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RATIONAL HERDS

Economic Models of Social Learning

Penguins jumping off a cliff, economic forecasters predicting a recovery in the
business cycle, financial advisors for the stock market speculating against a cur-
rency, and farmers using new seeds in India are all practicing social learning. Such
learning from the behavior of others can lead to herds, crashes, and booms. These
issues have become, over the last ten years, an exciting field of research in theoretical
and applied economics, finance, and other social sciences. This book provides both
an informal introduction and in-depth insights into the most recent advances.

The properties of social learning depend on the context in which learning and
actions take place. Each chapter is devoted to a separate issue: Individuals learn from
the observations of actions, from the outcomes of these actions, and from what others
say. They may delay or make an immediate decision; they may compete against
others or gain from cooperation; they make decisions about capital investment,
crop choices, and financial investments. The book highlights the similarities and the
differences between the various cases. A recurrent theme is that society may learn
more if individuals are less than perfectly rational in their interpretation of others’
behavior.

Christophe Chamley is Professor of Economics at Boston University and a Director
of Studies at the Ecole des Hautes Etudes en Sciences Sociales, Paris. He has also held
teaching or visiting positions at Yale University, the Hoover Institution, the World
Bank, Universidad Carlos III (Madrid), the Université Louis Pasteur (Strasbourg),
and MIT. Professor Chamley’s research has appeared in the leading journals in
economics, including the American Economic Review, Econometrica, the Journal of
Political Economy, the Quarterly Journal of Economics, and the Review of Economic
Studies. He was named a Fellow of the Econometric Society in 1995. His research
interests continue to focus on the economics of information, theoretical macro-
economics, monetary economics, public economics, and public economics history.
Professor Chamley received his doctorate from Harvard University.

i



ii



Rational Herds
ECONOMIC MODELS OF SOCIAL LEARNING

CHRISTOPHE P. CHAMLEY

iii



cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge cb2 2ru, UK

First published in print format 

isbn-13    978-0-521-82401-9

isbn-13    978-0-521-53092-7

isbn-13    978-0-511-16482-8

© Christophe P. Chamley 2004

2004

Information on this title: www.cambridge.org/9780521824019

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

isbn-10    0-511-16482-3

isbn-10    0-521-82401-x

isbn-10    0-521-53092-x

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

paperback

paperback

eBook (EBL)

eBook (EBL)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521824019


To the memory of my father

v



vi



Contents

Preface page xiii

1 Introduction 1
1.1 Overview 3
1.2 A Bit of History 13
1.3 How to Use This Book 15

PART ONE. Social Learning 17

2 Bayesian Tools 19
2.1 The Bayesian Framework 21
2.2 Binary and Gaussian Information 23

2.2.1 The Binary Model 23
2.2.2 The Gaussian Model 24
2.2.3 Comparison of the Two Models 26
2.2.4 The Rate of Convergence of Learning 27

2.3 Private Signals and Beliefs 30
2.3.1 Equivalence between Private Signals and Private Beliefs 30
2.3.2 Examples of Distributions of Beliefs with Two States 31
2.3.3 Other Constructions of Private Information 33

2.4 Martingales 33
2.4.1 Convergence of Beliefs 35

EXERCISES 38
2.5 Appendix 38

2.5.1 Some Definitions Regarding Convergence 38
2.5.2 The Model of Youngsters and Old Timers 39

3 Social Learning with a Common Memory 42
3.1 A Canonical Model of Social Learning 43

3.1.1 The Model 43
3.1.2 The Process of Social Learning 45

3.2 Efficient Learning 45
3.2.1 The Gaussian–Quadratic Model 46

3.3 Observation Noise 48
3.3.1 One Action per Period 49
3.3.2 Large Number of Agents 51
3.3.3 Application: A Market Equilibrium 52

vii



viii Contents

3.4 Extensions 53
3.4.1 Learning with a Private Cost of Information 53
3.4.2 Policy 54

EXERCISES 55
3.5 Appendix 55

4 Cascades and Herds 58
4.1 The Basic Model of Herding 62

4.1.1 The 2-by-2-by-2 Model 63
4.1.2 Informational Cascades 63

4.2 The Standard Model with Bounded Beliefs 67
4.2.1 Social Learning 68
4.2.2 Bounded Beliefs 69

4.3 The Convergence of Beliefs 71
4.3.1 Unbounded Beliefs: Convergence to the Truth 71

4.4 Herds and the Slow Convergence of Beliefs 74
4.4.1 Herds 74
4.4.2 The Asymptotic Rate of Convergence Is Zero 75
4.4.3 Why Do Herds Occur? 76
4.4.4 Discrete Actions and the Slow Convergence of

Beliefs 77
4.5 Pricing the Informational Externality 77

4.5.1 The Social Optimum 78
4.5.2 A Monopoly 81

4.6 Crashes and Booms 84
4.7 Bibliographical Notes 86
EXERCISES 87
4.8 Appendix 90

4.8.1 Proofs 90
4.8.2 A Model of Learning with Two Types of Agents 91

5 Limited Memories 95
5.1 The Sequential Model with Sampling 97

5.1.1 The Case of One Observation (N = 1): Asymptotic
Herding 99

5.1.2 The Case of More than One Observation (N ≥ 2) 100
5.2 The Welfare-Improving Principle 103

5.2.1 The Average Welfare Function 103
5.2.2 The Welfare-Improving Principle 104
5.2.3 Convergence 105

5.3 Sampling in a Very Large Population 107
5.3.1 Two Examples 108
5.3.2 Convergence 110

5.4 Social Learning or Sampling in a Large Population? 112
EXERCISES 113

6 Delays 115
6.1 The Simplest Model 118
6.2 A General Model with Heterogeneous Beliefs 123

6.2.1 Characterization and Existence of Equilibria 124



Contents ix

6.3 Properties 127
6.3.1 Arbitrage 127
6.3.2 Representation of Beliefs 128
6.3.3 Herds: A Comparison with Exogenous Sequences 129
6.3.4 Two Agents 130
6.3.5 Strategic Complementarity and Substitutability 132
6.3.6 Period Length 133
6.3.7 Large Number of Agents 134

EXERCISES 136
6.4 Appendix 137

6.4.1 A Continuum of Agents with Observation Noise 137
6.4.2 Investments of Variable Size 141
6.4.3 Proofs 145

7 More Delays 149
7.1 The Length of a Period 151

7.1.1 Are Longer Periods More Efficient? 151
7.1.2 Vanishingly Short Periods 151

7.2 Continuous Time 152
7.2.1 The Nonexistence of an Equilibrium with Discrete Actions 152
7.2.2 Nondiscrete Actions 153

7.3 Buildup of Private Information 158
7.4 Observation of Payoffs 161
EXERCISES 163
7.5 Appendix 165

8 Outcomes 167
8.1 Incomplete Learning 170

8.1.1 A Monopoly Facing a Zero–One Demand 170
8.1.2 A Linear Demand 174

8.2 The Determinant of Economic Success: Luck or Effort? 175
8.2.1 One-Dimensional Beliefs 175
8.2.2 Two-Dimensional Beliefs 176

8.3 Complete Learning with a Diversity of Private Beliefs 181
8.3.1 The Framework 181
8.3.2 Some General Properties of the Learning Mechanism 183
8.3.3 Learning from the Whole History and Sequential Actions 184
8.3.4 Extensions 186
8.3.5 Observation of Outputs May Reduce Welfare 187

8.4 Bibliographical Notes 188
EXERCISES 189
8.5 Appendix 191

9 Networks and Diffusion 193
9.1 Optimization and Diffusion of Innovations 196

9.1.1 Learning about the Profitability of an Innovation 196
9.1.2 Learning How to Use a New Technology 200

9.2 Learning in Networks 205
9.2.1 Neighbors 205
9.2.2 The Curse of Information 207



x Contents

9.3 Bibliographical Notes 209
EXERCISES 210

10 Words 211
10.1 Advice by One Expert 213

10.1.1 Evaluation Payoff after Verification 214
10.1.2 Equilibrium with an Evaluation Based on

Reputation 215
10.1.3 Reputation for Nonmanipulation: PC Behavior? 218

10.2 Larger Sets of States and Messages 222
10.2.1 A Set of Signals Richer Than the Set of States 222
10.2.2 A Continuum of States and Messages 224
10.2.3 “Yes Men” for a Partially Informed Receiver 225

10.3 Panel of Experts 227
10.3.1 Reputational Herding 228
10.3.2 Who Should Speak First: The Strongly or the Weakly

Informed? 228
10.3.3 The Receiver Does Not Make the Evaluation 231

10.4 Bibliographical Notes 232
EXERCISES 233

PART TWO. Coordination 235

11 Guessing to Coordinate 237
11.1 Overview 239

11.1.1 The Coordination of Simultaneous Actions 239
11.1.2 Rationalizable Strategies and Iterative Elimination 241

11.2 Eductive Stability in a Standard Market 244
11.2.1 The Model and Its Equilibrium 244
11.2.2 Supply Decisions in a Sequence 246
11.2.3 Discussion 248

11.3 Strategic Complementarities 249
11.3.1 The Gaussian Distribution of Investment Costs 250
11.3.2 The Cumulative Value Function and the SREE 253
11.3.3 Stag Hunts 257

11.4 Speculative Attacks against a Fixed Exchange Rate 261
11.5 Bibliographical Notes 264
EXERCISES 264

12 Learning to Coordinate 268
12.1 A Distribution with a Cluster 272

12.1.1 An Analytical Model 274
12.1.2 The Equilibrium under Imperfect Information 276
12.1.3 Application to Policy 282
12.1.4 Observation Lags and Random Walks with Drift 282

12.2 Observation Noise 282
12.3 Appendix 285

12.3.1 An Analytical Model of Regime Switches 285
12.3.2 The Model with Noise 287



Contents xi

13 Delays and Payoff Externalities 288
13.1 Strategic Substitutability 291

13.1.1 Learning the Demand 291
13.1.2 Learning the Supply 295

13.2 Strategic Complementarities 302
13.2.1 Pivotal Effects: Learning through Time May Foster Coordination 302
13.2.2 Large Number of Agents: Learning May Prevent Coordination 306
13.2.3 Interactions with Complementarities and Learning 307

EXERCISES 312

PART THREE. Financial Herding 315

14 Sequences of Financial Trades 317
14.1 Learning in the Model of Glosten and Milgrom 319
14.2 Herds 322
14.3 Avalanches 324
14.4 Herding in Auctions 328

15 Gaussian Financial Markets 330
15.1 Actions in the CARA–Gauss Model 333

15.1.1 The Individual 333
15.1.2 The Demand of a Large Number of Agents with Independent

Information 336
15.2 Markets 338

15.2.1 The Transmission of the Information through the Market 339
15.2.2 Elasticities of Demand 341
15.2.3 The Variance of the Price 342
15.2.4 The Aggregation of Independent Private Information 343

15.3 The Convergence of Beliefs 344
15.3.1 Limit Orders and Fast Learning 346
15.3.2 Market Orders and Slow Learning 346

15.4 Multiple Equilibria, Crashes, and Booms 350
EXERCISES 354
15.5 Appendix 355

16 Financial Frenzies 358
16.1 Speculative Attacks against a Fixed Exchange Rate 359

16.1.1 The Model 361
16.1.2 Equilibria 365
16.1.3 An Example with Gaussian Noise 369
16.1.4 A Numerical Example 369
16.1.5 Defense Policies 370

16.2 Information Delays in Financial Markets 373
16.2.1 The Model 373
16.2.2 Equilibria 374

16.3 The Crash of a Bubble 378

References 385

Author Index 395

Subject Index 399



xii



Preface

Learning by individuals from the behavior of others and imitation pervade the social
life. Issues related to such learning have been debated since the beginning of the social
sciences, more than a century ago. However, in the last ten years or so they have
stimulated a revival and very active research in economics, with extensions to other
“human sciences” (sociology, psychology, political science). The purpose of this book
is to give an account of these studies. Perhaps it will induce others to enter the field
and provide them with some training.

The setting is one of rational agents with limited information who share that
information with others through their actions. The properties of the learning process
are analyzed from a theoretical point of view, but some empirical studies are discussed
in relation to the theoretical results.

Special attention is devoted to the pathologies of social learning by rational agents.
Herds appear to be obvious examples of failures of social learning. Indeed, herds, fads,
bubbles, crashes, and booms are cited as proofs of the irrationality of individuals.
However, most of these colorful events will appear in the models of rational agents
studied in this book .

The assumption of rationality may seem a bit narrow. Indeed, at this stage of the
evolution of research, the concept of rationality itself is beginning to be seriously
investigated. In this book, the usefulness of the assumption goes beyond the standard
“benchmark” justification: a recurrent issue will be that despite the rationality of
individual behavior, and often because of that rationality, the process of social learn-
ing may be inefficient or fail completely. The results hint at some social benefits of
nonrational behavior by individuals, but that topic is beyond the scope of the present
work.

Readers

The book can be read at two levels: the first, nontechnical and the second, more formal.
Both levels will demand some intellectual concentration, however.

Each chapter is devoted to a specific issue. Examples are the various channels for
the transmission of information (actions, outcomes of the actions, words, and so
on), the coordination of agents, and price fluctuations in a financial market. For each
chapter, the results and the methodology are described in an informal introduction.

xiii



xiv Preface

In some of the main chapters, a first section presents a reduced model that exhibits
most of the essential properties. These parts of the book should be accessible to a wide
audience of readers who are interested in the issues and are prepared to follow logical
arguments, sometimes with a bit of formalism.

For graduate students and researchers in social sciences (mainly economics and
finance, but also other social sciences), the book provides an introduction to the
technical literature. The main subjects have been selected with a personal bias, and
are presented in their essence. The models are analyzed rigorously without some of
the baggage that is sometimes required by professional journals. In a number of cases,
the analysis had to be adapted, or even rewritten, for that purpose. The techniques do
not use highbrow mathematics. Most of the model manipulations use first principles.

The models are simple, but a major goal is to give the student sufficient un-
derstanding of the internal structure of these models to develop his own intuition
about their “deep” properties. A model is not an exercise with cute results or a quick
“validation” of some story, but it is a tool to make an argument that goes beyond its
technical boundaries. It is my view that the understanding of these properties cannot
be grasped from a survey, and that, in the field of social learning, it takes a consid-
erable amount of time to develop this understanding if one has to read the technical
literature. The purpose of the book is to shorten that time for the student before he
goes to the frontline papers and does research about theoretical or empirical topics.

Acknowledgments

A number of people have made contributions to this book, some decisive for its com-
pletion. The project is the product of séminaires of the Ecoles des Hautes Etudes en
Sciences Sociales at DELTA, and its realization would not have been possible with-
out the participation of this unique group of students. Jay Surti at Boston University
was an ideal Ph.D. student and made numerous suggestions. Lones Smith provided
stimulating discussions. I am very much in debt to people who have been gener-
ous with their comments and their time: Markus Brunnermeier, Andrew Caplin,
Benjamin Carton, Zachary Dorsey, Douglas Gale, Todd Gormley, Sanjeev Goyal,
Roger Guesnerie, Ward Hanson, William Hawkins, Andrew Hertzberg, David
Hirshleifer, Alan Kirman, Laurence Kotlikoff, Elie Mincer, Pierre Pestieau, Marek
Pycia, Iulia Rodionova, Peter Sørensen, Christopher Udry, Xavier Vives, anonymous
referees, and students in classes taught from the book at Boston University and MIT.
My colleagues at Boston University provided intellectual camaraderie. The MIT Eco-
nomics Department offered a stimulating setting for the last stage of the project. Scott
Parris of Cambridge University Press was a strong believer from the start many years
ago and never doubted.

To Mari-Cruz, Paul, and Sebastian, apologies and gratitude.



1 Introduction

Penguins are social animals. They live in groups above the water from which they
get fish for food. Unfortunately, there is more than fish in the water. From time to
time, killer whales (orcas) roam under the surface waiting for some prey. Penguins are
aware of the danger and would like to have some information before taking a plunge.
Indeed, any sensible penguin thinks that it would be very nice if some other penguin
would dive first to test the water. So what is a penguin to do? Wait. Possibly some
other member of the colony who is more hungry, or has other information, will go
first. Is it possible that no penguin will ever go? No, because waiting becomes more
costly as hunger increases. Eventually, one or more penguins will take the plunge,
and, depending on the outcome, the others will either stay put or follow en masse.
This waiting game is socially inefficient. It would be better if the first individual would
decide to go at least a bit earlier: the first to go is, on the margin, as well off going just
a little earlier; but others strictly prefer him to go a little earlier. Actually, the penguins
are well aware of this social inefficiency, which they try to remedy by pushing some
poor fellow off the cliff.

First-Cousin Marriages
There is a long-standing taboo against marriages between first cousins in some parts
of the world. Such taboos may entail significant costs. In the United States, about
thirty states have laws forbidding first cousins to marry, but on some other continents
marriages between cousins are well regarded. Recent, and remarkably late, evidence
shows that the risk of defects for children is marginally higher in such marriages than
in the general population (Motulsky et al., 2002):

Dr. Motulsky said that medical geneticists had known for a long time that there was
little or no harm in cousins’ marrying and having children. ‘Somehow, this hasn’t
become general knowledge,’ Dr. Motulsky said. ‘Among the public and physicians
there’s a feeling it’s real bad and brings a lot of disease, and there’s a lot of social
and legal disapproval.’ Dr. Motulsky said the American laws against cousin marriage
should be abolished, because they are based in part on the mistaken belief that the
children of such parents will suffer from terrible physical and mental illnesses.1

1 This quotation is from the New York Times, April 3, 2002.

1



2 Introduction

The White-Van Frenzy
On October 26, 2002, one could read this in the New York Times:

Until the final moments of the three-week reign of sniper terror in the Washing-
ton area, there was one image, one all-consuming clue, seared into the minds of a
panicked public: the white van.

White vans were pictured on wanted posters everywhere. Their drivers were
stopped four, five, six times a day. They were forsaken by some, who rented or
borrowed other vehicles because they simply could not take it anymore: the constant
traffic stops, the swooping in of gun-wielding police officers, the stares from other
drivers and pedestrians, the snooping around their license plates and sneaky peeks
into their rear windows to check for rifles and other signs of sniping. Each shooting
and each day that passed without an arrest brought a new flood of tips and witness
accounts involving white vans and trucks, seemingly fed by the earliest witness
accounts.

Witnesses to some of the first shootings were able to describe only a glimpse at
a fleeing white vehicle, information that the police quickly released and eventually
used to put together composite sketches. So there was nothing but a white van and
before that, a white box truck to look for. With no description of the killer, many
people, gripped with fear of another attack and seizing on any detail in their personal
lookout for the sniper, were in a kind of white-van haze. [. . .]

For a time, the police themselves were so focused on white vans and trucks –
there are roughly 100,000 on the roads of Washington and its suburbs – that they may
have overlooked the vehicle they really needed to find. In fact, officers in Washington
stopped the blue Caprice, ran a check on its license plates and then allowed the two
men to proceed only a couple of hours before one of the sniper killings. [. . .]

“Darn right I’m glad it’s over,” said Sinclair Skinner, who drives a white van for
his dry-cleaning delivery service but parked it two weeks ago after being stopped
by the police twice in one day, and rented a car. “The police were stopping people,
people were asking me all kinds of questions. Finally I said: ‘Look, I’m not involved
in anything. I’m not the Taliban. I wasn’t in the gulf war. I’m a pacifist. I listen to
Pacifica Radio.’ ” [. . .]

Meanwhile, the police, including all 1,000 officers on the Montgomery County
force, the lead agency in the investigation, combed the area for white vans. When a
van was stopped, several police cars often surrounded it, and officers drew their guns,
sometimes telling the drivers to come out with their hands up and then ordering
them to lie face down on the ground.

The white van, said Officer Baliles, “was the best lookout we had.”

Umbrellas
The actions of others convey some information about the state of the world. When
I see other people going out with an umbrella, I take an umbrella along without
checking the weather forecast. I do so because I know the decision model of others. I
can then infer their private information from their action without the need to talk to
them. This herding is rational. There is, however, the possibility that everyone carries
an umbrella because someone carries an umbrella. The herd may be wrong.
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1.1 Overview

The learning from others can operate through different channels of information
(choices or results of actions, words), and in different contexts (with or without delay
between actions, real or financial investment) and may be affected by externalities
between the actions. The chapters are designed to study one issue at a time.

PART I: SOCIAL LEARNING

The Tools
All models will have a key random variable, which will not be observed directly: the
state of nature. The state of nature may be the profitability of a set of new techniques,
the mass of agents who are prepared to topple a government in a revolution, or the
reserves of a central bank in a speculative attack against a regime of fixed exchange
rate. Rational learning in this book means Bayesian learning about the state of nature.

The essential tools of analysis are presented in Chapter 2. The private information
is represented by private signals, which depend on the state of nature: for example,
if it will rain (if the sun will shine), two-thirds (one-third) of the agents think that
rain is more likely than sunshine. To think that rain is more (less) likely is the real-
ization of a private signal. These private signals are correct, statistically, and a large
number of them, if they could be pooled directly, would bring perfect or near-perfect
information.

We will use restrictive models, which will be special cases. Attempts at generality
would end in futile formalism, but we will need to have a good idea whether the results
of a specific model are robust or not. In most cases, these results depend on some
critical assumptions. It is therefore important to know the implications of the mod-
eling choices. Two models of private information will be used recurrently (but not
exclusively): the binary model with two states (“good” or “bad”), two informations,
and two actions (“investment” or “no investment”), and the Gaussian–quadratic
model where all random variables are normal and the payoff is a quadratic function
of the level of action (a real number). These two models are discussed in detail in
Chapter 2.

The Martingale Property
The beliefs of agents are defined as their subjective probabilities about the state
of nature. An agent observes a variable (aggregate investment, success or failure
of an oil drilling) that depends on the state of nature. Following an observation,
he updates his belief using Bayes’s rule. This rule is an application of the calculus
of conditional probabilities, and it generates the remarkable property of a martin-
gale: an agent knows that he may change his belief after an observation, but the
expected value of the change is nil. If that value were different from zero, the agent
would change his belief right away. The martingale property, which is similar to
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an efficient-market equation in finance (and for good reasons), is both simple and
powerful; it implies that the agent cannot change his belief forever. The martingale
convergence theorem is one of the most beautiful theorems in probability theory.
Its mechanism is presented here intuitively. The theorem is the most important
one in Bayesian learning. It will apply in many models (but not in all of them)
and facilitate the analysis of the limit properties of learning. The theorem implies
that unending fluctuations of individual beliefs cannot be compatible with rational
learning.

Social Learning
When an individual learns from a person’s behavior, (i.e., her choice of action or her
words), he learns because the person’s behavior is motivated by some information that
she has about a state of nature of interest to all (e.g., the example of the umbrellas).
This private information, or private belief, is like an endowment. The process of social
learning is the diffusion of the private beliefs to all individuals through the interactions
of observations, learning, and action choices. The structure of the model will be
dictated by the context. Actions may be more reliable than words. Some definitions of
social learning restrict the learning to the observation of actions themselves (physical
actions or words), but we will consider also the observation of the outcomes of actions.

In models of social learning, a large amount of (private) information may be
hidden. When agents do not act, this information remains hidden. We will encounter
situations where, because of some small changes, some agents will “come out of the
woods,” take an action, and thereby release their information and induce others to act.
Long periods of low activity may be followed by a sudden boom. Inversely, a regime
of high activity may be brought to a halt by a crash.

Actions as Words
When agents learn from actions, these actions are the “words” for communication.
As in any language, communication is easier if there are many words. When actions
can be taken from a wide set (e.g., the set of real numbers), the “message” sent by an
agent can reflect his private information perfectly. When the set of actions is discrete
(e.g., a farmer choosing the type of crop), the message about the private information
is obviously more coarse. We begin with the case of continuous action sets.

Clustering
The model of social learning is introduced in Chapter 3: Agents are placed in an
exogenous sequence of rounds; each agent chooses his level of investment, a real
number, in his round and is observed by others. As the number of observations
increases, the importance of history for individual choices grows and agents rely less,
rationally, on their private information. Individual choices are clustering. However,
any agent’s action can be observed with perfect precision – in this model – and it reveals
perfectly his private information. The learning from others’ actions is equivalent to
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the direct observation of their private information. There is no information loss in
social learning.

The Weight of History and Slow Learning from Others
The assumption of perfect observability requires also perfect knowledge of the deci-
sion process of each agent. However, we have all our idiosyncrasies, which make the
inference from actions imperfect. When history is short, this problem is not impor-
tant. When history is long, however, and it induces agents to cluster, the observation
becomes dominated by the noise. This slowing down in the rate of social learning is
quantified by Vives (1995) in the Gauss–quadratic model. We will find this important
property of social learning in other contexts: the memory of past actions may reduce –
or completely prevent – social learning.

Herds and Cascades
In Chapter 4, the set of actions is reduced to two elements (to take or not an action:
fixed investment, medical procedure, new crop). This is the celebrated model of
Bikhchandani, Hirschleifer, and Welch (1992), hereafter BHW. In a simple case (with
binary information), they show that social learning stops completely and rapidly (at
an exponential rate): Suppose two agents invest and thus reveal that they have a good
signal; if the third agent has a bad signal, that signal cancels only one of the previous
two signals; he should invest like the first agent, who had only one good signal to
rely on; in this case, he invests even if he has a bad signal. The third agent is herding.
His action conveys no information. In the next round, the public information is
unchanged. Nothing is learned. The fourth agent is in the same position as the third.
Social learning stops completely, and a cascade takes place.2

Cascades are a spectacular example of the failure of social learning due to the
weight of history. Is this property robust? Careful examination shows that, technically,
the property is not robust at all. Cascades depend on discrete private signals that are
not generic. When private beliefs are all distinct – as in random drawings from a
continuum – cascades do not exist.

On the other hand, herds take place for sure, eventually. A herd is defined as a
situation in which all agents take the same action after some date. If all agents turn
out to take the same action after some date T , there is still the possibility that an
agent has a private signal that induces him to take a different action after date T . This
possibility is not realized, but the very fact that it is not realized yields information,
which is incorporated in the social learning (Smith and Sørensen, 2001).

The existence of a herd is an elegant application of the martingale convergence
theorem: when a “black sheep” breaks away from the herd, he reveals a piece of strong
private information. That information is then incorporated in the public belief, which

2 See Section 1.2 for a discussion of the term “cascade”.
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makes a quantum jump. This event cannot occur an infinite number of times, because
that would prevent the convergence of the public belief, which is a martingale.

A herd is not a cascade. However, as a herd goes on, the set of private beliefs
in which an agent follows the herd grows. Social learning is very slow, because the
probability of breaking the herd must be vanishingly small in order for the herd to
be realized. The time profile of the evolution of beliefs is not the same as that of a
cascade, where learning stops completely, but it is not very different.

An application of the model shows that a firm that introduces a new product of
quality unknown to consumers should target a group willing to pay a high price, in
order to establish its reputation, and then lower the price to reach a mass market.

To Forget in Order to Reduce the Weight of History
Because the weight of the information in history induces paralysis and prevents agents
from conveying their information to others through their actions, the remedy is
simple: partly forget the past. Indeed, Chapter 5 shows that when agents have an
incomplete sample of the actions of past agents, social learning is more efficient!
The inference from another individual’s action is now more difficult, because the
observations on which that action is based are not observable. (In Chapter 4 these
observations were summarized by the public belief, which is a martingale.)

Delays Ending with a Bang or a Whimper
So far agents have made a choice in an exogenous order. This assumption cannot apply
to the penguins. In Chapter 6, the setting is the same as in BHW (with arbitrary private
beliefs) with the sole difference that any agent can make a decision (like plunging) at
any time: each agent has an option to make one investment. This setting induces a
waiting game, in which the more optimistic agents go first. The others know this and
wait to observe how many agents plunge. A large number means that the number of
optimists is large. Because private beliefs are statistically correct, the large number is a
signal that the state of nature is good, and agents who were initially reluctant join the
fray. A bang may take place. Events can evolve either way: there is also the possibility
that the number of investors is small in an initial phase, after which investment stops
completely. The game ends with a whimper (Chamley and Gale, 1994).

The waiting game has some powerful properties. The main one is the arbitrage
between the cost of delay (from lost dividends) and the option value of delay (from
not making a bad irreversible investment). Suppose that actions are observed through
some noise. The cost of delay is not affected by the noise. Hence the information
generated by the equilibrium is unaffected. The equilibrium strategy is adjusted so
that more agents take action, and the net information generated by all actions is
the same as without noise. The model may generate multiple equilibria with sharply
different information: if most agents delay and only the greatest optimists invest,
then the information generated by the equilibrium must be high (in order to induce
most agents to wait). If most agents do not delay, there is little information in the
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equilibrium. In the cascades of BHW, there was no information. These situations are
found again in the setting with endogenous delays.

In Chapter 7, the model with delays is investigated under the assumption of
continuous time: agents can make a decision at any point in time. If the distribution
of private beliefs admits agents with a high degree of optimism, the model does
not have an equilibrium, generically. It is shown that there are essential differences
between a model with periods and a model in continuous time. The properties of
a model with periods do not converge to those of a continuous-time model as the
period length becomes vanishingly short.

Outcomes
When agents observe the outcomes of others’ actions, learning may still be incomplete
if actions converge to a point where the random outcome can be explained by different
states, as shown in Chapter 8. For example, the individual level of effort toward a
successful economic career may converge, generically, to a value where agents cannot
discriminate perfectly between the contributions of noise and chance in the outcome;
or the price of a monopoly may be compatible with two types of demand schedule:
the first with a high level and a high price elasticity, the second with a low level and a
low elasticity.

The observation of outputs does not prevent failures in social learning: if an action
is deemed superior to others, it is chosen by all agents who do not try other actions.
Hence, no information can be gathered on other actions to induce a switch. A herd
may take place unless some agents have very strong private beliefs that other actions
may be superior. These strong believers may provide significant information benefits
to others.

Networks
When agents are watching the evolution of the price of an asset, the information has
a sequential structure. When they learn how to fertilize apple trees in Ghana, they
rely on a network of information contacts. When a new crop (say, a high-yield variety
of wheat or rice) is introduced in a region, agents make simultaneous decisions in
each crop cycle, and learn from their information contacts at the end of each cycle.
Networks and diffusion processes are analyzed in Chapter 9. As in previous chapters,
social learning may be more efficient if the information of agents is restricted. For
example, the observation of a small group (e.g., a royal family) by all agents could
induce a cascade and a herd. The model of Bala and Goyal (1998) formalizes the
description of Tarde (1900), which will be presented below.

Words
The most obvious way to communicate private information seems to be to talk.
Yet, economists prefer to trust what people do. Can a financial advisor be trusted?
Yes, if he has sufficient incentive to build a reputation for his future business. In
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Chapter 10, it is shown that the reputation motive can be sufficient for truthtelling
within some limits. The reputation is earned by being proven right: the receiver of the
advice can verify, after a while, whether the stock that was recommended actually went
up or down. However, if the public belief that the stock will go up is strong, a ratio-
nal advisor who has contrary private information will maximize the chance of being
right and will issue a “buy” recommendation. He is herding like any agent in the BHW
model. Indeed, there is no difference between reputation herding and the herding in
the BHW model, and the conditions for its occurrence are identical (Ottaviani and
Sørensen, 2000). The reputation can induce people to herd and say the “politically
correct” thing (Morris, 2001) or to please the boss (Prendergast, 1993). Recall the
witnesses of the white van, or how the lonely juror was able to sway the others in
Twelve Angry Men (Lumet, 1957). Who should speak first in a jury where people may
herd on what others say? The analysis shows that it is not clear whether the first to speak
should be among the more or the less experienced (Ottaviani and Sørensen, 2001).

PART II: COORDINATION

The issues of Part I are extended in Part II with the addition of payoff externalities
between different individual actions. Agents have to coordinate their expectations
about an equilibrium.

One Period without Learning
Rousseau (1762) described the problem of social cooperation in the model of the
stag hunt: a hunter has a higher individual payoff if he participates in a stag hunt
than if he goes on his own chasing a hare. However, the success of the stag hunt
depends on the participation of all. There are two equilibria in this game with strategic
complementarity : either all hunters participate in the stag hunt or none do. This
story can be adapted to a number a situations in economics, from business cycles to
speculative attacks against a fixed exchange rate, and in other social situations (e.g.,
revolutions).

How do agents “choose” between different equilibria? A natural first step for the
analysis is to consider a one-period setting in which agents make a simultaneous
decision without observing what others do. Each agent has to guess, if possible, which
equilibrium agents coordinate on. Carlsson and van Damme (1993a), in their global-
game method, build on the insight that agents do not have perfect information on
each other. The removal of the assumption of common knowledge enables one to solve
the coordination problem: agents with a low cost of investment invest, no matter what
others do. With that information commonly known, agents with a slightly higher cost
also invest, which is again common knowledge. A process of contagion takes place,
which solves the decision problem for all agents with a cost lower than average. A
similar process of iterative dominance induces agents with a cost higher than average
not to invest. This process takes place in the heads of agents in “virtual time” and is
called eductive learning.



1.1 Overview 9

A similar process of iterative dominance had been proposed previously in the
context of strategic substitutability when, for example, farmers in a population choose
their individual supplies independently and the expectations about future prices are
inversely related to the total supply. In that case, there is a unique Nash equilib-
rium under perfect information, but the issue is the coordination of expectations. The
analysis in Chapter 11 highlights the similarities and differences between strategic
substitutability and complementarity.

A new tool, the cumulative value function, provides a simple intuition for the
global-game method (with strategic complementarities) and enables one to solve
applied models rapidly. Speculative attacks against currencies, which will reappear at
the end of the book, have become a popular topic recently and are presented as an
illustration.

Switching Regimes
In 1989, countries in the former Soviet bloc switched their political regimes abruptly.
The opportunities for change were not apparent in the preceding winter.3 It is the
essence of oppressive regimes that a large amount of opinions remains hidden (Kuran,
1995). A turning point was the series of demonstrations in Leipzig, where protesters
realized that they were a large mass. After the fall, few people seemed surprised. The
story’s features include a strong complementarity between the actions of agents and
a large discrepancy between the common knowledge before and after the fact. These
features are the main ones in the model presented in Chapter 12, which is based on
Chamley (1999). The model is suggestive of regime switches in a variety of contexts
of social interactions (political regimes, business cycles).

In each period, there is a new population where each agent decides whether to
invest (protest, in a political context), or not. Investment entails a fixed cost, and the
return is positive only if a sufficient mass of agents invest in the same period. The costs
of agents have some unobserved distribution. Each agent knows only his own cost and
observes the history of aggregate activities in the previous periods. The distribution
of costs evolves slowly and randomly. The model exhibits the properties described in
the previous paragraph: there are random switches between regimes of low and high
activity. Most of the time, the structure of costs is such that under perfect information
there would be two equilibria, with high and low activity. Under perfect information,
however, the level of aggregate activity moves between a high and a low value with
significant hysteresis, or inertia.

The inertia can be described precisely. If an outside observer had perfect knowledge
about the structure of the economy, he would observe that in any period, agents

3 We may tend to forget the ex ante beliefs before the switch of a regime. A useful reminder is found
in Halberstam (1991) with an account of Henry Kissinger addressing, on February 26, 1989, the
governors of the fifty states of the union: “He was condescending about what Gorbachev was doing
and he was even more condescending about those poor Americans who were taking it all so seriously.”



10 Introduction

coordinate on the equilibrium that is closest to the one in the previous period. If the
structure of the economy is such that low activity is an equilibrium under perfect
information in periods t and t + 1 and is an equilibrium under imperfect informa-
tion in period t, then low activity is also an equilibrium under imperfect information
in period t + 1 (even if a switch to high activity would be possible under perfect
information).

The equilibrium with random switches between high and low activity is deter-
mined by a process of iterative dominance in what is so far the only model in the
literature that provides a nontrivial extension of iterative dominance to many peri-
ods. A numerical simulation illustrates an evolution of public belief that is analogous
to the evolution in 1989.

Delays and Externalities
Firms that enter a new sector generate negative externalities on each other because
they lower the price of the good. At the same time, they provide outsiders some
information about the cost of production or the size of the demand. The prospect of
more information induces delays. When the externality is positive, a small number of
agents may induce others to act, and coordination may be achieved (Gale, 1995). If the
number of agents is large, however, the possibility of delay may prevent coordination
under imperfect information.

PART III: FINANCIAL HERDS

Since the tulip mania in seventeenth-century Holland, spectacular rises and falls have
been observed in financial markets. It is easy to dismiss these as follies. An evaluation
of the “irrationality” of markets can be made only with respect to properties that
may be observed in a “rational” market. Part III provides an introduction to herds in
financial markets with rational agents.

In the standard model of social learning (Part I), agents learn about the state of
the world. The specifications of the set of actions and of the payoff externalities play
a critical role in determining the properties of social learning. In financial markets,
the state of the world is the fundamental value of an asset, the actions are the trades,
payoff externalities arise because the gains of some are the losses of others, and timing
is essential. Two market structures are considered.

Sequential Trades
The model of social learning with individuals in an exogenous sequence (Part I)
becomes in financial markets the model of sequential trades between agents with
different information (Glosten and Milgrom, 1985). If the learning is about a fun-
damental value that is a real number, beliefs updated by financial transactions with
asymmetric information converge rapidly to the truth. This property is not very sur-
prising in view of the results in Part I. Because a price can take any value in the set
of positive numbers, it is a fine signal about the agents’ private informations (as the
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actions in a continuum). In general, it seems that a state in an ordered set can be
learned efficiently through financial markets.

An interesting situation occurs when the states cannot be ordered. For example,
the state may be defined by the value of the fundamental and by the precision of the
private informations of the agents. The updating from the history of prices does not
proceed by simple upward or downward revisions. A situation may develop in which
the price is incorrect for a very long time because agents interpret the history along a
particular line of thought. This line of thought may become untenable after extended
lack of supporting evidence. Agents are then led to switch to another interpretation,
which entails a price jump (Avery and Zemsky, 1995).

No model of sequential financial trades has generated a cascade so far. However,
the property of incorrect prices in protracted regimes followed by sudden and large
changes – with no exogenous news – has the features of an unstable market that is
apparently driven by fads.

Herds may occur when agents do not make a unique bid as in the sequential
model. In this case, individual bids depend strategically on the bids of others, as in an
auction. There may be an equilibrium (nonunique) that exhibits herdlike behavior
(Neeman and Orosel, 1999).

Gaussian Markets and Price Jumps
The sequential model of Part I with a large number of agents, quadratic payoffs, and
Gaussian random variables becomes in financial markets the CARA–Gauss model,
where agents have a constant absolute risk aversion (hereafter CARA). In the standard
CARA–Gauss model, which is presented here from first principles, the information
from history does not slow down social learning as in Part I. Agents reduce the weight of
their private information in their estimates when the information from history grows
over time, as in Part I. However, there is an additional effect: because the information
from history reduces the uncertainty, agents take more risk, namely a larger position,
which amplifies the message about their private information. The second effect exactly
cancels the first, and there is no slowdown of social learning if agents submit orders
that are contingent on the trade prices (limit orders). If the orders are quantities to be
traded at the rationally anticipated but uncertain equilibrium price (market orders),
then social learning may slow down over time, as in Part I (Vives, 1995).

The issue of instability is modeled here by the existence of multiple equilibria. As
an introduction to the vast literature, a reduced version of the model of Genotte and
Leland (1990) is presented in Chapter 15. This model adds a new type of agents who
are motivated by portfolio insurance: they sell some of their asset holdings when the
price falls and buy when the price rises. The key argument is that agents who trade on
the fundamentals (the standard agents) do not know that portfolio traders play an
important role. (The rational expectation of the existence of such traders is assumed
to be low.) The combined actions of the standard traders (who interpret, incorrectly,
a price fall as bad news about the fundamentals) and of the portfolio traders (who
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sell when the price falls) can generate multiple equilibria. It is thus possible that small
exogenous shocks induce large changes of the price.

Activity and Endogenous Information in Financial Markets
In models of social learning, a salient property is that the flow of information depends
on the level of agents’ activity. Typically, a higher level of aggregate activity generates
more information, which feeds into the behavior of individuals. A self-reinforcing
process may lead to sudden changes. Chapter 16 presents three examples of this
process and indicates directions for future research.

Is it possible that in a financial market there could be two equilibria, the first with
low activity associated with a high variance about the state, the second with high
activity reducing the variance to a level that sustains that high activity? The answer is
negative in the standard CARA–Gauss model where the state is the value of an asset,
because the multiplier from the private information of an agent to his demand is
independent of the precision of the public information.

The answer may be positive in a CARA–Gauss model where the state is defined by
the mass of agents. There may be one equilibrium with a low price because agents are
unsure about their total mass (which is positively related to the demand and therefore
the asset price in the future), and another with large aggregate demand, which reduces
the variance about the future (and supports the high demand by individuals); a large
mass of agents who “come out of the woods” provides a strong signal about the state.

Dynamic Speculative Attacks
Speculative attacks against a fixed-exchange-rate regime and bank runs are examples
of coordination games, but the people in the stag hunt do not decide one morning
whether to hunt for the day or not. They watch each other; at any moment they can
step in or out, depending on their observation. A one-period global game cannot take
these effects into account. Chapter 16 presents a model of speculative attacks against
a currency that is allowed to fluctuate within a narrow band (as in the European
Monetary System before the euro). Agents face a trade-off in their timing: an early
purchase of the foreign currency is made at a lower price, but the option to buy may
be exercised later with a higher chance of success. On the other hand, an agent who
delays faces the risk of missing the capital gain if he is beaten by others who trigger a
devaluation. The model is built on the CARA–Gauss model with market orders. The
monotone relation between the level of activity and information is a key property of
the model: agents learn that they form a mass that is able to trigger a devaluation only
if the quantity of orders is sufficiently large with respect to the noise.

The End of Speculative Bubbles
In the global-game approach to coordination, multiple equilibria are eliminated be-
cause of the lack of common knowledge among agents: all individuals know that the
stag hunt would succeed, but they do not know whether others know (at some stage
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in the chain of reflections). In a speculative bubble, agents hold the asset with the sole
purpose of capital gain. Because the capital gain, without the supporting dividends,
cannot last forever, the bubble has to burst. According to the standard methodology
in finance, the prospect of the eventual crash should, by backward induction, prevent
the bubble. The bubble bursts only if the mass of agents selling the asset is sufficiently
large. Abreu and Brunnermeier (2003) present a model in which a bubble is sustain-
able for some time while all agents are aware that the price is driven by a bubble, as
long as this awareness is not common knowledge.

1.2 A Bit of History

CONDORCET AND VOTING FOR INFORMATION

Condorcet was the first to set the problem of aggregation of information and to
present a model for analysis, in his Essai sur l’application de l’analyse à la probabilité
des décisions rendues à la pluralité des voix (1785). His book is written in modern form.
The first third (about 150 pages) sets out all the results of the analysis in words. The
second part (about 300 pages) states the propositions formally with pages and pages
of algebraic computations.4

The basic model of Condorcet is exactly the same as in any modern paper. There is
a state of nature from a set of two elements, say, a person is guilty or not guilty. There
is a set of individuals each with imperfect information on the state of nature. The
imperfect information is modeled as a binary signal: with probability p, the person’s
opinion is correct. In the world of Condorcet, people expressed their true private
beliefs. In our age of economists and accountants,5 we do not trust or even hear what
they say, we simply want to see what they do or what they get.

Condorcet assumes individuals express truthfully their opinion (reveal their signal,
in modern jargon): they do not manipulate the process of decision; they do not let
themselves be influenced by the opinion of others. Each opinion is expressed as a
vote, and the decision follows the majority. This process is the same as learning from
all agents with equal prior probabilities for the two events. Condorcet devoted many
pages to the computation of the probabilities of the correct and incorrect outcomes,
as functions of the number of polled individuals.

THE FOUNDATIONS OF SOCIOLOGY: GABRIEL TARDE AND EMILE DURKHEIM

Gabriel Tarde (1843–1904) began as a magistrate. His interests led him to become a
criminologist. Crime is an activity that is quite amenable to the collection of statistics.
From 1894 to the end of his life, he was director of the criminal statistics office of the
Ministry of Justice (Lukes, 1972). He ended his career at the prestigious Collège de

4 He was a precursor of Hicks (1939) in this respect.
5 This famous description was applied by Burke (1790) to the executioners of Marie-Antoinette.
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France.6 Despite his academic success, Tarde was not a serious social scientist, even by
generous standards. He preferred brilliance and striking insights over Gründlichkeit.

Tarde is interesting here because of his vision of sociology, which can be recast
in modern terms. Sociology deals with groups (aggregates) of individuals who share
common features in their behavior. How do these aggregates behave? How do a large
number of individuals behave in similar ways? These questions are similar to those
in contemporary macroeconomics (e.g., how does an economy cycle?). According to
Tarde (and to Margaret Thatcher), a group as such does not exist. Individuals exist.
The group is made of the aggregation of individuals. The method is the same as in the
microeconomic foundation of macroeconomics. For a sociologist, human behavior
includes other facets than economics, such as beliefs, language, life decision (suicide).
What makes individuals in a group act in similar ways? The answer, which must be
based on the individual (which for Tarde means individual psychology), is imitation. It
is hardly stretching his view to state that a group is a collection of herding individuals.

Of course, there must be something to imitate. Indeed, some individuals do in-
novate. These are few. Most individuals just imitate:

The principal role of a nobility, its distinguishing mark, is its initiative, if not inventive
character. Invention can start from the lowest ranks of the people, but its extension
depends upon the existence of some lofty social elevation, a kind of social water-tower
whence a continuous cascade of imitation may descend.7, 8

A striking expression of Tarde’s view is found in a comment on Tocqueville:

In an attentive reading of Tocqueville it may be perceived that although he never
troubles himself to formulate the principle of imitation he is always running across
it, and curiously enumerating its consequences. But if he had expressed it clearly and
placed it at the head of his deductions, he would, I think, have been spared many
errors and contradictions. He justly remarks that “no society can prosper without
like beliefs, or, rather, there is none that subsists without them; for without common
ideas, there is no common action, and without common action, men there may be,
but not a social body.” This means, at bottom, that the true social relation consists
in imitation, since similarity of ideas, I mean of those ideas which are needed by
society, is always acquired, never inborn. [. . .] Imitation, then, is the essential social
action from which everything proceeds.9

Tarde found his “principle of imitation” at work in important fields of human
activity and devoted a chapter to each in Les Lois: languages, religion, government,
law, morals, and art. In each of these domains his insights are sometimes inspiring

6 The Collège de France was founded by Francis I as the only institution of learning independent of
the university (at the time essentially the University of Paris).

7 Tarde (1900), p. 240; translation by E. C. Parsons (1962).
8 The italics are mine. Tarde italicizes “château d’eau” (water tower), and uses the French word

“cascade” beginning on p. 92 of Les Lois de l’Imitation.
9 Page 309 of the translation by E. C. Parsons, where “erreurs” (p. 334 in the original text) become

“minor errors.”
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(quite a few papers could be motivated by his remarks), sometimes very superficial,
sometimes prejudiced. Unfortunately, most of the time he suggests but does not prove.

Across the rue Saint Jacques, facing the Collège de France, Emile Durkheim (1858–
1917) was busy in the Sorbonne publishing dozens of articles and books before reach-
ing sixty, and setting the foundations of sociology. He was not amused by visionary
diletantism:

But what this chapter chiefly shows is the weakness of the theory that imitation is the
main source of all collective life. No fact is more readily transmissible by contagion
than suicide, yet we have just seen that this contagiousness has no social effects. If
imitation is so much without social influence in this case, it cannot have more in
others; the virtues ascribed to it are therefore imaginary. [. . .]

We should even be amazed at the continuing necessity of discussing an hypothesis
which, aside from the serious objections it suggests, has never even begun to receive
experimental proof. For it has never been shown that imitation can account for a
definite order of social factors and, even less, that it alone can account for them. The
proposition has merely been stated as an aphorism, resting on vaguely metaphysical
considerations. But sociology can only claim to be treated as a science when those
who pursue it are forbidden to dogmatize in this fashion, so patently eluding the
regular requirements of proof.10

A proof that imitation has nothing to do with social facts is found in an analysis
of suicide. One chapter of Le Suicide (32 pages out of 450) is devoted to imitation.
It includes two maps with the frequency of suicides in each district of France and
each Land of Germany. Durkheim discusses some of the statistical pitfalls, but such a
discussion would be more elaborate in modern journals. He observes that in France,11

the frequency of suicides by district does not exhibit circles around cities. A model of
imitation would require that cities set the trends, because they make communication
easier and their mass sets a stronger example. The region of highest density is to east
of Paris. It would make a strange water tower for the cascades of Tarde.

1.3 How to Use This Book

For the reader who is new to the subject, Chapter 2 may be an investment that pays off
later. The whole book is based on a methodology, and it may be advisable to undergo
some training in it, like finger exercises before the sonatas.

The main features of social learning through the observation of actions are found in
Chapter 3 and Sections 4.1.1 to 4.3 of Chapter 4. A simple model of herds and cascades
is presented in Section 4.1.1, which should be widely accessible. The standard model

10 Durkheim (1897), translation (1951), pp. 141–142.
11 In Germany, there is no pattern of diffusion from cities. Five Länder, including the south of

Switzerland, have a lower suicide rate. These regions turn out to be Catholic; the others are Pro-
testant.
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with heterogeneous beliefs is introduced in Section 4.2, and the convergence of beliefs
in Section 4.3.

One may go straight from Section 4.1.1 to Section 4.2, which contains an equally
simple model of social learning and delays. The standard model with delays is pre-
sented in Sections 6.2 and 6.3, which extend the standard model of herding in Sec-
tion 4.2.

Chapter 8, about social learning with the observation of outcomes, is fairly inde-
pendent from the others, but Section 8.3 leads to Section 9.2 in the following chapter.

Chapter 9 about networks has two distinct parts. Section 9.1, about diffusion and
innovations, does not require much preparation. Section 9.2 should be read with
reference to Section 5.3 (and the part of its chapter that leads to it), and also with
reference to Section 8.3, as previously indicated.

Chapter 10, on reputational herding, can be read immediately after the core ma-
terial on social herding (Sections 4.1.1 to 4.3 of Chapter 4). Herding by financial
advisors may be studied in relation to the financial herding in Part III.

The first chapter of Part II, on coordination (Chapter 11), is different from all
previous chapters. (There is only one period and therefore no learning.) The material
of that chapter is necessary for the rest of Part II.

Part III, on financial markets, can be only an introduction. It does not require
preliminary knowledge of finance. All the models are constructed from first principles.

The exercises at the end of some chapters proved to be useful when the material
of the book was taught in formal courses.

The web site of the book contains additional material, including news, recent
articles, and exercises. It is accessible at http://econ.bu.edu/chamley/rh/rh.html.
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Social Learning
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2 Bayesian Tools

Practice makes perfect.

The Bayesian framework is introduced. The main tools for the models in

this book are the binary model with two states of nature and the Gaussian

model with a normal distribution of information. The correspondence

between private information and private beliefs is discussed. Because

rational beliefs will often be martingales, the martingale convergence

theorem will be used repeatedly. Its mechanism is described intuitively.

A Witness with No Historical Knowledge
In a town there are cabs of two colors, yellow and red.1 Ninety percent of the cabs are
yellow. One night, a cab hits a pedestrian and leaves the scene without stopping. The
skills and the ethics of the driver do not depend on the color of the cab. An out-of-town
witness claims that the cab was red. The witness does not know the proportion of
yellow and red cabs in the town and makes a report on the sole basis of what he thinks
he has seen. Because the accident occurred at night, the witness is not completely
reliable, but it has been assessed that under similar circumstances, his probability of
making a correct statement is four out of five (whether the true color of the cab is
yellow or red). How should one use the information of the witness? Because of the
uncertainty, we should formulate our conclusion in terms of probabilities. Is it more
likely then that a red cab was involved in the accident? Although the witness reports
red and is correct 80 percent of the time, the answer is no.

Recall that there are many more yellow cabs. The red sighting can be explained
either by a yellow cab hitting the pedestrian (an event of high probability a priori) and
being incorrectly identified (an event with low probability), or a red cab hitting him
(with low probability) and being correctly identified (with high probability). Both
the a priori probability of the event and the precision of the signal have to be used in

1 The example is adapted from Salop (1987).
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the evaluation of the signal. Bayes’s rule provides the method for the updating of the
probabilities. Let R be the event “a red cab is involved,” and Y the event “a yellow
cab is involved.” Likewise, let r (y) be the report “I have seen a red (yellow) cab.”
The probability of the event R conditional on the report r is denoted by P (R|r ). By
Bayes’s rule,

P (R|r ) = P (r |R)P (R)

P (r )
= P (r |R)P (R)

P (r |R)P (R) + P (r |Y)(1 − P (R))
.

The probability that a red cab is involved before the testimony is heard is P (R) = 0.10.
The probability of a correct identification is P (r |R) and is equal to 0.8. The probability
of an incorrect identification is P (r |Y) and is equal to 0.2. Hence,

P (R|r ) = 0.8 × 0.1

0.8 × 0.1 + 0.2 × 0.9
= 4

13
.

This probability is much less than the precision of the witness, 80 percent, because
a red observation is more likely to come from a wrong identification of a yellow cab
than from a right identification of a red cab. The example illustrates the fundamental
principle of Bayesian learning, i.e., how prior beliefs are amended by a signal.

The example also illustrates some difficulties that individuals may have in practical
circumstances. Despite these difficulties,2 all rational agents in this book are assumed
to be Bayesians. The book will concentrate only on the difficulties of learning from
others by rational agents. The study of social learning between agents with limited
rationality is a task for the future.

A Witness with Historical Knowledge
Suppose now that the witness is a resident of the town who knows that only 10
percent of the cabs are red. In making his report, he tells the color that is the most
likely according to his rational deduction. If he applies the Bayesian rule and knows
his probability of making a mistake, he knows that a yellow cab is more likely to be
involved. He will report “yellow” even if he thinks that he has seen a red cab. If he
thinks he has seen a yellow one, he will also say “yellow.” His private information (the
color he thinks he has seen) is ignored in his report.

The occultation of the witness’ information in his report does not matter if he is the
only witness and if the recipient of the report attempts to assess the most likely event:
the witness and the recipient of the report come to the same conclusion. Suppose,
however, that there is a second witness with the same sighting skill (correct 80 percent
of the time) and who also thinks he has seen a red cab. That witness who attempts to
report the most likely event also says “yellow.” The recipient of the two reports learns
nothing from the reports. For him the accident was caused by a yellow cab with a
probability of 90 percent.

2 The ability of people to use Bayes’s rule has been tested in experiments, (e.g., Holt and Anderson,
1996). Economic rationality has also been tested in experiments, with mixed results.
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Recall that when the first witness came from out of town, he was not informed
about the local history, and he gave an informative report, “red.” That report may be
inaccurate, but it provides information. Furthermore, it triggers more information
from the second witness. After the report of the first witness, the probability of R
increased from 1

10 to 4
13 . When that probability of 4

13 is conveyed to the second witness,
he thinks that a red car is more likely. (This can be shown through an exercise by
application of Bayes’s rule).3 He therefore reports red. The probability according to
the inspector who hears the reports of the two witnesses is now raised to the level of
the last (second) witness.

The example shows how the suppression of information from one agent (the first
witness) leads to improved learning by the group of agents. Social learning may fail
when individuals use rationally all of their available information. The interaction
between rational individual learning and learning from others (social learning) will
be recurrent throughout the book. Before presenting the analysis of learning from
others, we review in this chapter some properties of rational (Bayesian) learning by a
single individual.

2.1 The Bayesian Framework

COMMON KNOWLEDGE

In any model of social learning, there is a set of agents, which can be finite, countable,
or a continuum. All agents know the structure of the model, i.e., they have the same
values for nature’s probabilities of the states, and they know how private signals are
determined. This information is common knowledge: each agent knows the structure,
knows that each agent knows the structure, knows that other agents know that each
agent knows the structure, and so on. What an agent does not know is the realizations
of the state and of the private signals.

The common knowledge of the structure of the model is a rather strong assump-
tion, which will need to be relaxed in further studies on social learning. Given the
current state of the literature, this assumption will be maintained here with a few
exceptions.

The models presented in this book do not aim at “generality,” a futile pursuit in
economics. We will have a canonical framework and make very specific assumptions
about the structure of private information. These “examples” will be used in order
to facilitate the analysis and clarify the mechanisms of social learning. The results
thus obtained will be general provided that we understand the essential properties
of the restrictive assumptions. We investigate now these essential properties for the
two main models of private informations that will be used in this book. All models
of social learning contain the following elements.

3 The right-hand side is now 0.8 × 4/(0.8 × 4 + 0.2 × 13) = 16
29

> 1
2
.



22 Bayesian Tools

a. Prior Distribution for the State of Nature θ

Nature chooses a state θ ∈ � according to some probability distribution. Throughout
the book, � will be a subset of R

n. One may assume that nature’s probability dis-
tribution is known by all agents, but this assumption is not necessary. It is essential,
however, that all the values of θ that have positive probability4 in nature’s distribution
have also positive probability in the prior distribution of the agents: an agent does
not rule out a priori any value of θ that can be chosen by nature. If the agent thinks
that some value of θ is impossible, no Bayesian learning will change that.

b. Private Information
In most models of learning, each agent has private information on the state of nature.
“Private” here means “known only to the agent and not observable directly by others.”
To model this information, we will assume that the agent receives a signal s that is
informative on θ : s has a probability distribution that depends on θ .

c. Bayesian Inference
The agent uses his signal s to update his distribution on θ . Formally, suppose that the
agent has a prior density5 on θ , which is denoted by f (θ), and that the distribution
of s conditional on θ has a density φ(s |θ). Following the observation of the value s ,
the distribution on θ is updated to f (θ |s ) using Bayes’s rule:

f (θ |s ) = φ(s |θ) f (θ)∫
φ(s |θ) f (θ)dθ

.(2.1)

We can simply state that

f (θ |s ) ∝ φ(s |θ) f (θ),

which means that f (θ |s ) is proportional to φ(s |θ) f (θ). The coefficient of propor-
tionality is such that the integral of the density is one. An equivalent formulation is
that for any two states θ0 and θ1,

f (θ1|s )

f (θ0|s )
= φ(s |θ1)

φ(s |θ0)

f (θ1)

f (θ0)
.(2.2)

This formulation of Bayes’s rule in terms of a likelihood ratio is particularly useful
when there are only two states of nature. Obviously, the signal s should bring some
information on θ : the functions φ(s |θ1) and φ(s |θ0) should be different for some
positive probability measure on s .

4 The term “positive probability” is meaningful only if the distributions are discrete (atomistic). We
need not dwell here on the technicalities that are required if the distributions have densities.

5 The updating formula is similar when the distributions have points with positive probabilities. See
for example the introduction to this chapter.
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d. Bayesian Learning with Finite States: The Log Likelihood Ratio
Assume there are a finite number of states θ j . The Bayesian rule for the update of the
probability of the states has a simple form when probability assessments are expressed
in terms of the logarithm of the likelihood ratio (LLR throughout the book). Let λ be
the LLR between two states before an observation x :

λ = log

(
P (θi )

P (θ j )

)
.

After the observation of the random variable x , which depends on the state, the LLR
is updated to λ′ such that

λ′ = λ + log

(
P (x|θi )

P (x|θ j )

)
.(2.3)

The updating term on the right-hand side is independent of the agent’s LLR. After
the observation of a random event, all the agent’s LLRs are translated by the same
amount.

2.2 Binary and Gaussian Information

In the simplest binary model, there are two states of nature and each individual
receives his information with a binary signal. In the Gaussian model, both the state
of nature and the private signals are the realizations of Gaussian (normal) random
variables. The binary model is a canonical model for bounded information, whereas
the Gaussian model presents nice and intuitive properties of the learning process.

2.2.1 The Binary Model

The space of the states has two elements: θ ∈ {θ0, θ1} with θ0 < θ1. These values can
be normalized to 0 and 1, the bad and the good state, respectively. The probability
distribution of any agent is characterized by one number, the probability of the good
state.

The private signal of an individual takes the value 1 or 0 with probabilities given
in Table 2.1. In general there will be a string of independent private signals, but in this
introduction we consider a single signal.

LEARNING FROM A BINARY SIGNAL

Let P (θ = j ) be the probability of state j ( j = 0, 1) for an agent with no private
signal. An agent endowed with a signal s updates his probability of θ by using Bayes’s
rule. Because there are two states of nature, this rule is conveniently expressed in terms
of likelihood ratios:

P (θ = 1 | s )

P (θ = 0 | s )
= P (s | θ = 1)

P (s | θ = 0)
.

P (θ = 1)

P (θ = 0)
.(2.4)
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TABLE 2.1 The binary model

State of
Nature

Signal

s = 1 s = 0

θ = 1 q 1 − q

θ = 0 1 − q ′ q ′

Following the observation of the signal s , the likelihood ratio between the good and
the bad states is updated with the updating multiplier :

P (s = 1 | θ = 1)

P (s = 1 | θ = 0)
= q

1 − q ′ .

This quantity is greater than 1 if and only if q + q ′ > 1. In that case, a signal s = 1
increases the probability of the good state θ = 1. It is a good signal. One sees immedi-
ately that this definition is arbitrary. If q + q ′ < 1, the signal s = 0 should be called
the good signal.

THE SYMMETRIC BINARY SIGNAL (SBS)

The private signal is symmetric if q ′ = q . Symmetry does not restrict the generality
of the analysis, and it simplifies its exposition. When the signal is symmetric, then by
convention s = 1 is good news: q > 1

2 . When there is a string of signals, formula (2.4)
can be applied repeatedly. A symmetric binary signal will often be used in this book
and will be called a SBS. The parameter q will be called the precision of the binary
signal, for an obvious reason.

2.2.2 The Gaussian Model

The state of nature is the realization of a normal random variable or vector. For
simplicity of notation, θ is a real number and its distribution is denoted by N (θ , σ 2

θ ).
The precision of the distribution is the reciprocal of the variance and is denoted by
ρθ = 1/σ 2

θ . In this book, when dealing with normal distributions, we will use both
the variance and the precision. The choice of the variable will depend on the context.

The private signal s has a normal (Gaussian) distribution and is defined by

s = θ + ε,

where ε is a noise that is independent of θ and normally distributed N (0, 1/ρε).

LEARNING FROM A GAUSSIAN SIGNAL

After the signal s is received, the updated distribution of θ is normal. The updating
rule will be used in one of two forms, depending on the context.
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If we use variances, the distribution is updated from N (m, σ 2) to N (m′, σ ′2),
where6

σ ′2 = σ 2σ 2
ε

σ 2 + σ 2
ε

,

m′ = αs + (1 − α)m with α = σ ′2

σ 2
ε

.

(2.5)

If we use the precision (the reciprocal of the variance), the distribution is updated
from N (m, 1/ρ) to N (m′, 1/ρ ′), where

ρ ′ = ρ + ρε ,

m′ = αs + (1 − α)m with α = ρε

ρ ′ .
(2.6)

The Gaussian model is very popular because of the simplicity of this learning rule,
which can be described in words: (i) after the observation of a signal of precision ρε ,
the precision of the subjective distribution is augmented by the same amount; (ii) the
posterior mean is a weighted average of the signal and the prior mean, with weights
proportional to the respective precisions. Because the ex post distribution is normal,
the learning rule with a sequence of Gaussian signals that are independent conditional
on θ is an iteration of (2.5).

The learning rule in the Gaussian model makes precise some general principles.
These principles hold for a wider class of models, but only the Gaussian model provides
such a simple formulation:

1. The normal distribution is summarized by the most intuitive two parameters of
a distribution, the mean and the variance (or its reciprocal, the precision).

2. The updating rules for both the mean and the precision are linear. This makes any
computation easier.

3. The weight of the private signal s depends on the noise-to-signal ratio in the
most intuitive way. When the variance of the noise term, σ 2

ε , tends to zero, or
equivalently its precision tends to infinity, the signal’s weight α tends to one and
the weight of the ex ante expected value of θ tends to zero. The expression of α

provides a quantitative formulation of the trivial principle according to which one
relies more on a more precise signal.

4. The signal s contributes to the information on θ , which is measured by the
increase in the precision of θ . According to the previous result, the increment
is exactly equal to the precision of the signal (the reciprocal of the variance
of its noise). The contribution of a set of independent signals is the sum of
their precisions. This property is plausible, but it rules out situations where new

6 To prove these expressions, use the fundamental Bayesian equation (2.1) to show that the distribution
of θ conditional on s is normal and that the precision and the mean are given by the previous
equations.
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information makes an agent less certain about θ , a point that is discussed further
below.

5. More importantly, the increase in the precision of θ is independent of the realization
of the signal s and can be computed ex ante. This is handy for the measurement
of the information gain that can be expected from a signal. Such a measurement
is essential to decide whether to receive the signal, either by purchasing it, or by
delaying a profitable investment to wait for it.

6. The Gaussian model will fit particularly well with the quadratic payoff function
and the decision problem, which will be studied later.

2.2.3 Comparison of the Two Models

In the binary model, the distinction between good and bad states is appealing. The
probability distribution is given by one number. The learning rule with the bi-
nary signal is simple. These properties are convenient when solving exercises. The
Gaussian model is convenient for other reasons, which were enumerated previ-
ously. It is important to realize that each of the two models embodies some deep
properties.

THE EVOLUTION OF CONFIDENCE

When there are two states, the probability distribution is characterized by the prob-
ability µ of the good state. This value determines an index of confidence: if the two
states are 0 and 1, the variance of the distribution is µ(1 − µ). Suppose that µ is near
1 and that new information arrives that reduces the value of µ. This information
increases the variance of the estimate, i.e., it reduces the confidence in the estimate.
In the Gaussian model, new signals cannot reduce the precision of the subjective
distribution. They always reduce its variance.

BOUNDED AND UNBOUNDED PRIVATE INFORMATION

Another major difference between the two models is in the strength of the private
information. In the binary model, a signal has bounded strength. In the updating
formula (2.4), the multiplier is bounded. (It is either q/(1 − q ′) or (1 − q)/q ′.)
When the signal is symmetric, the parameter q defines its precision. In the Gaussian
model, the private signal is unbounded and the changes of the expected value of θ

are unbounded. The boundedness of a private signal will play an important role in
social learning: a bounded private signal is overwhelmed by a strong prior. (See the
example at the beginning of the chapter.)

BINARY STATES AND GAUSSIAN SIGNALS

If we want to represent a situation where confidence may decrease and the private
signal is unbounded, we may turn to a combination of the two previous models.
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Assume that the state space � has two elements, � = {θ0, θ1}, and the private
signal is Gaussian:

s = θ + ε with ε ∼ N (0, 1/ρ2
ε ).(2.7)

Equation (2.3), which updates the LLR between θ1 and θ2, becomes

λ′ = λ + ρε(θ1 − θ0)

(
s − θ1 + θ0

2

)
.(2.8)

Because s is unbounded, the private signal has an unbounded effect on the subjective
probability of a state. There are values of s such that the likelihood ratio after s is
received is arbitrarily large.

2.2.4 The Rate of Convergence of Learning

The efficiency of a learning process may be measured by the rate of convergence
of beliefs to the truth. This rate will have to be compared with a benchmark: no
learning process can generate more information than the (fictitious) setting where
the information of others is directly observable. That setting will therefore be used
as a benchmark. We now compare the rates of convergence for the binary and the
Gaussian signals.

BINARY SIGNALS

There are two states of nature, 0 and 1, and the agent receives a sequence of SBSs
{st} with precision q : P (st = θ |θ) = q . By use of the Bayesian updating in (2.3), the
evolution of the LLR is given by

λt+1 = λt + ζt with ζt = 2a
(
st − 1

2

)
, a = log

(
q

1 − q

)
> 0.(2.9)

Assume that the true state is θ = 0. The variable st has a mean 1 − q . One can easily
verify that the random variable ζt has a bounded variance and a strictly negative
mean, −γ :

γ = a(2q − 1) > 0.(2.10)

This expression shows that the LLR, λt , tends to −∞. The belief (probability of state
θ1) in period t is equal to

µt = eλt

1 + eλt
≤ eλt .
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Therefore, the belief µt tends to 0 exponentially. A precise statement is provided in
the next lemma.7

LEMMA 2.1 Assume θ = 0. For any γ ∈ (0, γ ), γ > 0 defined in (2.10), if µt =
E [θ |s1, . . . , st], then µt = e−γ t zt where zt tends to 0 almost surely.

The variance of the distribution on θ in period t is µt(1 − µt). When t → ∞,
µt → 0 and the variance tends to 0 like µt , i.e., exponentially.

GAUSSIAN SIGNALS

By assumption, the state θ is drawn from N (µ0, 1/ρ0) and the signal in period t is
st = θ + εt with εt ∼ N (0, 1/ρε). For simplicity, assume µ0 = 0. From the standard
equation of learning in the Gaussian model (2.5),

E [θ |s1, . . . , st] = s1 + · · · + st

t
and Var(θ |s1, . . . , st) = 1

ρ0 + tρε

.

The variance tends to 0 like 1/t. This does not mean that the convergence in the
Gaussian model is slower than in the binary model.

A COMPARISON

In the Gaussian model, the signals have to provide information on an accurate “loca-
tion” of θ , which can take any value in the continuum of real numbers. In the binary
model, the two possible values of θ are well separated: without loss of generality, θ is
either 0 or 1.

The variance tends to 0 relatively slowly in the Gaussian model because the receiver
of a signal has to distinguish between arbitrarily close values of θ . If, however, the
receiver already knows that the values of θ are in a discrete set, the Gaussian signals
produce very fast convergence. This can be seen by considering the model that is
specified in equation (2.7). From (2.8), the LLR between the two states θ1 and θ0 in
period t is

λt+1 = λt + ζt with ζt =
(

θ1 − θ0

σ 2
ε

)(
st − θ0 + θ1

2

)
.

Assume for simplicity that θ0 = 0 and θ1 = 1 and the true state θ = 0. The variable ζt

is normal with a mean −1/(2σ 2
ε ). The argument in Lemma 2.1 applies. The conver-

gence of the belief is exponential.
In the Gaussian model where the prior distribution of θ is normal, the sequence

of Gaussian signals also leads to exponential convergence for values of θ that are

7 Choose γ such that 0 < γ < γ . Let νt = λt + γ t. We have νt+1 = νt + ζ ′
t with E [ζ ′

t ] = −(γ − γ )
< 0. Therefore, νt = ν0 +∑t−1

k=1 ζ ′
k .
∑n

k=1 ζ ′
k/n tends to −(γ − γ ) < 0 almost surely. Hence,∑t−1

k=1 ζ ′
k tends to −∞ almost surely. Therefore, νt tends to −∞ and eνt tends to 0, almost surely. By

definition of νt , µt ≤ e−γ t eνt .
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distant from the true value. The precise formulation of that convergence is given in
the following lemma. The proof is left to the reader (Exercise 2.2).

LEMMA 2.2 Assume that the prior distribution of θ is normal and that the agent receives
a signal st = θ + εt in period t. Then for any α > 0, there exist a1, a2, γ positive such
that

a1e−γ t zt < P (|θ − θ0| > α|s1, . . . , st) < a2e−γ t zt ,

where θ0 is the actual value of θ, and zt is a positive random variable with a stationary
distribution.

YOUNGSTERS AND OLD TIMERS IN A GAUSSIAN MODEL

A nice application of the learning rules with Gaussian distributions is found in a
model of Prendergast and Stole (1996). There is a state of nature θ that is drawn from
a normal distribution N (0, 1/ρθ ) and fixed at the beginning of time. There are two
agents A and B . In each period t, each agent receives a noisy signal on θ , st = θ + ε.
All signals are independent over time, conditional on θ . The precision of the signal of
agent A is ρA (which is the same as the precision of the noise), and that of agent B is
ρB with ρA > ρB : agent A is getting signals of higher precision. We have a fast learner
(agent A) and a slow learner (agent B). Before the first signal, both agents have the
same zero expected value on θ and the same precision ρθ . Each agent observes only
his own signals. The question is: how does each agent change his expected value of θ

over time? Loosely speaking: how do the two agents change their minds over time?
Let an agent’s opinion be his expected value of θ . When an agent receives a signal,

he forms a new opinion, which is an average of his ex ante opinion (derived from
history), and the signal. (Recall the learning rule (2.5).) During the first few periods,
the fast learner changes his mind more regarding his expected value of θ , than the
slow learner, because his signal has a higher precision than the precision of history.
After a while, though, the weight of history becomes greater for A than for B , because
agent A has accumulated information from signals of higher precision. Intuition
indicates that the fast learner will change his opinion less than the slow learner after
some time. Prendergast and Stole (1996) formalize this argument. They show how
each agent goes through two regimes: first, as a youngster, his opinion fluctuates
relatively widely as he gets more signals; second, as an old timer, his opinion is settled
and not sensitive to new signals. The length of the first regime depends on the precision
of the private signals he receives. An agent who keeps changing his mind reveals that he
is not getting accurate signals.8 The model is presented in the appendix (Section 2.5)
and is a good exercise about the learning rules.

8 The contribution of the article is to show that an agent may thus alter his actions to fool an observer
who knows the model and tries to evaluate the precision of the private signal.
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The result of Prendergast and Stole rests on one of the properties of the Gaussian
model: as time goes on, agents are more confident about their estimates. Such an
optimistic view is not embedded in the binary model, where agents may become less
confident after receiving more information (p. 26). In such a model, we could observe
conformist youngsters and sudden drastic changes of beliefs in middle age.

2.3 Private Signals and Beliefs

An individual’s knowledge is represented by his probability estimate of the state of
nature. Such a probability estimate will be called a belief.

DEFINITION 2.1 A belief is a probability distribution on the set of states of nature �.

PRIVATE BELIEFS

The private information is modeled in the previous sections by private signals. We
have seen how an individual converts a signal into a belief. The belief that is formed
from the prior probability of the state and the private signal will be called the private
belief. This is an endowment of the agent that represents all the individual’s knowledge
at the beginning of time. When the number of states is finite, it is often simpler to
assume directly that agents are endowed with private beliefs.

2.3.1 Equivalence between Private Signals and Private Beliefs

Assume there are two states of nature, θ0 and θ1, and agents receive a private signal s
with a density9φ(s |θ), which satisfies the monotone likelihood ratio property (MLRP):
φ(s |θ1)/φ(s |θ0) is monotone in s . Using a suitable convention, we can assume that
this ratio is increasing. Let µ be nature’s probability of state θ1 and µ̂(s ) the belief of
an agent with signal s , i.e., his probability of state θ1. From (2.2),

µ̂(s )

1 − µ̂(s )
= φ(s |θ1)

φ(s |θ0)

µ

1 − µ
.(2.11)

Let f (µ|θ) be the density of the distribution of private beliefs in state θ . We have

f (µ|θ) = φ(s |θ)
dµ̂(s )

ds
with µ = µ̂(s ).

Substituting in equation (2.11), we find that the densities of the beliefs in the two
states satisfy the following equation:

f (µ|θ1)

f (µ|θ0)
= φ(µ̂−1(µ)|θ1)

φ(µ̂−1(µ)|θ0)
= µ

1 − µ

1 − µ

µ
.

9 The discussion is identical when the distribution is discrete.
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PROPORTIONAL PROPERTY

Assume there are two states of nature θ0 and θ1. The densities of beliefs in the two
states satisfy the proportional property if

f (µ|θ1)

f (µ|θ0)
= χ

µ

1 − µ
where χ is a constant.(2.12)

Assume now two densities f 1(µ) and f 0(µ) that satisfy the proportional property.
Define the signal s = µ. The distributions of beliefs are generated by the signal s with
density f (s |θi ) = f i (s ) and the initial probability µ of state θ1 such that χ = (1 −
µ)/µ. These arguments show that there is an equivalence between the endowments
of private signals and the endowments of private beliefs that satisfy the proportional
property.

PROPOSITION 2.1 Assume two states θ0 and θ1. The specifications of a probability
for state θ1 and a signal s with densities φ(s |θ1) and φ(s |θ0) are equivalent to the
specifications of two densities of beliefs f (µ|θ1) and f (µ|θ0) that satisfy the proportional
property.

This proposition may be generalized to the case of an arbitrary number of states
of nature. We now provide some examples of distributions of private beliefs, which
will be used later in the book.

Two distributions that satisfy the proportional property satisfy the property of
first-order stochastic dominance. The proof of the next result is left as an exercise.

PROPOSITION 2.2 Let f (µ|θ1) and f (µ|θ0) be distributions of beliefs that satisfy
(2.12) in the definition of the proportional property, and F 1 and F 2 be the associated
cumulative distribution functions. Then F 1 dominates F 0 in the sense of first-order
stochastic dominance: for any µ ∈ (0, 1), F 1(µ) ≤ F 0(µ).

2.3.2 Examples of Distributions of Beliefs with Two States

IDENTICAL BELIEFS

Assume that there are N agents and that in state θ1, m1 of these agents (chosen
randomly) are players, whereas the number of players in state θ0 is m0. This structure is
common knowledge (i.e., each player knows the structure, knows that the other players
know the structure and that the other players know that he knows the structure, and
so on). A player gets a signal on θ from his own existence: if µ is the ex ante probability
of the state of nature (the public belief), the belief of each agent (probability of state
θ1) is µ with

µ

1 − µ
= m1

m0

µ

1 − µ
.(2.13)
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Figure 2.1 Distributions of private beliefs. The values of the private belief in the first period,
µ̂1, are measured on the vertical axis.

This case is convenient if we want a model with identical beliefs (as in the model with
delays of Chamley and Gale, 1994). Note that the number of players is not the same
in the two states of nature. Hence, the state has an effect on the real structure of the
economy, and not only on the information structure. In this simple case, there is no
restriction on the ratio m1/m0. For any such ratio and any belief µ, there is a public
belief µ such that equation (2.13) is satisfied.

TWO DIFFERENT BELIEFS AND BINARY SIGNALS

Assume now that the number of agents is independent of the state. Binary signals
generate two values of the private beliefs, optimistic and pessimistic. Taking the gen-
eral form of Table 2.1 and assuming a public belief µ, we find that these two values
are such that

µ+

1 − µ+ = q

1 − q ′
µ

1 − µ
and

µ−

1 − µ− = 1 − q

q ′
µ

1 − µ
.

We can also posit two values µ+, µ− and two probabilities π1, π0 such that the prob-
ability of being an optimist in state θ is πθ . From Proposition 2.1, these parameters
are compatible with the Bayesian construction if and only if they satisfy

µ+

1 − µ+ = π1

π0

µ

1 − µ

µ−

1 − µ− = 1 − π1

1 − π0

µ

1 − µ
,

where µ is a free parameter in the interval (0, 1).
The previous two cases are illustrated in the first two panels of Figure 2.1. In the

middle panel, the private signal is not symmetric: P (s = 1|θ = 1) = 0.4 and P (s =
0|θ = 0) = 0.8; the two states are equally likely. The case of atomless distributions
with support of the densities in the interior of the interval (0, 1) is illustrated in the
third panel.

An important property of the information structure is whether the distribution
of private beliefs is bounded or not. In an unbounded distribution, there are agents
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with arbitrarily strong beliefs (with µ arbitrarily close to 1 or to 0). The expression of
a belief in terms of LLRs provides a simple definition.

DEFINITION 2.2 A distribution of belief is bounded if the support of the distribution of
LLRs is bounded.

From Bayes’s rule (2.3), if the distribution is bounded (unbounded) in some
period, it is bounded (unbounded) in every period.

An example of an unbounded distribution with densities is generated by the private
signal s = θ + ε, with a noise ε ∼ N (0, σ 2

ε ). Nature’s probabilities of the two states
θ0 and θ1 are identical, for simplicity. Conditional on the signal s , the LLR is λ(s )
with10

λ(s ) =
(

θ1 − θ0

σ 2
ε

)(
s − θ1 + θ0

2

)
.(2.14)

The distributions of the LLR in the two states are Gaussian because λ(s ) is a linear
function of s , which has a Gaussian distribution.

2.3.3 Other Constructions of Private Information

In all previous models of private information, the construction of private signals
is in two steps: (i) the state of nature θ is drawn randomly; (ii) private signals are
drawn randomly according to distributions that depend on the state θ . Some models
are more tractable when the process is reversed: (i) the private signals are drawn
randomly and independently; (ii) the state of nature is a deterministic function of the
private signals. In this case, a private signal generates imperfect information about
the state. The following example, which has been used by Gul and Lundholm (1995)
and by Gale and Kariv (2002), illustrates the method.

Assume two agents, 1 and 2. Each agent i receives an independent signal si with
a uniform distribution on the interval [0, 1]. The state is defined by θ = s1 + s2.
The structure can be generalized to a finite number of agents. This definition of the
private signals may facilitate the inference when agents observe others’ actions. The
private belief of an agent with signal s is that θ is uniformly distributed on the interval
[s , s + 1].

2.4 Martingales

Bayesian learning satisfies a strong property with respect to the revision of the distri-
bution of the states of nature. Suppose that before receiving a signal s , our expected

10 λ(s ) = log(P (s |θ = θ1)/P (s |θ = θ0)), with P (s |θ) = exp(−(s − θ)2/(2σ 2
ε )).
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value of a real number θ is E [θ]. This expectation will be revised after the reception
of s . Question: given the information that we have before receiving s , what is the
expected value of the revision? Answer: zero. If the answer were not zero, we would
incorporate it in the expectation of θ ex ante. This property is the martingale property.
The similarity of this property to that of an efficient financial market is not fortuitous:
in a financial market, updating is rational and it is rationally anticipated. Economists
have often used martingales without knowing it.

The previous argument is intuitive. It is now formalized. Assume that information
comes as a sequence of signals st , one signal per period. Assume further that these
signals have a distribution that depends on θ . They may or may not be independent,
conditional on θ , and their distribution is known. Define the history in period t as
ht = (s1, . . . , st), and the expected value of θ in period t as µt = E [θ |ht]. Because
the history ht is random, µt is a sequence of random variables, which will be shown
to satisfy the martingale property.

In this book, the martingale property is defined for a sequence of real random
variables as follows.11

DEFINITION 2.3 The sequence of random variables Xt is a martingale with respect to
the history ht = (s1, . . . , st−1) if and only if

Xt = E [Xt+1|ht].

Suppose that an agent has a distribution on θ with mean E [θ] and receives a signal
s with a distribution that depends on θ . By the rules for conditional expectations,

E
[

E [θ |s ]
]

= E [θ], and the next result follows.12

PROPOSITION 2.3 Let µt = E [θ |ht] with ht = (s1, . . . , st−1). It satisfies the martin-
gale property: µt = E [µt+1|ht].

Let A be a set of values for θ , A ⊂ �, and consider the indicator function IA for the
set A, which is the random variable given by

IA(θ) =
{

1 if θ ∈ A,
0 if θ /∈ A.

Using P (θ ∈ A) = E [IA] and applying the previous proposition to the random vari-
able IA gives the next result.

11 A useful reference is Grimmet and Stirzaker (1992).
12 Assume for example that θ has a density g (θ), and that s has a density φ(s |θ) conditional on θ .

Let ψ(θ |s ) be the density of θ conditional on s . By Bayes’s rule, ψ(θ |s ) = φ(s |θ)g (θ)/φ(s ), with
φ(s ) = ∫

φ(s |θ)g (θ)dθ . With
∫

φ(s |θ)ds = 1 for any θ ,

E
[

E [θ |s ]
]

= ∫ (∫
θψ(θ |s )dθ

)
φ(s )ds = ∫∫

φ(s |θ)θg (θ)ds dθ = ∫
θg (θ)dθ

= E [θ].
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PROPOSITION 2.4 The probability assessment of an event by a Bayesian agent is a
martingale: for an arbitrary set A ⊂ �, let µt = P (θ ∈ A|ht), where ht is the history
of informations before period t; then µt = E [µt+1|ht].

The likelihood ratio between two states θ0 and θ1 cannot be a martingale given the
information of an agent. However, if the state is assumed to take a particular value,
then the likelihood ratio may be a martingale.

PROPOSITION 2.5 Conditional on θ = θ0, the likelihood ratioP (θ = θ1|ht)/P (θ =
θ0|ht) is a martingale.

This result has an interesting application. Assume two states θ0 and θ1, and let
µt = P (θ = θ1|ht). Assume further that the true state is θ0 and that the process of
learning is such that the belief converges to the truth: µt converges to 0. The same
is true for the likelihood ratio µt/(1 − µt). However, the previous proposition im-
plies that µt/(1 − µt) is a martingale. Therefore, its expected value cannot converge
to 0. The likelihood ratio converges to 0, but for some histories it becomes arbitrarily
large. The probabilities of these histories are vanishingly small. The interesting fact is
that in some models µt may be bounded. In that case, learning cannot converge to
the truth.

PROPOSITION 2.6 Assume two states θ0, θ1, and let µt = P (θ = θ1|ht). If µt is
bounded (µt < M for some finite M), then µt cannot converge to 0 in probability if
the true state is θ0.

The argument will be used later to show in a simple model that a selling firm
managed by a sequence of myopic individuals cannot learn its demand curve (Section
8.1.1). The proof is left as an exercise.

2.4.1 Convergence of Beliefs

The martingale property is a wonderful tool in Bayesian learning because of the mar-
tingale convergence theorem (MCT). Consider a Bayesian rational agent who receives a
sequence of signals. Let his belief be his subjective probability assessment of an event,
{θ ∈ A}, for some fixed A ⊂ �. Can the agent keep changing his belief in endless
random fluctuations? Or does this belief converge to some value (possibly incorrect)?
The answer is simple: it must converge.

The belief must converge because the probability assessment is a bounded martin-
gale. The convergence of a bounded martingale, in a sense that will be made explicit,
is a great result that is intuitive. The essence of a martingale is that its changes cannot
be predicted, like the walk of a drunkard in a straight alley. The sides of the alley are
the bounds of the martingale. If the changes of direction of the drunkard cannot be
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predicted, the only possibility is that these changes gradually taper off. For example,
the drunkard cannot bounce against the side of the alley: once he hits the side, the
direction of his next move would be predictable.

THEOREM 2.1 (Martingale Convergence Theorem) If µt is a martingale with
E [µ2

t ] < M < ∞ for some M and all t, then there exists a random variable µ such
that µt converges to µ almost surely and in mean square.

Most of the social learning in this book will be about probability assessments
that the state of nature belongs to some set A ⊂ �. By Proposition 2.4, the proba-
bility assessments satisfy the martingale property. They are obviously bounded by 1.
Therefore they converge to some value.

PROPOSITION 2.7 Let A be a subset of � and µt be the probability assessment µt =
P (θ ∈ A|ht), where ht is a sequence of random variables in previous periods. Then there
exists a random variable µ∗ such that µt → µ∗ almost surely and in mean square.

We can apply the previous result to the set A = {θ |θ ≤ θ̂} for any value θ̂ ∈ R
n.

We have then the next result, which shows that the distribution of θ converges to a
limit distribution.

PROPOSITION 2.8 Let Ft(θ) be the cumulative distribution function (c.d.f.) of θ ∈ �

⊂ R
n, conditional on ht . Then there exists a function F ∗(θ) such that Ft(θ) → F ∗(θ)

almost surely and in mean square.

A Heuristic Remark on the Proof of the Martingale Convergence Theorem
The main intuition of the proof is important for our understanding of Bayesian learn-
ing. It is a formalization13 of the metaphor of the drunkard. In words, the definition
of a martingale states that agents do not anticipate systematic errors. This implies that
the updating difference µt+1 − µt is uncorrelated with µt . The same property holds
for more distant periods: conditional on the information in period t, the random
variables µt+k+1 − µt+k are uncorrelated for k ≥ 0. Because

µt+n − µt =
n∑

k=1

µt+k − µt+k−1,

we have, conditional on ht ,

Var(µt+n) =
n∑

k=1

Var(µt+k − µt+k−1).

Because E [µ2
t+n] is bounded, Var(µt+n) is bounded: there exists A such that

13 The proof is given in Grimmet and Stirzaker (1992). The different notions of convergence of a
random variable are recalled in the appendix (Section 2.5).



2.4 Martingales 37

for any n,
n∑

k=1

Var(µt+k − µt+k−1) ≤ A.

Because the sum is bounded, truncated sums after date T must converge to zero as
T → ∞: for any ε > 0, there exists T such that for all n > T ,

Var(µT+n − µT ) =
n∑

k=1

Var(µT+k − µT+k−1) < ε.

The amplitudes of all the variations of µt beyond any period T become vanishingly
small as t → 0. Therefore µt converges14 to some value µ∞. The limit value is in
general random and depends on the history.

RATIONAL (BAYESIAN) AND NONRATIONAL LEARNING

The application of the MCT to Bayesian learning is remarkable: in order to see whether
the Bayesian learning from the history converges, one looks into the future and uses
the fact that the future changes of beliefs must be bounded and therefore eventual-
ly tend to zero. This deep property distinguishes rational Bayesian learning from other
forms of learning. Many adaptive (mechanical) rules of learning with fixed weights
from past signals are not Bayesian and do not lead to convergence. In Kirman (1993),
agents follow a mechanical rule that can be compared to ants searching for sources of
food, and their beliefs fluctuate randomly and endlessly.

How can such an argument about the future determine a property about learning
from the past? The linchpin between the past and the future is of course the martingale
property itself: when the learning is rational (based on conditional probabilities),
future changes that can be predicted should be incorporated in the current beliefs,
which are based on learning from the past.

The next result shows that a Bayesian agent who learns from history cannot be
completely wrong: if his initial probability assessment of the true state is strictly posi-
tive, then his probability assessment of the true state in period t cannot be vanishingly
small. Because his probability assessment tends to some limit by the MCT, that limit
cannot be zero.

PROPOSITION 2.9 (Learning cannot be totally wrong, asymptotically) Let
� = {θ1, . . . , θK } be the finite set of states of nature, µt = {µ1

t , . . . , µK
t } the proba-

bility assessment of a Bayesian agent in period t, and µ1
1 > 0, where θ1 is the true state.

Then for any ε > 0,

P (µt < ε) < ε/µ1
1.

If µ1 is the limit value of µ1
t , P (µ1 = 0) = 0.

14 The convergence of µt is similar to the Cauchy property in a compact set for a sequence {xt}: if
supk |xt+k − xt | → 0 when t → ∞, then there is x∗ such that xt → x∗. The main task of the proof
is to analyze carefully the convergence of µt .
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Under Bayesian learning, if the subjective distribution on θ converges to a point,
it must converge to the truth.

Proof

Consider the set A of values of µ1
t such that |µ1

ε| < ε. Let Ht be the set of histories ht

such that µ1
t ∈ A. P (µ1

t ∈ A) = P (ht ∈ Ht). For any history ht ,

µ1
t = P (θ = θ1|ht) = P (ht |θ = θ1)µ1

1

P (ht)
.

Therefore,

P (ht |θ = θ1) = µ1
t

µ1
1

P (ht) ≤ ε

µ1
1

P (ht),

P (ht ∈ Ht |θ = θ1) = ε

µ1
1

P (ht ∈ Ht) ≤ ε

µ1
1

.

EXERCISES

EXERCISE 2.1 Application of Bayes’s rule

Assume that an agent undertakes a project that succeeds (fails) with probability θ

(1 − θ), where θ is drawn from a uniform distribution on (0, 1).

1. Determine the ex post distribution of θ for the agent after the failure of the project.
2. Assume that the project is repeated and fails n consecutive times. The outcomes

are independent with the same probability θ . Determine an algebraic expression
for the density of θ of this agent. Discuss intuitively the property of this density.

EXERCISE 2.2 Proof of Lemma 2.2

To prove the lemma,

1. show that πt = P (θ > α|s1, . . . , st) = (1/
√

2π)
∫∞

1/2σt−v e−u2/2du, where v is dis-
tributed N (0, 1) and σ 2

t = σ 2
ε /t;

2. find suitable upper and lower bounds of the integral for the conclusion of the
proof.

EXERCISE 2.3

Prove Proposition 2.2.

2.5 Appendix

2.5.1 Some Definitions Regarding Convergence

A careful analysis of the convergence of beliefs and actions in social learning re-
quires the construction of a probability space. Most studies avoid that task, which is
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cumbersome, and prefer to rely on the intuition of the reader. Notable exceptions are
Easley and Kiefer (1988) and Bala and Goyal (1995).

DEFINITION 2.4 Let X1, X2, . . . , X be random variables on some probability space
(�, F , P ). We say that

(a) Xn →X almost surely, written Xn
a.s.
−→ X, if {ω ∈ � : Xn(ω) →X(ω) as n →∞} is an

event whose probability is 1.
(b) Xn →X in r th mean, where r ≥ 1, written Xn

r
−→ X, if E [|Xr

n|] < ∞ for all n and
E [|Xn − X|r ] →0 as n →∞.

(c) Xn →X in probability, written Xn
p

−→ X, if P (|Xn − X| ≥ ε) → 0 as n →∞.
(d) Xn →X in distribution, written Xn

D
−→ X, if P (Xn ≤ x) →P (X ≤ x) as n → ∞ for

all points x at which F X (x) is continuous.

The only property that requires some comment is that convergence in probability
does not imply convergence almost surely. Think of a random process, say a probability
assessment µt of some state. If µt →0 in probability, the probability that µt is greater
than some arbitrary value ε tends to zero. However, we could have that for any history,
µt > ε infinitely often (with the probability of that event in a period t tending to 0
as t →∞). In that case, µt never tends to 0. Examples of convergence in probability
that do not imply convergence almost surely are simple to find. However, at this stage,
there is no study of social learning with an example of convergence in probability and
no convergence almost surely.

THEOREM 2.2 (Grimmett and Stirzaker, 1992) The following implications hold:
For any r ≥ 1,

(Xn
a.s.
−→ X)

(Xn
r

−→ X)

}
⇒ (Xn

p
−→ X) ⇒ (Xn

D
−→ X).

If r ≥ s , then (Xn
r

−→ X) ⇒ (Xn
s

−→ X).

2.5.2 The Model of Youngsters and Old Timers

The expectation of an agent at the beginning of period t is defined here as µt =
E [θ |ht] and depends on the history ht = {s1, . . . , st−1} of the signals he has received.
It varies over time as the agent gets more signals. The variability of the expecta-
tion between consecutive periods is characterized by the variance of the expecta-
tion conditional on all the information available at the beginning of the period,
Var(µt+1 − µt |ht). The relation between the variability of the changes and the preci-
sion of the signals is characterized by the next result, which is proven at the end of the
section.
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PROPOSITION 2.10 Let µt = E [θ |ht], where ht = {s1, . . . , st−1} is a string of inde-
pendent signals with distribution N (θ , 1/ρ). The variance of the change of the expecta-
tion µt from period t to period t + 1, Var(µt+1|ht), is an increasing (decreasing) function
of the precision of the individual signals, ρ, if and only if ρ is smaller (greater) than the
critical value ρ∗ defined by

ρ∗ = ρθ/
√

t(t − 1).

Given the precision ρ of the signals of an agent, the previous equation defines a
critical value of time, t∗(ρ):

t∗(ρ)
(

t∗(ρ) − 1
)

=
(ρθ

ρ

)2
.

The periods t < t∗(ρ) form the learning regime of the “youngsters” during which the
variance of the change of belief increases with the precision of an agent’s signal. When
t > t∗(ρ), the agent is an “old timer” who adjusts less when his precision is higher.

COROLLARY 2.1 For a given ρ, the learning phase extends to the smallest number t∗

such that

t∗(t∗ − 1) = ρ2
θ /ρ

2.

The length of the learning phase is inversely related to ρ. The property is intuitive:
an agent learns more rapidly with signals of high precision than of low precision.
He changes his mind rapidly during a few periods, after which his opinion does not
move very much. An agent with signals of low precision keeps changing his mind (by
a small magnitude) for a larger number of periods.

From Proposition 2.10, in each period t there is a value ρ∗ that separates high-
precision agents (with ρ > ρ∗) who are in an adjusting phase from low-precision
agents (with ρ < ρ∗) in a learning phase. The former have an ex ante variance of
action that is a decreasing function of their precision ρ, whereas the opposite is true
for the latter. Suppose now that an outside observer attempts to evaluate the precision
of the private signal received by an agent. The evaluator observes only the actions
taken by the agent, which depend on his estimate of θ , µt , and the evaluation. An
agent has an incentive to change less than he would with no evaluation, because he
wants to show that he already knows much (that his ρ is high). Prendergast and Stole
(1996) analyze the distortion that is created by the evaluation of the agent’s actions.

Proof of Proposition 2.10

By use of the learning rule with Gaussian distribution (2.5), the expected value of θ

at the end of period t is N (µt+1, ρt+1) with

µt+1 = ρ

ρθ + tρ
st +

(ρθ + (t − 1)ρ

ρθ + tρ

)
µt .
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The weight on the new signal st increases with ρ. Note, however, that the weight does
not tend to 1 as ρ → ∞ (as it would in the first period), because a high ρ means
that previous estimates of θ have also a high precision (because they are made with
signals of high precision). At the beginning of period t, the agent knows that his
end-of-period expectation is a random variable that is linear in the signal s with a
variance equal to

Var(µt |ht) = 1

(t + ρθ/ρ)2 Var(st |ht).

Because st = θ + εt ,

Var(st |ht) = Var(θ |ht) + 1

ρ
= 1

ρθ + (t − 1)ρ
+ 1

ρ
.

Substituting in the previous expression, we obtain

Var(µt |ht) = ρ

(ρθ + tρ)(ρθ + (t − 1)ρ)
.(2.15)

For t ≥ 2, this variance is a nonmonotone function of ρ. For large ρ, the variance
decreases toward 0 as ρ → ∞. For a given t, because the agent has learned so much
in the past (t ≥ 2), history becomes more important compared with a new signal
when ρ increases. The converse is true when ρ is small. The maximum of the vari-
ance is attained for the value ρ∗, which depends on the period t as specified in the
proposition.



3 Social Learning with a Common Memory

Actions speak louder than words.

The basic model of learning from others’ actions is presented. Individual

actions are the means of communication between agents. When the set of

actions is sufficiently large and the actions are observed perfectly, social

learning is efficient. When actions are observed through a noise, the

public information in history slows down social learning.

Why learn from others’ actions? Because these actions reflect something about their
information. Why don’t we exchange information directly using words? People may
not be able to express their information well. They may not speak the same language.
They may even try to deceive us. What are we trying to find? A good restaurant, a
good movie, a tip on the stock market, whether to delay an investment or not, etc.
Other people know something about it, and their knowledge affects their behavior,
which, we can trust, will be self-serving. By looking at their behavior, we will infer
something about what they know. This chain of arguments will be introduced here
and developed in other chapters. We will see how the transmission of information
may or may not be efficient and may lead to herd behavior, to sudden changes of
widely believed opinions, etc.

For actions to speak and to speak well, they must have a sufficient vocabulary and
be intelligible. In the first model of this chapter, individuals are able to fine-tune their
action in a sufficiently rich set, and their decision process is perfectly known. In such a
setting, actions reflect perfectly the information of each acting individual. This case is
a benchmark in which social learning is equivalent to the direct observation of others’
private information. Social learning is efficient in the sense that private actions convey
private information perfectly.

Actions can reveal private information perfectly only if the individuals’ decision
processes are known. Surely, however, private decisions depend on private information
and on personal parameters that are not observable. When private decisions depend
on unobservable idiosyncrasies, or equivalently when their observation by others is

42
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garbled by noise, the process of social learning can be much slower than in the efficient
case (Vives, 1993).

3.1 A Canonical Model of Social Learning

The purpose of a canonical model is to present a structure that is sufficiently simple
and flexible to be a tool of analysis for a number of issues. Most models in this book
are built with the following blocks:

• the structure of information,

• the payoff function and the action set,

• the observability of others.

