog for detennining how to compute the sum of 384 and 492.

(2) As a function of its interpretive use, this knowledge becomes compiled
into a production rule fonn. In the example above, the following
production might be fonned:

IF the goal is to apply an arithmetic operation to X and Y
and OP is the symbol denoting that operation
THEN enter (OP XY).

(3) Individual production rules, once fonned, acquire strength as a
function of practice.

(4) Ultimately, a skill such as programming consists of hundreds of
independent production rules. Perfonnance consists of the sequential
application of these rules.

The simplicity of the Acr* theory of skill acquisition is its most important
theoretical claim. It certainly is a counter-intuitive claim about the nature of
complex skill acquisition which appears anything but simple.

Given the importance of the claim that skill acquisition is simple under a
production rule analysis, it becomes important to provide empirical evidence
for this simplicity. This can be done directly by confinning regularities in the
data predicted by the theory and indirectly by failing to find effects of plausible
complicating factors. In the following sections, we will describe our efforts to
find regularities in superficially complex data and our efforts to find
complicating factors in the structure of exercises and in individual differences.
The analysis of individual differences is particularly interesting. One might
believe that different subjects would display differential success in mastering
clusters of subskills. But while the Acr* theory allows for different rates of
acquisition across subjects, it does not allow for different styles of learning.
Before describing the results, it is necessary to describe the LISP Tutor, the
data it generates and our methods of analyzing the data.

We have been engaged in the study of programming in LISP since 1980.
Around 1983 it seemed that we had a good enough understanding of
programming in LISP (reported in Anderson, Farrell, & Sauers, 1984) that we
might actually use it as a basis for instruction. The essential idea was to
organize instruction around the individual production rules that we feel the
student should acquire. This set of production rules defmes what we call the
ideal student model. We try to match up in real time the student's problem
solving steps with some solution path that can be generated by this ideal
production system model of the skill. This is called a model-tracing
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methodology. In the version of tutoring we will first describe, called
immediate-feedback tutoring, whenever the student makes a problem-solving
move that does not match any move allowed in the student model we
immediately correct the student and force the student to make a move that
matches the student model. Later in this chapter, we will describe what
happens with less restrictive modes of tutoring.

AN EXAMPLE INTERACTION WITH THE LISP TUTOR

In this section we will describe an interaction with the original, immediate
feedback tutor we created. Figure I depicts the terminal screen at the
beginning of an exercise. The screen is divided into two windows, and the
problem description appears in the "tutor window" at the top of the screen. As
the student types, the code appears in the "code window" at the bottom of the
screen. The example exercise is drawn from Lesson 6, in which iteration is
being introduced. Students are familiar with the structure of function
definitions by this point, so the tutor has put up the template for a definition,
filling in defun and the function name for the student The symbols in angle
brackets represent code components remaining for the student to supply. The
tutor places the cursor over the first symbol the student needs to expand,
<PARAMETERS>.

As the student works on an exercise, this tutor monitors the student's input,
essentially on a symbol-by-symbol basis. As long as the student is on some
reasonable solution path, the tutor remains in the background and the interface
behaves much like a structured editor. The tutor expands templates for
function calls, provides balancing right-parentheses for students, and advances
the cursor over the remaining symbols which must be expanded. If the student
makes a mistake, however, the tutor immediately provides feedback and gives
the student another opportunity to type a correct symbol. When the student
types another response, the feedback is replaced either by the problem
description (if the response is correct) or another feedback message (if the
student makes another error). The tutor will also provide a correct next step in
a solution, along with an explanation if the student appears to be floundering, 2
or if the student requests an explanation.

2A student is judged to be floundering at a step in the solution if he/she repeats the
same type of error three times or makes two mistakes that the tutor does not
recognize.
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Define a function called "create-list" that accepts one
argument, which must be a positive integer. This function
returns a list of all the integers between 1 and the value of
the argument. in ascending order. For example,

(create-list 8) returns (1 2 3 4 5 6 7 8).

You should count down in this function, so that you can just
insert each new number into the front of the result variable.

COOl: for create-list

(defun create-list <parameters>
<process»

Figure 1. The appearance of the tutor screen at the beginning of a
coding problem.

Table 1contains a record of a hypothetical student completing the code for the
exercise. This table does not attempt to show the tenninal screen as it actually
appears at each step in the exercise. Instead, it shows an abbreviated
"teletype" version of the interaction. As described above, while the student is
worldng, the problem description generally remains in the tutor window, while
the code window is being updated on a symbol-by-symbol basis. Instead of
portraying each update to the code window in the interaction, the table portrays
nine key "cycles" in which the tutor interrupts to communicate with the
student At each of these enumerated cycles the complete contents of the code
window are shown, along with the tutor's response. The tutor's response is
shown below the code to capture the temporal sequence of events; on the
terminal screen, the tutor's communications would appear in the tutor window
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above the code. In each cycle all the code which the student has typed since
the preceding key cycle is shown in boldface. However, in each case, the
tutor is responding specifically to the last symbol the student typed.

The Problem Description

Define a function called "create-list" that accepts one argument, which
must be a positive integer. This function returns a list of all the
integers between I and the value of the argument, in ascending order.
For example,

(create-list 8) returns (l 2345678).

You should count down in this function, so that you can just insert
each new number into the front of the result variable.

Cycles in which the tutor communicates with the student

1. (defun create-list (num)
(loop)

You will need local variables in this function. So before you code
anything else, there is a particular LISP operator you need to code.

2. (defun create-list (num)
(let «)
<BODY»)

Which of the following do you want to do?
PRESS: IF YOU WANfTO
I Initialize a variable to hold the list ofdigits between

I and the value of the parameter.
2 Initialize a counter variable to keep track of how

many times we go around the loop.
3 Have the tutor choose.

Menu choice: 2

3. (defun create-list (num)
(let «count 1)

<OTHER-INlTIALIZATIONS>)
<BODY»)
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In this problem we won't want to start counting at the same value
each time we call the function, so we can't initialize the counter to a
constant like 1. How is the starting value being communicated to
the function?

4. (defun create-list (num)
(let «count num)
(numlist (list num)))
(lop»

Did you mean loop (y or n)? y

5. (defun create-list (num)
(let «count num)
(numlist (list num»)
(loop
(cond «equal count 1) numlist»
<LOOP-ACI10NS2>»)

You do want to return the variable "numlist" here, but just typing it
imo the code won't accomplish that. What LISP operator will allow
you to return something from aLOOP?

6. (defun create-list (Dum)
(let «count num)
(numlist (list Dum»)
(loop
(cond «equal count 1) (return numlist»)
<LOOP-ACTIONS2>»)

In numeric iteration the first thing you should do after the exit test is
update the counter variable. You can use the function SETQ to do
this.

7. (defun create-list (Dum)
(let ((count)
(numlist (list Dum»)

(loop
(cond «equal count 1) (return numlist»)
(setq count (1- count»
(cons»)

(continued)



You've got the right idea, since you'll need to use the function
"cons", but remember you are trying to insert the new value of the
counter into the list. What LISP function allows you to assign the
results of this function call to a local variable?

8. (defun create-list (num)
(let «count num)
(numlist (list num»)

(loop
(cond «equal count 1) (return numlist)
(setq count (1- count)
(setq numlist (list»)

If you LIST together arguments like 7 and (8) you get (7 (8». what
you want is (7 8). Try another function that combines things
together.

9. (defun create-list (num)
(let «count num)
(numlist (list num»)
(loop
(cond «equal count 1) (return numlist»)
(setq count (1- count)
(setq numlist (cons count numlist»»)

----yOU ARE DONE. TYPE NEXTTOGO ON AFTER-----
--TESTING THE FUNCTION YOU HAVB DEFINED---

THELISPWINDOW

=> (create-list 10)

(1 2 34 5 6 7 8 9 10)

=>next

Table 1. ATeletype Depiction of a Hypothetical Student Completing
the Code for the Function create-list with the Tutor.

7
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In the first of the cycles displayed, the student has typed in the parameter list
and has called loop in order to iterate. The tutor reminds the student that it is
necessary to create some local variables before entering the loop.

In the second cycle, the student has called let and is about to create a local
variable. The template for numeric iteration calls for two local variables in this
function, so the tutor puts up a menu to clarify which variable the student is
going to declare first.

In the third cycle, the student has coded an initial value which would be correct
if the function were going to count up. However, this exercise is intended to
give the student practice in counting down, so the tutor intelTUpts the student.

In the fourth cycle, the student has made a typing error which the tutor
recognizes, and in the fifth cycle the student is attempting to return the correct
value from the loop, but has forgotten to call return.

In the sixth cycle, the cursor is on the symbol <LOOP-ACfIONS2> and the
student has asked the tutor for an explanation of what to do next. The tutor
tells the student what the current goal is and what symbol to type next in order
to accomplish the goal. In addition, the tutor puts the symbol, setq, into the
code for the student.

In the seventh cycle, the tutor recognizes lOat the student is computing the new
value for the result variable, but has forgotten that the new value must be
assigned to the variable with setq.

In the eighth cycle, the student has gotten mixed up on the appropriate
combiner function to use in updating the result variable. The tutor tries to
show, by means of an example, why list doesn't perform quite the right
operation and another combiner is needed.

Finally, in the ninth cycle, the student has completed the code.

Note that, for illustration sake, this interaction shows students making rather
more errors than they usually do. Typically, the error rate is about 15 percent
while it is approximately 30 percent in this dialogue.

After each exercise, the student enters a standard LISP environment called the
LISP window. Students can experiment in the LISP window as they choose;
the only constraint is that they successfully call the function they have just
defined (which the tutor has loaded into the environment for them).
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GROUP DATA ANALYSES

Analysis of Computer Records

It is worth identifying how we segment a sequence of interactions, such as
those in Table 1, and assign these segments to various production rules. The
data from the LISP tutor comes in as a stream of keystrokes and responses by
the tutor. This data can be partitioned into cycles in which (1) the tutor sets a
coding goal (Le., places a cursor over a goal symbol on the screen); (2) the
student types a unit of code corresponding to a production firing (generally a
single atom or "word" of code); and (3) the tutor categorizes the input as
correct or incorrect (or as a request for help) and responds accordingly. If the
response is correct, the tutor will set a new goal in the next cycle. If it is
incorrect, the tutor provides feedback and resets the same goal in the next
cycle. If the student asks for an explanation or appears to be floundering at the
goal, the tutor will provide the correct answer and set a new goal in the next
cycle.

Suppose the student is coding a function called insert-second, and imagine
that the student has just typed cons as the beginning of the body of the
function. At this point the screen would look like this:

(defun insert-second (lisllis2)
(cons <elem1> <elem2»)

In the following cycle, the tutor would place the cursor over the goal symbol
<elem1>, the student would type code, for example, "(car" and when the
student has typed the final space after car, the tutor would evaluate the input
and respond. It is of interest here to extract two measures of production
firings from this data: time and accuracy. Firing time is measured only for
goals in which the student's first response is correct. The measure of firing
time is the time from when the tutor is ready to accept input (cursor over
<elem1> in the above example) to when the student has completed the code for
that element. Two measures of firing accuracy have been extracted: (1) the
probability that a student responds correctly in hi~er first attempt at a goal,
and (2) the number of extra attempts (cycles) required to achieve a correct
answer at a goal. The second measure will be used since it proves to be more
sensitive (often initial errors are just slips while repeated errors are signs of
real difficulty). As a rule of thumb, the number ofextra attempts is about one
and a half times the number of errors.

What is happening during the period of time attributed to a production firing?
It is clearly not just a single correct production rule firing. There must be an
encoding of the screen, the setting of subgoals to type the individual
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characters, and the actual typing of these characters. Moreover, students can
delete characters in order to correct mistypings, or even change their mind
about the correct code unit to type. The tutor will also intervene to block
syntactically illegal characters. Thus, the time for these segments will involve
much more than simply the time for the target production to fire. The target
production just sets the top level organization for the episode. However, it is
the rule of interest, because it represents the new thing that the student must
learn. Also, since typing and interacting with the tutor presumably represent
skills at relatively high asymptotic levels of proficiency, learning the coding
JUles accounts for much of the variation in performance across segments.

Learning Curves

We will present a description of the most systematically and exhaustively
analyzed data collected with the LISP tutor. This data was collected in the fall
of 1985 and the spring of 1986. While there were more students in these
classes, we collected complete data sets from 42 students and these were used
for this analysis. There were 12 lessons in the tutor at that time. Each lesson
involved students solving a sequence of problems where a problem involves
writing a LISP function to do a specified task. Table 2 displays exercise
solutions, for a small illustrative portion of the curriculum, the first six
exercises in lesson 3. For the salce of illustration, consider how performance
varied across these six problems. Figure 2 presents coding time and error rate
averaged across productions for each of the six exercises. There is a notable
lack of any learning trend when the data is collapsed in this fashion.

Figure 3 presents the same data aggregated according to production identity
rather than problem. Note that production rules appear in different patterns
across the problems. For instance, the rule that codes an inequality operator
("<" or ">") applies once each in the first and third problems and twice in the
fifth, while the rule for coding cond appears once each in the fourth through
sixth. Thus, there is a poor correlation between problem number and how
many times specific productions have been practiced. Figure 3 shows the data
organized according to the number of practice opportunities per production.
Now we see very systematic learning trends.

Thus, we see that a production analysis can convert an apparently complex
pattern ofdata into a very simple pattern ofdata. The data in Figure 3 illustrate
that amount of practice of specific productions is a strong determinant of
performance as expected.
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3.1 (defun compare (numl num2)
(> (+ numl 10) (* num2 2»)

3.2 (defun palp (lis)
(equal lis (reverse lis»)

3.3 (defun numline (item)
(list (zerop item) « item 0»)

3.4 (defun cadis (object)
(cond «null object) nil)

«atom object) object)
(t (car object»»

3.5 (defun checktemp (temp)
(cond «> temp hightemp) 'hot)«< temp lowtemp) 'cold)

(t 'medium)))

3.6 (defun make-list (item)
(cond «null item) nil)

«(listp item) item)
(t (list item»»

Table 2. Initial Problems in Lesson 3.

Regression Analysis

We (Anderson, Conrad, & Corbett, 1989) have performed a fairly
exhaustive analysis of the data from all 12 lessons both to better analyze the
practice factor and to identify other complexity factors. Regression analyses
were performed on these data in an attempt to find best predicator equations for
log coding times and errors. These analyses were performed separately on
"new" productions in each of the lessons (production rules introduced in that
lesson) and "old" productions in each of the lessons (production rules
introduced in previous lessons). There were about 100,000 observations in
total, far too many for our regression program, so we collapsed across
subjects, generating a mean for all observations in which different subjects
applied the same production (according to the tutor's analysis) in the same
serial position in the same exercise in a particular lesson (in order to fit the size
constraints of our regression program). This produced about a 10 to 1
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collapsing in average, yielding 6409 observations for old productions and
3350 observations for new productions.

20..---------------,.0.5

18

.16

j
14

12

0.4

0.2

--- AccurKy

10 +-----,....----,.---r-~-.-~..----........,,--+0.1
o 1 2 S 4 5 6 7

Problem

Figure 2. Mean coding time and error rate per production as a
ftmction ofproblem number in Lesson 3.

The following regression equations were determined as the best fitting ftmction
for new productions:

log(time) =1.35 - .03(lesson number) - .3llog(within lesson opportunity)
- .15Iog(absolute position in code)

mean errors = .23 - .lllog(within lesson opportunity)
- .03Iog(absolute position in code)

where "lesson number" is just the number 1 through 12, "within lesson
opportunity" is the number of times the production had been used in the lesson
up to and including the current opportunity, and "absolute position in code" is
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the serial position of the code in the function definition. A rather similar best
fitting function was obtained for the old productions:

log(time) = 1.31 - .Ol(1esson number) - .25log(within lesson opportunity)
•.26log(absolute position in code)

mean errors = .16 - .09log(within lesson opportunity)
- .02log(absolute position in code)

22 0.5

20
~ Accuracy

0.4

18

G.3R
wi 16 '0

J
M 0.2 ~
14 z

12
0.1

---- nme

10 0.0
0 1 2 3 4 5 6 7

Production Opportunity

Figure 3. Mean coding time and error rate per production as a
function ofproduction opportunity inLesson 3.

The within-lesson opportunity effect reflects the production specific practice
effect and is illustrated in Figure 4. The difference between the intercepts for
the old and new productions reflects the advantages subjects have when using
the productions during a second or later session. It is interesting to compare
the shape of the learning curves for old and new productions in Figure 4. The
new productions show much larger speed up from first to second use, but after
that they show similar rates of improvement. We attribute the special
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advantage from first to second opportunity for new productions to knowledge
compilation.

The other two variables reflect "complications" to a degree, although they are
not inconsistent with the theory. Indeed, the effect of absolute position in the
code is a confirmation of a subtle prediction of the theory. Before discussing
these two variables, however, it is worth noting the additional variables which
did not prove significant when placed in competition with these variables.
They included: depth of embedding of the code which was being written,
number of pending goals (or unexpanded symbols to the right), left-to-right
position in the pretty-printing of the code, familiarity of the concept behind the
production (as rated by a panel of four judges), and number of keystrokes in
typing the symbol. It is also the case that the logarithm of lesson opportunity
and the logarithm of absolute position are better predictors than are
untransformed scores.

-0- new productions

-- old productions

16

15

14

01 13

"i 12

:§. 11

~ 10
1=
2' 9

~ 8

7

6

0 2 3

Opportunity

4 5 6

Figure 4. Mean coding time for old and new productions as a
function of coding opportunity.
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The effect of lesson number, while small, is quite significant for reaction
times. This variable may just reflect an increased familiarity with the tutor
interface. The fact that the same variable shows up for new productions (that
do not appear in earlier lessons) as well as old productions suggests that this
variable does not reflect production-specific practice. At least part of the
phenomenon is a matter of general interface learning. It is also the case that
lesson number is not significantly related to error rate. This is further evidence
that the effect may be an interface effect and not reflect any real proficiency in
coding.

Problem Practice and Its Interaction with Production
Practice

The effect of absolute serial position in the code is interesting because it has
been established that the effect is logarithmic, not linear, and not a result of
potentially confounded variables such as depth of embedding, number of
pending goals, or left-to-right position in a pretty-printing. It is also the case
that absolute serial position is a better predictor than relative serial position or
total length of the function. Figure 5 illustrates the average serial position
effect over the first 33 positions. The initial long pause is at least in part due to
reading the problem specifications and planning. The subsequent speed up is
thought to be attributable to subjects using, and hence practicing, thea problem
understanding as they go through the problem. This would strengthen their
declarative representation of the problem and so speed their access to it.
According to the ACT* theory there should be an effect both of procedural
practice and declarative practice, and the overall performance improvement
should be the product of two power practice functions. Thus, the effects of
procedural practice and declarative practice should be superadditive.

Amore direct test of the proposed superadditivity was attempted. Productions
were broken into two categories which were above or below the median use.
Serial positions were similarly broken into above and below the median. Data
were then classified into a 2x2 matrix according to whether the production
involved was above or below the median frequency, and the serial position
above or below the median frequency. This analysis was done separately for
each subject. Then an analysis of variance (ANOVA) was done with three
factors: subject, (42 values), production frequency, (2 values), and serial
position, (2 values). Separate ANOVAs were performed for old and new
productions on mean coding time. These data, as well as mean production
frequency and mean serial position, are reported in Table 3. There are main
effects for both factors, but critically there is an interaction between the two of
them (PI. 41=9.09; p<.OI for new; F1, 41=21.75; p<.OOI for old). In both
cases, as predicted, the effect of production frequency is greater at lower
values of serial position.
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Figure 5. The effect of serial position in code on production time in
Lessons 2 and 3.

INDIVIDUAL DIFFERENCES IN LEARNING

There are substantial differences among students in their perfonnance with
the LISP tutor both in error rate, time to complete exercises, and in JX>st-test
perfonnance. The interesting question is whether there is anything more
involved than some unidimensional factor of skill. In one attempt to answer
this, a factor analysis was perfonned to see whether certain groups of subjects
found certain productions categories difficult. One factor analysis was
perfonned on the data from the spring of 1985; a second factor analysis was
then perfonned on the combined data for fall of 1985 and spring of 1986.
1hese two separate analyses were perfonned because the spring 1985 subjects
wolted through a different curriculum. The details of the factor analysis of the
spring 1985 data and the details of the methodology are reported in Anderson
(1990). In the spring 1985 data, and more clearly in the combined fall 1985



17

data and spring 1986 data, factors emerged within each lesson which loaded
on thematically related productions. For instance, in Lesson 1 a factor
emerged which loaded on arithmetic operations, and a factor emerged in
Lesson 3 that loaded on logical operations. This meant, for instance, that in
Lesson 1, one group of students tended to do relatively poorly on all arithmetic
productions while another group of students tended to do well.

New Productions

Serial Position
Low High

Low 17.3 sec 10.1 sec
1.0 2.1
6.2 16.1

Frequency
High 13.8 sec 8.5 sec

7.9 8.9
6.3 20.4

Old Productions

serial Position
Low High

Low 13.5 sec 8.9 sec
2.0 2.1
6.8 18.2

Frequency
High 9.6 sec 6.1 sec

10.1 13.3
7.8 20.6

Table 3. Results of Superadditivity Analysis. Reported in Each
Cell are Mean TIme, Mean Frequency, andMean serial Position
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The initially frustrating feature of these within-lesson factors is that they did
not show any across-lesson consistency. Thus, productions which loaded on
one factor in one lesson would split up and load on different factors in a later
lesson. To help organize these within-lesson factors, a meta-factor analysis
was done. That is, students' factor scores from particular lessons were taken
and a factor analysis of these was performed. Two meta-factors emerged
fairly strongly in the spring 1985 data and in the combined 1985-1986 data.
When the spring 1985 data was examined, it was noticed that most of the
productions which loaded on factors of one of the meta-factors were new to
that lesson (22 out of 34), while most of the productions that loaded on factors
in the second meta-factor were old (20 out of 23). This led to a labelling of the
first meta-factor as an acquisition factor and the second meta-factor as a
retention factor. Asimilar analysis was done on the 1985-1986 data. Most of
the productions associated with one meta-factor were new to that lesson (18
out of 23), while most of the productions associated with the other meta
factors were old (23 out of 31).

Thus, what seems stable across lessons are only very general learning
attributes, acquisition and retention. We think we understand why thematic
clusters of new productions appeared in individual lessons but disappeared
thereafter. These thematically related productions were discussed in the text in
close proximity. If a subject's attention waxes and wanes while reading the
text, then this will produce a local correlation among thematically related
productions. Another factor that would produce this thematic clustering is that
many of the new productions in a lesson are thematically related. For instance,
a large fraction of the productions in the third lesson on conditionals are
concerned with logical operation of some sort or another. Thus, to the extent
that there is an acquisition factor, within a lesson it will produce a thematic
clustering of productions. Thus, the apparent themacity of productions only
reflects the fact that the new productions inttoduced in any lesson tended to be
thematically related.

There is some external validation of these two meta-factors. Although both
were defined on behavior internal to the LISP tutor, both were strong
predictors of performance on paper-and-pencil midterms and final exams.
These factors were also associated with math SATs but not verbal SATs. The
correlation of the retention factor with math SATs was .62 for spring 1985 and
.38 for 1985-1986. The correlation of the acquisition factor with math SATs
was .03 for spring 1985 and .60 for 1985-1986. Except for the 1985-1986
correlation coefficient for the acquisition factor, all coefficients are significant.

These factors or math SATs are equally good predictors of performance on a
final paper and pencil test at the end of the course. The failure to find any
consistent thematic individual differences in the LISP learning is further
evidence for the view that learning is simple. The only stable individual
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differences are very general acquisition and retention factors. This means that
the acquisition of a production rule is oot sensitive to its content.

LEARNING UNDER DIFFERENT TUTORING MODALITIES

So far the data we have displayed has come from the immediate-feedback
version of the tutor. The suggestion has been made a number of times that the
simplicity of the learning results reflect the constraints imposed by the tutor,
particularly the constraint that students remain on a correct solution path, and is
oot representative of learning in general. Over the past few years we have
begun to explore other feedback schemes that relax this constraint. We have
developed a number of environments that relax the tutor's control over
feedback and over the student's behavior. These newer versions of the tutor
are:

No Tutor - The student receives no instruction at all and must solve the
problems on their own. All they are told is whether their final solution is
correct. They can use the LISP environment to try out their solutions which
provides a feedback of a sort. Essentially, these students are in the same kind
of environment that students have who learn without a tutor. However, they
enter their code into the same structured editor as the tutor students. This
enables us to perfonn some analyses of their data.

Demand Feedback - Students are not interrupted by the tutor with
feedback but can request feedback on their solution at any time. The tutor will
tell them if their solution so far is correct and ifnot where the first error is. If
an error is found, the tutor will provide the same feedback about the error as
the immediate feedback tutor does. Our experience is that as much as 80
percent of the time students wait until they have finished their solution before
they request feedback. So by their own choice they tend to turn this into a
delayed feedback condition.

Flag Tutor - Whenever the student makes an error, the error is immediately
highlighted by the tutor. However, students are not required to fix the error
immediately, they can ignore the error and continue to code. Indeed if they can
come up with a code that worts despite "errors" flagged on the screen (i.e., if
they generate a solution that the tutor does not recognize) they are credited with
solving the problem. This is true in the no-tutor and demand-feedback tutors
also. At any time the student can go back and request feedback on an error, in
which case the same message is presented as would be in the immediate
feedback tutor. Our experience is that about 10 percent of the time students
will ignore the error signal at least initially and continue coding, about 15
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percent of the time they will request the tutor's explanation of the error signal.
and the other 75 percent of the time they will try to correct their code without
any infonnation from the tutor as to the nawre of their error orwhat the correct
code would be. Thus. students tend to tum this into an immediate correction
tutor but one in which they only receive minimal feedback from the tutor.

Effects of Tutoring Modalities

More infonnation about these various tutors can be found in Corbett and
Anderson (1990) and Corbett and Anderson (1989). We fmd that time to
complete a fixed set ofexercises is inversely related to the amount of influence
exercised by the tutor. Students take longest in the no tutor condition and are
fastest with the immediate feedback tutor. The demand-feedback tutor, and
error-flagging tutor fall in between, with the demand feedback condition taking
somewhat longer of the two. The effects. comparing the extremes. can be as
large as a 3 to I difference in times. There tends to be no difference among the
three tutor conditions in final achievement measured by post-tests although the
no-tutor condition sometimes perfonns worse. This fact is very significant to
our understanding of the learning process. Students in the three tutor
conditions are going through very different trajectories (and taking very
different amounts of time) to reach essentially the same fmal solutions.
Students in the no-tutor condition, however. sometimes fail to reach a correct
solution at all. It seems that learning is a function of the solutions students
achieve and not the process by which they achieve it-students do achieve
higher levels if they solve more problems under any discipline.

This pattern of results provides an important continnation of the Acr* theory.
Recall that initial production fonnation takes place by analogy to an example.
Thus. the ingredient for learning is a product, the solved example. from which
the analogy can take place. Once the production is in place. further learning is
in response to a process-further use of the production leads to further
strengthening. Since learning is both in response to a product (the initial
compilation) and in response to a process (subsequent strengthening) it might
not be obvious why Acr* predicts that the number of problems should be the
critical variable. This requires going into more detail as to what happens in the
ACf* theory in particular situations:

When solving their first problems in a lesson, students are in a state in which
they have adequately studied the instructional examples so that they can
perfonn about 50 percent of the new production JUles without error. This 50
percent will be learned and compiled into production JUles in all conditions
without hitch. The compilation will occur in the same way in all conditions.
The remaining 50 percent will be learned when the student comes to an
understanding ofone of the problems which involves that production and uses
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that problem as the example for a later problem. This 50 percent of the
learning will therefore be based on the products of later problem solving
episodes. Since, in all tutor conditions students come essentially to the same
solutions and understanding of these solutions, there would be no difference in
the learning involved in this 50 percent either. Once the productions are
learned they are strengthened on each subsequent trial that they apply. Since
the tutoring conditions only differ in how they respond to errors, strength will
accumulate with correct rule applications across conditions in the same way.

The differences among conditions can have large consequences when the
student makes an error and has to correct it. In conditions that provide little
guidance the student can spend a lot more time finding out how to correct
errors. However, according to Acr* students do not learn from errors or
error correction.3 The only thing they learn when an error is made is the final
correct code. Thus, the differences among the conditions are not relevant to
learning as long as students come to the same understanding of the same
correct code at the end of the correction episodes. Students do not always
come to the same code and there can be other subtle differences among
conditions but the learning consequences of the various conditions are
substantially the same and so one would not expect to see substantial
differences in learning outcome.

Learning Curves

It is also of interest to consider what the learning curves are like in the
various conditions. We have collected some data on this issue. A difficulty in
collecting such learning curves concerns the fact that only in the immediate
feedback condition are subjects guaranteed to stay on an interpretable path of
behavior to which we can apply model tracing. Our solution to this dilemma
has been only to analyze that fragment of the data which is on an interpretable
path. As soon as a student makes an error in an exercise, we stop trying to
analyze any subsequent data for that function. In the flag tutor, 87 percent of
the interactions are analyzed, in the demand-feedback tutor 70 percent are
analyzed, and in the no-tutor condition 67 percent are analyzed. Also, we have
only the data analyzed for three of the lessons; lessons 2, 3, and 7 from the
LISP tutor curriculum, and only for 10 subjects per lesson. Therefore, we
have amuch smaller data base than for the analyses we reported earlier.

Figure 6 presents the change in error rate as a function ofcondition and Figure
7 presents the change in coding time. Clearly, we are getting learning

3That is, with respect to writing correct code. They may learn how to debug their
code.
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functions across all tutoring modalities. In the case oferror rates, there appear
to be no differences as a function of tutoring modality. With respect to times,
there are initial speed advantages for the two delayed feedback conditions (no
tutor, demand) relative to the two immediate feedback conditions (flag,
immediate). There are several reasons to believe these time differences do not
reflect realleaming differences. First, this may reflect the selection artifact.
We only look at data on a correct path and subjects may be on a roll, so to
speak, in the delayed conditions whereas in the immediate conditions we are
mixing in more difficult situations. Second, subjects may be more cautious in
the two immediate feedback conditions. Finally, since there is no feedback
given in the two delayed feedback conditions, subjects do not have the implicit
positive feedback to process. It is interesting in this regard that subjects are
slowest in the flag tutor condition where they have to discriminate the type case
of the feedback to detect errors which are printed in bold.
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Figure 6. Learning in various tutor modalities as a function of
amount of production practice: mean number of errors per coding
attempt.
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Figure 7. Learning in the various tutor modalities as a function of
amount ofproduction practice: mean time per correct coding attempt.

The basic similarity of the learning functions across tutoring conditions offers
further support for the ACT· conception of the learning process. As discussed
earlier, learning should be a function of the number of solutions the student
has passed through and not ofhow the student passes through these solutions.

CONCLUSIONS

This chapter has reviewed the effects we have found in our research with the
LISP tutor. Perhaps more interesting are the effects we did not find. There
were no interesting effects of different content of problems, of individual
differences, or of instructional style. The picture of learning a complex skill
was every bit as simple as advertised at the beginning of the chapter. Learning
individual production rules underlying a complex skill does not appearmuch
different than learning simple paired associates. The resulting skill is complex
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because of the interrelations among the units but the learning of the units
themselves is quite straight forward.
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Learning by explaining examples to oneself:
A computational model*

Kurt VanLehn and Randolph M. Jones
Learning Research and Development Center

University of Pittsburgh

Abstract

Several investigations have found that students learn more when
they explain examples to themselves while studying them. More
over, they refer less often to the examples while solving problems,
and they read less of the example each time they refer to it. These
findings, collectively called the self-explanation effect, have been
reproduced by our cognitive simulation program, Cascade. More.
over, when Cascade is forced to explain exactly the parts of 'the
examples that a subject explains, then it predicts most (60 to 90%)
of the behavior that the subject exhibits during subsequent prob
lem solving. Cascade has two kinds of learning. It learns new rules
of physics (the task domain used in the human data modeled) by
resolving impasses with reasoning based on overly-general, non·
domain knowledge. It acquires procedural competence by storing
its derivations of problem solutions and using them as analogs to
guide its search for solutions to novel problems.

THE TWO MAJOR OBJECTIVES OF THE
CASCADE PROJECT

As Tom Dietterich pointed out in the keynote address of the 1990 Ma
chine Learning Conference, one of the biggest challenges in machine

°This research was supported by the Cognitive Science division of the Office of
Naval Research under contract NOOOl4-88.K.0086 and the Information Sciences divi.
sion of the Office of Naval Research under contract NOOOl4-86-K-0678.
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learning is to get machines to learn from ordinary instructional mate
rial, such as that used to train scientists, engineers and technicians. Not
only is this an exciting intellectual challenge, but it might help alleviate
the notorious problem of getting expertise out of the culture of experts
and into an operable form. The expert systems community recently re
alized that not all experts are good at explicating and explaining their
knowledge, but instructors vary in quality too, so a common practice
nowadays is to acquire knowledge for an expert system from an expert
who is also a good instructor. Often, there are textbooks written by
very good instructors. Utilizing this material requires having the kind
of system that Dietterich envisioned.
The program described here, Cascade, is a direct response to Di

etterich's challenge, for it can learn how to solve Newtonian mechanics
problems from the same materials that undergraduates learn from. How
ever, it is only a partial solution to the problem, because Cascade cannot
read. The information in the prose parts of the textbook is given to it
in a predigested form. As will be demonstrated later, this information
is not as helpful in solving problems as one might think. People and
Cascade acquire much of their problem solving skill by solving problems
and by studying the textbook's worked example problems.
The second objective of the research presented here is to integrate

and deepen the theory of skill acquisition. As theories go, the theory of
cognitive skill acquisition is in its infancy. Theories range all the way
from the highly integrated, nomological theories of certain natural sci
ences to loose collections of ideas which can be woven together to explain
phenomena. The current theory of cognitive skill acquisition is in the
collection-of-ideas stage. Given almost any behavior, a cognitive scien
tist can often string together ideas from psychology and AI that will offer
at least a plausible explanation of the phenomenon. This is certainly an
advance over the state of the art 25 years ago. However, the theory is
not as integrated as it could be. For instance, no one has built a com
putational model of skill acquisition that starts as a novice and slowly
becomes an expert while being trained on the same material as human
students. Several models of pieces of this process have been built, includ
ing Sierra (VanLehn, 1990), Pups (Anderson & Thompson, 1989) and X
(Pirolli, 1987). The reason that cognitive science has no simulated stu
dents is not just because it is technically difficult, but because we do not
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know which of the many ideas floating around should be woven together.
Moving the theory of cognitive skill acquisition out of the collection-of
ideas stage and into a stage of integrated student simulations will re
quire deep thought and significant new empirical work. Development
of student simulations should go hand-in-hand with these empirical ad
vances, because such simulations are the only way to demonstrate the
computational coherence and empirical coverage of an integrated theory
of cognitive skill acquisition. Cascade is intended to be a step further in
that it incorporates new empirical evidence from a study by Chi, Bas
sok, Lewis, Reimann and Glaser (1989). However, Cascade is far from a
complete simulation, because some important cognitive processes, such
as reading, have been deliberately omitted from the model.
Interesting new educational technology may result from developing

the simulated students that are required of an integrated theory of cog
nitive skill acquisition. For instance, a simulated student might be a
valuable tool for training teachers. Simulators have been successful ad
juncts in training other skills, ranging from flying airplanes to trading
stocks. It may be a worthwhile investment to use simulators to train
teachers in the skills of selecting material to teach, organizing it, ex
plaining it, detecting student misconceptions and remediating them. In
addition to teacher training, there are other potential applications for
simulated students as well (VanLehn, 1991b).
The lack of an integrated theory prevents development of many ap

plications, not just educational ones. The problem is that a theory that
is in the collection-of-ideas stage often provides multiple or vague expla
nations of phenomena, which means that it can make only ambiguous
or vague predictions at best. Yet many applications, such as simulation,
require the theory to make unambiguous, precise predictions. Until our
understanding of cognitive skill acquisition is good enough that we can
make such predictions, many applications are beyond our reach.
This chapter is intended as a summary of the results so far from the

Cascade project. The project has gone through three major phases. In
the first phase, the program was developed and shown capable of learn
ing Newtonian mechanics correctly (VanLehn & Jones, in press). In the
second phase, the major findings from the Chi et al. study were simu
lated (VanLehn, Jones & Chi, in press). In the third phase, protocols of
each of the 9 subjects in the Chi study were simulated individually. The
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third phase is ongoing, so we can present only some of the planned analy
ses. In particular, we evaluate the overall fit of Cascade to the protocols,
which is important for seeing how well Cascade functions as a simulated
student and as a knowledge acquisition system that would satisfy Di
etterich's challenge. This chapter follows the historical development by
first describing the Chi et al. (1989) study, then describing Cascade,
then describing how Cascade accounts for the Chi et al. findings, then
describing how it simulates individual subjects.

THE SELF-EXPLANATION EFFECT

One of the major open issues in cognitive skill acquisition is understand
ing what happens when people study examples. (An example is a prob
lem together with a solution that is printed or demonstrated for the
student.) Much research has shown that when people are given instruc
tion consisting of theory, examples and explanations, they rely heavily
on the examples (e.g., Anderson, Farrell & Saurers, 1984; Sweller &
Cooper, 1985). In some cases they seem to ignore the theory and expla
nations, and in other cases their learning is actually retarded by them
(e.g., LeFevre & Dixon, 1986; Charney, Reder, & Kusbit, 1990; Ward &
Sweller, 1990). Because examples seem to do much more of the teaching
than was previously thought, it is important to understand how they
work.
Chi et al. (1989) took a direct approach to understanding how stu

dents study examples. They collected protocols as subjects studied ex
amples in classical particle dynamics, the first topic in a typical first-year
college physics course. Nine subjects studied the first three chapters of a
college textbook, then read the prose part of a chapter on Newton's laws.
They took a test on their understanding of the chapter, then studied 3
examples and solved 25 problems. Protocols were taken as they studied
the examples and solved the problems. On the basis of the scores on
problem solving, the subjects were divided into two groups. The 4 stu
dents with the highest scores were called the Good solvers; the 4 students
with the lowest scores were called Poor solvers, and one student was not
analyzed (see Chi and VanLehn, 1991, for a discussion of the subjects'
backgrounds and the median-split procedure). Since the students in both
groups scored the same on pre.tests, the Good solvers seemed to have
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learned more during the experiment. Using protocol analysis, Chi et al.
attempted to find out how the Good solvers managed to learn more than
the Poor solvers from the same material. They found four differences:

1. The Good solvers uttered more self-explanations as they studied
examples, whereas the Poor solvers' comments were mostly para
phrases of the examples' statements.

2. All students commented frequently on whether they understood
what they had just read. The Good solvers tended to say that
they did not understand what they had just read, whereas the
Poor solvers tended to say that they did understand. However, the
Poor solvers' scores show that they understood less than the Good
solvers. This indicates that the Poor solvers' self-monitoring was
less accurate than the Good solvers'.

3. During problem solving, the Poor solvers tended to refer back to
the examples more often than the Good solvers.

4. When the Good solvers referred to the examples, they read fewer
lines than the Poor solvers. The Poor solvers tended to start at
the beginning of the example and read until they found a useful
line, whereas the Good solvers started reading in the middle of the
example and read only one line.

Similar findings have also been observed in protocol studies of stu
dents learning Lisp (Pirolli &Bielaczyc, 1989; Bielaczyc &Recker, 1991),
electrodynamics (Fergusson-Hessler & de Jong, 1990) and biology (Chi,
de Leeuw, Chiu, & LaVancher, 1991). This cluster of findings is called
the self-explanation effect.

THE CASCADE MODEL

A consensus has emerged in both machine learning and cognitive psy
chology that it is important to distinguish two kinds of learning:

• One kind of learning is responsible for getting knowledge from the
environment into the mind of the agent. This is called knowl
edge acquisition in the cognitive skill acquisition literature and
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knowledge-level learning in machine learning. There are many
possible learning processes, depending on the type of instructional
information available in the environment and the type of knowl
edge to be acquired. The Cascade project, for instance, focuses on
how agents can learn college physics by studying worked example
exercises and solving problems.

• The other kind of learning increases the effectiveness of knowledge
that is already in the mind of the agent. This is called knowledge
compilation or knowledge tuning in the cognitive skills literature,
and symbol-level learning in machine learning. This class of learn
ing mechanisms includes explanation-based learning (EBL), chunk
ing (Newell, 1990), production composition (Anderson, 1983), and
many others. Some of these mechanisms provide explanations for
robust findings in the skill acquisition literature (e.g., Anderson,
1987; Newell, 1990).

In order to determine whether the learning in the Chi et al. study
was knowledge acquisition or knowledge compilation, and to set the stage
for developing a simulated student, we began by developing a problem
solver that could solve the problems in the study.l The solver was based
on past mechanics problems solvers (Bundy et al., 1979; Larkin, 1983;
Novak & Araya, 1980) as well as our informal inspection of the Chi et
al. protocols. The resulting solver had 62 physics rules and a host of
mathematical and common sense rules. These 62 rules became the target
knowledge base. The first goal of the Cascade project was to understand
when they were learned and how.
In order to find out where the target rules could be learned, two peo

ple who were not involved in the development of the knowledge base
determined whether each rule was mentioned anywhere in the textbook
prior to the point where the examples were introduced. There was 95%
agreement between the two judges, and disagreements were settled by
a third judge. They determined that only 29 of the 62 rules were men
tioned in the text. The other 33 rules would have to be learned during

1Actually, it could solve only 23 of the 25 problems. The other two involved
kinematics knowledge that we did not bother to formalise. These two problems will
be ignored throughout the remainder of the chapter.
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example studying or problem solving.2 This indicates that knowledge
acquisition must be going on during example studying and/or problem
solving. Knowledge compilation alone would not suffice to explain the
subjects' learning.
Cascade models two basic activities: explaining examples and solv

ing problems. Knowledge acquisition goes on during both. Because the
type of physics problems used in Chi's study involve only monotonic rea
soning, Cascade uses a rule-based, backwards chaining theorem prover
(similar to Prolog) to implement both activities. A physics example is
presented to Cascade as a set of propositions representing the givens
of the problem, a list of sought quantities, and the lines of the prob
lem's solution. For instance, the example of Figure 1 is represented with
the information of Table 1. Cascade explains each line by proving that
it follows from the givens and the preceding lines. To solve a problem,
Cascade is presented with propositions representing the problem's givens
and is asked to prove a proposition of the form liThe value of Q is X"
for each sought quantity Q. In the process of proving the proposition,
Cascade derives a value for the variable X, thus solving that part of the
problem. Although this model of problem solving and example explain
ing is clearly too simple to cover all task domains, it suffices for physics
and other task domains dominated by monotonic reasoning.
Cascade includes two kinds of analogical problem solving. Both types

of analogy begin by retrieving an example and mapping the example's
givens to the current problem's givens. These retrieval and mapping pro
cesses usually correspond to overt behavior. The subjects flip through
the textbook pages in order to locate an example, then look back and
forth between the example and problem, comparing the diagram and
text that describe the example's problem with the diagram and text
describing the problem they are trying to solve. This behavior gener
ally occurs only once per problem. All the examples and most of the
problems are accompanied by diagrams, and usually the subjects would
search for an analogous example after looking at the diagram and before
reading the problem. Thus, we think that the major process of retriev
ing an analogous problem is based on recalling, finding and comparing
diagrams. This retrieval process was not modeled in Cascade. The sys-

2They could also be recalled {rom earlier training in physics, but there is evidence
that this seldom occurred (Chi & Vanlehn, 1991; VanLehn, Jones & Chi, in press).
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Problem: The figure on the left below shows a block of mass m kept at
rest on a smooth plane, inclined at an angle of 35 degrees with the
horizontal, by means of a string attached to the vertical wall. What
are the magnitudes of the tension force and the normal force acting on
the block?

y

x

mg

Solution:
(1) We choose the block as the body.
(2) The forces acting on the block are shown in the free-body diagram
on the right.
(3) Because we wish to analyze the motion of the block, we choose All
the forces acting ON the block. Note that the block will exert forces on
other bodies in its environment (the string. the earth, the surface of
the incline) in accordance with the action-reaction principle: these
forces, however, are not needed to determine the motion of the block
because they do not act on the block.
(4) Since the block is unaccelerated, we obtain:

F+N+mg=O.
(5) It is convenient to choose the x-axis of our reference frame to be
along the incline and the y-axis to be normal to the incline (see figure
above, right).
(6) With this choice of coordinates, only one force, mg, must be
resolved into components in solving the problem.
(7) The two scalar equations obtained by resolving mg along the x- and
y-axes are:

F - mg sin 35 =0 and N - mg cos 35 =O.
(8) From these equations F and N can be obtained if m is given.

Figure 1: An example
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Table 1: An English version of the representation of the example of
Figure 1

Problem givens:

The current situation is named Ix.

Ix is a standard-gravity situation.

Block-ix is a block.

String-ix is a massless string.

Plane-ix is an frictionless inclined plane.

Block-ix slides on Plane-ix.

String-ix is tied to Block-ix.

Block-ix is at rest.

Block-ix is above Plane-ix.

String-ix is above Block-ix.

String-ix is to the right of Block-ix.

The inclination of Plane-ix is 35.

The inclination of String-ix is 35.

The mass of Block-ix is m.

Problem soughts:

The magnitude of the tension force on Block-ix due to String-ix.

The magnitude of the normal force on Block-ix due to Plane-ix.

Solution lines:

The set of bodies of Ix is Block-ix.

The set of arrows on the free-body diagram for Block-ix is {an arrow
at inclination 35 pointing up, an arrow at inclination 115 pointing
up, an arrow at inclination 90 pointing down}.

The set of axes on the free-body diagram for Block-ix is {an x-axis
at inclination 35, a y-axis at inclination 115}.

The magnitude of the tension force on Block-ix due to String-ix is
0- 0+ (l(mg) sin(35)).

The magnitude of the normal force on Block-ix due to Plane-ix is
0- (l(mg) cos(35))+O.
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tern was simply told which examples the subjects retrieved, and forced
to retrieve the same ones.
One of the two kinds of analogy is used to make search control deci

sions. It comes into play when Cascade has two or more rules for achiev
ing a goal and it needs to select among them. It uses the analogical
mapping to see if the example's derivation has a goal that is equivalent
to the goal that it is currently working on. If it finds an equivalent old
goal, the rule that achieves the old goal is chosen for achieving the new
goal. This type of analogy is called analogical search control, because it
uses the example as a source of advice on which of several alternatives
to try first. For instance, a student might say, "l cannot tell whether I
should project this onto the x-axis or the y-axis. At an analogous point
in the example, they projected onto the x-axis, so I'll try that too."
Analogical search control is also used in the Eureka system (Jones, 1989,
this volume).
The second type of analogy is used when Cascade cannot find a rule

that will apply to the current goal. It uses the analogical mapping to
try to find a line in an old example that it can convert into an appro
priate rule. It looks for a line in the example's solution that mentions
the current goal (or rather, a goal equivalent to the current goal under
the mapping). Most lines are equations, so it is simple to convert a
line to a temporary rule which can then be used to try to achieve the
goal. For instance, a student might say, "l need some way to get the
tension of string A. The example has a line saying that string 1's tension
is mg sin(30). Those two strings are analogous, and 30 degrees is anal
ogous to 45 degrees in this problem, so I bet that the tension of string
A is mg sin(45)." This type of analogy is called transformational anal
ogy, after a similar method explored by Carbonell (1986). As Carbonell
discovered, transformational analogies often yield wrong answers.
A major difference between the two kinds of analogy is that analogical

search control refers to the rules that achieved goals during the solution
of an example, whereas transformational analogy only refers to the lines
of the solution. When Cascade explains an example, it stores in memory
a set of triples, each of which contains the example's name, a goal and
the rule that achieved it. These triples are what analogical search control
searches through. If an example is not explained, then no derivation is
recorded, so analogical search control cannot get any advice from that
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example. On the other hand, transformational analogy refers only to
the solution lines. These are present regardless of whether the example
is explained, since they merely represent what the student can see as
they look at the page containing the example. Thus, transformational
analogy can function even if the example has not been explained.
Cascade's main knowledge acquisition method is called explanation

based learning of correctness or EBLC (VanLehn, Ball & Kowalski,
1990). The basic idea is to divide knowledge into domain knowledge
and non-domain knowledge. Domain knowledge represents rules that
the student believes to be correct and appropriate for the task domain.
Non-domain knowledge represents rules that are believed to be incorrect
or relevant only to other task domains. The most important non-domain
rules for learning are overly general rules. They can apply to many situa
tions, but they often draw incorrect conclusions. For instance, a domain
rule is "If there is a tension force F caused by a string S, and the tension
in the string is T, then the magnitude of the tension force is also T."
An overly general rule is, "If there is an entity F, with a part S, and a
property of part S has value T, then a property of the entity F also has
value T." This rule happens to be a generalization of the domain rule,
but as argued in VanLehn and Jones (in press), not all domain rules have
plausible overly general counterparts.
The basic idea of EBLC is to use overly general rules whenever domain

rules fail, then save a specialization of the overly general rule as a new
domain rule if all goes well. For instance, the domain rule just mentioned
is learned by specialization of the overly general rule. EBLC begins
when Cascade reaches an impasse that is caused by missing rules in
the knowledge base. An impasse IS defined to be an occasion when the
current goal matches none of the known domain rules or problem givens.
Impasses can be caused by missing domain knowledge or by reaching the
end of a dead end path in the search space which could have been avoided
by making a better search control decision earlier. Cascade explicitly
checks for the latter possibility before deciding that an impasse is caused
by missing knowledge. To resolve a missing-rule impasse, Cascade tries
to use an overly general rule to achieve the stuck goal. If the use of such
a rule ultimately leads to achieving the current top level goal (Le., to
explain a line or to find the value of a sought), then Cascade forms a
new domain rule that is a specialization of the overly general one. The
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specialization is chosen so that it is also a generalization of the particular
usage. For instance, on one problem Cascade could not determine the
pressure in a part of a container even though it knew the pressure in the
whole. Since there was no alternative solution to the problem using its
domain rules, Cascade decided that it was at a missing-rule impasse. It
applied the overly-general rule, "If an object is composed of parts, then
the property values of the parts and the wholes are the same." This rule
application ultimately led to a solution of the problem. Cascade then
formed a new domain rule, "If a container has a part, then the pressure
in the part is equal to the pressure in the whole." Thus, Cascade learned
a correct rule of physics by specializing an overly general rule in order
to resolve an impasse caused by missing domain knowledge.
Cascade has a second technique for learning new rules. It applies only

when it is explaining an example and attempting to prove a proposition
that has no variables. If it cannot prove the proposition with either
domain rules or overly general rules, then it gives up and simply accepts
that the proposition is true. It also builds a rule that sanctions this in
future similar cases. The rules say, in essence, that if a later problem
is analogous to this problem, then the analog to this proposition can
be assumed true for that problem too. This type of learning is called
analogical abduction.
From a machine learning point of view, Cascade does both knowledge

level learning (via EBLC and analogy abduction) and symbol-level learn
ing (via the saving of derivations, which are used by analogical search
control). EBLC and analogy abduction are both triggered by impasses,
so they will often be referred to as impasse-driven learning.
As a summary, Table 2 lists Cascade's main processes. Notice that a

new one has been slipped in. Cascade can be told to ignore an example
line instead of self-explaining it, a trivial process labeled "acceptance"
in the table.
Cascade's learning is similar to those proposed by existing theories

of skill acquisition. We believe that analogical search control can even
tually provide an account for the practice effects usually explained by
knowledge compilation (Anderson, 1983), chunking (Newell, 1990) and
other learning mechanisms. EBLC is similar to proposals by Schank
(1986), Lewis (1988), Anderson (1990) and others, which also acquire
new knowledge at impasses by specializing existing, overly general knowl-
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Table 2: Cascade's major processes
Example studying

• Self-explanation: Prove a line via backwards chaining.

• Acceptance: Ignore the example line.

Problem Solving

• Regular problem solving: Find a value for a sought via backwards
chaining. At search control choice points, use analogical search
control to decide which rule to apply.

• Transformational analogy: Find a line in an example that could be
adapted to achieve the current goal.

Impasse-driven learning

• Explanation-based learning of correctness (EBLC): Apply an
overly general rule. If that leads to success, save a specialization
as a new domain rule.

• Analogy abduction: Like transformational analogy, except a rule
is built so that future occurrences of the goal will be handled the
same way.
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edge. Although all these models of skill acquisition are similar in spirit,
they differ in significant ways. For more on the Cascade system and a
detailed comparison with its predecessors, see VanLehn and Jones (in
press).

MODELING THE SELF-EXPLANATION EF
FECT WITH CASCADE

A simple hypothesis for explaining the four major differences between
Good and Poor solvers is that Good solvers chose to explain more ex
ample lines than Poor solvers. To test this, several simulation runs were
made. All these simulations began with the same initial knowledge. The
initial domain knowledge consisted of the 29 physics rules that three
judges found to be present in the text (see the discussion at the begin
ning of the preceding section). The rest of the initial knowledge base
consists of 45 non-domain rules, of which 28 represented common sense
physics (e.g., a taut rope tied to a object pulls on it) and 17 represented
over-generalizations, such as "If there is a push or a pull on an object at
a certain angle, then there is a force on the object at the same angle."
See VanLehn, Jones and Chi (in press) for a list of the overly general
rules.
In principle, Cascade can use regular problem solving or transforma

tional analogy at any goal. For the sake of these experiments, we gave
it a fixed strategy. It would first try regular problem solving. If that
failed due to missing domain knowledge, then impasse-driven learning
was applied. Transformational analogy was used only as a last resort.
The first simulation was intended to model a very good student who

explains every line of every example. Cascade first explained the 3 ex
amples in the study, then it solved the 23 problems. (The 2 problems
that are not solvable by the target knowledge were excluded.) It was
able to correctly solve all the problems. It acquired 23 rules: 8 while
explaining examples and 15 while solving problems. All but one of the
rules was learned by EBLC; analogical abduction learned the other. The
new rules are correct physics knowledge, allowing for the simplicity of
the knowledge representation. Moreover, they seem to have the right
degree of generality in that none were applied incorrectly and none were
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inapplicable when they should have been applicable. However, some of
the rules dealt with situations that only occurred once in this problem
set, so they were never used after their acquisition.
The second simulation was intended to simulate a very poor student

who does no self-explanation. Because none of example lines were ex
plained, there was no opportunity for EBLC to learn new rules during
example studying, nor were any derivations left behind for use by analog
ical search control during later problem solving. Cascade was given the
same 23 problems given to it in the good student simulation. It correctly
solved 9 problems. Apparently these problems require only knowledge
from the text. As Cascade solved these problems, Cascade learned 3 cor
rect rules via EBLC. On 6 other problems, Cascade found an incorrect
solution. EBLC did not occur on these problems. On the remaining 8
problems, Cascade failed to find any solution or its search went on for
so long that it was cut it off after 20 minutes. Although EBLC was used
extensively on these problems, the rules produced were always incorrect.
On the assumption that a poor student would not believe a rule unless it
led to a correct solution to a problem, rules acquired during failed solu
tion attempts were deleted. Thus, the poor student simulation acquired
only 3 rules and solved only 9 problems correctly.

Explaining the self-explanation correlations

Cascade should be able to explain the four differences observed by Chi et
al. (1989) between Good and Poor solvers. Assuming that the number of
self-explanatory utterances is directly proportional to the number of lines
explained during example studying, the job facing Cascade is to explain
why explaining more lines causes better scores on quantitative post-tests
(finding 1), more accurate self-monitoring (finding 2) and more frequent
(finding 3) and more economical reference to the examples (finding 4).
The contrast between the good and poor student simulations indi

cates that Cascade can reproduce the positive correlation between the
number of example lines explained and the number of problems solved
correctly. During the good student simulation, it explained all the exam
ple lines and got all 23 problems correct; on the poor student simulation,
it explained none of the example lines and got 9 of the problems correct.
Knowing the operation of Cascade, it is clear that having it explain an
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intermediate number of lines would cause it to correctly answer an in
termediate number of problems. So the two extreme points (the two
simulations) plus Cascade's deterministic design are sufficient to demon
strate the main finding of the self-explanation effect.
One of the major advantages of a simulation like Cascade is that one

can run it many times with different components turned off in order to
ascertain why it succeeds. In particular, 20 rules were learned by the
good student simulation and not by the poor. For each rule, we can find
out why self-explanation allowed Cascade to learn it.
First, when more lines are explained, Cascade is more likely to stum

ble across a gap in its domain knowledge. Such missing knowledge causes
impasses, which lead to impasse-driven learning and the acquisition of
new rules during example explaining. Of the 20 rules that were learned
during the good student simulation and not the poor, 8 (40%) were
learned while explaining examples.
Analogical search control also aided the good student simulation's

learning. When more lines are explained, more derivations become avail
able for analogical search control. Analogical search control tends to keep
Cascade on solution paths during problem solving, and this means that
any impasses that occur are more likely to be due to missing domain
knowledge. Thus, EBLC is more often applied to appropriate impasses,
and thus more often generates correct domain rules. Of the 20 rules, 9
(45%) require analogical search control for their acquisition.
The acquisition of rules during example studying helps produce con

texts during problem solving that allow EBLC to learn more rules during
problem solving even without the aid of analogical search control. Of the
19 rules, 3 (15%) can be acquired during problem solving even when ana
logical search control is turned off. These new rules also contributed to
the improvement in problem solving. Table 3 summarizes the learning
of the two runs.
Cascade provides a simple explanation of the correlation between the

amount of self-explanation and the accuracy of self-monitoring state
ments. The explanation assumes that negative self-monitoring state
ments (e.g., "I don't understand that") correspond to impasses, and
that positive self-monitoring statements (e.g., "Ok, got that.") occur
with some probability during any non-impasse situation. When more
example lines are explained, there are more impasses, and hence the
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Table 3: Rules learned during Good and Poor student simulations

Good Poor When acquired
8 0 Example studying

Problem solving
3 3 No ex. studying rules, no analogical search control
3 0 With ex. studying rules, no analogical search control
9 0 With ex. studying rules, with analogi~al search control
23 3 Total

proportion of negative self-monitoring statements will be higher. In the
extreme case of the poor student simulation, where no example lines are
explained, all the self-monitoring statements during example processing
would be positive, which is not far off from Chi et al. 's observation that
85% of the Poor solver's self-monitoring statements were positive.
The third and fourth findings involve the frequency and specificity of

analogical references during problem solving. The number of references
made by analogical search control and transformational analogy were
counted. We assumed that only some of the analogical search control
references to the derivation were overt, and that the others were mental
references that would not show up in the Chi et al. data. This gave us a
prediction of the frequency of analogical references. To get a prediction
of the specificity of analogical references (i.e., the number of example
lines read per reference), we counted the number of lines read by trans
formational analogy before it found one it could use, and we assumed
that someone using analogical search control would go directly to the line
whose derivation contained the sought goal. Given these assumptions,
the good student simulation produced fewer and more specific analogical
references than the poor student simulation, thus modeling the Chi et
al. finding (see VanLehn, Jones & Chi, in press, for details).

