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PREFACE 

This book is based on a series of lectures that I gave a t  the Symposium 
on Intuitionism and Proof Theory held a t  Buffalo in the summer of 1968. 
Lecture notes, distributed at  the Buffalo symposium, were prepared with the 
help of Professor John Myhill and Akiko Kino. Mariko Yasugi assisted me 
in revising and extending the original notes. This revision was completed in 
the summer of 1971. At this point Jeffery Zucker read the first three chapters, 
made improvements, especially in Chapter 2 ,  and my colleague Wilson 
Zaring provided editorial assistance with the final draft of Chapters 4-6. 

To all who contributed, including our departmental secretaries, who typed 
versions of the materia! for use in my classes, I express my deep appreciation. 

Gaisi Takeuti 
Urbana, March 1975 
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CHAPTER 1 

FIRST ORDER PREDICATE CALCULUS 

In this chapter we shall present Gentzen’s formulation of the first order 
predicate calculus LK (logischer klassischer Kalkul), which is convenient for 
our purposes. We shall also include a formulation of institutionistic logic, 
which is known as LJ (logischer intuitionistischer Kalkul). We then 
proceed to the proofs of the cut-elimination theorems for LK and LJ, and 
their applications. 

81. Formalization of statements 

The first step in the formulation of a logic is to make the formal language 
and the formal expressions and statements precise. 

DEFINITION 1.1. A first order (formal) language consists of the following 
symbols. 
1) Constants : 

1.1) Individual constants: k,, k,, . . . , k, ,  . . . (i = 0, 1, 2 , .  . . ) .  
1.2) Function constants with i argument-places (i = 1 , 2 , .  . .) : /;, f i ,  . . . , 

1.3) Predicate constants with i argument-places (i = 0, 1 ,  2 , .  . . ) :  R;, 
f;,. . . ( j  = 0, 1 ,  2 , .  . .). 

RI,. . ., R;,. . . ( j  = 0, 1 ,  2 , .  . .). 
2 )  Variables : 

2.1) Free variables: a,, a,, . . . , a , , .  . . (i = 0, 1, 2 , .  . .). 
2.2) Bound variables: x,, x,, . . . , x), . . . (1 = 0, 1,  2 , .  . .). 

1 (not). A (and), v (or), 3 (implies), V (for all) and 3 (there exists). The 
first four are called propositional connectives and the last two are called 
quantifiers. 

3) Logical symbols 
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4) Auxiliary symbols : 
(, ) and , (comma). 

We say that a first order language L is given when all constants are given. 
In every argument, we assume that a language L is fixed, and hence we omit 
the phrase “of L”. 

There is no reason why we should restrict the cardinalities of various kinds 
of symbols to exactly No. I t  is, however, a standard approach in elementary 
logic to start with countably many symbols, which are ordered with order 
type w .  Therefore, for the time being, we shall assume that the language 
consists of the symbols as stated above, although we may consider various 
other types of language later on. In any case it is essential that each set of 
variables is infinite and there is at least one predicate symbol. The other sets 
of constants can have arbitrary cardinalities, even 0. 

We shall use many notational conventions. For example, the superscripts 
in the symbols of 1.2) and 1.3) are mostly omitted and the symbols of 1) and 
2) may be used as meta-symbols as well as formal symbols. Other letters 
such asg, h, . . . may be used as symbols for function constants, while a, b,  c ,  . . . 
may be used for free variables and x ,  y ,  z ,  . . . for bound variables. 

Any finite sequence of symbols (from a language L) is called an expression 
(of L) . 

DEFINITION 1.2. Terms are defined inductively (recursively) as follows : 
1) Every individual constant is a term. 
2) Every free variable is a term. 
3) If f i  is a function constant with i argument-places and t l , .  . . , ti are 

4) Terms are only those expressions obtained by 1)-3). Terms are often 
terms, then fi(t, ,  . . . , ti) is a term. 

denoted by t ,  s, t l , .  . . . 

Since in proof theory inductive (recursive) definitions such as Definition 1.2 
often appear, we shall not mention it each time. We shall normally omit the 
last clause which states that  the objects which are being defined are only 
those given by the preceding clauses. 

DEFINITION 1.3. If Rt is a predicate constant with i argument-places and 
t l , .  . ., t ,  are terms, then R*(t,,. . ., t,) is called an atomic formula. Formulas 
and their outermost logical symbols are defined inductively as follows : 
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1) Every atomic formula is a formula. I t  has no outermost logical symbol. 
2 )  If A and B are formulas, then ( l A ) ,  ( A  A B ) ,  (A v B )  and ( A  2 B)  are 

formulas. Their outermost logical symbols are 1, A ,  v and 3, respectively. 
3) If A is a formula, a is a free variable and x is a bound variable not occurring 

in A ,  then Vx A ’  and 3x A ’  are formulas, where A ’  is the expression obtained 
from A by writing x in place of a at each occurrence of a in A .  Their outermost 
logical symbols are V and 3, respectively. 
4) Formulas are only those expressions obtained by 1)-3). 
Henceforth, A ,  B,  C,.  . ., I;, G, .  . . will be metavariables ranging over 

formulas. A formula without free variables is called a closed forinula or a 
sentence. A formula which is defined without the use of clause 3) is called 
quantifier-free. In 3) above, A’ is called the scope of Vx and 3x, respectively. 

When the language L is to be emphasized, a term or formula in the language 
L may be called an L-term or L-formuEa, respectively. 

REMARK. Although the distinction between free and bound variables is 
not essential, and is made only for technical convenience, it is extremely useful 
and simplifies arguments a great deal. This distinction will, therefore, be 
maintained unless otherwise stated. 

I t  should also be noticed that in clause 3) of Definition 1.3, 3i must be a 
variable which does not occur in A .  This eliminates expressions such as 
Vx (C(x) A 3% B(x) ) .  This restriction does not essentially narrow the class of 
formulas, since e.g. this expression Vx ( C ( x )  A 3% B ( x ) )  can be replaced by 
V y  (C(y)  A 3x B(x ) ) ,  preserving the meaning. This restriction is useful in 
formulating formal systems, as will be seen later. 

In the following we shall omit parentheses whenever the meaning is evident 
from the context. In particular the outermost parentheses will always be 
omitted. For the logical symbols, we observe the following convention of 
priority: the connective -, takes precedence over each of A and v, and each 
of A and v takes precedence over 3. Thus 1.4 A B is short for ( 1 A )  A B ,  and 
A A B 2 C v D is short for ( A  A B)  3 (C v D). Parentheses are omitted also 
in the case of double negations: for example 1-4 abbreviates i ( 1 A ) .  
A = B will stand for ( A  2 B )  A ( B  3 A ) .  

DEFINITION 1.4. Let A be an expression, let tl, . . . , t, be distinct primitive 
symbols, and let ul,. , . , un be any symbols. By 
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we mean the expression obtained 

Z I P . . . ,  t n  

01,. . . , (Jn 

from A by writing u1,. . . , on in place of 
tl, . . . , t,, respectively, at each occurrence of tl, . . . , t, (where these symbols 
are replaced simultaneously). Such an operation is called the (simultaneous) 
replacentent of (t,, . . . , t,) b y  (IJ,, . . . , 6,) in A .  It is not required that t,,. . . , t, 
actually occur in A .  

PROPOSITION 1.5. (1) If A contains none of t,,. . ., t,, then 

i s  A itself. 
(2) If ol, . . . , IJ, aye distinct primitive symbols, then 

01,. . (Jn 

( ( A  e:) 81,. . :: 0.) 
is identical u i t h  

DEFINITION 1.6. (1) Let A be a formula and t l , .  . ., t ,  be terms. If there is a 
formula B and n distinct free variables b,, . . . , b,  such that A is 

then for each i (1 < i < n) the occurrences of ti resulting from the above 
replacement are said to be indicated in A ,  and this fact is also expressed (less 
accurately) by writing B as B(b,,. . ., b,), and A as B(t,,. . ., t,). A may of 
course contain some other occurrences of t i ;  this happens if B contains t i .  

(2) We say that a term t is fully indicated in A ,  or every occurrence of t 
in A is indicated, if every occurrence of t is obtained by such a replacement 
(from some formula B as above, with n = 1 and t = t , ) .  

It should be noted that the formula B and the free variables from which 
A can be obtained by replacement are not unique; the indicated occurrences 
of some terms of A are specified relative to such a formula B and such free 
variables. 
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PROPOSITION 1.7.  I f  A ( a )  i s  a formula (in which a i s  ltot necessarily f u l l y  
indicated) and x i s  a bound variable not occurring in A ( a ) ,  then Vx A ( x )  a i d  
3x A(x )  are formulas.  

PROOF. By induction on the number of logical symbols in A ( a ) .  

In the following, let Greek capital letters r, A ,  Z7, A ,  To, T,,. . . denote finite 
(possibly empty) sequences of formulas separated by commas. In order to 
formulate the sequential calculus, we must first introduce an auxiliary 
symbol +. 

DEFINITIOX 1.8. For arbitrary r and A in the above notation, I' --f A is 
called a sequent. I' and A are called the awtecedext and succedeiat, respectively, 
of the sequent and each formula in T and A is called a sequent-formula. 

Intuitively, a sequent A,,  . . . , A,,, ---f B,, . . . , B,  (where m, i z  3 1)  means: 
if A ,  A . .  . A A,, then B ,  v . . .  v B,. For m 3 1,  A, , .  . ., A ,  - means 
that A ,  A . . . A A ,  yields a contradiction. For n 3 1, + B, , .  . ., B,  means 
that B, v . . . v B,  holds. The empty sequent +means there is a contradiction. 
Sequents will be denoted by the letter S, with or without subscripts. 

$2. Formal proofs and related concepts 

DEFINITION 2.1. An inference is an expression of the form 

s, s2 
~ or -- 

where S,, S 2  and S are sequents. S, and S2 are called the upper sequents and 
S is called the lower sequent of the inference. 

Intuitively this means that when S, (S, and S,) is (are) asserted, we can 
infer S from it (from them). We restrict ourselves to inferences obtained 
from the following rules of inference, in which A ,  B ,  C, D, F ( a )  denote formulas. 

Sl 
S s '  

1) Structural rules: 
1 .1 )  Weaken ing  : 

r - A ,  T - A  
D , r - A  ' r - A , D  

left : right: ~~~~ . 

D is called the weakening formula 
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1.2) Contraction : 

[CH. 1, $2 

I' ---f A ,  D , D  
right: ~ _ _ _  

r - A , D  
D , D , r + A .  

D , I ' - A '  
left: ~- -~ 

1.3) Exchange: 

T - A , C , D , A  
I ' - A , D , C , A  

right: __ 
r, C ,  D,17 - A  . 
r , D , C , n  - A '  

left: ~- ~ 

We will refer to these three kinds of inferences as "weak inferences", while 
all others will be called "strong inferences". 

1.4) Cut: 
T - A , D  D , I i + A  

I ' , I i + A , A  

D is called the cut formula of this inference. 

2) Logical rules 

D , r - A  
7 : right: I ' - A , D .  2.1) 1 :left: __-____ 

7 0 , r - A  r - A , ~ D  

D and 7 D  are called the auxiliary formula and the priiicijlal formula, 
respectivelv, of this inference. 

D , r + A ,  
C A D , I ' + A '  

and __ 
C , T - A  

C / r D , I ' - + d  
- ~~ ~ 2.2) A : left: 

C and D are called the auxiliary formulas and C A D is called the 
principal formula of this inference. 

C , I ' - A  D , r + A ,  
2.3) v : left: - c D,  r - A  J 

I ' - A , C  I ' - A , D  
T + A , C v D  I ' + A , C v  D '  

v : right: _ _ ~  and ~ 

C and D are called the auxiliary formulas and C v D the principal 
formula of this inference. 
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c ,  r - A ,  D 
ZI : right: r - A , C  D , I I + A ,  

C > D , r , I I T - d , z ’  r - A , C 3 D  
2.4) ZI : left: 

C and D are called the auxiliary formulas and C ZI D the principal 
formula. 

2.1)-2.4) are called propositioiaal inferences. 

q t ) ,  r + A  r - A ,  F ( a )  
r + A , V x F [ , q ’  

V : right: ~ 2.5) V : left: 
V x F ( x ) ,  r - A ’ 

where t is an arbitrary term, and a does not occur in the lower sequent. 
F ( t )  and F ( a )  are called the auxiliary formulas and Vx F ( x )  the 
principal formula. The a in V : right is called the eigenvariable of this 
inference. 

Note that in V : right all occurrences of u in F ( a )  are indicated. In V : left, 
F( t )  and F ( x )  are 

respectively (for some free variable a ) ,  so not every t in F( t )  is necessarily 
indicated. 

where a does not occur in the lower sequent, and t is an arbitrary 
term. 
F ( a )  and F ( t )  are called the auxiliary formulas and 3% F ( x )  the 
principal formula. The a in 3 : left is called the eigenvariable of this 
inference. 

Note that in 3 :left a is fully indicated, while in 3 : right not necessarily 
every t is indicated. (Again, F( t )  is (F(a)+)  for some a , )  

2.5) and 2.6) are called quantifier inferences. The condition, that the eigen- 
variable must not occur in the lower sequent in V : right and 3 : left, is called 
the eigenvariable condition for these inferences. 

A sequent of the form A + A is called an initial sequent, or axiom. 

We now explain the notion of formal proof, i.e., proof in LIi .  

DEFINITION 2.2. A proof P (in L K ) ,  or LK-proof,  is a tree of sequents 
satisfying the following conditions : 
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1) The topmost sequents of P are initial sequents. 
2) Every sequent in P except the lowest one is an upper sequent of an 

inference whose lower sequent is also in P. 

The following terminology and conventions will be used in discussing formal 
proofs in LK. 

DEFIXITION 2.3. From Definition 2.2 ,  it follows that there is a unique 
lowest sequent in a proof P. This will be called the end-sequent of P. A proof 
with end-sequent S is called a $roof ending with S or a +roof of  S .  A sequent S is 
called provable in L K ,  or LK-provable, if there is an LK-proof of it. A formula 
A is called LK-provable (or a theorem of L K )  if the sequent + A is LK-provable. 
The prefix “LK-” will often be omitted from “LK-proof” and “LK-provable”. 

A proof without the cut rule is called cut-free. 

I t  will be standard notation to abbreviate part of a proof by . Thus, 
for example, 

denote a proof of S, and a proof of S from S ,  and S2 ,  respectively. Proofs are 
mostly denoted by letters P ,  Q, . . . . An expression such as P(a) means that 
all the occurrences of a in P are indicated. (Of course sucli nutation is useful 
only when replacement of a by another term is being considered.) Then P(t) 
is the result of replacing all occurrences of a in P(a) by t .  

Let us consider some slightly modified rules of inference, eg. ,  

T-+d,A I I + / l , B  
? , f l + d , i f , A A B  ’ 

This is not a rule of inference of LK. However, from the two upper sequents 
we can infer the lower sequent in L K  using several structural inferences and 
an A : right : 

II - A ,  B 
several weakenings several weakenings 

and exchanges 
r,n -+A,A,A r,fl + A , A ,  B 

__- T + A , A  

- ______- 
and exchanges _ _ _ _ _ ~ _ _  (*I - 

A : right: - _ _ - _ _ ~  
TJI  - A , A , A  A B  

Conversely, from the sequents I‘ +A,  A and T --t A ,  B we can infer r + A ,  A A B 
using several structural inferences and an instance of the inference-schema J :  
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I ' - A , A  r - A , B  
r , F + A , A , A A B  

several contractions and exchanges 

Thus we may regard J as an abbreviation of (*) above. In such a case we will 
use the notation 

r - A , A  I7+A,B 
._..____ 

r,II - A ,  A,  A A B 

As in this example we often indicate abbreviation of several steps by double 
lines. 

Another remark we wish to make here is that  the restriction on bound 
variables (in the definition of formulas) prohibits an unwanted inference 
such as 

A ( a ) ,  B(b) - A (4 A B(b) 

A ( 4 ,  B1b) - 3% ( A b )  A W )  
- 

A(a) ,  B(b) - 3x 3% (A(%)  A B(x))  
3% A ( x ) ,  3x B(x)  + 3% 3% (A(%)  A B(x) ) .  

In our system this can never happen, since 3% 3% ( A  (x) A B(x ) )  is not a formula. 
The quantifier-free part of LK, that is, the subsystem of LK which does 

not involve quantifiers, is called the propositional calculus. 

EXAMPLE 2.4. The following are LK-proofs. 

A -,A 
1 : right 

+ A  T A  
- - - I  

v : right . .  
+ A , A V l A  

+ A v i A ,  A 
+ A  v IA, A v i A  

- A  v 7 4 .  

" 
exchange : right 

v :right 
contraction : right 

2) Suppose that a is fully indicated in F(a) .  

3 : right 
-I : right 
V : right 
1 : left 

2 : right 

F ( a )  -+ 3% F ( x )  
-+ 3x F ( x ) ,  l F ( a l  

I ,. 

+ 3x F(x) ,  V y   IF(^) 
ivy - IF(Y)  + 3x F x  

--*IVY i F ( y )  3 3x F ( x )  
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I t  should be noted that the lower sequent of V : right does not contain the 
eigenvariable a. 

EXERCISE 2.5. Prove the following in LK. 
1) A v B i ( i A  A i B ) .  

3) 3 x F ( x )  i V y i F ( y ) .  

5 )  i ( A  A B) i A  v i B .  

2 )  A = I B _ l A V B .  

4) 1 V y  F ( y )  3 3x 1 F ( x ) .  

EXERCISE 2.6. Prove the following in LK. 
1) 3x (A 2 B ( x ) )  
2 )  3x (A(x) 3 B )  = Vx A ( x )  2 B ,  where B does not contain x. 

A 3 3% B(x) .  

3) 3% (A(%) 2 B(x ) )  = vx A ( x )  3 3x B(x ) .  
4) i A > B + i B > A .  
5 )  i A > i B + B > A .  

EXERCISE 2 .7 .  Construct a cut-free proof of Vx A ( x )  3 B + 3% (A(%)  3 B) ,  
where A ( a )  and B are atomic and distinct. 

DEFINITION 2.8. (1) When we consider a formula, term or logical symbol 
together with the place that it occupies in a proof, sequent or formula respec- 
tively, we refer to it as a formula, term or logical symbol in the proof, sequent 
or formula, respectively. 

( 2 )  A sequence of sequents in a proof P is called a thread (of P) if the 
following conditions are satisfied: 

2.1) The sequence begins with an initial sequent and ends with the end- 
sequent. 

2.2)  Every sequent in the sequence except the last is an upper sequent of 
an inference, and is immediately followed by the lower sequent of this 
inference. 

(3) Let S,, S, and S3 be sequents in a proof P. We say S1 is above S2 or S2 
is below S, (in P )  if there is a thread containing both S1 and S, in which S, 
appears before S,. If S, is above S ,  and S2 is above S3,  we say Sz is between 
S1 and S,. 

(4) An inference in P is said to  be below a sequent S (in P )  if its lower sequent 
is below S .  
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(5)  Let P be a proof. A part of P which itself is a proof is called a subproof 
of P.  This can also be described as follows. For any sequent S in P, that  part 
of P which consists of all sequents which are either S itself or which occur 
above S, is called a subproof of P (with end-sequent S). 

(6) Let Po be a proof of the form 

r + o  
(*) { 

where (*) denotes the part of Po under r - 0, and let Q be a proof ending 
with r, D +@. By a copy of Po from Q we mean a proof P of the form 

Q{r, D + @  
(**) { 

where (**) differs from (*) only in that for each sequent in (*), say17 - A ,  
the corresponding sequent in (**) has the form17, D + A .  That is to say, P is 
obtained from Po by replacing the subproof ending with r - @ by Q, and 
adding an extra formula D to the antecedent of each sequent in (*). Likewise, 
a copy can be defined for the case of an extra formula in the succedent. We can 
also extend the definition to the case where there are several of these formulas. 

The precise definition can be carried out by induction on the number of 
inferences in (*). However this notion is intuitive, simple, and will appear 
often in this book. 

(7) Let S(a) ,orT(a)  +d(a),denoteasequentoftheformAl(a),. . .,A,(a) + 

B,(a),  . . . , B,(a). Then S ( t ) ,  or r(t) - A  ( t ) ,  denotes the sequent A l ( t ) ,  . . . , A ,(t) -+ 

We can define: t is fully indicated in S( t ) ,  or r(t) + A @ ) ,  by analogy with 
B,(t), . . . , B,(t). 

Definition 1.6. 

In order to prove a basic property of provability, i.e., that  provability is 
preserved under substitution of terms for free variables, we shall first list some 
lemmas, which themselves assert basic properties of proofs. We first define 
an important concept. 

DEFINITION 2.9. A proof in LK is caLIed regular if it  satisfies the condition 
that firstly, all eigenvariables are distinct from one another, and secondly, 
if a free variable a occurs as an eigenvariable in a sequent S of the proof, then 
a occurs only in sequents above S. 
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LEMMA 2.10. (1) Let r ( a )  --* d ( a )  be an (LK-)provable seq.uent in which a i s  fu l ly  
indicated, and let P ( a )  be a proof of r ( a )  + A(a) .  Let b be a free variable not 
occurring in P(a). T h e n  the tree P ( b ) ,  obtained from P ( a )  b y  replacing a b y  b at 
each occurrence of a in P(a) ,  i s  also a proof and i ts  end-sepent  i s  r ( b )  + A ( b ) .  

(2) For an arbitrary LH-proof there exists a regular proof of the same end- 
sequent. Moreover, the required proof as obtained from the original proof s imply  
by replacing free variables (in a suitable w a y ) .  

PROOF. (1) By induction on the number of inferences in P(a).  If P(a)  consists 
of simply an initial sequent A(a)  + A(a) ,  then P(b) consists of the sequent 
A ( b )  -f A @ ) ,  which is also an initial sequent. Let us suppose that our proposi- 
tion holds for proofs containing at most n inferences and suppose that P ( a )  
contains n + 1 inferences. We treat the possible cases according to the last 
inferences in P ( a ) .  Since other cases can be treated similarly, we consider only 
the case where the last inference, say J ,  is a V : right. Suppose the eigenvariable 
of J is a, and P(a) is of the form 

where Q(a)  is the subproof of P(a) ending with T - A ,  A(a) .  I t  should be 
remembered that a does not occur in I’, A or A (x). By the induction hypotheses 
the result of replacing all a’s in Q(a)  by b is a proof whose end-sequent is 
r --+A, A @ ) .  r and A contain no 6’s. Thus we can apply a ti : right to this 
sequent using b as its eigenvariable : 

and so P ( b )  is a proof ending with r -+ A ,  Vx A ( x ) .  If a is not the eigenvariable 
of J ,  P(a) is of the form 

By the induction hypothesis the result of replacing all a’s in Q(a)  by b is a 
proof and its end-sequent is r ( b )  -+A(b), A(b ,  c). 
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Since by assumption b does not occur in P(u) ,  b is not c, and so we can apply 
a V : right to this sequent, with c as its eigenvariable, and obtain a proof P(b) 
whose end-sequent is r(b) + A(b), Vx A (b ,  x). 

(2) By mathematical induction on the number I of applications of V : right 
and 3 : left in a given proof P. If 1 = 0, then take P itself. Otherwise, P can 
be represented in the form : 

where Pi is a subproof of P of the form 

and Ii is a lowermost V : right or 3 : left in P (i = 1,. . . , k ) ,  i.e., there is no 
V : right or 3 : left in the part of P denoted by (*). 

Let us deal with the case where I i  is V : right. Pi has fewer applications of 
V : right or 3 : left than P,  so by the induction hypothesis there is a regular 
proof Pi of Ti +Ai, Fi(b,). Note that no free variable in Ti +Ai, F(bi) 
(including b,) is used as an eigenvariable in Pi. Suppose c l , .  . . , c, are all the 
eigenvariables in all the Pi's which occur in P above Ti +Ai, V y ,  F,(y,), 
z = 1  ,. . ., k .  Then change cl,.  . ., c, to d l , .  . ., d,, respectively, where 
d,, . . . , d, are the first m variables which occur neither in P nor in Pi, i = 

1 , .  . . , k .  If bi occurs in P below Ti + Ai, V y ,  Fi(yi) ,  then change it to  
Let Pi' be the proof which is obtained from Pi by the above replacement 

of variables. Then Pi', . . . , Py are each regular. P' is defined to be 

where (*) is the same as in P, except for the replacement of bi by 
completes the proof. 

This 



18 FIRST ORDER P R E D I C A T E  C A L C U L U S  [CH. 1 ,  $2 

From now on we will assume that we are dealing with regular proofs 

By a method similar to that in Lemma 2.10 we can prove the following. 
whenever convenient, and will not mention it on each occasion. 

LEMMA 2.11. Le t  t be a n  arbitrary term. Let T ( a )  + A ( a )  be a provable (in LK) 
sequent in which a i s  f u l l y  indicated, and let P ( a )  be aproof ending with T ( a )  + A ( a )  
in which every eigenvariable i s  different from a and not contained in t .  T h e n  
P ( t )  (the result of replacing all a’s in P ( a )  b y  t )  is a proof whose end-sequent is 
q t )  + A i t ) .  

LEMMA 2.12. Let  t be a n  arbitrary term,  r ( a )  + A ( a )  a provable (in LK) sequent 
in which a i s  f u l l y  indicated, and P(a)  a proof of T ( a )  --t A ( a ) .  Let P ’ (a )  be a 
proof obtained f rom P(a)  b y  changing eigenvariables (not necessarily replacing 
distinct ones b y  distinct ones) i?z such a w a y  that in P ’ ( a )  every eigenvariable i s  
different f rom a and not colztained in t .  T h e n  P‘(t)  i s  a proof of r ( t )  ---f A ( t ) .  

PROOF. By induction on the number of eigenvariables in P(a)  which are 
either a or contained in t ,  using Lemmas 2.10 and 2.11. 

We rewrite part of Lemma 2.11 as follows. 

PROPOSITION 2.13. Let  1 be an  arbitrary term arzd S ( a )  a provable (i?i LK) sequent 
in which a i s  f u l l y  ittdicated. T h e n  S ( t )  i s  also provable. 

We will point out a simple, but useful fact about the formal proofs of our 
system, which will be used repeatedly. 

PROPOSITION 2.14. If a sequent i s  provable, thefa i t  i s  provable wi th  a proof in 
which all the ini t ial  sequelzts consist of atomic formulas.  Furthermore, if a sequent 
is Provable without cut,  thex i t  i s  Proaable without cut wi th  a proof of the above 
sort. 

PROOF. I t  suffices to show that for an arbitrary formula A ,  A ---f A is provable 
without cut, starting with initial sequents consisting of atomic formulas. 
This, however, can be easily shown by induction on the complexity of A .  

DEFINITION 2.15. We say that two formulas A and B are alphabetical variants 
(of one another) if for some xl,. . ., x,, yl , .  . ., y n  
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is 

( B  F?:), 
where zl,. . . , 2, are bound variables occurring neither in A nor in B: that is 
to say, if  A and B are different, it is only because they have a different choice 
of bound variables. The fact that  A and B are alphabetical variants will be 
expressed by A - B.  

One can easily prove that the relation A -B is an equivalence relation. 
Intuitively it is obvious that changing bound variables in a formula does not 
change its meaning. We can prove by induction on the number of logical 
symbols in A that  if A - B ,  then A = B is provable without cut (indeed 
in LJ, which is to .be defined in the next section). Thus two alphabetical 
variants will often be identified without mention. 

$3. A formulation of intuitionistic predicate calculus 

DEFINITION 3.1. We can formalize the intuitionistic predicate calculus as a sub- 
system of L K ,  which we call LJ, following Gentzen. ( J  stands for “intui- 
tionistic”.) LJ is obtained from L K  by modifying it as follows (cf. Definitions 
2.1 and 2.2 for L K ) :  

1) A sequent in LJ is of the form T - -+A,  where A consists of at most one 
formula. 

2) Inferences in LJ are those obtained from those in LK by imposing the 
restriction that the succedent of each upper and lower sequent consists of 
a t  most one formula; thus there are no inferences in LJ corresponding to  
contraction : right or exchange : right. 

The notions of proof, provable and other concepts for LJ are defined 
similarly to the corresponding notions for LK. 

Every proof in LJ is obviously a proof in LK, but the converse is not true. 
Hence : 

PROPOSITION 3.2. If a sequent S of LJ i s  provable iiz LJ, then i t  i s  also provable 
in LK. 
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Lemmas 2.10-2.12 and Propositions 2.13 and 2.14 hold, reading “LJ- 
provable” in place of “provable” or “provable (in LK)”. We shall refer to 
these results (for LJ) as Lemma 3.3, Lemma 3.4, Lemma 3.5, Proposition 3.6 
and Proposition 3.7, respectively. We omit the statements of these.) 

EXAMPLE 3.8. The following are LJ-proofs. 
1)  

- 
A - A  

A A i A + A  
A : left 
1 : left 
A : left 

contraction : left 
- 

1 ~ 4 ,  A A 

A A i A ,  A A ill -+ 

A A l A - +  

+ l ( A  A 1 A )  
1 : right - 

2) Suppose a is fully indicated in F ( a ) .  

3 : right F ( 4  - F(4 
F(a)  ---+ 3% F ( x )  

13x F ( x ) ,  F ( a )  4 

1 : left 
exchange : left 

1 : left 
V : right 

F ( a ) ,  1 3 %  F(x)-, 

13% F(X) -+ l F ( a )  

1 3 x  F ( x )  - v y  1 F ( y ) .  

EXERCISE 3.9. Prove the following in LJ. 
1) 1 A  v B  + A > B .  
2) 3% F ( x )  ---f 1 V y  1R(y ) .  

4) A + A  v B. 
3) A A B - A .  

5)  i A  v i B  - i ( A  A B).  
6) i ( A  v B)  -- 1 A  A +I. 

8)  3% i F ( x )  + i V x  F ( x ) .  
9) b’x ( F ( x )  A G(x) )  = Vx F ( x )  A b’x G(x) .  

7)  ( A  V c) A ( B  V c) E ( A  A B )  V c. 

10) A 3 l B  + B > i A .  
11) 3% ( A  3 B(x ) )  ---+A 3 3% B(x) .  
12) 3% (A(%)  3 B )  - v x  A(%) 3 B. 
13) 3x ( A  (x) 3 B(x) )  - Vx A (x) 3 3x B(x). 
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EXERCISE 3.10. Prove the following in LJ.  
1) ll(A 2 B ) ,  A + 11B. 

3) 1 1 7 4  z? 7 4 .  
2) iiB 3 B, i i ( A  3 B )  ---f A 3 B.  