3.1.1 The Model

THE INFORMATION ENDOWMENTS

We want to analyze how the information of individuals is spread through the observa-
tions of their actions. In order to isolate this process, we assume that the information
of all agents is given at the beginning of time. This information comes in two parts,
as in the previous chapter:

1. The state of nature is the value of a parameter θ belonging to a set �: θ ∈ �. By
assumption, θ is the realization of a random variable that takes values in the set
� and cannot be observed directly by anyone. By an abuse of notation, θ denotes
both the random variable and its realization.

2. There are N individuals. (In general, N is finite, but there could be a countable
set of agents or even a continuum.) Each individual i has private information in
the form of a private signal si : it is a random variable whose distribution depends
on θ ; the value of the signal gives some information on the true value of θ . Private
signals are by definition not observable by others. Without loss of generality,
private signals are independent conditional on the state of nature θ .

We saw in the last chapter how different private signals generate a diversity of
private beliefs. At this stage, it may be better to model private information by a private
signal. Recall that a private belief is an endowment and does not change over time.
The belief of an agent in some period t will depend on his observations before that
period and will be called simply his belief in period t.

ACTIONS AND PAYOFFS

Each agent i can take once an action xi in the set �, xi ∈ �. (Without loss of generality,
the set of feasible actions � is the same for all agents.) If the state is θ and agent i takes
the action xi , he gets the payoff u(xi , θ). For simplicity, the function u is the same for
all agents. There could be different functions for different agents, but the important
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assumption is that this function is known to all agents. Later, this assumption will be
relaxed. When an agent makes a decision under imperfect information, he has a sub-
jective probability on θ and his payoff is U = E i [u(xi , θ)], where the expectation E i

is measured on θ given all the information of agent i at the time he takes his action.
Because agents “speak” through their actions, the definition of the action set �

is critical. A language with many words may convey more possibilities for communi-
cation than a language with few words. Individuals will learn more from each other
about a parameter θ when the actions are in an interval of real numbers than when
the actions are restricted to be either zero or one.

TOOL 1: BINARY ACTIONS

Choosing a restaurant, adopting a standard, etc., imply a zero–one decision. To repre-
sent the decision process with discrete actions, we assume that the action set is reduced
to two elements:� = {0, 1}. The state space � has also two elements, � = {0, 1}. (The
discreteness of � is less important and is assumed only for simplicity.) The payoff is
given by u(x, θ) = θ − c , with 0 < c < 1.

The investment has a positive payoff in the good state (θ = 1) and a negative payoff
in the bad state (θ = 0). Under uncertainty, the payoff of investment is E [θ] − c . In
general, if x ∈ {0, 1}, the payoff can be written as

u(x) =
(

E [θ] − c
)

x, 0 < c < 1, x ∈ {0, 1}.(3.1)

The binary model will be analyzed in detail in the next chapter.

TOOL 2: THE QUADRATIC PAYOFF

A standard way to model a decision process with a continuum of actions is to assume
that the agent chooses a real number x that maximizes the expected value of the
quadratic payoff function

u(x, θ) = −E
[

(x − θ)2
]
.(3.2)

This function has some handy properties. The first one pertains to the decision rule.
The optimal value of x is obviously given by

x∗ = E [θ].

This decision rule is the same when the payoff is u(x, θ) = 2θx − x2. If x stands for
the scale of an investment, the first term of this expression represents the productivity
of the investment. The second term represents the cost of the investment.

When the payoff function is given by (3.2), the payoff of the optimizing agent is

U = −Var(θ).

The mean and the variance of the belief, which are the two most important pa-
rameters of the distribution (the only ones, if the distribution is normal), have a
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nice interpretation: they are equal to the optimal action and to the negative of the
payoff.

PUBLIC INFORMATION AND HISTORY

In this chapter and the next, agents are ordered in an exogenous sequence. Agent t,
t ≥ 1, chooses his action in period t. We define the history of the economy in period
t as the sequence

ht = {x1, . . . , xt−1} with h0 = ∅.

Agent t knows the history of past actions ht before making a decision.
To summarize, at the beginning of period t (before agent t makes a decision), the

knowledge that is common to all agents is defined by

• the distribution of θ at the beginning of time,

• the distributions of private signals and the payoff functions of all agents,

• the history ht of previous actions.

We will assume in Chapters 3 to 7 that agents cannot observe the payoff of the
actions of others. Whether this assumption is justified or not depends on the context.
It is relevant for investment over the business cycle: given the lags between investment
expenditures and their returns, one can assume that investment decisions carry the sole
information. Later in the book, we will analyze other mechanisms of social learning.
For the sake of clarity, it is best to focus on each one of them separately.

3.1.2 The Process of Social Learning

The process of social learning is illustrated in Figure 3.1. In any arbitrary period t
(t ≥ 1), the probability distribution on θ that is based solely on the public information
(including the history ht) will be called the public belief. Its c.d.f. is denoted by F (θ |ht).

Agent t combines the public belief on θ with his private information (the signal
st) to form his belief, which has a c.d.f. F (θ |ht , st). He then chooses the action xt to
maximize his payoff E [u(θ , xt)], conditional on his belief.

All remaining agents know the payoff function of agent t (but not the realization
of the payoff), and the decision model of agent t. They use the observation of xt as a
signal on the information of agent t, i.e., his private signal st . The action of an agent
is a message on his information. The social learning depends critically on how this
message conveys information on the private belief. The other agents update the public
belief on θ once the observation xt is added to the history ht : ht+1 = (ht , xt). The
distribution F (θ |ht) is updated to F (θ |ht+1).

3.2 Efficient Learning

Social learning is efficient when an individual’s action reveals completely his private
information. This occurs when the action set that defines the vocabulary of social
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Figure 3.1 Actions and learning. The process of social learning is represented in period t. Agent
t forms his belief and then chooses an optimal action xt. The action is a message about his belief.

learning is sufficiently large. We begin with the Gaussian–quadratic model. Efficient
social learning is obviously not restricted to that model, but the quadratic model will
turn out to be so useful in this book that the reader had better become familiar with
its analytics now.

3.2.1 The Gaussian–Quadratic Model

The model is built with the Gaussian information structure of Section 2.2.2 and the
quadratic payoff in Tool 2.

• Nature’s parameter θ is chosen randomly before the first period according to a
normal distributionN (θ , 1/ρθ ). Because we focus on the social learning of a given
state of nature, the value of θ does not change once it is set.

• There is a countable number of individuals, i = 1, . . . . Each individual i has one
private signal si . These signals are equal to the true value θ plus a noise :

si = θ + εi .

The noise terms εi are independent across agents and normally distributed
N (0, 1/ρε). All individuals have the same payoff function U (x) = −E [(x − θ)2].
Individual t chooses his action xt ∈ R once and for all in period t: the order of
the individual actions is set exogenously.

• The public information at the beginning of period t is made of the initial distri-
bution N (θ , 1/ρθ ) and of the history of previous actions ht = (x1, . . . , xt−1).

Suppose that the public belief on θ in period t is given by the normal distribution
N (µt , 1/ρt). This assumption is obviously true for t = 1 with µ1 = θ and ρ1 = ρθ .
We will show by induction that it is true in every period. In any period, the evolution
of the public belief goes through the three steps illustrated in Figure 3.1: (i) the
determination of the private belief of agent t; (ii) the action xt of agent t; (iii) the
inference by others from the observation of xt and the updating of the public belief
on θ for the next period.
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(i) The Belief of Agent t
The belief is obtained from the Bayesian updating of the public belief N (µt , 1/ρt)
with the private information st = θ + ε. By using the Bayesian formulae with
Gaussian distributions (2.5), the belief of agent t is N (µ̃t , 1/ρ̃t) with

µ̃t = (1 − αt)µt + αt st with αt = ρε
ρε + ρt

,

ρ̃t = ρt + ρε.
(3.3)

(ii) The Private Decision
The agent maximizes −E [(x − θ)2]. Because the marginal payoff is E [θ] − x , the
agent chooses the action xt equal to his expected value of θ : xt = µ̃t .

From the specification of µ̃t in (3.3),

xt = (1 − αt)µt + αt st .(3.4)

(iii) Social Learning
The decision rule of agent t and the variables αt , µt are known to all agents. From
equation (3.4), the observation of the action xt reveals perfectly the private signal st .
This is a key property. The public information at the end of period t is identical to
the information of agent t: µt+1 = µ̃t and ρt+1 = ρ̃t . Hence,

µt+1 = (1 − αt)µt + αt st with αt = ρε
ρε + ρt

,

ρt+1 = ρt + ρε.
(3.5)

In period t + 1, the belief is still normally distributed N (µt+1, 1/ρt+1), and the
process can be iterated as long as there is an agent remaining in the game. The history
of actions ht = (x1, . . . , xt−1) is informationally equivalent to the sequence of signals
(s1, . . . , st−1).

Convergence
The precision of the public belief increases linearly with time:

ρt = ρθ + (t − 1)ρε ,(3.6)

and the variance of the estimate on θ is σ 2
t = 1/(ρθ + tρε), which converges to zero

like 1/t. This is the rate of the efficient convergence.

THE WEIGHT OF HISTORY AND IMITATION

Agent t chooses an action that is a weighted average of the public information µt

from history and his private signal st (equation (3.4)). The expression of the weight
of history, 1 − αt , increases and tends to 1 when t increases to infinity. The weight of
the private signal tends to zero. Hence, agents tend to imitate each other more as time
goes on. This is a very simple, natural, and general property: a longer history carries
more information. Although the differences between individuals’ actions become
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vanishingly small as time goes on, the social learning is not affected, because these
actions are perfectly observable: no matter how small these variations, observers have a
magnifying glass that enables them to see the differences perfectly. In the next section,
this assumption will be removed. An observer will not see the small variations well.
This imperfection will slow down significantly the social learning.

EFFICIENT LEARNING WITH DISCRETE SIGNALS

Private signals that take discrete values are not as fine as those that take values in a
continuum. However, the discreteness of private signals does not alter the efficiency
of social learning. Modifying the previous model, assume that θ is a real number
in (0, 1) and that private signals are discrete with P (s = 1) = θ , P (s = 0) = 1 − θ .
The action xt reveals perfectly the signal st : an action that is higher (lower) than the
public belief reveals whether the signal is good (equal to one) or bad.

3.3 Observation Noise

In the previous section, an agent’s action conveyed his private information perfectly.
An individual’s action can reflect the slightest nuances of his information because
(i) it is chosen in a sufficiently rich menu; (ii) it is perfectly observable; (iii) the
decision model of each agent is perfectly known to others.

The extraction of information from an individual’s action relies critically on the
assumption that the decision model is perfectly known, an assumption that is obvi-
ously very strong. In general, individuals’ actions depend on a common parameter
but also on private characteristics. It is the essence of these private characteristics that
they cannot be observed perfectly (exactly as the private information is not observed
by others). To simplify, the payoff function is here parameterized by a variable that
is not observable. For any agent i , the payoff depends on his action xi , an aggregate
parameter θ , and a private parameter ηi :

U (x, ηi ) = −E i [(xi − θ − ηi )
2],

where E i [θ] is the expected value of θ , given the information of agent i . The optimal
action is xi = E i [θ] + ηi . Because the private parameter ηi is not observable, the
action of agent i conveys a noisy signal on his information E i [θ]. Imperfect informa-
tion on an agent’s private characteristics is operationally equivalent to a noise on the
observation of the actions of an agent whose characteristics are perfectly known.

The model of the previous section is now extended to incorporate an observation
noise, according to the idea of Vives (1993).1 We begin with a direct extension of
the model where there is one action per agent in each period. The model with many
agents is relevant in the case of a market and will be presented in Section 3.3.2.

1 Vives assumes directly an observation noise and a continuum of agents. His work is discussed in
Proposition 3.1.
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3.3.1 One Action per Period

AN INTUITIVE DESCRIPTION OF THE CRITICAL MECHANISM

Period t brings to the public information the observation

xt = (1 − αt)µt + αt st + ηt with αt = ρε

ρt + ρε

.(3.7)

The observation of xt does not reveal the private signal st perfectly, because of a noise
ηt ∼ N (0, σ 2

η ). This simple equation is sufficient to outline the critical argument. As
time goes on, the learning process increases the precision of the public belief on θ ,
ρt , which tends to infinity. Rational agents imitate more and reduce the weight αt

that they put on their private signal as they get more information through history.
Hence, they reduce the coefficient of st in their action. As t → ∞, the effect of the
private signal st on xt becomes vanishingly small. The variance of the noise ηt remains
constant over time, however. Asymptotically, the effect of the private information on the
level of action becomes vanishingly small relative to that of the unobservable idiosyncrasy.
This effect reduces the information content of each observation and slows down the
process of social learning.

The impact of the noise cannot prevent the convergence of the precisionρt to infin-
ity. By contradiction, suppose that ρt is bounded. Then αt does not converge to zero,
and asymptotically the precision ρt increases linearly (contradicting the boundedness
of the precision). The analysis now confirms the intuition and measures accurately
the effect of the noise on the rate of convergence of learning.

THE EVOLUTION OF BELIEFS

Because the private signal is st = θ + εt with εt ∼ N (0, σ 2
ε ), equation (3.7) can be

rewritten

xt = (1 − αt)µt + αtθ + αtεt + ηt .︸ ︷︷ ︸(3.8)
noise term

The observation of the action xt provides a signal on θ , αtθ , with a noise αtεt + ηt .
We will encounter in this book many similar expressions for noisy signals on θ . We
use a simple procedure to simplify the learning rule (3.8): the signal is normalized by
a linear transformation such that the right-hand side is the sum of θ (the parameter
to be estimated) and a noise:

xt − (1 − αt)µt

αt
= zt = θ + εt + ηt

αt
.(3.9)

The variable xt is informationally equivalent to the variable zt . We will use similar
equivalences for most Gaussian signals. The learning rules for the public belief follow
immediately from the standard formulae with Gaussian signals (3.3). Using (3.7), we
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find that the distribution of θ at the end of period t is N (µt+1, 1/ρ2
t+1) with

µt+1 = (1 − βt)µt + βt

(
xt − (1 − αt)µt

αt

)
with βt = σ 2

t

σ 2
t + σ 2

ε + σ 2
η /α2

t

,(3.10)

ρt+1 = ρt + 1

σ 2
ε + σ 2

η /α2
t

= ρt + 1

σ 2
ε + σ 2

η (1 + ρtσ
2
ε )2 .

CONVERGENCE

When there is no observation noise, the precision ρt of the public belief increases
by a constant amount ρε in each period, and it is a linear function of the number of
observations (equation (3.6)). When there is an observation noise, equation (3.10)
shows that as ρt → ∞, the increments of the precision, ρt+1 − ρt , converge to zero.
The precision converges to infinity at a rate slower than a linear rate. The convergence
of the variance σ 2

t to 0 takes place at a rate slower than 1/t. The next result [proved
in the appendix (Section 3.5)] measures this rate.2

PROPOSITION 3.1 (Vives, 1993) In the Gaussian–quadratic model with an observa-
tion noise of variance σ 2

η and private signals of variance σ 2
ε , the variance of the public

belief on θ , σ 2
t , converges to zero as t → ∞, and

σ 2
t(

σ 2
η σ 4

ε /3t
) 1

3

→ 1.(3.11)

This result is quite remarkable. It shows that the rate of convergence is 3 times
slower when there is some observation noise, and that this rate is independent of the
variance of the observation noise.

When the number of observations is large, 1000 additional observations with noise
generate the same increase of precision as 10 observations when there is no observation
noise. The cases of noise and perfect observability for a relatively small number of
observations are compared in Figure 3.2. After 10 observations, the precision is only
half of that with no noise. After 100 observations, the precision is 6 times smaller,
with a value of about 15. To reach a precision of 15, the number of observations must
be 6 times smaller with no observation noise than with observation noise.

Proposition 3.1 shows that the standard model of social learning where agents
observe others’ actions perfectly and know their decision process is not robust. When
observations are subject to a noise, the process of social learning is slowed down,
possibly drastically, because of the weight of history. That weight reduces the signal-
to-noise ratio of individual actions. The mechanism by which the weight of history

2 The analysis of a vanishingly small variance is simpler than that of a precision that tends to infinity.
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Figure 3.2 The evolution of the precision of the public belief. The parameters are calibrated
to compensate for the additional noise: when there is an observation noise, the precision of the
private signal, ρε , is increased so that the increments of precision for an outside observer with
observation noise and agents, acting according to their private signals and ignoring history, are
the same as when there is observation noise (and observability ex post of the private signals).
Parameters: without noise, σθ = 1, σε = 1, ση = 0; with noise, σθ = 1, σε = 0.75, ση = 0.423.

reduces social learning will be shown to be robust and will be one of the important
themes in the book.

3.3.2 Large Number of Agents

The previous model is now modified to allow for a continuum of agents. Each agent
is indexed by i ∈ [0, 1] (with a uniform distribution) and receives one private signal
once at the beginning of the first period,3 si = θ + εi , with εi ∼ N (0, σ 2

ε ). Each agent
takes an action xt(i) in each period4 t to maximize the expected quadratic payoff in
(3.2). At the end of period t, agents observe the aggregate action Yt , which is the sum
of the individuals’ actions and of an aggregate noise ηt :

Yt = Xt + ηt with Xt =
∫

xt(i) di and ηt ∼ N (0, 1/ρη).

At the beginning of any period t, the public belief on θ is N (µt , 1/ρt), and an agent
with signal si chooses the action

xt(i) = E [θ |si , ht] = µt(i) = (1 − αt)µt + αt si

with

αt = ρε

ρt + ρε

.

3 If agents were to receive more than one signal, the precision of their private information would
increase over time.

4 One could also assume that there is a new set of agents in each period and that these agents act only
once.
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By the law of large numbers,5
∫

εi di = 0. Therefore, αt

∫
si di = αtθ . The level of

endogenous aggregate activity is

Xt = (1 − αt)µt + αtθ ,

and the observed aggregate action is

Yt = (1 − αt)µt + αtθ + ηt .(3.12)

By use of the normalization introduced in Section 3.3.1, this signal is informationally
equivalent to

Yt − (1 − αt)µt

αt
= θ + ηt

αt
= θ +

(
1 + ρt

ρε

)
ηt .(3.13)

This equation is similar to (3.9) in the model with one agent per period. (The variances
of the noise terms in the two equations are asymptotically equivalent.) Proposition
3.1 applies. The asymptotic evolutions of the public beliefs are the same in the two
models.

Note that the observation noise has to be an aggregate noise. If the noises affected
actions at the individual level, for example through individuals’ characteristics, they
would be averaged out by aggregation, and the law of large numbers would reveal
the state of nature perfectly. An aggregate noise is a very plausible assumption in the
gathering of aggregate data.

3.3.3 Application: A Market Equilibrium

This setting is the original model of Vives (1993). A good is supplied by a continuum
of identical firms indexed by i , which has a uniform density on [0, 1]. Firm i supplies
xi and the total supply is X = ∫

xi di . The demand for the good is linear:

p = a + η − b X.(3.14)

Each firm (agent) i is a pricetaker and has a profit function

ui = ( p − θ)xi − c

2
x2

i ,

where the last term is a cost of production and θ is an unknown parameter. Vives
views this parameter as a pollution cost, which is assessed and charged after the end
of the game.

As in the canonical model, nature’s distribution on θ is N (µ, 1/ρθ ) and each
agent i has a private signal si = θ + εi with εi ∼ N (0, 1/ρε). The expected value of

5 A continuum of agents of mass 1 with independent signals is the limit case of n agents each of mass
1/n, where n → ∞. The variance of each individual action is proportional to 1/n2, and the variance
of the aggregate decision is proportional to 1/n, which is asymptotically equal to zero.
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θ for firm i is

E i [θ] = (1 − α)µ + α(θ + εi ) with α = ρε

ρθ + ρε

.(3.15)

The optimal decision of each firm is such that the marginal profit is equal to the
marginal cost:

p − E i [θ] = c xi .

Integrating this equation over all firms and using the market equilibrium condition
(3.14) gives

p −
∫

E i [θ] di = c X = c

b
(a + η − p),

which, using (3.15), is equivalent to

(b + c)p − ac − (1 − α)µ = αθ + cη.

When both sides of this equation are divided to normalize the signal, the observation
of the market price is equivalent to the observation of the signal

Z = θ + c
η

α
, where α = ρε

ρθ + ρε

.

The model is isomorphic to the canonical model of the previous section.

3.4 Extensions

3.4.1 Learning with a Private Cost of Information

So far, the precision of an individual signal has been exogenous. Assume now that
an agent can improve this precision, at some cost. More specifically, each agent can
purchase a signal s of precision q , which is defined by

s = θ + ε with ε ∼ N (0, 1/q).

The cost of a signal with precision q is an increasing function, c(q). Suppose for
example that the signal is generated by a sample of n independent observations and
that each observation has a constant cost c0. Because the precision of the sample is a
linear function of n, the cost of the signal is a step function. For the sake of exposition,
we assume that q can be any real number. One agent takes one action per period, and
his action is assumed to be perfectly observable by others. The payoff function of each
agent is quadratic: U (x) = E [−(x − θ)2].

Because the payoff of the optimal action is minus the variance of θ , the gain of
the signal is the difference between the ex ante and ex post variances of the subjective
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distribution on θ :

V = σ 2
θ − σ 2

θ

σ 2
θ q + 1

= σ 4
θ q

σ 2
θ q + 1

.

If there is an interior solution, the first-order condition for q is

σ 4
θ

(σ 2
θ q + 1)2

= c ′(q).

The proof of the following result is left as an exercise.

PROPOSITION 3.2 Suppose that c ′(q) is continuous and c(0) = 0. If the marginal cost
of precision, c ′(q), is bounded away from 0 (for any q ≥ 0, c ′(q) ≥ γ > 0), then no
agent purchases a signal after some finite period T, and social learning stops in that
period.

Note that the case of a fixed cost of information with c(0) > 0 is trivial. Other
cases with c(0) = 0 are left as exercises.

3.4.2 Policy

A selfish agent who maximizes his own welfare ignores the fact that his action generates
informational benefits to others. If the action is observed without noise, it conveys all
the private information without any loss. If there is an observation noise, however,
the information conveyed by the action is reduced when the response of the action
is smaller. When time goes on, the amplitude of the noise is constant and the agent
rationally reduces the coefficient of his signal in his action. Hence, the action of the
agent conveys less information about his signal when t increases. A social planner
may require that agents overstate the effect of their private signal on their action in
order to be “heard” over the observation noise. Vives (1997) assumes that the social
welfare function is the sum of the discounted payoffs of the agents:

W =
∑
t≥0

β t
(
−E t[(xt − θ)2]

)
,

where xt is the action of agent t. All agents observe the action plus a noise, yt = xt + εt .
The function W is interpreted as a loss function as long as θ is not revealed by a random
exogenous process. In any period t, conditional on no previous revelation, θ is revealed
perfectly with probability 1 − π ≥ 0. Assuming a discount factor δ < 1, the value of
β is β = πδ. If the value of θ is revealed, there is no more loss.

As we have seen in (3.3) and (3.4), a selfish agent with signal st has a decision rule
of the form

xt − µt = (1 + γ )
ρε

ρt + ρε

(st − µt),(3.16)
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with γ = 0. Vives assumes that a social planner can enforce an arbitrary value for
γ . When γ > 0, the action-to-noise ratio is higher and the observers of the action
receive more information.

Assume that a selfish agent is constrained to the decision rule (3.16) and optimizes
over γ : he chooses γ = 0. By the envelope theorem, a small first-order deviation of
the agent from his optimal value γ = 0 has a second-order effect on his welfare. We
now show that it has a first-order effect on the welfare of any other individual who
makes a decision. The action of the agent is informationally equivalent to the message

y = (1 + γ )αs + ε with α = ρε

ρt + ρε

.

The precision of that message is ρy = (1 + γ )2α2ρε .
Another individual’s welfare is minus the variance after the observation of y. The

observation of y adds an amount ρy to the precision of his belief. If γ increases from
an initial value of 0, the variation of ρy is of the order of 2γα2ρε , i.e., of the first order
with respect to γ . Because the variance is the reciprocal of the precision, the effect on
the variance of others is also of the first order and dwarfs the second-order effect on
the agent. There is a positive value of γ that induces a higher social welfare level.

EXERCISES

EXERCISE 3.1

Assume that (i) The distribution of the state of nature θ has a support in the set of
real numbers (which does not have to be bounded); (ii) private signals are binary,
symmetric, and such that P (s = 1) = q with q = φ(θ) for some monotone function
φ that maps the set of real numbers to the open interval ( 1

2 , 1). An example of such
a function is φ(θ) = 1

4 (3 + θ/(1 + |θ |)); (iii) the payoff function is U = −E [(θ −
x)2].

1. Show that the action of an agent reveals his private signal perfectly.
2. Can the history ht be summarized by

∑
i≤t−1 xi ?

3. Analyze the rate of convergence of the public belief on θ .

EXERCISE 3.2 Endogenous private information

In Section 3.4.1, assume that c(q) = qβ with β > 0. Analyze the rate of convergence
of social learning.

3.5 Appendix

Proof of Proposition 3.1

Because we analyze a rate of convergence, it is more convenient to consider a variable
that converges to zero than a variable that converges to infinity. (We will use Taylor
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expansions.) Let zt = σ 2
t = 1/ρt . The third equation in (3.10) is of the form

zt+1 = G(zt).(3.17)

A standard exercise shows that G(0) = 0 and for z > 0, we have 0 < G(z) < z and
G ′(z) > 0. This implies that as t → ∞, then zt → 0, which is a fixed point of F . The
rest of the proof is an exercise on the approximation of (3.17) with the particular form
(3.10) near the fixed point 0. Equation (3.10) can be rewritten

zt+1 =
zt

(
(σ 2

ε + σ 2
η )z 2

t + 2σ 2
η σ 2

ε zt + σ 2
η σ 4

ε

)
z3

t + (σ 2
ε + σ 2

η )z 2
t + 2σ 2

η σ 2
ε zt + σ 2

η σ 4
ε

,

or

zt+1 = zt − z4
t

z 3
t + (σ 2

ε + σ 2
η )z 2

t + 2σ 2
η σ 2

ε zt + σ 2
η σ 4

ε

.

Because zt → 0,

zt+1 = zt − z4
t

A
(1 + O(zt)) with A = σ 2

η σ 4
ε ,

where O(zt) is a term of order smaller than or equal to 1: there is B > 0 such that
if zt → 0, then O(zt) < Bzt . Let bt be such that zt = bt/t

1
3 . By substitution in the

previous equation,

bt+1

(
1 + t

t

)− 1
3

= bt − b4
t

At

(
1 + O

(
bt

t
1
3

))
,

or

bt+1

(
1 − 1

3t
+ O

(
1

t2

))
= bt − b4

t

At

(
1 + O

(
bt

t
1
3

))
.(3.18)

This equation is used to prove that bt converges to a nonzero limit. The proof is in
two steps: (i) the sequence is bounded; (ii) any subsequence converges to the same
limit.

(i) The boundedness of bt : First, from the previous equation, there exists T1 such
that if t > T1, then

bt+1 < bt

(
1 + 1

2t

)
.(3.19)

By use of (3.18) again, there exists T > T1 such that for t > T ,

bt+1 < bt

(
1 + 1

t

)(
1 − b3

t

2At

)
.
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From this inequality, there is some value M such that if bt > M and t > T , then

bt+1 < bt

(
1 − 1

t

)
.(3.20)

We use (3.19) and (3.20) to show that if t > T , then bt < 2M. Consider a value of
t > T . If bt−1 < M, then by (3.19),

bt+1 < M

(
1 + 1

t

)
< 2M.

If bt−1 > M, then by (3.20), bt+1 < bt . It follows that bt is bounded by the maximum
of bT and 2M:

for t > T, bt < max(bT , 2M).(3.21)

(ii): To show the convergence of bt , one can extract a subsequence of bt that
converges to some limit �1. Then one can extract from this subsequence another
subsequence such that bt+1 (defined by the previous equation) converges to a limit
�2. Taking the limit, we find

�2

(
1 − 1

3t
+ O

(
1

t2

))
= �1 − �4

1

At

(
1 + O

(
�1

t
1
3

))
.

We must have

�1 = �2 and
�2

3
= �4

1

A
.

Therefore,

�1 = �2 = � =
(

A

3

) 1
3

.

The result follows from the definition of A.



4 Cascades and Herds

One million people cannot be wrong.

Each agent observes what others do and takes a zero–one decision in a

preordered sequence. In a cascade, all agents herd on a sufficiently strong

public belief and there is no learning. In a herd, all agents turn out to take

the same decision. A cascade generates a herd, but the converse is not true.

Cascades are nongeneric for atomless distributions of beliefs, whereas a

herd always takes place, eventually. For that reason, the probability that

the herd is broken must converge to zero. Hence, there is some learning

in a herd (it is not broken), but the learning is very slow. The stylization

of that property is the cascade.

Beliefs converge to the truth only if the distribution of private beliefs

is unbounded; but the self-defeating principle in social learning implies

that the convergence is slow. Because the filter imposed by discrete actions

is coarse, the slowdown of social learning is much more significant than

in the previous chapter. Applications for welfare properties and pricing

policies by a monopoly are discussed.

A Tale of Two Restaurants
Two restaurants face each other on the main street of a charming Alsatian village.
There is no menu outside. It is 6 p.m. Both restaurants are empty. A tourist comes
down the street, looks at each of the restaurants, and goes into one of them. After a
while, another tourist shows up, sees how many patrons are already inside by looking
through the stained-glass windows – these are Alsatian winstube – and chooses one
of them. The scene repeats itself, with new tourists checking on the popularity of
each restaurant before entering one of them. After a while, all newcomers choose
the same restaurant: they choose the more popular one irrespective of their own
information. This tale illustrates how rational people may herd and choose one action
because it is chosen by others. Among the many similar stories, two are particularly
enlightening.

58
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TABLE 4.1 Information on downloadable shareware.

Upld Subject Cnt Dnld

10/16 v2.0 Space Fighter 2000 . . . 81 10/21

10/16 S.I. Magazine October Rd . . . 58 10/21

10/16 Butchenstein 2D Add-On 67 10/21

10/16 Chrono Trigger Add-On 89 10/21

10/15 Chaos Fighters Add-On 54 10/20

10/14 Wargames Add-On 92 10/21

10/14 Star Wars Magazin 2 Add-On 84 10/21

10/14 The Search For Pepe Add-On 51 10/21

10/06 Bugtown Add-On 94 10/20

10/06 v1.4 Unga Khan 4 Add-On 73 10/21

Adapted from Hanson and Putler (1996).

High Sales Promote High Sales
In 1995, the management gurus Michael Reacy and Fred Wiersema secretly purchased
50,000 copies of their business strategy book The Discipline of Market Leaders from
stores that were monitored for the bestseller list of the New York Times.1 The authors
must have been motivated by the following argument: people observe the sales, but
not the payoffs, of the purchases (assuming they have few opportunities to meet other
readers). Of course, if the manipulation had been known, it would have had no effect,
but people rationally expect that for any given book, the probability of manipulation
is small, and that the high sales must be driven by some informed buyers.

The previous story illustrates one possible motivation for using the herding effect,
but it is only indicative. For an actual measurement, we turn to Hanson and Putler
(1996), who conducted a nice experiment that combines the control of a laboratory
with a real-world situation. They manipulated a service provided by America Online
(AOL) in the summer of 1995. Customers of the service could download games from a
bulletin board. The games were free, but the download entailed some cost linked to the
time spent in trying out the game. Some games were downloaded more than others.

The service of AOL is summarized by the window available to subscribers, which
is reproduced in Table 4.1: column 1 shows the first date the product was available;
column 2 the name of the product, which is informative; column 4 the most recent date
the file was downloaded. Column 3 is the most important and shows the number of
customers who have downloaded the file so far. It presents an index of the popularity
of the product. The main goal of the study is to investigate whether a high popularity
increases the demand ceteris paribus.

The impact of a treatment is measured by the increase in the number of downloads
per day, after the treatment, as a fraction of the average daily download (for the same

1 See Bikhchandani, Hirshleifer, and Welch (1998) and Business Week, August 7, 1995. Additional
examples are given in Bikhchandani, Hirshleifer, and Welch (1992).
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Figure 4.1 Differences between treatment and control files.

product) before the treatment. The results are reported in Figure 4.1. All treatments
have an impact, and the impact of the heavy treatment (100 percent) is particularly
remarkable. The experiment has an obvious implication for the general manipulation
of demand through advertisements.

To ensure ceteris paribus, Hanson and Putler selected pairs of similar files that
were offered by AOL. Similarity was measured by characteristics and popularity at
a specific date. Once a pair was selected, one of the files was kept as the control ; the
other was the treatment. The authors boosted the popularity index of the treatment
file by downloading it repeatedly. The popularity index was thus increased in a short
session by percentage increments of 25, 50, and 100. Customers of the service were
not aware that they were manipulated.

The Essential Issue and the Framework of Analysis
The previous examples share an essential common feature: individuals observe the
actions of others and the space of actions is discrete. The actions are the words for
the communication of information between agents. In the previous chapter, agents
chose an action in a rich set: all the real numbers. Here the finite number of actions
exerts a strong restriction on the vocabulary of social communication.

If there is a seminal study on social learning, it is the paper by BHW2 (1992).
They introduced the definition of informational cascades in models of Bayesian
learning. In a cascade, the public belief, which is gathered from the history of ob-
servations, dominates the private signal of any individual: the action of any agent
does not depend on his private information. In a cascade, all agents are herding. Be-
cause actions do not convey private information, nothing is learned, and the cascade

2 Banerjee (1992) presented at the same time another paper on herding, but its structure is more
idiosyncratic and one cannot analyze the robustness of its properties.
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goes on forever, possibly with an incorrect action. The failure of social learning is
spectacular.

A cascade generates a herd, but the concepts of cascade and herd are distinct. A
herd is defined as an outcome where all agents take the same action after some period.
In a herd not all agents may be herding. It is precisely because not all agents are herding
in a herd that some learning takes place. The probability that the herd can be broken
generates some information. However, this probability must be vanishingly small
for the herd to be sustained. Hence, the amount of social learning in a herd is very
small.

Cascades do not occur except in very special models, whereas herds always take
place eventually. The reader may think that cascades are therefore not important.
Wrong: cascades are good approximations for the properties of the generic models of
learning from others’ actions when those actions are discrete.

The simplest model of cascades is presented in Section 4.1. No formal mathematics
is required for that section, which presents the important properties.

The general model is analyzed in Section 4.2. It is built on the models with bounded
private beliefs that have been presented in Section 2.2.1. (The reader is advised to re-
view that section if necessary.) The evolution of the beliefs is presented in a diagram,
which will be used later in the book, especially in Chapter 6, where the timing of
actions is endogenous. When the support is bounded, private beliefs become dom-
inated by a public belief, which is either optimistic or pessimistic, as the number of
observations increases. Such a situation actually never occurs when private beliefs
have a distribution without points of positive mass (which is not just a perturbation
of a distribution with such points). However, the limit behavior of the model is closely
approximated by cascades.

Beliefs converge to the truth, almost surely, only if the support of the distribution
of beliefs is unbounded. In this respect, the results of BHW have been criticized as
not robust. Such theoretical focus on the limit beliefs is misleading. What matters is
the speed of convergence.

Section 4.3 presents a detailed analysis of herds and the convergence of beliefs.3

Herds always take place eventually, as a consequence of the MCT. There is in general
some learning in a herd, but that learning is very slow. The conclusions of the simple
model of BHW are shown to be extraordinarily robust. They reinforce the central
message of the models of learning from others, which is the self-defeating property
of social learning when individuals use public information rationally.

The Social Optimum
In an equilibrium, no agent takes into account the externality created by his action for
the information of others. In a social optimum, this externality is taken into account
(as in the model with actions in a continuum, Section 3.4.2). A social optimum is

3 For that section, I have greatly benefited from the insights of Lones Smith, and I am very grateful to
him.
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constrained in that each agent “speaks” to others only through his action. An agent
has a decision rule according to which his action depends on his private belief and the
public belief. He can reveal his private belief only through his action. He departs from
the selfish rule of using history for his own payoff only if the externality provided to
others outweighs his personal loss.

In Section 4.5, it is shown that the socially optimal rule is to forget history if the
belief from history – the public belief – is in some interval of values, and to herd
otherwise. If the belief is outside that interval of experimentation, there is no social
learning anymore. The socially optimal rule may be implemented by setting a price
on investment contingent on the public belief.

Monopoly Pricing of a New Good
A monopolist who captures some consumer surplus will take into account the benefit
of experimentation for the future. This problem is considered in Section 4.5.2. A
monopoly introduces on the market a new good of imperfectly known quality. The
optimal strategy is divided into two phases. The first is the elitist phase : the price of the
good is high. Only the agents with a good signal on the good buy it, and the volume
of sales raises the estimate of the other agents. When this estimate is sufficiently high,
the monopoly lowers the price to reach all customers.

The incentive to learn is inversely related to the discount rate. If the discount rate is
vanishingly small, the difference between the level of social welfare and the monopoly
profit converges to zero. At the limit, the monopoly follows a strategy that is socially
optimal. (Monopoly profits are redistributed.)

4.1 The Basic Model of Herding

Students sometimes wonder how to build a model. BHW provide an excellent lesson
in methodology: (i) a good story simplifies the complex reality and keeps the main
elements; (ii) this story is translated into a set of assumptions about the structure
of a model (information of agents, payoff functions); (iii) the equilibrium behavior
of rational agents is analyzed; (iv) the robustness of the model is examined through
extensions of the initial assumptions.

We begin here with the tale of two restaurants, or a similar story where agents
have to decide whether to make a fixed-size investment. We construct a model with
two states (according to which restaurant is better), two signal values (which generate
different beliefs), and two possible actions (eating at one of two restaurants).4 The
model is a special case of the general model of social learning (Section 3.1.2).

4 The example of the restaurants at the beginning of this chapter is found in Banerjee (1992). The model
in this section is constructed on that story. It is somewhat mystifying that Banerjee, after introduc-
ing herding through this example, develops an unrelated model that is somewhat idiosyncratic. A
simplified version is presented in Exercise 4.3.
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4.1.1 The 2-by-2-by-2 Model

1. The state of nature θ has two possible values, θ ∈ � = {0, 1}, and is set randomly
once and for all at the beginning of the first period5 with a probability µ1 for the
good state θ = 1.

2. A finite number N or a countably infinite number of agents are indexed by the
integer t. Each agent’s private information takes the form of a SBS with precision
q > 1

2 : P (st = θ | θ) = q .
3. Agents take an action in an exogenous order, as in the previous models of social

learning. The notation can be chosen so that agent t can make a decision in period
t and in period t only. An agent chooses his action x in the discrete set � = {0, 1}.
The action x = 1 may represent entering a restaurant, hiring an employee, or in
general making an investment of a fixed size. The yield of the action x depends on
the state of nature and is defined by

u(x, θ) =
{

0 if x = 0,
θ − c if x = 1, with 0 < c < 1.

Because x = 0 or 1, another representation of the payoff is u(x, θ) = (θ − c)x .
The cost of the investment c is fixed.6 The yield of the investment is positive in
the good state and negative in the bad state. Under uncertainty, the payoff of the
agent is the expected value of u(x, θ) conditional on the information of the agent.
By convention, if the payoff of x = 1 is zero, the agent chooses x = 0.

4. As in the previous models of social learning, the information of agent t is his private
signal together with the history ht = (x1, . . . , xt−1) of the actions of the agents
who precede him in the exogenous sequence. The public belief at the beginning of
period t is the probability of the good state conditional on the history ht which is
public information. It is denoted by µt :

µt = P (θ = 1|ht).

Without loss of generality, µ1 is the same as nature’s probability of choosing
θ = 1.

4.1.2 Informational Cascades

Agents with a good signal s = 1 will be called optimists, and agents with a bad signal
s = 0 will be called pessimists. An agent combines the public belief with his private
signal to form his belief. If µ is the public belief in some arbitrary period, the belief

5 The reason the value of θ does not change is that we want to analyze the changes in beliefs that
are caused only by endogenous behavior. Changes of θ can be analyzed in a separate study (see the
bibliographical notes in Section 4.7).

6 In the tale of two restaurants, c is the opportunity cost of not eating at the other restaurant.
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of an optimist is higher than µ and the belief of a pessimist is lower. Let µ+ and µ−

be the beliefs of the optimists and the pessimists7: µ− < µ < µ+.
A pessimist invests if and only if his belief µ− is greater than the cost c , i.e., if the

public belief is greater than some value µ∗∗ > c . (If c = 1
2 , µ∗∗ = q .) If the public

belief is such that a pessimist invests, then a fortiori, it induces an optimist to invest.
Therefore, if µt > µ∗∗, agent t invests regardless of his signal. If µt ≤ µ∗∗, he does
not invest if his signal is bad.

Likewise, let µ∗ be the value of the public belief such that µ+ = c . If µt ≤ µ∗,
agent t does not invest, no matter what the value of his private signal. If µt > µ∗, he
invests if he has a good signal. The cases are summarized in the next result.

PROPOSITION 4.1 In any period t, given the public belief µt :

if µ∗ < µt ≤ µ∗∗, agent t invests if and only if his signal is good (st = 1);
if µt > µ∗∗, agent t invests, independently of his signal;
if µt ≤ µ∗, agent t does not invest, independently of his signal.

CASCADES AND HERDS

Proposition 4.1 shows that if the public belief, µt , is above µ∗∗, agent t invests and
ignores his private signal. His action conveys no information on this signal. Likewise,
if the public belief is smaller than µ∗, then the agent does not invest. This important
situation deserves a name.

DEFINITION 4.1 An agent herds on the public belief when his action is independent of
his private signal.

The herding of an agent describes a decision process. The agent takes into account
only the public belief; his private signal is too weak to matter. If all agents herd, no
private information is revealed. The public belief is unchanged at the beginning of
the next period, and the situation is identical: the agent acts according to the public
belief whatever his private signal. The behavior of each agent is repeated period after
period. This situation has been described by BHW as an informational cascade. The
metaphor was used first by Tarde at the end of the nineteenth century (Chapter 1).

DEFINITION 4.2 If all agents herd (Definition 4.1), there is an informational cascade.

We now have to make an important distinction between the herding of all agents
in an informational cascade and the definition of a herd.

7 By Bayes’s rule,

µ− = µ(1 − q)

µ(1 − q) + (1 − µ)q
< µ <

µq

µq + (1 − µ)(1 − q)
= µ+.
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DEFINITION 4.3 A herd takes place at date T if all actions after date T are identical: for
all t > T, xt = xT .

In a cascade, all agents are herding and make the same decision, which depends
only on the public belief (which stays invariant over time). Hence, all actions are
identical.

PROPOSITION 4.2 If there is an informational cascade in period t, there is a herd in
the same period.

The converse of Proposition 4.2 is not true. Herds and cascades are not equivalent.
In a herd, all agents turn out to choose the same action – in all periods – although
some of them could have chosen a different action. We will see later that generically,
cascades do not occur, but herds eventually begin with probability one! Why do
we consider cascades, then? Because their properties are stylized representations of
models of social learning.

In the present model, an informational cascade takes place if µt > µ∗∗ or µt ≤ µ∗.
There is social learning only if µ∗ < µt ≤ µ∗∗. Then xt = st and the action reveals
perfectly the signal st . The public belief in period t + 1 is the same as that of agent
t as long as a cascade has not started. The history of actions ht = (x1, . . . , xt−1) is
equivalent to the history of signals (s1, . . . , st−1).

Assume that there is no cascade in periods 1 and 2 and that s1 = 1 and s2 = 1.
Suppose that agent 3 is a pessimist. Because all signals have the same precision, his
bad signal cancels one good signal. He therefore has the same belief as agent 1 and
should invest. There is a cascade in period 3.

Likewise, two consecutive bad signals (s = 0) start a cascade with no investment, if
no cascade has started before. If the public belief µ1 is greater than c and agent 1 has a
good signal, a cascade with investment begins in period 2. If µ1 < c and the first agent
has a bad signal, he does not invest and a cascade with no investment begins in period 2.

In order not to have a cascade, a necessary condition is that the signals alternate
consecutively between 1 and 0. We infer that

• the probability that a cascade has not started by period t converges to zero expo-
nentially, like β t for some parameter β < 1;

• there is a positive probability that the cascade is wrong: in the bad state, all agents
may invest after some period, and investment may stop after some period in the
good state;

• beliefs do not change once a herd has started; rational agents do not become more
confident in a cascade.

PROPOSITION 4.3 When agents have a binary signal, an informational cascade occurs
after some finite date, almost surely. The probability that the informational cascade has
not started by date t converges to 0 like β t for some β t with 0 < β < 1.
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Figure 4.2 Representation of a cascade. In each period, the middle of the vertical segment is
the public belief; the top and the bottom of the segment are the beliefs of an optimist (with a
private signal s = 1) and of a pessimist (with signal s = 0). The private signals are s1 = 0, s2 =
1, s3 = 0, s4 = 1, s5 = 1.

A GEOMETRIC REPRESENTATION

The evolution of the beliefs is represented in Figure 4.2. In each period, a segment
represents the distribution of beliefs: the top of the segment represents the belief of
an optimist, the bottom the belief of a pessimist, and the midpoint the public belief.
The segments evolve randomly over time according to the observations.

In the first period, the belief of an optimist, µ+
1 , is above c , while the belief of a

pessimist, µ−
1 , is below c . The action is equal to the signal of the agent and thus reveals

that signal. In the figure, s1 = 0, and the first agent does not invest. His information
is incorporated in the public information: the public belief in the second period,
µ2, is identical to the belief of the first agent: µ2 = µ−

1 . The sequence of the signal
endowments is indicated in the figure. When there is social learning, the signal of agent
t is integrated into the public information of period t + 1. By use of the notation of the
previous chapter, µt+1 = µ̃t .

Consider now period 5 in the figure: Agent 5 is an optimist, invests, and reveals his
signal, because he could have been a pessimist who does not invest. His information
is incorporated in the public belief of the next period, and µ6 = µ+

5 . The belief of
a pessimist in period 6 is now higher than the cost c (here, it is equal to the public
belief µ5). In period 6, the belief of an agent is higher than the cost of investment,
whatever his signal. He invests, nothing is learned, and the public belief is the same in
period 7: a cascade begins in period 6. The cascade takes place because all the beliefs
are above the cutoff level c . This condition is met here because the public belief µ6

is strictly higher than µ∗∗. Now µ6 is identical to the belief of an optimist in period
5, and the cascade occurs because the beliefs of all investing agents are strictly higher
than µ∗∗ in period 5. A cascade takes place because of the high belief of the last agent,
who triggers the cascade. Because this property is essential for the occurrence of an
informational cascade, it is important and will be discussed later in more detail.



4.2 The Standard Model with Bounded Beliefs 67

In this simple model, the public belief µt = P (θ = 1|ht) converges to one of two
values (depending on the cascade). From the MCT, we knew µt would necessarily
converge in probability. The exponential convergence is particularly fast. The infor-
mational cascade may be incorrect, however: all agents may take the wrong decision.
(See Exercise 4.2.)

BLACK SHEEP

Assume there is a cascade in some period T in which agents invest, whatever their
signal. Extend now the previous setting, and assume that agent T may be of one of two
types. Either he has a signal of precision q like the previous agents, or his precision
is q ′ > q and q ′ is sufficiently high with respect to the public belief that if he has a
bad signal (sT = 0), he does not invest. The type of the agent is private and therefore
not observable, but the possibility that agent T has a higher precision is known to all
agents.

Suppose that agent T does not invest: xT = 0. What inference is drawn by others?
The only possible explanation is that agent T has a signal of high precision q ′ and
that his signal is bad: the information of agent T is conveyed exactly by his action.

If agent T invests, his action is like that of others. Does it mean that the public
belief does not change? No. The absence of a black sheep in period T (who would
not invest) increases the confidence that the state is good. Social learning takes place
as long as not all agents herd. The learning may slow down, however, as agents with
a relatively low precision begin to herd. The inference problem with heterogeneous
precisions requires a model which incorporates the random endowment of signals
with different precisions. A model with two types of precision is presented in the
appendix (Section 4.8).

The simple model has served two useful purposes: (i) it is a lesson on how to
begin to think formally about a stylized fact and the essence of a mechanism; (ii) it
strengthens the intuition about the mechanism of learning and its possible failures.
These steps need to be as simple as possible. Simplicity of the model, though, could
lead to the criticism that its properties are not robust. The model is now generalized,
and we will see that its basic properties are indeed robust.

4.2 The Standard Model with Bounded Beliefs

We now extend the previous model to admit any distribution of private beliefs as
described in Section 2.2.1. Such a distribution is characterized by the c.d.f. F θ (µ),
which depends on the state θ . Recall that the c.d.f.’s satisfy the proportional property
(2.12) and therefore the assumption of first-order stochastic dominance: for any µ

in the interior of the support of the distribution, F θ0 (µ) > F θ1 (µ). By an abuse of
notation, F θ (µ) will represent the c.d.f. of a distribution of the beliefs measured as
the probability of θ1, and F θ (λ) will represent the c.d.f. of a distribution of the LLR
between θ1 and θ0.
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We keep the following structure: two states θ ∈ {θ0, θ1}, two actions x ∈ {0, 1},
with a payoff (E [θ] − c)x , θ0 < c < θ1. The states θ1 and θ0 will be called good and
bad. We may take θ0 = 1 and θ0 = 0, but the notation may be clearer if we keep the
symbols θ1 and θ0 rather than use numerical values.

4.2.1 Social Learning

At the end of each period t, agents observe the action xt . Any belief λ is updated using
Bayes’s rule. This rule is particularly convenient when expressed in LLR as in equation
(2.3), which is repeated here:

λt+1 = λt + νt with νt = log

(
P (xt |θ1)

P (xt |θ0)

)
.(4.1)

The updating term νt is independent of the belief λt . Therefore, the distribution of
beliefs is translated by a random term νt from period t to period t + 1. Agent t invests
if and only if his probability of the good state is greater than his cost, i.e., if his LLR
λ is greater than γ = log(c/(1 − c)). The probability that agent t invests depends on
the state and is equal to πt(θ) = 1 − F θ

t (γ ).
The action in period t, xt ∈ {0, 1}, provides a binary random signal on θ with

probabilities described in Table 4.2. Because the c.d.f. F θ1 dominates F θ0 in the sense of
first-order stochastic dominance (Proposition 2.3), there are more optimistic agents
in the good than in the bad state on average. Hence, the probability of investment is
higher in the good state, and the observation xt = 1 raises the beliefs of all agents.

Following the observation of xt , the updating equation (2.3) takes the particular
form

λt+1 = λt + νt with νt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

log

(
1 − F θ1

t (γ )

1 − F θ0
t (γ )

)
if xt = 1,

log

(
F θ1

t (γ )

F θ0
t (γ )

)
if xt = 0.

(4.2)

In this equation, νt ≥ 0 if xt = 1, and νt ≤ 0 if xt = 0. The observation of xt

conveys some information on the state as long as F θ1
t (γ ) �= F θ0

t (γ ).
Because the distribution of LLRs is invariant up to a translation, it is sufficient

to keep track of one of the beliefs. If the support of beliefs is bounded, we choose
the midpoint of the support, called, by an abuse of notation, the public belief. If
the support is not bounded, the definition of the public belief will depend on the
particular case.

THE MARKOV PROCESS

The previous process has an abstract formulation that may provide some perspective
on the process of social learning. We have seen that the position of the distribution in
any period can be characterized by one point λt . Let µt be the belief of an agent with
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TABLE 4.2 Probabilities of observations

States of
Nature

Observations

xt = 1 xt = 0

θ = θ1 1 − F θ1
t (γ ) F θ1

t (γ )

θ = θ0 1 − F θ0
t (γ ) F θ0

t (γ )

γ = log

(
c

1 − c

)

LLR equal to λt . The Bayesian formula (4.2) takes the general form µt+1 = B(xt , µt),
and xt is a random variable that takes the value 1 or 0 according to Table 4.2. The
probabilities of xt depend on µt and θt . The process of social learning is summarized
by the equations

µt+1 = B(µt , xt),
P (xt = 1) = π(µt , θ).

(4.3)

The combination of the two equations defines a Markov process for µt . Such a defini-
tion is natural and serves two purposes: it provides a synthetic formulation of social
learning, and it is essential for the analysis of convergence properties. However, such a
formulation can be applied to a wide class of processes and does not highlight specific
features of the structural model of social learning with discrete actions.

4.2.2 Bounded Beliefs

Assume the initial distribution of private beliefs is bounded. Its support is restricted to
a finite interval (λ1, λ1). This case is represented in Figure 4.3. Letλt be the public belief
in period t, i.e., the midpoint of the support, λt = (λt + λt)/2; and let σ = (λt −
λt)/2, a constant. If λt is greater than λ∗∗ = γ + σ , the support of the distribution is
above γ and agent t invests, whatever his belief. Likewise, if λ ≤ λ∗ = γ − σ , no agent
invests. In either case, there is an informational cascade. There is no informational
cascade as long as the public belief stays in the interval (λ∗, λ∗∗) = (γ − σ, γ + σ ).
The complement of that interval will be called the cascade set.

Figure 4.3 is drawn under the assumption of an atomless distribution of beliefs,
but it can also be drawn with atoms as in Figure 4.2.

We know from the MCT that the probability of the good state, µt = eλt /(1 + eλt ),
converges in probability. Hence,λt must converge to some value. Suppose that the limit
is not in the cascade set. Then, asymptotically, the probability that xt = 1 remains
different in states θ1 and θ0. Hence, with strictly positive probability, the common
belief is updated by some nonvanishing amount, thus contradicting the convergence
of the martingale. This argument is used in the appendix (Section 4.8) to prove that
λt must converge to a value in the cascade set.
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Figure 4.3 The evolution of beliefs. In each period, the support of the distribution of beliefs
(LLR) is represented by a segment. The action is xt = 1 if and only if the belief (LLR) of the agent
is above γ . If agent t happens to have a belief above (below) γ , the distribution moves up (down)
in the next period t + 1. If the entire support is above (below) γ , the action is equal to 1 (0) and
the distribution stays constant.

PROPOSITION 4.4 Assume that the support of the initial distribution of private beliefs is
I = [λ1 − σ, λ1 + σ ]. Then λt converges almost surely to a limit λ∞ /∈ (γ − σ, γ + σ )
with γ = log(c/(1 − c)).

RIGHT AND WRONG CASCADES

A cascade may arise with an incorrect action: for example, beliefs may be sufficiently
low that no agent invests while the state is good. However, agents learn rationally, and
the probability of a wrong cascade is small if agents have a wide diversity of beliefs as
measured by the length of the support of the distribution.

Suppose that the initial distribution in LLR is symmetric around 0 with a support
of length 2σ . We compute the probability of a wrong cascade for an agent with initial
belief 1

2 . A cascade with no investment arises if his LLR λt is smaller than γ − σ , i.e.,
if his belief in level is such that

µt ≤ β = eγ−σ

1 + eγ−σ
.

When the support of the distribution in LLR becomes arbitrarily large, σ → ∞ and
ε is arbitrarily small. From Proposition 2.9 with µ1 = 1

2 , we know that

P (µt ≤ β|θ1) ≤ 2β.

The argument is the same for the cascades where all agents invest. The probability
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of a wrong cascade for a neutral observer (with initial belief 1
2 ) tends to zero if the

support of the distribution in LLR becomes arbitrarily large (or equivalently, if the
beliefs measured as probabilities of θ1 are intervals converging to (0, 1)).

PROPOSITION 4.5 If the support of the initial distribution of LLRs contains the interval
[−σ, +σ ], then for an observer with initial belief 1

2 , the probability of a wrong cascade
is less than 4β, with β = e−σ c/

(
1 − c + e−σ c

)
.

ARE CASCADES GENERIC?

The BHW model has received considerable attention because of the simplicity of its
structure and of the spectacular property of informational cascades. However, this
property is essentially due to the assumption of an atomistic distribution of private
beliefs. Under that assumption, the public belief moves by discrete steps. It ends in
the cascade set after a finite number of steps, with probability one. For a generic class
of nonatomistic distributions of private beliefs, the probability of a contrarian agent
becomes vanishingly small when the public belief tends to the cascade set. Hence,
because of the martingale property, the variation of the public belief converges to
zero and the public belief never reaches the cascade set.

Because of the proportional property in (2.12), if the distribution of private
beliefs has a density f θ (µ) it can be written as

f 1(µ) = µφ(µ), and f 0(µ) = (1 − µ)φ(µ),(4.4)

where the function φ(µ) has a support in [a, 1 − a], and a > 0 because the beliefs are
bounded. This distribution is generated by a two-step process in which agents draw
a SBS of precision µ with a density proportional to φ(µ). A simple case is provided
by a uniform distribution of precisions where φ is constant. Chamley (2003c) proves
that in this case, there is no cascade in any period. The result can be generalized to the
case of a function φ(µ) that does not put too much mass at either end of its support.
For reasonable density functions, cascades do not occur. In this sense, the property
of a cascade is not generic.

4.3 The Convergence of Beliefs

When private beliefs are bounded, beliefs never converge to perfect knowledge. If the
public belief converged to 1, for example, in finite time it would overwhelm any private
belief and a cascade would start, thus making the convergence of the public belief to 1
impossible. This argument does not hold if the private beliefs are unbounded, because
in any period the probability of a contrarian agent is strictly positive.

4.3.1 Unbounded Beliefs: Convergence to the Truth

From Proposition 4.5 (with σ → ∞), we have immediately the next result.
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PROPOSITION 4.6 Assume that the initial distribution of private beliefs is unbounded.
Then the belief of any agent converges to the truth: his probability assessment of the good
state converges to 1 in the good state and to 0 in the bad state.

DOES CONVERGENCE TO THE TRUTH MATTER?

A bounded distribution of beliefs is necessary for a herd on an incorrect action, as
emphasized by Smith and Sørensen (2001). Some have concluded that the properties
of the simple model of BHW are not very robust: cascades are not generic and do not
occur for sensible distributions of beliefs; the beliefs converge to the truth if there are
agents with sufficiently strong beliefs. In analyzing properties of social learning, the
literature has often focused on whether learning converges to the truth or not. This
focus is legitimate for theorists, but it is seriously misleading. What is the difference
between a slow convergence to the truth and a fast convergence to an error? From a
welfare point of view and for many people, it is not clear.

The focus on the ultimate convergence has sometimes hidden the central message
of studies on social learning: the combination of history’s weight and of self-interest
slows down learning from others. The beauty of the BHW model is that it is nongeneric
in some sense (cascades do not occur under some perturbations), but its properties
are generic.

If beliefs converge to the truth, the speed of convergence is the central issue. This
is why the paper of Vives (1993) was so useful in the previous chapter. We learned
from that model that an observation noise reduces the speed of learning from others.
Because the discreteness of the action space is a particularly coarse filter, the slowing
down of social learning should also take place here. When private beliefs are bounded,
social learning does not converge to the truth. When private beliefs are unbounded,
we should observe slow convergence.

We saw that cascades do not occur for sensible distributions of beliefs because
the signal of the action (investment or no investment) is vanishingly weak when the
public belief tends to the cascade set corresponding to the action. This argument
applies when the distribution of beliefs is unbounded, because the mass of atoms at
the extreme ends of the distribution must be vanishingly small. Hence, there is an
immediate presumption that social learning must be slow asymptotically. The slow
learning is first illustrated in an example and then analyzed in detail.

A NUMERICAL EXAMPLE

The private signals are defined by s = θ + ε, where ε is normally distributed with
variance σ 2. An exercise shows that if µ tends to 0, the mass of agents with beliefs
above 1 − µ tends to zero faster than any power of µ. A numerical example of the
evolution of beliefs is presented in Figure 4.4. One observes immediately that the
pattern is similar to a cascade in the BHW model with the occurrence of black sheep.

For this example only, it is assumed that the true state is 1. The initial public belief
is µ1 = 0.2689 (equivalent to a LLR of −1), and σ = 1.5. The actions of individuals
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Figure 4.4 An example of the evolution of public belief. The upper graph represents the evo-
lution of the public belief. The lower graph represents the sequence of individuals’ actions. It is
distinct from the horizontal axis only if xt = 1.

in each period are presented by the lower schedule (equal to 0.1 if xt = 1 and to 0
otherwise). For the first 135 periods, xt = 0 and µt decreases monotonically from
around 0.27 to around 0.1. In period 136, the agent has a signal that is sufficiently
strong to have a belief µ̃136 > c = 0.5, and he invests. Following this action, the public
belief is higher than 0.5 (because 0.5 is a lower bound on the belief of agent 135),
and µ137 > 0.5. In the example, µ137 = 0.54. The next two agents also invest, and
µ139 = 0.7. However, agent 139 does not invest, and hence the public belief must fall
below 0.5: µ140 = 0.42. Each time the sign of µt+1 − µt changes, there is a large jump
in µt .

Figure 4.4 provides a nice illustration of the herding properties found by BHW
in a model with black sheep who deviate from the herds. The figure exhibits two
properties that are standard in models of social learning with discrete decisions:

(i) when µt eventually converges monotonically to the true value of 1 (after period
300 here), the convergence is very slow;

(ii) when a herd stops, the public belief changes by a quantum jump.

Slow Learning from Others
Assume now a precision of the private signals such that σε = 4, and an initial public
belief µ1 = 0.2689 (with LLR equal to −1). The true state is good. The model was
simulated for 500 periods, and the public belief was computed for period 500. The
simulation was repeated 100 times. In 97 of the 100 simulations, no investment took
place and the public belief decreased by a small amount to a value µ500 = 0.2659. In
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only three cases did some investment take place, with µ500 equal to 0.2912, 0.7052,
and 0.6984, respectively. Hardly a fast convergence!

By contrast, consider the case where agents observe directly the private signals of
others and do not have to make inferences from the observations of private actions.
From the specification of the private signals and Bayes’s rule,

λt+1 = λ1 + t

(
θ1 − θ0

σ 2
ε

)(
θ1 − θ0

2
+ ηt

)
with ηt = 1

t

t∑
k=1

εk .

Given the initial belief µ1 = 0.2689, θ0 = 0, θ1 = 1, t = 499, and σε = 4, we have

λ500 = −1 + (31.2)(0.5 + η500),

where the variance of η500 is 16/499 ≈ (0.18)2. Hence, λ500 is greater than 5.33 with
probability 0.95. Converting the LLR to probabilities, we find that µ500 belongs to
the interval (0.995, 1) with probability 0.95. What a difference from the case where
agents observed private actions! The example – which is not particularly convoluted –
shows that convergence to the truth with unbounded private precisions may not
mean much practically. Even when the distribution of private signals is unbounded,
the process of social learning can be very slow when agents observe discrete actions.
The cascades in Figure 4.3 are a better stylized description of the properties of social
learning through discrete actions than the convergence result of Proposition 4.6. The
properties of the example are confirmed by the general analysis of the convergence in
Section 4.4.

4.4 Herds and the Slow Convergence of Beliefs

4.4.1 Herds

The MCT implies that the public belief converges almost surely. Assume that the
distribution of beliefs is bounded. In the limit, the support of the distribution must
be included in one of the two cascade sets. Suppose that on some path the support
of the distribution converges to the upper half of the cascade set where all agents
invest: µ

t
→ c . We now prove by contradiction that the number of periods with no

investment is finite on this path.
Because there is a subsequence xnt = 0, we may assume µ

nt
< c . Following the

observation of xn = 0, Bayes’s rule implies

λnt+1 = λnt + νnt with νnt = log

(
F 1(λ1 + znt )

F 0(λ1 + znt )

)
, and znt = γ − λnt

.

By the proportional property that was defined in (2.12), if znt → 0, there exists α < 0
such that νnt < α, which contradicts the convergence of λt : the jump down of the
LLR contradicts the convergence. The same argument can be used in the case of an
unbounded distribution of beliefs.
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THEOREM 4.1 On any path {xt}t≥1 with social learning, a herd begins in finite time. If
the distribution of beliefs is unbounded and θ = θ1 (θ = θ0), there exists T such that if
t > T, then xt = 1 (xt = 0), almost surely.

This result is due to Smith and Sørensen (2001). It shows that herds take place
eventually although, generically, not all agents are herding in any period!

4.4.2 The Asymptotic Rate of Convergence Is Zero

When beliefs are bounded, they may converge to an incorrect value with a wrong
herd. The issue of convergence speed makes sense only if beliefs are unbounded. This
section provides a general analysis of the convergence in the binary model. Without
loss of generality, we assume that the cost of investment is c = 1

2 .
Suppose that the true state is θ = 0. The public belief µt converges to 0. However,

as µt → 0, there are fewer and fewer agents with a sufficiently high belief who can
go against the public belief if called upon to act. Most agents do not invest. The
probability that an investing agent appears becomes vanishingly small if µ tends to 0,
because the density of beliefs near 1 is vanishingly small if the state is 0. It is because
no agent acts contrary to the herd, although there could be some, that the public belief
tends to zero. As the probability of contrarian agents tends to zero, the social learning
slows down.

Let f 1 and f 0 be the density functions in states 1 and 0. From the proportional
property (Section 2.3.1), they satisfy

f 1(µ) = µφ(µ), f 0(µ) = (1 − µ)φ(µ),(4.5)

where φ(µ) is a function. We will assume, without loss of generality, that this function
is continuous.

Ifθ = 0 and the public belief converges to 0, intuition suggests that the convergence
is fastest when a herd takes place with no investment. The next result, which is proven
in the appendix (Section 4.8) characterizes the convergence in this case.

PROPOSITION 4.7 Assume that the distributions of private beliefs in the two states
satisfy (4.5) with φ(0) > 0, and that θ = 0. Then, in a herd with xt = 0, if t → ∞, the
public belief µt satisfies asymptotically the relation

µt+1 − µt

µt
≈ −φ(0)µt ,

and µt converges to 0 like 1/t: there exists α > 0 such that if µt < α, then tµt → a for
some a > 0.

If φ(1) > 0, the same property applies to herds with investment, mutatis mutandis.

The previous result shows that in a herd, the asymptotic rate of convergence is
equal to 0.
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The domain in which φ(µ) > 0 represents the support of the distribution of
private beliefs. Recall that the convergence of social learning is driven by the agents
with extreme beliefs. It is therefore important to consider the case where the densities of
these agents are not too small. This property is embodied in the inequalities φ(0) > 0
and φ(1) > 0. They represent a property of a fat tail of the distribution of private
beliefs. If φ(0) = φ(1), we will say that the distributions of private beliefs have thin
tails. The previous proposition assumes the case of fat tails which is the most favorable
for a fast convergence.

We know from Theorem 4.1 that a herd eventually begins with probability 1.
Proposition 4.7 characterized the rate of convergence in a herd, and it can be used to
prove the following result.8

THEOREM 4.2 Assume the distributions of private beliefs satisfy (4.5) with φ(0) > 0
and φ(1) > 0. Then µt converges in probability to the true θ ∈ {0, 1} like 1/t.

THE BENCHMARK: LEARNING WITH OBSERVABLE PRIVATE BELIEFS

When agents observe beliefs through actions, there is a loss of information, which can
be compared with the case where private beliefs are directly observable. In Section
2.2.4, the rate of convergence is shown to be exponential when agents have binary
private signals. We assume here the private belief of agent t is publicly observable. The
property of exponential convergence in Section 2.2.4 is generalized by the following
result.

PROPOSITION 4.8 Assume θ = 0 and φ(µ) is constant in (4.5). If the belief of any agent
t is observable, there exists γ > 0 such that µt = e−γ t zt where zt tends to 0 almost surely.

The contrast between Theorem 4.2 and Proposition 4.8 shows that the social
learning through the observation of discrete actions is much slower, exponentially
slower,9 than if private information were publicly observable.

4.4.3 Why Do Herds Occur?

Herds must eventually occur, as shown in Theorem 4.1. The proof of that result rests
on the MCT: the break of a herd induces a large change of the beliefs, which contradicts
the convergence. Lones Smith has insisted, quite rightly, that one should provide a

8 See Chamley (2003c).
9 Smith and Sørensen (2001) provide a technical result (Theorem 4) that states that the Markov process

defined in (4.3) exhibits exponential convergence of beliefs to the truth under some differentiability
condition. Because the result is in a central position in a paper on social learning, and they provide no
discussion of the issue, the reader who is not very careful may believe that the convergence of beliefs
is exponential in models of social learning. As stated in Smith and Sørensen (2001), the convergence
of beliefs to a (possibly incorrect) limit is exponential if private beliefs are bounded. The appendix of
Smith and Sørensen (1996) which is the basis for Smith and Sørensen (2001), analyzes the occurence
of herds with unbounded private beliefs and provides additional results. The presentation in this
book has been elaborated independently from that appendix.
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direct proof that herds take place for sure eventually. This is done by computing the
probability that a herd is broken in some period after time t. Such a probability tends
to zero, as shown in the next result (Chamley, 2003c).

THEOREM 4.3 Assume the distributions of private beliefs satisfy (4.5) with φ(0) > 0
and φ(1) > 0. Then the probability that a herd has not started by date t tends to 0 like 1/t.

4.4.4 Discrete Actions and the Slow Convergence of Beliefs

The assumption of a fat tail of the distribution of beliefs, φ(0) > 0, φ(1) > 0, is easy
to make mathematically, but it is not supported by any strong empirical evidence.

The thinner the tail of the distribution of private beliefs, the slower the conver-
gence of social learning. However, if private signals are observable, the convergence is
exponential for any distribution. The case of a thin tail provides a transition between
a distribution with a thick tail and a bounded distribution where the convergence
stops completely in finite time, almost surely.

It is reasonable to consider the case where the density of beliefs is vanishingly small
when the belief approaches perfect knowledge. We make the following assumption.
For some b > 0, c > 0,

f 1(1) = 0 and lim
µ→0

f 1(µ)

(1 − µ)b
= c > 0.(4.6)

The higher is b, the thinner is the tail of the distribution near the truth. One can show
that the sequence of beliefs with the history of no investment tends to 0 like 1/t1/(1+b)

(Exercise 4.9).
The main assumption in this chapter is, as emphasized in BHW, that actions are

discrete. To simplify, we have assumed two actions, but the results could be generalized
to a finite set of actions. The discreteness of the set of actions imposes a filter that blurs
the information conveyed by actions more than does the noise of the previous chapter,
where agents could choose an action in a continuum. Therefore, the reduction in social
learning is much more significant in the present chapter than in the previous one.

Recall that when private signals can be observed, the convergence of the public
belief is exponential like e−αt for some α > 0. When agents choose an action in a
continuum and a noise blurs the observation, as in the previous chapter, the conver-
gence is reduced to a process like e−αt1/3

. When actions are discrete, the convergence is
reduced, at best, to a much slower process like 1/t. If the private signals are Gaussian
(as in the previous chapter), the convergence is significantly slower, as shown in the
example of Figure 4.4. The fundamental insight of BHW is robust.

4.5 Pricing the Informational Externality

When individuals choose their optimal action, they ignore the information benefit
that is provided to others by their action. We assume that the number of agents is
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infinite and countable. In any period t, the value of the externality is taken into account
in the social welfare function

Vt = E

[∑
k≥0

δk(θ − c)xt+k

]
,

where δ is a discount factor (0 < δ < 1), c is the cost of investment, and xt+k is the
action of agent t + k, xt+k ∈ � = {0, 1}.

4.5.1 The Social Optimum

We assume that an agent cannot reveal directly his private information: he communi-
cates his information through his action. The constrained social optimum is achieved
when each agent t is socially benevolent and chooses his action in order to maximize
the social welfare function Vt with the knowledge that each agent in period t + k,
k ≥ 1, likewise maximizes Vt+k .

The decision rule of a socially benevolent agent is a function from his information
(private belief and public belief) to the set of actions. He cannot communicate his
private information directly, but other agents know his decision rule and may infer
from his choice some information on his private belief and therefore on the state of
nature. In order to focus on the main features, let us consider the basic model: there
are two states, and each agent has a SBS with precision q .

There are two possible decision rules: either the agent follows his signal and chooses
the action x = s , or he herds, ignores his private signal, and chooses an action that
maximizes his payoff given the public belief.

The social welfare at the beginning of some arbitrary period depends only on the
public belief µ (probability of state 1) at the beginning of the period, V(µ). Let µ+

and µ− be the beliefs that are derived from the combination of the public belief µ

and of a good or bad signal.10 If the agent in the period chooses an action identical to
his signal, he reveals his signal, and the function V satisfies the equation

V(µ) =
(
µq + (1 − µ)(1 − q)

)(
µ+ − c + δV(µ+)

)
(4.7)

+
(
µ(1 − q) + (1 − µ)q

)
δV(µ−).

The first term is the expected gain from receiving a good signal and investing: the
probability of the event is µq + (1 − µ)(1 − q); the payoff of the agent is µ+ − c ;
and δV(µ+) is the payoff of subsequent agents who get the information µ+. Likewise,
the second term is the expected gain from receiving a bad signal and not investing.

10

µ+ = µq

µq + (1 − µ)(1 − q)
and µ− = µ(1 − q)

µ(1 − q) + (1 − µ)q
.
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Figure 4.5 Welfare and profit with a monopoly. Parameters: q = 0.65, c = 0.3, δ = 0.92. V and
VE are the levels of social welfare in the constrained optimum and in the laissez-faire equilibrium.
� is the profit of the monopoly, and VM is the social welfare under a monopoly.

When the agent does not herd, the social welfare function V(µ) satisfies equation
(4.7).

The no-herding decision requires that both herding with no investment and herd-
ing with investment be suboptimal. The first condition requires that the social welfare
level V(µ) be not strictly smaller than (µ − c)/(1 − δ), which is the social welfare level
in a herd with investment. The second condition is that the social welfare level V(µ)
should be positive; otherwise a herd with no investment would be optimal. In (4.7),
the right-hand side defines a mapping T (V). Taking into account the no-herding
conditions, the social welfare function satisfies the equation

V = max

(
max

(
T (V),

µ − c

1 − δ

)
, 0

)
.(4.8)

The right-hand side defines an operator. The function V is a fixed point of that
operator, which is computed by iteration. The optimal social welfare function is
presented in Figure 4.5 by the schedule V , which is the highest curve in the figure.

The Laissez-Faire Equilibrium
The social welfare in the equilibrium where each agent acts selfishly and ignores the
information externality (as in the BHW model) is represented by the schedule VE .
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It is below11 the schedule V , and the range of experimentation [µ
E

, µE ] is strictly
contained in the interval of experimentation for the social optimum, [µ, µ].

We observe some intuitive properties:

(i) There is an interval of public belief values (µ, µ) in which an agent does not herd
and follows his private signal. In that interval the agent invests even if his payoff
is negative in order to show that he has a good signal, and he does not invest even
if his payoff is positive to show that he has a bad signal. It is in this sense that
the interval of public beliefs (µ, µ) can be called the interval of experimentation.
The rule for experimentation depends only on the public belief.

(ii) The interval of experimentation in the laissez-faire equilibrium is the complement
of the cascade set of the public belief. That interval is narrower than the interval
in the optimum, as explained before. The value of VE is also higher than 0 and
(µ − c)/(1 − δ).

In a constrained Pareto optimum, the path exhibits two phases: (i) as long as µ

is in the interval of experimentation (µ, µ), agents should follow their own signal
and ignore the history; (ii) when µ exits the interval of experimentation, all agents
should herd and either invest (if µ > µ) or not invest (if µ < µ). The socially optimal
rule does not call for complete learning. If the public confidence is sufficiently high (µ
sufficiently close to 1 or 0), then herding is optimal. The private cost of ignoring
the public information is greater than the benefit of revealing that information. The
property of the socially optimal decision rule is stated as a formal result, the proof of
which is left to the reader.12

PROPOSITION 4.9 In a constrained social optimum, an agent follows his own signal if
the public belief is in some interval (µ, µ). If in some period T one has µT < µ, then
for all periods t > T, agents should herd with no investment. If µT > µ, all subsequent
agents should herd and invest.

On a socially optimal path with binary private signals, a cascade eventually occurs,
but this cascade occurs with a higher precision of the public belief. The behavior of the
socially optimal path for an arbitrary distribution of private information remains to
be analyzed. In particular, it would be interesting to compare the rate of convergence
with perfect observation of the private information with the rate of convergence in
the constrained social optimum.

11 The discontinuities of VE have a simple and important interpretation: the value of VE (µ) jumps
down when µ crosses µE . If µ < µ

E
, an agent with a low signal does not invest and reveals that

information. This information is lost if µ > µE , because the agent with a low signal invests like an
agent with a high signal and does not reveal his information.

12 We ignore the technicalities that arise if µ is equal to one of the bounds of the interval of experi-
mentation.
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The decision rule of a social planner depends only on the public information.
Furthermore, the decision model of each agent is known. Hence, the socially optimal
policy can be decentralized by incentives. A social planner can always use a subsidy
(positive or negative) on investment that induces agents to act according to their
private signal when the public belief is in the interval of experimentation. The role of
the social planner is to take account of the information externality for better decisions
in the future. In some settings, there may be agents who internalize this externality.
As an example, the role of a monopoly is analyzed in the next subsection.

4.5.2 A Monopoly

A monopoly uses prices and takes into account the effect of experimentation on future
profits. The extraction of his rent generates the usual distortion from the first-best,
but if the discount rate is sufficiently low (and hence the value of the information
externality sufficiently large), the monopoly may improve the social welfare because
it takes into account the benefit of learning for the future. Here, we do not consider
the distribution of income, and the profit of the monopoly is redistributed.

We analyze this problem within the framework of the BHW model, where a
monopoly produces an indivisible good at a fixed cost c and faces one customer
per period. In each period t, the price of the good is set at pt by the monopoly, and a
new customer either buys the good or not. The monopoly produces the good only if
the customer buys the good. The objective of the monopoly is to maximize the sum
of discounted profits

� = E

[∑
t≥0

δt( pt − c)xt

]
,

where xt is equal to one if there is a sale in period t, and to zero otherwise. The other
features of the model are unchanged. The good has a value θ ∈ {0, 1} to the customers,
each of whom has a private signal that is binary and symmetric with precision q . The
monopoly’s information is the public information. As in the analysis of the social
optimum, the history ht contains all past transactions and prices.

The monopoly has an incentive to generate some social learning in order to capture
the surplus of future sales. For example, suppose that the public belief µ is such that
the belief of an optimist is slightly below c . In the standard model, no agent buys,
and there is a herd with no purchase. A monopoly can charge a price p below the
production cost c to break the herd. If the customer in the period is an optimist, the
public belief increases above c and the monopoly can extract a surplus in the game
that begins in the following period.

The experimentation phase of the game is defined as in the previous section.
Suppose there is no herding: optimists buy and pessimists do not buy. Because there
are only two types of customers, the demand is a step function. As in the previous
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section, the beliefs of optimists and pessimists are denoted by µ+ and µ−, respectively,
when the public belief is µ. A customer buys if and only if his belief is higher than the
price. Any price in the interval (µ−, µ+) is dominated by a higher price, which can
be arbitrarily close to µ+, and which generates the same sales and a strictly higher
profit. Likewise, the price µ− dominates any price that is lower.

If the monopolist does not want to continue the game, he sets a price above µ+: no
one buys, nothing is learned, and the game stops. Conditional on the continuation of
the game, the strategy set in any period can be reduced to the two prices µ− and µ+,
or, to be accurate, to a price vanishingly close to one of these two values and strictly
smaller. To simplify, we will identify the prices with these two values. If p = µ+, only
the optimists buy: the realization of a sale or no sale reveals the signal of the buyer to
all agents. If p = µ−, all agents buy and there is no information: all agents herd.

Denote by�(µ) the value of the game for the monopoly when the public belief isµ.
If the monopoly charges µ+, his payoff function � satisfies the dynamic programming
equation

�(µ) =
(
µq + (1 − µ)(1 − q)

)(
µ+ − c + δ�(µ+)

)
(4.9)

+
(
µ(1 − q) + (1 − µ)q

)
δ�(µ−).

This equation is identical to the dynamic equation (4.7) of the social planner.
If the monopoly charges µ− forever and sells to all agents, there is herding with

all buyers purchasing the good. In this case, the value of the game for the monopoly
is

�(µ) = µ− − c

1 − δ
.

The monopolist experiments and generates information as long as 0 < �(µ) >

�(µ). If �(µ) < 0, he charges a price higher than µ+, and the game stops with
no further sale. If �(µ) < �(µ), he chooses the lower price µ− and sells to all agents
for all periods: he reaches the mass market. The value function of the monopoly is
therefore completely determined by

�(µ) = max

(
max

(
T (�(µ)),

µ− − c

1 − δ

)
, 0

)
,(4.10)

where T is the same operator as in (4.8). The dynamic programming equations
(4.9) and (4.7) are identical. Comparing the definition of � in (4.10) with the social
optimum V in (4.8), and using µ− < µ, we have the following proposition.

PROPOSITION 4.10 Let V(µ) and �(µ) be the social welfare under a constrained
Pareto optimum and the profit function of the monopoly, respectively. If V (µ) > 0, then
V(µ) > �(µ).
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We have seen that the social planner experiments as long as µ ∈ (µ, µ). Likewise,
the monopolist experiments as long as µ ∈ (µ

M
, µM). From the previous result and

definitions (4.8) and (4.10), the following inequalities hold:

0 < µ ≤ µ
M

< c .(4.11)

The monopoly requires a higher level of belief to continue the game, because his
profit is smaller than the social surplus of the game.

One may conjecture that the monopoly experiments more than the social planner
if the level of belief is high in order to maximize his surplus. In the example of Figure
4.5, one verifies that µ < µM .

The social welfare under a monopoly is represented in Figure 4.5. It depends on
the interval of experimentation of the monopolist and is the solution of the following
equations:

VM(µ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if 0 ≤ µ < µ
M

,(
µq + (1 − µ)(1 − q)

)(
µ+ − c + δVM(µ+)

)
+
(
µ(1 − q) + (1 − µ)q

)
δVM(µ−) if µ

M
< µ < µM,

µ − c
1 − δ

if µM < µ < 1.

(4.12)

Note that if µ crosses µM and increases, the social welfare VM(µ) jumps up. At
this level of belief, there is too much experimentation from a social point of view:
the monopolist wants to establish a higher price for the herding (which must take
place eventually). When µ increases to a value above µM , experimentation stops and
the social welfare jumps up. There are other jumps for lower values of µ because
the upper end of the interval of experimentation, µM , may be reached, with strictly
positive probability, in a finite number of steps.

A Low Discount Rate
When the discount factor increases, the monopoly has more incentives to elicit ex-
perimentation for future profits. One may conjecture that if δ → 1, the interval of
experimentation of the monopolist tends to the interval [0, 1] (Exercise 4.7).

DISCUSSION

1. The public belief µt is a martingale and therefore converges. It cannot converge to
a value strictly between 0 and 1 and for which there is no herding. (That would lead
to a contradiction.) Hence, the strategy of the monopoly must be to eventually
choose the low price µ− forever or to leave the market.

2. One might think that a monopolist, like a restaurant owner, would set a low price
during an initial phase in order to sell more and attract new customers. This
intuitive argument is not supported by the present analysis. The owner should
do the opposite and set the price sufficiently high, during a first phase, to show
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that “there is a flow of patrons even though the price is relatively high.” Once the
reputation of the restaurant has been established in this elitist phase, the cost of
“proving oneself” by turning away customers with relatively low taste is too high
with respect to the marginal improvement in reputation. The owner goes to mass
production by lowering his price in order to make a profit on these customers as
well. (Recall that their valuation µ− is higher than the cost c of producing the
meal.) An argument for an initial phase of relatively low promotional price would
rest on a different model.

3. The previous model has the particular feature that the highest possible price
generates a maximum amount of learning in that it separates perfectly the opti-
mists from the pessimists. The binary private signal is a very special case of
private information, however. An analysis with a more general model would be
worthwhile.

4. Becker (1991) reflects on the well-known observation of two restaurants facing
each other, one with a long queue, the other with empty seats. Why doesn’t the first
raise its price? Becker posits a demand di (p, D) by individual i (i = 1, . . . , N),
D = ∑

di . Such a demand may be rising over some range, which would in-
duce the supplier to ration an amount S < D. This model is built in an ad hoc
way to obtain a preestablished conclusion. It does not have a structural founda-
tion, an optimizing behavior for the consumers, a dynamic analysis of learning
with imperfect information, and an analysis of the history that preceeds a steady
state with rationing. A proper analysis of this interesting problem remains to be
done.

5. Queues may improve the efficiency of social choice. A longer queue raises the cost
of the more popular restaurant, or the more popular doctor, and induces people
to experiment at other places (Huynh and Rosenthal, 2000).

4.6 Crashes and Booms

The stylized pattern of a herd that is broken by a sudden event is emblematic of a
pattern of “business as usual” where at first beliefs change little and then some event
generates a crash or a boom, after which the new beliefs seem “obvious” in a “wisdom
after the facts.” This sequence has been illustrated by Caplin and Leahy (1994). Their
assumption of endogenous timing is not necessary for the property.

In each period, there is a new population of agents, which forms a continuum of
mass 1. Each agent has a private information on θ in the form of a Gaussian signal
st = θ + εt , where εt has a normal distribution N (0, σ 2

ε ) and is independent of other
variables. Each agent chooses a zero–one action x ∈ {0, 1}.

In period t, agents know the history ht = {Y1, . . . , Yt−1} of the aggregate variable
Yt = Xt + ηt , where Xt is the mass of investments by the agents in period t, and ηt

is a noise which is distributed N (0, σ 2
η ).
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If λt is the public LLR between states θ1 and θ0, an agent with private signal s has
a LLR equal to

λ(s ) = λt + θ1 − θ0

σ 2
ε

(
s − θ0 + θ1

2

)
.

Given the net payoffs in the two states, the agent invests if and only if he believes state
θ1 to be more likely than state θ0, hence if his LLR is positive. This is equivalent to a
private signal s such that

s > s ∗(λt) = θ0 + θ1

2
− σ 2

ε

θ1 − θ0
λt .

Let F (·; σ ) be the c.d.f. of the Gaussian distribution N (0, σ 2). Because the mass of
the population in period t is 1, the level of aggregate endogenous investment is

Xt = 1 − F (s ∗(λt) − θ ; σε).

The level of aggregate activity,

Yt = 1 − F (s ∗(λt) − θ ; σε) + ηt ,

is a noisy signal on θ . The derivative of Yt with respect to θ is

∂Yt

∂θ
= 1√

2πσε

(s ∗(λt) − θ) exp

(
− (s ∗(λt) − θ)2

2σ 2
ε

)
.

If the cutoff point s ∗(λt) is far to the right or to the left, the multiplier of θ on Yt

is small and the effect of θ on Yt is dwarfed by the observation noise ηt , exactly
as in the model of Vives (1993). Hence, the information content of the observation
Yt is small when most agents invest (s ∗(λt) is low) or most do not invest (s ∗(λt) is
high).

Suppose that the true state is θ0 and that the level of optimism, as measured by the
LLR, is high. Most agents invest, and the aggregate activity is dominated by the noise.
However, the beliefs of agents are unbounded, and the public belief converges to the
true state. When the public belief decreases to the middle range, the difference between
the mass of agents in the two states becomes larger and dominates the noise. The level
of aggregate activity is more informative. Because the true state is θ0, the public belief
decreases rapidly and the aggregate activity falls drastically. A crash occurs.

This property is illustrated by a simulation. Two realizations of the observation
shocks are considered. In the first, all realizations of the shocks are set at zero: ηt ≡ 0.
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Figure 4.6 Sudden changes of beliefs. Parameters: θ0 = 0, θ1 = 1, ση = 0.5, σε = 2, c = 0.5,
θ = θ1, µ1 = 0.75. The public belief is measured as the LLR on the vertical axis. (Note that the
belief is not measured by the probability of state θ1.) The period is reported on the horizontal
axis.

The evolution of the public belief,13 measured in LLR, is represented in Part A of
Figure 4.6. In Part B, the evolution of the public belief is represented for random
realizations of ηt .

In Part A, the public belief evolves slowly at first, then changes rapidly in a few pe-
riods and evolves slowly after. The LLR tends to −∞, but the convergence is obviously
very slow.

The sudden change occurs here because of the nonlinearity of the information
content of individual actions. In Part B, the changes λt are also sudden.

The model generates crashes and booms symmetrically. If the initial level of pes-
simism is low and the true state is high, eventually agents learn about it and the
learning process goes through a phase of rapid changes of beliefs.

4.7 Bibliographical Notes

SOCIAL LEARNING IN A CHANGING WORLD

Throughout this chapter and the next, the state of nature is invariant. This assumption
is made to focus on the learning of a given state, and it applies when the state does
not change much during the phase of learning. Assume now, following Moscarini,

13 The update of the public belief from λt to λt+1 is given by Bayes’s rule:

λt+1 = λt + log

(
f (xt − (1 − F (s ∗(µt ) − θ1; σε)); ση)

f (xt − (1 − F (s ∗(µt ) − θ0; σε)); ση)

)
,

where f is the density function associated with the c.d.f. F .
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Ottaviani, and Smith (1998), that the value of θ switches between θ0 and θ1 according
to a random Markov process: the set of states of nature � = {θ0, θ1} is fixed, but
between periods, θ switches to the other value with probability π .

Suppose that all agents are herding in period t. Does the public belief stay constant
as in the previous sections of this chapter? Agents learn nothing from the observation
of others, but they know that θ evolves randomly. Ignoring the actions of others, the
public belief (probability of state θ1) regresses to the mean, 1

2 . Therefore, after a finite
number of periods, the public belief does not dominate the belief of some agents, in
which case not all agents herd. The cascade stops. This property is interesting only if π
is neither too small nor too large: if π is very small, the regression to the mean is slow
and the herding behavior may last a long time; if π is sufficiently large, the expectation
of the exogenous change between periods is so large that the learning from others’
actions, which is driven by their information about past values of θ , bears no relation
to the current value of θ . No cascade can occur.

EXPERIMENTS

The BHW model has been experimented on in the laboratory by Anderson and
Holt (1996, 1997). Such experiments raise the issues of the actual understanding of
Bayesian inference by people (Holt and Anderson, 1996) and of the power of the tests.
An important difficulty is in separating the rational Bayesian learning from ad hoc
rules of decision making after the observations of others’ actions (such as counting the
number of actions of a given type in history, or taking into account the last observed
action).14 Huck and Oechssler (2000) find that the tests of Anderson and Holt are not
powerful against simple rules. More recent experimental studies include Çelen and
Kariv (2002b, 2002c).

EXERCISES

EXERCISE 4.1

BHW suggest that submissions to publications may be subject to herding. Explain
how herding may arise and some good papers may not be published.

EXERCISE 4.2 Probability of a wrong cascade

Consider the BHW model with parametersµ1, c , p. Determine the ex ante probability
of a herd on the wrong decision.

EXERCISE 4.3 The model of Banerjee (1992)

Assume that the state of nature is a real number θ in the interval (0, 1), with a uniform
distribution. There is a countable set of agents, with private signals equal to θ with

14 This issue is raised again in empirical studies on the diffusion of innovations (Section 9.1.1).
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probability β > 0, and equal to a number uniformly distributed on the interval (0, 1)
with probability 1 − β > 0. (In this case the signal is not informative.) The agent
observes only the value of his private signal. Each agent t chooses in period t an
action xt ∈ (0, 1). The payoff is 1 if xt = θ , and 0 if xt �= θ . Agent t observes the
history of past actions and maximizes his expected payoff. If there is more than one
action that maximizes his expected payoff, he chooses one of these actions with equal
probability.

1. Analyze how herds occur in this model.
2. Can a herd arise on a wrong decision?

EXERCISE 4.4 The action set is bounded below (Chari and Kehoe, 2000)

In the standard model of this chapter, assume that agent t chooses an investment level
xt , which can be any real positive number. All agents have a binary private signal with
precision q > 1

2 and a payoff function

u(x, θ) = 2(θ − c)x − x2 with x ≥ 0.

1. Can an informational cascade take place with positive investment? Can there be
an informational cascade with no investment?

2. Show that there is a strictly positive probability of underinvestment.

EXERCISE 4.5 Discontinuity of the Markov process of social learning

Take the standard model of Section 4.2, where the investment cost is 1
2 with payoff

(E [θ] − 1
2 )x , and each agent has a SBS with precision drawn from the uniform distri-

bution on ( 1
2 , 1). Each agent knows his precision, but that precision is not observable

by others.

1. Determine explicitly the Markov process defined by (4.3) when θ = 0.
2. Show that 0 is the unique fixed point in µ if θ = 0.
3. Show that B(·, 1) is not continuous in the first argument at the fixed point µ = 0,

and that therefore the partial derivative of B with respect to the second argument
does not exist at the fixed point.

4. Assume that in each period, with probability α > 0, the agent is a noise agent who
invests with probability 1

2 . With probability 1 − α, the agent is of the rational type
described before. The type of the agent is not publicly observable. Is your answer
to question 3 modified?

EXERCISE 4.6 Confounded learning (Smith and Sørensen, 2001)

There is a countable population of agents. A fraction α of this population is of type
A, and the others are of type B . In period t, agent t chooses between action 1 and
action 0. There are two states of nature, 1 and 0. The actions’ payoffs are specified in
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the following table (with uA > 0, uB > 0):

Type A

x = 1 x = 0

θ = 1 1 0

θ = 0 0 uA

Type B

x = 1 x = 0

θ = 1 0 uB

θ = 0 1 0

Each agent has a SBS with precision q (on the state θ), which is independent of his
type. Let µ be the belief of an agent about state 1: µ = P (θ = 1).

1. Show that an agent of type A takes action 1 if and only if he has a belief µ such
that µ > (1 − µ)uA. When does a type B take action 1?

2. Let λ be the public LLR between state 1 and state 0. Use a figure similar to Figure
4.3 to represent the evolution of the public belief.

3. Using the plot, illustrate the following cases:
(i) an informational cascade where all agents take action 1,

(ii) an informational cascade where all agents take action 0,
(iii) an informational cascade where agents A take action 1 and agents B take

action 0.

EXERCISE 4.7 Monopoly and herding

Consider the monopoly model of Section 4.5.2.

1. Determine the limits of the interval of experimentation of the monopoly when
δ → 1.

2. Let VM(µ) be the level of social welfare when the monopoly regulates the price of
the good, V(µ) the social welfare in the Pareto optimum, V∗(µ) the social welfare
in the first-best, and VE (µ) the social welfare in the laissez-faire equilibrium. As
δ → 1, analyze the limits of �/V , VM/V , VE /V , and V/V∗.

EXERCISE 4.8 Rational expectations equilibrium and cascades

Following Minehart and Scotchmer (1999), assume θ ∈ {0, 1} and each agent chooses
x ∈ {0, 1} to maximize E [(θ − c)x]. Each agent has a SBS of precision q . All agents
take their decision simultaneously, knowing the decisions of the others. A rational
expectations equilibrium (REE) is a Nash equilibrium of the game.

1. Show that in a REE, all agents take the same action. (Thus, they form a herd in
the sense of Definition 4.3.)

2. Show that a REE exists if and only if nature’s probability of the good state is such
that in the BHW setting of sequential decisions, an informational cascade begins
in the first period.
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EXERCISE 4.9

Prove that if in Section 4.4.4 the densities of beliefs satisfy (4.6), then in a herd with
no investment the public belief tends to 0 like 1/t1/(1+b). (Use the method in the proof
of Proposition 4.7.)

4.8 Appendix

4.8.1 Proofs

Proof of Proposition 4.4

Let µ and µ be the lower and upper bounds of the distribution of beliefs in period 1.

We assume that if µ < µ < µ, then F θ1
1 (µ) < F θ0

1 (µ). This property holds for any
period. By the MCT, λt converges to some value λ∞ almost surely. By contradiction,
assume λ∞ ∈ (γ − δ, γ + δ). Because F θ1

t (λ∞) < F θ0
t (λ∞), there exist ε > 0 and

α > 0 such that if |λ − λ∞| < ε, then

log

(
1 − F θ1

t (λ)

1 − F θ0
t (λ)

)
> α and log

(
F θ1

t (λ)

F θ0
t (λ)

)
< α.

Because λt → λ∞, there is T such that if t > T , then |λt − λ∞| < α/3. Take t > T .
If xt = 1, then by Bayes’s rule in (4.2), λt+1 > λt + α, which is impossible because
λt − λt+1 < 2α/3. A similar contradiction arises if xt = 0.

Proof of Proposition 4.7

An agent chooses action 0 (he does not invest) if and only if his belief µ̃ is smaller
than 1

2 , i.e., if his private belief is smaller than 1 − µ, where µ is the public belief.
In state θ , the probability of the event x = 0 is F θ (1 − µ). Because F 1(µ) < F 0(µ),
the observation x = 0 is more likely in state 0. It is bad news and induces the lowest
possible public belief at the end of the period. The sequence of public beliefs in a herd
with no investment satisfies

µt+1 =
(

1 − ∫ 1
1−µt

f 1(ν)dν
)
µt(

1 − ∫ 1
1−µt

f 1(ν)dν
)
µt +

(
1 − ∫ 1

1−µt
f 0(ν)dν

)
(1 − µt)

.(4.13)

Taking an approximation for small µt , we obtain

µt+1 ≈
(

1 − f 1(1)µt

)
µt(

1 − f 1(1)µt

)
µt +

(
1 − f 0(1)µt

)
(1 − µt)

.
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Using the condition of the proposition for the initial beliefs, we obtain

µt+1 − µt

µt
≈ ( f 0(1) − f 1(1))µt = −φ(0)µt .

For the second part of the result, we use the previous approximation and consider the
sequence {zk} defined by

zk+1 = zk − az2
k , with a = φ(0).(4.14)

This sequence tends to 0 like 1/k. Let yk be such that zk = (1 + yk)/(ak). By substi-
tution in (4.14),

1 + yk+1 = (k + 1)

(
1 + yk

k
− (1 + yk)2

k2

)
.

A straightforward manipulation15 shows that yk+1 < yk . Hence zk tends to 0 like 1/k
when k → ∞.

Proof of Proposition 4.8

The evolution of the public belief is determined by Bayes’s rule in LLR:

λt+1 = λt + ζt with ζt = log

(
µ̂t

1 − µ̂t

)
.(4.15)

Because θ = 0, the random variable ζt has a bounded variance and a strictly negative
mean, −γ , such that

γ = −
∫ 1

0
log
( ν

1 − ν

)
f 0(ν)dν > 0.(4.16)

Choose γ such that 0 < γ < γ . Let νt = λt + γ t. We have νt+1 = νt + ζ ′
t with

E [ζ ′
t ] = −(γ − γ ) < 0. Therefore, νt = ν0 +∑t−1

k=1 ζ ′
k where

∑n
k=1 ζ ′

k/n tends to
−(γ − γ ) < 0 almost surely. Hence,

∑t−1
k=1 ζ ′

k tends to −∞ almost surely. There-
fore, νt tends to −∞ and eνt tends to 0, almost surely. By definition of νt , we have
µt ≤ e−γ t eνt .

4.8.2 A Model of Learning with Two Types of Agents

In each period, agent t receives his signal st in a sequence of two independent steps.
First, the precision qt of his private signal takes either the value q with probability

15

1 + yk+1 = 1 + 1

k
− 1

k
− 1

k2
+ yk + yk

k
− 2yk

k + 1

k2
− y2

k

k + 1

k2
< 1 + yk .
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π , or the value q with probability 1 − π . By convention, q > q . Second, the value of
the signal is realized randomly and such that P (st = j | θ = j ) = qt . Each agent t
observes the realization (qt , st), which is not observable by others. The parameters
q, q , and π and the signaling process are known by all agents. In order to facilitate
the discussion, the fraction π of the agents endowed with a signal of high precision
is assumed to be small. In any period, the model is in one of three possible regimes
which depend on the public belief λ.