Discussion

Although we controlled Cascade's behavior during example studying, by
either telling it whether to explain the examples or not, its behavior
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during problem solving was determined solely by how much it learned
during example studying. Qualitatively, the behaviors of the Good and
Poor runs were quite similar to the behaviors of the Good and Poor
students during problem solving. The good student simulation tended
to stay on solution paths, use regular problem solving more often than
transformational analogy, and learn something from the occasional im
passes it encountered. The Poor student simulation tended to wander
down unproductive paths, use transformational analogy more often, and
learn nothing from the many impasses that it encountered.
These properties of Cascade's problem solving behavior are consistent

with a preliminary analysis by Chi, VanLehn & Reiner (1988), who ana
lyzed the protocols of a Good solver and a Poor solver as they solved the
same problem. The Poor solver's protocol was divided into 77 episodes,
and of these, 30 (39%) resulted in impasses.3 Many of these impasses
seemed to result in acquiring incorrect beliefs. In contrast, the protocol
of the Good solver was divided into 31 episodes, of which only 7 (23%)
resulted in impasses. In 6 of these, the Good solver seemed to learn
a correct piece of knowledge. This preliminary analysis indicates that
the Poor solvers had proportionally more impasses (39%) than the Good
solvers (23%) while problem solving, and that the resulting knowledge
was more often incorrect. This is just what Cascade did, too.
Example studying took up a relatively small proportion of the time

that subjects spent during the study. Not only were there only 3 exam
ples compared to 25 problems, the subjects spent less time on average
studying an example than solving a problem. The learning strategy of
self-explanation was active only during example studying, so it comes as
a surprise that such a proportionally small change in work habits caused
such a large change in the amount learned. Perhaps the most important
result from the Good/Poor simulations is an explanation for this coun
terintuitive finding. The simulations showed that only 40% of the rules
learned by the good student simulation and not by the poor were learned
during example studying. The others were learned during problem solv
ing. This came as somewhat of a surprise to us. There were two basic

3An impasse was identified as an outcome of an episode whenever the student
believes that the next step that should be executed cannot be performed. Most (98%)
of the impasses were identified by explicit statements such as eel don't know what to
do with the angle," or "So that doesn't work either."
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reasons that self-explanation increases learning during problem solving.

• The rules learned earlier allowed Cascade to travel down correct
solution paths and reach impasses at places were it was indeed
missing knowledge. Without these rules, the poor student simula
tion could not reach these productive impasses.

• The derivational triples acquired during rederivation of the exam
ple lines served as search control advice during problem solving,
thus tending to keep the good student simulation on solution paths
that led to productive, missing-knowledge impasses. The poor stu
dent simulation tended to wander off the solution paths, and reach
impasses where there was nothing valuable to be learned.

It is doubtful that these interactions would have been discovered without
a simulation as detailed as Cascade.
These results taught us about self-explanation per se, but the use of

idealized student simulations leaves open the question of whether Cas
cade can actually model a real student. The next study tackles this
question.

MODELING THE PROTOCOLS OF INDIVID
UAL SUBJECTS

The objective of the study reported in this section was to find out how
close Cascade can come to modeling individual subjects. This study was
undertaken in the same spirit as the ones in Newell and Simon (1972):
Given a protocol, how closely can a simulation be fit to it? One difference
between this study and those of Newell and Simon is that the task domain
is physics, which is arguably a much richer task domain than the ones
they studied. However, a more important difference is that considerable
learning took place during our protocols.
A third difference is that our protocols are much longer than Newell

and Simon's protocols, which made it impossible to employ their method
of analysis. Each of the 9 subjects contributed protocols for 3 examples
and 25 problems, so there were 252 protocols to analyze. Each protocol
averaged about 12 pages, for a total of 3000 pages. Creating problem
behavior graphs for all of them would be far too much work. Thus, part of
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Subject Cascade

Figure 2: Matching the behaviors of Cascade and a subject

the challenge in this study was to devise feasible methods for measuring
the match between the behaviors of Cascade and the subjects.
Figure 2 shows how the match between the behaviors of Cascade and

a subject can be viewed. Region 1 represents behavior that the subject
exhibited and Cascade did not. Region 2 represents the behaviors that
are the same for both agents. Region 3 represents Cascade behaviors that
the subject did not exhibit. The behaviors in region 3 have two sources.
Some are computational expediencies: We couldn't get Cascade to do
exactly what the subject did, so we had it do something else instead.
That "something else" shows up in region 3. A Cascade behavior will
also be put in region 3 if it is plausibly something that the subject
did, but the protocol happens to show no signs of it occurring. For
instance, it is known that not all cases of impasse-driven learning show
up as hesitations or negative comments in protocols (VanLehn, 1991a).
Whenever Cascade's impasse-driven learning is not reflected by overt
signs of an impasse in the subject's protocol, that behavior is classified
as region 3 behavior.
In all of the analyses presented below, we tried to determine two

ratios: the amount of Cascade behavior that is matched by the subject
(region 2 divided by the union of regions 1 and 2), and the amount of
subject behavior that is matched by Cascade (region 2 divided by the
unions regions 2 and 3). In order to make these comparisons, we had to
find a way to count behaviors, which implies choosing a unit of analysis.
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This was not hard for the first ratio, because Cascade's behavior is well
defined. For instance, we usually used a goal as the unit of analysis and
counted the number of goals generated by Cascade that were matched
or unmatched by the subject. It was not easy to determine a unit of
analysis for the other ratio, the percentage of subject behavior matched
by Cascade. A variety of units were used, depending on the type of
analysis being conducted.
Five analyses were conducted (see Table 4). Because we are more

interested in getting Cascade to simulate the subjects' acquisition of
physics rules than in getting it to simulate the chronology of their rea
soning, four of the analyses ignored the order in which Cascade and
the subject made inferences. Both Cascade's behavior and the subject's
behavior were reduced to sets of inferences. Set intersections and differ
ences were calculated, just as shown in Figure 2. However, we cannot
entirely ignore the chronology of inferencing, since the earlier study in
dicated that analogical search control affects the location of impasses,
which in turn determines what can be learned during problem solving.
So a fifth analysis was conducted in order to see if the subjects' choices
during problem solving could be predicted by analogical search control.
After a description of how Cascade was fitted to the protocols, each of
these analyses will be presented.

Fitting Cascade

Fitting Cascade means setting values for parameters so that the pro
gram's behavior matches the given subject's behavior as closely as pos
sible. The parameters represent the products of cognitive processes that
are not modeled by Cascade, and yet Cascade's performance depends
on the outputs of these unmodeled processes, so they cannot be ignored
entirely.
There are two major types of parameters. The first controls initial

knowledge, which refers to the knowledge possessed by a student or Cas
cade just prior to studying the examples. The student's initial knowledge
comes from reading the first several chapters of the textbook and from
their earlier studies of physics and mathematics. Cascade does not model
these processes, so it must be given an initial knowledge base. Cascade's
initial knowledge base was always a subset of a fixed "rule library." The



46

Table 4: Analyses comparing Cascade's behavior to the subjects' behav
ior

1. How many of Cascade's example studying inferences were also
made by the subject?

2. How many of the subject's example studying inferences were also
made by Cascade?

3. How many of Cascade's problem solving inferences were also made
by the subject?

4. How many of the subject's problem solving inferences were also
made by Cascade?

5. Do the search control decisions made by the subject match those
made by Cascade?

library consists of 3 buggy physics rules,4 the 62 rules that constitute
the target domain knowledge, and the 45 non-domain rules mentioned
earlier. Selecting an initial knowledge base can be viewed as setting 110
binary parameters, one for each rule in the library, where 1 means that
the rule is included in the initial knowledge base, and 0 means that the
rule is excluded.
The second type of parameter controls the depth of self-explanation.

When studying examples, subjects choose to explain some lines but not
others. Even when they do explain a line, they may explain it only
down to a certain level of detail and decide to take the example's word
for the rest. For instance, they might explain most of the line, Fa.., =
-Fa. cos(30), but not bother to explain where the minus sign comes from.
Cascade does not model how the subjects decide which lines to explain
and how deeply to explain them.s To simulate the output of this decision

fOne buggy rule applies F = rna to any force and not just a net force. Another
asserts that the mass of a body is equal to its weight. The third assumes that the
sign of all projections is positive.
&There are many possible reasons for why subjects do not explain everything. For

instance, the subjects may feel that they already know everything that they could
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making process, extra propositions were entered into the descriptions of
examples. Whenever Cascade is about to explain something, it first
checks to see if accept (P) is in the example's description, where P is
the thing it is about to explain. If an accept (P) is found, Cascade
merely accepts P as explained without any further processing. Viewed as
parameter setting, this amounts to associating a binary parameter with
every explainable object, and setting it to 1 if it should be explained and
oif it should be accepted.
The accept propositions are set by inspecting the subject's protocol.

If the subject merely reads a line and says nothing else about it, then
an accept proposition is entered for the whole line. If the subject omits
discussion of a detail in a line, then an accept is placed around the
Cascade goal that corresponds to that detail. In this fashion, the data
completely determine which lines and parts of lines are explained by
Cascade.
On the other hand, there is no way to easily determine what the

subject's initial knowledge is. The whole protocol must be examined. As
will be seen later, we sometimes made mistakes in selecting the initial
knowledge. We should have fixed our mistakes, rerun the simulations
and redone the comparisons of the program's output with the protocols.
This will require months of work, so for this chapter, we are forced to
report the analyses with our imperfect choices of initial knowledge left
intact.

How many of Cascade's explanations are matched?

This section discusses the behavior of Cascade and the subjects as they
explained examples. Goals were used as the basis for dividing Cascade's
behavior into countable units. Each goal produced by Cascade was clas
sified according to the method used to achieve it:

• Regular explanation: Cascade used one of the domain rules.

• Impasse with learning: Cascade reached an impasse, successfully
applied an overly general rule, and learned a new domain rule via
EBLC or analogical abduction.

learn from explaining the line, or they may feel that explaining such details can be
left until such time as they really need to know them. Deciding how deeply to explain
a line is a fascinating topic for future research.
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• Accept without explanation: The goal was not processed any fur
ther, but merely accepted as true without proof, because the ex
ample's description contained an "accept" proposition for it.

Aggregating across the simulation runs of all 9 subjects, there were
1121 goals. We located each of these goals in the subjects' protocols,
and based on the talk surrounding them, classified them into the same
three categories plus a new one:

• Impasse with learning: If the subject paused, complained about
the goal or in some other way showed signs of being stuck, then we
classified the goal as being achieved by impasse-driven learning.

• Regular explanation: If the subject merely mentioned the goal or
its conclusions without any fuss, or the subject said nothing at all
about this goal but did mention its subgoals, then we classified the
goal as being solved by regular explanation.

• Accept without explanation: If the subject said nothing about this
goal nor its subgoals, then the goal was classified as being accepted
without explanation.

• Impasse and accept: Sometimes subjects clearly tried to explain a
goal, but couldn't do it at all, so they just accepted the goal without
proof. This is different from the other kind of acceptance, where
the subject did not even try to explain the goal. It is different from
the other kind of impasse because no learning occurs.

Table 5 shows the 1121 goals and how they were classified. Most
(1061 = 9+2+654 +396) goals were processed the same way by both
Cascade and the subject, so 95% of Cascade's behavior was matched by
subject behavior, which is highly significant (p « .001, Chi-squared
test). In order to get a qualitative understanding of the shortcomings
in Cascade's model of the protocols, each of the off-diagonal cells is
discussed.
There were 7 cases where Cascade learned a rule and the subjects

were coded as accepting the goal. All 7 cases occur at the same point,
on a line where the example says, "Consider the knot at the junction of
the three strings to be the body." Explaining this line causes Cascade
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Table 5: Proportions of Cascade actions matched by subject actions

Cascede Sublectl
Impasse Impasse Regula Accepl
resolved unresolved eXDlanation silentlY Totals

Impasse + EBLC G 0 10 0 19
Impasse + Anal. Abduct. 0 2 0 7 G
Regular explanation 0 0 654 39 693
Accept wlo explanation 0 4 0 396 400
Totals 9 6 664 442 1121

to learn a new rule via analogical abduction. However, only 2 of the 9
subjects commented about this rule during example studying. The other
7 said nothing at all about the line wherein this rule would be learned,
so they were coded as accepting the goal without proof. We could have
made Cascade accept the goal as well, which meant that it wouldn't learn
the knot rule. During later problems that had three strings converging
on a knot, this would cause Cascade to reach an impasse and use trans
formational analogy. Unfortunately, Cascade's transformational analogy
mechanism is not powerful enough to make use of the knot-is-a-body
line in the example. When we increased its power so that it could use
this line, it became too powerful and would draw analogies that were
so far fetched that no subject would consider them. This led us to in·
vent analogical abduction, which is a novel type of machine learning (see
VanLehn & Jones, in press, for discussion). In order to test it out, it
was included in Cascade. However, it is clear from this analysis that
there are empirical problems with it. If an example's line really does
cause analogical abduction, which is a form of impasse driven learning,
then more subjects should have shown impasses. We now believe that
transformational analogy is actually the source of transfer between the
example line and problem solving, and that the two subjects who had
impasses here should be classified as "impasse and accept," rather than
as learning a new rule. As will be seen later, there are other signs that
Cascade's model of transformational analogy is flawed.
There were 10 cases where Cascade learned a rule and the subjects

were coded as doing r.egular explanation. There are two possible ex
planations of this discrepancy. Either the subjects really were doing
impasse-driven learning, but they showed no signs of it in the protocol,
or the subjects knew the rule already and were simply applying it here
rather than learning it. Since the data are consistent with both explana-
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tions, the interpretation depends on the prior probabilities of possessing
the rules in question. All but one of the ten rules were not mentioned in
the textbook, so they are less likely to be in the subjects' initial knowl
edge. The rule that is mentioned in the textbook determines the sign of
a projection of a vector onto a negative axis. However, three subjects
showed clear signs of impasses when this rule was first used, and three
used a buggy version of the rule that always assigned a positive sign.
The correct sign rule appears to be hard to learn and/or recall from the
text for 6 of the 9 subjects, so it was probably not known by the other
subjects either. Thus, because none of the rules involved seem likely to
be in the subjects' initial knowledge, we suspect that all 10 cases in this
cell of Table 5 correspond to impasse-driven learning events that were
not displayed by the subjects.
There were 4 cases where the subject clearly tried to explain a goal

but failed. On subsequent problems, the subject would explicitly refer
back to these points in the examples and use transformational analogy.
This is just what the two subjects who were coded as doing analogical
abduction do, so that is why we now believe that there is no evidence
for analogical abduction.
There are 39 cases where Cascade did regular explanation and the

subjects were coded as doing accepts. Of these, 35 occurred when Cas
cade was trying to explain a force diagram. According to its rules, figur
ing out which forces exist and determining their directions are subgoals
deeply embedded beneath the goal of drawing the force diagram. Some
subjects discussed the forces without mentioning the force diagram. Ei
ther they were silently explaining many of the details of the force dia
gram, or they ignored the force diagram and "just knew" that it was
important to explain the forces. We think the latter is more plausible,
but we cannot easily model it without changing the goal structure em
bedded in Cascade's rules or Cascade's model of accepting the example's
statements without proof.
Stepping back from the details, there are several results from the

analysis in Table 5. It is clear now that Cascade needs several kinds of
revisions: (1) Analogical abduction should be eliminated and transfor
mational analogy strengthened. (2) The goal structure and/or the ac
ceptance mechanism need to be revised in order to handle some subjects'
explanations of free-body diagrams. (3) The subjects showed impasse-
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like behavior on 4 occasions, but seemed to learn nothing from them.
This is currently not an option with Cascade. It should be changed so
that one of its responses to an impasse is just to accept the stuck goal
as true without learning anything.
Another result concerns the handling of impasses. Cascade had 19

impasses where learning occurred, and of these, the subjects showed
impasse-like behavior on 9. If we believe the codings, then 48% of the
subject's impasses where learning occurred were visible in protocol data,
and the other 52% were the victim of the usual incompleteness of protocol
data. In the VanLehn (1991a) study of impasses in strategy discovery,
there were 11 learning events, of which 8 (73%) were marked by impasse
like behavior on the subject's part. This is consistent with the impression
that one gets from reading the protocols, which is that the subject in the
VanLehn (1991a) study verbalizes much more of her thoughts than the
subjects in the Chi et al. (1989) study. Thus, although the proportion
of "silent" impasses is higher in the present study, it is not inconsistent
with the earlier study's proposition.

How many of the subjects' explanations are matched?

The preceding section evaluated the match in one direction only, by
seeing how much of Cascade's behavior is matched by subject behavior.
This section evaluates how much of the subject's behavior is matched by
Cascade behavior.
In order to do this, we extended an analysis by Chi and VanLehn

(1991). They first coded every utterance in the example studying pro
tocols as either a physics explanation, a mathematical explanation or
one of several other kinds of utterances. They then coded each physics
explanation into an if-then rule that presented the gist of the subject's
comment in a uniform, more easily understood format. We extended
this analysis by including the mathematical explanations as well and by
correcting what we felt were a few minor mistakes in the earlier analysis
of physics explanations.6 Finally, we determined whether each rule ap
parently used by the subjects was also contained in Cascade's knowledge.

elt was usually clear what the action sides ofthese rules should be, but inferring the
preconditions and the generality of the rules often required making some assumptions.
Sometimes we disagreed with the assumptions made in the earlier analysis.
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Tahl(> (); Suhject's expla.nations during example studyillg

Explanations Cateoories
143 Matches Cascade (63%)

61 Outside task domain (27%)
23 Mathematical manipulations
9 Editting part a to solve part b

16 Extra example lines
13 Units or terminology
61 Total

23 Inside task domain (10%)
8 Incorrect explanations. retracted
6 Acceleration and motion
3 Abstract. partial plans
0 Global planning from Chi et aJ.
6 Miscellaneous. opportunistic

23 Total
227 Grand total

Some of this knowledge appeared explicitly as Cascade rules, while some
of it was implicit in Cascade's rule interpreter (e.g., algebraic knowledge).
Of the 12i total explanation episodes found in the protocols, we de

tennined that 14:3 (63%) were matched by Cascade explanations, while
84 were not. This indicates that Cascade models a large portion of the
subjects' explanatory behavior. However, there are also many explana
tions that Cascade does not appear to account for. We categorized these
expla.nations in order to determine whether Cascade should be expected
to III a.ke them (see Table 6).
Of the 8-1 explanations, 61 concerned reasoning that was outside the

domain of cognition being modeled. There were four classifications:

• 2:) explanations concerned mathematical inferences that Cascade
did not. need to make because it had either been given the infonna
tion in the problem statement (e.g., certain geometric information
was provided to it), or it did not simplify its answers.

• 9 explanations occurred exclusively on part bof one example. Pa.rt
(I of this example describes a. static situa.tion where a string is hold-
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ing a block on an inclined plane. Part b of the example asks one
to find the acceleration of the block when the string is cut. Sub
jects explained part b by "editing" the explanation of part a. For
instance, one editing rule was "If a force is removed from a static
case and there is no friction, the body will move." Cascade does
not reason about part b of the example in this manner. Rather,
the system treats parts a and b as two distinct examples.

• Sometimes an example would contain a few lines that would em
phasize aspects of the problem that were not germane to solving it
or would discuss limiting cases (see Figure 1, line 3). Although we
did not ask Cascade to explain these lines, the subjects sometimes
would, and 16 of their explanations were of this type.

• 13 explanations involved miscellaneous comments about the exam
ples that were judged to represent knowledge outside of the task
domain as formalized in Cascade. For instance, we did not bother
to model reasoning with units, so the statement, "In the English
system, slugs are mass and pounds are weight," is considered out
side the task domain.

The remaining 23 explanations are all relevant to the domain modeled
by Cascade, so it should probably generate them. They fell into three
classifications.

• 8 explanations appear to have been generated tentatively then re
tracted. They are all incorrect statements about physics, and the
subjects seem to have revised their explanation a short time later.
An example is, "If the two bodies in an Atwood's machine have the
same acceleration, then they are not moving." How the subjects
generated these conclusions is a bit of a mystery, although some are
clearly the results of overly general rules. For instance, one subject
said that one can calculate the tension in a string by adding the
tensions in its parts. He probably generated this explanation by
applying an overly general part-whole rule that works correctly for
quantities such as volume, mass and weight.

• 6 explanations concerned the relationship between motion and ac
celeration. Of these, 4 explanations stated essentially the same
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thing: "If a body moves, then it has a non-zero acceleration." An
other explanation said, "If a body has motion on an axis, then it
has acceleration on that axis," and the last explanation said, "If
acceleration is zero, then nothing is moving." These all stem from
the same incorrect conception of acceleration as speed, which is
very common and hard to remove (Reif, 1987). Cascade should
also be equipped with this misconception. Even though these new
rules would alter Cascade's model of the subjects' explanation of
examples, we do not expect that they would change Cascade's be
havior on later problems. This is because the problems all deal with
acceleration and do not mention concepts like velocity or "motion."

• 3 explanations articulated an abstract, partial plan for solving the
problem. For instance, one explanation said "The weight of the
block in the string example can be computed by figuring out the
tension in the strings." This rule represents the top level of an
abstract plan for determining the weight of the block. Cascade
does not do hierarchical planning, but this rule provides evidence
that perhaps it should. In particular, we would probably find more
evidence for planning in the problem solving protocols. Planning
did not have much of a chance to emerge during example studying
because subjects are mostly led by the hand through the example
solutions, so there is no real need to plan.

• 6 explanations defy classification, so they are simply listed below

1. The body is the thing that the forces are acting on.

2. Tension is important because jt transmits the force between
the blocks.

3. The acceleration in an Atwood's machine is caused by gravity.

4. If the right mass is greater than the left mass in an Atwood's
machine, then the machine will accelerate downward.

5. An upward force can act against gravity to keep a body from
falling down.

6. Most forces are gravitational.
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All 6 explanations are true statements. However, they are not
relevant to the goal of solving the problem, which is why Cascade
did not make them.

This analysis indicates that of the 227 explanations uttered by sub
jects, 143 (63%) were matched by Cascade's explanations, 61 (27%) were
outside the task domain being modeled, and 23 (10%) are explanations
that Cascade should make but does not.
Cascade embodies a hypothesis about explanation, which is that ex

planation of solution lines in physics examples consists of rederiving
them. This is a kind of local explanation, in that Cascade focuses only
on the current solution line. It does not step back and try to see a
global pattern that spans all the solution lines in an example. This may
seem somewhat unusual, as other models of example explaining (e.g.,
VanLehn, 1990; Reimann, in press) emphasize global explanation. How
ever, from one point of view, there is little point in global explanation of
physics examples. Because later solution lines use results from earlier so
lution lines, doing local explanation of the later lines ties them together
with the earlier lines, yielding an overall coherent structure. From an
other point of view, there is great benefit in global explanation, because
it turns out that all the examples have a similar chronological structure:
one first chooses bodies, then draws a diagram showing all the forces
acting on the bodies, chooses coordinate axes, instantiates Newton's law
along each axis, and solves the resulting system of equations. The text
book even mentions this procedure. One might expect the subjects to
look for such a global, chronological structure, perhaps by first locally
explaining all the solution lines, then reflecting on the whole solution to
see if the overall structure made sense. However, the subjects produced
only 3 global explanation statements. Seeing the overall chronological
pattern in solutions does not appear to be a major concern for these sub
jects, perhaps because the logical structure suffices to make lines cohere.
This is consistent with Sweller's work, which has shown. that chronolog
ical patterns embedded in solutions are often overlooked when subjects
are focussed on obtaining a goal (Sweller & Levine, 1982).
Another hypothesis about explanation embodied in Cascade is that all

inferences are ultimately directed towards the top level goal of explaining
the current solution line. Cascade uses a backwards chaining theorem
prover, which means that it starts with the top level goal, chooses and
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applies a rule, and then focuses on the first of the several subgoals cre
ated by the rule's application. When all subgoals have been achieved, it
executes the rule, which finally draws a conclusion. This means that all
inferences are done in order to satisfy some goal, and that goal is ulti
mately a subgoal of the top level goal. This makes Cascade a narrowly
focused, methodical explainer. It could be that people are more oppor
tunististic and make observations (i.e., drawing conclusions) whenever
they notice that they can be drawn. In the extreme, they might do for
ward chaining, drawing all possible conclusions about a problem while
paying no attention whatsoever to the solution lines or the overall goal
of the problem. However, only 6 of the 227 explanations appear to be
opportunistic, in that they were not matched by Cascade's goal-directed
inferences.

How much of Cascade's problem solving is matched?

We turn now to considering problem solving behaviors. The comparison
between Cascade and the subjects is made difficult by two factors. First,
the protocols are huge. There are approximately 2700 pages of problem
solving protocol, as compared to 300 pages of the example studying pro
tocol. Second, problem solving is less constrained than example study
ing. Rederiving a line in a solution takes at the very most only a few
minutes, whereas solving a problem can take almost an hour. Subjects
seldom get badly lost while rederiving a solution line, whereas when solv
ing a problem, subjects often wander down several unproductive paths
before finding a solution or giving up. Getting Cascade to follow the
subjects on a long doomed search path can be difficult.
An important methodological problem is finding a fair way to evaluate

the fit of a simulation and a protocol. Suppose one evaluated the fit
by counting the actions taken by the simulation that are matched by
subject actions, and dividing by the total number of actions taken by
the simulation. It often happens that the actions of the simulation and
the subject disagree at some point. This often causes them to diverge
and follow separate paths for a while, perhaps even a long while. The
longer the divergent paths, the worse the fit, even though the blame
is due to one false move earlier in all cases. Thus, simply comparing
matching to mismatching actions is unilluminating, for it confounds the
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quality of the simulation with properties of the search space, namely, the
lengths of certain paths.
Our approach is to equip Cascade with a variety of parameters, which

we call "nudges," whose main purpose is to nudge Cascade back onto the
subject's search path whenever it would otherwise wander off. The fit
between the simulation and the subject's protocol is measured by count
ing the number of times the simulation had to be nudged. An additional
benefit of nudging for measuring fit is that each nudge represents a piece
of unexplained cognition. By taking a census of the nudges, one can
rank types of unmodeled cognition and discover which ones are affecting
problem solving behavior the most. Here are the types of nudges used:

• When Cascade solves a problem, it normally tries transformational
analogy only after it tries regular domain knowledge. However,
some subjects apparently prefer to use transformational analogy in
some cases even when their behavior on earlier cases demonstrates
that they have the appropriate domain knowledge and could poten
tially use it here. In order to force Cascade to follow the subjects,
propositions of the form trafo-only(G) were placed in the prob
lem's description whenever Gis a goal that the subject preferred to
achieve via transformational analogy. We call such cases of trans
formational analogy "forced."

• By default, the top-level goals of a problem require identifying a
body and drawing a free-body diagram before finding the sought
quantities. If the subject did not draw a free-body diagram, we
eliminated these goals from the statement of the problem.

• On rare occasions, subjects came up with analogical mappings that
Cascade could not generate. In such cases, we simply gave Cascade
the subject's mapping or modified the problem representations so
that the subject's mappings could be generated.

• Subjects did not always use the buggy F = rna rule, which lets F be
an individual force instead of the net force, when it was applicable
(i.e., we could not figure out exactly what preconditions the sub
jects had for this rule). Perhaps they rightly believed that it was
overly general, and thus they would only use it as a last resort. At
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any rate, we controlled its usage by entering ignore(F=ma_wrong)
into the descriptions of some problems but not others.

In order to evaluate Cascade's ability to model a given subject, nudges
were entered by trial and error. Cascade's behavior then was compared
to the subject's by classifying each of the goals in its trace according to
how the goal was achieved. Four classifications were used:

• Regular solving: Cascade used one of the domain rules.

• Impasse with learning: Cascade reached an impasse, successfully
applied EBLC, and learned a new domain rule.

• Transformational analogy: Cascade could achieve the goal with a
domain rule, so it used transformational analogy.

• Forced transformational analogy: We forced Cascade to use trans
formational analogy even though it could have used a domain rule
to achieve the goal.

Next, each of these goals was classified according to how the subject
appeared to achieve it. Four classifications were used here as well:

• Transformational analogy. If the subject referred to an example
and copied parts of it over, the goal was classified as achieved by
transformational analogy.

• Impasse with learning. If the subject paused, complained about
the goal or in some other way showed signs of being stuck, but the
subject did not refer to an example to achieve the goal, then we
classified the goal as being resolved by EBLC.

• Impasse and give up. On a few impasses, the subject just gave up
without seeming to resolve the impasse or learn any new rules. Giv
ing up is not one of the options available to Cascade for handling
an impasse, although it should be.

• Regular solving: If the subject solved the goal without complain
ing, referring to an example or pausing for inordinate amounts of
time, then we classified the subject as achieving the goal via regular
problem solving.
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Table 7: How many Cascade goals are achieved the same way by sub.
jects?

CalCada Sublectl
Regula Transform. Impuae with Imp8II&and
IOlvln~ anaIoav Iearnlna aive lID Totals

Regular salving 3653 47 0 0 3700
Transform. analogy 1E 176 0 .. 106
Forced trans. analogy 0 35 0 0 35
ImDuse with Iearnina 7 0 II 0 16
Totals 367E 258 II .. 3947

Given these classifications, the results for all nine subjects appear in
Table 7. In most cases (3653 + 176+ 9 = 3838 or 97%), the subjects
handled goals in the same way that Cascade did, which was extremely
unlikely to occur by chance (p « .001, Chi-squared test). Let us ex
amine each of the other cells to see how serious the mismatching cases
are.
There were 47 cases where the subjects did transformational analogy

and Cascade did not. All these were due to the simplicity of Cascade's
model of transformational analogy. One subject often used vector equa
tions as if they were scalar equations, and applied them in creative, albeit
incorrect ways that Cascade could not model. We let Cascade solve those
problems in its normal way and counted all 42 goals as cases where the
subject did transformational analogy and Cascade did not. The other 5
cases occurred when a subject could not recall some trigonometry rules,
so she mixed transformational analogy with regular problem solving in
a complex way that Cascade could not model. These 47 cases indicate
that Cascade's model of transformational analogy needs improvement.
There were 16 cases where Cascade did transformational analogy and

the subject seemed to do regular problem solving. Transformational
analogies occur when Cascade is missing the knowledge to do regular
problem solving, so there are two possible explanations for each case:
Either the subject knew the rules that Cascade lacked, or the subject
actually did have an impasse and resolved it with transformational anal
ogy, but they didn't refer overtly to the example because they could
remember the line that they needed, and thus were not coded as per
forming transformational analogy. Of the 16 cases, 8 seemed to be cases
of covert transformational analogy because they involve accessing the
free-body diagram, which is much easier to remember than the equa-
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tions. Two more cases seemed to be covert transformational analogy,
because the subject had already referred to the example's equation 3
times earlier, and probably had committed it to memory. Five cases
seemed to be caused by the subject having a buggy rule about negative
signs that Cascade lacked, but Cascade was able to get the same effect
with transformational analogies. The last case is similar to the five just
discussed, but with a different rule. Thus, of the 16 cases, 10 seem to
be covert impasses correctly predicted by Cascade, and 6 seem to re
sult from the subject having initial knowledge that is not in Cascade's
standard initial knowledge base.
In 4 cases, the subjects reached impasses and gave up. Since Cascade

currently cannot give up at impasses, these cases were approximated with
transformational analogy. However, Cascade did succeed in predicting
the location of the impasses.
There were 35 cases of forced transformational analogy. Two subjects

(9 of 35 cases) always copied the free- body diagrams and never generated
them on their own, so these subjects apparently were lacking knowledge
about drawing free-body diagrams. In retrospect, these subjects should
have been modeled by having their initial knowledge adjusted to remove
the rules about drawing free-body diagrams. The other 26 cases occurred
with subjects who clearly had the requisite rules, but chose to do trans
formational analogy instead. Of these 26 cases, 21 involved copying a
free-body diagram rather than reasoning it out from physics principles
and the other 5 involved copying trigonometry functions rather than fig
uring out whether the function should be sine, cosine or tangent, and
what the angle should be. It is certainly easier to use transformational
analogy for these particular cases, and apparently the subjects felt it was
safe to do so, even though transformational analogy is fallible.
There were 7 cases where Cascade did impasse-driven learning and

the subjects were coded as doing regular problem solving because they
showed no signs of impasses. In general, there are two possible expla
nations for such cases. Either the subject actually did impasse-driven
learning but failed to show any signs of it in their protocol, or they
already had the rule that Cascade was missing so they just applied it
instead of learning it. We examined each of the 7 cases to try and deter
mine which explanation was most plausible for each. In some problems
with friction in them, Cascade must learn four rules about friction forces.
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One subject showed no signs of an impasse at any of these locations, so
we suspect that she already understood friction forces. Another subject
showed signs of an impasse at three of these places, but not at the fourth;
it is likely that this fourth occasion was a covert impasse. Similarly, one
problem required learning four rules about pressure forces. A subject
showed signs of an impasse on only two of the four occasions, so it is
likely that the other two occasions are silent impasses. Thus, of the 7
cases where Cascade does impasse-driven learning and the subjects ap
pear not to, 3 seem to be silent cases of impasse-driven learning and 4
seem to be cases where the subject already knew the rules that Cascade
learned.
From this examination of the mismatching cases, it seems that Cas

cade would need three augmentations in order to handle all the data. (1)
Transformational analogy needs to be made more powerful so that it can
model the more creative (albeit incorrect) usages exhibited by subjects.
(2) The model should be free to choose transformational analogy instead
of regular problem solving when it estimates that transformational anal
ogy would be easier or more reliable than regular problem solving. (3)
When Cascade cannot resolve an impasse, it should be allowed to give
up. All the other cases of mismatching appear to be covert versions
of the predicted events, or cases where rules should have been removed
from the initial knowledge base.
In short, it appears that almost everything that Cascade does is

matched by subject behavior. The next section analyzes the subjects'
behavior in order to see how much of it is matched by Cascade.

How much of the subjects' problem solving behavior is
matched?

In order to quantify how much of the subject's thinking during prob
lem solving could be simulated by Cascade, we adopted the same unit
of analysis that was used in the preceding analyses by converting the
subjects' protocols into Cascade-sized goals. As an illustration of this
analysis, Appendix 1 shows a protocol and our encoding of it. Following
the tradition of Newell and Simon (1972), the protocol appears in the
left column, and the encoding appears in the right column.
This kind of analysis is quite time consuming, so we could not do it
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for all 252 protocols. Thus, we selected 4 protocols that we felt were
typical. Two were from Good solvers, and two were from Poor solvers.
Each of these pairs consisted of one protocol that was mostly transfor
mational analogy and one that was mostly regular rule-based reasoning.
(The protocol in Appendix 1 is a Poor solver who is doing mostly trans
formational analogy.) Clearly, this is too small a sample to draw strong
inferences, but our point in this section is just to get a rough idea of the
match.
Inferences occur whenever a goal is reduced to subgoals, or a goal

is achieved. Thus, by literally reading between the lines, one can tell
from the encoded protocols what the subjects' inferences were. In the
four protocols, there were 151 inferences, excluding trivial arithmetic and
algebraic ones. We examined each, and determined that Cascade could
do all but 15 of them. That is, if we were to simulate these protocols
with Cascade, we would need 15 new rules and would probably have to
nudge it 15 times in order to get it to apply these rules. Thus, it appears
that Cascade can model about 90% of the subject's inferences during
problem solving.7

In order to give a qualitative sense of the behavior that Cascade could
not simulate, we divided the inferences into ones that seemed outside
of the intended task domain of Cascade and those that Cascade really
should have modeled. Those that are outside the task domain are:

• In 2 inferences, the subjects checked their work by plugging their
answers back into equations and seeing if the equations balanced.

• In 2 inferences, the subjects struggled to find the appropriate units
for their calculations.

• In 2 inferences, the subject had difficulty understanding the dia
gram that accompanied the problem statement. In particular, it
was difficult to decide whether a certain line stood for a string or
not.

The inferences that were inside the intended domain were:

7Frankly, this estimate seems high to us. If we actually tried to add the requisite
15 rules to Cascade and simulate these protocols, we would probably find that the
coverage was closer to 60% or 70%.
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• 4 inferences were coded for a case where the subject decided he
needed to understand freefall better, and went off to read the rele
vant page ofthe textbook, then decided that his (incorrect) solution
to the problem was right anyway.

• 2 inferences were coded for a case where the subject decided to
convert a vertical acceleration to one parallel to an inclined plane,
but apparently did not realize that projection could be applied
directly, so he "converted" it to a force using F = rna, projected
the force, then converted it back.

• 2 inferences involved a subject who let 9 = -9.8 for no apparent
reason. This could have been an unintentional error, except that
the subject noticed later that g was negative and did not correct it.
The second inference occurred later, when she dropped a negative
sign "for fun" as she put it, thus effectively canceling her earlier
error and obtaining a correct answer.

• 1 inference was coded for a subject who invented something he
called a "double force" that included both gravitational and fric
tional influences.

Although these lists would clearly be much longer if more protocols had
been analyzed, and the small sample makes any statistical inferences
unsound, taking the data at face value indicates that about a third of the
unmatched behavior is outside the task domain, and the other two thirds
is behavior that Cascade should model. Moreover, most of the behavior
that Cascade should model is incorrect reasoning of a wide variety of
types. More research is needed before we can conclude anything about
the sources of these incorrect inferences.

Control choices

The preceding analyses assessed what was done, but ignored the order
in which actions took place. This section concerns the overall control
structure as well as the local choices of which rule to try first in achieving
a goal. Both these factors control the order in which inferences take
place.



64

Cascade uses a backwards chaining control structure. A goal is pro
cessed by selecting a rule, then posting any subgoals required by that
rule. After the subgoals have been achieved, the rule's conclusion is as
serted. Thus, a goal should show up twice in a protocol: when it is
first posted and when it is completed. In our protocols, subjects did not
usually talk about their goals when they posted them (see Appendix 1),
although they often mentioned the conclusions that were made when a
goal was achieved. This could be taken as a sign that they were not
following a backchaining control structure. However, a control structure
also restricts the order in which actions can take place. For instance, if
A and Bare subgoals of C, and D is not, then the order A,D,B cannot
occur. Thus, the ordering in which goals are achieved is diagnostic of
the control structure.
As part of the analysis in the preceding section, we fit a backwards

chaining goal structure to the subjects' behavior in the four protocols
analyzed. Of the approximately 151 goals, there were three cases where
backwards chaining would not fit. In two, the subject performed goals
prematurely (i.e., the A,D,B case just mentioned). During the third case,
the subject explicitly decided which of two conjunctive (sibling) goals to
do first. This kind of search control occurs in some means-ends analysis
problem solvers (e.g., Prodigy; Minton et a1., 1989) but not in Cascade.
In short, the available evidence indicates that Cascade's control structure
is not a bad first approximation to the subjects' overall approach.
The only search control decision made by Cascade is which rule to

apply given that more than one matches the current goal. Two factors
determine Cascade's choice of rule. If analogical search control can find
an old goal that is isomorphic to the current goal, then the old goal's
rule is chosen. If analogical search control does not apply, Cascade selects
rules in the order in which they appear in a file. This file is set up to
generate efficient behavior in general, and is not tuned for any particular
subject.
The first analysis involves placing all goals in one of two classes: Ei

ther the first rule selected for achieving this goal was ultimately rejected
and another rule was used in its place in the final solution, or the first
rule selected was used in the final solution. This categorization was car
ried out for all Cascade goals and for all subject goals corresponding to
Cascade goals. Of the 3461 cases where Cascade picked the correct rule
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first, the subject failed to pick the correct rule first in only 81 (2.3%)
cases. Thus, Cascade predicted the subject's choice of rule in almost all
(97.7%) cases.
In order to determine how much of this success is due to analogical

search control, we split the 3461 cases according to whether Cascade's
choice was determined by analogical search control. Cascade selected
the correct rule first without the involvement of analogical search control
2702 times. In 62 of these cases, the subjects did not choose the correct
rule first. Thus Cascade's default rule ordering predicted the subjects'
rule choices 97.7% of the time. Cascade picked the correct rule first with
its analogical search control mechanism 759 times, and agreeing with the
subject's choice in all but 19 cases, for a success rate of 97.5%.
Initially, this seemed a disturbing result, because it appeared that

analogical search control gives the model no predictive accuracy over
the default rule ordering. This raises the question of whether Cascade
would be better off without analogical search control. If it always used
its default rule choice, would its overall prediction accuracy rise? Rather
than simulate all 9 subjects with analogical search control turned off, we
estimated what the fit would be. We gave Cascade all the knowledge
necessary to explain and solve the examples and problems (so no im
passes would be generated) and ran it on all the examples and problems.
While running, it kept track of how many times it used analogical search
control to choose a rule, and how many times that choice corresponded
to the default rule choice. We found that analogical search controlled to
a choice different from the default rule approximately 12% of the time.
This implies that if Cascade had been run with search control turned
off, then about 89 (12% of the 740) cases where analogical search control
predicted the subjects' rule choice would now become cases where its
predictions fail. In addition, hand analysis of the 19 cases where analog
ical search control failed to predict the subject's choices indicates that
only 2 cases would be successfully predicted if analogical search control
were turned off. Thus, if Cascade had only its default search control, it
would mispredict 106 cases that it successfully predicted with analogical
search control turned on, so its accuracy would drop to 95.6% as opposed
to 97.7% with analogical search control enabled. Thus, analogical search
control does help.
In order to further understand why analogical search control failed
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to predict 19 rule choices, each was analyzed. All were generated by 2
subjects, so Cascade's analogical search control predicted the rule choices
for 7 of the subjects with 100% accuracy. Moreover, it turns out that in
11 of the 19 cases, the first inference made by the subject could not be
modeled by any Cascade rule. Such cases indicate an inaccurate model of
the subject's knowledge, rather than an inaccurate model ofthe subject's
search control.
In summary, our initial result appeared to suggest that analogical

search control provided no closer match between Cascade's problem solv
ing behavior and the subjects' than Cascade's normal problem solving
did. However, for 7 of the 9 subjects, Cascade provides a clear improve
ment in matching the subjects when analogical search control is used.
For the other two subjects, the failure to match appears to arise from
missing prior knowledge rather than a defect in the learning mechanism.
Moreover, if analogical search control is turned off, Cascade's prediction
accuracy would drop.

Discussion of the fit between Cascade and individual sub
jects

There were two purposes in fitting Cascade to the individual subjects.
The first was to find out what the subjects were doing, and the sec
ond was to find out how well Cascade could model that. We discuss
these objectives together, first looking at example-studying behavior,
then problem solving behavior.
The two major processes during example-studying were explanation

of a line and acceptance of aline or a part of a line without explaining it.
Cascade's model of self-explanation is to rederive the line via ordinary
deduction. Cascade's backwards chaining control structure ensures that
only inferences relevant to the top goal are made. This sufficed to model
63% of the subjects' 227 explantions (see Table 6). Cascade's model of
accepting a line was simply to prune a whole subtree of an explanation by
accepting a goal as achieved without trying to achieve it. This sufficed to
account for 92% of the subjects' 422 cases of acceptance (see Table 5);
actually, the lack of fit may be due to the goal structure implici~ in
Cascade's rules rather than the acceptance mechanism per se. Overall,
Cascade accounts for about 75% ofthe subjects' behavior during example
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studying.8

The self-explanations that Cascade does not model are mostly (73%)
concerned with cognitive skills that we are not interested in modeling,
such as algebraic equation solving. That left only 23 explanations that
Cascade really should have modeled. These fell into two groups: in
correct explanations (14 cases) and more general comments (9 cases)
including abstract, partial solution plans and observations such as, "The
tension is important because it transmits force between the blocks of
an Atwood's machine." The first group indicates that Cascade needs
more buggy rules than it currently has. In particular, it needs to model
misconceptions about acceleration and motion. The second group indi
cated that the subjects have an ability that Cascade lacks. They can
stand back from the details and abstract an overall view of either the
solution (i.e., they see an abstract plan or chronological pattern in the
inferences) or the system (i.e., they form a mental model of the me
chanical device). Although these are certainly interesting and important
types of cognition, they appeared surprisingly rarely in this study (only
9 of 227 cases, or 4%). When the Cascade research began, we expected
plan recognition to be the most important kind of self-explanation. We
have since learned that it occurs rarely and may have little influence
on subsequent problem solving.9 Overall, it is good news that only 23
(14%) of the 166 interesting, task-domain relevant explanations uttered
by subjects require extensions to Cascade in order to model them. Even
in its present form, Cascade successfully models the bulk of the subjects'
self-explanations.

8The coverage figure for example studying was calculated as follows: Table 6 shows
that 63% of the subjects' self-explanations are modeled by Cascade. Table 5 shows
that 92% of the acceptances are modeled by Cascade. However, these tables use dif
ferent units. From Table 5, we can estimate that about 40% of the subjects' behavior
was acceptances, so we can use that figure to form a weighted average of the two cov
erages, and thus calculate that about 75% of the subjects' example studying behavior
is matched by Cascade.

9Although it seems pointless with only 3 cases of abstract planning in the example
studying protocols, we could analyze the problem solving protocols to see if these
subjects' rule choices during the relevant sections of their protocol are better explained
by the abstract plans they found during example studying than by the existing search
control mechanisms of Cascade. Because analogical search control probably makes the
same predictions about rule choices as an abstract plan, we doubt that this analysis
would yield unequivocal results.
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The two most common problem solving processes were backwards
chaining rule-based inference and transformational analogy. We were
surprised by the prevalence of transformational analogy during problem
solving, although it was certainly due in part to the fact that 12 of the 21
problems in the study were isomorphic (or nearly so) to one of the three
examples (i.e., there was a set of "string" problems, "incline" problems,
and "pulley" problems). Although only around 6% of subjects' problem
solving involved transformational analogy (see Table 7), it often had a
profound affect on the direction of the subjects' search. Cascade has a
simple model of transformational analogy, but it was not powerful enough
to handle all the cases. Subjects sometimes find analogical mappings
that Cascade cannot. They sometimes mix transformational and regular
problem solving (47 cases). They sometimes prefer to use transforma
tional analogy even when they do not have to use it (35 cases). Many of
these problematic cases occur when subjects need to draw a free-body di
agram and refer to the example's free-body diagram for help. They may
be using well-honed skills for visual analogizing. This would explain why
Cascade's transformational analogy, which is oriented towards analogical
transfer of equations, is so incomplete.
On the whole, it appears that most of the example-studying and

problem-solving behavior can be explained as deduction, simple accep
tance of example statements, and transformational analogy. Although
these three processes cover only 75% of the example studying behavior
and 60-90% of the problem solving behavior, the behavior they do not
cover mostly involves mathematical manipulations and other types of
cognition that are outside the domain of study.
We were surprised to find that the overall control structure and local

control choices were also modeled rather accurately by Cascade (see the
preceding section). However, we did not stress this aspect of Cascade ei
ther during it development nor during its evaluation, so there is probably
much room for improvement in both areas.

GENERAL DISCUSSION

We have completed three steps of a four-step research program. The first
step was to find a computationally sufficient account for the knowledge
acquisition that occured in the Chi et al. study. The major technical hur-
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dIe was finding a way to constrain search during problem solving so that
impasses would occur at the right places. This was achieved by adding
analogical search control, a form of symbol-level learning. There was no
way to tell in advance of running Cascade whether analogical search con
trol was sufficient. Fortunately, it was, and Cascade was able to learn all
the rules that it needed to learn. Moreover, the problem of getting im
passes to occur in the right places is faced by all impasse-driven machine
learning systems, so this result is relevant to many machine learning
systems. A minor hurdle was finding a way to transfer knowledge from
the knot-is-a-body example line to problem solving. After trying sev
eral methods, we discovered a new machine learning technique, which
we called analogical abduction.
The second step in the research program was to demonstrate that

Cascade could explain the main findings of the Chi et al. study. As a
model of the self-explanation effect, Cascade was qualitatively adequate.
It could self-explain example lines as well as just accept them. It could
solve problems with and without referring to examples, and its analogi
cal references can both dive into the middle of the example to pick out
a single fact (analogical search control) or read the example from the
beginning searching for a useful equation (transformational analogy). In
order to go beyond qualitative similarity, simulations were conducted
that modeled an idealized good student and an idealized poor student.
All four of the main findings from the self-explanation study were re
produced in the contrast between the two simulations. A particularly
suprising result was that most of the learning occurred during problem
solving even though the particular learning strategy we manipulated,
self-explanation, operated only during example studying. Examination
of Cascade's processing showed that the acceleration of its learning dur
ing problem solving was caused by (1) analogical search control obtain
ing more guidance from the experience (derivation) left behind by self
explaining the examples, and (2) problem solving having prerequisite
knowledge, obtained during example studying, that allowed it to reach
impasses where learning could appropriately take place.
The third step in the research program was to demonstate that Cas

cade can simulate real student cognition at the 5 to 10 second unit of
analysis. We fit Cascade to subject protocols by forcing it to explain
exactly the same lines as the subject and to do transformational analogy
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at exactly the same points as the subject. We also gave it initial knowl
edge that approximated the subject's knowledge just prior to explaining
the examples. Setting these parameters, plus occasionally "nudging" the
system, sufficed to fit Cascade to cover most of the subjects' behavior.
Such fitting was carried out for all 9 subjects, and the resulting match be
tween system and subject behavior was evaluated. As one might expect,
given that Cascade was designed to model the subjects, almost every
thing it did was also done by the subjects. Tables 5 and 7 show that
over 95% of Cascade's goals occured in the subjects' behavior and were
achieved the same way by both simulation and subject. On the other
hand, when the subjects' behavior is analyzed in terms of goals and infer
ences, about 75% of their example-studying behavior and between 60%
and 90% of their problem-solving behavior is matched by Cascade goals
and inferences. Most of the unmatched behavior concerns mathematical
manipulations and other skills that Cascade was not intended to model.
It was found that the main inadequacy in Cascade is its simple model of
transformational analogy. Subjects were quite clever at forming useful
analogies with the examples, and especially their free-body diagrams.
The fourth step in the research program is to use the fitted models of

individual subjects to find out more about their learning. Unfortunately,
we discovered during the current fitting that some of our assumptions
about initial knowledge were incorrect, so we will have to rerun the
fitting exercise with new assumptions before conducting these analyses.
Nonetheless, a few speculative remarks can be made on the basis of the
existing analyses.
We were surprised that there were so few clear-cut cases of impasse

driven learning in the protocols. Tables 5 and 7 show that the subjects
had clear signs of impasses on only 18 occassions when Cascade did
EBLC. Although analyses to be conducted later will tell us exactly why
there were so few clear cases of learning, it appears that it is due to
overuse of the free-body diagrams. Most of the rules learned by the ide
alized good student simulation are used during the initial stage of solving
a problem, when a situation is analyzed and the forces and accelerations
are found. The examples cover this phase by merely presenting the free
body diagram and perhaps adding a few lines of explanation for any
forces that they consider unobvious. As a consequence, most subjects
simply accepted the free-body diagrams without trying to explain them,
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and thus missed the opportunity to learn. During problem solving, the
diagrams were again overused. This time they subjects tended to use
transformational analogy to adapt an example's free-body diagram in
stead of figuring one out from their knowledge of physics. Thus, they
would miss the chance to do impasse.driven learning. This problem was
exacerbated by the fact that most of the 25 problems were deliberately
constructed so as to have free-body diagrams that were similar to ones
in the examples. Subjects who used transformational analogy for these
problems tended to get them right. This meant that subjects could learn
very little and yet still get high scores. For instance, one subject who did
not know about normal forces nonetheless got all of the "normal force"
problems right. In short, it appears that overuse of the diagrams, exac
erbated by the design of the study's problem set, reduces the number of
cases of impasse-driven learning.
On the other hand, it could also be that subjects had instances of

impasse-driven learning, but they showed no overt signs of them. Most
of the cases of overt impasse-driven learning came from just two subjects
who were the most vocal of the subjects. It is likely that the other sub
jects had episodes of impasse-driven learning but did not report them.
We had hoped to detect th~se silent impasses by seeing changes in the
subject's behavior. That is, we had hoped to see one or more occasions
where the to-be-Iearned rule could be applied but was not, followed by a
solid string of occasions where the rule was applied. The learning event
would be somewhere in the vicinity of the transition from non-usage to
usage. This type of analysis succeeded in locating silent learning events
in Tower of Hanoi protocols (VanLehn, 1991a) and finger counting pro
tocols (Siegler & Jenkins, 1989; Jones &VanLehn, 1991). Unfortunately,
most subjects in this study either always used a rule or always avoided
it. In some sense, they had to do this. Subjects in the two earlier studies
learned new alternative strategies to solve a problem that they could
already solve. Thus, if they did not use one of the to-be-Iearned rules,
they always had their old rule to use instead. This was not the case in
the present study. If a rule was missing for a new kind of force, for ex
ample, then the subject's only alternative to learning a new rule was to
use a transformational analogy. Once they have successfully used trans
formational analogy for this appearance of the new force, they would
tend to use it for all other appearances. In this fashion, they would miss
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the opportunity to learn new rules. In short, if a subject was to learn a
rule, they tended to learn it on the first occasion that it was possible to
learn it. If they used an alternative to the rule, then they tended to keep
using that alternative through the end of the study. Thus, we found few
transitions from not using a rule to using a rule, and we have little solid
evidence for silent impasses.
In short, it appears that there is less learning in the protocols than

we had hoped, although this might be partly an artifact of our inability
to detect silent impasses. Nonetheless, there is much to be learned by
examining the instances oflearning that did occur. For instance, it would
be good to find out if analogical search control really did playa role in
guiding the subjects to an appropriate impasse.
Cascade is based on the assumption that the self-explanation effect is

due solely to a difference in example-studying habits rather than a dif
ference in prior knowledge. Surprisingly, this assumption held up even
during the fitting of individual protocols. However, we expect some
challenges to arise during the next set of analyses. It may be that the
subjects' policies about using transformational analogy are just as im
portant as self-explanation in determining whether learning will take
place. We suspect that effective learning requires both that the subject
explain an example and that they try not to refer to it during problem
solving for purposes of obtaining a free-body diagram or an equation.
On the other hand, referring to the example for advice on which rule to
choose (analogical search control) should be encouraged. Methodologi
cally, the complexity of this speculative prescription shows the advantage
of simulation-based analyses of behavior. A prescription based on just
the Chi et. al study would be simpler and perhaps not as effective.
Cascade shows promise as a general model of cognitive skill acqui

sition, but it needs considerable work beyond fixing its model of trans
formational analogy. In order to be a more complete account of the
phenomena at hand, it needs a model of analogical retrieval and of the
difference between physical and mental references to the examples. We
believe the existing mechanisms can also handle some well-known phe
nomena of skill acquisition, such as practice and transfer effects, but
this needs to be demonstrated. The major limitation on the general
ity of Cascade 3 is its use of monotonic reasoning. With the help of
Rolf Ploetzner, we are currently incorporating a version of the situation
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calculus which will greatly enhance the types of reasoning Cascade can
model, and thus the number of task domains that it can model. We
are encouraged to extend Cascade to become a more complete, more
general model of learning by its similarity to other theories of cognitive
skill acquisition (e.g., Anderson, 1990; Schank, 1986). It is considerably
simpler than those theories and probably more thoroughly implemented
and tested. We hope that its simplicity and empirical adequacy remain
intact as it is extended.
Finally, these results shed some light on the possibility of using ma

chines to acquire knowledge for expert systems from ordinary human
instructional material. Any AI expert would suspect that machines
would have a hard time learning from human materials because they
lack common sense. It turns out that common sense was important for
Cascade's learning, but it was not particularly hard to provide it. Com
mon sense was encoded in the non-domain knowledge given to Cascade
as part of its initial knowledge base. Most of the non-domain knowl
edge concerned geometric reasoning, common-sense physical reasoning
about pushes and pulls, and most significantly, overly general rules. This
knowledge was used during EBLC to form new physics-specific domain
knowledge. Hence, common sense knowledge was crucial because it heav
ily constrained learning. On the other hand, it was not particularly hard
to figure out what that knowledge should be. Whenever Cascade would
reach an impasse that it could not resolve with its existing common sense
knowledge, it was usually quite simple to specify that knowledge. After
all, it is common sense.
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APPENDIX

This appendix contains an example of a subject's protocol encoded at
the level of Cascade-like subgoals. The protocol appears in the left col
umn, and the encoding appears in the right. An U(R)" in the left column
indicates that the subject is reading the problem aloud. The coding pro
cedure consisted of pretending that the subject was a version of Cascade,
and generating the problem-solving trace that this version of Cascade
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would have to generate to lead to the utterances found in the protocol.
In order for the subject's actions to fit into Cascade's control structure,
it was sometimes necessary to hypothesize problem-solving goals that
are not verbalized.
The Cascade model contains four types of goals:

• value(X): find a value for the quantity X.

• solve(X=Y): find a solution to the equation X=Y.

• retrieve(example): find an example similar to the current problem.

• equation(X): find an equation that can be used to compute a value
for X.

Each goal appears with an "S:" when the goal is posted and an "F:"
when a solution to the goal has been found. In addition, the model
sometimes must explicitly "backtrack" over some subgoals to account
for backtracking behavior by the subject.
The coding process allowed us to fit the hypothetical Cascade model

as closely as possible to the subject's behavior. In doing this, we were
able to identify specific locations at which the current implementation
of Cascade would fail to generate the subject's behavior. At these loca
tions, we would have to manually "nudge" the system onto the correct
reasoning path. Events of this type are marked with event numbers in
the right-hand margin.
This particular protocol concerns a "poor" subject solving a combi

nation pulley-incline problem. The subject initially retrieves the pulley
example and copies the equations for tension and acceleration from that
example. For the most part, the subject attempts to directly apply these
equations to the current problem (a strategy that will lead to an incorrect
solution). The subject computes the tension of the string and the accel
eration of the free-hanging block in this manner. However, to compute
the acceleration ofthe block on the incline, the subject assumes his result
for acceleration from the copied equations is actually the projection of an
acceleration vector that points down the incline. The subject apparently
does not have a rule for computing the projection of an acceleration vec
tor, so he converts it to a force vector by multiplying the acceleration
by the mass of the block (F = ma). He then computes the projection
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of the force vector and converts the result back to an acceleration with
F = rna again.
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Problem: q5
Subject Sl03 Hypothetical Ca.cade model
--------------------------------------------------------------------------------

(2)
(3)

(1)
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briti.h

F: value(system(problem»:
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S: equation IT)
F: equation (T): «2mlm2) / (..1+012» q
S: solve(T-(12mlm2)/(ml+m2»g)
S: value (..1)
F: value (ml) :3.0
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F: value (m2) :2.0
S: valuelg)
S: value(.yatemlproblem»
s: valuelsystem(slugs»

5: solve(accel(ml)
Fn(proj(accel(ml»»,
aolve(accel(m2)
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value(proj(accel(m2»)

S: value(T) [valuelten.ionlcord»)

S: r.trieve(.xampl.)
F: retrieve (example) : ~x
s: equation(ml), equat1on(m2)
S: equation(ml)
F equation (..1) : T-mlg-mla
S equation (m2)
F equation(m2): T-m2q-m2a
F: equation(ml), equatlon(m2):

T-mlg-mla, T-m2q-m2a

+
I
I
I
I
I
I

of th.1
I
I
I,
I
I
+

What system i. slugs?
Where i. that table again?
Here.
Slugs ia feet and all.
So that would be .•.