EXERCISE 3.11. Define LJ’ to  be the system which is obtained from L J  by 
adding to it,  as initial sequents, all sequents 1 i R  + R, where R is atomic. 
Let A be a formula which does not contain v or 3. Then 1 1 A  + A is LJ’- 
provable. [Hint: By induction on the number of logical symbols in A ; cf. 
Exercise 3.10.1 

PROBLEM 3.12. For every formula A define A* as follows. 
1) If A is atomic, then A * is T T A .  
2) If A is of the forms iB, I3 A C, B v C or B 3 C, then A* is i B * ,  B* A C*, 

i ( l B *  A lC*) or B* 3 C*, respectively. 
3) If A is of the form Vx F ( x )  or 3% F ( x ) ,  then A * is V x F * ( x )  or i V x  i F * ( x ) ,  

respectively. 
(Thus A* does not contain v or 3.) Prove that for any A ,  A is LK-provable 
if and only if A* is LJ-provable. [Hint: Follow the prescription given below.] 

1) For any A ,  A = A* is LK-provable. 
2) Let S be a sequent of the form A, ,  . . . , A ,  ---+ B,,. . . , B , .  Let S‘ be the 

sequent 
A:,. . . ,  A:, iBT,. . . ,  -IB,* +. 

Prove that S is LK-provable if and only if S‘ is LK-provable. 
3) A* E l l A *  in LJ,  from Exercise 3.11. 
4) Show that if S is LK-provable, then S’ is LJ-provable. (Use mathematical 

induction on the number of inferences in a proof of S.)  
What must be proved is now a special case of 4). 

54. Axiom systems 

DEFINITIOS 4.1. The basic system is LK. 
1) A finite or infinite set .d of sentences is called an axiom system,  and each 

of these sentences is called an axiom of 22. Sometimes an axiom system is 
called a theory. (Of course this definition is only significant in certain contexts.) 

2) A finite (possibly empty) sequence of formulas consisting only of axioms 
of s4 is called an axiom sequence of d. 
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3) If there exists an axiom sequence To of s2 such that To, r + A  is 
LK-provable, then r + A  is said to be provable f r o m  d (in LH).  We express 
this by d, r 4 A .  
4) d is inconsistent (with LH) if the empty sequent + is provable from sd 

(in LK).  
5) If d is not inconsistent (with LK), then it is said to be consistent (with 

6) If all function constants and predicate constants in a formula A occur 

7)  A sentence A is said to be consistent (inconszstent) if the axiom system 

8) LK, is the system obtained from LK by adding + A as initial sequents 

9) LH, is said to be inconsistent if 4 is LH&-provable, otherwise it is 

LK).  

in d, then A is said to be dependent on d. 

{ A }  is consistent (inconsistent). 

for all A in d. 

consistent. 

The following propositions, which are easily proved, will be used quite 
often. 

PROPOSITION 4.2. Let d be an ax iom system. T h e n  the following are equivalent: 
(a) d i s  inconsistent (wi th  LH) (as  defined above) ; 
(b) for every formula A (o f  the language),  A i s  provable from d; 
(c) for some formula A ,  A and -IA are both provable f rom d. 

PROPOSITION 4.3. Let d be a n  ax iom system. T h e n  a sequent F + A i s  LH,- 
provable if and on ly  if  r - A i s  provable f rom d (in LK).  

COROLLARY 4.4. An ax iom system d i s  consistent (wi th  LK) if and on ly  if 
LK, i s  consistent. 

These definitions and the propositions hold also for LJ. 

$6. The cut-elimination theorem 

A very important fact about LK is the cut-elimination theorem, also known 
as Gentzen’s Hauptsatz : 
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THEOREM 5.1 (the cut-elimination theorem: Gentzen). If a sequent is  ( L K ) -  
provable, then i t  i s  (LK-)provable without a cut. 

This means that any theorem in the predicate calculus can be proved 
without detours, so to speak. We shall come back to this point later. The 
purpose of the present section is to  prove this theorem. We shall follow 
Gentzen’s original proof. 

First we introduce a new rule of inference, the mix rule, and show that 
the mix rule and the cut rule are equivalent. Let A be a formula. An inference 
of the following form is called a m i x  (with respect to A )  : 

( A )  
r + ~  17-A 

r , n *  - .A*, A 

where both A a n d I I  contain the formula A ,  and A* and17* are obtained from 
d and17 respectively by deleting all the occurrences of A in them. We call A 
the mix formula of this inference, and the mix formula of a mix is normally 
indicated in parentheses (as above). 

Let us call the system which is obtained from L K  by replacing the cut 
rule by the mix rule, L K * .  The following is easily proved. 

LEMMA 5.2 .  L K  and L K *  are equivalent, that i s ,  a sequent S i s  LK-provable 
if and only if S i s  LK*-provable. 

By virtue of the Lemma 5.2 ,  it suffices to show that the mix rule is redundant 
in L K * ,  since a proof in L K *  without a mix is at the same time a proof in LK 
without a cut. 

THEOREM 5.3 (cf. Theorem 5.1). If a sequent i s  Provable in LK*,theni t  i s  provable 
in L K *  without a m i x .  

This theorem is an immediate consequence of the following lemma. 

LEMMA 5.4. If P i s  a proof of S (in L K * )  which contains (only)  one mix, occurring 
as the last inference, then S i s  provable without a mix. 

The proof of Theorem 5.3 from Lemma 5.4 is simply by induction on the 
number of mixes occurring in a proof of S. 
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The rest of this section is devoted to proving Lemma 5.4. We first define 
two scales for measuring the complexity of a proof. The grade of a formula A 
(denoted by g ( A ) )  is the number of logical symbols contained in A .  The grade 
of a mix is the grade of the mix formula. When a proof P has a mix (only) 
as the last inference, we define the grade of P (denoted by g(P)) to be the 
grade of this mix. 

Let P be a proof which contains a mix only as the last inference: 

( A ) .  
r+A I l r d i l  

r , I l r*+A*,A 

We refer to  the left and right upper sequents as S, and S,, respectively, and 
to the lower sequent as S .  We call a thread in P a left (right) thread if it contains 
the left (right) upper sequent of the mix J .  The rank of a thread 9 in P is 
defined as follows: if F is a left (right) thread, then the rank of 9 is the number 
of consecutive sequents, counting upward from the left (right) upper sequent 
of J ,  that  contains the mix formula. Since the left (right) upper sequent 
always contains the mix formula, the rank of a thread in P is a t  least 1. 
The rank of a thread F in P is denoted by r a n k ( 9 ;  P). We define 

rank,(P) = max(rank(9 ;  P)), 
.F 

where F ranges over all the left threads in P, and 

rank,(P) = max(rank(F;  P)), 

where F ranges over all the right threads in P. The rank of P, rank(P),  is 
defined as 

9 

rank(P) = rank,(P) + rank,(P). 

Notice that  rank(P) is always 3 2, 

PROOF OF LEMMA 5.4. We prove the Lemma by double induction on the grade 
g and rank Y of the proof P (i.e., transfinite induction on cu -g  + Y ) .  We 
divide the proof into two main cases, namely Y = 2 and Y > 2 (regardless 
of g). 

Case 1: Y = 2, viz. rank,(P) = rank,(P) = 1. 
We distinguish cases according to the forms of the proofs of the upper 

sequents of the mix. 
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1 .1)  The left upper sequent S1 is an initial sequent. In this case we may 

A - A  n + A  
assume P is of the form 

A,I?*- .A 

We can then obtain the lower sequent without a mix: 

U - + A  
some exchanges 

A , .  . ., A , P  - A  

some contractions 

1.2) The right upper sequent S, is an initial sequent. Similarly: 
1.3) Neither S, nor S, is an initial sequent, and S, is the lower sequent of a 

structural inference J 1 .  Since rank,(P) = 1 ,  the formula A cannot appear in 
the upper sequent of J , ,  i.e., J1 must be a weakening : right, whose weakening 
formula is A : 

r + A ,  
- J l l T J J  I i + A  

r , U * + A l , A  ( A ) ,  

where A l  does not contain A .  We can eliminate the mix as follows: 

r +dl  
some weakenings 

some exchanges 
r,n* + A , J  

1.4) None of 1.1)-1.3) holds but S, is the lower sequent of a structural 
inference. Similarly : 

1.5) Both S, and S, are the lower sequents of logical inferences. In this 
case, since rank,(P) = rank,(P) = 1, the mix formula on each side must be 
the principal formula of the logical inference. We use induction on the grade, 
distinguishing several cases according to the outermost logical symbol of A .  
We treat here two cases and leave the others to the reader. 

(i) The outermost logical symbol of A is A .  In this case S, and S, must be 
the lower sequents of A : right and A : left, respectively: 
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where by assumption none of the proofs ending with r --f A l ,  8 ;  r -A, ,  C or 
B, 17, + A  contain a mix. Consider the following: 

(B)  t 

r + A , ,  B B,I71 +A 
~~ r, IT! + A C T  

where L7f and A? are obtained from 17, and A ,  by omitting all occurrences 
of B.  This proof contains only one mix, a mix that occurs as its last inference. 
Furthermore the grade of the mix formula B is less than g(A)  ( =  g(B A C)). 
So by the induction hypothesis we can obtain a proof which contains no 
mixes and whose end-sequent is r ,Df  +A$,  A .  From this we can obtain 
a proof without a mix with end-sequent I', 11, + A,, A. 

(ii) The outermost logical symbol of A is V. So A is of the form Vx F ( x )  and 
the last part of P has the form: 

- - ~~ r,n, + A , , A  

(a being fully indicated in F ( a ) ) .  By the eigenvariable condition, a does not 
occur in r, A ,  or F ( z ) .  Since by assumption the proof ending with r +A,, F ( a )  
contains no mix, we can obtain a proof without a mix, ending with r - A , ,  F( t )  
(cf. Lemma 2.12). Consider now 

(FV)  ) 7 

r - A ~ ,  ~ ( t )  q t ) ,  n, + A  
~ _ _  - ...- ~~~ ~ r, II? +AT, A 

where II,# and A t  are obtained from Z7, and A l  by omitting all occurrences 
of F(t) .  This has only one mix. It occurs a5 the last inference and the grade of 
the mix formula is less than g(A) .  Thus by the induction hypothesis we can 
eliminate this mix and obtain a proof ending with r, n,# ---+ A t ,  11, from which 
we can obtain a proof, without a mix, ending with T,n ,  - A , ,  A .  

Case 2 .  Y > 2 ,  i.e., rank,(P) > 1 and/or rank,($') > 1. 
The induction hypothesis is that from every proof Q which contains a mix 

only as the last inference, and which satisfies either g(Q) < g(P) ,  or g(Q) = 

g(P) and rank(Q) < rank($'), we can eliminate the mix. 
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2.1) rar,k,(P) > 1. 
2.1.1) F (in S,) contains A.  Construct a proof as follows. 

1 7 - A  
some exchanges and 

contractions 
A , n *  - A  

some weakenings and 
exchanges 

r ,D* - .A*,A 

2.1.2) S, is the lower sequent of an inference J z ,  where J z  is not a logical 
inference whose principal formula is A .  The last 

where the proofs of T - A and @ --f !P contain 
least one A .  Consider the following proof P’ :  

part of P looks like this: 

(A) ,  

no mixes and @ contains at 

In P’, the grade of the mix is equal tog(P),  rank,(P’) = rank,(P) andrank,(P’) = 

rank,(P) - 1. Thus by the induction hypothesis, r, @* - A * ,  !P is provable 
without a mix. Then we construct the proof 

some exchanges 
@ * , F - A * , ! P  

J z  E * , T - + A * x  

2.1.3) r contains no A’s, and Sz is the lower sequent of a logical inference 
whose principal formula is A .  Although there are several cases according to 
the outermost logical symbol of A ,  we treat only two examples here and leave 
the rest to  the reader. 
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(i) A is B 3 C. The last part of P is of the form: 

T n l - A l , B  c,n,+Az 

Consider the following proofs P,  and P,: 

assuming that B 3 C is in nl and n,. If B 3 C is not in ni (z  = I or Z ) ,  then 
I7T is Lli and Pi is defined as follows. 

Pl p 2  . .  

171 -.A,,B C , n z  +A, 
weakenings and exchanges weakenings and exchanges __ _ _ ~ .  

r,IIT -+A*,Al,B r, c, n; + A * ,  A~ 

Note that g(P1) = g(P,) = g(P), rank,(P1) = rank,(Pz) = rank,(P) and 
rank,(P,) = rank,(P,) = rank,(P) - 1.  Hence by the induction hypothesis, 
the end-sequents of P, and P, are provable without a mix (say by Pi and Pi). 
Consider the following proof P': 

Pk 
. .  

r,c,n; +A*,A ,  

r,nT . :A*,A,,  B CT,n; + A * , A ,  
some exchanges p; 

r - A  B 3 C , r , l I Y , r , D ;  -+A*,Al ,A*,A,  
(B  3 C). J r, r,n;, r,n; - . A * , A * , A , , A * , A ~  

Then g(P') = g(P) ,  rank,(P') = rank,(P), rank,(P') = 1, for r contains no 
occurrences of B 3 C and rank(P') < rank(P). Thus the end-sequent of P' is 
provable without a mix by the induction hypothesis, and hence SO is the end- 
sequent of P. 

(ii) A is 3x F ( x ) .  The last part of P looks like this: 

F(4,nl + A  
r+A 3 x F ( x ) , 1 7 1 + A  

(3x F H )  r,n; + A * , A  J 

Let b be a free variable not occurring in P. Then the result of replacing a by b 
throughout the proof ending with F ( a ) ,  17, -+ A is a proof, without amix, ending 
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with F ( b ) ,  I / ,  +.I, since by the eigenvariable condition, a does not occur in 
II, or A (cf. Lemma 2.11). 

Consider the following proof: 

By the induction hypothesis, the end-sequent of this proof can be proved 
without a mix (say by I"). Now consider the proof 

Y' 

T,  F ( b ) ,  II;* +A*,  11 
some exchanges 

where 6 occurs in none of 3x F ( x ) ,  T,Lli ,  A ,  A. This mix can then also be 
eliminated, by the induction hypothesis. 

2.2) rank,(P) = 1 (and rank,(P) > 1). 
This case is proved in the same way as 2.1) above. 

This completes the proof of Lemma 5.4 and hence of the cut-elimination 
theorem. 

I t  should be emphasized that the proof is constructive, i.e., a new proof 
is effectively constructed from the given proof in Lemma 5.2 and again in 
Lemma 5.4, and hence in Theorem 5.1. 

The cut-elimination theorem also holds for LJ. Actually the above proof 
is designed so that it goes through for LJ without essential changes: we only 
have to keep in mind that there can be at  most one formula in each succedent. 
The details are left to the reader; we simply state the theorem. 

THEOREM 5.5 .  The cut-elinlittation theorem holds for LJ 

96. Some consequcnccs of the cut-elimination theorem 

There are numerous applications of the cut-elimination theorem, some of 
which will be listed in this section, others as exercises. In order to facilitate 
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discussion of this valuable, productive and important theorem, we shall first 
define the notion of subformula, which will be used often. 

DEFINITION 6.1. By a subformula of a formula A we mean a formula used 
in building up A .  The set of subformulas of a formula is inductively defined 
as follows, by induction on the number of logical symbols in the formula. 

(1) An atomic formula has exactly one subformula, viz. the formula itself. The 
subformulas of i A  are the subformulas of A and 1 A  itself. The subformulas 
of A A B or A v B or A B are the subformulas of A and of B,  and the formula 
itself. The subformulas of Vx A(%) or 3% A(x )  are the subformulas of any 
formula of the form A(t ) ,  where t is an arbitrary term, and the formula 
itself. 

(2) Two formulas A and B are said to be equivalent in LK if A E B is 
provable in LK. 

(3) We shall say that in a formula A an occurrence of a logical symbol, 
say #, is in the scope of an occurrence of a logical symbol, say 4 ,  if in the 
construction of A (from atomic formulas) the stage where # is the outermost 
logical symbol precedes the stage where 4 is the outermost logical symbol 
(cf. Definition 1.3). Further, a symbol $ is said to  be in the left scope of a 2 
if 2 occurs in the form B 2 C and # occurs in B. 

(4) A formula is called prenex (in prenex form) if no quantifier in it is in the 
scope of a propositional connective. It can easily be seen that any formula is 
equivalent (in LK) to a prenex formula, i.e., for every formula A there is a 
prenex formula B such that A E B is LK-provable. 

One can easily see that in any rule of inference except a cut, the lower sequent 
is no less complicated than the upper sequent(s) ; more precisely, every formula 
occurring in an upper sequent is a subformula of some formula occurring in 
the lower sequent (but not necessarily conversely). Hence a proof without 
a cut contains only subformulas of the formulas occurring in the end-sequent 
(the “subformula property”). So the cut-elimination theorem tells us that 
if a formula is provable in LK (or LJ) at all, it is provable by use of its sub- 
formulas only. (This is what we meant by saying that a theorem in the predicate 
calculus could be proved without detours.) 

From this observation, we can convince ourselves that the empty sequent 
+ is not LK- (or LJ-) provable. This leads us to the consistency proof of 
LK and LJ. 

THEOREM 6.2 (consistency). LK and LJ aye consistent. 
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PROOF. Suppose +were provable in LK (or LJ). Then, by the cut-elimination 
theorem, it would be provable in LK (or LJ) without a cut. But this is impossible, 
by the subformula property of cut-free proofs. 

An examination of the proof of this theorem (including the cut-elimination 
theorem) shows that the consistency of LK (and LJ) was proved by quantifier- 
free induction on the ordinal w2. We shall not, however, go into the details 
of the consistency problem at this stage. 

For convenience, we re-state the subformula property of cut-free proofs 
as a theorem. 

THEOREM 6.3. I n  a cut-free proof in LK (or LJ)  all the formulas which occur in 
i t  are subformulas of the formulas in the em-sequent.  

PROOF. By mathematical induction on the number of inferences in the cut- 
free proof. 

In the rest of this section, we shall list some typical consequences of the 
cut-elimination theorem. Although some of the results are stated for LJ as 
well as LK, we shall give proofs only for L K ;  those for LJ are left to the reader. 

THEOREM 6.4 (1) (Gentzen’s midsequent theorem for LK).  Let S be a sequeict 
which consists of prcpzex formulas on ly  and i s  provable in LK. T h e n  there i s  a 
cut-free proof of S which contains a sequent (called a midsequent),  say  S‘, which 
satisfies the folloaiing : 

1. S’ i s  quaxtifier-free. 
2 .  Edcry inference above S’ i s  either structural or propositional. 
3. Every  inferelzcc bclow S’ i s  either structural or a quantifier inference. 
T h u s  a midsequent splits the proof into an upper  par t ,  which contains the 

propositional inferences, a d  a lower par t ,  which contains the quantifier inferences. 

( 2 )  (The midsequent theorem for LJ without v : left.) T h e  above holds 
reading “LJ without v : left” in place of “LK”. 

PROOF (outline). Combining Proposition 2.14 and the cut-elimination theorem, 
we may assume that there is a cut-free proof of S, say P ,  in which all the 
initial sequents consist of atomic formulas only. Let I be a quantifier inference 
in P.  The number of propositional inferences under I is called the order of I .  
The sum of the orders for all the quantifier inferences in P is called the order 
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of P. (The term “order” is used only temporarily here.) The proof is carried 
out by induction on the order of P. 

Case 1: The order of a proof P is 0. If there is a propositional inference, 
take the lowermost such, and call its lower sequent So. Above this sequent 
there is no quantifier inference. Therefore, if there is a quantiiier in or above 
So, then it is introduced by weakenings. Since the proof is cut-free, the 
weakening formula is a subformula of one of the formulas in the end-sequent. 
Hence no propositional inferences apply to it. We can thus eliminate these 
weakenings and obtain a sequent Si corresponding to So. By adding some 
weakenings under Si (if necessary), we derive S, and Si serves as the mid- 
sequent. 

If there is no propositional inference in P,  then take the uppermost quantifier 
inference. Its upper sequent serves as a midsequent. 

Case 2 :  The order of P is not 0. Then there is a t  least one propositional 
inference which is below a quantifier inference. Moreover, there is a quantifier 
inference I with the following property : the uppermost logical inference 
under I is a propositional inference. Call it I’. We can lower the order by 
interchanging the positions of I and I’. Here we present just one example: 
say I is V : right. 

P :  

where the (*)-part of P contains only structural inferences and A contains 
Vx F ( x )  as a sequent-formula. Transform P into the following proof P‘: 

structural inferences 
I‘ + F ( a ) ,  0, Vx F ( x )  
~- 

A -+A 

It is obvious that the order of P’ is less than that of P. 
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Prior to the next theorem, Craig’s interpolation theorem*, we shall first 
state and prove a lemma which itself can be regarded as an interpolation 
theorem for provable sequents and from which the original form of the 
interpolation theorem follows immediately. We shall present the argument 
for LK only, although everything goes through for L J  as well. 

For technical reasons we introduce the predicate symbol T, with 0 argu- 
ment places, and admit + T as an additional initial sequent. (T stands for 
“true”.) The system which is obtained from L K  thus extended is denoted 
by LK#. 

LEMMA 6.5. Let r + A  be LK-provable, and let (r,, T,) and (Al ,  A,) be 
arbitrary partitions of f and A ,  respectively (including the cases that one or 
moreof rl, r,, A, ,  A ,  areempty) .  Wedenotesuchapartition b y  [{r, : A l } ,  {r,; A,}] 
and call i t  a partition of the sequent r --f A .  Then there exists a formula C of 
L K #  (called a n  interpolant of [{T,; A,}, {r,; A,}] such that: 

(i) rl + A l ,  C and C, r, --f A,  are both LK#-provable; 
(ii) A l l  free variables and individual and predicate constants in C (apart 

from T )  occur both in rl u A l  and r, u A 2 .  

We will first prove the theorem (from this lemma) and then prove the 
lemma. 

THEOREM 6.6 (Craig’s interpolation theorem for L K ) .  (1) Lef A and B be two 
formulas such that A 3 B is LK-provable. If A and B have at least one 
Predicate constant in common, then there exists a formula C, called a n  interpolant 
of A 3 23, such that C con,tains only those individual constants, Predicate con- 
stants and free variables that occur in both A and B, and suclz that A 3 C and 
C 3 B are LK-provable. If A and B contain no predicate constant in common, 
then either A + or +B i s  LK-provable. 

(2) A s  above, with L J  in place of LK. 

PROOF. Assume that A 3 B, and hence A + B, is provable, and A and B 
have at least one predicate constant in common. Then by Lemma 6.5, taking 
A as TI and B as dl (with r, and A ,  empty), there exists a formula C 
satisfying (i) and (ii). So A --f C and C + B are LK#-provable. Let R be a 
predicate constant which is common to A and B and has k argument places. 
Let R’ be Vy,.  . .Vyk R(yl,. . . , y k ) ,  where yl, .  . . , Y k  are new bound variables. 

* A strong general theory on interpolation theorems is established in N. Motohasi: 
Interpolation theorem and characterization theorem, Ann. Japan Assoc. Philos. Sci., 
4 (1972) pp. 15-80, 
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By replacing T by R’ 3 R’, we can transform C into a formula C’ of the original 
language, such that A + C‘ and C‘ -+ B are LK-provable. C’ is then the 
desired interpolant. 

If there is no predicate common to rl U Al and rz u A ,  in the partition 
described in Lemma 6.5, then, by that lemma, there is a C such that rl + A l ,  C 
and C, r, + 4, are provable, and C consists of T and logical symbols only. 
Then it can easily be shown, by induction on the complexity of C, that either 
+ C or C + is provable. Hence either r, - dl or r, --+ A ,  is provable. 
In particular, this applies to A -+ B when A is taken as rl and B as A, .  

This methou 13 aue to Maehara and its significance lies in the fact that 
an interpolant of A 3 B can be constructively formed from a proof of A 2 B .  
Note also that we could state the theorem in the following form: If neither 1 A  
nor B i s  provable, then there i s  a n  interpolant of A 2 B .  

PROOF OF LEMMA 6.5. The lemma is proved by induction on the number of 
inferences k ,  in a cut-free proof of r - A .  At each stage there are several 
cases to consider; we deal with some examples only. 

1) k = 0. r - A  has the form D + D. There are four cases: (1) [ { D ;  D} ,  { ; }], 
(2) [{ ; 1, { D ;  D}I, (3) [{D;  1, { ; 011, and (4) [{ ; D},  { D ;  11. Take for C: 1T 
in (l), T in ( 2 ) ,  D in (3) and 70 in (4). 

2) k > 0 and the last inference is A : right: 

r + A , A  r - A , B  

r + A ,  A A B .  

Suppose the partition is [{Tl; A l ,  A A B } ,  {r,; A 2 } ] .  Consider the induced 
partition of the upper sequents, viz. [{Tl; A , ,  A } ,  {r,; A,}]  and [{r,; A l ,  B } ,  
{r,; A2} ] ,  respectively. By the induction hypotheses applied to the subproofs 
of the upper sequents, there exist interpolants C1 and Cz so that rl - A  1, A ,  Cl ; 
C1, r, - A z ;  I’, ---* A l ,  B ,  C,; and C,, r, + A ,  are all LK#-provable. From 
these sequents, r, - A l ,  A A B ,  C, v Cz and C, v Cz, rz + A ,  can be derived. 
Thus C1 v Cz serves as the required interpolant. 

3) k > 0 and the last inference is V : left: 

~ ( ~ 1 ,  r - + A  
Vx F(x) ,  r + A  * 

Suppose b l ,  . . . , b, are all the free variables (possibly none) which occur in s. 
Suppose the partition is [{Vx F(x) ,  r,; A , } ,  {TZ; A,}] .  Consider the induced 
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partition of the upper sequent and apply the induction hypothesis. So there 
exists an interpolant C(b,, . . . , b,) so that 

F ( s ) ,  r, -+Al ,  C(b,,. . ., b,) and C(b,,.  . ., bn), I', + A 2  

are LH#-provable. Let bil , .  . . , him be all the variables among b,, . . . , b, which 
do not occur in {F(x) ,  rl; A , } .  Then 

Vy,,..Vy,C(b1,..., ~ 1 > . . . > ~ m , . . . J b n ) ,  

where hi,, . . . , him are replaced by the bound variables, serves as the required 
interpolant. 

4) k > 0 and. the last inference is V : right: 

r + A ,  F(a)  
I' + A ,  Vx F ( x )  ' 

where a does not occur in the lower sequent. 
Suppose the partition is [{T,; A , ,  Vx F ( x ) } ,  {r,; de}]. By the induction 

hypothesis there exists an interpolant C so that rl + A l ,  F ( a ) ,  C and 
C, r2 + A 2  are provable. Since C does not contain a, we can derive 

I'l -+A, ,  vx F ( x ) ,  c, 
and hence C serves as the interpolant. 

All other cases are treated similarly. 

EXERCISE 6.7. Let A and B be prenex formulas which have only V and A as 
logical symbols. Assume furthermore that there is at  least one predicate 
constant common to A and B. Suppose A 3 B is provable. 

Show that there exists a formula C such that 
1) A 3 C and C 3 B are provable; 
2) C is a prenex formula; 
3) the only logical symbols in C are V and A ; 
4) the predicate constants in C are common to A and B. 

[Hint: Apply the cut-elimination theorem and the midsequent theorem.] 

DEFINITION 6.8. (1) A semi-term is an expression like a term, except that 
bound variables are (also) allowed in its construction. (The precise definition 
is left to the reader.) Let t be a term and s a semi-term. .We call s a sub-semi- 
term of t if 
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(i) s contains a bound variable (that is, s is not a term), 
(ii) s is not a bound variable itself, 

(iii) some subterm of t is obtained from s by replacing all the bound variables 
in s by appropriate terms. 

(2) A semi-formula is an expression like a formula, except that bound 
variables are (also) allowed to occur free in it (i.e., not in the scope of a 
quantifier). 

THEOREM 6.9. Let  t be a term and S a provable sequent satisfying: 

(*) There i s  no  sub-semi-term of t in S .  

T h e n  the sequent which i s  obtained from S by  replacing all the occurrences o f  t in 
S b y  a free variable i s  also provable. 

PROOF (outline). Consider a cut-free regular proof of S ,  say P. From the 
observation that if (*) holds for the lower sequent of an inference in P then 
it holds for the upper sequent(s), the theorem follows easily by mathematical 
induction on the number of inferences in P. 

DEFINITION 6.10. Let R,, . . . , R,, R be predicate constants. Let A (R, R1,. . . , R,) 
be a sentence in which all occurrences of R, R1,. . . , R, are indicated. Let R' 
be a predicate constant with the same number of argument-places as R. Let 
B be Vxl . . . Vx, (R(xl, . . . , x,) z R'(xl,. . . , x, ) ) ,  where the string of quantifiers 
isempty if k = 0, andlet C be A(R, R,,. . ., R,) A A(R', R,,. . ., R,). We say 
that A(R, R1,. . . , R,) defines (in LK) R implicitly in terms of R,,. , . , R, if 
C 3 B is (LK-)provable and we say that A(R, R1,. . . , R,) defines (in LK) R 
explicitlyintermsofR,,. . .,R,andtheindividualconstantsinA(R,R1,. . . ,R,) 
if there exists a formula F(a , ,  . . . , a,) containing only the predicate constants 
R,, . . . , R, and the individual constants in A(R,  Rl , .  . . , R,) such that 

A (R, R1,. . . , R,) ---L V X ~ .  . .VX ,  ( R ( x ~ ,  . . . , ~ h )  F ( x ~ ,  . . . , xk) )  

is LK-provable. 

PROPOSITION 6.1 1 (Beth's definability theorem for LK). If a Predicate constant 
R i s  defined implicit ly in terms of R1,. . ., R, b y  A(R,  R1,. . ., R,), then R can 
be defined explicitly in terms of R,,. . ,, R, and the individual constants in 
A(R, RI , .  . . t Rm). 
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PROOF (outline). Let c l , .  . ., c,  be free variables not occurring in A .  Then 

A ( R ,  Ri, .  . . , Rm),  A(R’, Ri, .  . . , R,) + R(c , ,  . . . , c,) E R’(c1,.  . . , c,) 

and hence also 

A (R, R1,. . . , R,) A R(c1 , .  . . , ck)  --t A (R’, R,,. . . , R,) 3 R’(c1,. . . , c,) 

are provable. Now apply Craig’s theorem (i.e., part (1) of Theorem 6.6) to 
the latter sequent. 

We now present a version of Robinson’s theorem (for LK).  

PROPOSITION 6.12 (Robinson). A s s u m e  that the language contains n o  funct ion 
constants. Le t  dl  and d2 be two consistent ax iom systems. Suppose furthermore 
that, for a n y  sentence A zihich is dependent o n  dl  and d2, i t  i s  not the case that 
d ,  4 A and d2  + -IA (or dl -+ 1 A  and ”I, + A )  are both provable. T h e n  
d l  U “I2 i s  consistent. (See Def ini t ion 4.1 for the technical terms.)  