A. In the first regime, regime A, no agent herds. Define the values λ∗
A and λ∗∗

A such
that

λ∗
A = γ − log

( q
1 − q

)
λ∗∗

A = γ + log
( q

1 − q

)
⎫⎪⎪⎬
⎪⎪⎭ with γ = log

( c

1 − c

)
.

If λ∗
A < λt ≤ λ∗∗

A , any agent with low precision invests if and only if the signal is
good. An agent with high precision follows the same strategy a fortiori. Because
no one herds, the observation of xt is equivalent to the observation of an agent
who does not herd and has a signal with precision equal to the average precision
of signals in the population. The updating of the public belief is therefore16

λt+1 =
{

λt + α if xt = 1,
λt − α if xt = 0

with α = log

(
(1 − π)q + πq

(1 − π)(1 − q) + π(1 − q)

)
.

B. In the second regime, regime B , only the agents with a higher precision do not
herd. The regime is bounded by the critical values λ∗

B and λ∗∗
B with

λ∗
B = γ − log

( q

1 − q

)
,

λ∗∗
B = γ + log

( q

1 − q

)
.

Because q < q , one verifies that

λ∗
B < λ∗

A < γ < λ∗∗
A < λ∗∗

B .

This regime is divided into two subcases.
1. If λ∗∗

A < dt ≤ λ∗∗
B , the agents with lower precision herd and invest. Agents with

high precision do not herd and reveal their signal only if that signal is bad.

16 To find these expressions, note that
P (θ = 1|x = 1)

P (θ = 0|x = 1)
= P (θ = 1)

P (θ = 0)

P (x = 1|θ = 1)

P (x = 1|θ = 0)
.
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Figure 4.7 The evolution of the public belief with two types of agents. There are two pre-
cisions of the binary signals. If the public LLR is outside the band [λ∗

A, λ∗∗
A ], the agents with the

lower precision herd. Because there are fewer agents with higher precision, who do not herd, the
evolution of the belief in the herd is slow. If the herd is broken by a black sheep, the public belief
jumps.

Bayes’s rule takes the form

λt+1 =

⎧⎪⎨
⎪⎩

λt + β with β = log
( 1 − π + πq

1 − π + π(1 − q)

)
if xt = 1,

λt − log
( q

1 − q

)
, if xt = 0.

The LLR changes by a larger amount when the action x = 0 is taken.
2. If λ∗

B < λt ≤ λ∗
A, the low-precision agents do not invest, and Bayes’s rule is the

mirror image of subcase 1:

λt+1 =
⎧⎨
⎩λt + log

( q
1 − q

)
if xt = 1,

λt − β if xt = 0.

One verifies that the change of the belief is much stronger when the action
against the herd is taken.

C. In the third regime, regime C , all agents herd. Either λ ≤ λ∗
B or λ > λ∗∗

B .

An example of evolution of the public belief is represented in Figure 4.7, which is
a special case of Figure 4.3. It illustrates some properties of the social learning with
heterogeneous agents.

In the regime with moderate optimism where λt ∈ (λ∗∗
A , λ∗∗

B ], investment gen-
erates a relatively small increase of the belief. On the other hand, a zero investment
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generates a significant jump down of the belief. No matter how high λt may be, after
an observation of no investment (xt = 0), λt+1 must be smaller than log(c/(1 − c)).
Following such bad news, the new regime may be of type A or B . Note also that the
continuation of the learning phase does not depend on alternating private signals as
in the simple model with identical agents.
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To learn one needs to forget.

When agents observe a sample of past actions or different sets of neigh-

bors, they do not share a common public history. The diversity of obser-

vations may facilitate social learning because there is no common public

history that dominates all individual beliefs. Social learning may be faster

if agents observe a smaller sample of past actions. As the social learning

cannot be summarized by the martingale of the public belief, the analysis

of the convergence of beliefs and actions requires new tools: the average

social welfare function, which operates like a Lyapunov function, and the

welfare-improving principle.

In all models so far, agents know the entire history of actions. This assumption may be
too strong when the number of periods is large. (Note, however, that the entire history
is summarized by one number, the public belief.) It is now relaxed: each agent observes
only part of the past. We have seen in the previous chapter how the commonly known
history of actions can dominate private beliefs and prevent agents from revealing
their private information through their actions. If the common memory prevents the
diffusion of private information, a restriction on the observation of past actions may
be efficient.

Two settings are considered. In the main one, agents are put in an exogenous
sequence, as in all models of social learning in previous chapters, but they observe a
small random sample from the set of past observations. The sampling is done over all
past observations and not just over the most recent ones. The second setting departs
from the sequential structure: agents act like farm managers who observe in each
period a random sample of crop choices in other farms.

Partial Recall and Sampling
Section 5.1 is derived from Smith and Sørensen (1997): agents are put in an exogenous
sequence as in the BHW model with two states and two actions. A first phase, the seed

95
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phase, is introduced to build an initial population for sampling: in that phase, which
may be short, each agent acts according to his private information. In the second
and main phase, each agent samples a fixed number N of agents in the history of
actions. The properties of the social learning depend on the size of the sample and the
distribution of private beliefs. A numerical simulation shows that a smaller sample
size N improves the efficiency of social learning after some period. This property
validates the intuition in the first paragraph.

The sampling restriction does not prevent the occurrence of cascades when private
beliefs are bounded, because a sufficiently long string of identical actions is possible
and such a string generates observations of identical actions that initiate a cascade.
However, if private beliefs are unbounded, beliefs converge to the truth.

The Average Welfare Function and the Welfare-Improving Principle
When agents do not observe the complete history, there is no common memory of
the past, and the fundamental process of social learning in Figure 3.1 does not apply.
Because the observation set of each agent is idiosyncratic, the learning from others
cannot be summarized by a public belief that is a converging martingale. When an
agent observes only a subset of past actions, the sample of his observations is specific
to him. Others have therefore a more complex inference task when they observe
his action. The technical analysis of the convergence of beliefs and actions becomes
more difficult. In order to derive general results, Banerjee and Fudenberg (1995)
introduced a new and elegant tool, the average welfare function. This tool has been
also used by Smith and Sørensen to analyze the convergence properties of the present
model (Section 5.1.2).

The average welfare function (AWF), not to be confused with the social welfare
function, is the expected payoff of an outsider with the same payoff function as the
agents of the model but who has a fixed belief about the state of nature and who
copies the action of a randomly selected agent. Without loss of generality, this belief
can be chosen with equal probabilities for all states. The outsider’s payoff is thus the
average payoff of the copied actions for all possible states. Suppose now that agents
gradually learn from others. Learning means that the agents do strictly better than just
imitating the action of another random agent. As long as agents learn in this sense, the
AWF is strictly increasing between consecutive periods: this is the welfare-improving
principle (WIP). It provides a criterion to prove that learning takes place. Because the
AWF is bounded, it converges. By analyzing the value of the AWF at the limit point, we
will be able to assess how agents behave and what they learn when time goes to infinity.

Adequate and Complete Learning
Adequate learning has been defined by Smith and Sørensen (1997) as the situation
where at the limit (t → ∞) all agents take the action that is optimal for the true state.
Complete learning is the situation where the belief of an agent who makes a decision
in period t tends to the true state θ ∈ {0, 1}. Complete learning implies adequate
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learning, but in general the reverse is not true. However, in models with sampling,
adequate and complete learning are equivalent: if there is adequate learning, the
likelihood ratio from the observation of one investment tends to infinity. Hence,
for any value of the private belief, the belief of the agent tends to the truth: there is
complete learning.

Convergence
Smith and Sørensen (1997) use the WIP to show that learning is adequate in the
sequential model with sampling if private beliefs are unbounded. Their work addresses
a number of other issues, which cannot be considered here. One issue has not been
investigated, however. The previous chapter has emphasized that the importance of
the convergence to the truth may be exaggerated. What really matters is the speed of
the convergence. We have seen that this convergence is slow, even when private beliefs
are unbounded. It remains to be seen how the restriction to an observation sample of
size two, for example, would accelerate the convergence in a model with unbounded
private beliefs.

Sampling in a Very Large Population
Section 5.3, taken from Banerjee and Fudenberg (1995), departs from the sequential
model for the first time in this book. In each period, there is a large number of new
agents (a continuum) who take some action. Each of these agents samples N other
agents. A large diversity of information is thus imbedded in the new population with
different fractions of investing agents in the two states of nature. The model is actually
more a model of chain sampling than a model of social learning. The properties of
the model are sharply different from those in Section 5.1. If N ≥ 3, beliefs converge
to the truth even if agents do not have any private information.

5.1 The Sequential Model with Sampling

Consider the 2-by-2-by-2 model of Section 4.1.1: there are two states θ ∈ {0, 1} and
two actions x ∈ {0, 1}, and agent t maximizes his payoff in period t, (E t[θ] − c)xt

with 0 < c < 1
2 . Private beliefs (probability of state 1) have in state θ a c.d.f., which

is defined by F θ . Both states have the same probability ex ante. Following Smith and
Sørensen (1997), we depart from that model by assuming that for any t ≥ T + 1,
agent t observes N randomly selected actions in the history ht = {x1, . . . , xt−1}. The
values of N and T are fixed such that N ≤ T , and the random selection is as from an
urn with replacement. (The case without replacement would be very similar1.) In the
periods t ≤ T , which form the seed phase of the model, each agent acts according to
his private belief.

1 Smith and Sørensen (1997) analyze more general sampling methods.
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The Process of Social Learning
Consider the agent in period t. Let Zt be the number of investments in the history ht

(the number of actions xτ = 1 for 1 ≤ τ ≤ t − 1). For each draw from the past, the
probability of observing an investment is Zt/(t − 1). The probability of observing k
investments, in a sample of N observations, is identical to the probability of obtaining
k black balls after N drawings from an urn containing Zt black balls and t − 1 − Zt

white balls. The distribution of the number of investments yt is given by

P (yt = k|Zt) = N !

k!(N − k)!

(
Zt

t − 1

)k (
1 − Zt

t − 1

)N−k

.(5.1)

The distribution of Zt in the history ht depends on the state θ . Assume that the two
distributions P (Zt |θ) for θ = 0, 1, are common knowledge. We will show how they
are computed in the common knowledge for period t = 1.

The number of observed investments yt has a distribution that depends on θ

according to

P (yt = k|θ) =
t−1∑

Zt=0

P (yt = k|Zt)P (Zt |θ).(5.2)

The value of yt is therefore a signal on θ . After the observation of k investments in
his N-sample, the agent computes his LLR, λt(k). Because both states have the same
probability ex ante,

λt(k) = log

(
P (yt = k|θ = 1)

P (yt = k|θ = 0)

)
.(5.3)

Agent t invests if and only if his LLR is greater than γ = log(c/(1 − c)). Because his
LLR is the sum of the LLR from the observation of N other agents, λt(k), and of his
private LLR, λt , he invests if and only if his private LLR is such that

λt > γ − λt(k).

Let F θ be the c.d.f. of the private beliefs measured as LLR when the state is θ . For each
k, there is a probability ζt(k; θ) that the agent who observes k investments invests:

ζt(k; θ) = 1 − F θ
(
γ − λt(k)

)
.

Hence, the probability of an investment in period t depends on the actual number of
investments Zt and on the state according to

P (xt = 1|Zt, θ) =
N∑

k=0

P (yt = k|Zt)ζt(k; θ).(5.4)
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This expression determines the transition probabilities between Zt and Zt+1 = n.
The distributions of Zt+1 in the two states are computed from the distributions of Zt

and the transition probabilities:

P (Zt+1 = n|θ) = P (Zt = n|θ)(1 − P (xt = 1|Zt = n, θ))(5.5)

+ P (Zt = n − 1|θ) P (xt = 1|Zt = n, θ).

The evolution of investment is completely defined by equations (5.1) to (5.5).

The Information Requirement in the Common Knowledge
When agents observe the entire history of actions ht , the common knowledge is
summarized by one number, the public belief (probability of the good state). When
agents observe only a sample of past actions, the common knowledge is about the
distributions of Zt in the two states. This information requires 2(t − 2) numbers in
period t. In this sense, the setting without common history is more complex. The
additional complexity arises because the observation by each agent of others’ actions
is private information.

5.1.1 The Case of One Observation (N = 1): Asymptotic Herding

Assume that agent t observes only the action of one agent in the past. For simplic-
ity, assume also that the private information is derived from a SBS with precision
q > 1

2 and that c = 1
2 . The important property is that the SBS generates a bounded

distribution of private beliefs. Let Rθ
t be the public expected value of the fraction of

investing agents in the history ht , Xθ
t = Zθ

t /(t − 1) (over all possible histories ht).
Agent t can only observe one investment or no investment. In the first case, the like-
lihood ratio between states 1 and 0 is updated to R1

t /R0
t ; in the second case, it is

equal to (1 − R1
t )/(1 − R0

t ). The agent then compares this likelihood ratio with his
private likelihood ratio: q/(1 − q) if he has a good signal, (1 − q)/q if he has a bad
one.

If, in some period τ ,

R1
τ

R0
τ

>
q

1 − q
> 1,(5.6)

then the observation of an investment dominates any bad private signal and agent t
invests. Likewise, if

1 − R1
t

1 − R0
t

<
1 − q

q
< 1,(5.7)

then agent t does not invest even if he has a good signal. Assume both inequalities
hold: agent t herds and copies his observation. The probability that an agent invests
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Figure 5.1 Herding with one observa-
tion (N = 1). The expected fractions of
investing agents in the history ht are R0

t
in state 0 and R1

t in state 1. The correct
point where agents take on average the
correct action has coordinates (0, 1). In
the shaded area, all agents copy their first
observation regardless of their private
signal (which is a SBS), and the represent-
ing point is stationary. The shaded area
shrinks if the precision of private signals,
q, increases. In the shaded area, the ex-
pected values of X θ

t /(t − 1) are constant;
the actual fractions evolve randomly and
converge to their expected value.

in period t, πθ
t , is the same as the probability of observing one investment, Rθ

t . The
expected value of Xθ

t+1 is therefore also Rθ
t . The strategies in period t + 1 are the

same as in period t, and so on. A cascade takes place in which each agent copies one
observation (investment or no investment). In each state θ , the actual fraction of
investing agents in the history ht , Xθ

t , converges to Rθ
t .

The region of values (R0
t , R1

t ) in which conditions (5.6) and (5.7) are satisfied is
represented by the shaded area in Figure 5.1. It is apparent that learning cannot be
adequate in this case. Let πθ

t be the probability of investment in period t when the
state is θ . If learning is adequate, πθ

t should tend to θ ∈ {0, 1}. However, because
the private signal is bounded, these probabilities must be driven by the observation
of others, asymptotically. The value Rθ

t must tend to θ , and the representing point
of coordinates (R0

t , R1
t ) must converge to the correct point of coordinate (0, 1) in

Figure 5.1. This is impossible, because the representing point is stationary in the
shaded region which contains the correct point.

When the representing point (R0
t , R1

t ) is not in the shaded area of the figure, it is
not stationary. The analysis of its stochastic evolution requires special tools and will
be considered again in Section 5.2.3. At this stage, one can argue intuitively that the
representing point converges to a point in the shaded area, which is the cascade set.
That set contains the correct point and therefore prevents convergence to that point.
When the precision q of the private signals is higher, the cascade set is smaller, and
asymptotically, when t → ∞, more agents take the correct action.

5.1.2 The Case of More than One Observation (N ≥ 2)

We begin by considering the simplest case, with two observations: N = 2.
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Weak Evidence from Others and the Role of Private Information
Suppose that agent t observes one investment: yt = 1. From (5.1) and (5.2) with
N = 2, his likelihood ratio is

P (yt = 1|θ = 1)

P (yt = 1|θ = 0)
=

t−2∑
n=1

n(t − 1 − n)P (Zt = n|θ = 1)

t−2∑
n=1

n(t − 1 − n)P (Zt = n|θ = 1)

.

Suppose that the distribution of Zt is increasing in Zt if the state is θ = 1 and de-
creasing if the state is θ = 0, and that the two distributions are symmetric around
the midpoint (t − 1)/2. Such a case may be compatible with sharply different distri-
butions in the two states. However, the likelihood ratio in the previous expression is
equal to 1: the agent does not update his belief after the observation of the sample. In
this case, the observation of others provide no evidence.

In general, the two distributions may not be perfectly symmetric and the statement
needs to be modified accordingly. The main property, however, is that the observation
of one investment in a sample of size two provides weak evidence on the state. When
an agent faces weak evidence from the observation of others, he relies more on his
private information. The occurrence of weak evidence is the key channel through
which private information is fed into the process of social learning. Weak evidence
could not occur if all agents received strong information from the entire history. Social
learning may be more efficient with limited observations because of the occurrence
of weak evidence, which enables some agents to add their private information to the
pool of social information.

Cascades
The reception of weak information from others cannot take place if all agents in the
history ht invest, or if they do not invest. Suppose for example that agents derive their
private belief from a SBS with precision q and that the seed phase lasts for the first two
periods. Suppose further that in each period of the seed phase, the agent invests (an
event with positive probability). The third agent can observe only two investments.
Exercise 5.1 shows that he herds. A cascade begins.

The seed phase generates with strictly positive probability a sequence of identical
decisions. In general, if the private beliefs are bounded, it is intuitive that if the
seed phase is sufficiently long, a cascade is induced by the seed phase, with positive
probability.2 However, if the length of the seed phase increases, the probability of a
cascade induced by the seed phase decreases. This issue is considered again at the end
of the section.

2 Smith and Sørensen (1997) show that if private beliefs are unbounded, learning is adequate.
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Figure 5.2 The probabilities of investment. The mean probability of investment in period t,
conditional on the state θ and over all possible histories ht, is measured by πθ

t . In the BHW
case, agent t observes the complete history of actions ht. In the case N = 2, each agent t (t ≥ 5)
observes two randomly selected actions in the history ht. Parameters: c = 0.49; precision of the
SBS, q = 0.6; the two states are equally likely. The seed phase takes three periods.

AN EXAMPLE

A numerical simulation of the model is illustrated by Figure 5.2, which presents the
probabilities of investment in each period, πθ

t , conditional on the state. The BHW
case where each agent t observes the entire history ht is also presented for comparison.
Because the investment cost c is chosen to be less than 1

2 , the probability of a cascade
with investment is high. In the BHW model, the probability of investment is high in
each of the two states.

When agents make only two observations,3 the limit probability of investment
in the bad state appears to be much smaller. The limit probability of investment in
the good state also appears to be smaller than in the BHW model. In the figure, the
sampling model generates a superior outcome overall: the asymptotic probability of
investment in the bad state is reduced from about 40 to 20 percent; the probability of
investment in the good state is reduced from about 85 to 80 percent.

THE EFFECT OF A LARGER SAMPLE SIZE

With a larger size N of the sample of observations, one may think that agents will
learn more. This apparently obvious conclusion is false. A higher value of N implies
that history has a greater weight on individual choices and prevents the private infor-
mation from being conveyed through these actions. The evolution of the probability
of investment in period t is represented in Figure 5.3 for the cases N = 2 and N = 4.
The other parameters are the same as in Figure 5.2. (The case N = 2 is therefore
identical.) A larger sample size improves noticeably the efficiency of learning at the

3 Under sampling with replacement, in period 3 the set of observations from two past actions is
different from the knowledge of the history: an agent may sample the same agent twice.
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Figure 5.3 The probabilities of investment. The parameters are the same as in Figure 5.2. For
t ≥ 5, agent t observes the actions of N independent drawings from the history ht. For t sufficiently
large, a smaller sample size generates more social learning.

beginning of the learning phase. This was to be expected: agents sample more infor-
mative actions in the seed phase, which lasts six periods if N = 4.

It is remarkable that the effect of the sample size is reversed in the long run
(after period 134 here). When N is smaller, the occurrence of weak evidence is more
likely, and this weak evidence enables agents to release their private information
through their action. A reduction of the information provided by history may improve
the efficiency of social learning.

The convergence of the beliefs and actions cannot be analyzed with the MCT, be-
cause there is no martingale of public beliefs. We need new tools, which are presented
in the next section.

5.2 The Welfare-Improving Principle

5.2.1 The Average Welfare Function

Consider the model of the previous section with two equally probable states and with
uniform sampling of past agents. Consider an outsider who ignores the state and
the choice of agents. This outsider knows the decision process of all agents. He can
compute for each t the fractions4 Xθ

t of agents who have invested up to t, conditional
on each state θ . By assumption, the outsider assigns equal probabilities to the two
states. Under this veil of ignorance, the level of social welfare at time t is proportional
to the AWF5, Wt , defined by

2Wt = (1 − c)R1
t − c R0

t ,(5.8)

4 For the model of Section 5.1, Xθ
t is to be replaced by its expected value Rθ

t (Smith and Sørensen,
1997).

5 The AWF was introduced by Banerjee and Fudenberg (1995). (See Section 5.3.)
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where Rθ
t is the public expected value of Xθ

t . Recall that Rθ
t is a deterministic sequence.

The AWF has a nice interpretation: suppose that an agent has identical probabilities
for the two states and observes one randomly selected agent in the history ht , with
uniform probabilities, and copies the action of that agent; then his expected welfare
is Wt .

The evolution of the AWF depends on the average welfare of new agents. We will
see that if new agents learn, they have an average welfare that is superior to the AWF,
and therefore the AWF is increasing. With the monotone property, the AWF can be
used as a Lyapunov function for the analysis of the evolution of Rθ

t .
Let πθ

t be the expected value of the probability of investment of agent t in state
θ . This probability depends on the particular history ht from which the agent is
sampling. We have

Rθ
t+1 − Rθ

t = πθ
t − Rθ

t

t
.(5.9)

Let Ut be the average utility of agent t, as measured by the outsider who assigns equal
probabilities to the two states. By definition,

2Ut = (1 − c)π1
t − cπ0

t .

Using (5.9), we have

Wt+1 − Wt = Ut − Wt

t
.(5.10)

If agent t copies one action in his sample of observations, this action can always be
assumed to be the first that is observed. If he copies an observation, his probability of
making an investment is Rθ

t (as measured before making the observation). Ifπθ
t = Rθ

t ,
his average utility Ut is identical to the AWF Wt . Hence, Wt+1 = Wt . When the agent
can do better than copying, his utility is higher than the AWF.

5.2.2 The Welfare-Improving Principle

We can always write the information of agent t as (x̂ , s ), where x̂ is his first ob-
servation and s is a signal that contains all other information (other observations
and private information, if available). The time subscript is not necessary and is
omitted in this argument. If the agent uses only his observation x̂ , the copying strat-
egy x = x̂ is optimal. In that case, the AWF is constant. The next result states the
WIP.

PROPOSITION 5.1 (Welfare-Improving Principle) The average welfare function Wt

is monotonically increasing over time. If Ut is the average utility of agent t, then for any t,
Wt+1 − Wt = (Ut − Wt)/t ≥ 0. The inequality is strict if copying the first observation
in the sample of size N is a strictly dominated decision rule at time t.
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To prove the result, assume that the copying decision is strictly suboptimal. We
can assume that there are two sets of signal values S and S such that if the agent
observes an investment, x̂ = 1, and s ∈ S, he does not invest; if x̂ = 0 and s ∈ S, he
does invest. At least one of the two sets S and S has strictly positive probability. The
signal s is independent of the observation x̂ . Let πθ be the probability of investment
in state θ when the agent follows the noncopying strategy.

The ex ante welfare level of the agent who follows the noncopying strategy is
2U = (1 − c)π1 − cπ0. We distinguish four possible types of information:

2U = (1 − c)R1
(

1 − P (s ∈ S|θ = 1)
)

− c R0
(

1 − P (s ∈ S|θ = 0)
)

(5.11)

+ (1 − c)(1 − R1)P (s ∈ S|θ = 1) − c(1 − R0)P (s ∈ S|θ = 0).

In the first line, the agent observes one investment (with probability Rθ in state θ)
and invests if his signal is not in the set S. In the second line, the agent observes no
investment and invests if his signal is in the set S. Taking the difference between U
and the payoff of the copying strategy W = (1 − c)R1 − c R0, we have

2(U − W) = −
(

(1 − c)R1 − c R0
)

P (s ∈ S)

+
(

(1 − c)(1 − R1) − c(1 − R0)
)

P (s ∈ S).

Now the sets S and S, if not empty, are defined so that

R1

R0

P (s ∈ S|θ = 1)

P (s ∈ S|θ = 0)
<

c

1 − c
and

1 − R1

1 − R0

P (s ∈ S|θ = 1)

P (s ∈ S|θ = 0)
>

c

1 − c
.

Inasmuch as at least one of the sets S and S is not empty, U > W. If the copying
of the first observation is an optimal decision rule, then the sets S and S are empty,
πθ = Xθ , and U = W. The result follows6 from (5.10).

5.2.3 Convergence

Learning is complete if the mean belief of agent t (which depends on the history ht)
tends to the truth. Learning is adequate if the expected probability of investment for
an outsider in period t, πθ

t , tends to 1 if θ = 1, and to 0 if θ = 0. Complete learning
implies adequate learning, and here the reverse is also true: if learning is adequate, the
proportion of investing agents in the history ht tends to 1 (the good state) or 0 (the
bad state). The observation of one agent provides asymptotically a signal of arbitrarily
large precision.

The AWF, which is monotone increasing, converges to some value W ∗. The upper
bound of the AWF is by definition (1 − c)/2 and is reached if Rθ = θ . If the AWF

6 Smith and Sørensen (1997) show that the WIP applies for some sampling mechanisms that are not
uniform. It does not apply, however, when each agent observes the actions of the agents in the two
previous periods (Çelen and Kariv, 2002a).
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tends to its upper bound, then we must have Rθ
t → θ and learning is complete. The

reverse is also true. The AWF provides therefore a criterion to assess whether learning
is complete or not. Smith and Sørensen use the AWF and the WIP to prove the
following result (which holds for more general “recursive samplings” and is adapted
here).

PROPOSITION 5.2 (Smith and Sørensen, 1997, Proposition 1)
(i) If private beliefs are unbounded, learning is complete: πθ

t → θ .
(ii) If private beliefs are bounded, then learning is incomplete. A cascade occurs in finite

time with strictly positive probability.

The proof of the first part uses the WIP repeatedly. If learning is incomplete,
(π0

t , π1
t ) does not converge to (0, 1). Because (π0

t , π1
t ) ∈ [0, 1] × [0, 1] and the aver-

age utility is such that 2Ut = (1 − c)π1
t − cπ0

t , we have lim inf Ut = v < (1 − c)/2.

There is an infinite sequence τ = tk such that the average utility of agent τ satis-
fies Uτ → v . Because Wτ ≤ Uτ (by the WIP) and Wt is increasing (by the WIP),
Wt is bounded by v . Because v = lim inf Ut and Wt+1 − Wt = (Ut − Wt)/t, we have
Wt → v .

Recall that Wt is the average utility of an agent who copies his first observation
and ignores his private belief. Using the assumption of unbounded private beliefs,
we can adapt the proof of the WIP (Proposition 5.2.2) to show that the probability
of the union of the sets S and S is bounded below by some number β > 0. From
expression (5.11) in the proof of the WIP, it follows that there exist T and η > 0 such
that for t > T we have Ut > Wt + η. Because Wt → v , this contradicts the definition
v = lim inf Ut .

The proof of the second part provides an interesting insight. Suppose by contra-
diction that learning is complete: π1

t → 1. As mentioned previously, there is a date
T such that for t ≥ T , if agent t observes only investments in his sample, that signal
dominates his private signal (which is bounded), and he herds. The probability of the
history hT = (1, . . . , 1) is strictly positive. If agent T is herding and invests, the his-
tory hT+1 contains only investments. The same argument applies in that period and
any subsequent period. If all agents herd, however, we cannot have π0

t → 0, which
brings the contradiction.

The previous argument shows how a cascade may arise in which all agents take the
same action. There can also be cascades in which agents take different actions (e.g.,
when copying one observation is an optimal strategy).

Proposition 5.2 proves the convergence of the expected probability of investment,
πθ

t . The convergence almost surely of the action is analyzed by Smith and Sørensen
(1997), who use the urn function.7

7 Arthur and Lane (1994) analyze a model where agents observe a sample of past outputs and use the
urn function (Hill, Lane, and Sudderth, 1980; Arthur, Ermoliev, and Kaniovski, 1983, 1986).



5.3 Sampling in a Very Large Population 107

5.3 Sampling in a Very Large Population

The previous model is extended as follows. In each period, there is a continuum of new
agents with a fixed mass. Each of these agents chooses his action x ∈ {0, 1} to maxi-
mize his payoff (E [θ] − c)x , given his information. Each agent has a private SBS with
precision q . The sampling of past actions is not uniform but imbeds a fading effect :
the probability of sampling earlier actions is smaller; more specifically, in each draw
at time t the probability of observing an action taken in period t − τ is proportional
to (1 − α)τ−1, where α is a parameter, 0 < α < 1. As before, the period in which
the action is taken is not observable. The model is operationally equivalent to a
model where an agent born in period t is observable in period t + τ with proba-
bility (1 − α)τ−1. We may therefore assume that he makes a permanent exit with
probability α at the end of each period.8 The population of observable agents is
maintained at a constant level by assuming that the mass of observable agents is
normalized to one and that the mass of new agents in each period is α. This intro-
duction links the previous model with that of Banerjee and Fudenberg (1995), here-
after BF.

The BF model may be interpreted as follows: there is an economy with a continuum
of firms, which operate one of two technologies. In each period, a constant fraction of
the firms disappears by attrition. It is replaced by a continuum of new firms with the
same mass. Each new firm chooses irreversibly one of the two technologies. It receives
information by the observation of the choices in N existing firms, and possibly some
private signal. The N firms are selected randomly in the entire population. We do
not have neigborhood effects, which will be introduced in Chapter 9. This spatial
interpretation of the BF model is obviously equivalent to the first interpretation.
As discussed below, the first interpretation (and therefore the BF model) departs
significantly from the standard model of social learning.

In order to simplify the presentation and without loss of generality, the action
x = 1 is called investment and the cost of investment is c = 1

2 . An agent invests if
and only if state 1 is more likely than state 0, given his information. The period is
vanishingly short, and time is continuous. (The analysis in discrete time is formally
equivalent.) At the beginning of time, the masses of firms that have invested are X0

0

and X1
0 for the two states 0 and 1, and these values are common knowledge.

The assumption of the continuum of agents introduces a key simplification into
the technical arguments. We do not need to distinguish between the expected fraction
of agents who have invested in the history ht and the actual fraction. This fraction in
state θ is denoted by Xθ

t .
The decision process at time t determines the variation of Xt = (X0

t , X1
t ) per

unit of time, i.e., the value of Ẋ t = G(Xt), where the function G depends on the

8 One could also assume that the exit is physical.
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process of social learning. We need to determine if the solution of the differential
equation

Ẋ t = G(Xt)(5.12)

converges to the correct point (0, 1) where all agents take action 1 if θ = 1 and action 0
if θ = 0. The evolution of the representing point with coordinates (X0

t , X1
t ) is illus-

trated in Figure 5.4. The arrows indicate the directions of evolution in the cases where
each new agent observes two other agents (left panel) or one other agent (right panel).
We begin with the case of one observation.

5.3.1 Two Examples

ONE OBSERVATION: N=1

Assume first that no agent has private information about the state. The evolution
of the point Xt is found in the left panel of Figure 5.4. The important region is the
one above the 45◦ line. Because X1

t > X0
t , the observation of an investment yields a

probability estimate greater than 1
2 , and the observation of no investment a probability

smaller than 1
2 : agents copy the action of the firm they observe and the point Xt is

invariant over time. Any point above the 45◦ line (shaded area) is invariant.
The analysis of the dynamics in the other regions of the figure is left as an exercise.

The observation of one other action is sufficient to eliminate limit points with the
error that X1 < X0 (more agents use action 1 in state 0 than in state 1).

Assume now that each new agent has private information. The shaded area in the
right-hand panel of Figure 5.4 is reduced to that of Figure 5.1. The discussion related
to that figure applies.

TWO OBSERVATIONS: N=2

No Private Information
Assume first that each agent observes only the actions of two other agents and has
no private information about the state. Omitting the time subscript, an agent who
observes k investments in his sample infers a likelihood ratio �(k) between states 1
and 0, with

�(2) =
(

X1

X0

)2

, �(1) =
(

X1

X0

)(
1 − X1

1 − X0

)
, �(0) =

(
1 − X1

1 − X0

)2

.

Suppose for example that X1 > X0 and that X1 + X0 < 1. We have �(2) > �(1) >

1 > �(0). Because the cost of investment is 1
2 , an agent chooses action 1 if and only

if he observes at least one investment. The proportion of new agents who see at least
one investment is 1 − (1 − Xθ )2. Because the masses of new agents and of exiting
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Any point in the shaded area is invariant. Any
position below the diagonal generates
a convergence to the diagonal.

The value of x ∗ is equal to (3 − √5)/2, solution of
x2 − 3x + 1 = 0. The limit points are on the segment 
AC. There is no convergence to the correct point.

Figure 5.4 Observing N choices without private information.

agents are α, the time derivative of Xθ is

Ẋ
θ = α

(−Xθ + 1 − (1 − Xθ )2
) = αXθ (1 − Xθ ).

The evolution of the point Xt is illustrated in the right panel of Figure 5.4. In the
region where X1

t > X0
t and X1

t + X0
t < 1, the point Xt moves northeast. The point

Xt converges to some limit on the segment AC . The limit depends on the initial
position X0 = (X0

0 , X1
0).

The segments O D and AC are special. Consider first a point X = (X0, X1) on
the segment O D with X1 = X0. The observation of others is not informative. Any
decision rule is optimal. If the agent copies one observation selected randomly, or the
first one, the point X is stationary. Under a different rule the point may move on the
line O D or move off the line.

Any point on the segment AC is a limit point because of the following argument:
assume X1 + X0 = 1 with 0 < X0 < X1 < 1. An agent who observes two investments
invests, whereas an agent who observes zero investment does not invest. An agent who

observes one investment has a likelihood ratio (X1/X0)
(

(1 − X1)/(1 − X0)
)

= 1.

He is indifferent. Let us assume the tie-breaking rule according to which he chooses
one of the two actions with equal probability. The evolution of X is given by Ẋ =
α(−X + X2 + X(1 − X)) = 0. The representing point is invariant.
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This property is interesting in the context of the discussion on social learning
versus diffusion of available information (Section 5.4). In the present model, the
information about the actions of all existing agents would reveal the state of nature
perfectly. The learning from a small sample of agents is not sufficient to generate a
convergence to the truth. Complete learning can be achieved only if agents have some
private information about the state of nature.

Private Information
Without loss of generality, assume now that each new agent has a private information
in the form of a SBS with precision q . Consider the region where X1 > X0, X0 +
X1 < 1. The observation of the actions in two other firms moves the representing
point northeast. When new agents receive a private signal, this effect is reinforced: the
reader may work out the details, but this argument will be reconsidered in the next
section with a new tool.

Suppose now that the representing point is on the segment AC . We have seen that
if agents observe only the actions of two firms, the point is stationary. If agents receive
an additional private signal about the state, the agents who have no information from
the observation of others (i.e., one investment for two observations) are more likely
to invest when the state is good than when the state is bad. The private information
determines the agent’s action when the observation of others yields weak evidence. On
the segment AC , the representing point moves toward the correct point. In state 1,
the evolution of X is given by

Ẋ
1 = α

(
−X1 + (X1)2 + 2q X1(1 − X1)

)
= α(2q − 1)X1(1 − X1) > 0,

and X0 = −Ẋ
1
. The sum X1 + X0 is invariant and the representing point stays on

the segment AC and converges to the correct point.

The Absence of Cascades
It is intuitive (and will be proven in the next section) that the representing point
converges to the correct point even if the private beliefs are bounded (as is the case
with a SBS). There is no cascade, because the underlying information in the pool
of actions taken is sufficiently different in the good and the bad states. (It would
reveal that state if it were observable.) Recall that with a finite set of actions in a
seed phase, the two states may generate identical (or nearly identical) histories with
positive probability. This property makes a cascade possible.

5.3.2 Convergence

Banerjee and Fudenberg (1995) invented the AWF and the WIP for the general analysis
of the convergence in the model in Section 5.3 with N observations. These concepts
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are equivalent to the ones presented in the previous section with the quantities Rθ
t

replaced by Xθ
t . Without loss of generality, we assume that the private information

of an agent is a SBS with precision q > 1
2 and c = 1

2 . The point (X0
t , X1

t ) belongs to
the compact set [0, 1] × [0, 1]; hence the solution of the differential equation (5.12)

converges to a limit X = (X
0
, X

1
).

NO COMPLETE LEARNING: N=1

Define the region � of the points X = (X0, X1) such that X1/X0 ≥ q/(1 − q) and
(1 − X1)/(1 − X0) ≤ (1 − q)/q . (It is the shaded area of Figure 5.1.)

If the limit point X is not in�, an exercise shows that copying is strictly suboptimal.
(It is strictly superior to take the decision 1 − x̂ if X1 < X0 and to use the private
signal if X1 > X0.) Hence the AWF is strictly increasing at the limit point X , and there
exists β > 0 and a neighborhood B of X such that if X ∈ B, then Ẇt > β, which
contradicts the convergence to X . The limit point X must be in the set �.

Note that in the set �, the WIP cannot be used: herding is optimal, and it is
identical to copying the observation.

COMPLETE LEARNING WITH BOUNDED PRIVATE BELIEFS: N=2

Suppose first N = 2. At any point that is not on the segment AC (left panel of
Figure 5.4) the use of both observations by an agent strictly dominates the copying
of the first observation. On the segment AC , the use of both observations does not
strictly dominate the copying rule. The agent can ignore his second observation.
(Recall that he is indifferent between investing and not investing.) However, the use
of the private signal generates a strictly superior rule. From the WIP and an argument
about the limit point as in the case N = 1, it follows that the limit point cannot be
different from the correct point with coordinates (0, 1).

PROPOSITION 5.3 In the model of Section 5.3, if N = 2 and new agents have informa-
tive private signals, learning is complete and Xθ

t → θ .

NO PRIVATE INFORMATION NEEDED: N≥3

We assume first that N = 3 and that agents have no private information: their only
information is derived from the observation of N other agents. Suppose the first
observation of an agent is investment. Copying that action is optimal only if X1/X0 ≥
1, and for any string of other observations, not investing is not strictly preferred. We
must have

X1

X0

X1

X0

1 − X1

1 − X0
≥ 1 and

X1

X0

(
1 − X1

1 − X0

)2

≥ 1.

Because X1 ≥ X0, the second inequality implies the first.
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Likewise, if the copying of noninvestment is optimal for any observation, we must
have

1 − X1

1 − X0

(
X1

X0

)2

≤ 1.

The combination of these inequalities implies that X1 ≤ X0. If copying the first
observation is optimal at a point X that is different from the correct point, we must
have X0 = X1: the observation of others generates no information. Any decision rule
is optimal, and the point X stays on the line O D in Figure 5.4.

If the initial point X0 is not on the line O D, then Xt converges to the correct point
and learning is perfect asymptotically. The initial value of the AWF is (X1

0 − X0
0)/2,

which is strictly positive. Because the AWF is strictly increasing off the line O D, the
point Xt cannot converge to a point on the line O D where the AWF is nil. From the
same argument as in the previous case N = 2, the limit point must be the correct
point.

The argument for the case N = 3 applies to any case N > 3.

PROPOSITION 5.4 Assume that in the model of Section 5.3, N ≥ 3 and agents do
not have private information. If, at time 0, X1

0 �= X0
0 , then learning is complete and

Xθ
t → θ .

If agents have private information, then learning is complete because of the WIP
for all cases, including X1 = X0. However, the case X1 = X0 is trivial and can be
ruled out, almost surely. The previous result is remarkable in that it shows that a
sample of size larger than two improves the asymptotic properties of social learn-
ing. For N ≥ 3, private information is not necessary. The information imbedded
in the actions already taken is sufficient to generate complete information at the
limit.

5.4 Social Learning or Sampling in a Large Population?

Smith and Sørensen (1997) argue, rightly, that the model of BF, though “more
tractable, is not an appropriate approximation of the right sequential entry learn-
ing model.” The main messages of the sequential entry model (Section 5.1) and of
the BF model with a very large population (Section 5.3) are indeed opposite.

In the BF model, a larger number N of observations improves the efficiency of
learning in the limit (Propositions 5.3 and 5.4): private information (which may be
bounded) is required for complete learning when N = 2. It can be dispensed with
entirely, however, if N ≥ 3. If agents could sample the whole population, they would
know the truth. Each agent samples only N other agents, and then he is sampled by
other agents, and so on. In this respect, the model is about the gradual sampling of
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the population with sampling of the samplers. It seems clear that in this case a larger
sample size would make learning from sampling more efficient.9

In the sequential model that is analyzed by Smith and Sørensen (1997), social
learning does not converge to the truth if private beliefs are bounded. In Figure 5.3,
social learning is more efficient when the sample size is smaller. These properties
are supported by the intuition about social learning in sequential models that was
developed in the previous chapter.

When agents enter in a sequence, some histories may develop in which a string
of choices overwhelm individual choices. As private informations are not channeled
through actions in these histories, the mix between individual choices is not sharply
different between the two states and the observation of others does not convey much
information, if any. In the BF model, it is assumed that at the beginning of time there
is a strong diversity of actions, for there is a continuum with different fractions of
investing agents in the two states, X1

0 �= X0
0. This assumption is not that important,

however. (A similar assumption could be introduced in the sequential model.) The
key feature of the BF model is that a continuum of agents is introduced in each
period. The diversity of their samplings ensures distributions of actions that will be
informative about the true state when they are themselves observed by others. The
model is actually not a model of social learning but a model of chain sampling in a
very large population.

EXERCISES

EXERCISE 5.1 Cascades

In the model of Section 5.1, assume that the signals of the first two agents are equal
to 1. Determine the public belief at the beginning of period 3. Show that a cascade
begins in period 3.

EXERCISE 5.2

Consider the model of Section 5.3 where new agents observe N other agents and have
a private SBS with precision q .

1. Assume N = 1. Determine the set of invariant points that corresponds to the
shaded area in the left panel of Figure 5.4.

2. Show that any path in the noninvariant set converges to the frontier of the invariant
set. (Do not use the AWF.)

3. Assume N = 2. Determine the evolution of X = (X0, X1) on the left panel in
Figure 5.4. (Do not use the AWF.)

9 One may conjecture that the rate of convergence in the model of Banerjee and Fudenberg increases
with the sample size N. No analysis has been provided yet.
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EXERCISE 5.3 Learning from the previous action (Çelen and Kariv, 2002a)

There are N agents. Each agent has a signal si from a uniform distribution on [−1, 1].
The state of nature is θ = ∑N

1 si . Agent t chooses xt ∈ {0, 1} to maximize xt E t[θ] in
round t. Each agent t observes only the action of the previous agent, xt−1: E t[θ] =
E [θ |st , xt−1].

1. Show that if xt−1 = j ∈ {0, 1}, agent t invests (xt = 1) if and only if his signal is

greater than S
j
t = −E [

∑t−1
k=1 sk|xt−1 = j ].

2. Show that S
1
t satisfies the relation

S
1
t = P (xt−2 = 1|xt−1 = 1)

(
S

1
t−1 − E [st−1|xt−2 = 1]

)
= P (xt−2 = 0|xt−1 = 1)

(
S

0
t−1 − E [st−1|xt−2 = 0]

)
.

3. Using the symmetry of the model, note that S
1
t = −S

0
t , and show that

S
0
t = 1 + (S

0
t−1)2

2
.

4. Analyze the limit properties of the model if N → ∞ and t → ∞.
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Does the waiting game end with a bang or a whimper?

Each agent chooses when to invest (if at all) and observes the number

of investments by others in each period. That number provides a signal

on the private information of other agents about the state of nature. The

waiting game has in general multiple equilibria. An equilibrium depends

on the intertemporal arbitrage between the opportunity cost of delay

and the value of the information that is gained from more observations.

The informational externality generates strategic substitutabilities and

complementarities. Multiple equilibria appear, which exhibit a rush of

activity or delays and generate a small or large amount of information.

The convergence of beliefs and the occurrence of herds are analyzed un-

der a variety of assumptions about the boundedness of the distribution

of private beliefs, the number of agents, the existence of an observa-

tion noise, the length of the periods, and the discreteness of investment

decisions.

In 1993, the U.S. economy was in a shaky recovery from the previous recession. The
optimism after some good news was dampened by a few pieces of bad news, raised
again by other news, and so on. In the trough of the business cycle, each agent
is waiting for some good news about an upswing. What kind of news? Some count
occupancy rates in the first-class sections of airplanes. Others weigh the newspapers to
evaluate the volume of ads. Housing starts and expenditures on durables are standard
indicators to watch. The news is the actions of other agents. Everyone could be waiting
because everyone is waiting in an “economics of wait and see” (Nasar, 1993).

In order to focus on the problem of how a recession may be protracted by the game
of waiting for more information, we have to take a step back from the intricacies of
the real world and the numerous channels of information. In this chapter, agents
learn from the observation of the choices of action taken by others, but not from the

115
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payoffs of these actions. This assumption is made to simplify the analysis. It is also
justified in the context of the business cycle, where lags between the initiation of an
investment process and its payoff can be long (at least a year or two). The structure of
the model is thus the same as in Chapter 3, but each agent can make his investment
in any period: he has one option, to make a fixed-size investment. The central issue is
when to exercise the option, if at all.

When the value of the investment is strictly positive, delay is costly because the
present value of the payoff is reduced by the discount factor. The opportunity cost of
delay for one period is the product of the net payoff of investment and the discount
rate. Delay enables an agent to observe others’ actions and infer some information
on the state of nature. These observations may generate good or bad news. Define
the bad news as an event such that the agent regrets ex post an irreversible investment
he has made, and would pay a price to undo it (if that were possible). The expected
value of this payment in the next period, after observation of the current period’s
aggregate investment, is the option value of delay. The key issue that underlines all
results in this chapter is the trade-off, in equilibrium, between the opportunity cost
and the option value of delay.

Consider the model of Chapter 4 with two states of nature, and assume that agents
can choose the timing of their investment. If all beliefs (probabilities of the good state)
are below the cost of investment, then the only equilibrium is with no investment,
and there is a herd as in the BHW model. If all beliefs are higher than the cost of
investment, there is an equilibrium in which all agents invest with no delay. This
behavior is like a herd with investment in the BHW model, and it is an equilibrium,
for nothing is learned by delaying. The herds in the BHW model with exogenous
timing are equilibria in the model with endogenous timing.

However, the model with endogenous timing may have other equilibria with an
arbitrage between the option value and the opportunity cost of delay. For a general
distribution of private beliefs, the margin of arbitrage may occur at different points of
the distribution. Generically, there are at least two equilibrium points, one in the upper
tail of the distribution and another in the lower tail. In the first equilibrium, only the
most optimistic agents invest; in the second, only the most pessimistic delay. The two
equilibria in which most agents delay or rush, respectively, are not symmetric, because
of the arbitrage mechanism. In the first, the information conveyed by the aggregate
activity must be large in order to keep the agents at the high margin of beliefs (with
a high opportunity cost) from investing. In the second, both the opportunity cost of
relatively pessimistic agents and the information conveyed by the aggregate activity
are low. In the particular case of a bounded distribution, the rush where few agents
delay may be replaced by the corner solution where no agent delays.

Multiple equilibria are evidence of strategic complementarities (Cooper and John,
1988). These complementarities arise here only because of informational externalities.
There is no payoff externality. As in other models with strategic complementarities,
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multiple equilibria may provide support for sudden switches of regime with large
fluctuations of economic activity (Chamley, 1999).

The main ideas of the chapter are presented in Section 6.1 with a simple two-agent
model based on Chamley and Gale (1994). The unique equilibrium is computed
explicitly.

The general model with heterogeneous beliefs is presented in Section 6.2. It is the
full extension of the BHW model to endogenous timing. The model of heterogeneous
beliefs is a plausible assumption per se, and it generates nonrandom strategies. The
model has a number of players independent of the state of nature and generalizes
that of Chamley and Gale (1994), who assume identical beliefs. In the model with
identical beliefs, the endowment of an option is the private signal, and the number
of players thus depends on the state of nature. This case is particularly relevant when
the number of players is large.

When private beliefs are not identical, the analysis of the symmetric subgame per-
fect Bayesian equilibria (PBE) turns out to be simple because of an intuitive property
that is related to the arbitrage condition: an agent never invests before another who is
more optimistic. Therefore, the agent with the highest belief among those who delay
must be the first to invest in the next period if there is any investment in that period
(because he has the highest belief then). All equilibria where the arbitrage condition
applies can be described as sequences of two-period equilibria.

Some properties of the model are presented in Section 6.3. Extensions will be
discussed in the next chapter. When the public belief is in a range (µ∗, µ∗∗), the
level of investment in each period is a random variable, and the probability of no
investment is strictly positive. If there is no investment, the game stops with a herd,
and no investment takes place in any subsequent period. Hence the game lasts a
number of periods that is at most equal to the number of players in the game. If the
period length tends to zero, the game ends in a vanishingly short time. Because an
agent can always delay until the end of the game, and the cost of delay tends to zero
with the length of the period, the information generated by the game also tends to
zero with the period length: another effect of arbitrage.

The game is illustrated in Section 6.3.4 by an example with two agents with
normally distributed private signals (unbounded), which highlights the mechanism of
strategic complementarity. When the time period is sufficiently short, there cannot be
multiple equilibria, under some specific conditions. The presence of time lags between
observation and action is thus necessary for the existence of multiple equilibria.

The case of a large number of agents (Section 6.3.7) is interesting and illustrates
the power of the arbitrage argument. When the number of agents tends to infinity,
the distribution of the levels of investment tends to a Poisson distribution with a
parameter that depends on the public belief and on the discount rate. This implies
that as long as the public belief µ is in the interval (µ∗, µ∗∗), the level of investment is
a random variable that is small compared with the number of agents. The public belief
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evolves randomly until it exits the interval: if µ < µ∗, investment goes from a small
random amount to nil forever; if µ > µ∗∗, all remaining agents invest with no further
delay. The game ends with a whimper or with a bang.

The appendix (Section 6.4) presents two extensions of the model, which show the
robustness of the results: (i) with a very large number of agents (a continuum) and
an observation noise, there are multiple equilibria as in the model with two agents;
the equilibrium with high aggregate activity generates an amount of information
significantly smaller than the equilibrium with low activity and delays; (ii) multiple
equilibria also appear when individual investments are nondiscrete.

6.1 The Simplest Model

There are two agents, and time is divided into periods. There are two states of nature,
θ ∈ {0, 1}. In state 0, only one of two players (chosen randomly with equal probability)
has one option to make an investment of a fixed size in any period. In state 1, both
players have one option. To have an option is private information and is not observable
by the other agent; the private signal of the agent is the option. The number of players
in the game depends on the state of nature.1 As an illustration, the opportunities for
productive investment may be more numerous when the state of the economy is good.

For an agent with an option, the payoff of investment in period t is

U = δt−1(E [θ] − c) with 0 < c < 1,

where E is the expectation conditional on the information of the agent and δ is the
discount factor, 0 < δ < 1.

All agents in the game have the same private information (their own option), and
observe the same history. They have the same belief (probability of state θ = 1). Let
µt be the belief of an agent at the beginning of period t. The belief in the first period,
µ, is given2 and satisfies the next assumption in order to avoid trivialities.

ASSUMPTION 6.1 0 < µ − c < δµ(1 − c).

Agents play a game in each period, and the strategy of an agent is his probability
of investment. We look for a symmetric PBE: each agent knows the strategy of the
other agent (it is the same as his own); he rationally anticipates receiving a random
amount of information at the end of each period and that the subgame that begins
next period with a belief updated by Bayes’s rule has an equilibrium.

1 One could also suppose that the cost of investment is very high for one or neither agent, thus
preventing the investment. Recall that in the BHW model, the number of players does not depend
on the state of nature.

2 One could assume that agents know that nature chooses state θ = 1 with probability µ0. In this case,
by Bayes’s rule, µ = 2µ0/(1 + µ0).
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Let z be the probability of investment in the first period by an agent with an option.
Such an agent will be called a player. We prove that there is a unique symmetric
equilibrium with 0 < z < 1.

• z = 1 cannot be an equilibrium. If z = 1, both agents “come out” with probability
one; the number of players and therefore the state is revealed perfectly at the end of
the period. If an agent deviates from the strategy z = 1 and delays (with z = 0), he
can invest in the second period if and only if the true state is good. The expected
payoff of this delay strategy is δµ(1 − c): in the first period, the good state is
revealed with probability µ, in which case he earns 1 − c . The discount factor is
applied because the investment is made in the second period. The payoff of no
delay is µ − c , and it is smaller by Assumption 6.1. The strategy z = 1 cannot
define a PBE. Note that the interpretation of the inequality on the right is now
clear: the payoff of investment, µ − c , should be smaller than the payoff of delay
with perfect information in the next period.

• z = 0 cannot be an equilibrium either. The argument is a bit more involved and
proceeds by contradiction. If z = 0, there is no investment in the first period for any
state, there is no information, and therefore the same game holds at the beginning
of period 2, with the same belief µ. Indefinite delay cannot be an equilibrium
strategy, because it would generate a zero payoff, which is strictly smaller than the
payoff of no delay, µ − c > 0 (Assumption 6.1). Let T be the first period in which
there is some investment with positive probability. Because z = 0, we have T ≥ 2.
In period T , the current value of the payoff of investment is µ − c > 0, because
nothing has been learned before. The present value of this payoff is strictly smaller
than the payoff of immediate investment, µ − c . Hence, T ≥ 2 is impossible and
z = 0 cannot be an equilibrium strategy.

THE NECESSITY OF INVESTMENT IN EVERY PERIOD

We have shown that in an equilibrium, agents randomize with 0 < z < 1. The level
of total investment is a random variable. We will see that the higher the level of
investment, the higher the updated belief after the observation of the investment. In
this simple model, one investment is sufficient to reveal to the other player (if there
is one) that the state is good. No investment in the first period is bad news. Would
anyone invest in the second period after this bad news? The answer is no, and the
argument is interesting.

If anyone delays in the first period and expects to invest in the second period
after the worst possible news (zero investment), his payoff in the subgame of period
2 is the same as that of investing for sure in period 2. (He invests if he observes one
investment.) That payoff, δ(µ − c), is inferior to the payoff of immediate investment
because of the discount. The player cannot invest after observing no investment.
Hence, if there is no investment in the first period, there is no investment in any period
after. We will see in this chapter that this phenomenon occurs in more general models.
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The argument shows that (i) if there is no investment, the ex post belief of any agent
must be smaller than the cost of investment, c ; (ii) because agents randomize in the
first period, the event of no investment has a positive probability. There is a positive
probability of an incorrect herd.

Using the previous argument, we can compute the payoff of delay. If an agent
delays, he invests in period 2 if and only if he sees an investment (by the other agent)
in period 1, in which case he is sure that the state is good and his second-period
payoff is 1 − c . The probability of observing an investment in the first period is µz
(the product of the probabilities that there is another agent and that he invests). The
payoff of delay (computed at the time of the decision) is therefore δµz(1 − c).

ARBITRAGE AND THE EXISTENCE OF A UNIQUE PBE

Because 0 < z < 1, agents randomize their investment in the first period and are indif-
ferent between no delay and delay. This arbitrage condition between the value of invest-
ment and the value of the option to invest is essential in this chapter and is defined by

µ − c = δµz(1 − c).(6.1)

By Assumption 6.1, this equation in z has a unique solution in the interval (0, 1). The
analysis of the solution may be summarized as follows: first, the arbitrage condition
is necessary if a PBE exists; second, the existence of a unique PBE follows from the
arbitrage condition by construction of the equilibrium strategy. This method will be
used in the general model.

INTERPRETATION OF THE ARBITRAGE CONDITION

A simple manipulation shows that the arbitrage equation can be restated as

1 − δ

δ
(µ − c) = µz(1 − c) − (µ − c)(6.2)

= P (x = 0|µ)
(

c − P (θ1|x = 0, µ)
)

,

where P (x = 0|µ) is the probability for an agent with belief µ that the other agent
does not invest in period 1, i.e., the probability of bad news. The term µ − c has the
dimension of a stock, as the net present value of an investment. The left-hand side
is the opportunity cost of delay: it is the value of investment multiplied by the interest
rate between consecutive periods. (If δ = 1/(1 + r ), then (1 − δ)/δ = r .) The right-
hand side will be called the option value of delay. It provides the measurement of the
value of the information obtained from a delay. To interpret it, note that the term
P (θ1|x = 0, µ) is the value of an investment after the bad news in the first period. If
an agent could reverse his decision to invest in the first period (and get the cost back),
the associated value of this action would be c − P (θ1|x = 0, µ). The option value of
delay is the expected “regret value” of undoing the investment when the agent wishes
he could do so. The next properties follow from the arbitrage condition.
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INFORMATION AND TIME DISCOUNT

The power of the signal that is obtained by delay increases with the probability of
investment z. If z = 0, there is no information. If z = 1, there is perfect information.

The discount factor is related to the length of the period, τ , by δ = e−ρτ , with ρ the
discount rate per unit of time. If δ varies, the arbitrage equation (6.1) shows that the
product δz is constant. A shorter period (higher δ) means that the equilibrium must
generate less information at the end of the first period: the opportunity cost of delay
is smaller, and by arbitrage, the information value of delay decreases. Because this
information varies with z, the value of z decreases. From Assumption 6.1, 0 < z < 1
only if δ is in the interval [δ∗, 1), with δ∗ = (µ − c)/(µ(1 − c)).

If δ → δ∗, then z → 1. If δ ≤ δ∗, then z = 1 and the state is revealed at the end
of the first period. Because this information comes late (with a low δ), agents do not
wait for it.

If δ → 1 and the period length is vanishingly short, information comes in quickly
but there is a positive probability that it is wrong. The equilibrium strategy z tends to
δ∗. If the state is good, with probability (1 − δ∗)2 > 0 both agents delay and end up
thinking that the probability of the good state is smaller than c and that investment
is not profitable. There is a trade-off between the period length and the quality of the
information that is revealed by the observation of others. This trade-off is generated
by the arbitrage condition. The opportunity cost of delay is smaller if the period length
is smaller. Hence the value of the information gained by delay must also be smaller.

A remarkable property is that the waiting game lasts one period, independently of
the discount factor. If the period is vanishingly short, the game ends in a vanishingly
short time, but the amount of information that is released is also vanishingly short.
In this simple model with identical players, the value of the game does not depend
on the endogenous information that is generated in the game, because it is equal to
the payoff of immediate investment. However, when agents have different types of
private information, the length of the period affects welfare (as shown in the next
chapter).

INVESTMENT LEVEL AND OPTIMISM

In the arbitrage equation (6.1), the probability of investment and the expected value
of investment are increasing functions of the belief µ: a higher µ entails a higher
opportunity cost and, by arbitrage, a higher option value of delay. The higher in-
formation requires that players “come out of the wood” with a higher probability
z. This mechanism is different from the arbitrage mechanism in the q-theory of
Tobin, which operates on the margin between the financial value µ and an adjustment
cost.

OBSERVATION NOISE AND INVESTMENT

Suppose that the investment of an agent is observed with a noise: if an investment is
made, the other agent sees it with probability 1 − γ and sees nothing with probability
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γ (γ small). The arbitrage operates beautifully: the information for a delaying agent
is unaffected by the noise, because it must be equal to the opportunity cost, which
is independent of the noise. Agents compensate for the noise in the equilibrium by
increasing the probability of investment (Exercise 6.2).

LARGE NUMBER OF AGENTS

Suppose that in the good state there are N agents with an option to invest and that in
the bad state there is only one agent with such an option. These values are chosen to
simplify the game: one investment reveals that the state is good, and no investment
stops the game. For any N, which can be arbitrarily large, the game lasts only one
period, in equilibrium, and the probability of investment of each agent in the first
period tends to zero if N → ∞. Furthermore, the probability of no investment,
conditional on the good state, tends to a positive number. The intuition is simple.
If the probability of investment by a player remains higher than some value α > 0,
his action (investment or no investment) is a signal on the state with a nonvanishing
precision. If N → ∞, delay provides a sample of observations of arbitrarily large
size and perfect information asymptotically. This is impossible, because it would
contradict the arbitrage with the opportunity cost of delay, which is independent of
N. The equilibrium is analyzed in Exercise 6.4.

STRATEGIC SUBSTITUTABILITY

Suppose an agent increases his probability of investment from an equilibrium value
z. The option value (in the right-hand side of (6.1) or (6.2)) increases. Delay becomes
strictly better, and the optimal response is to reduce the probability of investment to
zero: there is strategic substitutability between agents. In a more general model (next
section), this property is not satisfied and multiple equilibria may arise.

NONSYMMETRIC EQUILIBRIUM

Assume there are two agents, A and B , who can see each other but neither of whom
can see whether the other has an option to invest. It is common knowledge that agent
B always delays in the first period and does not invest ever if he sees no investment
in the first period.

Agent A does not get any information by delaying: his optimal strategy is to invest
with no delay, if he has an option. Given this strategy of agent A, agent B gets perfect
information at the end of period 1, and his strategy is optimal. The equilibrium
generates perfect information after one period. Furthermore, if the state is good,
both agents invest. If the period length is vanishingly short, the value of the game
is µ − c for agent A and µ(1 − c) for agent B , which is strictly higher than in the
symmetric equilibrium. If agents could “allocate the asymmetry” randomly before
knowing whether they have an option, they would be better off ex ante.
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6.2 A General Model with Heterogeneous Beliefs

The structure of the model extends the canonical model in Section 4.2 by allowing
each agent to make his fixed-size investment in any period of his choice. There are N
agents, each with one option to make one irreversible investment of a fixed size. Time
is divided into periods, and the payoff of exercising an option in period t is δt−1(θ − c)
with δ the discount factor, 0 < δ < 1, and c the cost of investment, 0 < c < 1. The
payoff from never investing is zero. Investment can be interpreted as an irreversible
switch from one activity to another.3

The rest of the model is the same as in the beginning of Section 4.2. The productivity
parameter θ , which is not observable, is set randomly by nature once and for all before
the first period and takes one of two values: θ0 < θ1. Without loss of generality, these
values are normalized at θ1 = 1 for the good state and θ0 = 0 for the bad state. As
in Section 2.2.1, each agent is endowed at the beginning of time with a private belief
which is drawn from a distribution with c.d.f. F θ

1 (µ) depending on the state of nature
θ . For simplicity and without loss of generality, it will be assumed that the cumulative
distribution functions have derivatives.4 The support of the distribution of beliefs
is an interval (µ

1
, µ1), where the bounds may be infinite and are independent of

θ . The densities of private beliefs satisfy the proportional property (2.12). Hence,
the cumulative distribution functions satisfy the property of first-order stochastic
dominance: for any µ ∈ (µ

1
, µ1), F 1

1 (µ) < F 0
1 (µ).

After the beginning of time, learning is endogenous. In period t, an agent knows
his private belief and the history ht = (x1, . . . , xt−1), where xk is the number of
investments in period k.

The only decision variable of an agent is the period in which he invests. (This
period is postponed to infinity if he never invests.) We will consider only symmetric
equilibria. A strategy in period t is defined by the investment set It(ht) of beliefs of all
investing agents: an agent with belief µt in period t invests in that period (assuming he
still has an option) if and only if µt ∈ It(ht). In an equilibrium, the set of agents who
are indifferent between investment and delay will be of measure zero and is ignored.
Agents will not use random strategies.

As in the previous chapters, Bayesian agents use the observation of the number
of investments, xt , to update the distribution of beliefs, F θ

t , to the distribution in the
next period, F θ

t+1. Each agent (who has an option) chooses a strategy that maximizes
his expected payoff, given his information and the equilibrium strategy of all agents
for any future date and future history. For any period t and history ht , each agent
computes the value of his option if he delays and plays in the subgame that begins in

3 The case where the switch involves the termination of an investment process (as in Caplin and Leahy,
1994) is isomorphic.

4 The characterization of equilibria with atomistic distributions is more technical in that equilibrium
strategies may be random (e.g., Chamley and Gale, 1994).
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the next period t + 1. Delaying is optimal if and only if that value is at least equal5 to
the payoff of investing in period t. All equilibria analyzed here are symmetric subgame
PBEs.

As in the model with exogenous timing (Section 4.2.1), a belief can be expressed
by the LLR between the two states, λ = log(µ/(1 − µ)). With nt remaining players,
the LLR is updated between periods t and t + 1 by Bayes’s rule:

λt+1 = λt + ζt , where ζt = log

(
P (xt | It , θ1)

P (xt | It , θ0)

)
,

P (xt | It , θ) = nt !

xt !(nt − xt)!
π

xt
θ (1 − πθ )nt−xt , πθ = P (λt ∈ It | θ).

(6.3)

All agents update their individual LLR by adding the same value ζt . Given a state θ ,
the distribution of beliefs measured as LLRs in period t is generated by a translation
of the initial distribution by a random variable ζt .

6.2.1 Characterization and Existence of Equilibria

The incentive for delay is to get more information from the observation of others.
Agents who are more optimistic have more to lose and less to gain from delaying: the
discount factor applies to a high expected payoff, whereas the probability of bad news
to be learned after a delay is relatively small. This fundamental property of the model
restricts the equilibrium strategies to the class of monotone strategies. By definition,
an agent with a monotone strategy in period t invests if and only if his belief µt is
greater than some value µ∗

t . The next result, which is proven in the appendix (Section
6.4), shows that equilibrium strategies must be monotone.

LEMMA 6.1 (Monotone strategies) In any arbitrary period t of a PBE, if the payoff
of delay for an agent with belief µt is at least equal to the payoff of no delay, any agent
with belief µ′

t < µt strictly prefers to delay. Equilibrium strategies are monotone and
defined by a value µ∗

t : agents who delay in period t have a belief µt ≤ µ∗
t .

Until the end of the chapter, a strategy will be defined by the minimum belief for
investment, µ∗

t . Because no agent would invest with a negative payoff, µ∗
t ≥ c . The

support of the distribution of µ in period t is denoted by (µ
t
, µt). If all agents delay

in period t, one can define the equilibrium strategy as µ∗
t = µt .

The existence of a nontrivial equilibrium in the subgame that begins in period
t depends on the payoff of the most optimistic agent,6 µt − c . First, if µt ≤ c , no
agent has a positive payoff and there is no investment whatever the state θ . Nothing

5 By assumption, an indifferent agent delays. This tie-breaking rule applies with probability zero and
is inconsequential.

6 Recall that such an agent may not actually exist in the realized distribution of beliefs.
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is learned in period t (with probability one), or in any period after. The game stops.
Second, if µt > c , the next result (which parallels a property for identical beliefs
in Chamley and Gale, 1994) shows that in a PBE, the probability of some invest-
ment is strictly positive. The intuition of the proof, which is given in the appendix
(Section 6.4), begins with the remark that a permanent delay is not optimal for
agents with beliefs strictly greater than c (because it would yield a payoff of zero).
Let T be the first period after t in which some agents invest with positive proba-
bility. If T > t, the current value of their payoff would be the same as in period
t (nothing is learned between t and T). Because of the discount factor δ < 1, the
present value of delay would be strictly smaller than immediate investment, which is a
contradiction.

LEMMA 6.2 (Condition for positive investment) In any period t of a PBE

(i) if c < µt (the cost of investment is below the upper bound of beliefs), then any
equilibrium strategy µ∗

t is such that c ≤ µ∗
t < µt ; if there is at least one remaining

player, the probability of at least one investment in period t is strictly positive;
(ii) if µt ≤ c (the cost of investment is above the upper bound of beliefs), then with

probability one there is no investment for any period τ ≥ t.

The decision to invest is a decision whether to delay or not. In evaluating the
payoff of delay, an agent should take into account the strategies of the other agents in
all future periods. This could be in general a very difficult exercise. Fortunately, the
property of monotone strategies simplifies greatly the structure of equilibria. A key
step is the next result, which shows that any equilibrium is a sequence of two-period
equilibria, each of which can be determined separately.

LEMMA 6.3 (One-step property) If the equilibrium strategy µ∗
t of a PBE in period

t is an interior solution (µ
t
< µ∗

t < µt), then an agent with belief µ∗
t is indifferent

between investing in period t and delaying to make a final decision (investing or not) in
period t + 1.

Proof

Because the Bayesian updating rules are continuous in µ, the payoffs of immediate
investment and of delay for any agent are continuous functions of his belief µ. There-
fore, an agent with belief µ∗

t in period t is indifferent between investment and delay.
By definition of µ∗

t , if he delays, he has the highest level of belief among all players
remaining in the game in period t + 1, i.e., his belief is µt+1. In period t + 1 there
are two possibilities: (i) if µt+1 > c , then from Lemma 6.2, µ∗

t+1 < µt+1 and a player
with belief µt+1 invests in period t + 1; (ii) if µt+1 ≤ c , then from Lemma 6.2 again,
nothing is learned after period t; a player with belief µt+1 may invest (if µt+1 = c),
but his payoff is the same as that of delaying forever.
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In an equilibrium, an agent with belief µ compares the payoff of immediate
investment, µ − c , with that of delay for exactly one period, W(µ, µ∗), where µ∗ is
the strategy of others. (For simplicity we omit the time subscript and other arguments
such as the number of players and the c.d.f. F θ ). From Lemma 6.3 and the Bayesian
formulae (6.3) with πθ = 1 − F θ (µ∗), the function W is well defined. An interior
equilibrium strategy must be solution of the arbitrage equation between the payoff
of immediate investment and of delay:

µ∗ − c = W(µ∗, µ∗).

The next result shows that this equation has a solution if the cost c is interior to the
support of the distribution of beliefs.

LEMMA 6.4 In any period, if the cost c is in the support of the distribution of beliefs, i.e.,
µ < c < µ, then there exists µ∗ > c such that µ∗ − c = W(µ∗, µ∗): an agent with
belief µ∗ is indifferent between investment and delay.

Proof

Choose µ∗ = µ: there is no investment and therefore no learning during the period.
Hence, W(µ, µ) = (1 − δ)(µ − c) < µ − c . Choose now µ∗ = c . With strictly pos-
itive probability, an agent with belief c observes n − 1 investments, in which case his
belief is higher (n is the number of remaining players). Hence, W(c , c) > 0. Because
the function W is continuous, the equation µ∗ − c = W(µ∗, µ∗) has at least one
solution in the interval (c , µ).

The previous lemmata provide characterizations of equilibria (PBE). These char-
acterizations enable us to construct all PBE by forward induction and to show
existence.

THEOREM 6.1 In any period t where the support of private beliefs is the interval
(µ

t
, µt),

(i) if µt ≤ c , then there is a unique PBE with no agent investing in period t or after;
(ii) if µ

t
< c < µt , then there is at least one PBE with strategy µ∗

t ∈ (c , µt);
(iii) if c ≤ µ

t
, then there is a PBE with µ∗

t = µ
t

in which all remaining players invest
in period t.

In cases (ii) and (iii) there may be multiple equilibria. The equilibrium strategies µ∗
t ∈

(µ
t
, µt) are identical to the solutions of the arbitrage equation

µ∗ − c = W(µ∗, µ∗),(6.4)
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where W(µ, µ∗) is the payoff of an agent with belief µ who delays for exactly one period
while other agents use the strategy µ∗.

The only part that needs a comment is (ii). From Lemma 6.4, there exists µ∗
t

such that c < µ∗
t and µ∗ − c = W(µ∗, µ∗). From Lemma 6.1, any agent with belief

µt > µ∗
t strictly prefers not to delay, and any agent with belief µt < µ∗

t strictly prefers
to delay. (Otherwise, by Lemma 6.1 an agent with belief µ∗

t would strictly prefer to
delay, which contradicts the definition of µ∗

t .) The strategy µ∗
t determines the random

outcome xt in period t and the distributions F θ
t+1 for the next period, and so on.

6.3 Properties

6.3.1 Arbitrage

Let us reconsider the trade-off between investment and delay. For the sake of simplicity,
we omit the time subscript whenever there is no ambiguity. If an agent with belief
µ delays for one period, he forgoes the implicit one-period rent on his investment,
which is the difference between investing for sure now and investing for sure next
period, (1 − δ)(µ − c); he gains the possibility of undoing the investment after bad
news at the end of the current period (the possibility of not investing). The expected
value of this possibility is the option value of delay. The following result, proven in
the appendix (Section 6.4), shows that the belief µ∗ of a marginal agent is defined by
the equality between the opportunity cost and the option value of delay.

PROPOSITION 6.1 (Arbitrage) Let µ∗ be an equilibrium strategy in a game with
n ≥ 2 remaining players, µ < µ∗ < µ. Then µ∗ is solution of the arbitrage equation
between the opportunity cost and the option value of delay,

(1 − δ)(µ∗ − c) = δQ(µ∗, µ∗),(6.5)

with

Q(µ, µ∗) =
n−1∑
k=0

P (x = k | µ, µ∗, F θ , n)

× max
(

c − P (θ = θ1 | x = k; µ, µ∗, F θ , n), 0
)

,

where x is the number of investments by other agents in the period.

The function Q(µ, µ∗) is a regret function that applies to an agent with belief
µ. It depends on the strategy µ∗ of the other agents and on the c.d.f.’s F θ at the
beginning of the period. The gain of undoing an investment is c minus the value of
the investment after the bad news, so the regret function Q(µ, µ∗) is the expected
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value of the amount the agent would be prepared to pay to undo his investment at
the beginning of next period.

At the end of that period, each agent updates his LLR according to the Bayesian
formula (6.3) with πθ = 1 − F θ (µ∗

t ). A simple exercise shows that the updated LLR
is an increasing function of the level of investment in period t and that the lowest
value of investment xt = 0 generates the lowest level of belief at the end of the period.
Can the game go on after the worst news of no investment? From Proposition 6.1, we
can deduce immediately that the answer is no. If the agent invested after the worst
news, the value of Q(µ∗, µ∗) would be equal to zero and would therefore be strictly
smaller than µ∗ − c , which contradicts the arbitrage equation (6.5).

PROPOSITION 6.2 (The case of worst news) In any period t of a PBE for which
the equilibrium strategy µ∗

t is interior to the support (µ
t
, µt), if xt = 0, then µt+1 ≤ c

and the game stops at the end of period t with no further investment in any subsequent
period.

The result shows that a game with N players lasts at most N periods. If the period
length τ is vanishingly short, the game ends in a vanishingly short time. This case is
analyzed in Section 6.3.6.

6.3.2 Representation of Beliefs

An example of the evolution of beliefs is illustrated in Figure 6.1. The reader may
compare it with the equivalent Figure 4.3 in the case of exogenous timing. Beliefs
are measured by the LLR and are bounded, by assumption. The support of their
distribution at the beginning of a period is represented by a segment. Suppose that
the state is good: θ = 1. At the beginning of period 1, the private beliefs of the N players
are the realizations of N independent drawings from a distribution with density f 1(·),
which is represented by a continuous curve. (The density in state θ = 0 is represented
by a dashed curve.)

In period 1, agents with a belief above λ∗
1 exercise their option to invest. The

number of investments, x1, is the number of agents with belief above λ∗
1, which is

random according to the process described in the previous paragraph.
Each agent who delays knows that x1 is generated by the sum of N − 1 independent

binary variables equal to 1 with a probability πθ that depends on θ : πθ = 1 − F θ (λ∗
1).

The probability is represented in Figure 6.1 by the lightly shaded area if θ = 0 and the
darker area if θ = 1.

From the updating rule (6.3), the distribution of LLRs in period 2 is a translation
of the distribution of the LLRs in period 1, truncated at λ∗

1 and rescaled (to have a
total measure of one): λ∗

1 − λ1 = λ2 − λ2. An agent with LLR equal to λ∗
1 in period

1 and who delays has the highest belief in period 2. The news at the end of period 1
depends on the random number of agents with beliefs above λ1. In Figure 6.1, the
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Figure 6.1 An example of evolution of beliefs. Here γ = log(c/(1 − c)). The number of invest-
ments in a period t depends on the number of agents with a belief higher than λ∗

t . At the end
of a period, the updated distributions in the two states are truncated, translated, and rescaled.
Period 3 (in which the representation of the densities is omitted) corresponds to a case with
three equilibria. In period 4, there is no investment, because all beliefs are smaller than the cost
of investment.

observation of the number of investments in period 1 is bad news: the agent with
highest belief has a lower belief in period 2 than in period 1.

There are two critical values for the LLR in each period: (i) an agent who has a
LLR below the breakeven value γ = log(c/(1 − c)) does not invest; (ii) no agent who
has an LLR above some value λ∗∗ delays. The value λ∗∗ is defined so that if λ > λ∗∗,
the payoff of no delay is higher than that of delay with perfect information one period
later. Because the latter yields δµ(1 − c) to an agent with belief µ, we have

λ∗∗ = log

(
µ∗∗

1 − µ∗∗

)
with µ∗∗ − c = δµ∗∗(1 − c).(6.6)

Note that λ∗∗ (or µ∗∗) depends essentially on the discount rate. If the discount
rate is vanishingly small, then the opportunity cost of delay is vanishingly small, and
only the superoptimists should invest: if δ → 1, then λ∗∗ → ∞.

6.3.3 Herds: A Comparison with Exogenous Sequences

Case (iii) in Theorem 6.1 is represented in period 3 of Figure 6.1. The lower bound
of the distribution of beliefs is higher than the cost of investment, with λ3 > γ =
log(c/(1 − c)). There is an equilibrium called a rush, in which no agent delays. In
that equilibrium, nothing is learned by delay, because the number of investments is
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equal to the number of remaining players, whatever the state of nature. This outcome
occurs here with endogenous delay under the same condition as the cascade of BHW,
in which all agents invest, regardless of their private signal.7

For the distribution of beliefs in period 3, there may be another equilibrium with
an interior solution λ∗

3 to the arbitrage equation (6.4). Because agents with the lowest
LLR λ3 strictly prefer to invest if all others do, there may be multiple equilibria with
arbitrage, some of them unstable. This issue is reexamined in the next subsection.

For the case of period 4, all beliefs are below the breakeven point: λ4 < γ . No
investment takes place in period 4 or after. This equilibrium appears also in the BHW
model with exogenous timing, as a cascade with no investment. From Proposition
6.2, this equilibrium occurs with positive probability if agents coordinate on the
equilibrium λ∗

3 in period 3.
The present model integrates the findings of the BHW model in the setting with

endogenous timing. We could anticipate that the herds of the BHW model with ex-
ogenous timing are also equilibria when timing is endogenous, because they generate
no information and therefore no incentive for delay.

A rush where all agents invest with no delay can take place only if the distribution
of beliefs (LLR) is bounded below. However, if beliefs are unbounded, the structure
of equilibria is very similar to that in Figure 6.1. In a generic sense, there are multiple
equilibria and one of them may be similar to a rush. This issue is examined in an
example with two agents and Gaussian signals. The Gaussian property is a standard
representation of unbounded beliefs.

6.3.4 Two Agents

Assume there are two agents: agent i (i = 1, 2) receives a signal si that is normally
distributed with mean θ and variance σ 2; s1 and s2 are independent, conditional on
θ . From Proposition 6.2, there are at most two periods in which investment takes
place, and the first period is the only active period in which the decision problem is
not trivial. Each agent i forms his belief µ(si ) = P (θ = θ1|µ, si ) in the first period
according to Bayes’s rule from the public belief µ of state θ1 and his signal si . The
support of the distribution of beliefs is the entire set of real numbers. Individual
strategies can be defined with respect to the private signal (to invest if s > s ∗) or with
respect to the individual belief (to invest if µ(s ) > µ∗). In this subsection we use the
formulation in terms of private signals. Likewise, the value of investment is expressed
as a function of the private signal µ(s ) − c , and the option value of an agent is a
function of the private signal s and the strategy s ∗ of the other agent. By an abuse of
notation, Q(s , s ∗) = Q(µ(s ), µ(s ∗)). A symmetric PBE is characterized by

1 − δ

δ

(
µ(s ∗) − c

)
= Q(s ∗, s ∗).(6.7)

7 In the BHW model, distributions are atomistic, but the argument is identical.
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Figure 6.2 Multiple equilibria with two
agents. Parameter values: σ = 2, θ0 = 0,

θ1 = 1, c = 0.5, P(θ = θ1) = 0.87, δ = 1 −
0.06.

The decision problem is illustrated in Figure 6.2 with the graphs of the option value
of delay Q(s , s ) and of the opportunity cost ((1 − δ)/δ)(µ(s ) − c) (measured in
the second period). The main feature of the figure is the hump shape of the option
value Q(s , s ) as a function of s . This feature does not depend on the specifics of the
example and has a general interpretation. Suppose first that the equilibrium strategy
s ∗ is very low. The probability of an investment is high in both states. It is higher
in the good state, but the difference from the bad state is small. The observation of
investment by the other agent is not very informative, as it is expected to occur most
of the time.8 The expected information gained by delay as measured by the option
value is therefore small. The same property holds when s ∗ is sufficiently high, in which
case an agent does not invest, most of the time. Finally, when s ∗ is in the intermediate
range, the observation of the actions of other agents is informative and the option
value is higher than in either tail of the distribution.

By (6.5), the option value of delay is equal to

Q(s , s ∗) = c(1 − µ(s ))F (s ∗ − θ0) − (1 − c)µ(s )F (s ∗ − θ1).

The partial derivative of the option value of delay for an agent with signal s is decreasing
in s , given the strategy s ∗ of the other agent:

Q1(s , s ∗) = −(c F (s ∗ − θ0) + (1 − c)F (s ∗ − θ1))µ′(s ) < 0.

The intuition is straightforward: an agent with a higher signal s is more optimistic
and has a lower expected regret after the first period.

The partial derivative of the option value of delay with respect to the other agent’s
strategy, s ∗, is equal to

Q2(s , s ∗) =
(

c

1 − c

1 − µ(s )

µ(s )

f (s ∗ − θ0)

f (s ∗ − θ1)
− 1

)
(1 − c)µ(s ) f (s ∗ − θ1).

8 In the simple model of Section 6.1, this equilibrium could occur because the number of players
depended on the state.



132 Delays

For simplicity, assume c = 1
2 . Using Bayes’s rule for µ(s ),

Q2(s ∗, s ∗)(6.8)

=
(

1 − µ

µ
exp

(
θ1 − θ0

σ 2

(
s − θ1 + θ0

2

))
− 1

)
µ(s )

2
f (s ∗ − θ1).

We have the following property9:

There exists ŝ such that Q2(s , s ) < 0 if and only if s > ŝ .(6.9)

The variation of the function Q(s , s ) is Q′(s , s ) = Q1(s , s ) + Q2(s , s ). A straight-
forward exercise shows that if s is sufficiently small, the effect of the second compo-
nent (the strategy of the other agent) dominates that of the first (the private signal):
Q1(s , s ) + Q2(s , s ) > 0. The option value Q(s , s ) is increasing in s .

6.3.5 Strategic Complementarity and Substitutability

The reaction R(s ∗) to the strategy s ∗ of the other agent is defined by

1 − δ

δ

(
µ(R(s ∗)) − c

)
= Q(R(s ∗), s ∗).

The model generates regions of strategic complementarity (with R′ > 0) and strategic
substitutability (with R′ < 0). When s ∗ is relatively small and delay does not generate
much information, an increase in s ∗, i.e., a reduction in the propensity to invest,
raises the option value of delay and thus the opportunity cost (1 − δ)(µ − c) of the
optimal response in s . In this case, the reaction function is increasing in s ∗ and there is
strategic complementarity. When s ∗ is large, an increase in s ∗ reduces the option value
of delay and thus lowers the marginal belief between investment and delay. There is
strategic substitutability. These properties can be verified formally by differentiation
of the previous equation:(

1 − δ

δ
µ′(s ) − Q1

)
R′ = Q2.(6.10)

From the previous discussion, the multiplier of R′ is positive and the sign of R′ is
the same as that of Q2. From (6.9), the sign of Q2(s ∗, s ∗) is positive if s ∗ < ŝ for
some value ŝ and negative if s ∗ > ŝ . This occurrence of strategic complementarity
and substitutability is robust, as shown in Chamley (2003a).

Strategic complementarity is necessary for the existence of multiple equilibria
(Cooper and John, 1988). Strategic complementarity occurs here only because of

9 If µ = 1
2
, then ŝ = (θ0 + θ1)/2.
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information externalities. There is no payoff externality. In Figure 6.2 there are three
equilibrium strategies, s ∗

a < s ∗
b < s ∗

c , and the middle one is unstable.10

The strategy s ∗
a generates a rush with a high probability of investment by any agent,

whereas with the strategy s ∗
c , the probability of investment in the first period is small.

The s ∗
c -equilibrium is more informative than the s ∗

a -equilibrium in the sense that if
an agent receives a signal in the range (s ∗

a , s ∗
c ), he prefers to delay and to incur an

opportunity cost. He invests immediately in the s ∗
a -equilibrium. Any agent who takes

different actions in the two equilibria strictly prefers the one with more delay. It can
be verified numerically that the loss of information under the strategy s ∗

a as compared
with that under s ∗

c cannot be interpreted as a loss of information due to some noise,
à la Blackwell.11

6.3.6 Period Length

Suppose that in the two-agent model of the previous section, the period length de-
creases toward zero, with a constant discount rate per unit of time, or equivalently
that the discount factor δ tends to one. In Figure 6.2, the graph of the option value of
delay (in current terms) stays invariant but the graph of the opportunity cost rotates
clockwise around its intersection with the 0-line. In that example, there is a value
δ∗ such that if δ > δ∗, the rush equilibrium vanishes and there remains a unique
equilibrium where each agent delays unless his signal is high.

This property is general and has an intuitive explanation. When the discount
rate becomes vanishingly small, the opportunity cost of delay, for any given belief µ,
becomes smaller than the option value of delay. Such a belief cannot be the belief of
a marginal agent. An equilibrium with arbitrage must occur in the range of relatively
high beliefs. However, (6.9) shows that for s > ŝ that is independent of δ, there is
strategic substitutability and there cannot be multiple equilibria. The uniqueness of
the equilibrium with a low discount rate is formalized in the next proposition (which
is generalized in Chamley, 2003a).

PROPOSITION 6.3 Assume that in the two-agent game of Section 6.3.4, the parameters
of the model (except δ) are given. Then there exists δ∗ such that if δ ∈ (δ∗, 1), there is a
unique equilibrium.

Proposition 6.3 highlights the fact that some delay in the observation of oth-
ers is important for the existence of multiple equilibria and rushes. A delay in the

10 The middle strategy s ∗
b is unstable in the following sense: at that point, a small change in the

strategy s ∗
2 , say of agent 2, induces a reaction in s ∗

1 by agent 1, with the same sign and with a greater
magnitude.

11 Because of the absence of the Blackwell property, it is doubtful that the equilibria can be Pareto-
ranked for general distributions of beliefs. Such a Pareto ranking is easy to establish, however, when
the distribution of agents is atomistic with two classes, optimists and pessimists.
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observation of others is a plausible assumption. Periods are a measure of the lag
between the observation of others and the possibility of action in response to the
information provided by the observation. Proposition 6.3 shows that multiple equi-
libria may arise only if this lag is not too short. We will see in the next chapter that the
case of continuous time is not the limit of a model with vanishingly short periods.12

6.3.7 Large Number of Agents

We have seen in Theorem 6.1 that the game can be reduced to a sequence of inde-
pendent two-period games, each of which is completely specified by the densities of
beliefs f θ in the two states. The time subscripts will therefore be omitted until the end
of this subsection. The densities f θ are taken as given. The only parameter that varies
is the number of players n, which is arbitrarily large. This case is relevant for large
economies and for the comparison of social learning with endogenous and exogenous
timing.13 We will see that the limit properties of the model depend only on the upper
bound of the beliefs, µ, and not on the distributions of beliefs.

In order to focus on the main issues, assume µ < c < µ (case (ii) in Theorem
6.1). The analysis of the other cases is left to the reader. By Theorem 6.1, all equilibria
have a strategy µ∗ ∈ (c , µ), and there is at least one such equilibrium. How does an
equilibrium strategy change when the number of players n → ∞, ceteris paribus?

The key mechanism is the arbitrage between the opportunity cost and the option
value of delay for an agent with marginal belief µ∗. To develop the intuition, suppose
first that µ∗ stays constant. Because the probability that any player invests is equal
to 1 − F θ (µ∗) in state θ , the level of investment in the period, x , operates like a
sampling of size n with probability 1 − F θ (µ∗), and is more informative on state θ

when n increases. The prospect of a piece of information of high value generates a
higher incentive for delay. Therefore, the equilibrium value µ∗ cannot stay constant:
it must increase when n → ∞.

Recall that an agent with belief above µ∗∗ (defined in (6.6)) does not delay. The
next two results characterize the asymptotic properties of equilibria as n → ∞ and
are shown in the appendix (Section 6.4). These properties depend on whether the
upper bound of the distribution µ is greater or smaller than µ∗∗: (i) when µ <

µ∗∗, a large number of players has no effect on the information generated in an
equilibrium; (ii) when µ > µ∗∗, a large number of players solve the information
problem asymptotically. We begin with µ < µ∗∗.

12 If c ≤ µ, a rush in which no agent delays is an equilibrium (Theorem 6.1, case (iii)). In such an
equilibrium, there is no information gained in a delay, and the equilibrium holds for any value of the
discount rate or the opportunity cost. In the model of Section 6.3.4, however, the rush equilibrium
at s ∗

a disappears if the period is sufficiently short. This issue is discussed in the next chapter.
13 The convergence with exogenous learning makes little sense if the number of players is not arbitrarily

large.
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PROPOSITION 6.4 Assume that in some arbitrary period the cumulative distribution
functions F θ are given, with support such that µ < c < µ < µ∗∗, where µ∗∗ is defined
byµ∗∗ − c = δµ∗∗(1 − c). Then any equilibrium strategyµ∗(n) depends on the number
of players n. If n → ∞, then

µ∗(n) → µ and F θ (µ∗(n)) = 1 − βθ
n

n
with lim

n→∞ βθ
n = βθ > 0.

The result shows that under the stated assumptions, if n → ∞, the game is played
by agents whose beliefs are vanishingly close to the upper bound of the beliefs µ.
Because of the arbitrage property, the value of the information revealed by investment
is bounded by the opportunity cost of an agent with belief µ, which is independent of
the number of players. The number of investments has a Poisson distribution, and the
game is the same as in the model of Chamley and Gale (1994) with identical agents
and n arbitrarily large. The upper bound of the support µ summarizes completely
the effect of the distribution of beliefs on the equilibrium.14

The condition µ < c < µ in Proposition 6.4 ensures the existence of an equilib-
rium with delay and learning. If this condition is lifted, that equilibrium could be
maintained or could disappear, and there could also be an equilibrium with a rush.
These various possibilities can easily be seen by the reader at this point.15 The im-
portant condition in Proposition 6.4 is that µ < µ∗∗. The next result focuses on the
reverse case µ > µ∗∗.

PROPOSITION 6.5 Assume that in some arbitrary period, µ > µ∗∗ and µ < c < µ.
Then if n → ∞, there is a unique equilibrium strategy µ∗(n) with

lim
n→∞ µ∗(n) = µ∗∗,

and information is asymptotically perfect at the end of the period. For any µ ∈ [µ, µ],
the payoff of delay converges to δµ(1 − c).

If the distribution of beliefs is bounded (µ < 1) and the period is sufficiently
short, then µ < µ∗∗ and Proposition 6.4 applies. If the distribution is unbounded,
then µ = 1 and Proposition 6.5 applies for any discount factor. When the period

14 The analysis of that model, using the standard tools of dynamic programming, is also available on
the web site of this book (see page 16).

15 One could show that if the density of private beliefs is strictly positive on [µ, µ] and n is sufficiently
large, there are at most three equilibria, two of which are stable in a standard sense. The first of
these two is the equilibrium with an interior solution to the arbitrage equation, and the second is a
rush. In the third equilibrium, the investment set is an interval (µ, µ∗) where µ∗ → µ if n → ∞.
In that equilibrium, the Poisson parameter is such that asymptotically, an agent with belief µ is
indifferent between investment and delay.
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is vanishingly short, the information problem is solved. An agent with belief µ

gets perfect information in a vanishingly short time,16 and his payoff is equal to
µ(1 − c).

This result is obviously different from that of Chamley and Gale (1994), where the
support of the distribution of beliefs is restricted to a point and is therefore bounded.
Recall that in the model with exogenous timing, beliefs converge to the truth if the
distribution of beliefs is unbounded (Proposition 4.8). In Proposition 6.5, agents are
not restricted in the timing of their investment and convergence to the truth occurs
after one period if n → ∞.

EXERCISES

EXERCISE 6.1

Consider the model of Section 6.1. Determine the belief (probability of the good
state) after the bad news of no investment. Determine the limit of this value when
δ → 1.

EXERCISE 6.2 Observation noise

Consider the model of Section 6.1 with observation noise. Assume that if an agent
invests, he is seen as investing with probability 1 − γ and not investing with probability
γ , where γ is small. Determine the equilibrium strategy. Show that for some interval
γ ∈ [0, γ ∗) with γ ∗ > 0, the probability of the revelation of the good state and the
probability of an incorrect herd are independent of γ .

EXERCISE 6.3

Consider the simple model of delay in Section 6.1 where there are two possible states
1 and 0. In state 1, there are two agents, each with an option to make an investment
equal to 1 at the cost c < 1. In state 0, there is only one such agent. The gross payoff
of investment is θ . The discount factor is δ < 1, and the initial probability of state 1
is µ such that 0 < µ − c < µδ(1 − c).

1. A government proposes a policy that lowers the cost of investment through a
subsidy τ , which is assumed to be small. Unfortunately, because of lags, the policy
lowers the cost of investment by a small amount in the second period, and only in
the second period. This policy is fully anticipated in the first period. Analyze the
effect of this policy on the equilibrium and the welfare of agents.

2. Suppose in addition (in each state) one more agent with an option to invest (and
discount factor δ), and a belief (probability of the good state) µ < c . How is your
previous answer modified?

16 For simplicity, one may assume that n → ∞ faster than δ → 1.
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EXERCISE 6.4

Consider the model of Section 6.1 with N players in the good state and one player
in the bad state. Solve for the symmetric equilibrium. Show that the probability of a
herd with no investment converges to π∗ > 0 if N → ∞. Analyze the probability of
investment by any agent as N → ∞.

EXERCISE 6.5

In the model of Section 6.3.7, assume n → ∞ and the period length converges to zero
(δ → 1) at a rate slower than n. Assume that not all agents invest in the equilibrium
(there is no rush).

1. Determine the payoff of an agent with private belief µ as a function of µ, µ,
and c .

2. Is there a measure of the externality of information that an agent with pri-
vate belief µ receives from the agents in the upper tail of the distribution of
beliefs?

6.4 Appendix

6.4.1 A Continuum of Agents with Observation Noise

In macroeconomics, aggregate data are reported at discrete intervals, quarterly or
monthly. These data (e.g., GDP growth, housing starts, durable expenditures) pertain
to a large number of agents. They are also affected by noise and imperfection, and
may be subject to revisions. The theoretical model of this section should be viewed
in that context.

By assumption, there is a continuum of agents of total mass equal to one. As in
the two-agent model, each rational player gets his private information in the form
of a signal s = θ + ε where the noise ε is independent of any other private noise or
other variables in the economy and is normally distributed N (0, σ 2

ε ). This process
of private information generates in the first period an unbounded support of the
distribution of private beliefs. At the end of each period, each agent observes the level
of aggregate activity

Yt = yt + ηt ,

where yt is the integral of the investments by the rational agents, and ηt is a random
term which is exogenous, independent from all the other variables in the economy
and normally distributed N (0, σ 2

η ). The history ht is now defined by ht = (Y1, . . . ,
Yt−1).

The analytical method of Section 6.2 applies. In any period t of a PBE, the strategy
is monotone. It is defined by the marginal value of the signal s ∗

t , which depends on
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ht : an agent delays if and only if his signal17 is smaller than s ∗
t . The value of s ∗

t is
determined by the arbitrage between the payoff of immediate investment and that
of delay for one period only. The equilibrium with an infinite number of periods is
thus reduced to a sequence of two-period equilibria. As long as the learning phase
proceeds, agents in the interval of beliefs (s ∗

t , s t) invest in period t and are taken away
from the game at the end of period t. If an agent with signal s ∗

t delays in period t, he
has the highest belief in period t + 1. Note that the distribution of beliefs is bounded
above in each period after the first.

Let F be the cumulative distribution function of the normal distributionN (0, σ 2
ε ).

Because the mass of agents is equal to one, the observation in period t is equal to

Yt = max
(

F (s ∗
t−1 − θ) − F (s ∗

t − θ), 0
)

︸ ︷︷ ︸+ ηt︸ ︷︷ ︸,
endogenous activity yθ , t = y(θ, s ∗) noise

with s ∗
1 = ∞ by convention.

The variable Yt is a signal on θ through the arguments of the cumulative distri-
bution functions. If s ∗

t is either large or small, the endogenous level yt is near zero or
near the mass of remaining players, for any value of θ . In this case, the signal of the
endogenous activity yt is dwarfed by the noise ηt , and the information content of Yt

becomes vanishingly small.
Consider an agent with LLR equal to λt at the beginning of period t. Conditional

on the observation Yt , his LLR at the end of the period is equal to λt+1 with

λt+1 = − (Yt − y1, t)
2 − (Yt − y0, t)

2

2σ 2
ε

+ λt ,

= y1, t − y0, t

σ 2
ε

(
Yt − y1, t + y0, t

2

)
+ λt .

An agent with a marginal belief for investment who delays in period t has the highest
belief in period t + 1. He does not invest in the next period t + 1 if and only if his
ex post observation LLR is smaller than log(c/(1 − c)). We have the following result,
which is analogous to Proposition 6.2.

PROPOSITION 6.6 In any period t of a PBE, if the observation Yt is such that

y1, t − y0, t

σ 2
ε

(
Yt − y1, t + y0, t

2

)
< log

(
c(1 − µ∗

t )

µ∗
t (1 − c)

)
,

where µ∗
t is the belief associated to s ∗

t , then there is no endogenous investment after period
t. All activity is identical to the noise and provides no information.

17 It is simpler to work here with signals than with beliefs.
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Figure 6.3 Equilibria with a continuum
of agents. Other parameters: µ = 0.6,
θ0 = 0, θ1 = 2, σε = 12, δ = 1 − r .

A NUMERICAL EXAMPLE

Figure 6.3 represents the option value Q(s , s ) and the opportunity cost of delay,
((1 − δ)/δ)(µ(s ) − c), as functions of the signal value s in the first period. Three
graphs are represented for different standard errors of the observational noise. The
diagram is very similar to Figure 6.2 for the case with two agents.18 There are multiple
equilibria if the discount rate and the variance of the observation noise are not small.
These properties are intuitive.

THE SPEED OF LEARNING

Recall that in the model of Section 6.2 with a bounded distribution of beliefs, there
may be multiple equilibria with delay or no delay, respectively. An equilibrium with
delay generates significant information when the marginal belief for investment is
high (because of the opportunity cost), whereas a rush generates no information. We
will now see that the rush is a stylized representation of an equilibrium in the model
with a continuum of agents and observation noise in which few agents delay.