The Y compon.nt for thia ml block on
the .lant, and find the
whole fore., th.n I'll find the whole
acc.leration for that.
Okay.
So that would be T equal. 2 timea H.•.
Two times ma.a one i. 3.0 time. maas
two is 2.0 over mass one
plua two, is 3.0 plus 2.0 .•• tims
.lugs ..•

Okay.
Ummm •••
Okay.
Wait.
If ...
Find the ten.ion of the whol•...
Okay, I want to find the tenaion
whole thing again,
and th.n I can find the acc.l.ration
for each one, and u.e
that to find force for ehh •.• for the
aecond ...well I'll uae
it.
Okay, if I uae that to find the
component of the force like
for the F •••

Okay. ,
(R) A block of ma•• ml equala 3.0 aluga,
on a •••••••mooth I
incline plane of angle 30 d.gree. i. ,
conn.ct.d by a cord ,
ov.r a .mall frictionl... pull.t to a ,
••cond block of ma.. ,
m2 equal. 2.0 .lug. hanginq v.rtically.,

ISouqhta: accel(ml), acc.l(m2),
I tenaion(cord)

(R) What ia the acc.l.ration of each S: valu.(acc.l(ml», valu.(acc.l(m2»
body?
Okay.
That would juat •••
Ahhh .••
Okay, the acceleration •••
That would be H.••with ••• that would be
like the pull.y
again ••• thi. equation. (mumbl.a)
Thi. one.
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Gravity would be 32 feet per aecond
.quared.

Okay, ao 'I' equal. 2 time. 3 i. 6.

Tim•••. 12 ( ) i. 36 timea 2 i. 12.

12 ••• time 32 equal ••• divided by 5. I
I
I
I
I
I
IEqual. 76.8. I
I
I
I
I
I
IOkay. I

And the acceleration... I
For m1 the accel... +
I'll do a2 fir.t.
Acceleration for a2 i. the lighter
one, would be .•.
Ahh•.• 'l' minus a1Gm2V equab m2A•••
76.8 ainu. 2 time. 32

equab 2A.
2A equal. 76.8 ainu. 64 would be 12.8.

A would b •••• 6.4.

And for •••
ml ...

'I' ainua mlG equal. n.gativ. mlA

Will b. 76.8 minua 3 tim.a 32 equala

F: valu.(g): 32

s: 80lv.(T-((2*3.0*2.0)/
(3.0+2.0»*32)

8: value((2*3*2)/(3+2»*32)
8: valu.((2*3*2)*32)
S: valu.(2*3*2)
S: valu.(2*3)
F: value (2*3) : 6
8: valu.(6*2)
F: value (6*2) : 12
F: valu.(2*3*2): 12
S: va1u.(12*32)
F: value (12*32) : 384
F: value((2*3*2)*32): 384
8: value(384/(3+2»
S: valu.(3+2)
F: valu.(3+2): 5
S: valu.(384/5)
F: valu.(384/5): 76.8
F: valu.(384/(3+2»: 76.8
F: valu.((2*3*2)/(3+2»*32): 76.8
F: aolv.(T-((2*3.0*2.0)/

(3.0+2.0»*32): '1'-76.8
F: aolv. ('1'-( (2mllll2) / (m1+I112» g) :

'1'-76.8
F: valu.(T): 76.8
S: valu.(Fn(proj(accel(ml»»
Backtrack (4)
S: valu.(proj(acc.l(m2»)

s: 801v.(T-lII2g-11l2a)
[a-proj(accel(III2»]

S: "alu.(T)
F: valu.(T): 76.8
s: "a1u.(m2)
F: valu.(III2): 2
S: valu.(g)
F: valu.(g): 32
S: aolv.(76.8-2*32-2*a)
5: valu.(76.8-2*32)
S: valu.(2*32)
V: "alu.(2*32): 64
S: "alue(76.8-64)
F: value(76.8-64): 12.8
S: "alu.(76.8-2*32): 12.8
S: aol".(12.8-2*a)
S: 801v.(a-12.8/2)
5: value(12.8/2)
V: valu.(12.8/2): 6.4

V: aolv&(a-12.8/2): .-6.4
V: ao1v&(12.8-2*a): .-6.4

V: aolv&(76.8-2*32-2*a): a-6.4
V: aolv.(T-m2g-11l2a): a-6.4

V: valu&(proj (acc.1 (m2») : 6.4

S: valu&(Fn(proj(acc.l(ml»»
S: va1u.(proj(acc.1(ml»)
S: ao1v.(T-mlg--mla)

[a-proj(acc.l(ml»)]
S value ('I')
F valu.(T): 76.8
S value (101)
F valu&(..l): 3
S value (g)



negative 3A••.
That's 76.8 minus ( ) •••
76.8 minus 96· equals negative 19.2.

Negative 3A equals negative 19.2.

So A equals 6.4 again.

It's ~ters per •••
No it isn't.
It's feet per second equared.
This is feet per second squared.
Okay, but that's just the vertical
part.
Caus. it's not a slant.
So you can find ••.
Force .quals ma .•

And so it would be Fy .quals mAy

Fy .quals mas. is 3 slug tim•• 6.4

.quals 19.2 pound••

Okay, then F would .qua~ Fy over the
.ine of 30 d.gre.s.
fifo ••
Equal 19.2 ov.r the .ine of 30
d.gr.es .qual. 19.2 divid.d by
30 d.gr.es sin••quals 38.4 pounds.

Okay, th.n.
Acceleration ••.
F .quals ma •••
38.4 pound••qual••••mas. i. 3.lugs
time. A.

A equals 12.8 feet per second squared.

I
I
+
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F: value (g) : 32
s: solve(76.8-3*32--3*a)
S: value(76.8-3*32)
S: value(3*32)
F: value (3*32) : 96
S: value(76.8-96)
F: value (76. 8-96) : -19.2
F: value (76. 8-3*32) : -19.2
s: solve(-19.2--3*a)
S: solve(a--19.2/-3)
S: value(-19.2/-3)
F: value (-19.2/-3) : 6.4
F: solve(a--19.2/-3): a-6.4
F: solve (-19.2--3*a) : a-6.4
F: solve(76.8-3*32--3*a): .-6.4
F: solve (T-m1g--mla) : a-6.4
F: value(proj(accel(m1»): 6.4

8: solve(F_a) [a-accel(m1») (5)
8: solve (a-F/m)
s: value (F/m)
8: value(F)
s: solve(F-Fy/sin 30)
s: value(Fy/sin 30)
8: value (Fy)
s: solve(Fy_*ay)

[ay-proj(accel(m1»)
s: va1ue(m*ay)
s: value(m)
F: value(m): 3
s: value (ay)
F: value (ay) : 6.4
s: value(3*6.4)
F: value(3*6.4): 19.2
F: value (m*ay) : 19.2
F: solve (Fy-m*ay) : F-19.2
F: value (Fy) : 19.2

s: value(19.2/.in 30)

F: va1ue(19.2/.in 30): 38.4
F: value(Fy/sin 30): 38.4
F: ao1ve(F-Fy/ain 30): F-38.4
F: value (F) : 38.4

s: va1ue(m)
F: va1ue(m): 3
s: va1ue(38.4/3)
F: value(38.4/3): 12.8
F: va1ue(F/m): 12.8
F: .olve(a-F/m): a-12.8
F: .01ve(F-ma): a-12.8
F: va1ue(Fn(proj(accel(m1)): 12.8
F: v~lue(Fn(proj(accel(ml»)),
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Okay, part B.
(R) What is the tension in the eord?
I found that.
While I vas doing part A.
And it equals 76.8 pounds.

I
I
IF:
I
I
IF:
I
I
IS:
IF:
I
I

value (proj (aeeel(m2») :
12.8, 6.4

solve(aeeel(ml)-Fn(proj(aeeel(ml»)
solve (aeeel(m2)-proj (aeeel(m2)

12.8, 6.4
value(aeeel(ml», value(aeeel(m2»:

12.8, 6.4

value(tension(eord»
value(tension(eord»: 76.8
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Abstract

Training materials in practical electronics appear to follow a building
blocks approach in which common simple circuits are presented and then
combined into more complex circuits. Each circuit is presented in the
form of a circuit diagram and an explanation of how the circuit works in
terms of a causal chain of events. Such materials suggest that learning
electronics consists of learning schemas for the building block circuits;
complex circuits can then be understood as combinations of these simpler
schematic circuits. The process of learning appears to be based on
extracting schemas from the explanations. This report presents human
experimental results based on earlier artificial intelligence work in this
project. Engineering students learned building block circuits and then
learned complex circuits; the time required to understand the explanations
and answer questions about the circuit behavior were compared to an AI
system that learned from explanations and a model of question-answering.
Generally, learning the schematic building block circuits facilitated
performance, and the AI system and question-answering model could
predict the amount of facilitation. However, the benefit of learning circuit
schemas under these conditions was surprisingly mild.

INTRODUCTION

Explanations and Schemas in Electronics

Practical electronics textbooks, such as those used for training in the
Navy (e.g., Van Valkenburgh, Nooger, & Neville, Inc., 1955), seem to be
organized in terms of what can be called a building blocks approach.
These textbooks present a series of circuit types, each of which performs a
specific function, and which are then combined into more complex
circuits. Each circuit is introduced with a diagram and explanatory text;
the text typically explains how the circuit performs the stated function.
Often the explanation takes the form of a causal chain of events that starts
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from some perturbation to the circuit, such as a change in the input signal,
and finishes at a statement of the desired effect. Figure 1 gives an
example of such a circuit and a fragment of the explanatory text from
The Radio Amateur's Handbook (1961) .

400 V
Rlterod

0ulpu1
47K

6AU6

50K

1·,150K

m

When the load connected across the output terminals
increases. the output voltage tends to decrease. This makes the
voltage on the control grid of the 6AU6less positive, causing the
tube to draw less current through the 2·megohm plate resistor.
As a consequence the grid vohage on the 807 series regulator
becomes more positive and the voltage drop across the 807
decreases. compensating for the reduction in output voltage.

Figure 1. A sample circuit (a voltage regulator) and excerpt from the
explanatory text.

These building blocks constitute schemas - each is a basic, frequently
appearing unit; complex circuits can be analyzed into a hierarchy of these
simpler circuits. The learner is supposed to learn each circuit schema by
understanding its explanation, and then is expected to apply this new
schema to understanding the subsequent more complex circuits. As an
example of how more complex circuits can be viewed in terms of circuit
schemas, Figure 2 shows a complex circuit parsed into schematic
subcircuits. The behavior of this circuit as a whole can be understood by
combining the behaviors of each of the schematic subcircuits.

The process of learning from such materials seems to be naturally
explained in terms of how schemas are learned and applied, and how
learning them can be done from explanations. Thus, this domain is a
natural place to apply the concepts of schemas and explanation-based
learning as they have appeared in psychology and in artificial intelligence.

The circuits studied in this work have been DC vacuum tube circuits,
such as that shown in Figure 1. These are a good choice because: (1)
They are well documented - this is a thoroughly mature technology with
considerable instructional material having been written. (2) At this time
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vacuum tubes are unfamiliar to even technically sophisticated college
students, so prior knowledge on the part of experimental subjects is less of
a problem. (3) The DC circuits are very simple; circuits involving
alternating current and multiple-state devices such as capacitors and
inductors are much more complex (See Mayer, 1990).

Rogulolllr/
TlAle

~

C.lhodeBiu
AIrflIl1Ior

~
/

Adjuatable Vo"'~ Reguletor

SolI"
Conlnllior

Figure 2. An analysis of a complex circuit in terms of schematic building
block circuits. The basic form of each circuit schema is shown.

Judging from these training materials, research on such materials has
value both for instruction and AI. The schematic building blocks
approach must be instructionally important; there must be a shared belief
that this is a good way to convey technical content. If we could
understand how people learn from this approach, we could make better
choices of the content and sequence of building blocks. There is also a
possibility of automated knowledge acquisition for building AI
knowledge bases. That is, considerable technical knowledge is already in
textbooks which are complete enough for humans to learn technical
domains from this material from explicit instruction. It is possible that
large knowledge bases for AI systems could be constructed by developing
mechanisms to read and understand such textbook knowledge.

The goals of the project responsible for the work in this chapter were
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(1) to develop a simple AI system that learns from diagrams and text, and
(2) compare it to human learning performance. The ultimate goal was to
go on to explore the effects of the choice of content and sequence of
explanations, but as will become more clear below, experimentation in this
domain is very difficult, and some of the basic premises of this kind of
learning can be called into question.

An AI System for Learning Schemas from Explanations

The AI system was developed by John Mayer as his dissertation
(Mayer, 1990). Figure 3 shows the system organization and processing in
Mayer's system. The AI system will not be described in detail because it is
very thoroughly documented in Mayer (1990). The system is a
combination of standard approaches to text comprehension, common
sense reasoning, schema instantiation and construction, and explanation
based generalization. The AI system processes explanations using
schemas, and then forms a schema for the new circuit described in the
explanation.

Slmu'-llon
Rul..

Rulal
Rula2
Rula3

Simulator I Prover~

§3111U"• Mandl khema Structu,.
.,j, ..nl'-llon Slructu.. Schema Ru'"

~(Detcrlp\IO~lnetanllatlon~ SChamal
._. SChama2

~ -
Structure
PIOPOIltlonl

Itructurel
Itructura2
Itructura3
Itructura4

Explanation

PropC
Ilruetura4
Prop X
ItruClure3
PropB
Ilructure!
Prop"

SChoma Bahavlor Rula
II

new device
Prop"

Then
PropB
Prop X
PropC

OanerallZatlon & Rula Conalruetlon

-----/,~
~hema Slructure Rula

n
structurel
ItruClura3
Itructura4

Than
nawdavtca

Figure 3. Organization and processing of Mayer's AI system for learning
circuit schemas from diagrams and text.
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The basic idea underlying the AI system is that an explanatory text
constitutes an incomplete proof that the circuit perfonns the stated
function. The explanation is a proof in the sense that it states a chain of
causally-related events that concludes with the desired circuit behavior.
The proof is incomplete because the explanation typically does not spell
out each link in the causal chain that lies between the initial perturbation
and final effect that corresponds to the circuit function; some of the
intervening steps in the chain have been left out. Comprehending such a
text thus consists of completing the proof, and learning from the text
consists of generalizing the proof to extract a new schema for the circuit.
The schema consists of two rules: one is a structure rule for when and how
to instantiate the schema, based on the structure of the circuit; and the
other is a behavior rule for how the schematic circuit behaves, given a
triggering event. In Mayer's system, the first event described in the
explanation is used as the trigger condition of the behavior rule. When
this event happens, the rule is fired, and asserts all of the subsequent
behaviors that appeared in the original explanation.

System processing. The process is shown in Figure 3. The system is
presented with a diagram and the explanatory text. The diagram
information consists of a hand-translated propositional description of the
structure of the circuit. The schema instantiation process matches
previously known schemas against the structure description and
instantiates the appropriate schemas. The fmal result is a set of
propositions about the circuit structure. The text infonnation consists of
hand-translated propositions about events in the circuit, listed in the order
of appearance in the text. The simulator/prover component takes each
text proposition and proves its truth in the circuit structure using the
simulation rules. The simulation rules are either first-principle rules in the
domain theory of basic electricity and electronics, or schema behavior
rules from previously learned schemas. The simulator/prover does a
forward simulation of the state of the circuit until it arrives at an event
described by the circuit that matches the event described by the input text
proposition. Then it moves on to the next input proposition, and repeats
the process. When it has matched the last proposition in the text, the
explanation has been completed. As shown in Figure 3, the
simulator/prover may have had to infer other propositions to complete the
proof, such as proposition X, which intervenes between the text
propositions B and C.

The explanation is then used in a generalization process to arrive at
the new structure and behavior rules. The schema instantiation rule is
based on the portions of the circuit structure that were referred to in the
proof. The behavior rule is formed by including the presence of the new
schematic structure and the first event proposition (A) in the condition,
and the assertion of all other event propositions (shown as B, X, and C) in
the action.

Special properties of schema processing. It is important to note that
the input and outputs of a schematic subcircuit are not distinguished, nor
is the overall circuit strictly partitioned into the subcircuits. The
substructure of the schematic circuit is still visible, and the simulation rule
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constructed for the schematic subcircuit contains all of the inferences
made about the internal behavior of the schematic subcircuit. Thus,
although the schema provides a short cut to the inferences about the
circuit, reasoning from first principles can still go on, and behaviors
internal to the schema can play a role in the reasoning.

The process of constructing the structure rule has a further important
property. One function of an explanation in learning is to distinguish
important features in the training instance from irrelevant ones. Thus, the
only components included in a schema instantiation rule are the
components that were referenced in the course of constructing the proof
from the explanation. This principle had some odd effects in Mayer's
system. The system recognized a cathode-biased amplifier as just the
configuration consisting of R2 and TI in Figure 4. As it happened, the
original explanation of the cathode-biased amplifier schematic circuit did
not involve the cathode resistor, which thus was not considered to be a
mandatory component of a cathode-biased amplifier. In retrospect, this
was probably not a good approach; a clearer picture of the nature of these
circuits seems to result from taking the entire presented circuit as the
structure of each schema. Mayer suggests that this approach would be
justified by the fact that these circuits are designed to be economical, so
each component that appears in the graphic accompanying the text must
be necessary, regardless of whether the explanation contacts it or not.

Target Circuh

Previous
Schema Circuit

~oo.~~,
Not Included In
Structure Rule

R1

.-.....,.--;:::::::t;::::;;t,tC--7f
Vsource

Figure 4. An example of how the AI system does not require a match of the
complete building block circuit sttuctute when instantiating a schema.

Benefits of schema availability. Mayer's system learns each circuit
schema in terms of the already-acquired schemas. If relevant schemas



Rogulator

89

have been previously learned, learning a new circuit is faster because the
event propositions in the text can be proved sooner. The schema behavior
rules will immediately add all of the schema inferences to the explanation,
resulting in an earlier match to the text proposition to be proven. Thus,
instead of the system having to construct the causal chain step-by-step
using first-principle rules, the schemas will skip ahead to the end results.
Thus the proof can be arrived at more quickly, and the simulator/prover
should do less processing when applicable schemas have been previously
learned.

Mayer demonstrated such an effect of schema availability for the set
of materials diagramed in Figure 5. Starting with a basic voltage divider
schema, the system studied and formed schemas for the building block
circuits of a triode amplifier, series controller, regulator tube circuit, and
cathode-biased amplifier. Then it processed explanations for a set of
target circuits: a two-stage amplifier, a basic voltage regulator, a stabilized
voltage regulator, and an additional circuit, the vacuum tube voltmeter
circuit. Compared to learning the targets without the building blocks, the
processing effort on the target circuits should be less if the system has
already learned the building block schemas.

Vollllge
Divider

-1
.. \ Triode

J~t
\ Cathode ~a. \ ....

-n:C' \-~
~.~ _...

i\~
~B-- "p---- -- .. ---..

Vacuum Tube Voltn»ter TWO-Stage A"l'ifior Stabiizod VoIllIge Regulator

Figure 5. The schema relationships between circuits studied by Mayer and
used in Experiment 1.
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Mayer considered different measures of processing effort, some of
which are relevant to AI technology concerns, such as CPU time. Mayer
found that in tenns of CPU time, the pattern matching required to
instantiate schemas can overwhelm the savings from the faster processing
of explanations. In addition, since even if a schema behavior rule applies,
the system still makes first-principle inferences, and so can end up doing
more overall processing when the schemas are available, resulting in a
longer run time than when they are absent. But Mayer also considered a
psychologically relevant metric, the number of cycles of forward
simulation that had to be done while processing the explanation. Under
this metric, the AI system is very similar to a production-rule cognitive
model; each cycle of simulation consists of applying all of the simulation
rules, both first-principle and schema rules, to deduce one set of new
inferences about the circuit state. In most psychological production
system models, it is assumed that the conditions of all the rules are
matched in parallel, and so having additional rules in the system does not
slow processing down. Thus the number of cycles performed by the AI
system is a measure of processing effort which is not sensitive to
underlying details of the implementation, and resembles common
cognitive theoretical measures of processing time.

Figure 6 shows the number of cycles in the simulator/prover required
to process the text event propositions for each of the target circuits. The
Voltmeter circuit is a special case in Mayer's system. The explanation of
the voltmeter takes the fonn of two descriptions of a steady state, rather
than a description of how a change propagates through the circuit.
Mayer's system therefore verifies the text propositions using its rules for
reasoning about voltage relationships (see Mayer, 1990) rather than
verifying using the simulation rules. Thus Mayer's system always requires
zero cycles of simulation to process this circuit.

12 --0-- No Building Blocks.. --.- Building Blocks• 10 _---0U --->- ~--
U I

8 I

E I
I

.! I.. ,
>- 6 I
III I

I

'0 I
I.. 4 I

I• I
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E 2

,
:s I
Z

,
0..&...-.,....--....;::...---.,....---.,....-

Two Stage Amp Vohmeter Basic Reg. Siabil. Reg.

Target Circuit

Figure 6. The number of cycles of processing needed by the
simulator/prover to process each explanation.
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But for the other three target circuits shown in Figure 6, the number
of cycles is less when the schemas are available than when they are not. In
addition, the system could learn a schema from the basic regulator circuit
and apply it to the subsequent stabilized regulator circuit. Thus, the AI
system can learn schemas from the explanations, and then can use these
schemas to more quickly process future explanations.

Do Humans Use Schemas in Learning Electronics?

It helps the AI system to have schemas, at least measured in terms of a
psychologically-relevant measure of processing effort. The psychological
question is whether it helps people to have schemas. That is, can people
understand the target circuits more easily if they have already learned the
schematic building blocks? If so, the analysis of learning from these
materials in terms of schematic building blocks would be verified, and the
instructional value of the building blocks approach would be confirmed.

This question is especially relevant to the psychological theory of
schemas. There has actually been very little evidence that schemas benefit
acquisition processing, as shown by online measures, although this has
always been claimed as an important advantage of schema knowledge
(e.g., see Rumelhart, 1980; Rumelhart & Ortony, 1977). More generally,
the basic claim that it is easier to learn about things one already has
knowledge of is difficult to demonstrate (see Johnson & Kieras, 1983).
But most of the empirical work demonstrating the use of schemas has
been done in the context of recall or recognition paradigms. For
example, subjects are asked to classify various stimuli, and then these
classifications seem to be governed by schema or prototype
representations. Or, subjects tend to make errors in memory for stories
that are based on the assimilation of a story into a schema structure. But
there are relatively few studies that actually demonstrate a benefit during
online processing. For example, two such studies on reading
comprehension time are Haberlandt, Berian, & Sandson (1980), and
Graesser, Hoffman, and Clark (1980). Also, Kieras (1982) reported some
results that suggest that devices seemed to evoke schemas immediately
upon presentation, and subjects' descriptions of the presented device
seemed to be organized in terms of schema knowledge for devices of that
class. But clearly more evidence is needed that schematic knowledge has
immediate processing time benefits.

Furthermore, it is not clear whether schematic knowledge can be
effectively acquired and used in the time spans characteristic of classroom
training of technical content. That is, within a single hour or a single day,
which typically separates one lesson from the next, students are expected
to form a schema for a particular type of circuit, and then are expected to
apply this new knowledge to the next, more complex, circuit that they
study. However, one common notion about schema knowledge is that it
takes considerable exposure to develop a schema; this would accord with
the general definition of a schema as being a well-learned familiar pattern
or configuration of information. But the context of classroom study
consists of brief, single, or few exposures to a concept, followed by its
immediate use in a new context. The explanation-based learning work in
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artificial intelligence, and specifically Mayer's system, show that it is
possible to acquire and make use of schemas in this single-exposure
manner. But the question remains about whether this characterization is
psychologically accurate. 1\\'0 experiments will be described that seek to
demonstrate a schema availability effect corresponding to that obtained by
Mayer for the AI system.

EXPERIMENT 1

This first study was simply an attempt to determine whether providing
building block information to learners would enable them to understand
target circuits more readily. The experiment had three groups: the No
Building Blocks group studied the target circuits without any prior study
of the building blocks; the Building Blocks group studied the building
block circuits before the targets; the Descriptions group studied the
building block circuits and were given a description with the target circuits
about how the schemas should be instantiated in the target circuits. The
rationale for this third group was to ensure that these subjects not only
know the schemas, but would also know how to apply them to the target
circuits. After studying each circuit explanation, all subjects answered a
set of multiple-choice questions about the circuit. The expected results
were that learning and answering questions about the target circuits should
be facilitated by having previously studied the building block circuits; the
descriptions might produce further facilitation, depending on whether the
Building Blocks subjects recognized and applied the schemas on their
own.

Method

Materials and design. There were three groups. Each group studied
the introductory training material. The No Building Blocks group then
went directly on to study the target circuits. The Building Blocks and
Descriptions groups studied the building block circuits and then went on
to the target circuits. There was a deliberate confound of schema
availability with the amount of practice (the number of circuits studied);
this first study was simply to see if a schema availability effect would
appear.

The training materials were based on actual textbook content, but were
simplified in order to get a reasonable variety of circuits presented in a
short amount of time. The training materials first reviewed the basic
concepts of voltage, current, resistance, and voltage dividers, and then
introduced the electronic components that were used in the circuits, such
as resistors, variable resistors, voltage regulator tubes, and triode vacuum
tubes. The building block and target circuits are shown in the Figure 5;
the arrows connecting the circuits show how the circuits are assumed to be
related in terms of their schema composition. The building block circuits
were the regulator tube, basic triode amplifier, cathode-biased amplifier,
and series controller circuits. The target circuits were the two-stage
amplifier, voltmeter, basic voltage regulator, and stabilized voltage
regulator.
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Accompanying each circuit was a diagram which was always present
during reading, and two pieces of textual information. The first piece was
an introduction that gave the name and the basic function of the circuit,
the schematizing description (if appropriate), and the static facts about the
circuit, such as voltage relationships which were constant. The second
piece contained the explanation of the behavior of the circuit; this was a
series of sentences that started with a perturbation to the circuit and
continued through to the final behavior corresponding to the circuit
function. Figure 7 shows the diagram and introductory screen for a target
circuit, and Figure 8 shows the explanation screen for the same target
circuit.

t --......--r------,
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Stabilized Vacuum Tube Voltage Regulator Circuit 0
fol

This circuit melntelns e constent output
yolteg•• r.gerdl ... of cheng.s In either th.
load current or the source Yoltage.

RI end Tr form e regulator tube clrcull. R2 end
11 Is a cathode bIas empllfl.r wllh Tr serving as
the cathode resistor. T2 Is a senes controller tube.
The output of the reguletor tub. cIrcuit Is used as
the cethod. bIas Yolteg. of TI. Th. output of the
empllfler Is the Input for the sene. controller
circuit. The Input of the amplifier Is the voltage
ecross the loed, reduced by the Yoltege dlYlder R3.

Figure 7. An example target circuit introduction.

Subjects. The subjects were engineering students without specific
electronics coursework, but with background in electricity concepts. They
had taken at least one physics course, and so were familiar with the basic
concepts of voltage, current, resistance, electron flow and so forth, but they
had not taken any courses specifically on electronic circuits. It was very
difficult to selectively recruit such subjects; eventually eighteen in each of
the three groups were obtained. Subjects were randomly assigned to
groups.
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stabilized Voltage Regulator Circuit (continued) ITo Quiz I
~¢

If more current begins lo flow through the load, the oUlput voltage
begIns lo decrease. This makes the vollage on the grld of T1more
negative relative to the cathOde, caullng IllS current to flow through
Tl. The grid of T2 then becomes lesl negatlve, decreellng the
reslslence of T2, and lhus keeping the oUlpul voltage lhe seme. If the
load drewl less current, the output vOllege rises, and the opposlle
effecls occur. The verlebll reltltor R3 I. used to set lhe circuit for
the dill red output vol lege by chenglng the grid voltege of T2.

If lhe source voltege decreeses, the output voltege end lhe vollege
on the grid of TI will etarllo decree... However, the vol lege on the
cathode or TI Is kept constent by the vol lege reguletor tube Tr. ThUS,
the grid of T1will become more negative relatlve to the cethode,
ceullng the grid of T2 to become les. negetlve, and the oUlput voltege
to remetn constent.

Figure 8. A sample explanation for a target circuit.

Equipment. The experiment was run on a Macintosh computer
running SuperCard (a HyperCard-like program) on a two-page display.
The first nineteen of the subjects were run using an ordinary Macintosh
Plus computer; due to the small screen, the larger diagrams were on paper
and constantly available to the subjects, The remaining subjects were run
with a Macintosh IIx with a two-page display, with the circuit diagrams
constantly present on the screen.

Procedure. The materials were divided into a series of segments in
which subjects would study the material and then answer a set of quiz
questions. They would go on to the next segment if they got all questions
correct, or go back to reread the segment if not. This was intended to
ensure that subjects understood the material before they went on. The
initial material on basic electricity and each component consisted of
several segments, and each of the building block and target circuits was a
separate segment. The computer software recorded how long the subjects
studied the introductory screen and the explanation screen for each target
circuit, and the latency and answer to each question, The circuits were
presented in a fixed order of increasing complexity, as shown in Table 1,
which lists the training segments in the order presented. The experiment
took 1 - 2 hours to complete.

Results

The most important results were those concerning the total time spent
reading the explanations for the target circuits; this measure was most
relevant to the AI system predictions, and due to problems in the
experimental paradigm, was also the most reliable. See Kieras (1991) for
a more complete presentation of the results.

The mean total reading time, shown in Figure 9, is the total time that
subjects spent looking at the explanation screen, both the first time they
read it and when rereading it after missing questions. This measure
reflects both explanation difficulty and question difficulty. The main
effect was marginal in the analysis of all three groups (F (351) =2.26. P =
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.11). For just the No Building Blocks and Description groups, the main
effect just missed conventional significance (F (1,34) = 4.04, P = .052).
Total time tends to decrease with increasing schema availability; subjects
that had the building block knowledge tended to spend less total time
reading the explanation than subjects without the building blocks, and
subjects given the schematizing descriptions were even faster. The
stabilized regulator is studied for much less time than the basic regulator
which was previously learned. The effect of schema availability is quite
small for the two-stage amplifier.

Table 1
Order ofpresentation of maJerials in Experiment 1.

Basic electricity
Components
Voltage Divider
Building Blocks

• Regulator Tube Circuit
• Series Controller
• Triode Amplifier
• Cathode Bias Amplifier

Target Circuits
• Two-stage Amplifier
• Vacuum-Tube Vokmeter
• Basic Vokage Regulator
• Stabilized Voltage Regulator

300
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-.- Voltmeter

--0-- Basic Reg.
____ Stab. Reg.

--.-- Mean

--- ... -.
&:::::=::::::::~ ac:::::::

O......--...,.------or------r---
No Building Blocks Building Blocks

Group
Descriptions

Figure 9. Mean time spent reading explanations, totaled over all rereadings,
for each OToup and each circuit.
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Comparison to the AI System

The number of simulation cycles performed by the AI system
represents how much processing is performed, and so should be positively
related to processing time for subjects (cf. Kieras,1984; Thibadeau, Just,
and Carpenter, 1982). The number of simulation cycles was used as a
predictor variable in a regression analysis with the total reading time as the
predicted variable. Only the data for the No Building Blocks group and
the Descriptions group (building blocks with schematizing descriptions)
were used. This subset of the data corresponds most closely to the
comparison in Figure 6.

Figure 10 presents the results of the regression analysis in a scatter
plot showing reading time as a function of the number of system cycles.
For clarity, the data points corresponding to the same circuit under the two
different conditions are connected by arrows, with the tail of the arrow at
the No Building Blocks condition and the the head at the Description
condition. The line shown is for the regression equation :

Reading TIme (sec) = 59.5 + 8.7 *Cycles.

124 6 8 10
Number of System Cycles

2

175

j 150

-; 125
E
i= 100
Cl
c 75

ia: 50

ca 25
'0
... O+---r--r---,--r--r---.......-r---_-.,.....-...--.-.......

o

Figure 10. Scatter plot showing relation between AI system cycles and
observed reading times. The arrows connect points for a circuit in the No
Building Blocks condition (at tail of arrow) with the same circuit in the
Descriptions condition (at head of arrow).

While there are only eight data points, 79% of the variance is accounted
for, which is significant (p < .05.). The human total reading time and the
AI system cycles depend on the amount of material processed in each
explanation; typically simpler circuits take less processing than the more
complex circuits, but the amount of processing also depends on the
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savings due to schemas from previous learning. The Description (at arrow
heads) condition is nonnally faster than the No Building Block condition
on the same circuit. Thus the AI system and human readers are clearly
related in tenns of the amount of processing they do on individual
explanations, and in tenns of the savings resulting from previous learning
of schematic subcircuits.

Discussion

Problems with the experiment. The results of the experiment were
problematic due to some problems in the materials and paradigm. The
materials turned out to be fairly difficult for the subjects, even though
they were relatively highly selected undergraduates in technical fields.
The paradigm apparently allowed subjects to adopt a strategy of muddling
through the experiment simply by attempting to answer the questions and
if they got it wrong, going back and either rereading or just guessing
again.

The experiment was designed under the assumption that the important
data would be the time spent reading the explanatory material, and so the
purpose of the questions was simply to encourage the subjects to read
carefully. However, the subjects made many errors on the questions and
so did considerable rereading of the explanations. Thus the reading times
on the explanations are not very clean measurements of how difficult it
was to understand the explanations. The questions were not very unifonn
in content or difficulty. Some of the questions could be answered simply
by direct matches to the explanation text; that is, the subject could
sometimes find a similar set of statements in the explanation, and answer
the questions without making any deeper analysis of what was happening
in the circuit. Other questions could be answered simply by reversing the
statements made in the explanation, for example, by having a voltage
increase rather than decrease. But a more subtle and interesting problem,
discussed more below, is that the questions sometimes required reasoning
which was not based on the circuit schemas overall behavior of a circuit
schema, but rather required reasoning inside the schematic subcircuits.

Finally, some of the questions required the subject to remember some
aspect of a component that had been presented early in the experiment
and not mentioned subsequently. For example, the variable resistor was
mentioned late in the questions, but was presented very early in the
training. Since the experiment had a built-in confounding between
whether the building blocks were present and how many circuits the
subjects studied, this could have differentially affected the two groups.
Many of the questions queried several intennediate states in the circuit, so
that subjects had to verify the accuracy of a whole chain of events. These
were very confusing, appearing to be a "word salad."

Summary of the results. The expected results were that the
perfonnance on the target circuits should be facilitated by increasing the
schema availability; this result did appear, but the data is fairly noisy; they
were both time and accuracy effects, and the effects were not unifonn
across circuits. There should be facilitation on the second re,gulator
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circuit due to schema transfer from the first regulator circuit, this appeared
quite clearly. The amount of facilitation should have some
correspondence to the AI system processing effort, this correspondence
does seem to be present.

This first study shows strong suggestions of the expected effects, but
clearly much cleaner data is needed for a definitive answer to the basic
question of whether studying the schematic subcircuits improves the
understanding of later more complex circuits. The materials and training
used in this experiment were reasonable, though surprisingly difficult, but
there were definite problems with the paradigm and the questions.

How applicable are schemas to the materials? A detailed
examination of the materials and questions from the point of view of the
AI system reveals a new issue, that of schema applicability. The questions
and the explanations vary in the extent to which knowledge of the
subcircuit schemas suffices to process the explanation or to answer the
questions. At the level of the circuit itself, some of the target circuits parse
cleanly into schematic subcircuit schemas while others do not. For
example, as shown in the left panel of Figure 11, the basic regulator can
be parsed into discrete subcircuit schemas, and the entire circuit can then
be simplified by replacing each circuit with a "black box" for each
subcircuit, as shown in the right panel of the figure. The circuit behavior
is then just the composition of the behavior of the black-box subcircuits.
In contrast, as shown in Figure 12, the stabilized voltage regulator cannot
be parsed completely into discrete subcircuit schemas; the triode TI does
not correspond to a cathode-biased amplifier. Thus there is a fundamental
problem with the materials; in some of the circuits, the schemas are not
fully applicable. It would seem that the benefit of learning the schematic
subcircuits would be greater if the circuits could be understood in terms of
the black-box behavior of the schematic subcircuits.

v.......--.......------,
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Figure 11 . An example of a circuit that can be fully parsed into schema
subcircuits.
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The explanations also did not fully make use of schema knowledge
that subjects might have. That is, the explanations often were in terms of
events that would happen "inside" the schemas, instead of treating the
schemas as black boxes. For example, in the explanation for the two-stage
amplifier (see Figure 13), the line of reasoning is that if the input voltage
increases, the cathode-to-plate resistance of TI goes down, and the
resistance of T2 goes up. But in the original explanation of the amplifier
schema circuit, the change of the cathode-to-plate resistance of the triode
is a subsidiary event; the black box behavior of the amplifier is that if the
input voltage changes, the output voltage changes in the opposite direction
and by a larger amount.
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Figure 12. A circuit that cannot be fully analyzed in subcircuit schema,
assuming that schemas require complete structure matches.
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Two Stage Amplifier

Figure 13. Reasoning based on an amplifier schema in the two-stage
amplifier would refer only to voltages on the plates and grids of the triodes,
not the cathode-to-plate resistance changes.
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Thus, with the presented explanations, if subjects knew the subcircuit
schemas, they usually could not simply shortcut their analysis of the
explanation, but instead would have to verify each behavior of the circuit
mentioned in the explanation, which included internal schema events. For
this reason, when Mayer's AI system instantiated a schema and triggered
the behavior rule, it simply added all of the internal propositions to the
system's knowledge base, which could result in immediate verification of
schema-internal events contained in the explanation. But what would
happen if the explanations were simply in terms of the black box behavior
of the schema circuit? For example, in the same two stage amplifier
circuit (Figure 13), a purely black-box schema line of explanation would
be that if the input voltage increases, the voltage on T1's plate goes down,
and the voltage on TI's plate goes up. In this case, a reader with schema
knowledge could simply verify the main behaviors predicted by the
schemas, whereas a person without the schema knowledge would have to
make the individual inferences required to go from the input voltage
change to the final output voltage change. Thus there should be a larger
benefit of schema knowledge, if the explanations could be understood
directly in schema terms. In a similar way, the questions used in the
experiment often involved reference to events happening "inside" the
schemas. For example: if the input voltage goes up, what happens to T2's
resistance? Again one would predict a larger benefit of having schemas if
the questions were posed strictly in terms of the schematic behavior of the
circuit. For example: if the input voltage goes up what happens to T2's
grid voltage?

Can a circuit be understood in terms of black-box schemas, or do the
schemas have to be unpacked into internal structure and behavior? The
AI system does not black-box the schematic subcircuits, but also suffers
from not doing so. On the other hand, schemas would seem to be most
valuable if the schematic subcircuits can be treated as black boxes and
reasoning done about a larger circuit only in terms of the external
input/output behavior of the subcircuits. Thus the value of circuit schemas
may depend on the extent to which the circuits, explanations, and
questions involve black-boxed schemas versus reasoning about events
inside the schemas.

EXPERIMENT 2

The basic problem with the first study is that the presence of the
building blocks was confounded with the amount of practice (number of
circuits studied) that subjects received. There was also the problem with
the experimental paradigm that allowed subjects to adopt a strategy of
guessing their way through the questions, and not enforcing a careful
reading of the circuit explanation on the first try. In addition, some of the
circuits and questions may have been too difficult for the subjects, further
encouraging them to guess repeatedly. Also, as mentioned above, the
circuits, explanations, and questions may not have allowed subjects to take
full advantage of having schema knowledge, and so the benefit of
studying the schema circuits may have been weakened.
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The second study was designed to produce a clean and definitive
effect of the availability of schemas. This was done by rewriting all of the
materials used in Experiment 1 and adding new circuits, so that as much as
possible, the schema knowledge was fully applicable.

Method

Design and materials. The experiment had two groups. The
Irrelevant Building Blocks group studied building block circuits that were
irrelevant to the later target circuits; these could not be instantiated as
subcircuits in the target circuits. The Relevant Building Blocks group
studied the same schematic subcircuits as in the first experiment, which
were then instantiated in the target circuits. The target circuits were
changed so that they could all be rewritten in the form of a black box
parse with the building block circuits. However, there is much less variety
in the circuits than in Experiment 1. Figure 14 shows the irrelevant
building blocks, the relevant building blocks, and the targets, with the
arrows connecting the relevant building blocks to their instantiation in the
target circuits.

In addition, both groups received a description in the introductory
screen, similar in format to the schematizing description in Experiment 1,
thus controlling for the presence of prominent additional information.
The Relevant Building Blocks group received a schematizing description
as in the first study, in which the circuit is described in terms of the
subcircuit schemas. The Irrelevant Building Blocks group got an
irrelevant description, containing a statement of a correct technical fact or
aspect of the circuit, but which had no bearing on the explanation

Figure 15 shows an example explanation that illustrates how the chain
of events always referred to the input/output behavior of the circuit
schemas, and an example question that illustrates the homogeneous form
of the questions used in this experiment. The question presents a
perturbing event, and the answers are a choice of a voltage that either
increases, decreases, or stays the same.

Procedure and apparatus. The overall paradigm was very similar to
that in Experiment 1. During the training portion of the experiment,
subjects were required to repeat the material and questions on basic
electricity, components, and the building blocks, until they answered all
questions correctly. But during testing on the target circuits the subjects
were allowed only one try on each question. The subjects were warned
very explicitly that they would be allowed to read the target circuit
explanations only once, and would not get a chance to answer a question
again if they got it incorrect. The basic measures were the time to study
the target circuit introduction and explanation, and the latency and answer
for each question. As in Experiment 1, a Macintosh IIx with two-page
display was used. The experiment required I -2 hours to complete.

Subjects. As in Experiment 1, the subjects were engineering
undergraduate students who had studied electrical concepts in physics
courses, but who had not taken any specific coursework in electronics.
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Again recruiting subjects was very difficult, but fifteen were obtained in
each group.

The Neon Indicator Clrcu~ Vo~meter
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Figure 14. Circuits used in Experiment 2. The irrelevant building blocks
are shown at the left; the relevant building blocks are in the center, with
schema relations shown by arrows to the target circuits on the right.

Results

Like Experiment I, the data were very noisy, and performance was
poor; 40% of the subjects got two thirds or more of the questions
incorrect on the target circuits. In some of the statistical analyses to be
reported, either data from these poor subjects, or times for questions that
were answered incorrectly, were removed from the analysis.
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If the input signal, Vinput, increases, the voltage on the plate of T1 and
the grid of T2 goes down, causing the output voltage, Voutput, to
increase. The changes in plate voltage of T1 are much greater than the
changes in Vinput, and the changes in plate voltage of T2 are even
greater. Thus, the total amplification effect is much greater than for a
single triode.

If Vinputdecreases, what happens to Voutput?

• Increases
• Decreases
• Stays the same

Figure 15. A sample explanation and question from Experiment 2.

Figure 16 shows the mean time spent on the introduction screen for
the four different circuits. Surprisingly, more time was spent on the
introduction screen if the subjects had studied the relevant building
blocks. The main effect was nonsignificant (p > .13), but the interaction
of circuit with condition was significant (F (3, 84) =7.32, P =.002). The
effect is present on most of the circuits. Removing poor subjects from the
analysis produces a significant main effect (F 0, 16) =5.05 p = .037)
and interaction (F (3.48) =5.04, P =.004), with an overall mean of 65 sec
on the irrelevant building blocks, and 86 sec on the relevant building
blocks. This effect is reminiscent of the disadvantage of schemas in
Mayer's system being the extra computation time required to instantiate
them.

Figure 17 shows the mean time spent on the explanation for each
circuit. There is an overall trend in the desired direction, in that the mean
time for subjects who studied the relevant building blocks is less than
those who studied the irrelevant ones. However both the main effect and
interaction are nonsignificant (p > .2) and removing poor subjects does
not improve the statistical situation. Comparing this figure with the
reading time figures from the first experiment (Figure 9) shows that the
overall time spent on reading the explanations is substantially less than the
times spent on the explanations in the first experiment. Perhaps again,
subjects were not reading carefully, or perhaps these explanations are
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much simpler than those in the first experiment, resulting in a ceiling
effect.
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Figure 16. Mean time spent reading the introduction screen for each circuit
and each group.
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Figure 17. Mean time spent reading the explanation in each group.

The mean proportion of questions answered correctly for each circuit
for the two groups showed no effect of schema availability (61% vs. 59%).
Notice that the level of accuracy is fairly low; the questions had three
alternatives, so the chance level of performance would be 0.33, but one of
the alternatives would often be easy to eliminate (Le., the choice stays the
same). Thus while the average level of accuracy is greater than chance, it
is not impressively so.

Figure 18 shows the latency of choosing the question answers,
averaged over both correct and incorrect answers. The main effect is
nonsignificant (P > .1), but the interaction is significant (F (3, 84) =3.68,
P =.016); the effect appears for all but the bistable circuit. Removing
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poor subjects does not change the situation statistically, and the same
overall pattern appears if incorrect question times are removed from the
analysis as well. If the bistable circuit is not included, then the main effect
is significant (F (1, 28) = 4.84, P = .036). The question of why the
bistable circuit is different is interesting - perhaps the greater graphic
complexity kept subjects from seeing it in terms of schemas, regardless of
the schematizing description

Bistable
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Figure 18. Mean time required to answer questions averaged over both
correct and incorrect answers.

Discussion

It is clear that the methodological problems of experimentation in this
domain are still unsolved. Apparently the subjects can not be depended
upon to read the explanations carefully enough. or to perfonn well in
answering me questions. Rather than an effect on the time spent
processing the explanation, there is an effect on the time spent answering
the questions, and this effect depends strongly on the circuit involved.
Since the major effect of schema availability in this experiment is on
question answering times, the issue is now whether this effect can be
explained by mechanisms for using schemas during answering the
questions. The next section presents a simulation model for schema use in
answering questions.

A MODEL FOR SCHEMA·BASED QUESTION.ANSWERING

Overview of the Model

The model is described in more complete detail in Kieras (1991).
The model is an ACT-class model, consisting of declarative knowledge
represented with propositions, and procedural knowledge represented with
production rules (see Anderson, 1983), and is similar to the simulation of
a mental model for a simple device described in Kieras (1988). The
circuit structure is represented with propositions assumed to be available
constantly from the diagram, while the state of the circuit is represented
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with propositions in working memory. For convenience, shorthand
notation is used for the propositions: no claim is being made of a specific
propositional representation notation.

The production rules in the model "run" the mental model,
performing the inferences and controlling the processing. The rules of
most interest are those that represent the first principles in the domain
theory, and those that perform schema recognition and schema-based
inferences. The basic approach in the model is as follows: The question
states a perturbation or change, such as to the input of the circuit. The
model propagates the change through the circuit, and waits for a
proposition that answers the question to appear in working memory. To
simulate the Irrelevant Building Blocks condition, the rules for
instantiating and making use of the subcircuit schemas are disabled; the
Relevant Building Blocks condition is simulated by enabling the schema
rules.

Before a comparison with the data was made, two models were
developed that reflect two different overall processing strategies. The
stages of model processing in both models are: (1) instantiate any schemas
that might be present, (2) analyze the voltage relationships in the circuit,
(3) accept the input, (4) propagate the changes until the processing is
completed, (5) determine the answer. In the terminating model,
flowcharted in Figure 19, the process of propagating the changes is
terminated as soon as a proposition answering the question appears in
working memory.
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Yes Questioni~:W8red?l
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Delernine Answer Determine Answe.

I

Questlon·Ans_1ng TIme
(Number of Cydes)

Figure 19. flowchart of processing in the tenninating model.
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If no more changes can be propagated, the question is answered using
whatever propositions are available. This is the typical case if the correct
answer to the question is that a voltage stays the same. The predictor of
the time to answer the question is the number of production-system cycles
that elapses between when the input is accepted and when the answer is
deteImined (shown in Figure 19). According to the teIminating model,
there should be a large benefit of having schema knowledge, because the
changes will propagate more rapidly and the answer will be computed
faster than if schemas are not available.

The exhaustive model, flowcharted in Figure 20, continues the
propagation of the input change until quiescence (no more changes
propagated), whereupon the question is answered using the available
propositions about the circuit state in working memory. The predictor for
the time to answer the question is again the time between when the input is
accepted and when the answer is deteImined (shown in Figure 20). This
model predicts a mild effect of schemas, because the model may well
spend many cycles propagating irrelevant changes long after the answer to
the question has been deteImined.
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Figure 20. Flowchart of processing in the exhaustive model.

Model Details

Each individual component (which includes the input and output
teIminals) is described with simple I SA and HAS propositions, while a
shorthand notation is used to describe basic voltage and resistance
properties of the circuit or its components. The connections between the
components are described by a series of CONNECTION propositions; note
that each connection is one-way, so connection propositions in both
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directions are necessary.

Some examples of production rule will be given. Table 2 shows the
production rule used to recognize the presence of a cathode-biased
amplifier in a circuit. The production system used is the PPS system (see
Covrigaru and Kieras 1987). In this notation, the clauses following the
I F must all be present in the production system data base in order for the
rule to fire, whereupon the actions listed after the THEN are taken. PPS
has no built-in conflict resolution or refractoriness mechanism; each rule
must contain condition clauses to ensure that it fires only at the right
times. The condition of this sample rule is fairly elaborate; it consists
mainly of a description of the components and their connection pattern
that make up the structure of a cathode-biased amplifier. In the PPS
notation, an item preceded by a question mark in a clause, as in (ISA ?T
TRIODE), represents a variable that is assigned a value when the condition
is matched. If this rule finds matches in a target circuit a particular triode
and two resistors which are connected as required, then it adds to working
memory a proposition (in shorthand) that there is a cathode-biased
amplifier based on the triode, and assigns the grid and plate of the triode
as the input and output ports of the schematic subcircuit. It also describes
various parts of the schematic subcircuit as being parts of the schema
instantiation. Thus, if given the two-stage amplifier circuit shown in
Figure 13, the rule will fire and deposit in working memory propositions
showing the presence of a cathode-biased amplifier schema based on TI,
and another based on T2. The negated clauses (using NOT) in the
condition prevent the rule from firing more than once for each
instantiation.

Table 3 shows a rule for propagating a change through an individual
component, the triode vacuum tube. The clauses in the condition of this
rule recognize the presence of a triode and the event in working memory
that the voltage on the grid of the triode has increased. The rule adds to
working memory the information that the resistance between the plate and
cathode of the triode has decreased.

Table 4 shows the schema behavior rule for a cathode-biased
amplifier, which would have been earlier recognized by the rule shown in
Table 2. This rule is remarkably simple; if the cathode-biased amplifier
has been instantiated with designated input and output ports, and the
voltage at the input port has increased, then this rule simply adds to
worldng memory the proposition that the voltage at the output port has
decreased. The inference that this change is larger than the input change
is not relevant in these materials. and so is not included.



Table 2
Sample schema instantiation rule.

(RecognizeCathodeBiasAmplifier
IF (

(GOAL PREPROCESS CIRCUIT)
(STRATEGY RECOGNIZE SCHEMAS)
(ISA ?T TRIODE)
(HAS ?T ?T-PLATE)
(ISA ?T-PLATE PLATE)
(ISA ?T-CATHODE CATHODE)
(HAS ?T ?T-CATHODE)
(ISA ?T-GRID GRID)
(HAS ?T ?T-GRID)
(CONNECTION ?RI-PORT2 ?T-PLATE)
(HAS ?Rl ?RI-PORT1)
(ISA ?Rl RESISTOR)
(CONNECTION ?T-CATHODE ?R2-PORT1)
(HAS ?R2 ?R2-PORT1)
(ISA ?R2 RESISTOR)
(HAS ?Rl ?RI-PORT2)
(HAS ?R2 ?R2-PORT2)
(CONNECTION ?R2-PORT2 GND)
(CONNECTION ?HOT-PORT ?RI-PORT1)
(ISA ?HOT-PORT VOLTAGE-SOURCE)
(NOT (SCHEMA CATHODE-BIAS-AMPLIFIER ?T ?T-GRID ?T-PLATE»

)

THEN (
(ADDDB (NOTE CIRCUIT PREPROCESSED»
(ADDDB (COMMENT CATHODE-BIAS-AMPLIFIER AT ?T ?Rl ?R2»
(ADDDB (SCHEMA CATHODE-BIAS-AMPLIFIER ?T ?T-GRID ?T-PLATE»

;?T used as label for schema instantiation
(ADDDB (SCHEMA PORT ?T ?T-GRID» ; input
(ADDDB (SCHEMA PORT ?T ?T-PLATE» ; output
(ADDDB (SCHEMA PORT ?T ?RI-PORT1»' ;power
(ADDDB (SCHEMA PART ?T ?RI-PORT2»
(ADDDB (SCHEMA PART ?T ?T-CATHODE»
(ADDDB (SCHEMA PART ?T ?R2-PORT1»

) )
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Table 3
Sample change propagation rule for a component.

(TriodeGridVoltageChangeIncrease
IF (
(GOAL PROPAGATE CHANGE INFER)
(ISA ?T TRIODE)
(HAS ?T ?T-PLATE)
(HAS ?T ?T-CATHODE)
(HAS ?T ?T-GRID)
(ISA ?T-PLATE PLATE)
(ISA ?T-CATHODE CATHODE)
(ISA ?T-GRID GRID)
(WM CHANGE INCREASE VOLTAGE ?T-GRID)
(NOT (WM CHANGE DECREASE RESISTANCE BETWEEN ?T-PLATE ?T-CATHODE))
(NOT (SCHEMA PORT ??? ?T-GRID») ;apply only if ?T not schematized
)

THEN (
(ADDDB (NOTE CHANGE PROPAGATED»
(ADDDB (WM CHANGE DECREASE RESISTANCE BETWEEN ?T-PLATE ?T-CATHODE))
) )

Table 4
Sample behavior rule for a schema.

(CathodeBiasAmplifierInpIncrease
IF (
(GOAL PROPAGATE CHANGE INFER)
(SCHEMA CATHODE-BIAS-AMPLIFIER ?SCHEMA ?INP ?OUT)
(WM CHANGE INCREASE VOLTAGE ?INP)
(NOT (WM CHANGE DECREASE VOLTAGE ?OUT»)
)

THEN (
(ADDDB (NOTE CHANGE PROPAGATED))
(ADDDB (WM CHANGE DECREASE VOLTAGE ?OUT))
) )
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Comparison of the Model with Question-Answering Time Data

The processing time predictions of exhaustive and terminating models
were compared by regression analysis to the mean times averaged over
subjects taken to answer the individual questions. The average times
included only times from the correctly answered questions. In addition,
the questions whose accuracy was not above one-third (chance level) were
also dropped from the comparison, giving N=19. This subset of data is
still quite noisy; although the questions are simple, the latencies are very
long and variable as is usually the case with problem-solving latencies.
Using ipsatized data in the comparisons did not result in substantially
cleaner results, suggesting that most of the noise in the data is within
subject.

The predictor variable is the number of production system cycles
required to answer the question starting from when the input is accepted
and the propagation of the change begins, and stopping when the question
answer is determined. These numbers were obtained by simply running
the model on each combination of circuit and question, and calculating
how many cycles were required until the answer was determined. A
regression was then computed for each model using the number of cycles
as the predictor variable, and the observed mean question-answering times
as the predicted variable (see Kieras, 1984). Oearly the regression slope
should be positive, in that more cycles should correspond to more time,
and r2 gives a measure of the goodness of fit.

An important result of the comparison is that the terminating model
fails completely to account for the data. Figure 21 shows the relationship
between the number of cycles required by the terminating model and the
question answering time. Although this model is intuitively appealing, it
clearly accounts for essentially none of the variance (r2 = .02). While the
utter failure of the model is discouraging, it does demonstrate rather
clearly that the comparison of these models to the data is a valid exercise;
a perfectly reasonable model can be disconfirmed, so one that accounts
for a substantial part of the variance can be taken seriously.
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Figure 21. Scatter plot of cycles versus question-answering time for the
terminating model.
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Figure 22 shows the relationship between the number of exhaustive
model cycles and the question answering time. The regression equation
is:

TIme (sec) =5.38 + 0.63 * Cycles

This model accounts for a significant portion of the variance (r2= .34, p <
.01). Accounting for 34% of the variance is impressive, considering that
the data are quite noisy. The regression coefficient for the number of
cycles is approximately 0.6 sec. There is reason to believe that production
rules should take on the order of 50-100 msec per cycle to apply in the
context of simple procedural tasks (see Card, Moran, and Newell, 1983,
Ch.. 2; Bovair, Kieras, and Polson 1990). The fact that these rules take
more time suggests that there might be some inaccuracy about how the
task is represented. For example, the propagation rules in the model can
immediately apply to all points in the circuit, but perhaps subjects "trace"
through the circuit and allow the rules to apply to only one point in the
circuit at a time. The result would be that the propagation rules would
appear to fire much more slowly. Resolving this issue would require more
detailed study of how people answer questions about electrical circuits.
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Figure 22. Scatter plot of cycles and question-answering time for the
exhaustive model.

Figure 23 shows the predicted and observed times for the individual
questions in each circuit, shown in the order in which they appeared in the
experiment within each condition; the Irrelevant group questions appear
first on the horizontal axis followed by the questions in the Relevant
group. What this figure shows is that the model's predicted values track
the observed values fairly well, but with some definite mispredictions.
Given the noisiness of the data, it is probably not worthwhile to pursue the
nature of the mispredictions in more detail. But the model does capture
the effect of schema availability; notice that the times to the Irrelevant
group questions tend to be longer than those for the Relevant group, and
the model shows the same pattern. However, the effect of schema
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availability is fairly mild, both in the case of the data, and the number of
cycles required by the model.

In the exhaustive model, the changes are propagated until quiescence;
this strategy will tend to reduce the benefits of having the schema rules.
How the rules would apply to the schematic subcircuits also suggests that
the benefits would be relatively small. For example, in a simple triode
amplifier circuit, the first-principle reasoning would be that if the voltage
on the grid changes, then by the triode rule, the resistance of the triode
changes, and by the voltage divider rule, the result is a change in the
voltage on the triode plate. Thus when using first principles, going from a
change in the voltage on the triode grid to a change in the voltage on the
triode plate takes only two rules. The schema rule for the amplifier circuit
would make the same inference in one rule instead of two. This is a
relatively small change in the amount of inference required, so perhaps
only mild benefits of schema knowledge should be expected for these
materials and this task.
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Figure 23. Predicted and observed times for each question in both
conditions.