PROOF (outline). Suppose dl U d, is not consistent. Then there are axiom 
sequences Ti and r, from d, and d, respectively such that Ti, T2 + is 
provable. Since d ,  and a?, are each consistent, neither rl nor r, is empty. 
Apply Lemma 6.5 to  the partition [{Tl; ), (T2; )I. 

Let LK’ and LJ’ denote the quantifier-free parts of LK and LJ, respectively, 
viz. the formulations (in tree form) of the classical and intuitionistic proposi- 
tional calculus, respectively. 

THEOREM 6.13. There exist decision procedures for LK‘ and LJ‘. 

PROOF (outline). The following decision procedure was given by Gentzen. 
A sequent of LK’ (or LJ’) is said to be reduced if in the antecedent the same 
formula does not occur at  more than three places as sequent-formulas, and 
likewise in the succedent. A sequent S’ is called a reduct of a sequent S if S’ 
is reduced and is obtained from S by deleting some occurrences of formulas. 
Now, given a sequent S of LK‘ (or LJ‘), let S’ be any reduct of S. We note 
the following. 

1) S is provable or unprovable according as S‘ is provable or unprovable. 
2) The number of all reduced sequents which contain only subformulas 

of the formulas in S is finite. 
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Consider the finite system of sequents as in 2), say 9. Collect all initial 
sequents in the systems. Call this set Yo. Then examine 9’ - Yo to  see if 
there is a sequent which can be the lower sequent of an inference whose 
upper sequent(s) is (are) one (two) sequent(s) from Yo. Call the set of all 
sequents which satisfy this condition 9,. Now see if there is a sequent in 
(9 - Yo) - Y1 which can be the lower sequent of an inference whose upper 
sequent(s) is (are) one (two) of the sequent(s) in Yo IJ 9,. Continue this 
process until either the sequent S‘ itself is determined as provable, or the 
process does not give any new sequent as provable. One of the two must 
happen. If the former is the case, then S is provable. Otherwise S is unprovable. 
(Note that the whole argument is finitary.) 

THEOREM 6.14 (1) (Harrop). Let r be a finite sequence of formulas such that 
in each formula of T every occurrence of v and 3 i s  either in the scope of a 7 or 
in the left sco+e of a 2 (cf. Definition 6.1, part 3)).  T h i s  condition will be referred 
to as (*) in this theorem. T h e n  

1) r + A  v B i s  LJ-provable if and only if r --t A or r -, B i s  LJ-provable, 
2 )  T + 3x F(x)  is La-provable if and only  if for some term s, r + F(s)  i s  

(2) The following sequents (which are ILK-provable) are not (in general) LJ-  
L J-provable. 

@-ova ble. 
i(iA A 1 B )  + A V B ;  i t l X  i F ( x )  -+ 3x F ( x )  ; 

A > B  + T A v B ;  i V x F ( x )  - + 3 x i F ( x ) ;  

i ( A  A B )  + i A  v i B .  

PROOF. (1) part 1):  The “if” part is trivial. For the “only if” part, consider 
a cut-free proof of r - A  v B. The proof is carried out by induction on the 
number of inferences below all the inferences for v and 3 in the given proof. 
If the last inference is V : right, there is nothing to prove. Notice that the last 
inference cannot be v ,  I, or 3 : left. 

Case 1 : The last inference is A : left: 

I t  is obvious that C satisfies the condition (*). Thus the induction hypothesis 
applies to the upper sequent: hence either C, I’ + A or C, r -, B is provable. 
In either case, the end-sequent can be derived in LJ. 
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Case 2 : The last inference is 3 : left : 

r - C  D , r - + A v B  
C > r r  + A  v B '  

It is obvious that D satisfies the condition (*) ; thus, by theinduction hypothesis 
applied to  the right upper sequent, D ,  r - + A  or D, r + B is provable. In 
either case the end-sequent can be derived. 

Other cases are treated likewise. The proofs of (1) part 2), and (2 ) ,  are left 
to the reader. 

$7. The predicate calculus with equality 

DEFINITION 7.1.  The predicate calculus with equality (denoted LK,) can be 
obtained from LK by specifying a predicate constant of two argument places 
( =  : read equals) and adding the following sequents as additional initial 
sequents (a  = b denoting = (a ,  b ) ) :  

-+s = s :  

s1 = t l , .  . . )  s ,  = t ,  + f(s1,. . .) s,) = f ( t l , .  . .) t,) 

for every function constant f of n argument-places (n = 1 , 2 , .  . .); 

s1 = t i , .  . . )  s, = t,, R(s,,. . . )  s,) + R(t,,. . . )  t,) 

foreverypredicateconstant R (including =)of nargument-places (n = 1 , 2 , .  . .); 
where s, sl , .  . ., s,, t l , .  . ., t ,  are arbitrary terms. 

Each such sequent may be called an equality axiom of LK,. 

PROPOSITION 7.2. Let A ( a l ,  . . . , a,) be a n  arbitrary formula. Then  

~1 = t i , .  . . , S ,  = t,, A(s1 , .  . . , s,) -+ A(t1 , .  . ., t,) 

i s  provable in LK,, for any  terms si, ti (1 < i < n).  Fzcrthermore, s = t + t = s 
and s1 = sp, s2 = sg s1 = sg are also provable. 

DEFINITION 7.3. Let re be the set (axiom system) consisting of the following 
sentences : 

V X ( X  = x ) ,  
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for every function constant f with n argument-places (n = 1 , 2 , .  . .), 

VX1. . .VX,  V y l .  . .Vy, [Xi = y l  A .  . . A X, = Y T z  A R(X1,. . . , X,) 3 R ( y 1 , .  . . , y,)] 

for every predicate constant R of n argument-places (n = 1, 2 , .  . .) .  Each 
such sentence is called an equality axiom. 

PROPOSITION 7.4. A sequent r + A  i s  provable in LK, if and only if r, re + A  
i s  provable in LK. 

PROOF. Only if: It is easy to  see that all initial sequents of LK, are provable 
from re. Therefore the proposition is proved by mathematical induction on 
the number of inferences in a proof of the sequent I' - + A .  

If: All formulas of re are LK,-provable. 

DEFINITION 7.5. If the cut formula of a cut in LK, is of the form s = t ,  then 
the cut is called inessential. It is called essential otherwise. 

THEOREM 7.6 (the cut-elimination theorem for the predicate calculus with 
equality, LK,). I f  a sequent of LK, i s  LK,-provable, then it i s  LK,-provable 
without an essential cut. 

PROOF. The theorem is proved by removing essential cuts (mixes as a matter 
of fact), following the method used for Theorem 5.1. 

If the rank is 2 ,  S2 is an equality axiom and the cut formula is not of the 
form s = t ,  then the cut formula is of the form P(t , , .  . ., t,). If S, is also an 
equality axiom, then it has the form 

s1 = t l , .  . ., s, = t,, P(s,,. . . )  s,) + P(t1, .  . . )  in). 

From this and S2,  i.e., 

t ,  = Y 1 , .  . . , t, = Y, ,  P(t1, .  . . , t,) - P(r1 , .  . ., Y,) ,  

we obtain by a mix 

SI = t l , .  . . )  s, = t,, t ,  = Y 1 , .  . ., t ,  = Y,, P(s, , .  . ., s,) + P(Y1,. . ', y?J. 

This may be replaced by 
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S] = Y 1 ’ .  . ., s, = Y,, P(S1,. . ., s,) + P(r,,. . . )  Y , ) ;  

and then repeated cuts of si = Y ,  to produce the same end-sequent. All cuts 
(or mixes) introduced here are inessential, 

If P(t,,. . ., t,) in Sz is a weakening formula, then the mix inference is: 

s1 = t,, . . . , s, = t,, P(s,,. . . , s,) - P(t1, . . . , t,) P(t,, . . . , in), 17 + A  
~~ .~ 

s1 = t ] ,  . . . , s, = t, P ( S 1 ,  . . . , s,), 17 -A .  

Transform this into : 
I 7 + A  

end-sequent . 
_____ ______ 

The rest of the argument in Theorem 5.1 goes through. 

PROBLEM 7 .7 .  A sequent of the form 

s, = t ,  ) . . . )  s, = t, --,s = t (72 = 0 , 1 , 2  , . . .  1 

is said to  be simple if it is obtained from sequents of the following four forms 
by applications of exchanges, contractions, cuts, and weakening left. 

1) - - f s = s .  

2 )  s = t + t = s .  
3) s1 = sz, s2 = s3 + s, = s3. 

4) s1 = t l , .  . ., s ,  = t, + f ( s , , .  . ., s,) = f ( t 1 , .  . ., t,). 
Prove that if s1 = s ~ , .  . . , s, = s, + s = t is simple, then s = t is of the form 
s = s. As a special case, if --f s = t is simple, then s = t is of the form s = s. 

Let LHd be the system which is obtained from LK by adding the following 
sequents as initial sequents: 

a) simple sequents, 
b) sequents of the form 

s1 = t1,. . . , s ,  = t,, R(s;,. . ., s:) --f I?&,. . . )  t i ) ,  

, I  

where s1 = t,, . . . , s, = t ,  + s, = t ,  is simple for each i (i = 1,. . . , n) .  First 
prove that the initial sequents of LKd are closed under cuts and that if 
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is an initial sequent of LKd (where R is not =), then it is of the form D --+ D. 
Finally, prove that the cut-elimination theorem (without the exception of 
inessential cuts) holds for LK:. 

PROBLEM 7.8. Show that if a sequent S without the = symbol is LK,-provable, 
then it is provable in LK (without =). 

PROBLEM 7.9. Prove that Theorems 6.2-6.4, 6.6, 6.9, and 6.14, Propositions 
6.11 and 6.12 and Exercise 6.7 hold for LH, when they are modified in the 
following way : References to LK- (or LJ-) provability are replaced throughout 
by references to LK,-provability, and further, when the statement demands 
that a formula can contain only certain constants, = can be added as an 
exception. 

The general technique of proof is to change a condition that a sequent 
r --f d be provable in LK to  one that a sequent I7, r + d be provable in LK, 
where I7 is a set of equality axioms, and in this way to reduce the problem 
to LK. 

98. The completeness theorem 

Although we do not intend to develop model theory in this book, we shall 
outline a proof of the completeness theorem for LK. The completeness theorem 
for the first order predicate calculus was first proved by Godel. Here we follow 
Schiitte’s method, which has a close relationship to the cut-elimination 
theorem. In fact the cut-elimination theorem is a corollary of the completeness 
theorem as formulated below. (The importance of the proof of cut-elimination 
in $5 lies in its constructive nature.) 

DEFINITION 8.1. (1) Let L be a language as described in $1. By a structwe for 
L (an L-structure) we mean a pair ( D ,  $), where D is a non-empty set and 
(b is a map from the constants of L such that 

(i) if R is an individual constant, then $R is an element of D ;  
(ii) if f is a function constant of n arguments, then $f is a mapping from 

(iii) if R is a predicate constant of n arguments, then +R is a subset of Dn. 
Dn into D ;  
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(2) An interpretation of L is a structure ( D ,  4) together with a mapping $,, 
from variables into D. We may denote an interpretation ( ( D ,  +), +,,) simply 
by 3. +,, is called an assignment from D. 

(3) We say that an interpretation 3 = ((C, +), +,,) satisfies a formula A 
if this follows from the following inductive definition. In fact we shall define 
the notion of “satisfying” for all semi-formulas (cf. Definition 6.8). 

0) Firstly, we define +(t),  for every semi-term t ,  inductively as follows. We 
define +(a) = +,,(a) and +(x) = &(x)  for all free variables a and bound 
variables x. Next, if f is a function constant and t is a semi-term for which $t is 
already defined, then + ( / ( t ) )  is defined to be (+f)(+t). 

1) If R is a predicate constant of n arguments and t,, . . . , t, are semi-terms, 
then 3 satisfies R(t , ,  . . . , t,) if and only if (+tl,. . . , +t,) E +R. 

2) 3 satisfies 1 A  if and only if it does not satisfy A ; 3 satisfies A A B if and 
only if it satisfies both A and B ;  3 satisfies A v 3 if and only if it satisfies 
either A or B ;  3 satisfies A 3 B if and only if either it does not satisfy A or it 
satisfies B. 

3) 3 satisfies Vx B if and only if for every 4; such that do and 4; agree, 
except possibly on x ,  ( ( D ,  +), 4;) satisfies B ;  3 satisfies 3% B if and only if 
for some +; such that +,, and +; agree, except possibly on x, ( ( D ,  +), #I;) 
satisfies B. 

If 3 = ((D, +), do) satisfies a formula A ,  we say that A is satisfied in 
(D, 4) by +,,, or simply il is satisfied by 3. 

(4) A formula is called valid in ( D ,  d) if and only if for every +,,, ( ( D ,  +), +,,) 
satisfies that formula. I t  is called valid if it is valid in every structure. 

(5) A sequent r - A  is satisfied in ( D ,  4) by do (or J = ( ( D ,  +), +,,) 
satisfies r -,A) if either some formula in r is not satisfied by 3, or some 
formula in A is satisfied by 3. A sequent is valid if it is satisfied in every 
interpretation. 

(6) A structure may also be denoted as 

(D; $ko, +kl , .  . . , +/o> +/I, .  . . , # & I ,  . . ). 

A structure is called a model of an axiom system r if every sentence of is 
valid in it. I t  is called a counter-model of r if there is a sentence of r which 
is not valid in it. 

THEOREM 8.2 (completeness and soundness). A formula i s  provable in LH i f  
and only if it i s  valid. 
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NOTES. (1) The “if” part of the theorem is the statement of the completeness 
of LK. In general, a system is said to be complete if and only if every valid 
formula is provable in the system (for a suitable definition of validity). 

Soundness means: all provable sequents are valid, i.e., the “only if” part 
of the theorem. Soundness ensures consistency. 

(2) The theorem connects proof theory with semantics, where semantics 
means, very roughly, the study of the interpretation of formulas in a structure 
(of a language), and hence of their truth or falsity. 

PROOF OF THEOREM 8.2. The “only if” part is easily proved by induction 
on the number of inferences in a proof of the formula. We prove the “if” part 
in the following generalized form : 

LEMMA 8.3. Let S be a sequent. T h e n  either there is a cut-free proof of S ,  or there 
i s  an interpretation which does not satisfy S (and hence S i s  not valid).  

PROOF. We will define, for each sequent S ,  a (possibly infinite) tree, called 
the reduction tree for S ,  from which we can obtain either a cut-free proof of 
S or an interpretation not satisfying S.  (This method is due to Schutte.) This 
reduction tree for S contains a sequent a t  each node. I t  is constructed in 
stages as follows. 

Stage 0 :  Write S at the bottom of the tree. 
Stage k ( k  > 0 ) :  This is defined by cases: 
Case I. Every topmost sequent has a formula common to its antecedent 

Case 11. Not Case I. Then this stage is defined according as 
and succedent. Then stop. 

k e 0, 1, 2 , .  . ., 11, 12 (mod 13). 

k 3 0 and k = 1 concern the symbol 1; k EE 2 and k f 3 concern A ;  k = 4 
and k = 5 concern v ; k 8 and k = 9 concern V; 
and k = 10 and k = 11 concern 3. 

Since the formation of reduction trees is a common technique and will be 
used several times in this text, we shall describe these stages of the so-called 
reduction process in detail. In order to make the discussion simpler, let us 
assume that there are no individual or function constants. 

All the free variables which occur in any sequent which has been obtained 
a t  or before stage k are said to be “available a t  stage k”. In case there is none, 
pick any free variable and say that it is available. 

6 and k 7 concern 3; k 
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0)  k 0. Let I7 + A  be any topmost sequent of the tree which has been 
defined by stage k - 1 .  Let i A l , .  . . , i A ,  be all the formulas in L' whose 
outermost logical symbol is 1, and to which no reduction has been applied 
in previous stages. Then write down 

17 - A ,  A , , .  . . )  A ,  

aboven -A. Wesay that a 1 : left reduction has been applied to i A , , .  . . ,-An. 
1)  k = 1.  Let l A , , .  . . , l A ,  be all the formulas in A whose outermost 

logical symbol is 1 and to which no reduction has been applied so far. Then 
write down 

A l ,  . . . ,  An,17+A 

above 174A.  We say that a i : right reduction has been applied to 

2 )  k f 2 .  Let A ,  A B l , .  . ., A ,  A 8, be all the formulas in IT whose outer- 
most logical symbol is A and to which no reduction has been applied yet. Then 
write down 

lAl,. . .,lA,. 

A , ,  B1, A,, Bz,. . .! An, B n j n  + A  

abovel7 + A .  We say that an A : left reduction has been applied to 

A B, , .  . . ,  A ,  A B,. 

3) k z 3. Let A ,  A B,, A ,  A B,, . . . , A ,  A B,  be all the formulas in A whose 
outermost logical symbol is A and to  which no reduction has been applied yet. 
Then write down all sequents of the form 

L7 -Ail ,  c,,. . . )  c,, 
where C, is either A ,  or B,, above IT ---f A. Take all possible combinations of 
such: so there are 2" such sequents above II + A .  We say that an A : right 
reduction has been applied to A ,  A B,,. . ., A ,  A B,. 

4) k E 4. v : left reduction. This is defined in a manner symmetric to 3). 
5) k EE 5. v : right reduction. This is defined in a manner symmetric to  2 ) .  
6) k G 6. Let A ,  3 B,, . . . , A ,  3 B,  be all the formulas in I7 whose outer- 

most logical symbol is 3 and to which no reduction has been applied yet. 
Then write down the following sequents above 17 + A :  

B,, Bz, . . . , B,, IT -+A 
and 
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IT+A,Ai  for 1 < i < n .  

We say that an 3 : left reduction has been applied to A ,  ZI B,,. . . , A ,  3 B,. 
7) k =_ 7. Let A ,  3 B,, . . . , A ,  3 B, be all the formulas in A whose outer- 

most logical symbol is 3 and to which no reduction has been applied yet. 
Then write down 

A , ,  AZ, .  . . I  A n , n  h - i l ,  B,, Bz,. . ., Bn 

above 12- ---r A. We say that an 3 : right reduction has been applied to 

A 1 3 B l ,  . . . ,  A n 3 B n .  

8) k 8. Let Vx, Al(xl), . . ., Vx, A,(%,) be all the formulas in 17 whose 
outermost logical symbol is V. Let u, be the first variable available at  this 
stage which has not been used for a reduction of Vx, A,(%) for 1 < i < n. 
Then write down 

A~(a,),...,An(Un),fl +A.  

above 17 + A .  We say that a V : left reduction has been applied to 

vxl A , ( % ) , .  . .) v x n  An(%,). 

9) k E 0. Let Vx, A , ( % , ) , .  . ., Vx, A,(%,) be all the formulas in A whose 
outermost logical symbol is V and to which no reduction has been applied 
so far. Let a,, . . . , a, be the first n free variables (in the list of variables) which 
are not available at  this stage. Then write down 

17 +Ail, A l ( a l ) % .  . . p  An(an)  

above 17 +A.  We say that a ‘d : right reduction has been applied to 
Vx, Al(xl), .  . . , Vx, A,(x,). Notice that a,,. . ., a,  are new available free 
variables. 

10) k f 10. 3 : left reduction. This is defined in a manner symmetric to 9). 
11) k 11. 3 : right reduction. This is defined in a manner symmetric to 8). 
12) If 17 and A have any formula in common, write nothing above 17 + A 

(so this remains a topmost sequent). If 17 and A have no formula in common, 
write the same sequent 17 + A  again above it. 

So the collection of those sequents which are obtained by the above reduc- 
tion process, together with the partial order obtained by this process, is the 
reduction tree (for S). I t  is denoted by T ( S ) .  We will construct “reduction 
trees” like this again. 
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Now a (finite or infinite) sequence So, S,, S2, .  . . of sequents in T ( S )  is 
called a branch if (i) So = S ;  (ii) Si+l stands immediately above Si; (3) if the 
sequence is finite, say S,, . . . , S,, then S, has the form 17 --+A, wherenand 
A have a formula in common. 

Now, given a sequent S ,  let T be the reduction tree T ( S ) .  If each branch 
of T ends with a sequent whose antecedent and succedent contain a formula 
in common, then it is a routine task to write a proof without a cut ending with 
S by suitably modifying T .  Otherwise there is an infinite branch. Consider 
such a branch, consisting of sequents S = So, S,, . . . , S,, . . . . 

Let Si be Ti -+Ai. Let u r be the set of all formulas occurring in Ti for 
some i, and let u A be the set of all formulas occurring in A j  for some i. 
We shall define an interpretation in which every formula in u r holds and 
no formula in u A holds. Thus S does not hold in it. 

First notice that from the way the branch was chosen, u r a n d  u A have 
no atomic formula in common. Let D be the set of all the free variables. We 
consider the interpretation 3 = ((D, +), +o), where + and +o are defined as 
follows: +,,(a) = a for all free variables a, +o(x) is defined arbitrarily for all 
bound variables x. For an n-ary predicate constant R, +R is any subset of 
Dn such that : if R(al,.  . . , a,) E u r, then (al,.  . . , a,) E +R, and if R(a,, . . . , a,) E 
u A ,  then ( a l , .  . ., a,) $ +R. 

We claim that this interpretation 3 has the required property: it satisfies 
every formula in u r, but no formula in u A .  We prove this by induction on 
the number of logical symbols in the formula A .  We consider here only the 
case where A is of the form V x  F ( x )  and assume the induction hypothesis: 

Subcase 1.  A is in u r. Let i be the least number such that A is in Ti. 
Then A is in rj for all j > i. I t  is sufficient to show that all substitution 
instances A ( a ) ,  for a E D, are satisfied by 3, i.e., allthesesubstitutioninstawes 
are in u r. But this is evident from the way we construct the tree. 

Subcase 2 .  A is in u A .  Consider the step a t  which A was used to define 
an upper sequent from Ti -+ A i  (or Ti + A t ,  A ,  A:) .  I t  looks like this: 

ri+l -A:+,,  w, A;+, -. 
ri - A ; ,  A , A ;  

Then by the induction hypothesis, F(a)  is not satisfied by 3, so A is not 
satisfied by 3 either. This completes the proof. 

PROBLEM 8.4 (Scott). (1) Consider a language, denoted by L(R1,. . . , Rk), 
which contains only finitely many predicate constants R1,. . . , R, and no 
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individual or function constants. If I E (1,. . . , k } ,  we define an I-formula 
tobe aformulacontainingonlypredicates withindicesin I. Let F E: P((1,. . . , k } )  
(the power set of ( 1 , .  . . , k ) )  and F # 0. An I?-formula is defined to  be a 
propositional combination of I-formulas for I in F, viz. a formula consisting 
of I-formulas, for various I’s in F, joined together by v and A .  If ‘2I = 

( A ,  l?,, . . . , a,) is a structure for our language and I = {il,. . . , im>, let 2tI be 
the structure obtained from ‘u by restricting 2t to the predicates with indices 
i n I :  thus‘uIis(A,Ri,,. . .,aim). If%andBaretwostructuresofL(R,,. . . ,Rk) ,  
they are said to be F-isomorphic if 91, and B, are isomorphic for each I in F. 
Prove the following interpolation theorem concerning F-isomorphic models : 

Let 9 be a theory (axiom system) in L(R,,. . ., Rk) and A and B two 
sentences in L(R,, . . . , R,). Suppose that whenever 2t and 8 are F-isomorphic 
models of F and ‘u satisfies A then B satisfies B. Then there is an F-sentence 
C such that 9, A + C and 9, C + B are provable in LK. [Hint  (Africk’s 
method): We first introduce a new predicate constant S, for each Ri in the 
language. Each Si has the same number of arguments as Ri. If A is an 
expression in the language L(R,, . . . , R,), then A* denotes the expression 
obtained from A by replacing all occurrences of R, by Si for each i = 1,. . . , k . ]  

(2) Corresponding to  each I in F we adjoin to  the language function 
constants f ,  and g,. f ,  will represent an isomorphism between ‘u, and b, when 
‘u and B are F-isomorphic, and g, will represent the mapping inverse to f,. 

(3) Consider the language L‘ = L(R1,. . ., R,, S,,. . ., s k ,  f r ,  g,: I E I;), in 
which the notion of “F-isomorphism between two structures” can be syntact- 
ically expressed. Let r be such a sentence. 
(4) With the notion of F-isomorphism formulated syntactically, the problem 

now boils down to proving the following lemma. 

LEMMA 8.5. Let @,, !Pl be finite (possibly empty)  seqNences of formulas in 
L(R,,. . . , Rk, f , ,  g,: I E F) such that no function constant contains a bound 
variable. 

Let@:,!P: befinite(possiblyempty)sequencesofformulasinL(S,,. . . , S k , f r , g I :  
I E F) such that no function constant contains a bound variable. 

Let Qj3 be a finite (possibly empty)  sequence of subformulas of formulas in 
2 F. Suppose @,, @)2*, O3 --f !Ply: i s  provable. T h e n  there exists a n  F-formula 
2 in the language L(R,,. . ., R,, f, ,  g,: I E F) and a n  F-formula L’* an the 
language L(S1,. . . , S,, f,, g,: I E F) such that -. !PI, 2 and Z*, @: -+ !P: 
are provable, and further: 

1) No funct ion constant of 2 or Z* contains a bound variable. 



CH. 1, $81 l'flE COMPLETENESS THEOREM 49 

PROOF. The proof is by mathematical induction on the number of inferences 
in a cut-free proof of the given sequent. In niost cascs, tlie construction of C 
is routine; for 2 : left and those inferences which introduce quantifiers, we 
need the following result : 

SUBLEMMA 8.6. Let Cl arid 1; be F-formzilas szich tlznt ---L y,, zl aiid 
L'?, @: ---f Y: aye (LK-) P Y O L Y Z ~ I ~  arid Iznving #roperties I )  niiti 3)  of Lmirna 
8.5. Sufifiose that the on ly  tcriii cotitaiiiing t h e  fvee ilariable 61 zi~1iich occuvs in 
@,, @:, YJ, OY UJ$ i s  a i tself. T h e n  thcve exist F-foriiizdns Z' nizii C* such that 
!Dl 4 UJl, C and C*, @: + !J': a y e  fivozable, aizd with fivo#cVties 1 )  and 3) of 
Lewzvaa 8.5, and such tliat a does iiot o c c w  iri tx'thcv C OY P, m i d  all fvce vaviables 
of Z' aiid Z* a y e  coi?taiiied i7a z', nmi 2';. 

Such a 2 (resp. 2'") can be constructed from El (resp. L:) by reducing the 
number of occurrences ol u step by step. T l k  can he d ~ i i c  1 ~ ) .  noting the 
following facts. 

(i) iVe may assunie that if a term t ( t*) occurs in ,Yl (2:) in  tlie context of 
(b) ((a))  in part 3) of Lemma 8.5 and contains a, then t (t*) is iiot of the form 

VIyl A i , ,  wlicre A i l  is an I j -  
formula. For a fixed j ,  a term with an occurrence of a, which is not contained 
in some other term, occurs in .4,, eitlier in the context of (a) for all i or in the 
context of (b) for all i. Similarly with t". 

(iii) Take a term t which contains a and is not contained in some other 
term, and is the most complicated such term. If t occurs in A, , ,  say Ai j ( t ) ,  
then we can replace A Z j  in dZ1 by Vx Aij(x) .  Likewise, we can change Z? in 
this way. 

& ( f / ( t ' ) )  (f,(g,(t') 1) .  
(ii) Cl can be expressed in the form 

Continue this process until tliere is no further occurrence of a.  
With the help of Sublernma 8.6, the problem of excessive free variables in  

constructing an interpolant from the induction hypothesis (in the cases of 
2, V and 3) is easily solved. 
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PROBLEM 8.7 (Feferman). Let J be a non-empty set. Each element of J is 
called a sort. A many-sorted language for the set of sorts J ,  say L(J), consists 
of the following. 

1) Individual constants: k,, k l ,  , hi,. . . , where to each k ,  is assigned one 
sort. 

2 )  Predicate constants: X,, Rl , .  . ., Rt, .  . ., where to  each Ri is assigned 
a number ?z (2 0) (the number of arguments) and sorts il,. . ., in. M’e say 
that (12; j ] , .  . ., I?,) is assigned to R,. 

3) Function constants: f o ,  f l , .  . ., f c , .  . ., where to each f i  is assigned a 
number gz (3 I )  (the number of arguments) and sorts il,. . ., in, i. We say 
that (12 ;  jl,. . ., I,, j) is assigned to f i .  
4) Free variables of sort i for each 1 in J :  a& a;, . . . , a:,. . . . 
5 )  Bound variables of sort i for each j in J :  xi, x!, . . . , x!, . . . . 
6) Logical symbols: i, A ,  v, 3, V, 3. 
Terms of sort i for each are defined as follows. Individual constants and 

free variables of sort j are terms of sort j ;  if f is a function constant with 
, in, I )  assigned to it and t l , .  . . ,  t, are terms of sort i l , .  . . , in, 
ely, then f ( t , ,  . . ., t,) is a term of sort 1. 

If R is a predicate constant with (n ;  j l , .  . . , in) assigned to it and t,, 
are terms of sort j l , .  . ., in, respectively, then R(tl ,  . . ., t,) is an atomic 
formula. If E’(n3) is a formula and ?cj does not occur in F(a j ) ,  then Vxj F ( x j )  
and 3x1 F ( x j )  are formulas; the other steps in building formulas of L(J) are 
as usual. The sequents of L(J) are defined as usual. 

The rules of inference are those of LK, except that  in the rules for V and 3, 
terms and free variables must be replaced by bound variables of the same sort. 

Prove the following: 
(1) The cut-elimination theorem holds for the system just defined. 
Next, define Sort, Ex, Un, Fr, Cn and Pr as follows. Sort(A) is the set of 

i in J such that a symbol of sort i occurs in A ; Ex(A) and Un(A) are the 
sets of sorts of bound variables which occur in some essentially existential, 
respectively universal quantifier in A .  (An occurrence of 3, say $, is said to 
be essentially existential or universal according to the following definition. 
Count the number of i and 2 in A such that # is either in the scope of 1, or 
in the left scope of >. If this number is even, then # is essentially existential 
in A ,  while if it  is odd then # i s  essentially universal. Likewise, we define, 
dually, an occurrence of V to be essentially existential or universal.) Fr(A) is 
the set of free variables in A ; Cn(A) is the set of individual constants in A ; 
Pr(A) is the set of predicate constants in A .  
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( 2 )  Suppose A 3 B is provable in the above system and at least one of 
Sort(A) n Ex(B) and Sort(B) n Cn(A) is not empty. ?'hen there is a formula 
C such tliat o ( C )  E o(A) n o(B),  where (T stands for Fr, Cn, Pr or Sort, and 
such that Un(C) c Gn(A) and Ex(C) c Ex(B). [Hzpzt: Re-state the above 
theorem for sequents and apply ( l ) ,  viz. the cut-elimination theorem.] 