Consider in the first period an agent with a belief measured by a LLR equal to λ1.
Denote by f (·; σ ) the density of the distribution N (0, σ 2), and by s ∗ the equilibrium
strategy in the first period. Following the observation of aggregate investment in the
period, Y = 1 − F (s ∗ − θ ; σε) + η, the agent updates his LLR from λ1 to λ2(θ , η, s ∗)
defined by

λ2(η, θ ; s ∗) = λ1 + log

(
f (Y − 1 + F (s ∗ − θ1, σε); ση)

f (Y − 1 + F (s ∗ − θ0, σε); ση)

)
.

If the true state is good (θ = θ1), this equation becomes

λ2(η, θ ; s ∗) − λ1 =
(

F (s ∗ − θ0, σε) − F (s ∗ − θ1, σε) + η
)2

2σ 2
η

− η2

2σ 2
η

.(6.11)

18 The values are functions of µ in Figure 6.2 and functions of s in Figure 6.3.
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The expectation, or the ex post average, of this updating over all realizations of the
observation noise η is

�(θ1; s ∗) = E [λ2(η, θ ; s ∗) − λ1] =
(

F (s ∗ − θ0, σε) − F (s ∗ − θ1, σε)
)2

2σ 2
η

.(6.12)

Let �(s ∗) = �(θ1; s ∗) be the certainty equivalent of the updating expression (6.11).
If the true state is bad, using the same notation one finds

�(θ0; s ∗) = −�(θ1; s ∗) = −�(s ∗).

The two expected values of the updates of the LLR conditional on the good and the
bad states are opposite of each other. The positive value �(s ∗) provides an indicator
of the learning process in the period and depends on the equilibrium strategy s ∗.

In the example of Figure 6.3, for ση = 0.125 and r = 0.10, there are two stable
equilibria with strategies s ∗

H < s ∗
L . Investment is higher in the s ∗

H -equilibrium than
in the s ∗

L -equilibrium. The respective mean values of the changes of beliefs are

�(s ∗
H ) = 0.0015, �(s ∗

L ) = 0.129.

The difference in information between the two equilibria is significant. In the equi-
librium with low investment in the first period (s ∗

L ), the variation of the LLR is 80
times19 higher than in the H-equilibrium.

In the equilibrium with high investment (s ∗
H ), a large fraction of agents invest

with no delay. In that period and the periods after, agents do not learn much. The
equilibrium is remarkably similar to the rush equilibrium of the model with bounded
beliefs of Section 6.2 (in which they learned nothing). The rush is a stylized property
of the s ∗

H -equilibrium.

Learning in Multiple Periods
After the first period, the support of private beliefs has a finite upper bound. This
is important: it means that agents never learn with certainty whether the state is
good. Furthermore, in each period after the first, with a strictly positive probability
investment stops completely in a cascade with no investment: assuming a marginal
value s ∗

τ in the support of beliefs20 for each τ ≤ t, then s ∗
t+1 ≥ s t+1 with some strictly

positive probability. The game and the evolution of beliefs proceed as in the model of
Section 6.2 with a finite number of agents. In each period, the possible equilibria are
of the types described in Theorem 6.1.

19 Other simulations have shown similar results.
20 The marginal value is not close to the upper bound of the support as in Section 6.3.7, because the

mass of endogenous investment would be dwarfed by the observation noise and would not convey
significant information.
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6.4.2 Investments of Variable Size

The previous setting is now extended to include a variable investment size and an
observation noise. Each agent has one option to invest, and the investment, which is
made only once (if ever), is chosen in the set of real numbers. For example, agents
decide both the period in which to purchase a new car and the amount spent on the
car (number of accessories, etc.). Each agent has therefore two choice variables: the
time of the investment and its scale. As before, investment is irreversible. Following
the previous results, one can assume without loss of generality that there are two
periods. Because the scale of investment is taken in a continuum, we redefine the
payoff function.

Any agent who has not yet exercised his option to invest receives a payoff equal to
(1 − δ)b per period where δ is the discount factor. An agent who never invests receives
a payoff equal to b. The difference 1 − δ corresponds to the rate of return between
two periods.

For tractability, the payoff of investment is a quadratic function.21 If the agent
invests in period t, he forgoes in that period the payoff of never investing and gets
a payoff with a current value equal to E [2az − (θ − z)2], where the expectation
operator E depends on the information of the agent, and a is a constant parameter.
The scale of investment z is chosen in the set of real numbers, and θ is the productivity
parameter, which is determined as in the previous sections.

The payoff of investing in period 1 is

U1 = 2az − E
[

(θ − z)2
]

− b,

and the payoff of investing in the second period is

U2 = (1 − δ)b + δE
[

2az − (θ − z)2 − b
]
.

By assumption, nature’s distribution of θ is N (θ , ω0). Here θ is not directly
observable, but each agent receives once, before the first period, a signal

s = θ + ε with ε ∼ N (0, σε).

In this section the symbol s denotes the private signal of an agent (not his belief). The
private noise ε is normally distributed and independent of any other random variable
in the model.

As in Section 6.4.1, each agent is infinitesimal and the total mass of agents is equal
to one. At the end of period 1, the observed level of aggregate investment is equal to

Y = y + η with η ∼ N (0, ση),

21 The model presented here is inspired by Bar-Ilan and Blinder (1992).
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where y is the integral of the individual investments z. The variable η is an exogenous
random term, which is independent of the other variables in the economy.

It can be shown that for some parameter values, there are multiple PBEs with
monotone strategies such that agents delay if and only if they have a private signal
smaller than some value s ∗. The signal at the end of the first period is the aggregate
investment

Y = z1(θ ; s ∗) + z2(θ ; s ∗) + η.

Each of the two terms z1(θ ; s ∗) and z2(θ ; s ∗) is an increasing function of θ , for
given s ∗, and thus contributes to the information on θ . The two terms represent two
separate effects. The first is proportional to the mass of agents who invest in period
1. It is identical to the endogenous investment in a model where each investment has
a fixed scale. This is the timing effect. The second term depends on the mean scale of
investment by investing agents and is called the level effect.

Because of the observation noise η, the information that is conveyed through each
of the two effects depends on the effect of θ on z1 and z2. If that effect is small, it
is drowned in the noise. It can be shown that the magnitude of the level effect in
z2(θ ; s ∗) becomes vanishingly small if the precision of the individual signal, 1/σ 2

ε ,
tends to zero. There is a simple interpretation: if an individual has a signal of small
precision, the scale of his investment does not depend much on his signal. The timing
effect, however, remains of the same order of magnitude as the (given) mass of agents,
and does not become vanishingly small when 1/σ 2

ε tends to zero. The information
property of Y is similar to that in a model with fixed investment scale.

A NUMERICAL EXAMPLE

There is no algebraic solution to the model, so we consider a numerical example.
From the previous discussion, we know that the important parameter is the precision
of the private signals. The ratio σε/ω0 is taken to be equal to 5. That implies that if an
agent could observe directly the signals of others, in order to double the precision of
his estimate (as measured by the reciprocal of the variance), he would have to observe
roughly 25 other private signals.

The option value Q(s , s ∗) = ω2
1 − E {s , s ∗}[ω2

2(Y, s , s ∗)] and the opportunity cost
c(s ) of delay for the marginal agent s = s ∗ are represented in Figure 6.4, which is
remarkably similar to Figures 6.2 and 6.3. In particular, there are two stable equilibria,
with a large and a small mass of delaying agents, respectively.

AN ANALYSIS

Individual Decisions
An agent with a signal s updates the public information distribution on θ with his
own signal s . His subjective distribution is therefore N (m1(s ), ω1), with

m1(s ) = θ + γ (s − θ), γ = ω2
0

ω2
0 + σ 2

ε

, and
1

ω2
1

= 1

ω2
0

+ 1

σ 2
ε

.(6.13)
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Figure 6.4 Multiple equilibria with investment of variable scale. Parameters: σθ = 1, σε = 5σθ ,

ση = 1, 1 − δ = 0.02, a = 5, b = 44.

If he invests in the first period, he chooses a level z(s ) that depends on his information:

z(s ) = a + m1(s ) = a + (1 − γ )θ + γ s ,(6.14)

and the payoff of investing in the first period is

U1(s ) = −ω2
1 + 2am1(s ) + a2 − b.

An agent with signal s who delays while others use the strategy s ∗ invests in period
2 and has a payoff

U2(s , s ∗)

= (1 − δ)b + δE s

[
−ω2

2(Y, s , s ∗) + 2am2(Y, s , s ∗) + a2 − b
]

,

where the expectation is computed over ω2
2(Y, s , s ∗) and m2(Y, s , s ∗), which are the

mean and the standard error of θ , respectively, after the observation of Y .
Because m2(Y, s , s ∗) is an updating of m1(s ), we have E s [m2(Y, s , s ∗)] = m(s ),

and the difference between the payoffs of delay and investment in the first period
is

U2(s , s ∗) − U1(s ) = δ
(
ω2

1 − E s [ω2
2(Y, s , s ∗)]

)
−
(

1 − δ
)(

−ω2
1 + a2 + 2am1(s ) − 2b

)
.

This difference can be rewritten as the difference between the option value Q(s , s ∗)
and the opportunity cost c(s ) of delay:

U2(s , s ∗) − U1(s ) = δ
(

Q(s , s ∗) − c(s )
)

,(6.15)
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with

Q(s , s ∗) = ω2
1 − E s [ω2

2(Y, s , s ∗)],

c(s ) = 1 − δ

δ

(
−ω2

1 + a2 + 2am1(s ) − 2b
)
.

In models with normal distributions and linear decision rules, the learning rules
are linear and the ex post variance ω2 is independent of the observation and can be
computed ex ante. This very nice property does not hold in the present model, because
the endogenous investment y is not a linear function of the random variables.

Equilibrium and Information
A symmetric equilibrium in monotone strategies is defined by a value s ∗ that satisfies
the arbitrage equation between the option value and the opportunity cost:

Q(s ∗, s ∗) = c(s ∗).

By use of the updating rule (6.13) and the expression of the individual level of invest-
ment z(s ) in (6.14), the level of endogenous aggregate activity is equal to

y(θ ; s ∗) =
∫

s ∗−θ

(
a + (1 − γ )θ + γ (θ + ε)

)
f (ε; σε) dε

=
(

a + (1 − γ )θ + γ θ
)(

1 − F (s ∗ − θ ; σε)
)

+ γ

∫
s ∗−θ

ε f (ε; σε) dε.

We can normalize θ = 0 (or incorporate (1 − γ )θ in the definition of a).
Because

∫
s ∗−θ

ε f (ε; σε) dε = σ 2
ε f (s ∗ − θ ; σε) and 1 − F (z; σ ) = F (−z; σ ), we

have

y(θ ; s ∗) =
(

a + ω2
0θ

ω2
0 + σ 2

ε

)
F

(
θ − s ∗

σε

; 1

)
+ ω2

0σ
2
ε

ω2
0 + σ 2

ε

f

(
θ − s ∗

σε

; 1

)
(6.16)

= z1(θ ; s ∗) + z2(θ , s ∗).

The aggregate activity that is observed is

Y = z1(θ ; s ∗) + z2(θ ; s ∗) + η.

Suppose that σε → ∞. Because

σ 2
ε f

(
θ − s ∗

σε

; 1

)
= σε√

2π
exp

(
− (θ − s ∗)2

2σ 2
ε

)
,

one can see in equation (6.16) that the magnitude of the level effect in z2(θ ; s ∗)
becomes vanishingly small.
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6.4.3 Proofs

Proof of Lemma 6.1

We first prove the following: in any arbitrary period t of a PBE, if an agent with belief
µt delays, then any agent with belief µ′

t < µt strictly prefers to delay. Let the arbitrary
period be the first one. Consider an agent with belief µ who has a strategy with delay:
this is a rule to invest in period t (with t ≥ 2) if and only if the history ht in period t
belongs to some set Ht . For this agent the difference between the payoff of the strategy
of delay and the payoff of immediate investment is

W(µ) =
∑

t≥2, ht∈Ht

δt−1 P (ht | µ)
(

P (θ = θ1 | µ, ht) − c
)

− (µ − c)

=
∑

t≥2, ht∈Ht

δt−1 P (ht | µ)

(
P (ht | θ = θ1)

P (ht | µ)
µ − c

)
− (µ − c)

=
∑

t≥2, ht∈Ht

δt−1
(
µ(1 − c)P (ht | θ = θ1)

− c(1 − µ)P (ht | θ = θ0)
)

− (µ − c)

= as − b − (µ − c),

where a and b are independent of µ:

a =
∑

t≥2, ht∈Ht

δt−1
(

(1 − c)P (ht | θ = θ1) + c P (ht | θ = θ0)
)

,

b = c
∑

t≥2, ht∈Ht

δt−1 P (ht | θ = θ0).

For µ = 0, because t ≥ 2, δ < 1, and
∑

t≥2,ht∈Ht
P (ht | θ = θ0) ≤ 1, we have

W(0) = c

(
1 −

∑
t≥2, ht∈Ht

δt−1 P (ht | θ = θ0)

)
> 0.

Because an agent with belief µ delays, W(µ) ≥ 0. Because W is linear in s , W(µ′) >

µ − c for any µ′ < µ.
Consider now an agent with belief µ′ who mimics an agent with belief µ: he invests

at the same time as the agent with belief µ (i.e., in period t if and only if ht ∈ Ht). For
such an agent, the difference between the payoff of this strategy and that of investing
with no delay is W(µ′), which by the previous argument is strictly positive if µ′ < µ.
The agent with belief µ′ strictly prefers to delay.

The set of beliefs for delay is not empty, for it includes all values below c . The
value of µ∗

t in the lemma is the upper bound of the set of beliefs of delaying agents.
The previous result in this proof shows that any agent with µt < µ∗

t delays.
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Proof of Proposition 6.1

Denote by W(µ, µ∗) the payoff of an agent with belief µ who delays for one period
while other agents follow the strategy µ∗. By (6.4), µ∗ is solution of

µ∗ − c = W(µ∗, µ∗).

Denote by P (xt = k | µ, µ∗, f j , n) the probability that xt = k for an agent with belief
µ when all other agents use the strategy µ∗; the density functions are f j , and the
number of remaining players is n. By use of Bayes’s rule and the sum of probabilities
equal to one,

µ∗ − c =
∑

k

P (xt = k | µ∗, µ∗, f j , n)

×
(

P (θ = θ1 | x = k; µ∗, µ∗, f j , n) − c
)

=
∑

k

P (xt = k | µ∗, µ∗, f j , n)

× max
(

P (θ = θ1 | x = k; µ∗, µ∗, f j , n) − c , 0
)

−
∑

k

P (xt = k | µ∗, µ∗, f j , n)

× max
(

c − P (θ = θ1 | x = k; µ∗, µ∗, f j , n), 0
)
.

An agent who delays invests in the next period only if his payoff is positive. Therefore,
the payoff of delay is

W(µ∗, µ∗) = δ
∑

k

P (x = k | µ∗, µ∗, f j , n)

× max
(

P (θ = θ1 | x = k; µ∗, µ∗, f j , n) − c , 0
)
.

We conclude the proof by comparing the two previous equations and using the de-
composition µ∗ − c = (1 − δ)(µ∗ − c) + δ(µ∗ − c).

Proof of Proposition 6.4

From case (ii) of Theorem 6.1, there is at least one value µ∗(n) that defines an
equilibrium strategy for the density f with n players. Because µ∗(n) ∈ [0, 1], there is
a subsequence of µ∗(n) that tends to a limit in [c , µ]. We now show by contradiction
that µ∗(n) → µ.

Suppose that µ∗(n) → µ̂ < µ. Denote by πθ
n the probability that in the equi-

librium with strategy µ∗(n) any given agent does not delay if the true state is
θ ∈ {0, 1}: πθ

n = 1 − F θ (µ∗(n)). When µ∗(n) → µ̂, then πθ
n → 1 − F θ (µ̂) = πθ .
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Because µ̂ ∈ (µ, µ), then 0 < πθ < 1. The number of investments generated by this
strategy is a random variable, which is denoted by xn. Consider yn = xn/nπ0

n , which
is observed at the end of the period:

E [yn | θ = 0] = 1, E [yn | θ = 1] = π1
n

π 0
n

→ π1

π0
,

Var(yn | θ) = 1 − πθ
n

nπθ
n

≤ 1

nπθ
n

→ 0, as n → ∞.

By use of a standard argument with the law of large numbers, asymptotically (for
n → ∞), yn reveals perfectly the state of nature at the end of the period. Because
µ∗(n) ≤ µ < µ∗∗, an agent with belief µ∗(n) would strictly prefer to delay, which
contradicts the definition of µ∗(n). Therefore, µ∗(n) → µ.

The previous argument implies also that the sequence nπθ
n is bounded. From any

subsequence one can extract a subsequence such that nπθ
n converges to some value

βθ . With Bayes’s rule,

β1

β0
= lim

nπ1
n

nπ0
n

= lim

∫ µ

s (n) f 1(s )ds∫ µ

s (n) f 0(s )ds
= µ

1 − µ
.

We can define β such that

β1 = µβ and β0 = (1 − µ)β.(6.17)

The distribution of xn tends to the Poisson distribution with parameter βθ in state θ .22

Let πk(βθ , µ) be the probability for an agent with belief µ that there are k investments
generated by a Poisson distribution βθ as defined in equation (6.17). Let µ(x | βθ ) be
his ex post probability of the good state. Asymptotically, the arbitrage equation (6.5)
becomes

(1 − δ)(µ − c) = δ
∑
k≥0

πk(β, µ) max
(

c − µ(x | β), 0
)
.

The value of β is strictly positive; otherwise the option value on the right-hand side
of this equation would be equal to zero, which is impossible because c < µ.

An exercise similar to that in Chamley and Gale (1994) shows that the right-hand
side of the previous equation, which is the option value of delay, is strictly increasing
in β.23 The solution is therefore unique.

22 P (xn = k | θ) → (βθ )k

k!
e−βθ

.
23 Suppose that there are two values β ′ < β. The Poisson distribution with parameter β is identical

to that of a variable that is obtained from a Poisson distribution with parameter β in which each
investment is observed with probability λ = β ′/β < 1. The observation noise reduces the option
value of delay.
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Proof of Proposition 6.5

Any agent with µ > µ∗∗ does not delay. Following the argument in the proof of
Proposition 6.4, the observation of xn is asymptotically perfectly informative. For
any agent with belief µ < µ∗∗, there exists n̂ such that if n > n̂, the agent delays and
therefore µ∗(n) > µ.
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Wait and see.

An equilibrium with delays of the game with periods does not converge,

in general, to an equilibrium of the game with the same payoff and

information structures but where time is continuous. In important cases,

there is no equilibrium with continuous time. A waiting game takes

place when the information is generated by the payoffs of actions, as

when penguins watch for killer whales, oil drillers observe the results of

exploration in neighboring patches, or agents receive gradually private

information.

A model of economic growth or business cycles can be specified in periods or in
continuous time. Its properties do not depend on that choice. In discrete time, quan-
tities like consumption or output in a period have the same dimension as the length
of the period, and if that length is vanishingly small, their ratios to the length are
asymptotically equal to the flows of consumption and output in the continuous-time
specification. This equivalence fails, generically, in models of social learning.

The essence of the equilibria with delay is the arbitrage between the opportunity
cost of delay and the option value of delay, which is the expected value of undoing
an investment after bad news. If the period shrinks, by arbitrage, the amount of
information is smaller. However, this reduced information comes earlier. The overall
effect is ambiguous, as shown in Section 7.1.1

When the period length is vanishingly short, the option value of delay shrinks
to zero. However, the variance of the change of beliefs remains bounded below by
a strictly positive number (Section 7.1.2). The homogeneity of the dimension with
respect to time that applies in models of capital accumulation, for example, does not
apply in the model of social learning.

Section 7.2 shows that the equilibrium properties of a model with continuous
time are not the asymptotic properties of a model with vanishingly short periods.
When an agent holds an option to invest (to choose an action x in a set �), the

149
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benefit of delaying for an infinitesimal amount of time is the difference between the
expected value of the capital gain of the option if some good news occurs during
the infinitesimal time interval and the capital loss if there is no good news. This
difference must be positive to compensate for the cost of delaying (which is the value
of the option multiplied by the rate of discount). The difference between the two
terms depends on the distribution of the state of nature and the private information.
In general, its sign is ambiguous. If it is negative, there cannot be an equilibrium with
delay, and it is possible that there is no symmetric equilibrium.

Two cases are considered. The first is the simplest model with delay of Section 6.1
with discrete actions. In continuous time, this model has no equilibrium.

In the second case, the structure is similar to the one in Chapter 3: agents maximize
a quadratic payoff with an action taken in the set of real numbers. Their private
information is derived from a SBS with a uniform distribution of precisions. This
model has no equilibrium if there are agents who are sufficiently optimistic (with a
belief greater than 1

2 ).
The interpretation of the property is intuitive. The essential mechanism for the

existence of an equilibrium with delay in continuous time is the expected capital
gain on the value of the option, which arrives by a Poisson process. If the expected
value of the capital gain is low, there is no sufficient incentive to hold the option, and
the arbitrage fails. If there is no arbitrage, a positive mass of agents invests without
delay, thus providing instantly a discrete amount of information on the state, which
is incompatible with immediate investment. In the model considered here, for agents
with sufficiently high beliefs, the expected value of good news is relatively small
because they are already optimistic and the highest value of θ is 1. When the upper
bound of the distribution of beliefs is not too large (less than 1

2 here), the capital gain
induced by the investment of the other agents is higher and arbitrage can sustain an
equilibrium with delay.

Gul and Lundholm (1995) present a model with delay in continuous time. The pre-
vious analysis shows that they obtain an equilibrium only because of their particular
assumption on the private signals.

In the remaining sections of the chapter, time is divided into periods. In Section
7.3, each agent receives a sequence of private signals as in Caplin and Leahy (1994).
The model turns out to be very similar to the one in the previous chapter.

In Section 7.4, agents observe the results of actions. For example, penguins are
waiting on a cliff for the first fellow to plunge and find out whether a killer whale
is roaming around. The same issue arises for oil drillers who may pay the cost of
exploration or wait to see the results of others.

Another example of delays with the observation of the payoff of actions has been
analyzed by Caplin and Leahy (1998): at the southern end of Sixth Avenue, a number
of buildings were vacant for a long time. Then Bed Bath & Beyond (BB&B) opened a
retail store, which turned out to be very successful. It was followed by a rapid increase
of other stores in the same neighborhood. The rents of the new leases were higher
than that of the first lease.
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7.1 The Length of a Period

7.1.1 Are Longer Periods More Efficient?

A longer period raises the cost of waiting for information, which is available only at the
beginning of the next period. It induces more activity and more information. Because
this information is discounted from the next period, the overall effect is ambiguous.

Consider the following example: there are three agents and a distribution of private
information such that

• in the good state (θ = 1), two agents (optimists) have a belief equal to µ+ = 2
3 ,

and one agent (a pessimist) has a belief equal to µ− = 1
3 ;

• in the bad state (θ = 0), one agent has a belief equal to µ+ = 2
3 , and two agents

have a belief equal to µ− = 1
3 .

The cost of investment is c = 4
7 , and the payoff of investment is θ − c . This example

is analyzed in Exercise 7.2. In an equilibrium, no pessimist invests before an optimist,
and the game is actually played by the optimists. Because they arbitrage between
investment and delay, the value of the game for an optimist is the value of investment
in the first period and does not depend on the period length. The issue is the value of
the game for a pessimistic agent.

Exercise 7.2 shows that the value of the game for the pessimists is a nonmonotone
function of the discount factor.1

7.1.2 Vanishingly Short Periods

Consider the simplest model of delay, presented at the beginning of the previous
chapter (Section 6.1): there are two players with an option to invest in the good
state (θ = 1), and only one player in the bad state (θ = 0). The unique symmetric
equilibrium in the first period is defined by the probability of investment ζ and is
solution of

µ − c = δζ (1 − c),

where µ is the belief of a player. The discount factor δ is related to the period length
τ and to the discount rate per unit of time, ρ, with δ = e−ρτ . If the period length
tends to zero, for fixed ρ, we have δ → 1, and the strategy ζ converges to ζ̂ defined
by µ − c = ζ̂ (1 − c). The limit value ζ̂ is strictly between 0 and 1. For any period
length, even small, there is a symmetric PBE.

Recall that at the end of the first period, either one agent has invested, in which
case the belief (the probability that θ = 1) jumps to 1, or there is no investment, in

1 If δ < 1
3
, optimists do not delay, because of the low discount factor. Pessimists would prefer to

have that information earlier. The value of the game increases with δ (decreases with an increasing
discount rate). There is an equilibrium with delay if δ ∈ ( 1

3
, 1). In that interval, the value of the game

for the pessimists is first decreasing, then increasing.
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which case the belief jumps to a value smaller than c and there is no investment any
more. If the period is vanishingly short, the value of these jumps remains bounded
away from 0 and their probabilities are also bounded away from 0: for an outside
observer, the probability of a jump down is (1 − ζ )2 in the good state, and it converges
to (1 − ζ̂ )2 > 0 when τ → 0. Hence, the variance of the change of belief does not
become vanishingly small when the period is vanishingly short, but remains bounded
away from 0. Per unit of time, the variance of the change of the public belief between
the beginning and the end of the first period tends to infinity.

This nonhomogeneity of the variation of beliefs with respect to time stands in
stark contrast with some other economic models: in an intertemporal general equi-
librium model of capital accumulation, the quantities of consumption and output
are proportional to the length of the period. The quantity of information in a model
of social learning with discrete periods does not have the dimension of a flow. The
settings with vanishingly short periods and continuous time are essentially different.

The properties of this simple model are analyzed formally in Exercise 7.1. They are
generalized to a setting with N players and arbitrary distributions of private beliefs
in Chamley (2003a). It is shown that when δ → 1, (i) the probability of a permanent
collapse of investment tends to a strictly positive value; (ii) the game stops with no
investment only after the observation of no investment (x = 0), and goes on after any
positive amount of investment (if there is a remaining player); (iii) the expected value
of bad news must converge to 0. A good exercise is to derive the intuition for these
properties from the arbitrage between the opportunity cost and the option value of
delay.

7.2 Continuous Time

7.2.1 The Nonexistence of an Equilibrium with Discrete Actions

We continue with the simple model of the previous section with one or two players
and assume that time is continuous: a player can take the action x = 1 at any point
in time and observe the action of the other (if there is any) immediately after it is
taken. Let µt be the belief of a player at time t with µ0 > c given. We consider only
symmetric PBEs.

Immediate investment at time 0 cannot be an equilibrium strategy, because it is
dominated by a small delay. Suppose now that the player delays for a time interval
(t, t + dt), t ≥ 0, conditional on no investment before time t. If he does not see any
investment by the other agent during that interval, and he is still willing to invest at
time t + dt, then he is willing to invest at time t + dt whatever the news during the
time interval (t, t + dt). The present value of that strategy is the value of immediate
investment, discounted by the rate ρdt. This argument, which was presented in the
previous chapter, shows that there cannot be an equilibrium with delay. There is no
equilibrium.
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Exercise 7.3 shows that the right-hand side of the arbitrage equation is equal to
0. The delay cannot yield a return that compensates for the cost of delay per unit of
time, ρ(µt − c).

The same argument applies in the central model of the previous chapter with N
agents if the cost of investment, c , is in the interior of the support of beliefs. In this
case, any agent with belief smaller than c does not invest at time 0. If all agents with a
belief greater than µ∗ ≥ c invest at time 0, the aggregate investment at time 0 provides
information about the state θ , and a small delay dominates immediate investment.
When the previous argument is used, there cannot be an equilibrium with delay.
There is no symmetric equilibrium.

If all agents have a belief at least equal to c , then a rush in which all agents invest
immediately is an equilibrium. In such a rush the total investment is independent of
the state of nature and conveys no information. As in the setting with periods, there
is no incentive to delay, and immediate investment is an equilibrium strategy.2

When the period length is vanishingly short, the cost of delay is vanishingly small,
and there is always an equilibrium strategy with delay, even if all agents have a belief
higher than c . The next result follows.

PROPOSITION 7.1

(i) The standard model with discrete actions has no symmetric equilibrium if time is
continuous and the cost of investment c is strictly between the lower bound µ and
the upper bound µ of the distribution of beliefs.

(ii) If c ≤ µ, the rush is the unique equilibrium of the standard model with continuous
time; if µ ≤ c , no investment is the unique equilibrium of the standard model with
continuous time.

(iii) For any period length that is sufficiently short, the standard model with discrete
time has at least one equilibrium with delays.

The result highlights that the properties of the model in continuous time are not
the limit properties of the discrete model with vanishingly short periods.

7.2.2 Nondiscrete Actions

When the level of an action is taken in the set of real numbers, it conveys more infor-
mation than when it is taken in a discrete set. How does this additional information
affect the existence of an equilibrium in continuous time? For simplicity, assume two
agents. The state of nature has a value in the set � and the agents have private signals

2 Zhang (1997) considers a model of investment in continuous time that is equivalent to the case
where the lower bound of the distribution of beliefs is equal to the cost of investment. Zhang claims
rightly that there is only one equilibrium with a herd (which is called a rush here). From the present
discussion, it should be clear that this property depends on the assumption that time is continuous
and that it is not robust when time is discrete.
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s and s ′, respectively. When the option is exercised, the agent chooses the scale of the

investment x ∈ R to maximize the payoff e−ρtU
(

E t[u(x, θ)]
)

, where E t is the ex-

pectation given the information available to the agent at time t, and ρ is the discount
rate.

We focus on a symmetric equilibrium. In such an equilibrium, immediate invest-
ment at time 0 cannot be an equilibrium strategy, because it would be dominated by a
small delay. If an agent has invested, there is no gain from further delay and the other
agent invests immediately. A symmetric equilibrium strategy should therefore be a
function from the signal s to the time t(s ), possibly infinite, such that if no agent has
invested before time t, the agent with signal s invests at time t. Let s (t) be the inverse of
this function. If the agent invests at time t, he must be indifferent between investment
and a small delay. The opportunity cost of delay has the dimension of the length dt.
Therefore the probability that the other agent invests in the time interval (t, t + dt)
must also have the dimensions of dt. This event is equivalent to having the signal s ′

in the interval between s (t) and s (t + dt). Therefore, the difference s (t + dt) − s (t)
must have the dimension of dt, and s (t) must be differentiable.

Following the intuition we have developed so far, a more optimistic agent does
not delay as much as a less optimistic agent, and one can show that s (t) should be a
decreasing function of time. The expected value of θ for an agent with signal s who
knows that the other signal is less than s̃ is E [θ |s , s ′ < s̃ ]. Let πt dt be the probability
that at time t, conditional on no prior investment, the other agent has a signal in the
interval (s (t + dt), s (t)). We have

πt = −φ(s )ṡ ,

where φ(s ) is the density of the distribution of the event “the other player has the signal
s ′ = s ,” conditional on s ′ ≤ s . The computation of φ depends on the specification of
the model.

The function s (t) must be such that the following arbitrage3 equation is satisfied:

ρU (E [θ |s (t), s ′ < s (t)])(7.1)

= πt

(
U (E [θ |s (t), s ′ = s (t)]) − U (E [θ |s (t), s ′ < s (t)])

)
+ U ′ d(E [θ |s (t), s ′ < s̃ ])

ds̃
ṡ (t).

The first term on the right-hand side is the capital gain from the good news that the
other agent invests in the time interval of length dt. The second term is the depreciation
of the value of the option if the other agent does not invest in the short time interval.

3 A heuristic derivation, using a discrete approximation of time, is presented in the appendix (Section
7.5). However, students should train themselves to write such arbitrage equations, which are intuitive,
without the discrete approximation of time.
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This equation can be rewritten

ρU (E [θ |s (t), s ′ < s (t)]) = −H(s )ṡ(7.2)

with

H(s ) = φ(s )
(

U (E [θ |s (t), s ′ = s (t)]) − U (E [θ |s (t), s ′ < s (t)])
)

(7.3)

+ U ′ d(E [θ |s (t), s ′ < s̃ ])

ds̃
.

An admissible solution exists only if ṡ < 0. Hence H(s ) > 0 is a necessary condition
for an admissible solution. The sign of H is clearly ambiguous. The first term is the
capital gain when the other agent invests. It is positive, because this event raises the
support of the distribution of the signal s ′ from the interval s ′ < s (t) to the point
{s (t)}. The second term is negative: if the other agent does not invest, his signal s ′

is not in the interval (s (t + dt), s (t)), the estimate of his signal is lowered, and the
expected value of θ is lowered accordingly.

We consider now two examples with a quadratic payoff function where the scale of
the investment is a real number. The first model, which has a “standard” information
structure as in previous chapters, may have no equilibrium. The second example is due
to Gul and Lundholm (1995). It has a different information structure and generates
an equilibrium.

THE STANDARD MODEL WITH NONDISCRETE ACTIONS

Assume two states of nature, θ ∈ {0, 1}, and two agents, each with an option to invest
and to maximize the payoff 2E t[θ]x − x2, where the expectation is conditional
on the available information at time t. Each agent is endowed with a private belief
(probability of the good state) taken from a distribution with support [0, 1]. Let f θ (µ)
be the density of the distribution. It is defined by4 f 1(µ) = 2µ, f 0(µ) = 2(1 − µ).

Consider an agent with private belief µ who knows that the other agent has a
private belief not higher than µ′. Let m be the probability that the state is good for
this agent. By Bayes’s rule,

m(µ, µ′)
1 − m(µ, µ′)

= µ

1 − µ

F 1(µ′)
F 0(µ′)

,

where F θ is the c.d.f. of the distribution of private beliefs. An exercise shows that
F 1(µ)/F 0(µ) = µ/(2 − µ). Hence,

m(µ, µ′) = µµ′

µµ′ + (1 − µ)(2 − µ′)
.(7.4)

4 Such a distribution is equivalent to a two-step process for private information: first, the agent draws
a precision q with a uniform density on the interval [ 1

2
, 1]; second, he obtains a SBS on θ with

precision q .
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Figure 7.1 Values of H (µ) in the arbi-
trage equation (7.5). There is an equi-
librium with delay only if H (µ) ≥ 0, which
holds only if µ ≤ 0.5.

In an equilibrium, an agent invests at time t, conditional on no investment before, if
he has a belief µ(t). In this case, by definition of the function m, his expected value
of θ is m(µ, µ), his action is x = m(µ, µ), and his payoff is m2(µ, µ).

At time t, the agent with belief µ(t) estimates that the probability that the other
agent invests, per unit of time, is −φ(µ)µ̇ (as in the model of the previous section,
where the signal s is replaced by the belief µ). The event is decomposed according to
the good and the bad states:

φ(µ) = m(µ, µ)
f 1(µ)

F 1(µ)
+ (1 − m(µ, µ))

f 0(µ)

F 0(µ)
.

The arbitrage equation is similar to that in (7.2)–(7.3):

ρm2(µ, µ) = −H(µ)µ̇,(7.5)

with

H(µ) = φ(µ)

((
µ2

µ2 + (1 − µ)2

)2

− m2

)
− 2m

∂m(µ, µ)

∂µ′ .

A solution is admissible only if µ̇ < 0 and therefore H(µ) > 0. For µ ≈ 1, we have
m ≈ 1, φ ≈ 2, ∂m/∂µ′ ≈ 1, and H ≈ −2. There cannot be an equilibrium with delay
if the support of the private beliefs has an upper bound close to one.

The values of H and µ̇ are represented in Figure 7.1 when the distribution is
truncated to the interval [0, µ]. The computation indicates that there is an equilibrium
with delay only if the upper bound of the distribution is smaller than 1

2 . In this case,
the value of µ̇ tends to 0 when t tends to infinity. The differential equation (7.5) can
be approximated near µ = 0 by

µ̇ = −ρµ.

Asymptotically, the rate of convergence of µ toward 0 is constant and equal to ρ.
The essential mechanism for the existence of an equilibrium with delay in contin-

uous time is the expected capital gain on the value of the option, which arrives by a
Poisson process. If the expected value of the capital gain is low, there is no sufficient
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incentive to hold the option and the arbitrage fails. If there is no arbitrage, a positive
mass of agents invests without delay, thus providing instantly a discrete amount of
information on the state, which is incompatible with immediate investment. In the
model considered here, for agents with high beliefs, the expected value of good news
is relatively small because they are already optimistic and the highest value of θ is 1.
When the upper bound of the distribution of beliefs is not too large (less than 1

2 here),
the capital gain induced by the investment of the other agent is higher, and arbitrage
can sustain an equilibrium with delay.

A MODEL WITH AN EQUILIBRIUM

This example5 is due to Gul and Lundholm (1995). The state and the private signals
s and s ′ are such that θ = s + s ′, where s and s ′ are independent and have a uniform
distribution on [0, 1]. The action set and the payoff function are the same as in the
previous example.

The model uses the convenient property that if s ′ < s , its conditional distribution
is uniform on the interval [0, s ]. Hence, in the expression (7.3) for H , we have
φ(s ) = 1/s . The same property of the density function is used to establish that

E [θ |s , s ′ = s ] = 2s , E [θ |s , s ′ < s ] = 3s

2
.

If the other agent does not invest in the interval of time (t, t + dt), the expected value
of s ′ is lowered by −ṡ dt/2. Therefore,

d(E [θ |s , s ′ < s̃ ])

ds̃
= 1

2
at s̃ = s , and U ′(m) = 2m.

By substitution in (7.3), H = (1/s )(4s 2 − 9
4 s 2) − 3

2 s = ( 7
4 − 6

4 )s = s/4. The differ-
ence between the two terms in H is positive. Replacing the left-hand side in equation
(7.2), we have ṡ/s = −9ρ and s (t) = s (0)e−9ρt .

An arbitrage argument for t = 0 shows6 that s (0) = 1. The solution of the differ-
ential equation defines a necessary condition for the equilibrium strategy:

s (t) = e−9ρt .(7.6)

The symmetric equilibrium is defined by the following strategy: an agent with signal
s invests at time T(s ), conditional on no other investment before, where

T(s ) = 1

9ρ
log

1

s
.

The proof that the condition (7.6) is sufficient is left to the reader.

5 Gul and Lundholm emphasize that the purpose of their paper is to show that when agents can choose
the timing of their investment,“their decisions become clustered together, giving the appearance of
a cascade even if information is actually being used efficiently.” The reader may be puzzled, because
this clustering property is obviously a property of all models of social learning where the information
in history grows over time, as shown from the very first model in Section 3.2, where information is
used efficiently.

6 If s (0) < 1, agents with a signal greater than s (0) should wait at least an infinitesimal amount of
time.
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7.3 Buildup of Private Information

In the model we have considered so far, all private information is set at the beginning
of time. Caplin and Leahy (1994) propose a model in which agents receive private
signals over time. The population of agents is fixed and forms a continuum of mass
normalized to 1. Each agent has one option to make an investment7 of a fixed size in
any period t ≥ 1, with payoff E [θ] − c , at the time of the investment (θ ∈ {0, 1} and
0 < c < 1). The payoff at time t is discounted to the first period by δt−1. Each agent
receives a new SBS about θ in every period with precision q that is independent of
other variables.

EQUILIBRIUM WITH DETERMINISTIC STRATEGIES

We look for a symmetric subgame PBE with deterministic strategies. (If necessary,
the parameters of the model will be adjusted to obtain deterministic strategies.) We
will show later that the players who move first are the superoptimists (they have an
unbroken string of good signals). We can focus on these players. From Bayes’s rule,
their LLR between the good and the bad states, λt , increases linearly with the number
of periods:

λt = λ0 + at with a = log
q

1 − q
.

Let λ∗ be the minimum belief (measured by the LLR) for a positive payoff of invest-
ment: λ∗ = γ , which is defined by γ = log(c/(1 − c)). Define by λ∗∗

1 the belief of an
agent who is indifferent between investing and waiting for the revelation of the true
state one period later. An exercise shows that

λ∗∗
1 = λ∗ + log

1

1 − δ
,

which is strictly higher than λ∗ because of the information obtained after one period.
A necessary condition for investment by a superoptimist in period t is λt ≥ λ∗.

This condition is not sufficient, however: if all the superoptimists invest in period t,
they reveal the state perfectly (there is a continuum of them). If the state is revealed
at the end of period t, they prefer not to delay only if λt ≥ λ∗∗

1 . The evolution of the
belief of the superoptimists is represented in Figure 7.2.

Let T be the smallest t such that λt > λ∗∗
1 . If no agent has invested prior to period

T , superoptimists all invest in period T . They know that their action reveals the state
one period later, but by definition of T , this incentive is not sufficient to make them

7 Caplin and Leahy consider the symmetric problem of agents who have an option to stop an investment
process. The two models are isomorphic. The model with options to invest generates a boom, with
positive probability; the model with options to stop the flow of investment expenditures generates
a crash. The model with a crash was chosen for its effect on the reader, but it is technically more
complicated. The model with an option to invest enables us to make a direct comparison with the
model of Chamley and Gale (1994).
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Figure 7.2 The evolution of beliefs. The LLR of the
superoptismists increases linearly with time. In period
T (smallest t such that λt > λ∗∗

1 ), investment dominates
delay with perfect information one period later. In pe-
riod T − k, investment is dominated by delay with per-
fect information k + 1 periods later.

wait. In period T + 1, all the other agents either invest (if θ = 1) or don’t (if θ = 0).
If the equilibrium strategy is to delay until period T , all agents know perfectly that
full information is revealed at the end of period T . The value of T is determined by
all agents in the first period.

It remains to show that the superoptimists delay until period T . Let λ∗∗
k be the

value of the likelihood ratio for an agent who is indifferent between not delaying and
delaying for k periods exactly and then making a decision with perfect information.

Begin with period T − 1. Assume that the parameters of the model are such that
for the superoptimists, investment in period T − 1 is dominated by delay until period
T + 1 with perfect information in period T + 1:

λT−1 < λ∗∗
2 .(7.7)

In that case, delay for two periods is not the optimal strategy: a superoptimist who will
receive one more positive signal in period T − 1 invests in that period. The geometry
of Figure 7.2 shows that such parameters can be found.8

In the same way, a sufficient condition for the optimality of delay in any period
T − k with k ≥ 1 is λT−k < λ∗∗

k+1. The following result shows that the only condition
required for getting optimality is (7.7).9

LEMMA 7.1 If λT−1 < λ∗∗
2 , then λT−k < λ∗∗

k+1 for any k ≤ T − 1.

We have focused so far on the superoptimists. The optimal strategies of the other
agents are simple: any agent who is not a superoptimist has at least one fewer positive
signal than the superoptimists. Therefore his LLR in period t is not greater than
λt − a = λt−1. The argument for the delay of a superoptimist in period T − k, with
k ≥ 1, applies a fortiori to any other agent.

8 Noting that λ∗∗
1 and λ∗∗

2 do not depend on a , choose a > λ∗∗
1 − λ∗∗

2 + η, and λ0 such that λ∗∗
1 <

λT < λ∗∗
1 + η/2.

9 In Figure 7.2, the interval between λ∗∗
k and λ∗∗

k+1 shrinks if k increases, whereas the interval between
consecutive values of λt is constant and equal to a .
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From the previous discussion, inequality (7.7) is sufficient for the symmetric PBE
where the superoptimists invest in period T . This condition is restated in terms of
structural parameters in the following proposition.

PROPOSITION 7.2 There is a unique symmetric PBE if the parameters of the model
satisfy the following conditions (represented in Figure 7.2):

λ0 + Ta > γ − log(1 − δ), λ0 + (T − 1)a < γ − log(1 − δ2).

In this PBE, all superoptimists invest in period T. All other agents invest in period T + 1
if and only if the good state is revealed (by the mass of superoptimists) at the end of period
T.

COMPARISON WITH THE MODEL OF CHAMLEY AND GALE (1994)

The conditions of Proposition 7.2 were introduced to simplify the analysis of the
equilibrium.10 Under those conditions, superoptimists do not delay in period T .
How come agents delayed in the previous chapter? The conditions of Proposition 7.2
rule out the type of equilibrium with random strategies of the model in Chapter 6.
Recall that random strategies are used when the period length is sufficiently short (or
δ is near 1), and agents strictly prefer to delay if they get perfect information. In the
present model, the period is sufficiently long to prevent this outcome.

In the model of the previous chapter, there is a regime where aggregate investment
is small and random during a learning phase. This phase ends with all remaining agents
suddenly investing if the level of belief is sufficiently high that perfect information is
not sufficient to lure agents to delay. Note also that all private informations are given
at the beginning of time.

The present model introduces an additional phase in which agents have low beliefs
and do not invest at all. The learning phase in the model is very short and lasts only
one period, with the superoptimists investing while others delay (exactly as agents
with lower beliefs delay in the previous chapter). At the end of that period, beliefs are
sufficiently high or low (as at the end of the learning phase in the previous chapter)
so that all remaining agents invest immediately or do not invest.

When the conditions of Proposition 7.2 do not hold, the learning phase in the
model of Caplin and Leahy lasts for more than one period and the analysis is more
complicated. The model is actually not suited for such an analysis. (The right model
for this is the one in Chapter 6.) The following remarks suggest how the learning
phase may be extended.

Assume the second condition of Proposition 7.2 is not met and λT−1 > λ∗∗
2 : in

period T − 1 a superoptimist would prefer to invest right away rather than delay for
two periods and get perfect information. To simplify the discussion, assume further

10 Caplin and Leahy (1994) have similar conditions.
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that λT = λ∗∗
1 + ε, where ε is vanishingly small. In period T , the payoff of investment

for a superoptimist is almost the same as that of delay until period T + 1.
Consider a superoptimist in period T − 1. If he does not invest in that period, he

invests in period T if he gets another positive signal, and delays until period T + 1
otherwise. Because ε is vanishingly small, the payoff of delay is almost the same as
that of a sure delay for two periods. Because λT−1 > λ∗∗

2 , a probability of investment
ζT−1 = 0 cannot be an equilibrium strategy.

The strategyζT−1 = 1 cannot be an equilibrium strategy, because it would generate
perfect information at the beginning of period T and agents would strictly prefer to
wait (λT−1 < λ∗∗

1 ).
In an equilibrium, superoptimists in period T − 1 arbitrage between investing

in period T − 1 and delay for some information in period T , with a probability of
investment ζT−1 strictly between 0 and 1. This is the situation in the model of the
previous chapter. The analysis of the equilibrium is more complex because the private
information is not invariant over time.

7.4 Observation of Payoffs

So far in this book, social learning has operated through the observation of actions.
Actions are informative because they depend on informative private beliefs. In a variety
of contexts, the results of the actions also convey important information. Penguins on
an Antarctic cliff wait for someone to jump and reveal whether a killer whale is roaming
around. Oil drillers learn from the success or failure of neighboring wells. Academic
researchers follow successful colleagues into new areas of investigation. We consider
now a simple model, which has been motivated by the example of oil exploration.
The main property of the model, which is due to Hendricks and Kovenock (1989),
rests on the arbitrage between the payoff of immediate investment and delay, as in the
model of Chamley and Gale (1994).

DRILLING FOR OIL (HENDRICKS AND KOVENOCK, 1989)

There are N companies, which own adjacent tracts for exploration. All the tracts
contain the same amount of oil, and there is no flow from one tract to another (for
simplicity). Drilling entails a fixed cost. The first company that drills will find out if
there is oil in its tract. If oil spurts from the well, it can be seen by all. There is an
informational externality in the observation of the drilling’s payoff. Companies have
an incentive not to delay drilling, because of the discount rate; but they have also an
incentive to delay and find out whether the other company has struck oil.

There are two states of nature, θ = 0 or 1, with prior probability µ for state 1. There
are N agents i = 1, . . . , N, who all have the same belief. Until now, information has
been obtained from the observation of actions that were function of the private
beliefs. In that context, it was essential for the distribution of beliefs (and therefore of
actions) to depend on the state θ . In the present context, the introduction of different
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private beliefs would distract us from the main issue. We assume therefore that all
agents have the same belief µ1 in the first period. This belief satisfies the following
assumption.

ASSUMPTION 7.1 0 < µ1 − c < δµ1(1 − c).

Time is discrete, and the payoff of investment in period t is

U = δt−1(E t[θ] − c), where c is the investment cost, 0 < c < 1.

The value of θ is revealed at the end of the first period in which an investment takes
place. We focus on a symmetric PBE.

Under Assumption 7.1, agents cannot invest for sure in the first period in a sym-
metric PBE: delaying would yield perfect information. There cannot be an equilibrium
in which all agents delay for sure, according to an argument similar to that in Chamley
and Gale (1994). Note that there is strategic substitutability. If all agents increase their
probability of investment, delaying yields more information and the option value
increases. This induces each agent to reduce its (probability of) investment. There is
a unique symmetric PBE.

Let ζ be the probability of investment of each agent. By the previous arguments,
0 < ζ < 1. If there is an equilibrium, agents are indifferent between investment with
no delay and delay. Hence, the value of the game is the value of investment in the first
period, µ − c . If an agent delays, the probability that at least one of the N − 1 other
agents invests in the first period and thus conveys perfect information to others is
π = 1 − (1 − ζ )N−1. If no agent invests in the first period, nothing is learned.11 The
value of the game in period 2 after no investment in period 1 is therefore the same as
in period 1, µ − c , and the arbitrage equation for delay is

µ − c = δ
(
πµ(1 − c) + (1 − π)(µ − c)

)
.

The right-hand side is equal to δ(µ − c) if π = 0 and to δµ(1 − c) if π = 1, and it is
linear in π . From Assumption 7.1, the arbitrage equation has a unique solution in π

and therefore a unique solution in the strategy ζ with π = 1 − (1 − ζ )N−1.

DEVELOPMENT OF URBAN AREAS

The introduction described how the opening of a successful store by Bed Bath &
Beyond was followed by other stores in the same neighborhood and higher rents.
Caplin and Leahy (1998) present a model of social learning with search and matching:

11 If agents had private information on θ , the event of no investment would carry more information.
Because we want to focus on one channel of information (the observation of output), we should
not include heterogeneous beliefs at this first stage. Hendricks and Kovenock (1989) assume a
distribution of beliefs. In a PBE, agents have nonrandom strategies in which the most optimistic
agents do not delay.
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landlords own vacant lots, which can be used for residential purpose or for retail ac-
tivities, and they receive applications from agents of different qualities for commercial
use. For simplicity, the conversion of a vacancy to a residence or to a retail store is
taken to be irreversible. A vacancy can be turned into a residence at any time.

The value of turning a vacancy into a residence is assumed to be known, but the
value of the commercial use is not known. It depends on the intrinsic quality of the
retail store and on the “potential” of the neighborhood. The second factor affects in
the same way all vacancies in the neighborhood. As long as no retail store has opened,
no one knows that common factor. As soon as one store opens, by assumption, the
common factor becomes public information. In the same way, the state of nature is
known after the first penguin’s jump or the first oil drilling.

Owners have an incentive to search for the best applicants. They also have an
incentive to delay because the value of the retail activities in the neighborhood may
become known. If the value is revealed, they may avoid the downside risk that the space
is less valuable for retail (with a search for a reservation quality) than for immediate
conversion into a residence of known value. The analysis of the model is presented in
Exercise 7.5.

EXERCISES

EXERCISE 7.1

Consider the simple model in Section 7.1.2, and assume δ → 1.

1. Determine the limit of the belief (as δ → 1) after no investment in the first period.
2. Could the previous result be anticipated by an intuitive argument?
3. Determine a lower bound for the limit value of the variance of the change of belief

between periods 1 and 2.
4. Assume that there are two players in the bad state and three players in the good

state. Analyze the equilibrium when δ → 1.

EXERCISE 7.2

Consider the model of Section 7.1.1 with the specified parameter values and δ ≥ 1
3 .

1. Show that in an equilibrium, no pessimist invests in the first period.
2. Let ζ be the strategy of an optimist in the first period (the probability of invest-

ment). Using an arbitrage argument, show that ζ is determined by

µ+ − c = δP (x = 1|µ+)(1 − c) = δζµ+(1 − c).

Determine the value of ζ if δ = 1
3 .

3. Show that if a pessimist observes one investment at the end of the first period, he
does not invest in the second period.

4. Using the previous results, determine the unique symmetric PBE.
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5. Show that the value of the game for a pessimist at the beginning of the first pe-
riod is

V(δ) = µ−δζ (1 − c)
(
ζ + 2δ(1 − ζ )

)
.

Show that for the values of the parameters of the model, V(δ) is not a monotone
function of δ if δ ≥ 1

3 .
6. Show that for the values of the parameters of the model, V(δ) is an increasing

function of δ if δ ≤ 1
3 .

EXERCISE 7.3 No equilibrium in the simple model of Section 7.2.1

Let ζt be the probability of investment per unit of time in a symmetric equilibrium.

1. Show that the arbitrage equation is ρ(µt − c) = ζtµt(1 − µt) + µ̇t . Use two
methods: (i) the intuitive argument of the pricing of the option to invest; (ii)
the decomposion of time into periods of length dt and the arbitrage between
investment and delay.

2. Using Bayes’s rule in discrete time with periods of length dt, express µt+dt as
a function of µt and ζt . Taking dt → 0, show that µ̇t = −ζtµt(1 − µt), and
conclude that the arbitrage equation cannot be satisfied for ρ > 0.

EXERCISE 7.4

There are two states of nature, θ ∈ {−1, 1}, and two investment projects, denoted
by −1 and 1. Project i has a gross payoff equal to 1 if i = θ and equal to 0 if i �= θ .
The cost of the investment is equal to c . There are two agents, each with one option
to make one investment in one of the two projects. The probability of state 1 is equal
to µ > 1

2 . Each agent has a binary signal s ∈ {−1, 1} such that P (s = θ | θ) = q ,
where q is drawn from a distribution with support [ 1

2 , µ]. Time is continuous, and
the options can be exercised at any time. Assume that 1

2 < c < µ. Show that there is
no symmetric PBE.

EXERCISE 7.5 The BB&B model of Caplin and Leahy (1998)

There are N landlords, who each own one vacancy. In each period, a landlord who
still owns a vacancy can either commit to residential use or receive one application by
a retail store. The conversion to a residence yields a value W and is irreversible. If the
landlord searches and receives an application, he has to decide whether to commit to
a permanent lease or to turn the application down and carry the vacant space to the
next period. There is no recall of past applications.

Each applicant has a private type α, which is drawn from a uniform distribution
on (0, 1) and is independent of other types and variables. If the lease is signed, the
landlord captures the entire value of the space (with a take-it-or-leave-it offer). This
value is equal to αθ , where θ is the value of the neighborhood and is drawn from a
uniform distribution on (0, 2). Once a lease has been signed, the store opens within
the period, and the value of θ is publicly known in the next period. The discount
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factor of the landlords is δ. If no lease has been signed yet, the value of signing with
an applicant of type α is αE [θ] = α.

1. Consider first the second phase of the game after the first lease has been signed
and θ has been observed by all agents.
(a) Assume first that W = 0. (There is no residential use.) Using a Bellman equa-

tion, show that landlords accept applications above the reservation value αI

given by αI = δ(1 + α2
I )/2.

(b) Assume now 0 < W < 2. Let V(θ) be the value of continuing the search at the
end of a period. Show that there is a value θ such that θ < θ ⇔V(θ) < W.
Determine the strategy of a landlord when θ is known.

2. Assume now that the value of θ is not known (in the first phase of the game, when
no lease has been signed yet).
(a) Determine the expected value of learning the value of θ , VI , as a function of

W, αI , and θ .
(b) Show that the reservation value of a landlord is now

α = δ
(
πVU + (1 − π)VI

)
,

where π is the probability that a waiting landlord remains uninformed at the
beginning of next period and VU is the expected value of being uninformed.

(c) Show that π = αN−1, and solve the model. Compare the rents before and after
the first lease is signed.

7.5 Appendix

HEURISTIC DERIVATION OF THE ARBITRAGE EQUATION (7.1)

The arbitrage for agent A is between investing at time t and investing at time t + dt.
Writing this equality, we have

U (E [θ |s (t), s ′ < s (t)]) = 1

1 + ρ dt

(
(πt dt)U

(
E [θ |s (t), s ′ = s (t)]

)

+ (1 − πt dt)U
(

E [θ |s (t), s ′ < s (t + dt)]
))

.

On the right-hand side, the first term describes the event that occurs when the other
agent, agent B , invests. This event occurs when s (t + dt) < s ′ < s (t) and has a prob-
ability πt dt. If agent B invests, agent A knows that B has a signal s ′ = s (t) by
approximation of the interval (s (t + dt), s (t)). (The approximation error is of the
order of dt, which is multiplied by πt dt and therefore of the order of dt2.)

The second term is the value of investment at time t + dt when no investment is
made by agent B in the time interval (t, t + dt). Agent A knows now that the signal
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of agent B is below s (t + dt), which is smaller than s (t). We have the approximation

U
(

E [θ |s (t), s ′ < s (t + dt)]
)

= U
(

E [θ |s (t), s ′ < s (t)]
)

+ U ′ d(E [θ |s (t), s ′ < s̃ ])

ds̃
ṡ (t)dt.

This expression is substituted in the top equation.
We now proceed in a standard way: in the top equation, we multiply both sides by

1 + ρ dt. The constant terms on both sides are identical and are canceled. The terms
of the order of dt must be identical. (Divide both sides by dt and take dt → 0.) This
identity is the same as equation (7.1).

Proof of Lemma 7.1

If an agent knows that he will get perfect information k periods later (k ≥ 1), he delays
only if µ − c < δkµ(1 − c), which is equivalent to

λt < λ∗∗
k = λ∗ + log

1

1 − δk
.

Because 1 + δ + · · · + δk−1 = 1 − δk

1 − δ
, then

λ∗∗
k = λ∗∗

1 − log(1 + δ + · · · + δk−1).(7.9)

Suppose that λT−1 < λ∗∗
2 . We now show that for k ≥ 2, λT−k < λ∗∗

k+1.
From (7.9), using δ < 1 and the concavity of the log function, we find that the

difference λ∗∗
k − λ∗∗

k+1, which is positive, is decreasing in k. For k = 1, this differ-
ence is smaller than λT − λT−1 = a , by assumption. Because the difference λT−k −
λT−k−1 = a is constant, the inequality λT−k < λ∗∗

k+1 holds for k ≥ 2.
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The triumph of hope over experience.

Social learning occurs through the observation of the outcomes of others’

actions. Beliefs may fail to converge to the truth when these outcomes

fail to be sufficiently informative. Various examples are analyzed: (i) a

monopoly faces intersecting demand curves; (ii) the probability of eco-

nomic success depends on effort through an unknown relation; (iii) the

probability of success depends on more than one factor; (iv) private be-

liefs are bounded. There may be some relation between fiscal policies

and the evolution of beliefs (which in turn may affect the policies). New

agents with beliefs arbitrarily close to the truth can sway people away

from an incorrect herd into an optimal action.

In the previous chapters, the information about the true state of nature came from
private ex ante beliefs. This information was brought, imperfectly, into the social
knowledge through the filter of the action choices by individuals pursuing their own
interest. The implicit assumption was that the outcomes of actions would occur after
all decisions were made. In some settings, however, actions bear lessons for future
decisions. Firms may adjust their prices after the market response. Unemployed agents
observe the results of their search. Farmers observe some results at the end of a crop
cycle before making choices for the next one. Evidence on the risks of cousin marriages
eventually becomes known. These settings share the common feature that actions send
a random signal: chance plays a role in the finding of a new job; agricultural outputs
are famously uncertain; the outcomes of medical treatments depend to a large extent
on personal characteristics that cannot be observed.

In this chapter, the probabilities of the actions’ outcomes depend on the state
of nature. The signal issued by an action may be an output, a payoff, or some other
variable. This new channel of information introduces a specific property: if one wants
to learn whether an action is profitable for the given state of nature, one has to try
it. Discouraged unemployed do not learn much about their ability to fit with the

167
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evolving conditions of the job market; if no farmer plants a new hybrid corn, no one
will learn whether the crop is suitable for the conditions of the land. The information
is not generated by private beliefs ex ante, but is fed in by nature over time when
actions are taken.

The Armed-Bandit Problem
An agent who can repeatedly choose an action takes into account the immediate pay-
off of his action and his learning for better decisions. He is like a player who pulls
one of the two arms of a slot machine to generate a random output of money. One
of them, unknown to the player, generates on average a higher output. The armed-
bandit problem is to choose which arm to pull. Berry (1972) and Rothschild (1974)
have analyzed this well-known problem for a finite number of actions.1 Eventually,
the agent settles for one arm, which he believes to be more productive than the other.
Because he stops using the other arm, his belief is invariant; but it may be incorrect.
The nonconvergence to the truth may be optimal even though the agent fully inter-
nalizes the benefit of learning, when deviation from the myopic maximization is more
costly than the potential benefit from experimentation.

Social Learning from the Outcomes of Others’ Actions
In the standard framework of social learning, the nonconvergence to the truth may
be suboptimal because agents do not take into account the informational benefits of
their actions for others. In this chapter, following the current state of the literature,
we study whether the agents’ beliefs converge to the truth or not, as the number of
observations becomes arbitrarily large. We will not analyze the rate of convergence or
the cost of the failure to take the information benefits into account.

Learning the Demand Curve of a Monopoly
Finding the demand curve and adjusting the price to the demand are basic problems
in economics. We begin in Section 8.1.1 with a model of McLennan (1984), who
assumes a zero–one demand where the probability of a sale in a period depends
on the price quoted by a monopoly during the period. The monopoly is run by
a sequence of one-period managers, who choose a price to maximize the period’s
expected payoff without experimenting for the benefit of future managers. There
are two possible schedules for the demand, and by assumption, they intersect at a
price that separates the optimal prices for the two schedules. The sequence of prices
chosen by the managers converges with strictly positive probability to the intersection
point between the demand curves, where there is no learning. In such a case there
is no convergence to the truth. The model is remarkably tractable and yields useful
insights. A related model by Kiefer (1989) assumes that the monopoly chooses the
quantity and that the equilibrium price is subject to an additive shock. The model has

1 See Berry and Fristedt (1985).
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to be simulated and generates similar properties (Section 8.1.2). The limited ability
of agents to learn in this context may have some implications for the rigidity of prices
or individuals’ behavior.

The Determinants of Economic Success: Luck or Effort?
The model of McLennan can be applied to the case of an agent who searches for a
new job or plans for a new career. His effort depends on his belief about the relative
contributions of effort and luck to the probability of success. This belief is affected by
his past successes and failures. The model of Section 8.2.1 explains how a low initial
belief in the value of effort may set the agent on a path where he never learns that
effort actually pays off. This property has obvious policy implications.

Multidimensional Reality and Unidimensional Outcomes
The factors that determine economic success obviously have more than one dimen-
sion, and yet the experience from an average of successes or failures is one-dimensional.
It is not surprising that such restricted experience does not enable agents to learn the
true state. An extension of the model of McLennan leads to a model of Piketty (1995),
which exhibits interesting properties of the limit distributions of beliefs (Section
8.2.2). For example, successful children of poor parents are more likely to believe that
effort has a large effect than those who remain poor. Such properties are not based on
self-serving psychological mechanisms, but depend on the interaction between belief
and effort.

Complete Learning with Diverse Private Beliefs
In the previous models, the agents share a common history, and the weight of that
history may prevent them from learning the truth. One way out of the trap of history
is to have new agents with strong beliefs who reject the lesson of history. These agents
choose different actions, the outcomes of which generate new information, which
may bring everyone out of the trap. Bala and Goyal (1995) analyze social learning
from the outcomes of actions chosen in a finite set (Section 8.3.1). This framework
can be applied to an agricultural setting where farmers choose one crop in a small
menu and observe the output at the end of a cycle. A finite number of actions may
also be an approximation of an action in a continuum (e.g., a monopoly’s price). The
technique of analysis relies on the finite number of actions: it implies that some actions
are taken an infinite number of times and thus reveal their true payoff by the law of
large numbers. This revelation of information is obviously not sufficient for learning
the truth, for the agents (e.g., farmers) could herd on a suboptimal action. However,
no incorrect herd can take place if some agents have beliefs that are arbitrarily close
to the truth. This assumption is reminiscent of the unbounded beliefs assumption in
Chapter 3. The operating mechanism is different, however. Agents never learn from
others’ choices (by an assumption of bounded rationality). They learn only from the
outputs. The agents with beliefs close to the truth choose an optimal action, and the
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repeated observations of these correct actions eventually convince everyone to adopt
them.

8.1 Incomplete Learning

Following McLennan (1984), we consider a seller who learns about the demand for
his good by selling the good.2 This is a standard problem of learning about the state
of nature from the outcomes of the actions. As usual, the model is simplified as much
as possible.

8.1.1 A Monopoly Facing a Zero–One Demand

The seller (the agent) produces in each period one unit of a good that cannot be stored
for the next period. Without loss of generality, the cost of production is zero. The
seller faces in each period a customer who has an unknown reservation price. The
seller quotes a price, once, and the customer either buys the good or leaves forever.
The demand curve for the good is defined by the probability that the customer buys
the good. We will make two essential assumptions. The first one is minimal: there
are two possible demand curves, and these two curves intersect at some price a . They
have different elasticities, and we define the more elastic as the demand in state 1.
Without loss of generality, the demands in the two states are linear. The probability
of a sale is assumed to be3

πθ (p) = max{0, min{1, b − mθ (p − a)}}(8.1)
with a > 0, 0 < b < 1.

The parameter mθ depends on the state of nature θ , which is fixed at 0 or 1, with equal
probabilities, before the first period. The two possible demand curves are represented
in Figure 8.1.

Because the demand is more elastic in state 1 than in state 0, the optimal price in
state 1 is lower than in state 0. We now make a second essential assumption: the price
a (at which the demands intersect) is between the optimal prices in state 1 and state
0. This assumption will drive all the results.

We can understand immediately, without any algebra, the fundamental mecha-
nism at work. Let µ be the belief of the agent (seller), i.e., the probability of state 1.
If µ = 1, his optimal price is below a ; if µ = 0, his optimal price is above a . Hence
there is some intermediate belief between 0 and 1 under which the optimal price is
a . For that price, however, the probabilities of a sale are the same in the two states.

2 The exposition by McLennan is not an easy read. The presentation here will be simpler and include
new results. The problem of learning a demand curve was already mentioned by Drèze (1972).

3 The linear probability of a sale is equivalent to a uniform density for the reservation prices of the
buyer.



8.1 Incomplete Learning 171

p

a

b π1

m0

m1

0

Figure 8.1 Demand curves. The demand is more elastic in
state 1 than in state 0. The schedules intersect at some price
a. The parameters are such that the optimal price in state 1
(0) is below (above) a. Hence, for some intermediate belief
µ∗ ∈ (0, 1), the optimal price is a. For that price, the demands
are the same in the two states and the seller learns nothing.
The belief µ∗ is invariant.

The agent learns nothing from the demand. If he does not experiment (say, he is in
charge of the monopoly for one period only), his belief is the same in the next period
and all periods after. We will see that even if the agent can manipulate the demand in
order to learn, he may reject that experimentation as too costly in comparison with
the potential benefit.

SOCIAL LEARNING BY MYOPIC MANAGERS

Assume that the good is supplied by a firm that is run by a different manager in each
period. The manager chooses the price to maximize the expected profit (equal to the
value of the sale) in his period, without taking into account the benefit from learning
for better decisions in the future. The manager knows the history of prices and sales
of the monopoly. He learns as a Bayesian from the history of sales. This is an example
of the standard framework of social learning. There may be an inefficiency in that the
manager does not experiment for the benefit of better decisions by future managers.
We will consider the problem of optimal experimentation later.

Let µ be the belief of the manager in some period. A standard exercise shows that
the profit-maximizing price is

p(µ) = b

2E [m]
+ a

2
with E [m] = m0 + µ(m1 − m0).(8.2)

As announced previously, we assume that the intersection price a is between the
optimal prices in the two states.

ASSUMPTION 8.1 p(0) > a > p(1), or equivalently,
b

m1
< a <

b

m0
.

Because the optimal price function p(µ) in (8.2) is strictly decreasing, Assump-
tion 8.1 implies that there is a unique belief µ∗ such that p(µ∗) = a . A manager with
belief µ∗ chooses the price a for which the probabilities of a sale are identical in the
two states. The next manager learns nothing from the outcome in the period and has
the same belief. The belief µ∗ is invariant.
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Figure 8.2 The evolution of the belief. Param-
eters: m0 = 0.67, m1 = 2, b = 0.8, a = 2/(m0 +
m1). The curve represents the ex post belief after
a no-sale event, given the belief µ and an optimal
price. When µ is greater than the fixed point, the
no-sale event is more likely if the state is θ0.

The Stability of the Invariant Belief
Let µ+(µ) and µ−(µ) be the end-of-period beliefs following a sale and no sale re-
spectively, when the beginning-of-period belief is µ and the pricing is optimal given
that belief. By Bayes’s rule and the equations (8.1) and (8.2), we have

µ+

1 − µ+ = π1(p(µ))

π0(p(µ))

µ

1 − µ
and

µ−

1 − µ− = 1 − π1( p(µ))

1 − π0( p(µ))

µ

1 − µ
.(8.3)

The graphs of µ−(µ) and µ+(µ) are represented in the left panel of Figure 8.2.
Suppose for example that in some period, the manager has a belief µ below µ∗. He
prices the good above a (Figure 8.1). A no-sale outcome is a signal favoring state 1,
because the probability of a sale is lower in state 1 (Figure 8.1): µ−(µ) > µ (Figure
8.2). Likewise, if a sale occurs, the belief is lowered: µ+(µ) < µ.

Both functions µ− and µ+ have a fixed point µ∗ by Assumption 8.1. What is
remarkable is that both functions are increasing (Exercise 8.1). Because µ+ and µ−

are increasing and have a unique fixed point at the invariant belief µ∗ ∈ (0, 1), the
next result follows.

PROPOSITION 8.1 The value µ∗ partitions the set of beliefs in two stable regions:

If µt < µ∗, then for any k ≥ 1, µt+k < µ∗.
If µt > µ∗, then for any k ≥ 1, µt+k > µ∗.

If the manager at date t has a belief below (above) µ∗, all the subsequent managers
will have a belief below (above) µ∗. Obviously, there cannot be complete learning.

Suppose the initial belief is below µ∗ (µ1 < µ∗) and the true state is 1. The belief
µt is a martingale and therefore converges. From the previous paragraph, it must
converge to a limit µ̂ in the interval [0, µ∗]. From Proposition 2.9, it cannot be totally
wrong, and µ̂ > 0. The limit µ̂ cannot be in the open interval (0, µ∗), because then
the outcomes (sale or no sale) would remain informative near µ̂, thus contradicting
the convergence. Hence, µ̂ = µ∗. Likewise, if µ1 > µ∗ and the true state is 0, then µt

converges to µ∗.
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In summary, if the initial belief is seriously incorrect (below µ∗ while the true state
is 1, or above µ∗ while the state is 0), then µt converges to the intermediate value µ∗

and learning is incomplete and inadequate. This property is remarkable, but the case
of fairly correct initial beliefs is even more remarkable.

Assume thatµ1 < µ∗ and that the true state is 0. One might think thatµt converges
to the truth – to zero – but it does not. The belief µt is a martingale and therefore
converges. The limit cannot be in the open interval (0, µ∗) by the standard argument
that the outputs would be informative. However, µt is bounded, and by Proposi-
tion 2.6, it cannot converge to 0 in probability. More specifically, let �t be the likelihood
ratio �t = µt/(1 − µt). By Proposition 2.5, �t is a martingale4 (because θ = 0). It
converges to 0 or �∗ = µ∗/(1 − µ∗), and the expected value at the limit is equal to
the initial value: �1 = π�∗, where π is the probability of the convergence of �t to �∗

(of µt to µ∗). There are two cases for the convergence of the belief µt , as shown in
the following result.

PROPOSITION 8.2

(i) If the initial belief is seriously incorrect (µ1 < µ∗ while θ = 1, or µ1 > µ∗ while
θ = 0), then µt → µ∗.

(ii) If the initial belief does not satisfy the previous condition, then µt → µ∗ with
probability π and µt approaches the true θ with probability 1 − π , where

π = µ1

1 − µ1

µ∗

1 − µ∗ .

The proposition shows that myopic and selfish managers have some difficulties in
learning the truth.

NONMYOPIC OPTIMIZATION

Assume now that the agent maximizes, in each period, the discounted sum of all future
payoffs using a discount factor δ < 1. Suppose that his belief is µ∗. When he chooses
the price p, he maximizes the sum of the current period’s payoff and of the dis-
counted future payoffs. The latter depends on the belief at the end of the period, and
therefore on the learning in the period. The agent could deviate from the myopic op-
timization solution p = a to learn about θ and increase his future payoff with better
informed decisions. However, by deviating from p = a he faces a loss, which is mea-
sured by the concavity of the payoff function u(p, µ∗) = (1 − E [m|µ∗]( p − a)) p.
Its second derivative at the optimum p = a is u11 = −2E [m|µ∗] = −2(µ∗m1 +
(1 − µ∗)m0) < 0. If the discount factor δ is below some value δ∗, the loss in the

4 Recall that µt is not a martingale conditional on θ = 0. One can verify – at least numerically – that
E [µt+1 − µt |θ = 0] < 0 if µt < µ∗. Although the expected value of the change of µt is strictly
negative for any value of µt on any path, µt converges to the upper bound of its range with a strictly
positive probability.
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current period dominates the gain from learning, in which case the myopic rule
p = a is also optimal for a nonmyopic agent. (Note that the discount factor δ∗ is not
zero.) If δ < δ∗, the belief µ∗ is invariant for the nonmyopic agent.

8.1.2 A Linear Demand

The previous model is modified to allow for a demand qt that is a real number and
depends linearly on the price pt :

pt = aθ − bθqt + εt .(8.4)

The parameters (aθ , bθ ) depend on the state of nature θ ∈ {0, 1} and are invariant
over time. The noises εt have a normal distribution N (0, σ 2

ε ) and are independent.
The good is produced costlessly by a monopoly.5

Suppose that b1 < b0. (As in the previous model, state 1 is the one with a more
elastic demand.) The parameters are such that the deterministic parts of the two
demand schedules intersect for some quantity

q∗ = a0 − a1

b0 − b1
.

The manager of the monopoly chooses the quantity (and not the price as in the pre-
vious section) to maximize the period’s profit. Given a belief µ, the optimal quantity
is

q(µ) = E [aθ ]

2E [bθ ]
,

where the expectation depends on the belief. The supply is related to the expected
elasticity and is therefore increasing in µ. As in the previous model, the parameters
are such that q(0) < q∗ < q(1). There is a belief µ∗ such that q(µ∗) = q∗. For that
belief, all price variations are due to ε and none are due to the difference between the
deterministic components (because they are identical). There is no learning, and the
belief is invariant.

Contrary to the previous model, the invariant belief µ∗ cannot separate all the
beliefs in two stable intervals, because of the random term ε. There is always a pos-
sibility that a large shock pushes the public belief to the other side6 of µ∗. This is
especially true if the optimal prices are far from the price at which the deterministic
parts of the demand are equal. Suppose for example that if µ is small, the optimal
price is very low, and that θ = 1. Because of the very low price, the difference between
the deterministic parts in the two states is large, and one observation may push the
belief above µ∗ near 1.

5 This model may be more appropriate than the binary model in some contexts, but it has not generated
specific analytical results in the literature.

6 See Exercise 8.4.
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Despite these variations of the properties, the simulations of Kiefer (1989) show
that the belief µt converges to the invariant value µ∗ with strictly positive probability.

RIGID PRICES

In macroeconomics, the issue of price rigidities is central for the discussion of equi-
librium and monetary policy. When prices are determined by the agents, we have to
assume that each of them is facing a demand curve in a setting of imperfect compe-
tition.7 The previous models indicate that agents may have little incentive to change
their prices. Even if the beliefs of agents converge to the truth, the convergence may
be slow. More work is needed on this issue.8

8.2 The Determinant of Economic Success: Luck or Effort?

What determines economic success? Luck, family background, personal effort? The
beliefs on these determinants are translated into political opinions. Individuals who
believe that luck is the main factor may support legislation with a high income tax
rate. This tax may reduce the labor supply and the level of economic success and
comfort people in their beliefs. The issue needs further research. As an introduction,
two models are presented in this section. In the first, effort has either a strong or a
weak effect on success, and beliefs are one-dimensional between these two states. In
general, a simple outcome like economic success may be affected by a large set of
causes. It is not easy to infer the true state of nature from such a simple outcome even
when there are many observations. To illustrate the difficulties of learning, the second
model assumes that the state of nature belongs to a set of dimension two.

8.2.1 One-Dimensional Beliefs

The first model is an application of the model of McLennan. Assume that an agent
supplies in each period a level of effort x . His income at the end of the period (which
can be a lifetime) is either 1 or 0 (a normalized value). The probability of economic
success with an income of 1 is assumed to be

πθ (x) = max{0, min{1, aθ + mθ x}},(8.5)

where x represents the effort of the agent. The function is a stylized representation
of the decreasing marginal productivity of effort for the probability of success. The
agent maximizes the net payoff E [πθ (x)] − x2/(2α), where the second term is the
cost of effort and α is a parameter. The probabilities in the two states are represented

7 See for example Benassy (1982), Blanchard and Kiyotaki (1987).
8 Each of the two models may apply to a different setting. (One of them is considered in the next

section.) It would be useful to combine the two models with a model where firms determine the
price and the demand is random.
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Figure 8.3 Probability of success as a function of effort. Effort has a large effect on the prob-
ability of success in state 1, and a small effect in state 0. The parameter values for the example
are the same as in Figure 8.1.

in Figure 8.3, which is similar to Figure 8.1. In state 1, effort has a large impact on the
probability of success. In state 0, it has a vanishingly small impact.

The optimal level of effort is x(µ) = αE [mθ ]. The parameters are such that x(0) <

x∗ < x(1). There is a belief µ∗ such that x(µ∗) = x∗, and that belief µ∗ is invariant.
If µ < µ∗, the level of effort is smaller than x∗. The probability of success is smaller in
state 1. An unsuccessful outcome raises the belief. The updated beliefs after good and
bad news are functions µ+(µ) and µ−(µ) that can be represented in a figure similar
to Figure 8.2. The same arguments apply to the convergence of beliefs.

THE IMPACT OF REDISTRIBUTIVE POLICIES

The existence of an invariant belief in the interval (0, 1) has striking implications.
Assume the true state is 1 and effort has a large effect on the probability of success.
An agent who does not believe that effort is rewarded provides a low level of effort,
below x∗. He then gradually increases his belief up to µ∗, but he never gets to know
the truth, and his effort is below the level that is optimal for the true state.

An agent whose belief is sufficiently optimistic eventually learns the truth: effort
has a large effect on success.

Consider now the design of a redistributive tax, and assume that the net payoff of
the agent is (1 − τ )E [πθ (x)] − x2/(2α) + τ0, where τ is the tax rate on income and
τ0 is a lump-sum payment. If agents believe that effort has little effect on success, they
favor a high tax rate. If the tax rate lowers the level of effort below x∗, then agents may
never get to learn that effort pays off.

The analysis of the interaction between beliefs and policy would benefit from
further investigation.

8.2.2 Two-Dimensional Beliefs

The previous model is now extended to allow for a set of states of dimension two.
Following Piketty (1995), the definition of the probability of success in (8.5) is replaced
by a function that depends on two parameters (γ , θ):

π(γ ,θ)(x) = max{0, min{1, γ + θx}}.(8.6)
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Figure 8.4 Asymptotic beliefs with fixed effort.

Agent t belongs to a dynasty. (He represents generation t.) He observes the history of
efforts and of successes (and failures). Incomes in different periods are independent,
conditional on effort. The agent has in period 1 an initial subjective distribution on
(γ , θ) with density f1(γ , θ) such that (γ , θ) is bounded. The density of the subjective
distribution in period t is denoted by ft(γ , θ).

Let yt be the outcome (the income) in period t: yt = 0 or 1. Given the observation
of yt , the belief of the dynasty is updated by Bayes’s rule. The density in period t, ft ,
is updated at the end of the period so that

ft+1(γ , θ) = AP (yt |(γ , θ), xt) ft(γ , θ),

where the coefficient A is such that the integral of ft+1 is equal to 1, and

P (yt |(γ , θ), xt) =
{

γ + θxt if yt = 1,
1 − (γ + θxt) if yt = 0.

We begin by analyzing learning from history and assume as a first step that the level
of effort is fixed at x̂ .

Learning with Fixed Effort
As the initial distribution of (γ , θ) is bounded, E t[θ] converges (it is a martingale).
When t → ∞ and the number of observations tends to infinity, the estimated prob-
ability of success γ + θ x̂ converges to its true value by the law of large numbers. The
support of the asymptotic distribution on (γ , θ) must therefore be in the locus such
that

γ + θ x̂ = γ ∗ + θ∗ x̂ ,(8.7)

where γ ∗ and θ∗ denote the true values of the parameters. The asymptotic probabil-
ity distribution on the structural parameters belongs to the line (�) in Figure 8.4.
Asymptotically, some agents believe that success is mainly due to chance whereas
others believe that effort has a predominant role.

There is no complete learning, because the parameter is of higher dimension
than the observations. By the law of large numbers, an arbitrarily large number of
observations generates a number in the interval [0, 1], which is of dimension one.
This number is not sufficient to estimate the correct value of (γ , θ), which is in a set
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of dimension two. So far these different beliefs have had no effect on effort, because
effort is exogenous.

Endogenous Effort
Suppose now that each agent chooses his effort x to maximize the payoff function

u(x) = E [π(γ ,θ)(x)] − x2

2a
with a > 0.

Assume there is no corner solution and that beliefs are such that the probability π is
between 0 and 1. (The extension is trivial.) Given the specification of the probability
where the multiplier of effort is θ , the level of labor supply is x = a E [θ]: it increases,
quite naturally, with the belief that effort pays off. From (8.7), the limit distribution
of beliefs is on the line described by the equation

γ = γ ∗ + a E [θ](θ∗ − θ).(8.8)

Asymptotic beliefs are represented in Figure 8.5. The higher the expected value E [θ],
the steeper the slope of the line. The region where the distribution of beliefs has a
higher density is represented in Figure 8.5 by a contour.

In order to understand the boomeranglike contour, consider agent 1 in the figure,
who has a low estimate E 1[θ]. His distribution is on the line (�1), which has a small
slope in absolute value (equal to a E [θ]). His density is higher toward the left part of
the line, because his estimate E 1[θ] is small. The agent makes little effort, because he
believes that effort is not rewarded.

Agent 2 has by assumption a higher belief E [θ]. The support of his distribution
(�2) is steeper, and the main mass of his distribution is to the right of agent 1 because
of the higher estimate E 2[θ]. (The mean of the first coordinate of the points on the
thick segment is higher.) Agent 2 works more. He is more successful on average than
agent 1 because the true value θ∗ is positive and effort does pay. However, he still
underestimates θ (because E 2[θ] < θ∗). He knows the probability of success by the
law of large numbers. Because he underestimates the value of θ , he must “explain”
the higher probability of success (compared with that of agent 1) by a higher value of
γ : his mean value of γ is higher than the mean value for agent 1.

The reader can complete the argument for agent 3, who believes E 3[θ] > θ∗.
The model explains why rationally learning agents may end up with labor supplies
consistent with their beliefs: the hardworking agents believe that effort pays, whereas
the “lazy” ones believe rationally that it has little effect on the outcome.

DYNASTIC BELIEFS

In the previous model, the chance factor operated independently of past realizations
of income. Most people would agree that if chance has an impact, it depends on the
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Figure 8.5 Asymptotic beliefs with endogenous ef-
fort. The distribution of beliefs in the population is an
average of all individual beliefs. The thick segments
represent the supports of the asymptotic distribu-
tions of three particular agents, in increasing order
of expected values E1[θ ] < E2[θ ] < E3[θ ]. The popu-
lation’s distribution is represented by a contour.

status or income of one’s parents.9 In the model of Piketty (1995), there is a dynasty
of individuals living one period. The economic success of each individual depends
on his effort and the income of his parents. Income takes one of two values, y L or
y H , y L < y H , and the transition between the two values is a Markov process with
transition probabilities

P (yt = y H |x, yt−1 = y L ) = γ0 + θx,

P (yt = y H |x, yt−1 = y H ) = γ1 + θx,
(8.9)

where γ0, γ1, θ are the structural parameters. Agents learn rationally, from the ex-
perience in their own family and the law of large numbers, the correct values of the
left-hand side of the previous equations. They also know their labor supply, x . To
simplify the model, we assume they do not learn from the experience of other fami-
lies. (Suppose that they cannot observe the efforts in other families.) The structure of
the model is such that the two equations in (8.9) do not enable a family to learn the
three parameters γ0, γ1, and θ .

In analyzing the asymptotic belief of a family, one can focus on the first equation.
The analysis is the same as in the previous model. The asymptotic distribution of
(γ0, θ) has support on the line

γ0 = γ ∗
0 + a E [θ](θ∗ − θ),

where γ ∗
0 and θ∗ are the true values of the parameters. Figure 8.5 applies.

Each family can be indexed by its asymptotic value E [θ] and moves stochastically
among the binary values H H , H L , L H , and L L , with rich parents and high income,
rich parents and low income, etc. Assume that all distributions are stationary and
that there are a large number of families with a given E [θ] = θ . Within this group,
denote by αH the fraction of agents with high income and by πi j the fraction of people
moving from state i to state j (i, j ∈ {L , H}). The equality between the flows into

9 We ignore potentially interesting effects such as cognitive dissonance (Festinger, 1957), in which
beliefs are chosen such that the interpretation of experience generates a higher belief in one’s personal
skill.
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and out of high income implies

(1 − αH )πL H = αH (1 − πH H )

with πL H = γ0 + θx(θ), πH H = γ1 + θx(θ).

Let σH H (θ) and σH L (θ) be the fractions of agents10 in states H H and H L in a
stationary state. Let f (θ |H H) and f (θ |H L ) be the distributions of θ for all agents
with experience H H and H L , respectively. By Bayes’s rule,

f (θ |H L )

f (θ |H H)
= σH L (θ)

σH H (θ)
A = h(θ)A, with h(θ) = 1 − γ1 − aθ2

γ1 + aθ2
,

and where A is a constant. The function h(θ) is strictly decreasing if and only if a > 0.
We now need a result on distributions.11

LEMMA 8.1 Consider two distributions with densities f (θ) and g (θ) such that f (θ) =
h(θ)g (θ), where h is strictly decreasing. Then the densities have cumulative distribution
functions F and G, respectively, such that for each θ one has F (θ) > G(θ): G dominates
F in first order.

From the previous lemma, the median of F is lower than the median of G . Within
the population of agents who are in state H L , there is a distribution of expected
values θ . (Recall that each agent has a distribution on θ .) The median of the distri-
bution in the cell H L is lower than the median of the population, which is in the cell
H H .12

Let us make the crude simplification that agents who believe that success is due
to chance or family background tend to vote on the left for more redistribution.13

More people vote for the left in cell H L than in cell H H . The same argument can be

10 We have

σH H (θ) = πH HαH = πH HπL H

1 − πH H + πL H
= (γ1 + aθ 2)(γ0 + aθ 2)

1 − γ1 + γ0
,

and

σH L (θ) = (1 − πH H )πL H

1 − πH H + πL H
= (1 − γ1 − aθ 2)(γ0 + aθ 2)

1 − γ1 + γ0
,

or

σH L (θ) = h(θ)σH H (θ) with h(θ) = 1 − γ1 − aθ 2

γ1 + aθ 2
.

11 For the proof,
F (θ)

1 − F (θ)
=
∫ θ

h(x)g (x)dx∫
θ

h(x)g (x)dx
<

h(θ)
∫ θ

g (x)dx

h(θ)
∫

θ
g (x)dx

= G(θ)

1 − G(θ)
.

12 Likewise, the median of the level of effort is lower in the population H L than in the population
H H .

13 To derive this property, Piketty (1995) incorporates in the present model a vote on a linear income
tax.
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TABLE 8.1 Percentage of votes for the left as a function of
experience

Low-Income Agent High-Income Agent

Low-income parents 72% 38%

High-income parents 49% 24%

verified as an exercise for the pairwise comparisons of the cells L L and L H and of
H L and L L .

Empirical Evidence
Table 8.1 presents data from Cherkaou (1992) on the votes for the left (as opposed to
the right) in a population that is partitioned in four groups, according to the income
of the agents and the income of their parents.

The pattern in Table 8.1 is intuitive and fits the properties of the model. Note, how-
ever, that the argument of Piketty (1995) is subtle: it operates through the endogenous
labor supply. If a = 0, then the labor supply is fixed, h(θ) is constant, and the relation
between the probabilities of the four states and the point estimate θ disappears.

8.3 Complete Learning with a Diversity of Private Beliefs

In the previous sections, no agent had any private information and all the learning
occurred from the output of actions. We have learned that agents can be trapped in
some combination of action and belief. In the monopoly model of McLennan, the
action may converge to an incorrect belief that supports that action. If the managers
of the monopoly came into their jobs with a variety of private beliefs, the monopoly
could experiment on a wider set of actions and learning could converge to the truth.
This is one application of an argument by Bala and Goyal (1995), who show that
when the distribution of private beliefs is unbounded, learning is adequate: agents
choose asymptotically an action that is optimal for the realization of the state of
nature. Smith and Sørensen (2001) show a similar result when agents learn from
the actions (Chapter 3). The mechanism of learning is different when agents learn
from the output of actions. The essential effect of the unboundedness of beliefs is
to generate a sequence of correct actions. The observation of the outputs from the
correct action generates adequate learning.

8.3.1 The Framework

Following Bala and Goyal (1995), the set of states of nature, �, is finite with |�|
elements: � = {θ0, θ1, . . . , θ|�|−1}. The true state is not directly observable, and by
convention it is θ0. The set of actions, �, is finite. This assumption will be dis-
cussed below. As in Easley and Kiefer (1988) (see Section 8.5), an action x called the
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input generates a random outcome y called the output with a density f (y|x, θ) that
depends on the input and the true state. The yield of the action depends on the input
and the output through a function r (x, y). The output will convey information about
the state (to some agents or to all agents, depending on the particular model), at least
for one action in �. This two-step formulation adds some generality. In a special case,
the output and the yield are identical: r (x, y) = y.

Let µ be the belief of an agent. This belief is an element of the |�|-simplex:
µ = (µ(θ0), . . . , µ(θ|�|−1)). The payoff of action x is

u(x, µ) =
∑
θ∈�

µ(θ)

∫
Y

r (x, y) f (y|x, θ)dy.(8.10)

Let ω(θ) be the point distribution on θ that assigns probability 1 to θ and 0 to other
states. By an abuse of notation, we define

u(x, θ) = u(x, ω(θ)) =
∫

Y
r (x, y) f (y|x, θ)dy.

Hence,

u(x, µ) =
∑
θ∈�

µ(θ)u(x, θ).(8.11)

Each agent who takes an action maximizes his payoff u(x, µ). As in all previous
models of social learning, no agent takes into account the impact of his action on the
learning by others.

PRIVATE BELIEFS AND BOUNDED RATIONALITY

Each agent is endowed with a private belief µ̂, which is an element of the |�|-simplex.
Following Bala and Goyal (1995), the distribution of private beliefs is fixed and inde-
pendent of the state. A distribution of private beliefs that is independent of the state
cannot be constructed from the Bayesian framework with a public belief on the state
of nature and private signals. The assumption of a fixed distribution is made to focus
on the information channel through the observation of outputs.

Over time, agents observe the input–output combinations (x, y) of a subset of the
other agents (which may include all agents). Agents have bounded rationality : they
use input–output observations to infer information about θ , knowing the density
function f (y|x, θ). However, they do not infer any information from the choice of
the actions by other agents. The very mechanism of learning in the previous chap-
ters is ignored here. This assumption of bounded rationality is not plausible if the
distribution of initial beliefs depends on the state of nature.14

14 Some issues have not been explored. If the distribution of private beliefs does not depend on
the state, to ignore the message provided by the choice of an agent may be rational if all agents
observe the common history ht , as assumed here. If agents do not share a common history, then
the choice of an agent provides some information on his private observations of others. This issue
will be examined briefly in the next chapter.
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8.3.2 Some General Properties of the Learning Mechanism

Because agents are Bayesian rational, they update their private belief on the state of
nature with the history of outputs they observe. An agent’s belief is a martingale
and thus converges to a limit belief, which is in the |�|-simplex. Whether individual
actions converge to an action that is optimal for the true state is the main issue here.
Whether beliefs converge to the truth is less important. Let µ∗ be the limit belief of
an agent, and x∗ an action that is optimal under that belief. If u(x∗, θ0) = u(x∗, µ∗),
the agent achieves the optimal payoff asymptotically. We will say in this case that the
limit belief is adequate. We will also say that the learning is adequate (Aghion et al.,
1991).

The key mechanism will be the observation of an infinite sequence of outputs
from the same action. Such an action in the sequence of histories for an agent will be
called an infinitely repeated action (IRA). Because the number of actions is finite, any
sequence of histories has at least one such action.

DEFINITION 8.1 (IRA) An action is an infinitely repeated action for an agent if he
observes the output of that action an infinite number of times.

In the previous chapters, where agents learned from the choice of actions, social
learning could stop when the same action was chosen by all agents. Here the repeated
choice of an action does not necessarily stop the flow of information, because the
output generates a sequence of signals. Those signals may or may not be informative.
For example, the output of a crop may reveal little information or nothing about the
potential for another crop. We therefore define a discriminating action.

DEFINITION 8.2 (Discriminating action) An action x discriminates between states θ

and θ ′ if it generates two different distributions of output in the two states: f (y|x, θ) is
not almost surely equal to f (y|x, θ ′).

We will identify conditions under which agents’ beliefs converge to the truth or
their actions converge to an optimal choice. For this task, the only actions that will
matter are those which are the IRAs. Because the set of actions is finite, after some
finite time T , any action is an IRA. The observation of the outputs of an IRA will
enable agents to use the law of large numbers. This is the meaning of the next result.

LEMMA 8.2 If an action is an IRA observed by an agent and this action discriminates
between the true state θ0 and some other state θ j , then the limit belief of the agent is
such that µ∗(θ j ) = 0.

If an action generates different payoffs in states θ j and θ0 where j �= 0 and θ0 is the
true state, it must generate two different distributions of output. Hence, this action
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discriminates between the true state θ0 and state θ j . Using Lemma 8.2, we have the
following result.

LEMMA 8.3 If an action is an IRA, and for some state θ j �= θ0 one has u(x, θ j ) �=
u(x, θ0) (where θ0 is the true state), then the limit belief (of any observing agent) is such
that µ∗(θ j ) = 0.

An optimal action x is such that u(x, θ0) ≥ u(x, θ0) for any x ∈ �. Let X(θ0) be
the set of optimal actions if θ = θ0. If an agent is certain that state θ j is the true state,
i.e., if he has the point belief µ(θ j ) = 1, then he chooses an action that is optimal
for state θ j . Recall that the set of actions is discrete. Hence if θ = θ j , any action will
generate either the optimal payoff or a strictly smaller payoff. It follows immediately
that if the belief µ(θ j ) is sufficiently close to 1, the agent chooses an action that is
optimal for the state θ j .

LEMMA 8.4 There exists µ such that if an agent has a belief µ(θ j ) > µ, he chooses an
action in the optimal set X(θ j ).

The previous lemma shows that a strong belief in some state induces an agent to
choose an action that is optimal for that state. If there is an infinite sequence of observed
agents with such strong beliefs, the set of IRAs will contain an optimal action from
which one can learn asymptotically sufficient information to make a correct decision.
In this chapter, we consider the case of a sequential history that is publicly known by
all agents. In the next chapter, each agent will learn from a set of neighbors.

8.3.3 Learning from the Whole History and Sequential Actions

Following Bala and Goyal (1995), the set of agents is countable. Each agent is as
described in the previous section. The history at the beginning of period t, ht =
{(x1, y1), (x2, y2), . . . , (xt−1, yt−1)}, is the sequence of input–output pairs in the past,
and it is public information.

After some finite time, the only actions that are taken are IRAs (because the set
of actions is finite). The next result, which is proven in the appendix (Section 8.6),
shows that if the set of IRAs contains an optimal action, then learning is adequate for
any agent with a positive private belief about the true state.

THEOREM 8.1 Assume that an optimal action is an IRA. Then for any α > 0, there
exists T such that if t > T, any agent t with private belief about the true state that is not
smaller than α (µ̂(θ0) ≥ α) takes an optimal action.

In general, one may encounter a situation where some IRAs fail to discriminate
between the true state and some other state, and generate a payoff strictly smaller
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than the payoff of an optimal action. In such a case, learning is not adequate (and
therefore not complete). In Chapter 3, herds on a wrong action do not occur if the
distribution of private beliefs is unbounded. A similar property has been shown by
Bala and Goyal (1995) in the context of the present model. From Lemma 8.4, one can
guess that if some agents have a private belief about the true state with µ̂(θ0) > α for
α arbitrarily close to one, they choose an optimal action independently of the history.
In that case, the set of IRAs will contain an optimal action, and Theorem 8.1 shows
that learning will be adequate. The next assumption characterizes unbounded private
beliefs about the true state.

ASSUMPTION 8.2 (Unbounded private beliefs) For any state θ j and any α > 0, the
probability that a randomly chosen agent has a belief µ(θ j ) > 1 − α is strictly positive.

Let µt be the public belief in period t, which is the belief of an agent with uniform
private belief who observes the history ht . (Until the end of this section, µ̂t will denote
an agent’s private belief and µ̃t will denote his belief). By the MCT and Proposition
2.9 (the limit belief cannot be absolutely wrong), µt converges almost surely to µ∗

with µ∗(θ0) > 0. For any path of histories {ht}, there exist γ > 0 and T such that if
t > T , then µt(θ0) = P (θ0|ht) > γ .

Let µ be a value such that an agent with belief µ̃(θ0) > µ chooses an action in
X(θ0) (according to Lemma 8.4). There exists γ ′ such that if an agent has a private
belief µ̂ such that µ̂(θ0) > γ ′, and the public belief in period t is such that µt(θ0) > γ ,
then his belief µ̃t is such that µ̃t(θ0) > µ. If he has to choose an action in period t,
by Lemma 8.4, he chooses an optimal action.

From Assumption 8.2, it follows that for any path of histories {ht}, there exist T
and α > 0 such that if t > T , the probability that an optimal action is taken in period
t is at least equal to α. We have the following result.

LEMMA 8.5 Under Assumption 8.2 of unbounded private beliefs, any path of histories
contains almost surely an IRA that is an optimal action.

From this lemma and Theorem 8.1, we have the next result, which shows that
learning is adequate if the distribution of private beliefs is unbounded.

THEOREM 8.2 Under Assumption 8.2 of unbounded private beliefs, for any α > 0 and
(almost) any path of histories, there exists T such that if t > T, any agent t with private
belief about the true state that is not smaller than α (µ̂(θ0) ≥ α) takes an optimal action.

As an exercise, the reader may show the following corollary.

COROLLARY 8.1 Under Assumption 8.2 of unbounded private beliefs, for any ε > 0
and any path, there is T such that if t > T, the probability that agent t does not take an
optimal action is smaller than ε.
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Consider the model of McLennan of the monopoly manager facing a zero–one
demand (Section 8.1.1). When all agents have the same private belief, the monopoly
may not learn the true state: there is with positive probability a set of histories such
that agents choose a sequence of actions that converges to the intersection of the two
demands and such that beliefs do not converge to the truth. If agents have private
beliefs from an unbounded distribution, there cannot be any such history: if there
were a path with a public belief converging to µ∗ between 0 and 1, there would
be agents with sufficiently strong beliefs who would choose actions far away from the
intersection point. For these actions, the demands would be very different in the two
states, and an infinite string of such observations would reveal the true state.