GENERAL DISCUSSION

Summary of Results

The basic question addressed by this work is whether schemas and
their explanations are involved in how practical electronics material is
learned. The AI system and the question-answering model shows that in
principle, schemas can be learned from these explanations and then used
in further learning and answering questions about this kind of material,
and thereby suggest that the schematic structure of textbook material is
important. The experimental work shows that learning schemas from
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explanations can be effective in the classroom training of technical
content. In the course of one or two hours, subjects were able to learn
circuit schemas, and then enjoyed some benefit from applying them to
understanding explanations and answering questions about more complex
circuits. The comparison of the models with the data shows that the
magnitude of the benefits of schemas for human learners can be predicted
to some extent by the models, which suggests that the schema mechanisms
used in the AI system and in the question-answering model are plausible
as psychological models.

Difficulties of Experimentation in this Domain

The experimental work reported here shows that learning circuit
schemas is beneficial in later learning, but the effect is fairly small, and it
is susceptible to the specific task strategies that subjects adopt in dealing
with the experimental paradigm. Several problems made it difficult to get
definitive data on this phenomenon. The type of experiment attempted
here involves collecting problem-solving latencies, which are highly
variable, under conditions that severely limit the sample size: (1) There are
relatively few realistic circuits at a reasonable level of complexity. (2) It is
hard to get a large number of subjects willing and able to tackle these
surprisingly difficult materials. (3) There are only a small number of
distinct schema-relevant questions about an individual circuit. For
example, in the two-stage amplifier circuit, all of the questions that are
relevant to the schema-based understanding consist simply of what
happens to the output of either the first or second stage when the input
changes. Thus it is not possible to ask a large number of questions about
each circuit. Clearly, if subjects were asked many questions about the
same circuit, their question-answering strategies would change altogether,
as they simply memorized the answers to the few possible questions.

Thus, although the electronics domain appears to be a clear-cut and
relatively simple domain to explore either from the AI or the cognitive
modeling perspective, it seems to be a very difficult one for collecting
human data on complex learning processes.

The Need for Cognitive Analysis of Large-Scale Training Materials

This research focussed on the properties of realistic training materials
in a technical domain. While this research used only a very small subset
of the materials, it encompassed a relatively large set of concepts which
were also relatively complex. The large scale of the complete set of
training materials for this domain must be appreciated. In the electronics
series used here (Van Valkenburgh, Nooger, & Neville, Inc., 1955) there
are about 600 pages, and a similar quantity in a prerequisite series on
basic electricity. The U.S. Navy considered this to be the amount of
knowledge that should be taught to trainees to qualify them for basic
electronics technician jobs. However, when the learning of electricity or
electronics has been studied under laboratory constraints, the researchers
typically use only a fragment that corresponds to a single page, or a few
pages at most, of this corpus. The result is that we have no understanding
from a cognitive science point of view of how such a mass of material is



115

structured or learned.

The building-blocks approach is one important property of these
materials, but the dominant property is that most of the content is the
design rationale and principles for electronic circuits - how they work,
and why they are configured the way they are. For example, a key topic
is that vacuum tubes and transistors must have their "bias" set by additional
components to place their operating characteristics in a desired range, for
example, to produce a linear response function. Considerable space is
spent explaining this issue mathematically, with heavy use of graphs, and
formulas are supplied and illustrated for calculating the proper
component values.

What is odd about this emphasis on design rationale is that these
materials are not intended to prepare students for electronics engineering
and circuit design, but for electronics maintenance, in which the trainee's
future task is to diagnose and correct malfunctions in the equipment. As
argued elsewhere (Bond & Towne, 1979; Kieras, 1988), understanding of
fundamental quantitative principles and design rationale does not seem to
be important in troubleshooting tasks. In contrast, electronics
troubleshooting must be learned by apprenticeship or haphazardly; there
is very little published material that presents general concepts of
electronics troubleshooting. But despite this misdirection, the practical
electronics materials studied here contain a fairly standard presentation of
the complete domain theory of practical electronics, which many
thousands of people have mastered.

These materials would be an ideal place to attempt a large-scale
analysis of training materials. For example, a large semantic net could be
constructed to show how each concept was related to the other concepts.
The kinds of pedagogical techniques used to present each concept could
be listed. There are many techniques used in these materials, and it would
be valuable to know whether there is any pattern to their usage. For
example, specific circuits are presented with diagram graphics and textual
explanations, as was studied here. Some concepts (e.g., amplification)
were introduced with several pages of relation to everyday life (e.g.,
amplifying the size of the catch in a fish story), and with analogies (e.g.,
amplification as regulating the flow of water from a tank). illustrations of
the actual physical appearance of components abound, corresponding to
these materials teaching about actual components and devices, rather than
the idealized ones presented in non-practical treatments. Cartoons are
used to show causal sequences with a kind of animation. Static cartoons
and humor often seem to be used to reinforce specific concepts and excite
interest. There are many mathematical arguments, presented both
graphically and algebraically. Finally, much information was just
presented explicitly in text. Thus, trying to determine why each concept
was presented the way it was, and whether the presentation was effective in
theory, would yield many insights and hypotheses about technical
training.

If cognitive science is to contribute toward improving instruction in real
domains, such as technical ones, it will be necessary to complement the
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traditional detailed analysis of fragments of the domain with analysis of
the domain in the large. By analyzing the structure and content of such
complete materials from a cognitive-theoretic point of view. we will be able
to ensure that our future detailed research is addressing the key properties
of the materials and the domain.
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Abstract

1l1is chapter uses statistical and cognitive models to evaluate the
learning of a set of concepts about arithmetic word problems by a group of
students. The statistical model provides information about how the group of
students as a whole performed on an identification task involving word
problem situations and shows differences among subgroups. The cognitive
model simulates the performance of each student and yields details about
how learning varied from one individual to another. It is a connectionist
model in which the middle layer of units is specified a priori for each
student, according to the student's level of understanding expressed in an
interview. The chapter concludes with a detailed comparison of the
simulated responses with the observed student responses.

INTRODUCTION

The learning investigated here occurred as part of a study in which
students received computer-based instruction about arithmetic word
problems. The central topics of the instruction were five basic situations
that occur with great frequency in word problems: Change, Group,
Compare, Restate, and Vary. The instruction had three main segments:
(1) the introduction, in which the situations were described; (2) an in-depth
exploration, in which details of each situation were elaborated and presented
diagrammatically; and (3) the synthesis, in which combinations of situations

1 The research reported in this chapter was supported by Contract No. NOOOl4
85-K-0661 and Grant No. NOOOl4-90-J-U43 from the Office of Naval Research.
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were introduced together with planning and gOal-setting techniques. 2 For
each of the three parts of instruction, students engaged in multiple practice
exercises. The study reported in this chapter concerns only the first
segment of instruction--the introduction to the situations--and the primary
focus is the nature of the knowledge that individuals gained from that
introductory instruction.
This chapter describes two analyses of what individuals learn from
instruction. Both analyses are needed. In the first case, learning is
examined in a traditional experimental paradigm, using established
statistical procedures. Group features, rather than individual characteristics,
receive greater emphasis in this paradigm, and conclusions drawn from the
analysis describe group commonalities. In the second case, learning is
examined by means of a cognitive model that simulates individual
performance. In this analysis, individuals' characteristics are studied, and
conclusions apply separately to each individual. As I indicate below, the
information gained from each analysis is valuable in a study of learning.
Neither one alone provides the complete picture.
The questions of interest in the research are what is the new knowledge
retained in memory as a result of instruction, when is it retained, and which
parts of it are later accessed and retrieved. During instruction, some new
infonnation is (presumably) acquired and added to an individual's available
knowledge store. Not all possible information is taken in, and individuals
vary in the type and amount of new knowledge that enter memory. It is the
rare instance in which all learners learn exactly the same thing from a single
instructional lesson. More often, some learners noticeably remember a great
deal of the new information while others remember almost nothing.

The Instructional Domain

1bis section provides a short description of the five situations used in
instruction. The situations are Change, Group, Compare, Restate, and
Vary, and they represent uniquely almost all simple stories found in
arithmetic story problems (Marshall, 1991).
The Change situation is characterized by a permanent alteration over time
in a measurable quantity of a single, specified thing. Only the quantity
associated with one thing is involved in the Change situation. It has a

2 Details about the computer-based instruction can be found in Marshall,
Barthuli, Brewer, & Rose (1989), a technical report available from the author.
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beginning state and an end state, with some intervention which causes a
transition from beginning to end. Usually, three numbers are of importance:
the amount prior to the change, the extent of the change, and the resulting
amount after the change has occurred.
A Group situation is present if a number of small distinct sets are

combined meaningfully into one large aggregate. Thus, the Group situation
reflects class inclusion. The grouping may be explicit or implicit. If
explicit, the solver is told in the problem statement which small groups are
to be united. If implicit, the solver must rely on his or her prior semantic
knowledge to understand the group structure. For example, in a situation
involving boys and girls, the solver would typically be expected to know
that boys and girls form a larger class called children. The solver also
would be expected to understand that the members of the subgroups (Le.,
boys or girls) retain their identity even when combined into a larger group
(i.e., children). Three or more numbers are necessary in a Group situation:
the number of members in each of the subgroups as well as the overall
number in the combination.
The Compare situation is one in which two things are contrasted to
determine which is greater or smaller. The numerical size of the difference
between the values is unimportant and may not even need to be computed.
The Compare situation relies heavily on prior knOWledge that individuals
have about relations. Most frequently, the Compare situation requires the
solver to choose either the larger or smaller of two values when the
operative relation is stated as a comparative adjective or adverb (e.g.,
faster, cheaper, shorter, more quickly). The objective is the determination
of whether one's response should be the larger or the smaller of the known
values. This situation most typically occurs as the final part of a multi-step
item. For instance, one often sees problems in which the solver is expected
to decide after several problem-solving steps which of two items offered for
sale is the better buy. This final determination is a Compare. It requires
only the recognition of which of the two items is less costly--it does not
require the computation of how much less. 3 Most Compare items involve
values for only two objects, although it is certainly possible to make
comparisons among three or more.

3 It should be noted that the Compare situation dermed here differs from the
semantic relation of the same name developed by Riley, Greeno, and Heller
(1983).
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The Restate situation contains a specific relationship between two
different things at a given point in time. The relationship exists only for the
particular time frame of the story and cannot be generalized to a broader
context. There are two determining features of a Restate situation. First,
the two things must be linked by a relational statement (e.g.,one of them is
twice as great as, three more than, or one half of the size of the
other).Second, the relationship must be true for both the original verbal
descriptions of the two things and the numerical values associated with
them. Thus, ifMary is now twice as old as Alice, then 20 years--which is
Mary's age--must be twice as great as 10 years, which is Alice's age. Note
that this relationship was not true one year ago nor will it necessarily be true
in five years.
The Vary situation is characterized by a fixed relationship between two
things that persists over time. The two things may be two different objects
(e.g., boys and girls) such that one can describe a ratio as "for every boy
who could perform x, there were 2 girls who could do the same ....", or they
may be one object and a measurable attribute of it (e.g., apples and their
cost) with the problem having the form "if one apple cost $.50 then five
apples ....". An essential feature of the Vary situation is the unchanging
nature of the relationship. If one of the objects is varied, the amount of the
second changes systematically as a function of the known relationship. The
variation may be direct or indirect.
Simple examples of these five situations are given in Table 1. During the
entire course of computer instruction, each of the situations is introduced,
explained, and transformed to a problem setting. Eventually, several are
linked together to form multi-step problems. In the introductory lesson,
each situation is described by means of an example and with the general
features which define it.
Although they are very simple and readily understandable, the five
situations are not intuitively known by students through previous
instruction. Experiments with groups from several different student
populations indicated that students (and teachers) do not typically recognize
or use situational knowledge in story problems (Marshall, 1991). Those
same experiments show that students of all ages are nevertheless able to
learn them.
The present study was designed to investigate how that learning comes
about. Because they were previously unknown to the students, the
situations in story problems were, in fact, five new concepts to be learned.
Thus, the study described here provides a setting for investigating how
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Table 1
The Five Situations

CHANGE

GROUP

COMPARE

RESTATE

VARY

To print his computer job, Jeffrey needed special paper. He
loaded 300 sheets of paper into the paper bin of the laser
printer and ran his job. When he was done, there were 35
sheets of paper left.

The Psychology Department has a large faculty: 17 Professors,
9Associate Professors, and 16Assistant Professors.

The best typist in the pool can type 65 words per minute on the
typewriter and 80 words per minute on the word processor.

In our office, the new copier produces copies 2.5 times faster
than the old copier. The old copier produced 50 pages every
minute.

An editor of a prestigious journal noticed that, for a particularly
wordy author, there were five reference citations for every page
of text. There were 35 text pages in the manuscript.

individuals learn new concepts that have obvious ties to much of their
previous knowledge.

The Nature of Instruction

To model successfully the acquisition of knowledge from instruction, one
must examine the nature of that instruction and the type of information
contained in it. Generally, there are two ways to present new concepts to
students. The instructor can introduce the name of the concept and give a
prototypic example. The example contains specific details and is couched
in a setting that should be well-understood by students. An alternative
approach is for the instructor to provide the name of the concept and give a
general description of its most important features. This information is
abstract and contains basic characteristics that should apply to all possible
instances of the concept. In practice, instructors typically do both. They
introduce a new concept by name, give a representative case in which the
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concept clearly occurs, and then make a broad statement about the concept,
which is intended to help the learner generalize the concept from the given
example to other potential instances.
Some interesting research has been carried out to determine whether
students learn differentially under different instructional conditions. Usual
studies of instructional content tend to contrast one form of information
with another, such that each student sees only one type. An example of this
type of research is found in Sweller's (1988) comparison of problem-solving
performance following rule-based or example-based instruction.
The issue I address is different: Given access to typical instruction in
which both specific information (i.e., examples) and abstract information
(i.e. definitions) are available, which will a student remember? Do
students commit equal amounts of specific and abstract knowledge to
memory? Is one type necessarily encoded first, to be followed by the other?
Are there large individual differences? If so, are these differences related to
performance? The following experiment provides some initial answers to
these questions.

THE EXPERIMENT

Subjects

Subjects were 27 college students with relatively weak problem-solving
skills. They were recruited from introductory psychology classes. On a
pretest of ten multi-step arithmetic word problems, they averaged six correct
answers.

Procedure

Each student worked independently on a Xerox 1186 Artificial
Intelligence Workstation. All instruction and exercises were displayed on
the monitor, and the student responded using a three-button optical mouse.
Each student participated in five sessions, with each session comprised of
computer instruction, computer exercises, and a brief interview. Students
spent approximately 45-50 minutes working with the computer in each
session and talked with the experimenter for about 5-10 minutes in the
interviews. As stated previously, only the first session--the introduction to
the five situations--is of interest here.
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Data Collection

Data were collected from two sources: student answers to the first
exercise presented by the computer and student responses to the interview
questions. Each is described below.
Identification task. The first source of data was the computer exercise

that followed the initial instructional session. The items in this task
resembled those of Table 1. They were selected randomly for each student
from a pool of 100 items, composed of 20 of each type. During the
exercise, one item at a time was displayed, and the student responded to it
by selecting the name of one situation from a menu containing all five
names: Change, Group, Compare, Restate, Vary. The student received
immediate feedback about the accuracy of the answer, and if the student
responded incorrectly, the correct situation was identified.
The order of item presentation was uniquely determined for each student.

Items of each situation type remained eligible for presentation until one of
two criteria was obtained: Either the student had given correct responses
for 2 instances or the student had responded incorrectly to 4 of them. Thus,
a student responded to at least 2 items of each type and to no more than 4 of
them. The minimum number of items displayed in the exercise for any
student was 10, which occurred only if the student answered each of them
correctly. The maximum number that could be presented was 20 items,
which could happen only if a student erred in identifying the first two items
of all five types. The number of items presented ranged from 10 to 18.
Interview Responses. The second source of data was information given

by the students in the interviews. The interview followed immediately after
the identification task described above. During the interview, each student
was asked to describe the situations as fully as he or she could. The student
was asked first to recall the names of the situations and then to describe
each one that he or she had named. After each of the student's comments,
the experimenter prompted the student to provide additional details if
possible. All interviews were audiotaped and transcribed.
It is the interview data that reveal which pieces of instruction were

encoded and subsequently retrieved by each student. Certainly, not all of
the new knowledge acquired by an individual will be revealed in an
interview. It is expected that students have more knowledge than they can
access (as pointed out by Nisbett & Wilson, 1977). Nevertheless, the
interview data are indicative of how the individual has organized his or her
knowledge of the newly acquired concepts, and they suggest which pieces
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of knowledge are most salient for the individual. Following well-known
studies such as Collins and Loftus (1975) or Reder and Anderson (1980),
we may assume that individuals will tend to retrieve the most closely
associated features and those with highest salience for the individual.

Knowledge Networks and Cognitive Maps

Data from the student interviews were used to construct knowledge
networks, one for each student. Each network consists of a set of nodes,
representing the distinct pieces of information given by the student, and
links connecting the nodes, representing associations between the pieces of
information.
The interviews were coded in the following way. First, irrelevant

comments were eliminated. These were things such as "Urn, let me think"
or "I'm trying to remember ...." Next, distinct components or elements of
description were identified. These were usually phrases but could also be
single words. These became the nodes of the knowledge networks. Two
nodes were connected in a network if the student linked their associated
pieces of information in his or her interview response. Two research
assistants and the author coded each interview with complete agreement.
In addition to the knowledge network for each student, an "ideal"

network was constructed from the instructional text. As with the students'
networks, nodes were created to represent each distinct piece of
information. Two separate pieces of information appearing contiguously in
the text were represented by two nodes with a link between them. Needless
to say, this network was substantially larger than any student network. It
represents all that a student could possibly encode from the instruction, and
thus it serves as a template against which to measure the amount and type of
information encoded by each student. The "ideal" network for all of the
situational information is presented in Figure 1.
Two things should be noted about the network presented in Figure 1.

First, distances between nodes and spatial orientation of the nodes have no
meaning. Only the presence or absence of nodes and links is of importance.
Second, in this figure, all nodes appear equally important, and the same is
true for the links. Strength and activation are not shown. However, in
theory each node has a measure of strength that is a function of how many
times it appears in the instruction, and each link has a similar measure of
activation, depending upon how frequently the two nodes are linked.
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Figure 1: THE "IDEAL" NETWORK
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Figure 1 represents the ideal case in which all information is included in
the network. Normally students do not retain all of the details, and the
networks one constructs for them appear incomplete when compared with
the ideal situation. Thus, we expect the student networks to be
considerably sparser than that shown in Figure 1.
Several types of information may be gleaned from a student's knowledge
network. First, of course, the network is an indication of how much the
student remembered. The number of nodes in a network provides an
estimate of this information. Second, the network shows which pieces of
information are related for an individual. A measure of association can be
made by counting the number of links and using that number to estimate the
degree of connectivity of the entire network. Node count and degree of
connectivity are standard network measures. I have discussed elsewhere
how they may be used to estimate a student's knowledge of a subject area
(Marshall, 1990).
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In this chapter I examine two additional types of infonnation: (a)
specificity, which is the students' tendency to recall specific or abstract
features to describe the situations and (b) confusions, which show the extent
to which students confused different aspects of the five situations. One
examines nodes to estimate the fonner and links to estimate the latter.
Specificity. Each node in the "ideal" network reflects one of two types
of detail: specific or abstract. Specific knowledge refers to elements of
infonnation having to do with the examples presented in instruction, and it
reflects the particular details of the example. Abstract knowledge refers to
the general features or definition of the situation. The instruction contains
approximately an equal amount of both types, as can be seen in Figure 1.
The abstract nodes are represented by filled circles, and the specific ones are
indicated by hollow circles. 4

Each distinct piece of infonnation (Le., each node) recalled by a student
was categorized as being specific or abstract. Aresponse was considered to
be specific knowledge if it pertained to a specific example. Typically,
students giving this sort of response referred to details from the initial
example used in the computer instruction. An illustration is given in the
specific response ofTable 2. The italicized phrases are examples of specific
detail. In contrast, a response was considered to be abstract knowledge if it
reflected a general definition or characterization. Table 2 also contains an
illustration of an abstract response, and the italicized phrases indicate the
abstract detail. The final example of a student response in Table 2
illustrates the case in which neither abstract nor specific detail is recalled.
Three measures of specificity were developed: the number of specific
responses, the number of abstract responses, and the ratio of abstract to
specific responses. These measures were used in the statistical analyses
described below.
Confusions. In the networks representing situational knowledge, two
types of links are possible, intra-situational and inter-situational links.
Intra-situational links are judged always to be valuable. That is, if two
nodes are both associated with one situation and they are connected to each
other, then the retrieval of one of the nodes ought to facilitate the retrieval

4 It should be noted that the instruction was not developed under the constraint
that equal abstract and specific details be contained in it. The guiding principle
was to explain each situation as completely as possible, using specific and/or
abstract elements as needed.



129

Table 2
Examples of Student Responses

ABSTRACT

SPECIFIC:

NONE:

Q:
A:

Q:
A:

Q:
A:

What do you remember about Group?
Group iswhen you have different items, different
groups ofitems, that can be categorized into one
general group.

What about Group?
That was when you bought 7shirts and 4pairs of
shorts and they grouped it into clothing. So you had 11
separate things ofclothing.

Tell me about Change.
I pressed that review button so many times and I can't
remember anything right now. Urn, change was, urn
my mind is blank right now. I did okay on the
computer. I've forgotten just about everything. I'm
trying to think of an example. I know they change
something and make something else.

of the other. 1bis is the principle of spreading activation. In general, the
more knowledge the individual has about a concept and the greater the
number of associations connecting that knowledge, the better the individual
understands it. Figure 2 shows how the "ideal" network of Figure 1 can be
represented as a two-layer map. The nodes at the upper level are the five
situations, and those at the lower level are the knOWledge nodes developed
during instruction. Connections among the nodes at the lower layer
represent intra-situational links. Generally, a larger number of connections
at this level indicates greater understanding on the part of the individual. It
is these connections that are shown as well in the network ofFigure 1.
In contrast, inter-situational links, i.e., links between different situations,
mayor may not be of value to the individual's learning, because they are a
potential source of confusion. Such links will not always reflect
confusions; situations could in principle share one or more features. In the
present case, however, the instruction was carefully designed to eliminate
common features among situations. 1bis is reflected in Figure 2 by the
connection from each node at the lower level to a single node at the upper
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Figure 2: THE "IDEAL" MAP
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level. Given the design of instruction, there should be no inter-situational
links. That is, no node at the lower level should connect to more than a
single upper level node. Such linkages would be confusion links and
reflect a misunderstanding about the two situations so linked.
An example of differences in students' inter-situational and intra

situational links is given in Figure 3. Two student maps are presented in
this figure. Both students encoded a relatively large amount of information
from the instruction, compared with other students in the experiment, but it
is clear from the figure that they recalled different elements of information.
Student 57 remembered distinct pieces of information about each situation
and showed no confusions. 522, on the other hand, expressed a number of
confusions, which are represented in Figure 3 by the dashed links between
the two layers of nodes. These cognitive maps are characteristics of
incomplete mastery. The situational knowledge of every student can be
described by such a map. Obviously, the deficits of a student are highly
individual. These individual differences will be discussed further in a later
section of this chapter.
In summary, the student network and its corresponding map provide

information about the number of details the student remembered about a
situation, the amount of connectivity, the type of knowledge (Le., abstract
or specific), and the number of confusions in the student's response. The
networks and the measures described here were the bases for the statistical
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Figure 3: TWO STUDENT MAPS
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analyses presented below and also served as input to the simulation model,
which is described in the section following the statistical analyses.

STATISTICAL ANALYSIS

'Three questions are addressed by the statistical evaluation. The first is
whether students remember different amounts of detail from instruction, the
second is whether one can characterize the type of information encoded by a
student, and the third is whether these differences are related to the students'
success on the identification task. Evaluation of the student networks
shows that some students were more likely to encode mostly specific
details, some were more likely to encode mostly abstract information, some
encoded both in about equal proportions, and some encoded almost nothing.
The statistical analysis evaluates whether these tendencies are related to
performance on the identification task and whether the relationship can be
generalized to the entire group of students.
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It is evident from the interview data that students varied greatly in the
amount of infonnation they were able to recall about the five situations.
The number of different details retrieved by students extended from a low of
3 to a high of 20. The mean number of details was 13.5, with a standard
deviation of 4.02.
The number of abstract and specific details recalled also varied, and the

ratio of abstract to specific detail ranged from 14:3 to 6:14. Thus, the
answers to both the first and the second questions are affinnative: There
were clear differences in the total amount of infonnation recalled as well as
differences in the amount of abstract and specific infonnation.
Two analyses provide insight into the importance of this difference.

First, on the basis of their interview responses, students could be divided
into three groups: Abstract, Specific, and Both. Students classified as
Abstract gave predominantly definitional responses in the interview. Those
classified as Specific used mostly example infonnation from the computer
instruction to describe the situations. Those classified as Both responded
with approximately equal numbers of abstract and specific detail. For
membership in either the Abstract or Specific group, students had to have
given at least 9 different pieces of infonnation during the interview with at
least twice as many instances of one type of infonnation as the other.
Approximately equal numbers of students could be classified as Abstract or
Specific, with 6 in the fonner and 7 in the latter. An additional 11 students
were categorized as Both. These students gave at least 9 responses with
approximately equal numbers of abstract and specific details.
Figure 4 shows the relative perfonnance on the identification task of the

three groups described above. A one-way analysis of variance, with a
dependent measure of correct responses to the identification task,5 indicates
that the groups differed significantly in their ability to recognize the
situations, F(2, 21) = 4.53, p < .025. 6 As can be seen in Figure 4,

5 It will be recalled that students viewed differing numbers of items on this
exercise. For purposes of comparison in this analysis, only the first two
exemplars of each type of situation were scored. Thus, each student received a
score from 0-10.

6 Complete data were not recorded for two students. One loss was the result of
computer failure and the second was the result of a malfunction in the recording
of the interview. These two students were excluded from the analyses reported
here. Two other students having only 6 and 3 interview responses respectively
were also excluded from this analysis.
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Figure 4: GROUP PERFORMANCE
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students who responded primarily with abstract characterizations of the five
concepts were most successful, followed by those who used both types of
infonnation. The group relying on examples only were less successful than
those using abstract only or abstract knowledge in conjunction with specific
details. The perfonnance of the abstract group was significantly higher
than the perfonnance of the example group, t (21)=3.005, P < .01.
The above analysis shows that differences in student performance can be

explained in tenns of whether a student remembered abstract or specific
infonnation. One also expects that the absolute number of details that a
student remembers--regardless of whether they are definition or example-
would be a good predictor of perfonnance. Surprisingly, this is not the
case. The Pearson product moment correlation between the number of
correct responses on the performance test and the total number of nodes
encoded from the student's interview is .074, accounting for less than 1% of
the variance.
A second and more informative way of analyzing the data is a multiple

regression analysis based on the type and amount of infonnation, the inter
situational confusions, and the interaction between the two. In this analysis,
the predictors are (l) Xl' the ratio of abstract to specific detail, (2) X2, the

number of confusions mentioned explicitly by the student, and (3) X3 ' a
product variable of the first two predictors. The dependent measure, again,
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is the 10-item identification task. The resulting prediction equation was:

Y' = 6.667 + .602Xj + .545X2 - .617X3' with all coefficients reaching the

conventional .05 level of significance. The model accounted for 43% of the
variance and was statistically significant, R2 = 0.43; F(3, 21) = 5.38, P <
.01.
In general, students with higher abstract to specific ratios performed

better on the identification task and made fewer confusion errors. Students
with low ratios (i.e., those with more specific answers) named relatively few
confusions but also responded with fewer correct answers. Students with
approximately the same number of specific and abstract responses had the
greatest number of stated confusions.
Thus, the statistical analyses suggest several group characteristics with

respect to learning new concepts. That is, there are tendencies of response
that apply over many individuals, not just a single one. These analyses are
based on summaries of the cognitive maps and aggregate responses to the
identification task. A more detailed investigation of individuals' responses
provide additional information about the nature of learning in this study.

THE COGNITIVE MODEL

A more exacting analysis of the relationship between each student's
cognitive map and his or her responses to the identification task was carried
out by simulating the responses using a simple feed-lateral connectionist
model. The model simulates for each student his or her response to each
item of the identification task that the student actually attempted to identify.
The general model is given in Figure 5. It has three types of units:

inputs, student nodes, and outputs. Inputs to the model are coded
representations of the problems, and outputs are the names of the situations.
As in most connectionist models, activation spreads from the input units at
the lowest level to those of the intermediate level(s) through their
connections. At the middle level, activation spreads laterally from the
nodes directly activated by the lower level units to other nodes at the same
level with which they are linked (this is represented by the two middle
layers in Figure 5). Finally, the total activation coming into each unit at
the output level is evaluated, and the output unit with the highest activation
is the model response. Unlike many connectionist models, the units at the
middle layer, their connections with other nodes at this level, and their
linkages to the upper level are determined explicitly from empirical data.
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Table 3
Item Characteristics Used to Encode Story Situations

General Charaderistics:
Set modification
Permanent alteration
Class inclusion (explicit or implicit)
Relation between two objects
Relation between an object and a property of that object
Fixed relation (implied)
Relative size
Size differential
Percentage
Causality
Multiple agents
Multiple objects
Unit measurement
Two identical relations

Key Phrases:
Each/every/per
As many as
Have left
Altogether/ A total of
More/less
Cost
Same
If ...Then
Money

Time Features:
Specific time elements (minutes, days, weeks)
Before/after

The bottom layer of units. The inputs consist of infonnation about the
items that comprise the identification task. There are 27 possible
characteristics that can be present in any item. The set of characteristics is
given in Table 3. Each item is coded according to these characteristics as a
27-element vector containing O's and l's. with 1 indicating the presence of a
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characteristic and 0 its absence. Not all characteristics will be present in
any single item; usually a simple situation requires only a few of them. The
mean number of characteristics for the 100 items used in the identification
task was 4.33. All 100 items were encoded by three raters with complete
agreement.
The middle layers of units. For each student, the middle layers of the
model contains a set of nodes and the connections between them. The two
layers have identical sets. The nodes and links were identified from the
student interviews, as described previously, and they formed the basis of the
statistical analyses of the preceding section. Three trained individuals read
the transcript of each individual's interview and determined which nodes
were present and whether they were linked. As in the characteristics coding
above, the three coders were in complete agreement.
The top layer of units. The outputs for the model are the five situation

names: Change, Group, Compare, Restate, and Vary. Only one output is
produced for a given input vector. The five possible outputs compete, and
the one with the highest accumulated activation wins.
Connections between the bottom and middle layers. Each input
element may connect directly to one or more of the nodes contained in the
student's network (represented by the middle layers of nodes). Two layers
are needed in this model to illustrate the feed-lateral aspect. The lower of
the node layers connects to the input units. The second layer illustrates how
the nodes connect with each other. Each node from the lower node set
connects to itself and to any other nodes to which it is linked, as determined
from Figure 2. Thus, activation spreads from the input units to the lower
node layer. Each node transfers its own activation to the next layer and also
spreads additional activation to any other nodes to which it is connected.
This particular two-layer representation of a feedlateral network preserves
the usual constraint that activation spreads upward through the model.
Some of the input elements (Le., those units represented at the very
bottom of Figure 5) may activate many nodes in the network, some may
activate only a few, and some may fail to make a connection (if the student
lacks critical nodes). The allowable linkages between the input and middle
layers of units were determined by mapping the input characteristics to the
"ideal" map of the entire instruction. Recall that the input characteristics are
general features. Most of them activate multiple nodes, and these nodes are
frequently associated with different situations. Thus, it is rare that one input
characteristic points to a single situation. The full pattern of possible
activation is shown in Figure 5. Note that this figure illustrates all
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characteristics as they link to all nodes and is thus a theoretical pattern. The
model would never be presented with a problem containing all possible
features, nor did any student have all possible nodes at the middle layers.
Once the student network receives the input, activation spreads from the
nodes directly targeted by the input elements through any links they have to
other nodes at this level. All of the activated nodes then transmit their total
activation to the units at the upper level. The amount of activation for each
situation is determined from the accumulation of activated links leading to
it. The five situations compete with each other for the highest level of
activation, and the one with the highest value becomes the output. Thus,
the model of Figure 5 represents the input of an item, the activation of the
student's semantic network, the competition among situations, and the final
output as a result of total activation throughout the model.
The model depends upon the set of nodes for each student, the pattern of
linkages among them, the overall association of subsets of nodes with the
situation labels, and the input characteristics of the items. All except the
latter are derived from the student cognitive maps described earlier.

Model Verification

As a test of the model's adequacy, a simulation was carried out in which
the ideal network of Figure 2 was used as the student model. The 100 items
available in the identification task were presented to the model, and its
responses were compared with the correct answers. The model performed
with 100% accuracy, successfully identifying the situations for all items.

Simulation Results

A simulation of each student's performance on the identification task was
carried out. For each student, the response to the first item encountered in
the exercise was simulated first, using that item's vector of characteristics
and the student's network information. The second item followed, and then
all subsequent items until the exercise terminated. Thus, the simulation
covered all items presented to the student in the order in which the student
saw them.
As described above, the number of items answered by students varied

from 10 to 18, yielding a total of 360 item responses. A comparison of the
results of the simulation of these 360 responses with the actual student
responses to them is given in Table 4.
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Table 4
Simulation Results

Outcome

eSM
eSM
eSM
eSM
eM S

Total

Frequency
Observed Outcomes

192
64
19
30
55

360

Frequency
Adjusted Outcomes·

192
64
13
13
51

333

Key: (1) eSM
(2) e SM
(3) e-s M
(4) CS)f
(5) CM_S

Both model and student answered correctly.
Model and student made the same error.
Model and student made different errors.
Student answered correctly; model erred.
Model answered correctly; student erred.

(C = correct response; S = student response;M = model response)

*Impossible matches excluded

Table 4 presents the observed classification of the students' responses as
well as an adjusted classification against which the model was compared.
All 360 items comprise the observed classification. In the adjusted
classification, some items have been omitted from consideration because the
model was constrained by a lack of information from the student interview.
lhis occurred under the following condition: If a student was unable to
remember the name of a situation or anything that described it in the
interview, the model for that student would have no nodes at the middle
layer that could link to the situation name. Thus, the model would be
constrained to ignore that situation and would never generate a response
pointing to it. Consequently, if a student omitted entirely a situation in the
interview, all items for which the student gave that situation as a response
were likewise eliminated. There were 27 of these impossible matches. As
shown in Table 4, 17 of these were items which the student answered
correctly, and 10 were items on which the student erred. It should be noted
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that these are not model failures but are interview failures.
Each application of the model to a vector of item characteristics,
representing a single item, resulted in one of five outcomes, as shown in
Figure 5. Outcomes CSM and C_SM are exact, successful simulations of
the model. In both cases, the model generated a response that was identical
to the one produced by the student. In the first, the response was correct,
and in the second, it was an error. The outcome C_S_M is considered to be
a partial success of the model. Both the student response and the model
response were in error, but they were different errors. In these cases, the
model accurately predicted that the student lacked critical knowledge and
would err.
The remaining two outcomes, CS_M and CM_S, represent simulation
failures. The most serious of these is CS_M, reflecting cases in which the
student answered correctly but the model failed to do so. They are serious
failures because they suggest that the model did not capture sufficiently the
student's knowledge about the situations. It should be noted that more than
half of the observed instances of CS_M were impossible matches, as
described previously. That is, the student omitted any discussion of the
situation in the interview, and the model was subsequently constrained to
ignore it. As mentioned above, these instances are considered to be
interview failures rather than model failures. Only the remaining 13
instances are true model failures, representing just 3.9% of all responses.
The final outcome category, eM_S, also represents model failure but is
less critical than the failures of CS_M. In this category, the model made a
correct response when the student did not.
Many of the CM_S simulation failures can be explained by considering
the students' experience as they respond to the identification task. During
the actual task, many students made errors on one or more situations and
then apparently learned to classify these same situations correctly. This is
evidenced by their patterns of responses, typically an incorrect response to a
situation followed by two correct responses to the same situation, with no
additional errors. What has happened in such cases is that the student's
knowledge network presumably changed during the course of the task. The
knowledge base that generated the early incorrect responses is not
necessarily the same one that generated the later successful ones. And, it is
only the latter that is reflected in the student's interview. In such instances,
the model would correctly match the two correct responses, but it would
also give the correct response to the first item that the student missed. The
model does not learn. It simulates the state of the student at the end of the
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exercise, as reflected in the interview. If the student learned during the
course of the exercise, we have no way of knowing what node configuration
corresponded to the earlier, incorrect responses. Under the most
conservative criterion of learning--an error followed by two correct
responses--25% of the mismatches can be accounted for by student learning.
In each case the model gave the correct response to all three items. 7
Another 25% of the mismatches occurred when both the model and the
student selected different wrong situations as the response option. In these
cases, the model correctly determined that the student would not give the
correct response. The model's answers may differ from the student's for a
number of reasons, including guessing. These were, after all, multiple
choice exercises, in which students were asked to select the correct situation
from the menu of five possible ones. Students probably guessed at some of
the answers, but the model does not guess.
There are other possible explanations for the model failures. On the one
hand, some students may have been prone to "slip" as they made their
selections using the mouse, resulting in the unintentional selection of the
option residing either above or below the desired one. It is not an
uncommon phenomenon, as those who use a mouse frequently can attest.
Accidental errors of this sort are undetectable. Similarly, students may have
used a test-taking strategy, such as avoiding the selection of one response if
they used it on the immediately preceding exercise. These errors are also
undetectable: The model does not take test-taking strategies into account.

Ifwe consider the "probable learning" mismatches (Le., those that were
followed by two correct matches on the same situation) and the "different
error" mismatches (Le., those in which the model and student both erred but
selected different errors) as understandable or explainable discrepancies,
the total number of mismatches between students and the model is reduced
from 77 to 51, leaving only 13 CS_M and 38 CM_S as mismatches. Thus,
the model satisfactorily accounts for 85% of all student responses.
A final evaluation of the model's perfonnance comes from examining

how well individual student perfonnance was simulated by the model. The

7 Several other instances exist in which the student made multiple errors on a
situation and then responded correctly to one fmal instance of that situation.
While it is very plausible that learning also occurred in these cases, one hesitates
to draw a conclusion based only on one response. Thus, these errors remain
unexplained.
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Table 5
Simulation or Individual Performance:

A Comparison orModel Responses with Observed Student Responses

Student No. of No. of
Items "Impossible"

Matches

Percent
Exact
Matches

Percent
"Explained"
Matches

Total
Percent
Matches

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

13
15
13
13
16
11
14
13
14
15
15
16
14
13
14
13
15
14
14
18
13
16
16
16
16

3
o
3
3
o
o
o
o
5
2
3
o
o
o
3
3
o
o
o
o
o
o
o
2
o

100%
80%
90%
80%
75%
100%
86%
92%
100%
85%
67%
63%
71%
69%
100%
90%
73%
79%
79%
67%
69%
69%
56%
57%
69%

o
7%
10%
10%
6%
o
7%
o
o
7%
8%
31%
o
8%
o
10%
14%
7%
7%
7%
o
12%
13%
7%
12%

100%
87%
100%
90%
81%
100%
93%
92%
100%
92%
73%
94%
71%
77%
100%
100%
87%
86%
86%
72%
69%
81%
69%
64%
81%

results for each student simulation are given in Table 5. Two measures of
success are given in the table. The first is the number of exact matches,
excluding the "impossible" ones. The second is the overall percentage of
satisfactory matches for each individual and is given in the extreme right
hand column of the table. This percentage is based on the number of
satisfactory matches, including the "probable learning" and "different error"
mismatches described above but eliminating from consideration the
"impossible" matches. As can be seen in Table 5, the performance of 6 of
the 25 students was fit exactly by the model with 100% agreement. The
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model simulated the perfonnance of an additional 12 students with accuracy
between 80-99%. The model's success rate fell below 70% for only 3
students, to a low of 64%.

DISCUSSION

There are several important implications that result from this study. They
are discussed below with respect to the three questions posed in the
introduction: What do they learn, when do they learn it, and what can they
retrieve?

What specific information does a student learn from initial instruction
about a new topic?
One of the most striking findings was that students tended to encode and

use specific details from the initial examples used in instruction. Almost all
of the example nodes had to do with the five introductory examples, despite
the fact that several other examples were given later in the instruction. (See,
for example, the Specific response of Table 2.) This finding suggests that
the very first example of a concept is highly important and should,
therefore, be carefully developed. For many students, the initial examples
provided the scaffolding for the semantic networks. Some of the details of
those examples led to erroneous connections. As a case in point, the
example for one of the situations was based on money, leading some
students to expect (incorrectly) this situation to be present whenever money
was in the problem. These faulty connections were very evident in their
interview responses.
A general pattern of encoding was apparent from the students' responses.
Several students described the situations only in tenns of the examples.
When prompted, they were unable to embellish their descriptions by using
abstract characterizations. No instance of example infonnation followed by
abstract infonnation was observed. In contrast, students having abstract
knowledge always used it in preference to giving example details. That is,
their initial responses were generalizations. When prompted for more
infonnation, they used example details to support their abstract descriptions.
These findings suggest that students may first encode the example
infonnation and then build the abstract network around it. Once fonned, the
abstract portion of the network becomes stronger upon exposure to
additional examples, whereas the example portion does not augment its
activation or strength. If the abstract infonnation is not encoded, the details
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of the example--which received high strength initially--remain the most
salient elements of the network.

How is the information that the student encoded in memory related to
the student's performance?
The statistical analyses suggest that the degree to which a student is able
to use his or her abstract information is positively related to the student's
success on the identification task. Those able to express mainly abstract
knowledge apparently had the best understanding of the five concepts and
were most easily able to identify them. Those for whom the abstract
characterizations were somewhat incomplete (e.g., those who were able to
give abstract description for some concepts but needed example details to
describe others) performed less well but still were more successful than
those who predominantly relied on example details.
The primary implication of this finding is that instruction should be
developed to facilitate the linkage of abstract knowledge to easily
understood example knowledge. The examples were undoubtedly salient
and easily encoded. For some students, the abstract characterizations were
equally easy to encode, but this was not universally true.

Does the cognitive model reflect this relationship?
The connectionist model is a useful way to examine individual
performance of students as they identified these concepts. The simulation
of individual performance was extremely successful. The high level of
agreement between model performance and student performance suggests
that the model captures most of the salient and discriminating information
actually used by the students. Most important, the model demonstrates the
impact of missing nodes and erroneously linked pairs of nodes. In many
cases, knowledge of which nodes were missing led to accurate predictions
of subjects' erroneous responses. In others, incorrect linkages among nodes
also led to accurate predictions of errors. The model and its simulation
provides strong support for the use of cognitive networks to represent
learning ofconcepts.
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Abstract

The role of prior knowledge in skill acquisition is to enable the learner to
detect and to correct errors. Computational mechanisms that carry out
these two functions are implemented in a simulation model which repre
sents prior knowledge in constraints. The model learns symbolic skills
in mathematics and science by noticing and correcting constraint viola
tions. Results from simulation runs include quantitative predictions
about the learning curve and about transfer of training. Because con
straints can represent instructions as well as prior knowledge, the model
also simulates one-on-one tutoring. The implications for the design of
instruction include a detailed specification of the content of effective
feedback messages for intelligent tutoring systems.
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THE ROLE OF KNOWLEDGE IN LEARNING

Learning and knowledge are doubly related. On the one hand,
knowledge is the outcome of learning. On the other hand, knowledge is
one of the inputs into the learning process. New skills are constructed
within the context provided by prior knowledge. This is no less true of
technical domains such as mathematics, science, and engineering than of
common sense domains such as cooking and travel planning.
Cognitive scientists from Ebbinghaus (1964/1885) to VanLehn

(1982) have sought to escape the complexities of prior knowledge by
studying situations in which such knowledge plays a minimal role. This
simplification has payed off theoretically. Following the pioneering pa
pers by Anzai and Simon (1979) and by Anderson, Kline, and Beasley
(1979) several computational models of the acquisition of cognitive
skills in the absence of prior knowledge have been proposed (e. g.,
Anderson, 1983; Holland et al., 1986; Langley, 1987; Ohlsson, 1987a;
Rosenbloom, 1986; VanLehn, 1990). These models assume that proce
dural knowledge forms a closed loop: Problem solving methods gener
ate problem solving steps which, in turn, generate the experiences from
which new problem solving methods are induced. Simulation models of
this kind constitute an important advance over the mathematical and ver
ballearning theories of the past, but the learning mechanisms proposed
within this paradigm (chunking, composition, discrimination, general
ization, grammar induction, subgoaling, etc.) do not explain the role of
prior knowledge in learning. There is no point along the method-step
method loop at which domain knowledge can impact the learning pro
cess.
Empirical research of knowledge-based skill acquisition began with

Judd's (1908) study of the skill of throwing darts at underwater targets
with and without knowledge of the principle of refraction. Both he and
later Katona (1940) reported dramatic effects of knowledge about under
lying principles on skill acquisition. Kieras and Bovair (1984) also
found such an effect, but other recent studies have found weaker effects
or no effect (e. g., Gick & Holyoak, 1983; Smith & Goodman, 1984).
Educational researchers frequently report that instruction in the relevant
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domain knowledge does not guarantee correct action (e. g., Resnick &
Omanson, 1987; Reif, 1987). On the other hand, inappropriate prior
knowledge--so-called misconceptions--is quite likely to interfere with
successful problem solving (Confrey, 1990). The empirical results indi
cate that we do not yet understand how prior knowledge interacts with
skill acquisition well enough to ask the right experimental questions.
Theoretical analysis of the function of prior knowledge in skill ac

quisition has hardly began. Ohlsson (l987b) proposed a computer
model which explained how inferential knowledge about the domain en
ables a learner to fmd a more efficient strategy for a task which he or she
already knows how to solve. The hypothesis behind this model was that
domain knowledge allows the learner to reason about possible simplifi
cations of his or her current strategy. The model simulated speed-up of a
simple reasoning strategy, but it threw no light on the role of domain
knowledge in the initial acquisition of that strategy.
The purpose of the work reported here is to explore the hypothesis

that the function ofknowledge in initial skill acquisition is to enable the
learner to detect and correct errors. This hypothesis is embodied in a
running simulation model which uses prior knowledge to learn cognitive
skills from unguided practice. The theory predicts the negatively accel
erated practice curve observed in human learning, throws some new
light on the problem of transfer of training, and suggests an analysis of
tutoring with some very specific implications for the design of intelligent
tutoring systems.
Throughout this chapter, the terms "domain knowledge" and "prior

knowledge" refer to declarative knowledge, while the terms "cognitive
skill", "problem solving method", "decision rule", and "mental proce
dures" refer to procedural knowledge. Both common sense and philos
ophy have long distinguished between theory and practice, between
knowing that and knowing how, but the particular formulation of this
distinction used here is imported from Artificial Intelligence (Winograd,
1975).
Procedural knowledge is prescriptive and use-specific. To a first

approximation, it consists of associations between goals, situations, and
actions. Examples of procedural knowledge are place-value algorithms
for arithmetic, methods for electronic trouble shooting, explanatory
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strategies in biology, and the procedure for constructing structural for
mulas for organic molecules. Declarative knowledge, on the other hand,
is descriptive (as opposed to prescriptive) and use-independent. To a
ftrst approximation, it consists of facts and principles. Examples of
declarative knowledge are the laws of the number system, the general
gas law, Darwin's theory of evolution, and the theory of the co-valent
bond. The function of procedural knowledge is to control action; the
function of declarative knowledge is to provide generality. Intelligent
behavior requires both types of knowledge (Anderson, 1976;
Winograd, 1975).
If the two types of knowledge are distinct, how do they interact? In

particular, if declarative knowledge is use-independent and distinct from
procedures, then how does it influence action? The problem investigated
in the research program summarized in this chapter is how (previously
learned) declarative knowledge affects the construction of (new) proce
dural knowledge.

A FUNCTIONAL THEORY OF SKILL ACQUISITION

Learning happens during problem solving; to learn is to adapt to the
structure of the task environment; learning is triggered by contradictions
between the outcomes of problem solving steps and prior knowledge.
These three principles imply a particular functional breakdown of skill
acquisition.

Principle 1: Learning as Problem Solving

During practice, the learner is faced with problems which he or she
does not yet know how to solve--that is why he or she is practicing.
Practice is problem solving and skill acquisition is the encoding of the
results of problem solving for future use. People solve unfamiliar prob
lems with so-called weak methods, i. e., problem solving methods
which are so general that they can be applied even with a minimum of
infonnation about the task environment. The weak methods people have
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been observed to use include analogical inference, hill climbing, for
ward search, means-ends analysis, and planning.
Weak methods are general but inefficient. The function of weak

methods during practice is not to produce complete or correct problem
solutions, but to generate task relevant behavior. Activity vis-a-vis the
task provides the learner with the opportunity to discover the structure
of the task environment. Cognitive skills are constructed by interpreting,
storing, and indexing such discoveries so that they can be retrieved and
applied later. The function of weak methods is to provide learning op
portunities, not to solve problems.
Individual weak methods were formalized in the late fifties and

early sixties (Feigenbaum & Feldman, 1963), but the general category
of weak methods was first identified by Newell (1969, 1980). Laird
(1986) has suggested that there exists a universal weak method from
which all other weak methods can be derived.
The idea that learning is problem solving and that the function of

weak methods is to provide learning opportunities is implicit in the con
cept of trial and error and thus traces its roots back to behaviorism.
Although first formalized in a computational model by Anzai and Simon
(1979), this idea is central to several recent models of learning (e. g.,
Anderson, 1986; Holland et al., 1986; Rosenbloom, 1986). In the field
of machine learning, the notion that learning occurs en route to an an
swer rather than after completion of a practice problem has been em
phasized by Mostow and Bhatnager (1987, 1990) in their work on
adaptive search.

Principle 2: Learning as Adaptation

Weak methods are inefficient because they are general. A domain
specific cognitive skill is efficient because it reflects the structure of the
relevant task environment. Skill acquisition begins with maximally gen
eral procedures (weak methods) and ends with domain-specific skills.
Learning is gradual adaptation.
The process of adaptation cannot continue indefinitely. The task

environment only contains so much structure and when all the structure
has been absorped, the skill cannot get any more specific or better



152

adapted. In complex and irregular domains, expert strategies are be
tween weak methods and algorithms in specificity. They guide behavior
without fully determining it and considerable uncertainty can remain
even at the highest level of expertise.
The idea that learning proceeds from the general to the specific is

counterintuitive, because it is common sense that learning begins with
the concrete and the specific and moves towards the general. The com
mon sense theory has little support in systematic research. Formal anal
yses of induction (e. g., Angluin & Smith, 1983) have revealed that
many induction problems are NP-complete and that noisy input cripples
most induction algorithms. David Hume was right; induction does not
work. Knowledge must be constructed in some other way.
Specialization of pre-existing, general structures is one alternative. The
particular version of this idea in which learning proceeds from general
methods to task-specific methods was implicit in early computational
models (e. g., Anzai & Simon, 1979), but was to the best of my knowl
edge first stated in two papers by Langley (1985) and by Anderson
(1987).
The idea that learning is adaptation to the environment can be for

mulated in many different ways, as a comparison between Hull (1943),
Piaget (1971), and Anderson (1990) demonstrates. Until recently, psy
chologists lacked a formal method for describing the leamer's environ
ment independently of the learner. This threatened to make the principle
of adaptation circular, or at least difficult to apply. The information pro
cessing approach is a major breakthrough because it provides a formal
description of task environments. Specifically, an environment is de
scribed as a search space (or problem space; Newell & Simon, 1972).
The organism is then naturally described as a strategy for traversing that
space. Adaptation has a very defmite meaning within this formalization:
A given strategy is adapted to a particular task environment in inverse
proportion to the amount of search required by that strategy to find a
path from the initial state to the goal state. A maximally adapted strategy
is one which leads to the goal without extra or unnecessary steps.l

lIn an alternative approach, Anderson (1990) describes the environment in terms of
its statistical regularities. Many memory phenomena follow from the assumption



153

Principle 3: Learning as Conflict Resolution

Novices make many errors; that is why we call them novices.
Experts do not; that is why we call them experts. The weak methods
employed by novices produce errors because they are overly general,
causing problem solving steps to be performed in situations in which
they are not appropriate. The task-specific skills of experts do not gen
erate errors because they constrain actions to situations in which they are
appropriate. The process of adapting a general method to a particular
task environment is a process of gradually eliminating errors. Error
elimination consists of two subprocesses: error detection and error cor
rection.
Error Detection. Learners can detect their errors in three ways:

by observing environmental effects, by self-monitoring, and by being
told by others (Reason, 1990, Chap. 6). Some task environments pro
vide direct feedback about errors. If the unknown device exploded when
the red button was pushed, pushing the red button was an error. Other
task environments do not provide feedback of this sort. In such envi
ronments, learners can detect their errors by checking new conclusions
against their prior knowledge. Incomplete or incorrect procedural
knowledge is highly likely to generate conclusions or problem states that
contradict what the learner knows is true of the domain.
As an illustration, consider the following everyday situation: You

are driving to an unfamiliar location with the instruction to follow route
X north and make a right-hand tum onto Y-street. You are looking for
the tum and not finding it. Did you overshoot the tum or did you not go
far enough? The only way to decide whether you missed your tum is to
know some landmark (e. g., a bridge) which is further out on route X
than the tum onto Y-street. (A thoughtful friend includes such a land
mark in his or her instructions.) When you see the landmark, you know
that you missed your tum. The contradiction between the prior knowl-

that memory is adapted to those regularities (Anderson & Schooler, 1991). Anderson
(1993) applies this approach to skill acquisition as well.
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edge that "Y-street is before the bridge" and the observation "here is the
bridge now" allows you to recognize that you have made amistake.
Technical skills often apply in symbolic task environments in which

contradictions between outcomes of problem solving steps and prior
knowledge constitute the only indicators of errors. Mathematical sym
bols do not complain about being inserted into false equalities, unsolv
able equations, or incorrect calculations, so a good learner checks his or
her calculations. Checking, say, a subtraction by adding the difference
and the subtrahend requires the knowledge that the sum of the difference
and the subtrahend ought to equal the minuend. Structural formulas for
organic molecules do not beep when the laws of the co-valent bond are
violated. Noticing an error in a structural formula requires the knowl
edge that each bond ought to be associated with exactly two electrons,
that the total number of electrons cannot exceed the number of valence
electrons for the molecule, and so on. The more knowledge, the higher
the probability that the learner can detect his or her errors.

Error Correction. The detection of a contradiction between a
new conclusion and prior knowledge leads to processes that aim to re
store consistency by revising the relevant procedural knowledge. If the
execution of action A in situation S1 leads to a new situation S2 which

violates some principle of the domain, then the mental decision proce
dure that chose A in SI is faulty. The obvious correction is to constrain
the procedure so as to avoid executing A in situations like Sl' This re

quires that the learner identifies the conditions that caused the error, i.
e., those properties of S1 that guaranteed that the error would occur if A

were executed. Given knowledge of those conditions, the mental proce
dure can be revised so as to avoid similar errors in the future.
The principle that learning is error correction superficially resem

bles Thorndyke's Law of Effect which says that actions with negative
consequences are gradually removed from the learner's behavioral
repertoire (while actions with positive consequences are strengthened).
However, the two principles are distinct, because a cognitive conflict is
not necessarily associated with a painful or unpleasant outcome, as the
examples given previously illustrate. The error correction principle is
also superficially related to the hypothesis that learning is driven by im-
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passes, i. e., situations in which existing procedural knowledge is in
sufficient to decide what to do next (Newell, 1990; VanLehn, 1988).
However, impasses are not errors. An impasse is a situation in which
there is insufficient information to make a choice, while an error is a bad
choice.
The idea that cognitive change is triggered by contradictions and in

consistencies has been suggested rePeatedly in the cognitive sciences. It
is central to several recent cognitive models of learning. Holland et a1.
(1986) put prediction-based evaluation of knowledge at the center of
learning: Knowledge is continuously applied in predicting events and
rules that lead to wrong predictions are modified. Schank (1982, 1986)
has proposed the similar idea that learning is triggered by expectation
failures. In developmental psychology, Piaget (1985) designated cogni
tive conflict, which he called disequilibrium, as the driving force of
cognitive development. Empirical investigations support this hypothesis
(Murray, Ames, & Botvin, 1977). Social psychologists like Festinger
(1957) have proposed that cognitive dissonance causes individuals to
revise their beliefs in order to restore consistency (see Abelson et aI.,
1968, for an overview of cognitive consistency theory). The hypothesis
that belief revision serves to maintain consistency has also been pro
posed by philosophers (Quine & Ullian, 1978) and by science educators
(Hewson & Hewson, 1984; Posner et al., 1982).
Machine learning researchers have build systems that learn by re

solving conflicts (Hall, 1988; Kocabas, 1991; Rose & Langley, 1986)
and by explaining errors (Minton, 1988). The problem of what consti
tutes a rational response to a contradiction has been studied in logic and
Artificial Intelligence under the rubric non-monotonic logic (Gardenfors,
1988; McDermott & Doyle, 1980). Finally, the idea that theory devel
opment in science is driven by contradictions between theory and data
have been formulated in different ways by Duhem (1991/1914), Kuhn
(1970), and Popper (1972/1935). The relevance of these philosophers
for psychology is highlighted by Berkson and Wettersten's (1984) at
tempt to recast Popper's philosophy as a learning theory. In short, the
idea of cognitive change as a response to conflict, contradiction, or in
consistency has been proposed by so many researchers independently of
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each other and in so many different fields that it deserves to be recog
nized as one of the great unifying principles of the cognitive sciences.

Summary

During practice the learner continuously monitors his or her
progress by comparing the current state of the practice problem to his or
her prior knowledge about the domain. A problem state that contradicts
something that is known to be true of the domain indicates that an error
has been made. When such a contradiction is noticed, the current prob
lem solving method is constrained so as to avoid making similar errors
in the future. As practice progresses, the general method becomes more
and more constrained and better and better adapted to the task environ
ment. Eventually it has become transformed into the correct domain
specific skill and ceases to generate errors.
According to this theory, prior knowledge impacts skill acquisition

in two ways. First, knowledge allows the learner to detect his or her er
rors. Facts and principles of the domain generate implications that an in
complete or incorrect skill is likely to violate or contradict. The more
knowledge the learner has, the higher the probability that he or she will
be aware of the contradictions and conflicts generated by a faulty solu
tion or a mistaken problem solving step.
Second, prior knowledge allows the learner to identify the condi

tions that caused the error. Finding the cause of an error might require
complicated reasoning about the domain. The more knowledge the
learner has, the higher the probability that he or she accurately identifies
the cause, which in turn is a prerequisite for successful error correction.