PROBLEM 8.8 (Feferman: an extension of a theorem of Los and Tarski). \Ye 
can define a structure for a many-sorted language (cf. Problem 8.7) as follows. 
Let L(J) be a many-sol-tcd language. A structure for L(J) is a pair ( D ,  +), 
where D is a set of non-empty sets { D j ;  i E I }  and 4 is a map from the con- 
stants of L(J) into appropriate objects. We call D j  the doinaiit of the structure 
of sort i. We leave the listing of tlic conditions on 4 to the reader; we only 
have to keep in mind that an individual constant of sort j is a member of 
D j .  Let A = ( D ,  +) and A'' = (D ' ,  +') be two structures for L(J).  Let 
J o  c J .  We say that d' is an extension J ,  of ,I and write ut$? s J o  A?' if 

(i) for each i in J ,  D ,  c D;, 
(ii) for every i in J ~ ,  D;. = D?, 

(iii) for each individual constant k ,  +'k = +k, 
(iv) for each predicate constant R with ( 9 2 ;  j l , .  . ., in) assigned to it, 

+R = +'R f~ (Dj ,  x . . . x Dj,), 

(v) for each function constant j with ( i z ;  jl,. . . , I,, j) assigned to it and 
(al , .  . ., d,) E Djl x . . . x D,,, 

(+ ' f ) (d l j .  . dn) = (+j ) (a l>.  . . >  dn). 

A formula is said to be existeiztialJo if Un(A) C Jo .  
Suppose given J o  _C J and a formula of L ( J ) ,  say A ,  whose free variables 

are (only) b l , .  . ., b,, of sorts j , , .  . ., in, respectively. Show that the following 
two statements are equivalent. 

(1)  For arbitrary structures d and A?', where A _C J o  A', and arbitrary 
maps +o and +; from variables into the domains (of the correct sorts) of d 
and A' respectively which agree on b l , .  . ., b,, if (A, do) satisfies A then 
so does (JZ', 4;). 

B is provable, 
and Fr(B) G Fr(A). [Hint (Feferman): Assume ( 2 ) .  I t  can be easily shown, 
by induction on the complexity of B, that (1) holds for B, from which follows 
(1) for A .  In order to prove the converse, proceed as follows. 

(2) There is a formula B which is existential,, for which A 
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We assume (for simplicity) that the language has no individual and function 
constants. The major task is to write down the conditions in (1) syntactically, 
by considering an extended language in which we can express tlie relation of 
extensionJo between two structures. 

Let &?‘ and d‘ be tTvo structures of the form 

where J and J‘ are disjoint and in one-to-one correspondence. 1I;e denote 
corresponding elements in J and J‘ by j and j ’ ,  respectively. Let J +  be J U J‘. 
( J + ,  I ,  ( K i ) i , l )  will determine a “type” of structures. Let L+ be a corresponding 
language. I t  contains the original language L as a sublanguage. For each 
bound variable u, say the 12th bound variable of sort j ,  let ah’ be tlie nth bound 
variable of sort j‘. If C is an L-formula, then C’ denotes the result of replacing 
each bound variable u in C by ZL’; hence Fr(C) = Fr(C’). \’fit11 this notation, 
define Ext to  be the set of sentences of the form Vu‘ 3u (u’ = u)  for each sort 
of variable ZL in J ,  and V Z ~  3zc‘ ( u  = u’) for each sort of variable in Jo .  Then 
Ext and 324% (ui = bi) for i = 1,.  . . , PZ yield A’ + A .  So there is a finite subset 
Ext, of Ext and a cut-free proof of 

I ,  

, ,  
(“1 Ext , ,  (3Zt, (ZL, = bJ}l”=,, A’ + A  

Xow apply the interpolation theorem ( 2 )  of Problem 8.7. An iriterpolant B 
can be chosen so as t(i satisfy: 

(i) Fr(B) G Fr(A) = { b , , .  . ., bn}, 
(ii) Rel(B) G Rel(rl), 

(iii) every bound variable in B is of sort in L, 
(iv) Un(B) c Jo.  

Hence B is an existentialJo formula of L. Since 
I ,  

Extl ,  { 3 u ,  (ui = bi) jy=l ,  A’ - B  and B + A  

are provable, we obtain that A G B is provable.] 

Let A! = ( D ,  4”) and A” = (D’ ,  4;) be two structures for the same 
language. 4‘ is said to be an extension of A if D G D’, = #& for each 
individual constant k ,  and +”/ is &/ restricted to  D for each function or 
predicate constant j .  

COROLLARY 8.9 (Los-Tarski). T h e  followi?ig are equizialent: let A be a formula 
of afz ordinary (i .e. ,  single-sortrd) language L. 
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(i) Fov a i i y  stvuctwe -4 ( for  I,) aizd extcizsion A', iiiitl mzy assigiinzeiits +, +' 
from the domaiizs of A!, Jf", rcs$ectl'?,ely, xh ic l i  agvec' oi l  thr free i ,avi(/blts  of 
A ,  if (A', 4) satisf ies z4 ,  tlzrii so does (Ji', +'). 

(ii) There exists a i l  (esscvitially) existerzticil foviizzilci L' sztcli that A G I3 i s  
provable a i d  the fvee xwiab l r s  of B ayc  niiioiig thosc of A .  

PROOF. From the above problem, where .J is a single sort and .I,, is the empty 
set. 

PROBLEM 8.10. Let s. be an axiom system in a language L, Vx 31~ A(x, J') a 
sentence of L provable froni .d, and f a function syni1)ol not in I-. Then any 
L-formula which is provable froni .c/ u {Vx .4 (x, /(,I-))} is also provable from 
d' in L. (That is to say, the iiitroduction of f in tliis ~vny  does not essentially 
extend the system.) [ H i f i t  (Naeliara's metliod) : l'liis is a corollary o f  the 
following 1emma.j 

LEMMA 8.11. Let V L  3y A(a, y )  be a s e i i f e i ~ ~ ~  of L, f (4 tzirictzoii svinbol izot Z P Z  L, 
and r and 0 fzpiate scqueiaces of L-foriiizilas If Vx A (1, f ( n ) ) ,  I' -+  0 is (LK-) 
provable, then Vx 3 y  A ( x ,  y), I' + 0 I S  $rotlaDlc 111 I> 

PROOF. Let P be a cut-free regular proof of Vx A (x, f ( x ) ) ,  I' + 0. Let t,, . . . , t ,  
be all the terms in P (i.e. proper terms, not semi-ternis) whose outermost 
function symbol is f. These are arranged in an order such that t ,  is not a 
subterm of t j  for i < j .  Suppose t i  is f ( s i )  for i = 1 , .  . . ,  1 1 .  P is transformed 
in three steps. 

S t e p  (1): Let a , , .  . ., a, be distinct free variables not occurring in P. 
Transform P by replacing t ,  by a,, then t ,  by a,, and so on. The resulting 
figure P' has the same end-sequent as P, hut is not, in general, a proof (as we 
will see below) and must be further transformed. 

Step ( 2 ) :  Since P is cut-free and f  does not occur in r or 0, it can be seen 
that the only occurrences of f in P are in the context. Vx A ( x ,  f ( x ) ) ,  and 
further, all these Vx A(x ,  f ( x ) )  occur in antecedents of sequents in P',  and the 
corresponding occurrences of Vx A (x, f ( x ) )  in P are introduced (in P )  only by 
weakening : left or by some inferences of the form 

(for some of the i, 1 < i < n) .  Suppose the upper sequent of I is transformed 
into 
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A (s:, a t ) ,  II’ ---f 11’ 

in P‘. (So I is not transformed by step (1) into a correct inference in I”.) Now 
replace all occurrences of Vx A(%,  f ( x ) )  in P‘ by 

~ ( s ; ,  a l ) ,  . . ‘ 3  A (si, an) 

(where s: is formed by replacing all t j  in s, by a)). Then the lower sequent of 
(the transform of) I can be derived from the upper sequent by several 
weakenings. 

The result (after applying some contractions etc.) is a figure P” with end- 
sequent 

A js;, . . . , A js;, r + o. 
However it may still not be a proof, as we now show, and must be transformed 
further. 

Step (3): Consider a 3 : left in P :  

and suppose this is transformed in P“ (by steps (1) and ( 2 ) )  to 

Now it may happen that for some i ,  the eigenvariable b occurs in si (and also 
si), and further, the formula A(sI,  ai) occurs in A’ or Y’; so that the eigen- 
variable condition is no longer satisfied in J’. 

So we transform all J‘ in P“ (arising from 3 : left inferences J in P)  as 
follows : 

32 B’(z) + 32 B’(z) B’(b), A’ + Y’ 
3 : left -. - ~ 

32 B’(%) 3 B’(b), 3% B’(z), A’ --f Y’ 

and carry the extra formula 32 B‘(z) 3 B‘jb) down to the end-sequent. 
For the same reason, for every V : right in P 

we replace its transform in P” 
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A’  + Y’ ,  B’(b) 
J‘ nf- - UI’rn’(z) 

A’ + Y’,  B’(b) 
qy(b),fl‘ +-p;-~-~ 

~ ~ ~ ~ _ _ _ _ _  ---f v2 B’(z), 32 lB’(2) 
ZI : left ~~~ 

32 +(z) -lB’(b), A’ ---t Y’,  v i  B’(z) 

(and carry the extra formula down to the end). 

proof, without 3 : left or V : right, whose end-sequtnt has the form 
The result (after some obvious adjustments with structural inferences) is a 

(Sd j 2  B+) ZI ~ ’ ( b ) ,  . . . , A (s;, a j ) ,  . . . , r + o. 
Now apply 3 : left and V : left inferences in a suitable order (see below) 

(and contractions, etc.) to derive 

(S2) *-,. . ., vx l y ~ ( % ,  y ) ,  r -0, 

where F is the formula obtained from 3u (32 B’(z) ZI B’(zl)) by universal 
quantification over all its fre? variables. 

Finally, applying cuts with sequents ---f I;, we obtain a proof, as desired, of 

vx 3y A ( ~ ,  y ) ,  r + o. 
We must still check that it is indeed possible to find a suitable order for 

applying the quantifier inferences in proceeding from (S,) to (S,) above, so 
that  they all satisfy the eigenvariable condition. To this end, we use the 
following (temporary) notation. For terms s and t and a formula B, s C t 
means that s is a (proper) subterm of t ,  s E t means that s is a subterm of t 
or t itself, and s C B means that s is contained in B. 

Now note that the following condition (C) is satisfied for any of the 
auxiliary formulas B(b) of P with eigenvariable b,  considered above, and 
l<i<?Z:  

(C) If b C t i ,  then ti Q B(b).  

(For suppose b C t ,  and also t,, which we write as f ( s , (b ) ) ,  occurs in B(b).  Then 
in the lower sequent of the inference J with auxiliary formula B(b), f would 
occur in the principal formula 32 B(z)  (or Vz B(z) )  in the context of the semi- 
term f (s , (z ) ) ,  and so, since P is cut-free, f would also occur (in a similar 
context) in all sequents of P below this, and hence in r or 0.) 
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Now let J,,.  . ., Jm be all the 3 : left and V : right inferences in P ,  with 
eigenvariables b,, . . . , b ,  and auxiliary formulas U, ( b l ) ,  . . . , BTr,(bnt), respec- 
tively. Consider the partial order on al,. . ., a,,, b,,. . ., b, , ,  generated by tlie 
relation <, which is defined by the following conditions: 

( la)  If ti C t , ,  then at < a j .  
(Ib) If b ,  C t i ,  then a ,  < 6,. 
(2a) If ti C B,(b,), then hi 4 a,. 
(2b) If 6, C Bi(bi) (j # i), then bi < bi. 
We will prove below that this does indeed generate a partial order, i.e., no 

circularities are formed. Assume this for the moment. Then, starting with 
sequent (Sl), we apply, in any -=-increasing order, the quantifier inferences 

f+:, a,),. . ' 
-~ 

3 : left and V : left 

vx 3 y  A (x, Y), . . . 

and 
32 B3(z ,  az,.  . ., b,, . . .) ZI B,(b,, at, .  . ., b k , .  . .), . . . 

3 : left and V : left 
~~~ _ _ _ _  ~ ~- 

v x . .  . v y . .  .3u (32Bj(2,  x,. . . ,  y , .  . . )  > B j ( U ,  x,. . ., y , .  . .)),. . . 

sn as to obtain (St). \Ye can see that the eigenvariable condition is satisfied 
throughout, from the way in which < was defined (and since ni C s: * t ,  C t,, 
b j  C s: + b j  C t i ,  a ,  C Hl(b,) * t ,  C B,(bi), and 21, C B:(b,) 3 b j  C Bi(bi)) .  

Finally we must show that the relation < does generate a partial order. 
This follows from tlie following two sublemmas. 

SUBLEXLIA 8.12 (in the notation of Lemma 8.11). (a) For a n y  <-iizcreasirzg 
sequence bi < . . . < b j ,  J i  Lies above J ,  iiz P .  (So i # j.) 

(b) For a n y  <-iizcreasiizg sequelice ai 4 . . . < a,,  w e  have ti $ t j .  (So ,  in 
particular, i # i.) 

PROOF OF (a). The proof is by induction on the length of this sequence. 
(i) If the length is 2, i.e., b j  b j ,  this fo11on.s from the definition of < 

(part 2b) and the eigenvariable condition in P. 
(ii) For the case bi < a ,  < b j :  we have t ,  C Bj(bi)  (by 2a) and b, C t ,  

(by lb). Hence b ,  C B,(b,). Also i # j, by condition (C). So again bi < b j  
(by 2b) and J i  is above J , .  
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(iii) For the case bi < a ,  < . . . < a ,  < b j  (with only a’s between bi and b j )  : 

(iv) For the remaining case, bi < . . . < b, < . . . < b j ,  use the induction 
notice that t ,  C t ,  (from la) .  The argument is now similar to that in (ii). 

hypothesis. 

PROOF OF (b). The proof is by induction on the length of this sequence. 
(i) If the length is 2, i.e. ai < a j ,  this follows from the definition (part la). 

(ii) For the case ai < b, .< a j :  we have b, C ti and t j  C B,(b,). So ti c ti 
would imply ti  C Bk(bk), contradicting (C). 

(iii) For the case ai < b, <. . . < bL < ai (with anything between b, 
and b,) we have b,  C ti, t j  C B,(b,) and J ,  is above J ,  (by Sublemma 8.12(a)). 
So t i  c t j  would imply b,  C B,(b,), contradicting the eigenvariable condition 
in P. 

For the remaining two cases : 
(iv) ai < a,  <. . . < a3 ,  
(v) ai <. . . < a ,  < a j ,  

This completes the proof of the sublemmas, and hence of Lemma 8.11. 
use ( la)  and the induction hypothesis. 

PROBLEM 8.13. Prove the following, sharpened version of the interpolation 
theorem for LK (Maehara-Takeuti). 

Let A and B be formulas with a predicate constant in common, let a and b 
be two finite sequences of free variables of the same length such that all the 
variables in a are distinct from one another (while some of the variables in b 
may be the same), and let A(:)  and B(:) be the formulas obtained from 
A and B by replacing each variable in a by the corresponding variable in b. 
Suppose A(:) 3 B(g) is LK-provable. Then there is a formula C such that 
the individual constants, predicate constants and free variables of C (apart 
from those in a) occur in both A and B and such that A(:)  3 C(:) and 
C 3 B are both provable. [Hint: State and prove the theorem for sequents. 
The technique of the proof of Theorem 6.6 works.] 

The following proposition is not strictly proof-theoretical in nature ; 
however, i t  is useful for the next topic (in the proof of Proposition 8.16). We 
first give some definitions. 

R 
and f E n D E R , W , ,  then f is called a parlial function (over R)  with domain 
Dom(f) = R1. If Dom(f) = R, then f is called a total function (over R) .  If f 

Let R be a set and suppose a set W ,  is assigned to every p E R. If R1 
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and g are partial functions and Dom(f) = Do E Dom(g) and f ( x )  = g(x )  for 
every x E D,, then we call g an extension off and write f < g and f = g 1 Do. 

PROPOSITION 8.14 (a generalized Konig’s lemma). Let  R be a n y  set. Suppose 
a f inite set W ,  as assigned to every $ E R. Let P be a property of partial  functions 
f over R (defined as  above) satisfying the following conditions : 

1) P( f )  holds if and on ly  if there exists a f inite subset N of R satisfying 

2) P ( f )  holds fo r  every total funct ion f .  
P ( f  E N)l 

T h e n  there exists a f inite subset N o  o f  R such that P ( f )  holds for every f wi th  
No c Dom(f). 

Note that R can have arbitrarily large cardinality. The case that R is the 
set of natural numbers is the original Konig’s lemma. 

PROOF. Let X = nPER1 W,, and give each W ,  the discrete topology, and X 
the product topology. Since each W ,  is compact, so is X (Tychonoff’s theorem). 
For each g such that Dom(g) is finite, let 

N ,  = { f  I f is total and g < f}. 

C = {A‘, I Dom(g) is finite, and P(g)} .  
Let 

C is an open cover of X .  Therefore C has a finite subcover, say 

N,,, . . . , Noh. 

Let N o  = Dom(gl)U . . . UDomjg,). We will show that N ,  satisfies the condi- 
tion of the theorem. If N, c Dom(g), then let g < f ,  f total. Then P ( f )  and 
f E NQ1 U . . . U N g k .  Say f E No,. So gi < f ,  P(g,) and gi < g. Therefore 
P(g) .  This completes the proof. 

What happens if we wish to apply to LJ the technique which has been 
used in proving completeness for LK ? This leads us naturally to the study 
of Kripke models of LJ, relative to which one can prove the completeness 
of LJ. In order to simplify the discussion, we assume again that our language 
does not contain individual or function constants. Again, there should be 
no essential difficulty in extending the argument to the case where individual 
and function constants are included. 
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For technical reasons, we will deal with a system which is an equivalent 
modification of LJ. This system, invented by Maehara, will be called LJ’. 
LJ’ is defined by restricting LK (rather than LJ) as follows: The inferences 
1 : right, 3 : right and V : right are allowed only when the principal formulas 
are the only formulas in the succedents of the lower sequents. (These are 
called the “critical inferences” of LJ’.) Thus, for instance, 1 : right will take 
a form: 

D , r +  
r + T D  

As is obvious from the definition, the sequents of LJ‘ are those of LK (so 
the restriction on the seduents of LJ, that there can be at  most one formula 
in the succedent of a sequent, is lifted here). I t  should be noted that all the 
other inferences are exactly those of LK. In particular, in v :right, the 
inference 

~ - A , A  

is allowed even if A is not empty. 
By interpreting a sequent of LJ‘, say r + B,, . . . , B,, as I‘ + B ,  v . . . v B,, 

it is a routine matter to prove that LJ’ and LJ are equivalent. Also, the cut- 
elimination theorem holds for LJ’. (Combine the proofs of cut-elimination for 
LK and LJ.) 

The question now arises: Given a sequent of LJ‘, say r - + A ,  is there a 
cut-free proof of I‘ - A in LJ‘ ? 

Starting with a given r 4 A,  we can carry out the reduction process which 
was defined for the classical case (cf. Lemma 8.3), except that we omit the 
stages 1) (1 : right reduction), 7) (3 : right reduction) and 9) (V : right 
reduction); in other words, all the reductions are as for the classical case, 
except those which concern the critical inferences of LJ’, which are simply 
omitted. We return to consider this point later. 

As an example of the case where the reduction process does not terminate, 
consider a sequent of the form 

vx 3Y A(%,  Y) + 

where A is a predicate constant. 

reduction tree for r + A .  
The tree obtained by the above reduction process is (again) called the 
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In preparation for Kripke's semantics for intuitionistic systems and the 
completeness theorem for LJ, we will generalize the above reduction process 
to the case where r and/or A are infinite; i.e., we define reduction trees for 
infinite sequents r + A .  

DEFINITION 8.15. Let T and A be well-ordered sequences of formulas, which 
may be infinite. We say that + A  is provable (cut-free provable) (in LJ') 

if there are finite subsequences of r and A ,  say fi and A ,  respectively, such 
that fi - -+A is provable (cut-free provable). 

(It is clear that r -d is provable (in LJ') if and only if it is provable 
without cut, even when r and/or A are infinite, by the cut-elimination 
theorem of $5, adapted to LJ'.) 

- 
I 

The reduction process which has just been described can be generalized 
immediately to the case of infinite sequents. We shall only point out a few 
modifications in the stages. Note: for the reduction process, we assume that 
the language is augmented by uncountably many new free and bound 
variables (in a well-ordered sequence). 

8) k G 8. Let Vx, A l ( x l ) ,  . . . , Vx, Aa(xa),  . . . be all the formulas i n n  whose 
outermost logical symbol is V. Let a,, . . . , aB,. . . be all the free variables 
available a t  this stage. Then write down 

A 1 ( ~ 1 ) , .  . . >  Al(aO)>.  . . >  A a ( a l ) > .  . .) Aa(aB)>. . .,n -+A 

above 17 -+ A .  
10. Let 3x, Al(xl),. . ., 3x, Aa(xa) , .  . . be all the formulas in I7 

whose outermost logical symbol is 3. Introduce new free variables 
b,, b2,. . ., ba,. . . , Then write down 

10) k 

PROPOSITION 8.16. (a) If a sequent Ir + A  i s  provable (in LJ'), then every 
sequent of the reduction tr5e for I' - A  i s  provable. 

(b) I f  a sequent r + A  i s  unprovable, then there i s  a branch (in the tree for 
r - A )  in which every sequent i s  unprovable. 

PROOF. (a) is obvious. In order to prove (b), we shall first prove the 
following: LetZT+A beasequent inthetreeandlet17,--+AA, A= 1,2 , .  . .,a,. . . 
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be all its upper sequents, given by a reduction. If each is provable, then 
17 - A  is provable. In other words, if for each 1, A = 1, 2 , .  . ., u , .  . ., there 
are finite subsets of 17, and A,, say 17; and A; respectively, such that 17; -A; 
is provable, then there are finite subsets o f n a n d  A,  sayh” and A‘ respectively, 
such that 17’ --f A‘ is provable. We shall only deal with a few cases. 

1) A 3 : left reduction has been applied to 17 +A. Then its upper sequent 
is of the form 

Ai (b i ) ,  . . . , A,(b,), . . . I  -A ,  

where 3x, A&,) is in L7 for each u, and b,, . . . , b,, . . . are newly introduced 
freevariables.Bythehypothesis,therearefinitesubsetsofA,(b,), . . . ,A,(b,) ,  . . . 
(say Bl(c,), . . . , Bfl(cn)), of 17 ( sayn’) ,  and of A (say A’), such that 

B,(c,), ‘ . . , Bfl(cn), ZI’  -A’ 

is provable. By repeated 3 : left and some weak inferences, we obtain17 +A’ ,  
which is a subsequent of 17 + A .  Notice that since B,(c,), . . . , Bn(cfl),17’ +A’ 
is provable (with a finite proof), we may regard c l , .  . . , c ,  as free variables of 
our original language. 

2) An A : right reduction has been applied t o n - A .  Then itsuppersequents 
are of the form 

II + A ,  Cl,.  . ., C,,. . ., 

where A ,  A Bl , .  . ., A ,  A B,,. . . are all the formulas of A whose outermost 
logical symbol is A and each C, is A ,  or B,. We shall distinguish these cases 
by denoting C, by C0,, if C, is A ,  and by C,,, if C, is B,. Then the upper 
sequents are the sequents 

11 - A ,  C i l , l 7 .  . . , Cia.,,. . ’ 1 

where i, = 0 or 1, for all possible combinations of values of i,,. . . ,  z , , .  . . . 
Let f denote any sequence (il,. . ., z,,. . . ) .  By assumption, there is a finite 
subsequent of each sequent, say 17f 4 A f ,  C!, . . . , Ck5, which is provable, 
where Ci, . . . , C/,, is a finite subset of Ctl 

In order now to exploit the generalized Konig’s lemma (Proposition 8.14), 
we let R be a set with the order type of the sequence C,, C2,. . . ,  C,,. . . 
(say R = (1, 2 , .  . . , u , .  . .}). Define W ,  = 2 ( =  (0, 1)). For any subset Rl c R 
and any f E nasR, W,, we say that a finite sequence of formulas 

. . , Ct,,,,. . . . 
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(with El,. . . , a, E R,) is selected for f if there are finite subsets of I? and A,  
say 17’ and A‘, respectively, such that 

is provable. From the observation above, there is such a selected subset for 
any total function f .  Now, for any R, E R and any f E naERl W,, we define 

P(f) edf 3k gal .  . .3a, (a1,. . . , a, are in the domain off and 

( C f ( a , ) , a l , .  . . , Cf(ak) ,ak)  is selected), where K ranges 

over the natural numbers. 

Then conditions 1 and 2 in the hypothesis of the generalized Konig’s lemma 
are satisfied; hence by this lemma, there exists a finite subset of R, say 
N o  = {yl.. . . , yt } ,  such that if Dom(f) contains No,  then P(f) holds. 

Let 

F = {f I Dom(f) = No}  = n W,,,. 
j =  1 

F is a finite set and, for every f in F ,  P(f) holds, i.e., there is a subset of 
yl,. . . , yz ,  say al , .  . . , ak,  such that ( C f ( a l ) , a L , .  . . , Cf(ak) ,ak)  is selected for f ;  
i.e., there exist finite subsets of I7 and A ,  say 17’ and A’ respectively, such 
that 

+A’> C f ( a l ) , a l , .  . .) c f ( a k ) . u k  

is provable. Therefore, for every possible combination of values of (&,. . . , ix)  
(= i), there are finite subsets of I? and A ,  say 17‘ and A’ respectively, such 
that 

ni +Ai, cil+al%. ‘ . > Cik,CLk 

is provable. Hence by weakenings and repeated A : right, we obtain 

I?’ -+A‘, Aal A B,,,. . . , A,, A Bak, 

where I? consists of all the IT’S for f in F ,  and likewise with 2. 
Now, from the argument just completed, if the given sequent r + A  is 

not provable, then there is one branch in which every sequent is unprovable. 
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Having finished these preparations, we now define Kripke (intuitionistic) 
structures (for a language L). 

DEFINITION 8.17. (1) A partially ordered structure P = (0,  <) consists of a 
set 0 together with a binary relation < satisfying the following: 

a) P < P J  
b) P < q and y < p imply P = q, 
c) p < q and y < Y imply p < Y ,  

(2 )  A Kripke structure for a language L is an ordered triple ( P ,  U ,  +) 

1) P = (0, <) is a partially ordered structure. 
2) U is a map which assigns to every member of 0, say 9, a non-empty set, 

say U,, such that, if p < q, then U ,  _C V ,  (where _C means set inclusion). 
3) + is a binary function +(R, p ) ,  where R ranges over predicate constants 

in the language L and p ranges over members of 0. Further: 
3.1) Suppose the number of argument places of R is 0. Then +(I?, p )  = T 

or F, and if +(R, p )  = T and p < q, then +(R, q)  = T. 
3.2) Suppose R is an n-ary predicate (n  3 1).  Then +(R, 9) is a subset of 

where p ,  q and Y range over elements of 0. 

such that:  

U; = u, x . . . x u,, --- 
n times 

and p < q implies +(R, p )  c +(R, 4). 
We define U = UBEO U,. Then U can be thought of as the universe of the 

model or structure, and the elements of 0 as stages (see below). 
Suppose that there is an assignment of objects of U to all the free variables; 

i.e., to each free variable ai an object of U ,  say ci, is assigned. Let F(al , .  . . ,a,) 

be a formula with free variables a,, . . . , a, (at most). The interpretation of 
F(a l , .  . . , a,) at (the stage) p (under this assignment) is defined as follows by 
induction on the number of logical symbols in F(al , .  . . , a,), and this inter- 
pretation is expressed as +(F(c l , .  . . , c,J,  9). The value of such an interpreta- 
tion is T or F. 

a) +(R(c,, . . ., c,J, p) = T if and only if ( c l , .  . . , c,) E #(R, p )  (for n > 0). 
b) + ( A  A B, p )  = T if and only if + ( A ,  9) = T and +(B, $) = T. 
c) + ( A  v B, p )  = T if and only if + ( A ,  p )  = T or +(B, p )  = T. 
d) + ( A  3 B, 9)  = T if and only if for all q such that p < q, either + ( A ,  q) = F 

e)  +(-d, p )  = T if and only if for all q such that p < q, + ( A ,  q) = F. 
or +(B, q) = T. 
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f )  +(3x A(c,,. . ., c,, x), p )  = T if and only if there is a c in U ,  such that 

g) d(Yx F(c,, . . . , c,, x), p )  = T if and only if for all q such that p < q, and 

We can generalize the definition of interpretation which has just been 
given to the case of sequents (finite or infinite). Let T + A  be a sequent. 
Then +(I' - A ,  p )  is defined to  be T if and only if, for all q such that p < q, 
either + ( A ,  q) = F for some A in r or +(B, y) = T for some B in A .  

A sequent T ---t A is said to be valid in a Kripke structure ( P ,  U ,  +) (with 
P = (0, 6))  if +(T --t A ,  p )  = T for all p in 0. 

PROPOSITION 8.18. Suppose r + A  is  provable in LJ', and ( P ,  U ,  4) is  a 
Kripke structure. Then T ---f A i s  valid in ( P ,  U ,  4). 
PROOF. This is only a routine matter: by mathematical induction on the 
number of inferences in a proof of r --f A (or a subsequent of it). 

+ ( A  ( ~ 1 , .  . , , cn, c), $ 1  = T. 

for all c in U,, 4 (F(c l , .  . . , c,, c ) ,  p )  = T. 

Now, in order to finish the completeness proof for LJ', we shall start with 
an unprovable sequent T ---f A and construct a counter-model in the sense 
of Kripke. This will be constructed from the reduction tree for I' - -+A.  Let 
us call this tree T .  (Remember, in the construction of T ,  the i : right, 3 : right 
and V : right reductions were omitted.) This situation, i.e., with just this tree 
present, is called stage 0. By Proposition 8.16, there is a branch of T ,  say 
B,, containing (only) unprovable sequents. If Bo is finite, let To +Ao  be 
its uppermost sequent. If Bo is infinite, let To and A,, be the union of all 
formulas in the antecedents and succedents respectively of the sequents in 
B, (each arranged in a well-ordered sequence), and consider the (possibly 
infinite) sequent To - do. Single out all the formulas in A. whose outermost 
symbols are 1, 3 or V. (If there is no such formula, then stop.) Let the 
symbol 9 range over all such formulas. We call each such p an immediate 
successor of 0 (and 0 an immediate predecessor of 9.)  

Case 1. p is a formula of the form -IA.  Then consider the sequent A ,  To +. 
Case 2. p is B 3 C. Then consider the sequent B ,  To --t C. 
Case 3. p is Vx F ( x ) .  Let a be a free variable which does not belong to U,. 

(This can always be done by introducing a new symbol if necessary.) Then 
consider the sequent To -+ F ( a ) .  

It is easily shown that (in each case) this new sequent is not provable, since 
otherwise TO --t A0 would be provable. Let us call this new sequent p,  -+A, ,  
and let T ,  be the reduction tree for FD -2,. 

I 
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As before, let B ,  be a branch of T ,  containing unprovable sequents, and 
let T, - A ,  be either the topmost sequent of B,, or (if B ,  is infinite) the 
“union” of all sequents in B,, as before. Then follow exactly the same process 
as the preceding paragraph. Namely, let g range over all formulas in A ,  whose 
outermost logical symbol is 1, 3 or V. (If there is no such formula, then 
stop.) Again, for all such q and p (with g in d , as above), we call g an immediate 
successor of p and p an immediate predecessor of g. Then define as before 
the tree T ,  and branch B,. 

Continue this procedure c1) times. Let 0 be the set of all these p’s ,  and let 
< be the transitive reflexive relation on 0 generated by the immediate 
predecessor relation defined above. 0 is partially ordered by <. Now define 
U ,  to be the set of all free variables occurring in 5,, for all p E 0, and define 
U = Uaso U,. Notice the following. 

I 

1) If p < g,  then U ,  E U,. 
2) If q is an immediate successor of $, then all formulas in r, occur in the 

We now define the function + as follows. For any n-ary predicate symbol 

+(R, p )  = { ( a l , .  . . , a,) 1 a,, . . . , a,  E U ,  and R(al , .  . . , a,) occurs in F,} 

(and for n = 0, +(R, @) = T if and only if R occurs in T,). 
So we have defined a Kripke structure ( P ,  U ,  +). We shall consider the 

interpretation of formulas in this structure relative to the (natural) assignment 
of each free variable to itself. 

antecedents of all sequents in T ,  (and hence in B,). 

R (n > O), and any p E 0, 

PROPOSITION 8.19 (with the above notation). Let A be a formula in B,. 
If A occurs in the antecedent of a sequent in B,, then $ ( A ,  p )  = T; if i t  occurs 
in the succedent, then $ ( A ,  $) = F. 

PROOF. By induction on the number of logical symbols in A .  First it  should 
be noticed that if a formula occurs in the antecedent of a sequent in B,, 
then it does not occur in the succedent of any sequent in B,. The same holds 
with “antecedent” and “succedent” interchanged. Also, once a formula 
appears on one side of a sequent, it will appear on the same side of all higher 
sequents of B,, and hence of the sequent T, --f A , .  

1) A is an atomic formula R(a,, . . ., an) .  If A occurs in an antecedent, 
hence in F,, then by definition ( a l , .  . . , a,) E $(R, p ) ,  which implies, again 
by definition, that + ( A ,  $) = T. If A occurs in a succedent, then ( a l , .  . .,a,) 
4 + ( K  P ) ,  so $ ( A #  PI = F. 
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2 )  A is i B .  Suppose A occurs in the antecedent. Then A occurs in T,. 
This implies that ,  given any q such that p < q, A occurs in the antecedent 
of all the sequents in 8,; hence B occurs in the succedent of a sequent in B,; 
therefore, by the induction hypothesis, +(B, q )  = F. So +(B, q) = F for any 
q such that p < q. This means that +(B, p)  = T. 

Suppose next that A occurs in the succedent of a sequent in B,. Then there 
exists a next stage, say q. I t  starts with B, I', +. By tlie induction hypothesis, 
+(I?, q) = T. That is to say, there is a q such that /I < q and +(El,  q)  = T. 
Therefore by definition +(A,  ~ 5 )  = F. 

3) A is U A C or U v C. Those cases are easy; so they are left to the reader. 
4) A is Vx F ( x ) .  Suppose A occurs in the antecedent of a sequent in B ,  and 

suppose < y. Tlien A occurs in the antecedent of a sequent in BQ. Let a 

be an element of V,. Tlien F ( a )  occurs in the antecedent of a sequent in B,. 
Hence, by the induction lipothesis, + ( F ( a ) ,  q)  = T. So for any q such that 
f i  < q and any a in Lrq, +(F(a ) ,  q)  = T, which means that + (A,  $) = T. 

Suppose next that A occurs in the succedent of a sequent in B,. So the next 
stage, say q, starts with Tp 4 F ( a ) ,  where a is a (new) variable in U,. By the 
induction hypothesk, + ( F ( a ) ,  q )  = T. So there exists a q such that fi < q, 
and a member a of U,, such that +(F(a) ,  q) = F. This nieans that 

+(VX F ; ( x ) , $ )  = F. 

5 )  A is of tlie form 3,~ F(xj .  This case is left as an exercise. 
6) A is of the form H 3 C. Suppose that A occurs in the antecedent of a 

sequent in U p .  Then either C occurs in r, or B occurs in 11,. Let 9 < q. 
Then either C occurs in the antecedent or B occurs in the succedent of a 
sequent in B,. So for any q,  with $ < q ,  either +(C, q)  = T or +(B, q)  = F. 

Suppose next that A occurs in the succedcnt of a sequent in B,. Then the 
next stage, say q ,  starts with B ,  T, 4 C. Hence there is a q such that 9 < q, 
+(B, q)  = T and +(C, q )  = F; so +(8 2 C, $) = F. 

So now we can conclude that if F + A  is unprovable, then we can construct 
a Kripke structure ( I ) ,  U ,  4) such that (under a suitable assignment to free 
variables) every formula in r assumes the value T and every formula in A 
assumes the value F ;  in other words, there is a Kripke counter-model for 
T - A .  This ends tlie completeness proof. Thus we liave obtained: 

SO +(B 2 C, 9) = T. 

THEOREM 8.20 (completeness of the intuitionistic predicate calculus : a 
generalized version; cf. Theorem 8.2). Let r --f d bc a sequeizt (finite OY infinite). 
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If r --f A is  valid in all Kr ipke  structures, then r --+ A as provable. I n  particular, 
LJ is  complete. 

(Recall that the soundness of LJ was established by Proposition 8.18). 
Notice that the method which has been prescribed here for completeness of 
LJ works even when the language is not countable, while the method for LK 
works only for a countable language. Although we could in fact use a method 
for LK similar to this one for LJ’, we do not attempt to do so, since Henkin’s 
simple method is sufficient for that purpose. 

EXERCISE 8.21. Construqt a Kripke counter-model for each of the following 
sequents. 

1) + P v lP, where P is a predicate symbol. 
2) Vx (P(x )  v Q) + Vx P ( x )  v Q, where P and Q are predicate symbols of 

3) + 3x ( 3 y  P(y)  ZI Pix) ) ,  where P is a unary predicate. 
[Hint  for 1 ) :  At stage 0:  

----t P v T P ,  P , 7 P  

+ P v 7 P  

the indicated numbers of argument. 

- .  

Let p be 1 P .  Then at  stage 9: 
P -+ 