8.3.4 Extensions

A CONTINUUM OF ACTIONS: THE MANAGERS OF A MONOPOLY

The property of incomplete learning is not restricted to models with a finite set of
actions. In the second model of Section 8.1.1, Kiefer (1989) shows numerically that
if the myopic managers choose an output level in a continuum, the public belief may
converge to the confounding value µ∗. Bala and Goyal (1995) introduce managers
with an unbounded distribution of beliefs in such a model. With a diversity of beliefs,
the public learning converges to the truth.

Suppose now that the output decision is taken in each period t by a manager with
an initial private belief µ̂t from a distribution of unbounded private beliefs satisfying
Assumption 8.2. The manager combines this belief with the public belief µt that is
inferred from the history ht of outputs and profits. Bala and Goyal (1995) simulate
numerically the learning process of such a manager when the distribution of µ̂ is
bounded and when it is not bounded.

DISCRETE ACTIONS, A CONTINUUM OF STATES, AND RISK AVERSION

As a variation on the framework of Easley and Kiefer (1988), assume there are two
actions x ∈ {0, 1} and that the outputs of actions 0 and 1 are the realizations of two
independent random variables θ0 and θ1 that are normal N (µx , 1/ρx). The state of
nature is thus defined by the realization (θ0, θ1). Agents have a constant absolute risk
aversion and have the same information on the state of nature at the beginning of
time. Because they observe the same history, they have the same belief in any period.
Agent t takes one of the two actions to maximize his payoff

u = −E [e−2γ θx ],

where γ > 0. If γ = 0, the utility function is linear and u = E [θx ]. At the end of each
period, the history, which is public knowledge, is augmented by the variable yt , which
is the observation of the output of the action of agent t, with a noise:

yt = θxt + εt with εt ∼ N (0, σ 2
ε ).
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This model has been proposed by Arthur and Lane (1994). It shows how risk aversion
may facilitate the onset of an informational cascade. When agents take the same action
repeatedly, the uncertainty on the output of the action decreases. Hence, even if the
mean does not change, the payoff of the action rises, and agents have more incentive
to keep choosing that action. If they do so, the output of the other action may keep a
high uncertainty and that action may never be chosen.

Let µx (t) and ρx(t) be the mean and the precision of the belief of an agent in
period t about the action x . (The beliefs are normal distributions.) The payoff of
action x for agent t is

U = µx(t) − γ

ρx(t)

with

µx (t) = ρx

ρx + nxρε

µx + nxρε

ρx + nxρε

yx , ρx (t) = ρx + nxρε ,

where nx is the number of observations of action x in periods before t, and yx is the
average observation of the outputs of these actions.

Herds without Informational Cascades
In this model, informational cascades never occur, but a herd begins at some finite
date almost surely. The probability of an incorrect herd is strictly positive. The proof
of the next result is left as an exercise.

PROPOSITION 8.3 All agents herd and take the same action after some finite date, al-
most surely. The probability that agents switch to another action remains strictly positive
in any period.

When more agents choose the same action, there is more information on its value.
There are two effects: The first is on the estimated mean, which may go up or down.
The second is a positive effect on the precision of the estimate and thus on the payoff.
This higher-precision effect is similar to increasing returns and stimulates herding:
Suppose that at some date µ1(t) > µ0(t), and that the payoff of 1 is also higher than
that of 0. Agent t chooses action 1. Unless its output at the end of period t is low,
the next agent chooses the same action. Each time this action is chosen, it gets an
additional advantage over the other one because of the reduced variance.

8.3.5 Observation of Outputs May Reduce Welfare

Cao and Hirshleifer (2000) consider an example where there are two actions 0 and 1.
The payoff of action 0 is random and equal to 1 − b or 1 + b, with equal probabil-
ities. The payoff of 1 is equal to 0 or 2 − a with equal probabilities. As in the BHW
model, agents, in an exogenous sequence, have the choice between two actions. The
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parameters a and b are small positive numbers. Agents have a symmetric binary signal
of precision q on the payoff of action 1. There is no signal on action 0. The model is
equivalent to that of BHW. Because action 1 has an ex ante payoff greater than that
of action 0, a herd does not occur as long as the sequence of signals is alternating
(0, 1, 0, 1, . . .).

Suppose now that the first agent has a signal that induces him to choose action
0, that the payoff of the action is revealed at the end of the period, and that it is
revealed to be 1 + b. Let v = 1 + a/2, and assume 1 + b < v . If agent 2 has a good
signal, he takes action 1 with an expected payoff of v . One sees that the model has
the same properties as before, and the ex ante value of the welfare level in the long
run is unchanged. Suppose now that b increases to such a value that 1 + b is greater
than v and vanishingly close to v . If the payoff of 0 is revealed to be 1 + b (which
occurs with probability 1

2 ), then a herd on action 0 begins if it is chosen. After period
1, the expected value of the long-term payoff is 1 + b. However, if 1 + b were slightly
smaller than v , there would be a strictly positive probability of a herd on action 1, and
the expected value of the long-term payoff would be strictly greater. This indicates
that the observation of the output of action 0 reduces the expected payoff in the long
term. The steps of the formal analysis are outlined in Exercise 8.5.

8.4 Bibliographical Notes

THE FRAMEWORK OF EASLEY AND KIEFER (1988)

Easley and Kiefer (herafter EK) develop and analyze a canonical model of the behavior
of an agent who lives an infinite number of periods, optimizes, and learns. In each
period, the agent chooses an action that optimizes his payoff and his learning about
the state of nature. He learns from the output of his action, which depends on the
state of nature. This paper is a must for the reader who wants to study some of the
technical aspects of learning. Here, the presentation is limited to a description of its
main results.

In each period t, the agent chooses an action xt ∈ � and observes a random
variable yt , which depends on the state θ ∈ � and on his action. To simplify, the
variable yt is called the output, but it might as well be a cost or a signal. The reward
of the agent is a function r (xt , yt). His payoff in period t is the expected value of his
reward15:

u(xt , µt) =
∫

�

∫
Y

r (xt , yt) f (yt |xt , θ)dyt dµt .(8.12)

By assumption, all variables belong to subsets of R
n. (EK consider more general sets

and make suitable assumptions on the continuity of the functions r and f .) The agent

15 The formulation of Easley and Kiefer seems fairly general, but there are other similar specifications
that do not fit exactly in their framework. For an example, see Section 8.3.4.
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maximizes the expected value of the discounted sum of u(xt , µt), where the discount
factor is δ < 1. He takes into account the impact of his action xt on his information in
period t + 1. His welfare in period t is a function V(µt) of his belief, which is similar
to a “state variable” in dynamic programming. The optimal welfare level satisfies the
dynamic programming equation

V(µ) = max
x∈�

{
u(x, µ) + δ

∫
V(µ′)d F (µ′; µ, x)

}
.(8.13)

Under suitable and standard conditions (i) there exists a function V that satisfies this
equation; (ii) in any period and for any belief µ, there is a set of optimal actions A(µ)
that is an upper hemicontinuous correspondence (Theorem 3 in EK).

Even though the beliefs µt are endogenous to actions, they still form a martingale.
The MCT applies, and there is a random value µ∞ such that µt → µ∞. Asymptot-
ically, there is no learning (EK, Lemma 3), and the optimal action maximizes the
instantaneous utility function u(x, µ∞) (Lemma 4). When there is no learning, the
optimal action maximizes the current expected payoff u(x, µ), because there is no
capital accumulation. The optimal value of u(x, µ) in the one-period optimization
problem is called the one-period value function V 1(µ).

EK introduce useful definitions: an invariant belief µ is a belief such that if x
maximizes u(x, µ), then the ex post belief is identical with µ. An optimal invariant
belief µ is a belief that is invariant when the agent takes an optimal action for the
discounted sum of payoffs, V(µ). A potentially confounding action is an action that is
optimal for an invariant belief that is different from the correct belief (the atomistic
distribution on the true state of nature).

EK show that if there are no potentially confounding actions, then beliefs must
converge to the correct belief (Theorem 8). If � is finite, the one-period value func-
tion is convex, and the discount factor is greater than some δ∗, then beliefs must
converge to the correct belief (Theorem 9). If the space of actions � is finite and
there is an invariant belief µ∗ such that the optimal action for µ∗ strictly dominates
other actions, then µ∗ is optimal invariant for a sufficiently small discount factor
(Theorem 10).

EXERCISES

EXERCISE 8.1

Show that the functions µ+(µ) and µ−(µ) defined in (8.3) are increasing.

EXERCISE 8.2 Local stability of the true belief in the model of McLennan

Show that if θ = 1 and µ1 < µ∗, then µt converges to 0. (Assume that H(µ) < µ

on (0, µ∗). You may prove that H(µ) < µ if µ ∈ (0, µ∗) and the parameters of the
model have appropriate values.)



190 Outcomes

EXERCISE 8.3 The monopoly model of Easley and Kiefer (1988)

Consider the problem of the monopoly with the demand curve in (8.4). Assume that
the manager is myopic and optimizes the profit in the current period, while learning
from the history of prices.

1. Show that if µ is the belief (probability of state 1), then the optimal output is

q̂(µ) = µa1 + (1 − µ)a0

2(µb1 + (1 − µ)b0)
.

2. Show that the belief in LLR is updated from λ to λ′ with

λ′ = λ + 1

σ 2

(
p − a0 + a1 − (b0 + b1)q̂(µ)

2

)
× (a1 − a0 − (b1 − b0)q̂(µ)).

3. Show that under suitable conditions on the parameters of the model, there is an
invariant belief in (0, 1) with value

µ∗ = a0(b1 − b0) − 2b0(a1 − a0)

(b1 − b0)(a1 − a0)
.

EXERCISE 8.4

Consider the model of Easley and Kiefer (1988) in equation (8.4). Assume that the
belief of the manager,µ, is different from the stationary beliefµ∗ (but can be arbitrarily
close). Show that for any α > 0 there exists ε such that if ε > ε, the belief at the end of
the period is at least equal to 1 − α. Show a similar result for an ex post belief smaller
than α.

EXERCISE 8.5 Cao and Hirshleifer (2000)

Consider the BHW model where agents have the choice between two projects A and
B. The payoff of A is 0 or 2 + ε with equal probability, and the payoff of B is 1 + ε

or 1 − ε with equal probability, where ε is a small number. Agents have a symmetric
binary signal of precision q that A yields a high payoff. There is no signal on whether
B yields a high payoff. By assumption, ε < (2q − 1)/(2 − q).

1. Show that the standard BHW property of herding occurs. Compute the expected
value W1 of utility of an agent who makes a decision in period T where T → ∞.

2. Assume now that any agent can observe the decisions of past agents and the payoff
of project B if a past agent adopts B. Show that if individual t adopts B and
B yields a high payoff, all agents k with k > t herd and adopt B. Compute the
expected value W2 of the utility of an agent who makes a decision in period T
where T → ∞. Show that W1 > W2 (Result 1 in Cao and Hirshleifer). Provide
an intuitive interpretation.

3. The setting of question 2 is modified in that the payoff of project B is observed
with a delay of T periods. Show by an intuitive argument that if T is sufficiently
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large, the setting generates an expected payoff in the long term that is higher than
W1.

4. Assume now that the delay is only one period (T = 1 in the previous question).
Compute the expected value W3 of the utility of an agent who makes a decision in
period T where T → ∞. Show that W3 > W1 (Result 2 in Cao and Hirshleifer).

8.5 Appendix

Proof of Lemma 8.4

Let u be the maximum yield under state θ0: u = u(x, θ0) for any x ∈ X(θ0). Because
the set of actions is finite, there exists α > 0 such that for any x /∈ X(θ0) we have
u(x, θ0) < u − α. We have then

u(x, µ) − u(x, µ) = µ(θ0) (u(x, θ0) − u(x, θ0))

+
∑
j≥1

µ(θ j )
(

u(x, θ j ) − u(x, θ j )
)

< −µ(θ0)α + (1 − µ(θ0))A

for some finite number A (because
∑

j≥1 µ(θ j ) = 1 − µ(θ0)). The result follows with
µ > A/(A + α).

Proof of Theorem 8.1

Assume that the set of IRAs contains an optimal action x (for the true state θ0) and
an action x such that u(x, θ0) < u = u(x, θ0). Fix a number α > 0, which can be
arbitrarily small, and consider an agent with a private belief µ̂ such that µ̂(θ0) > α:
such an agent has a positive belief about the true state. In period t, the belief of this
agent is µ̃t (which is computed from µ̂ and the public belief µt). His payoffs from
action x and action x are

u(x, µ̃t) =
∑

u(x,θ j )�=u(x,θ0)

µ̃t(θ j )u(x, θ j )

+ u(x, θ0)

(
1 −

∑
u(x,θ j )�=u(x,θ0)

µ̃t(θ j )

)
,

u(x, µ̃t) =
∑

u(x,θ j )�=u(x,θ0)

µ̃t(θ j )u(x, θ j )

+ u(x, θ0)

(
1 −

∑
u(x,θ j )�=u(x,θ0)

µ̃t(θ j )

)
.

For all the states such that u(x, θ j ) �= u(x, θ0), we have µt(θ j ) → 0 (Lemma 8.3).
Likewise for the optimal action x . Because µ̂(θ0) > α, the same property holds
for µ̃t(θ j ). From the previous expressions of the payoffs, for any ε > 0, there
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exists T such that if t > T ,

u(x, µ̃t) < ε + u(x, θ0) and u(x, θ0)(1 − ε) < u(x, µ̃t).

Because u(x, θ0) < u(x, θ0), we can choose ε such that ε + u(x, θ) < u(x, θ0)(1 −
ε). For t > T , the agent does not choose x . We can repeat the argument for any
suboptimal action. Because the number of actions is finite, the upper bound of the
values of T is finite and equal to T . The theorem applies to T .



9 Networks and Diffusion

It is not what you know, but whom you know.

In the diffusion of a new technology, agents learn from the output of

others new techniques or how to use the techniques. Some applications

in the adoption of high-yield variety crops are discussed. The theoretical

analysis of learning in networks is introduced.

Sociologists were the first to publish empirical studies on the spatial or intertem-
poral diffusion of innovations, and they began early. In 1897, Durkheim presented
maps of suicide frequencies by district in France and Germany to refute the contagion
hypothesis of Tarde (Chapter 1). Sociologists are interested in the diffusions of inno-
vations as “social changes.”

The agricultural context offers many examples of learning from others with the
gradual adoption of new crops and new techniques. The short study by Ryan and
Gross (1943) has been pathbreaking in rural sociology, which has become a field of
investigation in itself. Ryan and Gross interviewed 259 farmers in Iowa where hybrid
corn was first introduced in the thirties, and focused on the time profile of diffu-
sion. Their results are descriptive: (i) the time profile of the share of hybrid corn
in the total corn acreage follows a curve that is similar to the cumulative distribu-
tion function of a normal distribution (with some skewness toward the first year of
introduction); this profile of adoption has therefore an S-shape (as illustrated in Fig-
ure 9.1, from another study by Griliches (1957)); (ii) farmers learned about hybrid
corn from salespeople; (iii) during a first phase of the diffusion (three years), 50 per-
cent of the farmers were convinced by salesmen and about 20 percent by neighbors;
after this phase, the proportions are reversed. These claims are based on recollec-
tions.

The spatial pattern of diffusion has been studied by geographers. Hägerstrand
(1953) presented maps of the locations in which new techniques were used at
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Figure 9.1 Percentage of total corn planted with hybrid seed. Reprinted from Griliches (1957).

different points of time in the same region.1 These include grazing,2 tests for bovine
tuberculosis, soil mapping, postal checking services, and the automobile. One should
expect geographers to produce maps. However, it is hard to draw any conclusion from
them beyond the examples of diffusion patterns.

Since Ryan and Gross (1943), hundreds of studies on the diffusion of innovations in
agriculture, medicine, and other fields have been undertaken by sociologists. They are
summarized in the works of Rogers (1995).3 These studies may elicit three reactions:

1. The wealth of facts and empirical details is extraordinary.
2. Sociologists seem to have an urge to build numerous ad hoc concepts. By construc-

tion, these concepts cannot be very stable, nor lead to a useful organization of the
data, much less have predictive power. (The strength and weakness of economics
is to keep parsimonious concepts.)

1 Hägerstrand lists numerous studies in Swedish by others (e.g., on the dissemination of wheat culti-
vation in Sweden, on the introduction of steam-powered saws in Norrland between 1850 and 1900,
on the glassworks region of southeastern Sma◦ land, and on the small-plant industrial region in the
western part of that same province).

2 “It was once a deeply rooted custom among forest district farmers to put their livestock out for
grazing in the forest and to allow them to nourish themselves on natural grasses. A shift toward
more rational practices – the rotation of crops with pasturing and the improvement of natural
grazing areas – began during the first decade of the 20th century” (Hägerstrand, 1953, Chapter 3).

3 Coleman et al. (1957) analyze the introduction of a new drug – called “gammanym” – in four urban
areas. As sociologists, they devote their attention to a portrait of an innovator – an early adopter –
(Chapter 4), the adoption lags (Chapter 5), and the networks (Chapter 6). They distinguish two
types of doctors, those who are integrated in a hospital network and those who are more isolated. For
the first type, the rate of adoption obviously increases faster, with a profile that seems to be concave;
for the second type the profile seems to be S-shaped. Wennberg and Gittelsohn (1973) report that
the chance of a child having a tonsillectomy varied from 7 percent to 70 percent, depending on
his village in Vermont. Phelps (1992), like the Swedish geographers, presents a map of the average
length of hospital stays, by state.
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3. In quite a few instances, agents seem to be irrational in their behavior toward
adoption or rejection of a new technique. However, this is only the case when
the learning process is restricted to a very limited set of parameters, as in most
theoretical models in this book. Seemingly irrational behavior may be rational
when the set of the states of nature is extended beyond the payoff of a particular
technique.

THE DIFFUSION CURVE OF HYBRID CORN

The econometric study of Griliches (1957), which was the first of its kind in economics,
offers an emblematic contrast with the methods in sociology. Griliches observes the
S-shaped patterns of adoption of hybrid corn in different states, as illustrated in
Figure 9.1. Using this observation, he first organizes the data with a parsimonious set
of parameters. He assumes that the share Pt at time t of acreages planted with hybrid
evolves according to a logistic curve with log(Pt/(K − Pt)) = a + bt, where K , a ,
and b are parameters.4 The fraction Pt is thus equal to Pt = K /(1 + e−(a+bt)) and
tends to K ≤ 1 when t tends to infinity. Each district generates a profile of adoption,
or growth curve, and a set of estimated parameters (K , a, b). The evolution of the
share Pt is presented by states in Figure 9.1.

Griliches has “little doubt that the development of hybrid corn was largely guided
by expected pay-off, ‘better’ areas being entered first, even though it may be difficult
to measure very well the variables entering into these calculations” (p. 515). The
introduction of hybrid corn in an area depends on the installation of a center that
supplies hybrids suitable to the area. The introduction of such a center depends on
its future expected profits. According to Griliches, the introduction date of hybrids
depends on the potential of an area and is strongly determined by profit-maximizing
suppliers.

Consider the date of origin of an area, which is the date at which 10 percent (an
arbitrary ratio) of the area is seeded in hybrids. This date is computed with the logistic
curve fitted in the area. The date of origin in an area is positively correlated with the
date of origin in the nearest area. The date is regressed on an index of density of corn
acreage in the area and the date of origin in the most immediate area. For Griliches, the
new variety is introduced first in the areas where corn has a higher density in the land,
because this is where the supply is more profitable.5 Likewise, there is a “contagion”
between adjacent areas because supply centers can provide seeds to neighboring areas.

The adjustment coefficient b (which determines the slope of the logistic curve)
is determined by the acceptance of farmers and thus by demand factors. “Differences
in the rate of acceptance of hybrid corn, the differences in b, are due at least in part
to differences in the profitability of the changeover.” Griliches finds that the variable

4 Griliches does not provide an economic model to support the logistic curve.
5 He finds Y = −17.8X1(2.5) + 1.02X10(0.07), with the standard errors in parenthesis (R2 = 0.982),

where X1 is the index of density and X10 the date in the adjacent area.
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bK is positively related to the average number of corn acres per farm reporting corn
and the average difference between hybrid and traditional yields (or the prehybrid
average yield).6 In the models of learning that will be considered below, the differential
yield plays an important role. Variables emphasized by rural sociologists, such as the
socioeconomic status or the level of living, are not significant.

9.1 Optimization and Diffusion of Innovations

The standard example of innovation is the introduction of a new variety of crop in
agriculture (e.g., maize, wheat, rice). We can distinguish two types of learning. Agents
may learn whether a new variety is suitable for the region and is profitable, or they
may learn how to produce efficiently the new variety. The two issues are analyzed in
separate models in the next two sections.

9.1.1 Learning about the Profitability of an Innovation

The value of the new activity defines the state of nature. It is a realization of the normal
distribution N (µ1, 1/ρ1). The output of any agent i is the sum θ + εi , where εi is
an agent-specific component that is normally distributed N (0, 1/ρε). This output is
observed at the end of the period in which the agent enters the new activity. Suppose
there are n entrants in a period. Their idiosyncratic components are independent,
and the observation of their outputs is informationally equivalent to the variable
θ + (

∑n
1 εi )/n, which is a Gaussian signal on θ with precision nρε . The precision

of the period’s signal increases linearly with the number of entrants. In equilibrium,
there will be an arbitrage between immediate “investment” and delay with strategic
substitutability: the flow of information increases with the number of adopters of the
new technology; the value of delay for the observation of this information is therefore
higher, so that there is more incentive to delay adoption.

Following Persons and Warthers (1995), assume a continuum of agents, in order
to simplify the analytics. Each agent has one option, which can be exercised in any
period to enter the new activity. An agent is characterized by his (fixed) cost of entry
c , which is the realization of a distribution on the support (0, ∞) with c.d.f. F (c).
Let Xt be the mass of agents entering the new activity in period t. We generalize the
linear relation between the precision of the period’s output and the number of agents:
at the end of period t, all agents observe

yt = θ + εt√
Xt

with εt ∼ N (0, 1/ρε).

The precision of the signal yt is ρε Xt ; it is linear in the mass of entrants.

6 He finds bK = c0 + 0.0073X3(0.0008) + 0.079X7(0.009) (R2 = 0.57), where X3 and X7 are the
number of acres per farm and the yield difference.
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Equilibrium
The equilibrium is defined by a sequence of consecutive intervals It = [ct−1, c t) (c0 =
0), which are increasing and randomly determined by the history. In period t, investing
agents are defined by a cost in the interval It . The highest cost of investing agents,
ct , is determined by arbitrage, as in Section 6.2.1, as an application of the one-step
property: an agent with cost ct is indifferent between (i) investing right away and (ii)
delaying for one period only and then investing if and only if in the next period the
payoff of investment is positive. There is a positive level of investment if and only if
the expected value of θ given the history is higher than the lowest cost among the
remaining agents.

Because the output in each period is normally distributed, the belief about θ at
the beginning of period t is normal N (µt , 1/ρt). At the beginning of period t, the
costs of the remaining agents, who have not invested yet, are higher than ct−1.

If µt < ct−1, no remaining agent has a positive payoff of investment. There is no
investment and therefore no information. The belief is identical in the next period,
and so on. A cascade begins with no investment in any period.

If µt > ct−1, the value of the highest cost of investment in the period, ct , is com-
puted by arbitrage. The payoff of immediate investment is µt − ct . If the agent delays,
he observes

yt = θ + εt√
Xt

with Xt = F (ct) − F (ct−1),

and he updates his belief to N (µt+1, 1/ρt+1) with ρt+1 = ρt + Xtρε and

µt+1 = ρt

ρt + Xtρε

µt + Xtρε

ρt + Xtρε

(
θ + εt√

Xt

)
.(9.1)

If the agent delays, he invests in the next period if there is any investment in that
period by the one-step property: he has the lowest cost in the next period. The payoff
of delay that is the value of holding the option to invest is

V = δE t[max(µt+1 − ct , 0)].(9.2)

The agent can compute at the beginning of period t the strategy of other agents and
therefore the mass of investment in the period, Xt . He knows ex ante the precision of
the information that will be revealed about θ in the period. (This is a nice property
of Gaussian random variables, which is exploited a few times in this book.) At the
beginning of period t, the agent anticipates that µt+1 has a normal distribution
N (mt, σ̂ 2

t ), because mt = E [µt+1] is a martingale. The variance of the change of the
mean belief, µt+1 − µt , is obtained from (9.1):

σ̂ 2
t =

(
Xtρε

ρt + Xtρε

)2 ( 1

ρt
+ 1

Xtρε

)
= Xtρε

ρt(ρt + Xtρε)
.
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A higher level of aggregate entry Xt generates more information and therefore a higher
expected value of the change of the mean belief. The variance σ̂ 2 is an increasing
function of Xt .

The value of delay in (9.2) is increasing in the variance of µt+1 (Exercise 9.1). There
is strategic substitutability: a higher level of aggregate activity increases the value of
the option to invest V . The equilibrium is characterized by the following result.

PROPOSITION 9.1 In any period t: if µt ≤ ct−1, there is no investment in period t, or
after; if µt > ct−1, all agents with cost c ∈ (ct−1, c t) invest in period t, where ct is the
unique solution of

µt − ct = δE t[max(µt+1 − ct , 0)],

where the variable µt+1 is defined in (9.1).

Because the distribution of costs is unbounded, intuition implies that the game
ends almost surely in a finite number of periods.

Properties
1. Let T be the last period in which there are some entrants. By definition,µT+1 ≤ c T .

There are some last entrants with cost near c T who regret they have invested. They
have ex post a negative payoff. This property is found in other models such as that
of Caplin and Leahy (1993).

2. The level of investment is below the optimum: assume for example that in some
period t, µt = ct−1. Agents with a cost slightly above ct−1 have a negative payoff,
but the value of the loss would be negligible compared with the information gain
provided by the observation of the output of their investment.

3. One may conjecture that for some parameters, the model exhibits on average a
diffusion curve with an S-shape (Exercise 9.2).

GROWING WHEAT AND RICE IN INDIA

Munshi (2002) studies the introduction and diffusion of high-yield variety (HYV)
wheat and rice in India during the 1960s. In his model, farmers learn about the yield
of the new crop. Let xit be the total acreage allocated by farmer i in period t to the
new variety. Assume that the yield of the traditional crop is known but the yield of the
new crop is subject to uncertainty. Farmers learn from the payoffs of past plantings in
their own farm and in other farms of the same village. A structural model of decision
is not specified, but one could find one such that the acreage xit is approximated by
a linear function

xit = α0 + α1xit−1 + α2 Xt−1 + α3 yt−1.(9.3)



9.1 Optimization and Diffusion of Innovations 199

The acreage in the previous period is a proxy for the agent’s learning from the outputs
in his own farm. The total acreage planted by other farmers in period t − 1, Xt−1,
is learned at the end of period t − 1; it embodies the average belief by others at the
beginning of period t − 1. The average yield yt−1 at the end of period t − 1 provides
a signal on the yield of the new crop. The learning from doing is measured by α1, and
the learning from others is measured by α2 > 0 and α3 > 0.

The Two Pitfalls of Estimation in Models of Learning
Equation (9.3) is standard in econometric models of learning. These models attempt
to measure effects of endogenous learning. In the model of Munshi, agents learn from
their own farm or from the choices and the actions’ results of other agents. All these
models face two problems:

1. There may be a diffusion of exogenous information that is not observable by the
econometrician. This information may affect the coefficients of the equation,
which should measure only the endogenous learning.

2. Agents may mimic others, i.e., imitate others in a mechanical way.

Consider now the model of Munshi, and suppose that exogenous information on
the yield of the new variety is available to half the agents at the beginning of period
t − 1 and to all agents at the beginning of period t: the diffusion of this information is
exogenous. The information is positively correlated with the acreage in period t − 1
(because of the planting by half the farmers), and in period t for the farmers who are
informed with a one-period delay. Such a variable may increase the estimated value
of the coefficient α2, which depends on the correlation between the acreage in periods
t − 1 and t. If there is a mimicking effect, it increases the value of α2 as well.

In order to avoid the two pitfalls mentioned above, Munshi analyzes the diffusion
of HYV for two different crops, wheat and rice. The difference between the two crops
is that the output of a particular plot seeded in HYV rice is more dependent on
idiosyncratic factors than a plot seeded in HYV wheat. The diffusion of exogenous
information and mimicking are probably similar for the two crops. A stronger effect
for wheat than rice indicates stronger social learning for HYV wheat than for HYV
rice. The exogenous diffusion of information and mimicking should not have much
of an impact on α3, which measures the learning from the observation of the average
output in the village.7

The data were collected from villages in three consecutive years, 1968 to 1970. Be-
cause there is one lag, there are two sets of regressions, for 1969 and 1970. The results,
which are stronger for the second of these two years, show that α2 is significant for

7 Munshi notes that the acreage xit depends also on the variance of the estimated yield by the farmer.
This variance is not observable, but it should be a decreasing function of past experience. Because
past experience is increasing in the acreage in the past, the variance effect increases the coefficients
α1 and α2.
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wheat and rice, but higher for wheat. Symmetrically, the coefficient of the previous
period’s acreage in the farm, α1, is significant for rice but not for wheat. The yield
coefficient, α3, is significant for wheat but not for rice.8 These results are confirmed
by the statistical analysis on different data collected at the district level.

A Critique of the Diffusion Models with Learning about Yields
In the models of learning from yields, agents delay because they are not sure whether
the yield of the new crop is positive or not. If the delay is rational, however, the
distribution of adoptions ex post should exhibit this uncertainty. One should observe
ex post successes, but also failures and patterns where the adoption stopped at a low
level. This does not seem to be the case in the econometric studies. Of course, one
may argue that econometricians have focused on success stories, but in this case there
may be a selection bias. One may suspect that when farmers delay the introduction
of new crops, they wait for new information about the inputs of the new crops. We
now turn to this type of model.

9.1.2 Learning How to Use a New Technology

The yield of HYVs is highly sensitive to the proper use of inputs such as fertilizers
and pesticides, and farmers have an incentive to delay in order to learn how to adjust
these inputs.

THE TARGET MODEL

In order to simplify the exposition, assume that all agents are identical. The payoff of
an agent from the new crop depends on the acreage x in the new crop and the average
use y of fertilizer per acreage. To simplify (and without loss of generality), the price
of fertilizer is assumed to be negligible. The payoff function in a period (a crop cycle)
is

u(x, y) = ax − x2

2
− αx E [(θ − y)2].

The first two terms exhibit the decreasing marginal returns, and the last term embodies
the uncertainty about the use of the fertilizer. If the agent has a belief N (m, σ 2) about
θ , he chooses y = m, and the last term depends only on the variance σ 2.

8 Table 3 in Munshi (2002) shows two typical regressions with standard errors in parenthesis (year
1970):

wheat (417 observations): xit = 0.089 + 0.228xit−1 + 1.738Xt−1 + 0.056yt−1 + · · ·;
R2 = 0.298 (0.038) (0.189) (0.352) (0.009)

rice (608 observations): xit = 0.090 + 0.846xit−1 + 1.299Xt−1 − 0.0001yt−1 + · · ·.
R2 = 0.365 (0.016) (0.224) (0.312) (0.005)
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In each period, the agent gets two independent signals about θ , one from his own
farm and one from the observation of his neighbors:

st = θ + εt√
βxt

,

s ′
t = θ + ε′

t√
β ′xt

, with εt and ε′
t independent N (0, 1),

where xt is the average acreage in his neighborhood, and β, β ′ are parameters. The
parameter θ has an initial distribution that is N (µ1, 1/ρ1). The precision of each
signal is a linear function of the acreage in his own farm and of the average acreage in
other farms. If the agent has a precision ρt about θ at the beginning of period t, his
precision in the next period is

ρt+1 = ρt + βxt + β ′xt .

Define the experience of the agent as the cumulative acreage for all previous periods,
and the average experience as the cumulative average acreage of others:

zt =
t−1∑
k=1

xk, zt =
t−1∑
k=1

xk .

The profit in period t is

u(xt , zt , zt) = axt − x2
t

2
− αxt

ρ0 + βzt + β ′zt
,(9.4)

where ρ0 is the precision of the estimate about θ before the first crop cycle.
The farmer chooses a program {xt} to maximize the discounted sum of the payoffs

J =
∑
t≥0

δt E [u(xt , zt , zt)](9.5)

with

u(x, z, z) = ax − x2

2
− αx

ρ0 + βz + β ′z
,

zt+1 = zt + xt , zt+1 = zt + xt .

He takes the average acreage of other agents xt as given. By symmetry, xt = xt .
Let kt = ρ0 + βzt + β ′zt . Hence, kt+1 − kt = βxt + β ′xt . The model is similar to

a growth model where xt is consumption and the experience variable kt is capital.
Let λ be the shadow price of k. The first-order conditions can be written

a − xt − α

kt
+ ζβλt = 0,

λt = δ

(
λt+1 + α

xt+1

k2
t+1

)
.

(9.6)
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The parameter ζ is introduced to compute simultaneously the solutions of two prob-
lems: if ζ = 1, the agent optimizes the function J and takes into account the learn-
ing by doing in his own farm for future benefits; if ζ = 0, the agent maximizes his
current-period payoff without taking the information gain into account. However,
when making a decision about fertilizer in period t, he still takes into account the
learning from the observation in his own farm and in the farms of others.

One can see immediately that learning operates through two channels. The first
channel is an experimentation effect : because a farmer learns from his own output,
the larger the number of plots in the new crop (the acreage), the larger the number of
independent signals he receives and hence the more he learns toward an efficient use
of input in the future. The mechanism gives an incentive to seed more plots in order
to learn more.

The second channel is the learning from others. There is an information externality
between farmers, but none of them takes into account the externality in his decisions.
The more others seed, the lower the variance of θ in the next period, and therefore the
lower the information gain from one’s own experience. This effect induces a strategic
substitution by different farmers.

The Optimal Solution
The solution is found by taking ζ = 1 in equation (9.6). The analysis of the problem
is similar in discrete and in continuous time. To simplify the exposition, we use first
the continuous-time formulation. Let r be the (fixed) rate of discount. The first-order
conditions take the form

a − x − α

k
+ βλ = 0,

α
x

k2
= rλ − λ̇,

k̇ = (β + β ′)x.

(9.7)

In the first equation, the agent takes into account the information benefit accruing
from his own acreage: the value of λ is multiplied by β. (A social planner would
multiply by β + β ′.) In the last equation, the accumulation of knowledge is due to the
agent’s experience and to the average experience from others: both β and β ′ appear.

Differentiating the first equation with respect to time and using all equations (9.7)
for substitutions, we find that the dynamic path is characterized by the evolution of
the variables (k, x) given by

k̇ = (β + β ′)x,

ẋ =
(

αβ ′

k2
+ r

)
x + r

(α

k
− a

)
.

(9.8)

On a phase diagram (Exercise 9.4) the locus (k, x) such that ẋ = 0 is an increasing
graph with an asymptote x = a . The variable x is increasing in time above the curve
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Figure 9.2 Time profiles of adoption of the new technique. The lower curve is the profile over
time of the acreage when farmers choose the amount of acreage to maximize the current payoff
without taking into account the gain of information. The higher curve is the profile when agents
take into account the additional learning obtained by more intensive use of the new technique and
more experimentation. (Parameters: a = 10, α = 0.99, β = 0.002, γ = 0.01, δ = 0.98, ρ0 = 0.1).
For the dotted curve, the parameter γ , which measures the information externality, is increased
from 0.01 to 0.03. The acreage is smaller in the first two periods because agents rely more on
the externality and invest less in information. It is larger after period 3 because more has been
learned in the first two periods.

ẋ = 0, and decreasing below the curve. It follows that in the solution of the optimiza-
tion problem, x must be above the curve and converge to a as t → ∞. However, the
property of an increasing profile conveys, in general, no information on the concavity
of the profile. The solution with dynamic optimization must be solved numerically.
An example of simulation (using the discrete formulation) is presented in Figure 9.2.

On the dynamic path, the acreage is an increasing function of time. The model
does not exhibit an S-profile. We now compare this solution with that when agents
do not optimize over time.

The Myopic Solution
Assume now that the agent does not experiment in a rational way, but takes into ac-
count the experience of the past: ζ = 0. The previous computation yields the dynamic
equation

ẋ = γ x(a − x)2 with γ = β + β ′

α
.

The time derivative of the slope ẋ is equal to

ẍ = γ (a − x)(a − 3x).

The time derivative increases with time if x < a/3 and decreases if x > a/3. The
acreage x exhibits an S-shaped time profile. The simulation of the previous example
with ζ replaced by 0 is represented in Figure 9.2.

The difference between the optimal dynamic and the myopic solutions is intuitive.
At the beginning of the introduction of a HYV crop, the uncertainty is large and the
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payoff of the crop adjusted for the uncertainty is small. The acreage is small and does
not increase much. This phase corresponds to the convex part of the S-shaped time
profile. When agents take into account the effect of learning by doing and the higher
payoffs in the future, they raise their input x during the initial phase. This effect
abolishes the convex part of the profile, which becomes a concave function of time
for the entire horizon.

EMPIRICAL STUDY

Any empirical analysis of the imitation of others is about the changes of agents who
are neighbors either in time or in space. The previous model is the theoretical model
behind the econometric study of Foster and Rosenzweig (1995), hereafter FR. They
take the neighborhood unit as the village. The issue is whether farmers in the same
village learn from each other. As mentioned previously, we should be aware of the
two problems raised by exogenous information and by mimicking.

The data are from a panel that provides longitudinal information for 4,118 house-
holds in 250 villages for three consecutive crop years from 1968 to 1970. The innova-
tion is HYV rice seeds. The fraction of farmers using HYV seeds grew from 19 to 42
percent during the three years. Because of lagged terms, the years 1969 and 1970 can
be used. FR use two types of tests.

First, they estimate the profit function u(x, z, z) in (9.4). Recall that the argument
z measures the effect of learning by doing (from one’s own experience), whereas z
measures the effect of learning from others. The profit function is linearized with
the addition of agent-specific features like education as explanatory variables, and the
estimation is on first differences in order to omit farm-specific effects. Some attention
is devoted to the removal of spurious effects that relate the profitability of a farm and
its rate of expansion.

Second, FR estimate the decision rule as in equation (9.7), which is repeated
here:

xt = a − α

kt
+ βζλt ,(9.9)

where ζ = 1 for rationally planning farmers and ζ = 0 for myopic farmers, and βλt

is the value of information from an additional unit of acreage. However, FR do not
solve the optimization problem, and they do not have a measurement of the marginal
value of experience, λt . They are content with estimating a linear equation that is the
same as the profit function, where the dependent variable is now the acreage incre-
ment, xt = zt − zt−1 (in discrete time). It is hard to interpret the results of such an
equation. It is even harder to relate its coefficients with the results of the estimation of
the payoff function in the first step. In fact, the only consistent method is to estimate
a structural model. Such an estimation could be done if the behavioral equation is
obtained as a solution of the optimization problem, which depends on the structural



9.2 Learning in Networks 205

parameters of the model, and the estimation of these parameters through the com-
parison of the behavioral equation (or the payoff function) with the data. FR do not
pursue this method. They simulate the evolution of adoption for the estimated deci-
sion function, and they obtain an S-shape. The previous theoretical model has shown
that the adoption profile is more likely to be the S-shape when agents do not optimize
the current acreage as a function of the anticipated learning.

9.2 Learning in Networks

Conley and Udry (2000a, 2000b) study how families learn from each other about
the quantity of fertilizer to be used with pineapple trees in Ghana. Pineapple trees
are sensitive to fertilizer. The model is similar to the previous target model, with
a quadratic term U = −(y − θ)2, where y is the amount of fertilizer and θ is a
random variable.9 One of the interesting features of the study is the construction
of information neighborhoods from survey data. By definition, agents i and j are
informationally linked if i is observed by j or j is observed by i . The neighborhood
of i is the set of agents informationally linked to i . The information links are obtained
from direct interviews.10 Neighborhood relations are represented by Conly and Udry
in a map, which is reproduced here in Figure 9.3. The figure shows that for pineapple
growers in Ghana, the village is not the appropriate definition of a neighborhood in
which agents learn from each other. One can see that informational neighbors are not
identical to geographical neighbors.

Conley and Udry show that if an agent is informationally linked to an agent who
increased fertilizer use over the survey period and had profit higher than the median,
then he was more likely to use fertilizer.

9.2.1 Neighbors

Following Bala and Goyal (1998), there are N agents indexed by i ∈ N = {1, . . . , N}.
Each agent i observes at the end of each period the actions and the payoffs of the
agents j who are in a subset N(i) ⊂ N. The set N(i) is defined as the neighbor-
hood of i . This framework may be compared with that of Banerjee and Fudenberg
(1995), discussed in Section 5.3.2. In that model, agents observe the actions – not the
outputs – of a sample of randomly selected agents in the population. The sampling
in the whole population is important for the pooling of all the agents’ information.
In this section, the neighborhoods are fixed and do not depend on time. As in the

9 A regression of profit per plant, y, on fertilizer input, x , produces the estimated equation y =
ax − bx2 + · · ·, with a > 0, b < 0, which shows that the productivity of fertilizer is not monotonic
in its argument.

10 The interviewer asks specific questions like “Have you asked . . . for advice about your farm? How
often?” Other methods were used to minimize underestimates of the neighborhoods.
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1 km

Figure 9.3 Information neighborhoods. A link represents a relation in which an agent at one
end receives information from the agent at the other end. There is no privileged direction for the
information flow. (Reproduced with the permission of Conley and Udry.)

examples of the previous section, agents observe both the actions and the outcomes
of the actions of their neighbors. Recall that the use of the term neighbor does not
necessarily imply geographical proximity. (See for example Figure 9.3.)

The framework is related to that of Section 8.3.1, with which the reader should be
familiar. There is a finite set � of states of nature, and each agent is endowed in the
first period with a private belief on the |�| states of nature {θ0, . . . , θ|�|−1}. In each
period, each agent chooses the action x ∈ R to maximize the payoff,

u(x, µ) =
∑
θ∈�

µ(θ)

∫
Y

r (x, y) f (y|x, θ)dy,(9.10)

which is the same as in (8.10). The variable y may be any variable that affects the
return r (x, y). It could be the output, the return itself, or some other variable. Al-
though agents act repeatedly, it is assumed that they behave myopically: they do not
experiment for better decisions in the future. This assumption is made in order to
focus on the main issue: the diffusion of information in networks.

Let us highlight the difference from the “linear” framework of Section 8.3.3: (i) in
each period, each agent takes a decision; (ii) there is no common history; each agent
learns from the history of his own neighbors.

The belief (probability on the set �) of any agent j tends to a limit value by the
MCT. Hence, after some finite date, the action of an agent is fixed, say, to x j . Suppose
that this agent is a neighbor of agent i . Action x j is an IRA for agent i , who gets
asymptotically perfect information on the payoff of action x j . His limit payoff cannot
be less than the payoff of x j . We have the following result.
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LEMMA 9.1 An agent has asymptotically a payoff at least as high as that of any of his
neighbors.

Bala and Goyal (1998) introduce the notion of connectivity.

CONNECTED SOCIETY

Agent i is connected to agent j if there is a finite sequence of agents {il }1≤l≤L such
that i1 = i , iL = j , and il is a neighbor of il−1. A connected society is a society in which
any two agents are connected. The next result of Bala and Goyal (1998) follows from
Lemma 9.1.

PROPOSITION 9.2 In a connected society, the payoff of any agent tends to the same
value u∗.

The limit payoff u∗ may be suboptimal if agents herd on a wrong action, namely
an action that does not discriminate between the true state and another state. As in
the previous section, we consider the case of unbounded private beliefs in the sense of
Assumption 8.2. The next result is similar to Theorem 8.1. Its proof is an application
of the previous results and techniques (Exercise 9.3).

THEOREM 9.1 In a connected society and under the assumption 8.2 of unbounded
private beliefs, after finite time, the actions of all the agents are optimal.

9.2.2 The Curse of Information

One of the important themes in the preceding chapters is that more information can
slow down the process of social learning, or can actually prevent any learning. We
find this principle at work again when agents learn from the outcomes of actions.

THE ROYAL FAMILY AND INFORMATIONAL CASCADES

Bala and Goyal (1998) show that more observations can reduce welfare. If a group of a
few individuals is observable by all agents, they may initiate an informational cascade.
Bala and Goyal call this group the “royal family.” This analogy was anticipated by Tarde
and his “water tower” of the aristocracy. Take away this group, and the power of the
masses will establish the truth: if each agent observes only relatively small and disjoint
neighborhoods and the number of agents tends to infinity, the probability of adequate
learning tends to 1. The property is shown in an example by Bala and Goyal.11

11 For the general result, the reader is referred to their study. Bala and Goyal also consider the case
where the outputs of actions generate unbounded signals. From the previous analyses in this book,
one can see that such signals will substitute for unbounded private signals and induce adequate
learning, asymptotically.
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Assume two states of nature, θ0 and θ1 with equal probabilities ex ante, and two
actions 0 and 1. Action 0 yields 0 or 1 randomly with equal probabilities. If θ = θ1,
action 1 yields 1 with probability π and 0 otherwise, with π > 1

2 . If θ = θ0, the
probabilities are switched; the probability of success with a yield of 1 is 1 − π . State
θ1 is the good state, in which action 1 has a higher expected yield. There are N agents,
each with a SBS of precision q . An agent chooses action 1 if and only if he believes
state θ1 to be more likely. Agents are located on a circle, and the neighbors of agent i
are agents i − 1 and i + 1.

In addition to his two surrounding neighbors, each agent observes the agents
{1, 2, 3, 4}. This group of four individuals is observed by all and is called the royal
family.

In the first period, each agent follows his own signal, because he has not observed
anyone yet. Suppose that the binary signals of agents are such that each individual
in the royal family chooses action 1 in the first period, and that the output of each
action in the royal family in the first period is 0. The probability of this event is strictly
positive.

At the end of the first period, each agent has two types of information: his private
signal (which he received at the beginning of time), and the outputs of the individuals
he observes. We assume that the power of the first signal is weak with respect to the
second, i.e., q − 1

2 is small with respect to π − 1
2 .

Consider an individual who is not in the royal family and observes four bad
outcomes from action 1 in the royal family. He observes at most three good outcomes
from his two immediate neighbors and his own action. His observation from the
outputs generates a belief (probability of state θ1) that cannot be higher than after
the observation of a single failure (output equal to 0). The power of that information
increases with the value of π . When the precision of his SBS, q , is sufficiently small
with respect to π , his belief at the end of the first period is smaller than 1

2 , whatever
his private signal. In period 2, he chooses action 0.

The same argument is even stronger for any member of the royal family. In period
2, all agents choose action 0. Because that action provides no information on the state,
beliefs are unchanged at the end of period 2. The choices are the same in period 3, and
so on: an informational cascade begins in period 2. From that period on, all agents
are herding.

The probability that the royal family induces all agents to herd on a wrong action
has a lower bound that is strictly positive and independent of the number of agents.

SANS FAMILLE ROYALE

Assume that each individual observes only his two immediate neighbors and that the
state is good (θ = θ1). Let ht(i) be the history of observations of individual i in period
t from his neighbors and his own outputs. Let µt(i) be his belief from that history:
µt(i) = P (θ = θ1|ht(i)). Individual i computes his belief in period t by updating
µt(i) with his private signal.
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Because the individual is Bayesian, µt(i) tends to a limit µ∗
i > 0, almost surely.

Because the initial value of µt(i) is 1
2 (nature’s probability of choosing state θ1), the

expected value of µ∗
i is 1

2 . In the good state, that expected value is greater than 1
2 . Hence

the probability that µ∗
i > 1

2 is strictly positive. The signal of individual i is equal to 1
with a positive probability. Hence, individual i chooses action 1 after some finite date
and gets the optimal payoff after that date, with a strictly positive probability α > 0.

The reader can check that the society is connected. If individual i gets the optimal
payoff asymptotically, all agents do so (Theorem 9.1). The interesting part of the
argument is the reverse property. The probability that all individuals do not get the
optimal payoff asymptotically is smaller than 1 − α.

Consider now individual i + 3. He observes the outputs of the actions of individ-
uals {i + 2, i + 3, i + 4}. These are not observed by individual i . The outputs in the
history hi+3(t) are independent of those in the history hi (t). The event µ∗

i+3 > 1
2 is

independent of the event µ∗
i > 1

2 , and obviously the private signal of i + 3 is inde-
pendent of the private signal of i (conditional on the state). The previous argument
can be repeated. All individuals get the same payoff asymptotically by Theorem 9.1.
This payoff is not optimal if it is not optimal for both individuals i and i + 3. Because
the two events are independent, the probability is smaller than (1 − α)2.

The repetition of the argument for a larger number of agents shows that the
probability of no optimal payoff, asymptotically, has an upper bound that tends to 0
exponentially when the number of individuals in the society tends to infinity.12 If there
is an infinite number of agents, there is no failure of social learning, asymptotically.

9.3 Bibliographical Notes

Neighbors were introduced in models of learning from others’ actions by Allen
(1982a). An agent chooses x ∈ {0, 1} in each period and “adopts an innovation”
if x = 1. The adoption is reversible. The decision rule is the specification of a prob-
ability of adoption, which depends on the choices of actions of the neighbors of the
agent. The only assumption is one of nonstubbornness : the probability of adoption
is strictly positive for any choice of the neighborhood. One defines a global phase,
the long-run distribution of the probabilities that x = 1 on the set of agents. The
analysis focuses exclusively on that distribution. The main result is the existence of a
unique distribution under the assumption of nonstubbornness. It is a straightforward
consequence of the results in the literature on Markov random fields, to which Allen
refers for a proof.

The paper assumes a probabilistic decision rule, but this rule need not be ad hoc :
it may use Bayesian inference from the payoffs of the neighbor’s actions. The model
can take into account payoff externalities, positive or negative. Its main shortcoming

12 Bala and Goyal provide some numerical simulations in which the convergence of the probability is
indeed exponential.
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in comparison with the literature on learning is the absence of memory from history.
(An agent does not learn from his own action, but this restriction could probably
be lifted.) The flavor of the model is similar to that of automata with neighbors (as
in the game of life). The results of the paper may be a bit too general for interesting
applications.

In Allen (1982b), x = 1 is defined as the state of an informed agent. (Agents can
learn and forget.) Most of the paper is isomorphic to the previous one, except for
a section on dynamics where the global phase is not constant. A special case of the
model in continuous time generates the logistic curve of the diffusion.13

EXERCISES

EXERCISE 9.1

1. Assume that x ∼ N (m, σ 2). Show that for c < m,

V = E [max(x − c , 0)]

= 1√
2πσ

∫
−a

(x + a)e−x2/2σ 2

dx with a = m − c > 0.

2. Show that the function G(σ ) = 1
σ

∫
−a(x + a)e−x2/2σ 2

dx is increasing in σ when
a > 0.

EXERCISE 9.2

Simulate numerically the model of Section 9.1.1 with all the noise terms εt ≡ 0.
Determine whether the time profile of adoption has an S-shape.

EXERCISE 9.3

Prove Theorem 9.1.

EXERCISE 9.4

Determine the phase diagram for the dynamic equations (9.8).

13 Let yt be the fraction of informed agents: then ẏ t = ayt (1 − yt ), where a > 0 is a constant. This
equation is found in other models of diffusion (Gersho and Mitra, 1975).
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If we all think alike, it means we do not think anymore.

Trust but verify.

In this chapter, the actions of agents (experts) are words (messages). The

payoff depends on the message and some independent information of the

receiver of the message. The condition for no herding and telling the truth

is the same as in the BHW model of Chapter 4. In some cases, the payoff

depends on a reputation for being informed or for being nonmanipula-

tive. An expanded set of messages may not improve the transmission of

information (contrary to Chapter 4). If the expert has information on

the independent information of the receiver, the receiver should try to

increase his information. The order in which experts should speak in a

panel (trial jury) is analyzed: the antiseniority rule does not seem to be

superior to other rules.

Communication with words is the subject of a vast literature. This chapter will be
selective and focus on the relations between models of communication through words
(models of “cheap talk”) and the issues of social learning that are addressed in other
parts of this book. For example, herding may arise in financial markets because of the
observation of others’ actions or because of the behavior of financial advisors who
are influenced by others’ predictions. We will see that herding on actions and herding
on words occur under similar conditions.

In the generic setting, an agent is an expert with private information on the state of
nature, and his action takes the form of a message that is sent to a receiver. How can he
transmit his information credibly by mere words? The key is that the receiver has some
independent information on the true state – information that may be gotten before
or after the time the expert gives his advice. The receiver thus can verify the expert’s
message against his independent information. (The precision of the independent

211
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information of the receiver does not matter.) The payoff of the expert depends on his
message (his advice) and on the independent information of the receiver.

Section 10.1 presents the basic model with two states and a binary private signal
of the expert. For simplicity, the receiver verifies exactly the true state ex post (as
an investor who experiences the fluctuations of the stock market after receiving an
advice). Three types of payoff functions are considered.

(i) The least restrictive case is that of an arbitrary function with two arguments: the
expert’s message and the state as verified by the receiver. The goal of the expert
is to conform as much as possible to the verified state. His belief is formed from
the public belief and his private signal. If the public belief in one of the two states
is high, the probability of that state is high even with a private signal favoring the
other state. In that case, the expert predicts the same state as the public belief.
The expert tells the truth (sends a prediction according to his private signal)
only if the public belief is not too strong on one of the two states. The condition
for truthtelling by the expert turns out to be identical to the condition for no
herding in the BHW model of Chapter 4.

(ii) The payoff is based on reputation. This reputation may be valuable because
of future business for the expert, or his ability to have influence in the future.
The reputation is about the high precision of the private information. There are
two types of private signals for the expert, one more informed than the other;
and, in a first case, the expert does not know the quality of his signal. A key
difference from (i) is that the value of reputation, and therefore the payoff of
the expert, depends on an equilibrium. If the expert sends an irrelevant message
(he babbles), then the receiver may ignore his message. If the receiver ignores his
message, however, the expert has no incentive to tell the truth. There is always a
babbling equilibrium. We focus on the condition for the existence of a truthtelling
equilibrium. It is similar to the condition in case (i): the public belief, as expressed
by the probability of one of the two states, must be neither too high nor too low.
When the expert knows the quality of his private information, the expert with
low precision herds for a wider set of public beliefs than the highly informed
expert.

(iii) The payoff is derived from a reputation for not being a manipulative expert. All
experts have private information of the same precision, but some experts would
like the agent to take a specific action. As an example, some people would like to
systematically increase welfare programs. An unbiased expert may be in a position
to support a particular program, but he does not want to be identified with those
people. In order to enhance his reputation, he may advise against the program.

In Section 10.2, the set of messages is expanded while keeping two states. An expert
may give a strong or a weak recommendation that the market will go up or down,
and the receiver can perceive only that the market goes up or down (not the amount
of the change). Why would the expert give a weak recommendation, thus revealing
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that his information has low precision? The analysis confirms the intuition. There is
no truthtelling equilibrium. An expert has an incentive to give the strongest possible
advice (in the direction most likely to occur). The problem is that the receiver can
verify the advice only against one of two states. If the state takes values in a richer set,
for example the evolution of the market is in the set of positive numbers, then the
expert may have an incentive to tell the truth.

In all the models considered so far, the expert does not know the independent
information used by the receiver for the verification and the reward of the expert.
This assumption is relaxed in Section 10.2.3. For example, the expert may know the
financial literature read by the receiver, or the consultant may know the prejudice of
the boss. It is essential that the receiver does not know what the expert knows about
him, or how the expert uses that information. If the receiver knows what the expert
knows about him, he can simply “factor out” the expert’s information on him from
the advice and still get at the expert’s true knowledge.

In Section 10.3, there is a collection of “experts.” How does the opinion issued by
the first have an impact on the saying of the second, and so on? People influence each
other in jury trials (e.g., the motion picture Twelve Angry Men); financial advisors or
economic forecasters are suspected of herding.

When experts are put in an exogenous order, the basic model of Section 10.1 is
repeated in a sequence. The public belief evolves after each expert’s messsage, and
there is a herd by all remaining experts if the public belief favors one of the two states
sufficiently strongly. The model is isomorphic to the BHW model. The isomorphism
is not affected if the private signals of the experts are correlated.

In the Talmud, the elder speaks after the young. Presumably the elder is wiser,
and his advice could intimidate the young into assenting instead of conveying the
information truthfully. This issue is examined in Section 10.3.2.

10.1 Advice by One Expert

There are two states of nature θ ∈ {0, 1}. The agent is an expert with private infor-
mation on θ . Without loss of generality, this information takes the form of a signal
s , which is a SBS with a precision that may or may not be random. If the precision of
the signal is random, unobserved by the expert and of mean ρ, the information of the
signal is equivalent to that of a binary symmetric signal with known precision equal
to ρ.

The expert sends to a receiver a message m that is a (possibly random) function of
his signal, m(s ). The expert cannot communicate more than his information, which
is in the set of values {0, 1}. We can therefore assume that his message takes values in
the set {0, 1}. The truthtelling strategy will be defined1 by m(s ) = s .

1 My son Sebastian frequently reminds me that m(s ) = 1 − s is also a truthtelling strategy.
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10.1.1 Evaluation Payoff after Verification

Assume the receiver observes the state after receiving the message from the expert.
For example, the receiver asks for financial advice, takes some action – to buy or to
sell – and rewards the expert a few weeks later after observing the evolution of the
market. The receiver rewards the expert according to an evaluation function, which
is a function of the message and of the state and is defined by four values: vmθ for
(m, θ) ∈ {0, 1} × {0, 1}. Exercise 10.1 extends the model by allowing the receiver to
have some imperfect information on the state in the form of a symmetric binary signal
z with precision q ∈ ( 1

2 , 1]. When q < 1, one may assume that the receiver gets his
private signal at the same time or before the message of the expert. It is essential that
the private signal z of the receiver is not known by the expert. (Otherwise the expert
would just send a message equal to z in an attempt to please the receiver.) Exercise
10.1 shows that the results of this section apply to the extension.

The expert computes his payoff by assessing the probabilities of the receiver’s
independent verifications. This payoff is a function V(s , m) of his private signal s and
of his message m:

V(s , m) = P (θ = 1|s , µ)vm1 + P (θ = 0|s , µ)vm0,(10.1)

where his belief P (θ = 1|s , µ) depends on his private signal and on the public belief
µ according to Bayes’s rule.

The truthtelling strategy is optimal if it yields to the expert a payoff that is not
strictly smaller than that obtained from deviating. We have two incentive compatibility
constraints, one for each signal value of the expert:

V(s1, s1) ≥ V(s1, s0) and V(s0, s0) ≥ V(s0, s1).(10.2)

From the expression of V(s , m) in (10.1), these constraints are equivalent to

P (θ = 1|s0, µ) ≤ c ≤ P (θ = 1|s1, µ)(10.3)

with c = v00 − v10

v11 + v00 − v01 − v10
.

Because the probabilities P (θ |s , µ) are the beliefs of the expert, the incentive compati-
bility constraints are identical to the condition for no herding in the BHW model where
agents have a cost of investment c . The previous condition is equivalent to a condition
on the public belief in the BHW model:

µ∗ ≤ µ ≤ µ∗∗,(10.4)

as in Proposition 4.1. This condition is intuitive. The goal of the expert is to predict the
state in order to conform to the information of the receiver. Suppose that the public
belief about θ = 1 is strong with µ > µ∗∗. The expert takes into account his private
signal and the public belief to predict the state. His belief about θ = 1 is strong even if
he has a signal 0. Because he is rewarded for conforming his message to the true state,
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he predicts θ = 1 whatever his private signal. He is herding, exactly as in the BHW
model where the action maximizes the payoff of a real investment.

Consider the important case of a symmetric evaluation function where the re-
ceiver gives a fixed reward for a “correct” message m = θ , and a smaller reward for an
“incorrect” message with m �= θ :

v00 = v11 > v10 = v01.(10.5)

The value of the parameter c in (10.3) is equal to 1
2 . The truthtelling condition becomes

1 − ρ < µ < ρ ,

where ρ is the precision of the expert’s signal. The range of values of the public belief
with truthtelling by the expert increases with the precision of his information.

If the receiver can choose the reward function, he may always get the private
information of the expert by choosing vmθ such that the value of c in (10.3) falls
between the beliefs of an optimistic and a pessimistic expert (with signals 1 and 0).
In some cases, however, rewards cannot be implemented by the receiver. A number
of studies have assumed that the evaluation function is generated by the reputation
of the expert.

10.1.2 Equilibrium with an Evaluation Based on Reputation

In the previous section, the precision of the expert’s signal is known. Assume now there
are good and bad experts with high and low precisions of their private information.
A message that is observed to be correct after the receiver gets to know the true state
raises the reputation of the expert. Reputation may be a powerful incentive to send a
message that gives the best possible prediction.

The expert has a SBS that has precision ρH with probability α, and precision
ρL < ρH otherwise (ρL ≥ 1

2 ). Suppose, as a first step, that the expert does not know
the precision of his signal. The implicit assumption is that he has more than one signal
with the same precision and cares about his reputation, i.e., the probability that he is
endowed with high-precision signals. His ex ante reputation is α, and vmθ is his ex post
reputation as perceived by the receiver who compares2 the message m with the state
θ . The value vmθ could also be an increasing function of the reputation. An example
of a reputation function is given in Exercise 10.2.

The evaluation by the receiver depends on the strategy of the expert, and the
strategy of the expert depends on the evaluation function, which can be regarded
as the strategy of the receiver. Both strategies have to be determined simultaneously
in a game. The situation is thus different from the previous case with an exogenous
function vmθ .

2 As in the previous case, the independent information of the receiver could also be imperfect.
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THE BABBLING EQUILIBRIUM

The endogenous property of the reward function is highlighted by the existence of the
babbling equilibrium. If the agent sends a message that is independent of his signal, he
cannot be evaluated. His message is ignored by the receiver, and his reputation stays
constant at α. If the receiver does not listen, however, the expert has no incentive to
speak the truth. No strategy can strictly improve his reputation. He sends an irrelevant
message: he babbles. For example, he can send m = 1 for any private signal s , or a
random value. For any value of the public belief, there is a babbling equilibrium. This
property did not appear in the previous section, where the receiver could choose the
reward function.

THE TRUTHTELLING EQUILIBRIUM

Suppose the agent tells the truth with m = s . Let H and L be the events that his signal
has high or low precision. By Bayes’s rule, the ex post reputation is

vsθ = P (H|s , θ) = P (s |H, θ)α

P (s |H, θ)α + P (s |L, θ)(1 − α)
.(10.6)

The quantities P (s |H, θ) and P (s |L, θ) are the probabilities of the realization of the
expert’s signal given the type of the signal and the state of nature. They depend only
on the structure of the expert’s signals. Because the signal is symmetric,

v11 = v00 > v10 = v01.(10.7)

A truthtelling equilibrium exists if the public belief µ satisfies the constraint (10.4).
Comparing with the previous section, if µ ∈ [µ∗, µ∗∗], there are now two equilib-
ria: in the first, the agent tells the truth; in the second, he babbles. If µ is outside of
the interval [µ∗, µ∗∗], babbling defines the unique equilibrium, as in the previous
section. The comparison between cascades in the BHW model and the babbling equi-
librium applies. Proposition 10.1 summarizes the previous discussion and introduces
an additional result.

PROPOSITION 10.1 Let ρ be the average precision of the expert. For any value of the
public belief µ = P (θ = 1), there is a babbling equilibrium that is stable.

Let ρ = αρH + (1 − α)ρL be the average precision of the expert’s signal. If 1 − ρ <

µ < ρ, there is a truthtelling equilibrium that is stable. If 1
2 < µ < ρ (1 − ρ < µ < 1

2 ),
there is an equilibrium in which the expert tells the truth if he has a good (bad) signal
and lies with some probability if he has a bad (good) signal. This equilibrium is unstable.

The concept of stability in the proposition is elementary: if the expert increases by
a small amount his probability of lying, the receiver adjusts the evaluation function,
to which the response of the expert is to reduce his probability of lying. In the case
of the unstable equilibrium of the proposition, a small increase of the probability of
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lying induces a variation of the evaluation function to which the best response is to
lie for sure.

Although the partially revealing equilibrium is unstable and should be dismissed
as an implausible outcome, its intuition may be useful. Assume the expert sends the
message 1 if he has signal 1, and the message 1 with probability ζ if his signal is 0. The
evaluations v00 and v01 do not depend on ζ , because the probability of lying reduces
the probability of the message m = 0 for both types of experts. The evaluation v11

is decreasing in ζ , because the probability of lying reduces the power of the message
m = 1. The evaluation v10 is smaller than α, because of the incorrect prediction, but
if ζ tends to 1, the message 1 is uninformative with an ex post evaluation near α. v10

is increasing in ζ . The payoff difference between lying and telling the truth is

V(0, 1) − V(0, 0) = P (θ = 1|s = 0, µ)(v11 − v01)
+ P (θ = 0|s = 0, µ)(v10 − v00).

In this expression, the probability that multiplies v10 is higher than the probability
that multiplies v11. If initially the expert randomizes and is indifferent between the
messages m = 0 and m = 1, an increase in his probability of lying ζ has a positive
impact on the above payoff difference: the expert has a strict incentive to lie (Exer-
cise 10.4).

When the prior µ is sufficiently strong and µ /∈ [µ∗, µ∗∗], babbling is the only
equilibrium. Is this bad for the receiver? Not necessarily: he would ignore the advice
of the expert anyway if he were to assess the more likely state. A truthful message by
the expert would not change this assessment.

THE TYPE OF THE EXPERT IS (ALMOST) PUBLICLY KNOWN

Assume ρH > 1
2 and ρL = 1

2 . From the analysis in the previous section, the expert tells
the truth if the public belief is in the interval (1 − ρ , ρ) with ρ = ρHα + 0.5(1 − α).
Suppose that the value of α is infinitesimally close to one: the probability that the
expert is not informed is vanishingly small. Asymptotically, the expert gives his best
possible advice given his precision ρH . The case α → 1 generates the following result.

PROPOSITION 10.2 If the type of the expert is known with a probability infinitesimally
close to one, there is a truthtelling equilibrium in which the expert speaks against the
public belief if and only if he believes his advice is more likely to be true.

THE EXPERT KNOWS HIS TYPE (ASYMMETRIC INFORMATION)

Suppose now that the expert receives with probability α a SBS with precision ρH

and with probability 1 − α a SBS with precision ρL < ρH . The expert knows the
precision of his private signal, whereas the receiver knows only α. The evaluation
function is computed as in the previous case: it rewards conformity with the true
state. Each expert behaves as in the previous model and computes his belief using
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the public belief and his private signal. Assuming a symmetric evaluation function
as in (10.5), each expert with precision ρ sends a message identical to his signal if
and only if the public belief µ is such that 1 − ρ ≤ µ ≤ ρ. This range is [1 − ρL , ρL ]
for the expert with low precision. It is narrower than the range in the case where the
experts cannot observe the precision of their signal. In general, the model applies
whether experts know their precision or not. The important assumption is that there
are at least two levels of precision and the receiver cannot observe the precision of the
expert’s information.

10.1.3 Reputation for Nonmanipulation: PC Behavior?

A person may say what is “politically correct” instead of what she truly thinks in
order to identify herself with some group of people. There is more than one possible
motive for this identification. The need to associate oneself with a cause is probably
important. During times of polical oppression, formal or informal, it is a good idea
to say the “right thing.”

Morris (2001) takes the opposite view: a person may say what is politically correct
because she wants to show that she is objective against a backdrop of biased people.
She opposes an aid program that she knows to be good because she does not want to
be identified with some “liberals” who systematically promote welfare programs.3

The model of Morris is a variation on the model in the previous section. The bad
expert has now the same information as the good expert, but he is biased: he provides
advice to manipulate the receiver’s action in some direction. As in the previous section,
there are two states of nature, θ ∈ {0, 1}, with equal probabilities ex ante. The receiver
faces an expert of an unknown type, honest or dishonest, i.e., good (with probability
α) or bad. After receiving the message, the receiver chooses an action x ∈ R that
maximizes −E [(x − θ)2].

In order to focus on the issue of manipulation, assume the good and the bad
experts have a SBS on θ with the same precision q . The good expert wants the receiver
to maximize his payoff, and the bad expert wants the receiver to choose a level of
action as high as possible. We consider here a one-period model in which the payoff
of the good expert is

U (s , m) = −E [(x − θ)2] + βE [vmθ ],(10.8)

where β is a positive parameter and x is the action taken by the receiver following
the expert’s message. The expectations are made by the expert. They depend on his
information from his private signal s . The first term is the payoff of the receiver.
The determinants of his action x are omitted for simplicity. The second term is the

3 The argument is usually illustrated with a conservative manipulator (Morris, 2001). This is further
indication that the model has little to do with PC behavior, but may explain politically incorrect
behavior.
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expected value of the reputation, which is updated by the receiver after comparing the
message m with the true state θ . The person who advises in favor of a welfare program
knows that her reputation to be objective will be modified only once the comparison
between the advice and the observation of whether the social program is good or not
is made.

The first term in the expression for the payoff U (s , m) is new. It reflects the
property that the good expert cares about the payoff of the receiver. In the second
term, the value of the reputation is taken to be linear, but it could be endogenized
(Exercise 10.2). The main assumption is that the payoff of reputation should be an
increasing function.

The payoff of the bad expert is

Û (s , m) = x + γ E [vmθ ].(10.9)

The first term embodies the bias. The bad expert cares about reputation because a
higher reputation enhances his manipulative power.

The model will show that in an equilibrium (i) under some conditions, the bad
expert lies and says 1 whatever his message; (ii) there may be multiple equilibrium
strategies for the good expert; in any equilibrium, he either tells the truth, or says 0
whatever his signal in order to enhance his reputation.

THE GOOD EXPERT

The main issue is the behavior of the good expert, so we assume that the bad expert
has a given strategy: if his signal is 1, then his message is 1; if his signal is 0, his message
is 1 with probability z ∈ (0, 1], because he wants to manipulate the advisee into taking
action 1. The optimization of the strategy z will be analyzed later. Because z > 0, a
message 1 is more likely to come from the bad expert, and the message 0 increases the
reputation of the expert.4

If the good expert sends the message 0, he gets an improvement of his reputation.
He therefore always sends the message 0 if he has a private signal s = 0. The problem
arises when his private signal is 1. He may want to send the message 0 in order to
enhance his reputation. The cost of doing so is the error committed by the receiver
in the period. We consider therefore the following strategies: the good expert tells the
truth if his signal is 0, and sends the message m = 0 with probability ζ ∈ [0, 1] if
his signal is 1. We look for an equilibrium value of ζ (given the strategy z of the bad
expert). In an equilibrium, the receiver knows the values of ζ and z. If he receives the
message m, he computes his expected value of θ as a function of the probability of
facing a good expert and the strategies of the good and the bad experts. Let x(m, ζ ) be
this expected value, which is also his level of action. (The strategy z is omitted from the

4 The message 0 with a verified state 1 is not indicative of a poorly informed expert, because all experts
have the same precision.
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arguments because it is given.) It is computed through Bayes’s rule.5 We can verify –
or, better, derive from intuition – that for any ζ ∈ (0, 1), the action is higher after the
message 1, x(0, ζ ) < x(1, ζ ), and for ζ ∈ [0, 1],

x(1, ζ ) is decreasing in ζ and x(1, 0) < q,

x(0, ζ ) is increasing in ζ and x(0, 1) < q .
(10.10)

The evaluation of the reputation at the end of the period is given by the four values
vmθ as in Section 10.1.1. One shows6 that

v01(ζ ) ≥ v00(ζ ) ≥ α ≥ v11(ζ ) ≥ v10(ζ ).

Moreover,

v00(ζ ) and v01(ζ ) are increasing,

v10(ζ ) and v11(ζ ) are decreasing.
(10.11)

The payoff of the good expert in (10.8) takes the form

U (s , m) = −π(s ) + x(m, ζ )(2π(s ) − x(m, ζ ))

+ β
(
π(s )vm1 + (1 − π(s ))vm0

)
,

where π(s ) is his probability of state θ = 1 (which is equal to q if s = 1 and to 1 − q
otherwise).

One verifies that if the expert has a signal s = 0, he is strictly better off by sending
the truth m = 0 than by sending the message m = 1. Truthtelling is the only optimal
strategy in this case. Assume now that the expert has a private signal s = 1. Let �(ζ )
be the difference between the payoffs of sending m = 0 (lying) and sending m = 1

5 Namely,

x(1, ζ )

1 − x(1, ζ )
= P (m = 1|θ = 1)

P (m = 1|θ = 0)
= αq(1 − ζ ) + (1 − α)(q + (1 − q)z)

α(1 − q)(1 − ζ ) + (1 − α)(1 − q + q z)
,

x(0, ζ )

1 − x(0, ζ )
= P (m = 0|θ = 1)

P (m = 0|θ = 0)
= α(1 − q + qζ ) + (1 − α)(1 − q)(1 − z)

α(q + (1 − q)ζ ) + (1 − α)q(1 − z)
.

6 Indeed,

v00 = α(q + (1 − q)ζ )

α(q + (1 − q)ζ ) + (1 − α)q(1 − z)
,

v11 = αq(1 − ζ )

αq(1 − ζ ) + (1 − α)(q + (1 − q)z)
,

v10 = α(1 − q)(1 − ζ )

α(1 − q)(1 − ζ ) + (1 − α)(1 − q + q z)
,

v01 = α((1 − q) + qζ )

α((1 − q) + qζ ) + (1 − α)(1 − q)(1 − z)
.
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(telling the truth):

�(ζ ) = U (1, 0) − U (1, 1) = A(ζ ) + β B(ζ )

with

A(ζ ) = x(0, ζ )(2q − x(0, ζ )) − x(1, ζ )(2q − x(1, ζ )),

B(ζ ) = q(v01(ζ ) − v11(ζ )) + (1 − q)(v00(ζ ) − v10(ζ )).

From (10.10), A(ζ ) is an increasing function in ζ . The property is intuitive: A(ζ )
is negative because it is the loss from a piece of bad advice in the period. When ζ → 1,
the advisee pays less attention to the advice (and chooses an action closer to 1

2 ). Hence,
the loss measured by A(ζ ) is smaller in absolute value (it tends to zero), and the term
A(ζ ) increases.

From (10.11), the reputation effect B(ζ ) is an increasing function in ζ . When ζ is
1, the good expert never sends the message 1 and the reputation effect is the strongest.

The monotone properties of A(ζ ) and of B(ζ ) imply that, in an equilibrium, the
differential payoff of lying, �(ζ ), is increasing in the probability of lying, ζ . Depending
on the parameters of the model, one of the following cases takes place:

• If �(1) < 0, there is a unique equilibrium strategy ζ = 0: the good expert tells
the truth.

• If �(0) > 0, there is a unique equilibrium strategy ζ = 1: the good expert always
sends the message m = 0, independently of his signal.

• If �(0) ≤ 0 ≤ �(1), there are two stable equilibrium strategies, ζ = 0 and ζ =
1. There is an equilibrium strategy ζ ∈ (0, 1), but this strategy is unstable : if ζ

increases slightly from the equilibrium value (more accurately, if the perception
of ζ by the receiver increases slightly), then the good expert should use the strategy
ζ = 1. Likewise, mutatis mutandis, if ζ is reduced from its equilibrium value.7

THE BAD EXPERT

Assume now that the stragegy of the good expert, ζ , is taken as given. The payoff
function of the bad expert is

Û (s , m) = x(m, z) + γ
(
π(s )vm1 + (1 − π(s ))vm0

)
,

where γ > 0 is a fixed parameter. The functions vmθ are obviously the same as in the
payoff of the good expert. Suppose that the bad expert has the signal s = 0. We have

�̂(z) = Û (0, 1) − Û (0, 0)

= x(1, z) − x(0, z)

+ γ
(

(1 − q)(v11(ζ ) − v01(ζ ))+ q(v10(ζ ) − v01(ζ ))
)
.

7 Morris (2001) emphasizes the equilibrium in which the good expert randomizes but does not verify
the stability of the equilibrium.
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Using footnote 6, this function is decreasing in ζ . The optimum strategy of the bad
expert is unique. If �̂(0) < 0 < �̂(1), the optimal strategy is random with z strictly
between 0 and 1. In a Nash equilibrium, the strategies ζ and z of the good and the
bad experts are determined simultaneously.

10.2 Larger Sets of States and Messages

How robust are the previous results when the set of states, �, and the set of signal
values, S, are expanded (with identical sets of messages and private signals)? A critical
issue is the dimensions of the two sets. The expert reveals the truth only because of
the evaluation, and the evaluation is based on the message and the state. If S has a
higher dimension than �, the comparison between the message, which is in a rich
set, and the state, which is in a poor set, may not allow for truthtelling incentives.

10.2.1 A Set of Signals Richer Than the Set of States

There are two states of nature, and the set of values of the expert’s private signal is
expanded to an arbitrary number of elements. Can the message be reliably equal to the
expert’s signal? As in the previous sections, we distinguish the case where the receiver
can implement a reward function of his choice from the case where the reward is
constrained to depend on the ex post reputation of the agent.

AN ARBITRARY REWARD FUNCTION

We have seen in Chapter 3 that the expert’s signal can be replaced by his belief µ (the
probability of state θ = 1 after receiving his private signal). The message sent by the
expert is a function from µ to a (possibly random) number in [0, 1]. Without loss
of generality, the receiver observes the state θ ex post. The payoff of the expert with
belief µ who sends the message m is the same as in (10.1), where v(m, θ) extends the
notation for the discrete values vmθ :

V(µ, m) = µv(m, 1) + (1 − µ)v(m, 0).

The receiver determines two functions v(m, 1) and v(m, 0) such that the expert has
an incentive to tell the truth with V(µ, µ) ≥ V(µ, m) for all possible values of µ and
all m ∈ [0, 1]. The payoff V(µ, m) is represented in Figure 10.1 as a function of the
expert’s belief µ for three different values of m. The receiver sets the values v(m, 0)
and v(m, 1) on the two vertical axes. One can see immediately that it is possible to
devise functions v(m, 0) and v(m, 1) such that for any µ, the highest schedule is the
one with m = µ. In this case, the expert sends a message identical to his belief. The
case of a continuum of beliefs is analyzed in Exercise 10.5.
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Figure 10.1 Self-selection of messages. The reward schedules depend on the message m of the
expert. The message m determines the schedule V (µ, m) = µv(m, 1) + (1 − µ)v(m, 0). The expert
with belief µ chooses the schedule with the highest reward and thus reveals his belief.

REWARD BASED ON REPUTATION

To simplify the discussion, assume only four possible values for the expert’s signal:
S = {−2, −1, 1, 2}. The message set has therefore four elements (as in the possible
financial recommendations “strong sell,” “sell,” “buy,” and “strong buy,” which are
made by Value Line). The prior probabilities of the two states are equal. If the expert
receives an uninformative signal (with probability 1 − α), the signal can take any
value with probability 1

4 , in any state. If the signal is informative, it has the monotone
likelihood-ratio property (MLRP): the likelihood ratio P (s |θ = 1)/P (s |θ = 0) is
strictly increasing8 in the signal value s . To simplify further and with no loss of
generality, we can assume that the beliefs after receiving the signals −2, −1, 1, and
2 are 1 − ρH , 1 − ρL , ρL , and ρH with 1

2 < ρL < ρH . For example, the reception of
the signal s = 1 is equivalent to the reception of good news with low precision ρL .
The information structure is equivalent to a model where an expert receives a SBS
with low or high precision and knows the precision of this signal. The message sent
by the expert is an element of S, or equivalently a message of the form (m, ρ) where
m is equal to 0 or 1 and ρ is ρL or ρH .

When an expert has a good and weak signal on θ (i.e., a signal 1), it is clear that
he predicts that the more likely state is θ = 1. The realization of the state will be seen
by the receiver before the evaluation, but the receiver will never get a message on the
precision. In the previous section, the receiver could devise an evaluation function
that penalizes heavily the expert who claims to be highly informed (with ρH ) and
makes a wrong prediction on θ . When, however, the evaluation is constrained to be a
function of the reputation, if experts tell the truth, then an expert with a signal s = 1

8 Because

P (θ = 1|s )

P (θ = 0|s )
= P (s |θ = 1)

P (s |θ = 0)

P (θ = 1)

P (θ = 0)
,

the property is equivalent to a likelihood ratio between θ = 1 and θ = 0 that is increasing in s .
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(with a precision ρL ) has an incentive to lie and claim that his precision is higher. This
is now analyzed formally.

Let vmθ be the evaluation function as defined in Section 10.1.1, i.e., the probability
that the expert has an informative signal. Assume that the expert tells the truth.
Sending the message 1 or −1 shows that the expert has a signal of precision ρL .
Likewise, sending the message 2 or −2 shows the precision to be ρH . Accordingly, the
payoff of sending the message m = 1 is

V(1, 1) = P (θ = 1|s = 1)v11 + P (θ = 0|s = 1)v10,

and the payoff of sending the message 2 is

V(1, 2) = P (θ = 1|s = 1)v21 + P (θ = 0|s = 1)v20.

The agent has an incentive to lie and send the message m = 2 if V(1, 2) > V(1, 1),
which is equivalent to

P (θ = 1|s = 1)

P (θ = 0|s = 1)
= ρL

1 − ρL
>

v10 − v20

v21 − v11
.(10.12)

An exercise shows that for given ρL < ρH , if α is sufficiently close to 0, the inequality
holds.9 For some parameters, there cannot be a truthtelling equilibrium.

PROPOSITION 10.3 If there are two states of nature and experts know the precision of
their signal (when that signal is informative), there cannot be a truthtelling equilibrium
if the probability of an informative signal is sufficiently small: if experts told the truth, a
low-precision expert would have an incentive to overstate his precision.

10.2.2 A Continuum of States and Messages

Let us expand both the set � of states of nature and the set S of the expert’s signal
values so that there is a bijection between them. The expert can choose a message in
the same set S. We can anticipate that for a suitable reward function, the expert will
tell the truth and reveal his private signal s .

Assume that both � and S are the sets of real numbers, R, that θ ∼ N (0, 1/ρθ ),
and that the signal of the expert is s = θ + εs with εs ∼ N (0, 1/ρs ). The receiver does

9 We have

v21 = ρHα

ρHα + 1−α

2

,

v11 = ρL α

ρL α + 1−α

2

, v10 = (1 − ρL )α

(1 − ρL )α + 1−α

2

, v20 = (1 − ρH )α

(1 − ρH )α + 1−α

2

.

The reader may want to explore whether the inequality (10.12) holds for any α ∈ (0, 1).
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not observe the state, but gets private information (not observed by the expert) in the
form of a signal z = θ + εz with εz ∼ N (0, 1/ρz). After the receiver gets the message
m ∈ R from the expert, he applies to the expert a reward function a − (m − z)2,
where the constant a ≥ 0 may be introduced to ensure a positive payment on average.

The expert sends a message to minimize his expected penalty C = E [(m − z)2|s ],
which is computed over the possible values of z. Because both the signal of the
expert and that of the receiver are driven by the true state of nature θ , the penalty is
equal to

C = E [(m − θ − εz)2|s ] = E [(m − θ)2|s ] + E [ε2
z ].

The optimal value of the message m satisfies the first-order condition

m = E [θ |s ].

The expert gives his unbiased estimate of θ . The receiver who gets the message updates
the distribution of θ from N (0, 1/ρθ ) to N (m, 1/(ρθ + ρs )). He then updates the
distribution of θ using his own signal z.

10.2.3 “Yes Men” for a Partially Informed Receiver

In all the models considered so far, the expert does not know the private information
of the receiver about the state. This is critical, because that information is used by the
receiver for the reward function. If the expert knew this information, he could change
his message to manipulate the reward. Of course, the expert could do this only if the
receiver did not know what the expert knows about him.

Following Prendergast (1993), the model of the previous section is extended by
assuming that the expert has an additional signal on the information of the receiver,
the “boss” for Prendergast. The expert is rewarded for a message conforming to the
information of the boss (as in the previous sections), but he has some information
on the information (opinion) of the boss. It is important that the expert’s informa-
tion on the boss is private. Otherwise, the boss could “factor out” that information
in his evaluation of the expert: (i) the expert knows something about the receiver,
(ii) the receiver does not know what the expert knows about him. There are two
private signals for the expert: a signal sθ on the true state and a signal sz on the signal
z of the receiver:

s = θ + εs ,
sz = z + η with η ∼ N (0, 1/ρη).

The signal sz provides no information to the expert that the receiver does not have.
Any impact of sz on the message of the expert cannot add to the information content
of the message (for the receiver). Because it perturbs the message of the expert without
being observed by the receiver, it adds a noise to that message.
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The signal of the receiver is the same as in Section 10.2.2, z = θ + εz. As in the
previous sections, given a reward function, the expert attempts to predict z and sends
the message

m = E [z|s , sz].

The expectation can be computed in two steps. First, one uses the signal s on θ to
update the distribution of θ from N (0, 1/ρθ ) to N

(
E [θ |s ], 1/(ρθ + ρs )

)
with

E [θ |s ] = ρs

ρθ + ρs
s .(10.13)

Given this expectation, the expert has a prior on the receiver’s signal z, which is normal
with mean E [θ |s ] and precision ρ1 such that

1

ρ1
= 1

ρz
+ 1

ρθ + ρs
.(10.14)

In the second step, the expert updates this prior with his signal sz = z + εz , where εz is
independent of the other variables. For the expert, the expected value of the receiver’s
signal z is

E [z|s , sz] = ρ1

ρ1 + ρη

E [θ |s ] + ρη

ρ1 + ρη

sz.

The message sent by the expert is equal to this expected value. Using (10.13) for
E [θ |s ], we have an expression of the form

m = αs + βsz,(10.15)

where the weights α and β are publicly known. Replacing s and sz by their expressions,
and using a standard normalization, we see that the message m is informationally
equivalent to the signal

y = m − βz

α
= θ + εs + β

α
η.

The noise of the message has two components: the first is the noise of the expert’s
signal on θ ; the second is the noise of the expert’s signal on the opinion z of the
receiver. If the receiver could observe the expert’s information on him, sz , he could
“factor out” the impact of sz on the message.

The noise η reduces the information content of the message. The variance of the
noise is

σ 2 = 1

ρη

(
β

α

)2

= ρη

(
ρθ

ρs ρz
+ 1

ρs
+ 1

ρz

)2

.(10.16)

The variance of the message’s noise increases with the precision ρη of the information
that the expert has on his boss.
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Suppose now that the receiver is more informed on θ : the precision ρz increases;
then the variance σ 2 of the expert’s message decreases in (10.16). The mechanism
is the following: the expert’s signal s on θ generates more information about the
receiver’s signal z, because the receiver’s signal has a higher correlation with θ . Hence,
the expert relies more on his signal s about the state and less on his direct information
sz about the receiver’s signal. The message of the expert is more informative about
the true state. A receiver who is better informed about θ gets better advice.

ENDOGENOUS INFORMATION

If the receiver can improve, at some cost, the precision of his private signal z = θ + εz ,
he should take two benefits into account in the cost–benefit analysis: first, the higher
precision of his private signal z; second, the higher precision of the message he gets
from the expert. The computation of the optimal solution for a given cost function is
left as an exercise.

10.3 Panel of Experts

When the advice is given by a panel of experts (a committee, a jury in a trial), members
of the panel hear the advice given by other members and influence each other. Financial
or medical advisors, economic forecasters, discussants of papers, are aware of the
predictions of others and do take them into account. We first analyze a simple model
in which each expert “speaks” once in a preestablished order. We then compare the
quality of the panel’s advice for different sequences in which members speak.

The model is the same as in Section 10.1.2. We add a sequence of experts with
independent types and signals on the state θ ∈ {0, 1}. Each expert is described as in the
previous section and has a symmetric binary signal of precision ρH with probability
α and of precision ρL otherwise, ρH > ρL . The precision is not observable directly.
The value of α is infinitesimally close to 1.

Each expert speaks once and knows the messages of the experts who have spoken
before him. Once all the experts have spoken, the receiver learns the true state and
updates his estimate of the precision of each expert. Because the evaluation of each
expert depends only on his message and the true state, each expert has no incentive
to manipulate the messages of other experts. Each expert in the panel is exactly in the
same situation as the unique expert in Section 10.1. An expert who speaks in round
t formulates his message according to the public belief µt (which depends on the
history of messages ht = {m1, . . . , mt−1}) and his own signal st . Recall that in any
round, babbling is an equilibrium. We will assume that whenever there is another
equilibrium with no babbling (herding), both the expert and the receiver (through
the evaluation function) coordinate on this equilibrium. Following the analysis in
the previous section, an expert herds if and only if the public belief is outside the
band (1 − ρ , ρ), where ρ = αρH + (1 − α)ρL is the average precision. We assume
of course that the public belief in the first period, µ1, is in the interval (1 − ρ , ρ).
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10.3.1 Reputational Herding

Given the condition 1 − ρ < µ1 < ρ, the first expert reveals his signal. Because of
the equivalence with the BHW model with a cost of investment c equal to 1

2 , the
analysis of Chapter 4 applies. Suppose that µ1 > 1

2 (state θ1 is more likely) and that
the signal of the first expert is bad: s (1) = 0. He tells the truth and sends the message
m(1) = s (1) = 0. His information is incorporated into the public belief µ2. When two
consecutive experts in the sequence have the same signal, the truthtelling condition is
not met. At that point, the babbling equilibrium is the only equilibrium. Inasmuch as
nothing is learned, the truthtelling condition is not met in the following period, and
so on. The babbling equilibrium is the only equilibrium for all subsequent periods.
Learning from experts stops. One might as well assume that all experts give the same
advice. The expression “herding” is appropriate here. Given the equivalence between
herding and babbling, the model is isomorphic to the BHW model of Chapter 4. The
probability that a herd has not occurred by round T converges to zero at an exponential
rate. Note that the behavior of the agents does not depend on the probability α of a
signal with high precision.

Scharfstein and Stein (1990), in the first analysis of herding by experts, assume
that the signals of experts are correlated in the following sense: if the signals of both
experts are informative, they are identical. Scharfstein and Stein seem to support the
following story: the first expert has no incentive to lie, and he tells the truth. The
second expert, who learns the signal of the first expert, could say, if I have a signal of
high precision, it is more likely that my signal is the same as that of the first expert
because signals of high precision are more likely to be identical. As emphasized by
Ottaviani and Sørensen (2000), such an argument is irrelevant and confuses the issue.
This case is left as an exercise for the reader. The condition for babbling is modified
when the experts’ signals are correlated. This modification is the same as in the BHW
model where agents’ actions are observed.

10.3.2 Who Should Speak First: The Strongly
or the Weakly Informed?

In a deliberating group, the order in which people voice their opinion may be critical
for the outcome. The less experienced expert often speaks first, and the old and wise10

waits and speaks last. Presumably, this rule of antiseniority (to use an expression of
Ottaviani and Sørensen, 2001)11 enables the less experienced to express their opinion
free of the influence by the more experienced. Can the antiseniority rule be validated
by the analysis of this chapter? The answer will be negative.

10 This expression is used as a picturesque convenience for the analysis.
11 The presentation in this section is complementary to that of Ottaviani and Sørensen (2001).
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Figure 10.2 Possible cases with a panel of two
experts.

Assume N experts, indexed by i ∈ {1, . . . , N}, each with a SBS of precision almost
equal to qi . (Each private signal is uninformative with arbitrarily small probability.)
By convention, qi is strictly increasing in i . (Expert N is the most informed, or the
senior.) The values of qi are publicly known, and the receiver, before receiving any
message, can choose the order in which experts speak. Each expert knows which
experts have spoken before him and their messages.

The goal of the receiver is to choose the state that is most likely once he has
listened to each expert. This objective is equivalent to the maximization of the payoff
E [θ]x − c with c = 1

2 , where the action x is taken in the set {0, 1}. Once all the
experts on the panel have spoken, the state is revealed, and each expert is evaluated
by comparing his message with the true state, as shown in Section 10.1. In round t,
expert t “speaks”: he sends a message that maximizes his expected evaluation as in
the model of Section 10.1. His message depends on the evaluation function and his
belief, which in turn depends, in a Bayesian fashion, on the public belief µt in round
t and on his private message st . We begin with the case of two experts.

THE TWO-EXPERT PANEL (N = 2)

The two experts are called Junior (with a signal of precision q1) and Senior (with a
signal of precision q2 > q1). The ex ante public belief as expressed by the LLR be-
tween the good and the bad states is denoted by λ. Let γi = log(qi/(1 − qi )).

Without loss of generality, it is assumed that λ ≥ 0 and that γ2 − γ1 > γ1. (The
case γ2 − γ1 < γ1 is similar, and it is left as an exercise.) There are four possible cases,
which depend on the value of λ, as represented in Figure 10.2:

1. Suppose first that λ is in the interval A: 0 ≤ λ < γ1. If Junior speaks first, his sig-
nal is stronger than the public belief (γ1 > λ) and he speaks the truth.12 However,
because λ + γ1 < γ2, the public belief once he has spoken is smaller (“weaker”)
than the strength of the signal of Senior. For any signal of Senior, Junior is overruled
and has no influence on the decision of the receiver. If Junior speaks after Senior,
the only equilibrium is the babbling equilibrium. Whatever his message, he is not
listened to.

2. Suppose that λ is in the intervalB: γ1 < λ < γ2.13 If Junior speaks first, he babbles.
(His signal is weaker than the public belief.) If Junior speaks second, he also babbles

12 Recall that if there is a truthtelling equilibrium, this equilibrium is chosen by the expert and the
receiver.

13 The case of λ = γ1 can be ignored because its ex ante probability is zero.



230 Words

(as can be verified). Junior is irrelevant. In region B, the receiver never gets to
observe Junior’s signal, whatever the rule.

3. Suppose that λ is in the interval C. If Junior speaks first, he babbles, as in region
B. Suppose that Senior (who does not babble) speaks first a message s2 = 0. The
public belief LLR for Junior is λ − γ2 < 0. Because λ − γ2 − γ1 < 0 < λ − γ2 +
γ1, Junior reveals his signal. Junior has an influence on the decision of the receiver.
The seniority rule strictly dominates the antiseniority rule.

4. In region D, all experts babble, whatever the order in which they speak, and the
panel can be ignored.

We have proven the following result.

PROPOSITION 10.4 (Dominance of the seniority rule) Assume that a receiver
chooses x ∈ {0, 1} to maximize the payoff function E [θ]x − 1

2 , with θ ∈ {0, 1}, and
gets advice from a junior and a senior expert who have private signals with precision
q1 and q2 > q1, respectively. For any prior µ on state θ = 1, the seniority rule (where
the senior agent with higher precision speaks first) dominates the antiseniority rule. For
some values of µ ∈ (β1, β2), where 1

2 < β1 < β2 < 1, the payoff with the seniority rule
is strictly higher than that with the antiseniority rule. For other values of µ, both rules
generate the same outcome.

THE THREE-EXPERT PANEL (N = 3)

The three experts have each a SBS, and they are ranked in increasing order of precision
q1 < q2 < q3. The receiver, after listening to the panel, chooses x ∈ {0, 1} to maximize
E [θ]x − 1

2 . From Proposition 10.4, once an expert has spoken, the other two should
speak according to the seniority rule, in decreasing order of precision. There are only
three orders (among the possible six) to consider: seniority (3, 2, 1), and (1, 3, 2),
(2, 3, 1). The payoffs of the three rules are represented14 in Figure 10.3.

The lowest straight line is the payoff when the panel is not consulted. The highest
line is the ex ante payoff when the receiver gets perfect information and observes the
true state. We can make the following remarks:

1. No rule dominates the other two for all values of the prior µ.
2. The choice of the rule does not affect the payoff by a significant amount.
3. The addition of the experts with lower precision to the panel yields a higher payoff

than that from consulting the most informed expert (with q = 0.75), but the
improvement is not very significant.

4. The reader may compare the two rules. One may conjecture that when the two
states are equally likely ex ante (µ = 1

2 ), the seniority rule (3, 2, 1) is dominated
by the other two rules.

14 Other numerical values generate similar figures.
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Figure 10.3 Payoff with a three-member panel. Experts’ precisions: q1 = 0.65, q2 = 0.7, q3 =
0.75. Among the three graphs that are close to each other, the solid graph corresponds to the
experts’ order (1, 3, 2); the dashed graph to the order (2, 3, 1); and the graph with circles to
the order (3, 2, 1). The cost of the investment is 0.5. The public belief µ is represented on the
horizontal axis.

10.3.3 The Receiver Does Not Make the Evaluation

An expert cares about his reputation for future consultations. In general, the receiver
of the expert’s advice does not have the means to control the evaluation of the expert
and to tailor a reward that mimics his own payoff. It is assumed that the valuation by
others is such that an expert tells the truth if and only if his signal is stronger than the
public belief, and that the receiver’s objective function is E [θ]x − 0.75.

A numerical example with a panel of two experts is represented in Figure 10.4.
Consider the case where the public belief µ is equal to 0.6. Under the antiseniority
rule (1, 2), the payoff of the receiver is equal to 0, so it is strictly smaller than under the
seniority rule: the receiver does not invest, whatever the advice from the two experts.
Under the antiseniority rule, Junior does not babble. If he has a good signal, he advises
to invest. Once the advice is given, the public belief increases from 0.6 to 0.7358 (by
use of Bayes’s rule). With that public belief, Senior babbles (his precision is only
0.7). The public belief is unchanged and stays lower than the cost of the investment,
0.75. The investment is not undertaken. Any other combinations of private signals
(with the same antiseniority order) yield the same outcome.

The interesting part of the story is that if Junior does not speak, the receiver
is better off. In that case, Senior does not babble, and if he has a good signal, the
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Figure 10.4 Payoff with a high cost of investment. The dashed graph represents the antise-
niority rule (1, 2); the solid graph represents the seniority rule (2, 1). Precisions of the experts:
q1 = 0.65, q2 = 0.7. The cost of the investment is 0.75.

receiver’s belief increases to 0.777 and the investment takes place. The investment can
be undertaken only with the credible approval of Senior, but that credibility is ruined
whenever Junior speaks.

The numerical results in this section indicate that the learning from others in a
panel of experts can reduce significantly the effectiveness of the consultation. This
property is recurrent in the models of learning from others in Chapters 4 and 5.

10.4 Bibliographical Notes

In Section 10.1.2, the case where experts know their precision corresponds to the
model of Trueman (1994). This model is presented in Exercise 10.6. Proposition 10.2
applies.

In Section 10.1.3, the fundamental paper on manipulative experts is by Crawford
and Sobel (1982). They assume that θ is in an interval of real numbers and that
the expert has a systematic bias toward a higher (or lower) level of action by the
receiver. They show that the message of the expert takes discrete values: the expert
lies, but not too much. Very nice papers about the transmission of information, which
unfortunately cannot be discussed here, have been written by Benabou and Laroque
(1992) and Brandenburger and Polak (1996). Zwiebel (1995) analyzes how agents
choose similar actions in order to be able to be evaluated by a manager.

In Section 10.2, Ottaviani and Sørensen (1999) analyze an extension of the model
in which the sets of values for θ , s , and m are the interval [−1, 1]. An expert is endowed
with a type t and a signal s with a density f (s , t, θ) = (1 + s t θ)/2. (A higher type
t means a higher precision of the signal s .) They show that there is no truthtelling
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equilibrium. Glazer and Rubinstein (1996) propose a mechanism to prevent herding
between referees.

