

24 - 26 JULI 2018, WIDYALOKA & MIPA CENTER, UNIVERSITAS BRAWIJAYA MALANG

Malang, 28 Juni 2018

Yth. Nahlia Rakhmawati di tempat

Dengan hormat, atas nama panitia Konferensi Nasional Matematika XIX tahun 2018, kami menginformasikan bahwa makalah Bapak/Ibu dengan judul

Penerapan Petri Net pada Aljabar Max-plus Sebagai Upaya Menyelesaikan Permasalahan Penjadwalan Angkutan Umum

dinyatakan **DITERIMA** untuk dipresentasikan dalam KNM XIX. Berkaitan dengan hal tersebut, kami mengundang Bapak/Ibu untuk mempresentasikan makalah dalam sesi paralel.

Untuk makalah lengkap mohon diunggah melalui akun Bapak/Ibu, selambat-lambatnya tanggal **24 Juli 2018** dan ditulis sesuai dengan template makalah yang dapat diunduh di https://knm19ub.org/makalah.

Atas partisipasi Bapak/Ibu, kami ucapkan terima kasih.

chtadi Intan Detiena, S.Si, M.Si

Mengetahui,

Presiden IndoMS,

Ketua Pelaksana KNM 19,

KNM ZOV8

KONFERENSI NASYONAL

MATEMATIKA

Syaiful Anam, S.Si, MT, Ph.D NIP. 197801152002121003

SEKRETARIAT

NIP. 197511251998022001

Website: http://knm19ub.org/

NO. 332 / UN10.F09/ PP / 2018

SERTIFIKAT

Sertifikat ini diberikan kepada:

Esty Saraswati Nur Hartiningrum & Nahlia Rakhmawati

yang telah aktif berpartisipasi sebagai pemakalah dengan judul :

Penerapan Petri Net pada Aljabar Max-plus Sebagai Upaya Menyelesaikan Permasalahan Penjadwalan Angkutan Umum

> di Konferensi Nasional Matematika XIX pada tanggal 24 Juli - 26 Juli 2018 di Universitas Brawijaya Malang

> > Malang, 25 Juli 2018

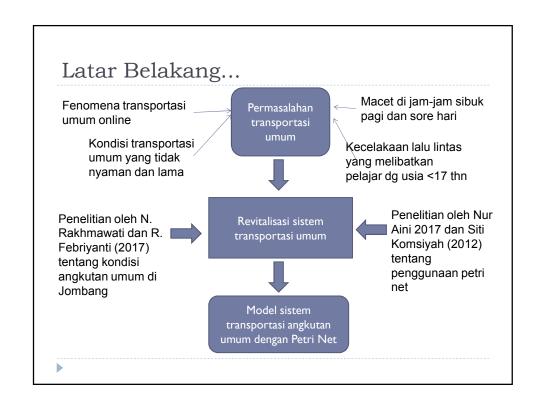
Ratno Bagus Edy Wibowo, S.Si.,M.Si.,Ph.D KETUA JURUSAN MATEMATIKA FMIPA UB Syaifur Anam, S.SI.,MT.,Ph.D.KETUA PELAKSANA KNM XIX

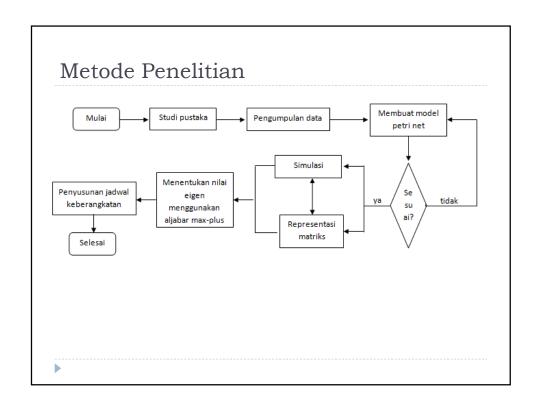
DISELENGGARAKAN OLEH:

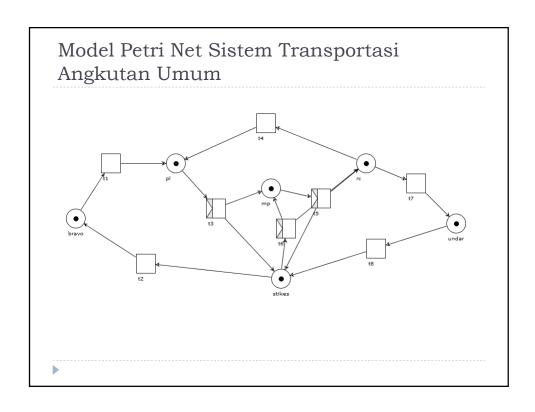
Dr. Intan Muchtadi, S.Si, M.Si, DEA

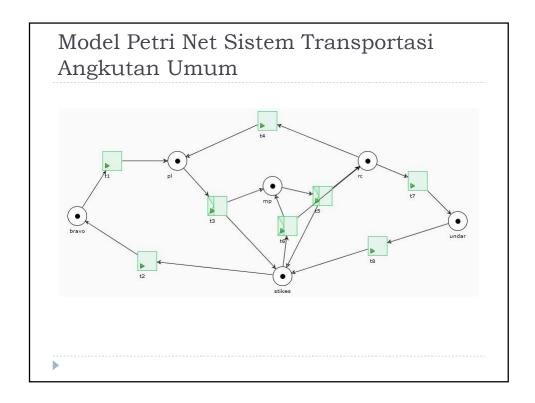
PRESIDEN INDOMS

Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Brawijaya




IndoMS Indonesian Mathematical Society




PENERAPAN PETRI NET PADA ALJABAR MAX-PLUS SEBAGAI UPAYA MENYELESAIKAN PERMASALAHAN PENJADWALAN ANGKUTAN UMUM

NAHLIA RAKHMAWATI ESTY SARASWATI NUR HARTININGRUM

Variabel	Dari	Menuju ke	Waktu Tempuh (menit)	Banyak Armada	
X1	BRAVO	PL	10	2	
X2	PL	MP	4	1	
X3	MP	STIKES	3	1	
X4	STIKES	BRAVO	4	1	
X5	STIKES	RC	8	2	
X6	RC	PL	3	1	
X7	PL	STIKES	7	2	
X8	UNDAR	STIKES	10	2	
X9	STIKES	MP	3	1	
X10	MP	RC	5	1	
X11	RC	UNDAR	4	1	
			x(k+1)	$) = \bigoplus_{p=1}^{M} \left(A \right) $	$I_p \otimes x(k+1)$

Model Aljabar Max-Plus

$$x_{1}(k+1) = 4x_{4}(k)$$

$$x_{2}(k+1) = 10x_{1}(k-1) \oplus 3x_{6}(k)$$

$$x_{3}(k+1) = 4x_{2}(k) \oplus 3x_{9}(k)$$

$$x_{4}(k+1) = 3x_{3}(k) \oplus 10x_{8}(k-1) \oplus 7x_{7}(k-1)$$

$$x_{5}(k+1) = 3x_{3}(k) \oplus 10x_{8}(k-1) \oplus 7x_{7}(k-1)$$

$$x_{6}(k+1) = 8x_{5}(k-1) \oplus 5x_{10}(k)$$

$$x_{7}(k+1) = 3x_{6}(k) \oplus 10x_{1}(k-1)$$

$$x_{8}(k+1) = 4x_{11}(k)$$

$$x_{9}(k+1) = 3x_{3}(k) \oplus 10x_{8}(k-1) \oplus 7x_{7}(k-1)$$

$$x_{10}(k+1) = 3x_{9}(k) \oplus 4x_{2}(k)$$

$$x_{11}(k+1) = 5x_{10}(k) \oplus 8x_{5}(k-1)$$

$$\lambda = 4.625$$

$$0.125$$

$$0.25$$

$$0.75$$

$$0.625$$

$$0.875$$

$$0$$

$$0.75$$

$$0.25$$

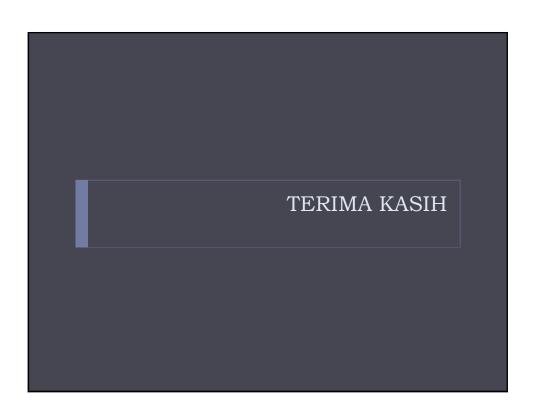
$$0.0625$$

Desain Penjadwalan yang Diperoleh

Desain Penjadwalan	Vektor Eigen	Jalur	Dari	Menuju ke
1	0	X8	UNDAR	STIKES
2	0.125	X1	BRAVO	PL
3	0.25	X3 X10	MP UNDAR	STIKES STIKES
4	0.625	X6 X11	RC RC	PL UNDAR
5	0.75	X4 X5 X9	STIKES STIKES STIKES	BRAVO RC MP
6	0.875	X2 X7	PL PL	MP STIKES

Desain Penjadwalan (1)

Keberangkatan	Waktu
ke	Keberangkatan
1	06.00.00
2	06.04.38
3	06.09.16
4	06.13.54
5	06.18.32
6	06.23.10
7	06.27.48
8	06.32.26
9	06.37.04
10	06.41.42
11	06.46.20
12	06.50.58
13	06.55.36
14	07.00.14


Desain Penjadwalan (2)

Keberangkatan ke	Waktu	
J	Keberangkatan	
1	06.00.53	
2	06.05.31	
3	06.10.09	
4	06.14.47	
5	06.19.25	
6	06.24.03	
7	06.28.41	
8	06.33.19	
9	06.37.57	
10	06.42.35	
11	06.47.13	
12	06.51.51	
13	06.56.29	
14	07.01.07	

5

Kesimpulan

- Sistem transportasi angkutan umum dapat disusun menjadi sebuah model petri net untuk mengetahui sinkronisasi yang yang mungkin dilakukan.
- Waktu tunggu yang diperoleh jika model petri net dianalisis menggunakan aljabar max-plus adalah 4 menit 38 detik dengan waktu keberangkatan awal sesuai dengan vektor eigen yang telah diperoleh.
- ▶ Terdapat 6 desain penjadwalan yang diperoleh berdasarkan analisis vektor eigen pada model petri net yang disusun.