~~~ 

+ 7 P  

So define 0 = {0 ,p} ,  0 < p ,  Go = U p  = { a } ,  $(P,  0)  = F. Then $ ( P v  l P ,  0) = F 
can be easily proved. j 



CHAPTER 2 

PEANO ARITHMETIC 

In this chapter we shall formulate first-order Peano arithmetic, prove 
Godel’s incompleteness theorem, develop a constructive theory of ordinals 
up to the first &-number c0, and then present a consistency proof of the 
system, due to Gentzen. 

89. A formulation of Pcano arithmetic 

DEFINITION 9.1. The language of the system, which will be called Ln, contains 
finitely many constants, as follows. (See also Definition 1.1 .) 

Individual  constant: 0 ;  
Funct ion constants : I ,  +, . ; 
Predicate constant: = ; 

where ’ is unary while the other constants are binary. 
The intended interpretation of the above constants should be obvious. We 

shall use expressions like s = t ,  s + t ,  s . t and s’ rather than formal expressions 
like +(s, t ) .  

A numeral is an expression of the form O’...’, i.e., zero followed by n primes 
for some n, which is used as a formal expression for the natural number n, 
and is denoted by 6. Further, if s is a closed term of Ln denoting a number 
m (in the intended interpretation), then S denotes the numeral (e.g., if s is 
2 + 3, then S denotes 5). 
- 

DEFINITION 9.2. The first axiom system of Peano arithmetic which we 
consider, CA, consists of the following sentences. 

A1 V X  Vy (x’ = y‘ ZI x = y )  ; 
A2 V X  ( i d  = 0) ;  
A3 V X  Vy VZ (X = y ZI ( X  = z y = 2 ) ) ;  
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A4 V X  Vy (X = y 2 X‘ = y’); 
A5 V X  ( X  + 0 = x); 
A6 V X  Vy (X + y‘ = (X + y)’); 
A7 V X  (X . 0 = 0) ; 
A8 V X V Y  (x. y’ = X *  y + x ) .  

The second axiom system of Peano arithmetic which we consider, VJ, 
consists of all sentences of the form 

t/Z, . . . V Z ,  V X  (F(0 ,  Z )  A v y  ( F ( y ,  Z )  2 F(y ’ ,  2 ) )  2 F ( x ,  Z ) ) ,  

where z is an abbreviation for the sequence of variables zl,. . . , z,; and all 
the free variables of F ( x ,  Z )  are among X ,  Z.  

The basic logical system of Peano arithmetic is LK. Then CA U VJ is an 
axiom system with equality, regarding = as the distinguished predicate 
constant in $7. Furthermore, V X  V y  (x = y 2 ( F ( x )  = F ( y ) ) )  is provable for 
every formula of Ln (cf. Proposition 7.2). 

As  an example of the strength of CA u VJ, we mention that the theory 
of primitive recursive functions can be developed in this system. Although 
this point will not be discussed further here, such knowledge is assumed. 

DEFINITION 9.3. The system PA (Peano arithmetic) is obtained from LK 
(in the language Ln) by adding extra initial sequents (called the mathematical 
initial sequents) and a new rule of inference called “ind”, stated below. 

1) Mathematical initial sequents : 

s’ = t’ + s  = t :  

s = t , s  = Y - t  = r ;  

s = t +s‘ = t ’ :  

+ s  + 0 = s ;  

+ s + t’ = ( s  + t ) ’ ;  

+ s . o  = 0 :  

+ s * t ’  = s * t + s ,  

where s, t ,  Y are arbitrary terms of Ln. 



70 P E A N O  ARITHMETIC [CH. 2, $9 

2) Ind: 
F(a) ,  r - A ,  F(a’) 

w, r - A ,  ~ ( s )  

where a is not in F(O), T o r  A ;  s is an arbitrary term (which may contain a )  ; 
and F ( a )  is an arbitrary formula of Ln. 

F(a)  is called the induction formula, and a is called the eigenvariable of this 
inference. Further, we call F(a)  and F(a‘)  the left and right auxiliary formula, 
respectively, and F(0)  and F(s)  the left and right principal formula, respec- 
tively, of this inference. 

The initial sequents of the form D -+ D are called logical initial sequents 
(in contrast to the mathematical initial sequents defined above). 

To summarize, then: there are two kinds of initial sequents of PA: logical 
and mathematical; and three kinds of inference rules : structural, logical 
and ind (cf. Definition 2.1). 

Finally, a weak inference is a structural inference other than cut. 

We shall adapt the concepts concerning proofs which were defined in 
Chapter I with some modifications; the new inference “ind” must be taken 
into account in every definition. In particular, the successor of F(a)  (respec- 
tively, F(a‘)) in ind is F ( 0 )  (respectively, F ( s ) ) .  Otherwise all definitions in 
Chapter 1 are relevant here. 

As an easy corollary of the definitions we have 

PROPOSITION 9.4. A sequent i s  provable from CA u VJ (in LK) if and only  if 
i t  i s  provable in PA. Hence the axiom system CA u VJ i s  consistent if and only 
if 4 i s  not provable in PA. 

Thus we can restrict our attention to the system PA. In the rest of this 
chapter, “provability” means provability in PA. It was Gentzen’s great 
development to formulate first-order arithmetic in the form of PA. 

Similarly to Lemma 2.11, we can prove the following proposition, which 
we shall use without mention. 

PROPOSITION 9.5. Let P be a proof in PA of a sequent S ( a ) ,  where all the 
occurrences of a in S (a )  are indicated. Let s be a n  arbitrary term. T h e n  we m a y  
construct a PA-proof P‘ of S(s) such that P‘ i s  regular (cf. Lemma 2.9, part (2)) 
and P’ differs from P only  in that some free variables are replaced by  some other 
free variables and some occurrences of a are replaced by  s. 
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The following lemma will be used later 

LEMMA 9.6 (1) For  a n  arbztrnry closed term s, there ewasts a unique numera l  ?i 

such that s = ?i zs f i romble  G ithout an essenttal cut mid  zi. ztlzout i nd .  (See  Defanztzoit 
7.5 for “essentzal cut” ) 

( 2 )  Le t  s and t be ciosed terms. T h e n  either --t s = t OY s = t 4 zs provabLe 
wzthout a n  eswntiiil cut or 2nd.  

(3) Lct s and t bc closed tt~rins suclz flint s = t zs jwoziablc it ithout an essentzal cut 
oy ind a d  Ect q(a)  and r ( a )  be t i ~ o  tzrins walh some occwrenccs of a (posszblv 
none ) .  T h c n  q ( s )  = ~ ( s )  -+ q( t )  = r ( t )  zs firozlable c i thout a n  c s w i t i a l  cut or znd. 

F ( t )  
zs provable w&out ail essenttal cut or znd. 

(4) Let s a d  t be as wz (3) F o r  a n  arbitrary formula I. ( a )  s = t ,  F ( s )  

PROOF. (1) By induction on the coniplexity of s. 

\Ve defined some notions concerning fornial proofs in $2. In order to carry 
out the consistency proof for Psi, however, we need some more of these. \.lie 
shall list them all here. 

DEFINITIOS 9.7. \Vhen we consider a formula or a logical symbol together 
with tlie place that it occupies in a proof, in a sequent or in a formula, we 
refer to it (respectively) as a formula or a logical symbol in the proof, in the 
sequent or in the formula. A formula in a sequent is also called a sequepzt- 
forinula. 
(1) Successor. If a formula E is contained in the upper sequent of an inference 

using one of tlie rules of inference in 31 or “iiid”, then the successor of E 
is defined as follows: 
(1 .1)  If E is a cut formula, then E has no successor. 
(1.2) If E is an auxiliary formula of any inference other than a cut or 

exchange, then the principal formula is the successor of E .  (For the 
case of ind, see above.) 

(1.3) If E is the formula denoted by C (respectively, D )  in the upper 
sequent of an exchange (in Definition 2.1), then the formula C 
(respectively, D )  in the lower sequent is the successor of E .  

(1.4) If E is the kth formula of r, r1, A ,  or il in the upper sequent (in 
Definition 2.1), then the kth formula of r, 11, /I or A ,  respectively, 
in the lower sequent is the successor of E .  

(2) Thread. The notion of a sequence of sequents in a proof, called a thread, 
has been defined in Definition 2.8. 
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(3) The notions of a sequent being above or below another, and of a sequent 
being between two others, were defined in Definition 2.8; so was the 
notion of an inference being below a sequent. 

(4) A sequent formula is called an init ial  formula or an end-formula if it  occurs, 
respectively, in an initial sequent or an end-sequent. 

(5 )  Bundle. A sequence of formulas in a proof with the following properties 
is called a bundle: 
(5.1) The sequence begins with an initial formula or a weakening formula. 
(5.2) The sequence ends with an end-formula or a cut-formula. 
(5.3) Every formula in the sequence except the last is immediately followed 

(6) Ancestor and descendant. Let A and B be formulas. A is called an ancestor 
of B and B is called a descendent of A if there is a bundle containing both 
A and B in which A appears above B. 

(7) Predecessor. Let A and B be formulas. If A is the successor of B,  then B 
is called a predecessor of A .  

Some principal formulas, e.g., A : right, has two predecessors. In such cases 
we call a predecessor the f irst  or the second predecessor of A ,  according as it 
is in the left or right upper sequent. 
(8) The concepts of explicit and implicit. 

by its successor. 

(8.1) A bundle is called explicit if it ends with an end formula. 
(8.2) It is called implicit  if it  ends with a cut-formula. 

A formula in a proof is called explicit or implicit according as the bundles 

A sequent in a proof is called implicit or explicit according as this sequent 

A logical inference in a proof is called explicit or implicit according as the 

containing the formula are explicit or implicit. 

contains an implicit formula or not. 

principal formula of this inference is explicit or implicit. 
(9) End-piece. The end-piece of a proof is defined as follows: 

(9.1) The end-sequent of the proof is contained in the end-piece. 
(9.2) The upper sequent of an inference other than an implicit logical 

inference is contained in the end-piece if and only if the lower sequent 
is contained in it. 

(9.3) The upper sequent of an implicit logical inference is not contained 
in the end-piece. 

We can rephrase this definition as follows: A sequent in a proof is in the 
end-piece of the proof if and only if there is no implicit logical inference below 
this sequent. 
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(10) An inference of a proof is said to be in the end-piece of the proof if the 
lower sequent of the inference is in the end-piece. 

(11) Boundary. Let J be an inference in a proof. \Ye say J belongs to the 
boundary (or J is a boundary inference) if the lower sequent of J is in 
the end-piece and the upper sequent is not. It should be noted that if J 
belongs to the boundary, then it is an implicit logical inference. 

(12) Suitable cut. A cut in the end-piece is called suitable if each cut formula 
of this cut has an ancestor which is the principal formula of a boundary 
inference. 

(13) Essential and inessential cuts. A cut is called inessential if the cut formula 
contains no logical symbol ; otherwise it is called essential. 

In PA4, the cut formulas of inessential cuts are of the form s = t .  
(14) A proof P is regular if: (i) the eigenvariables of any two distinct inferences 

(V : right, 3 : left or Induction) in P are distinct from each other; and 
(ii) if a free variable a occurs as an eigenvariable of a sequent S of P,  then 
a only occurs in sequents above S .  

PROPOSITIOS 9.8. For  an arbttrary proof of PA, there cxzsts  a r g u l a r  proof of 
the same end-sequent, which c a n  be obtazned from the origtnal proof b y  sznzply 
replaczng free varaables. 

PROOF. The proof is as for Lemma 2.10, part (2j. 

$10. The incompleteness theorem 

In this section we shall prove the incompleteness of PA. This is a celebrated 
result of Godel. We shall actually consider any axiomatizable system which 
contain PA as a subsystem. 

DEFINITION 10.1. An axiom system ,d (cf. $4) is said to be axiomatizable if 
there is a finite set of schemata such that d consists of all the instances of 
these schemata. A formal system S is called axiomatizable if there is an 
axiomatizable axiom system d such that S is equivalent to LK, (cf. $4). 
(Two systems are called equivalent if they have exactly the same theorems.) 

A system S is called an extension of PA if every theorem of PA is provable 
in S. Throughout this section we deal with axiornatizable systems which are 
extensions of PA. They are denoted by S. Such an S is arbitrary but fixed; 
so is the language of S, say L (which will always extend Ln). 
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DEFINITION 10.2. The class of primitive recursive functions is the smallest 
class of functions generated by the following schemata. (These can be thought 
of as tlie clauses of an  inductive definition, or as the defining equations of 
the function being defined.) 

(i) f ( x )  = x’, where ’ is the successor function. 
(ii) f ( x l , .  . . , x,) = k ,  where n 3 1 and k is a natural number. 

(iii) f (x l , .  . ., x,) = xi, where 1 < i < 11.  

are primitive recursive functions. 

primitive recursive function. 

x2,. . . , xJ, where g and h are primitive recursive functions. 

, x,), . . ., h,(x,, . . ., x?!)), where g, h,, . . ., h ,  

(v) f ( 0 )  = k ,  f(x’) = g(x, f ( x ) ) ,  where k is a natural number and  g is a 

(vi) f (0 ,  x.,,. . ., x,,) = g ( x 2 , .  . ., xn), f (x’ ,  x.,,. . . ,  x,) = h(x,  f ( x ,  x2,. . ., x,), 

This formulation is due to  Kleene. 
An n a r y  relation R (of natural numbers) is said to be primitive recursive 

if there is a primitive recursive function / which assumes values 0 and 1 only 
such that R(a,,. . ., a,) is true if and only if / ( a , , .  . . ,  a,) = 0. 

EXERCISE 10.3. We define + and as follows 

a + O = a ,  a . 0  = 0 ,  

a + b ’ =  ( a + b ) ’ ,  a . b ’ = a . b + a .  

Prove the following from the above equations in PA. 
(1) a + b = b + a .  
(2) a. b = b .  a.  
(3) a . ( b + c )  = a . b i - a . c .  

EXERCISE 10.4. Prove that = and < are primitive recursive relations of 
natural numbers. 

Here we shall state a basic metamathematical lemma without proof, which 
w e  shall use later. 

LEMMA 10.5. T h e  consistency of S (i.e., S-unpronability of 4) i s  equivalent to 
the S-unprovability of 0 = 1. In  other words, 0 = 1 i s  S-provable if and only  if 
every formula of L is S-provable. (Cf. Proposition 4.2.) 
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PROPOSITIOK 10.6 (Giidcl). (1) The gvafihs of all the fiyimitiimc rrcursiz'e fumtioias 
can be e~f ircsscd I'iz Ln, so fkat  (the tmrislatioiis o f )  thcii defiiiiiig eqztatioiis are 
protiable i i i  PA. 

T h u s  the theory of firiniitiw recursive func t ions  can be traizsliitcd iu to  our 
formal system of aritlznzctic. T1.e nzay therefore assume that PA (or aizy of i t s  
exteiisions) actually co i i ta im the ftiizction symbols  fo. @inzit file rccursiw f u n c -  
t i o m  uiid fhe ir  de f in ing  equatioizs, as  well as $redieale symbols for tizc pr imi t i ve  
recurs izre relations. 

m'e must distinguish between informal objects and their formal expressions 
(althougli this will lead to  notational complications). For example, the formal 
expression (function symbol) for a primitive recursive function f will be 
denoted by j ;  if K is a predicate (of natural numbers) which can be expressed in 
the formal language, then its formal expression will be denoted by R .  Also, as 
stated earlier, for any closed term t ,  f is the numeral of the number denoted 
by t .  Although in later sections we may omit such a rigorous distinction 
between formal and informal expressions, it is essential in this section. 

(2) Let R be a f ivimitize recursive rclatiolz of n arguments.  I t  ca ia  be represented 
in PA b y  a foiwula R ( a , , .  . . ,  a,), izaniely j ( a l , .  . . ,  a,) = 0, where f i s  the 
characteristic fum-tioiz of R.  l ' h c n ,  for a n y  n-tuple of .rzumbers (m,, . . . , m,,), 
if R(ml, .  . ., war!) i s  true,  thsiz R(l?z,,. . . ,  %J is PA-provable.  

PROOF. The proof of (1) is by induction on the inductive definition of the 
primitive recursive functions (i.e., by induction on their construction). 

The proof of ( 2 )  is carried out as follows. We prove that for any primitive 
recursive function f (of n arguments) and any numbers n z , ,  

f (nl , .  . . ,  w i n )  = p ,  then f ( ~ % ? ~ , .  . ., nt , )  = 5 is PA-provable. The proof is by 
induction on the construction of f (according to  its defining equations). Then, 
finally, if f is a primitive recursive function which is the characteristic function 
of R, we have, for all ml, . . . , m,,, if R(nz,, . . . , wz,) is true, then i(liil,. . . , lii,) = 0 
is PA-provable. 

- 

Since the rest of the argument depends heavily on this proposition, we shall 
use it without quoting it each time. 

Note that the converse proposition (i.e., for primitive recursive R, if 
E(n31,. . . , nj,) is PA-provable, then R(m,, . . . , m,) is true) follows from the 
consistency of PA. 

DEFINITION 10.7 (Godel numbering). We shall define a one-to-one map from 
the formal expressions of the language L, such as symbols, terms, formulas, 
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sequents and proofs, to the natural numbers. (The following is onlyoneexample 
of a suitable map.) For an expression X, we use ‘X’ to denote the correspond- 
ing number, which we call the Godel number of X .  

(1) First assign different odd numbers to the symbols of Ln. (We include 
4 and - among the symbols of the language here.) 

(2 )  Let X be a formal expression S O X , .  . . S,, where each X , ,  0 < i < 72, 

is a symbol of L. Then X is defined to be 2 ‘Xo1 3 ‘*I7 . . .Pnrxn7 , where p ,  is 
the nth prime number. 

(3) If P is a proof of the form 

then ‘P7 is 2 rQ’ 3 ‘-’ 5 rs’ or 2 ‘Q1’ 3 rQ2’ 5 r-7 7 ‘s’ , respectively. 
If an operation or relation defined on a class of formal objects (e.g., formulas, 

proofs, etc.) is thought of in terms of the corresponding number-theoretic 
operation or relation on their Godel numbers, we say that the operation or 
relation has been arithnzettzed. More precisely, suppose 4 is an operation 
defined on n-tuples of formal objects of a certain class, and f is a number- 
theoretic function such that for all formal objects .Y,, . . . , X,, X (of the class 

rX7. Then f is called the arzthritetizatioii of 4. Similarly with relations. 
considered), if I,/J applied to X,, . . . , X, produces X ,  then f (  ‘X17 , . . . , rXnl)  = 

LEMXA 10.8. (1) The operation of substitution can  be arithmetized priinit ive 
recursively, i . e . ,  there i s  a primit ive  recursive funct ion sb of t z o  arguments 
such that if X ( a o )  i s  a n  exjwession of L (where all occurrences of a ,  in X are 
indicated),  and  Y i s  another exjbressioia, then sb( ‘X(a,)’ , ‘Y’ ) = ‘X(Y)’ , 
zeihere X ( Y )  i s  the result of substituting Y for a ,  in X .  

( 2 )  There i s  a primit ive  recursive function v such that v(m) = ‘the nzth 
numeral’ . I n  tevnzs of our notation, v (m)  = ‘7%’ . 

(3) T h e  notion that P is a proof (of the system S) of a forinatla A (or a sequent S )  
i s  arithmetized PYiwaitiVe recursive1 y ; i.e., there is  a jhrinzitive recursive relation 
Prov(p, a )  such that Prov(9, a )  i s  trzte if nml  0 7 2 1 y  if there i s  a proof P and a 
formula A (OY a sequent S )  such that p = rP’ , a = ‘A7 (or a = ‘S1) and 
P i s  a proof of A (or S ) .  

(4) Prov may be written as Prov, to  emphasize the system S. 
(5)  As was mentioned before, the formal expyessiion for Prov will be denoted 
__ 

by Prov. 
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We shall not prove this lemma. I t  is important to note that the axiomatiz- 
ability of S is used in (3 ) ;  (3) is crucial in the subsequent argument. IVe also 
use the following fact about Giidel numbering : we can go effectively from 
formal objects to their Giidel numbers, and back again (i.e., decide effectively 
whether a given number is a Godel number, and if so, of what formal object). 

_ _  ~ .- 

3% Prov(x, rz ) is often abbreviated to Pr(  rA1 ) or t- 5’ . 

PROPOSITIOK 10.9 (1) If A zs S-provable, then I- zs S-psovable. 
-~ .._ ~ 

( 2 )  Z/ A t) B is S-hroaable, then Pr( ‘A’ ) t) Pr( r ~ l  ), z e , t- ‘7- t- r ~ l  , 

(3) t- 5’ + (t- ‘k- ?il ) zs S-;hrovabk. 

as S-pvovable. 
~ 

PROOF. (1) Suppose A is provable with a proof P. Then by (3)  of Lemma 10.5, 
Prov( rP1 , ‘ A ’ )  is true, which implies, hy ( 2 )  of Proposition 10.6, that  
3% Prov(x, r ~ l  ),  i.e., F ‘A1 , is S-provable. 

(2) Suppose A G R is prmrable with a proof P and A is provable with a 
proof Q. There is a prescription for constructing a proof of B from P and Q ,  
uniform in P and Q ,  wliicli can be arithmetized by a primitive recursive 
function f .  Thus Prov(g, rA1 ) + Prov(f(p, q ) ,  ‘B’ ) is true, from which it 
follows by ( 2 )  of Proposition 10.6 that F rd45 -+ F ‘B’ is provable. The same 
argument works for t- ri-’ + t- ‘2-l . 