In a remarkable study, Welch (2000) develops an econometric methodology to
estimate imitation when choices are discrete.15 He analyzes how the probabilities of
analysts’ revisions of the recommendations (which take place in a set of five values
from “strong buy” to “strong sell”) depend on the established consensus. His results
indicate that some herding takes place, especially in a bull market. A next step in
this research could be the construction of a structural model with both an exogenous
process of information diffusion and learning from others, and the analysis of its
empirical properties. (See also Grinblatt, Titman, and Wermers, 1995.)

EXERCISES

EXERCISE 10.1 Imperfect verification of the expert’s message

Consider the model of Section 10.1.1. The receiver does not observe the state ex post,
but has a private symmetric binary signal y with precision q ∈ ( 1

2 , 1]. The timing of
that signal is not important if its value is not observed by the expert.

1. Using the notation of Section 10.1.1 for the reward function vmy , determine the
payoff function V(s , m).

2. Establish the condition for truthtelling by the expert.
3. Show that if the reward function is such that v00 = v11 and v10 = v01, the condition

for truthtelling is independent of q ∈ ( 1
2 , 1]. Provide an intuitive interpretation.

EXERCISE 10.2 The value of reputation

Following Morris (2001), assume that an expert gives advice in a second period (with a
new signal of the same precision) to a receiver who has a payoff function−E [(x − θ)2]
and that the expert’s payoff is the same as that of the receiver. Both states are equally
likely.

1. Determine the action taken by the receiver in the next period as a function of the
ex post reputation of the expert, β.

2. Determine the value of β for the expert.

EXERCISE 10.3 Computation of the reputation function

In the model of Section 10.1.2, assume that with probability α, the agent has a binary
signal of precision ρ > 1

2 , and with probability 1 − α a binary signal of precision 1
2

(which is not informative). Determine the algebraic expression of vsθ in (10.6). Show
(10.7).

15 The estimation software is downloadable from his web site. The data come from Zacks’s Historical
Recommendations Database (which is used by the Wall Street Journal to review the major brokerage
houses).
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EXERCISE 10.4 The equilibrium with partial truth revelation of Proposition 10.1

Determine the evaluation function vmθ in the equilibrium with a random strategy of
Proposition 10.1. Show that the equilibrium in unstable in the sense defined in the
text.

EXERCISE 10.5 A continuum of beliefs (Section 10.2.1)

Assume that the private belief of the agent takes a value in the bounded interval [µ, µ],
0 < µ < µ < 1. Set v(m, 0) = 1 − m, and replace v(m, 1) by v(m).

1. Determine a necessary condition on the derivative v ′(m) such that the expert
reveals his belief µ (and sends the message µ for any µ ∈ [µ, µ]).

2. Determine the family of admissible functions.
3. Is the condition in question 1 sufficient?

EXERCISE 10.6 The model of Trueman (1994)

Assume there are four states of nature {θ−2, θ−1, θ1, θ2} and that an expert has a
signal s with values in {−2, −1, 1, 2} with the probabilities reported in the table
below. k is nature’s probability that θ = 1, or that θ = −1. The precision of the signal
is determined by q , which is equal to ρH with probability α and to ρL otherwise,
ρL < ρH . The expert knows his type. Show that the model is isomorphic to the one
in Section 10.1.2 where the expert knows his type.

Expert’s Probability
Nature’s
Prob. State\Signal s = 2 s = 1 s = −1 s = −2

1 − k θ = 2 q 1 − q 0 0

k θ = 1 1 − q q 0 0

k θ = −1 0 0 q 1 − q

1 − k θ = −2 0 0 1 − q q

EXERCISE 10.7 The value of reputation (Section 10.1.3)

Let α be the reputation of the expert (probability of being of the good type). Suppose
there is only one period and the expert does not care about his reputation at the end
of the period; he gives advice such that the receiver takes an action that maximizes
the expert’s payoff.

1. Determine the action of the receiver as a function of the message m and the
reputation α.

2. Compute the ex ante expected payoff of the good expert, VG (α), and of the bad ex-
pert, VB (α), at the beginning of the period, before he gets his private information.
Show that both functions are strictly increasing in α.
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11 Guessing to Coordinate

Shall we dance?

Actions bear externalities, which may generate strategic substitutability

(e.g., entering a new competitive market) or strategic complementarity

(e.g., speculating against a currency with a fixed exchange rate). Each

agent has to choose his strategy and guess what others do at the same

time.

Under some conditions, some strategies are strictly dominated and

thus ruled out. The iterated elimination of dominated strategies may

converge to a unique strategy that defines a strongly rational expecta-

tions equilibrium (SREE). When the process is applied under strategic

substitutabilities, it strengthens the Nash equilibrium. When there are

strategic complementarities and multiple Nash equilibria under perfect

information, the game is extended to include imperfect information, and

there may be a unique equilibrium in the extended game. Applications

to speculative attacks against a fixed exchange rate are discussed.

In the previous chapters, actions generate an externality because they convey valuable
information about a state of nature that affects the actions and the payoff of each
agent. In this and the following two chapters, actions generate externalities per se.
An externality may affect the level of payoff, and this may be important for social
welfare, but such an effect is not the issue here. Our focus is on the incentive of agents
to act together or not. This incentive depends on the marginal payoff of the activity
or the differential payoffs between discrete choices. Theory considers any type of
externalities, but in practice, most of them fall in two broad categories: the incentive
of an agent to act is either dampened or stimulated by the average level of activity of
other agents.

For example, the profitability of the entry into a new market depends on the
entry decisions of others. More entries reduce the incentive of any agent to enter:

237
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there is strategic substitutability. In a speculative attack against a currency with a
fixed exchange rate, more entry raises the probability of a devaluation and thus
the incentive to speculate and earn a capital gain: there is strategic complemen-
tarity.

Learning about the actions of others is a critical issue when these actions affect
one’s payoff. The interaction between actions and learning in a multiperiod setting
will be the focus of the next two chapters. We begin with the one-period setting. There
will be no learning but a lot of guessing.

In the guessing game, agents guess what others guess what others guess, and so
on. This seemingly intractable problem has been analyzed indirectly in the literature
by the reverse approach: agents rule out some strategies, hence can rule out the re-
sponses to these strategies, and so on. The two cases of strategic substitutability and
complementarity have been treated separately. However, they have a similar structure
in that in both cases the reaction to the actions of others is monotone: it is decreasing
in strategic substitutability or increasing in strategic complementarity. Both cases are
analyzed in this chapter.

An overview of the method of iterated elimination of dominated strategies is
presented in the next section. In the case of strategic substitutability, the method
enables agents to guess that they all play the Nash equilibrium strategy, under some
condition. The condition is identical to the stability of the cobweb in the example of
hog cycle with myopic agents. In that example, prices and quantities are realized in
real time. In the present framework, they take place in notional time, in a process that
has been called eductive.

The eductive method can be applied to strategic complementarities when there
is a unique Nash equilibrium, but it fails in a situation of multiple equilibria, which
is the most interesting one. Fortunately, it is rescued by the introduction of some
uncertainty and the removal of the assumption of common knowledge, a plausible
assumption. Agents with a low cost of action (or a high signal about the productivity of
investment) invest anyway. Furthermore, because agents are fairly similar, they guess
that others should invest also. This guess is an incentive for agents with a higher cost to
invest, and so on. A process of contagion – in notional time but not in real time – takes
place, which induces agents with a relatively low cost to invest. Likewise, agents at the
top range of the spectrum of costs do not invest, and by contagion the same applies for
agents next to the top range, and so on. Under some conditions, this iterative method
reduces the set of strategies to one threshold value: agents with a cost below this value
do not invest; above the value they invest. This remarkable approach, which is due to
Carlsson and van Damme (1993a, 1993b), solves the problem of multiple equilibria
with strategic uncertainty by introducing some structural uncertainty (which can be
very small). Section 11.4 presents an application to the case of speculative attacks
against a currency with a fixed exchange rate.
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11.1 Overview

11.1.1 The Coordination of Simultaneous Actions

To simplify the analysis, the externality is modeled by assuming that each agent
has the same payoff function1 u(x, X), where the agent’s action x is taken in a set
� that is a subset of the real numbers,2 and the second argument, X , is the average
of the actions of others. “Others” may be a finite number of agents or a continuum.
The second argument generates the payoff externality. We will distinguish strategic
substitutability (u12 < 0) from strategic complementarity (u12 > 0). In the first case,
a higher level of activity by others reduces the marginal payoff of action and therefore
the level of the action; in the second case, a higher level of activity by others stimulates
the incentive to act. Strategic substitutability arises in the market for an agricultural
product: a higher aggregate supply X lowers the price of the output and the individ-
ual’s payoff, as in the model of Muth (1961). Strategic complementarity occurs when
the level of aggregate investment increases the marginal return of investment for any
individual firm, as in the structural model of Kiyotaki (1988). Other examples of
strategic complementarities are found in speculative attacks against currencies with
fixed exchange rates, bank runs, and the adoption of standards.3

Throughout this chapter, there is only one period, and agents can choose an action
once. Suppose first that when each agent chooses his action, he knows the strategies of
others. The optimal choice of an agent is a response to the average level of activity X ,
which, by an abuse of notation, will be identified with the aggregate level of activity.
This optimal response defines the reaction function R(X), which is determined by
the first-order condition u1(R(X), X) = 0. The slope of the reaction function is
u12/(−u11). Because u11 < 0 by the second-order condition, the reaction function is
decreasing (increasing) when the payoff function u exhibits strategic substitutability
(complementarity). Following Cooper and John (1988), the two cases are illustrated
in Figure 11.1.

NASH EQUILIBRIA AND RATIONAL-EXPECTATIONS EQUILIBRIA

In a one-period game with interactions between agents, the Nash equilibrium is the
natural equilibrium concept. Because X is the average of the agents’ actions, in a

1 The function u has continuous derivatives up to the second order and u11 < 0.
2 The effect of externalities is related to some ordering: if others act “more,” the payoff of an agent

is affected (positively or negatively). In many cases, the level of activity can be represented by a
real number, with a natural ordering. A generalization of the theory requires the use of lattices.
An excellent introduction is given by Cooper (1999). See also Milgrom and Roberts (1990), Vives
(1990).

3 Many examples from day-to-day life are described in the delightful book by Schelling (1978), Chap-
ter 3.
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Figure 11.1 Reaction functions.

symmetric Nash equilibrium, x = X = R(X). Such an equilibrium is represented
by the intersection of the graph of R(X) with the first diagonal. In Figure 11.1, one
can see that (i) if there is strategic substitutability, a Nash equilibrium is unique;
(ii) if there is strong strategic complementarity (i.e., the slope of the reaction func-
tion, −u12/u11, is sufficiently large over some domain), there are multiple equilibria
(Cooper, 1999).

Those diagrams are convenient for exposition, and they apply when agents are sure
about each others’ choices. However, because agents make choices simultaneously,
they cannot actually be sure about each others’ choices, and each needs to have
expectations about the behavior of the others. The expectations are not about the
structure of the game and the payoff functions of other agents. These features are
common knowledge. The expectations are about the strategies of others. There is no
structural uncertainty, but there is strategic uncertainty.

In a Nash equilibrium, each agent assumes that others play the equilibrium strategy
(which may be random). Agents have point expectations on the strategies of others,
and these expectations are correct. The Nash equilibrium is equivalent to a rational-
expectations equilibrium (REE). Following Guesnerie (1992), we identify rational
expectations and Nash equilibria.4

DEFINITION 11.1 (Rational-expectations equilibrium) A REE is defined by a level
of activity x∗ for all agents such that

u1(x∗, x∗) = 0.

RATIONALIZABILITY AND THE COORDINATION OF ACTIONS

The problem of the coordination of strategies is about how to think about how others
think about how others think, and so on. This Gordian knot has been cut by Bernheim

4 The REE here is a perfect foresight equilibrium in Guesnerie (1992).
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(1984) and Pearce (1984), who follow a different path of thoughts: Some strategies
are ruled out by every agent because they are strictly dominated, i.e., they generate
a strictly lower payoff under any strategies of all agents. All agents know that these
strategies are strictly dominated, and it is therefore common knowlege that they are
not played. The set of admissible strategies is thus reduced in the common knowledge.
We can now iterate the procedure to rule out some other strategies in this reduced set.
At each step k of the process, it is common knowledge that the set of strategies that
is used by all players is reduced to the set J k . Each set J k contains the next one like a
Russian doll. The limit of the nested sequence of sets (which is the intersection of all
the J k), will be called the set of rationalizable strategies. When that limit is reduced to a
unique strategy, following Guesnerie (1992), that strategy defines a strongly rational-
expectations equilibrium (SREE).

11.1.2 Rationalizable Strategies and Iterative Elimination

Assume the action set is the set of positive real numbers as represented in Figure 11.2,
and the reaction function is R(X). Consider first the case of strategic substitutability.
Any x > R(X) is too high, and a reduction of x yields a higher payoff. The gradient
of the payoff is represented by an arrow in the figure.

Suppose that because of some yet unspecified argument, X ≥ a for some number
a . The region {X < a} is thus eliminated. One sees immediately that any strategy
x > R(a) yields a payoff that is lower than that of R(a). It is dominated by R(a).

LEMMA 11.1 Assume strategic substitutability (u12 < 0). If X ≥ a for some number a,
then any strategy x > R(a) is strictly dominated. If X ≤ b for some number b, then any
strategy x < R(b) is strictly dominated.

x

0

R (a)

X

R(X)

a

x

0 Xa

R(a)
R (X )

Strategic substitutability Strategic complementarity

Figure 11.2 Regions of dominance. A thick horizontal segment represents values of X that are
eliminated. As a consequence, a region of x is strictly dominated, as represented by a thick verti-
cal segment.
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Figure 11.3 Iterative elimination of dominated strategies.

Under strategic substitutability, a low level of aggregate activity elicits a high
response and vice versa. Therefore, if a low level of aggregate activity X is ruled out,
then any strategy that is above some level is dominated and ruled out.

The case with strategic complementarities is represented in the right panel of
Figure 11.2. The optimal response to a low (high) level of aggregate activity is a low
(high) response. The elimination of low values for X induces the elimination of low
values for x . An exercise proves the next result.

LEMMA 11.2 Assume strategic complementarity (u12 > 0). If X ≥ a for some number
a, then any strategy x < R(a) is strictly dominated. If X ≤ b for some number b, then
any strategy x > R(b) is strictly dominated.

ITERATED ELIMINATION OF DOMINATED STRATEGIES

The previous lemmata are now applied iteratively. Consider the case of strategic
substitutability (on the left of Figure 11.3). Assume R(0) exists and is finite. The
procedure does not work if R(0) does not exist. Let x0 = 0. Because no agent chooses
x < x0 = 0, the average activity X is also nonnegative. By Lemma 11.2, any strategy
x > R(x0) = x1 is strictly dominated. We eliminate the interval x > x1 on the vertical
axis. Then we use the symmetry with respect to the first diagonal in order to eliminate
the region X > x1 on the horizontal axis. Likewise, we can eliminate the region
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X < x2 = R(x1). The procedure is iterated an arbitrary number of times, as illustrated
in the left panel of Figure 11.3.

The sequence of points xk = R(xk−1) defines a cobweb pattern. If the cobweb con-
verges, it converges to the Nash equilibrium strategy xE . Any strategy different from
xE is eliminated at some finite stage of the procedure. This motivates the following
definition.

DEFINITION 11.2 (Iterative dominance and rationalizability) Assume all agents
have the same set of strategies J ⊂ R. A strategy x ∈ J is iteratively dominated if there is
a finite sequence of increasing sets I0 = ∅, . . . , IN, x ∈ IN, such that strategies in Ik are
strictly dominated when all agents play in the subset of strategies J − Ik−1. A strategy is
rationalizable if it is not iteratively dominated.

The sets Ik of the eliminated strategies are defined in the left panel of Fig-
ure 11.3 by I0 = ∅, I1 = (x1, ∞), I2k = [0, x2k) ∪ (x2k−1, ∞), and I2k+1 = I2k ∪
(x2k+1, x2k−1].

The case of mild strategic complementarity is represented in the right panel of
Figure 11.3. By assumption, the set of feasible actions is the finite interval [0, B], and
the payoff function u is such that the reaction function is the one depicted in the
figure. The procedure of iterated elimination is in two steps: first, a sequence of sets
of iteratively dominated strategies is constructed on the left of the Nash equilibrium;
second, the same procedure is applied on the right. In both steps, the iterations
are determined by a staircase, which is the equivalent of the cobweb. The sets Ik of
Definition 11.2 are defined by Ik = [0, x L

k ) ∪ (x H
k , B].

STRONGLY RATIONALIZABLE EQUILIBRIUM

DEFINITION 11.3 (Strongly rational-expectations equilibrium) The strategy x∗

defines a SREE if and only if any strategy x �= x∗ is iteratively dominated.

From the previous analysis, one has immediately the following property.

THEOREM 11.1 Assume the set of actions is the interval [0, B], R(0) > 0 is finite, and
R(B) < B. A sufficient condition for the existence of a SREE is that −1 < R′(x) < 1 for
0 < x < B. A necessary condition for the existence of a SREE is that −1 < R′(x∗) < 1
at the Nash equilibrium x∗.

The sufficiency condition states that the reaction of any agent to the actions of
others should not be too large. One can see in Figure 11.3 that the sufficient condition
can be weakened in some special cases.
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EDUCTIVE STABILITY

When the iterated elimination converges to a single strategy, the SREE, it is sufficient to
keep track of the sequence of reactions xk+1 = R(xk). The convergence of the process is
isomorphic to the convergence of myopic agents who at each stage react to the strategy
in the previous stage. There is an essential difference, however. In the context of myopic
agents, the process takes place in real time with one stage per period and a “real” action
in each period. In the context of the one-period model where agents think about others
who think about others, . . . , the process takes place simultaneously in the heads of all
agents, in notional time. All actions are notional before the real ones take place.

The method of thinking about others presented above has been called eductive
by Guesnerie (1992), following Binmore (1987); learning from the observation of
others has been called deductive. The stability of the process (i.e., of the sequence
xk+1 = R(xk) in notional time) is called eductive stability. A REE that is eductively
stable is a SREE.

11.2 Eductive Stability in a Standard Market

THE EQUIVALENCE BETWEEN STRATEGIES AND PRICE EXPECTATIONS

Consider a large number of small independent farmers5 who seed wheat in the spring
and sell their crop in a competitive market in the summer (Muth, 1961). The market
price P is determined by the equality between the total supply Q and the demand
D(P ). Each farmer (agent) i is a pricetaker. His cost of production is quadratic
and equal to x2

i /(2α), where α is a parameter. The critical property is that an agent
commits to a production xi without observing the actions of others. He relies on his
expectation about the market price in the summer.

The farmer’s supply maximizes his expected profit: it is such that his marginal cost,
xi/α, is equal to his marginal revenue, which is his price expectation E i [P ]. Because
xi = αE i [P ], there is an equivalence between the strategies xi and the price expecta-
tions E i [P ]. The coordination of the supplies is equivalent to the coordination of the
expectations.6 This setting is a well-known example of strategic substitutability: the
marginal return of production to a farmer is inversely related to the level of activities
of others; if others raise their production, the price drops and the marginal return falls.

11.2.1 The Model and Its Equilibrium

Following Muth (1961), there is a continuum7 of farmers indexed by i , with total mass
M, uniformly distributed on [0, M]. The quadratic cost of production generates a
linear supply function. Let X be the supply per farmer. The total supply is given by∫

xi di = M X.

5 The same structure applies for other markets (for hogs, lawyers, etc.).
6 These points were highlighted in the context of the agricultural model of Muth by Evans (1983) in

his first of numerous papers on the topic, and by Bernheim in his dissertation (published in his 1984
article).

7 The continuum is the limit case for N agents, each with a mass normalized to 1/N.
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The demand for wheat is given by a function D(P ), which is known to all agents,
with D′ < 0. The equilibrium price is

P = D−1

(∫
xi di

)
= D−1(M X).

Each agent makes his decision as a function of his expected price. However, because
the price depends on the average of all actions, we formulate the game in terms of
strategies defined by production levels. Substituting for the expected price, we find
that the payoff of farmer i is

U i = E i

[
ui (xi , X)

]
with ui (xi , X) = D−1(M X)xi − x2

i

2α
.(11.1)

The strategic substitutability between the supply xi of agent i and the average supply
X of others follows from

∂2ui

∂xi ∂ X
= 1

D′
(

D−1(X)
) < 0.

The marginal return of xi is inversely related to the total supply X . The model of
an agricultural market is a special case of the canonical form in Section 11.1.1. To
simplify further, assume the demand function is linear: D = a − β P . The reaction
function is

R(X) = α
a − M X

β
.(11.2)

The analysis of Section 11.1.1 may be applied in terms of quantities and prices, because
of the equivalence between the price expectations and the quantities supplied by the
agents. Such a representation is given in Figure 11.4.

The total quantity supplied is represented on the horizontal axis. This quantity
is also the supply per agent. The price cannot be greater than P H

1 (for which the
demand is zero). For any agent, a supply strictly greater than αP H

1 would entail a
marginal cost above the highest possible price and is therefore strictly dominated. By
integration, the total supply must be smaller than x H

1 = αP H
1 . The price is therefore

at least equal to its value for that maximum, P L
1 = D−1(x H

1 ). In the next step, the
“minimum price” P L

1 determines a minimum supply αP L
1 , and so on.

The boundaries of the regions that are eliminated are determined by the cobweb,
and the condition for convergence corresponds to the stability of the cobweb, which
holds if the supply schedule has a smaller price derivative than the demand. As an
application of Theorem 11.1 to equation (11.2), the REE is a SREE if and only if
αM < β. Because strong rationalizability and eductive stability of the Nash equilib-
rium are equivalent, we can state the next result.

PROPOSITION 11.1 The necessary and sufficient condition for the eductive stability
of the Nash equilibrium (the existence of the SREE) in the linear model of supply and
demand is αM < β.
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Figure 11.4 The SREE in an agricultural market.

As in the cobweb model in real time, eductive stability holds if the supply is not
too elastic with respect to the demand. If the mass of farmers is larger, the reaction to
expectations is amplified: given a fixed technology for each farm, the supply is more
elastic and the condition for eductive stability is less likely to be met.

Let us review again the main features of the method in the context of a standard
market where the supply is determined before the opening of the market. Each agent
knows that the activity of others is not below some minimal value. Because of the
inverse relation between the activity of others and one’s own activity, an agent does
not supply more than his optimal response to that minimal value. Hence there is an
upper bound on the activity of each agent and therefore on the total activity. This
upper bound in turn generates a lower bound on the level of activity, and so on.
The procedure bounces between the ranges of low and high activities. Each upward
extension of the range of the low activity leads to a downward extension of the range
of the high activity and reciprocally. The boundaries of the eliminated regions follow
the sequence xt = R(xt−1). The success of the method depends on the convergence of
the sequence to the fixed point of the reaction function. Convergence requires agents
not to react too much to the actions of others.

The eductive stability is more likely to hold if the farmers are put in a sequence
where each farmer takes an irreversible action once and observes the actions of the
previous farmers in the sequence. In that case, the supply elasticity at each stage is
small and the stability is reinforced. This setting is analyzed now.

11.2.2 Supply Decisions in a Sequence

Assume the good is supplied in two periods. In the first, there is a mass 1 − γ of iden-
tical agents, each with the same cost function x2/(2α1), as in the previous section.
These agents make a final and simultaneous decision about their production levels.
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They know the structure of the subgame that begins at the end of the first period. In
the second period, a mass γ of identical agents with the same individual cost func-
tion x2/(2α2) make a supply decision. These agents know the total supply of the first
period, but they do not know the supplies of others. The total supply of all agents is
brought to the market after the second period and sold at the equilibrium price P with
D(P ) = a − β P . For example, the first type of agents seeds wheat in the winter, and
the second in the spring. Agents in the second period observe the actions of the first
period, and agents in the first period know the payoff structure of the second-period
agents.

Let x1 and x2 be the supplies of the good per agent in the first and the second
period. In dynamic programming fashion, we begin with second-period agents. They
know the total supply at the end of the first period, (1 − γ )x1, and face the net demand
D(P ) = a − (1 − γ )x1 − β P . This demand has the same slope as in the one-period
model of the previous section. Because the second-period total supply has a price
derivative equal to γα2, the condition for a SREE in the subgame for the second
period is γα2 < β (Proposition 11.1). If this condition is not met, there is no point
in analyzing the game in the first period. We therefore assume that α2 < β/γ . Under
this condition, the second-period subgame has a SREE, and the total supply function
in the second period is γα2 P .

Consider now the agents in the first period, where the structure of the second-
period subgame is common knowledge. This knowledge is equivalent to the demand
D(P ) = a − (β + γα2)P . From Proposition 11.1, the game in the first period has
a SREE if and only if (1 − γ )α1 < β + γα2. Combining the conditions in the two
periods, the game has a SREE if and only if

(1 − γ )α1 < β + γα2 and α2 < β/γ.

To simplify the exposition, assume that all agents have the same cost function and
α1 = α2 = α. If the mass of the second period agents γ is at least equal to 1

2 , the first
condition (for the first period) is not binding. The condition for a SREE reduces to
α < β/γ . It is obviously weaker than the condition in the one-period setting. When
agents are divided into two groups and the second group observes the decision of the
first group, the equilibrium is more stable in the eductive sense. (The SREE condition
on the supply parameter α is weaker.)

We can generalize to any number T of periods. Assume all agents have the same
individual cost function x2/(2α), a mass 1/T of agents make their supply decision
simultaneously in period t (t = 1, . . . , T), and agents in period t know the supply
of agents in the previous periods and anticipate the subgames in periods after t. The
condition for the SREE in the last period is α < βT . Assuming this condition to hold,
the condition for the SREE in period T − 1 is α/T < β + α/T . It is not binding.
Agents in period T − 2 face a net demand a − β P − 2αP/T . The condition for the
SREE in that period’s subgame isα/T < β + 2α/T , which is weaker than the previous
one and therefore not binding. Likewise, the condition for any period t < T − 2 is
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not binding. Therefore the condition for the SREE is

α < βT.

For any parameters (α, β), there is a number T such that if the number of periods in
the sequential model is greater than T , the SREE exists.

When agents are divided into a sequence of groups,8 the elasticity of supply of
each group becomes smaller than the elasticity of demand of the market, which is the
condition for eductive stability.

11.2.3 Discussion

Eductive stability has been considered by Guesnerie and others as a criterion of sta-
bility of a market. Such an association between eductive stability and stability fails
to characterize the behavior of a market when the condition for eductive stability
is not met. It is probably more accurate to state that under some conditions, the
eductive method provides a strong rationale for expectations to coordinate on a Nash
equilibrium.

The condition for eductive stability of a market can be reduced to a simple criterion,
which should be highlighted: the Nash equilibrium is a SREE if the supply is inelastic
compared with the demand. Any effect that reduces or increases the elasticity of the
supply expands or shrinks the set of parameters for which the eductive process is
stable. Three such effects are discussed now.

1. We saw in Section 11.2.2 that the market is more stable in the eductive sense
if suppliers are divided into groups where group k observes the (irreversible)
decisions by all preceding groups i < k. Agents in each group make a simultaneous
decision, but the supply elasticity of a given group is smaller than the elasticity of
all suppliers. Hence, it is not too surprising that eductive stability holds for larger
sets of parameters of the demand and of the individual costs.

2. Suppose that suppliers are risk-averse (and keep the same cost function x2/(2α)).
Their supply elasticity is smaller than when they are risk-neutral. Again, eductive
stability holds for a larger set of the parameters (α, β).

3. Consider now the introduction of a futures market. Guesnerie and Rochet (1993)
argue that such a market is destabilizing. This statement is surprising in that the
additional market should convey more information and facilitate the coordination
of expectations between suppliers. Again, if we want to understand the meaning of
the statement, we have to disentangle the mechanism. To simplify the exposition,
Guesnerie and Rochet replace the previous farmers by agents who store a good
between two periods. There are exogenous and random supplies of the good in
the two periods.

8 One could take a unique agent at each stage, but the assumption of a group of agents simplifies the
computation of the solution, because agents are pricetakers.
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At first, there are agents who can store the good. The storage decision is made
before the opening of the market in the first period (like the supply decision of the
farmers). The agents are risk-averse and thus affected by the uncertain supply in the
second period.

In the second step, a futures market is added, with new agents who can trade only
in it. These agents have no storage facility and have the same payoff function as the
agents of the first type who can store the good, with the same risk aversion. The agents
with a storage facility can also trade in the futures market. The critical mechanism
is that the additional agents are able to provide some insurance to the agents of the
first type. It is not surprising then that the storage is more elastic with respect to the
anticipated price and that the market is less stable.

11.3 Strategic Complementarities

When there are strategic complementarities, the method of iterated elimination of
dominated strategies is effective if there is a unique Nash equilibrium, as in the right
panel of Figure 11.3. The most interesting situation may be that of multiple equilibria.
They arise if the strategic complementarities are strong, i.e., the reaction function is
sufficiently steep to generate multiple intersections9 with the 45◦ line. In the example
of Figure 11.5, the set of rationalizable strategies is an interval.10 There is no SREE.

The argument in this section can be summarized in terms of Figures 11.5 and 11.3.
Assume that when agents have perfect information on the parameters of the model,
there are multiple equilibria as in Figure 11.5. The assumption of perfect information
is an expository device and is not plausible. In most conceivable situations, agents
have imperfect private information on the parameters of the model. Under suitable
assumptions, the introduction of imperfect information (even with a vanishingly
small noise) generates a function, called the cumulative value function, which is
similar to the reaction function in the right panel of Figure 11.3. Imperfect information
generates a SREE.

In order to simplify the exposition, we assume in the rest of the chapter that agents
take a zero–one action. For example, the investment size may be fixed, or if the agent
invests, he chooses the highest possible level against a constraint (e.g., the withdrawal
of the entire balance in a bank run, the speculation against a currency up to a liquidity
constraint). The set of actions is reduced to two elements: � = {0, 1}. We begin with
a simple case where the investment costs of agents are distributed according to a
Gaussian distribution.

9 For a given concavity of the individual payoff, measured by u11, the slope R′ = −u12/u11 increases
with the degree of strategic complementarity as measured by the cross derivative u12.

10 The pattern of Figure 11.5 is general. Milgrom and Roberts (1990) show in a more general setting
(where strategies are taken in a lattice) that the set of rationalizable strategies has a lower and an
upper bound that are Nash equilibria (Theorem 5). A lattice is a set where each pair of elements
has a lower and an upper bound in the set.
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Figure 11.5 Multiple equilibria with strategic complementarities. When there are multiple
Nash equilibria, the rationalizable strategies form an interval. There is no SREE.

11.3.1 The Gaussian Distribution of Investment Costs

As in all models of coordination with strategic complementarities, we first assume
common knowledge on the structure of the model. This step is required to present
the problem.

There is a continuum of agents with total mass equal to one. Each agent has a
cost of investment, c , which is drawn from a Gaussian distribution N (θ , σ 2

c ) with
θ = 0.5. The payoff of an agent is equal to AX − c , where X is the mass of investing
agents (with action x = 1), and A is a parameter.

PERFECT INFORMATION ON THE STRUCTURE

Agents know that the distribution of costs is Gaussian N (θ , σ 2
c ), and they know the

parameters θ and σ 2
c . Let V(c) be the gross payoff of investment for an agent with cost

c when the acting set, the set of costs with x = 1, is (−∞, c). We have

V(c) = AF (c − θ ; 0, σ 2
c ),

where F (·; 0, σc ) is the c.d.f. of N (0, σ 2
c ). An exercise shows that Nash equilibria are

defined by a monotone strategy x (to invest if the cost is smaller than x), which is a
solution of

x = V(x).(11.3)

The graph of V(c) (which is proportional to the c.d.f. of the costs) is represented in
Figure 11.6, and a Nash equilibrium is characterized by the intersection of the 45◦ line
and the graph of V(c). Three cases with different variances of the costs are represented
in the figure: when the variance is large (σc ≥ 0.4), there is a unique Nash equilibrium;
when the variance is small and agents are less heterogeneous (σ = 0.1), there are three
equilibria, one of which can be eliminated by a crude stability argument.
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Figure 11.6 Payoffs with strategic complementarities. V (c) is the mass of agents with cost
lower than c and is identical with the c.d.f. of N (0.5, σ

2
c ). When the variance is sufficiently small,

there are multiple equilibria.

The figure illustrates a simple property: multiple equilibria arise only if the het-
erogeneity of agents is not too large. When the variance of individual costs is large,
the c.d.f. is smoother and the intersection with the 45◦ line is unique: there is a single
equilibrium.This property is general and important for the evaluation of the possibil-
ity of multiple equilibria with a large number of agents and strategic complementarity.

IMPERFECT INFORMATION

Assume agents do not know the value of θ (the mean of the cost distribution), but
they do know the variance σ 2. It is common knowledge that θ is the realization of
a random variable with normal distribution N ( θ , 1/ρθ ) with known parameters θ

and ρθ , and that each agent observes only his own cost.
Each agent computes his subjective distribution on θ , using the information pro-

vided by his own cost. An agent with a higher cost has a higher belief about the mean
of θ and the average cost in the economy. This effect, which will occur in this chapter
and in the next, is called the cluster effect on individuals’ beliefs: agents know that the
individuals’ costs are clustered around some mean value. Each agent believes ratio-
nally that his cost is not too far from the mean, with a high probability. Hence, each
agent has a biased belief on the mean cost of others toward his own cost.

Using Bayes’s rule with normal distributions (2.6), an agent with cost c has a
subjective distribution on θ that is normal N (E [θ |c], 1/(ρθ + ρc )) where E [θ |c] is
an average of the ex ante value θ , which is common to all agents, and the individual
cost c :

E [θ |c] = (1 − α) θ + αc with α = ρc

ρθ + ρc
.

The cluster effect operates through the weight α of the cost c . It is stronger when the
variance of the cost distribution is smaller.
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A UNIQUE EQUILIBRIUM WITH MONOTONE STRATEGIES

Extending the case with common knowledge, we consider monotone strategies and
suppose that all agents with cost less than x invest (strategy x). The purpose of this
section is to show how imperfect information may generate a unique Nash equilibrium
with monotone strategies. In the next section, the method of iterative dominance will
be extended to the case of imperfect information to show that the unique Nash
equilibrium is a SREE.

For an agent with cost x , the gross payoff of investment is E [Fθ (x)|x], where the
expectation is on θ and depends on the information of the agent. Let

V(x) = E [Fθ (x)|x].

One can prove (Exercise 11.2) that

V(x) = F

(
x ; (1 − α) θ + αx,

2ρc + ρθ

ρc (ρc + ρθ )

)
,(11.4)

which is equivalent to

V(x) = F (x − θ ; 0, σ 2) with σ 2 = σ 2
c

(
1 + 2

σ 2
θ

σ 2
c

)(
1 + σ 2

θ

σ 2
c

)
.(11.5)

The right-hand side of this expression has the same form as in the case of perfect
information, expression (11.3). Under imperfect information, the model is formally
equivalent to that of perfect information with a higher variance of the individual
costs. Ceteris paribus, one of the following two conditions is sufficient for a unique
Nash equilibrium:

(i) the uncertainty about the state θ as measured by the variance σ 2
θ is sufficiently

large;
(ii) the heterogeneity of agents as measured by the variance σ 2

c is sufficiently small.

Vanishingly Small Heterogeneity
The case of a vanishingly small σc is particularly interesting. If σc → 0, the variance
σ 2 in (11.5) tends to infinity. For any c in a bounded interval [a, b], the value of
F (c − θ ; 0, σ 2) tends to 1

2 . Given some uncertainty on the state θ , the absence of
common knowledge has a larger effect when agents are vanishingly close! When
σ 2

c → 0, there are multiple equilibria if agents observe θ , and there is a SREE if agents
do not observe θ .

This property is general and does not depend on the use of a normal distribution.
The intuition is important: when all agents have nearly identical costs (but not identical
costs), the precision of the private signal c onθ dwarfs the prior distributionN ( θ , σ 2

θ ),
whatever this distribution.11 Each agent believes that about one-half of the other agents
have a cost lower than his, and about one-half a higher cost. (These fractions tend to

11 The case of vanishingly small heterogeneity of agents (σ 2
c vanishingly small) is the one analyzed by

Carlsson and van Damme (1993a).
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1
2 when σ 2

c → 0.) Hence, the gross payoff of any agent tends to 1
2 , independently of

his own cost.

11.3.2 The Cumulative Value Function and the SREE

In this section, we show how a coordination game with multiple Nash equilibria
under perfect information may have a SREE when agents do not have common
knowledge on the parameters of the model. Our main goal is to develop a simple tool
of analysis, which will be applied later in this chapter and in the next. The method is
a generalization of the method of global games that was formulated by Carlsson and
van Damme (1993a).

Agents form a continuum, but the presentation would be the same with a finite
number N of agents (N ≥ 2). Each agent takes action 0 or 1. The payoff of action 0 is
nil, and the payoff of action 1, investment, is E [u(s , X)], where X is the average over
all others’ levels of action, and s is a parameter, specific to the agent, that is drawn from
a distribution with support [b, B]. The boundaries of the support may be positive or
negative. At this stage, it may be convenient to think of the parameter s as the cost of
investment, but s may also be an information signal and not be related to any cost.

The state of nature θ is drawn from a distribution on the set of real numbers.
We do not admit parameters with a dimension higher than one. The value of θ is
not observable by the agents, and it determines the distribution of individuals’ costs.
Each agent knows that his parameter s is drawn from the distribution. The value s is
a private information about the state θ .

A strategy is defined by the acting set A of the values s for which an agent invests.
Given a realization θ that defines a particular distribution of agents, the aggregate
activity is equal to the mass X of agents inA: X = µθ (A), where µθ (A) is the measure
ofA for the population distribution associated to the realization θ (using the Lebesgue
measure for a continuum and the number of agents for a finite population). For an
agent with parameter s , the payoff of investment is

U (s , A) = E [u(s , µθ (A))|s ],(11.6)

where the expectation is taken on θ , conditional on the information, s . An equilibrium
acting set A is defined such that

s ∈ A if and only if U (s , A) ≥ 0.

Each agent can compute the payoff and the strategy of any other agent. Hence, all
agents agree on the same acting set which is common knowledge. Recall that different
agents have different expectations about the mass of agents in the acting set.

In general, an equilibrium acting set may have any shape. However, let us focus on
the intervals where investing agents have a parameter less than some value s . Define
the interval I (s ) = [b, s ]. The analysis will use the following tool, which is called the
cumulative value function (CVF).
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DEFINITION 11.4 Assume the payoff of investment depends on an agent’s parameter
s ∈ R and on the aggregate investment X. The cumulative value function V(s ) is the
sum of s and the payoff of an agent with parameter s when agents have a monotone
strategy and invest if their parameter s ′ is smaller than s :

V(s ) = E
[

u
(

s , µθ ({s ′ ≤ s })
)

+ s | s
]
.

When the parameter s is a cost of investment, the CVF is like a gross payoff
function. When the individual parameter s is an information signal, the CVF cannot
be interpreted as a gross payoff function and it may be more intuitive to use the net
CVF :

VN(s ) = E
[

u
(

s , µθ ({s ′ ≤ s })
)

| s
]
.

ITERATIVE DOMINANCE

Without loss of generality, we can define the parameter s as the cost of a fixed-size
action and denote it by c until the end of the section. The CVF corresponds to the
gross payoff of investment.12 Its graph is represented in Figure 11.7, which is similar
to Figure 11.3 (with perfect information). We make the important assumption that
the graph intersects the first diagonal once and from above.

ASSUMPTION 11.1 The support of the agents’ types is a closed subset of R with finite
bounds b and B. There exists c∗ ∈ (b, B) such that V(c) > c if c < c∗ and V(c) < c
if c > c∗, where V(c) is the CVF.

Let c1 = b. From the previous assumption, V(c1) > c1. Define the function W(z, c)
as the payoff of investment for an agent with cost c when it is common knowledge
that agents invest if their cost is less than z:

W(z, c) = E
[

u
(

c , µθ ({y ≤ z})
)

+ c | c
]
.

We assume that W(z, c) is continuous. By definition of the CVF, V(c) = W(c , c)
and W(c1, c1) > c1. Because W(c1, c) is continuous in c , we can extend the region
of investment: there exists c2 > c1 such that W(c1, c ′) > c ′ for any c ′ in the interval
[c1, c2). The critical step is the following: the common knowledge that all agents with
cost lower than c1 invest implies that for all agents in the interval [c1, c2), not to invest
is strictly dominated, and this property is common knowledge. The value of c2 is
taken as the highest possible one. It is characterized by W(c1, c2) = c2. The function
W(c1, c) is smaller than V(c), because c1 < c .13 Its graph is presented in Figure 11.7.

12 The gross payoff may include c as an argument.
13 Usually the function W(c1, c) is decreasing in its first argument, but it could be an increasing

function.
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Figure 11.7 Iterative dominance with imperfect information. At each step, the region of dom-
inance of investment is extended under the common-knowledge assumption that all agents in the
previously defined region invest. The difference from Figure 11.3 (right panel) is due to the imper-
fect information.

If V(c2) > c2, we repeat the procedure. The method is similar to the staircase
method in Figure 11.3 (right panel). The steps are twisted because of imperfect
information. The sequence ct is increasing and bounded by c∗ (because of Assump-
tion 11.1); it converges. It cannot converge to c < c∗, because then V(c) = c (using
a continuity argument), which would contradict Assumption 11.1. A similar argu-
ment shows that there is a decreasing sequence {ĉ t} with ĉ1 = B that converges to
c∗ such that investment is strictly dominated at step t for all agents with parame-
ter c > ĉ t . We have shown that the strategy to invest if and only if c < c∗ defines a
SREE.

THEOREM 11.2 If the function W(z, c) = E
[

u
(

c , µθ ({y ≤ z})
)

+ c | c
]

is contin-

uous and Assumption 11.1 holds, then the fixed point of the CVF, c∗ = V(c∗), defines a
SREE.

DISCUSSION

In Assumption 11.1, the condition V(b) > b implies that an agent at the low end
of the support will invest even if no other agent invests. Agents do not need the
externality of each others’ actions for a positive payoff of investment. Likewise, at
the high end of the support, an agent will not invest even if all other agents do.
For these agents, investment never has a positive payoff. If one of these conditions,
V(b) > b or V(B) < B , fails, the elimination procedure behind the result cannot
start.
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Figure 11.8 Cost distributions and
multiple equilibria with perfect infor-
mation. θ1 < θ2 < θ3 < θ4. There is a
unique equilibrium with high activity in
case 1, and a unique equilibrium with
low activity in case 4. In cases 2 and 3,
there are multiple equilibria.

Consider again the case of the Gaussian cost distribution with mean θ , as repre-
sented in Figure 11.8 for different values θ1 < θ2 < θ3 < θ4 (with the same variance).
If it is common knowledge that θ is in the interval (θ2, θ3), then the CVF cuts the
diagonal from above at the points L and H , and there is no SREE.

In this example, under imperfect information, the CVF has a unique intersection
with the 45◦ line only if, with sufficient positive probability, we have realizations
as θ1 and θ4 in Figure 11.8 for which there is a unique equilibrium under perfect
information. This remark motivates a standard method in the analysis of coordination
with imperfect information: First, consider the cases with perfect information and
show that if a unidimensional parameter takes a value at either end of its support,
there is a unique equilibrium with high or low level of activity; second, remove the
assumption of common knowledge. Under imperfect information, the CVF function
is smoother and there is a SREE. This method is followed in a number of studies,
including the model of Morris and Shin (1998a) presented later.

However, these examples do not show that the existence of a unique equilibrium at
each end of the support of θ is a necessary condition for the existence of a SREE when
there is no common knowledge. Theorem 11.2 may be applicable for some families of
distributions such that under perfect information there are always multiple equilibria.
This issue is pursued in Exercise 11.3.

Models with strategic complementarities, zero–one actions, and multiple equi-
libria are stylized descriptions that omit the important feature of uncertainty. Under
uncertainty, if the conditions of Theorem 11.2 are met, agents choose the same strat-
egy. Because agents are similar in the actual structure of the economy, in a cluster,
most of them turn out to take the same action. The level of aggregate activity is in
most cases either high or low, as for the equilibria with perfect information.

The analysis with normal distributions shows that uncertainty may be more ef-
fective in generating a SREE when agents are nearly alike, but not exactly identical.
Because a vanishingly small amount of heterogeneity has such a drastic impact on the
equilibrium, the assumption of common knowledge may not generate robust results
in models with strategic complementarities.



11.3 Strategic Complementarities 257

The arguments presented here originate in the pioneering work of Carlsson and
van Damme (1993a, 1993b). As a motivation, they emphasize the justification of the
criterion of risk dominance in one-period coordination games. They argue that the
payoff structure of games with no uncertainty should be viewed as the realization
of a random variable that is not perfectly observable by agents. The agents thus play
in a global game (their terminology) with imperfect information on the payoffs of
other players. Because the authors are interested in the criterion of risk dominance
in a game with no uncertainty, they are especially interested in a global game with
vanishingly small heterogeneity. Their main result shows that because of the absence
of common knowledge, the set of rationalizable strategies is vanishingly small when
the degree of heterogeneity is vanishingly small. This result is shown and discussed
in Exercise 11.7.

11.3.3 Stag Hunts

Stag hunts may occur against currencies with a fixed exchange rate, banks, firms,
or political regimes. A central bank that manages a fixed exchange rate for its cur-
rency must fill any gap between the supply and the demand by trading. If its re-
serves do not match the supply of domestic currency, a devaluation must take place,
which benefits the agents who have bought the foreign currency before the change of
regime.

A speculative attack is like a stag-hunt game (Rousseau, 1762). Each speculator
does not have sufficient reserves to topple the regime of fixed exchange rate (hunt the
stag), but the combined attacks of many agents can be successful. A critical mass of
acting agents is necessary for a successful attack.

We consider a canonical game that can actually apply to many stag hunts. There
is a continuum of agents of mass one. Each agent either invests (participates in the
hunt) or does not invest. The cost of investment, γ , is the same for all agents. The
hunt pays off if and only if the mass of total investment, X , is greater than some level
θ . For simplicity, the gross payoff A is independent of θ and X .

The net payoff of investment is therefore

u(θ , X) =
{

A − γ if X ≥ θ ,

−γ if X < θ.

THE GAME WITH COMMON KNOWLEDGE

Assume first that θ is common knowledge. There are multiple equilibria if θ is between
0 and 1, and there is a unique equilibrium if θ is below 0 or above 1:

(i) If 0 < θ < 1, there are two (stable) equilibria: either all agents invest or none of
them does.
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(ii) If θ ≤ 0, there is a unique equilibrium with investment by all agents: X = 1.
(iii) If θ > 1, there is a unique equilibrium with no investment: X = 0.

THE GLOBAL GAME WITH IMPERFECT INFORMATION

We now remove the assumption of common knowledge by imbedding the game in a
global game with imperfect information. The application of the global game to any
coordination problem proceeds in two steps:

(i) The state θ is randomly drawn according to a distribution with density h(θ). For
simplicity, we assume here that the distribution is uniform on [−a, 1 + a]. It
is important that the interior of the support (−a, 1 + a) contains the interval
[0, 1].

(ii) Each agent has a private signal s = θ + ε, where ε is an idiosyncratic noise that
is independent of other variables in the economy. Let F be the c.d.f. of ε. For
simplicity, ε has a uniform distribution on [−σ, σ ] with σ < a .

From the discussion in the previous section, we consider the monotone strategy
ŝ : an agent invests if and only if his signal s is lower than ŝ : s < ŝ . Because s = θ + ε,
this condition is equivalent to ε < ŝ − θ . (Of course, the agent does not know ε or
θ .)

The application of the global-game method to determine the SREE proceeds in
four steps:

1. The payoff of investment by the marginal agent is a function of the state: the state
θ determines the distribution of private signals and therefore the mass of agents
with a signal lower than ŝ . Therefore the payoff of investment is a function u(θ , ŝ ).

2. The payoff of the marginal agent is the expected value of u(θ , ŝ ) over the possible
states and depends on his subjective probability distribution about θ . Let φ(θ |s )
be the density of that distribution that depends on his private information s . His
payoff of investment is

U (ŝ , s ) =
∫

u(θ , ŝ )φ(θ |s )dθ.(11.7)

3. The net CVF is defined by VN(s ) = U (s , s ). Under suitable parameter assump-
tions, V(s ) is decreasing and there is a unique value s ∗ such that VN(s ∗) = 0,
which by Theorem 11.2 defines the SREE.

4. Given the equilibrium strategy s ∗, one determines the outcome of the game, which
depends on θ . In the present case, the speculative attack is successful if θ < θ∗ for
some value θ∗ such that the mass of investments given the strategy s ∗ and the state
θ∗ reaches the critical mass.

Having summarized the global-game method in this model, we now provide the
technical details.
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1. The Payoff of Investment by the Marginal Agent as a Function
of the State
Because a hunt is successful only if the mass of investment is greater than θ ,

u(θ , ŝ ) =
{

A − γ if θ < F (ŝ − θ),

−γ if θ ≥ F (ŝ − θ).

Given the special case of a uniform distribution of ε, if |ŝ − θ | ≤ σ , then F (ŝ − θ) =
(ŝ − θ + σ )/2σ . Therefore,

u(θ , ŝ ) =

⎧⎪⎪⎨
⎪⎪⎩

A − γ if θ <
ŝ + σ

1 + 2σ
,

−γ if θ ≥ ŝ + σ

1 + 2σ
.

(11.8)

2. The Subjective Distribution of the Marginal Agent about the State
φ(θ |s ) > 0 only if |θ − s | ≤ σ . For any two values θ and θ ′ within σ of s , we use
Bayes’s rule in likelihood ratios:

φ(θ |s )

φ(θ ′|s )
= ψ(s |θ)

ψ(s |θ ′)
h(θ)

h(θ ′)
,

where ψ is the density of s conditional on θ , and h(θ) is the density of θ . In this
canonical model, both ψ and h are densities of a uniform distribution. Hence, the
posterior is also uniform and

φ(θ |s ) = 1

2σ
if |θ − s | ≤ σ.(11.9)

3. The Net CVF and the SREE
Using the previous two steps, we find that the net CVF is14

VN(s ) =
∫

u(θ , s )φ(θ |s )dθ(11.10)

=

⎧⎪⎪⎨
⎪⎪⎩

A − γ if s ≤ −σ,

A
1 + σ − s

1 + 2σ
− γ if −σ ≤ s ≤ 1 + σ,

−γ if s ≥ 1 + σ.

The graph of this function is represented in Figure 11.9.
From Theorem 11.2, a SREE is defined by s ∗ with VN(s ∗) = 0. Therefore,

s ∗ = 1 − γ

A
+ σ

(
1 − 2

γ

A

)
.(11.11)

14 The only nontrivial case is the middle one: from (11.8), VN(s ) = (A/2σ )
∫ (s+σ )/(1+2σ )

s−σ
dθ − γ.
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Figure 11.9 The net CVF of the canonical stag-hunt game.

4. The Outcome of the Game
The value of θ determines the distribution of the private costs and therefore the mass
of agents with a cost smaller than s ∗, who invest. This mass is

X = Min

{
Max

{
s ∗ − (θ − σ )

2σ
, 0

}
, 1

}
.

The condition for a successful stag hunt, θ ≤ X , is equivalent to

θ ≤ θ∗ = 1 − γ

A
.

A stag hunt takes place if there are some agents with signal below s ∗. Because the lowest
private signal is θ − σ , this condition is equivalent to θ − σ < s ∗ or θ < (1 + 2σ )θ∗.
We have therefore the following outcomes:

• if θ < θ∗ = 1 − γ /A, a stag hunt takes place and it succeeds;

• if θ∗ < θ < (1 + 2σ )θ∗, a stag hunt takes place and it fails: the mass of investment
is smaller than θ ;

• if (1 + 2σ )θ∗ < θ , no stag hunt takes place.

In this model, the critical value for a successful stag hunt, θ∗ = 1 − γ /A, is inde-
pendent of the heterogeneity of private information, as measured by σ . It depends
only on the cost–benefit ratio γ /A. If that ratio tends to 0, then θ∗ converges to 1.
A successful stag hunt takes place most of the time. This remarkable property may
be due to the simplicity of the model. However, choosing a density on θ that is not
uniform will not affect the value of θ∗ if σ is vanishingly small. An agent with signal s
knows that θ is in [s − σ, s + σ ]. When σ → 0, the variations of the density of θ in
the interval (s − σ, s + σ ) are vanishingly small. The density can be approximated
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by a uniform density.15 An essential property of the density of θ is that its support is
connected and contains 0 and 1 in its interior.

In the same model, one could assume that the state θ and the private signals have
Gaussian distributions. This case is proposed as Exercise 11.4.

11.4 Speculative Attacks against a Fixed Exchange Rate

A regime of fixed exchange rates is for speculators an open invitation to a stag hunt.
Because the central bank is prepared to trade the currency at some fixed price, it must
have some reserves, either directly or through loans from other central banks. When
the purchase orders for the foreign currency exceed the reserves, the fixed price of the
exchange rate is not sustainable and a devaluation must take place. This devaluation
brings a capital gain to the agents who have purchased the foreign currency. If they
act in coordination, their combined reserves dwarf those of the central bank, thus
forcing a devaluation and a distribution of good profits to the hunters. The game has
been formalized by Obstfeld (1996), who also provides some empirical justification:
under perfect information on the strategies and the payoffs of individuals, there are
two equilibria in pure strategies, as in any standard stag-hunt game: either speculators
cooperate and gain, or they don’t, in which case there is neither gain nor loss.

This problem is analyzed here with a one-period model. The information of the
speculators and the timing of the attack are two essential issues in a speculative attack.
They cannot be addressed in a one-period framework, which is only a first step. They
will be considered in Chapter 16.

If agents have imperfect information, what information is important for their
choices? Two parameters may play a role: the amount of reserves of the central bank
relative to the reserves of the speculators, and the level of the devaluation. In the first
model below, the state of the world, θ , defines the amount of reserves of the central
bank; in the second model, θ defines the exchange rate after the devaluation.

IMPERFECT INFORMATION ON THE CRITICAL MASS FOR A DEVALUATION

The reserves of the central bank amount to θ , which is not observable by agents,
who form a continuum of mass one. Each agent can purchase foreign currency up
to some maximum level that is determined by a liquidity constraint. Because they
are risk-neutral, they will either place an order equal to the maximum or place no
order. As in the previous model, we may assume that the decision of agents is about
a fixed-size order, which is normalized to one (per individual). The cost of placing
an order is γ . This cost can be due to transaction costs or to an interest rate when
agents borrow the balance of their order. The gross payoff of the order is the capital
gain that is incurred if the currency is devalued after the order is placed. The rate

15 This property is used by Carlsson and van Damme (1993a) for their analysis. (See Lemma 11.3 in
Exercise 11.7.)
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of the devaluation is assumed to be independent of the amount of orders and of the
reserves of the central bank. The payoff is A − γ > 0 if there is a devaluation, and
−γ otherwise. This model is simplified to fit the canonical model. The distributions
of θ and of the private signals are the same as in the previous canonical model. Let X
be the total mass of orders. A devaluation takes place if and only if θ ≤ X . For θ ≤ 0,
we adopt the convention that the reserves of the central bank are exhausted and a
devaluation takes place for any amount of orders.

In the analysis of the canonical model in Section 11.3.3, the central bank can fend
off a speculative attack only if the level of reserves θ is greater than θ∗. If the cost of
transaction, γ , is small (with respect to the rate of the devaluation, A), that minimum
θ∗ is close to the total reserves of the speculators.

IMPERFECT INFORMATION ON THE MARKET EXCHANGE RATE

Assume the fixed exchange rate is equal to 1 and that if a devaluation takes place, the
exchange rate is equal to the market exchange rate θ < 1. The value of θ reflects the
state of the economy: the economy is in a better state if θ is higher. A devaluation takes
place if the total purchases X of the foreign currency are at least equal to a fixed value
α ∈ (0, 1). In order to apply the argument of iterative dominance, we need to have a
region of θ such that an investment (purchase of the foreign currency) yields a positive
payoff even if no agent places an order. Accordingly, we assume that a devaluation
takes place if θ is smaller than a fixed value θ ∈ (0, 1).

Any devaluation in the model generates an exchange rate θ that is lower than 1.
We assume that θ has a uniform distribution on the interval [θ0, 1] where 0 ≤ θ0 < θ .
When θ is near 1, the gain from the devaluation, 1 − θ , is smaller than the cost γ . The
speculators can trigger a devaluation in the current model (contrary to the previous
one), but the gain from the devaluation is negative if the market exchange rate is not
much different from the fixed exchange rate. For sufficiently large values of the private
signal, investment is dominated.

As in the previous model, for suitable parameters, there is a SREE (Exercise 11.5).
For parameters such that the optimal strategy is not close to θ , the SREE is defined
by the strategy

s ∗ = 1 − γ

1 − α
+ ασ.(11.12)

A speculative attack is successful if the mass of orders, X , is greater than α. The value
of θ determines the distribution of the private signals and therefore the mass of agents
with a signal smaller than s ∗, who place an order. Because for 0 ≤ X ≤ 1,

X = s ∗ − (θ − σ )

2σ
,

the condition for a devaluation, X ≥ α, is equivalent to

θ < θ∗ = 1 − γ

1 − α
+ (1 − α)σ.(11.13)
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A lower precision of private information (higher σ ) induces a higher probability of a
successful stag hunt. When the precision of the private information is arbitrarily large
(vanishingly small σ ), the fixed exchange rate is sustainable as long as it does not differ
from the market rate by more than γ /(1 − α). This gap is small if the transaction cost
is small with respect to the exchange rate and the reserves of speculators are not just
above the reserves of the central bank (α not close to 1).

THE MODEL OF MORRIS AND SHIN

The previous model is a reduced form of the model of Morris and Shin (1998a).
They assume that the market exchange rate is an increasing function a(θ) where the
distribution of θ is uniform. (Recall that if the variance of the private information is
small, the density of θ near the equilibrium strategy has little impact.) Private signals
are uniform with bounded support, as in the previous model.

The assumption of a fixed level of reserves α at the central bank no longer holds:
the central bank may now defend the currency at some cost that depends on the total
investment (the total purchase of the foreign currency) and on the state θ . A critical
assumption is that the central bank has perfect information about θ . It can therefore
compute from the value of θ the distribution of private signals. Because it knows the
strategy of the agents, it knows the total “amount of the attack” X as a function of the
state. The central bank makes a zero–one decision whether to defend the currency,
by comparing the value of preserving the fixed exchange rate with the cost of defense
(which is an increasing function of X). The central bank, given its information, has a
decision rule that is a deterministic function from (θ , s ∗) to 1 (devaluation) or 0 (no
devaluation). This rule is not essentially different from the previous one under which
a devaluation occurs if the mass of agents’ investments, X , which depends on θ and
s ∗, is greater than α. When σ is vanishingly small, the gap between the sustainable
exchange rate and the market exchange rate in the model of Morris and Shin with a
central bank is also given by equation (11.13). The level of reserves α is determined
endogenously by the cost function of the central bank.

Morris and Shin (1998a) show that there is a unique Nash equilibrium in mono-
tone strategies. However, the present analysis shows that, following Carlsson and van
Damme (1993a), one can prove more easily a stronger property: under the assump-
tions of Morris and Shin, there is a SREE.

A COMMENT

The one-period models of speculative attacks resolve the issue of multiple equilibria
and provide some indication about the effects of the parameters on the likelihood
of an attack. However, they seem to generate implausibly high probabilities of an
attack. More important, they miss essential elements. A speculative attack does not
take place in one period.16 Agents observe each other in a multiperiod setting. When

16 The model of Morris and Shin (1998b) has many periods with a state of nature that follows a
stochastic process. Agents learn exogenously, in each period, the state of nature in the previous
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an agent delays, he faces the risk of placing an order too late, after the devaluation has
occurred. The analysis of a speculative attack in a dynamic context will be presented
in Chapter 16.

11.5 Bibliographical Notes

The literature on the topics of this chapter is very large. There is room to indicate here
only a few items that could not be given sufficient treatment in the text.

The analysis of Guesnerie that is presented in Section 11.2 is extended in Guesnerie
(2002). Cooper (1999) provides a very useful introduction to one-period games with
strategic complementarities in macroeconomics.

Vives (1990) analyzes games with strategic complementarities when strategies are
taken in a lattice (which is a set where any two elements have an upper and a lower
bound in the set). The concept of stability of a Nash equilibrium, which is considered
by Vives, applies to the tâtonnement process xt+1 = R(xt). One can verify in Figure
11.5 that this process converges monotonically to a Nash equilibrium and does not
generate any complex behavior as it does for strategic substitutability. However, this
process does not address the issue of the selection between multiple equilibria.

Milgrom and Roberts (1990) analyze an adaptive dynamic process in a general
setting, but their focus is different from the global-game method. Numerous appli-
cations of the global-game method are presented in the highly informative paper of
Morris and Shin (2000).

EXERCISES

EXERCISE 11.1

Consider the game in T periods of Section 11.2.2.

1. Assume T = 2 and α1 = α2 = α. Determine the largest value γ ∗ of γ such that
there is a SREE.

2. Provide an intuitive interpretation for γ ∗ > 1
2 .

EXERCISE 11.2

Using the properties of the Gaussian distribution, prove (11.4) and (11.5).

EXERCISE 11.3

Consider the model of Section 11.3.2 with a zero–one action, a distribution of the
private costs of investment, and a payoff E [X] − c . Construct two distributions of
costs with c.d.f.’s F0 and F1 with the following properties:

(i) each distribution has multiple intersections with the first diagonal, and thus
generates multiple Nash equilibria under perfect information;

period. There is no learning from others and no intertemporal choice. The model is effectively a
sequence of one-period models.
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(ii) under imperfect information with a probability µ for F1 and when each agent
knows only µ and his own cost, the CVF satisfies the conditions of Theorem 11.2
and there is a SREE.

(One may use piecewise linear functions for F0 and F1).

EXERCISE 11.4 Coordination with Gaussian signals

Consider the coordination model of Section 11.3.3 where a stag hunt is successful if
and only if the mass of investment X is at least equal to θ , which specifies the state
of nature. Assume that θ is distributed N ( θ , σ 2

θ ), and that each agent has a private
signal s = θ + ε, with a noise ε ∼ N (0, σ 2

ε ). Let ρθ = 1/σ 2
θ and ρε = 1/σ 2

ε .

1. Given the strategy ŝ , show that the hunt is successful if and only if θ ≤ φ(ŝ ), with

F

(
ŝ − φ(ŝ )

σε

)
= φ(ŝ ),

where F is the c.d.f. of the normal distribution N (0, 1). Show that φ( 1
2 ) = 1

2 and
that

0 < φ′(s ) <
f (0)

f (0) + σε

,

where f is the density function associated to F .
2. Show that an agent with signal s has an estimate on θ which is N (m(s ), ρ), with

m(s ) = ρθ

ρ
θ + ρε

ρ
s with ρ = ρθ + ρε.

3. Show that the net CVF is defined by

V(s ) = AF
(

(φ(s ) − m(s ))
√

ρ
)

− γ.

4. Assume that agents have vanishingly close beliefs with σε → 0. Using questions 1
and 2, show that for any A > 0 there exists σ ∗ such that if σε < σ ∗, then φ(s ) −
m(s ) < A. Show that V(s ) is a decreasing function if σε < σ ∗ and that there is a
SREE. Show that if σε → 0, then the equilibrium strategy s ∗ converges to 1

2 . (Note
that the limit is independent of A and γ .)

EXERCISE 11.5 A speculative attack with uncertainty about the market

exchange rate

Solve the model of speculative attack with uncertainty about the exchange rate θ with
the assumptions leading to the SREE in (11.12).

EXERCISE 11.6 Should the policy maker reveal information?

Consider an economy with a fixed exchange rate and a continuum of agents (specula-
tors) of mass one. In this regime, the value of the foreign currency is 1. If a devaluation
occurs, the value of the foreign currency is D > 1. There is only one period. Each
agent can either buy a fixed amount of foreign currency at the fixed cost γ , or not
buy. Let X be the mass of speculators who buy the foreign currency. A devaluation
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takes place if and only if θ ≤ X . The value of θ is a realization of the Gaussian random
variable N ( θ , σ 2

θ ). Each agent has a private signal on θ , which is the sum of θ and an
idiosyncratic noise ε with a normal distribution N (0, σ 2

ε ). The parameters are such
that σ 2

θ = 1, D = 2c .

1. Assume that the parameters are such that there is a SREE in which all agents follow
the strategy to buy if and only if their signal is smaller than some value s ∗. Show
that in this case, a devaluation takes place if and only if θ < θ∗, where θ∗ is a linear
function of s ∗ that you will determine.

2. Show that if σε < σ ∗ for some value σ ∗, the model has a SREE.
3. Assume the central bank can credibly commit to issue a Gaussian signal about

θ after θ is realized and before agents play the game. Analyze the effect of the
policy on the equilibrium. Should the central bank release information? (You will
distinguish between the cases of low θ and high θ .)

EXERCISE 11.7 The model of Carlsson and van Damme

Consider the standard coordination game for two agents that is specified in the fol-
lowing table:

Agent α

Agent β

Actions 0 1

0 0, 0 0, −cβ

1 −cα , 0 1 − cα , 1 − cβ

1. Show that if 0 < c < 1 and γ is common knowledge, there are multiple equilibria.

We make the following assumption:

ASSUMPTION 11.2 The state θ has a density h(θ) > 0 forθ ∈ [−a, 1 + a] with a > 0.
Agent α has a signal s = θ + σεα , and agent β a signal s = θ + σεβ , where σ is
a parameter and (εα , εβ) has a density φ(εα , εβ) that is symmetric on the bounded
support (−1, 1) × (−1, 1).

2. Show the next lemma, and provide an intuitive interpretation.

LEMMA 11.3 For any η > 0, there exists σ̂ > 0 such that if σ < σ̂ , then for any c ∈
[0, 1], P (c ′ < c |c) > 1

2 − η.

3. Use the previous lemma and Theorem 11.2 to prove

THEOREM 11.3 (Carlsson and van Damme) Under Assumption 11.2, for any η > 0
there exist σ̂ such that if σ < σ̂ , then there exist s and s with

1

2
− η < s < s <

1

2
+ η,

and for any agent with cost c < s (c > s ), acting (not acting) is iteratively dominant.
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4. What is the important assumption about the distribution of θ?
5. Compare the set of equilibria with σ = 0 (under perfect information) and the

one with σ arbitrarily small. Comment.
6. The absence of common knowledge. Consider the global game where the densities

h and φ are uniform and σ = 0.01. Suppose that agent α has a cost c = 0.75.
He is sure that the other agent has a cost c ′ ≤ 0.77. The other agent, whatever
his cost, is sure that agent α has a cost less than 0.79. Show that no agent invests,
although both agents are sure that both costs are less than 1 and that coordination
(investment by both) is feasible (i.e., profitable to both). Explain.
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— C’est une révolte?

— Non Sire, une révolution.

In an economy with strategic complementarities, the structure of indi-

vidual payoffs evolves randomly and slowly. When agents have perfect

information on the payoffs’ structure, multiple equilibria may occur in

some phases. Under imperfect information, the existence of a SREE is

shown in which a strong hysteresis effect takes place: the level of aggre-

gate activity hovers near its value in the previous period most of the time

and jumps to a different level with a small probability. Applications may

be found in macroeconomics and revolutions.

In the previous chapter, the coordination game with strategic complementarities took
place in one period. All individuals were thinking simultaneously without learning
from the past. The process of equilibrium selection between a high and a low level of
aggregate activity rested on the agents’ imperfect information about others’ payoffs
and the possibility that the fundamentals of the economy took “extreme values” where
one action (e.g., investment or no investment) was optimal independently of others’
actions. In the one-period setting, there is no possibility of learning.

In this chapter, agents learn from the actions taken in the past by others. Social
learning may affect critically the assumptions that were made in the one-period con-
text. For example, the observation that few agents invest in some period rules out the
extreme event that investment is a dominant strategy for a large fraction of the popula-
tion. We will see that when agents learn from history, a strongly rational-expectations
equilibrium (SREE) exists if the degree of heterogeneity between agents is neither too
large nor too small, an assumption that fits the macroeconomic context.

In the SREE, the level of aggregate activity in period t exerts a strong influence
on individual choices in period t + 1 because of imperfect information. Most of the
time, agents choose a strategy close to the one in the previous period, and the profile

268
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of aggregate activity exhibits hysteresis with random switches between protracted
regimes at high and low levels. During a regime, information about the mass of
agents willing to take a contrary action is poor. A switch releases a large amount of
information about that mass.

THE GENERAL FRAMEWORK

When agents are heterogeneous, the structure of the economy may be fairly complex.
Complexity and imperfect information are closely related. In constructing a model,
we will have to keep the essence of the complexity while simplifying the structure as
much as possible to keep the analysis tractable.

In all models of this chapter, there is a continuum of agents in each period, who live
only for one period. Each agent makes a zero–one decision: he can make a fixed-size
investment at the cost c or do nothing. If he invests, he gets the payoff E [Xt |c] − c ,
where Xt is the aggregate investment in period t. If he does not invest, his payoff is
zero. Each agent’s cost c is drawn randomly from a distribution.

The distribution has a cluster, a property that is required for multiple equilibria
under perfect information or for large changes of aggregate activity under imperfect
information. Each Bayesian agent observes only his own cost and the history of
aggregate activities, and has a different belief about the position of the cluster.

HYSTERESIS FOR EQUILIBRIUM SELECTION

Suppose that in some period, the actual distribution of costs is represented by the c.d.f.
F1 as in Figure 12.1. Under perfect information about F1, there are two equilibria L 1

and H1: in the equilibrium L 1, the acting set is the interval to the left of c1. Under imper-
fect information, agents observe in any period t the history of the aggregate activities
ht = {X1, . . . , Xt−1}. We will see that whenever for any period the level of aggregate
activity has been low in the previous periods, there is a SREE in which agents choose a
strategy x1 near the fixed point c1. They do not coordinate on a strategy near the high
equilibrium H1, because they do not have perfect information about the c.d.f. F1.

Suppose now that the true c.d.f. moves randomly from F1 to F2. Agents still observe
only the total level of investment. The strategy x1 near c1 generates the observation
F2(x1), after which agents revise their belief. We will see that in the SREE, the strategy
x2 is near L 2 (Figure 12.1), which is the fixed point of F2 closest to L 1. That property
of hysteresis holds as long as there exists a low fixed point of the c.d.f., that is, an
equilibrium under perfect information with a low level of activity. In the figure, the
low fixed point disappears in period 3. In the SREE under imperfect information, the
level of activity jumps to a value near the high point H3.

The process is summarized by an approximation rule. Take the actual c.d.f., F ,
that is not observed by the agents. Suppose that the agents coordinate on one of the
equilibria, say at the low fixed point of F . If F evolves randomly by a small amount
and the low fixed point still exists, agents coordinate on this point: there is a SREE near
this point. Agents jump to the high point only if the low point disappears. This rule
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L1

H1

(F1)

0
c

L2

(F2)

(F3)

H3

c3c1 c2

Figure 12.1 Learning about an evolving distribution. F1, F2, and F3 are the realizations of
the c.d.f. F for t1, t2, and t3. The c.d.f. evolves slowly between consecutive periods, and the
equilibrium strategy is near a fixed point of the CVF. Between t2 and t3, the strategy jumps to a
higher equilibrium level.

is equivalent to the following ad hoc selection rule: in any period, agents coordinate
on the fixed point of F that is closest to the equilibrium in the previous period.1 The
SREE is summarized by a rule of inertia: agents move from the neighborhood of one
fixed point (of the c.d.f.) to the neighborhood of another fixed point only if the first
fixed point vanishes.

SOCIAL CHANGES AND REVOLUTIONS

Why do sudden changes of opinion or revolutions that were not anticipated with high
probability seem anything but surprising in hindsight? This question was asked by
Kuran (1995). The gap between the ex ante and the ex post views is especially striking
when no important exogenous event occurs (e.g., the fall of the communist regimes).2

These social changes depend essentially on the distribution of individuals’ payoffs,
on which each agent has only partial information. According to Kuran, “historians
have systematically overestimated what revolutionary actors could have known.” If a
revolution were to be fully anticipated, it would probably run a different course. The
July 14th entry in the diary of Louis XVI was “today, nothing.”3 Before a social change,

1 Such a rule is posited by Cooper (1994) in a model of coordination where the structure is determined
by a production technology and a utility for consumption, and evolves over time.

2 For a common view before the fall, read the speeches of H. Kissinger in Halberstam (1991).
3 However, the entry may mean “no hunting.” The quotation at the beginning of this chapter is from

a conversation between Louis XVI and the duke of La Rochefoucault-Liancourt. In the numerous
stages of the French revolution, the actors did not seem to have anticipated well the subsequent
stages, especially when they manipulated the crowds.
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individuals who favor the change do not have perfect information on the preferences
of others, but they are surprised to find themselves in agreement with so many ex post,
and this common view in hindsight creates a sense of determinism.

The models of Kuran (1987, 1995) fall into the class of models considered in this
chapter. Suppose that individuals have to decide in each period between two actions
or expressed opinions as revealed by some behavior: action 1 supports a given po-
litical regime, whereas action 0 does not (or supports a revolution). Each individual
is characterized by a preference variable c , which is distributed on the interval [0, 1]
with a cumulative distribution function F (c). The preference for the regime increases
with c . There is a continuum of individuals with a total mass equal to one. For an
individual with parameter c , the payoff of his action x (which is either 0 or 1) is
a function that is (i) decreasing in the distance between his action and his prefer-
ence, (ii) increasing in the mass of individuals who choose the same action. Kuran
interprets the externality effect as an individual’s taste for conformism. Strategic com-
plementarities may also arise because the probability of the change of regime depends
on the number of individuals expressing an opinion, or taking an active part in a
revolution.

Let X be the mass of individuals who choose action 0 (the revolution) in a given
period. (The mass of individuals who choose action 1 is 1 − X .) Following the pre-
vious discussion, the payoff function of an individual who takes action x is defined
by

w(x, X, c) =
{

X − c if x = 0,
1 − X − (1 − c) if x = 1.

The difference w(0, X, c) − w(1, X, c) is the function u given by

u(c) = 2(X − c) with c ∈ [0, 1],

which is a multiple of the payoff function X − c . The model of Kuran is thus a special
case of the canonical model with strategic complementarities. For a suitable distri-
bution of individual preferences, the model has multiple equilibria under perfect
information. Kuran follows the ad hoc rule of selection and assumes that a regime
stays in power as long as the structure of preferences allows it. This structure may
evolve in such a way that the regime is no longer a feasible equilibrium and society
jumps to the other equilibrium regime. The changes and surprises cannot be ana-
lyzed with the ad hoc rule in a static model. They require a dynamic approach with
imperfect information about the structure of payoffs and an explicit formulation
of expectations. These features have a central place in the dynamic models of this
chapter.

We will see that until the very end of the old regime, the public information is
that a large fraction of the population supports the old regime, whereas the actual
distribution could support a revolution. When the regime changes, beliefs change in
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two ways: first, the perceived distribution of preferences shifts abruptly toward the
new regime; second, the precision of this perception is much more accurate. The
high confidence in the information immediately after the revolution may provide all
individuals with the impression that the revolution was deterministic.

Further work may apply the Bayesian approach to an analysis of a policy under-
taken by an authority who attempts to stay in power. Removal of a penalty for action
0 may increase the probability of a switch to another equilibrium: as noted by Toc-
queville (1856), regimes do not crumble when they are at their most repressive, but
when this state of repression is partially lifted.4

12.1 A Distribution with a Cluster

Following the introduction, we build a model that (i) incorporates heterogeneous
expectations about the structure of the economy and a random evolution of that
structure, (ii) remains simple, (iii) has generic features that indicate the robustness
of the main properties. The main modeling issue is the tail property.

THE TAIL PROPERTY

Distributions of costs are represented in Figure 12.2 by their c.d.f. in the upper part of
the figure, and by the associated density in the lower part. Strategic complementarity
implies that if there are multiple equilibria, the mass of active agents is either small
or large, and the cutoff value c∗ is not in the middle range of costs where the density
of agents is high. If agents have perfect information on the c.d.f. F , there are two
equilibria L and H with low and high activity. Assume that the actual distribution of
individual costs is a random realization in a class of possible distributions, and that
agents observe only the level of aggregate activity. Three examples of distributions are
represented in the top part of the figure.

Assume that agents choose a strategy near c L (identified with c L here). The level of
aggregate activity X = F (c L ) measures the mass of agents in the left tail of the distri-
bution (represented in the lower part of the figure). A generic property of an inference
problem is that the observation of the tail does not provide a precise signal about the
entire distribution. This property is the tail property. As illustrated in the lower part
of Figure 12.2, the mass of agents to the left of c L should not enable agents to discrim-
inate clearly between the density f (under which high activity is an equilibrium) and
the density f1 (under which there is no equilibrium with high activity).

We build a representation of the tail property5 which is sufficiently simple for
analysis. We cannot restrict the distributions to belong to the family of normal

4 The Tocqueville effect is not driven by imperfect information on the power of the king. In a state
with partially lifted repression, “le mal est devenu moindre il est vrai, mais la sensibilité est plus
vive” (Chapter 4).

5 The tail property is obviously the same for a right tail. In Figure 12.2, the observation of F (c H ) does
not enable agents to discriminate between the distributions F and F2.
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Figure 12.2 The tail property. Cumulative distribution functions are represented in the upper
part, and associated density functions in the lower part.

distributions N (θ , σ 2) where agents do not observe θ , as one observation of F (c)
would reveal θ and the entire distribution. (A finite number of parameters would not
help either.)

We will consider two models, which are special but have nevertheless some generic
features. In the first, the distribution with a cluster is stylized by a rectangular density:
the graph of the density function has the shape of a hat, and the top of the hat
corresponds to the cluster. This model is analyzed in Chamley (1999) and is presented
less formally here. In the second model, the distribution is Gaussian and aggregate
activity is observed with a noise.

If the total level of investment is observed with a noise, the information at the
end of a period is Y = Fθ (c∗) + ε, where θ is a parameter and ε is a noise (which
can be normally distributed N (0, σ 2

ε )). When c∗ is low or high, the power of the
signal Y on θ is small6 because F (c∗) is near 0 or 1. The model incorporates the tail

6 A similar property appears in other parts in this book (Chapters 3, 15, 16).
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property and has a plausible “look and feel.” However, it cannot be solved analytically.
Numerical simulations will show that switches between regimes occur and confirm
the robustness of the stylized model.

12.1.1 An Analytical Model

In each period, there is a continuum of agents parameterized by the private cost of
a fixed-size investment c . The payoff of investment is E c [X] − c , where E c is the
expectation of the agent. The distribution of individual costs is defined by the density
function

f (c) =
{

β for −b ≤ c < θ and θ + σ < c ≤ B ,
α + β for θ < c < θ + σ, with 0 < 1 − β < α.

(12.1)

This function and its c.d.f. are represented in Figure 12.3. The distribution can be
decomposed as the sum of two distributions: first, the spread has a uniform density
β; second, the cluster has a uniform density α on the interval (θ , θ + σ ). The cluster
has a mass ασ and a width σ . The support of the distribution is [−b, B]. For reasons
that will be clear later, we assume the following inequalities:

b > 0, B >
βb + ασ

1 − β
.(12.2)

All parameters are constant except for the state θ , which determines the position
of the cluster. When θ is high (low), costs are on average high (low).

PERFECT INFORMATION

Suppose first that θ is observable. The CVF is the same as the c.d.f. There are two
stable Nash equilibria: active agents have a cost lower than c∗ ∈ {XL , X H} defined
by

XL = βb

1 − β
, X H = βb + ασ

1 − β
.(12.3)

By (12.2), 0 < XL < X H < B . The equilibria are represented by the points L and
H in Figure 12.3, which are the intersections of the c.d.f. with the 45◦ line. Depending
on the value of θ , there are three possible cases, denoted (1), (2), and (3) in the figure:⎧⎨

⎩
(1) if θ < XL , then X H is the only equilibrium;
(2) if θ > X H − σ, then XL is the only equilibrium;
(3) if θ ∈ (XL , X H − σ ), then both XL and X H are equilibria.

(12.4)

At the point H , all agents in the cluster are acting. At the point L , no agent in the
cluster is acting. We will see below that the model exhibits the tail property.
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Figure 12.3 Distribution of costs and equilibria with perfect information. The density function
exhibits a cluster in the interval (θ, θ + σ ). The width σ is fixed, but θ moves randomly one step
at a time between two reflecting barriers. When θ moves randomly, the c.d.f. “slides” between
the lines EL and HG. The point L is a fixed point of the c.d.f. for any value θ > XL . The point H is
a fixed point of the c.d.f. for θ < X H − σ . When agents observe only the activity, the point L (H )
reveals only that θ > XL (θ < X H − σ ).

The Evolution of the Structure of the Economy
By assumption, the variable θ that defines the structure of the economy evolves over
time according to a random process. An important element of the model here is that
the structure of the economy does not jump between periods, but evolves gradually.
(Quoting Leibnitz, “Natura non facit saltus.”) In order to obtain analytical results,
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let the set � be a grid, � = {ω1, . . . , ωK }, with ω1 = γ , ωK = � (−b < γ < � <

B − σ ). The distance between consecutive values is equal to ε, which can be small.
Between consecutive periods, the value of θ evolves according to a symmetric random
walk: it may stay constant or move to one of the two adjacent grid points with the
same probability p. If θ is on a reflecting barrier (γ or �), it moves away from that
barrier with some probability. 7

IMPERFECT INFORMATION

Assume θ is not observable and agents observe the aggregate activity at the end of
each period. We will see that an equilibrium must be monotone: an agent invests if
and only if his cost is smaller than c∗. If c∗ < θ , the aggregate activity is β(c∗ + b),
and it is independent of θ > c∗. The observation of the left tail of the distribution of
costs is a poor signal about the values of θ on the right of c∗.

The model exhibits the tail property. The same property is verified when the
strategy c∗ is such that c∗ > θ + σ .

12.1.2 The Equilibrium under Imperfect Information

We present the properties of the model in an informal way. A technical description
is sketched in the Appendix (Section 12.3), and a complete presentation is given
in Chamley (1999). In each period t, the history ht = {X1, . . . , Xt−1} of the levels
of aggregate activity determines the public information about θt . Each agent uses
his private information (his own cost c) to update this public information and to
compute his subjective distribution on the set �. By an abuse of notation, the strategy
to invest for a cost lower than c∗ will be called the strategy c∗.

The range of the states for which there are multiple equilibria under perfect infor-
mation is the range of the grid points {θL + ε, . . . , θH − ε}, where θL is the highest
grid point to the left of XL , and θH the lowest grid point to the right of X H − σ . From
(12.4), and given the c.d.f. F ,⎧⎨

⎩
(1) if θ ≤ θL , then X H is the only fixed point of F (X);
(2) if θ ≥ θH , then XL is the only fixed point of F (X);
(3) if θL < θ < θH , then XL and X H are fixed points of F (X).

(12.5)

The First Period
Assume that in period 0 the value of θ is θ0 = θH and that it is observable by all
agents. This assumption will be justified later. By the definition of θH , there is a

7 The generalization to an arbitrary number of moves between periods is considered in numerical
simulations. The random walk is fully specified in the appendix (Section 12.3).
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Figure 12.4 The beginning of the low regime. In period 1, the CVF is the same as the c.d.f.
F . (Compare with Figure 12.3.) In period 2, some smoothing takes place. The cumulative value
function V2 is strictly below the 45◦ line for all c > XL .

unique equilibrium with strategy c∗ = XL . The c.d.f. in period 0 is represented by its
graph F in Figure 12.4. It is identical with the CVF in that period.

For any period t > 1, agents observe only the history ht and know the structure
of the random process of θ . At the end of period 1, the level of aggregate investment
is X1 = β(c∗ + b), and it is perfectly anticipated. Nothing is learned from that obser-
vation. At the beginning of period 2, agents know that θ may have moved with equal
probability to the left or to the right of θ1 = θH . The cumulative value function CVF2

is an average of three cumulative distribution functions: F for θ = θH , and the ones
for the grid points on the right and on the left. Because the c.d.f. is concave near the
point X H , the function CVF2 is smaller than F . It has a unique intersection with the
45◦ line at the point XL . Theorem 11.2 applies, and the strategy c∗

2 = XL defines a
SREE.

THE LOW REGIME

Because θ changes by at most one grid point in any period during the first few pe-
riods, we can use the same argument as in period 2: in period k (k small), it is common
knowledge that θH − kε ≤ θk ≤ θH + kε, and the argument of period 1 applies: the
strategy in period k is c∗

k = XL , and the observation of the aggregate activity X =
β(XL + b) conveys no information on θ . The level of the aggregate activity is low in
this regime.
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Let n be the number of grid points between θH and θL (θL = θH − nε). The
argument in the previous paragraph applies in any period k < n. In period n there is
a strictly positive probability that θ = θL < XL , i.e., that a fraction of the cluster has
a cost lower than XL . The payoff of investment of an agent with cost XL is strictly
positive. Therefore, the equilibrium strategy c∗ is strictly higher than XL . It is shown
in the appendix (Section 12.3) and in Chamley (1999) that under some conditions
the CVF has a unique intersection with the 45◦ line and that this intersection is very
near XL . More specifically, this intersection at c∗ satisfies

θL < XL ≤ c∗ < θL + ε.(12.6)

When the equilibrium strategy satisfies this condition (the strategy lies between XL

and the nearest grid point on the right), we will say that the economy is in a low regime.
Assume the low-regime property holds for all periods 1, . . . , t, and consider pe-

riod t. The equilibrium strategy c∗
t satisfies (12.6.) There are two possible cases:

either θt > θL or θt = θL . (Recall that θt is on a grid.) Let us show that in the first
case the low regime goes on, whereas in the second case there is a switch to a high
regime.

Assume θt > θL . At the end of period t, the observed level of activity is Xt =
β(c∗

t + b). From this observation, one learns only that θt > θL . (The tail property
is operative here.) At the beginning of period t + 1, agents know that θ may have
decreased and crossed XL . However, the probability of that event is small. This is an
important step, which needs some comment. We will see that after the state crosses
the value XL , a switch to a high regime is triggered. The state θt+1 can cross XL and
reach θL only if θt = XL + ε in period t. The probability of the latter event in period t
is small, because the low regime has held since period 1. In all previous periods, agents
inferred from the observation of the aggregate activity that θt > XL . The information
about the low regime in the history ht is equivalent to the information that θk > XL

for all k ≤ t. The evolution of the public belief in a low regime is illustrated by an
example in Figure 12.5.

To summarize, in a low regime, the equilibrium strategy c∗ is near XL . As long as
the level of aggregate investment is equal to β(c∗ + b), agents infer that θ > θL and
use a low-regime strategy in the following period.

The CVF in a Low Regime
Each agent forms his own belief by combining the public belief in Figure 12.5 with
the information about his own cost c . The evolution of the CVF, V(c) = E [Fθ (c)|c],
in the low regime is illustrated in Figure 12.6. One verifies in the figure that the CVF
satisfies the conditions of Theorem 11.2 for the existence of a SREE. Two assumptions
play an important role in generating a CVF, as shown in Figure 12.6.
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Figure 12.6 The evolution of the CVF in a low regime. Immediately after the switch to the low
regime (t = 1), the CVF is identical to the cumulative distribution function. Over time, the CVF
is gradually smoothed because the public belief is gradually spread (as shown in Figure 12.5).
The CVF has a unique fixed point. The two vertical lines on each side of the fixed point mark the
nearest two grid points for θ . The fixed point is not the same for all periods but its variations are
too small to be represented. The parameters are the same as in Figure 12.5.
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The Power of the Possibility of Extreme Values of the State
According to the first assumption, there is an interval8 of high values of the state
θ with unique equilibrium at a low level of activity XL under perfect information.
Likewise, there is an interval of low values of θ for which X H is the only fixed point of
Fθ (c). As in the model of Carlsson and van Damme (1993a), the positive probability
of extreme values of the state is essential in generating a SREE.9

Heterogeneity, History, and Hysteresis
The second important assumption is that the degree of heterogeneity must be neither
too large nor too small.10 If it is too large, there are no multiple equilibria under
perfect information (as shown in Section 11.3), and the same is true a fortiori when
agents do not observe others’ costs. More interestingly, if the degree of heterogeneity
is very small as in Carlsson and van Damme (1993a), there is no SREE, because the
information of history is not sufficiently powerful to induce hysteresis.

The case with a highly concentrated distribution of costs is illustrated in Fig-
ure 12.7. In a first phase after a switch to a low regime,11 there is a SREE. After some
interval of time, the CVF has multiple fixed points. Both stable fixed points define
Nash equilibria. There is no SREE.

There is a fixed point close to XL as in Figure 12.5, but there is also a new fixed
point at A. Its existence is due to the small degree of heterogeneity, as in Carlsson
and van Damme. Suppose that the degree of heterogeneity is vanishingly small, and
consider an agent with a cost in the middle range of the interval (XL , X H ). For such
an agent, the weight of history is vanishingly small compared with the weight of the
information of his own cost. He believes that about half of the other agents have a
cost lower than his (see the previous chapter). In this case, the CVF converges to half
the mass of agents and has an intersection with the 45◦ line near the midpoint of
(θL , θH ).

For the agents with a cost c near XL , history dominates the private information of
c no matter how small the heterogeneity. The argument of iterative dominance does
not apply to these agents.12 To summarize, the agents think: if there were (a significant

8 In the analytical appendix (Section 12.3.1), this region is fairly large with � − θH ≥ θH − θL , but
numerical simulations show that this restriction can be weakened considerably.

9 A contrario, a small perturbation that excludes the possibility of a strong event may have a critical
impact on the level of activity. If the region with θ > X H − σ vanishes, the economy stays in a low
equilibrium even if it could jump to a high equilibrium under perfect information [as in case (3)
of Figure 12.3].

10 For tractability, in the appendix (Section 12.3.1), α < 2(1 − β). Numerical simulations show that
this assumption can be weakened considerably.

11 Note that the region with extremely high values of θ does not need to be large: it is reduced here to
one grid point.

12 Given any heterogeneity parameter σ , for an agent with c sufficiently close to XL (c > XL ), history
shows that the lower end of the cluster, θ , cannot be significantly below c . The CVF, V(c), is below
the 45◦ line if c ∈ (XL , c) for some c > XL . Hence, there is an equilibrium point between XL

and c .
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Figure 12.7 The CVF with a highly concentrated cluster. The population is highly concentrated
with α/β > 40. After a switch to a low regime, a SREE exists for t < T where T is some finite
number. For t ≥ T , the CVF has an additional fixed point A where history is dominated by pri-
vate beliefs. There are multiple Nash equilibria and no SREE. Parameters: γ = 1, θL = 10 =
XL − 0.5, θH = � = 31 = X H − σ + 0.5, σ = 2, β = 0.05, α = 10.45. The probability of a change
of θ is small (p = 0.1).

mass of) agents with a lower cost, we would have seen some action in the previous
period. Agents in the lower bound of the cluster would have taken action because
investment would have been dominant. We have seen nothing of the sort and thus we
still think that with high probability, agents in the cluster have a high cost.

THE SWITCH TO A HIGH REGIME AND THE INFORMATION BANG

As long as θ > XL , the low regime goes on. Let t be the first period in which θ = θL ,
the first grid point on the left of XL . In the equilibrium strategy, all agents with cost
smaller than c∗

t invest, and c∗
t ≥ XL > θL . Thus the aggregate investment at the end

of the period, Xt = β(c∗
t + b) + α(c∗

t − θL ), reveals that θ = θL . We are now back to
the beginning of our story, in a symmetric position. Agents have perfect information
about θ at the end of period t, as at the end of period 1. For this value, there is a
unique equilibrium under perfect information, at the high level X H . In period t + 1,
the story is symmetric to that in period 2 (Figure 12.4 and the associated discussion).
The CVF is an average of three c.d.f.’s, which are convex near θL . Therefore, it is higher
than the CVF under perfect information at the end of period t. The strategy X H still
defines a SREE, and so on.

The economy evolves randomly between regimes of high and low activity. Once
a regime has been established for some time, individuals have imperfect information
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on the state of nature. The probability of a switch is low, but when a switch occurs,
there is a bang of information, which becomes perfect for a short while.

12.1.3 Application to Policy

When the economy is in a low regime, a fiscal policy that subsidizes investment reduces
the net cost of acting agents and thus increases the probability of a transition to a
high regime. In the present model, the effect is equivalent to a shift of the cluster to
the left. The subsidy has minor effects if individuals believe that the average cost in
the cluster is high. Hence, in a business cycle, the policy is not very effective after the
downturn, when agents believe that the average cost is still high. For a given amount
of subsidy, it may be advisable to wait until the public belief in a switch of regime
reaches a higher level. A policy of subsidies is more effective when the public belief is
that a significant mass of agents are near the point of investment.

However, if the policy is applied and it fails to trigger a recovery to a high regime,
then people have learned that costs are higher than previously thought and the con-
tinuation of the subsidy does not have much chance of success.

12.1.4 Observation Lags and Random Walks with Drift

So far, we have assumed that the aggregate activity is observed after each move of θ ,
and that the grid on which θ moves is sufficiently fine. It can be viewed as an approx-
imation of a model with continuous time. However, observations of macroeconomic
data are often made with significant lags. Such lags can be introduced here by assum-
ing a finite number of steps for the random moves of θ , between periods. Numerical
simulations provide some support for the robustness of a unique equilibrium with
random switches. The equality of the probabilities for increases and decreases of θ

can also be somewhat relaxed. If appropriate values for these probabilities and for
γ , XL , X H , and � are chosen, it is possible to reproduce a large set of transition
probabilities between the two regimes.13

12.2 Observation Noise

The rectangular density function is now replaced with a smooth function: the pop-
ulation is divided in two groups as in the previous sections; the first has a uniform
density of costs β on the interval [−b, B]; the second is the cluster and is distributed
normallyN (θt , σ 2

θ ), where σθ is a publicly known constant, and θt follows the random
walk defined by (12.8). The mass of active agents is Xt , as in the standard model, and

13 As an indication, or a curiosity, one can reproduce the transition probabilities of the model of
Hamilton (1989), which fits the U.S. business cycle to a model with two growth rates.
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agents observe at the end of period t the variable Yt defined by

Yt = Xt + ηt ,

where the noise ηt is normally distributed N (0, σ 2
η ), and ση is publicly known.14 The

noise may arise from imperfect data collection or from the activity of “noise agents”
who act independently of the level of the aggregate activity. Given the strategy c∗ and
omitting the period’s index, the level of aggregate activity is

Y = β(b + c∗) + F (c∗; θ) + η,(12.7)

where F (c∗; θ) is the c.d.f. at the point c∗ of the normal distributionN (θ , σ 2
θ ). Agents

extract some information about θ from Y , which depends on θ through the function
F (c∗; θ). When |c∗ − θ | is large, F (c∗; θ) does not depend much on θ and is near 0 or
1. In that case, the noise η dwarfs the effect of θ on F (c∗; θ), and the observation of Y
conveys little information on θ . Learning is significant only if |c∗ − θ | is sufficiently
small, i.e., if the associated density function f (c∗; θ) is sufficiently high. However, the
strength of the strategic complementarity is positively related to f (c∗; θ) (which is
identical to the slope of the reaction function under perfect information). Learning
and strategic complementarity are positively related. As in the previous model with
rectangular densities, agents only learn a significant amount of information when the
density of agents near a critical point is sufficiently large to push the economy to the
other regime.

The model cannot be solved analytically, and its properties are examined through
numerical simulations. In an arbitrary period t, each agent uses his cost c and his
subjective distribution on the set � to determine his probability assessment of Yt .
From this computation, one can deduce the CVF. If the model is useful, there should
be a unique value c∗ such that Vt(c∗

t ) = c∗
t , and the condition of Theorem 11.2 should

hold, at least for most periods. In this case, the acting sets are intervals [−b, c∗
t ].

The model cannot exhibit a unique equilibrium for all values of the random noise.
Suppose for example that the economy is in a low state and that the distribution of
costs is such that there are two equilibria under perfect information. A very high value
of the noise in some period may induce a large mass of agents to act in the next period.
This could reveal a large amount of information and generate two equilibria for the
next period.

The main purpose of the model in this section is not to show that there is a unique
equilibrium for all realizations of (θt , ηt). It is to show that the properties of the
analytical model apply for most of these realizations: under the types of uncertainty
and heterogeneity that are relevant in macroeconomics or in other contexts of social

14 Negative values of Yt have a very small probability and are neglected, as in all linear econometric
models with normal distributions.
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Figure 12.8 A random evolution of θ. Under perfect information, if θ > θH (θ < θH ), the equilib-
rium is unique with a low (high) level of activity. In the middle band there are two equilibria with
high and low activity.

behavior, the model generates a SREE for most periods. In the numerical model below,
there is a SREE in each of the 600 periods that are considered.

THE NUMERICAL EXAMPLE

The parameters of the model are chosen such that the random walk is symmetric
with p = 1

3 and has five independent steps within each period (which is defined by
the observation of the aggregate activity). There is a mass of agents equal to 2 who
have negative private costs. The first subpopulation has a uniform density equal to
β = 0.5. The other parameters are σθ = 1.5, ση = 1, and K = 35. The mass of the
cluster is equal to 14.

The particular realization of the random walk of θ (the mean of the cluster)
is represented in Figure 12.8. In the region θ ≤ 7, there is only one equilibrium
under perfect information, with high activity. In the region θ ≥ 29, there is only one
equilibrium under perfect information, with low activity. The sum of the stationary
probabilities of these two events is less than 1

2 . The values of ηt are set to zero. This
last information is unknown to the agents. One observes that in the first period of the
simulation in Figure 12.8, θ is so high that the economy is in a regime of low activity.
The public beliefs and the CVF are represented in Figure 12.9 for some of the 600
periods. A vertical line represents the true value of θt . The right side of each panel
represents the graph of the CVF Vt(c).

In Figure 12.9, the evolution of beliefs and of the level of activity are similar
to the ones in the previous section. A switch from low to high activity occurs in
period 60. The sudden change of beliefs between two consecutive periods is strik-
ing. After the transition, the mean of the public belief is altered drastically, and its
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Figure 12.9 The evolution of learning. The values of the state θ are the same as in Figure 12.8.
In each period, the left panel illustrates the public belief about θ as in Figure 12.5, and the right
panel illustrates the CVF as in Figure 12.6. The vertical segment indicates the actual value of θ in
the period. A regime switch occurs in period 61. Note (i) the difference between the actual value
of θ and the public belief in period 30 before the switch; (ii) the difference between the public
beliefs and the CVF after and before the switch.

precision is increased no less significantly. A similar switch to low activity occurs in
period 133. These transitions occur a number of times given the path of θ in Fig-
ure 12.8.

12.3 Appendix

12.3.1 An Analytical Model of Regime Switches

At the beginning of the initial period (period 0), nature chooses an initial θ0, according
to a probability distribution π0 = (π1,0, . . . , πK ,0) on the set � = {ω1, . . . , ωK }. This
initial distribution, which will satisfy some specific assumptions later, is known to all
agents.
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The value of θ in period t is denoted by θt . It belongs to the discrete set � =
{ωk}1≤k≤K , with ωk = γ + (k − 1)ε, γ > 0, ε > 0. For convenience, the ratio be-
tween the width of the cluster, σ , and the width of the grid, ε, is an integer. The value
of ε will be small in a sense specified later, but it will not have to be infinitesimal.