In short, the theory put forth here claims that the function of acquir
ing new skills through practice consists of three main subfunctions--to
generate task-relevant behavior, to identify errors, and to correct errors-
each of which, in turn, can be analyzed into subfunctions. The func
tional analysis is summarized in Figure 1. Although the theory supports
qualitative arguments and explanations, the derivation of quantitative
behavioral predictions requires a working information processing sys
tem.
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I. Learn to do unfamiliar task

A. Generate task-relevant actions

1. Apply forward search
a. Retrieve possible actions
b. Select action
c. Execute action

B. Learn from erroneous actions

1. Detect errors
a. Check consistency between current problem
state and prior knowledge after each action

2. Correct error

a. Extract information from error
i. Identify the conditions under which a
particular action is incorrect

b. Revise current task procedure
i. Constrain procedure so as to avoid that
action under those conditions

Figure 1. The functional analysis of learning from error.
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A COMPUTATIONAL MODEL

To move from a functional theory to a working model one must
specify particular representations and processes that can compute the
functions described in the theory. In particular, an implementation of the
present theory requires (a) a performance mechanism, including a repre
sentation for procedural knowledge, (b) a representation for declarative
knowledge, (c) a mechanism for detecting errors, and (d) a mechanism
for correcting errors. The particular model described here is called the
Heuristic Searcher (HS).

A Standard Performance Mechanism

Memory Architecture. HS has three memory stores. The
working memory holds the model's knowledge state, corresponding to
the learner's perception of the current state of the practice problem. The
procedural memory holds the model's procedural knowledge, corre
sponding to the learner's previously acquired skills. The long-term
memory holds the model's declarative knowledge, corresponding to the
learner's prior knowledge about the domain. There is no separate goal
stack. Goals are represented in working memory.
Procedural Knowledge. Procedural knowledge is represented

in so-called production rules (Newell & Simon, 1972), i. e., rules of the
general form

Goal, Situation --> Action,

where Goal is a description of what the learner believes he or she is
supposed to achieve in the practice problem, e. g., "construct the struc
tural formula for C2HSOH," and Situation is a description of a class of

situations, e. g., "situations in which the carbon skeleton of the
molecule has been completed but no other atoms have been connected
yet." Formally speaking, both Goal and Situation are patterns, i. e.,
conjunctions of elementary propositions which mayor may not contain
(universally quantified) variables.
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The action on the right-hand side of a production rule is a problem
solving step that the model knows how to perform, e. g., "connect the
oxygen atom to one of the carbon atoms". Actions have applicability
conditions that have to be satisfied before they can be applied. For ex
ample, an oxygen atom cannot be attached to a carbon atom unless there
is a carbon atom for it to be attached to. Each action is implemented as a
piece of Lisp code that revises the current problem state by deleting
some propositions and adding others. Syntactically, the actions are so
called Strips operators (Fikes & Nilsson, 1971). Psychologically, the
actions correspond to components of the practice problem which are un
problematic for the learner.
Each production rule is a single unit of procedural knowledge, cor

responding to a single problem solving heuristic. The skill required to
solve problems of a particular type, e. g., to construct structural formu
las in chemistry, consists of a collection of interrelated rules. All pro
duction rules are stored in the single production memory, without
structural divisions between different skills.

Operating Cycle. The model solves problems by searching a
problem space. The content of the working memory at the time the sys
tem is initialized is the initial state of the search space. The top goal im
plicitly specifies the goal state. The ensemble of operators consists of
the set of actions the model has been given as input. In each cycle of op
eration, the Goals and Situations of the rules are matched against the
working memory with a version of the RETE pattern matching algo
rithm developed by Forgy (1982). If a rule matches, its action is exe
cuted.

Ifmore than one rule matches the current state, each matching rule
is evoked and one new descendant of the current state is generated for
each evoked rule. The entire search tree is saved in memory. Each cycle
begins with the selection of which search state to install as the current
state for that cycle. In some applications of HS, the selection of the cur
rent state is based on a task specific evaluation function, in which case
the model performs best-first search. If the evaluation function has the
righrpropenies and, in addition, the system checks for repeated occur-
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rences of the same state2, then the model executes the A* algorithm
(Pearl, 1984, p. 64). In the absence of any evaluation function, the state
to expand next is selected randomly among the immediate descendants
of the current state, in which case the model performs depth-fIrst search.
In psychological terms, the performance mechanism correspond to the
hypothesis that people respond to uncertainty by thinking through alter
native actions before deciding what to do next.

A Representation for Declarative Knowledge

The function of procedural knowledge is to control action. The
function of declarative knowledge is not equally obvious. Philosophical
discussions often assume that the function of declarative knowledge is
to provide descriptions of the world ("the cat is on the mat"), predictions
about future events ("the sun will rise tomorrow"), or explanations ("it
is snowing, because the temperature fell"). The epistemological, logical,
and semantic riddles associated with these functions have exercised
thinkers in a variety of disciplines for centuries.
The HS model is based on a different view of the nature and func

tion of declarative knowledge. Declarative knowledge is not used either
to describe, predict, or explain but to circumscribe a set ofstates of the
world. The unit of declarative knowledge is a constraint. Constraints
can be interpreted descriptively, i. e., as circumscribing the set of pos
sible states of the world. For example, the law of conservation of mass
claims that the mass of the reactants in a chemical experiment is equal to
the mass of the reaction products. Mass is neither created nor destroyed
in a chemical reaction, so the mass of the inputs is always equal to the
mass of the outputs. The point of the mass conservation law is that it
circumscribes situations in which mass is conserved, which are possi
ble, and separates them from situations in which mass is not conserved
and that it rules out the latter as impossible. Figure 2 shows the con
straint interpretation of the mass conservation law.
Constraints are not limited to representing abstract principles like

the law of conservation. Particular facts are also constraints. For exam-

2This facility is computationally expensive and is usually switched off.



Example 1; A scientific principle

Idiomatic English:

Constraintformulation:

Formal representation:

161

Energy cannot be created or des
troyed.

IT the mass of the reactants for a
chemical experiment is M1and
the mass of the products is M2,
then M1 must be equal to M2.

(Reactants R) (Mass RM1)
(Products P) (Mass P M2)
** (Equal M1M2)

Figure 2. Encoding a scientific principle as a constraint.

pIe, the fact that alcohol molecules have an OR-group corresponds to
the constraint that a structural formula for an alcohol had better have an
OR-group somewhere. Figure 3 shows the constraint interpretation of
this fact.
Constraints can also be interpreted prescriptively, i. e., as circum

scribing the set of desired states of the world. The ordinance that one
should not drive along a one-way street in the wrong direction is a con
straint. Specifically, the fact that Fifth Avenue is one-way in the west
erly direction corresponds to the constraint that if you are driving on
Fifth Avenue, you had better be heading west. It is not impossible to
head east, it is merely undesirable. Figure 4 shows the constraint inter
pretation of this ordinance.
It is a mistake to try to classify individual constraints as either de

scriptive or prescriptive. All constraints can be interpreted in both ways,
because the two interpretations determine each other. It is desirable that
a chemistry experiment satisfies the constraint that the mass of the reac-
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Example 2: A scientific fact

Idiomatic English:

Constraintformulation:

Formal representation:

Every alcohol molecule has an
OH-group.

IfX is an alcohol molecule, then
it must have an OH-group.

(Isa X molecule)
(Substance X ALCOHOL)
** (Isa Y OH-GROUP)
(Part-of Y X)

Figure 3. Encoding a scientific fact as a constraint.

tants is equal to the mass of the reaction products. If this is not the case,
then some error was committed in the execution of the laboratory proce
dure, i. e., some mass was accidentally lost or the experiment was con
taminated in some way (Gensler, 1987). The constraint expressed in the
mass conservation law acquires a prescriptive function because it can be
interpreted descriptively; a laboratory procedure ought to conform to it
precisely because it is true. The descriptive and prescriptive aspects of
constraints are inseparable.
The main contribution of the HS model is a formal representation

for constraints and a set of processes for using them. A constraint C is
represented as an ordered pair

where Cr is a relevance criterion, i. e., a specification of the circum
stances under which the constraint applies, and Cs is a satisfaction cri
terion, i. e., a condition that has to be met for the constraint to be satis-
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EXample 3: An eygyday fact

Idiomatic English:

Constraintformulation:

Formal representation:

Fifth Avenue is a one-way street
heading west.

If someone is driving on Fifth
Avenue, then he or she ought to
travel westwards.

(State X DRIVING)
(Location X FIFfH-AVENUE)
** (Direction XWEST)

Figure 4. Encoding an everday fact as a constraint.

tied. To continue the traffic example, if Fifth Avenue is one-way in the
westerly direction, then "driving on Fifth Avenue" is the relevance cri
terion and "is heading west" is the satisfaction criterion. If I am not on
Fifth Avenue, the direction of my travel is not constrained by this ordi
nance, but when I am on Fifth, then I had better be driving west rather
than east. In the mass conservation example, "M} is the mass before the

reaction and M2 is the mass after the reaction" is the relevance criterion,

while the equality "M} =M2" is the satisfaction criterion.
The double star connective (**) that appears in Figures 2-4 is not a

symbol for logical implication. Constraints are not inference rules; they
do not generate conclusions. Nor are they production rules; they do not
tire operators. The semantics of the double star connective is similar to
the meaning of "ought to", "had better", and related phrases. The inter
pretation of a constraint <Cr, Cs> is that whenever Cr is the case, Cs
ought to be the case as well (or else something has gone awry).
Syntactically, both Cr and Cs are patterns, i. e., conjunctions of

propositions similar to the condition side of a production rule.
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The HS model does not have any mechanism for acquiring or revis
ing its declarative knowledge. The constraints are input by the user and
they stay unchanged throughout a simulation run. The purpose of the
constraints is to facilitate the detection and correction of errors.

A Mechanism for Error Detection

At the beginning of each operating cycle, all production rules are
matched against working memory, the rules with matching condition
sides are evoked, the actions of those rules are executed, and new
problem states thus generated. Each new state is matched against all the
available constraints. (The match is computed with the same pattern
matcher which matches the production rules.) Constraints with non
matching relevance patterns do not warrant any action on the part of the
system, because they are irrelevant. Constraints which have matching
relevance patterns and also matching satisfaction patterns are ignored as
well. The new state is consistent with the those constraints so no action
is required. On the other hand, if a constraint with a matching relevance
pattern has a non-matching satisfaction pattern, then the new state vio
lates that constraint and some response or action is called for. Such a
constraint violation signals that something is wrong with the procedure
that generated the current state; an error has been committed.
Specifically, consider a rule R with goal G and a conjunction S of

situation features in its left-hand side and a single action A in its right
hand side,

R: G, S --> A,

and a constraint C with relevance pattern Cr and satisfaction pattern Cs'

where both Cr and Cs are conjunctions of situation features. In particu-
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lar. let us assume that Cr and Cs each consists of two features:

C = C'&C"r r r

and

Finally. let us assume that the effect of action A is to add the conjunction
of Cr" and Cs' to the current problem state. i. e.•

If a learner with rule R and constraint C encounters a problem state
S1described by

then the left-hand side of R is satisfied because 5 is present. so the rule
will be evoked and action A executed. The effect is that Cr" and Cs' are
added to 5 l' yielding a new problem state 52 described by

In this problem state. both Cr' and Cr" are present. so Cr matches. i.
e.• the constraint is relevant. Although Cs' is present. Cs" is not. so Cs
is violated; hence. doing A in situation 51 was an error.

In principle. there are two possible interpretations of the constraint
violation: The fault might lie either with the procedural knowledge--the
rule--or with the declarative knowledge--the constraint. Because H5
was designed to model skill acquisition. as opposed to the acquisition of
declarative knowledge. it assumes that the rule rather than the constraint
is at fault.
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A Mechanism for Error Correction

A constraint violation is a signal that the procedural knowledge that
generated the current problem state is faulty and needs to be revised. HS
assumes that the fault lies with the last rule to ftre. The problem of how
to learn from the constraint violation can be stated as follows: Given
that rule R,

R: G, S --> A,

was applied to state S1 and that it generated state S2 and that S2 violates

constraint C, how should the rule be revised? The purpose of the revi
sion is to avoid similar constraint violations in the future. The learning
mechanism in the HS model accomplishes this by ftnding the cause of
the constraint violation, i. e., the properties of state S1 that were re-

sponsible for the error, and revising rule R so that it does not apply un
der those conditions. The learning mechanism ftnds the relevant proper
ties of S1 by regressing the violated constraint through the rule with a

variant of the standard regression algorithm used in many A. I. systems
(Nilsson, 1980, p. 288).
More speciftcally, rule R is replaced with two new rules R' and

R", representing two different revisions of R. The purpose of the first
revision is to constrain R so that the new rule will apply only in situa
tions in which constraint C is guaranteed to remain irrelevant. This is
accomplished by regressing the relevance pattern through the rule.
Continuing the example from the previous subsection, regressing the
relevance pattern Cr =(Cr' & Cr") through the operator A =Add[Cr"
& Cs'] yields Cr' as the only output (see Nilsson, 1980, p. 288, for an

explanation of the regression algorithm). The ftrst new rule is con
structed by adding the negation of the output from the regression to the
original rule:

R': S & not Cr' --> A
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This rule applies only in those situations in which the constraint is guar
anteed to remain irrelevant if action A is executed. Psychologically, the
rule corresponds to the knowledge that one should only do Awhen S is
true but Cr' is false (e. g., "if the device needs repair and the power is

not on, then open the front panel").
The purpose of the second revision is to constrain rule R so that it

applies only in situations in which the constraint C is guaranteed to be
come both relevant and satisfied if A is executed. This is accomplished
by regressing the entire constraint through the rule, instead of the rele
vance pattern. Regressing (Cr' & Cr" & Cs' & Cs") through the opera-
tor A =Add[Cr" & Cs'] yields (Cr' & Cs") as the output (see Nilsson,

1980, p. 288). The second new rule is constructed by adding this result
to the original rule (without negating it):

This rule applies only in those situations in which the constraint is guar
anteed to become satisfied if A is executed. Psychologically, the rule
corresponds to the knowledge that one should only do A when S, Cr',
and Cs" are all true (e. g., "if the device needs repair, the power is on,

and the red light is blinking, then switch off the power").
Figure 5 provides a graphical interpretation of the learning mecha

nism. The set S of situations in which the original rule R applies is split
into three subsets when the rule is revised. The first subset contains
those situations in which the constraint is guaranteed to remain irrelevant
if action A is executed. They are covered by the first new rule. The sec
ond subset contains those situations in which the constraint is guaran
teed to become satisfied if A is executed. They are covered by the sec
ond new rule. The third subset contains those situations in which doing
A leads to a constraint violation. They are thrown away, as it were.
Neither of the two new rules apply in those situations, so the error type
represented by the third subset has been eliminated.
The fact that one type of error has been eliminated does not imply

that the two new rules R' and R" are correct. Although the new rules
have been revised so as to be consistent with one constraint, they might
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still violate other constraints and so have to be revised further. Repeated
revisions of rules is the standard case in HS learning. Also, the fact that
one rule has been revised does not imply that other rules are correct.
Learning proceeds by gradual correction of the relevant rule set as a
function of the errors that the model encounters during practice. A de
tailed analysis of the correction of an entire rule set is available in
Ohlsson and Rees (l991a, Table 5).

Discussion

The HS model is based on two representational assumptions: that
procedural knowledge is represented in production rules and that
declarative knowledge is represented in constraints. The production
system format was proposed by Newell and Simon (1972) but has been
taken up by other researchers (Klahr, Langley, & Neches, 1987). The
main claim of the production system hypothesis is that human action is
determined by an external context, represented by the situation the
learner is faced with, and an internal context, represented by the
learner's goal. Procedural knowledge consists of associations between
goals, situations, and actions. The individual production rule is the
smallest unit of procedural knowledge; it maps a single goaVsituation
pair onto a particular action.
A second claim of the production system hypothesis is that the units

of procedural knowledge are modular. Production rules do not access or
operate upon each other. They only interact through their effects on
working memory. There is strong empirical evidence for the modularity
of procedural knowledge (Anderson, 1993).
The constraint format originated with the current theoretical effort

(Ohlsson & Rees, 1991a) and it does not have any empirical or theoreti
cal support other than the success of the model it is embedded in. There
has been so little progress on the epistemological, logical, and semantic
problems associated with the standard, propositional interpretation of
declarative knowledge that any alternative conception is worth explor
ing.
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Given the two representational assumptions, information process
ing mechanisms that compute the functions specified in the abstract the
ory (see Figure 1) can be specified. In HS, the function of generating
task relevant activity is carried out by forward search, the function of
detecting errors is carried out by a pattern matcher, and the function of
correcting errors is carried out by a rule revision algorithm based on re
gression. There are alternative ways to compute each of these functions.
HS could have been implemented with, for example, analogical transfer
instead of heuristic search as the weak method responsible for generat
ing task relevant behavior. Similar substitutions of alternative mecha
nisms are possible for each of the other functions specified in the the
ory. The predictions generated by running the model are consequences
of both the theoretical principles that guided its design and the particular
representations and processes that are implemented in it.
Compared to many other machine learning systems, HS is very

simple. It combines a standard production system architecture, a well
known weak method, and an off-the-shelf regression algorithm; little
else is needed. HS is implemented in Lucid Common Lisp and runs on a
Sun Sparcstation 1+ with 16 megabytes of main memory. The core
mechanisms have been debugged in hundreds of simulation runs in dif
ferent domains over a period of four years and are very robust.

APPLICATIONS TO CLASSICAL RESEARCH PROBLEMS

A good theory should throw new light on the perennial problems of
the discipline. The learning curve and transfer of training have been
central problems in the theory of learning for a long time.

The Learning Curve

Background. If performance level, measured in terms of time to
complete a practice problem, is plotted as a function of amount of prac
tice, measured in terms of the number of practice problems solved, i. e.,
the number of trials, the result is a negatively accelerated curve. The rate
of improvement is fastest at the beginning of practice and quickly slows
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down as mastery is approached. This type of learning curve has been
observed in a large number of studies, across many different tasks, and
in widely varying subject populations (Lane, 1987; Mazur & Hastie,
1978; Newell & Rosenbloom, 1981; Ohlsson, 1992c).
Annchair reasoning would lead one to expect learning to be slow in

the beginning, when the learner is still groping to understand the prac
tice task and there is little relevant knowledge or skill to build on. Later
in the practice sequence, the partial knowledge built up during previous
trials serves as a lever for acquiring more knowledge, with increased
speed of learning as a result. However, research leaves no doubt that the
opposite is the case: The rate of skill acquisition is faster the less the
learner knows about the task. No theory of practice is viable unless it
can explain this unexpected finding.
The hypothesis that skill acquisition is the elimination of errors

provides such an explanation. According to this hypothesis, knowledge
is revised when the learner becomes aware of an error. Learning is thus
a sequence of learning events, with one error (type) being eliminated per
event. The prediction of a negatively accelerated learning curve follows
from this hypothesis in three easy steps:

1. The consequence of an error is floundering, i. e., unnecessary
search. Performance improves when the error is corrected be
cause the unnecessary search is eliminated. Let us assume that
the amount of unnecessary search caused by an error is approx
imately constant across errors. Perfonnance then improves with
a constant amount per learning event.

2. At the outset the learner makes many errors on each practice
problem precisely because he or she knows so little about the
task. As mastery is approached, the number of mistakes per
problem decreases because many errors have already been elimi
nated. There are fewer and fewer learning events per trial as
practice progresses.

3. Constant improvement per learning event and decreasing number
of learning events per trial imply a decreasing rate of improve
ment per trial.

This explanation does not depend on the details of particular infor
mation mechanisms. Any theory or model which claims that learning



172

events are triggered by trouble situations--defined as cognitive conflicts,
contradictions, errors, expectation failures, impasses, wrong answers or
in any other way--implies this explanation, because trouble situations
disappear as mastery is approached, by definition of "mastery."
The qualitative argument explains why we should expect the rate of

improvement to slow down across trials, but it does not make a specific
prediction about the shape of the learning curve. Newell and
Rosenbloom (1981) have reviewed the evidence that the human learning
curve is a member of the class of curves described by so-called power
laws, i. e., by equations of the general form

(1)

where T is the time to complete the current practice problem, A is the
asymptotic performance, P is the amount of practice in trials, and k and
r are constants.

Simulating the Learning Curve. To derive the learning curve
predicted by the present theory, a simulation experiment was run with
the HS model. A problem solving skill from the domain of chemistry
was chosen as the target for the simulation. Chemists frequently need to
know the interconnections between the atoms in a molecule. The inter
connections are specified in structural formulas, so-called Lewis struc
tures. A Lewis structure shows which atoms in a molecule are bound to
which other atoms and by which kind of bond. The task of constructing
the Lewis structure for a particular molecule, specified through its
molecular (sum) formula, will here be called a Lewis problem. Figure 6
shows the initial state and the goal state of a Lewis problem. There is
usually more than one path to the goal state. Figure 7 shows one such
path. The cognitive skill of solving Lewis problems is taught in the be
ginning of college level courses in organic chemistry (e. g., Solomons,
1988).
The HS model was given a representation for atoms, molecules,

valencies, bonds between atoms, and the other entities, properties and
relations that are important in the chemistry environment. The actions
involved in Lewis problems are to select atoms, to connect atoms, to
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Initial state:

A swn formula

Goa/state:

A Lewis structure

H H
I I

H- C-C-O-H
I I
H H

Figure 6. Initial state and goal state for a Lewis problem.

make double bonds, and so on. Figure 8 summarizes the problem space
for Lewis problems.
In order to attempt to solve practice problems, HS must be given an

initial procedure. In this application, the model was given a set of very
general initial rules that encode a procedure for how to construct Lewis
structures that approximates the verbal recipes given in chemistry text
books (e. g., Solomons, 1988, pp. 10-11; Sorum & Boikess, 1981,
pp. 104-107). Finally, in order to detect and correct its errors, the model
must have some prior knowledge about the domain. It was given a set
of constraints that encode some relevant facts about the chemistry of al
cohols, ethers, and pure hydrocarbons.
Nine molecules--three alcohols, three ethers, and three hydrocar

bons--were selected as practice problems. The model solved each of the
nine problems, presented in random order. This corresponds to the
simulation of a single subject going through a sequence of nine different
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1. Connect the carbons:

2. Attach the oxygen:

3. Complete the OH-group:

4. Distribute the hydrogens:

5. Add electron pairs:

C-C

C-C-O

C-C-O-H

H H
I I

H-C-C-O-H
I I
H H

H H
I I

H-C-C-O-H
I I

H H

Figure 7. A solution path for the Lewis problem in Figure 6.
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Representation
Symbols that represent atoms, electron pairs, molecules, noble gas
configurations, numbers, single, double and tripple bonds, sub
stances, types of carbon arrangements (branched structures, chains,
and rings), two-dimensional spatial relations, and valencies.

Initial state
A molecular (sum) formula.

Operators
Select an atom, place the fIrst atom, attach an atom to the molecule,
identify open bonds, create multiple bonds, and add electron pairs.

Goal state
A correct Lewis structure for the given molecule. A Lewis structure
must (a) connect all the atoms in the sum formula, (b) not include
any other atoms than those in the sum formula, (c) have a number of
valence electrons equal to the sum of the valence electrons of the
atoms, and (d) give each atom a noble gas configuration.

Figure 8. A problem space for Lewis problems.

practice problems. The model was then re-initialized and run through the
nine problems once again, simulating a second subject. All in all, the
model worked through the nine practice problems 357 times, each time
in a different random order, thus simulating a learning experiment with
that number of subjects. Figure 9 summarizes the initial knowledge, the
training procedure, and the outcome of the chemistry simulation.
The data from the simulation runs were aggregated by averaging the

performance of all 357 simulated subjects for each trial. The average
performance on each trial was plotted as a function of trial number.
(This corresponds to how learning curves are constructed from psycho-
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Prior procedural knowledge
The model began with a procedure that connects the heavy atoms,
adding multiple bonds if needed, connects the hydrogens, and then
adds the final electron pairs. This procedure generates correct Lewis
structures, but requires large amounts of search.

Prior declarative knowledge
There were 16 constraints which encode knowledge about (a) prop
erties of particular classes of molecules, e. g., that alcohols have a
C-O-H group and that ethers have a C-O-C group, (b) spatial prop
erties of the possible carbon skeletons (branched structures, chains,
and rings), and (c) the distribution of hydrogens across the
molecule.

Training
The model was given unsupervised practice on a mixed set of Lewis
problems that included alcohols, ethers, and pure hydrocarbons.

Learning outcome
The model learned a set of rules for constructing Lewis structures
for the relevant molecules with a minimal amount of search.

Figure 9. Summary of the chemistry simulation.

logical data.) Figure 10 shows the results. Performance as a function of
practice approximates a straight line when plotted with logarithmic co
ordinates on both axes, the hallmark of a curve described by a power
law. The HS model thus predicts that improvement over time follows
the particular shape that has been observed in data from human learning.
The qualitative argument for why learning from error predicts a

negatively accelerated learning curve is based on the simplifying as
sumption that there is a constant improvement per learning event. How
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Figure 10. Performance as a function of trials.

realistic is this assumption? The assumption is true in approximately
uniform task environments. By approximately uniform I mean that the
average branching factor in a small neighborhood around a search state
is equal for all states in the search space. If this is true and if perfor
mance is plotted as a function of learning events instead of as a function
of trials, then the results should be a linear relationship with negative
slope. Figure 11 shows the results from a simulation run in which HS
was given repeated practiced on a particular Lewis problem. When per
formance is plotted as a function of learning events, the result approxi
mates a negative linear relationship, indicating that the chemistry envi
ronment is, in fact, approximately uniform. An empirical test of the
prediction that human learning is linear in the number of learning events
(in this task environment) is possible in principle but requires a method
for identifying learning events in human data.
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Transfer of Training

Background. Knowledge must be applicable in other situations
than the one in which it was learned in order to be useful, but many lab
oratory studies have recorded little or no transfer of procedural knowl
edge even between isomorphic problems (Connier & Hagman, 1987;
Singley & Anderson, 1989, Chap. 1). Although many models of learn
ing try to elucidate the mechanism of transfer (Ohlsson, 1987a; Singley
& Anderson, 1989), the empirical data imply that the main task for a
transfer model is to elucidate why transfer oftraining does not occur. In
spite of the negative findings, psychologists keep trying to identify
conditions that produce transfer, presumably because the findings
strongly contradict our experience of ourselves as creatures with general
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and flexible competence. A second task for a theory of skill acquisition
is to resolve this appearent contradiction between the laboratory findings
and our intuitive self-understanding.
The production system hypothesis solves the first of these explana

tory tasks. If procedural knowledge is encoded in production rules and
if the rules required to solve a training task A are different from the rules
required to solve a target task B, then practice on A will not affect the
amount of learning required to master B, which is the typical laboratory
result. Production rules are task specific, so they do not transfer.
From the point of view of common sense, the lack of transfer of

training between isomorphic problems is particularly puzzling. A series
of experiments with different versions of Duncker's ray problem has
shown that unless subjects are explicitly reminded of the training task,
transfer to an isomorphic target task is limited (Gick & Holyoak, 1987,
pp. 34-37). Other experiments have verified that people behave differ
ently on isomorphs of the Tower of Hanoi problem (Hayes & Simon,
1977) as well as on different isomorphs of the so-called selection task
(see Evans, 1982, Chap. 9, for a review).
According to the production system hypothesis, these results are to

be expected. Production rules for moving disks between pegs cannot
also transfer globes among monsters; production rules that split up and
recombine X-rays cannot also split up and recombine anny platoons;
production rules that decide whether envelopes have the proper postage
cannot also test abstract rules; and so on. Production rules contain vari
ables, but they quantify over arguments to predicates, not over predi
cates. There is no reason to expect a production rule to facilitate the
construction of other rules isomorphic to itself, particularly not if the
intended isomorphism is unknown to the learner.
The non-transferability of procedural knowledge leaves us with a

picture of human beings as brittle systems which can only solve the very
tasks that they have practiced. If this is true, then how do we survive
even a single day of normal life?
The first answer is that the zero transfer prediction must be moder

ated by the distinction betweenfar transfer, in which the target task dif
fers completely from the training task, and near transfer, in which the
two tasks partially overlap. In far transfer situations (which include al-
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most all instI'Uctionally relevant situations) there is no overlap in the
production rules for the two tasks and the production system hypothesis
predicts zero transfer. In the near transfer case, on the other hand, there
are rules in the procedure for the training task which are identical to
rules in the procedure for the target task. In this case, there will be a
transfer effect. Singely and Anderson (1989) claim that the number of
production rules shared between two tasks is a good predictor of the
amount of transfer in near transfer situations.
The second and more important answer suggested by the present

theory is that generality resides in a person's declarative knowledge
rather than in his or her procedural knowledge. It is our concepts and
beliefs about the world that transfer from one situation to another, rather
than our skills. We understand how the world works well enough so
that we are able to construct the procedural knowledge required by novel
circumstances and conditions. We cope by generating new procedures,
not by transferring old procedures to new situations.
This explanation suggests that psychologists have been studying

the wrong paradigm. Transfer studies have focussed on pairs of tasks
which have similar solutions. In the typical transfer experiment, the ex
perimenter varies the degree of similarity between the solution to a train
ing task and the solution to a target task and expects the amount of trans
fer to vary accordingly. The negative findings from studies of isomor
phic problems command attention because the solutions to those prob
lems are structurally identical and so ought to yield perfect transfer.
However, the hypothesis that generality resides in declarative

knowledge implies that structural similarity between solution paths is ir
relevant. The important factor is whether two skills share a common
conceptual rationale. If the skills required to solve two tasks A and B
can both be derived from a set of beliefs or abstract principles T, then
knowing T should give the ability to solve both A and B. The fact that
two different procedures have the same theoretical rationale does not
imply that there is any formal or structural similarity between the prob
lem solutions generated by those procedures. For example, a chemical
analysis of an unknown compound and a synthesis of a particular sub
stance are procedurally different, but both are based on the same theory
of the composition of maner.
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Simulating Transfer of Training. The skill acquisition litera
ture contains few studies of procedurally different skills which have the
same declarative rationale, but developmental psychologists have found
a naturally-occuning instance of this type of situation. Gelman and
Gallistel (1978) have argued that children learn to count sets of objects
by deriving the correct counting procedure from their intuitive under
standing of its rationale. They formulated the declarative knowledge re
quired for correct counting into a set ofwell-defined counting principles
and presented empirical evidence that children know these principles at
the time they learn how to count. Knowledge of the counting principles
should give the ability to construct not only the procedure for the stan
dard counting task, but to solve two non-standard counting tasks as
well: to count objects in a particular order, so-called ordered counting,
and to count objects in such a way that a designated object is assigned a
designated number (e., g., "count the objects so that the red object be
comes the fifth one"), so-called constrained counting. The empirical
evidence confirms that children can quickly generate the correct proce
dures for these non-standard counting tasks (Gelman & Meck, 1983,
1986; Gelman, Meck, & Merkin, 1986).
To simulate this situation, the HS model was given a problem space

for the task of counting a given set of objects. The representation in
cluded symbols for objects, numbers, for relations between objects and
numbers, and so on. The actions included to select an object, to select a
number, and to assign a number to an object. Figure 12 summarizes the
problem space for counting.
The model was given rules which knew how to apply the opera

tors, but which did not know how to apply them correctly. Finally, the
model was given the counting principles in the form of constraints.
Figure 13 summarizes the counting simulation. More detailed reports are
available in Ohlsson and Rees (1991a, 1991b).
The model was trained on each of the three procedures for standard

counting, ordered counting, and constrained counting. The diagonal of
Table 1 shows the results as reported in Ohlsson and Rees (1991b). The
effort required was measured in two ways, by the number of production
system cycles and by the number of learning events, i. e., rule revi
sions. The model learned each procedure in approximately the same
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Representation
Symbols for objects, numbers, sets of objects, and associations
between numbers and either objects or sets. Both objects and
numbers can have the properties of being first, current, and point of
origin, and numbers can have the property of being the answer. The
relations represented are correspondancy, set membership,
successor, and temporal contiguity.

Initial state
A set of objects to be counted.

Operators
Associate a number with an object, associate a number with a set,
select a ftrst object, select the next object, select the ftrst number,
select the next number, and shift focus.

Goal state
A number designated as the cardinality of the given set.

Figure 12. A problem space for counting.

number of learning events. This result illustrates the generality of
declarative knowledge. A single set of abstract principles gave the model
the ability to construct three different procedures, each procedure being,
in a sense, derived from those principles during practice. The declarative
knowledge transferred from one counting task to another, even though
the tasks are procedurally different.
Switching between counting tasks is an instance of near transfer.

Not all rules need to be revised. Hence, the theory predicts that there
will be procedural transfer as well. To illustrate this, six transfer exper
iments were run with the model. In each experiment, the model ftrst
practiced one of the three counting tasks until it reached mastery and
then it was switched to either of the other two tasks. The results are
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Prior procedural knowledge
The system began with one rule for each operator. That rule applied
the operator whenever possible, i. e., in every situation in which its
applicability conditions were satisfied. The result was counting-like
but chaotic behavior.

Prior declarative knowledge
The were 18 constraints that encode the counting principles as
identified by Gelman and Gallistel (1978): The one-to-one mapping
principle, the cardinal principle, and the stable order principle.

Training
The model was given unsupervised practice on sets of 3-5 objects.

Learning outcomes
The model learned a correct, general procedure for counting any set
of objects, regardless of the size of the set and the type of objects
involved. It also learned correct procedures for two non-standard
counting tasks, ordered counting and constrained counting. Finally,
the model transfered each of the three learned counting procedures to
each of the other two counting tasks.

Figure 13. Summary of the counting simulation.

shown in the off-diagonal cells of Table 1. The model solved each trans
fer task successfully. The amount of transfer varied depending on the
exact relations between the rules for the practice task and the rules for
the target task. The model also predicts asymmetric transfer between
some tasks. For example, the transfer from ordered to constrained
counting was 0%, while the transfer from constrained to ordered
counting was 75%. These predictions are, in principle, empirically
testable, although the necessary data are not available at this time.
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Table 1. The computational effort required by the HS model to learn
each of three counting tasks (diagonal cells) and to solve each of six

different transfer tasks (off-diagonal cells).a

Transfer task

Standard Ordered Constrained
Training task counting counting counting

Standard countin~
Rule revisions 12 2 2
Prod. sys. cycles 854 110 127

Ordered countin~
Rille revisons 1 11 11
Prod. sys. cycles 184 262 297

Constrained countin~
Rule revisions 0 3 12
Prod. sys. cycles 162 154 451

aData taken from Ohlsson and Rees (l991b, Tables 1 and 2).

Contrary to Singley and Anderson (1989), the present theory does
not imply that the amount of transfer is predictable from the number of
overlapping production rules. Instead, the variable of interest is the
amount of cognitive work that has to be performed in order to adapt the
rules to the target task. A single rule from the training task might cause
more than one type of error in the target task and need to be revised
more than once, so the number of rules that need to be revised is prob
ably too course a predictor variable. The present analysis suggests that
the number of rule revisions is a better predictor.
Unlike the number of overlapping production rules, the number of

rule revisions required to master the target task cannot be calculated
from a static comparison of the two procedures. It is a function of the
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particular learning mechanism which carries out the revisions. To verify
this, the knowledge compilation mechanism-- a cornerstone of the ACf
model described by Anderson (1983)--was implemented within the HS
architecture. According to the knowledge compilation hypothesis,
declarative knowledge resides in long-term memory in a format similar
to inference rules. Familiar problems are solved with production rules,
but unfamiliar problems are solved by interpreting (in the computer sci
ence sense) the declarative knowledge. During interpretation, new pro
duction rules are constructed which eliminates the need to re-interpret
the declarative knowledge on subsequent trials. Once the rules are con
structed, they are composed into larger rules which solve the relevant
task more efficiently. Unlike HS, the ACT model learns from suc
cesses, not from errors.
We did not implement the ACT architecture as described in

Anderson (1983). Instead, we implemented the knowledge compilation
mechanism within the HS architecture. The result was a version of HS
which learns through knowledge compilation instead of through con
straint violations. All other aspects of the HS architecture were kept the
same. I shall refer to the HS architecture as the KC model when it learns
through knowledge compilation. The upshot is that we have two simu
lation models, HS and KC, which learn in different ways but which are
otherwise identical. This provides an opportunity to compare the behav
ioral predictions of the two learning mechanisms.
KC was given the counting principles in the form of declarative

knowledge and was then run through the same set of learning experi
ments and transfer experiments as HS. Because the effort measures dif
fered by an order of magnitude (KC was on the average ten times
slower than HS), they have been converted into transfer scores. There
are many different ways to measure transfer (Singely & Anderson,
1989, pp. 37-41). The index used here was

EB - EB1A
T = ---------------- * 100

EB
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where EB is the cognitive effort required to master the target task B from
scratch and EB1A is the effort required to master B given previous mas-

tery of training task A. The T index can be interpreted as the proportion
of the effort required to learn task B that is saved by ftrst learning task
A. It is equal to zero when practice on the training task A is of no help
and it is equal to 100 when practice on the training task provides mas
tery of B with no further training. The index is negative if practice on
task A increases the amount of effort required to masterB.
The effort measures for the transfer experiments with the HS and

KC models were converted to transfer scores. The results are shown in
Table 2. The amount of transfer predicted by the HS model varied be
tween 8 and 100 across tasks, while the transfer predicted by the KC

Table 2. Transfer scores for the HS and KCa models for each of six
transfer tasks in the counting domain, based on both the number of rule
revisions and the number of production system cycles.
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model varied between 19 and 100. More imponantly for present pur
poses, the two models made different transfer predictions for one and
the same task. HS predicts a score of 92 for the transfer from ordered to
standard counting, while the corresponding KC prediction is 34. More
important still, the differences between tasks do not always go in the
same direction for the two models. HS predicts that transfer from stan
dard to ordered counting is easier than vice versa, while KC predicts the
opposite. The results in Table 2 verify the fact that the amount of near
transfer between two tasks cannot be predicted from a static analysis of
the procedures for those tasks, but depends upon assumptions about
learning.

APPLICATION TO INSTRUCTION

A good theory should have implications for practice. The natural
application domain for a learning theory is the design of instruction. The
instructional implications of the present theory include an explanation of
why it is possible to learn from instruction, a rationale for the most
common tutoring scenario, a prescription for effective tutoring mes
sages, and a technology for evaluating instructional designs through
simulated one-on-one tutoring.

Why Instruction is Possible

Why are people able to learn from instruction? Although the origin
of cognitive capacities such as language and learning is almost com
pletely unknown, it is likely that learning evolved before language.
There are no mammalian species, and probably no lower organisms,
which cannot learn, so the capacity to learn was almost certainly present
in the hominids when they separated from the rest of the primates 4-10
millions of years ago.
Language, on the other hand, evolved later, perhaps very much

later. McCrone (1992) summarizes the fossil evidence in the following
way: "The high arch in the roof of the mouth that helps with voice pro
duction is about the only telltale sign of speech that shows up on a fossil
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skeleton. This arch did not start to appear until Homo erectus arrived
about 1.5 million years ago, and even then the arch was slight. Judging
from fossils, modem speech came along about 100,000 years ago when
the earliest examples ofHomo sapiens were starting to walk the earth."
(p. 160-161)3 One hundred thousand years is a short time in evolution
ary tenns. If this estimate is correct, then special-purpose brain mecha
nisms for learning from verbal instruction have had little time to evolve.
These two speculative but plausible hypotheses--that learning pre

ceeded language and that language is too recent for special-purpose
brain mechanisms for instruction to have evolved--imply that our ability
to learn without instruction is primary and our ability to learn from in
struction secondary and parasitic upon the former. A theory of learning
from instruction should therefore explain how instruction feeds into
learning mechanisms that evolved for the purpose of uninstructed
learning.
The theory proposed in this chapter suggests such an explanation.

The two functions of detecting and correcting errors can be computed by
noticing contradictions and by inferring the conditions that produced
them as described previously, but they can also be computed in other
ways. Instruction works, the theory suggests, because being told that
one has committed an error is functionally equivalent to detecting the er
ror oneself and because being told the cause of an error is functionally
equivalent to figuring out the cause oneself. Learning from instruction is
possible because instructional messages enter into the learning process
in the same way, functionally speaking, as declarative knowledge re
trieved from long-term memory.

A Rationale for One-on-One Tutoring

The theory proposed in this chapter implies that there are three ma
jor felicity conditions (VanLehn, 1990, p. 23) for effective instruction in
cognitive skills: (a) instruction should be offered during ongoing prac
tice, (b) instruction should alert the learner to errors, and (c) instruction
should identify the conditions which caused the error. The type of in-

3See Lyons (1988, p. 153) for a different interpretation of the evidence.
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struction that satisfies these three conditions is entirely familiar. In one
on-one tutoring, the teacher watches as the learner practices, points out
errors, and helps the learner correct them. The present theory selects as
most felicitous precisely that type of instruction which the empirical data
show is most effective (Bloom, 1984).
Intelligent tutoring systems are typically designed to teach cognitive

skills (Psotka, Massay, & Mutter, 1988; Sleeman & Brown, 1982).
Perhaps the most successful line of intelligent tutoring systems are the
so-caIled model tracing tutors developed by John Anderson and co
workers (Anderson et aI., 1987, 1990). Skill training tutors in general
and model tracing tutors in particular confonn closely to the three felicity
conditions: They give feedback in the context of practice, they alert the
learner to errors, and they help the learner to correct the error.
The design of the model tracing tutors is said to be derived from the

ACf theory of learning (Anderson et al., 1987). However, none of the
six learning mechanisms described in various versions of the ACf the
ory--analogical transfer, discrimination, generalization, proceduraliza
tion, rule composition, and strengthening--can take a tutoring message
as input and revise a faulty production rule accordingly. Analogical
transfer generates task relevant activity by relating the current problem to
an already solved problem; rule composition creates more efficient rules
by combining existing (hopefully correct) rules; strengthening increases
the probability that a (hopefully correct) rule will be retrieved. These
three learning mechanisms can neither take a tutoring message as input
nor revise an existing rule. Generalization and discrimination (which do
not loom large in expositions of the ACT theory) revise existing rules,
but cannot take a tutoring message as input. Proceduralization generates
new rules on the basis of verbal input, but cannot correct existing rules.
Taken literally, the ACT theory predicts that it is impossible to learn
from the teaching scenario embodied in the model tracing tutors. Unless
people can learn in other ways than those described in the ACf theory,
they have no cognitive mechanisms for learning from feedback mes
sages about errors.
To highlight the contrast between the implications of the ACT the

ory and the design of the model tracing tutors, consider what an intelli
gent tutoring system derived from the ACT theory might be like. In or-
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der to facilitate analogical transfer, such a systemmight keep a record of
the problems the student has solved in the past and suggest possible
analogies when the student hesitates. Such a system might repeat the
task instructions from time to time to give the student a chance to re-pro
ceduralize them. It might sequence practice problems in such a way that
rule composition, generalization, and discrimination are facilitated.
Finally, it might provide opportunities to exercise already acquired com
ponents of the target skill in order to increase their strengths. However,
a tutoring system derived from the ACf theory would have no reason to
alert the learner to errors and give help in correcting them.
The model tracing tutors and most other skill training systems con

form to the design that follows from the theory presented in this chapter:
They help the learner detect and correct errors. The instructional success
of such tutors provide support for the hypothesis that error correction is
the natural modus operandi of skill acquisition. If it were not, those tu
tors would not be effective but empirical evaluations show that they are
(Anderson et at., 1990, pp. 30-33). In short, the present theory pro
vides a rationale for the teaching scenario adopted by designers of intel
ligent tutoring systems and in turn receives empirical support from the
instructional success of such systems.

Deriving the Content of Instruction from Theory

The content of feedback messages is the Achilleus heel of skill
monitoring tutoring systems. Delivering feedback messages is the major
instructional action of such a system, so its instructional effectiveness
depends crucially on the content of those messages. Until now there has
been no theory for how to formulate feedback messages. Such mes
sages are typically pre-formulated texts and they are written in the same
way as other instructional materials: The instructional designer makes a
guess about what might work based on his or her understanding of the
subject matter.4 In spite of the strong claims about the tight relation be
tween the ACf theory and the model-tracing tutors (Anderson et al.,
1987), this is true of those tutors as well. No existing tutoring system

4See Moore and Ohlsson (1992) and Reiser et aI. (1991) for exceptions.
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derives the content of its tutoring messages from assumptions about
learning.
The learning theory proposed here implies that tutoring messages

should help the student identify those properties of the current problem
state which indicate that an error has been committed, so that he or she
can detect his or her errors without help in the future. The general form
for this type of tutoring message is "you can tell that you just made an
error, because of p", where P is some conjunction of easily accessed
properties of the problem state produced by the erroneous action.
Unless the learner can detect his or her errors, he or she cannot learn
from them.
More importantly, tutoring messages should help the learner correct

his or her errors. To do so, a message must identify those properties of
the immediately preceeding problem state that constitute counterindica
tions to the problem solving step that the student took. A problem solv
ing step A is typically correct in some situations but wrong in others.
The task of the student is to figure out when, i. e., in which situations,
doing A is right and when it is wrong. If doing A in situation S is incor
rect, then the corresponding tutoring message should have the general
form "when such-and-such conditions are the case, A is not the right
thing to do". The conditions mentioned in the message should refer to
the immediately preceeding problem situation, not to the situation in
which the error was discovered. The student needs to learn to avoid the
error, i. e., to act differently in the situation in which he or she decided
to do A. The tutoring system should therefore back up and explain what
makes A the wrong choice in that situation.
These prescriptions rule out some types of feedback messages

which are commonly used in tutoring systems. For example, it is intu
itively plausible that if a student takes step A when he or she should
have taken step B, then it helps to print a message of the form "you did
A but you should have done B." According to the present theory, how
ever, this type of feedback message is likely to be ineffective, because it
does not specify the conditions under which either A or B should or
should not be done. Instruction should focus on the conditions of ac
tions, not on the actions themselves. A second common type of feed
back message explains what is wrong with the situation in which the er-
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ror was discovered, i. e., why the error is an error. This might increase
the student's understanding of the domain but it is unlikely to help him
or her acquire the target skill, because it does not tell him or her how to
avoid the error. A feedback message should focus on the situation in
which the student decided to do A, not on the situation produced by
doing A.

Simulating One-on-One Tutoring

The HS model can be interpreted as a model of learning from tutor
ing, with the constraints playing the role of tutoring messages. It is a
matter of interpretation whether the constraints correspond to knowledge
items retrieved from memory, conclusions from inference chains, or
tutoring messages received through the language comprehension chan
nel. According to the theory proposed here, these three types of knowl
edge elements enter into the learning process in the same way.
A runnable simulation of learning from tutoring opens up novel

possibilities. We can evaluate alternative instructional designs by teach
ing them to the model and measuring the amount of computational work
it has to expand to learn the target skill under different circumstances. If
the model can reach mastery with less work under one instructional de
sign or tutoring regime than another, then that is evidence that the for
mer is the better design.
To explore this possibility the HS model was tutored in subtraction.

The simulation experiment followed the common classroom tactic of
teaching the procedure for canonical subtraction problems, i. e., prob
lems in which each subtrahend digit is smaller than the minuend digit in
the same column, and to introduce the procedure for how to handle non
canonical columns, i. e., columns in which the subtrahend digit is larger
than the minuend digit, once the procedure for canonical subtraction has
been mastered (Leinhardt, 1987; Leinhardt & Ohlsson, 1990). The
simulation experiment followed this pedagogical tactic in that the model
was first given a procedure for non-canonical subtraction and was then
tutored in canonicalization.
Two different HS models of canonical subtraction were imple

mented. One model, called the high-knowledge model, was built around
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a representation of the place value meaning of digits. In this representa
tion the digit 3 was represented as (3 * 10) if it appeared in the second
column to the right, as (3 * 1(0) if it appeared in the third column, and
so on. The operations by which this representation was manipulated
correspond to mathematically motivated operations on numbers. The
high-knowledge model was intended to simulate skill acquisition in the
context of conceptual understanding of place value.
The second model, called the low knowledge model, was built

around a representation in which a subtraction problem is a two-dimen
sional array of digits. In this representation, the digit 3 was represented
as the digit 3 regardless of its position in the problem display. The op
erations by which this representation was manipulated correspond to
physical operations on digits rather than conceptual or mathematical op
erations on numbers. The low knowledge model was intended to simu
late rote learning of subtraction. Figure 14 summarizes the problem
space for subtraction. The reader is referred to Ohlsson, Ernst, and Rees
(1992) for a full account.
Both the high and the low knowledge models were tutored in the

regrouping algorithm taught in American schools. In this method non
canonical columns are handled by incrementing the minuend of the non
canonical column and performing a corresponding decrement on the
minuend in the next column to the left. Both models were also tutored in
the equal addition algorithm taught in some European schools. In this
method non-canonical columns are handled by incrementing the minu
end in the non-canonical column and decrementing the subtrahend in the
next column to the left. The simulation experiment thus followed a 2-by
2 design, with two levels of knowledge paired with two different target
skills.
The procedure for tutoring the model were similar to those involved

in tutoring a human student. The programmer in charge of the system
watched while the model tried to solve a non-canonical problem, spotted
errors, halted the model, and typed in a constraint (tutoring message)
intended to correct the observed error. When the model had attained
mastery, it was reinitialized and run again with all the constraints in
place simultaneously, to verify that they were indeed sufficient to pro
duce correct performance. This tutoring scenario was carried out four
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Representations
Two different representations for subtraction were created. (a) The
procedural or low knowledge representation contained symbols for
written digits, perceived digits, spatial locations, scratch marks,
decrements, and increments. (b) The conceptual or high knowledge
representation contained, in addition, symbols for subtraction
problems, numbers, place values, links between numbers and digits,
relations between numbers, and answers.

Initial state
A subtraction problem.

Operators
Look at a digit, move the eye to another digit, write a digit, cross out
a digit, assert the answer, recall number fact, create a working
memory schema, and revise a working memory schema.

Goal state
A number designated as the answer to the subtraction problem.

Figure 14. A problem space for subtraction.

times, once for each combination of knowledge level and target skill.
The amount of computational work required to attain mastery in each
condition was recorded. Figure 15 summarizes the subtraction simula
tion.
Table 3 shows the number of production system cycles and the

number of rule revisions required for HS to attain mastery in each of the
four conditions. There are two main results. The high knowledge model
required more work to attain mastery than the low knowledge model.
This is true for both canonicalization procedures and for both effort
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Prior procedural knowledge
The system knew at the outset how to solve a canonical subtraction
problem, i. e., a problem in which the subtrahend digit is smaller
than the minuend digit in every column.

Training
The model was tutored in how to handle non-canonical problems. It
executed its procedure for canonical problem until it made an error. It
was then halted and given a constraint that was intended to allow it to
correct the error.

Learning outcome
The model\ learned two different procedures for non-canonical
columns, namely regrouping and equal addition, with both the low
knowledge and the high knowledge representations.

Figure 15. Summary of the subtraction simulation.

measures. The reason\for this result is that the high knowledge model
had a more elaborate representation. It requires more cognitive opera
tions to create and update a more elaborate representation and each op
eration must be guided by some production rule. Hence, the high
knowledge model had more to learn.
The second result is that learning the regrouping procedure required

more work than learning the equal addition procedure in both the high
knowledge and the low knowledge conditions. The reason for this result
is that the control of the regrouping procedure becomes complicated
when it is necessary to regroup the minuend recursively to handle
blocking zeroes, i. e., minuend zeroes immediately to the left of a non
canonical column. The augmenting procedure is not affected by the
number of blocking zeroes. The regrouping procedure also requires
more complicated visual attention allocation.
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Table 3. The computational effort required for the HS model to master
regrouping and augmenting with either a high knowledge or a low

knowledge representation.a

Type of representation

Cycles Revisions Cycles Revisions

Method

learned

High knowledge Low knowledge

Rewupini
W/o blocking zeroesb

With blocking zeroes

AUlW1entin~
W/0 blocking zeroes
With blocking zeroes

940
1815

862
862

23
32

20
20

449
794

687
687

16
24

18
18

aData taken from Ohlsson, Ernst, and Rees (1992, Table 2).
~. e., minuend zeroes to the left of a non-canonical column.

Both of these results were unexpected because they contradict the
common belief among mathematics educators that regrouping is easier to
learn, particularly in the high knowledge condition. This belief is based
on empirical investigations carried out in the pre-Word War II era
(Brownell, 1947; Brownell & Moser, 1949). A detailed discussion of
these simulation results and their relation to the empirical research has
been presented elsewhere (Ohlsson, 1992a).
This simulation exercise demonstrates that runnable models of

learning from instruction creates new relations between learning theory
and instructional design (Ohlsson, 1992a). Instead of deriving general
design principles from the learning theory, as suggested by Bruner
(1966) and later by Glaser (1976, 1982), we can evaluate an instruc
tional design directly by teaching it to a simulation model. This technol-
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ogy has the potential to allow instructional designers to do formative
evaluation without leaving their desks (Ohlsson, 1992b).
This simulation exercise also demonstrates that the application of

learning theory to education requires a formal analysis of instruction. A
model of learning cannot have implications for instruction unless it
contains learning mechanisms which take instruction, suitably formal
ized, as one of their inputs. Computational analysis of instruction has
barely begun. Some early Artificial Intelligence systems explored how a
system can learn from advice and instructions (Hayes-Roth, Klahr, &
Mostow, 1981; Mostow, 1983; Rychener, 1983), but the problem ap
pears to have disappeared from the research agenda of the machine
learning community. The proceduralization mechanism in the ACT
model (Anderson, 1983) was a first attempt to formalize this problem in
a psychological context. Although the proceduralization mechanism ex
plains how the learner constructs new rules on the basis of task instruc
tions, it does not explain how the learner revises existing rules on the
basis of feedback messages. The Sierra and Cascade models described
by VanLehn (1990) and VanLehn and Jones (this volume) learn from
solved examples--a common form of instruction--but they cannot take
tutoring messages as inputs. The HS model constitutes a modest first
step towards a formal theory of how tutoring messages received during
skill practice are translated into mental code for the target skill.

SUMMARY AND CONCLUSIONS

The theory proposed in this chapter is formulated in terms of cog
nitive functions instead of information processing mechanisms. The
function of learning to solve an unfamiliar task is analyzed into two sub
functions: To generate learning opportunities and to construct new pro
cedural knowledge. The latter function is in tum broken down into two
subfunctions: To detect incorrect problem solving steps and to correct
the procedural knowledge that generated them. To detect errors requires
a comparison between the current problem state with prior knowledge.
To correct an error, finally, involves identifying the conditions under
which the error appears and constraining the faulty decision rule accord-
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ingly. The main claim of the theory is that this is the right functional
breakdown of skill acquisition.
How does this theory explain the role of prior knowledge in skill

acquisition? Domain knowledge is not needed to generate task relevant
actions. Weak methods can generate behavior even in the absence of any
knowledge about the task. The functions for which knowledge is
needed are to detect and correct errors. Incorrect or incomplete task pro
cedures are likely to produce situations which contradict what ought to
be true in the particular domain. Domain knowledge increases the prob
ability that the learner recognizes that he or or she has made an error. To
correct the error presupposes the ability to identify the conditions under
which that error will appear. This might require complicated reasoning
about the domain. Prior knowledge increases the probability that the
learner identifies the causes of errors correctly.
Each of ~he functions postulated in the theory can be computed by

many different information processing mechanisms. In the particular
implementation of the theory described in this chapter, task relevant be
havior is generated by forward search through the problem space.
Errors are detected by matching constraints against problem states with a
pattern matcher. The conditions that produced a particular error are
identified by regressing the match between a constraint and a state
through a production rule. Errors are corrected by adding the conditions
that produce them to the left-hand sides of decision rules. Other imple
mentations of the functional theory are possible.
The simulation model generates several quantitative predictions

about two classical problems in learning theory. First, it predicts that
skill acquisition is negatively accelerated. More precisely, it predicts that
the learning curve follows a so-called power law. Second, the theory
predicts zero transfer in far transfer situations. It also predicts that the
amount of transfer in near transfer situations depends upon the particular
tasks involved and that transfer might be asymmetrical, i. e., that there
might be either more transfer from task B to task A than from task A to
task B. Finally, the model predicts that the richer the representation of
the task to be learned, the more cognitive effort is needed to attain mas
tery.
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With respect to the practical problem of designing computer-based
instruction in cognitive skills, the present theory provides a rationale and
an explanation for the effectiveness of one-on-one tutoring, the main
teaching scenario embodied in current intelligent tutoring systems.
Tutoring (by computer or by human) works, the theory of claims, be
cause tutoring messages provide an alternative way to become aware of
errors and an alternative source of information about the conditions un
der which the errors occur.
According to the present theory, tutoring messages can help the

learner in two ways. First, to help the learner detect his or her own er
rors, tutoring messages should point out those properties of a problem
state which indicate that an error has occurred. Second, to help the
learner correct his or her errors, tutoring messages should identify those
properties of a problem state which indicate that an error will occur if
such and such an action is executed.
The theory proposed here is obviously incomplete. People un

doubtedly learn from their errors, but they also learn from their suc
cesses. The theory needs to be extended with assumptions about how
people learn from correct problem solving steps. It is not clear which of
those predictions will remain constant if the model is augmented with
additional learning mechanisms. The interaction between multiple
learning mechanisms is a high-priority issue for computational learning
theories. In past work, I combined a method for learning from error
(discrimination) with two methods for learning from success
(generalization and subgoaling). The resulting model learned to solve
simple puzzle tasks (Ohlsson, 1987a), but it threw no light on the
problem of prior knowledge.
The problem of how prior knowledge impacts learning is central for

the study of skill acquisition. The outcome of practice is always a func
tion of both the leamer's prior knowledge about the domain and the new
information that becomes available during practice. Any viable learning
theory must describe the cognitive mechanism that interfaces those two
knowledge sources. The fate of the theory proposed here will ultimately
be determined by comparative evaluations with alternative computational
theories of the function of prior knowledge in learning, once such alter
native theories become available.
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Abstract

Explanation-Based Learning (Mitchell et al., 1986; DeJong and
Mooney, 1986) has shown promise as a powerful analytical learning tech
nique. However, EBL is severely hampered by the requirement of a
complete and correct domain theory for successful learning to occur.
Clearly, in non-trivial domains, developing such a domain theory is a
nearly impossible task. Therefore, much research has been devoted to
understanding how an imperfect domain theory can be corrected and
extended during system performance. In this paper, we present a char
acterization of this problem, and use it to analyze past research in the
area. Past characterizations of the problem (e.g, (Mitchell et al., 1986;
Rajamoney and DeJong, 1987)) have viewed the types of performance
errors caused by a faulty domain theory as primary. In contrast, we focus
primarily on the types of knowledge deficiencies present in the theory,
and from these derive the types of performance errors that can result.
Correcting the theory can be viewed as a search through the space of
possible domain theories, with a variety of knowledge sources that can
be used to guide the search. We examine the types of knowledge used by
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a variety of past systems for this purpose. The hope is that this analysis
will indicate the need for a "universal weak method" of domain theory
correction, in which different sources of knowledge for theory correction
can be freely and flexibly combined.