(3) If P is a proof of A ,  then we can construct a proof Q of t- rA1 by (1). 
This process is uniform in P ;  in other words, there is a uniform prescription 
for obtaining Q from P. Thus 

~~~ 

r- ~- i 
Prov(p, ‘A’ ) + Prov(f(fi), Pr( rA1 ) ) 

is true for some primitive recursive function f ,  from which it follows that 
~- Fy+t-rFyl, is provable. 

We shall now consider the notion of truth definition and Tarski’s theorem 
concerning it. 

DEFINTION 10.10. A formula of L (the language of S) with one free variable, 
say T(ao), is called a truth definition for S if for every sentence A of L, 

~ 

T (  rA1)  = A 
is S-provable. 



7 8  P E A 4 0  ARITHAIETIC [CH. 2, $10 

THEOKFN 10.11 (larski)  If S is coizszstcizt, tlzeiz it has I I O  tvzitla dcfziutzoia. 

PROOF. Suppose otlierwise. Then there is a formula T(ao)  of L such tha t  for 
every sentence L1 of I>, T (  ‘A’) = A is provable in S. Consider the  formula 
F(a,), with sole free variable a,, defined as: l T ( s b ( a , ,  +(au ) ) ) .  Put p = ‘F(a,)l , 
and let A ,  be the sentence F ( 5 ) .  Then by  definition: 

~. ~ 

~ 

Mso, since ‘AT1 = s b ( ~ ,  v(p)), we can prove in S the equivalences: 
- 

r i  A,. 5 T( A,, ) (by assumed property of 2 )  

E T(Sh(5,  $($))). 

(1) and ( 2 )  together contradict the consistency of S 

i \ i i  interesting consequence of Tlieorem 10.1 1 is the following. First note 
tha t  in the proof of Tlieorem 10.11, we need izot assume that S is axiomatizable 
(cf. Def. 10.1). So we may take as the axioms of S the set of all sentences of 
Ln wliich are f n 4 ~  i n  the intended interpretation (or standard model) 9.R of 
PA (using the ordinal-j. semantic or model-theoretic definition of truth in 9N). 
\Z’e then obtain that there is no formula 7‘(n, , )  of Ln such that for any  sentence 
A of Ln: 

-4 is true u T (  r%l ) is true 

(i.e., true i n  911). This corollary of Theorem 10.11 can be stated in the  form: 
“The uotiori of arithmetical truth is not arithmetical” (i.e., cannot be expressed 
by a formula of Ln).  Tliis is often taken as the  statement of Tarski’s theorem. 

~ F I X I T I O X  10.12. s is called z’mo?i~/dcte if for some sentence = I ,  neither ‘1 
nor i A 4  is provable i n  S. 

Next we introduce “Giidel’s trick” for use in ‘Ilic~orcm 10.1Ci. 

~ E F I X I T I O X  10.13. Coiisider a formula F ( x )  with a inetavariable x (i.e., a new 
predicate varial)le, not in L, wliich we only use temporarily for notational 
convenience), \vlicre x is regarded as an atomic forniula in F ( a )  and F(a)  is 
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~~ 

closed. F(t- sb(no, ? ( n o ) ) )  is a formula with no as its sole free variable. Define 
$I = ‘F(t-sb(n,, and ’-1. as F(F sb(6, i@))). Kote that &-I,. is a seri- 
tence of L. 

.. ~ 

PROOF. Since ‘Afi7’ = sh(j5,  z’(p)) bJ- definition, 

__ 
Hence A,. F(t- ‘A,.’ ) is provable i n  S 

DEFISITIOK 10.13. S is called ( I J - C O ~ I S ~ S ~ ~ ~  if the following condition is satisfied. 
For every formula A (of,), if 7.4 ( f i )  is provable in S for every 11, = 0, 1 ,  2 , .  . . , 
then 3x A ( x )  is not provable in  S. 9ote  that cfJ-coiisistency of S implies 
ccrrisistenc?. of 8.  

THEOREM 10.1 (i (Giidel’s first incompkteness tlieorem). If s is c I J - C O ? l S i S t f ! l i t ,  

then S is i i icoii l~letc.  

PROOF. There csists a sttriteiice .dG of 1- such that A,; E 7 t . 4 ,  is provable 
in S. (:\ny such scntcncc \\ill I)e called a Gijdel scntcnce for S.) This follows 
from Ltmiiia 10.14, by taking F ( x )  in Definitim 1 0 . 1 3  to be 1%. Tlien 
A, 1 t-A(; is provaljle in 8. First we sliall slio\v that A, is not provable 
in S, assuming only the consistency of $, (but without assuming the cwmisistency 
of S). Suppose that A ,  were provalile in 8 .  Then by ( I )  of Proposition 10.9, 
F- A, is provable in S; thus by t l ic  definition of (itidel sentence, l L . l G  is 
provable i n  S, contradicting tlic cwnsistency of 8 .  

Next we shall shon  that 1 A f ;  i s  not provable in S, assuming the to-consistency 
of S. Since \ye haye proved that ‘1, is not provable i n  S, for each = 

0, 1, 2, .  . . lI’rov(fi, rAc: ) is pro\ydile in S. B)‘ the rv-coi1sistcmc.j. of S, 

3n. Prov(s,  ‘AG’ ) is not provable in S. Since l.lc = F A ,  is provable in S, 
l A G  is not provable in S. 

~~~ ~ ~~ 

REiIArIK. In fact, A,, altliougli unprovable, is (intuitively) true, since it 
asserts its oivn unprovabilitj-. 
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_ _ _ ~  
DEFINITIOK 10.17. Consiss is the sentence i F O  = 1. (So Consiss asserts 
the consistency of S.) 

THEOREM 10.18 (Godel’s second incompleteness theorem). If S is consisteizt, 

then Consiss i s  faot provable in S. 

PROOF. Let A,  be a Godel sentence. In the proof of Theorem 10.16, we proved 
that A,  is not provable, assuming only consistency of S. Eow we shall prove 
a stronger theorem: that A,  G Consiss is provable in S. 

(1) To show A,  --f Consiss is provable in S. By Lemma 10.5, iConsiss s 
VrA1(t-A) is provable (where V‘A’ means: for all Godel numbers of 
formulas A ) .  Therefore, A, --f I t-A, --f i V  ‘A’ (t- A )  3 Consiss. 

~ ~ _ _  

__ 

- 

( 2 )  To show Consiss - -+A,  is provable in S. Again by Lemma 10.5, 
Consiss, k- A,  + 1 k- l A G  --f 1 I- k A,, since T A ,  = k- ,4, (of. (3) of Lemma 
10.8). But k- A,  --t F- k A,, by Proposition 10.9. So Consiss, I- A,  + 

1 +I- A,  A t-I- A,, and so Consis, - - t i  F A ,  4 A,. 

__ 

__ 

EXERCISE 10.19. Define the system &A as the quantifier-free part of PA. 
Show that the following are provable in &A for free variables a, b,  c. 

(1) a = a, 

(2) a = b - b  = a ,  

(3) a + b =  b + a ,  
(4) a . b  = b e a ,  
(5)  a. ( b  + c) = a .  b + a. c. 

EXERCISE 10.20. In  Godel’s trick (cf. Definition 10.13) we may replace 
sb(ao, v(ao))  by e(sb(ao, v(ao)) )  for some primitive recursive function e which 
satisfies that if A is a formula then e( ‘A’) is Godel number of a formula 
obtained from A by adding some more stages of the definition of formula; 
for example, e (  ‘-A1) = ‘ I A ~ .  Show that if e(  ‘A1) = ‘iA1, fi = 

‘ F ( t  ;($(a,, Y(a,,))))l and B, is F(F- E(sb(fi, Y ( f i ) ) ) ) ,  then rB,l = sb(@, Y(@)), 
i.e., B ,  is F(l- 43,). 

PROBLEM 10.21 (Liib). Show that for any sentence A ,  if (k A )  - A  is PA- 
provable, then A is itself provable. [Hiiit: By Godel’s trick there is a sentence 
B such that U E (t- B 2 A ) .  For such B ,  if B is provable then t- I3 is provable 
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(cf. Proposition 10.9) and (F B) + A is provable; thus A is provable. This 
procedure is uniform in the proofs of B ;  hence by formalizing the entire 
process we obtain (F B)  ---f (I- A ) .  This and the assumption (I- A )  + A imply 
(I- B)  + A .  But, by the definition of B,  the last sequent implies B itself, and 
hence B (Proposition 10.9). So, since F B and (I- B)  + A are both provable, 
so is A.]  

PROBLEM 10.22 (Rosser). Let e be a primitive recursive function satisfying 
e( ‘ A ’ )  = ‘lA1 as in Exercise 10.20. Let F(a,) be 

~- ____ 
Vx, (Prov(x,, sb(ao, <(a~))) 2 3x2 (x2 d x1 A Prov(x2, Z(sb(x1, ~ ( X O ) ) ) ) ) ) .  

Define p = ‘F(a,)’ and A, as F($) .  Prove that if S is consistent, then 
neither A ,  nor l A ,  is provable in S. 

REMARK. This strengthens Godel’s first incompleteness theorem. Namely, 
the hypothesis of the w-consistency in Theorem 10.16 is weakened to the 
consistency. 

$11. A discussion of ordinals from a finitist standpoint 

When one is concerned with consistency proofs, their philosophical inter- 
pretation is always a paramount problem. There is no doubt that Hilbert’s 
“finitist standpoint” which considers only a finite number of symbols con- 
cretely given and arguments concretely given about finite sequences of these 
symbols (called expressions) is an ideal standpoint in proving consistency. 
From this standpoint, one defines expressions in the following way (as we 
have, in fact, done already). 

(0) Firstly, we give a finite set of symbols, called an alphabet. 
(1) Next, we give a finite set of finite sequences of these symbols, called 

initial expressions. 
(2) Next, we give a finite set of concrete operations, for constructing or 

generating expressions from expressions already obtained. 
(3) Finally, we restrict ourselves to considering only expressions obtained 

by starting with step (1) and iterating step (2). 
As a special case of the above, let us suppose that we are given symbols 

a,, . . . , a, by (l) ,  and concrete operations f l , .  . . , f j ,  to obtain new expressions 
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from expressions we already have, and let 9 be the collection of all expressions 
thus obtained. Then the definition of 9 is as follows: 

(0) The alphabet consists of {a l , .  . . , a,}. 

(1) al , .  . ., a, (considered as sequences of length 1) are in 9. 
( 2 )  If xl,. . ., xki are in 9, then f i (x l , .  . ., xk,) is in 9 (i = 1,. . . , i). 
(3) 9 consists of only these objects (expressions) obtained by (1) and ( 2 ) .  

This is called a recursive or inductive definit ion of the class 9. Corresponding 
to this inductive definition, we have a principle of “PYoof b y  induction” on 
(the elements of) 9, namely, let A be any property (of expressions), and 
suppose we can do the following. 

(1) Prove that A(a , ) ,  . . . , A(a,) hold; 
(2) Assuming A (xl), . . . , A (xk) hold for xl,. . . , x k  in 9, infer that 

A ( f l (X1,  . . . I Xk,)),. . ‘ > A ( f j h , .  . . 9  X k j ) )  

hold. 
Then we conclude that A (x) holds for all x in 9. This follows since for any 

x in 9 that is concretely given, one can show that A(%) holds by following 
the steps in constructing this x, by applying (1) and ( 2 )  above step by step. 
According to this viewpoint, we can regard “induction” simply as a general 
statement of a concrete method of proof applicable for any given expression 
x, and not as an axiom that is accepted a priori. 

Though nobody denies that the above way of thinking is contained in 
Hilbert’s standpoint, there are many opinions about where to set the boundary 
of this standpoint: for example, assuming that transfinite induction up to 
each of w, co * 2 ,  CD 3 , .  . . is accepted, whether transfinite induction up to 
w2 should also be accepted; or, assuming that transfinite induction up to 
each of w ,  om, wwo,.  . . is accepted, whether transfinite induction up to the 
first &-number (denoted by c0) should be. If we consider each concretely given 
expression (in this case an ordinal less than c0),  then it must be less than some 
w,,, and so should be accepted-or should it ? Here w, denotes the ordinal 

. . n. 
w 

When one thinks about this in a very skeptical way, how far can one accept 
induction ? One might even perhaps doubt whether induction up to w itself 
is already beyond Hilbert’s standpoint. 
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However, if we interpret Hilbert’s finitist standpoint in an extremely pure 
and restricted way so as to forbid both transfinite induction and all abstract 
notions such as Godel’s primitive recursive functionals of finite types, then 
by Godel’s incompleteness theorem, it is clear that the consistency of PA cannot 
be proved i f  one adheres to this standpoint, since (presumably) such strictly 
finitist methods can be formalized in PA (in fact, in “primitive recursive 
arithmetic” : see below). 

Therefore in a consistency proof it is always very interesting to see what 
is used that goes beyond Hilbert’s finitist standpoint, and on what basis it can 
be justified. 

At  present, the methods used mainly for consistency proofs are firstly 
those using transfinite induction (initiated by Gentzen), and, secondly, those 
using higher type functionals (initiated by Godel). 

We explain the first method, that of Gentzen. First, in order to make sure 
of our standpoint, let us consider an inductive definition of natural numbers 
that adheres most closely to the above scheme : 

N 1 1 is a natural number. 
N 2 If a is a natural number, then a1 is a natural number. 
N 3 Only those objects obtained by N 1 and N 2 are natural numbers. 
Although we normally consider a definition like this to be obvious, it seems 

that this is because much knowledge is often unconsciously presupposed. In 
order to clarify our unconsciously-arrived-at standpoint, let us ask ourselves 
questions that a person E who has no understanding of N 1-N 3 might ask. 

First, E might say he did not understand N 2 and N 3. For E it is impossible 
to understand N 2  using the notion of natural number when one does not 
understand “natural numbers” (a “vicious circle”). Moreover, E cannot 
understand in N 3 what “those objects obtained by N 1 and N 2” means. 
There are many possible answers to these doubts. The most practical one 
from the didactic point of view will be as follows : 1 is a natural number by N 1. 
Now that we know 1 is a natural number, 11 is a natural number by N 2; 
now that we know 11 is a natural number, 111 is a natural number by N 2 .  
Everything obtained in this way by starting with N 1 and iterating the 
operation N 2 is a natural number. N 3 says on the other hand, that only 
those things obtained in this way are natural numbers. Of course E might 
ask more questions about the above explanation: “What do you mean by 
‘iterating the operation N 2’ ?”, “What do you mean by ‘everything obtained 
in this way’?” etc., and this kind of discussion can be continued endlessly. 
I hope that E will finally get the idea. The important fact is that the general 
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concept of a (potentially) infinite process of creating new things by iterating 
a concrete operation a finite number of times is presupposed in order to 
understand the definition N 1-N 3 of natural numbers, and that the purpose 
of the definition N 1-N 3 is to specify the process of defining natural numbers 
by such a procedure. 

When we analyze precisely the discussion repeated endlessly with E ,  we 
will realize that we must accept or presuppose to some extend the notion 
of finite sequence (or finite iteration of an operation) as our basic notion. Here an 
impcrtant remark should be made: this does not mean that we must accept 
large amounts of knowledge about sequences and finiteness separately; only 
that which seems absolutely necessary to understand the single notion of 
finite sequence. 

In order to clarify our standpoint further, let us consider the inductive 
definition of the finite (non-empty) sequences of natural numbers: 

S 1 If n is a natural number, then n itself is a finite sequence of natural 

S 2 If rn is a natural number and s is a finite sequence of natural numbers, 

S 3 Only those objects obtained by S 1 and S 2 are finite sequences of 

I t  should be realized that this kind of definition is regarded as basic and 

We shall present some more examples of such inductively defined classes 

For instance, the notion of length of a finite sequence of natural numbers 

L 1 If s is a sequence of natural numbers consisting of a natural number n 

L 2 If s is a sequence of natural numbers of the form so * IZ, and the length 

We can certainly take an alternative definition : given a sequence of natural 
numbers, say s, examine s and count the number of * I s  in it. If the number 
of * I s  is 1, then the length of s is 1 + 1. (Each of these definitions presents an 
operation which applies to the concretely given figures in a general form.) 

These finitist inferences often present striking similarities to the arguments 
in the following formalism, which we call primitive recursive arithmetic. 

(1) The basic logical system is the propositional calculus. 

numbers. 

then s * wz is a finite sequence of natural numbers. 

natural numbers. 

clear, no matter what standpoint one assumes. 

of concrete objects, and properties of them. 

is defined inductively as follows: 

only, then the length of s is 1. 

of so is 1, then the length of s is 1 + 1.  
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( 2 )  The defining equations of primitive recursive functions are assumed as 

(3) No quantifiers are introduced. 
(4) Mathematical induction (for quantifier-free formulas) is admitted : 

axioms. 

A ( ~ ) ,  r - A ,  
A (o), r + d i ( t )  ’ 

where a does not occur in A (0 ) ,  r or A ,  and t is an arbitrary term. 
From the above discussion, it seems quite reasonable to characterize 

Hilbert’s finitist standpoint as that  which can be formalized in primitivc 
recursive arithmetic. This standpoint shall be called the “purely finitist 
standpoint”. It is therefore of paramount importance to clarify where a 
consistency proof exceeds this formalism, i.e., the purely finitist standpoint. 
(Thus, in the following, we shall not bother with arguments which can be 
carried out within the above formalism.) In  order to  pursue this point, we 
shall first present the recursive definition of ordinal numbers up to eo (the 
first &-number) ; temporarily, by “ordinal” we mean : ordinal less than E,,. 

0 1 0 is an ordinal. 
0 2 Let p and pl, pz,.  . . , pll  be ordinals. Then pl + p2 + . . . + p n  and 

0” are ordinals. 
0 3 Only those objects obtained by 0 1 and 0 2 are ordinals. 

coo will be denoted by 1. Regarding 1 as the natural number 1, 1 + 1 as 2 ,  etc., 
we may assume that the natural numbers are included in the ordinals. (We may 
also include 0 among the natural numbers if we wish.) 

We can now define the relations = and < on ordinals so that they match 
the notions of equality and the natural ordering of ordinals which we know 
from set theory, and develop the theory of ordinals for these relations within 
the purely finitist standpoint. We can actually inductively define =, <, +, 
and * simultaneously so that they satisfy the following. 

(1) < is a linear ordering and 0 is its least element. 
( 2 )  u)” < coy if and only if p < v. 
(3) Let p be an ordinal containing an occurrence of the symbol 0 but not 

0 itself, and let p‘ be the ordinal obtained from p by eliminating this occurrence 
of 0 as well as excessive occurrences of +. Then p = p’. 

As a consequence of (3) it can be easily shown that 
(4) Every ordinal which is not 0 can be expressed in the form 

0” + fIP + . . . + WWn, 
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where each of pl, p 2 , .  . . , p n  which is not 0 has the same property. (Each 
term wpi is called a monomial of this ordinal.) 

(5)  Let p and v be of the forms 

wuL + a@* + . . . + wPk and wvl + wyl + . . . + wY2, 

respectively. Then p + v is defined as 

(6) Let p be an ordinal which is written in the form of (4) and contains 
two consecutive terms w’j and w’j+l with pi < pj+l, i.e., p is of the form 

. . . + wpj + &+I + . . ., 
and let p‘ be an ordinal obtained from p be deleting “w’j +”, so that pr is 
of the form 

Then p = p‘. 
. . .  w’j+l + . . . . 

As a consequence of (6) we can show that 
(7) For every ordinal p (which is not 0) there is an ordinal of the form 

w@’ + WU’ + . . . + a’”, 
where pl 3 . . . 3 p n  such that p = v means: 
v < p or v = p. The latter is called the normal form of p. (This normal form 
of p is unique, since the same holds for every ordinal which is used in con- 
structing p :  see 0 2.) 

+ . . . + dn, where p 

(8) Let p have the normal form 

a”’ + w”1+ . . . + wvn 

and v be > 0. Then p * wv = wU’+”. 
(9) Let p and v be as in ( 5 ) .  Then 

p . v = p ’ w v ’ + p . w v * +  . . .  + p ‘ W Y E .  

(10) (mu)” is defined as wu . w” . . . w” (n times) for any natural number n. 
Then ( w @ ) ~  = w ” ~ .  

As a consequence of our definitions, it can easily be shown that for an 
arbitrary ordinal p an ordinal of the form w, which satisfies p < w, can be 
constructed. 
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I t  is obvious that for any given natural number n the length of a strictly 
decreasing sequence of ordinals which starts with n is at  most n + 1 ; in other 
words, there can be no strictly decreasing sequence of ordinals which starts 
with n and has length n + 2 .  This fact tells us that the notion of arbitrary, 
strictly decreasing sequences of ordinals which start with n is a clear notion. 

At this point it is not very meaningful to object to this on the grounds 
that if we write the statement that  a strictly decreasing sequence terminates, 
in terms of expressions in the Kleene hierarchy, it turns out to belong to 
the I7:-class. The important fact is not to which class of the hierarchy it 
belongs but how evident it is. We shall come to this point later. 

In the following section, a consistency proof (for PA) will be given in the 
following way. In order to emphasize the concrete or “figurative” aspect of 
the arguments, we say “proof-figure’’ for formal proof. 

1) We present a uniform method such that,  if a proof-figure P is concretely 
given, then the method enables us to concretely construct another proof- 
figure P’; furthermore, the end-sequent of P‘ is the same as that of P if the 
end-sequent of P does not contain quantifiers. The process of constructing 
P‘ from P is called the “reduction” (of P) and may be denoted by Y. Thus 

2 )  There is a uniform method by which every proof-figure is assigned 
an ordinal < E ~ .  The ordinal assigned to P (the ordinal of P)  may be denoted 

3) o and Y satisfy: whenever a proof-figure P contains an application of 
ind or cut, then o(P) > cc) and O(Y(P)) < o(P), and if P does not contain any 
such application, then o(P) < cc). 

Suppose we have concretely shown that any strictly decreasing sequence 
of natural numbers is finite, and that whenever a concrete method of con- 
structing decreasing sequences of ordinals < e0 is given it can be recognized 
that any decreasing sequence constructed this way is finite (or such a sequence 
terminates). (By “decreasing sequence” we will always mean strictly decreas- 
ing sequence.) We can then conclude, in the light of 1)-3) above, that ,  for 
any given proof-figure P whose end-sequent does not contain quantifiers, 
there is a concrete method of transforming it into a proof-figure with the 
same end-sequent and containing no applications of the rules cut and ind. 
It can beeasily seen, on the other hand, that  no proof-figure without applications 
of a cut or ind can be a proof of the empty sequent. Thus we can claim that 
the consistency of the system has been proved. 

P‘ = Y(P).  

by 

The crucial point in the process described above is to demonstrate: 
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(*) Whenever a concrete method of constructing decreasing sequences of 
ordinals is given, any such decreasing sequence must be finite. 

We are going to present a version of such a demonstration, which the author 
believes represents the most illuminating approach to the consistency proof. 

Suppose a, > a, > . . . is a decreasing sequence concretely given. 
(I) Assume a, < co, or a, is a natural number. 
Consider a decreasing sequence which starts with a concretely given natural 

number. As soon as one writes down its first term n, one can recognize that 
its length must be at most n + 1. Hence we can assume that a, is not a natural 
number. 

In order to deal with all ordinals < eo, we shall define the concept of u- 
sequence and a-eliminator for all cc < F ~ .  We start, however, with a simple 
example rather than the general definition. 

(11) Suppose each ai in a, > a, > . . . is written in the canonical form; 
ai has the form 

i 
w”: + 0”: + . . . + wUni + kp, 

where ,u; > 0 and k ,  is a natural number. (This includes the case where 
+ k ,  does not actually appear.) A sequence in which k ,  does not appear for 

any a, will be called a I-sequence. We call co”: + o’’f + . . . + cou2t in a, the 
1-major part of a,. We shall give a concrete method (M,) which enables us 
to do the following: given a descending sequence a, > a,  > . . . , where each 
a, is written in its canonical form, the method M ,  concretely produces a 
(decreasing) 1-sequence b, > bl > . . . so as to satisfy the condition 

(C,) b, is the 1-major part of a,, and we can concretely show that if bo > b, > . . . 
is a finite sequence, then so is a, > al > . . . . 

This method MI (a 1-eliminator) is defined as follows. Put a, = a: + k,, 
where u: is the 1-major part of a,. Then a, > a, > a2 > . . . can be expressed 
as a; + ko > a; + k ,  > a; + k2 > . . . . 

Put b, = a;. Suppose 6, > b, > . . . > b, has been constructed in such 
a manner that b, is a; for some i. Then either a; = a,fl = . . . - - a;+P for 
some9 and a3+p is the last term in the sequence, or a;, = 

This is so, since a; = a;+, = . . . - - a,+p = . . . implies k ,  > 
= . . . - - a,+p > 

k3+1 > , . . > k,,, > . . ., but such a sequence (of natural numbers) must 
stop (cf. (I)). Therefore, as stated above, either the whole sequence stops, or 
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a;.+p > for some 9.  If the former is the case, then stop. If the latter 
holds, then put bmtl  = u ; + ~ + ~ .  

From the definition, it is obvious that b, > b, > . . . > b,  > . . . . Suppose 
this sequence is finite, say b, > b ,  > . . . > b,. Then according to the 
prescribed construction of b,+l the original sequence is finite. Thus the 
sequence bo > b ,  > . . . satisfies (C,), and we have completed the definition 

(111) Suppose we are given a decreasing sequence a,  > a ,  > . . . , in which 
a, < w2. Then by a 1-eliminator M ,  applied to this sequence, we can con- 
struct a 1-sequence bo > bl > . . ., where bo < a,. Then b, > b, > . . . can 
be written in the form w * k ,  > w - K ,  > . . . , which implies K O  > kl  > . . . . 
Then by (I) ,  k ,  > k ,  > ’. . . must be finite, which successively implies that  
b, > 0,  > . . . and a, > al > . . . are finite. 

(IV) We now define “n-sequences” as follows. Let a, > al > . . . be a 
descending sequence which is written in the form a, + c, > a, + cl > . . ., 
where if a i  = a: + ci then each monomial in a: is 3 con and each monomial 
in ci is < an. (a: is called the n-major part of ai.) Such a sequence is called an 
n-sequence if every ci is empty. 

Now assume (as an induction hypothesis) that  any descending sequence 
d o  > d,  > . . . , with do < con, is finite. We shall define a concrete method M ,  
(an n-eliminator) such that, given a decreasing sequence a, > a ,  > . . . , M ,  
concretely produces an n-sequence, say b, > b, > . . . , which satisfies: 

of M , .  

(C,) b,, is the n-major part of a,, and if b, > b ,  > . . . is finite then we can 
concretely show that a,  > a, > . . . is also finite. 

The prescription for M ,  is as follows. Write each a, as a: + ci, where a, is 
the n-major part of ai. The definition now proceeds very much like that for 
I-sequences in (11). Namely, put b,  = u;. Suppose b, > b ,  > . . . > b ,  has 
been constructed and b ,  is a). If a j  = a j + ,  = . . . = a;.+$ and a i t p  is th,e last 
terininthegivensequence,thenstop.Otherwisea, = ai+l = . . . -a,+ P > a j + p + l  
for some$, since a; = a;+, = . . . = a)+p  implies that  c j  > cj+l > . . . > c ~ + ~ ,  

which, by the induction hypothesis, is finite; hence for some p, cj+p+l 3 c ~ + ~ ,  
which implies > u ) . + ~ + ~ ~ .  Then define b ,  = Then the sequence 
b, > bl > . . . satisfies (CJ, and so we have successfully defined M,. 

(V) By means of the n-eliminator M,, we shall prove that a decreasing 
sequence a,  > a ,  > . . ., where a,  < df1, must be finite. By applying M ,  
to a,  > a ,  > . . . , we can construct concretely an n-sequence, say b, > bl > . . . , 

- I ,  
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where b, < ao. Moreover, b, can be written as wn * ki, where ki is a natural 
number. So, on. k ,  > w n -  k ,  > . . ., and this implies ko > k l  > . . ., which 
is a finite sequence by (I), hence bo > bl > . . . is finite, which in turn 
implies that a. > al > . . . is finite. 

(VI) From (111) and (V) we conclude: given (concretely) any natural 
number n, we can concretely demonstrate that any decreasing sequence 
a, > a, > . . . with a, < wn is finite. 

(VII) Any decreasing sequence a, > a, > . . . is finite if a, < ww, for this 
means that a, < wn for some n, and hence (VI) applies. 

(VIII)  Now the general theory of a-sequences and (u, n)-eliminators will 
be developed, where u ranges over all ordinals < E, and 12 ranges over natural 
numbers > 0. A descending sequence do > dl  > . . . is called an u-sequence 
if in each di all the monomials are 3 ma. If a = a’ + c where each monomial 
in a’ is 3 wa and each monsmial in c is < wax, then we say that a’ is the 
u-major part of a. An u-eliminator has the property that given any concrete 
descending sequence, say a, > a, > . . . , it concretely produces an u-sequence 
bo > b, > . . . such that 

(i) bo is the u-major part of a,, 

(ii) if b, > bl > . . . is a finite sequence then we can concretely demonstrate 
that a, > a, > . . . is finite. 

(Clearly a. >, bo.) 
We delay the definition of u-eliminators. Assuming that an u-eliminator 

has been defined for every u, we can show that any decreasing sequence is 
finite. For consider a. > a ,  > . . . . There exists an o( such that a, < oat1. 

An a-eliminator concretely gives an u-sequence bo > b ,  > . . . satisfying (i) 
and (ii) above. Since b, < ao, each bi can be written in the form wa - k,; thus 
ma*  ko > m a .  k ,  > . . ., which implies k ,  > k l  > . . . . By (I) this means 
that ko > kl > . . . is finite, hence so is bo > b, > . . . ; so a. > a, > . . . 
is finite. This proves our objective (*). Therefore, what must be done is to 
define (construct) u-eliminators for all u < E,. 

(IX) We rename an u-eliminator to be an (a, 1)-eliminator. Suppose that 
(u, n)-eliminators have been defined. A (/?, n + 1)-eliminator is a concrete 

method for constructing an (u - 04, n)-eliminator from any given (u, n)- 
eliminator. We must go through the following procedure. 

(X) Suppose {p,)mcw is an increasing sequence of ordinals whose limit is 
p (where there is a concrete method for obtaining pm for each m), and suppose 
g, is a p,-eliminator. Then the g defined as follows is a ,u-eliminator. Suppose 
a0 > a, > . . . is a concretely given sequence. If a, is written as a; + c,, 
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where a; is the p-major part of ao, then there exists an m for which co < d f m ;  

so we may assume that each a, is written as a: + ci, where a: is the pm-major 
part of ai. Then g, can be applied to the sequence a,  > a, > . . . and hence 
it concretely produces a pm-sequence 

blo > b,, > b12 > . . . (1 ) 

satisfying (i) and (ii) above (with pm in place of a ) ,  with b,, = a:, so that  in 
fact b,, is the p-major part of a,. Write bo = blo. 

Now consider the sequence b,, > b,, > . . . . Suppose b,, 3 mu. Then 
repeat the above procedure: i.e., for the sequence (l), write blo = b;, + cl0, 
where b;,is the p-major paf-t of blo. Then there exists an m1 such that cl0 < wI*mt. 

So apply g,, to the sequence b,, > b12 > b,, > . . . , to obtain a p,,-sequence 

b2, > b22 > b2, > . . 

satisfying (i) and (ii) (with ,urn, in place of E ) ,  with b,, the p-major part of blo. 
Put b ,  = b,,. Suppose bZ2 3 mu. Then repeat this procedure with the sequence 
b,, > b,, > . . . to obtain a sequence 

and put b2 = b32. Continuing in this way, we obtain a p-sequence 

b o > b , > b , >  . . .  . 

If this sequence is finite with last term (say) b ,  = b,+l.L, then it follows that 
in the sequence 

bL+l.L > bl+l.L+l > bL+l,l+2 > . ' . (2 )  

we must have bl+l,l+l < o u .  So bL+,,,+, < drn' for some m'. Apply g,. to the 
sequence ( 2 ) ;  we then obtain a finite pm.-sequence with only the term 0; 
hence the sequence ( 2 )  is finite (by definition of p,,-eliminator) ; hence the 
sequence b,,L-l > b L , L  > . . . is finite; and so on (backwards), until we deduce 
that the original sequence a, > al > . . . is finite. 

(XI) Suppose {,urn},< is a sequence of ordinals whose limit is p and suppose, 
for each m, a (,urn, n + 1)-eliminator is concretely given. Then we can define 
a (p, n + 1)-eliminator g as follows. The definition is by induction on n. For 
n = 0 (so n + 1 = l ) ,  (X) applies. Assume (XI) for n ;  so there is an operation 
k ,  such that for any sequence {y,},<,, with limit y and any (ym, n)-eliminator 
gk, k ,  applied to g i  concretely produces a ( y ,  %)-eliminator. Now for n + 1, 
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suppose a sequence {fi,},,, with limit and an (a,  n)-eliminator$ are given. 
Since g, is a (/I,, n + 1)-eliminator, it  produces concretely an (a  * wpm, n)- 
eliminator from #, which we denote by g,(#). So, by taking a w for y,, 
g,($) for g: and a .  w4 for y ,  we can apply the induction hypothesis; thus 
k ,  applied to {gi} defines an (a * w4, %)-eliminator q. This procedure for defin- 
ing q from $ is concrete, and so serves as a (p ,  n + 1)-eliminator. 