Let p be a positive parameter, 0 < p ≤ 1
3 . With a probability denoted by P , the

random evolution of θt is defined by the following equations:⎧⎪⎪⎨
⎪⎪⎩

if ω1 < θt < ωK , P (θt+1 = θt + ε) = P (θt+1 = θt − ε) = p,
P (θt+1 = θt) = 1 − 2 p;

if θt = ω1, P (θt+1 = θt + ε) = p, P (θt+1 = θt) = 1 − p;
if θt = ωK , P (θt+1 = θt − ε) = p, P (θt+1 = θt) = 1 − p.

(12.8)

The assumption that p ≤ 1
3 is reasonable: the random evolution of θt in the previous

equations can be viewed as the discrete specification of a smooth diffusion process in
continuous time. In such a process, the distribution of θt that evolves from an initial
value θ0 is hump-shaped. The discrete formulation of the random process generates a
hump-shaped distribution only when p ≤ 1

3 . The asymptotic distribution of θt does
not depend on the value of p, and numerical simulations show that the properties of
the model may hold when p > 1

3 . Agents know the law of evolution of θ in (12.8) but
do not observe the state θ directly.

The values of XL and X H that are defined in (12.3) are separated by the grid points
ωM and ωN satisfying

ωM < XL < ωM+1 and ωN−1 < X H − σ < ωN .(12.9)

Assume the economy is in a low regime as defined in (12.6). Each agent updates the
public belief with the information of his private cost c . Given the rectangular shape
of the distribution in Figure 12.3, the Bayesian agent computes his density of θ by
multiplying the density in Figure 12.5, call it φ(θ), by a factor λ > 1 for the values
of θ such that |θ − c | < c and by the factor (β/(α + β))λ < 1 for the other values.
This effect tends to increase the CVF when c is large. Indeed, an argument similar to
that of Carlsson and van Damme shows that if agents are nearly identical, the CVF
is asymptotically equal to (XL + X H )/2. In this case, there cannot be a SREE near
XL . Therefore, we must assume that the degree of heterogeneity is sufficiently large.
Chamley (1999) proves that there is a SREE under the following assumptions.

ASSUMPTION 12.1 α < 2(1 − β).

ASSUMPTION 12.2 ωM − ω1 ≥ ωN − ωM and ωK − ωN ≥ ωN − ωM.

The first assumption implies that the distribution of costs is not too concentrated.
The second assumption requires that the extreme ranges of values for θ – where there
is only one equilibrium under perfect information (case 1 or 2 in Figure 12.3) – be
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sufficiently wide. This assumption ensures that in a low (high) regime, the distribution
is sufficiently skewed to the right (left), as shown in Figure 12.5.

PROPOSITION 12.1 Under Assumptions 12.1 and 12.2, there exists a SREE. In period
t, the equilibrium strategy is defined by c∗

t ∈ [XL , X H ]. Either c∗
t < XL + ε (in a low

regime), or c∗
t > X H − ε (in a high regime). The low regime is maintained as long as

θ > XL , and ends as soon as θ < XL . The same applies mutatis mutandis for the high
regime.

The proof of the result is technical and is found in Chamley (1999). It is an
application of Theorem 11.2.

12.3.2 The Model with Noise

Let πθ , t be the probability of a value θ in period t in the public belief. This belief
is updated from period t to period t + 1 in two steps: first, at the end of period t
following the observation of Yt ; second, at the beginning of period t + 1 with the
knowledge of the random process of evolution (12.8). Let G(c∗

t , θ) be the mass of
acting agents with the strategy c∗

t and a given θ . The random variable Yt is distributed
according to N

(
G(c∗

t , θ), ση

)
. Define the public belief at the end of period t by π̂θ , t .

Following the observation of Yt ,

log π̂θ , t = γ −
(
Yt − G(c∗

t , θ)
)2

2σ 2
η

+ log πθ , t ,

where γ is a constant such that
∑

θ∈� π̂θ , t = 1. Note that within the model, agents
could use the fact that θt takes discrete values in order to obtain more information
from the observation of Yt . However, this feature is spurious. The random changes of
θt could be such that the distribution of θt has a piecewise linear density function in
every period. The previous updating formula should therefore be understood as the
relevant formula for the nodes of the density function of θt (at integer values of θt).
The entire distribution of θt could be recovered through a linear interpolation.

A straightforward application of the rule (12.8) of the random walk of θt gives
π̂θ , t+1 from π̂θ , t .



13 Delays and Payoff Externalities

It takes two to tango.

Agents optimize their decisions over time with externalities of informa-

tion and in payoffs. Examples of strategic substitutability include learning

about the capacity of demand in a market, the marginal cost of produc-

tion of a new technology, or the potential capacity of supply. When there

are strategic complementarities, coordination may be easier to achieve

in the multiperiod setting if the number of agents is finite, but it may

be impossible if the number of agents is large. An example of strategic

complementarity is the diffusion of contraceptives in some countries.

When agents can choose the timing of their actions, they have an incentive to delay
in order to gain information. We have seen in Chapter 6 that the information exter-
nalities can generate strategic substitutabilities or complementarities. In this chapter,
we reconsider the issue of delays with the introduction of payoff externalities. Given
the current state of the literature, the problem of coordination, which was the main
one in the previous two chapters, is assumed away here. Agents coordinate on a Nash
equilibrium. If such an equilibrium is not unique, some ad hoc rule will be followed
for its choice.

STRATEGIC SUBSTITUTABILITY

Payoff externalities have been shown to be a source of delays in the abundant lit-
erature on wars of attrition. An example is the private provision of a public good.
Harris and Nalebuff (1982) describe a hot room with people who each would like
the window to be opened. The open window is a public good that benefits all, but
each person shuns the embarrassment of standing up in front of others and going
to open the window. Everyone is waiting for someone else to go. After an interval
of time where nothing apparently happens, one person stands up and opens the
window.

288
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During the waiting game,1 all agents observe what others do. They know that each
agent has a private cost of opening the window and that the private costs (unobserv-
able) are randomly distributed. Each person has a “reservation time,” which increases
with his own private cost. When she decides to stand up, she knows that no one else
has a cost higher than her cost. She waits in the hope that someone else had a higher
cost. The model exhibits strategic substitutability: more efforts by others to provide
the public good reduce the effort of each agent.

The models in Section 13.1 have payoff externalities, and their equilibria have fea-
tures of wars of attrition. The analysis will put a special emphasis on the interactions
between the information externalities in learning about the state of nature and the
payoff externalities.

The supply of a good and the entry into a new market provide standard examples of
strategic substitutability. For a given demand curve, the profits of a firm are inversely
related to the number of competitors or to their supply. The profitability of each entry
decreases as the number of entrants rises. Entry requires a commitment, a fixed cost.
The uncertainty may be about the size of the demand or about the supply (the cost of
production or the number and the sizes of potential competitors). The parameters of
the market are learned once the cost is paid and other agents take action. In Chapter 5,
a higher rate of entry by others increased the flow of social learning and thus increased
the incentive for delay. The same effect is at work here, but it is enhanced by the negative
effect of the rate of entry on the profitability of investment.

Behind the models of Section 13.1, there is a simple and general idea. The public
information expands only when agents take new actions: they “push the envelope.”
Each agent who takes an action does so at the risk of finding some bad news after
which others stop taking any action.

Uncertainty about the Size of the Demand
In the model of Zeira (1994), suppliers learn about the size of the demand for a good,
the capacity of the market. This can be learned only when the number of suppliers
exceeds the capacity. As long as the capacity exceeds the supply, we know only that
it exceeds the supply. Once the suppliers reach the capacity, the price collapses and
suppliers cannot recoup the cost of their investment. Eventually, such a collapse must
occur.

Uncertainty about the Number of Potential Entrants
Section 13.1.2 presents a new model of agents entering a market with uncertainty
about the investment costs of other potential entrants. The model is the simplest one,
with two agents. It is very similar to the simple model in Section 6.1 on delays. Here,

1 The model of Harris and Nalebuff is presented in Exercise 13.1.
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there is only one agent in the good state: he can capture the whole market. In the bad
state, there are two agents, who reduce profits to zero through competition if they have
entered the market (by assumption). In the symmetric perfect Bayesian equilibrium,
there is delay. The number of periods during which agents delay (on average) increases
if the period is shorter, but the mean time of delay is reduced. When time is continuous,
there is no equilibrium. Other types of models are presented and related to models
where firms learn the demand.

Uncertainty about the Cost of Production
In Caplin and Leahy (1993), the suppliers know the demand for the good, but they
are uncertain about the marginal cost of producing it. This cost is the same for all
suppliers, for simplicity, and is fixed at the beginning of time. An agent learns the
marginal cost after incurring the fixed cost of putting the production process in place.
The outsiders, who are potential entrants, know that no insider would produce at a
marginal cost above the price. They observe the price of the good. As long as entry
goes on and the price is falling, outsiders know that the marginal cost is strictly below
the price. Because of the positive gap between the price and the expected marginal
cost, there is an inflow of new suppliers and the price falls gradually. In some cases,
the price reaches the marginal cost, and the supply cannot be expanded: that would
drive the price below marginal cost. In that event, the supply does not increase, the
price stops falling, and outsiders realize that the price has hit the marginal cost. They
do not enter the market anymore.2

STRATEGIC COMPLEMENTARITY

In a standard stag-hunt game that takes place in one period, there are two equilibria:
the first, with no investment, is Pareto-dominated by the second, where agents in-
vest; we saw how agents under imperfect information “choose” one of the equilibria
(Chapter 11). Can the inefficient equilibrium be ruled out when the game has many
periods? Gale (1995) provides, remarkably, a positive answer when the investment is
irreversible and the number of agents is not too large (Section 13.2.1). The argument
is simple and powerful. Suppose there are two agents and investment yields a positive
dividend in each period once both agents have made their irreversible investment.
In an equilibrium, agents cannot delay their investment a long time if the period
is short. If one agent, A, invests immediately, he is sure that the other, B , if he has
not invested also in the first period, will do so in the second: at that stage, B is the
only agent it takes for a positive payoff. When the period is vanishingly short, any
agent can guarantee himself a payoff that is arbitrarily close to the first-best where

2 Actually, some agents who entered before that event realized, after their entry, that the marginal cost
was near the price and that their profits would not cover the fixed cost of investment. Unfortunately,
they cannot call their former colleagues outside the market to warn them not to enter. It remains to be
investigated whether this anecdotal property is idiosyncratic to the model and would be eliminated
in another setting.
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both agents coordinated their investment in the first period. The argument can be
extended to any finite number of agents. The key to the argument is that each agent
recognizes his pivotal role: he knows that if he invests, he induces a game with at least
one fewer player; the properties of the equilibrium are derived by induction. The main
conclusion from the analysis of Gale is that when agents are pivotal (and have some
kind of “market power”), the decision setting with multiple periods may facilitate the
coordination between agents.

In Section 13.2.2, an opposite property is found when the number of agents is
large and uncertain (as in many macroeconomic models): if agents can delay their
investment, coordination may be impossible. If agents do not invest in a period, there
is no incentive to invest in that period; if a sufficiently large fraction of them invest,
there is an incentive to delay to see whether the mass of players is sufficient to achieve
a positive payoff when they all invest.

The problem of finding whether the mass of players is sufficient to achieve a positive
payoff already appeared in the previous chapter in a context where agents could not
delay. Munshi and Myaux (2002) show that the issue arises in connection with the
adoption of contraceptives in Bangladesh (Section 13.2.3). There are, to simplify, two
types of agents: those who are prepared to adopt the new technology and those who
are not. The payoff of an adopter increases with the probability of being matched with
another adopter. A government program can induce individuals to “come out of the
woods” in a seed phase and raise the expectation of any potential adopter to find a
similar mate. After a phase of subsidization, agents may coordinate on an equilibrium
where all agents who are willing to switch indeed adopt the new technology.

13.1 Strategic Substitutability

Learning about the conditions in a market has two sides: learning the demand and
learning the supply by competitors.

13.1.1 Learning the Demand

In Chapter 8, a monopoly was managed by a sequence of one-period agents who
each maximized the profit in their period. By assumption, they could not delay their
decision. The arbitrage between different periods will be an important feature of the
equilibria in this section.

AN UNCERTAIN CAPACITY OF DEMAND

Zeira (1994) models the capacity of the market by a rectangular demand function.
The demand price p is a function of the quantity Q as defined by

p =
{

1 if Q < θ ,
0 if Q ≥ θ .
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Figure 13.1 An uncertain demand capacity. The demand price p is constant for a quantity
smaller than θ , which is random. The marginal value of the good falls to zero for quantities above
θ . The supply is equal to X .

The variable θ is the state of nature that characterizes the capacity of the market. The
distribution of θ has a c.d.f. F (θ) on the support [a, b] with a ≥ 0. The demand evi-
dently has a very special form, which will be discussed later. Its schedule is represented
in Figure 13.1. We begin with a one-period game.

A One-Period Setting
There is a continuum of agents who are potential entrants into the market. Each player
who has entered the market can produce at the constant marginal cost c a maximum
quantity h of the good, where h is the size of a firm, which is infinitesimal with respect
to the size of the market. The assumption of a continuum is the limit case of a finite
number of players, n, as n → ∞, with a firm size h = 1/n. The production capacity
when all agents enter the market – the mass of the continuum – is normalized to 1.
An agent can set up a firm if he pays the fixed investment cost kh. (The parameter k
is the value of the cost measured per unit of production capacity.) In this one-period
game, the investment depreciates completely at the end of the period. In order to have
a nontrivial equilibrium, the parameters satisfy the following assumption.

ASSUMPTION 13.1 k < 1 − c and θ ≤ b < 1.

The first inequality ensures that entry is profitable for a single agent; the second
ensures that not all agents can enter with a positive profit.

We consider only symmetric equilibria. In such an equilibrium, each player enters
the market (and pays the fixed cost of investment) with probability ζ . If every agent
plays ζ , the supply is determined by the law of large numbers and is equal3 to X = ζ .

3 When the number n of players is large, each with production capacity h = 1/n, the mean and the
variance of the supply are ζhn = λ and ζ (1 − ζ )/n, respectively. When n → ∞ with ζ constant,
the mean stays constant and the variance tends to zero.
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Two outcomes are possible. If the supply X is smaller than the capacity of the market
θ , the price is 1. The probability of that event is 1 − F (X). If X > θ , the price is equal
to the marginal cost of production and there are no profits.4

By arbitrage, the expected profit from entering the market is zero, and the equi-
librium strategy ζ must be solution of

k = (1 − c)
(

1 − F (ζ )
)
.(13.1)

By Assumption 13.1, the solution in ζ exists and is unique. In the equilibrium, either
the supply falls short of the capacity of the market, θ , and the price is equal to 1, or
the supply exceeds θ and investors make zero profit and do not recoup the investment
cost. One should emphasize that if the strategy of agents is an equilibrium strategy,
both events have a strictly positive probability. (The situation is the same as in an
optimal inventory where the probability of a stockout must be strictly positive.) Here,
if the probability of a price collapse is zero, perfect competition implies that the supply
should increase.

The equilibrium is a constrained Pareto optimum: a social planner (with no private
information about θ) who can choose the strategy of the agents chooses the equi-
librium strategy (Exercise 13.2).

Multiple Periods: Learning the Demand Curve
Suppose now that there are multiple periods and that agents know the history of past
prices. Let ζ1 be the equilibrium strategy in the first period, which is determined by the
arbitrage equation (13.1). If the supply in the first period is smaller than the market
size θ (ζ1 < θ), agents use this information to update the distribution of θ at the
end of period 1. Let Ft(θ) be the c.d.f. of θ at the beginning of period t. Conditional
on ζt−1 < θ , the game goes on to period t, where the equilibrium strategy ζt is such
that

k = (1 − c)
(

1 − Ft(ζt)
)
.(13.2)

An Example
Assume the initial distribution of θ to be uniform on [0, b]. Conditional on ζt−1 < θ ,
the distribution of θ is uniform on [ζt−1, b], and equation (13.2) becomes

b − ζt = β(b − ζt−1) with β = k

1 − c
< 1.

Conditional on not having hit the capacity of the market (ζ < θ), the supply tends
to the maximum size of the market, b, at an exponential rate. Therefore, the supply
ζt reaches the capacity of the market θ in a finite number of periods. The value of θ

and the demand curve are learned perfectly in a finite (random) number of periods.

4 By assumption, producers can modify the output in the period to adjust supply and demand, and
because of perfect competition, the price is equal to the marginal cost.
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The model can be extended by assuming that investment does not depreciate
within a period. In that case, each agent computes the probability that the price falls
below c in the future periods. This computation has to be done numerically.

The model presented here is a reduced version of that of Zeira (1994), who as-
sumes that θ follows a random walk θt+1 = θt + εt and that the production capacity
depreciates fully at the end of each period. The random term εt is an increase of
the demand with εt ≥ 0. It is not observable, but agents know its distribution. In
each period the production capacity is determined by the no-profit condition. In
random periods, the capacity of the market is reached (as in the optimal-inventory
problem). In that case, agents learn the exact value of θ for that period (assuming
that they can observe the supply, to simplify the problem). In the period following a
“capacity crisis,” the increment of θ is random again and the supply increases. The
model thus exhibits phases with a gradually growing supply, separated by crises with
oversupply.

CRISES OF OVERACCUMULATION OF CAPITAL IN MACROECONOMICS

The issue of excessive capital accumulation is an old one in macroeconomics and goes
back at least to Marx (1867). According to Marx, “crises” of capitalism occur when the
rate of profit falls because of excessive accumulation. The argument is subject to an
obvious critique: Marx’s investors seem to be myopic. Investment takes place because
of future expected profits. Because investors have a forward look, the anticipation of
the future decrease of profits should prevent the excessive accumulation. The model of
Zeira shows that crises of overaccumulation may occur regularly, at random intervals,
when rational forward-looking investors have imperfect information on the demand.
In the model, the actual demand θ is learned only when a crisis occurs.

Zeira presents a numerical simulation in which crises are rather short, and after a
crisis the rate of accumulation returns rapidly to a stationary value. Perhaps additional
investigations will produce a richer set of results. The analysis of cycles of excessive
supply in a tractable model that embodies the main features of the business cycle
remains a topic for further research.

ON MODELING THE UNCERTAINTY OF DEMAND

The distinctive feature of the demand curve in Figure 13.1 is the abrupt drop of the
price at the unknown quantity θ . Often in this book, a good model is one suffi-
ciently simple for tractable analysis and sufficiently rich to represent the complexity
of the environment in which agents make decisions under imperfect information.
The rectangular representation of Figure 13.1 is elegant in that all the uncertainty is
captured by a single variable θ and this value is not trivially revealed by agents’ ac-
tions.5 The specification of a linear demand curve p = a − θ Q, where a is known and

5 The simplicity of the rectangular shape is particularly useful when θ grows randomly over time,
which was an important feature in the model of Zeira.
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The long-run supply is inelastic, and 
the capacity of production is unknown.

The model of Caplin and Leahy: the long-run
supply is perfectly elastic, and the marginal cost
of production is unknown.

Figure 13.2 Uncertain supply.

θ > 0 is unobservable, seems more general but is in fact less so, because one market
equilibrium would reveal the demand curve entirely.

There are two possible extensions with generic properties: the first is to parame-
terize the demand curve with a small set of parameters and introduce an observation
noise; the second is to introduce a rich set of demand schedules. The second approach
will be pursued in the next section to model supply schedules. We will see that it is
symmetric to the modelization of the demand.

13.1.2 Learning the Supply

Uncertainty about the supply can take two polar forms: it can be about the number
of potential entrants in the market or about the cost of production.

In the first, the supply is perfectly inelastic at some value of θ , which defines the
state of nature and is not observable. Each firm has a fixed capacity to produce at
some known marginal cost, which can be assumed to be zero, and the uncertainty is
about the number of firms that can produce. Entrants pay the cost of investment and
bet that the number of other entrants will be sufficiently low for a positive profit. This
case is represented in the left panel of Figure 13.2. The state θ determines the total
capacity of potential entrants.

If θ is greater than the size of the market, M, and all potential entrants set up
firms, the price falls to 0. In an equilibrium, the risk of excess capacity of production
provides an incentive for delay.

In the second polar form, the supply of the good is perfectly elastic at the price θ

and there is a fixed entry cost per firm. The mass of potential entrants is known, but
a firm learns the cost of producing the good only after it makes an initial investment
to begin the production process. This “hands-on” learning is certainly plausible. An
active firm can produce the good at a constant marginal cost θ up to some capacity,
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which is small with respect to the size of the market (to ensure pricetaking). The state
of nature θ defines the marginal cost, which is the same for all agents. The value of
θ is not observed by outsiders who have not entered the market yet. An agent enters
the market by paying a fixed investment cost to set up a new firm. For a given θ the
supply of the good is therefore perfectly elastic.

Outsiders who have not entered yet can get indirect information by observing
the firms already in the market. If they do not produce much, it is a sign that the
production costs are high. If production is high, production costs must be low, and
entering the market should be profitable. Each entrant pays an irreversible fixed cost
of investment to bet on finding a low production cost. If the market indicates that the
cost is low, however, other competitors will enter later, and the price of the good and
the profits of the early entrants will be reduced. Caplin and Leahy (1993) analyze this
interesting issue in an elegant model.

AN UNCERTAIN CAPACITY OF SUPPLY

The Simplest Model
The simplest model for the left panel in Figure 13.2 is that of two states and one or
two agents. Let the state be θ = {0, 1}, and the number of potential entrants be 2 − θ .
Time is divided into periods, and each agent has an option to enter the market at the
fixed cost c . If both agents have entered the market, the gross payoff for each agent is
0. If a single agent has entered the market, the gross payoff per period is 1 − δ, where δ

is the discount factor. No agent will enter once the other agent has entered. Therefore,
if an agent enters in period t and the other agent does not enter in the same period,
the payoff in period t is

U = −c +
∑
k≥0

δk(1 − δ) = 1 − c .(13.3)

The Symmetric Equilibrium
Let µt be the probability of θ = 0 in period t. The payoff of investment in period t is

U (µt , ζt) = µt + (1 − µt)(1 − ζt) − c = 1 − c − (1 − µt)ζt .

It is (obviously) a decreasing function of the probability of investment, ζt . Because
the payoff is strictly positive when ζt = 0, not to invest for sure is not a strategy in
the symmetric equilibrium. The agent either invests for sure or is indifferent between
investment and delay. If ζt < 1, the payoff of the continuation of the game in period
t + 1 is the same as the payoff of an investment for sure in period t + 1 knowing that
the other agent uses the strategy ζt+1. Therefore, if 0 < ζt < 1,

U (µt , ζt) = δ(µt + (1 − µt)(1 − ζt))U (µt+1, ζt+1),(13.4)
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Figure 13.3 Evolution of beliefs and strategies. Parameters: δ = 0.9, c = 0.8, µ1 = 0.5. In this
example, there are T = 7 periods in which the game is actively played (conditional on no termi-
nation before date 5). The dynamic path fits the number of periods, T , in such a way that the
boundary conditions are satisfied: µ1 is the initial belief, and ζT = 1 because there is no incentive
for delay in the last period.

where µt+1 is the probability of the good state in period t = 1, following the obser-
vation of no investment in period t, and ζt+1 is the equilibrium strategy in period
t + 1.

From Bayes’s rule, the expression for U in the arbitrage equation (13.4), and some
algebraic manipulations, the evolution of the variable (µt , ζt) is characterized by the
dynamic equations

µt+1 = G(µt , ζt) = µt

1 − (1 − µt)ζt
> µt ,

ζt+1 = H(µt , ζt) = ζt(1 − µt)(1 − δ(1 − c)) − (1 − δ)(1 − c)

δ(1 − µt)(1 − ζt)
,

(13.5)

with the condition that the solution satisfies 0 ≤ ζt ≤ 1. One can verify that this
condition is

µt < µ∗ with µ∗ − c < µ∗δ(1 − c).

This condition is the same as in the simple model with delays and information exter-
nalities.

The evolution of (µt , ζt) is determined by the functions G and H in the previous
system. It is represented in the phase diagram of Figure 13.3.

In each period during the waiting regime, each agent randomizes his probability
of investment, ζt . When there is no investment, the belief µt increases. The probability
of investment, ζt , also increases with time. In some period T the beliefµT is sufficiently
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Figure 13.4 Supply schedules. There are six realizations of the random supply schedule. In the
least elastic realization, there are 9 firms in the long-term equilibrium with a price equal to 78;
in the most elastic realization, there are 18, with a price equal to 58.

high and µT − c ≥ µT δ(1 − c). The game ends in that period with a bang or a
whimper.

Extension with a Random Supply Schedule
Each agent is characterized by an idiosyncratic parameter c , which is his fixed cost for
setting up a firm with a capacity of production normalized to 1 (which is small with
respect to the market size). The marginal cost of production is assumed to be zero,
without loss of generality. We consider a distribution where an agent cannot infer
from his own cost any information about the costs of others. The sole information he
will obtain will be derived from the observation of others.

The agent’s costs are realized on a grid of cost points zi = ai , i = 1, . . . , N. Each
value zi is a potential production cost. The value of a is fairly small with respect to the
equilibrium price, and N is fairly large. (In the numerical example below, a = 1 and
the market price is about 50.) For each i , there is an actual firm with a production cost
zi with a probability α. The existence of a firm at a cost point is independent of the
existence of other firms. Hence, the cost to one agent provides no information on the
costs to others. A realization of the random variables for all the cost points generates
a supply function. Some examples are presented in Figure 13.4. (The probability that
a firm exists at a cost point is 1

4 .)
The demand of the market is known as in the previous model, and without loss

of generality, it is linear: p = a − b X . Time is divided into periods. At the beginning
of time, the distribution of costs is realized. Let F (c) be the c.d.f. of this distribution:
F (c) is the number of agents with a cost not strictly higher than c .

In each period any agent can make an investment with the fixed cost c specific to
him. If he invests, he produces a fixed quantity normalized to one. All the supplies are
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brought to the market, and the price is established by perfect competition. At the end
of the period, all agents observe the price and the quantity of the good. The capital of
the firms that have invested depreciates completely. In period 2 and in any subsequent
period, the same game takes place with the same agents (with the public information
about the prices and the total supplies in the previous periods).

In the competitive equilibrium, a process of tâtonnement, in real time, takes place.
Consider the first period. The equilibrium strategy is to invest if and only if the cost
c is smaller than c1 defined by

c1 = a − b E [X1] with E [X1|c1] = E [F (c1)].

For the exposition, we can make the approximation that each firm is small and
E [X1] = αc1. The equilibrium strategy in the first period is such that

c1 = a/(1 + bα).

The supply X1 is a random variable, which is realized at the end of the period:
X1 = F (c1). If p1 = a − b X1 > c1, the game continues in period 2, in which all
agents with cost smaller than c2 invest. An exercise shows that c2 > c1. As long as
pt > ct , the supply increases by random increments with an increasing sequence ct .

Suppose now that t is the first period in which pt < ct , and there is an oversupply.
(All goods are sold in the market, but the investors with highest cost incur a loss.)
Agents know the distribution of costs at the two points ct−1 and ct . The equilibrium
ct+1 is between these two points. Eventually the sequence ct converges to the point c∗

defined by c∗ = a − b F (c∗).

The Model with Uncertain Demand Revisited
The previous model with an uncertain capacity of supply can be applied to a setting
where agents know the supply but learn the demand schedule. By assumption the
price is in the interval [0, A]. Define the values zi = i A/N, i = 1, . . . , N. For each i ,
with probability α, there is a mass 1 of buyers with reservation price zi : these agents
buy at most one unit of the good at a price not strictly higher than zi . The supply
schedule is known and linear in the price. There is a continuum of suppliers who can
produce a quantity h (which is very small) at the cost hc . The cost c is drawn from a
uniform distribution: the supply schedule is linear.

This model is an extension of the first model in Section 13.1.1. It does not generate
the large jumps that were a bit too stylized in that first model. Note the symmetry
with the model of an uncertain supply in Figure 13.4.

AN UNCERTAIN MARGINAL COST OF PRODUCTION (CAPLIN AND LEAHY, 1993)

The state is defined by the marginal cost of production, θ , which is fixed at the begin-
ning of time and drawn from a uniform distribution on [0, θ]. There is a continuum
of mass K of agents who can enter the market at any time. Time is continuous. Each
agent can enter the sector and set up a new firm by paying a fixed investment cost c .
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Once the agent has entered, he learns θ and can produce the good at each instant at
the marginal cost θ up to a maximum capacity, which is normalized to 1 and is small
with respect to the total supply. Production is instantaneous, and the flow of the total
supply, X , is sold to a market with a demand curve p = D(X), which is common
knowledge. Agents who have not paid the entry cost observe only the price p of the
market. Each agent maximizes the expected discounted present value of his profit.
In order to avoid trivial equilibria, the structure of the model satisfies the following
inequalities.

ASSUMPTION 13.2 D(0) > 1 and D(K ) < 2ρc < 1.

Let Xt be the mass of agents who have entered at time t. The equilibrium has two
phases:

(i) During the first phase, the price of the good is higher than the marginal cost:
pt > θ . All firms produce at maximum capacity pt = D(Xt), and the flow of
entry is positive. The supply Xt grows, and the price pt falls along the demand
schedule pt = D(Xt). Agents who have not entered yet observe through the
market price pt that the new entrants produce up to their capacity. Therefore the
price must be strictly above the marginal cost of production, θ . For the potential
entrants, the updated belief aboutθ is the uniform distribution on [0, pt]. Because
of perfect competition, the level of entry is such that the expected profit of entry
is nil.

(ii) The first phase ends if the price pt reaches θ with the supply Xt such that θ =
D(Xt): the price cannot fall further, because the marginal return to production
would be negative; the “last” entrant does not produce. At that instant, the level
of production stops increasing, and the price stays constant. This event signals
immediately to the remaining potential entrants that the marginal cost equals the
price and that entry cannot be profitable. There is no further entry.

The evolution of Xt as a function of time is determined by arbitrage. Let vt be the
value of an option to enter at time t. Agents who have not entered can buy such an
option at any time at the price c . In a perfect competition equilibrium, the value of
the option will be equal to its purchase cost c . The value of the option satisfies the
arbitrage equation6

ρvt = pt − E t[θ |pt] + ṗt

pt
vt .

6 The equation can also be obtained through the standard dynamic programming technique with
vanishingly short periods: Decompose time into periods of length dt. The value of the option in
period t is vt = (1/(1 + ρdt))((1 − πdt)(p − E t [θ]) + πdt · 0), where πdt = ( ṗ/p)dt because
1/p is the density of θ at time t. Take dt → 0.
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On the right-hand side, the first term is the expected profit per unit of time. Because
the updated distribution of θ is uniform on [0, pt], we have E t[θ |pt] = pt/2. The
second term measures the expected capital loss per unit of time, which occurs when
the price reaches the marginal cost θ .

Because there is perfect competition for entry, we have c = vt and the previous
equation becomes

ṗt

pt
= 1

2c
(2ρc − pt).(13.6)

Let X0 be the supply such that 1 = D(X0). From Assumption 13.2, X0 > 0. There
cannot be an interval of time (0, τ ) in which the supply is strictly below X0: profits
would be strictly positive in that interval (because the price would be strictly above
the upper bound of the marginal cost of production); any entry strategy would be
dominated by an earlier entry. Hence, at the beginning of time the supply jumps to
X0 because of perfect competition, and the price is p0 = 1.

For t > 0 and conditional on pt > θ , the time path of the price is determined by
the initial value p0 = 1 and the differential equation (13.6). From that equation one
can see immediately that the price cannot fall below the limit value

p∗ = 2ρc .

If the price reaches p∗, the expected flow of profit is p∗ − E [θ |θ < p∗] = p∗/2 and
has a discounted value p∗/2ρ = c . The profit of entry is nil, and there cannot be any
further entry, which would lower the price. Given the limit value p∗, the solution of
the differential equation (13.6) is

pt = p∗

1 − (1 − p∗)e−ρt
.(13.7)

The game has two possible outcomes, which depend on the actual value of θ that
is realized before the beginning of the game:

• If θ > p∗, the price falls according to (13.7), reaches θ in a finite time T such that
θ = D(XT ), and stays constant after. Entry takes place during the interval of time
[0, T]. Agents who enter shortly before time T have the bad surprise that the cost
of production θ is higher than their expectation before paying the investment to
create a new firm.

• If θ ≤ p∗, the price falls forever according to (13.7) and tends to p∗. The flow
of entry is always positive but tends to zero as t → ∞. The level of production
increases and converges to X∗, which is defined by p∗ = D(X∗). Agents are never
disappointed, in the sense that their observation of θ after entering the market is
always lower than their expectation before entering.
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Social Inefficiency
Following the previous description of the outcomes, the price eventually reaches θ or
converges to p∗. This convergence takes time because the suppliers act competitively
and a higher rate of entry would generate private losses. A social planner maximizes the
social surplus. In a constrained Pareto optimum, the social planner has no information
superior to that of the market, and he can choose the rate of entry (say, through some
suitable incentive).

The social planner compares the present value of the social surplus of one more
entry, (p − E [θ |θ < p])/ρ, with the cost of entry, c . If p > p∗, the first is strictly
greater than the second (by definition of p∗), and any delay of entry is socially inef-
ficient. In the competitive equilibrium, an agent compares his expected discounted
profits (Vt(p) − E [θ |θ < p])/ρ with the cost c , where Vt( p) = ∫∞

0 e−ρτ pτ dt is the
present value of the gross revenues after time t. Because the path of prices after time
t is declining, that present value is strictly smaller than the quantity pt/ρ that is
considered by the social planner. In the competitive equilibrium, the private-value
entry is smaller than the social value. In the constrained optimum, any delay is so-
cially inefficient as long as pt > max(θ , p∗). The social planner should provide an
incentive such that the rate of entry is as high as possible as long as pt is higher than
the maximum of θ and p∗.

A Remark
The model of Caplin and Leahy is very elegant, but it rests on the sharp dichotomy
between insiders who know the value of θ and outsiders whose information is the
declining price of the good. An information gap about production costs between
insiders and outsiders is very plausible, but the model is so stylized that it may be
useful to explore other modeling directions.

13.2 Strategic Complementarities

How can an agent’s action induce others to act? This “leader’s effect” can operate only
when agents are not negligible and they are in finite number. This issue needs to be
addressed first in a context of perfect information on the parameters of the model.
Gale (1995) has shown that in an economy without uncertainty, with a finite number
of agents, and where the actions are irreversible investments, a very short period
“solves” the coordination problem. A simplified version of his model is presented in
the next section.

13.2.1 Pivotal Effects: Learning through Time May
Foster Coordination

THE MODEL OF GALE (1995) WITH TWO AGENTS

In order to simplify, assume first two agents, each with one option to make one
irreversible investment at a cost c . Investment in period t generates a return in each
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period k ≥ t that is an increasing function of the total investment in period k. This
function is written (1 − δ)v(Xk),7 where v is an increasing function of the number
of investments in period k, Xk ∈ {0, 1, 2}, and δ is a discount factor. The total return
of investment is the present value of the return for all periods: investment in period
t generates a net payoff

U =
∑
k≥t

δk−1(1 − δ)v(Xk) − δt−1c with t ≥ 1.(13.8)

Without loss of generality, v(X) is such that v(X) = 0 if X ≤ 1, v(2) = 1, and 0 <

c < 1: the investment is profitable only if both agents invest. The discount factor δ is
related to the length of a period by δ = e−ρτ , where ρ is the rate of discount and τ is
the length of a period.

The Static Game
The static game takes place when the period length is infinite and δ = 0. The payoff
function becomes U = v(X) − c . There are two Nash equilibria: in the first, no agent
invests; in the second, both agents invest.8 The second equilibrium, with high activity,
Pareto-dominates the first one, because it yields v(2) − c , which is higher than the
zero payoff of the first equilibrium. These simple properties are summarized in a
lemma to highlight the contrast with the main results.

LEMMA 13.1 When δ = 0 (and there is actually only one period), there are two equilib-
ria, in which no agent and all agents invest, respectively. The equilibrium with investment
Pareto-dominates the other one.

The Dynamic Game
Assume now that the period length is finite and 0 < δ < 1. We consider only subgame
PBE. Suppose that a playerA invests in period 1. If the other playerB invests in period
1, the game is over with coordination achieved immediately. If playerB does not invest
in period 1, he is the only player in the subgame that begins in period 2, and he reaps
the benefit of investment as soon as he invests. His dominating strategy in period 2 is
to invest without delay. PlayerA knows that if he invests in period 1, he can guarantee
that player B invests no later than period 2 and that the critical mass necessary for
v(X) = 1 is reached no later than in period 2.

The previous argument does not support immediate investment, but it provides
a lower bound U for the payoff that any equilibrium must meet:

U = −c + δ.

7 In this form, the function v has the dimension of a present value, and (1 − δ)v(Xk) has the dimension
of a dividend on this present value.

8 There is also an equilibrium with randomization, which is neglected here because it is unstable with
respect to some dynamic process.
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Any strategy that does not generate a payoff at least equal to U is dominated by in-
vestment with no delay, in period 1. When the period is vanishingly short, δ → 1
and the payoff of any symmetric PBE tends to 1 − c , which is the payoff in the first
best. The argument does not rule out a PBE with delays; but all equilibria with delays
have a payoff that tends to the first best if δ → 1. An agent can induce the other not
to delay more than one period, but no agent can induce the other agent to invest
immediately. If A knows that B invests for sure in period 2, then the optimal strategy
is to delay for one period.

From the previous discussion, investment in period 1 generates a payoff no
less than −c + δv(2). Investment by both agents in period t generates a payoff
δt−1(v(2) − c). This can be a Nash equilibrium only if

δt−1(v(2) − c) ≥ −c + δv(2) > 0,

which is equivalent to t ≤ T , with

T = 1 + 1

−log δ
log

(
v(2) − c

−c + δv(2)

)
.

If δ → 1, the number of admissible periods with delay in a Nash equilibrium tends
to infinity. However, for a fixed discount rate, the time length of the longest delay in
equilibrium tends to zero.

The two main lessons are that a vanishingly short period enables agents to achieve
the first best payoff (asymptotically) in any PBE, and that there can be a delay of at
least one period. Any investment induces a subgame with at least one fewer player.
Gale generalizes the argument to any game with a finite number N of players.

THE MODEL WITH N PLAYERS

Suppose that there are N agents, N > 2, and v(X) is increasing with v(1) < c <

v(N). Denote by n∗ the minimum number that is required for profitable investment:
n∗ = min{n | v(n) > c}.

The argument used in the two-agent model applies by induction for any n∗.

LEMMA 13.2 In any PBE, the value of the game is at least equal to

U = −c + δn∗−1v(N).

If N is given and the period becomes arbitrarily short (δ → 1), the payoff in any PBE
tends to the first-best value v(N) − c .

There are many PBEs, as in the case of two agents. The previous result shows,
however, that they must achieve coordination in a vanishingly short time as the
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length of a period tends to zero.9 This time span can of course include many periods.
The important result, however, is on the payoff. A vanishingly small length of a period
induces near-perfect coordination.

The property of near-perfect coordination is another illustration of the importance
of the period length in models where information is conveyed through actions.

A Large Number of Agents
In the previous result, N is fixed and the period length tends to zero. This order is
critical. Take the reverse: fix the period length and take N → ∞. In that case, coor-
dination may fail.

The essential mechanism in the argument is that any agent knows that he is not
negligible and that his investment precipitates a subgame with at least one fewer
player. However, this subgame begins one period later. The player knows that he can
guarantee himself a payoff equal to the one that is generated by all agents investing
not later than n∗ − 1 periods from now (in period n∗). If the number n∗ of players
of the critical mass increases, then the chain of triggers by each players is longer and
the period in which the critical mass is reached recedes into the future. In this sense,
when the critical number of agents, n∗, rises, coordination becomes more difficult.
When n∗ is sufficiently large, the present value of the payoff that can be guaranteed
by triggers may decrease and become lower than the cost of investment: coordination
may fail completely. There exists a value n such that if n∗ > n, the coordination failure
in which no agent ever invests is a PBE.

To summarize the results10: (i) each agent recognizes that he is pivotal and his
investment induces a subgame with fewer players; (ii) if the number of players required
for coordination, n∗, is fixed whereas the period length tends to zero, the payoffs of all
PBEs (there are many of them) are bounded below by a value that tends to the value
of the first best; (iii) if the period length is fixed, there is n such that if n∗ > n, then
there is a PBE in which no one ever invests.

The two main assumptions of the model are (i) the irreversibility of investment,
which ensures the commitment of an agent who has invested; (ii) the finite number
of agents, which enables any one of them to play a pivotal role.11 The fact that there
can be multiple equilibria is not important when the period length tends to zero, for
they all generate the same payoff asymptotically.

9 Theorem 1 in Gale (1995) shows that if δ → 1, all agents invest within a time span less than ε that
tends to zero, provided that agents have nonrandom strategies. If they have random strategies, the
statement holds in a probabilistic sense.

10 There are more results in Gale (1995), to which the reader is referred.
11 Admati and Perry (1991) consider a different model of coordination, which can be illustrated by

two people writing a joint paper. They alternate in each period and make a contribution (a real
positive number). The paper is finished when the cumulative sum of the inputs of the team reaches
a level that is fixed. The value of the paper is greater than that cost. It is shared equally by the two
agents and discounted from the time of completion of the paper. Once the paper is done, it is worth
more than the total contribution of the two people. However, in equilibrium, the ex ante value is
dissipated by delays.
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13.2.2 Large Number of Agents: Learning May
Prevent Coordination

A lesson from the model of Gale is that with finite agents and perfect information
on the payoffs of other agents, a short period facilitates coordination (in the precise
sense that was given). We will see now that when the information on the structure of
other agents is imperfect, a short period may make coordination impossible.

A MODEL WITH NONATOMISTIC AGENTS

The model presented here is similar to the one in Matsumura and Ueda (1996). There
is a continuum of agents, each with one option to make one irreversible investment
at a fixed cost c . The state of nature θ is in {0, 1}, and the mass of agents in state θ is
Mθ .

ASSUMPTION 13.3 M0 < c < M1.

Time is discrete, and the payoff function is the same as in the previous model of
Gale. Investing in period t yields

U = E

[∑
k≥t

δk−1(1 − δ)Xk − δt−1c

]
,

where Xk is the mass of agents who have invested no later than in period k, and δ is
a discount factor that is smaller than one. The investment in period t entails a cost c
in that period. The flow of the investment’s payoffs begins in the same period, and
for each period k ≥ t, it is an increasing function of the number of agents who have
invested by the end of period k. Without loss of generality, this function is linear.

The Multiple Equilibria with Perfect Information
Assume first that the state is known to all agents. By Assumption 13.3, if the state is
low (M = M0), there is only one equilibrium: no agent ever invests. If the state is
high (M = M1), there are many equilibria. One of them involves perfect coordination
with all agents investing in period 1. Another one entails complete coordination failure
where no one invests. For any k ≥ 0 there is a PBE in which all agents delay for k
periods and invest in period k + 1.

Imperfect Information
Assume now that the state is not observable and that in period 1 all agents with an
option to invest assign to the high state a probability12 µ1 that satisfies the following
condition.

12 We have seen in previous chapters how µ1 may depend on the structure of information. We can
posit here a value for the subjective probability of all agents.
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ASSUMPTION 13.4 c < µ1 M1 + (1 − µ1)M0.

Let us consider a symmetric equilibrium where each agent invests with probability
ζ in period 1. Suppose that ζ > 0. Because the strategy ζ is known to all, the mass of
investment in the first period is ζ M: it reveals perfectly the value of M and therefore
the state. A delaying agent can make a decision in period 2 under perfect information:
he will never invest if the low state is revealed. Given any strategy of the other agents,
the payoff difference between investing in period 2 if and only if the state is revealed
to be high by then (no matter what other agents do) and investing in period 1 is at
least equal to

B(δ) = −(1 − δ)(µ1 M1 + (1 − µ1)M0 − c) + δ(1 − µ1)(c − M0).

From Assumption 13.4, there is a unique value δ∗ such that B(δ∗) = 0. The proof of
the next result is left to the reader.

PROPOSITION 13.1 For any parameters of the model (µ1, M0, M1, c) with M0 < c <

M1, there is a value δ∗ such that

if δ > δ∗, the only equilibrium is that where no agent ever invests;
if δ < δ∗, there is an equilibrium in which all agents invest in the first period.

The previous result is different from those in Chamley and Gale (1994), Chapter
6, where the only externality is on the information about the exogenous payoff. In
those models, a short period does not alter the essential property of the equilibrium:
the amount of information per unit of time is (asymptotically) independent of the
length of the period. Here a short period makes a critical difference. When the period
is short, the option value of delay always dominates the opportunity cost. All agents
delay forever.

The result is also different from those in Gale (1995), where short periods facilitated
coordination. In the present model, agents are nonatomistic. There is no possibility of
playing a pivotal role. Furthermore, agents have imperfect information on each other.

13.2.3 Interactions with Complementarities and Learning

There is a continuum of infinitely lived agents of two types. Active agents choose
in each period a zero–one action. Inactive agents can choose only the action 0 in
each period. The mass of all agents in the continuum is normalized to one, and the
fraction of the active agents is Mθ , where the state of nature θ ∈ {0, 1} is set randomly
at the beginning of time: M1 > M0. In each period, an active agent first makes a
zero–one decision. Then he meets another agent, who is drawn randomly from the
whole population. From this meeting, the agent receives a payoff, which depends on
the action of the other agent, and also on the information about the state of nature:
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TABLE 13.1 Social interaction.

Action of
Individual i

Other’s Action

y = 1 y = 0

x = 1 α −β

x = 0 −γ 0

because inactive agents choose x = 0 and there are more inactive agents in the state
θ = 0, the observation of an action 0 raises the probability of that state. We focus on
the active agents, and the term “active” will be omitted if there is no ambiguity. In a
period, an agent’s payoff depends on the action of the other agent he meets during
the period as specified in Table13.1, with α > 0, β > 0, γ ≥ 0. For simplicity and
without loss of generality, it is assumed that γ = 0.

The agent chooses the action that maximizes his expected payoff. That expected
value depends on the mass of active agents. If the mass Mθ is small, the probability
of meeting another active agent is small and the expected payoff is small. There is
a unique equilibrium with x = 0. If the mass Mθ is sufficiently large and all active
agents choose the action x = 1, then the strategy x = 1 may become an equilibrium
strategy. We choose the values of M0 and M1 such that under perfect information
(i) if the state is bad (θ = 0), the only equilibrium is with no action by any agent; (ii)
if the state is good, there is an equilibrium in which each agent takes action 1; in this
case, there is also another equilibrium in which agents take action 0. These properties
are embodied in Assumption 13.5.

ASSUMPTION 13.5 αM0 − β(1 − M0) < 0 < αM1 − β(1 − M1).

We now assume imperfect information. The state is not observable. Each agent has
a belief (a probability of the state θ = 1) at the beginning of time. This belief µ is drawn
from a distribution with c.d.f. F θ

1 (µ), which may depend on the state θ . In each period,
agents observe only the action of the other agent, but not the type of the other agent.

In each period, the strategy of an agent is a function from his belief to the set
of actions {0, 1}. We consider only symmetric equilibria. The equilibrium strategy is
common knowledge. From the observation of the interaction and the knowledge of
the stategies of others, the agent updates his belief at the end of the period.13 The
distribution of beliefs evolves between periods. The distributions of beliefs in the two
states are in general different. In period t, they are represented by the c.d.f.’s F θ

t (µ).
It is reasonable to consider the monotone strategies in which the most optimistic

agents invest. Assume that all agents with belief greater than µ choose action 1. The
payoff of action x = 1 for an agent with the marginal belief µ is a function V(µ),

13 It would be possible to separate these two functions of a match in a generalization of the model.
One could assume for example that the observation of the action generates a weak signal on the
state because of idiosyncratic effects, or that each agent observes the actions of more than one other
agent.
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Figure 13.5 Net cumulative value functions.

which is represented in Figure 13.5 for two different distributions of beliefs. On the
left all agents have the same belief equal to 0.5. If the cutoff value µ is above 0.5, no
agent takes action 1, which has the negative payoff −β. If the marginal belief is below
0.5, all active agents take action 1. The parameters are such that the expected payoff of
action 1 is positive. When the cutoff µ decreases from 0.5, the mass of agents taking
action 1 does not change, but the belief of the marginal agent (that the mass of active
agents is high) decreases and the payoff decreases. For µ = 0, the payoff is equal to
αM0 − β(1 − M0) < 0 because of Assumption 13.5.

In the right panel of Figure 13.5, the distribution of beliefs is uniform in the
interval [0, 1]. The overall shape of the graph is a smoothing of the graph in the left
panel.

A Nash equilibrium monotone strategy is defined by V(µ) = 0. In both cases,
there are two interior solutions. However, the higher value of µ is unstable: suppose
that µ increases from the higher equilibrium position where V(µ) is decreasing; the
payoff V(µ) is negative, which induces the marginal agent to switch to the action 0;
the marginal value µ is raised, and so on. The equilibrium is unstable in the sense of
this discussion.

Recall that in all cases, the strategy in which no agent invests is another stable
equilibrium.

SOCIAL CHANGE AND CONTRACEPTION IN BANGLADESH

Munshi and Myaux (2002), hereafter MM, study the adoption of contraceptive meth-
ods in rural Bangladesh during a period in which policies promoted these methods.14

The data show that individuals of the same village tend to act in similar ways and

14 The overall rate of contraceptive prevalence increased from about 43 percent in 1983 to 63 percent
in 1993. The profile of adoption shows a mild convexity before 1990 and a strong concavity after
1990 (Figure 1 in MM, 2002).
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that different villages seem to converge to different long-run levels of adoption. The
evidence of the data and of the observation of “social pressure” indicate that an indi-
vidual’s regulation of fertility has a strong component of complementarity. Innovators
face a social cost, which is reduced when the fraction of adopting individuals is higher.

There are two types of individuals: for traditional individuals, the “cost” of con-
traception is so high as to prevent their use; for innovators the use of a contraceptive
(x = 1) or a traditional method (x = 0) generates the payoffs15 in Table 13.1. In the
actual experiment, a government program induced agents to adopt the innovation
through some incentive in a first “seed” phase. Because of the incentive, a fraction
of the innovators adopted the new technology, but traditional agents did not switch.
Because the matching with an agent provides a signal on the state of nature, agents
learn about the state during the seed phase. At the end of that phase, the distribution
of beliefs is such that an equilibrium with endogenous innovation is possible without
government incentive.

A Numerical Simulation
The model is simulated numerically and the results are presented in Figures 13.6 and
13.7. The left panels in Figure 13.6 represent the distribution of beliefs in different
periods, and the right panels represent the function V(µ), which is the payoff of
an agent with belief µ under the condition that all agents with belief higher than µ

choose the same action x = 1.
In the first period, all agents (innovators) have the same belief µ1 = 0.25. The

payoff of innovation V(µ) is negative for all values of µ. The fraction of agents
choosing action x = 1 is set at 1

2 . At the beginning of period 2, agents who have met an
agent with action x = 1 in the first period increase their belief while the others reduce
their belief. In the state θ = 1 there are more adopting agents; hence the population
with higher beliefs is greater than when the state is θ = 0. The distributions of beliefs
in the two states θ = 0 and θ = 1 are represented in the left panel of the second row
(t = 2). The graph of the payoff function V(µ) on the right shows that if there were
no incentive, there would not be any innovation.

During the seed phase, agents learn, and the distribution of beliefs evolves accord-
ingly. The distribution moves to the right in state θ = 1 and to the left in the other
state. Because the initial distribution was concentrated on a point, all distributions are
atomistic. The seed phase lasts until the end of period 7. For t ≤ 7, V(µ) < 0 for all
values of µ and there is no equilibrium with innovation in the absence of government
incentives. These incentives are terminated at the end of period 7.

In period 8, the distribution of beliefs is such that in the good state there is a
relatively high mass of agents with high beliefs. Hence, the mass of agents with belief
higher than some intermediate value µ is large in state θ = 1, and the function V(µ)
is sufficiently large for these values of µ. The right panel shows that there is an

15 The payoffs of Munshi and Myaux are simplified here.
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Figure 13.6 Evolution of beliefs and payoff. Parameters: α = 1 − u0 where u0 = 0.35 is the
payoff of no innovation (x = 0). β = −u0. The masses of innovators in the high and low state are
M1 = 0.8 and M0 = 0.2. All initial beliefs (probability that M = M1) are identical and equal to
0.25. During the first 7 periods (see phase), half the active agents innovate (choose the action 1)
because of some incentives.
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Figure 13.7 Simulated profile of adoption.

equilibrium value µ∗ such that all agents with belief higher than µ∗ choose the action
x = 1.

Because there are more optimistic agents in state θ = 1 and there are more active
agents in state θ = 1, the observation of others is a signal about the state that is more
powerful than in the seed phase. Learning is faster after the seed phase.

In period t = 9 there are two (stable) equilibria with a solution interior to the
interval (0, 1): the graph of V(µ) intersects the line V = 0 twice while it is increas-
ing. The multiple equilibria are generated by the atomistic distribution. In general,
we should not be surprised by the occurrence of multiple equilibria with strategic
complementarities.

The asymptotic distribution of beliefs and of the function V(µ) are well approxi-
mated in period t = 15. In that period, the beliefs are near the truth, and the function
V(µ) is approximated by a linear function on the open interval (0, 1) with the values
V(0) = V(1) = 0.

The profile of the fraction of agents adopting the innovation is represented in the
left panel of Figure 13.7 with the same parameters as in Figure 13.6. The upper curve
represents the profile when the mass M of agents who can innovate is large and equal
to M1. The lower curve represents the profile when M is small and equal to M0. In the
right panel, initial beliefs have a uniform distribution, the seed phase lasts only for
three periods, and the payoff of innovation is equal to 0.3. In both panels, if M is large,
all potential innovators adopt the new technology after no more than ten periods. The
profile is S-shaped in the left panel and concave after the seed phase in the right. If M
is small, the fraction of adopting agents tends rapidly to zero after the seed phase.

EXERCISES

EXERCISE 13.1 The war of attrition for the provision of a public good (Harris

and Nalebuff, 1982)

There are two agents, each with an individual parameter c that is independently drawn
from a uniform distribution on [0, 1]. There is a public good of value 1 for each of the
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agents. The good has to be supplied by one of the agents at the private cost c . Time
is continuous. If the good is supplied at time t, the payoff for the agent who supplies
the good is eρt − c , where ρ is a discount rate, and the payoff for the other agent is
eρt . In equilibrium, there is a one-to-one relation between the cost of an agent and
the time he supplies the good, c(t), conditional on no supply from the other agent
before time t.

1. Write the arbitrage condition for the optimal time.
2. Determine the function c(t).

EXERCISE 13.2

In the one-period model of Section 13.1.1, assume that θ has a density function f (θ).

1. Show that the equilibrium is the constrained social optimum.
2. Answer the same question when capital does not depreciate after one period.

(Present an informal argument without solving the model.)

EXERCISE 13.3

Analyze the nonsymmetric equilibria in Section 13.2.3.

EXERCISE 13.4 “Hot Money” (Chari and Kehoe, 1998)

This exercise shows how the BHW model can be applied to a case where the payoff of
investment depends on the actions of others and on the state of nature.

Consider a small open economy in which a government borrows from foreign
lenders to fund a project. There are M risk-neutral agents, who are ordered in an
exogenous sequence. Agent i can make a loan of size 1 in period i . The project is
funded if there are N agents who make the investment. There are two states for the
developing country, θ = 0 or 1. Each loan pays a return R if the project is funded,
after M periods, and the state of the economy is good (θ = 1). Each agent has a
symmetric binary signal with precision q about θ . If an agent does not make a loan,
he earns the market return r . Each agent i observes the actions of agents j with j < i .
Define µ∗ = r/R. Nature’s probability of state 1 is µ0. By assumption,

1 − q

q

µ0

1 − µ0
<

µ∗

1 − µ∗ <
µ0

1 − µ0
.

Assume N = 3 and M = 5. Analyze the equilibrium. (Show that if there is no herding,
agents with a good signal invest and agents with a bad signal do not invest. Note that
the sequence (0, 1, 0, 1, 0) does not lead to funding.)

EXERCISE 13.5 Experience and recessions (Jeitschko and Taylor, 1999)

Consider an economy with a continuum of agents of mass 1. In each period, each
agent chooses the action x = 1 (investment) or x = 0 (no investment). The action
x = 1 entails a fixed cost c > 0. In each period, an agent is matched with another
agent. If both agents are investing, the gross payoff of the project is 1 with probability
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θ , and 0 with probability 1 − θ . If one of the agents does not invest, the project yields
0. No agent can observe θ or the action of the match. Matches last only for one
period. By assumption, θ ∈ {θ0, θ1} with θ0 < c < θ1. At the beginning of period 1,
all agents have a belief such that µ1 is the probability of state θ1. It is assumed that
µ1θ1 + (1 − µ1)θ0 > c .

1. Show that in the first period there are two stable equilibria. (State a concept of
stability that is not very sophisticated, yet rigorous.) Does the model exhibit strate-
gic complementarity or substitutability? Is there an unstable equilibrium?

2. At the end of each period, agents revise their beliefs from the observation of the
payoff of their investment (if they have invested in the previous period). Assume
that in the first period, all agents invest. Determine the belief at the beginning of
the second period of the agents who have a zero payoff in the first period.

3. Assume the following parameter values: θ0 = 1
4 , θ1 = 3

4 , c = 1
3 , µ1 = 1

2 . Show
that in the second period, there is a unique equilibrium in which no agent in-
vests. Explain the intuition of the mechanism.

4. Fix any parameter of the model (with the assumption µ1θ1 + (1 − µ1)θ0 > c).
Does all activity in the economy stop after some finite time? Explain intuitively.
Is this model a plausible description of the “inevitability” of pessimism and
recessions?
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14 Sequences of Financial Trades

Can exuberance be rational?

In this chapter, the actions that reveal private informations about the

value of an asset are the agents’ trades. In a model where agents are

placed in an exogenous sequence, have different private information,

and trade with the market (Glosten and Milgrom, 1985), the trading

price provides a sufficiently detailed signal to prevent the occurrence of

cascades. However, the price may be subject to large and sudden variations

and to extended regimes with an incorrect valuation. Transaction costs

may keep a large amount of private information hidden. Cascades may

occur when agents act strategically in an auction.

Learning and herding have fascinated people at least since the tulip mania in the
seventeenth century and the experiment of John Law. The standard line is that finan-
cial markets are wonderful pools in which information is shared efficiently between
people. For Keynes, however, they were little more than casinos or “beauty contests”
in which the main goal is not to learn intrinsic values but to guess what people think
that other people think (and so on) has the greatest value.

Literary descriptions such as Keynes’s have great allure. They arouse emotions,
but they only titillate the rational mind. A proper assessment of the mechanism of
learning and herding in financial markets requires the modelization of some rational
behavior. The modeling task that is required is difficult because it must incorporate
sufficient complexity to analyze how agents deal with this complexity, and yet at the
same time be simple enough for analysis.

We have seen that the space of actions of the individuals defines the “vocabulary”
used by the agents in their communication, and plays a critical role in the learning
mechanisms. In Chapter 3, when an agent takes an action in a continuum, this ac-
tion reveals perfectly his private signal (which takes also values in a continuum of
dimension one). Herding depends critically on the restricted set of possible actions
(Chapter 4).
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In financial markets, the price of an asset is a fine instrument and should therefore
convey efficiently private information on the intrinsic value of the asset. We have seen
in previous chapters how profit-motivated actions convey private information. The
payoffs of these actions are granted by nature. In financial markets, however, agents act
by trading with others, and the gains of some are often the losses of others. If trading
partners are learning rationally, the incentive to communicate through trading may
be reduced drastically. An offer to sell conveys the seller’s private information that the
asset has a low value. Hence, there is no incentive to buy. A potential seller knows this
before proposing to sell and does not bother to trade. This no-trading result (Milgrom
and Stokey, 1982) shows that if the meaning of a price is sufficiently well defined, it
cannot be used to convey information between rational agents.

Yet people do trade. That must be because of some other motive, which is not
conveyed perfectly by the prices of the assets. Some agents need to sell to meet an
emergency, others need to buy to insure against uncertain income in the future, and
so on. If these motives were observable by all trading parties, the no-trading result
would still apply. It is therefore critical that the non-information-related motives are
not perfectly observable to all the trading agents. A convenient method to incorporate
idiosyncratic motives for trading is the introduction of noise traders, whose trades are
not based on the intrinsic value of the asset. These noise traders will appear in most
of the models of financial markets we will consider. Because the observation of noise
traders is equivalent to the observation of idiosyncratic motives, their trade will be
indistinguishable from that of other informed traders, by assumption.

Models with noise traders have been very successful because they imbed some
of the complexity of transactions within a tractable framework. They come in two
main varieties. The first considers a sequence of transactions between two agents with
asymmetric informations; each transaction releases some information. The main
model in this line is that of Glosten and Milgrom (1985). The other line of models
assumes that agents meet as a group in a market where the equilibrium price conveys
a signal about the agents’ informations. Competition in the market may be perfect or
imperfect. The solution of the equilibrium is analytically simple when agents have a
CARA utility function with constant absolute risk aversion and the random variables
have normal distributions. Emblematic models with a CARA–Gauss structure have
been presented by Grossman (1976), Grossman and Stiglitz (1980), and Kyle (1985,
1989).

A sequential model à la Glosten and Milgrom provides a fine microstructure of
actions, which is close to that of the BHW model of Chapter 4. It is a natural first step
for the analysis of herding in financial markets. The CARA–Gauss model will be the
subject of the next chapter.

The model of Glosten and Milgrom generates an endogenous bid–ask spread that
is not due to transaction costs. We will see that in this model the convergence is as fast as
if private signals were observable. This model will be the basis for a model of herding
by Avery and Zemsky (1998) presented in Section 14.2. The results of Avery and
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Zemsky are essentially negative. We have seen in Chapter 4 that herds may occur
when the action space is limited (for example, discrete). In a financial market with
one asset of uncertain value, the price is a pretty fine signal, which prevents mimetic
chains from taking place. We will also examine an argument of Avery and Zemsky for
temporary herds and sudden price changes.

Auctions are one form of financial markets. The possibility of herding with auc-
tions has been analyzed by Neeman and Orosell (1999) in a model that is presented
in Section 14.4.

14.1 Learning in the Model of Glosten and Milgrom

A financial asset is a claim on a random variable to be realized after the actions have
taken place (as in all models in this book, where learning operates through actions).
This asset is traded as follows. The market is represented by a broker who runs a
trading desk and is perfectly competitive with other brokers (the sole purpose of the
background brokers is to enforce perfect competition, which simplifies the model).
The broker, called the marketmaker, is risk-neutral and maximizes his expected profit
in each transaction. In each period, he is visited by one agent. The agent is either
an informed trader who has private information on the fundamental value of the
asset, or a noise trader who is determined to buy or to sell with equal probabilities
(to simplify). The agent who comes to the market proposes to buy or sell exactly
one unit of the asset. (There is no choice of the quantity of the asset.) The best the
marketmaker can do is to post two prices, a bid price to buy and an ask price to sell.
(The marketmaker can sell short.) Suppose that the visitor is willing to sell at the bid
price. The marketmaker is taking a chance: he could take a loss if the visitor is an
informed agent who is willing to sell because he knows that the asset is not worth
its price; but he could also make a gain if the visitor has to sell for personal reasons,
no matter what the value of the asset. Because the marketmaker may face a loss with
the informed agent, his bid price, i.e., his price contingent on facing an agent who
is willing to sell, is below the expected value of the asset in the common knowledge,
i.e., before he meets a visitor who could be of either of the possible types. Likewise,
the ask price will be above the expected value before he meets a potential partner for
trading. I present here a special case of Glosten and Milgrom’s (1985) model, which
will suffice for the analysis of herding.

THE MODEL

The financial asset is a claim on a random variable θ ∈ {θ0, θ1}. Without loss of
generality, θ0 = 0 and θ1 = 1. Nature’s probability of the good state θ = 1 is µ0.
There are two types of agents, informed agents and noise traders. Each informed
agent has one private signal s with a distribution which depends on θ . The definition
of this signal could be quite general. Let us assume here that the signal is a SBS with
precision q > 1

2 .
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In each period, one agent meets the marketmaker. With probability π , he is of the
informed type and trades to maximize his expected profit.1 With probability 1 − π , he
is uninformed and buys, sells, or does nothing with equal probabilities 1

3 . The type of
an agent is private information to that agent: it is not observed by anyone but himself.
However, the probability that the agent is informed is common knowledge. In any
period, the history of transactions (quantities and prices) is public information. As in
the standard model of Chapters 3 and 4, history will be summarized by the exhaustive
statistic of the public belief, i.e., the probability of the good state given the history.

EQUILIBRIUM

Denote the public belief at the beginning of an arbitrary period by µ. (The time
subscript can be omitted temporarily.) The marketmaker posts a selling price pA and
a buying price pB such that his expected profit is equal to zero (by perfect competition).
The only informed agents who buy are the optimists with signal s = 1.

The zero-profit conditions for a sale and a purchase are rewritten

1 − π

3
(pA − µ) + π

(
µq( pA − 1) + (1 − µ)(1 − q) pA

)
= 0,

1 − π

3
(pB − µ) + π

(
µ(1 − q)( pB − 1) + (1 − µ)q pB

)
= 0.

(14.1)

Consider the zero-profit condition for a sale. In the first term of the left-hand side,
(1 − π)/3 is the probability of meeting a noise trader who buys. The quantity pA − µ

is the expected profit from the sale. It can also be written as pA − µ = µ( pA − 1) +
(1 − µ) pA to highlight the outcomes in the good and the bad states, each with the
probability assessment of the marketmaker, who has the public belief. The expected
profit from selling to a noise trader is positive. It is balanced by the negative expected
profit of selling to an informed trader, which is the second term of the expression.

Simple intuition dictates that the ask price of a sale must be between µ and the
belief µ̃(1) of an optimist who is an informed agent with a good signal,2 whereas the
bid price is between µ and the belief of a pessimist. In this example the market never
breaks down.3 The equilibrium in period t is determined by ( pB , pA), the solution
of (14.1).

1 The assumption of a fixed π ensures that the trade is “reasonably balanced” in the sense of Glosten
and Milgrom.

2 One has

µ < pA =
µ

1 − π

3π
+ µq

1 − π

3π
+ µq + (1 − µ)(1 − q)

<
µq

µq + (1 − µ)(1 − q)
= µ̃(1).

3 Glosten and Milgrom show that the market may break down as a market for lemons à la Akerlof
(1970).
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LEARNING

The information is transmitted from the private information of an agent by the action
“sell” or “buy.” This action is informative because its probability depends on the state
of the world. From the results of Chapter 2, the public belief µt is a martingale,
which converges. In the special case of a binary signal, the bid and ask prices pB and
pA are set so that informed traders buy if and only if they are optimists and sell if
and only if they are pessimists. In each period the observation of the action (sale or
purchase) is equivalent to the observation of the signal of the informed agent with
some noise. When t → ∞, the public belief µt tends to the true value θ ∈ {0, 1}. The
noise reduces learning in a period, but it has no effect on the rate of learning when
t → ∞.

The probability of a sale by a marketmaker is the same as the probability of meeting
an optimist or a noise trader who buys. Denote by βS(θ) and βB (θ) the probabilities
of a sale and a purchase by the marketmaker:

βS(θ) = 1 − π

3
+ π(qθ + (1 − q)(1 − θ)),

βB (θ) = 1 − π

3
+ π((1 − q)θ + q(1 − θ)).

These expressions are independent of the public belief. After a sale with public belief
µt , the public belief µt+1 is given by Bayes’s rule:

µt+1

1 − µt+1
= µt

1 − µt

βS(1)

βS(0)
.

Let us reflect once more on the mechanism of the model if private signals have a
very general structure. Suppose that the sale price of the marketmaker, pA, is equal
to the public belief µ. He makes no profit on sales to noise traders, and a sure loss
when he sells to informed agents with a relatively good signal. Hence his sale price pA

must be above the public belief to generate a profit on the noise traders. However, this
margin (which depends on the public belief) raises the minimum value of the signal
for informed agents who buy at some value s . Because the probability that s > s is
higher when θ = 1 than θ = 0, the sale carries a powerful message on the state.

As long as the equilibrium does not break down, there cannot be a cascade. In a
cascade, there would be no learning from buying or selling. (Recall that some buying
and selling take place because of the noise traders.) Both prices pA and pB would be
identical toµby the zero-profit condition. In this case, however, some informed agents
would buy whereas some others would sell (because private signals do convey some
information), and the equilibrium would convey some information. The nonexistence
of a cascade is very much related to the fine structure of the market price. The bid–ask
spread is endogenous in the model. When learning takes place, the bid–ask spread
shrinks to zero asymptotically (Proposition 4 in Glosten and Milgrom, 1985), but it
is sufficient to discriminate between some informed agents, and trade conveys some
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information. The situation would be very different, of course, if the bid–ask spread
were generated by a fixed cost of trading. In that case, cascades could occur.

14.2 Herds

We know from Chapters 2 and 3 that the properties of a model with social learning
depend critically on the structure of private information and actions. The previous
section showed that with binary signals, the model cannot generate cascades and
beliefs do converge to the truth. The prices, which can take values in a continuum,
prevent the occurrence of a cascade: if all informed agents ignored their private signals,
the price would not reveal information and it would have to be identical to the public
belief, by arbitrage. In that case, however, informed agents would take into account
their private information, which would contradict the initial assumption. Avery and
Zemsky (1995) generalize this property to the case where private signals satisfy the
MLRP, introduced in Section 2.3.1.4

Convergence results are often overstated. It is certainly more relevant to study
how people may be wrong over an extended length of time and how a sudden price
change may occur. This issue is, in my view, the main one in the study of Avery and
Zemsky. They extend the model of the previous section with a special structure of
private information, which they call nonmonotone.

NONMONOTONE PRIVATE SIGNALS

Assume that θ takes a value in the set {0, 1
2 , 1}. The normal state is defined by θ = 1

2 .
If a shock occurs,5 θ is equal to 1 or 0. Informed agents know perfectly whether a
shock occurs, i.e., they know whether θ = 1

2 or θ ∈ {0, 1}; but they have imperfect
information on the type of the shock.

If a shock occurs and θ ∈ {0, 1}, each informed agent receives a SBS about θ . This
signal has two possible precisions: with probability α it is of precision q , and with
probability 1 − α of precision q ′ with 0.5 < q ′ < q . Each agent knows the precision
of his signal, but does not know the value of α. This value is the same for all agents.
The value of α defines the precision of the economy, i.e., the proportion of agents
with a high precision. It is set randomly at the same time as θ in the set of two values
{αL , αH} with 0 < αL < αH .

The aggregate state of the economy is defined by the realization of the two random
variables θ and α, which are independent. The probability that a shock occurs is µ,
and conditional on a shock, the states θ = 1 and θ = 0 have the same probability. The
probability of a high-precision economy (α = αH ) is equal to λ. These probabilities
are common knowledge. In each period, the probability that the marketmaker meets

4 Avery and Zemsky assume that θ ∈ [0, 1], but the assumption of two values {0, 1} does not restrict
the generality of the results.

5 As usual, θ is realized and set before any action is taken.
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an informed trader is equal to π and is independent of the aggregate state of the
economy.

BOOM AND CRASH

Avery and Zemsky produce a numerical example with the precision parameters q = 1,
q ′ = 0.51, and proportions of low- and high-information agents αL = 0 and αH =
0.5. The fraction of informed traders in the whole population is π = 0.25, and noise
traders buy or sell with probability 0.25 and do not trade with probability 0.5. The
true state is chosen such that θ ∈ {0, 1} and α = αL . The probability µ that θ ∈ {0, 1}
is very small and the probability that the economy is poorly informed (α = αL ) is also
very small. Hence, the public belief is θ = 1

2 and agents are well informed. In Avery
and Zemsky, µ = 0.0001, and the probability of the low precision is λ = 0.01.

The true state is the combination of two realizations: θ is not the normal state,
θ ∈ {0, 1}, and all informed agents have a low precision q ′ = 0.51. The path of beliefs
is generated by a specific sequence of agents. The example exhibits the following
regimes:

1. A few buys take place initially. They are generated either by informed traders or by
noise traders. These buys increase the probability of the good state for the informed
traders. These traders are poorly informed, but they believe with probability near
one (1 − λ = 0.99) that half the traders are perfectly informed. Their belief about
θ increases significantly. At the same time, the belief of the marketmaker does not
change very much. (His ex ante probability of a shock is only 10−4.) Hence, after
a few periods, an informed agent with a high belief buys from the marketmaker,
independently of his private signal. He herds according to the definition in Chapter
4 (which is also the definition of Avery and Zemsky here), believing that the market
is driven by highly informed agents.

2. There is a string of purchase orders in this herding phase. During the first part
of the phase, the marketmaker thinks that he is just lucky to sell to hapless noise
traders. (Remember that he thinks a shock occurs with probability 10−4.) The
marketmaker is sufficiently convinced that he does not revise his expectation that
there is no shock, and the price stays around 1

2 . (A standard feature of binary
models – which appears in other parts of this book – is that revisions of beliefs are
vanishingly small when beliefs are near certainty.)

3. At some point (after about 50 periods in the example), the marketmaker realizes
that something is wrong, and that all these purchases are very unlikely if there is
no shock. He increases his probability that a shock has taken place. This revision
can only be an upward revision: his belief that the economy is well informed was
equal to 0.99 ex ante, and there is not much evidence to revise that belief. Given
the long string of previous purchases, the price shoots up to near 1.

4. When the price is near 1, the bid–ask spread reflects the belief by the marketmarker
that, conditional on meeting an informed agent, that agent has perfect information
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with probability near 1
2 . It is intuitive in the model of Glosten and Milgrom

that the bid–ask spread is large if the fraction of informed agents anticipated by
the marketmaker is large. Here, the marketmaker anticipates a large fraction of
informed agents, whereas the true fraction is small. As a consequence, the spread
is so large that it prevents the informed agents from trading, because they all have
a signal with poor precision (q ′ = 0.51), and the difference in information with
the marketmarker is smaller than the spread. They do not trade. The only trades
are made by the noise traders. Because the public belief that θ = 0 is low (around
0.01), the observation of a lower frequency of trade has little impact on the public
belief for a while. (The phase lasts about 50 periods in the example.)

5. After a while, the marketmaker realizes that the low volume is not compatible with
the high precision of informed traders: if α = αH , half of the informed traders
have perfect knowledge on θ and buy or sell regardless of the bid and ask prices.
“But if the informed traders have low precision,” thinks the marketmaker, “then I
have been completely wrong all along: informed agents have a low precision, and
the history tells us that a shock has occurred, most likely, but does not say much
about the value of θ .” Because the ex ante probability of the high state, conditional
on a shock, is equal to 1

2 , the price reverts to 1
2 . In the example, the transition from

a price of 1 to a price of 1
2 (the crash) is rapid, but less so than the sudden boom

from 1
2 to 1 that occurred in step 3.

DISCUSSION

The sequence of price changes produced in the example of Avery and Zemsky is cer-
tainly spectacular. What do they show? In my view, the description of the inferences
made by agents is fascinating, but the empirical relevance of the example is not con-
vincing. These events require an improbable state of nature and sequence of traders.
The probability of the state of nature is 10−6 (with a shock and an economy with low
precision). The special sequence of trading agents further reduces the probability of
the described event. Indeed, the wild price changes occur because such events were
rationally deemed by the agents to have a negligible likelihood, near the point of
irrelevance.

14.3 Avalanches

Following Lee (1998), consider a financial asset that is a claim on θ ∈ {0, 1}. There
are N agents and N + 1 periods. The value of θ is equal to 1 with probability µ1.
It may be realized randomly before period N as follows. During each period t ≤ N,
once trades are made, if θ has not been realized previously, it is realized and observed
with probability β and the game ends. If it is not realized before period N + 1, its
realization occurs at the end of the last period, N + 1.

Each agent has a private signal s on the future realization of θ . The signal is inde-
pendent of other variables, contingent on θ , and is received before the first period. It
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takes one of K possible values, s1 < · · · < s K , with the MLRP: P (θ = 1|s ) = µ̃(s , µ1)
is an increasing function of s . The model is built on the following assumptions:

• A fixed transaction cost is incurred by any agent for his first trade.

• Each agent i can make a transaction in any period t ≥ i : agents are put in an
exogenous sequence, and the first period in which agent i can trade is period i .
He can delay his first transaction after period i .

• The agents trade with a marketmaker who is risk-neutral. The information of the
marketmaker is the history ht of all transactions by the agents up to period t − 1.
The marketmaker does not take into account the information given in period t.
He ignores the information provided by the very fact that an agent is willing to
trade with him in period t. The model thus omits a step that is critical in most
models of trade between rational agents. The price of the asset in period t is equal
to the public belief:

pt = E [θ |ht] = P (θ = 1|ht) = µt .(14.2)

If an agent does not trade, his payoff is u(W0), where W0 is his initial wealth and u is
strictly concave. For simplicity, the agent has an absolute risk aversion equal to one:
u(x) = −e−x .

If the agent makes one or more trades, his payoff is the expected value ofu(WN+1) −
c , where WN+1 is his wealth at the end of period N + 1 and c is the transaction cost.

The transaction cost is the essential element that may induce agents not to trade
when they receive their signal, and thus may generate the buildup of a large amount
of hidden information. In order to simplify the model, significantly, it is assumed
that the transaction cost is incurred only on the first transaction. As in the models
of Chapters 4 and 6, we study how endogenous information can generate sudden
changes of beliefs. All the private informations are distributed at the beginning of
time. There is no new information coming from an exogenous source as time goes
on. Agents do not reveal their private information as long as they do not trade. The
first trade reveals the information of the agent: once the fixed transaction cost is paid,
the agent adjusts the level of the trade according to his private signal.

EQUILIBRIUM

We proceed in standard fashion by backward induction and consider the last trade of
an agent. This last trade will turn out to be his second one.

Suppose that in some period a risk-averse agent holds a nonzero position in the
asset. He has therefore traded in the past and faces no further transaction cost. Suppose
further that the agent has exactly the same information as the marketmaker. Because
the latter is risk-neutral, the risk-averse agent can get perfect insurance by unloading
his position with him. The insurance increases his welfare because of the concavity
of u(x). An agent with a position in the asset and the same information as the public
information of the marketmaker undoes his position immediately. Delay would only
expose him to the risk of the observation of θ in the next period.
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Consider now the case of an agent with a private signal s who has an expectation
different from that of the marketmaker in period t. Suppose that if he trades, his
net demand for the asset is a strictly increasing function of his signal. His trade
reveals perfectly his private information, which is included in the information of the
marketmaker in the next period. From the previous argument, the agent knows that
he will undo in period t + 1 his trade of period t.

The equilibrium strategy is twofold: (i) in some period t to be determined, the
agent trades at the price pt with the marketmaker to take advantage of his private
information; (ii) in period t + 1, when the marketmaker and the agent have the same
information (from the observation of all trades in period t), the agent returns to
the marketmaker to trade for a riskless position. The period t is chosen such that
the payoff difference between this strategy and doing nothing is greater than the
transaction cost c . This description is not a rigorous proof of the equilibrium, but it
explains the following result of Lee, which characterizes an equilibrium.

PROPOSITION 14.1 (Lee) There is an equilibrium in which the agent trades at most
twice, first based on the difference between his private information and the common
knowledge, second to undo that transaction in the following period.

The amount of trading x in the first nonzero trade is the solution to the following
problem, contingent on the maximand’s being positive:

(i) for t = N + 1, maximize E N+1

[
−e (θ−pN+1)x

]
− c ;

(ii) for 1 ≤ t ≤ N, maximize βE t

[
−e (θ−pt )x

]
+ (1 − β)E t

[
−e−(pt+1−pt )x

]
− c .

Condition (i) for the last period is straightforward. Condition (ii) applies for all
the periods before the last one. If the agent trades in period t, with probability β the
value of θ is realized and perfectly known at the end of the period, and the payoff of the
trade is the coefficient of β in the expression. With probability 1 − β, the game goes
on to the next period, in which case the agent undoes the trade in period t and gets
a payoff that is the coefficient of β in the expression. The computation of the expec-

tation E t

[
−e−(pt+1−pt )x

]
is not an obvious exercise. The agent has to take into account

that other agents may also trade in period t (as will be the case below in the description
of the crash), and these trades affect the variation of the public belief pt+1 − pt .

AVALANCHE AND CRASH (OR BOOM)

Assume that each agent receives a SBS of precision q with probability 1 − α and of
precision q ′ with probability α. The values are such that q ′ is much larger than q and
α is very small. This structure is such that the agent can receive four possible signal
values6: strongly negative (−2), negative (−1), positive (1), strongly positive (2).

6 Lee considers only three signal values, but the present example may fit better with previous presen-
tations in this book. The reader may use as a reference the extension of the BHW model with two
precisions in Section 4.8.2 of the appendix in Chapter 4.
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The true state is assumed to be θ = 0. The sequence of the realizations of the
private signals is constructed as follows.

For t ∈ IB = {1, . . . , K }, st = 1. The transaction cost c is sufficiently low that all
these agents trade. The public belief µt increases to a value µ that is sufficiently close
to 1 that any agent with a signal −1 or 1 (with a low precision q) is herding. This
phase is called by Lee the “boom.”

For t ∈ IE = {K + 1, K + M − 1} with M large, agent t has a signal with low-
precision q . All agents in IE are herding and do not trade. This phase is called
“euphoria.” The public belief is constant in that phase, because the appearance of
an agent with a strong belief (positive or negative) does not depend on the state. The
length M of that phase is sufficiently long to build a large amount of hidden private
information with good and bad signals. We assume that because θ = 0, the fraction
of agents with bad signals is much higher than 1

2 .
In period K + M, the agent has a strong negative signal. He trades, his information

is revealed in the next period, and µK +M+1 decreases to a value such that agents
with low precision and a bad signal do not herd anymore. Note that the drop of
the public belief in period K + M does not need to be large. This period is the
“trigger.”

In period K + M − 1, a large number of agents who had been herding in the
regime of euphoria trade at the fixed price pt = µK +M+1. (These may be all agents
or just the ones with a bad signal.) There is an avalanche of information. Given
the construction of the signals in the regime of “euphoria,” the trades give a strong
information that the state is bad, and µK +M+2 drops to a very low value. This is the
crash.

DISCUSSION

The model has no particular bias for a crash. The same mechanism can generate a
boom. In the publishing business, a crash is a better “sell.” (The same remark applies
to Avery and Zemsky, 1995, and Caplin and Leahy, 1994.)

The model nicely imbeds the gradual buildup of private information that is re-
leased suddenly after some contrarian event. It has some similarity with the model of
Caplin and Leahy (1993). The serious weakness of the model is that the marketmaker
ignores the implication of current trades for the information. This assumption is not
very plausible in financial markets and is certainly contrary to the whole discussion
on the relation between trade and information introduced at the beginning of the
chapter. However, it is essential for the main property of the model, the avalanche of
information. The large quantity of trades in some period is possible only because the
marketmaker is willing to trade any quantity at a fixed price. If the marketmaker were
to adjust his price after observing each trade, the frenzy of trades would probably not
occur.7

7 Other models of trade frenzies have been presented for auctions. The model of Bulow and Klemperer
(1994) is important. An excellent and succinct presentation is given by Brunnermeier (2001).
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14.4 Herding in Auctions

In an auction, a buyer faces the well-known problem of the winner’s curse : he is more
likely to buy when his estimate is too high. His expected payoff must be negative if
he places a bid at his expected value. The setting has some analogy with a model of
sequential trades à la Glosten and Milgrom. An important difference is that a bid
made by a buyer is not followed immediately by a transaction. The bid gives the seller
an option to postpone trading so as to gather more information from other bids.

A buyer should bid below his expected value. The spread between his estimated
valuation and his bid is similar to the spread found in the model of Glosten and
Milgrom. We will see here that this spread may induce agents to stop bidding early,
thus withholding private information. Contrary to the model of Glosten and Milgrom,
the auction mechanism may prevent effective social learning.

Neeman and Orosel (1999) present the following model. A seller faces N agents
(buyers) to sell an object through an auction. The value of the object to the seller
is a . The value of the object is the same for all potential buyers and is a realization
θ ∈ {θ0, 1}, which is not observable. Each agent has a standard binary symmetric
private signal s ∈ {0, 1} on θ with precision q .

In any period, the seller can ask for a bid by any agent (new or from whom he has
already asked a bid). The agent replies with a bid. If the bid is 0, we will say that the
buyer does not bid. The seller may (i) stop the game with no sale, (ii) accept any past
or present bid, or (iii) solicit another bid from a new buyer or from a buyer whom
he has already solicited in the past. The history in period t is denoted by ht and is
defined by the identities of solicited buyers and their bids in periods before t. It is
common knowledge. Seller and buyer maximize their expected payoff: for the seller
it is max(E [p − θ0], 0), and for the buyer E [θ − p].

AN EQUILIBRIUM WITH IMPERFECT LEARNING

Denote by pt the highest bid in the history ht . Suppose that the number of buyers is
infinite and countable. In any period t, a buyer who is asked for a bid (new or old)
has the following strategy:

• If the signal is st = 0 or if E [θ |ht , st] ≤ pt , do not bid: bt = 0.

• If st = 1 and if E [θ |ht] > pt , then bid bt = E [θ |ht]. Because the signal is sym-
metric, we have E [θ |ht] = E [θ |ht , st = 1, s = 0], and the agent’s bid is the ex-
pectation of θ given the history ht , the private signal st , and an additional private
signal, which is zero.

The previous strategy reveals the private signal if E [θ |ht] > pt . An agent does
not make a higher bid, given the strategies of other agents, for the following reason.
He does not bid above his expected value E [θ |ht , st = 1]. Suppose his bid is in the
interval (E [θ |ht], E [θ |ht , st = 1]). If there is a bid in the next round, that bid is
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bt+1 = E [θ |ht+1] = E [θ |ht , st = 1], and he does not make a net gain. Note that
E [θ |ht+1] > pt+1: agent t + 1, if called, will reveal his signal.

Suppose that T + 1 is the first period (the smallest t) such that st = 0. For t ≤ T ,
we have st = 1, and according to the previous strategy, the bid bt = E [θ |ht] reveals
the signal st and is determined by

bt

1 − bt
= µ1

1 − µ1

(
q

1 − q

)t−1

.

Proposition 3 in Neeman and Orosell shows that, under some conditions, the game
stops in period T + 1. The action of the buyer in round T + 1 (i.e., no bid) reveals
his signal. If there is a round T + 2, then E [θ |hT+2] = E [θ |hT , sT = 1, sT+1 = 0] =
E [θ |hT ]. The buyer in round T + 2 is in the same position as the buyer in round
T . He cannot outbid the player at time T , and he does not bid, whatever his private
signal. The game stops with herding: agents take the same action whatever their private
signal.

In this equilibrium, the game goes on as long as there is an unbroken string of
positive signals. At the first negative signal, the game stops. Neeman and Orosell make
an analogy with a herding situation. The equilibrium is a remarkable example of an
information failure in a financial market where the structure of trade is determined
by an auction.

AN EQUILIBRIUM WITH ASYMPTOTICALLY PERFECT LEARNING

Assume that the number N of buyers is finite and that they are called in a sequence
to make a bid. Consider the “very prudent” strategy for an agent:

• If he is called when other players have not been called yet, he bids the best he could
offer if he could observe the private signals of all players who have not been called
yet and these signals turned out to be negative.

• If he is the last player to be asked, there are two cases: (i) if there is at least one
other player with a positive signal, the last player bids like the others; (ii) if all
previous players have a zero signal, then he bids as if he had a zero signal.

This strategy is an equilibrium strategy and reveals the private signals of all agents,
whatever the number N (Proposition 1 in Neeman and Orosell, 1999).

The contrast between the two equilibrium outcomes is quite remarkable. In the
first, the seller gets information as long as he asks players who are optimists. With
high probability the game ends with a high variance on the value of the object. In the
second case the seller gets to observe the private signals of all buyers. By the law of
large numbers, the game ends with high probability and with a low variance on the
object’s value.

The difference between the outcomes is a striking example of the importance of
strategic interactions. An agent plays one of the two equilibrium strategies because
other agents play that strategy.
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Buy low or when the price is rising?

In a CARA–Gauss setting, the demand for the asset is similar to the de-

mand for investment in a quadratic model, with the important difference

that the cost is endogenous to the information revealed by others. Two

models of trade are considered: (i) limit orders are net demand sched-

ules, which are contingent on the information revealed by the price;

social learning does not slow down when more agents trade; (ii) market

orders specify fixed quantities (rationally determined); social learning

slows down by the same mechanism as in the model of Vives (1993) in

Chapter 3.

In this chapter, a financial market is modeled according to a standard structure: a
large number of agents, each with a net demand curve, meet the market, and an
auctioneer clears the market with an equilibrium price. The structure of the CARA–
Gauss model is based on a utility with constant absolute risk aversion of agents and
Gaussian random variables. It is presented here from first principles. This model has
been studied extensively because of its nice properties.1 The purpose of this chapter is
to relate some of the properties of the CARA–Gauss model to other models of social
learning in this book.

INDIVIDUAL ACTIONS

In previous chapters, actions conveyed private informations to others. In a financial
market, these actions are the trades. Section 15.1 emphasizes how the information of
an agent about the value of an asset (the unobservable state of the world) affects his
demand for the asset.

We saw in Chapter 3 that if the precision of the public information increases (for
example through history), an agent’s action depends less on his private signal and

1 A few references in the abundant literature: Admati (1985), Kyle (1985, 1989).
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more on the public information. This is an important mechanism in the slowing
down of social learning when the action is subject to a noise. Such a reduction does
not operate when the action is the demand by a CARA agent: as it is highlighted here,
the reduction of the impact on the expected value of the asset operates as before; but
the better precision of the public information reduces the risk of the agent, and his
demand is more sensitive to changes in the expected value of the asset. One of the
beauties of the CARA–Gauss model is that the two effects cancel each other exactly.

MARKETS AND INFORMATION

All models in this chapter describe a market for a single risky asset where individuals
allocate their portfolio between the risky asset and a riskless asset. The risky asset has
a value θ , which is drawn from a normal distribution N (θ , σθ ) and is not directly
observable. In all models, there are three types of traders:

• Informed agents have private information on θ (as in the previous chapters). The
type of the private information will vary from model to model. The informed
agents maximize a utility function. It turns out that when the random asset has a
normal distribution, the maximization of the expected utility with CARA generates
a simple demand function. This demand function will be linear in the private signal
of an agent and thus be very similar to the actions of agents in Chapter 2. We have
seen that Bayesian learning from others is linear when the distributions are normal
and the decision functions of others are linear. Such nice properties are just too
tempting. Although the assumption of absolute risk aversion is debatable (the
assumption of normality of the returns has also been questioned), we will use it
shamelessly in this chapter, which presents standard results. Later, we will see that
some of these results are robust to utility functions that are not CARA.

• Uninformed agents do not have any private signal and rely only on the public
information generated by the market. They trade because they have a degree of
risk aversion different from that of the informed agents. (A smaller degree of risk
aversion is plausible but not necessary.)

• Noise traders simply buy or sell a fixed quantity, say for a private motive that is not
related to the return θ of the asset. Their net demand is random.

Following the standard procedure, we assume that agents place limit orders: each
agent brings to the market his entire demand schedule. Let X I ( p) be the total net
demand of the asset by all informed traders (who may have different private informa-
tion). The uninformed agents bring their demand schedule, XU ( p), which depends
only on p, and the noise traders bring their exogenous demand, Q. The total demand
schedule is the sum of the three: X I ( p) + XU (p) + Q. An auctioneer takes the total
net demand and determines the price p that clears the market, i.e., the solution of the
equilibrium equation

X I (p) + XU (p) + Q = 0.(15.1)
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The price conveys a signal on the information of the informed traders. The signal
is noisy because of the noise traders. When an agent specifies a demand x( p), he
formulates his demand conditional on p being an equilibrium price and conveying
some information (on the value of the asset). Hence, after trade actually takes place
at the price p, no rational agent would want to revise his order.

The extraction of the agents’ information through the market equilibrium price
is presented in two steps (Section 15.2). First, it is assumed that all agents with pri-
vate information have the same information. In this way, one concentrates on the
transmission of this information to uninformed agents through the market. In the
second step, informed agents have heterogeneous private information. Their actions
are therefore determined both by their private information and by the equilibrium
price, which depends on their actions. Fortunately, the learning rules in a Gaussian
model are linear (Chapter 3), and the solution of the model is similar to that of
standard models of rational expectations.

Special attention is devoted to the elasticity of the demand, which may affect the
stability of the market and the existence of multiple equilibria. If the price rises, the
first effect is a smaller demand, as in any market. However, the higher price is also inter-
preted by uninformed agents as an indication that informed agents may be buying be-
cause of good news. The second effect dampens the first one: the demand is less elastic.

In the next two sections, we focus on two issues: the convergence of beliefs and
the fluctuations of the prices and demand.

LIMIT AND MARKET ORDERS, AND CONVERGENCE OF BELIEFS

In the standard situation, the market has a unique equilibrium and a sequence of
market equilibria induces a process of learning, which converges to the truth – but
how fast? This issue is addressed in Section 15.3, and the answer depends on the type
of the orders for trade.

As stated above, a higher precision of public information has no effect on the
multiplier of the agent’s signal in his demand. Because of this neutrality, there is
no slowing down of social learning in the CARA–Gauss model if agents place limit
orders: the precision of the public information increases linearly with the number of
observations.

Market orders are placed by informed agents before the opening of the market and
are specified as fixed quantities of net purchases. An order depends on the expectations
of the informed traders about the equilibrium price. It does not, however, depend
on the realization of this price, and it has to be executed at some equilibrium price.
Someone has to clear the market, however: the uninformed traders and the noise
traders are assumed to post a demand schedule, as in the previous case, and the
equilibrium price is such that the total net demand is equal to zero.

Because the orders of informed traders are fixed quantities instead of demand
schedules, they may convey less information. In addition, the agents face the uncer-
tainty of the actual trading price. It turns out that the first issue does not matter, but
the second one is critical. Vives (1995) has shown that there is no reduction of the rate
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of convergence if the uninformed agents are risk-neutral. In this case, they are able
to absorb completely the price fluctuations induced by the noise traders, and the in-
formed agents do not face a trading risk. When the number of observations increases,
the reduction of the risk associated with higher public information operates as in the
case of limit orders, and the growth of the public information’s precision is linear.

If uninformed agents are risk-averse, then the informed agents face an uncertainty
about the trading price because of the variance induced by the noise traders. The
trading price does not vanish when the precision of the public information increases.
The reduction of the multiplier of private information in the private demand (with the
higher public information) operates fully now. The situation is isormorphic to that of
Vives (1993). The convergence to the truth is slow: the variance of the public estimate
tends to zero like 1/n1/3, where n is the number of observations.

MULTIPLE EQUILIBRIA

Large and sudden variations of the price without any strong news are sometimes
interpreted as manifestations of “herds” or irrationality. However, they may be mere
examples of multiple equilibria and jumps between these equilibria. The crash of
October 1987 has led to many postmortems that are beyond the scope of this chapter.
As an introduction, the model of Genotte and Leland (1990) is presented in Section
15.4. The model adds to the standard agents, who trade with respect to their expec-
tations about the fundamental, another type of agents, the “price traders,” with a
net demand that is an increasing function of the price. This demand is justified by
a trading strategy of portfolio insurance. If the standard agents know the strategy of
the price traders, they are able to factor it out and there is a unique equilibrium, as
in the standard model. However, if the standard agents have ex ante a low assessment
of the probability that price traders intervene in the market, whereas their mass is
actually large, then there can be multiple equilibria and sudden price jumps between
these equilibria.

15.1 Actions in the CARA--Gauss Model

In this section, we begin with the demand by one “standard” agent and then aggregate
over a number of individuals.

15.1.1 The Individual

An agent is endowed with a fixed wealth w , which he allocates between an asset
with a fixed return r at a unit price and the financial asset, which yields a random
return θ per unit and has a price p. The random variable θ has a normal distribution
N (E [θ], Var(θ)).

Let x be the amount of asset that is demanded (a short sale, x < 0, is allowed).
The consumption is

C = r (w − xp) + xθ.(15.2)
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The agent evaluates this random consumption by a CARA utility function (with con-
stant absolute risk aversion). The ex ante value of the random variable C before its
realization is equal to

U = −E [e−γ C ],(15.3)

where γ is the coefficient of absolute risk aversion. Because C has a normal distribu-
tion, an exercise shows that the payoff takes the form

U = −exp

(
−γ

(
C − γ V

2

))
,(15.4)

where C and V are the mean and the variance of C , respectively.2 Using the expression
of the consumption in (15.2), we find that the maximization of U is equivalent to the
maximization of the certainty equivalent

C − γ V

2
= r w +

(
E [θ] − r p

)
x − γ

2
Var(θ) x2.

The term r w is constant and can be ignored. The agent therefore maximizes the
objective function

V = E [θ]x −
(

r px + γ
x2

2
Var(θ)

)
.(15.5)

This function is similar to the standard payoff of an investment of size x with a
purchase cost r p and a quadratic adjustment cost (γ Var(θ)/2)x2. The quadratic term
is due solely to the variance of the return and the associated risk. It increases with the
coefficient of absolute risk aversion, γ . This term is the cost of risk. The adjustment
cost is exogenous in a standard model of investment, but it will be endogenous to the
equilibrium in financial markets, because the variance of the distribution of θ will
be endogenous to the equilibrium. This difference will play an important role for the
properties of social learning. The demand for the asset is similar to the optimal level

2 One has

U = −E [e−γ C ] = − 1√
2πV

∫
exp

(
−γ C − (C − C)2

2V

)
dC .

The exponent of the integrand can be rewritten

−γ C − (C − C)2

2V
= − (C − C + γ V)2

2V
+ γ 2V

2
− γ C .

Substituting in the expression for U , we have

U = −exp

(
−γ C + γ 2V

2

)
1√

2πV

∫
exp

(
− (C − C + γ V)2

2V

)
dC .

The integrand is a density function, and the integral is equal to 1.
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of investment in the standard model:

x = E [θ] − r p

γ Var(θ)
.(15.6)

The associated optimal payoff is

U ∗ = −exp(−γ r w) exp

(
− (E [θ] − r p)2

2 Var(θ)

)
.(15.7)

Equation (15.6) is the basic tool in the CARA–Gauss model, and the reader should
become familiar with it. The demand function x depends in a simple way on the mean
and the variance of θ .

THE EFFECT OF PRIVATE INFORMATION ON THE DEMAND

The mean and the variance of θ , which determine the demand in (15.6), depend
on the entire information of the agent, which is the combination of the public and
the private information. The effect of the private information on the demand will be
essential for the diffusion of the private information through the individual’s demand.
The standard features of the Gaussian model include the following:

• the public information is that θ is drawn from the normal distributionN (θ , 1/ρθ ),
where θ and ρθ are publicly known;

• the private information comes from a signal s = θ + ε, where ε is a noise N (0,
1/ρε), which is independent of θ .

By use of the Bayes–Gauss formulae (2.5), the agent’s belief is N (E [θ], 1/ρ), where

ρ = ρθ + ρε = 1

Var(θ)
, E [θ] = ρε

ρ
s + ρθ

ρ
θ.(15.8)

Substituting in the expression for the demand (15.6), we find that this demand
becomes

x = 1

γ

(
ρε(s − r p) + ρθ (θ − r p)

)

= 1

γ

(
ρε(s − θ) + (ρθ + ρε)(θ − r p)

)
.