INTRODUCTION

Much recent research in machine learning has centered around an
alyticallearning techniques. In particular, Explanation-Based Learning
(EBL) (Mitchell et al., 1986j DeJong and Mooney, 1986) has emerged as
an important approach to using prior domain knowledge to improve per
formance. In its classic conception, EBL involves using a domain theory
to construct an explanation (or proof) of why a given training example
is an instance of some goal concept. By analyzing the dependency struc
ture of the explanation, the learning system can construct a generalized,
opemtional rule which directly recognizes the training example as an in
stance of the goal concept. EBL has taken a variety of slightly different
forms, such as knowledge compilation (Anderson, 1986), chunking (Laird
et al., 1986), operationalization (Mostow, 1981), and schema construc
tion (Mooney, 1990), and has proven useful in domains from recognizing
simple concepts to learning reactive plans for mobile robots (Mitchell,
1990; Laird and Rosenbloom, 1990).
This technique is severely hampered, however, by the requirement

of a complete and correct domain theory. Even for simple domains,
a perfect domain theory is extremely difficult to construct. Therefore,
to make EBL a plausible learning technique, it must be augmented by
methods for correcting and extending incomplete domain theories.
There have been a number of different methods advanced to attack

this problem. Researchers have focussed on examining a variety of mech
anisms for extending and correcting domain theories. In this paper, how
ever, we will focus primarily on the know/edge used to extend and correct
a domain theory. Understanding the knowledge available is the first step
towards the long-term goal of developing a general, domain-independent
mechanism for improving domain theories, which can draw on any of
the available knowledge sources in combination. The ability to flexibly
draw upon a combination of knowledge sources should greatly enhance a
system's ability to improve its domain theory. Thus, our long-term goal
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can be viewed as the development of a "universal weak method" (Laird
and Newell, 1983) for domain theory refinement.
In this paper, we will present a framework that lays out the space

of possible approaches to extending and correcting domain theories. In
order to understand how various knowledge sources are used to refine
domain theories, we must begin by analyzing the refinement task itself.
We will examine the kinds of tasks EBL systems perform, the types
of domain theory errors that can be present, and the ways in which
they manifest themselves. Next, we will describe the domain theory
correction process, casting it as a heuristic search through the space
of possible domain theories. Knowledge that is used in the correction
process can be then be viewed as controlling this search. In analyzing
past work in the area (including our own) in these terms, we find that
few approaches have demonstrated the ability to draw from a variety of
knowledge sources in refining an imperfect domain theory.

PERFORMANCE TASKS OF EBL SYSTEMS

Two complementary tasks have been performed by EBL systems.
The first type, what we will call analysis tasks, involve explaining or un
derstanding some observed example. This category includes plan recog
nition (Mooney, 1990), in which the system tries to explain the actions
of characters in a narrative, and apprenticeship learning systems (e.g.,
(Wilkins, 1988; Chien, 1989; VanLehn, 1987)), in which the system ob
serves an expert carrying out some task which it must learn to perform.
The second type, what we will call generation tasks, involve constructing
(as opposed to observing) a plan to reach some goal from an ini tial state.
This category includes typical planning tasks, such as planning a robot's
actions (e.g., (Gupta, 1987; Laird et al., 1989; Bennett, 1990)), and
standard concept recognition tasks (e.g., (Ourston and Mooney, 1990)),
where the sequence of inferences needed to recognize an example of the
concept is considered the "plan" that is generated.
These two types of tasks are similar, in that they require similar types

of knowledge to be performed. Both require a knowledge of the opera
tions performable in the domain, their applicability and their effects. For
analysis tasks, the system observes a sequence of states ending at a goal,
and must infer a consistent sequence of operations that would produce
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the sequence of states. For generation tasks, the system is given only
the initial and final states, and must produce a sequence of operations
leading from one to the other. Thus the analysis task is a more con
strained version of the generation task. In addition, generation systems
may require knowledge of how to actually carry out the operations in
the external world. Many systems (e.g., (Bennett, 1990; Chien, 1989))
perform both types of problems. In the remainder of this paper we will
cast our discussion from the point of view of generation tasks, but the
analysis is equally applicable to analysis tasks. Where the different tasks
lead to differences in the analysis, we will highlight the differences.
We can cast the performance task faced by an EBL system in generic

terms using the standard AI concept of problem space search. Search in
a problem space involves finding a path from an initial state to a goal
state. The system has a set of operators which move between states in
the space. The task is to find a sequence of operators which lead from the
initial state to the goal state. This sequence is a plan in the generation
case (or an execution trace if the system is executing operators before
a complete plan is formed). In the analysis case, an observation must
be explained. The sequence forms an explanation of the observation.
Throughout the paper we will refer to the reasoning process as planning,
and its result as plans.
Given this characterization of the problem, the knowledge that com

prises the system's domain theory becomes clear. Simply, the system's
knowledge of operators - their preconditions and effects - makes up the
domain theory. In pure inference tasks, such as the cups domain (Win
ston et al., 1983), each inference can be viewed as an operator. Note that
this simple definition of the domain theory is a result of how we have
cast the problem. A system mayor may not actually have its knowl
edge partitioned into distinct, discrete operators with explicit pre- and
postconditions. Clearly, knowledge can be applicable to many different
operators (for example, general "frame axioms"). However, conceptu
ally the knowledge can be viewed as a set of operators, with distinct
knowledge about each.
There may be other knowledge in the system, of course, besides what

can be viewed as operator knowledge. This additional knowledge is used
to guide search through the states of the problem space. There may be
standard search control knowledge, which express preferences between
operators, and/or reasoning strategy knowledge, such as knowledge al-
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lowing the system to perform an abstract or hierarchical search.
We do not consider such search guiding knowledge to be a part of the

domain theory proper of a system. The reason is that search control is
intended to affect problem solving's efficiency, not its correctness. Search
control may make an intractable theory tractable, but the theory is not
incorrect in either case. If a system has no search control, or incorrect
search control, it will have to explore more of the search space to solve
the problem, but the lack of search control will not preclude solving the
problem. EBL systems that have learned search control (e.g., PRODIGY
(Minton et aI., 1989) and Soar (Laird et al., 1987)) did not extend or
correct domain theories by doing so. However, if resource constraints
can affect the correctness of the solution, then the solution may not be
independent of the search process. In this case, knowledge about resource
constraints must be incorporated into the domain theory.

DOMAIN THEORY PROBLEMS

Almost every domain theory is actually an approximation. This is
due to the frame problem: the preconditions and effects of actions are
extremely difficult to describe fully except in limited domains. For exam
ple, knowing the preconditions of actions in the real world is extremely
difficult; this is known as the qualification problem (Ginsberg and Smith,
1987). Exceptions can be generated almost ad infinitum. Consider an
operator for going through a door. The most obvious precondition is
that the door is opened. What if the door is open but there are steel
bars across the opening? Or, maybe a transparent glass plate? Or an
unseen magnetic force field? We could go on and on. Similarly, in an
environment with other complex processes or agents, it usually impossi
ble to have a complete domain theory that will predict all the activity
of the other processes and agents. This explains AI's fondness for the
closed world assumption, for without it, our domain theories are always
incomplete, if not incorrect.
When a system's domain theory is imperfect, errors may arise, either

during planning or execution. In this section we analyze the types of
domain theory imperfections that may arise, and the errors they can
lead to. Note that correcting a domain theory in response to failures is
different from learning search heuristics from search failures, which can
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be done using standard EBL methods and does not alter the domain
theory (Mostow and Bhatnager, 1987; Minton et al., 1989).

Types of Domain Theory Imperfections

We have cast the problem facing an EBL system as that of finding
a sequence of operators. Therefore, the domain theory consists of the
system's knowledge of the preconditions and postconditions of its oper
ators. This gives rise to the set of possible problems with the domain
theory:

• Overgeneral Preconditions.

An operator precondition is missing, or an overgeneral test is used
(e.g. "fruit" instead of "banana").

• Overspecific Preconditions.

An extra, unnecessary precondition is present, overly restricting
the set of situations in which an operator is applicable.

• Incomplete Postconditions.

The planner is unaware of some effect of an operator.

• Extraneous Postconditions.

The planner incorrectly believes that an operator will produce some
effect which it does not.

• Missing Operators.

An entire operator is absent from the domain theory.

Note that when a postcondition is simply "incorrect" this can be
viewed as a case of both an extraneous postcondition (the current effect)
and a missing postcondition (the correct effect).

observed Types of Failures
As a result of an imperfect domain theory, an EBL system might

encounter a failure either during planning or during execution of the
plan. These two categories are further delineated below:



215

1. Planning Failures

(a) Incomplete Plan

In this case, the planner is unable to form a complete sequence
of steps that it believes will lead from the initial state to the
goal. For analysis tasks, this corresponds to being unable
to construct a complete explanation of the observed training
example. Several systems attempt to construct a parse of
training examples by working both bottom-up and top-down
(VanLehn, 1987; Hall, 1986). A failure to complete the parse
represents an incomplete plan failure.

(b) Multiple Inconsistent Plans
Rajamoney and Dejong (1988) examine cases in which it is
known that only one plan should be formed, but multiple
plans are found. In many domains, multiple paths to the
same goal are possible, so forming multiple plans does not
necessarily constitute an error. Even if it is known that there
is only one legal path to the goal, detecting this error requires
that the planner actually attempt to construct multiple plans,
which is not common.

(c) Reaching an impossible state
During planning, the system will use its knowledge of opera
tors to search through the states of the domain. If the domain
theory is incorrect, it may be possible to reach a world state
which is known to be impossible to achieve. For example, if
during planning in a STRIPS domain the robot is found to be
in two different rooms at once, this indicates a domain theory
problem. Note that to detect this kind of error during plan
ning, the system must have explicit knowledge about states
that are impossible.

2. Execution Failures

Execution failures occur when the system completes a plan but is
unable to successfully execute it. Failure occurs when the system's
expectations are not met in the external world. Note, however,
that the operator being executed when the error is detected is not
necessarily the one for which the domain theory is in error. The
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incorrect operator may have occurred anywhere before the current
operator in the plan.

The failure may be detected in a number of ways:

(a) Preconditions of the next operator to be executed are not
achieved.
Here an operator is slated to be executed but cannot be be
cause one of its preconditions does not hold in the external
world. This means that some earlier operator either was ex
pected to achieve the precondition but did not, or that some
earlier operator was expected to preserve the precondition but
clobbered it (Carbonell and Gil, 1987).

(b) Postconditions of the operator just executed are not achieved.
The operator does not cause all of the effects that the planner
predicted. Carbonell and Gil (1987) break this down further
into two cases: either all postconditions are unachieved, or
only some subset are unachieved. If all postconditions are
unachieved, it probably indicates that the operator didn't ap
ply at all. The operator apparently had preconditions for its
application that the planner was unaware of. If only a sub
set of the operator's expected effects are unachieved, then the
operator did apply but didn't do all it was expected to. This
indicates that the unachieved effects are either incorrect or
somehow conditional on the situation in an unexpected way.

(c) Failure is explicitly detected.
In some cases, the system may have rules indicating states
of the world which should not be reached. This is essentially
a "theory of failure." For example, Gupta's system (1987)
has a rule indicating that if the robot's gripper melts, that
is a failure. In classification tasks, execution corresponds to
classifying an example, and incorrectly classifying an example
corresponds to an explicit detection of failure.

It should be noted that not all execution failures are due to an er
roneous domain theory. The domain theory is a theory of the processes
that can operate on the world. To operate correctly, the domain the
ory depends on the agent having a correct knowledge of the state of the
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PlanninJ( Failures Execution Failures
Incomplete Multiple Impossible Prec. Postc. Explicit

State Unmet Unmet Detection
OverJ(en. Preconds. • • • •
Overspec. Preconds. •
Missing Postconds. • • • • • •
Extra P08tconds. • • • • • •
Missing Operator •

Figure 1: Domain theory error types and their manifestations.

world as well. This is the standard process/data distinction in computer
science. Here we are considering imperfections in the agent's process
knowledge; there might also be imperfections in the agent's data about
the state of the world. These imperfections can result from incomplete
or noisy sensing.

Mapping Knowledge Deficiencies to Failures

Each class of errors in the domain theory can produce a subset of
the types of observed failures in planning or execution. The six types of
failures are plotted against the five types of domain theory deficiencies
in Figure 1. Many of the dots in the figure are obvious: for instance, it
is clear that a missing operator can lead to incomplete plans, and that
extraneous postconditions can lead to postconditions which are not met
during execution.
The figure reveals some explainable patterns, with various rows con

taining the same set of dots. Missing operators and overspecific precon
ditions, for example, both lead only to incomplete plan failures. This is
because both overly restrict the selection of a needed operator. This can
eliminate correct plans from consideration, but it cannot cause incorrect
plans to be formed.
Missing and extra postcondition errors both lead to all six types of

failures. This is not surprising, since both types of errors result in the
planner having an incorrect model of the world after applying the op
erator. Clearly, missing some necessary postcondition can preclude any
plan being formed; similarly, some extraneous postcondition can wrongly
clobber the preconditions of a necessary future operator. Either a miss-
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ing or an extra postcondition can allow incorrect plans to be formed:
missing postconditions, because the plans would have been clobbered
had the postcondition been known; extra postconditions, by enabling
other operators that are actually not possible in reality. These incorrect
plans might be detected during planning, as a multiple plan failure, or
during execution, as either unmet pre- or postconditions. Again, here
the planner's model of the world does not match reality. If the system
has explicit knowledge of what reality is supposed to be like, it may de
tect the reaching of an impossible state during planning, or an explicit
failure during execution.
This leaves the overgeneraJ preconditions category. Overgeneral pre

conditions cannot preclude a plan being formed, since they simply loosen
the restrictions on choosing the operator. However, they may allow incor
rect plans to be formed in addition to the correct plan. These incorrect
plans might lead to a state that is known to be impossible to reach, or
(if executed) to a state that can be explicitly detected as an execution
failure. OvergeneraJ preconditions can lead to the faulty operator not
being applicable at execution time. However, this is detected not as
a precondition failure (the system thinks the operator's preconditions
are met), but as a postcondition failure, when it is detected that none
of the operator's postconditions have been achieved. Overgeneral pre
conditions cannot lead to unmet preconditions for some future operator
during execution, because if the faulty operator is able to be executed,
the system's model of the world will be correct (the effects of the opera
tor are correct); if the faulty operator is unable to be executed, this will
be detected before any further operators are attempted.
Finally, we can briefly examine the columns of the table. The impos

sible state and explicit detection columns are identical, because in both
cases the domain theory error leads to a world state that is explicitly
known to be a failure. The dots in the multiple plans column correspond
to the union of the dots in all three execution failure columns. An in
consistent plan may be detected during planning, if multiple plans are
considered, or it may be detected when executed, by leading to any of
the three types of execution failures.
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KNOWLEDGE SOURCES FOR CORRECTING
DOMAIN THEORIES

The previous section described the ways in which various types of
domain theory errors might manifest themselves during planning or ex
ecution. But once an error is detected, what is to be done about it?
There is a tradeoff between simply fixing the error, and fixing the

domain theory that led to the error. In some cases, fixing the domain
theory may not be cost effective. For example, consider an execution
error in which a slippery block slips out of a robot arm's gripper. If
the block only slips one in a thousand times, it is probably enough for
the system to simply grab the block again when it falls. However, if the
block slips ninety percent of the time, it is probably better to fix the
underlying domain theory (for instance, to squeeze harder for suspected
slippery objects). This tradeoff has not been examined in detail, and we
will not discuss it further here.
Let us assume, then, that in response to an error, the system will

attempt to improve its domain theory. The problem can be viewed as
a search through the space of domain theories. The goal is to alter the
current domain theory, usually in the smallest amount possible, so that
the new domain theory will not commit the error.
This search can be formalized as follows. Let us call the original do

main theory T. T is a set of operators. We will denote the preconditions
of an operator op as Pre(op), and the effects of op as Post(op).
We assume that the pre- and postconditions of operators may be

generalized or specialized in known ways. For a pre- or postcondition
p, Gen(p) returns the set of nearest generalizations of p, and Spec(p)
returns the set of nearest specializations.
As an example of how Gen and Spec might work, consider the case in

which all possible predicates in the domain are organized into a general
ization hierarchy. The hierarchy specifies a set of generalizations and spe
cializations for each predicate. For example, the condition isa(?X.ba
nana) might have the (nearest) generalization isa(?X.fruit). If such
a hierarchy is present, it is easy to define Gen(p) and Spec(p): each sim
ply traces either up or down the generalization hierarchy, for each of the
predicates appearing in p. However, note that errors in the generalization
hierarchy could preclude correcting the domain theory error.
The search for a correct domain theory is a heuristic search through
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the space of possible domain theories, starting at the current theory. The
states of the space are full-fledged domain theories, and the operators
alter a domain theory to produce a new one. These theory revision
ope-rotors either alter an existing operator of the domain theory or create
a new one:

• ReplacePre(op, p) - Replaces the preconditions of operator op
with preconditions p.

• ReplacePost(op,p) - Replaces the postconditions of operator op
with postconditions p.

• CreateNewOp - Creates anew, empty operator and adds it to the
domain theory. The new operator has no preconditions or effects.

At each step in the search for a new domain theory, we may either
generalize or specialize a precondition or effect of an operator, or add a
new, empty operator. Thus, the set of possible operators that could be
applied to alter a domain theory at each step is:

Yop E T['v'p E Gen(Pre(op))ReplacePre(op,p)] u
Yop E T['v'p E Spec(Pre(op))ReplacePre(op,p)] u
Yop E T['v'p E Gen(Post(op))ReplacePost(op,p)] u
Yop E T['v'p E Spec(Post(op))ReplacePost(op,p)] u
CreateNewOp

Clearly, this is an infinite search space, including all possible domain
theories that can be constructed out of the domain's predicates. To make
the problem tractable requires strong biases and knowledge to control the
search. In the rest of this section, we attempt to classify the types of
biases and knowledge sources that are used.
Nearly all research on correcting domain theories has biased the

search in domain theory space by using some type of hill-climbing. That
is, only a single "node" of the search tree - a single variant domain the
ory - is stored and considered for further modification. In addition, most
assume even stronger biases; for example, it is typical to assume that
the domain theory errs in only a single operator (or is missing only a
single operator). For example, if an execution error occurs, it might be
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assumed that the error was caused by the most recent operator being ex
ecuted. This type of assumption greatly reduces the search space. Some
systems make assumptions about which types of conditions to consider
altering. For example, Gil (1991a,1991b) use heuristics such as consid
ering only properties of objects being directly manipulated. Finally, it is
often assumed that a single operator will only be altered in a single pre
or postcondition, thus reducing the depth of the search to a constant.
The search being done to alter a domain theory must solve a form

of the credit assignment problem. Credit assignment is the problem of
determining which of a possible set of causes is responsible for some
observed effect. Successfully correcting the domain theory involves de
termining which knowledge (or lack of knowledge) was responsible for the
failure, and altering the theory accordingly. In general, credit assignment
is a very difficult problem. It is not unique to correcting domain theories,
but shows up any time an effect must be attributed to one or more of
a set of possible causes. This is a ubiquitous problem in machine learn
ing. It is faced, for example, by concept learning programs, which must
determine which combinations of a set of features determine category
membership. It is also faced by reinforcement learning systems (e.g.,
(Sutton, 1990; Holland, 1986; Rumelhart and McClelland, 1986)) that
learn which actions will achieve which effects in the world, by receiving
positive feedback from the environment when some goal is met.
There are three basic sources of knowledge that a system can use to

guide the search for a corrected domain theory:

1. Internal Knowledge. The system may use knowledge that it al
ready has. For example, the system might have a complete (but in
tractable) deductive theory ofthe domain, or it might have knowl
edge of past cases of failures which can be modified to account for
the current case.

2. Teacher. The system may receive knowledge from outside itself,
from a teacher. This knowledge might take the form of direct
advice (for example, indicating which knowledge in the domain
theory is faulty), or perhaps carefully selected examples that will
guide the system to the proper revision of the theory.

3. External World. The system might make use of observations of
the external world; that is, additional examples. These examples
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might be randomly chosen (such as those given to a typical concept
learner). Alternatively, the examples might be generated by the
system, in order to distinguish between alternative theory revisions.

These sources of knowledge can overlap and interact. For example,
if a teacher gives the system a key example, the example consists of
knowledge from the external world that has been wisely selected by the
teacher.
Next, we examine each source of knowledge in more detail.

Internal Knowledge

By internal knowledge, we mean knowledge that the system already
contains, which provides guidance in the search through the space of
theory revisions. We have already mentioned one general form of internal
knowledge that limits the search for a corrected theory - namely, the
assumptions and biases that the system uses in performing the search.
Many systems contain heuristic biases that limit the range of theory
revisions considered. For instance, Gil (1991a,1991b) discusses heuristics
such as assuming immediate feedback for operator effects. This allows
only the most recently executed operator to be considered for revision
upon execution failure, greatly reducing the credit assignment problem.
Another type of internal knowledge, which is available to all systems,

is the original domain theory itself. Although the domain theory is
imperfect, it is generally still useful in narrowing the set of possible
alterations needed to fix the theory. For example, in analysis tasks, many
systems have dealt with the problem of not being able to fully explain an
example (corresponding to our "incomplete plan" category). Often these
systems will form a maximal partial explanation using its incomplete
domain theory. The parts of the example which are left unexplained
can then be focussed on, to generate a set of hypotheses for the lack
of knowledge within the domain theory (Pazzani, 1988; VanLehn, 1987;
Hall, 1986). Empirical techniques are often used to discriminate these
hypotheses (discussed further below).
In addition to the domain theory used to perform the task, the system

may have other knowledge which it can use to analyze and understand
its failure. Below, we investigate additional types of internal knowledge
the system may have.
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Complete Underlying Domain Theory. In some domains, it is
possible to write a domain theory which is complete, but intractable.
For example, it is easy to write down the rules of chess completely and
correctly, but clearly intractable to use those rules to reason completely
and correctly (and thus play perfect chess). In such cases, one way to
reason tractably on the task is to use an approximate domain theory.
For example, a novice player's domain theory for chess might contain
the rule, "If you can capture the opponent's queen, always do so."
The approximate domain theory, used by the EBL system in trying

to perform its task, will be imperfect, and errors will occur when using
it. In such cases, it may be possible to use the intractable domain theory
to analyze and correct the error in the approximate theory.

If the theory was originally intractable, why might it be tractable
to use it once an error arises? The reason is that explaining a specific
error is much more constrained than planning to avoid any possible error.
Consider the situation in chess. It is much easier to explain why your
queen was taken in a particular game, after a particular sequence of
moves, than it is to plan a move that will truly minimize the possibility
of losing your queen later on. In the first case, the full sequence of moves
has been chosen; it simply needs to be analyzed. In the second case, we
must consider every possible move that might be taken from this point
in the game on.
In terms of search through the space of theory revisions, using a

complete underlying domain theory to explain a failure corresponds to
reasoning to pinpoint exactly the correct theory revision operator(s) to
use in correcting the domain theory. Since the underlying theory is
complete and correct, it is able to completely solve the credit assignment
problem.
Gupta (1987) describes a scheme in which an complete underlying

domain theory is used to explain an execution-time error. In Gupta's
system, the domain theory is approximated by not considering certain
goal interactions. Once a plan is produced, errors are detected by explicit
failure rules, which monitor a plan's simulated execution and fire when
failures occur. For example, a failure occurs if the robot's gripper melts
when trying to grasp a part. An explanation of the conditions leading
to the failure is then produced, using the underlying complete domain
theory. This explanation pinpoints the preconditions that should be
added to the operators in the approximate domain theory that is used
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for planning.
Other researchers have forwarded similar schemes, approximating a

complete domain theory in various ways. Chien (1989) approximates a
complete domain theory by initially reasoning only with the direct ef
fects of operators, and assuming persistence for all other facts. When
plans fail (or unexpectedly succeed) during execution, the inferred ef
fects of operators are reasoned with to explain the failure. Here again,
the intractable theory is made tractable when it is used to explain a par
ticular interaction between operators, as opposed to planning for every
possible contingency. Tadepalli (1989) approximates a domain theory
for chess by considering only a limited subset of possible moves from
each board position (those moves the system has learned in observing
past games). Bennett (1987) deals with intractability in mathemati
cal reasoning by approximating mathematical formulas. Doyle (1986)
presents a system given a set of domain theories at multiple abstraction
levels, which reasons with the most abstract first, and falls back on more
and more concrete theories as failures arise. FAILSAFE-2 (Bhatnager
and Mostow, 1990) learns overgeneral search heuristics during planning
by assuming the most recent operator applied is to blame for search
failures, but later specializes these heuristics when all search paths are
eliminated. Bennett's (1990) GRASPER system approximates how far a
gripper should be opened to pick up an object, and upon failure, uses a
theory of tuning continuous approximations to alter the opening width.
Ellman (1988) describes a methodology for choosing good simplifying
assumptions for certain types of intractable theories. Flann (1990) ap
proximates a domain theory by assuming a limited number of objects
will be present.
Other work on approximating a domain theory to make it tractable

to reason with has appeared under a different guise, namely abstraction
planning. ABSTRIPS (Sacerdoti, 1974) is the classic example, showing
that search could be greatly reduced by abstracting out preconditions
of operators during planning. More recently, Unruh and Rosenbloom
(1989) and Knoblock (1990,1991) have demonstrated methods that au
tomatically abstract preconditions from operators, producing abstract
versions of problem spaces to improve efficiency.

Other internal knowledge. Other types of internal knowledge
besides a complete domain theory may be used in correcting imperfect
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domain theories as well. Some examples include using analogy to relate
the error to knowledge in related domains; using past cases in which sim
ilar errors have been encountered and corrected; and using the original
domain theory abductively to determine possible causes of an error. Not
as much research has been done using these knowledge sources as using
a complete but intractable domain theory, however.
Work in using analogy to repair domain theories has thus far been

limited to making simple analogies to other operators within the faulty
theory. An unknown operator or an operator being corrected can be
compared with known operators that have similar preconditions or ef
fects. Differences indicate revisions to the operator being corrected that
may prove useful. Thus in analogy, the system makes use of previous
knowledge of operators to guide the search for theory revisions.
Gil (1991a,1991b) compares an operator being revised with other

operators which are structurally similar, identifying differences between
them. This process is used to filter the set of possible revisions to the
operator. The remaining revisions are chosen between via experimenta
tion (discussed further below). Genest et al. (1990) try to understand
an unknown goal concept (borrov(Person. amount)) by explaining ex
amples of it as if they were examples of a known goal concept (here,
vithdrav(Person.amount)). These explanations are incomplete, and
are completed using an abductive process (see below). The explanation
structure produced using the known concept can then be analogized as
similar to the structure of the explanation for the unknown concept, al
lowing the unknown concept to be learned. Kodratoff and Tecuci (1987)
present a system which proposes new domain theory rules by analogizing
the conditions of a newly learned rule to similar substructures within a
semantic network of domain predicates.
Case-based approaches rely on storing complete past cases, and al

tering these cases to apply to new situations. CHEF (Hammond, 1986)
uses a complete causal theory to explain and repair execution-time er
rors, but then stores the repaired plan in its case library, indexed under
the type of error repaired. When a similar error is predicted in the fu
ture, the system can recall the past case and alter it to apply to the
new situation. Redmond (1989) discusses using a case-based approach
to explain unexpected situations.
Abduction involves reasoning from effects to causes. Logically, it

can be viewed as using implication rules "backwards". For example,
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suppose we know LightswitchPosition(ofJ) ::> Darkness. Then, if the
room becomes dark, we might use this rule backwards, positing that the
reason for the darkness is that the lights were turned off. If there are
multiple conditions that imply darkness, we may have to use additional
knowledge to choose between them. Thus abduction can be viewed as a
way of limiting the possible theory revisions being considered. OCCAM
(Pazzani, 1989; Pazzani et al., 1987) uses an abductive method to fill
in missing knowledge in its domain theory. When some aspect of an
observation cannot be explained, OCCAM looks for a domain theory
rule that contains that aspect as its result. This rule's conditions are
then generalized so that the rule covers the current case. This is a
dangerous step, however, because overgeneralizations can easily result.
OCCAM does not deal with the situation where multiple rules have the
unexplained aspect as their result, and additional knowledge must be
used to choose between them. Genest et at. (1990) also use abduction
to complete partial explanations, but do not extend the domain theory
using the abductive conclusions.

Determinations (Davies and Russell, 1987) are a type of internal
knowledge that provide capabilities similar to abduction. A determi
nation makes explicit the functional dependencies between attributes
within the domain. It is similar to an implication, but not as strong: if
A,B, and C determine D, this means that for given values of A, B, and
C, D will always have the same value. IfA, B, and C imply D, then given
values of A, B, and C, we know what the value of D is, not simply that
it is fixed. Determinations are thus "incomplete," but in a very limited
way. Given examples, we can directly turn a determination into a set of
implications. This kind of domain theory completion is demonstrated by
Mahadevan (1989) . Widmer (1989) uses partial determinations, which
guide the construction of "plausible" explanations that may then be con
firmed or disconfirmed by a teacher. (Widmer's system allows additional
types of domain theory incompleteness as well, and incorporates induc
tive learning techniques). A related method of constructing plausible
explanations from incomplete knowledge is described by Oblinger and
DeJong (1991) .
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Teacher

In addition to internal knowledge, knowledge from outside the system
itself may be called upon in correcting the domain theory. By knowledge
from a teacher, we mean knowledge given by an informed source, meant
to direct the system to the right correction of its domain theory. This is
as opposed to knowledge from the external world which is either selected
randomly, or selected by the system (experimentation).
A number of systems use a teacher as a passive source of knowledge.

In these systems, the teacher simply verifies that a domain theory revi
sion is or is not correct. The system uses some other knowledge or bias
to generate hypotheses about how to fix the domain theory, and then
these are validated or invalidated by the teacher. Examples of systems
using this kind of passive teaching include (Kodratoff and Tecuci, 1987;
Widmer, 1989).
A more interesting use of knowledge from a teacher are cases where

the teacher can actively guide the domain theory repair process. Two
main categories of teaching have been used. First, the teacher may
provide examples to the system. These could be complete plans for
the system to "observe," or unsolved problems for the system to solve.
The examples are chosen to help the system repair its domain theory
by causing it to concentrate on the right aspects of the situation. The
second category of teaching is where the teacher provides advice to the
system directly.

Teacher provided examples. Examples provided by a teacher
can direct the system to faulty knowledge in its domain theory, and can
be used to guide the correction process. In some systems, assumptions
about the structure of the examples provides a strong bias that allows
the system to solve the credit assignment and revision problems. One
such system is VanLehn's SIERRA (VanLehn, 1987). SIERRA learns to
perform multi-column subtraction by explaining examples of worked out
problems given by a teacher. SIERRA receives its examples organized
into groups called lessons. The key assumption is that the examples in
each lesson will differ from those seen in the past by a single disjunct (or
operator in our terminology); this is the "one-disjunct-per-Iesson" con
straint. This constraint limits the search in the space of theory revisions
to considering revisions in a single operator. SIERRA learns by com-
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pleting partial explanations of examples. The one-disjunct constraint
greatly reduces SIERRA's search space when completing the explana
tions, which could be completed in a number of different ways. Since
every example within a lesson is known to be incompletely explained
due to the lack of the same disjunct, the "holes" in their explanations
can be intersected to hone in on the missing disjunct.
Hall (1986) relies on a teacher to supply paired examples of structures

that are equivalent. The system attempts to explain why the two struc
tures are equivalent using rules that can transform one into the other.
When a complete explanation cannot be found, the system creates a new
transformation rule equating the two parts of the examples which were
unable to be explained. Roy and Mostow (1988) use a similar approach.
Other systems make use of teacher-provided problems that are less

structured. For example, in Tadepalli's (1989) system, the teacher ap
pears to provide examples simply to "break" the domain theory - exam
ples the teacher knows the system will not perform on correctly. Presum
ably such examples would eventually come up if examples were randomly
selected. Here the teacher simply speeds up that process. Likewise, Red
mond's (1989) system takes worked-out examples from a teacher, but
these examples are not necessarily structured in any particular way.

Advice. Learning from advice (or "learning by being told") is a
rather broad category. Advice could conceivably be given to help at any
stage of a problem. In the context of recovering from an error caused by
an incorrect domain theory, advice could specify how to recover, and/or
how to correct the domain theory itself. This could be more or less
direct; for instance, the advice could specify exactly which operator was
incorrect, or could only indicate which features of the example caused
the error.
There has not been much work on correcting imperfect domain theo

ries by taking advice. Mostow's FDa (1981,1983) was a key early system.
Mostow's focus was on making advice operational - that is, transform
ing it into a form the system could use directly. FDa took advice for
the card game Hearts, such as "Avoid taking points." The operational
ization process involved transforming the advice using a large number
of both domain-independent and domain-specific transformation rules.
However, which transformation to apply had to be manually selected.
The result of operationalizing a piece of advice was a set of heuristics for
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the game.
FOO's initial domain theory of hearts contained the basic rules of

the game. In a sense, the learning FOO did can be viewed as using
advice to learn a tractable, approximate theory from an intractable one.
However, advice was not used to correct imperfections in the tractable
domain theory (the one used to actually play the game).
Martin and Firby (1991) have begun developing a system that learns

to correct execution-time failures by being told. The approach is a com
bination of Martin's DMAP parser (Martin, 1989) and Firby's RAPs
system (Firby, 1987). Upon an execution failure, the system takes advice
in natural language indicating how to correctly perform the task. Com
prehending the language input is aided by specific expectations which
are set up by the failure. The advice allows the system to select an
operator to complete performance of the task. The system learns to per
form the task correctly next time. However, the issue of how to properly
generalize the applicability of the advice is finessed. The system does
not attempt to identify the relevant aspects of the state that led to the
failure; rather, it seems to assume that the entire state is relevant. This
may result in overgeneralizations in some cases.
Another example of using information given by a teacher to cor

rect an imperfect domain theory is the Robo-Soar system (Laird and
Rosenbloom, 1990; Laird et al., 1990). Robo-Soar's domain theory for
picking up blocks is incorrect, because it does not realize that for certain
pyramid-shaped blocks, the orientation of the gripper must match the
orientation of the block (otherwise the gripper fingers slide off the sides
of the pyramid, and the block cannot be picked up). When an execution
failure occurs (the block isn't picked up), Robo-Soar prepares to search
to discover which operator was at fault and what conditions of the state
caused the error. Advice from the user guides this search. The guid
ance is extremely direct - the user indicates exactly which feature (here,
block orientation) caused the failure, and which operator should be used
to correct it (here, rotate-gripper). A similar approach is used to ex
tend domain knowledge, in the case where the rotate-gripper operator
is entirely missing from the original domain theory. Here, the advisor
indicates the pre- and postconditions of the missing operator, and its
implementation as an external command.
We are working on extending this work in two directions. The first is

allowing more flexible types of instruction and advice, given in natural
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language. This again raises the issue of operationalization: how can the
advice be translated into a form the system can use and learn from in a
general way? Secondly, we are working on experimentation techniques,
that will allow the system to learn when advice is not available. Instead
of performing all the experiments that would be needed to exactly iden
tify the domain theory, the system will use inductive techniques in an
attempt to generalize the information gleaned from each experiment.

External World

In addition to internal knowledge or knowledge provided by a teacher,
the external world - the execution environment - may be viewed as a
knowledge source for correcting imperfect domain theories. This knowl
edge source has the property of being reliable and necessarily "correct".
The system is faced with the problem of finding a domain theory which
agrees with this knowledge source.
Specific observations of the external world can be used to constrain

the search space of possible domain theories. These observations might
be randomly selected; for instance, the system might be given a set of
randomly chosen examples in a concept formation task. Alternatively,
the observations might be selected by an informed source. A teacher
may be able to give the system examples that will highlight the faulty
knowledge in the domain theory, and its proper repair (as discussed
above). Without a teacher's input, the system may be able to generate
experiments with the intent of eliminating theories from the space or
of confirming the predictions made by a particular theory. Correcting
a domain theory using knowledge gleaned from experimentation is an
active use of the external world; using randomly selected observations is
a passive use.

Active use or the External World. Consider the case where a
domain theory for a STRIPS-like domain has the operator Go-thru
door(door), lacking the precondition Open(door). Upon execution
of some plan, the robot executes Go-thru-door but finds its postcon
ditions unmet. Even if it is possible to localize the error to the pre
conditions of the Go-thru-door operator and make use of some inter
nal knowledge to prune the set of possibilities, the system may still be
left with a number of hypothetical corrections to the domain theory.
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For example, the system might hypothesize that either Open(door) or
-Inroom(box,room) (there are no boxes in the room the robot starts
from) could be added as a new precondition. At this point, the system
might use the external world as a knowledge source by experimenting
to select the correct theory update from the set of candidates. In this
case, the robot could be moved through another door which happens to
be open (and succeed), or might remove all the boxes from the room
it is in, and attempt Go-thru-door again (and fail, if the door were
still closed). By carefully selecting experiments to perform, the system
is able to directly prune hypotheses for domain theory correction from
consideration.
Since the number of domain theory alteration operators which may

be applied to the incorrect domain theory is quite large, and experi
mentation is fairly expensive, typically experimentation systems employ
various biases and heuristics to limit the set of theory changes to be
differentiated with experiments. The idea is to limit the set of hypothe
ses as much as possible before performing experiments. Rajamoney and
DeJong (1988) , for example, appear to use a form of abduction to com
plete an incomplete explanation, leading to a set of multiple inconsistent
explanations. Experimentation is used to choose among the various ab
ductive assumptions and correct the domain theory. Gil (1991a,1991b)
employs a number of heuristics, such as locality of action, analogy to
similar operators, and generalization of previous experiences where an
operator was successful to restrict the set of possible alterations to the
preconditions ofthe operator. In addition, immediate feedback from ac
tions is assumed, restricting the domain theory error to the most recently
executed operator. Carbonell and Gil (1987) use heuristics based on the
type of failure observed to guide the theory correction process. For ex
ample, if an operator was applied but none of its postconditions were
met, it is likely that the preconditions of the operator are overgeneral
(as opposed to, say, that all of its postconditions are wrong). Previous
cases where the operator was successful and internal searches for other
operators which may have clobbered the failing operator are used to limit
the number and type of experiments to be run by the system.
Once the set of hypotheses has been sufficiently pruned, a system can

formulate experiments to select between them. A single experiment may
eliminate multiple hypotheses from consideration; thus, if experimenta
tion is expensive, it may be worthwhile to do some analysis to determine
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the minimal number of experiments which are guaranteed to fully distin
guish the hypothesis. This is a "minimal set-covering" problem, similar
to that done to find a minimal set of test vectors for a digital integrated
circuit.

Passive Observation of the External World. In some domains,
it is not possible to actively control the set of examples the system re
ceives. Rather, the major source of corrective knowledge here is a set
of randomly chosen examples. The systems which rely on this type
of knowledge typically make use of inductive techniques (such as ver
sion spaces (Mitchell, 1982) or information-theory approaches (Quinlan,
1986)) to determine a set of changes to the domain theory that will be
consistent with all (or most) examples. Since the discriminating knowl
edge that can be gleaned from each example is less concentrated than
for experimentation approaches, more examples are required for these
systems to correct a faulty domain theory.
Pure inductive systems, such as ID3(Quinlan, 1986), can be viewed

as learning an entire domain theory from scratch. This is the degenerate
case of an "incomplete domain theory." In this paper, the focus is on
correcting an already existing domain theory that has proven faulty.
Closely related are techniques in which an existing domain theory is used
to bias an inductive learner, allowing induction to converge more quickly
on correct concept definitions (Flann and Dietterich, 1989; Towell et al.,
1990; Bergadano and Giordana, 1988; Danyluk, 1987).
Consider our example of the previous section. In the absence of

additional examples, the system might initially add both preconditions 
Open(door) and -Inroom(box,room) - to the Go-thru-door operator.
However, these preconditions may be marked as tentative. Later, when
the system is able to go through an open door from a room with boxes
in it, it can generalize the preconditions of Go-thru-door by removing
- Inroom(box, room) .
Ali (1989) presents a system that uses a similar technique to learn a

new operator. In this system, an overspecific tentative rule is induced
to cover an unexplained concept. This rule is produced by conjoining
all "related" predicates in the partial proof, where related predicates are
those that share arguments. When future failures occur, tentative rules
formed from the partial explanation of the new example are intersected
with the original tentative rule, generalizing it. Eventually the rule sta-
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bilizes. This technique thus learns a "missing operator" - a new rule
that the system didn't have before. The approach is similar to Van
Lehn's technique of intersecting partial explanations, but here there are
no assumptions about the form of the examples. Thus the rules formed
are sometimes faulty.
OCCAM (Pazzani, 1988) also uses an empirical approach to learn

missing domain theory rules. Part of the knowledge OCCAM uses to
build explanations is a very general set of rules describing causal rela
tionships. These rules derive an abstract "explanation pattern" that is
then verified by more specific domain knowledge. When an example can
not be fully explained, OCCAM uses the explanation pattern to pinpoint
which step in the causal chain was not verified, and induces a new do
main theory rule to verify the causal link. On subsequent examples, the
new rule is generalized by an intersection technique, as in Ali and Van
Lehn's work. Thus the causal knowledge (internal knowledge) constrains
the domain theory corrections that are considered, and induction over
examples selects the correct one from amongst them. OCCAM goes a
step further by maintaining strengths for empirically induced rules, and
eliminating rules that prove incorrect on future examples. This protects
the system from overgeneralizationsj it might be viewed as a composite
"specialization" operator.
Danyluk (1989) discusses a related approach in which a similarity

based learner is used to induce missing domain theory rules. Here,
the partial explanation is used to bias the priorities of features for the
similarity-based learner, providing a "context" for induction. Widmer
(1989) allows similarity-based "explanations" as part of the full expla
nation of an example. Some feature of the example that cannot be
explained either deductively or via determinations (see the discussion of
Other Internal Knowledge) can be explained by searching for similarities
between the example and previous examples which share the feature.
Similarly, Wilkins' ODYSSEUS (1988) proposes relationships between
predicates which are needed to complete incomplete explanations, and
then uses induction over examples to verify the proposed relationship
and learn a specific rule relating the predicates. In all these systems,
as in the experimentation systems, we see some internal knowledge or
heuristics being used to initially constrain the set of domain theory revi
sions that is considered, and then external world knowledge (examples)
being used to make (or verify) the final decision.
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One of the more comprehensive attempts to use inductive methods to
correct imperfect theories in a classification task is presented by Ourston
and Mooney (1990) . Their system, EITHER, identifies two types of er
rors: overgeneral preconditions, which lead to incorrect classifications
(an explicit detection offailure), and overspecific preconditions (or miss
ing rules), which prevent an example from being classified (an incom
plete plan). If examples cannot be classified, EITHER constructs partial
proofs of the examples, and then determines a minimal set of assump
tions (new rules) needed to complete the proofs (using a greedy covering
algorithm). If examples are incorrectly classified, EITHER uses its cov
ering algorithm to find a minimal set of rules deemed responsible for
the error. However, simply adding or removing rules may introduce new
domain theory errors. If this is the case, then EITHER invokes an in
ductive learner (ID3) to specialize either the new rules being proposed
or the old rules which caused incorrect classification.

ANALYSIS SUMMARY

We have presented classes of domain theory error types, the types of
performance failures that can result, and knowledge sources for correct
ing errors. By crossing these categorizations with one another, we can
examine which types of errors have been addressed using which types of
knowledge for theory correction. Since this is a knowledge-level analy
sis, we are interested in examining which types of knowledge have been
applied to which types of theory errors. For each knowledge source and
error type, there may be a number of mechanisms that can be used in
correcting the domain theory; we do not consider that aspect here.
We have chosen fifteen representative systems to classify (two or three

for each type of corrective knowledge source). Figure 2 plots the space
of error types versus corrective knowledge sources; Figure 3 plots out
performance failure types versus knowledge sources. Into each square
in these grids, we have placed references to those systems that have
addressed applying a particular type of knowledge to correct a particular
error type, or errors detected in a particular way.
One key thing to notice about these tables is the presence of empty

squares, and the clumping of research within other squares in each col
umn. Research using each type of knowledge source has tended to focus
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on correcting only a subset of the types of errors (correspondingly, errors
detected because of only a subset ofthe performance failure types). This
may be because particular sources of knowledge are most amenable to
correcting particular types of errors. However, there does not appear to
be an a-priori reason why each knowledge source might not be applied
to correcting all of the different kinds of errors.
A second thing to notice is that not many systems appear in multiple

columns. That is, most systems have used a single knowledge source for
domain theory correction, or have combined sources only in fairly simple
ways (although there are exceptions). We feel an important area for
fu ture research is combining the different types of knowledge available for
correction. Different types of knowledge might be available at different
times and in different situations. A truly flexible system would be able
to employ any and all of the various types of knowledge successfully,
whenever such knowledge is available.

RELATIONSHIP TO OTHER FRAMEWORKS

Mitchell et al. (1986) made the first attempt to describe the basic
ways in which a domain theory may be faulty. In their classification
there are three categories. First, the theory may be incomplete, meaning
that no explanation can be constructed for some examples. Second, the
theory may be inconsistent, in which case conflicting statements can be
proved from the theory. Third, the theory may be intractable, meaning
that it is computationally prohibitive to construct explanations using it.
However, we have shown that a single type of underlying domain the

ory error may lead to more than one of these categories. For example, a
domain theory containing an operator with missing postconditions may
result in incompleteness (no plans) or inconsistency (multiple plans). In
addition, we have seen that an intractable domain theory is typically
not employed for reasoning. If there is a complete but intractable the
ory available it cannot be employed directly; instead, it is a knowledge
source which may be employed to correct approximations and assump
tions made in the actual domain theory used for reasoning. Therefore
an intractable theory typically gives rise to either an incomplete or in
consistent theory.
Rajamoney and Dejong (1987) further subdivided the classes that
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Mitchell et al. had defined. They distinguish incompleteness due to a
lack of relevant knowledge, as opposed to incompleteness due to a lack
of sufficient detail. A lack of relevant knowledge gives rise to incomplete
plans; a lack of sufficient detail can lead the system to make assumptions,
leading to multiple plans. However, in our view, making assumptions is
part of the process of recovering from domain theory imperfections - a
way of "generating" possible fixes. The assumptions can then be tested
to determine which are correct, perhaps by using experimentation to
distinguish between the multiple plans that arise from them. This is the
method used by Rajamoney and Dejong (1988). Similarly, inconsistency
problems are subdivided into inconsistency due to incorrect knowledge
and inconsistency due to missing knowledge that would have defeated
the inconsistent deductions.
Mitchell et al. 's classification focuses on the performance of the do

main theory: does it lead to incomplete explanations? Does it lead to
inconsistent proofs? Rajamoney and Dejong's classification moves closer
to the classification of domain theory problems we have proposed here, in
that there is more of a focus on the knowledge within the domain theory.
However, performance is still the primary division, but subdivisions are
attempted based on the type of knowledge deficiency giving rise to the
performance failure.
In developing our classification, we have instead used the type of

knowledge deficiency within the domain theory as the primary distinc
tion. The goal was to cleanly separate the type of domain theory imper
fection from the way in which it manifests itself in performance. Starting
from the types of knowledge deficiency, we were able to derive the types
of performance failures that each deficiency can lead to. This was found
to be a one-to-many mapping: the various knowledge deficiencies can
give rise to multiple types of performance failures. This one-to-many
mapping has caused a confounding of error type (knowledge) and error
detection (performance) in previous classifications.
Our analysis has revealed that although a number of useful mech

anisms for correcting domain theories have been developed, none have
yet demonstrated the ability to flexibly make use of any of the possible
knowledge sources that might be available to guide the theory revision
process. Theory revision is a complex process, taking place in a po
tentially huge search space. Any knowledge that is available should be
utilized to guide the search. Therefore, our future goal is the devel-
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opment of a "universal weak method" of theory revision that is able
to flexibly combine whatever knowledge is available to correct a faulty
domain theory.
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In this chapter, we will review our current work in case-based ap
proaches to planning. Our research examines the organization and struc
ture of episodic memory as determined by its functional role in guiding
reasoning. The theoretical thrust is based upon the intuition that a large
part of the reasoning process is guided by the contents and organization
of events in memory. The major goal of this work is the development of
functional explanations of the representational organization and concep
tual vocabularies that support reasoning tasks. Our current work can be
characterized in terms of three major tasks:

• Uncovering vocabularies for describing causal similarities between
episodes in memory.

• Examining the use of features in the access and retrieval of cases
from memory.

• Understanding the role of memory organization in the support of
opportunistic planning and problem solving.
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A COGNITIVE SCIENCE APPROACH

There is often a tension within Psychology and Artificial Intelligence
collaborations. From a psychological perspective, the scientific mandate
is to examine and describe behaviors, and then work to develop a func
tional rationale for them. From an AI point of view, the goal is to develop
functional theories of behavior and then try to explain how the theory
relates to human activity. The underlying goals of the two areas of re
search, descriptive power for psychology and functionality for AI, are
often in conflict.

Another issue is the nature of the relationship between AI systems and
human behavior. In work such as Newell and Simon's GPS (Ernst and
Newell, 1969), Feigenbaum's EPAM (Feigenbaum, 1990), or Hayes-Roth
and Hayes-Roth's opportunistic planning (Hayes-Roth and Hayes-Roth,
1979a), the AI systems can be construed as mimicking human behavior
at the I/O level. As a result, the quality of such systems has been defined
as how well their performance actually matches that behavior. However,
these matches imply very little about the nature of the systems that
support the behaviors. Due to the differences between the environments
in which humans and machines exist, and the background knowledge to
which they have access, it is difficult to evaluate this match since there
is no way to control for these differences. A further, more extreme, ar
gument could be made that such behavioral matches between man and
machine are in fact evidence against a match at the algorithmic level, be
cause we can assume that there is not a match at the level of background
knowledge and reasoning environment.

One possible fix to this problem would be to normalize background
knowledge by building simulations in domains requiring little or no knowl
edge. EPAM (Feigenbaum, 1990), a model of verbal learning, successfully
used this strategy, but the fact that EPAM was able to mimic human be
havior in this task revealed little about the task itself or the way humans
tend to learn. The study involved behavior that is so far removed from
normal information processing that what is observed is the disintigration
of a system at its edges rather than its normal functions.

The reverse of this problem arises within the confines of AI work
on "discovery" (Langly, 1981; Langley et al., 1983), where the goal is
to recreate a line of reasoning that led to the formation of a natural
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law. In these systems, the environment (in terms of ongoing input and
background knowledge) is much more impoverished than that of any com
parable human task; therefore, any system that actually does replicate
the results of human reasoning may be doing so using methods that have
little to do with that reasoning. Because they are functioning in different
environments, the fact that the final results look similar actually argues
that the processes must be different. They will be dissimilar for the same
reasons that a water plant in near the Great Lakes will be unlike one
at the edge of the Gobi dessert: they must produce the same product,
but under different circumstances. Therefore, that fact that I/O behav
ior matches human performance may reveal very little about whether the
mechanisms involved in the AI model are the same as the ones producing
the behavior in human cognition.

Rather than limiting comparisons to I/O behavior, we argue for the
importance of testing the fundamental principles involved in the ma
chine model. The question is not simply "can this system match human
performance", but instead, "can this system's process model fit the re
quirements for a process model in humans?" We propose that the most
meaningful method of comparison for human and machine learning sys
tems is to test not performance, but assumptions: Can the assumptions
of the model be shown to hold for human cognition?

In our own work, we have focused on testing specific claims of our
machine learning models with human subjects. This involves identify
ing specific claims made by the model and testing whether or not these
principles hold as well for human subjects; if so, the class of models with
those assumptions can be ruled in as possible explanations for human
processing. A rigorous study of the central claims of any machine learn
ing model will verify the generalizations of the theory that hold across
other tasks and learning situations, and that distinguish the approach
from other competing theories.

By examining the assumptions of an AI model, we can determine
whether it is plausible as a psychological model while avoiding the temp
tation of adjusting specific versions in order to exactly match human
behavior in a particular task. Testing the assumptions means greatly im
proving the generality of the comparison, so that the results obtained can
be applied to a number of tasks rather than the exact situation modeled
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in the program. It is a challenging task to design experiments that get
at the important assumptions of an AI model as well as produce psycho
logical results that are of interest for their substantive contribution.

In the following sections, we present an extended example of an AI
model and some experiments designed to examine a central claim of the
paradigm it represents. The model itself is case-based planning (CBP).
A specific hypothesis from this model-that features used in indexing
and retrieving past examples will be differentially utilized based on their
predictive ability-is examined in a series of studies on human subjects.
In the sections that follow, we describe a specific hypothesis from CBP
and the experiments conducted to examine this claim. Next, we provide
an overview of our current projects in CBP. It is our hope that our col
laboration will serve as an exemplar for the integration of psychological
experiments with computational models.

AN EXAMPLE OF INTEGRATED RESEARCH:
CASE-BASED PLANNING

In the following sections, we will describe current research on a com
putational model of cognition and the psychological research that directly
relates to and informs it. Both research efforts focus on the area of case
based planning. Systems within this paradigm have the following basic
features:

• New plans are built from old plans.

• Projection is replaced with anticipation, which is based on experi
ence rather than simulation.

• Plans are selected on the basis of the goals that they satisfy, the
problems that they avoid, and the features in the world that have
been associated with them in the past.

• Knowledge of the effects of individual operators is not used in plan
ning itself. It is used instead to explain failed plans in order to repair
them and discover the features that can be used later to anticipate
and thus avoid the problems in later planning.
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• Planning problems due to faulty modification of existing plans are
repaired, and the repairs are added to the set of changes that have
to be made when adding the goals to other existing plans.

The thrust of the case-based approach is to include "lessons learned"
into a plan so that past errors can be pointed out and avoided. One
way in which this is done is to anticipate and avoid problems due to plan
interaction. To do this, case-based planners keep track of the features in
their domains that are predictive of particular problems so those problems
can be predicted in future situations. They also save plans in memory,
indexed by the goals that they satisfy and the problems that they avoid.
As a result, the prediction of a problem allows a case-based planner to
find the plans in memory that avoid it. This is done, however, without the
cost of complete projection, because the planner is accessing its memory
of actual problems rather than attempting to project through all possible
ones. t .

The nature of the actual content of features used in the organization
of memory is an important principle within this approach. In particu
lar, CPB depends upon the type and source of features used in order to
access maximally useful prior cases from episodic memory. A processor
would most benefit from retrieving related past case simutaneous with
the current planning situation. This would require indexing prior cases
based on the abstract features that will be available to the processor at
the time of desired retrieval. For example, in planning situations, this
point would occur when one knows the current planning conditions and
constraints and is considering what action to take. Retrieving an appro
priate case from memory at that point could provide a potential solution,
or a warning about an avoidable past planning failure.

Therefore, one of the paradigmatic assumptions of case-based plan
ning is that memory access must be provided through the features that tend
to predict potential failures in planning. This claim serves as a testbed
for comparing human cognitive abilities to the requirements of a CBP
model - can case access be shown to differentially favor features related
to predicting failures? If human memory is indeed functionally organized

1For a more detailed description of case-based planning, see (Hammond, 1990a).
For a discussion of learning from failure see (Hammond, 1986).
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as claimed in the CBP approach, cases sharing features predictive of fu
ture planning failures should better access each other than cases sharing
other, nonpredictive features.

For example, consider this story:

A chemist was trying to create a new compound designed to
allow preservation of dairy products stored at room temper
ature. The chemist was so confident that his experiments
would succeed that he went ahead and ordered several truck
loads of fresh dairy products to be delivered to demonstrate
the utility of the new compound.

This story contains features with predictive functionality; that is, the
features present in the story allow the retrieval of past information, and
the prediction of a possible planning failure, before the complete struc
tural analog is present (namely, counting your chickens before they're
hatched.) Frequently, planning decisions must be made before all match
ing information is available. Therefore, the partial feature set apparent
before the decision point must be sufficient to retrieve potential solutions
and possible pitfalls. This predictive features hypothesis states that ac
cess to prior related exemplars is possible with partial feature sets, and
that access based on predictive features will be superior to other features
for case retrieval.

In order to examine this issue, five experiments were conducted to
investigate the retrieval of prior cases based on new, incomplete feature
cues. We developed a single session reminding paradigm (based on Gen
tner and Landers, (1985)), where subjects study a set of base stories and
later given a set of cue stories and asked to write down any base sto
ries that corne to mind. The stories were based on thematic abstraction
units (TAUs) (Dyer, 1982) selected because of their relevance in planning.
TAUs are based on abstract interactions of goals and plans as reflected
in cultural adages-especially those involving expectation and planning
failures-and are likely to be familiar to subjects. TAUs may contain
planning information about potntial problems that can occur and how to
avoid or solve them, and serve to organize storage of similar individual
episodes in memory.
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If functionality is an organizing principle for structures like TAUs in
memory, then features that predict failure should form a privileged set
that leads to access at a higher rate than that attained using other sets
of features. Optimally, one should access a relevant theme after receiving
information related to the planning decision, but before deciding and tak
ing action. Remindings based on other features sets would not provide
the opportunity to avoid a planning failure. Thus, under a predictive fea
tures hypothesis, one would not expect privileged access based on stories
which provide only the outcome of an incident. In the experiments, cue
stories were used that contained only the features predictive of a planning
failure, or only the features stating the failure and its aftermath.

The results showed that, while both predictive features and outcome
features resulted in reliable retrieval of base stories, the set that included
features predictive of a planning decision were better cues than decisions
and outcomes. The predictive features provide better selectivity: More
mismatches occurred in response to theme-outcome stories, as compared
to predict-theme stories. This indicates that the elements in the predict
theme stories distinguished the themes more clearly, and thus subjects
tended either to find the right story or to have no answer. The theme
outcomes, however, tended to evoke a wider range of responses, indicating
that the features available in them were shared by other potentially re
trievable episodes. Such outcome cues may not have sufficient specificity,
and so could lead to spurious matches as well as accurate ones.

We examined whether predictive features would provide better access
than other features. Predictive feature sets included only the thematic
features apparent before the planning decision was made; by contrast,
outcome features included the thematic elements containing the actual
planning decision made and its outcome. The main findings were, first,
that both predict and outcome cues were matched at higher-than-chance
level based on structural features alone. This replicates earlier findings
about structural remindings, but extends the phenomenon to find reliable
access to matching exemplars based on only a subset of the structural
similarities in a true analog. In terms of number of matches, there was
no difference between the two cues types. However, the predict-theme
cues produced significantly fewer mismatch intrusions than did outcome
features. Therefore, the stories containing predictive features led to more
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reliable access to matching stories in memory.