(XII) Suppose g is a (p, n + 1)-eliminator. Then we will construct a 
( p  - w ,  n + 1)-eliminator. In  virtue of (XI) it suffices to show that we can 
concretely construct (from g) a (p m, n + 1)-eliminator for every m < w .  

Suppose an (a, n)-eliminator, say f ,  is given. Note that 

P 

m 

Since g is a (p, n + ])-eliminator, g concretely constructs an ( a .  w’, n)- 
eliminator from f ,  which we denote by g( f ) .  Now apply g to this, to obtain an 
(a  * mu mu, %)-eliminator g(g ( f ) ) .  Repeating this procedure m times, we obtain 
the (a * mu’,, n)-eliminator g(g( . . . g( f )  . . .)). 

(XIII)  We can now construct a (1, m + 1)-eliminator for every m 3 0. 
The construction is by induction on m. We may take M ,  as a (1, 1)-eliminator. 
Form > 0, suppose f is an (a ,  m)-eliminator. Then, by (XII) (with n + 1 = m) ,  
we can construct an (a  * w ,  m)-eliminator concretely from f .  Hence we have a 
(1, m + 1)-eliminator. 

(XIV) Conclusion: An (a ,  92)-eliminator can be constructed for every a of 
the form w,, i.e., 

The construction is by induction on m. If m = 0, then we define a to be 
1 = wo. Then an (a,  n)-eliminator has been defined in (XIII)  for every n. 
Suppose f is a (1,  %)-eliminator, and g is an (a,  n + 1)-eliminator, which we 
assume to have been defined. Then g operates on f and produces the required 
(1 . ma, n) = (oP, %)-eliminator. This completes the proof. 

Our standpoint, which has been discussed above, is like Hilbert’s in the 
sense that both standpoints involve “Gedankenexperimente” only on 
clearly defined operations applied to some concretely given figures and on 
some clearly defined inferences concerning these operations. An a-eliminator 
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is a concrete operation which operates on concretely given figures. A (/3, 2 ) -  
eliminator is a concrete method which enables one to exercise a Gedanken- 
experiment in constructing an a * wB-eliminator from any concretely given 
a-eliminator. So if an ordinal, say ok is given, then we have a method for 
concretely constructing an w,-eliminator. 

We believe that the most illuminating way to view the consistency proof of 
PA, to be described in $12, is in terms of the notion of eliminators, as described 
above. (In fact, it is not difficult to generalize this notion, so as to include, 
say, the concept of (a ,  o)-eliminator, and so on ; however, this is unnecessary 
for the consistency proof for PA.) 

The ideas we have presented are normally formulated in terms of the 
notion of accessibility. It may be helpful to reformulate our ideas in terms 
of this notion, which (we believe) is a rough but convenient way of expressing 
the idea of eliminators. 

We say that an ordinal p is accessible if it  has been demonstrated that 
every strictly decreasing sequence starting with p is finite. More precisely, 
we consider the notion of accessibility only when we have actually seen, or 
demonstrated constructively, that a given ordinal is accessible. Therefore 
we never consider a general notion of accessibility, and hence we do not define 
the negation of accessibility as such. If we mention “the negation of accessibil- 
ity”, it means that we are concretely given an infinite, strictly decreasing 
sequence. 

First, we assume we have arithmetized the construction of the ordinals 
(less than c0) given by clauses 0 1-0 3. In other words, we assume a Godel 
numbering of these (expressions for) ordinals, with certain nice properties : 
namely, the induced number-theoretic relations and functions corresponding 
to the ordinal relations and functions =, <, +, *, and exponentiation by o 
(which we will often continue to denote by the same symbols) are primitive 
recursive ; also we can primitive recursively represent any (Godel number 
of an) ordinal in its normal form, and hence decide primitive recursively 
whether it represents a limit or successor ordinal, etc. The ordering of the 
natural numbers corresponding to  < (on the ordinals) will be called a 
“standard well-ordering of type c0”, or just “standard ordering of q,”. 

Our method for proving the accessibility of ordinals will be as follows. 
(We work with our standard well-ordering of type e0.) 

(1) When it is known that p1 < pUe < p 3  . . . + v (i.e., v is the limit of the 
increasing sequence (p i } )  and that every pi is accessible, then v is also 
accessible. 
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( 2 )  A method is given by which, from the accessibility of a subsystem, one 
can deduce the accessibility of a larger system. 

(3) By repeating ( 1 )  and ( 2 ) ,  we show that every initial segment of our 
ordering is accessible, and hence so is the whole ordering. 

The fact that every decreasing sequence which starts with a natural number 
is finite can be proved as in (I) above. 

Let us proceed to the next stage: decreasing sequences of ordinals less 
than w + w .  Here we can again see that every decreasing sequence terminates. 
This is done as follows. Consider the first term po of such a sequence. We can 
effectively decide whether it is of the form n or of the form w + n, where n 
is a natural number. If it is of the form n, then it suffices to repeat the above 
argument for natural numbers. If it is of the form w + n, consider the first 
n + 2 terms of the sequence 

Pn+l < . . . < P2 < PI < PO. 
It is easily seen that pu,+l cannot be of the form w + m for any natural 
number m and hence must be a natural number, so we now repeat the proof 
for natural numbers. This method can be extended to the cases of decreasing 
sequences of ordinals less than w - n, less than 02, less than cow, etc. 

A more mathematical presentation of this idea now follows. 

LEMMA 11.1. If p and v are accessible, then so i s  p + v. 
PROOF. We just generalize the proof that w + w is accessible and make use 
of the following fact which is easily seen: given ordinals p, l ,  v such that 
p < E < v, we can effectively find a vo such that vo < v and l = p + YO. 
LEMMA 11.2. If p i s  accessible, then so i s  p * w .  

PROOF. We use the following fact, which is easy to show: if v < ,u. o, then 
we can find an n such that v < p n. 

With these lemmas, let us prove that all ordinals less than co are accessible. 
First we introduce the technical term: “n-accessible”, for every n, by induction 
on n. 

DEFINITION 11.3. p is said to be 1-accessible if p is accessible. p is said to be 
(n + 1)-accessible if for every v which is n-accessible, v - w’ is n-accessible. 
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I t  should be emphasized that “v being n-accessible” is a clear notion only 
when it has been concretely demonstrated that v is n-accessible. 

LEMMA 11.4. If p i s  n-accessible and v < p, then v i s  n-accessible. 

LEMMA 11.5. Suppose {,urn} i s  a n  increasing sequence of ordinals with limit p. 
If each p, i s  n-accessible, then so as p. 

LEMMA 11.6. If v i s  (n + 1)-accessible, then so is v * co. 

PROOF. We must show that for any n-accessible p, p coy’o is n-accessible. For 
this purpose it suffices to show that p - is n-accessible for each m (cf. 
Lemma 11 5).  This is, however, obvious, since 

p .  c o y , “  = p .  ( c o y  = p .  . . . wv 

and v is (n + l),accessible. 

PROPOSITION 11.7. 1 i s  (n + 1)-accessible. 

PROOF. Suppose p is n-accessible. Then by Lemma 11.6, p - w = p 09 is 
n-accessible, which means by definition that 1 is (n + 1)-accessible. 

DEFINITION 11.8. coo = 1; = cow”. 

PROPOSITION 11.9. cok  i s  (n - k)-accessible for an arbitrary n > k .  

PROOF. By induction on k .  If k = 0, then cok = 1 and hence is n-accessible 
for all n (cf. Proposition 11.7). Suppose W k  is (n - K)-accessible. Since 1 is 
[n - ( k  + l)]-accessible, 1 * coWk is [n - ( k  + l)]-accessible by Definition 11.3, 
i.e., w k + l  is [n - ( k  + I)]-accessible. 

As a special case of Proposition 11.9 we have: 

PROPOSITION 11.10. wk i s  accessible for every k .  

Given any decreasing sequence of ordinals (less than E ~ ) ,  there is an wk such 
that all ordinals in the sequence are less than wk. Therefore the sequence must 
be finite by Proposition 11.10. Thus we can conclude: 

PROPOSITION 11.11. E~ i s  accessible. 
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An important point to  note is this. Our proof of the accessibility of E~ (by the 
method of eliminators, (I)-(XIV), or by the method of Proposition 11.11) 
depends essentially on the fact that  we are using a standard well-ordering 
of type e,, for which the successive steps in the argument are evident. Of 
course this is not so for an arbitrary well-ordering of type E,, nor for the 
general notion of well-ordering or ordinal. 

Comparison of our standpoint with some other standpoints may help one 
to understand our standpoint better. First, consider set theory. Our stand- 
point does not assume the absolute world as set theory does, which we can 
think of as being based on the notion of an “infinite mind”. It is obvious 
that, on the contrary, it  tries to avoid the absolute world of an “infinite mind’ 
as much as possible. It is true that in the study of number theory, which does 
not involve the notion of sets, the absolute world of numbers 0, 1, 2 , .  . . is 
not such a complicated notion; to  an infinite mind it would be quite clear 
and transparent. Nevertheless, our minds being finite, it is, after all, an 
imaginary world to us, no matter how clear and transparent it may appear. 
Therefore we need reassurance of such a world in one way or another. 

Next, consider intuitionism. Although our standpoint and that of intui- 
tionism have much in common, the difference may be expressed as follows. 

Our standpoint avoids abstract notions as much as possible, except those 
which are eventually reduced to concrete operations or Gedankenexperimente 
on concretely given sequences. Of course we also have to deal with operations 
on operations, etc. However, such operations, too, can be thought of as 
Gedankenexperimente on (concrete) operations. 

By contrast, intuitionism emphatically deals with abstract notions. This 
is seen by the fact that  its basic notion of “construction” (or “proof”) is 
absolutely abstract, and this abstract nature also seems necessary for its 
impredicative concept of “implication”. It is not the aim of intuitionism to 
reduce these abstract notions to concrete notions as we do. 

We believe that our standpoint is a natural extension of Hilbert’s finitist 
standpoint, similar to  that introduced by Gentzen, andso wecall it the Hilbert- 
Gentzen finitist standpoint. 

Now a Gentzen-style consistency proof is carried out as follows : 
(1) Construct a suitable standard ordering, in the strictly finitist standpoint. 
( 2 )  Convince oneself, in the Hilbert-Gentzen standpoint, that  it is indeed 

(3) Otherwise use only strictly finitist means in the consistency proof. 
We now present a consistency proof of this kind for PA. 

a well-ordering. 
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$12. A consistency proof of PA 

We assume from now on that PA is formalized in a language which includes 
a constant f for every primitive recursive function f .  We call this language L. 

As initial sequents of PA we will also take from now on the defining equa- 
tions for all primitive recursive functions, as well as all sequents + s = t ,  
where s, t are closed terms of L denoting the same number, and all sequents 
s = t +, where s, t are closed terms of L denoting different numbers. 

We shall follow Gentzen’s second version of his consistency proof for first 
order arithmetic. This involves a “reduction method”. Since this method 
will recur often, we shall abstract the concept here. (We assume that the 
ordinals less than E~ are ’represented as notations in a fixed standard well- 
ordering, as described in $11.) 

First, suppose that ordinals less than c0 are effectively assigned to proofs. 
Now let R be a property of proofs such that :  

(*) For any proof P satisfying R, we can find (effectively from P )  a proof P‘ 
satisfying R such that P‘ has a smaller ordinal than P. 

We can then infer from (*), and the accessibility of E ~ :  

(**) No proof satisfies R 

The procedure of finding (or constructing) P‘ from P in (*) is called: 
a reduction of P to P’ (for the property R).  

The property R of proofs that we will be interested in, is the property of 
having + as an end-sequent. 

By giving a uniform reduction procedure for this property (Lemma 12.8), 
we will have shown (by (*#’)) that no proof of PA ends with +; in other 
words : 

THEOREM 12.1. The system P d  i s  consistent. 

Of course the importance of this theorem exists in its proof, which, apart 
from the assumption of the accessibility of E ~ ,  is strictly finitist. (Nobody sus- 
pects the consistency of Peano arithmetic !) 

Theorem 12.1 follows from Lemma 12.8 (as just stated). First, we need: 

DEFIXITIOK 12.2. A proof in PA is sim,ble if no free variables occur in it, and 
it contains only mathematical initial sequents, weak inferences and 
inessential cuts. 
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(Recall that  a weak inference is a structural inference other than a cut. 
Cf. $9 for other definitions.) 

LEMMA 12.3. There is no simple proof of -+. 

PROOF. Let P be any simple proof. All the formulas in P are of the form s = t 
with s and t closed. Note that with the natural interpretation of the constants, 
i t  can be determined (finitistically) whether s = t is true or false (since this 
only involves the evaluation of certain primitive recursive functions). A 
sequent in P is then given the value T if at  least one formula in the anticedent 
is false, or a t  least one formula in the succedent is true, and it is given the 
value F otherwise. It is easy to  see that all mathematical initial sequents take 
the value T, and weak inferences and inessential cuts preserve the value T 
downward for sequents. So all sequents of P have the value T. But +has  the 
value F. 

DEFINITION 12.4. (1) The grade of a formula, is (as defined in $5) the number 
of logical symbols it contains. The grade of a cut is the grade of the cut formula; 
the grade of a n  ind inference is the grade of the induction formula. 

(2) The height of a sequent S in a proof P (denoted by h ( S ;  P) or, for short, 
h(S) )  is the maximum of the grades of the cuts and ind's which occur in P 
below S. 

PROPOSITION 12.5. (1) The height of the end-sequent of a proof i s  0. 

sequents of an  inference, then h(S,) = h(S,). 
(2) If S ,  is  above S2 in a proof, then h(S,) 3 h(S2) ; if S, and S2 are the upper 

Before defining the assignment of ordinals to proofs, we introduce the 
following notation. For any ordinal u and natural number n, wn(u) is defined 
by induction on n ;  wo(a) = u, ~ ~ + ~ ( a )  = wan(@. So 

w" 

w&) = 0 . - 
n 

DEFINITION 12.6. Assignment of ordinals (less than E,,) to  the proofs of PA. 
First we assign ordinals to the sequents in a proof. The ordinal assigned to 
a sequent S in a proof P is denoted by o(S; P )  or o(S). Now suppose a proof P 
is given. We shall define o(S) = o(S; P), for all sequents S in P. 
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We shall henceforth assume that the ordinals are expressed in normal 
form (cf. $11).  If p and v are ordinals of the form w'* + wua + . . . + ween 
and wvi + wvz + . . . + ovn respectively (so that p1 3 p 2  3 . . . 3 ,umA and 
v1 3 v2 >, . . . 3 v,J, then ,u # v denotes the ordinal uaL + was + . . . + o m+n, 

where {Al, A2, . . . , A,,,} = {pl, p 2 , .  . . , vl, v2,. . . }  and A, 3 A2 3 . . . > ;Im+,. 
p $ v is called the natural sum of p and v. 

(1) An initial sequent (in P )  is assigned the ordinal 1. 
(2) If S is the lower sequent of a weak inference, then o(S) is the same 

as the ordinal of its upper sequent. 
(3) If S is the lower sequent of A : left, v : right, 3 : left or an inference 

involving a quantifier, and the upper sequent has the ordinal p, then o(S) = 

(4) If S is the lower sequent of A : right, v : left, or ZI : left and the upper 

(5) If S is the lower sequent of a cut and its upper sequents have the 

p +  1. 

sequents have ordinals ,u and v, then o(S) = p # Y. 

ordinals p and v, then o(S) is w k P l ( p  # v), i.e., 

where k and I are the heights of the upper sequents and of S ,  respectively. 

p, then o(S) is wk-l+l(,ul + l),  i.e., 
(6) If S is the lower sequent of an ind and its upper sequent has the ordinal 

(k  - I) + 1, 

. . '  I w@'+l 

w 

where,uhasthenormalformoui+wul+. . . +wPn(sothat,ul>,,u2&. . . >pu,), 
and k and 1 are the heights of the upper sequent and of S ,  respectively. 

(7) The ordinal of a proof P ,  o(P) ,  is the ordinal of its end-sequent. 
We use the notation 

to denote a proof P of T + A  such that o(T ---f A ;  P )  = o(P) = p. 

LEMMA 12.7.  Suppose P i s  a proof containing a sequent S,, there i s  no ind below 
S,, Pl i s  the subproof of P ending with Sl, Pi i s  a n y  other proof of S,, and Pi 
is the proof formed from P by  replacing P1 by Pi:  
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Suppose also that o(S1; P‘) < o ( S 1 ;  P ) .  T h e n  o(P‘) <: o(P). 

PROOF. Consider a thread of P passing through S,. We show that for any 
sequent S of this thread at  or below S, : if S‘ is the sequent “corresponding to” 
S in P‘, then 

(*) o(S’;  P’) < o(S;  P) .  

This is true for S = S, by assumption, and this property (*) is preserved 
downwards by ail the inference rules, as can be checked. (We use the fact that 
thenaturalsumisstrictlymonotonicineachargument,i.e.,u <p* R # Y  < P # y ,  
etc.) Finally, letting S be the end-sequent of P,  we obtain the desired con- 
clusion. 

This lemma is used repeatedly in the consistency proof. 
Now let R be the property of proofs of ending with the sequent +; i.e., 

for any proof P ,  R ( P )  holds if and only if P is a proof of +. 
Notice first that if P is a proof of +, then every logical inference of P is 

implicit ! (cf. Definition 9.7)  (since otherwise a bundle containing the principal 
formula of this inference would end with an end-formula). 

Hence the definition of end-piece for such proofs can be simply stated as 
follows. 

The end-piece of a proof of ---f consists of all those sequents that  are 
encountered as we ascend each thread from the end-sequent and stop as soon 
as we arrive at  a logical inference. (Then the upper sequent of this inference 
no longer belongs to the end-piece, but the lower sequent, and all sequents 
below it, do.) This inference belongs to the boundary. 

LEMMA 12.8. If P i s  a proof o/ --+, then there i s  another proof P’ of --f such that 
o(P‘) < o(P). 

PROOF. Let P be a proof of +. We can assume, by Proposition 9.8, that  P is 
regular. We describe a “reduction” of P to obtain the desired P’. The reduction 
consists of a number of steps, described below. Each step is performed, 
perhaps finitely often (as will be clear), and a t  each step, we assume that the 
previous steps have been performed (as often as possible). 



CH. 2, $121 A C O X S I S T E K C Y  P R O O F  OF P A  101 

At each step, the ordinal of the resulting proof does not increase, and at  
least at one step, the ordinal decreases. 

Step 1. Suppose the end-piece of P contains a free variable, say a, which 
is not used as an eigenvariable. Then replace a by the constant 0. This results 
in a proof of + (using the analogue of Lemma 2.10 for PA), with the same 
ordinal. 

Step 1 is performed repeatedly until there is no free variable in the end- 
piece which is not used as an eigenvariable. 

Step 2 .  Suppose the end-piece of P contains an ind. Then take a lowermost 
one, say I .  Suppose I is of the following form: 

where Po(.) is the subproof ending with F ( a ) ,  r + d,  F(a’) ,  and let 1 and k be 
the heights of the upper sequent (call it S) and the lower sequent (call it So) of I ,  
respectively. Then 

O ( S 0 )  = ( U l - k ( P 1  + 11, 

where p = o(S) = cobr + mu* + . . . + coPn and pn < . . . < pz < pl. Since 
no free variable occurs below I ,  s is a closed term and hence there is a number 
m such that + s = @i isPA-provable without an essentialcut or ind (cf. Lemma 
9.6) ; hence there is a proof Q of I;(%) --f F ( s )  without an essential cut or ind 
(cf. Lemma 9.6). Let P,(fi) be the proof which is obtained from Po by replacing 
a by ?? throughout. Consider the following proof P’. 
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where S,, S2, .  . ., So denote the sequents shown on their right, S1,. . ., S, 
all have height I ,  since the formulas F(W), n = 0,. . . , m, all have the same 
grade. Therefore, 

o(F(?i), r -+A,  F(+i’); P’) = p for n = 0, 1 , .  . . , m. 

Since Q has no essential cut or ind, o ( F ( 6 )  + F ( s ) ;  P‘) = q (say) < w, 
o(S2) = ,u # ,u; o(S3) = ,u # ,u # p ;  , . . . , and in general, writing ,u * It = 

p # p # . . . # p (n times), o(S,) = p * n for n = 1 ,  2 , .  . ., m. Thus 

O(S0) = W - d P  * m + 4 )  

and ,u * m + q < wLL1+l, since q < co. Therefore 

o(S0;  P’) = o,-k(p * m + 9) < W-k(p1 + 1) = 4%; P). 
Thus o(So; P’) < o(So; P ) ,  and hence by Lemma 12.7, o(P’) < o(P). 

Thus, i f  P has an ind in the end-piece, we are done: we have reduced P to 
a proof P’ of + with o(P’) < o(P). Otherwise, we assume from now on that 
P has no ind in its end-piece, and go to Step 3. 

Step 3. Suppose the end-piece of P contains a logical initial sequent D -+ D. 
Since the end-sequent is empty, both D’s (or more strictly, descendants of 
both D’s) must disappear by cuts. Suppose that (a descendant of) the D in the 
antecedant is a cut formula first (viz. in the following figure a descendent of 
the D in the succedent of D - D occurs in E). 

D -0 

r - A , D  D , I I + c ”  
S r,n-A,c” 

3 

P is reduced to the following P’: 

r - A , D  
weakenings and exchanges 

S’ r,n - A ,  c” 

4 

Then o(S’; P’) < o(S; P) .  (This is to be expected, since the ordinal of a proof 
is a measure of its complexity, and the subproof of S’ in P‘ is clearly simpler 
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than the subproof of S in P. However, the proof is not trivial, since the height 
of I‘ + A ,  D and of sequents above it may drop if the grade of D is greater 
than h ( S ;  P) .  The proof uses the inequality cua # a4 < for a, p # 0.) 

Hence, by Lemma 12.2, o(P‘) < o(P).  
The other case is proved likewise. 
So, if the end-piece of P contained a logical initial sequent, we have found a 

P’ as desired. Otherwise, we assume from now on that the end-piece of P con- 
tains no logical initial sequents, and go on to Step 4. 

Step 4. Suppose there is a weakening in the end-piece of P. Then we shall 
define a “weakening elimination”. I t  is actually convenient to define this 
weakening elimination for proofs P which satisfy the conclusion of steps 1-3 
(i.e., their end-piece contains no free variables other than eigenvariables, 
no ind, and no logical initial sequent), but with the end-sequent possibly non- 
empty. Let P be such a proof. We define another such proof P* which satisfies 
the further conditions that its end-piece contains no weakenings, its end- 
sequent is obtained from that of P by eliminating some (possibly none) of its 
formulas, and o(P*) < o(P). In particular, if P is a proof of +, then so is P*. 

P* is obtained by eliminating all the weakenings in the end-piece of P. The 
definition of P* is by induction on the number of inferences in the end-piece 
of P. 

(1) If the end-piece of P does not contain any weakening, then P* is P.  
Suppose the end-piece of P contains a weakening. We define P* according 

to the last inference I of P.  
We use the following notation below. r*, A*, etc. will denote throughout 

sequences of formulas formed from T, d, etc. (respectively) by deleting some 
formulas (possibly none). 

(2) I is a weakening : left. 
r - A  

I D , r - A  

Let P‘ be the subproof of P ending with the upper sequent of I. By the induction 
hypothesis, P‘* is defined. Take P’* as P*. 

If I is a weakening : right, then P* is defined similarly. 
(3) I is a cut. Suppose P is of the form 

’1 {T -A ,  D P , ( D , n  __ .+A 
r,17 + A , A  

By the induction hypothesis, P: and P c  have been defined 
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(3.1) The end-sequent of P: is r* + A * .  Then P* is PT. 
(3.2) If (3.1) is not the case but the end-sequent of P,* is 11* -'A*, then 

(3.3) If the end-sequent of PT is r* --f A*,  D and that of P,* is D ,  Il* +A*, 
P* is P:. 

then P* is 

(4) I is a contraction : left. 

By the induction hypothesis, P,* is defined. 
(4.1) The end-sequent of P,* is D, T* 4 A* or T* +A*. Then P* is P,*. 
(4.2) The end-sequent of P* is D ,  D,  r* + A * .  P* is defined to be 

p E  {D,  D ,  r* + A* 
D ,  r* + A * '  

If I is a contraction : right; similarly. 
(5) I is an exchange : left. Suppose P is of the form: 

By the induction hypothesis, P,* is defined. 
(5.1) The end-sequent of P,* is rt, r,* + A *  or r:, C, r,* -+A* or 

(5 .2)  The end-sequent of P,* is TT, C, D, T,* + A * .  P* is defined as 
r:, D, r,* - A .  Define P* to be P,*. 

r:, C, D, I'z + A* 
r T , D , C , r z  + A * '  
______- 

Similarly if I is an exchange : right. 
This completes the definition of P*. It is easily seen that o(P*) < o(P). 

So (returning to the case where P is a proof of -+) we assume from now on 
that the end-piece of P has no weakening [by replacing P by P*). 
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S tep  5. We can now assume that P is not its own end-piece, since otherwise 
it would be simple (Definition 12.2), as is easily seen, and hence by Lemma 12.3, 
could not end with +. 

Under these assumptions, we shall prove that the end-piece of P contains 
a suitable cut (cf. Definition 9.7). We actually prove a stronger result, which 
is used again later (for Problem 12.11) : 

SUBLEMMA 12.0. Suppose that a proof in PA, s a y  P ,  satisfies the following. 
(1)  P i s  not i ts  owm end-piece. 
( 2 )  T h e  end-piece of P does not contain a n y  logical inference, i nd  or weakeni?zg. 
(3) If an iizztial sequent belongs to the end-piece of P ,  then i t  does not conta7.n 

a n y  logical symbol. 
T h e n  there exists a suitable cut in the end-piece of P.  

(Notice that we do not assume here that the end-sequent is -.) 

PROOF. This is proved by induction on the number of essential cuts in the 
end-piece of P. The end-piece of P contains an essential cut, since P is not 
its own end-piece. Take a lowermost such cut, say I .  If I is a suitable cut, then 
the sublemma is proved. Otherwise, let P be of the form 

Since I is not a suitable cut, one of two cut formulas of I is not a descendent 
of the principal formula of a boundary inference. Suppose that D in r -+A,  D 
is not a descendent of the principal formula of a boundary inference. Now 
we prove: 

(i) P,  contains a boundary inference of P. 
Suppose otherwise. Then D in r + A ,  D is a descendent of D in an initial 

sequent in the end-piece of P, by (2). This contradicts the assumption that I 
is an essential cut, by (3). 

(ii) If an inference J in P I  is a boundary inference of P,  then J is a boundary 
inference of P,. 

This is easily seen by the fact that  I is a lowermost essential cut of P and 
D is not a descendent of the principal formula of a boundary inference. 

(iii) P ,  is not its own end-piece and the end-piece of PI  is the intersection 
of P ,  and the end-piece of P. 
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This follows immediately from (i), (ii) and (1). 
Now from the induction hypothesis, the end-piece of P,  has a suitable 

cut. This cut is a suitable cut in the end-piece of P.  

Returning to our proof P of -+ which satisfies the conclusion of steps 14 ,  
we have, as an immediate consequence of Sublemma 12.9, that the end-piece 
of P contains a suitable cut. We now define an essential reduction of P. 

Take a lowermost suitable cut in the end-piece of P, say I .  
Case 1. The cut formula of I is of the form A A B. Suppose P is of the form 

where A + 8 denotes the uppermost sequent below I whose height is less than 
that of the upper sequents of I .  Let 1 be the height of each upper sequent 
of I ,  and k that  of A + 9. Then k < 1. Notice that A + c" may be the lower 
sequent of I ,  or the end-sequent. The existence of such a sequent follows from 
Proposition 12.5. 

A + 8 must be the lower sequent of a cut J (since there is no ind below I). 
Let ,u = o ( r  -+ 0, A A B),  Y = o(A A B,  17 + A ) ,  A = o(A + E)  as shown. 
Consider the following proofs : 

. .  . .  . .  . .  
P, : r ' - O ' , A  

r ' + A , O '  
r' + A ,  O', A A B 

(weakening : right) 
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P, : 
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A , P  -A' 

(weakening : left) l T , A  -+z 
A A B , I T , A  -A' 

d , A  5 3  
A , d  -+a 
_ _ ~  _ _ _ ~  - (4 

(where 1 and m are the heights of the sequents shown, not in P,  and P,, but 
in P', defined below, which contains these as subproofs.) 

Define P' to be the proof: 

PI PZ 

d 2 E , A  (m) A , d  $ E  (m) 
I' __ (cut for A )  

d,d %%, E ( k )  

d - %  

+ 

So m is the height of the upper sequents of I' (the cut for A ) .  Note that the 
height of the lower sequent of I' is k.  

I t  is obvious that m = k if k > grade of A and m = grade of A otherwise. 
In  either case k < m < 1. 

h(F - + A , @ ,  A A B ;  P') = h(A A B , I f  - A ;  P') = I ,  

since all cut formulas below I in P occur in P' below J,, all cut formulas 
below J1 in P' except A occur in P under I ,  and grade of A <grade of 
A A B < 1. Similarly, 

h ( r - + @ , A h B ; P ' )  = h ( A h B , I f , A  + A ; P ' )  = l .  
Let 

p1 = o(F + A , @ ,  A A B ;  P'), v 1  = o(A A B , n  -+A; P'), A1 = o(d  - A , S ;  P'), 

p2 = o(r -0, A A B ;  P'), = O ( A  A B , n ,  A - A ;  P I ) ,  

12 = ~ ( d ,  A + 9; P'), 1 0  = ~ ( d ,  d -+ 8, E ;  P'). 

Then p1 < p, v1 = v, p2 = p and v2 < v. 
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Now let 

be an arbitrary inference between J 1  and Q + A ,  E and let 

s, s2 J -s- 

be the corresponding inference between I and d --f E. Let 

a; = o(s ; ;  PI, a; = o(s; ;  P’), cc’ = o ( ~ ’ ;  P’), 

a1 = o(S, ;  P), a2 = (S2, P) ,  a = o ( S ; P ) ,  

k ,  = h(S; ,  P’) = h(Si,  P’), k2 = h(S’, P‘) 

- Then a = al # a2 if S is not Q 4 A ,  s, and a = oL-k(ccl # a2) if S’ is il - ,A ,  3. 
On the other hand a‘ = ~ ~ , - ~ , ( a ~  # x 2 ) .  

Starting with p1 < p and v 1  = v, it  is easily seen by induction on the number 
of inferences between J 1  and S that  

a’ < W L - k , ( a ) ,  (1)  

if S is not A - A ,  3. Let A = w ~ - ~ ( K ) .  Then (1) implies that ,Il < o ~ - ~ ( K ) .  