This expression has wonderful properties: (i) all the coefficients can be computed
ex ante, before the realization of the signal s ; (ii) the multiplier of the private signal s
in x is equal to the precision of this private signal; (iii) this multiplier is independent
of the precision of the public information ρθ .

PROPOSITION 15.1 In the simple CARA–Gauss model with CARA equal to γ , the
demand of an informed agent is of the form

x = 1

γ

(
ρε(s − θ) + (ρθ + ρε)(θ − r p)

)
.(15.9)
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The multiplier of an agent’s private signal in his demand for the financial asset is inde-
pendent of the common-knowledge distribution.

The relation between an agent’s private signal and his action is different from the
one we found in Chapter 3. In Chapter 3, when the cost of investment is quadratic, the
agent chooses a level of action that is a fixed multiple of his expected value of θ . The pri-
vate signal s operates on the expected value of θ through the multiplier α = ρε/(ρε +
ρθ ). The multiplier in the level of action is therefore proportional toα (equation (3.4)).
It becomes vanishingly small if the precision of the public information, ρθ , becomes
arbitrarily large. This property is critical for the slow convergence of social learning
in that chapter (Vives, 1993). Remarkably, this effect does not take place here, and its
absence is obviously important for the learning properties of the CARA–Gauss model.

The demand for the financial asset in (15.6) is proportional to the expected value
E [θ], but the multiplier is endogenous and is proportional to the precision of the
estimate. If the precisionρθ increases, then (i) the multiplier of the private information
is reduced (as in the model of real investment), and (ii) the cost of risk is also reduced,
and this effect exactly cancels the first one. The two mechanisms imply that the
contribution to the public information made by an agent’s trading does not slow
down as social learning progresses.

Proposition 15.1 can be generalized to the case where the agent receives any finite
set of private signals.

COROLLARY 15.1 In the CARA–Gauss model, the demand by an agent with CARA
equal to γ who receives n signals sk = θ + εk with independent noises εk of precision ρk

has a net demand equal to

x = 1

γ

(
n∑

k=1

ρk(sk − θ) + (ρθ + ρk)(θ − r p)

)
.

When the signals are not independent, a standard transformation has to be used
before the formula is applied.3

15.1.2 The Demand of a Large Number of Agents
with Independent Information

Suppose there are N agents with the same information on θ . From the previous
results (equation (15.6)), their total demand for the risky asset, denoted by X, is

3 If � is the covariance matrix of the signals si , then J �J ′ = D, where J J ′ = I , I is the identity
matrix, and D is a diagonal matrix with positive elements. Denoting by s the (column) vector of the
signals, by e the vector of ones, and by ŝ the vector of independent signals ŝ = J s , with r = γ = 1,

x − ρθ (θ − p) = e ′ D−1(ŝ − pe) = e ′ D−1(J s − pe) = (J ′e)′ J ′ D−1 J (s − p J ′e),

which is equal to (J ′e)′ J ′ D−1 J (s − p J ′e) = (J ′e)′�−1(s − p J ′e).
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equal to

X = N

γ

E [θ] − p

Var(θ)
.(15.10)

All the models in this section assume that N is sufficiently large for the competitive
assumption to hold.4 Note that the demand of an agent is independent of his wealth
w , and the total demand increases linearly with the number of agents, for a given γ . In
order to relate the coefficient of absolute risk aversion to that of relative risk aversion
around the level of wealth w , let us introduce the parameter � defined by � = γ w : �
is the coefficient of relative risk aversion when the agent does not invest in the risky
asset. By assumption, this coefficient is not constant for a CARA utility function. We
take the total wealth of all agents to be fixed at W and divided equally among agents.
(The equal division is not necessary.) The coefficient N/γ in the demand equation
(15.10) is equal to N/γ = Nw/� = W/�.

The total demand is therefore

X = W

�

E [θ] − p

Var(θ)
.(15.11)

This formula is useful for the calibration of a model. (Recall that the agent does not
have constant relative risk aversion.) The previous formula applies for any N, and by
extension to a continuum of agents.

Suppose now that there is a continuum of agents, each indexed by i ∈ (0, 1). The
public belief on θ is normally distributed N (θ , 1/ρθ ). Two examples of informed
agents will be particularly useful.

(i) If all agents have the same signal s = θ + ε, the aggregate demand is

X = W

�

(
ρε(θ − p) + ρεε + (ρε + ρθ )(θ − p)

)
.(15.12)

(ii) If each agent i has a private signal si = θ + εi , where εi are independent of any
other variables and have the same precision ρε , the individual noises εi average
out5 and the aggregate demand is

X = W

�

(
ρε(θ − p) + (ρε + ρθ )(θ − p)

)
.(15.13)

4 The market power of an agent with superior information is obviously an important issue; it has
been analyzed by Kyle (1985, 1989) and Bénabou and Laroque (1992), among others.

5 One has

X = W

�

(
lim

N→∞

(
1

N

N∑
i=1

εi

)
+ ρε(θ − p) + (ρε + ρθ )(θ − p)

)
.

The expression (1/N)
∑

εi is a random variable of variance 1/(ρε N), which becomes vanishingly
small as N → ∞. It converges to zero in probability, and we assume that it is zero for a continuum.
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In the rest of the chapter, we assume without loss of generality that the risk-free
rate of return is equal to one: r = 1.

15.2 Markets

As described in the introduction, a Gaussian market has three types of agents: in-
formed (with private information), uninformed (without private information), and
noise traders. The equilibrium equation is

X I (p) + XU (p) + Q = 0,(15.14)

where X I (p) and XU (p) are the total demands by the informed and uninformed,
and the noise Q is an exogenous term with distribution N (0, 1/ρQ). The supply of
the asset is normalized to 0 without loss of generality.

Uninformed Agents
The uninformed agents are standard agents with no private signal. Their mass and
risk aversion are such that their demand (15.11) is given by

XU (p) = M
E U [θ] − p

VarU (θ)
,(15.15)

where the expectation EU [θ] and the variance VarU (θ) are conditional on the agents’
information. This information includes the structure of the model and the mar-
ket price p. The demand of uninformed agents takes into account the information
revealed by the price p, which depends on their demand. The simultaneous determi-
nation is possible because the agents place limit orders, i.e., schedules that take into
account the information conveyed by the price. We can write

E U [θ] = E [θ |p] and VarU (θ) = Var(θ |p).(15.16)

Informed Agents
Informed agents are standard agents who form a continuum. Let si be the private
signal of agent i (which may be a vector). Given the proper mass for the continuum
and the coefficient of risk aversion, the total demand of informed agents is

X I (p) =
∫

E [θ |p, si ] − p

Var(θ |p, si )
di.(15.17)

Putting together all the demands, the market equilibrium condition is∫
E [θ |p, si ] − p

Var(θ |p, si )
di + M

E U [θ] − p

VarU (θ)
+ Q = 0.(15.18)

This is the fundamental equation that determines the asset price p in the CARA–
Gauss market. We begin with a simple case where all informed agents have the same
private information.



15.2 Markets 339

15.2.1 The Transmission of the Information through the Market

In this first model, we focus on the transmission of private information from informed
to uninformed agents through the market. We simplify the model and assume that all
informed agents have the same information, which is a signal s = θ + ε of precision
ρε (the noise is normal N (0, 1/ρε)). Because they are the only agents who feed
information to the market (by their actions), they do not have anything to learn from
the market. This makes for a simple computation of the equilibrium. The case with
heterogeneous private informations is introduced in Section 15.2.4.

The equilibrium equation X I (p) + XU (p) + Q = 0 can be rewritten as

X I (p) + Q = −XU (p).

The key mechanism of the CARA–Gauss model can now be presented. On the
right-hand side of the equation, the net supply of the uninformed agents depends only
on the information available to all. Uninformed agents know the right-hand side of the
equation. By the equilibrium equation, they know the left-hand side: the uninformed
observe through the market equilibrium the order flow from the informed agents and
the noise traders. That order flow is informative on θ , because it depends on θ .

Informed agents do not get any additional information from the market equilib-
rium, because the market price p is a function of θ only through their private signal.
Because this signal is the same for all private agents, the market price brings no new
information to them. (In all the other models of this chapter, things will not be that
simple.) By use of (15.9) in Proposition 15.1, the demand of the informed traders is

X I (p) = ρε(s − θ) + (ρθ + ρε)(θ − p).(15.19)

Substituting in the market equilibrium equation (15.14), we obtain

ρε(s − θ) + (ρθ + ρε)(θ − p) + Q + M

Var(θ |p)

(
E [θ |p] − p

)
= 0.(15.20)

informed traders noise uninformed traders

︸ ︷︷ ︸
observed order flow

The Information of the Market
In the order flow, the term (ρθ + ρε)(θ − p) is public information. The order flow
is therefore informationally equivalent to the variable ρε(s − θ) + Q. Because s =
θ + ε, when a standard normalization is used, the market is informationally equivalent
to the variable y defined by

y = s + Q

ρε

= θ + ε + Q

ρε

.(15.21)

The method we have followed is general for CARA–Gauss models: the market gen-
erates information through a variable, which is here the order flow. This variable is
transformed into a simple expression of θ plus a noise.
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From (15.21) the market conveys a signal on θ with precision

ρy = ρ2
ε ρQ

1 + ρερQ
.(15.22)

The uninformed agents use the market signal y to update their information on θ .
From Proposition 15.1, their demand is

XU (p) = M
(
ρy(y − θ) + (ρθ + ρy)(θ − p)

)
.(15.23)

Substituting in the equilibrium equation (15.20), we find that the price is given by

ρε(y − θ) + (ρθ + ρε)(θ − p)

+ M
(
ρy(y − θ) + (ρθ + ρy)(θ − p)

)
= 0,

or

p − θ = α(y − θ) = α
(
θ − θ + ε + Q

ρε

)
(15.24)

with α = ρε + Mρy

ρθ + ρε + M(ρθ + ρy)
.

The price deviates from the ex ante expected value θ when the order flow deviates
from its mean because of a shock on either the fundamental θ , the noise of the private
signal ε, or the demand of the noise traders Q.

By substitution in (15.23), the demand of the uninformed is

XU (p) = Mρθ

1 + (M + 1)ρερQ
(θ − p).(15.25)

THE CASE OF RISK-NEUTRAL ARBITRAGEURS

Suppose that uninformed agents have an absolute risk aversion that tends to zero
whereas their mass is constant.6 The parameter M tends to infinity. The price equation
(15.24) becomes

p − θ = ρy

ρθ + ρy
(y − θ) = ρy

ρθ + ρy

(
θ − θ + ε + Q

ρε

)
.(15.26)

This equation shows that p = E [θ |y]. This is not surprising, for the uninformed
agents are risk-neutral and have a perfectly elastic demand at the price E [θ |y]. We
can divide equation7 (15.20) by M. When M → ∞, p → E [θ |p] = p.

6 It is equivalent to assume that the mass of uninformed agents tends to infinity with a fixed CARA:
each risk-averse arbitrageur has a position that tends to zero and is risk-neutral at the limit.

7 The market equilibrium equation (15.20) seems strange if M is infinite: we still have a market
equilibrium, because M is multiplied by E [θ |p] − p, which is equal to 0. Note that the same issue
arises with perfect competition in standard markets: if all agents are pricetakers, who determines the
equilibrium price? Perfect competition is an approximation of a market with a finite but arbitrarily
large elasticity. We do the same here. The case of arbitrageurs is the limit case of uninformed agents
with a vanishingly low risk aversion.
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The variance of the equilibrium price depends on the risk aversion of the unin-
formed agents. When they are less risk-averse, they average the shocks to the demand
more, and the variance of p is smaller. For a fixed amount of information, the demand
of risk-neutral arbitrageurs is perfectly elastic. However, because the price conveys
information, the demand of risk-neutral uninformed agents is not perfectly elastic
in p. We now analyze the relation between the information content of the price and
the elasticity of the demand.

15.2.2 Elasticities of Demand

The stability of the market is often associated with the amplitude of the price fluctua-
tions. Because the price is driven by shocks to the demand, its fluctuations depend on
the elasticities of the demand of the different types of agents. The elasticity is related
to the liquidity of the market: a highly elastic demand absorbs large shocks with little
price variations in the same way as a liquid market. The elasticity of the demand, or
the liquidity of the market, will play a critical role when agents follow a trade strategy
based on prices (e.g., a sell when the price falls), as shown in the next section (Genotte
and Leland, 1990).

Suppose that informed and uninformed agents have a CARA equal to 1. The
demand of an informed agent and that of an uninformed agent are given by

xI = ρε(s − θ) + (ρθ + ρε)(θ − p),

xU = ρy(y − θ) + (ρθ + ρy)(θ − p).
(15.27)

These demands have similar forms. The informed agents have a signal s with precision
ρε ; the uninformed have a signal y (from the market) with precision ρy , lower than
ρε . A price change has two effects:

• First, it alters the expected rate of return of the asset.8 This effect operates in the
second term in each of the previous expressions. The response is higher for the
informed agents, because they face less uncertainty: ρε > ρy .

• The second effect operates only on the demand of the uninformed agents, through
the first term. Because the market signal y is positively related to p, a higher price
is a signal of a possibly higher demand by the informed, and hence a higher θ .
This effect shifts the demand xU upwards.

The two effects are illustrated in Figure 15.1. For the uninformed, the first effect is
represented by the schedule (D). The shift that is due to the second effect is represented
by the vertical arrow. The demand of uninformed agents, XU = MxU , is less elastic
than that of informed agents, X I = xI .

8 Recall that the multiplier of the expected rate of return is the reciprocal of the variance (because the
risk aversion is 1), which is the precision ρθ + ρε for informed traders.
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Demand

p

0

θ
_Slope = −(ρθ + ρε)

information
effect of
price

Uninformed
demand xU

Slope = −(ρθ + ρy)

Informed
demand xI

(D)

Figure 15.1 Demand for the financial asset. The demand of the uninformed agents has a smaller
price elasticity than the demand of informed agents because (i) the asset is more risky for them;
(ii) when the price p goes up, the good news boosts their demand.

PRIVATE INFORMATION AND THE ELASTICITY OF THE MARKET

Consider now the impact of a higher precision ρε of the informed agents on the price
elasticity of their demand. When the precision ρε increases, the demand by the in-
formed X I is more elastic, because the asset is less risky; the slope ρθ + ρε in Figure
15.1 is smaller. The demand by the uninformed, XU in (15.25), is less elastic. There are
two opposite effects: First, the market is less risky, hence the elasticity is higher. (The
line with slope −(ρθ + ρy) in Figure 15.1 rotates counterclockwise.) Second, the mar-
ket is more informative, which decreases the elasticity. This second effect dominates.

The overall effect on the elasticity of the total demand (by both the informed and
the uninformed) is ambiguous: if uninformed agents dominate (with a high M that
is due to their mass or their low risk aversion), the total demand is less elastic when
the precision of the informed agents increases.

15.2.3 The Variance of the Price

Fluctuations of the price p are driven by fluctuations of the noise Q and of the signal
s of the informed agents. Using the expression for the market price in (15.24), we find
that the variance of p is

σ 2
p = α2

(
1

ρθ

+ 1

ρε

+ 1

ρ2
ε ρQ

)
,(15.28)
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Figure 15.2 The variance of the market price. On the left, the mass of uninformed agents is
M = 1, and ρθ = 1. On the right, M = 0.25 and ρθ = 1. (A similar graph is found for M = 1 and
ρθ = 0.1.) In both graphs, ρQ = 9.

with

α = ρε + Mρy

ρθ + ρε + M(ρθ + ρy)
and ρy = ρ2

ε ρQ

1 + ρερQ
.

The effect of the precision ρε of the informed agents on the variance of the price is
ambiguous. This ambiguity can be explained intuitively. The shock Q has an impact
on the price that is inversely related to the price elasticity of the demand. We have seen
that the precision ρε has an ambiguous effect on this elasticity. The same argument
applies to the noise of the signal s . Figure 15.2 represents the variance of the price,
σ 2

p , as a function of the precision ρε for different parameter values.
When the mass M of the uninformed agents is small (or their CARA is high),

the variance σ 2
p is not a monotone function of ρε . In the expression (15.28) for the

variance σ 2
p , a high variance σ 2

θ has an effect like that of a low mass M. One verifies
that the pattern on the right in Figure 15.2 for M = 0.25 can be obtained with M = 1
(as in the left graph) and σ 2

θ = 10.

15.2.4 The Aggregation of Independent Private Information

In the main formulation of the CARA–Gauss model, informed agents have heteroge-
neous private information and the market aggregates that information. The actions
of informed agents reflect both their private information and the information of the
market, which is itself generated by the informed agents’ actions. There is a conti-
nuum of informed agents indexed by i , which is uniformly distributed on [0, 1]. Each
informed agent i receives a private signal si = θ + εi with an idiosyncratic noise εi ,
which is normally distributed N (0, 1/ρε).

The noise εi is independent of the noise of the market (which originates in Q).
We posit that the demand of each informed agent is a linear function of his signal and
therefore a linear function of the true θ . We therefore postulate that the observation
of the market is equivalent to the observation of a signal z = θ + εz , where εz is a
noise of variance 1/ρz independent of the other variables. (The variable z will play
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the same role as the variable y in Section 15.2.1.) Let us find the variable z and its
precision ρz .

From Corollary 15.1, the demand of agent i is

xi = ρε(si − θ) + ρz(z − θ) + (ρθ + ρε + ρz)(θ − p).

By integration over i and using the law of large numbers, we find that the demand by
the informed is

X I (p) = ρε(θ − θ) + ρz(z − θ) + (ρθ + ρε + ρz)(θ − p).(15.29)

From the method of informational equivalence, the market equilibrium is informa-
tionally equivalent to the observation of X I (p) + Q. When the publicly observable
terms in z and p are taken out, the equilibrium is informationally equivalent to the
variable ρεθ + Q. This variable therefore summarizes the information generated by
the market, and we can state that, with a normalization, it is identical to the variable
z that was postulated initially:

z = θ + Q

ρε

with the precision ρz = ρ2
ε ρQ.(15.30)

This precision is higher than in the previous model with identical private information
(equation (15.22)) because the market pools independent private signals on θ . The
demand of the uninformed agents is as in the previous model (15.23), with a new
definition of y, and the equilibrium equation is

ρε(θ − θ) + ρz(1 + M)(z − θ)
+ (ρθ + ρz)(1 + M)(θ − p) + ρε(θ − p) + Q = 0,

which can be written

p − θ = β

(
θ − θ + Q

ρε

)
= β(z − θ)(15.31)

with β = ρε + (M + 1)ρz

ρε + (M + 1)(ρθ + ρz)
> α.

This price function is similar to (15.24) in the previous model with identically in-
formed agents. The demand schedule is less elastic now because the market pools
independent signals from the informed traders and it is more informative. If unin-
formed agents are risk-neutral, M ≈ ∞, and the price is given by

p − θ = ρ2
ε ρQ

ρθ + ρ2
ε ρQ

(
θ − θ + Q

ρε

)
.

15.3 The Convergence of Beliefs

The equilibrium price provides a signal on the fundamental value of the financial
asset. A sequence of equilibria, given a constant fundamental, provides an increasing
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precision on the fundamental. The rate of convergence of the variance of the sub-
jective distribution is analyzed here in a model of tâtonnement. There are two main
results: when agents receive costless private information and place limit orders, the
convergence of beliefs is “fast”; when agents place market orders, the convergence is
“slow.”

These results apply to a wide class of utility functions: if the belief converges to
the truth, the uncertainty converges to zero, and for vanishingly small uncertainty the
decision problem for any von Neumann–Morgenstern utility is approximated by the
problem with a CARA utility function (see the appendix, Section 15.5).

By assumption, the value of θ is drawn from the distributionN (θ , 1/ρθ ) and stays
constant over time. There is a continuum of informed traders, each of whom receives
one unique private signal si = θ + εi at the beginning of time. In each period, or
round, the informed agents place bids in a market identical to that of the previous
section. The equilibrium price is determined likewise. However, the market actually
opens according to a Poisson process with probability π in each period. If the market
opens, all transactions take place as in the one-period model. No further transaction
is conducted, and the process stops. If the market does not open (with probability
1 − π), the equilibrium price in round t, pt , is added to the public information, and
the process goes on: agents place bids for the next round t + 1. The value of θ is
realized after all rounds have taken place.

The tâtonnement process described here is due to Vives (1995) and is technically
very convenient: in each round, the demand of an agent is the same as in the one-
period model. If all bids are executed in each round, the process is more complex.
To see this, assume that in each round t an informed agent has a demand of the
form

x = E [pt+1] − pt

Var(pt+1)
,

where the expectation and the variance are conditional on the information of the
agent. The agent knows that pt+1 is determined by the equilibrium in the next round.
For example, if round t + 1 is the last round, pt+1 is determined by an equation
similar to (15.31), which is of the form

pt+1 − E [θ |ht] = βt+1(θ − E [θ |ht] + ηt+1),

where ht is the history of prices before round t + 1, βt+1 is a coefficient that depends
on various precisions in round t + 1 (as in (15.31)), and ηt+1 is a noise term that
also depends on precisions in round t + 1. The expressions for βt and ηt have to be
derived recursively. The process is obviously more complex than the tâtonnement.9

9 Vives observes that the mechanism shares some features with the tâtonnement that takes place in
some markets (e.g., Tokyo, Toronto, Paris, and Madrid), where agents submit orders for one hour
before the opening, equilibrium prices are quoted, and orders may be revised. The tâtonnement
process proposed by Vives is somewhat different from the one used here.
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15.3.1 Limit Orders and Fast Learning

When agents can place limit orders under the tâtonnement process, the model in each
period is the same as the one-period model of the previous section. In each round,
the market is informationally equivalent to the variable defined in equation (15.30),
z = θ + Q/ρε . It follows that if ρt is the precision on θ at the end of round t, then

ρt = ρθ + tρ2
ε ρQ.(15.32)

The precision increases linearly with the number of rounds. We will see later that
when agents place market orders, the precision increments in each round converge
to 0 as t → ∞.

15.3.2 Market Orders and Slow Learning

So far in this chapter, informed agents have placed bids in the financial market in the
form of limit orders, which are demand schedules. This section presents the work of
Vives (1995), which analyzes the effect of market orders on the convergence of the
beliefs. An order with a fixed quantity to trade seems a priori a coarser signal to others
than a limit order, which conveys a demand schedule. More importantly, informed
agents will face an additional uncertainty on their return due to the uncertain transac-
tion price. This uncertainty might reduce their trade in the market and therefore the
amount of information they convey by their trading. Whether this uncertainty matters
and slows down social learning depends on the existence of risk-neutral arbitrageurs.
The argument is first presented informally.

An Informal Presentation
The tâtonnement is the same as above. We will see that the market order by an in-
formed agent is of the form

x = E [θ |s ] − E [p|s ]

Var(θ − p|s )
,(15.33)

where the expectation and the variance are conditional on the information of the
agent, but cannot depend on the market price p, which is not observed at the time
the order is placed. There are two cases.

(i) Assume first that the uninformed traders are risk-neutral. As the number of
rounds increases, the fundamental uncertainty converges to zero and the arbi-
trageurs assign most of the variations of the order flow (informed agents plus
noise traders) to the noise traders. Because they smooth out the variations at-
tributed to the noise, the variation of the price converges to zero over time. The
demand for limit orders by the informed agents is asymptotically the same as for
market orders, and the convergence properties of the beliefs are asymptotically
the same for the two types of trades.
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(ii) Assume now that uninformed agents are risk-averse. They do not insure com-
pletely against the uncertainty that is due to the noise traders. Asymptotically, the
variance of the return on investment remains above a strictly positive number.
The demand of the informed agents is then driven by the numerator in (15.33),
i.e., by their expectation of the fundamental θ . This demand is mixed with that
of the noise traders with constant variance. We are in the same situation as in
the model of Vives (1993) described in Chapter 2. Social learning converges to
the truth, but the variance of the estimator tends to zero like n1/3, where n is the
number of market observations.

In the case of limit orders, the precision of the market does not slow down social
learning, because the reduction of the effect of private information on the numerator
of the demand is exactly compensated by the reduction of the variance in the de-
nominator (Section 15.1.1). When the uninformed are risk-neutral in a market with
market orders, the variance of an order’s return does not converge to zero, and no
offsetting effect takes place.

THE MODEL OF VIVES (1995)

When an agent places an order of quantity x (independent of the realization of the
market price), he faces two types of risk: the first (as in Section 15.2) is a risk on
the intrinsic value of the asset θ ; the second is a risk on the transaction price p. A
straightforward variation on the argument presented in Section 15.1 shows that any
trader with CARA equal to 1 has a demand

x = E [θ |s ] − E [p|s ]

Var(θ − p|s )
.(15.34)

The other agents in the economy are as in the previous model:

• The uninformed and rational agents are also called marketmakers; their demand is
equal to A(E [θ |p] − p). The coefficient A can be fixed without loss of generality.
(It depends on the mass of the uninformed and on their risk aversion.) The
marketmakers have one advantage over the informed traders: they can base their
demand on the equilibrium price p. (For market clearing, someone must have a
demand depending on the price.) In this way, they are identical to risk-neutral
uninformed agents in the model with limit orders.

• The net demand of the noise traders is the realization Q of a variable with a normal
distribution N (0, 1/ρQ).

The equilibrium price is such that the total net demand is equal to zero:∫
E [θ − p|si ]

Var(θ − p|si )
di + Q + A(E [θ |p] − p) = 0.(15.35)

︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸
x = ∫

xi di

informed agents noise traders marketmakers
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Two remarks are in order before computing the equilibrium.

1. Informed agents do not know p, by definition of the market orders, but the
variance of p matters for their payoff (in the denominator of xi ). They compute
this variance from their information.

2. An informed agent i computes his expectation of p according to his information
si ; in the numerator of xi , the term E [p|si ] is new with respect to the model with
limit orders.

Denote by ρθ the precision of the public information on θ before orders are
placed. For an informed agent i with signal si = θ + εi , θ is normally distributed
with precision ρi and mean E [θ |si ] with

ρi = ρ = ρθ + ρε ,

E [θ |si ] − θ = ρε

ρ
(si − θ) = ρε

ρ
(θ − θ + εi ).

(15.36)

From equation (15.35), we look for a demand by the informed agent i of the form

xi = a(si − θ),(15.37)

where a is a coefficient to be determined. By integration of individual demands and
use of

∫
si di = θ , the market equilibrium equation is

a(θ − θ) + Q + A(E [θ |p] − p) = 0.(15.38)

The market is informationally equivalent to the variable

y = a(θ − θ) + Q.(15.39)

The market signal y is not observed by the informed traders, who place their orders
before the realization of y. The market signal is, however, observed by the marketmak-
ers; it affects their expectation E [θ |p], and thus the equilibrium price. The variance of
the equilibrium price affects the orders placed by the informed traders. The next result
shows that there is a unique value of the coefficient a such that the demand functions
in (15.37) generate an equilibrium. The proof is given in the appendix (Section 15.5).

PROPOSITION 15.2 There is an equilibrium in which the demand of each informed
agent i with signal si is of the form xi = a(si − θ), where a is solution of the
equation

a = ρε(ρθ − Ba)(ρθ + a2ρQ)

(ρθ − Ba)2 + (aρQ + B)2
(
ρθ + ρε

ρQ

) with B = ρθ + a2ρQ

A
.(15.40)

When marketmakers are risk-neutral arbitrageurs, B = 0 and the previous equation
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reduces to

a = ρερθ

ρθ + a2ρQ

ρ2
θ + a2ρQ(ρθ + ρε)

.(15.41)

RISK-AVERSE MARKETMAKERS

Suppose now that marketmakers are risk-averse and that A = 1/B is finite. From
Proposition 15.2, the value of a is solution of equation (15.40). One can show easily
that learning takes place and ρt → ∞. Equation (15.40) is asymptotically equivalent
to

a ≈ ρερQ

(1 + B2)ρt
= β

ρt
, where β is a constant.(15.42)

The power of the market signal converges to zero if the precision of the public infor-
mation tends to infinity. What is more remarkable is the form of the coefficient a .
The observation of the market is equivalent to the observation of the variable

yt = at(θ − θ) + Q with at ≈ β

ρt
.

Recall that in the model of Vives (1993) with investment and observational noise,
agents observe in each period the signal xt = αt(θ + εt) + ηt with αt = ρε/(ρt + ρε)
(equation (3.7)). Asymptotically, this signal is informationally equivalent to x̂ t =
(ρε/ρt)θ + ηt . When ρt → ∞, the signals x̂ t and yt above have the same power. The
results of Vives (1993) apply immediately. By use of equation (15.40), where ρε is
replaced by β, σ 2

t = 1/ρt converges to zero as t → ∞, and

σ 2
t(

σ 2
η /3tβ2

)1/3
→ 1.(15.43)

RISK-NEUTRAL MARKETMAKERS

Assume now that marketmakers are risk-neutral and B = 0. Let ρt be the precision
of the public information on θ at the beginning of period t. From Proposition 15.2,
the coefficient a takes the value at in period t, which is the solution of the equation

at = ρε

ρ2
t + a2ρQρt

ρ2
t + a2ρQρt + a2ρQρε

< ρε.(15.44)

We have seen that the market price in period t is informationally equivalent to yt =
at(θ − θ) + Qt . The market with market orders was informationally equivalent to a
signal ρεθ + Q (expression (15.30)). Because at < ρε , the setting with limit orders
provides in each round a weaker signal on θ than the setting with market orders.

Consider now the rate of convergence of learning. In equation (15.44), the right-
hand side is an increasing function ofρt . Becauseρt ≥ ρ1, the solution in at is bounded
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below by a1: for all t ≥ 2, at ≥ a1. (In fact, at is increasing over time, as we will see
below.) From one round to the next, the precision ρt increases according to

ρt+1 ≈ ρt + a2
t ρQ.

Because at ≥ a1, we have ρt → ∞, and from equation (15.44), at → ρε . Asymptot-
ically, the precision on θ increases linearly and the information of the market with
market orders is the same as with limit orders. The striking property is that the de-
mand of informed agents is such that the reduction of the variance in the denominator
cancels (for t large) the reduction of the multiplier of the private signal in the numer-
ator, as in the model with limit orders. This can be worked out as a separate exercise
and is left to the reader.

15.4 Multiple Equilibria, Crashes, and Booms

Theories of “portfolio insurance” became popular in the eighties. They recommend to
sell a fraction of the portfolio of financial assets when its value declines, thus limiting
the loss, and to buy when the price rises. In the previous sections, the strategies of
rational agents were also based on the price of the asset. For a rational trader, a high
price is a signal of higher intrinsic value (because the price is boosted by some in-
formed agents), and it shifts the demand up. Ceteris paribus, however, a price rise
has a negative impact on the demand. In Figure 15.1, the demand of the unin-
formed was less elastic than that of the informed, but this demand still had a negative
slope.

Some of the trading strategies that have been recommended for portfolio insurance
may not have a negative slope. When the price falls, for example, agents sell and sell
so much that there may be a crash. The same strategies may also generate a boom,
mutatis mutandis. The main purpose of the study of Genotte and Leland (1990) is to
investigate this mechanism.

The method of analysis involves the addition of some agents with a price-based
strategy to the CARA–Gauss model of the market for a financial asset. This strategy
is represented by a demand D( p). When this demand is added to the demands of
the other agents, the total net demand, which is a function of the price (and other
variables), may have a positive slope for some price range. This property may generate
multiple equilibria. When the fundamentals shift the total net demand, one of these
equilibria may disappear, thus generating a jump (up or down) of the price, triggering
a boom or a crash.

The story needs the following ingredients: (i) the demand D( p) should have a
positive slope in some price range; (ii) the demand curve of the “rational” agents
should be already sufficiently inelastic (otherwise the total net demand may not
have a positive slope); (iii) whether the demand D( p) is observable or not by other
agents is an important issue. Suppose that rational agents are mistaken and believe
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that there is no such demand whereas in fact there is. A price fall is amplified by the
price traders, and the large change is interpreted (wrongly) by uninformed traders as
poor fundamentals. They sell more. The market is more unstable and may generate
a crash.

Genotte and Leland (1990) use the CARA–Gauss model where informed agents
have independent signals (Section 15.2.4), and add agents with some information on
the noise traders (Exercise 15.2). This assumption is used to generate a sufficiently
inelastic demand of the rational traders with some plausible parameters. It is made
for empirical plausibility and is not important for the theoretical argument. Their
argument is presented here with a simpler model where all informed agents have the
same signal on the fundamental value of the asset.

THE MODEL OF GENOTTE AND LELAND

The standard model is extended with price traders who have a demand D( p). The
equilibrium equation is

E I [θ] − p

VarI (θ)
+ Q + A

(
E [θ |p] − p

)
+ D( p) = 0.(15.45)

OBSERVABLE PRICE TRADERS

Suppose first that the quantity demanded by the price traders, D( p), is observable by
all traders. All agents know the form of the equilibrium equation (15.45). In order to
look for some information equivalence, the equation is rewritten

s −θ + 1

ρε

Q = ψ(p),(15.46)

with ψ(p) = −ρθ + ρε

ρε

(θ − p) − 1

ρε

(
A
(

E [θ |p] − p
)

− D( p)

ρε

.

Declining Demand Curve of the Price Traders
Assume that the function D is decreasing (like a standard demand curve). Let us show
that there is an equilibrium solution. Suppose first that there is a functionψ(p), strictly
increasing and continuous. From the first line in equation (15.46), there is a bijection
between the left-hand side and p. Hence p reveals perfectly

z = s −θ + 1

ρε

Q.(15.47)

The uninformed traders can then build their expectation E [θ |p] from this obser-
vation. We have seen in the previous chapter that this expectation is an increasing
function of p with a slope less than one (E [θ |p] − p is decreasing in p). One then
substitutes in the right-hand side of the second line of (15.46) to obtain the function
ψ(p) that satisfies the initial assumption of a decreasing function. When the price
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Figure 15.3 Demand with insurance trading.

traders have a demand that is declining and observable, the standard equilibrium
takes place.

Let us rewrite the equilibrium equation as the equality between the supply of
the price traders, S(p) = −D(p), and the net demand of all other agents, denoted
X(s , Q, p), where s = θ + ε is the signal of the informed agents:

E I [θ] − p

VarI (θ)
+ Q + A

(
E [θ |p] − p

)
= X(θ + ε, Q, p) = S(p).(15.48)

When the demand D is decreasing in p, the supply S( p) is increasing. The equilibrium
in the previous equation is represented in Figure 15.3.10

The demand schedule (X) depends on the supply function of the price traders,
because that function affects the signaling property of the price. Uninformed agents
interpret a price increase as good news for the informed agents. An upward supply
dampens the price fluctuations. Hence an increase in the price is more indicative of
good news and should induce a larger upward shift of the demand of the uninformed.11

10 Figure 15.1 is a special case of Figure 15.3 when there are no price traders (S( p) ≡ 0).
11 The mechanism is the same as in Figure 15.1.



15.4 Multiple Equilibria, Crashes, and Booms 353

The demand schedule (X) should be less elastic. Accordingly, in Figure 15.3, the
demand schedule is less elastic for the region around the mean where the supply
schedule is more elastic. For large variations of the price, the supply is less elastic, and
the demand is accordingly represented as more elastic.

The Case of Increasing Demand by the Price Traders
Assume now that the demand is increasing in the price because of the insurance motive
that was described in the introduction. The supply S( p) = −D(p) is declining in p.
When the supply is very inelastic (with a negative slope), the equilibrium mechanism
is the same as in the previous case. The negative supply amplifies the price variations,
and therefore the demand of the uninformed agents is more elastic.

Assume now that the supply curve has for some range a negative elasticity with a
large absolute value. Such a case is represented in the right panel of Figure 15.3. The
schedule (X) has two intersections a and b with the supply curve (the middle point is
excluded as unstable). The information contents of the prices pa and pb are identical.
Both prices reveal the same shift of the demand curve, i.e., the same market variable
z, as defined in (15.47). The slope of the segment ab is defined by the price effect on
the demand of the rational agents for the given information. From equation (15.48),
this slope is −1/VarI (θ) − A.

Because the supply is monotonic, the price reveals the market variable z perfectly.
(When S(p) is nonmonotonic, an equilibrium price may correspond to different
demand curves. In order to discriminate between them, the rational traders have to
observe the effective supply of the price traders.)

Each price is determined by the intersection of the demand schedule (X) (which
is shifted by z) with the supply schedule (S). These intersections must be on one of
the two branches along the supply schedule with prices p ≥ p and p ≤ p (see Figure
15.3). There is no equilibrium point between the two branches.12 Suppose that a
shock shifts the demand curve (X) gradually downward. The price responds first by
a gradual reduction. For some value of z, however, the equilibrium point necessarily
jumps to the lower branch, and a crash occurs at that moment. As usual with multiple
equilibria, the crash may occur before the gradual shift forces the equilibrium point
to jump to the lower branch. The selection of the equilibrium is obviously beyond
the scope of the present model.

NONPERCEIVED PRICE TRADERS

Suppose that with probability π there is a supply S( p) by price traders, and with
probability 1 − π there is no price trader (S(p) ≡ 0). The other agents know the

12 The end points of the branches are determined by the slope of the tangent to (X), which is
−1/VarI (θ) − A.
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probability of the event (and the supply S(p)), but cannot observe its realization. To
simplify the problem, assume that the probability π is vanishingly small. The rational
expectations equilibrium with π > 0 is not very different from that with π = 0. We
therefore assume that rational agents ignore the possible existence of price traders
(assume π = 0) but that such price traders happen to exist and their supply is defined
by S(p), as in the previous case.

The demand schedule (X) is less elastic than in the previous case, and multiple
equilibria may occur, whereas they would not if S(p) were observable. This is intuitive.
Suppose a negative shock affects z. The price falls. Because of insurance trading, price
traders sell, and this amplifies the shock. Uninformed traders attribute the large fall to
bad news about the fundamentals (they do not think about insurance selling). They
reduce the demand more. For some shock, the market clearing may require a large
jump of the price. (Note again that the crash is attributed to really bad news.) The
same argument applies for booms.

We close this section with a final note on the model of Genotte and Leland. Their
structure of informed agents is more elaborate than the one used here. Their purpose is
to generate a very inelastic demand schedule (X) (with more possibilities for multiple
equilibria). Informed agents are of two types: θ-agents have a private signal on θ , and
each private signal is independent of that of others. The demand of the noise traders
is the sum of two independent variables, Q + η; and Q is observed by the Q-agents
(who have all the same signal). As in the other models, there is a third type of rational
agents, the uninformed. Such a model can produce a fairly inelastic demand because
of the Q-agents. For these agents, the market can be very informative. (If η is nil,
the market is perfectly informative for them.) A price increase shifts their demand
significantly. These agents do not receive any signal on θ , but they may be much better
informed than the θ-agents, who have no information on the noise in the market.
The analysis of the model is presented as Exercise 15.2.

EXERCISES

EXERCISE 15.1

Analyze whether an increase of the parameter A in equation (15.48) makes the finan-
cial market more or less likely to experience a crash when a negative shock occurs.

EXERCISE 15.2 A model with partial information on real shocks (Genotte and

Leland, 1990)

Consider the model of Section 15.2.4, and assume that the noise demand is the sum of
Q andη, which are independent of any other variables and distributedN (0, 1/ρQ) and
N (0, 1/ρη), respectively. Agents with a signal on θ are called the θ-agents. There is an
additional type of informed traders, who observe Q. To simplify, assume that the de-
mand of these Q-agents is B(E Q[θ |Q, p] − p), and that of the uninformed agents is
A(E [θ |p] − p).
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1. Show that the market generates different information variables z and z′ for the θ-
and the Q-agents, respectively, with

z = θ − θ + αQ + βη,

where α and β are coefficients that are publicly known. The precision of this signal
(the reciprocal of the variance of αQ + βη) is ρz . We will not need to compute
it. The general method to solve for the equilibrium is to determine the demand
functions of the various types of agents who receive private signals and observe
z. These demands depend on the coefficients α and β, and these coefficients
are identified by substitution of the demand functions of all the agents in the
equilibrium equation.

2. Show that the demand of all θ-agents is of the form

Xθ (p) = ρε(θ − θ) + ρzz + (ρε + ρz + ρθ )(θ − p).

3. Find an analogous expression for the demand by the Q-agents.
4. Using the market equation, determine α and β.
5. Show that the equilibrium price p is a linear combination of the three independent

variables θ , Q, and η:

p − θ = aθ (θ − θ) + aQ Q + aηη.

6. Solve the model. (You may experiment with numerical values of the parameters
to find the price elasticity of the demand.)

15.5 Appendix

A GENERAL PROPERTY OF CONVERGENCE

The analysis of the convergence of beliefs is set by definition in a context where
the variance of the estimate of θ is vanishingly small. In this context, we can use
approximations for a large class of decision models. We see that social learning has
an efficient rate of convergence for a general class of financial markets. We give only
a heuristic presentation.

We keep the basic structure of the previous model with three types of agents –
informed, uninformed, and noise traders – who act in a tâtonnement process, and
where the market opens in each period (conditional on no previous opening)
with probability π > 0. The informed have a general von Neumann–Morgenstern
utility function. The uninformed are risk-neutral and maximize their expected
return, and the noise traders generate an exogenous and independent shock as
before.

An informed trader has a wealth w . He has a subjective distribution on θ , which is
characterized by the density function f (s ) on s = (θ − θ)/σ , where θ and σ denote
the mean and the standard error of θ , respectively. (Note that the mean of s is equal
to 0.) The density function is arbitrary and does not have to be normal. The expected
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utility of an agent who buys an amount x of the risky asset is

U (x) =
∫

u(w + (θ − p + σ s )x) f (s ) ds .

His optimal decision is the solution of the first-order condition∫
(θ − p + σ s )u′(w + (θ − p + σ s )x) f (s ) ds = 0.

If σ and θ − p are small, we can use a Taylor expansion:∫
(θ − p + σ s )

(
1 − γ x(θ − p + σ s )

)
f (s ) ds ≈ 0,

where γ = −u′′(w)/u′(w) is the coefficient of absolute risk aversion at w . When∫
f (s ) ds = 1,

∫
s f (s ) ds = 0, and

∫
s 2 f (s ) ds = 1, the previous expression is equi-

valent to

(θ − p)(1 − γ (θ − p)x) − γ σ 2x ≈ 0.

When beliefs converge to the truth, the term γ (θ − p)x can be neglected, provided
that x is bounded (which can be shown in a more formal analysis). We have therefore
a first-order approximation of x :

x ≈ θ − p

γ σ 2
.

This demand has the same form as that of the CARA–Gauss model. As in the previous
section, the precision of the market information increases linearly (asymptotically
here).

Proof of Proposition 15.2

One proceeds by informational equivalents. For marketmakers, the equilibrium is in-
formationally equivalent to the variable y = a(θ − θ) + Q: E [θ |p] = E [θ |y]. Con-
ditional on the market information, θ is normally distributed with precision

ρ = ρθ + a2ρQ

and mean

E [θ |p] = θ + a2ρQ

ρ

( y

a

)
= θ + b(a(θ − θ) + Q) with b = aρQ

ρ
.

The price in (15.38) is therefore determined by

p − θ =
(

b + 1

A

) (
a(θ − θ) + Q

)
;

hence

θ − p = (1 − (b + B)a)(θ − θ) − (b + B)Q with B = 1

A
.(15.49)
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An informed agent knows that when the market opens, θ − p is determined by the
previous equation. Conditional on his signal si , θ − θ is normal with mean and
variance given by

E [θ − θ |si ] = ρε

ρi
(si − θ), Var(θ |si ) = 1

ρi
, and ρi = ρθ + ρε.

Substituting in (15.49), we obtain

E [θ − p|si ] = (1 − (b + B)a)
ρε

ρε + ρθ

(si − θ),

Var(θ − p|si ) = (1 − (b + B)a)2

ρi
+ (b + B)2

ρQ
.

Because the demand by any informed agent is of the form

E [θ − p|si ]

Var(θ − p|si )
= a(si − θ),

the coefficient a must satisfy the equation

a = (1 − (b + B)a)ρε

(1 − (b + B)a)2 + (b + B)2
(
ρθ + ρε

ρQ

) .

Using the definition of b and ρ, a is solution of

a = ρε(ρθ − B ′a)(ρθ + a2ρQ)

(ρθ − B ′a)2 + (aρQ + B ′(ρθ + a2ρQ))2
(
ρθ + ρε

ρQ

) ,

with B ′ = B(ρθ + a2ρQ).

In the special case where marketmakers are risk-neutral, B = 0. The previous equation
simplifies to

a = ρερθ

ρθ + a2ρQ

ρ2
θ + a2ρQ(ρθ + ρε)

.(15.50)

This equation has a unique positive solution in a : the right-hand side is a decreasing
function that is hyperbolic in a2; the left-hand side is increasing from 0 to ∞ in√

a2.
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Dow 30,000

This chapter is devoted to three current research issues: (i) the integra-

tion of learning and coordination in a model of speculative attacks that is

based on a Gaussian financial market with market orders; (ii) the self-

fulfilling equilibrium with large endogenous uncertainty and low level of

trade in a financial market; (iii) the absence of common knowledge in a

bubble ending with a crash.

Three issues of current research are introduced in this chapter. The first is the analysis
of speculative attacks, or stag hunts in general, in a multiperiod context. The one-
period framework of Chapter 11 does not allow for any learning from the actions of
others. It seems that in a speculative attack, against a currency or in a bank run, agents
observe the actions of others and optimize the timing of their actions. In Chapter 12,
agents observed the actions of others, but they could not, by assumption, optimize
when to invest. The optimization of timing is one of the main issues in the model of
dynamic speculative attacks, which is presented in Section 16.1.

In Section 16.2, the permanent value of an asset is increasing in the number
of buyers, and the uncertainty is about the number of the potential buyers, i.e., the
number of agents. This positive relation between the value of the asset and the number
of agents is similar to that in previous chapters when there are information or payoff
externalities. In equilibrium, a higher level of purchases generates more information
about a large number of agents, as in Chapter 6. There may be multiple equilibria; in
one of them, a high level of demand may generate a strong signal that the number of
agents is indeed large; in another, the demand may be low and the uncertainty about
the number of agents remains high, which will keep the demand low.

Section 16.3 is devoted to a model by Abreu and Brunnermeier (2003), who analyze
how a bubble crashes. An examination of famous bubbles in the past shows that they
always originated in some genuine good news. The spectacular rise of the price of
John Law’s company in 1719 was supported by real events. The critical issue is the
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transition from an extraordinary growth to a bubble. Here, Abreu and Brunnermeier
(2003) introduce a lack of common knowledge about the time when the extraordinary
growth stops: at that time, the mass of agents who are aware that the price is above the
fundamentals grows gradually over time. Agents ride the bubble for a while, because
they think (rationally) that the mass of informed agents is still low and that the bubble
will go on a little longer.

16.1 Speculative Attacks against a Fixed Exchange Rate

Regimes of fixed exchange rates are opportunities for speculative attacks, which are
similar to stag-hunt games. In a one-period setting, the global-game method resolves
the problem of selection between multiple equilibria (Section 11.4). However, it fails
to embody some important features of currency markets.

(i) An essential property of the one-period model is that all agents have to make a
decision once and simultaneously. There is no interaction between the learning
from others’ actions and strategic decisions (i.e., to speculate now or delay after
some observation of others’ actions). Actual currency attacks may be short, but
during an attack, agents intensively observe the actions taken by others and react
quickly to their perceptions of these actions.

(ii) The global-game method requires the distribution to have a tail of agents on each
side for whom the dominant strategy is to attack or not to attack the currency. In
a multiperiod context, one tail may disappear (e.g., the tail of agents with high
expectations who exercise their option to attack the currency), and the method
is not applicable in the following period unless a new shock regenerates the tail.1

If the period is short (as it should be in speculative attacks), such a new shock is
asymptotically equivalent to a discontinuous jump of the parameters and may
not be plausible.

(iii) A fixed transaction cost plays a critical role in the one-period model. When that
cost is vanishingly small, the difference between the sustainable exchange rate
and the fundamental exchange rate is also vanishingly small. A realistic value of
this cost as a fraction of the transaction is very small for positions that last just a
few days.

(iv) The model assumes that the exchange rate is fixed with absolutely no room for
variations. Unless the currency belongs to a monetary zone (as did the euro
between January 1, 1999 and January 1, 2002), some fluctuations (as in the

1 Morris and Shin (1998b) consider a sequence of one-period models with no strategic decisions.
The state of nature θt evolves randomly from period to period. The assumption that θt is learned
exogenously in period t + 1 rules out social learning. In any case, the exogenous learning seems a bit
slow compared to the time frame of a speculative attack. Corsetti et al. (2000) consider the strategic
behavior of a large player and infinitesimal players. Given the assumption of the model, the outcome
is trivial with the large player moving first.
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regime before 1999) are allowed. These fluctuations have two opposite effects.
The first is to provide a channel of communication. A speculative attack typically
induces a depreciation of the exchange rate within the allowed band before any
devaluation. This communication increases the risk of an attack. The second
effect reduces this risk by introducing a penalty if the attack fails: after a failed
attack, the price of the foreign currency falls, thus generating a loss for the holders
of the foreign currency. This penalty is incurred without any ad hoc transaction
cost.

(v) The payoff after the abandonment of the fixed rate is independent of the actions
of the players if the attack is successful. All the bids are carried out at the old
exchange rate, and the speculators gain from the devaluation. However, actual
players in a dynamic game face the risk of arriving at the window too late. This
is obviously why they may want to rush, as in a bank run. The model should
incorporate the trade-off between going early at a smaller cost (with a favorable
exchange rate) and little information, and delaying for more information with
the risk of coming too late.

(vi) In most models of speculative attacks, the central bank has perfect information
on the state of the world. However, a critical factor for the success of a specu-
lative attack is the distribution of characteristics of the speculators about which
the central bank may not have superior information. The one-period approach
does not leave much room for the role of the central bank during a speculative
attack.

These issues are addressed in Section 16.1 with a model where agents act strategi-
cally in a multiperiod context. The equilibrium exchange rate is allowed to fluctuate
within a band, and a devaluation takes place only if the ceiling of the band is reached.
The mass of these speculators is the uncertain parameter in the economy. For sim-
plicity, there are two states of nature. In one of the two states, the high state, the mass
of speculators is sufficiently large to induce a devaluation if all speculators buy the
foreign currency; in the other, low state, that mass is subcritical.

The emphasis is not on the resolution of multiple equilibria as in the global-
game approach, but on the opportunities offered by the dynamic setting for specu-
lative attacks when agents have heterogeneous expectations on the mass of potential
speculators. In all the cases considered here, there will be an equilibrium with no
speculative attack. Under some conditions, there will also be an equilibrium with a
speculative attack. The role of policy, if any, will be to abolish this second equilibrium.
The strategic aspect is critical: the interesting cases occur when the parameters of the
model are such that if there is one-period (and thus no opportunity to learn from
others), there is a unique equilibrium with no attack.

Payoff externalities have a particular property here. When speculators face a coor-
dination problem (e.g., attack a currency), there is some incentive to delay in order to
obtain more information on others. There is also a premium, though, for the agents
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who invest earlier when the asset price is still relatively low. If the agent delays too
long, he may come too late for the gain of the attack and may not get anything.

The present model is built on a standard structure of a financial market with noise
traders. The main feature of the model is that speculators observe the exchange rate
at the end of each period and place market orders for the next period. Following
Hellwig (1982) and Blume, Easley, and O’Hara (1994), these orders depend on all the
information available at the time they are placed and the rational expectations about
the price in the next period. Speculators may delay the timing of their attack. An
equilibrium is constructed analytically for any finite number of periods by backward
induction.

In all periods, the subgame has an equilibrium in which there is no speculation for
all remaining periods. Under some conditions on the beliefs of the agents, there are
other equilibria with speculative attacks, as analyzed2 in Section 16.1.2. The purpose
of the analysis is not to construct a model with a unique equilibrium in which there
may be a speculative attack, but to analyze how a speculative attack may be facilitated
by the learning from prices in markets, and how such equilibria with a speculative
attack can be prevented by policy. Some properties of the model are illustrated by a
numerical example with Gaussian noise.

Policies are analyzed in the last section. The central bank can prevent a speculative
attack by widening the band of fluctuations or through trading. If the central bank in-
tervenes by stabilizing the exchange rate ( i.e., selling when the exchange rate increases)
and this policy is anticipated by rational speculators, a speculative attack is more likely.
Speculative attacks may be prevented either by a rationally anticipated intervention
that amplifies the fluctuations of the exchange rate or by a random intervention that
cannot be anticipated.

16.1.1 The Model

There are a finite number of periods, T + 1, and a continuum3 of speculators, called
agents, of mass θ ∈ {θ0, θ1}. The value of θ determines the state that is selected by
nature before the first period. In each period, an agent can hold at most one unit of
foreign currency, also called the asset. This constraint embodies a credit constraint. At
the beginning of the first period, all agents hold only the domestic currency, also called
simply the currency. In period T + 1, all agents undo their position: by assumption,
all agents must hold only the currency at the end of period T + 1; if an agent holds
the asset at the beginning of period T + 1, he sells it in period T + 1. The game is
actually played during T periods.

2 More results are shown in Chamley (2003b): a larger number of periods extend the set of beliefs for
which a speculative attack is an equilibrium (Proposition 1); the equilibrium strategy that is analyzed
here tends to a stationary solution when the number of periods tends to infinity (Proposition 2).

3 Dynamic speculative attacks with pivotal agents are analyzed in Rodionova and Surti (1999).
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MARKET ORDERS

At the beginning of any period, an agent who holds the currency can place a buy
order for the asset, and an agent who holds the asset can place a sell order. The or-
ders are market orders, i.e., they specify a quantity to be traded (conditional on no
devaluation) for any market price in the period. An order depends on the informa-
tion available at the beginning of the period and on the rational expectations, given
that information, about the transaction price.4 Market orders embody the sequential
nature of trades. Another assumption that is used in the microstructure of financial
markets is that of limit orders. When agents can place limit orders, they submit their
entire demand schedule contingent on the information revealed by the equilibrium
price. Orders are executed only at the equilibrium price, and agents would not change
their orders after the closing of the market even if they had an opportunity to do so.
No rationing can occur. Such a setting is not appropriate for modeling a bank run
or a situtation where agents would change their trade after the equilibrium price is
known.

We will consider only symmetric equilibria. Because agents are risk-neutral, the
payoff for placing an order of amount � < 1 for the asset will be equivalent to that
for an order of 1 placed with probability �. We will assume the second formulation
to facilitate the presentation. In this way, an agent either holds one unit of the asset
(and is an asset holder) or holds no amount of the asset (and is a currency holder).

THE MARKET FOR THE ASSET

There is a game in period t if no devaluation (a process described below) has taken
place before period t. Let λt−1 be the fraction of agents who hold the asset at the
beginning of period t. The mass of agents who hold the asset at the beginning of
period t is therefore λt−1θ . By assumption, no agent holds the asset at the beginning
of the first period: λ0 = 0.

We will consider only symmetric strategies: there is one strategy (possibly random)
for the asset holders and one for the currency holders. Let ζt be the fraction of agents
who place a buy order for the asset in period t. By an abuse of notation, ζt will
also denote the strategy of currency holders who place a buy order with probability
ζt/(1 − λt−1). The strategy of the asset holders will be simpler, as we will see later: if
some agents buy in an equilibrium, no asset holder sells, and if some asset holders sell,
they all sell. Because there will thus be no ambiguity, “order” will mean a buy order.
Suppose ζt > 0. Given the quantity of orders ζtθ , the demand for the asset by the
agents in period t (a stock) is (λt−1 + ζt)θ . The total demand for the asset in period
t is the sum of the agents’ endogenous demands and of an exogenous noise ηt . The
introduction of noise traders is standard in financial markets and facilitates trading

4 Market orders are analyzed in the model of Vives (1995), Section 15.3.2. The informational propert-
ies of a financial market with market orders have been analyzed by Hellwig (1982) and by Blume,
Easley, and O’Hara (1994).
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between agents with asymmetric information (Chapter 15). The noise traders in
period t undo their position at the beginning of the next period. The distribution of ηt

is stationary. The terms ηt are serially independent, and the mean of ηt is equal to zero.
The supply of the asset is a linear function of its price p: S( p) = ( p − 1)/a ,

where a is a fixed parameter. The value of S represents the net supply when the price
departs from the middle of the band of exchange rate fluctuations, which can be
interpreted as a long-run value as determined by real trade and policy. This long-run
price is an equilibrium value when there is no speculative attack, and it is normalized
to 1. The supply schedule S(p) can be defined as minus the net demand of risk-
averse marketmakers who place price-contingent orders that may take into account
the information revealed by the transaction price. Their net demand is of the form
κ(E [pt+1|pt] − pt)/Var( pt+1|pt), where pt and pt+1 are the prices of the asset in
periods t and t + 1, and κ > 0 is a parameter. Because marketmakers attach a lower
ex ante subjective probability to state θ1 than speculators, they interpret the market
data differently. (The speculators are more optimistic about their high mass.) For
simplicity, we assume that the marketmakers assign ex ante a vanishingly low proba-
bility to there being a high mass of speculators and that a devaluation will take place.
Hence, contingent on the observation of the equilibrium price, the revised probability
of a devaluation is still vanishingly low: E [pt+1|pt] = 1, and the variance of pt+1 in
the subjective distribution is constant. In this case, their net demand is of the form
(1 − p)/a with a = Var( pt+1|pt)/κ . If the current price pt has a significant effect on
the expected value E [pt+1|pt], a higher price pt shifts the demand curve up, and the
effect is equivalent to that of a less elastic demand curve. We will consider below the
effect of such a lower elasticity on the properties of the model.

The schedule S(p) may also incorporate the strategy of other agents whose trades
depend only on pt . The central bank is assumed to perform the function of a clear-
inghouse by matching the trade orders. The central bank may also use its reserves for
trading. In that case, its net supply is incorporated in the schedule S( p). Policies of
the central bank will be discussed in Section 16.1.5. Before that subsection, the central
bank is assumed not to trade.

The regime of the exchange rate within a band of fluctuations stipulates that the
price of the asset is allowed to fluctuate in a band below a threshold value 1 + γ , with
γ > 0. If the equilibrium price (to be defined later) is above 1 + γ , a devaluation
takes place according to a specification that will be given later. The event of a price
below 1 − γ will have a negligible probability and will be ignored.

Assuming no devaluation before period t, let pt be the price determined by the
equation

pt = 1 + a
(

(λt−1 + ζt)θ + ηt

)
.(16.1)

If pt ≤ 1 + γ , the price that clears the demand and the supply is within the band
and is equal to pt in (16.1). There is no devaluation in period t. All buy orders are
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satisfied. The fraction of agents who hold the asset at the beginning of the next period
is λt = λt−1 + ζt .

If pt > 1 + γ , the price at which supply and demand are equal is greater than
that allowed by the band of fluctuations. Let X be the critical mass of the demand
(speculators and noise traders), i.e., the highest value of the demand that can be
accommodated by an equilibrium in the band. From equation (16.1), X is defined so
that

γ = a X.

A devaluation takes place when the demand is higher than the critical mass. All
orders cannot be executed. To simplify the process, it is assumed that first, noise
traders of period t − 1 undo their positions; second, noise traders of period t place
their orders. All these orders are executed (even if the total amount exceeds the critical
mass).5 The amount of the asset that is available for new orders without devaluation
is therefore max(X − λt−1θ − ηt , 0). (We will see later that if new orders come in, no
asset holder sells.)

Suppose that the mass of new orders in period t is strictly positive: ζt > 0. (The
case ζt = 0 will be described below.) By assumption, all the agents’ new orders are
executed with the same probability, which is the highest probability. The transaction
price is the highest possible in the band, 1 + γ , and the probability of execution of a
buy order is

π = max(X − λt−1θ − ηt , 0)

ζtθ
.

By construction, 0 ≤ π ≤ 1. If a devaluation takes place, the price of the foreign asset
is set at 1 + A, where A > γ is a fixed parameter.6

INFORMATION

The true state θ is not observable. At the beginning of the first period, all agents
have a subjective probability µ0 of the high state θ1. At the end of each period t, if a
devaluation takes place, the game ends. If no devaluation takes place, a subgame begins
in period t + 1. Agents observe the price pt in period t. They use this observation to
update their belief in a Bayesian fashion from µt−1 to µt . Because the strategies are
common knowledge, agents know the fraction of agents who place orders in period t.
Hence, the fraction of agents who hold the asset at the beginning of the next period,
λt , is known. We will show that the subgame that begins in period t depends only on
t and on (λt−1, µt−1).

5 This assumption is made to simplify the process. The probability of a demand greater than the
critical mass at that stage is very small.

6 One could consider the case where the amount of the devaluation is determined by the intensity of the
attack or by an equilibrium mechanism. Such an effect would enhance the strategic complementarity
but would not alter the properties of the model.
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PAYOFFS

The payoff of an agent is the sum of the discounted values of the trades in all periods,
valued in the (domestic) currency. The discount factor δ, 0 < δ < 1, embodies a
positive difference between the rate of return in the domestic currency and that of the
foreign asset, for a fixed exchange rate. Such a positive difference ensures that in the
context of the model, the band of the asset price is sustainable: if there is no speculative
attack, speculators prefer to hold the currency (or to sell the foreign asset, which they
may own), in an equilibrium. If the difference between interest rates were not strictly
positive (or δ = 1), the band might not be sustainable.7 In the next section, we will
introduce a mild sufficient condition on the discount rate for the sustainability of the
exchange rate band.

16.1.2 Equilibria

THE EVOLUTION OF BELIEFS

If there is no devaluation in period t, the equilibrium price is pt = 1 + ayt . By use
of this equation, the observation of pt is equivalent to the observation of the total
demand

yt = (λt−1 + ζt)θ + ηt ,(16.2)

which conveys a signal on the state θ . Because agents know the strategies andλt−1 + ζt ,
the observation of yt is equivalent to the observation of the variable

zt = θ + ηt

λt−1 + ζt
.(16.3)

The variance of the noise term is reduced when more agents place an order. The
information conveyed by the market (conditional on no devaluation) increases with
the fraction of agents who place orders. Recall that the belief at the beginning of period
t (probability that θ = θ1) is denoted by µt−1. Let f (η) be the density of η (which is
independent of t). If there is no devaluation in period t, the belief on θt in the next
period is determined by the Bayesian updating formula

µt(yt ; λt−1 + ζt , µt−1)

1 − µt(yt ; λt−1 + ζt , µt−1)
= µt−1 f (yt − (λt−1 + ζt)θ1)

(1 − µt−1) f (yt − (λt−1 + ζt)θ0)
.(16.4)

PAYOFF OF AN ORDER

From the description of the trades, a devaluation takes place in period t if yt > X , in
which case the ex post payoff of an order is (A − γ ) max(X − λt−1θ − η, 0)/ζtθ.

If no devaluation takes place in period t, the ex post payoff is the value of holding the
asset in the continuation of the game minus the purchase price, 1 + ayt , i.e., u(θ , η) =
δVt+1(λt−1 + ζt , µt) − (1 + ayt). In this expression, the continuation value Vt+1

7 For example, if the support of the distribution of noise traders extends beyond γ /a , holders of the
foreign asset never sell, and if the number of periods is sufficiently large, all agents with an option
to buy the asset exercise it with no delay.
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depends on the fraction of speculators holding the asset λt = λt−1 + ζt , and on the
belief µt at the end of period t, which has been expressed in (16.4).

The payoff of an order is the expected value of all ex post payoffs for all possible
values of θ and η. If the c.d.f.8 of (θ , η), is denoted by F (θ , η; µt−1), this payoff is

ut(ζt ; λt−1, µt−1)(16.5)

=
∫

yt>X
(A − γ )

max(X − λt−1θ − η, 0)

ζtθ
d F (θ , η; µt−1)

+
∫

yt<X

(
δ Vt+1(λt−1 + ζt , µt) − (1 + ayt)

)
d F (θ , η; µt−1).

The method of backward induction can characterize all equilibria of all subgames,
but such a complete characterization is beyond the scope of this chapter. We will
assume that if in period t there is no equilibrium strategy with ζt > 0 (no new order
comes in), then the speculative attack stops completely.9 One can show that such
an outcome is an equilibrium in this model (Chamley, 2003b). In the subgame that
begins in period t, there may be multiple equilibrium values for ζt > 0. (An example
will be given below.) When there are such multiple equilibrium strategies, we assume
that agents coordinate on the highest equilibrium value of ζt .

ASSUMPTION 16.1 In any period t, if there is no strictly positive equilibrium value of
ζt for buy orders, then agents coordinate on the zero equilibrium, and the game ends at
the end of the period. If there are multiple equilibrium strategies with strictly positive ζt ,
agents coordinate on the highest such value. This coordination rule is common knowledge.

ARBITRAGE AND THE PAYOFF OF DELAY

By Assumption 16.1, the game ends in period t + 1 if the payoff of an order in that
period is negative. Hence, in equilibrium, the payoff of delay is equal to that of making
a final decision in the following period, either to place a buy order in period t + 1
or to never place a buy order. This one-step property is the same as in Chamley and
Gale (1994) and is a consequence of Assumption 16.1. The payoff of delay is therefore
equal to

wt(ζt ; λt−1, µt−1)(16.6)

= δ

∫
yt<X

max

(
Ut+1(λt−1 + ζt , µt), 0

)
d F (θ , η; µt−1),

where Ut is the value of holding the currency.

8 Here θ and η are independent; the distribution of θ depends on the belief µt−1, and the distribution
of ηt is independent of the period.

9 Because the incentive to hold is stronger than the incentive to buy, there may be a level of belief such
that no speculator buys but asset holders do not sell. The price in period t may convey sufficient in-
formation to induce a resumption of new orders in period t + 1 and eventually a successful attack. Al-
though such an equilibrium is theoretically possible, we assume that agents do not coordinate on it.
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Because the mass of asset holders is no greater than one, we have ζ ∈ [0, 1 − λt−1].
A necessary condition for ζ to be an equilibrium value in period t is that the payoff
of a buy order is at least equal to that of delay:

ut(ζ ; λt−1, µt−1) ≥ wt(ζ ; λt−1, µt−1).(16.7)

Case a: If there is no ζ > 0 that satisfies (16.7), then the equilibrium value isζt = 0,
and by Assumption 16.1, the game ends in period t with the zero equilibrium.
All speculators hold only the currency for all remaining periods.

Case b: If there is a value ζ > 0 such that (16.7) is satisfied, by Assumption 16.1
the equilibrium value ζt is

ζt = max
{
ζ ∈ (0, 1 − λt−1]|ut(ζ ; λt−1, µt−1) ≥ wt(ζ ; λt−1, µt−1)

}
.

In general, the strategy in period t is a function ζt = φt(λt−1, µt−1) with

φt(λt−1, µt−1)(16.8)

= max

{
0,
{
ζ ∈ (0, 1 − λt−1]|ut(ζ ; λt−1, µt−1) ≥ wt(ζ ; λt−1, µt−1)

}}
.

When ζt = φt > 0, a speculative attack takes place. It is of one of the following
two types:

(i) If ζt = 1 − λt−1, all agents who have an option place an order. Because there
cannot be new orders in period t + 1, the attack either succeeds in period t or
fails with all agents selling the foreign asset in period t + 1.

(ii) If 0 < ζt < 1 − λt−1, by continuity of ut and wt , (16.7) must be an equality,
ut(ζt ; λt−1, µt−1) = wt(ζt ; λt−1, µt−1). In such an equilibrium, there is an arbi-
trage between buying in period t at a relatively low price with less information,
and delaying until period t + 1 to get more information while facing the risk of
missing the benefit from a devaluation in period t.

The strategy φt(λt−1, µt−1) determines the payoff of an order, in equilibrium:

Ut(λt−1, µt−1) = ut(φt(λt−1, µt−1), λt−1, µt−1).(16.9)

VALUE OF HOLDING THE ASSET

Suppose that the belief µ is such that some agents place a buy order. These agents buy
after the agents who already own the asset and face a higher price. In this situation, if
some agents find it profitable to place a new order, then the agents who already own
the asset and have the same information strictly prefer to hold rather than to sell. This
property is formalized in Lemma 16.1.

LEMMA 16.1 In an equilibrium, if some agents place a buy order in period t (and
φt(λt , µt) > 0), then no asset holder sells in period t.
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The value of holding the asset at the beginning of period t depends on whether the
speculative attack continues in the period. By use of Lemma 16.1, this value satisfies
the following recursive equations:

• If φt(λt−1, µt−1) > 0,

Vt(λt−1, µt−1) =
∫

yt>X
(1 + A) d F (θ , η; µt−1)(16.10)

+ δ

∫
yt<X

Vt+1(λt−1 + φt , µt) d F (θ , η; µt−1).

• If φt(λt−1, µt−1) = 0, by Assumption 16.1 the equilibrium is the zero equilibrium
and

Vt(λt−1, µt−1) = V .

BACKWARD DETERMINATION OF THE EQUILIBRIUM

In the last period T + 1, we have UT+1 ≡ 0 and VT+1 ≡ V = 1 − β. Assume that for
t ≤ T , Ut+1 and Vt+1 are given. The payoff of a buy order in period t is determined by
(16.5), and that of delay by (16.6). The policy function φt(λt , µt) is then determined
by (16.8). This function determines Ut by (16.9) and Vt by (16.10). The equilibrium
is determined for all periods by backward induction.

The previous definition of the policy function generates an equilibrium that is
stable in the sense that a small deviation of all currency holders from the equilibrium
strategy induces a reaction toward the equilibrium strategy. Consider first the corner
solution, and assume that ζt = 1 − λt > 0. Ruling out an event with probability
zero, we have ut(ζt ; λt−1, µt−1) > 0 = wt(ζt ; λt−1, µt−1). Assume that a perturbation
occurs in the form of a small reduction of ζt to ζ ′

t < ζt (or that a small fraction
of the currency holders do not speculate). By continuity, it is still true that exercising
the option and speculating carries a higher payoff, ut(ζ ′

t ; λt−1, µt−1), than holding
the option, which has the value wt(ζ ′

t ; λt−1, µt−1). The optimal response is still to
place an order with probability 1.

Suppose now that there is arbitrage with 0 < φt(λt−1, µt−1) < 1 − λt , and con-
sider the difference between the payoff of an order and that of delay:

D(ζ ) = ut(ζ ; λt−1, µt−1) − wt(ζ ; λt−1, µt−1).

By definition of φt , D(ζ ) < 0 for all ζ ∈ (φt , 1 − λt−1], and its derivative is not
equal to 0 at the point ζ = φt . Hence the graph of ut(ζ ; λt−1, µt−1) cuts that of
wt(ζ ; λt−1, µt−1) from above at ζ = ζt : if the total quantity of orders is reduced
from the equilibrium value ζt to a slightly smaller value ζ ′

t , the exercise value of the
option, u, becomes strictly higher than the holding value w , and the optimal reac-
tion of an individual is to speculate. The reaction is stabilizing in the sense that it
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operates as an increase in the aggregate quantity of orders10 toward the equilibrium
value ζt .

A general analysis is presented in Chamley (2003b). The properties of the model
are described here within the context of an example.

16.1.3 An Example with Gaussian Noise

Assume that η has a normal distribution with variance σ 2
η . Let νt = log(µt/

(1 − µt)) be the LLR between the two states. The Bayesian equation (16.4) takes the
form

νt = νt−1 + λt
θ1 − θ0

σ 2
η

(
yt − λt

θ1 + θ0

2

)

with λt = λt−1 + ζt , and yt = λtθ + ηt . The expected change of belief from period t
to period t + 1 is measured by

E [νt+1 − νt] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
θ1 − θ0

)2

2σ 2
η

(λt−1 + ζt)
2 in state θ1,

−
(
θ1 − θ0

)2

2σ 2
η

(λt−1 + ζt)
2 in state θ0.

(16.11)

We have seen before that the signal-to-noise ratio in the demand yt increases with
the fraction of active speculators, λt−1 + ζt . This property appears in the preceding
expression, where the absolute value of the expected change of belief increases with
the demand by speculators.

16.1.4 A Numerical Example

The graphs of the payoff of an order and that of waiting in the first period of a
three-period game (T = 2) are presented in Figure 16.1 with the indicated parameter
values.11 The payoffs of an order and of delay in the first period are u(ζ ) and w(ζ ) for
short.12 There are three equilibria, but the middle equilibrium value of λ is unstable.
The two stable equilibria are the zero equilibrium and an equilibrium in which a
fraction of speculators purchase the asset. (For other values of the parameters, there
may be more than one stable equilibrium where the mass of speculation is strictly
positive.)

10 The concept of stability remains informal here in that there is no room for an out-of-equilibrium
ajustment process in real time.

11 The probability α that a devaluation is triggered by the noise traders is less than 10−12.
12 Here u(ζ ) and w(ζ ) are computed on a grid for ζ ∈ [0, 1] of width 0.02. The first step is the

computation of U2(λ, µ) and V2(λ, µ) on a grid of values (λ, µ) ∈ [0, 1] × [0, 1].
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Figure 16.1 Payoff of immediate attack (u) and of delay (w). ζ is the fraction of speculators
who buy the foreign exchange in the first period. The payoff of attacking in the first period is
decreasing and negative if ζ is small, because of the foregone interest and the exchange rate,
which increases with ζ . When ζ is sufficiently high, the payoff is increasing because the market
price gives a strong signal about the high state (if that state is the true state). Parameters: belief
of the high state, µ1 = 0.05; height of the band in the peg, γ = 0.025; rate of the devaluation,
A = 0.275; supply elasticity, a = 1; standard error of the noise trade, ση = 0.08X ; masses of
speculators in the two states, θ0 = 0.7X and θ1 = 1.3X ; interest rate per period, 0.15 percent.

When ζ is small, the value of a buy order is a decreasing function of ζ : a higher
mass of speculation raises the price of the asset, but because this mass is still small,
it does not provide much information on the state, and the gross payoff of an order
remains low.

When ζ is sufficiently large, the price conveys an informative signal on the high
state if it is the true state. The anticipation that such information will be provided at
the end of the first period and will generate a successful continuation of the attack in
period 2 raises the value of a purchase order above the value of the option of delay.
The gain of buying early compensates for the risk of finding out at the end of period
1 that the state is bad and enduring a capital loss in period 2.

16.1.5 Defense Policies

A defense policy is successful if it abolishes the coordination equilibrium associated
with a speculative attack. Three types of policies are considered: (i) widening the
band of fluctuations, (ii) stabilizing the exchange rate through trading, and (iii) ran-
dom interventions. For each policy it is assumed that the central bank cannot observe
the state θ .
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WIDENING THE BAND OF FLUCTUATIONS

Widening the band while keeping the rate of devaluation unchanged is equivalent
to an increase in γ . In the present model, if γ = A, there is no capital gain if a de-
valuation takes place, hence no expected profit. If the attack fails, however, there is
a capital loss. Hence, there is no speculative attack in an equilibrium. By continuity,
that property holds if γ ∗ < γ ≤ A for some γ ∗ (0 < γ ∗ < A). A speculative attack
can be prevented by a suitable widening of the band of fluctuations.

A relevant episode occurred at the end of July 1993 with the speculative attack
against the French franc, which was part of the ERM (Exchange Rate Mechanism).
The regime had margins of 2.25 percent on each side of a reference level. After trying
unsuccessfully to ward off the speculators through trading, the central banks of the
monetary union raised the bands of fluctuations to 15 percent. The change of regime
stopped the attack,13 as illustrated in Figure 1 of Obstfeld (1996).

STABILIZING THE EXCHANGE RATE THROUGH TRADE INTERVENTION

There are two types of trade interventions by the central bank, those that are deter-
ministic and predictable, and those that are random and surprise the speculators. A
trade policy that is determined by the exchange rate is predictable by rational agents.
As an example, assume that the central bank supplies a quantity of foreign currency
according to the linear rule

SB = b(p − 1) with b > 0.(16.12)

With b > 0, the central bank attempts to reduce the fluctuations of the exchange
rate. Such a policy requires a positive level of reserves R. The problem of defense
is interesting only if the reserves cannot prevent a speculative attack under perfect
information, i.e., if R < θ1 − X (as in Obstfeld, 1996). Such a constraint imposes a
restriction on the stabilization policy. Because SB ≤ R for all values of p < 1 + γ ,
we must have b ≤ R/γ .

Speculators with rational expectations anticipate the policy. We assume accord-
ingly that they know the value of the policy parameter b and know that the total
supply of foreign exchange is equal to ( p − 1)/a ′ with a ′ = 1/(b + 1/a) < a . The

13 The last exchange rate between the Deutsche mark and the French franc before the change of
regime was at the top of the band at 3.4304. The day after the change of regime (August 2), the rate
increased to 3.5080; it then fell to 3.46040 two days later. It then began to increase again and to
hover around 3.50. However, by that time the information had probably changed. Agents expected
the interest rate to be lowered in France to take advantage of the greater exchange rate flexibility
and reduce unemployment. Eventually, the expectations were seen to be mistaken: such a policy
was not conducted by the central bank. After hovering between 3.48 and 3.55 until the beginning
of December, the exchange rate decreased steadily during the last month of the year to end at 3.40.
In agreement with the policy interpretation in this chapter, after the exchange rate returned to its
midband level, the central banks felt no need to reduce the bands back to the original 2.25 percent.
The wider band contributed to the stabilization of the exchange rate. (For a discussion of the events
see Buiter et al., 1998.)
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influence of the policy is the same as that of an increase in the supply elasticity of
foreign exchange, or the liquidity of the market. A higher elasticity of supply enlarges
the domain of beliefs in which a speculative attack may take place. In the present
model, a central bank that reduces the fluctuations of the exchange rate does not alter
the functioning of the exchange rate as a coordination device, but it reduces the risk
taken by speculators. Such a policy facilitates speculative attacks.

When the price of the foreign currency rises (because of a noise shock or an attack),
a central bank that conducts a deterministic (and predictable) policy should not sell
the foreign currency, but it should buy.

RANDOM INTERVENTION

Trades by the central bank that cannot be predicted by speculators have to be ran-
dom. Assume that the central bank supplies a random amount R, which is normally
distributed N (0, σR) and set before the opening of the market. Rational speculators
know the parameter σR but cannot observe R. The random trading by the central bank
adds noise and thus reduces the information content of the price in the first period.
Numerical simulations show that the smaller information reduces the possibility of
coordination between speculators.

In the example of Figure 16.1, the speculative attack is eliminated when σR ≥
0.06X . For a policy of random interventions, some reserves are required (because the
foreign currency does have to be sold at times), contrary to the policy of determin-
istic trade. However, these reserves may be significantly smaller than what would be
required under perfect information. This is an important implication of the present
model for policy. By trading in a nonpredictable manner, the central bank can pre-
vent speculators from coordinating an attack. The amount of reserves required for
this policy can be smaller than what would be required if speculators had complete
information on their total resources.14

THE INTEREST RATE

Raising the interest rate is a standard defense policy. Numerical simulations (in
Chamley, 2003b) show that this policy is effective in the context of the model. For the
parameters of Figure 16.1, an increase of the interest rate from 0.15 to 0.25 percent de-
fends the regime. The policy is effective because it raises the cost of “communication”
through the price at the beginning of an attack.15

14 In the example of Figure 16.1, the central bank needs a level of reserves equal to R = 0.12X . (The
normal distribution can be considered as an approximation of a distribution where the trade by the
central bank is bounded.) If all speculators have knowledge of the high state and attack, the central
bank’s reserves R are too low to fend off the attack: θ1 − X = 0.3X > R.

15 If the parameters of the model and the beliefs are such that there is an attack by all speculators
and it must succeed or fail in the first period, raising the interest rate is significantly less effective
(Chamley, 2003b).
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16.2 Information Delays in Financial Markets

The aggregation of private informations about the fundamental value of an asset is
an important theme in finance. In the standard framework, the uncertainty is about
the future real payoffs that are generated by the underlying physical capital. Can there
be multiple equilibria that generate different amounts of information?

The answer is negative in the standard CARA–Gauss model where the state is the
value of an asset, because the multiplier from the private information of an agent
to his demand is independent of the precision of the public information (Section
15.1.1).16 The answer may, however, be positive in the CARA–Gauss model when
the state is defined by the mass of agents. There may be one equilibrium with a low
price because agents are unsure about their total mass (which is positively related to
the price in the future), and another where the demand of each agent is large and
the variance about the future demand and hence the future price is low; a large mass
of agents who “come out of the woods” in the present provides a strong signal about
the demand in the future.

In this section, the value of an asset depends on the quantity of funds available for
its purchase. The uncertainty about the value of the asset is driven by the uncertainty
about the demand for it in the future. In order to sharpen the analysis, agents have
no private information of any kind.

As in Chapter 6 on delays, the information is generated by the market when agents
reveal their existence by taking an action. The uncertainty may be self-fulfilling: the
uncertainty on the quantity of available funds reduces the demand for the asset and
thus the information content of the equilibrium price, leaving the uncertainty signi-
ficant. Are there two equilibria, one with low demand and low information, and the
other with high demand and low uncertainty? The present model provides a positive
answer.

16.2.1 The Model

There are two periods and an asset with an uncertain return after the second period.
There are two types of traders: rational agents – agents for short – and noise traders.
Agents are identical and have a demand for the asset in periods 1 and 2 that is driven
by a utility function with CARA normalized to one. An agent is negligible with respect
to the set of agents, which forms a continuum of mass θ . The value of θ defines the
state of nature. It is realized before the first period and fixed for the two periods. It is
drawn from a normal distribution17 N (mθ , σ 2

θ ) and is not observable.

16 Multiple equilibria appear in models of financial markets when agents pay a fixed cost of entry and
the variance of the asset decreases with increasing number of agents (Pagano, 1989a, 1989b), and
in non-Gaussian models (Barlevi and Veronesi, 2000).

17 The agents’ belief about θ incorporates the information of an agent that comes from his very
existence. (See the example of identical beliefs in Section 2.3.2.)
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THE MARKET IN PERIOD 2

The value of the asset in period 2, p2, is an increasing function of the mass of agents θ

(which is the same as in the first period). For simplicity, we assume18 a linear relation

p2 = a + bθ + ε,(16.13)

where ε is a normal random variable N (0, σ 2
ε ), and where σ 2

ε and the parameters a
and b are publicly known.

THE MARKET IN PERIOD 1

The supply of the asset is endogenous in period 1 and assumed to be of the form19

β(p1 − p), where p1 is the price in the first period and p a parameter. The demand
by an agent in period 1 is

x = E [p2|p1] − p1

Var(p2|p1)
,(16.14)

and the equation of the market equilibrium in period 1 is

θx + η = β(p1 − p),(16.15)

where η is the demand of the noise traders, which is distributed N (0, σ 2
η ).

16.2.2 Equilibria

Because all agents have the same demand, the value of x in the first period is commonly
known. Using equation (16.13) for the price p2 in the second period, we have E [ p2] =
a + b E [θ] and Var(p2) = b2 Var(θ). Rational agents use their observation of the
equilibrium price p and their knowledge of the equilibrium equation (16.15) to
update their probability distribution on θ . In the equilibrium equation (16.15), agents
know the right-hand side. The observation of the equilibrium price p1 is therefore
equivalent to the observation of the “order flow” Y = xθ + η, which is a noisy signal
on θ , which is itself informationally equivalent to the variable

Z = Y

x
= θ + η

x
.(16.16)

The signal-to-noise ratio depends on the individual demand x . If x is small, the noise
η dwarfs the endogenous component xθ in the demand Y – or the variance of η/x is
large in Z – and the signal-to-noise ratio is small. A higher demand x by all agents
reduces the variance of θ and therefore has a positive effect on the demand of any

18 Equation (16.13) can be viewed as the linearization of an equilibrium equation of a CARA–Gauss
market: θ(ξ − p2)/σ 2

ξ + η′ = K , where the payoff ξ per unit of the asset after period 2 isN (ξ , σ 2
ξ ),

and η′ is a random exogenous demand.
19 This function can be justified by Tobin’s q-theory with a quadratic adjustment term.
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single agent. This property of strategic complementarity will be critical for multiple
equilibria.

Following the observation of the price p1 or equivalently of Z in (16.16), the
distribution of θ is updated from N(mθ , 1/ρθ ) to N(µ̃θ , 1/ρ̃θ ) with

ρ̃θ = Var(θ |p1) = ρθ + ρηx2,(16.17)

and

µ̃θ = E [θ |p1] = γ
Y

x
+ (1 − γ )mθ , γ = ρηx2

ρθ + ρηx2
.

Replacing Y/x with the expression in (16.16), we obtain

E [θ |p] = γ (θ − mθ ) + mθ + γ

x
η.

Using equation (16.13) for the price p2 in period 2, we have

E [ p2|p1] = a + b E [θ |p1],

Var( p2|p1) = σ 2
ε + b2

ρ̃θ

= σ 2
ε + b2

ρθ + ρηx2
.

Substituting in the demand function in (16.14), we obtain

x = ρθ + ρηx2

σ 2
ε (ρθ + ρηx2) + b2

×
(

a + b

(
ρηx2

ρθ + ρηx2
(θ − mθ ) + mθ + ρηx

ρθ + ρηx2
η

)
− p1

)
.

Because in the equilibrium equation (16.15) we have θx + η = β( p1 − p), by substi-
tution of p1 in the previous equation, the equilibrium is characterized by the solution
in x of the equation

x = ρθ + ρηx2

σ 2
ε (ρθ + ρηx2) + b2

(16.18)

×
(

A + b

(
ρηx2

ρθ + ρηx2
(θ − mθ ) + ρηx

ρθ + ρηx2
η

)
− θ

β
x − η

β

)
,

with A = a + bmθ − p.

For each realization of the random variables (θ , η), an equilibrium is determined
by the solution in x of equation (16.18). The price p1 is then determined by the
equilibrium equation

p1 = p + xθ + η

β
.

We consider the particular realization of the random variables (θ , η) that is equal to
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Figure 16.2 Multiple equilibria in the financial market. Parameters: A = 2, ρθ = 5, ρη = 10,

b = 6, ρε = 10, β = 10, m = 1.

the means (mθ , 0). Equation (16.18) becomes

x = φ(x) = ρθ + ρηx2

σ 2
ε (ρθ + ρηx2) + b2

(
A − mθ

β
x

)
.(16.19)

The solutions of this equation are roots of a polynomial of degree 3. An example of
the graph of φ(x) is presented in Figure 16.2.

The shape of the graph of φ can be understood intuitively in the important case
where the supply of the asset is highly elastic and the precision ρθ of the information
about the mass of agents is low. If β is very large, on any finite interval for x the
function φ(x) is approximated by

ψ(x) = ρθ + ρηx2

ρθ + ρηx2

ρε
+ b2

A.

This function is strictly positive at x = 0. If ρθ is small, ψ is itself approximated by

ψ̃(x) = ρηx2

ρη

ρε
x2 + b2

A,

which is convex near x = 0 and tends to a limit A/σ 2
ε from below when x → ∞. It

therefore has an inflection point. One can show the next result as an exercise.

PROPOSITION 16.1 If the elasticity of supply of capital (β) is sufficiently large and the
precision ρθ on the mass θ of rational agents is sufficiently small, there are values of the
other parameters of the model such that for a set of realizations of (θ , η) that includes an
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Figure 16.3 Equilibrium prices. The parameters are the same as in Figure 16.2. pH and pL are
different equilibrium prices when the exogenous demand η is between −0.5 and 0.5. The precision
gain is 1 − ρθ /ρ̃θ , where ρ̃θ is the precision after the observation of the equilibrium price in the
first period.

open neighborhood of the mean (mθ , 0), there are three equilibrium levels of the demand.
The low and the high values are stable.

The equilibrium prices are represented as function of the noise demand η in Fig-
ure 16.3 for the realization θ = mθ . For a large and significant interval of values of η

there are two equilibrium prices. When η is negative and low, the high price disappears
and the low price is the only equilibrium price. When the shock is positive and large,
the low price disappears.

MULTIPLE EQUILIBRIA AND INFORMATION

The information conveyed by the market is measured by the increment of the precision
about θ following the market observation. It is obtained from (16.17) and is equal to

ρ̃θ − ρθ = ρηx2.

When there are two equilibria, the equilibrium with the high price (and a higher
level of demand x) generates a higher level of information: the increment in precision
can be very different in the two equilibria. The reduction of the variance of θ as a
proportion of the initial variance 1/ρθ is represented in Figure 16.3. One verifies that
in the equilibrium with a high price (and high demand), the price reveals the value
of θ with near perfection. The equilibrium with a low price does not convey much
information.

Equilibrium prices are represented in Figure 16.4 for other realizations of the mass
of rational agents θ and of the noise η. When both θ and η are positive and sufficiently
large, the high price is the only equilibrium price. When θ and η are negative, the
equilibrium has a unique price, which is low.
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Figure 16.4 Equilibrium prices as functions of the mass of agents θ and the noise demand
η. Parameters: ρη = 10, σθ = 0.3, ρε = 11.1, A = 3, β = 10, b = 10.

The figure highlights the values of the prices for θ and η equal to their means mθ

and 0. A constant level of prices for θ = mθ is also highlighted as a reference: one can
verify that the low price is an increasing function of the shock η.

16.3 The Crash of a Bubble

A bubble occurs when an asset that yields no real dividend has a positive price. The
equilibrium price is positive because agents expect it to appreciate, on average. Under
reasonable conditions, however, the price is subject to an upper bound. When the
price reaches the upper bound (an event that must occur in finite time), no further
appreciation is possible and the high price is not sustainable in an equilibrium. It
is therefore not sustainable in the previous period, and, by backward induction, in
any period, including the first one. This argument, stated informally, is the main one
against the existence of bubbles with rational agents.

An examination of famous bubbles in the past shows that they always originated
with some genuine good news. The spectacular rise of the price of John Law’s company
in 1719 was supported by some real events: he gained control of all tax collections,
all foreign trade, and the central bank. The critical issue is the transition from a
fundamental rise of the price to a bubble. During the recent boom of new technology
stocks, no one questioned the emergence of new opportunities. The concern was
about the magnitude of these opportunities. For some, the Dow should have risen to
30,000; for others, the market was already much above the value of the fundamentals.
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In other terms, a critical issue is the lack of common knowledge about the onset of a
price rise that is not due to fundamentals.

The lack of common knowledge about the timing of the beginning of a bubble is
the central problem in the paper by Abreu and Brunnermeier (2003). Removing the
common knowledge and introducing some simplifying assumptions, they show how
a bubble may occur although all agents know that a crash will eventually take place.
Their model is also a contribution to the analysis of social interactions when there is
no common knowledge about the “first period.”

THE MODEL

An asset has a fundamental price, which grows at the rate g in a first interval of time
[0, θ]; after time θ , the price grows at the rate of the market r < g . The first phase can
be justified by the gradual arrival of good news about the future profits generated by
the asset.20 The realization of θ is random and is distributed according to a Poisson
process with parameterλper unit of time. Agents do not observe θ perfectly. After time
θ the price continues to rise at the pre-θ rate g , which is higher than the fundamental
rate r , unless a crash occurs, as will be defined below. If a crash takes place at time t,
the price drops, by assumption, to the fundamental price at time t. Let p(t) be the
bubble price at time t > θ : p(t) = p(θ)eg (t−θ). Because the fundamental price at time
t is p(θ)er (t−θ) when a crash takes place, the price loses a fraction β(t − θ) of its value
with

β(t − θ) = 1 − e−(g−r )(t−θ).

There is no microeconomic foundation of the market that determines the price of
the asset. The price depends on the actions of agents as follows. The asset is held at
the beginning of time by a continuum of agents of mass one. Each agent holds a fixed
amount of the asset, which can be normalized to one (as in the model of speculative
attacks, Section 16.1). An agent can trade between the asset and the market (which
earns the rate r ) at any time. The present discussion is simplified, with no loss of
substance, by assuming that the strategy of the agent is about the timing of the sale
of his holding.

An essential purpose of the model is to represent the gradual acquisition of private
information and the absence of common knowledge. At the time θ when the phase
of above-market growth stops, a constant flow of information begins: the mass of
informed agents at time t > θ is (t − θ)/σ . When an agent becomes informed at
time t, he learns that the market price is above the fundamental, i.e., θ < t. For
simplicity, the flow of newly informed agents is taken as constant at the rate of 1/σ

per unit of time, until all the agents are informed, at time θ + σ . This generating

20 This phase corresponds to the rise due to fundamentals (e.g., the beginning of John Law’s company).
A growth rate g higher than r can be justified only by a sequence of good surprises if agents have
rational expectations. One surprise would generate only one jump of the price.
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Figure 16.5 The evolution of price and information. The bubble starts at time θ , after which
the fundamental price grows only at the rate r , smaller than the bubble rate g. The bubble price
cannot be higher than an exogenous multiple of the fundamental price. For an interval of length
σ , agents become informed in a constant flow. At time θ + σ all agents are informed that the
bubble is taking place. The bubble may go on after time θ + σ because of the lack of common
knowledge.

process implies that the reception of the “informed” signal at time t is equivalent to
the information that θ ∈ [t − σ, t], a piece of information that leaves a significant
uncertainty about the information of others.

The crash occurs when the first of the following two conditions is met:

(i) the fractional gap between the bubble price and the fundamental price, β(t − θ),
reaches a maximum value β, a fixed parameter;

(ii) the mass of agents who have sold the asset reaches the critical mass κ , which is a
fixed parameter.

In case (i), the crash is exogenous. Because the gap β(t − θ) is an increasing
function, there is a value of time, τ , such that β(τ ) = β. The bubble can last at most
τ units of time: a crash occurs exogenously at time θ + τ if the mass of agents who
have sold at that time is smaller than κ . The structure of the model is illustrated in
Figure 16.5.

THE TRADING STRATEGY IN EQUILIBRIUM

We consider only symmetric PBEs. Without loss of generality, we assume that, in an
equilibrium, the strategy of an agent who is newly informed at time ti is to hold
until time ti + τ 1 and to sell at time ti + τ 1. Given the flow of newly informed
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Figure 16.6 The sequence of critical instants.

agents, the mass of sales at time θ + τ is max((τ − τ 1)/σ, 0). There are two possible
cases:

(i) if (τ − τ 1)/σ < X , then the amount of sales is smaller than the critical value at
the maximum duration of the bubble: an exogenous crash takes place;

(ii) if the previous inequality is not satisfied (with the strategy τ 1 endogenously
determined), then a crash takes place endogenously at time θ + τ ∗, where the
length of time τ ∗ satisfies (τ ∗ − τ 1)/σ = κ .

The agent holds the asset as long as the probability of a crash is sufficiently small
compared with the capital gain if no crash takes place. The main inference prob-
lem is to determine the probability of a crash at the time ti + τ . The crash occurs
at time ti + τ if θ = ti − (τ ∗ − τ ), where the duration of the bubble, τ ∗, is exoge-
nous or endogenous (Figure 16.6). Before time ti + τ , the distribution of θ for the
agent is the exponential distribution truncated to the interval [ti − (τ ∗ − τ ), ti ]. The
instantaneous probability of θ around ti − (τ ∗ − τ ) is given by the next lemma.

LEMMA 16.2 Consider an agent who is informed at ti that the bubble started in
the interval [ti − γ , ti ]. His instantaneous probability that θ = ti − γ is π(ti − γ ) =
λ/(1 − e−λγ ).

The proof uses the exponential density of θ , e−λt , truncated on the interval [ti −
γ , ti ]. Figure 16.6 may help to visualize the various dates that have to be tracked. The
instantaneous probability is an increasing function of τ : the probability of the crash,
conditional on no crash before, increases with time.

Arbitrage
An agent holds on to the asset for a while after being informed of the bubble, because
he estimates rationally that few agents have become informed yet, or that the gap of
the bubble price has not widened significantly. An agent sells the asset at time ti + τ

when the instantaneous return from the market, r p(ti + τ ), becomes identical to the
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instantaneous return of holding the asset, that is g p(ti + τ ) − π(τ ∗ − τ )β(τ ∗) p(ti +
τ ), where τ ∗ is the delay between θ and the time of the crash.

The differential yield between holding and selling is

U (τ ; ti ) =
(

g − r − π(τ ∗ − τ )β(τ ∗)
)

p(ti + τ ),(16.20)

which is a decreasing function of τ . The optimal strategy τ 1 is defined by the arbitrage
equation U (τ 1; ti ) = 0. By use of Lemma 16.2, τ 1 is solution of

g − r = λ

1 − e−λ(τ ∗−τ 1)
β(τ ∗).(16.21)

THE EXOGENOUS CRASH

The case of an exogenous crash is sufficient to highlight the main properties of the
model. An exogenous crash takes place if the mass of agents who have sold at time
θ + τ , where τ is determined by the maximum price gap, is smaller than κ . Given the
strategy τ 1 of the agents, this condition is equivalent to

τ − τ 1

σ
< κ.(16.22)

The value of τ1 is determined by (16.21) where τ ∗ is replaced by τ . An exogenous crash
takes place if that value of τ 1 is greater than τ − σκ . The solution τ 1 is a decreasing
function of the parameter λ: if λ is smaller, the probability of the onset of the bubble
is smaller. An informed agent knows that the bubble takes place, but the lower value λ

raises the probability that θ occurred recently (see Figure 16.6) and that a crash occurs
later: the agent holds the asset for a longer time. The condition for an exogenous crash
can thus be replaced by the condition λ < λ with λ the solution of

g − r = λ

1 − e−λκσ
β(τ ).(16.23)

THE ENDOGENOUS CRASH

The characterization of an endogenous crash is adapted from that of the exogenous
crash by replacing the exogenous lengthτ with the endogenous time τ ∗. The inequality
in (16.22) is replaced by an equality (the mass of sales at the time of the crash is exactly
κ):

τ ∗ − τ 1 = σκ,

g − r = λ

1 − e−λ(τ ∗−τ 1)
β(τ ∗).(16.24)

The necessary and sufficient condition for the existence21 of such a crash is that τ 1 < τ .
We have seen that this condition is equivalent to λ < λ, where λ is defined in (16.23).

21 The equilibrium solution is nontrivial only if newly informed agents hold the asset for a positive
length of time, which is the case if λ < λ∗ for some value λ∗ > λ.
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DISCUSSION

Let us consider the exogenous crash, which contains the main features of the model.
The bubble ends with a crash, and the price returns to the fundamental, with proba-
bility 1. The model seems to solve the problem of backward induction when a crash
must take place. However, a careful examination shows that this is not the case.

The standard argument against bubbles with rational agents is that the ratio be-
tween the bubble price and a variable that grows with the economy must be subject to
an upper bound. Suppose that the economy is growing at the rate n < r (on an effi-
cient path), and that there is an arbitrarily large value A such that p0eg t < Aent . Such
a property contradicts the assumptions of the model of Abreu and Brunnermeier: the
inequality implies that a crash must occur no later than T such that p0eg T = AenT ,
and this property is common knowledge. An essential feature in the model is that the
growth rate of the bubble price is strictly22 higher than r + α, where α > 0.

The answer to the bubble problem by Abreu and Brunnermeier is not different,
essentially, from that by Blanchard (1979). In the model of Blanchard, the bubble
returns to the fundamental through a crash, which occurs in a Poisson process. The
end of the bubble occurs with probability 1. As long as the bubble goes on, the growth
rate is above the rate of return of the market. The argument requires that no upper
bound exist on the bubble price. In the model of Blanchard, the growth rate of the
bubble price must be higher than the market rate to compensate for the probability
of the crash, as all agents are informed. In the model of Abreu and Brunnermeier, the
growth rate of the bubble price does not need to be as high, because only a fraction
of the agents are informed.

22 If one admits that g decreases over time and g → r , the holding length of time tends to 0. If agents
sell as soon as they are informed, the equilibrium is trivial: agents hold the asset only while they are
not informed.
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