In followup experiments, we determined that subjects rated the sets
of predictive cues and outcome cues as equally similar to the base stories
overall and thematically; thus, these results are not due to any differences
in length of cue or amount of information in the two types of cues. We
also asked subjects to match pre-decision stories and post-decision stories
to the base stories directly rather than from memory. The results suggest
that the predictive features more distinctively characterize the theme, and
therefore are more useful in recognizing the relevent past episode. Thus,
the memory retrieval differences observed must be due to the utility of
the cues in planning.

These results confirm the predictive functionality assumption in our
case-based models ROENTGEN (Berger and Hammond, 1991) and RUN
NER (Hammond, 1990c), and serve as a strong verification of this ap
proach. In human memory, indices related to when and how to make a
particular decision are more useful than equally related information about
the decision. Much of the previous work on memory retrieval of cases and
analogies has focused on the features that determine similarity; however,
these results suggest distinctiveness, as well as similarity, is very impor
tant for recognizing when to apply prior knowledge. From a functional
perspective, the most useful incomplete feature sets contain elements that
predict potential problems and allow access to relevant cases before one
must make a planning decision, thereby improving the planner's ability
to predict and avoid planning failures.

These experiments confirm a central claim of the case-based reason
ing model: that memory access to prior cases can be facilitated by cues
containing particular predictive features. Evidence for this functional per
spective lends support to case-based models as potential models of human
reasoning and memory. By expanding and testing the types of features
useful in analogical retrieval, this work has application and interest for is
sues in psychology beyond serving as a direct test of a particular machine
learning model.

OVERVIEW OF RESEARCH

This form of collaboration has resulted in a unique research relation
ship between the computational and empirical research teams. The work
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on the functional models of memory use done by Hammond and his stu
dents is actualized in three working case-based systems for planning and
design. The experimental work by Seifert and her students has demon
strated a powerful relationship between reasoning and memory. The re
sulting collaboration has recently given rise to new directions in case
based reasoning.

Our computer modeling and empirical studies address three major
topics:

• Uncovering vocabularies for describing causal similarities between
episodes in memory.

• Examining the use of features in the access and retrieval of cases
from memory.

• Understanding the role of memory organization in the support of
opportunistic planning and problem solving.

Our joint research is driven by the assumption that there is a func
tionality inherent in the processing of cognitive agents. For example, we
are interested in a memory model that reflects experimental data, but
also explains that data in terms of functional justifications (Anderson,
1990). This constraint guides us in analyzing and observing human per
formance, and underlies arguments for the structure of the computational
models.

Computer Modeling

The Artificial Intelligence group at Chicago has been exploring the
use of episodic memory in planning and problem solving. We have been
examining how an episodic memory of successes, failures, and useful op
timizations can be applied to all aspects of reasoning: analysis, plan con
struction, plan recognition, and plan execution. Work to date has shown
that our initial planning model greatly facilitates execution-time moni
toring and adaptation of plans. Most recently, this work on planning and
execution has given rise to a more general theory of the memory-based
generation and control of action in autonomous agents.
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Several findings arise from the current projects. We have succeeded in
moving the standard case-based planning model over to three new, more
technical domains: vehicle scheduling (Mitchell et al., 1989), radiation
treatment planning (Berger and Hammond, 1991), and common-sense
planning (Hammond et al., 1990). We have developed a model of oppor
tunistic memory that supports the flexible production and execution of
plans (Hammond, 1989b). We have proposed a method of domain stabi
lization, called enforcement, that plays a role parallel to that of learning
in that it allows a system to build a correspondence between the exter
nal world and the internal representation (Hammond, 1991). We have
continued our work in identifying planning vocabularies to facilitate the
functional organization of memory. In particular, we have been extend
ing our initial work on the organization of failure and repair knowledge
into the areas of competitive and cooperative planning (Goldweic and
Hammond, 1991; Hammond et al., 1991). Finally, we have proposed a
memory-based model of planning, learning, and, activity, called agency,
in which all processing is driven by the recognition of elements in a dy
namic episodic memory (Hammond et al., 1990).

These research foci are embodied in three main projects, all in the
demonstration or production-level stage. All of these projects are case
based in nature; that is, they all depend on libraries of example or expe
riences to drive their reasoning. As such, each is designed as a learning
system that develops special purpose structures to deal with the details
of their domains.

These projects are:

• RU NNER: A reactive planner in the domain of "errand running" that
plans from episodic information rather than a rule base of operators.

• ROENTGEN: A radiation treatment planner that plans for new prob
lems by finding and modifying prototypes that are tested and de
bugged in a simulated world.

• POLYA: A case-based problem-solver in the domain of high- school
geometry that takes its input from diagrams as well as symbolic
descriptions. POLYA currently deals with only one simple example.
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In the sections that follow, we will outline each of these four projects,
describe their domains, the scientific issues that each confronts, and the
progress that has been made.

RUNNER: RUNNER is a project aimed at a case-based approach to
common-sense planning. Based on the TRUCKER scheduling project, the
RUNNER project is aimed at modeling the full spectrum of activity asso
ciated with an agent-goal generation, plan activation and modification,
action execution, and resolution of plan and goal conflict-and not just
the more traditional aspect of plan generation alone.

The scientific goals of the RU NNER project are straightforward. In
RUNNER we are studying the coordination of plan production and action.
In the the area of production, we have been investigating the reuse of
plans and a knowledge based approach to plan adaptation. In the area
of action and its coordination with planning, we have used RUNNER as a
vehicle to examine execution-time plan modification, opportunistic goal
satisfaction, environmentally driven execution of existing plans and the
interleaving of planning, action and monitoring.

The achievements of the RUNNER project include:

• The development of a model of execution-time plan modification
that makes use of episodic memory to store a planner's goals and
recognize opportunities to satisfy them.

• The expansion of the current theory of learning from execution-time
failure to include learning from opportunity.

• The development of a plan executive that allows for execution-time
reactivity as a by-product of plan monitoring.

• The introduction of a theory of learning through enforcement in
which a planner actively organizes its environment so as to add to
predictability.

• The development of a model of activity that is fully integrated with
the production of plans and the monitoring of the environment.
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This project has included the development of a model of planning
and execution that places both processes under a single, general architec
ture. This model of agency is based on three precedents: Schank's struc
tural model of memory organization (Schank, 1982), our own work in op
portunistic memory and dependency directed repair (Hammond, 1990b),
and the work of Martin and Riesbeck on Direct Memory Access Parsing
(1990).

ROENTGEN: The basic architecture of our earlier work on CHEF is
now being applied in the ROENTGEN project to the more demanding do
main of planning radiation therapy for cancer. As with cHEF(Hammond,
1989a), ROENTGEN plans from a memory of actual cases-past successes
and failures in treatment planning-to develop plans for new cases. As
new problems are presented to it, ROENTGEN retrieves similar, successful
cases from memory and then uses them as suggestions to help formulate
its first attempt at a plan. It performs standard modifications and then
uses a radiation dose calculator to compute the dose distribution over an
entire body cross subsection. The results of this calculation are then used
to discover problems with the plan such as over-radiation of a sensitive
structure or hot spots in the body. If it finds a failure, ROENTGEN uses
a description of the failure to select and apply a plan repair rule. The
repaired plan is then passed back to the dose calculator and the cycle is
repeated.

The ROENTGEN project has produced a set of results including:

• The transfer of the basic model of case-based planning embodied in
CHEF over to a more technical and scientifically grounded domain.

• The construction of a full ROENTGEN prototype system that is able
to retrieve, modify, test, and repair plans in the domain of radiation
treatment therapy.

• The use of a dynamic indexing scheme that allows for an easy trans
lation from quantitative to qualitative indices.

• The addition of ideas from qualitative physics to our model of learn
ing from failure.
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• The development of an Apprentice-Assistant-Advisor approach
to the life-cycle of intelligent tools.

This last effort, the Apprentice-Assistant-Advisor life-cycle, is
aimed at centering the development of an intelligent tool to aid rather
than replace existing human experts. Our vision of this life-cycle is one in
which the "intelligent" aspects of the system involve building and main
taining libraries of plans, modifications, known problems, and resulting
repairs.

POLYA: POLYA is a project in memory-based problem-solving. Its
domain is geometry, and its task is the construction of proofs of angle
and line congruency. The input to POLYA includes not only the standard
symbolic representations of the problem but also a graphic representation
of the problem that the system itself must parse and understand.

Because of the nature of the input, work on POLYA includes an inter
esting mix of goals. On one hand, it is a straightforward attempt to bring
case-based techniques to bear on a traditional AI problem-solving domain
with the associated issues of indexing, retrieval and solution adaptation.
On the other, it is the first serious attempt that we know of to model the
entire range of problem-solving subtasks-inc1uding drawing information
from images and text, selection and application of problem-solving strate
gies, and the production of external notes-within the confines of a single
architecture. POLYA is also a variant of the basic RUNNER architecture
and also reflects our interest in the modeling of agency.

Psychological Studies

The experimental studies in our joint work have addressed issues
central to the models of case-based reasoning described above. Three
projects: representational vocabulary for planning, indexing and access
to cases, and opportunistic problem solving are summarized in this sec
tion. Complete descriptions are available in Seifert and Patalano (1991),
Hammond, Seifert, and Gray (1991), and Johnson and Seifert (1991).

Vocabulary: The memory organization of plans.

Human planning involves strategies that deal with the interaction of
plans for multiple goals. (Hayes-Roth and Hayes-Roth, 1979b; Miller et
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al., 1960; Byrne, 1977). Previous work on representing goal interactions
(Schank and Abelson, 1977; Wilensky, 1983; Schank, 1982) introduced
the notion of relating episodes on the basis of similarities in the pattern
of goals and plans they contain. A conceptual vocabulary is needed to
describe the interactions between goals and plans as they are represented
in memory.

Our theory of planning vocabulary (Hammond, 1989a; Hammond et
al., 1991) specifies the structures used to describe planning conflicts in
terms of abstract causal characterizations of planning problems. In ad
dition, we identified strategies for resolving specific conflicts along with
particular plans to implement the strategies. The vocabulary includes
specific strategies that tell not just where a particular causal chain can
be effectively altered, but also how to alter it. For example, here are
some of the strategies one might apply in a specific situation where one
is planning against a problematic precondition:

• Get an alternate agent to run the plan.

• Run the plan as quickly as possible

• Use an alternate plan that does not require that precondition.

Finally, the model allows the determination of whether a particular
plan can apply in the current domain situation, based on the features that
the strategy alters or uses in constructing a plan. Thus, the only features
used to find one of the strategies in memory are those which have some
causal relevance to the way in which that strategy is implemented within
a particular domain. The resulting indices and vocabulary information
informs the planner about how to apply specific planning strategies, and
in what circumstances the individual strategies are relevant.

This model constitutes a normative theory of what one optimally
could and should learn about planning through investigation of causal
relationships. To determine whether it constitutes a cognitive model of
planning, human subjects were asked to provide common-sense planning
solutions to a set of problems. The planning problems used were exem
plars based on the model of vocabulary for indexing complex multiple
goals and plans. Each of six instances represented a single goal interac
tion conflict, framed in terms of a planning problem with familiar surface
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content (such as celebrating a sick friend's birthday, jogging after dark,
and picking up an exam while avoiding one's professor). Subjects were
asked to solve the problems' using commonsense knowledge of problem
solving in the real world. Their solutions were then compared to the set
predicted by the vocabulary model.

Since few novel intrusion occurred, the results suggest that the plans
generated fit the model very well. However, the model failed to predict
several important findings. First, subjects frequently abandoned the goal
in the face of the conflict, an option not selected by the model as long
as one of the repair strategies was possible. Second, subjects strongly
preferred one of the three proposed sets of strategies but the model does
not predict such a preference in strategy type. However, the uneven
pattern of subjects' strategy use across examples suggests that subjects
were indeed using the features which the model predicts will be useful in
indexing of repairs. Further studies will examine how these vocabulary
features are used by subjects in planning in novel domains.

Thus, the representational scheme in the model provides a way to
organize and access plans and past episodes relevant to current planning
problems. This makes it possible to store plans designed for specific
planning interactions such that it can be accessed, when the interaction
arises again with a different set of specific goals. The data collected so far
support the validity of this representational scheme in human cognition.

Indexing and access to cases.

A central issue in research on analogical reasoning is how to gain ac
cess to a relevant analog in memory at the appropriate time (Gick and
Holyoak, 1980; Gentner, 1983; Pirolli and Anderson, 1985; Gentner and
Landers, 1985; Holyoak, 1985; Seifert et al., 1985; Anderson, 1986; Ross,
1987; Ross, 1989). The main findings have examined the features involved
in access to analogies in terms of either superficial or structural relation
ships to the intended analogical meaning. Superficial features have been
found to result in better access than structural features in two different
tasks; in one, there was low overlap of superficial features in the retrieval
set (only one superficially related story existed in memory) (Gentner and
Landers, 1985); in the other, novices learning in a new domain (statis
tics) tended to rely on surface features in accessing prior examples (Ross,
1987). However, in these and other studies, more abstract, relational fea-
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tures also reliably produced access to prior structurally-related examples
(Gentner and Landers, 1985; Ross, 1987; Seifert et ai., 1985).

Much of the existing work in memory retrieval has seemed to indicate
that human memory is organized around fairly surface level descriptions
of the world rather than more causally relevant features. As a result, one
goal of our empirical studies was to resolve the apparent conflict between
strong prior evidence for lack of analogical transfer with the strong ar
gument for the functionality of that retrieval ability within any memory
system. Prior work on types of features in retrieval of exemplars argued
that an advantage exists for surface features vs. structural or inferred fea
tures (Gentner and Landers, 1985; Gentner and Ratterman, 1987). An
alternative explanation for these results is that surface features seem to
dominate memory retrieval whenever the task allows shallow processing
of the information, which would make surface features available sooner
than inferred features. We designed an experiment that manipulated the
level of processing subjects were able to utilize on the test cases. In
one condition, the Gentner and Landers (1985) and Gentner and Rat
terman (1987) manipulation was replicated; in another, the word order
of the same test stories were randomized, with the resulting scrambled
stories presumably allowing only shallow processing of meaning (words
such as "squirrel" are easily identified, but connections between words
structural features-could no longer be understood from the scrambled
story). In the scrambled condition, access was presumably provided to
surface features but not to structural features.

Our results replicated most of the accessibility effects described in
Gentner and Landers (1985) and Ratterman and Gentner (1987). The
general pattern of results in the scrambled cue story condition does not
differ from the pattern of results in the intact story conditions. We ob
tained the identical pattern of significant differences between pairs of
means for both groups, and the interaction between match type and
word order was not significant. This supports the conclusion that the
advantage of surface features in retrieval may be due to greater access to
surface than structural features, rather than a preference or advantage to
surface features given equal availability of both feature types.

Abstract features are particularly important in situations where the
superficial features in the domain are not as helpful in indicating causal
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relationships. For example, access based on structural features alone will
be necessary when learning in a new domain where past experiences don't
share surface features with new problems; when the superficial features
are insufficient to distinguish among many related examples; and when
the needed information is stored in terms of the surface characteristics
of another domain so that cross-contextual reminding is required. Thus,
the use of abstract features, supported in prior experiments ((Seifert et
al., 1986), (Rattermann and Gentner, 1987)), can occur independently of
competition from more available surface features. Resolving this contro
versy is an important step in supporting models of case-based reasoning,
where indexing and features are central to the approach.

Opportunistic Memory: How to index pending goals.

There is some suggestion from psychological experiments that human
cognition is able to take advantage of improved circumstances in order
to reattempt previously failed task goals. (Hayes-Roth and Hayes-Roth,
1979b). Why might memory be designed to note and take advantage
of task status in retrieving past problems? From our modeling work in
RUNNER, it is clear that keeping track of the status of problem-solving
attempts and being able to use that information is very useful in the later
solution of the interrupted problems. If a goal is not satisfied, information
about that failure can be used to preserve and encode the problem in a
way that might facilitate its later retrieval. Consequently, failed problems
may be more likely to be recalled, and to be pursued for a second time.
In order to do so, however, incomplete problems must be stored and
retrieved from memory. What, if any, are the differences in the way in
which we encode and remember completed versus interrupted problems?

We began to address this issue by examining the results of a classic
experiment by Zeigarnik (1927), which claimed that interrupted problems
are more frequently retrieved from memory than completed ones. Zeigar
nik and other researchers accounted for this effect in terms of social,
motivational, and personality factors (see (Prentice, 1944)), suggesting
that when a subject sets out to perform the operations required by one of
the tasks, the subject develops a "quasi-need" for the completion of the
task. By re-examining the Zeigarnik effect in terms of modern theories of
problem representations, goals, and context effects, we set out to explain
the circumstances under which access to pending cases will occur, and
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how this effect may function within a broader cognitive architecture.

In the experiments, we explored factors including the nature of the
interruption, the processing time spent on problems, and the relative set
size of the incomplete problems. In the first study, we attempted to match
Zeigarnik's methods (1927) as closely as possible; using word problems,
we manipulated task interruption versus completion on each problem.
Our results showed that free recall memory for completed tasks is better
than memory for interrupted tasks; however, this is not surprising given
that subjects spent substantially more time, both when correct and in
correct, on the completed problems than on the incomplete problems. In
a second experiment, we attempted to replicate this result, and added
a condition where we attempted to highlight subjects' attention to the
blocked problems. The highlighted version used a game board, where
subjects were led to believe they would have to return to incomplete
problems in order to complete the experiment. However, the highlighted
condition did not improve memorability of the unsolved problems. From
these first two experiments, which failed to replicate the Zeigarnik effect,
we conclude that the effect is not simply a consequence of interruption.

In a third experiment, we tested incomplete problems resulting from
impasses in solution attempts, rather than simple interruption. In this
procedure, subjects work through a large set of problems, determining
which condition a given problem falls into by either completing or getting
stuck on the problem. The results of this experiment showed that height
ened memorability for unanswered problems occurs when such problems
are in a blocked state, rather than merely in a state of interruption. In
a fourth experiment, we removed the possible confound of longer time
spent on incomplete problems by allowing a specified amount of time to
work on each problem. The results still demonstrated better memory for
blocked problems, allowing the conclusion that the Zeigarnik effect does
not depend on time differences.

However, this successful replication also included set size differences in
favor of incomplete problems. We hypothesized that under blocked rather
than simply interrupted conditions, a heightened memorability exists for
problems in the category of smaller set size. We created such a situation
in a fifth experiment by including more difficult problems, and allowed
subjects less time to work on each problem, resulting in a completion
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rate of about one half. When set sizes were approximately equal, the free
recall results showed no difference in memory for answered compared to
unanswered problems.

One possible explanation for set size effects is expectation failure. In
these experiments, initial experience with the set may create expectations
of success or failure, so that when unexpected outcomes occur, the prob
lem becomes more memorable. For example, if one can answer all but a
few items in a crossword puzzle, the unsolved clues become quite salient;
similarly, if most of the cues are unsolved, then the successful answers
appear more salient. Thus, the enhanced memorability of the Zeigar
nik effect may be part of a larger phenomenon - expectation failures 
that can be used to mark significant events that deviate from predictions.
This serves to highlight memories that may be important and to enhance
availability for later processing.

Thus, access to incomplete problems may be facilitated under certain
circumstances; namely, when processing time, the nature of interruption,
or expectation failures make incomplete problems salient. Under these
conditions, the status of completion can serve as a useful index to past
problem situations. Within the program environment, the results suggest
ways to enhance the availability of unfinished tasks in memory.

CONCLUSION

In our work in case-based planning, our objective is to discover more
about the structure and use of episodic memory in reasoning processes.
Specifically, we are interested in a theory of how episodic memory can
be effectively used to deal with new planning and problem-solving situa
tions over a wide range of activities. The work described in this chapter
is aimed at extending our understanding of case-based reasoning across
three dimensions: vocabularies for encoding of cases in memory, features
for access and retrieval of episodes, the role of memory organization in
problem-solving and opportunism. All involve the examination of funda
mental principles of case-based reasoning; in particular, representational
vocabularies, indexing and access to past cases, and opportunistic re
trieval of past episodes. These empirical projects are closely tied to spe
cific implementational models (such as RUNNER and ROENTGEN) that
help to constrain the hypotheses examined in the experimental studies.
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Our current work involves developing a theory of agency, the active
pursuit of goals in the face of a changing environment. As our work
continues, we are focusing on the following issues:

• Identify the circumstances under which previous cases can be ex
ploited to learn how to deal with new situations.

• Discover more about how cases are stored in memory and how they
are evoked by new related situations.

• Examine how learning occurs during planning, as a result of ex
plaining and repairing failures.

• Uncover vocabularies for describing abstract similarities between
episodes in memory.

• Catalog features used in the access and retrieval of episodes from
memory.

• Understand the role of memory organization in the support of op
portunistic planning.

• Demonstrate the use of cases in human learning.

Our two parallel research initiatives in Artificial Intelligence and Psy
chology function by proposing computer models that provide functional
motivation for proposed experiments, while the data from those experi
ments provide a solid set of constraints for the computer modeling projects.
Our overall goal is an integrated, interdisciplinary theory of case-based
memory and planning that is empirically demonstrated by the experi
mentation and functionally justified by the computer models. We hope
that the interdisciplinary approach will provide results that will converge
on a unified theory of the use of memory in planning, problem solving,
explanation, and decision making.
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Abstract

Biases enable systems to make decisions in realms where all legitimate
sources of knowledge have been exhausted. This article investigates the
application of biases to the problem of planning, and how this can indi
rectly induce effective biases in a learning process that is based on a plan
ner's experiences. Experimental results from six biased planners, plus
several more complex multi-method planners, indicate complex trade
offs among planner completeness, planning efficiency, and plan length.
Learning also varies in complex ways among these planners, with one no
table result being the ease with which some planners learn rules that can
generalize from one object to many; a phenomenon known in machine
learning as generalization to N.

INTRODUCTION

Bias, as originally defined in the context of inductive concept learning
from preclassified training instances, is "any basis for choosing one gen-

1. We would like to thank Mike Barley, Pat Langley, and Steve Minton for their
helpful feedback on this work. This work was sponsored by the Defense Advanced
Research Projects Agency (DOD) and the Office of Naval Research under contract
number NOOOI4-89-K-OI55. This chapter is a reformatted reprint of a version of
Rosenbloom, P. S., Lee, S. & Unruh, A. (1992). Bias in planning and explanation
based learning. In S. Minton (Ed.) Machine Learning Method, for Planning
and Scheduling. San Mateo, CA: Morgan Kaufmann. In Press. Copyright 1992,
Morgan Kaufmann Publishers. Reprinted by permission.
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eralization over another, other than strict consistency with the observed
training instances (Mitchell, 1980)." It has proven to be a particularly
useful notion in this context because it isolates and highlights a crucial
aspect of induction algorithms: the knowledge and processes that de
termine how the algorithms go beyond the training instancesj that is,
which inductive leaps they make. For example, it makes it clear that
explanation-based learning (EBL) can be viewed as inductive concept
learning, where the domain theory and operationality criterion provide
a particularly strong bias on the induction process. In general, the idea
in induction is to start with the notion of an unbiased hypothesis space
that consists of every possible generalization of the observed training in
stances. The unbiased version space is then the portion of this space that
is consistent with the observed training instances. The bias determines
which element - if any - of the unbiased version space is returned as
the output of the induction algorithm.2

As just described, bias affects the output of the induction process, but
not the efficiency with which it proceeds. This is because bias is implic
itly used solely as part of the test for a generate-and-test method - first
the elements of the unbiased hypothesis space are generated, and then
tested to see if they meet the criteria of the bias. However, if the bias
can be incorporated directly into the generator (Bennett & Dietterich,
1986), then it can also have a significant impact on the efficiency of the
induction process by reducing the number of candidates that are gener
ated. In this way, bias can lead to effective control of search. However,
despite this close relationship between search control and bias - as we
shall see later, search control can also lead to bias - the two notions
are not isomorphic. Bias determines which answer is given, while search
control determines the efficiency with which that answer is found.

The principal thesis of this chapter is that the notion of a bias 
suitably generalized - can also be usefully applied to planning. Several
of the potential benefits are straightforward mappings from the inductive
concept learning case: (1) it can help to organize and understand many
of the concepts in planning - such as linearity and protection - by
focusing on their effects on selection from the hypothesis space (that is,

2. In search terms, the set of possible generalizations provides a problem (or solution)
space, consistency with the observed training instances provides a goal test, and
the bias determines which of the states that satisfy the goal is actually reached.
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the plan space); and (2) it can reduce computational effort by reducing
the number of hypotheses (plans) that must be examined if a good bias
is selected.

A third potential benefit, and one that is not derived from the standard
usage of bias in inductive concept learning, is that planning biases can
indirectly induce an effective bias on learning. The basic issue here is how
to make the rules learned from planning episodes more utile than they
would be otherwise. Without such modifications, the rules may actually
hurt performance rather than help it (Minton, 1990; Tambe, Newell,
& Rosenbloom, 1990). In fact, much of the research in plan learning
over the past several years can be construed as investigating the direct
application of biases to improve the utility of learned rules; for example,
ULS (Chase et al., 1989) uses statistical information to abstract learned
rules by dropping conditions that have a high conditional probability
of being true given that the preceding conditions are also true. The
main problem with this type of approach is that it uses the biasing
knowledge only for post hoc revision of the learned rules, and not to
assist the planner in doing its job. Thus an opportunity is missed to
reduce planning effort, and thus to reduce learning time, since learning
time is closely linked to the time required by the planner for it to reach
situations where a rule can be learned. The alternative approach is to
bias the planner - for example, by having it create plans that ignore
preconditions of little statistical relevance - and then to learn from
these altered planning episodes. Recent evidence shows that, at least
for some forms of abstraction, this approach can reduce planning time
(and thus reduce learning time), and increase the generality and utility
of the rules learned (Unruh & Rosenbloom, 1989; Knoblock, Minton, &
Etzioni, 1991).

In the following three sections of this chapter we layout in more detail
the application of bias to planning, describe how (biased) planning can
be implemented within Soar (Laird, Newell, &Rosenbloom, 1987; Rosen
bloom, Laird, & Newell, in press), and provide results from some of the
biases implemented so far. This is followed with an investigation of one
approach to the flexible use of multiple biases within a single planner, by
constructing a set of multi-method planners out of sequences of increas
ingly less biased planners. Such multi-method planners can alter the
trade-offs among planning efficiency, plan length, and planner complete-
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ness. They also provide an opportunity to investigate how to learn about
which planners - and thus which biases - to use for particular prob
lems. The remainder of the chapter examines whether biased planning
can lead to useful biases on learning; in particular, on explanation-based
learning (EBL) of plans. This proceeds via a case study in generaliza
tion to N (Bostrom, 1990; Cohen, 1988; Shavlik, 1989; Subramanian &
Feldman, 1990).

BIAS IN PLANNING

Figure 1 displays the analogy between inductive concept learning and
planning that underlies the transfer of the notion of bias to planning. In
both cases the output of the process is to be some element of the unbi
ased hypothesis space that is consistent with the process's input. Where
the two cases differ is in the definitions of "unbiased hypothesis space"
and "input". In concept learning, the unbiased hypothesis space is the
power set of the possible instances, and the input is a set of preclassi
fled training instances. In planning, the unbiased hypothesis space is
the power sequence - that is, the set of all sequences - of the possible
operators,3 and the input is the combination of an initial state and a
goal. In either case - despite these differences - in the absence of a
bias, any element ofthe hypothesis space consistent with the input (that
is, any element of the version space) is as good as any other. Thus, in
both cases, it is the bias that breaks this deadlock and determines which
such element becomes the output of the process.

Biases can be either absolute or relative. An absolute bias completely
removes regions of the unbiased hypothesis space, creating an incomplete
biased hypothesis space. For example, in concept learning, a generaliza
tion language provides an absolute bias by eliminating any element of the
unbiased hypothesis space not expressible in the language. Because abso
lute biases introduce incompleteness into the process, devising a "good"
bias is critical: if it is too weak it has no effect, but if it is too strong it
can eliminate the desired output. A relative bias defines a partial order

3. The specification here assumes that the plan space contains only totally-ordered
sequences of operators, but it does not rule out a search strategy that incrementally
specifies an element of the plan space by refining a partially-ordered plan structure.
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Figure 1. Analogy between concept learning and planning.

on the elements of the hypothesis space. Returning to the concept learn
ing case, a preference for simpler hypotheses provides a relative bias.
Relative biases do not generate incompleteness, but rules learned from
relative biases tend to be more complex than those learned from absolute
biases, so that the utility of learned rules may be decreased. In the case
of planning, both absolute and relative biases have been used, though
not generally under these labels.

On the absolute side, two common planning biases are linearity and
protection. A linearity bias removes from the hypothesis space all plans
in which operators in service of different unachieved goal conjuncts occur
in succession; that is, once an operator for one unachieved goal conjunct
is in the plan, operators for other conjuncts can occur only after the first
goal conjunct has been achieved. For example, given the initial state
and the goal conjuncts in Figure 2(a), plans such as the one in Fig
ure 2(b) would be eliminated, while plans such as the one in Figure 2(c)
would remain. A protection bias eliminates all plans in which an op
erator undoes a goal conjunct established by an earlier operator in the
sequence. For example, given the initial state and the goal conjuncts in
Figure 3(a), plans such as the one in Figure 3(b) would be eliminated
since the operator (move A Table) undoes the goal conjunct (On A B)
which is established by the earlier operator (move A B), while plans such
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Inilial State

(a)

g1: (OnAB)
g2: (OnCD)

Goal

(move B Table) - (move D Table) - (move A B) - (move C D)

for gl for g2 for gl for g2

(b)

(move B Table) - (move A B) - (move D Table) - (move C D)

for gl for g2

(c)

Figure 2. Example of the effects of a linearity bias on the plan space: (a) initial
state and goal conjuncts, (b) plan eliminated, (c) plan remaining.
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Goal
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(b)
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(c)

Figure 3. Example of the effects of a protection bias on the plan space: (a) initial
state and goal conjuncts, (b) plan eliminated, (c) plan remaining.
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as the one in Figure 3(c) would remain.

Two less common, but nonetheless interesting, absolute biases are di
rectness and nonrecursiveness. A directness bias eliminates all plans in
which there is at least one operator that does not directly achieve a
goal conjunct included in the problem definition. For example, given
the goal conjuncts and operators in Figure 4(a), plans such as the one
in Figure 4(b) would be eliminated since the operator (move B A) does
not directly achieve any of the goal conjuncts in the problem definition,
while plans such as the one in Figure 4(c) would remain. A nonrecur
siveness bias eliminates all plans that require a derivation embodying
recursive subgoals. For example, given the goal conjuncts and operators
in Figure 5(a), plans such as the one in Figure 5(b) would be eliminated
because it requires a derivation embodying a recursive subgoal- oper
ator (move B Table) is chosen in service of conjunct (Clear C), but in
making it applicable, a recursive Clear conjunct (Clear B) is generated
(resulting in the selection of (move A D) as the first operator). On the
other hand, plans such as the one in Figure 5(c) would remain.

Because these biases are absolute, they all engender incompleteness in
the planner; that is, they reduce the number of plans that the planner
can possibly generate for particular problems. This incompleteness can
be used to speed up the planner. However, it only really helps if the bias
is an appropriate one; otherwise, the effort expended in searching the bi
ased space is wasted. Thus, in order to show that using one of these abso
lute biases is reasonable, some form of appropriate justification is needed.
The most common form of justification is an independence assumption.
Linearity and protection both depend on some form of independence
assumption. For linearity, one assumes that while solving one goal con
junct, operators not in service of that conjunct need not be considered.
For protection, one assumes that while solving one goal conjunct, op
erators that interact negatively with previous goal conjuncts need not
be considered. Other justifications include progress and boundedness. A
progress assumption - that it is always possible to move forward, and
never required to move backward - underlies all greedy biases, of which
protection is one. Boundedness assumptions limit the total effort that
it is reasonable to expend in solving a problem. Nonrecursiveness and
directness are both justified by boundedness assumptions, though based
on different bounds.
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(a)

gl: (On ATable)
g2: (On B Table)
g3: (On C Table)
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(b)

forg2

(move A Table) ---. (move B Table) ---. (move C Table)

forgl forg2

(c)

forg3

Figure 4. Example of the effects ofa directness bias on the plan space: (a) initial
state and goal conjuncts, (b) plan eliminated, (c) plan remaining.

Initial Stale
(a)

gl: (On ATable)
g2: (ClearC)

Goal

(move A 0) ---. (move B Table) ---. (move A Table)

for (Clear B)

for g2 (ClearC) for gl

(b)

(move A Table) ---. (move B Table)

forgl forg2

(c)

Figure 5. Example of the effects of a nonrecursiveness bias on the plan space:
(a) initial state and goal conjuncts, (b) plan eliminated, (c) plan re
maining.
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Each of the absolute biases can also be made into a corresponding
relative bias by just preferring plans that meet the bias to plans that
do not. For example, a relative protection bias would prefer protected
plans to unprotected ones, but still fall back on unprotected ones if
necessary. In addition, there are a number of biases which are most
naturally cast directly in relative terms. Three common relative biases
are abstraction, e4rliness, and shortness. An abstraction bias prefers
plans that can be generated by locally filling in the gaps in an abstract
plan; an earliness bias prefers plans discovered earlier in the search; and
a shortness bias prefers shorter plans. The primary justification for those
biases is efficiency; specifically, planning efficiency for abstraction and
earliness and execution efficiency for shortness.

The dichotomy between absolute and relative biases parallels the com
parable dichotomy in the use of control knowledge. For example, Gratch
and DeJong (1990) distinguish between structural and ordering modifi
cations to control strategies, which amounts to a distinction between the
addition of absolute and relative control knowledge. The two distinctions
are also closely coupled, as imposition of a bias of one type can engender
control of that same type, and vice versa.

LEARNING AND PLANNING IN SOAR

Our investigations of biased planning, and its influence on learning, have
been performed in the context of Soar, an architecture that integrates
basic capabilities for problem-solving, use of knowledge, learning, and
perceptual-motor behavior (Laird, Newell, & Rosenbloom, 1987; Rosen
bloom et al., 1991). Soar has not traditionally been seen as a planning
architecture, partly because it does not create structures that resem
ble traditional plans, and partly because its problem-solving approach
does not closely resemble the traditional planning methods. However,
appearances can be deceiving. In this section we first very briefly review
familiar territory, summarizing how learning works in Soar, and then ex
amine planning in Soar from the perspectives of both plans and planning
methods.
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Learning in Soar

Soar learns via a chunking process that creates new rules that can recre
ate the results of subgoals in relevantly similar future situations (Laird,
Rosenbloom, & Newell, 1986). For each independent result of each sub
goal it creates a rule that has an action side based on the result, and a
condition side based on a dependency analysis of the subgoal processing
that led to the result. In effect, chunking is much like explanation-based
learning (Rosenbloom & Laird, 1986).

The Soar representation of plans

This is not the place to attempt resolution of the philosophical questions
over what is and is not a plan. However, enough of a working definition
is needed to allow the identification of what structures in Soar act as
plans. Thus, for the purpose of this identification, we will assume the
following generic definition of a plan for a problem (that is, a state and
a goal):

A plan for a problem is a structure that represents the sequence
of actions to be taken for that problem.

This definition captures a number of the important aspects of what it
means for a structure to be a plan: that a plan is a representation of
actions, that the actions in the plan have not yet taken place, and that a
plan is for the solution of some problem (or class of problems). The def
inition is also neutral on a number of issues for which there is no present
need to take a stance: the way the plan is encoded (whether declaratively
or procedurally, with what syntax, and with what degree of expressibil
ity), by whom the plan was created (the agent that is to execute it or
some other other agent), and to whom the plan is representational (to
the agent or to an external analyst). Other aspects ignored by this defi
nition which may ultimately be of importance are: whether the structure
is operational for control - for example, whether the plan can lead to
action in a bounded amount of time or whether something like exponen
tial theorem proving is required to derive indirect action consequences
- and whether there is a deliberate act of creation or selection of the
plan for the problem.
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With this definition of a plan in hand, it is now possible to identify
the two predominant components that serve as plans in Soar: (1) sets
of instantiated preferences in preference memory" serve as instantiated
plans for active goals; and (2) sets of va.riabilized control rules in pro
duction memory serve as generalized plans for classes of potential goals.
To illustrate this, Figure 6(a) contains a generalized plan for the class of
block-stacking problems shown in Figure 6(b). This single-rule general
ized plan gets instantiated once for each successive triple of blocks in a
desired stack, avoiding the mistake of putting the top block on the sec
ond block until it is itself already in place on the third block. Figure 6(c)
shows the sequence of steps for a four-block-stacking problem. For each
step it shows the problem state, the conjuncts that have not yet been
achieved, the operators that have been proposed, and the portion of the
instantiated plan - that is, the set of worst preferences - that applies
at that step. Figure 6(d) shows the actual operator sequence this plan
generates.

The reason that Soar does not appear to have plans is that they are
rarely represented as unitary entities. The generalized plan in Figure 6(a)
consists simply of the set - in this case a singleton set - of control rules,
out of what would be the entire set of rules in memory, that are relevant
to the class of problems in Figure 6(b). For other classes of problems,
some of these same rules may be relevant, while others may not be.
Likewise, the instantiated plan in Figure 6(c) cuts an unnatural swath
through Soar's preference memory. First, it ignores the preferences that
might simultaneously be in preference memory for other goals. Second,
it contains preferences for an entire sequence of decisions, whereas pref
erence memory focuses on preferences for the currently active decisions;
that is, it would only contain the preference subset for one step at a time.
The instantiated plan is thus assembled dynamically, and through time,
rather than existing as a static unitary structure that can easily be read
off by an external observer.

The generalized plan representation combines aspects of three existing
formalisms - linear operator sequences, partially-ordered operator se
quences, and stimulus-response rules - but it also goes beyond them in

4. In contrast to previous versions, in SoarS - the current major release - tran
siently retrieved preferences are maintained in a separate preference memory,
rather than in working memory (Laird et a.l., 1990).
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Figure 6. Goals, plans, and operator sequences: (a) a generalized plan, (b) the
class of problems for (a), (c) the sequence of steps for a four-block
stacking problem, (d) the sequence of operators.
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several ways. The preference language, in common with linear operator
sequences and stimulus-response rules, has an imperative construct (best)
that allows relatively direct specification of the next action to perform;
however, it also goes beyond this to allow, in common with partially
ordered operator sequences, specification of partial order - using binary
preferences such as worse and better - as well as beyond this to oper
ator avoidance (worst and reject). The use of control rules, in common
with stimulus-response rules, provides a fine-grained conditionality and
context sensitivity that allows it to easily encode such control structures
as conditionals and loops. In addition, the variabilization of the control
rules allows a single plan fragment to be instantiated for multiple related
decisions.

Planning Methods in Soar

At the problem-solving level, Soar is based on the idea of multiple prob
lem spaces (Newel et al., 1991) - that is, on multiple sets of operators
and states, their selection, and the application of operators to states
to yield new states - and their interaction through goal-subgoal in
terfaces. Early work on Soar demonstrated how this organization, in
conjunction with small amounts of additional knowledge - structured
as method increments - could yield a wide range of standard problem
solving methods. Although this included means-ends analysis (MEA)
the primordial planning method - most of the exhibited methods, such
as depth-first search and hill-climbing, did not resemble classical plan
ning methods. Thus Soar was conventionally viewed as a search system
rather than as a planning system. However, recent work on a Soar-based
framework for planning has demonstrated how versions of such standard
planning methods as linear, nonlinear,5 and abstraction (hierarchical)
planning can be derived by adding method increments that include core
means-ends knowledge about what operators to suggest for considera
tion, and varying knowledge about how to respond to impasses resulting
from precondition failures (Rosenbloom, Lee, & Unruh, 1990).

5. The term "nonlinear" has several different meanings in the world of plans. The
specific sense intended here is that operators generated in service of different goal
conjuncts can be interleaved.
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Figure 7. Planning in the blocks world using (a) linear; (b) nonlinear; and (c)
abstraction (hierarchical) biases.
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Figure 7 provides initial traces of how particular versions of these
three forms of planning proceed, in their current Soar implementation,
for Sussman's anomaly (in the blocks world).6 They all start with a
high-level operator that is to achieve the entire conjunctive goal - (On
B C) and (On A B) - directly from the initial state, and reach an
execution impasse if there is no information about how to do this. In
response to this impasse, a subgoal is created where means-ends analysis
is used to generate the set of candidate operators - (move B C) and
(move A B) - that may be able to achieve any of the goal conjuncts.
A selection impasse then occurs unless there is information about how
to pick among them (or unless only one operator is generated). In this
selection impasse, the alternatives are evaluated by simulating their con
sequences. The simulation begins by selecting one of the alternatives to
evaluate - here it is (move A B). Its preconditions are tested and if it is
known to be applicable, it is executed. If it is not known to be applica
ble, what happens next depends on whether or not there is abstraction.
With abstraction, the operator is executed anyway and problem solv
ing just continues. In Figure 7(c), for example, operator (move A B) is
executed even though block A is not clear. Without abstraction, as in
Figure 7(a) and (b), an execution impasse occurs again. In response to
this impasse, a new set ofgoal conjuncts is generated from the operator's
unmet preconditions.
The difference between linear and nonlinear planning, at least for these
versions, is in how the focus of operator generation shifts from the origi
nal set to a set including these new ones. Linear planning follows a stack
discipline, where attention shifts completely to these new conjuncts 
(Clear A) in this example - stays with them until they are achieved, and
then pops back to the original conjunct that led to the impasse. Once
the original conjunct is achieved, processing shifts to one of its siblings
(if there are any). Nonlinear planning instead shifts to an expanded set
of conjuncts that includes the new set plus the original set minus the
conjunct that led to the impasse, yielding (Clear A) and (On B C) in
this example. At any point in time, an operator can be selected for any
of these conjuncts, enabling operator sequences to be interleaved as nee-

6. For comparison purpose, we are showing abstraction in the blocks world. Although
we have not actually implemented it in that domain, it has been implemented in
several similar domains.
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essary (similar to the oosual-commitment approach to nonlinear planning
(Veloso, 1989». For both planning methods, once the new focus has been
determined, planning continues recursively by using means-ends analysis
to generate candidate operators for the new set of goal conjuncts.

Although we have so far been referring to these methods as "plan
ning methods", because they are versions of classical methods used in
the creation of plans, nothing has yet been said about how they in fact
yield plans - that is, sets of either instantiated preferences or gener
alized control rules. Plans - actually plan fragments - are generated
whenever operator preferences are created in working memory. This can
happen simply by the instantiation of a generalized plan fragment 
that is, by the execution of a control rule - or by the returning of a
result from an operator-selection subgoal. For example, in Figure 7(a)
a best preference is returned from the selection subgoal if the result of
evaluating (move A B) is success, whereas a worst preference is returned
if the result is failure. These preferences act directly as fragments of a
plan for the currently active goals. In addition, whenever a preference
is returned as a result of a subgoal, it triggers Soar's chunking process,
which creates and stores a control rule that acts as a generalized plan
fragment for classes of problems.
Most plan fragments that are not created simply by instantiating gen

eralized plans are generated from projection (that is, lookahead) episodes
in subgoals. In projection, one or more domain operators are tried out
in simulation to see which ones lead to success or failure. Success en
genders best preferences and failure engenders worst preferences. Thus
projection plays an integral role in determining which plans are created.
In its turn, what is projected, and what is considered to be success or
failure, is determined by the planning method. These relationships are
summarized by the following two influence paths.

planning method ~ projection ~ instantiated plan

planning method ~ projection ~ learning ~ generalized plan

Within this framework, planning biases are implemented by altering
the planning method, which then - through the influence paths above
- determines which plans are created. For example, a protection bias
is implemented by altering the planning method to terminate lookahead
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with failure any time a projected path leads to a protection violation. In
comparison to the same planner without this bias, the protection plan
ner will lead to the creation of worst preferences (and negative control
rules) which will avoid paths that violate protection. If relative biases
are used, it should also be possible to learn control rules that generate
binary preferences (such as better and worse) encoding partial-order in
formation, but this has not yet been investigated (at least in the context
of bias and planning).

IMPLEMENTED PLANNING BIASES

The planning biases that we have concentrated on recently are linearity,
protection, directness, and abstraction. The first three have all been im
plemented as options within a single planning system - and will be the
focus here - while the latter has been implemented separately (Unruh
&Rosenbloom, 1989). The implemented system that combines linearity,
protection, and directness is constructed as a nonlinear planner that can
optionally employ any of several different bias values along two indepen
dent dimensions - goal flexibility and goal protection. The nonlinear
planner is described in Figure 7(b). It uses means-ends analysis on the
entire set of goal conjuncts to decide which operators to consider for se
lection, performs search to decide among the set of considered operators,
and generates new goal conjuncts whenever one or more preconditions
of the selected operator are not achieved.

The goal-flexibility dimension is shown in Figure 8. It ranges over the
planner's degree of flexibility in the pursuit of subgoals for precondition
failures, and subsumes the directness and linearity biases. The most
restricted point along this spectrum disallows all pursuit of subgoals
for precondition failures (Figure 8(a)), yielding a single-level subgoal
hierarchy. That is, if an operator has unsatisfied preconditions when
the attempt is made to incorporate it into a plan, that plan - actually,
any plan incorporating that operator in that role - is rejected. This
implements a directness bias because means-ends analysis ensures that
operators are only considered if they achieve a goal conjunct,7 and the

7. Meau-ends a.nalysis in general m&y not guua.ntee this, but the restricted form of
MEA typically used by pla.nning systems - where it is bued on the unific&tion
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Figure 8. The dimension of goal-flexibility bias.

only goal conjuncts that are allowed are the ones in the initial problem
specification, so no operators are allowed in the plan except for those
that directly achieve goal conjuncts in the initial problem specification.

The second point along the flexibility dimension allows the local use of
subgoals (Figure 8(b». Here, precondition failures lead to generation of
new goal conjuncts, but only a single local set of conjuncts are attended
to at any point in time. Initially the local set consists of the conjuncts
in the problem specification. However, whenever a selected operator has
one or more unmet preconditions, the previous local set is pushed on
a stack, and the operator's unmet preconditions become the new local
set. When the operator's conditions are satisfied, the stack is popped
to return to the previous set. This local focus of attention has two
main consequences for the planner. First, it reduces the branching factor
of the planner's search - with respect to the nonlinear planner - by
restricting the set ofoperators that the planner can consider at any point
in time to just those that may achieve the local conjuncts. Second, it
enforces linearity on the resulting plans by restricting the placement of

of operator actions with goal coBjuBeta - does guarantee it.
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an operator to within the context of the local conjuncts from which it
arose.

The third point along the flexibility dimension a.llows the global use
of subgoals; that is, new goal conjuncts are generated for unmet precon
ditions, and operators are simultaneously considered for a.ll unsatisfied
conjuncts (Figure 8(c)). This is the least restricted version, and enables
nonlinear planning by a.llowing operators for multiple goal conjuncts to
be interleaved.

The two points implemented along the goal-protection dimension cor
respond to full goal protection - that is, no achieved goal conjunct in
the plan can be violated - and no goal protection. The main conse
quence of imposing full goal protection is that the search tree is reduced
in size because paths that violate goal protection are cut off' before full
plans are created.

Figure 9 characterizes a 3x2 set of planning methods derived from
these bias dimensions. The most biased planner (PI) is at the top-left
corner of the figure. This is a direct goal-protection planner. Although
quite restrictive, it is sufficient to solve the block-stacking problem shown
in that cell of the figure. The least biased planner (P6) is in the bottom
right corner of the figure. It is a nonlinear planner without goal pro
tection, and is the only planner in the figure capable of generating an
optimal solution to the blocks world problem shown in that cell.8 Be
tween these two extremes, moving up or to the left yields more bias,
while moving down or to the right yields less bias. In each of these in
termediate cells, the problem shown is one that is just hard enough to
require that planner; that is, the problem can be solved optima.lly by the
planner represented by that cell, but not by either the planner to its left
or the planner above it.

Tables l(a-c) show the same 3x2 matrix, but each cell now contains
experimental results bearing on the trade-off's between efficiency and
completeness for these six planners. These data come from running each
planner on three replications of the same set of fifty blocks-world prob
lems, for a total of 150 trials each. Problems are repeated to help average

8. In this domain both P5 and P6 ue complete planners in that they can potentially
IOlve every problem (though P5 may not be able to generate an optimallOlution).
However, in domains with irreversible operators, P6 is the only complete planner.
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Figure 9. The planning methods generated by the bias dimensions (the bottom
left corner represents an extended blocks world problem where a block
that is not clear can be moved, dropping all the blocks above it onto
the table).

out the variations caused by nondeterminism in the planners - when
ever they reach a decision at which they are indifferent among the set
of alternatives, one alternative is picked at random. The first ten prob
lems out of the fifty all involve two blocks and two goal conjuncts. For
each ten subsequent problems the maximum number of blocks and goal
conjuncts were each increased by one (the last ten problems thus have a
maximum of six each). For each problem, an initial state was randomly
generated containing between two and the (current) maximum number
of blocks. Likewise a set of goal conjuncts was randomly generated that
numbered between two and the number of blocks in the initial state.
Learning was turned on for each problem, but only within-trial transfer
was allowed; that is, rules learned during one problem were not used
for other problems. This provides a generalized form of dependency
directed backtracking, but does not get into the issues of across-problem
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interactions.

Table l(a) shows the number of problems solvable in principle - that
is, if sufficient time is provided - by that cell's planner, plus a label for
the problem set that this implicitly defines. Not surprisingly, this shows
a monotonic trend between planner bias and scope, from a low of 28
problems for the most restricted planner to a high of 50 problems for the
least restricted planner. Tables l(b) and (c) show the average number of
decisions and the average plan length, which should positively correlate,
respectively, with planning time and execution time. This data arises
from applying each of the six planners to those of the four problem sets
defined in Table l(a) that they can in principle solve. The four problem
sets are associated with the four rows within each cell of the tables.
The averages in each cell only include the data from the trials that were
solved within an a priori limit of 300 decisions. Since 99% of the solvable
problems were actually solved within this limit, this includes nearly all
of the trials.

The timing results in Table l(b) show that planning effort is a mono
tonically decreasing function of the amount of bias along these dimen
sions. For example, for problem set 51, effort ranged from a low of
16.5 decisions for the no-subgoal (direct) methods to a high of 36.6 de
cisions for global flexibility (nonlinear planning) without protection. H
this trend holds more broadly across other domains, the resulting trade
off between efficiency and completeness - efficiency decreases as the bias
is relaxed, while completeness increases - implies that context-sensitive
bias selection will be critical for finding solutions quickly across broad
ranges of problem difficulty.

Plan length in Table l(c) shows a similar monotonic trend, though
there is one reversal when going from linear to nonlinear planning (both
without goal protection). The most likely cause of this reversal is that
the linear planner's bias is weak enough to allow solutions to be found
for all blocks world problems, but strong enough to eliminate optimal
solutions for some of the problems; for example, when the shortest plan
requires operators in service of different goal conjuncts to be considered
before the current goal conjunct is achieved.
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Goal
Protection

No
Goal
Protection

No 8ubgoal
(Directness)

Local
(Linear)

Global
(Nonlinear)

(a) Number of problems solvable in principle.

No
Goal
Protection

16.5 17.2 17.5
- 28.9 36.4
- - 36.4
- - -
16.5 23.2 36.6
- 38.8 50.7
- 43.4 54.5
- 45.1 58.0

81
Goal 82
Protection 83

84
81
82
83
84

No 8ubgoal
(Directness)

Local
(Linear)

Global
(Nonlinear)

(b) Average number of decisions per problem solved.

No subgoal Local Global

No
Goal
Protection

81
Goal 82
Protection 83

84
81
82
83
84

(Directness) (Linear) (Nonlinear)
1.7 1.8 1.8
- 2.8 3.0
- - 3.0
- - -
1.7 2.3 2.5
- 3.7 3.6
- 4.1 4.0
- 4.3 4.1

(c) Average plan length per problem solved.

Table 1. Results from the six planners on three independent repetitions of fifty
randomly generated blocks world problems.
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MULTI-METHOD PLANNERS

The ideal planner would be able to solve each problem with a minimum
of excess work (at both planning and execution time). However, each
of the planners examined in the previous section is either incomplete or
performs a significant amount of excess work for some of the problems.
Given this, an alternative way to approach the ideal is to construct a
multi-method planner that uses, for each problem, the least costly plan
ner that is sufficient for it. Toward this end we have created a set of
multi-method planners, each consisting of a sequence of primitive plan
ners. For each multi-method planner, planning starts with the most
restricted planner, and falls back on failure to successively more relaxed
planners until one is found that is sufficient for the problem. The general
approach is similar to how multiple biases have been used in inductive
concept formation (Rendell, 1986; Russell &Grosof, 1987; Utgoff, 1986),
how preservable constraints are relaxed on failure in FAILSAFE-2 (Bhat
nagar & Mostow, 1990), and how rejection (absolute) biases are weak
ened in (M. Barley, personal communication, 1991); however, there are
a number of differences in the details, such as which biases are used, how
it is decided to weaken the biases, how much the biases are weakened at
one time, etc.

Multi-method planners are implemented via a bias space containing
operators that set the bias. Without knowledge about which biases work
for a problem, a lookahead search is performed in which the biases are
tried out in the sequence specified - in essence the system is projecting
on the bias as well as on the domain operators. As soon as a bias is
found that works for the problem, the lookahead search is terminated,
and that bias is applied in actually solving the problem. Figure 10 shows
a trace of multi-method planning for a sequence of three planners: (1)
the most restricted planner, PI (direct goal-protection); (2) an interme
diate planner, P3 (nonlinear goal-protection); and (3) the least restricted
planner, P6 (nonlinear no-protection). The planner starts by evaluating
the planning methods. In the case of Sussman's anomaly, as shown in
the example, the evaluation of the direct goal-protection method returns
failure because the goal conjunct (On A B) cannot be achieved without
generating a new subgoal. Once a method fails, the next most relaxed
method - in this example it is the nonlinear goal-protection method -
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Figure 10. A trace of multi-method planning.

is tried, and so on, until a solution is found.

Table 2 compares the performance of the two single-method planners
that are complete for this domain - the linear no-protection planner
(P5) and the nonlinear no-protection planner (P6) - versus four multi
method planners. Since all of the multi-method planners in this table
contain a complete single-method planner, they are also complete. For
each of these six complete planners, the table shows the sequence of
primitive planners out of which it is composed, the average number of
problems that it actually solved within 300 decisions (averaged over the
same set of 150 trials as in the previous section), the average number of
decisions for the solved problems, and the average plan length for the
solved problems. To aid in comparing the methods, the parenthetical
numbers in the last two columns provide the same data for the 43 prob
lems that all six methods solved on all three repetitions. The results on
these common problems reveal a monotonic trend whereby adding more
planners marginally increases planning time, in exchange for reductions
in plan length. In general the linear planners were quicker than the
nonlinear planners, while there was no strong pattern for plan lengths.
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Average
number of Average
problems number of Average

Planning type solved decisions plan length

Single-method P5 48.7 45.1 (32.3) 4.3 (3.3)
Planning P6 48.7 58.0 (44.6) 4.1 (3.2)

Pl- P5 48.3 44.3 (37.9) 3.5 (2.8)
Multi-method PI - P6 48.7 58.5 (46.4) 3.8 (3.0)
Planning PI - P2 - P5 46.7 43.3 (40.7) 3.0 (2.8)

PI - P3 - P6 47.7 53.3 (46.1) 3.1 (2.7)

Table 2. Single-method versus multi-method planning.

Ideally the multi-method planners would not only have produced shorter
plans, but would also have taken less time to do so. The idea is that prob
lems solvable by more restricted planners should be solved more quickly,
while problems requiting less restricted planners should not waste too
much extra time trying out the insufficient early planners. The intuition
behind this is based on iterative deepening (Korf, 1985). In iterative
deepening, a sequence of depth-first searches are performed, each to a
greater depth than the previous one. If a solution is found at a shallow
depth, the cost of searching to a greater depth is saved. If a solution
is not found at a particular depth, a deeper search is performed. The
cost of doing the shallower searches is then wasted, but since the deeper
search costs at least B times the cost of the shallower search - where
B is the branching factor of the search tree - this cost can be relatively
quite small. Thus, if the proportion of problems solvable at shallow
depths is large enough, and the ratio of costs for successive levels is large
enough, there should be a net gain. However, the results in Table 2 show
that, at least for these methods and problems, these assumptions are not
met. The planning-time balance is instead in favor of the single-method
approaches.

One way to further ameliorate the effects of wasting effort on insuffi
cient planners is to use learning, in particular of two sorts. The first sort
of learning is about which planners to use for which classes of problems.
To the extent that this can be done, the effort wasted in trying inade-
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Problem-space Is "select-method"
One conjunct is unachieved
Want a stack ~ at least two blocks
The upper block Is not in position
The upper block Is not clear
An operator is proposed to use "directness & protection" method
->
The operator Is worst

<a)

.LInitial State J. .. i.
Unachieved conjunct (On BA) (OnAB) (OnB E) (OnDB)

(b)

Figure 11. Example of learning which planners to use for which classes of prob
lems: (a) a learned rule to avoid the direct goal-protection planner,
(b) a class of problems in which this rule is applicable.

quate methods can be avoided. In our Soar-based implementation, bias
selection is structured just as would be any other selection, so this sort
of learning can happen automatically by chunking. From an experiment
with such learning, Figure 11 shows a rule learned to avoid using the
most restricted method - that is, direct goal-protection - under spe
cific circumstances where there is only one goal conjunct but (at least)
two blocks must be moved to achieve it. This rule was learned during
the first problem and used in three later problems to avoid even trying
this method.

The second sort of learning is within-planner learning that can trans
fer across planners (possibly for the same problem). If a projection is
performed within one planner, and the results of the projection depend
only on aspects of the planner that are shared by a second planner, then
it should not be necessary to repeat that projection when the second
planner is tried. For example, the rule in Figure 6(a) is learned from a
plan violating goal protection in the direct goal-protection planner and
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transfers to the nonlinear goal-protection planner, where it prevents the
planner from reprojecting along paths that violate goal protection.

Though we have examined instances of both of these forms of learning
in the context of multi-method planning, no systematic study has yet
been made of their effectiveness or ofwhether issues ofovergeneralization
and/or undergeneralization will prove troublesome. Future work should
include rerunning the experiments summarized in Table 2 with both of
these forms of learning enabled.

Another potential way to improve the performance of multi-method
planners is to reduce the granularity at which the individual planning
methods are selected and used. If there are a significant number of
problems where most ofthe subgoals are solvable by a very cheap method
(such as directness) while the remainder of the problem requires a more
complex method (such as linear planning), then making an independent
bias selection each time the planner recurs on a set of subgoals may
allow focused reductions in planning time and plan length. There would
be increased overhead because of the extra decisions, but that may be
more than compensated for by the use of simpler methods. This is all
quite speculative for now, but does provide an interesting future area for
investigation.

BIAS IN EXPLANATION-BASED LEARNING

As defined in the introduction, the bias in concept learning is anything
other than strict consistency with the observed training instances that
influences which generalization is chosen. Thus, when an explanation
based method is used for concept learning, its bias includes the entire set
of inputs exclusive of the training example - that is, the domain the
ory, the goal concept, and the operationality criterion (Mitchell, Keller,
& Kedar-Cabell, 1986) - plus any other factors that influence which ex
planation is used and which definition/rule is extracted from the explana
tion. Each of these factors has been varied in at least one recent research
effort in service of increasing the utility of the rules acquired by EBL:
restrictions on domain theory expressiveness (Tambe, Newell, & Rosen-
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bloom, 1990);9 variations in target (goal) concepts for acquiring control
knowledge (Minton et al., 1989); variations in the operationality criterion
(Braverman & Russell, 1988; Letovsky, 1990; Segre, 1987); explanation
selection based on criteria such as coverage or (non)recursiveness (Co
hen, 1990; Etzioni, 1990); and postprocessing via a range of deductive
and inductive transformations (Chase et al., 1989; Cohen, 1990; Flann
& Dietterich, 1989; Minton, 1988; Shavlik, 1989).

In the framework of this chapter, explanation-based learning of plans
is performed over the planner's projection process: the elements to be
explained are the preferences generated during projection, and the ex
planations are the traces of the projections that led to the preferences.
Thus, if the planner's bias is reflected in an altered planning method,
which in turn yields an altered projector, then the planner's bias can in
directly induce a bias in the resulting EBL process. Directness provides
a simple example of this. Figure 12(a) shows a path projected without
directness, by the nonlinear planner, for a simple four-block-unstacking
problem. This projection proceeds through multiple selection impasses
until the problem is successfully solved. As shown in Figure 12(b), this
results in a pair of positive control rules, one for each correct decision
on the solution path. These rules are relatively specialized, because each
must encapsulate the entire explanation for why a particular operator
will eventually lead to success. In larger problems these explanations
get even larger, and the rules end up being even more specialized. Fig
ure 13(a) shows a path projected with directness, for the same block
unstacking problem. In contrast to the previous case, this projection
is terminated with failure as soon as the non-applicable operator (move
B Table) is selected. The explanation for this failure is quite short 
based as it is on the explicit assumption that directness can hold and
on the failure of the first selected· operator to be applicable - yielding
the negative control rule in Figure 13(b). As it turns out, this single
rule is general enough to handle the entire problem, by removing from
consideration all operators that attempt to move unclear blocks onto the
table. The bias in this case has thus yielded faster planning and learning

9. The use of "low belief" or "overgeneral" domain theories for knowledge level learn
ing is another form of domain theory variation that provides a qualitative improve
ment in utility - from symbol level learning to knowledge level learning (Flann
&& Dietterich, 1989; Rosenbloom && Auman, 1990).



..J +.....c_••
...:..•:;.~.'

s~

<a)

...~
Goal
Achieved

297

P41: Want two blocks on the table
One block Is on top of the other
The top block Is clear
An operator Is proposed to put the top one on the table
-->
The operator Is best

P42: Want three blocks on the table
These blocks are stacked one on top of another
The top block Is clear
An operator Is proposed to put the top one on the table
-->
The operator is best

(b)

Figure 12. Four block unstacking with nonlinear planning: (a) a projected path,
(b) learned rules.
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P51 : Directness can hold
Want a block on the table
That block is not on the table
That block Is not clear
An operator is proposed to put that one on the table
->
The operator Is worst

(b)

Figure 13. Four block unstacking with directness: (a) a projected path, (b) a
learned rule.

- because of shorter projections and explanations - and has resulted
in the acquisition of fewer, more general rules.

Implicit in this example is one approach to producing generalization
to N (Bostrom, 1990; Cohen, 1988; Shavlik, 1989; Subramanian & Feld
man, 1990), where a plan learned for a problem of a particular size can
transfer to solve problems with the same structure but of arbitrary size.
Without directness, the control rules are specific to particular numbers
of blocks, and thus can only be used to directly solve terminal subregions
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P61: Goal protection can hold
Want a stack of at least three blocks
Neither of the top two blocks (out of the three) are in position
Both of the top two blocks (out of the three) are clear
An operator Is proposed to put the top one on the second one
->
The operator is worst

(b)

Figure 14. Four block stacking with protection: (a) a projected path, (b) a
learned rule.

of larger problems. However, with directness, a single rule is learned that
removes from consideration at each decision all operators that move un
clear blocks to the table, no matter how many unclear blocks there are.
This idea can be applied to other problems and biases as well. Fig
ure 14(a), for example, shows a path projected with protection for a
four-block-stacking problem. As with the directness bias in block un
stacking, a protection bias leads here to learning a single negative rule
(Figure 14(b» that can be applied to stacking problems of arbitrary size.

A third type of bias that can also induce generalization to N is com
plete protection. Complete protection is a variant on goal protection that
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provides a very strong bias by not only protecting established goals, but
also protecting established operator sequences. That is, it disallows any
backtracking on operator selection, thus letting projection be terminated
with success whenever an operator is selected, rather than waiting until
the entire problem has been solved. As with the directness example,
projection is terminated here after the first operator is selected (Fig
ure 15(a». However, in this case it is terminated with success as soon
as the top block is moved to the table. The explanation for this success
depends only on the explicit assumption of complete protection and on
the fact that the operator was successfully applied, so a relatively gen
eral, positive control ru1e is learned (Figure 15(b». Although this is a
positive ru1e, it also turns out to produce generalization to N, but now
by always specifying that the one clear block that is not already on the
table - if it were already on the table, there wou1d be no active goal
conjunct for it - shou1d be moved to the table. The resulting ru1e can
transfer to any number of iterations, as shown in Figure 15(c).

The key to producing generalization to N with these biases is that they
enable learning from non-iterative paths - in this way it is similar to
Etzioni's (1990) work on restricting EBL to learn from only non-recursive
paths. In the directness and protection cases, the success paths are
iterative, but (negative) rules can instead be learned from non-iterative
failure paths. In the complete-protection case, learning occurs from a
fragment of the success path that corresponds to just a single cycle of
iteration. In both cases, the resu1ting rules can transfer to any number
of iterations.

An even closer relationship to Etzioni's work cou1d potentially be
achieved by adding a nonrecursiveness bias to the planner. H this were
added as an absolute bias, it wou1d terminate projection with failure
along any path that recurred. This would restrict learning to nonre
cursive portions of projections, but would also go seriously beyond this
to eliminate recursive plans from the space. Etzioni dealt with this by
distinguishing those projections used for learning from those used for
planning, and then only using the bias during learning. An alternative
approach is to weaken nonrecursiveness by making it a relative bias. H
all of the nonrecursive paths are projected without yielding enough pref
erences to generate an unambiguous plan, then it shou1d still be possible
to go back and project along the recursive paths. The resu1t shou1d
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path, (b) a learned rule, (c) transfer of the learned rule.
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be an overall preference for nonrecursive plans, and for recursive plans
learned from nonrecursive projections, over recursive plans learned from
recursive projections. Investigating such a relative nonrecursiveness bias
in the Soar-based planner is an interesting possibility for future work.

Another example of engendering a useful bias on EBL by biasing the
planning can be found in the work on learning from abstract planning
(Unruh & Rosenbloom, 1989; Knoblock, Minton, & Etzioni, 1991). In
this work, projections are performed with abstracted operator definitions
rather than with the full operator definitions. The resulting abstract
projections tend to be shorter and simpler than would be the comparable
projections with unabstracted operators; so when rules are learned from
these projections, they also tend to be shorter and simpler, and thus
more general.

Given the evidence that planning biases can induce interesting and
useful biases in EBL, and that in so doing the biases can assist both plan
ning and learning, it is an interesting question to ask whether any other
approaches to biasing EBL - such as post-hoc rule modification - are
needed. Although it is premature to answer this question at this point,
it is worth noting that the ultimate answer will depend on the scope
of learning biases that can be generated in this fashion, and whether
achievement of these learning biases requires distorting the planner to
such an extent that it cannot properly achieve its task.

CONCLUSION

In this chapter we have taken seriously the notion of bias as a means
of characterizing variations among planners. We hypothesized that this
would yield three benefits: (1) help organize and understand many of
the concepts in planning; (2) reduce the computational requirements
of planning; and (3) induce effective biases in learning. On the first
benefit, though it has not yet led to a complete theory or taxonomy of
planning methods, it has led to the development of several orthogonal
bias dimensions which provide fragments of organization over the space
of methods. Six planners - defined by the cross-product of two bias
dimensions - have been implemented in Soar as variations on a single
core planner. Further work is required to identify the remaining biases
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that underlie effective planning methods, and to build a unified planner
that can optionally use arbitrary subsets of them.

On the second benefit, initial experiments with the six planners sug
gest (mostly) monotonic trade-offs between completeness and efficiency
as the bias dimensions are traversed from least to most restrictive. In an
attempt to move off of this trade-off curve, a set of multi-method plan
ners were constructed from sequences of increasingly less biased planners.
When the correct planner is not known a priori, a search is performed
starting at the most restricted planner until a sufficient one is found. An
experiment comparing these multi-method planners with the two com
plete single-method planners in the blocks world provided mixed results:
reduced plan length no longer needed to be sacrificed for completeness,
but reductions in plan length were accompanied by increases in planning
time. Two learning strategies were presented as potential ways of further
reducing the planning time required by the multi-method planners: ac
quisition of control rules that transfer among planners, enabling searches
with more restricted planners to assist search with less restricted ones;
and acquisition of rules that help select appropriate planners. These pos
sibilities need to be investigated further, in conjunction with a deeper
understanding of the entire set of trade-offs and experimentation in more
realistic task domains. In addition, the idea of aJlowing a new method
to be selected whenever the planner recurs on a new set of subgoals also
needs to be examined.

On the third benefit, the effects of changes in planning bias on bias in
explanation-based learning were investigated with a case study in gen
eralization to N. Depending on the exact biases used, control rules were
learned that either: (1) did not provide generalization to N (for nonlinear
planning), provided it by eliminating all but the correct iterative option
(for goal protection and directness), or provided it directly by specifying
the correct iterative option (for complete protection). Although this is
encouraging, considerable future work is still needed in evaluating the
impact of the full span of planning biases on learning, and evaluating
whether this provides a sufficient set of biases on learning.



304

REFERENCES

Bennett, J. S., & Dietterich, T. G. (1986). The test incorporation hypoth
esis and the weak methods (Technical Report 86-30-4). Department
of Computer Science, Oregon State University.

Bhatnagar, N., & Mostow, J. (1990). Adaptive search by explanation
based learning of heuristic censors. Proceedings of the Eighth Na
tional Conference on Artificial Intelligence (pp. 895-901). Boston,
MA: MIT Press.

Bostrom, H. (1990). Generalizing the order of goals as an approach to
generalizing numbers. Proceedings of the Seventh International Con
ference on Machine Learning (pp. 260-267). Austin, TX: Morgan
Kaufmann.

Braverman, M. S., & Russell, S. J. (1988). Boundaries of operational
ity. Proceedings of the Fifth International Conference on Machine
Learning (pp. 221-234). Ann Arbor, MI: Morgan Kaufmann.

Chase, M. P., Zweben, M., Piazza, R. L., Burger, J. D., Maglio, P. P.,
& Hirsh, H. (1989). Approximating learned search control knowl
edge. Proceedings of the Sixth International Workshop on Machine
Learning (pp. 218-220). Ithaca, NY: Morgan Kaufmann.

Cohen, W. W. (1988). Generalizing number and learning from multiple
examples in explanation based learning. Proceedings of the Fifth
International Conference on Machine Learning (pp. 256-269). Ann
Arbor, MI: Morgan Kaufmann.

Cohen, W. W. (1990). Learning approximate control rules of high util
ity. Proceedings of the Seventh International Conference on Machine
Learning (pp. 29-33). Austin, TX: Morgan Kaufmann.

Etzioni, O. (1990). Why Prodigy/EBL works. Proceedings of the Eighth
National Conference on Artificial Intelligence (pp. 916-922). Boston,
MA: MIT Press.

Flann, N. S., & Dietterich, T. G. (1989). A study of explanation-based
methods for inductive learning. Machine Learning, 4, 187-226.

Gratch, J. M., & Dejong, G. F. (1990). A framework for evaluating
search control strategies. Proceedings of the Workshop on Innovative
Approaches to Planning, Scheduling, and Control (pp. 337-347). San



305

Diego, CA: Morgan Kaufmann.

Knoblock, C. A., Minton, S., & Etzioni, O. (1991). Integrating abstrac
tion and explanation-based learning in PRODIGY. Proceedings of
the Ninth National Conference on Artificial Intelligence (pp. 541
546). Anaheim, CA: MIT Press.

Korl, R. E. (1985). Depth-first iterative-deepening: An optimal admis
sible tree search. Artificial Intelligence, 27, 97-109.

Laird, J. E., Congdon, C. B., Altmann, E., & Swedlow, K. R. (1990).
Soar user's manual: version 5.2 (Technical Report CMU-CS-90
179). School of Computer Science, Carnegie Mellon University.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An archi
tecture for general intelligence. Artificial Intelligence, 33, 1-64.

Letovsky, S. (1990). Operationality criteria for recursive predicates. Pro
ceedings of the Eighth National Conference on Artificial Intelligence
(pp. 936-941). Boston, MA: MIT Press.

Minton, S. (1988). Learning search control knowledge: An explanation
based approach. Boston, MA: Kluwer Academic Publishers.

Minton, S. (1990). Quantitative results concerning the utility of expla
nation based learning. Artificial Intelligence, 42, 363-391.

Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka, D. R., Etzioni,
0., & Gill, Y. (1989). Explanation-based learning: A problem solv
ing perspective. Artificial Intelligence, ../0, 63-118.

Mitchell, T. M. (1980). The need for biases in learning generalizations
(Technical Report CBM-TR-117). Department of Computer Sci
ence, Rutgers University.

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Expla
nation based generalization: A unifying view. Machine Learning, 1,
47-80.

Newell, A., Yost, G. R., Laird, J. E., Rosenbloom, P. S., & Altmann,
E. (1991). Formulating the problem space computational model. In
R. F. Rashid (Ed.) Carnegie Mellon computer science: A 25 year
commemorative. New York, NY: ACM Press.

Rendell, L. (1986). A general framework for induction and a study of
selective induction. Machine Learning, 1, 177-226.



306

Rosenbloom, P. S., & Aasman, J. (1990). Knowledge level and inductive
uses of chunking (EBL). Proceedings of the Eighth National Con
ference on Artificial Intelligence (pp. 821-827). Boston, MA: MIT
Press.

Rosenbloom, P. S., & Laird, J. E. (1986). Mapping explanation-based
generalization onto Soar. Proceedings of the Fifth National Confer
ence on Artificial Intelligence (pp. 561-567). Philadelphia, PA: MIT
Press.

Rosenbloom, P. S., Laird, J. E., & Newell, A. (in press). The Soar papers:
Research on integrated intelligence. Cambridge, MA: MIT Press.

Rosenbloom, P. S., Laird, J. E., Newell, A., & McCarl, R. (1991). A
preliminary analysis of the Soar architecture as a basis for general
intelligence. Artificial Intelligence, ..p, 289-325.

Rosenbloom, P. S., Lee, S., & Unruh, A. (1990). Responding to impasses
in memory-driven behavior: A framework for planning. Proceedings
of the Workshop on Innovative Approaches to Planning, Scheduling,
and Control (pp. 181-191). San Diego, CA: Morgan Kaufmann.

Russell, S. J., & Grosof, B. N. (1987). A declarative approach to bias in
concept learning. Proceedings of the Sixth National Conference on
Artificial Intelligence (pp. 505-510). Seattle, WA: MIT Press.

Segre, A. M. (1987). On the operationalityjgenerality trade-off in expla
nation based learning. Proceedings of the Tenth International Joint
Conference on Artificial Intelligence (pp. 242-248). Milan, Italy:
Morgan Kaufmann.

Shavlik, J. W. (1989). Acquiring recursive concepts with explanation
based learning. Proceedings of the Eleventh International Joint Con
ference on Artificial Intelligence (pp. 688-693). Detroit, MI: Morgan
Kaufmann.

Subramanian, D., & Feldman, R. (1990). The utility of EBL in recursive
domain theories. Proceedings of the Eighth National Conference on
Artificial Intelligence (pp. 942-949). Boston, MA: MIT Press.

Tambe, M., Newell, A., & Rosenbloom, P. S. (1990). The problem of
expensive chunks and its solution by restricting expressiveness. Ma
chine Learning, 5, 299-348.

Unruh, A., & Rosenbloom, P. S. (1989). Abstraction in problem solving



307

and learning. Proceedings of the Eleventh International Joint Con
ference on Artificial Intelligence (pp. 681-687). Detroit, MI: Morgan
Kaufmann.

Utgoff, P. E. (1986). Shift of bias for inductive concept learning. In
R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.) Machine
Learning: An Artificial Intelligence Approach, Vol. II. Los Altos,
CA: Morgan Kaufmann.

Veloso, M. (1989). Nonlinear problem solving using intelligent casual
commitment (Technical Report CMU-CS-89-21O). School of Com
puter Science, Carnegie Mellon University.



Knowledge Acquisition and
Natural Language Processing*

Robert Wilensky
Division ofComputer Science

University of California, Berkeley 94720

Knowledge acquisition and natural language processing are two fields of
Artificial Intelligence that have much to offer each other. Natural language
requires such large amounts of knowledge that it will probably be necessary
to automate the acquisition process for this field to achieve its goals.
Machine learning has focused on incremental improvements of performance;
but the acquisition of knowledge is probably more of a key bottleneck for
building intelligent systems. Huge volumes of knowledge are available now,
in machine readable form, if only we could understand how to use it. Natural
language processing technology holds the key to this storehouse.

Several quite different approaches to knowledge acquisition involving
natural language are being developed. Using natural language interaction to
acquire domain facts and linguistic facts has been shown to be possible, but
tedious. The potential for knowledge acquisition by reading is very large,
but realizing it is still a long-term research goal. Some newer techniques for
acquiring vocabulary from a machine readable dictionary seem to have
definite, if limited, usefulness. Using analogical reasoning to infer extended
word senses from context seems both practically promising and of much
theoretical interest. Finally, the possibility of using heuristic natural
language techniques for extracting information from text corpora is begin
ning to be explored. This approach holds the possibility of extracting a large
amount of ordinary knowledge in the immediate future.

*This research was sponsored by the Office of Naval Research, under contract NOOOI4-89-I-32OS, and by
the Defense Advanced Research Projects Agency (DoD), monioored by Space and Naval Warfare Systems
Command under Contract N00039·88-C..()292.
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INTRODUCTION

Knowledge acquisition and natural language processing are two fields of
Artificial Intelligence that are the focus of much recent activity. While the
two disciplines have an entirely different character, they have begun to come
into contact, to their mutual benefit. It is the focus of this paper to examine
some of the recent work at this intersection, and discuss the prospects it may
offer us.

There are several reasons why it is natural for such seemingly disparate
areas to have grown into contact. Knowledge-based systems derive their
power from the knowledge they possess. Since knowledge is needed in large
quantities for many intelligent tasks, a key problem is acquiring this
knowledge. Humans acquire their knowledge in many ways, but one particu
larly significant class of means involves the use of natural language. We
might ask someone for some information we seek; we may look for informa
tion in a book, article, or manual; or we might attend a lecture. It is natural,
therefore, to see if such a useful means of knowledge acquisition for humans
can be exploited by knowledge-based systems.

Natural language processing itself is a knowledge-intensive task.
Natural language users presume a great deal of shared general knowledge,
along with knowledge of the domain of discourse. Indeed, the hardest prob
lems in building natural language systems are not so much problems of
language per se, but problems about how to use our non-linguistic knowledge
to make sense out of what is said. For example, the utterance "I saw her
duck" would have rather different interpretations, depending upon whether it
was preceded by the question "Did Mary get out of the way?" or "Have any
of Mary's aquatic fowl been this way?" While our knowledge of the gram
mar and lexicon of the language can inform us what the possible interpreta
tions of the utterance may be, only our knowledge of the world can tell us
what the reasonable interpretation is.

Thus, the need for general knowledge acquisition is acute for natural
language processing systems as well as for other kinds of knowledge-based
systems. But natural language processing systems require specific
knowledge about language as well. The most significant body of knowledge
about language pertains to the lexicon. The lexicon comprises thousands of
words, most of which have numerous senses and grammatical properties of
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which a natural language processing system requires mastery. Linguistic
knowledge is of a rather specialized sort, so it is natural to largely separate
our discussion into two parts, the use of natural language processing for
acquisition of knowledge about the world or about a domain, and the acquisi
tion of knowledge about natural language itself.

INTERACTIVE KNOWLEDGE ACQUISITION TECHNIQUES

We begin, however, with an approach that is applicable to both types of
knowledge. This is to allow a knowledgable user to supply each fact by
interacting with the system in natural language. An example of such a
mechanism is one we developed as a component of our UNIX Consultant
(UC) system (Wilensky et al. 1984, Wilensky et al. 1988). UC is an experi
mental program that converses in natural language with naive users to help
answer their questions about the UNIX operating system. A knowledge
acquisition system, called UCTeacher, lets a knowledgable UNIX user
inform the system of additional facts via an extended discourse. In the fol
lowing examples, the prompt 'UCf>' distinguishes an interaction with
UCTeacher from one with UC proper:

(1)

UCT> There is a new command.
What is its name?
UCT> lpr
What is it used for?
UCT> It is used to print files.
Where does the output go?
UCT> the lineprinter
You mean that typing 'lpr filename' will print the
file filename on the lineprinter.
UCT> Yes.
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(2)

UCT> There is a new command.
What is its name?
UCT> sort
What is it used for?
UCT> It is used to sort files.
You mean that typing 'sort filename' will sort the
file filename.
UCT> Yes.

(3)

UCT> Use the rm command to delete files.
You mean that typing 'rm filename' will delete the
file named filename.
UCT> Yes.

The output of each interaction is a set of statements in a knowledge represen
tation language used to update UC's knowledge base about UNIX. Thus,
subsequently, UC can use the acquired infonnation to give a correct response
to a user's query:

* How can I print a file?
Use lpr.
For example, to print the file named foo, type
'lpr foo'.

UCfeacher has a number of interesting properties, and a UCfeacher
style system has a niche in the knowledge acquisition phylum. However, it
has some significant limitations. For large amounts of domain knowledge,
the manner of entry is too tedious; for lexical knowledge and for world
knowledge, the required knowledge is not only voluminous, but much of it
may only be known implicitly by the user. Thus, however useful such
approaches may be, more automated methods are highly desirable.

One more automatic approach to acquisition of domain knowledge is to
learn new facts by reading. In the case of the UNIX domain, infonnation can
be extracted by reading the on-line manuals. We succeeded in developing a



313

text understander, called MANDl, that can perform this task to some degree.
The problem with this approach is that reading manuals involves most of the
very difficult problems associated with natural language understanding,
although some of these are mitigated by the restricted domain. For example,
consider the following sentence from the UNIX manual page for "uptime":

Uptime prints the current time.

Two interesting inferences are required to understand the content of this sim
ple sentence. One is the interpretive inference that running the command
"uptime" causes the current time to be printed. MANDl determines that
this is the case by a combination of knowledge about English (that sentences
with a non-agentive subject but agentive verbs can have an interpretation in
which subject undergoing some process is the cause of the event described)
and knowledge about UNIX (that the process a UNIX command is likely to
undergo is that of being run).

The second inference is that "the current time" refers to the time at
which the command is run, rather than, say, the time of reading the manual.
This inference is based on an extension of a general algorithm for text infer
ence we developed previously (NolVig 1987) so that it can exploit
knowledge about typical user goals. That is, the preferred reading is pre
ferred because knowing what time it is at any given time is known to be a
reasonable goal of UNIX users, while knowing what time a user read the
manual page is not.

MANDl differs from other text understanders in that it takes greater
advantage of the structure of the texts. Manual pages, and expository texts in
general, make use of rhetorical devices to present information. We call these
"text point constructions", as they relate in a regular format certain kinds of
information typically of interest to a user. For example, the entry for' 'mv"
(the UNIX renaming command) states unequivocally that "mv moves
(changes the name of) filel to file2". Later on, we are informed that a quite
different interpretation applies if one of the arguments is a directory. This
presentation corresponds to a text point construction in which information of
the prototypical case is presented as if it were universal, with exceptions fol
lowing.
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In addition to taking advantage of the special discourse structure
apparent in manual pages, other facts make this problem different from the
general natural language understanding problem. To a significant degree, the
circumscription of the domain to UNIX lessens the problem of general world
knowledge, and eases the burden of lexical disambiguation. However, these
mitigating circumstances do not resolve all intrinsic difficulties. Problems of
reference still remain; also, the nature of discourse structure is still poorly
understood.

Another difficulty with this approach is that, even for humans, reading a fact
is not the same as learning the encoded information. TIlis is especially true
for something complex, like operating systems. For example, consider the
following sentence from the BSD4.2 UNIX manual page for the command
"ps"':

All output formats include ... the process id PID, control terminal of the
process TI, cpu time used by the process TIME ... , the state STAT of
the process, and an indication of the COMMAND which is running.

True to the tradition of manual writing, this text is impenetrable to most
readers. However, consider interpreting the text having run the command:

% ps
PID TT STAT

557 co IW
559 co S

TIME COMMAND

0:00 /bin/sh /usr/sww/X11/bin/startx
12:46 X :0

It is now possible to interpret the enigmatic capitalized text present in the
manual as referring to headings produced by running the command.

The moral is consistent with much of our other experience: Many stated
truths cannot be appreciated without practice. Combining reading with prac
tice in a machine learning system is currently a completely unexplored area,
one we think offers considerable promise.
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Thus, the approach underlying MANDl is fundamental and long tenn. It
may ultimately provide a means to acquire very large quantities of
knowledge, but to do so involves addressing difficult basic issues. Natural
language is still, after all, an "AI-complete" problem. Below we discuss
other approaches that may have greater payoff in the near tenn.

INFERRING WORD SENSES FROM CONTEXT

We have described a method of obtaining facts about word meanings by
interacting with a knowledgable user. Another approach is to infer word
meanings from context. For example, Selfridge (1982) models acquisition of
language, including lexical knowledge, in children, and Granger (1977)
attempts to hypothesize word meanings from the use of a word in context.
Such systems attempt to infer word meanings from the semantic constraints
imposed on words by the utterances in which they are found, and from the
world knowledge about the situations to which the words are being applied.

This approach does not appear very promising, however. The necessary
infonnation is simply not present. If a word-inferring system hears that"A
car struck an abutment", for example, and is not familiar with the fmal word,
it might infer that an abutment is a physical thing, but it cannot infer much
more. Such superficial infonnation is generally available from other sources,
such as machine readable dictionaries, as we will discuss further below.
Having more instances of the use of a word can help overcome such "single
instance generalization" type of difficulties. But difficult problems remain
to be solved to exploit such infonnation. For example, we would need to
know that two uses involve the same sense in order to attempt a generaliza
tion process.

One way to ameliorate this situation is to find additional infonnation
about word meanings in the fonn of knowledge about other, related word
meanings. Such an approach is embodied in MIDAS (Metaphor Interpreta
tion, Denotation, and Acquisition System, Martin (1988», a system that
learns metaphorical word senses extensions. While we might think of meta
phor as something used predominantly in poetic language, linguists such as
Reddy (1979) and Lakoff and Johnson (1980) point out that ordinary senses
of words have what we might call a metaphoric motivation. For example,
when we think of a word like "give", the sense involving transfer of
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possession probably comes to mind. This is the central sense of this term.
But "give" has many other uses. For example, when we say "Jan gave Pat
a cold", we mean that Jan infected Pat with a cold from which Jan was
suffering. If only "give" worked this way, we might dismiss the oddity as
an isolated idiom. But people can also "have colds", "get the flu", "catch
pneumonia" , and so forth.

In MIDAS, "conventional metaphors" are postulated to capture gen
eralizations that can be made about such utterances. Conventional metaphors
comprise representations of mappings from one domain (the source) to
another (the target). Words whose senses are metaphoric in nature are
represented as being motivated by particular metaphors. For example, the
sense of "have" that is the same as that of "being infected with" is
represented as motivated by a metaphor we might call "being-infected-is
possessing". This metaphor is represented as an object in the representation
system connecting the central, possession sense of "have" with the concept
"being infect with". Similarly, "give" has a sense that is related to one of
"infect"; this sense would be represented as motivated by a metaphor we
might call "infecting-is-giving". Moreover, this metaphor is represented as
extending the first metaphor. I.e., (central) giving results in (central) having,
just as infecting results in being infected, and the metaphor that allows being
infected to be expressed as having also allows infecting to be expressed as
giving.

For production and understanding, these word senses are treated just like
any other, with no appeal to metaphoric motivation presumed. However,
suppose a new use is encountered by the system, say, "John got the flu from
Mary." Suppose further, for the sake of this example, that the system has
previously encountered only expressions like "give a cold" and "have a
cold", so that its representation of the metaphors underlying these expres
sions is restricted to colds rather than diseases, and that the use of "get" in
this domain is new to the system. Then both the available sense of "get",
along with the metaphors involving diseases and possession, are brought to
bear to hypothesize the sense that might be in play. In MIDAS, this
hypothesis is generated by two kinds of lexical extension processes, core
extension and similarity extension. Understanding" get a cold" given an
appropriate prior metaphoric understanding of "give a cold" involves core
extension, as the core metaphor "a cold is a possession" is extended to the
"getting" concept (Le., a new sense for "get" is hypothesized which
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metaphorically extends the central sense); understanding "get the flu" given
an understanding of "get a cold" involves similarity extension, as the gen
eralization about a role in the metaphoric structure must be extended from
colds to diseases in general. Understanding "get the flu" given an under
standing of "give a cold" involves both kinds of extension.

Upon encountering an unfamiliar word sense, MIDAS examines known
senses of the word and of other words in an attempt to hYpothesize a sense
applicable to the given usage. In the following example, MIDAS, running in
cqnjunction with UC, encounters the phrase "kill a process". Here the
knowledge base does not have a sense of kill directly applicable to this utter
ance.Therefore, MIDAS tries to find a related sense and use it to
hypothesize a new sense applicable to the current usage. In this case,
MIDAS knows the sense underlying "kill a conversation", and is able to
extend that one to apply to the input. The interpretation resulting from this
application is then used as the basis for DC's response:

* How can I kill a process?

No valid interpretations.
Attempting to extend existing metaphor.
Searching for related known metaphors.
Metaphors found:

Kill-Conversation Kill-Delete-Line
Kill-Sports-Defeat

Selecting metaphor Kill-Conversation to extend from.
Attempting a similarity extension inference.
Extending similar metaphor Kill-Conversation
with target concept Terminate-Conversation.

Abstracting Terminate-Conversation
to ancestor concept

Creating new metaphor:
Mapping source concept Killing
to target concept Terminate-Computer-Process

Mapping source role killer
to target role c-proc-termer.
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Mapping source role kill-victim
to target role c-proc-termed.

Calling UC:

You can kill a computer process by typing A C to the
shell.

In this example, the utterance cannot be interpreted because no known sense
of "kill" is applicable to processes. Thus, MIDAS is called in an attempted
to see if a sense extension is possible. MIDAS first retrieves a number of
metaphors related to the input; of these, "Kill-Conversation" is chosen as
most applicable. A simple similarity extension is attempted, resulting in a
proposed "Tenninate-Computer-Process" metaphor for interpretation of the
input. The interpretation thus provided is passed along to VC, which can
answer this question. Meanwhile, the new, metaphoric sense is incorporated
into VC's knowledge base, which allows VC's language generator to use the
same tenninology in encoding the answer.

The following are representative examples of the kinds of generaliza
tions MIDAS is capable ofmaking:

Given Known Metaphor

enter LISP

kill a conversation

kill a process

open a file

give a cold

System Can Learn

Exist LISP, Enter mail

kill a process

process died

close a file

have a cold, get a cold,
give the flu, give an idea

Is this approach something specific to metaphor, or is there a more gen
eral lesson to be learned? In my opinion, MIDAS works not so much
because it is dealing with metaphor per se, but because it is exploiting a kind
of lexical subregularity. By subregularity, I mean any phenomenon that is



319

systematic but not predictable. To qualify as a useful lexical subregularity,
there must be a regularity that holds between a number ofdifferent examples;
at the same time, the regularity does not predictably hold wherever it might.
The systematic metaphoric structuring alluded to above comprises one
important class of subregularities, since they usually apply to many lexical
items, but not to all items to which they might. For example, while we have
the various extension of possession verbs to mean infecting, as discussed
above, we do not hear expressions like "receive a cold", which might
equally well be predicted.

The question arises as to just what kinds of subregularities there might
be, in addition to metaphoric ones, and how they might be exploited in gen
eral. Norvig and Lakoff (1987) offer six types of links between polysemous
(i.e., closely related) word senses in what they call lexical network theory.
Links in a lexical network map senses to one another, starting from some
central sense and encoding some minimal variation. However, we have
uncovered what seems to be many, many more links than these, or at least,
many subcases which are necessary to distinguish.

Rather than give a list of the several dozen subregularities we have col
lected, let us examine one or two. One such subregularity states that, for
some noun whose central meaning is a functional object, there is another
sense of that word that occurs without determination, and means the primary
activity associated with the central sense of the term. For example, the word
"bed" has as a central sense a functional object used for sleeping. However,
the word can also be used in utterances like the following: "go to bed",
"before bed", and "in bed", (but not, say, "during bed"). In these cases,
the noun is determinerless, and means being in bed for the purpose of sleep
ing for a significant period of time (Le., to retire).

Other examples include "jail", "conference", "school" and virtually
all the scheduled meal terms of English, e.g., "lunch", "tea", "dinner".
For example, it would be misleading to say that I was "in jail" yesterday if I
were visiting a relative, but acceptable to say that I was "in the jail" under
such a circumstance. Note further than I can "send my children to school",
but not "to school down the street", while "to the school down the street"
is acceptable. (Indeed, non-referential use of the noun presumably motivates
its determinerless nature.) Also, which words conform to this subregularity
is apparently a function of dialect. British English allows "to hospital" and
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"at university", while American English does not. The dialect difference
underscores the point that this is truly a subregularity: concepts that might be
expressed this way are not necessarily expressed this way.

There are many subregularities relating nouns and verbs. For example,
one extends a functional nominal to a verb denoting a specialized use of that
nominal. Examples of this are "tree" as in "The dog treed the cat" and
"knife" as in "The murderer knifed his victim". Note that the activity is
rather specific, and that the way in which it is specified is pragmatically
determined. Thus, the subregularity tells us that "treeing" involves a tree,
but only our world knowledge can suggest to us that it involves trapping;
similarly, the subregularity can tell us that "knifing" involves the use of a
knife, but cannot tell us that it means stabbing a person, and not, say, just
cutting.

As a final example, consider what I call "frame complementation". For
example, the central sense of "gate" is a door in a fence; but in the related
senses having to do with a sports area or university campus, the term refers to
the space itself through which one might enter or exit an area. "hole" fol
lows a similar extension to produce the empty space, as in "doughnut hole",

These examples are not, in themselves, particularly important generali
zations about English. Rather, they are facts of limited scope. But there
appear to be many such facts, and each of them may be useful for learning
related cases.

Now we come to the issue of how to exploit these subregularities. The
general problem is to hypothesize, given a set of prior word senses, the best
(or at least, a reasonable) new word sense for a word in a given context. To
address it, we propose a framework for a new kind of analogical reasoning
that combines some of the benefits of symbolic and connectionist learning
models. The model is as follows:

(1) We store both individual facts, plus the subregularities abstracted from
these facts. Along with each individual fact we maintain a "confidence
parameter", a measure of our certainty that the stored data is correct.

(2) When an item is encountered such that we can retrieve an individual fact
applicable to the known item and of an acceptable certainty level, then



321

the stored fact is simply used.

(3) When an item is encountered for which applicable knowledge does not
exist or has an unacceptable certainty level, we attempt to retrieve appli
cable subregularities. Some of these regularities (presumably, the single
subregularities deemed "most relevant") are applied to produce a
hypothesized response. If there is no relevant subregularity, then" simi
lar" previous instances, and similar subregularities, are retrieved, and
used analogically to produce a response. The result is used if it is more
certain than any stored applicable fact; otherwise the stored fact is used.

(4) If the result of (3) is deemed successful, then the result is stored. Also,
if the form was the result of the application of a subregularity, it is
stored as such. If it were the result of analogy from another instance or
subregularity, a generalization is created and stored to serve as a subse
quent subregularity.

Like individual instance-based analogical reasoning, this algorithm
schema produces symbolic representations that can be used flexibly. How
ever, it relieves the tension MacWhinney et al. (1989) describe between rote,
rules and analogy, and which they turned to connectionist architectures to
relieve.

Thus far, no knowledge acquisition system has been built based on this
general notion of subregularity. However, the initial success of systems like
MIDAS and subsequent work on subregularities causes us to view this
approach as an intriguing prospect.

ACQUIRING WORD SENSES FROM MACHINE READABLE DIC
TIONARIES

An entirely different approach to the acquisition of lexical information is
to extract it from dictionary entries. Many researchers are currently studying
machine-readable dictionaries as a source for lexical information (see, for
example, Alshawi (1987), Boguraev (1987), Guthrie (1990), Jensen (1987),
Nakamura and Nagao (1987), Wilks (1988». This approach has a number of
advantages and disadvantages. On the positive side, dictionary processing
provides computationally useful information about tens of thousands of
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words. There are several important limitations to this approach, however.
Dictionaries contain only some of the desired information. In particular,
information about valence (i.e., about the kinds of linguistic structures indi
vidual lexical items expect) is partial at best; word senses are often arbitrarily
partitioned - some senses seem to be omitted, and some seemingly arbitrary
distinctions introduced; many subtle distinctions are not acknowledged.
Pertlaps more significantly, the information that has thus far been success
fully extracted in this manner has been rather impoverished, generally res
tricted to very coarse taxonomic information. Even then, human intervention
is typically required, and the techniques used are specific to particular dic
tionary formats.

Recently, there have been some attempts to extract more substantive
syntactic and semantic information as possible from dictionary definitions.
In particular, Jaramillo and Hearst (1991) are attempting to apply a more
general natural language processing approach to the interpretation of the
definitions. This work is based on COBUILD, a learner's dictionary, whose
definitions are generally stated simply. For the purpose of lexical acquisi
tion, COBUILD's most salient feature is its definition style. Most dic
tionaries tend to write definitions which are directly substitutable for their
headwords. In contrast, COBUILD's definitions are written in complete sen
tences. Therefore, it possible to apply simplified versions of general natural
language processing techniques to its definitions.

In general, COBUILD defmitions consist of two parts. The first part of
the definition, often a conditional clause, gives a "template" for this usage
of the word, indicating what kinds of contexts this sense is likely to partici
pate in. The main clause of the sentence forms the actual definition of the
word, usually referring to the contextual elements mentioned in the "tem
plate" clause.

Preliminary surveys indicate that COBUILD provides complement and
cooccurrent preferences (Le., information about syntactic and semantic
features of typical complements or cooccurrents of a word used in a particu
lar sense) more often than other dictionaries do. Complement and cooc
current preferences are expressed directly in the "template" in the first part
of the definition. These preferences can offer cues for disambiguation, as
discussed below.
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Another apparent advantage of COBUILD over other dictionaries is that
its defInitions tend to be less terse and more informative. It often gives
explicit defInitions for word senses that are usually left implicit in examples
in other dictionaries. COBUILD prefers to explicitly point out specifIc
senses of a polysemous word, rather than to leave them implicit in a more
general defInition. Finally, since COBUILD's definitions are written in ordi
nary English, we do not need to build a set of patterns specific to the diction
ary; we can use standard parsers and grammars in interpreting the definitions.
Therefore, the mechanisms used can be transferred to other tasks, and vice
versa.

Narcisco Jaramillo has developed a system that extracts such informa
tion from the COBUILD dictionary. Below is an example of this system
acquiring a sense of the word "rocket". The input is the sentence compris
ing the dictionary entry; the output is a number of knowledge representation
language statements representing the knowledge extracted from the utter
ance.

One of COBUILD's definitions for "rocket" is as follows:

rocket 1.1: [N COUNT] A rocket is a missile that contains an explosive
and that drives itself through the air by sending out burning gas [...]

The following output is produced by the definition interpreter:

iii -*- Mode:Common-Lispi Base:lO -*-

(rocket-word AlO CountNoun)
(rocket-expressesl67 AlO NounExpresses)
(rocket-word -word Rocket-Expressesl67)
(Rocketl66 -concept Rocket-Expressesl67)

(Every Thing (Thing AlO Rocketl66) =>
(Thing AlO Missilel))

(Every Thing (Thing AlO Rocketl66) =>
(A Explosivell69 (Explosivell69 AlO Explosivel) =>
(Explosivell69 -explosivel Thing))
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(A PhysContain168 (PhysContain168 AlO PhysContain) =>
(PhysContain168 -physcontain-explosivel Thing)
(Thing -container physContain168)
(Explosivel169 -contained PhysContain168»)

(Every Thing (Thing AlO Rocket166) =>
(A Drivel170 (Drivel170 AlO Drivel) =>
(Drivel170 -drivel-self Thing)
(Thing -driver Drivel170)
(Thing -drivee Drivel170)
(A MoveHasDirThrough4l7l
(MoveHasDirThrough4l7l AlO MoveHasDirThrough4) =>
(MoveHasDirThrough4l7l -MoveHasDirThrough4-air Thing)
(Drive1l70 -move MoveHasDirThrough4l7l)
(Theair -throughsubstance MoveHasDirThrough4l7l»

(A Gas1l74 (Gas1174 AlO Gasl) =>
(Gas1l74 -gas1 Thing»

(A BurningState175 (BurningState175 AlO BurningStat~) =>
(BurningState175 -gasl-burningstate Thing)
(Gas1174 -burner BurningState175»

(A SendOut173 (SendOut173 AlO SendOut) =>
(SendOut173 -sendout-gas1 Thing)
(Thing -sender SendOut173)
(Gas1l74 -sendee SendOut173»

(A Enable172 (Enable172 AlO Enable) =>
(Enable172 -enable-sendout Thing)
(Drive1170 -enabled Enable172)
(SendOut173 -enabler Enable172»»

What is involved in getting such a method to scale up to successfully
interpreting a substantial percentage of the definitions of the COBUILD dic
tionary, acquiring both syntactic and semantic information about individual
words? The following subproblems seem particularly acute:

(1) Developing a suitable ontology

An ontology, or basic hierarchical knowledge base, is needed to provide
a basis for making simple inferences about causation, time, beliefs, and so
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forth. Furthemore, interpretations of dictionary definitions need to be
integrated into a framework. of existing knowledge in order for them to be
useful. Also, having an existing knowledge base can aid in disambiguation,
as discussed further below.

No one yet has a substantial ontology, although several efforts are
underway. While extracting a simple genus hierarchy from the dictionary is
possible (cf. Wilks et al. 1988), such a hierarchy is not adequate to handle all
of the inferences needed for disambiguation. Investigating ways in which
this particular task may be automated from dictionary sources, as well as
other means of automatic construction, is a topic of current concern. Below
we will discuss one rather new approach involving text corpora that may
prove to be of some assistance.

(2) Bootstrapping a lexicon of entries for basic vocabulary items

By its very nature, the dictionary cannot stand on its own. Although it
gives definitions for every word it contains, it must assume that the reader
already understands some set of words. In general, dictionary defmitions
assume that the reader has a fairly complete ontology, and understands the
vocabulary that expresses the basic concepts in that ontology. Although the
dictionary defmes the words in that basic vocabulary, those definitions do
not express the rich body of knowledge needed to understand such basic con
cepts. Thus, in addition to an existing ontology, we need to assume that the
meanings of some word senses are hand-coded beforehand in tems of the
given basic ontology. The best we can hope for in terms of automation here
is a method to determine which words need to be included in this hand-coded
basic vocabulary.

Amsler (1981) notes that clusters of circular definitions in the dictionary
are a good candidate for forming part of such a basic vocabulary. These
clusters consist of words which are defined in terms of each other. For
example, one such cluster of words in Webster's Pocket Dictionary includes
"class," "group," "type," "kind," "set," "division," "category," "indi
vidual," "grouping," "part," and "section." It would be difficult to define
anyone of these words without using any of the other words in the cluster, to
make it "bottom out. " Thus, it seems possible to define these words directly
in terms of a given ontology, since these are precisely the kinds of words that
represent basic ontological concepts.
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However, there may be basic words that do not happen to participate in
circular clusters. Thus, in order to discover a complete set of words that
would cover all definitions, other methods must be investigated. One
promising approach is to take all of the words used in all the definitions in
the dictionary, then take all the words used in the definitions of that first set
of words, until we reach the point where words in the basic clusters will con
tinue to cycle in and out of the set, but the set will not become much smaller.
The resulting set should be candidates for direct defmition.

(3) Developing dictionary-specific disambiguation methods

Given a set of basic vocabulary, an ontology, and a few other resources,
such as a good grammar of the language, the approach we have described
thus far is essentially that applicable to interpreting any natural language
utterance. It departs from such a general approach in two ways. First, if the
system encounters an unknown word in a definition, it recursively attempts
to interpret the definitions of that word's senses. Since we have presumably
eliminated circularities by including a basic vocabulary, this process is
guaranteed to bottom out eventually.

Secondly, we would like to take what advantage we can of knowledge
about the dictionary and definitions to overcome otherwise difficult natural
language processing problems. For example, it seems that some difficult
general natural language problems, such as pronominal reference, may not be
as bad for dictionaries as for general text. Indeed, the presence of pronouns
is sometimes helpful. For example, consider COBUILD's definition of a
sense of the word "priority":

Something that takes or has priority over someone or something else is
regarded or treated as more important than them.

Here, we can infer by standard pronoun resolution methods that the referent
of "them" in the definition is the object of "over" in the template. In other
words, the object of "over" in this use of "priority" is the thing that is less
important. Whether other, more difficult analyses of pronouns is required
remains to be seen.

Probably the most important problem during dictionary interpretation is
that of lexical disambiguation; we need to determine which sense of each
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word in the definition is intended. COBUILD provides us with infonnation
about syntactic and semantic infonnation about typical complements of word
senses, usually in the template of each sense's definition. When we
encounter a polysemous word used in conjunction with a particular comple
ment, we can detennine how well that complement fits the description given
in the definitions of various senses of that word, then pick the sense with
which that complement is most compatible syntactically and semantically.

One problem is that none of the words are completely disambiguated at
the beginning of the process; thus, when trying to decide whether a sense of
one particular word is appropriate, we do not know which senses of the
words around it are intended, thus making it difficult to check complement
preference constraints. It has been suggested that a constraint-filtering-and
search technique can be applied to possible combinations of word senses.
And perhaps, for coarse-grain distinctions, recent corpora-based methods we
will now describe will be applicable.

EXTRACTING INFORMATION FROM TEXT CORPORA

Let us return now to the issue of acquiring domain knowledge and world
knowledge. Above we discussed the possibility of learning by reading. We
pointed out that while this approach is a promising way of acquiring signifi
cant amounts of infonnation, it requires addressing fundamental problems.
The question then arises as to whether there is some other way to exploit the
infonnation available in text without having to wait for all these difficult
problems to be resolved.

One possibility that has become the focus of some recent investigations
is to use heuristic methods on text corpora to address problems whose algo
rithmic solution is fundamentally difficult. Previously, techniques for
exploiting large quantities of text have had an entirely different character
than other natural language techniques. Typically, while operating more
robustly than more theoretically defensible techniques, they perfonn only a
very superficial analysis; they do not guarantee correctness for a small
domain of discourse. but rather, promise a high degree of accuracy for a very
large domain.
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The problem with such approaches is that they have generally remained
too superficial to help with more interesting natural language or other AI
tasks. Recently, however, there have been a number of promising develop
ments. A number of systems have been constructed that can extract specific
kinds of information from text. For example, the SCISOR system (Jacobs
and Rau, 1990) extracts information about corporate takeovers from a
newswire source; CONSTRUE (Hayes and Weinstein, 1990) classifies
Reuters financial news stories into one of more of 674 predefined categories.
These systems are interesting in that they represent real applications that deal
with large quantities of text in flexible ways.

Both systems are rather limited, though. CONSTRUE does only a very
superficial analysis, and a great deal of effort is required for it to be able to
classify into a particular category. SCISOR uses somewhat more sophisti
cated techniques. However, it also is designed with special purpose acquisi
tion goals in mind.

A Corpus-based Disambiguation Heuristic

We have been experimenting with some approaches that might offer
greater generality. Before describing such an approach to acquisition, let us
discuss some related, but more developed work on disambiguation. Here the
issue is to determine the intended sense of a word in a given usage. This
problem is of general interest to all natural language processing applications,
as alluded to in the discussion above. It can probably only be solved com
pletely by rather complex processes that involve reasoning with large quanti
ties of world knowledge. Applications in which no error is tolerable will
have to await the development of such a technology. However, for applica
tions with less stringent requirements, heuristic approaches are feasible.

Hearst (1991) has developed an accurate, relatively inexpensive corpus
based algorithm that seems to address a significant portion of this problem,
namely, the disambiguation of noun homonyms. The algorithm, called
CatchWord, operates without complex knowledge bases, feature representa
tions, or inference mechanisms. Rather, CatchWord checks some readily
identifiable contextual features surrounding a noun against those of previ
ously recorded instances and chooses the sense for which the most evidence
is found.
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For CatchWord to operate, a training cycle is required for each noun.
During this cycle, a set of sentences containing the target word is analyzed
for a suite of orthographic, syntactic, and lexical properties. The sentences
are hand-labelled for the intended word sense of the target word, and statisti
cal frequencies are compile relating each sense to each of the suite of
features. After the training period, new untagged sentences can be analyzed
for the same features, and a resemblance to the statistical profile of the previ
ous cases used to detennine the intended word sense of the word in the given
sentence. Moreover, after an initial period of training, CatchWord can
improve its results by automatically disambiguating new sentences contain
ing the target word, and using their feature profile as an additional source of
evidence.

The evidence used is a combination of grammatical and lexical context.
For example, one piece of evidence examined is whether the target word
occurs within a prepositional phrase headed with a particular preposition.
The sense of the word "bank" pertaining to rivers tends to occur more as the
complement of "on", for example, while the sense pertaining to financial
institutions is more common as the complement of "in". An important qual
ity of these criteria is that they are easily detected, and do not require
recourse to complicated semantic analysis or presume a large knowledge
base of facts. The properties used for disambiguation are summarized in Fig
ure 1.

After training the system on several words by hand (usually with about
50 examples of each sense of a word), the system was tested on arbitrary sen
tences for Grolier's Academic American Encyclopedia. Between 89-94% of
the test cases were correctly disambiguated, depending upon the particular
lexical item. Afterwards, we allowed the system to train itself in unsuper
vised mode by automatically labeling additional sentences with its current
statistics, and then using this data as additional infonnation. Generally, per
fonnance improved, reaching 100% accuracy in some cases. In general, the
CatchWord algorithm's perfonnance is comparable or superior to any other
published approach.

There are several ways the CatchWord algorithm might be improved and
extended. For example, CatchWord's evidence metric is rather simplistic. It
is biased toward senses for which it has seen more examples. Also, the
current approach applies only to a binary sense distinction, and needs to be
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Recorded for Target Noun

target is capitalized
target's modifier is capitalized
target is modified
target is not modified
target modifies another item
target within a prep phrase is headed by one of in, on, of, out
target within a prep phrase other than those listed above
a prep phrase adjacent to target is headed one of in, on, of, out

Recorded for each Lexical Item

item modifies target
item is modified by target
item is a head in a construct adjacent to target
item is a modifier in a construct adjacent to target
item is a verb in an adjacent construct

Figure 1: Properties used by CatchWord

generalized to any number of senses. Thus far, we have focussed exclusively
on noun homonyms. We need to determine whether the technique will gen
eralize to other parts of speech, and possible, to other kinds of ambiguity.
such as constituent structure.

More interestingly, the time required for hand-labeling training sen
tences is prohibitive. One possible way to obtain this information cheaply
might be to examine bilingual aligned corpora, Le., paired sentences of trans
lations. Since homonyms typically are not the same across languages, a bil
ingual dictionary might serve to determine which sense is present in a given
sentence. Such an approach might provide the necessary information to
bootstrap the CatchWord algorithm.
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Corpus-based Knowledge Acquisition

Now let return to the theme of knowledge acquisition and ask the ques
tion of to what extent is it possible to heuristically address problems like
knowledge acquisition. We have been investigating an approach to
knowledge acquisition that resembles the approach to disambiguation just
sketched. In particular, the idea is to scan text for patterns that are indicative
of certain semantic relations. The patterns themselves involve rather superfi
cial features, such as a particular word in a particular grammatical context, so
that the presence of a pattern is relatively easy to detect. Such an approach
would be able to extract simple information from an arbitrary domain
without substantial manual effort. The semantic relations to be extracted this
way would generally be rather restricted, for example, to hyponyms (Le.,
set-superset relations), class membership, and whole-part relations. How
ever, automatically acquiring instances of even this restricted set of relations
would be a large step toward automating some tasks, such as the acquisition
of a suitable ontology for dictionary reading, as described previously.

As an example of this approach, note that, from a text fragment such as

developing countries, such as India, ....

one can infer that India is an instance of the category of developing coun
tries. To spot this information, one need only look for an occurrence of the
phrase "such as", and isolate the noun phrases it connects. By extending the
set of such patterns, other kinds of knowledge can potentially be extracted.

We have been experimenting with such techniques using Grolier's
Academic American Encyclopedia, Medline (a corpus of medial abstracts)
and the U. S. Constitution as corpora. For example, here are some facts
extracted from GroHer's using this technique:

Ganda amadinda is a kind of key xylophone

Bambara ndang is a kind of bow lute

Gelidium is a kind of red algae

p. v./are labial consonants
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pie crusts are bakery products

synthetic sapphire is a kind of hard material

bombs, artillery shells, rockets are kinds ofprojectiles

meats, flour, meal, cereal, grains, cheeses are kinds of/ood

electron is a kind of subatomic object

Luba, Lunda, Lala, Bisa, Lomba are central Bantu matrilineal peoples

There are several problems inherent in developing a knowledge acquisi
tion algorithm based on this approach, however. First, when such an algo
rithm can infer that a relation exists between noun phrases, it does not neces
sarily know what categories the relation holds between. In one of the exam
ples above, the algorithm readily inferred that a relation holds involving the
category denoted by the phrase •developing countries". But determining
what this category is is often difficult. For example, from the sentence

The newest type of aquarium, the oceanarium, often maintains large
tanks or holding areas directly on the ocean, stocked with some of the
largest marine forms, such as dolphins or sharks.

we can extract the fact that "dolphins" are types of "largest marine forms."
The problem is that the algorithm that can find this relation is not capable of
determining what "largest marine forms" denotes. But doing so is neces
sary for obtaining useful information. Similarly, grammatical ambiguities
may preclude determination of which objects the relation is between. For
example, in a phrase like

the problems of developing countries, such as poverty and disease,...

it is clear that poverty is an instance of a problem of developing countries,
not an instance of a developing country. Thus, the algorithm must be able to
make the same determination if it is to produce a meaningful result.

Finally, the information that is extractable may not make much sense out
of context For example, consider the following sentence fragment (from the



333

U.S. Constitution):

then the Vice-President shall act as President, as in case of the death or
other constitutional disability of the President.

Here one can infer that death is a constitutional disability, but this is not a
very useful fact unless further interpreted within the context of the rest of the
text.

One class of problems seems amenable to an extension of our approach
to disambiguation. For example, it seems possible to find statistical profiles
to help resolve syntactic ambiguities in order to detennine what noun groups
a relation holds between. (We have conducting some preliminary experi
ments in this regard. We found, for example, that in the case of the preposi
tion "of', most of the problematic instances fall into a small number of
classes for which a statistic decision procedure is plausible.) Similarly, at
least part of the interpretation process can be addressed by using the
homonym disambiguation algorithm on the nouns in the noun groups.

Another class of problems can be addressed by developing interpretation
heuristics specific to the task. For example, it should be possible to
hypothesize more specific interpretations for very general lexical items, so
that we can interpret "marine fonns" as referring to marine life fonns.
Similarly, we should be able to extract some information by eliminating so
called "natural" modifiers from a noun phrase. Thus, something that is a
kind of "largest marine fonn" is a kind of "marine fonn" (whereas "imita
tion cheese" is not a kind of "cheese"). Removing such items, especially
comparatives, will usually result in more reliable, context-independent facts.

In general, the richer the ontology we have available, the easier it will be
to make an interpretation. In the worst case, though, we may not be able to
interpret some noun phrases very deeply. In this case, there are still various
tasks for which the more superficial infonnation may be useful. For exam
ple, knowing that a "broken bone" is an injury might be useful even without
knowing exactly what a "broken bone" is.

We have also developed a procedure to automatically find patterns for
particular relations. This is accomplished by gathering, for a particular rela
tion, a list of tenns for which it holds, finding places in the corpus where
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these expressions occur syntactically near one another, recording the
environment, and then finding the commonalities among these environments.
For example, running this procedure using just the pair of terms with a cou
ple of pairs and the "set-member" relation, the algorithm proposed several
"such as" patterns, an "including" pattern, an "and other" pattern, and a
pattern involving "especially." The latter was new to us. Thus, automatic
pattern extraction seems rather promising. We plan to investigate automatic
pattern extraction as a means to increase the kind of information we can
extract in this fashion.

Obviously, this approach is still in its infancy. Despite some intriguing
initial results, we cannot be sure the technique will not crash on the rocky
shoals of world knowledge. That is, for the technique to be useful, we must
demonstrate that a significant amount of knowledge can be extracted this
way without presuming much in the way of world knowledge or reasoning.
An endeavor to make such a demonstration is currently under way.

CONCLUSION

Natural language processing and machine learning are two young tech
nologies that need each other. Natural language requires large amounts of
knowledge of various kinds; it is hard to imagine that field can achieve its
goals without substantially automating the acquisition process. On the other
hand, much work on machine learning has focused on incremental improve
ments based on performance. But the acquisition of knowledge is probably
more of a key bottleneck for building intelligent systems. Huge volumes of
knowledge are available now I in machine readable form, if only we could
understand how to use it. Natural language processing technology holds the
key to this storehouse.

We have described some approaches aimed at acquiring knowledge
about language, and at using language to acquire knowledge. While much
additional work is needed to realize the full potential of this interaction, sig
nificant applications of the more well-understood techniques are currently
being employed. We suspect that many new ideas at the interaction of these
disciplines to emerge shortly: If the individual fields are young, a product of
their marriage is in its infancy.
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