Similarly, ,I2 < C O ~ - ~ ( K ) .  Hence 

since I - k = (I - m) + (m - k ) .  Therefore A,, < A. Finally, from A. < A 
it  follows that o(P’) < o(P). 

Case 2. The cut formula of I is of the form Vx F ( x ) .  So P has the form: 

r‘ - @ I ,  F(a)  
r’ + @ I ,  Vx F(x)  

F ( s ) ,  I?’ +A‘  
I, vx F ( x ) ,  17’ -+A’ I, 
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The definition of '4 -+ E is the same as in case 1. The proof P' is then defined 
in terms of the following two subproofs P I  and P,: 

P ,  : ri + 0 1 ,  qS) 
r' + F(s) ,O '  
r' + o', vx F(%)  

r + qs), o, vx ~ ( x )  

~~~ - ~~~ 

vx q x ) ,  n + A 
~. 

T,  17 + F ( s ) ,  0, A- 

- '4 + F ( s ) ,  3 

d - E, F ( s )  
~~~ 

P, : 

P' is defined to be 

P I  

Note that o(l" + O', F ( s )  ; P')  = o ( r '  - O', F ( a )  ; P) .  The argument on ordi- 
nals goes through as in case 1. 

For the other cases, the proof is similar. 
This completes the proof of Lemma 12.8 and hence the consistency proof 

for PA (Theorem 12.1). 

REMARK 12.10. We wish to point out the following. One often says that the 
consistency of PA is proved by transfinite induction on the ordinals of proofs, 
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as if we were using a general principle of transfinite induction in order to 
prove the consistency of mathematical induction. 

This is misleading, however. The point is that  the consistency proof uses 
the notion of accessibility of E,,, as explained in $11, and otherwise strictly 
finitist methods. To re-state the matter from a more formal viewpoint: 

The principle of transfinite induction on some (definable) well-ordering .< 
of the natural numbers can be expressed (in first-order formal systems) by 
the schema 

T I (  <, F ( x ) )  : vx [Vy  ( y  < x 3 F ( y ) )  3 F(4l --t vx F(x)  

for arbitrary formulas F ( x )  of the system considered. 
Now Gentzen’s consistency proof of PA can be formalized in the system 

of primitive recursive arithmetic, together with the axiom T I (  <, F ( x ) ) ,  
where < is the standard well-ordering of type c0 and F ( x )  is a certain 
quantifier-free formula. 

PROBLEM 12.11. We can extend the reduction procedure of Lemma 12.8 to 
the following situation. 

A sequent S (of the language of PA) is said to satisfy the property P if:  
(1) All sequent-formulas of S are closed; 
(2) Each sequent-formula in the succedent of S is either quantifier-free or 

of the form 3y, ,  . . . , 3 y ,  R ( y , ,  . . . , y,), where R ( y l , .  . . , y,) is quantifier-free; 
(3) Each sequent formula in the antecedent of S is either quantifier-free or 

of the form Vy, ,  . . . , V y ,  R ( y , ,  . . . , y,), where R ( y , ,  . . . , y,) is quantifier-free. 
Show that if a sequent satisfying P is provable in PA, then it is provable 

without an essential cut or ind. [Hint :  We may assume that there is no free 
variable which is not used as an eigenvariable in the end-piece of a proof of 
such a sequent.] 

If the end-piece has an explicit logical inference, take the lowermost explicit 
logical inference I .  Without loss of generality, we assume that the proof is 
of the following form: 

+do, 3 ~ 1 . .  R(Y,,.  . ~ m ) ,  A ,  

where ro +do, 3 y l  . . . 3 y m  R ( y , ,  . . . , y,), d l  is the end-sequent of the proof. 
We can eliminate I by replacing the proof by a proof whose end-sequent is 
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either of the form 

PROBLEM 12.12. Intuitionistic arithmetic can be formalized as the subsystem 
of PA defined by the condition that in the succedent of every sequent there 
can be at  most one sequent-formula which contains quantifiers. This system 
may be called HA (for Heyting arithmetic). The reduction method for PA 
works for HA with a slight modification: roughly, in an essential reduction, 
if the cut formula of the suitable cut under consideration contains a quantifier 
then the weakening : right will not be introduced. 

Define the reduction for HA precisely, thus proving the consistency of HA 
directly (not as a subsystem of PA). 

PROBLEM 12.13. Let (*) be the property of formulas defined in Theorem 6.14, 
i.e., a formula satisfies (*) if every v and 3 in it is either in the scope of a 1 
or in the left scope of a 1. Show that, if each formula in r satisfies (*) and all 
formulas in F, A ,  B and 3% F(x)  are closed, then in HA (cf. Problem 12.12) : 

(1) r ---f A v B if and only if r + A or r 4 B, 
(2) r ---f 3% F ( x )  if and only if for some closed term s, r + F ( s ) .  
[Hint (B. Scarpellini) : By transfinite induction on the ordinal of a proof P 

of T 4 A v B (for 1) or r ---f 3% F ( x )  (for a),  respectively, following the 
reduction method for the consistency of PA. First deal with explicit logical 
inferences in the end-piece of P.] 

REMARK 12.14. As an application of Gentzen’s reduction method, one can 
easily prove the following. 

The consistency of arithmetic in which the induction formulas are restricted 
to those which have a t  most k quantifiers can be proved by transfinite 
induction on wk+,. 

The outline of the proof is as follows. Suppose there is a proof of + in this 
system. We shall carry out a reduction of such a proof. 

(1) We assume that the induction formulas are in prenex normal form. 
(2 )  A formula A in a proof (in this system) will be temporarily called free 

if either it has no ancestor which is an induction formula, or it has an induction 
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formula as an ancestor but a logical symbol is introduced in an ancestor of A 
between any such induction formula and A itself. A cut is called free if both 
cut formulas are free. Notice that if a formula is not free, then it is in prenex 
form with a t  most k quantifiers. Now we can prove the following partial 
cut-elimination theorem : 

If a sequent is provable in our system, then it is provable without free 
cuts. 

(We simply adapt the cut-elimination proof for LH.) 
Thus we obtain a proof of ---f in which there are no free cuts, and so all the 

cut formulas, as well as induction formulas, are in prenex form with at  most 
k quantifiers. We assume k 3 1. 

(3) Further we can assume, for convenience, that  the inference rules are 
modified in such a way that all formulas in the proof are in prenex form, with 
at  most k quantifiers. 

This system is called PA,. 
We must now modify some notions slightly. The grade of a formula A is 

now defined to be: the number of quantifiers in A ,  minus 1 ; the grade of a 
cut or induction inference is the grade of the cut formula or the induction 
formula, respectively. The height of a sequent in a proof is defined as before, 
using the new definition of grade. The ordinals are assigned as before, except 
that  the initial sequents are assigned the ordinal 0 and the propositional 
inferences as well as quantifier-free cuts are treated in the same manner as 
the weak inferences, i.e., the ordinals do not change. (In case there are two 
upper sequents, take the maximum of the two ordinals.) I t  can easily be seen 
that the ordinal of a proof (of the kind we are considering) is less than co,(l) 
for some natural number 1. 

A boundary inference is defined to be an inference which introduces a 
quantifier and is a boundary inference in the previous sense. A suitable cut 
is a cut whose cut formula contains quantifiers and which is suitable in the 
previous sense. In eliminating initial sequents from the end-piece, one 
eliminates only those which have quantifiers. The existence of a suitable cut 
(under certain conditions) can be proved just as before. 
(4) In an essential reduction, if the suitable cut is of grade > 0, then we can 

proceed as before (Step 5 in the proof of Lemma 12.8). If its grade is 0, then 
the cut formula is either of the form Vx F ( x )  or 3x F ( x ) ,  where I; is quantifier- 
free. Let us take the first case as an example. Let F ( s )  be the auxiliaryformula 
of a boundary inference which is an ancestor of the cut formula V x F ( x ) .  
s is a closed term, and so either --f F(s )  or F ( s )  --f is a mathematical initial 
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sequent (with ordinal 0). Suppose + F ( s )  is a mathematical initial sequent. 
Consider the proof. 

- F ( s )  F ( s ) ,  n' -A'  
rI1 +A! 

Vx-F(x),'l' 

vx ~ ( ~ 1 ,  n + A  

~ _ _  ~ 

r + 0, vx F ( X )  
-~ r, u + 0, A 

---t 

(taking r, I7 4 0, A as the sequent A + .E shown in Lemma 12.8, Step 5 ) .  
I t  is easy to see that the ordinal decreases again. 

REMARK 12.15. Here we define an extended notion of primitive recursiveness. 
Let <- be a primitive recursive well-ordering of natural numbers. The class 
of <.-primitive recursive functions is defined as the class of functions f 
generated by the following schemata: 

f(.) = a + 1, 
/(a,,. . . , a,) = 0,  

/ (a , ,  . . . , a,) = g(h,(a,, . . ., a,), . . ' ,  h,(a,,. . . > a,)), 

f (0,  a 2 , .  . . , a,) = g(a2,. . . , a,), 
f ( a  + 1, a2,. . . , a,) = h(a, /(a, a2,' . ' I  an), a2, .  . . , a,), 

/(al,. . .,a,) = ai (1 < i < n) ,  

where g and hi(l < i < M )  are <*-primitive recursive. 

where g and h are <.-primitive recursive. 
(Definition by <.-recursion.) 

h( f ( t (a , ,  . . . , u,), a2, .  . ' , a,), a,, ' . . , a,) 

if 
otherwise, 

t ( a l , .  . . , a,) <. a,, 
gja,, . . . , a,) 

/(a,,. . ., a,) = 

where g, h and t are <.-primitive recursive. 
idea of (vi) is that /(a, u 2 , .  . . , a,) is defined either outright or in terms 

of f ( b ,  a2 , .  . ., a,) for certain b <*  a. 

following application. 
The consistency proof for PA, which has just been presented has the 
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COROLLARY 12.16. Suppose R i s  a primitive recursive predicate and there i s  a 
proof of + 3x R ( a ,  x) in PA,, with ordinal < ~ ~ ( 1 )  for some numbers k and 1 
(as defined just above Definition 12.6). Then the number-theoretic function f 
defined by  

f(m) = the least n such that R(m, n) 

i s  <+rimitive recursive, where <- i s  the initial segment of the standard ordering 
of .so, of order type W k ( 1 ) .  

PROOF. We divide the proof into steps. 
(i) Let P ( a )  be a proof in PA, of + 3% R ( a ,  x) (where all occurrences of a 

are indicated). Then for all m, P ( 6 )  is a proof in PA, of + 3% R(f i ,  x )  with 
the same ordinal, and with Godel number primitive recursive in m. Also note 
that --f 3% R ( G ,  x) satisfies property P of Problem 12.11. 

(ii) We (temporarily) call a proof reducible if it is a proof in PA,, with 
ordinal < ~ , ( l ) ,  containing an essential cut or ind, and with end-sequent 
satisfying P. If P is reducible, then by applying repeatedly the reduction 
procedure of Lemma 12.8 (modified for PA, as in Remark 12.14), we obtain 
a proof in PA, of the same sequent, without an essential cut or ind. Let r be the 
function such that if p is a Godel number of a reducible proof, then r(#) is 
the Godel number of the proof obtained by applying this reduction procedure 
(once), otherwise r ( p )  = p .  Clearly Y is primitive recursive. 

Let 0 be the function such that if p is a Godel number of a proof in PAk 
with ordinal < wk( l ) ,  then O ( p )  is the Godel number of its ordinal (and, say 
O ( p )  = 0 otherwise). Clearly 0 is primitive recursive. Note also that for all 9, 
O ( r ( p ) )  <- O ( p )  o p  is the Godel number of a reducible proof. 

(iii) Now given a proof P of + 3x R(6 ,  x )  without an essential cut or ind, we 
can effectively find from P a number n such that R(m, n) holds (and in fact 
the least such n). This is done in the following way. 

First, we may assume that no free variables appear in P. Hence if r - + A  
is a sequent in P, every formula in r is a closed atomic formula and every 
formula in A is either 3% R ( 6 ,  x )  or a closed atomic formula. 

Now consider the following property Q of sequents: Every atomic formula 
in the antecedent is true and every atomic formula in the succedent is false. 

Notice that the end-sequent of P satisfies Q ;  and if the lower sequent of a 
cut in P satisfies Q, then so does one upper sequent (since the cut formula 
is closed and atomic). Now start to  construct a thread of sequents in P 
satisfying Q, working from the bottom upwards: the end-sequent is in the 
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thread, and if the lower sequent of an inference is in the thread, take an upper 
sequent which satisfies Q. Since no initial sequent of P satisfies Q ,  this procedure 
must stop before we reach an initial sequent. The only way for this to happen 
is in the following case: 

r - + A ,  R(%, K) 
r + A ,  3% ~(l.3 

where R(%, K) is true. Finally, take the least n < k for which R(m, n) holds. 
Clearly there is a primitive recursive function h such that if P is a proof of 
4 3x R(%, x )  without an essential cut or ind, then h( ‘P’) is the number n 
found as above. 

(iv) Now we can define a <.-primitive recursive function g such that if 
P is a proof of + 3x R(%, x )  in PA,, with ordinal < w,(l), then g( ‘P1) = 

the least n such that R(m, n) holds: 

Then it is easily seen that g is <.-primitive recursive function. 

as stated. Then we define f by: 
(v) Finally, let P(u) be a proof of + 3% R(u, x) in PA,, with ordinal < o,(l) 

f ( 4  = g( ‘ P ( k ) l ) .  

As a special case of Corollary 12.16 we have: if + 3% R(x ,  u) is provable 
within the system whose induction formulas have a t  most one quantifier, 
then f (defined as above) is primitive recursive (by a theorem of R. Peter 
that o’-primitive recursiveness implies primitive recursiveness for any finite 2 ) .  

$13. Provable well-orderings 

In this section, in order to distinguish between the natural ordering of 
natural numbers and the order relation on numbers given by the standard 
ordering of type to, we denote the latter by < in this section. 

A partial function is a number-theoretic function that may not be defined 
a t  all arguments. 

DEFINITION 13.1. (1) The class of partial recursive functions is the class of 
partial functions generated by the schemata (i)-(vi) for primitive recursive 
functions (cf. Definition l0.2), and also the schema: 
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(vii) f (x l , .  . ., x,) 2: ,uy[g(.xl,. . . , x,, y )  = 01, where g is partial recursive; 
the right-hand side means the least y such that Vz<y (g(xl, . . . , x,, z )  
is defined and # 0) and g(x,, . . . , x,, y )  = 0, if such a y exists, and 
undefined otherwise; and z means that the left-hand side is defined 
if and only if the right-hand side is, in which case they are equal. 

( 2 )  A geizeral recursive or total recursive or recuvsive function is a partial 
recursive function which is total, i.e., defined a t  all arguments. 

(3) A relation on natural numbers, say R, is called recursive if there is a 
recursive function f which assumes values 0 and 1 only such that R(xl , .  . . , x,) 
holds if and only if f ( x l , .  . ., x,) = 0. 

(4) A Zy-formula of the language I, is a formula of the form 

1~ ( / ( X I , .  . . xn, y) = 01, 

f a  primitive recursive function symbol. ,4 II~-formula is similarly of the form 
V y  ( f ( x l , .  . . , x,, y) = 0, j primitive recursive. 

I t  can be shown that any recursive relation R can be represented in PA 
by a Cy-formula, i.e., there is a 2:-formula R(x l , .  . . , x,) of the language L 
such that,  for all q,. . . , me: 

R(m,, . . . , nz,) holds t-) i?(Gl,. . ., G,) is PA4-provable 

Also, any recursive relation can be represented in PA by a 11;-formula. 

DEFINITION 13.2. Let e be a new predicate constant. L(E) is the language 
extending L (cf. $la),  formed by admitting e ( t )  as an atomic formula for all 
terms t .  

PA(&) is the system PA in the language L(e) ; more precisely, we extend PA 
by admitting as mathematical initial sequents s = t ,  E ( S )  + s(t)  for all terms 
s, t and applying the rule ind to all formulas of L(E). 

DEFINITION 13.3. Let <- be a recursive (infinite) linear ordering of the natural 
numbers which is actually a well-ordering. (Without loss of generality we may 
assume that the domain of <. is the set of all natural numbers and the least 
element with respect to <. is 0.) We use the same symbol <*  in order to 
denote the Z:-formula in PA which represents the ordering < a .  

Consider the sequent 

TI (  <-) : vx (Vy<-x ( e ( y )  3 E ( X ) ) )  - &(a) 
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(cf. the formula T I ( < ,  F ( r ) )  of Remark 12 10). If TI(<. )  15 provable in 
PA(&), then we say that <. 15 a prot~able id -ovderz l zg  of PAi 

The following theorem is proved by analyzing Gentzen’s proof of the 
unprovability of the well-ordering of < (where < was defined at the beginning 
of this section). 

THEOREM 13.4 (Gentzenj. If <. zs a provable well-orderzizg of PAi, theia there 
exists a recurswe function mhich zs a <*  - < order-;hrcserzwzg m a p  into ail 
anzttal segmertt of Q T h a t  zs to s a y ,  there zs a rccairsi%e fuiictioiz f such that 
a <. b af and on ly  af f ( a )  < f ( b ) ,  and there zs arz ordziial p(< E,,) such that /or 
every a ,  f ( a )  < p (zhere p i s  the Godel ~zuniber of pj 

This section is devoted to Gentzen’s proof, and the arithmetization of it, 

From now on, let <. be a fixed provable well-ordering of PA. 
13.1) First we define TJ-proofs, where TJ stands for “transfinite induction”. 

(1) The initial sequents of a TJ-proof are those of PA(&),  and the following 

which proves Theorem 13.4. 

TJ-proofs are defined as PA(~)-proofs witli some modifications: 

sequents, called TJ-initial sequents: 

vx ( A  <. t 3 +)) - & ( t )  

for arbitrary terms t .  
(2) The end-sequent of a TJ-proof must br of the form 

f &(?El), . . . , &(?En), 

where ?El,. . . , ’En are numerals. 
Let lm/<. be the ordinal denoted by m with respect to <., i.e., the order 

type of the initial segment of <. determined by m. Then the minimum of 
lmll <., . . . , lmn/ < .  is called the end-number of the TJ-proof. 

13.2) Since <*  is a provable well-ordering of PA, the sequent TI(<. )  
(Definition 13.3) is PA(&)-provable, and hence we can obtain in the system 
formed from PA(&) by adjoining TJ-initial sequents, a proof P ( a )  of -+ & ( a )  
(for a free variable a ) .  Note that for each number m, $‘(I%) is a TJ-proof of 

13.3) A TJ-proof is called non-critical if one of the reduction steps for PA 
(in the proof of Lemma 12.8) which lower the ordinal (i.e., step 2 ,  3 or 5) 
applies to it. Otherwise it is called critical. 

+ &(%). 
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13.4) We shall assign ordinals (less than E,,) to TJ-proofs and define a 
reduction for TJ-proofs following the reduction method for PA given in the 
proof of Lemma 12.8: if a TJ-proof is critical, then more manipulation is 
required. The reduction is defined in such a manner that a TJ-proof P with 
end-number > 0 is reduced to  another with the same end-number if P is not 
critical and with an arbitrary end-number which is smaller than the original 
one if P is critical. At the same time the ordinal decreases. 

13.5) If we can define an ordinal assignment and a reduction method with 
the properties stated in 13.4), we can prove: 

LEMMA 13.5 (Fundamental Lemma). For any  TJ-proof, its end-number is not 
greater than its ordinal. 

PROOF. By transfinite induction on the ordinal of the proof. Let P be a 
TJ-proof with ordinal p and end-number a. We assume as the induction 
hypothesis that  the lemma is true for any TJ-proof whose ordinal is less than 
p and show that g < p. If P is non-critical then P is reduced to a TJ-proof 
P' with the same end-number (T and an ordinal v < p. By the induction 
hypothesis u < v, and hence a < p. Now suppose P is critical. If ~7 were 
greater than p, we could reduce P to  a TJ-proof whose end-number is p and 
whose ordinal is less than p, contradicting the induction hypothesis. 

Now let us proceed to the reduction method for TJ-proofs. 
13.6) The ordinals are assigned to  the sequents of the TJ-proofs as in $12; 

the ordinal of a TJ-initial sequent is 7 ,  i.e., wo + . . . + wo (7 times). The 
lower sequent of a term-replacement inference is assigned the same ordinal 
as the upper sequent. For convenience, the formula in the succedent of a 
T J-initial sequent will be considered as a principal formula. 

13.7) We can follow the reduction steps given for the consistency proof of 
PA up to Step 4 (in the proof of Lemma 12.8), i.e., until we reach a TJ-proof 
P with the following properties p 1-p 4. 

p 1 .  The end-piece of P contains no free variable. 
p 2. The end-piece of P contains no induction. 
p 3. The end-piece of P contains no logical initial sequent. 
p 4. I f  the end-piece of P contains a weakening I ,  then any inference below 

I is a weakening. 

REMARK. Since the end-piece of a TJ-proof is not empty, the end-sequent S' 
of the proof obtained from P by eliminating weakenings in the end-piece 
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(in Step 4) may be different from the end-sequent of P. In this case we add 
weakenings below S’ so that the end-sequent becomes the same as the end- 
sequent of P. 

13.8) We can easily show the following. Let P be a TJ-proof satisfying 
p 1-p 4. Then P contains at  least one logical inference (which must be implicit) 
or TJ-initial sequent. Therefore the end-piece of P contains a principal 
formula a t  the boundary or in a TJ-initial sequent. 

13.9) Let P be a TJ-proof satisfying p 1-p 4. By 13.8), the end-piece of P 
contains a principal formula either at  the boundary or in a TJ-initial sequent. 
We call a formula A in the end-piece of P a principal descendant or a principal 
TJ-descendant, according as A is a descendant of a principal formula a t  the 
boundary or a descendant of the principal formula of a TJ-initial sequent in 
the end-piece of P. 

Note that a principal TJ-descendant in the end-piece of P always occurs 
in the succedent cf a sequent, and has the form ~ ( t ) .  

13.10) Let P be a TJ-proof satisfying p 1-p 4, and S a sequent in the end- 
piece of P. If S contains a formula B with a logical symbol, then there exists 
a formula A in S or in a sequent above S such that A is a principal descendant 
or a principal TJ-descendant. 

PROOF. Suppose S contains a formula with a logical symbol. Then S is above 
the uppermost weakening in the end-piece. The property of sequents, of 
containing a logical symbol, is preserved upwards, to one of the upper sequents 
of each inference in the end-piece (but not necessarily beyond a boundary 
inference), or a TJ-initial sequent, when we follow upward the string to which 
S belongs. Notice that B may not be A ,  since B may be a descendant of a 
formula which is “passive” a t  a boundary inference. 

13.11) Let P be a TJ-proof satisfying p 1-p 4 and not containing a suitable 
cut. Then its end-sequent contains a principle TJ-descendant. 

PROOF. It suffices to prove that the end-sequent of P contains a principal 
descendant or a principal T J-descendant, since the end-sequent contains no 
logical symbol. Suppose not. Since the end-piece contains a principal descendant 
or a principal TJ-descendant by 13.8), let us consider the following property 
(P) of cuts in the end-piece of P :  A cut in the end-piece of P is said to have 
the property (P) if (at least) one of its upper sequents contains such a formula 
and its lower sequent contains no such formula. Since the end-piece contains 
such a formula, but the end-sequent does not (by assumption), there must be 
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such a cut. Let I be an uppermost cut with the property (P) in the end-piece 
of P :  

~ - A , D  D , I L A  

Let S, and S 2  be the left and right upper sequents of I ,  respectively. By 
our assumption one of the cut formulas is a principal descendant or a principal 
TJ-descendant. First suppose D in S, has this property. If D contains a 
logical symbol, then it is a principal descendant. Then also, S, contains a 
formula with a logical symbol (namely D ) .  Therefore, by 13.10), there is a 
formula A in S, or above it such that A is a principal descendant or a principal 
TJ-descendant. If there is no such formula in S,, there must be a cut having 
the property (P) above I ,  contradicting our choice of I .  If such a formula A 
is in S,, A must be D itself, which contradicts our assumption that P does not 
contain a suitable cut. Thus D must be of the form ~ ( t ) .  Now suppose S z  
contains a logical symbol. Then there exists a principal descendant or a 
principal TJ-descendant either in S, or above it. If it is in S,, it cannot be 
D (since D is ~ ( t )  and is in the left side of a sequent, it cannot be a principal 
TJ-descendant), and so it must also appear in the lower sequent of I ,  contra- 
dicting our assumption that I has the property (P). This means that such a 
formula is in a sequent above S but not in S itself, contradicting our assump- 
tion that I is an uppermost cut with the property (1’). Thus S 2  cannot contain 
a formula with a logical symbol. Since I is an uppermost cut with the property 
(P), no logical inference at  the boundary or TJ-initial sequent in the end-piece 
is above S,. Therefore the proof down to S 2  is included in the end-piece and 
no logical initial sequents or Tb-initial sequents occur there and it is impossible 
that S, contains e( t ) ,  and so D cannot be ~ ( t ) .  Hence we have shown that D 
in S, cannot be a principal descendant or principal TJ-descendant. Next, 
suppose that the cut formula in S, is a principal descendant or principal 
TJ-descendant. As was seen above, D cannot be a principal TJ-descendant: 
D must contain a logical symbol. Hence there is a principal descendant or a 
principal TJ-descendant either in S, or in a sequent above S,. If such a 
formula is not in S,, there must be a cut having the property (P) above S,, 
which contradicts our assumption about I .  Therefore D in S, must have that 
property, since the lower sequent of I cannot contain such a formula. This 
again contradicts our assumption that P does not contain a suitable cut. 

13.12) Now let P be a critical TJ-proof to which the reduction of Lemma 
12.8 has been applied as far as possible (i.e., up to Step 4). Then P satisfies 
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p 1-p 4 and does not contain a suitable cut (since it is critical). We define the 
notion of critical reduction. By 13.11), the end-sequent of P contains a 
principal T J-descendant, &(mz), say, the descendant of a principal formula 
E(Y) (where the closed term Y denotes the number mi). Let m be any number 
such that lml<. is less than the end-number of P. Then % <* Y is a true 2;- 
sentence of PA, and hence the sequent +YE <- Y can be derived from a 
mathematical initial sequent of PA (say + F )  by one application of 3 : right. 
So we replace the TJ-initial sequent 

vx (% <. Y 3 &(X)) 4 &(Y) 

in P by an ordinary proof in PA(&) 

+ F  

+rtt < * Y  &(%) +&(%) 

m 4 . 7  3 &(%) + &(%) 

vx (x <. Y 3 &(.)) - &(%) 

vx (x <*  Y 3 &(X)) + &(rtt), &(.). 

The ordinal of this proof is 6 and is less than that of a TJ-initial sequent 
(which is 7 ) .  By this replacement and some obvious changes, P is transformed 
into a TJ-proof P' whose end-sequent is 

+ .(.ti), &(mi), . . . , &(*,), 

where -, s(i.ttl), . . . , &(rttn) is the end-sequent of P, and such that the ordinal 
of P' is less than that of P and the end-number of P' is lm <, . We shall refer 
to P' as the proof obtained from P by an application of a critical reduction 
a t  m. 

Now suppose P is any TJ-proof (not necessarily critical), and \mi<. is less 
than the end-number of P. We shall define what is meant by the proof 
obtained from P by an application of a critical reduction a t  m. 

If P is critical, the definition is as above. Otherwise, apply a sequence of 
reductions (as in the proof of Lemma 12.8). At each reduction, the ordinal 
of the proof decreases, so this process must terminate after a finite number of 
steps with a critical proof satisfying p 1-p 4. Now take the proof obtained 
from this proof as above. 

13.13) Adjoining the reduction in 13.12) to the previous reductions, and 
applying the fundamental lemma in 13.5), we obtain the original form of 
Gentzen's theorem : 
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THEOREM 13.6. The order ty$e of < a  is less than E ~ .  

13.14) Let P(a) be a proof of + &(a), obtained as described in 13.2. Let us 
define for each number k a TJ-proof P,  by induction on k ,  where the end- 
number of P,  is Ikl< . 

(1) The case where Vn<k (n <* k ) .  We define P, to be the proof P(k)  

(2) The case where 3n<k (k  <- x). Let 
obtained from P(a) by replacing a by the numeral k throughout P(a) .  

(**I no <*  . . . <- n-,(  = k )  <* n,,, <- . . . <. n, 

be the re-ordering of the numbers < k with respect to <.. Then we 
define P,  to be the proof obtained from Pn3+1 by applying a critical 
reduction at  k (cf. 13.12)). It is obvious that this definition is recursive. 

13.15) We now define a map f ,  which will turn out to be an order-preserving 
recursive map as required for Theorem 13.4, by making use of the P,. Define 
f(k) by induction on k :  

f(0) = WO(PO), 

and for k > 0, f ( k )  = f(n,-,) + L U " ( ~ ~ )  where o(P) is (the Godel number of) 
the ordinal of P, + is (the primitive recursive function representing) addition 
of ordinals, wU is (the primitive recursive function representing) exponentiation 
by LU,  and n3-, is as in (**) (such a number always existing if k > 0). 

13.16) Let mo <* m, <. . . . <. m, be the re-ordering of the numbers 
< i + 1 with respect to <-. Then 

f(m,+,) = f (mJ  + w0(pm3+1) ,  

where 0 < j < i. This is proved by mathematical induction on i. For i = 0,  
this is trivial. Assume it for i. For the case of i + 1, it is sufficient to show 
(with mo, . . . , m% as above) : 

and 

wheremj < - i  + 1 <*  mji-,. Here (1 )  holds by definition off, and (2) follows from 
(1) and f(m,+,) = f (m,)  + wo(pmi+l) (by induction hypothesis) and O(P,+~)  < 
O(P,,+~) (by definition of Pi+l). The second point of Theorem 13.4 is also 
easily seen if one puts ,u = ~ ~ ( ~ ( ~ ) ) + l .  This completes the proof of Theorem 
13.4. 
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To end this section, another result of Gentzen will be stated. The proof is 
straightforward. 

THEOREM 13.7. Let <,, be the standard well-ordering of E,,, restricted to 0,. 

T h e n  <n i s  a provable well-ordering of PA. 

Kleene’s T-predicate (for unary, i t . ,  one-argument functions) is a primitive 
recursive relation T such that for an arbitrary partial recursive function f 
(of one argument) there exists a number e for which 

f(x) 2: U(PY T ( e ,  x, Y)) 

for all x. (U  is a fixed primitive recursive function). Such an e is called a 
Godel number of f .  The definition can be extended to  functions of many 
arguments. 

If e is the Godel number of a unary partial recursive function, then clearly 

f is (total) recursive if and only if Vx 3 y  T ( e ,  x, y ) .  

Further, f is called provably recursive (in PA) if it has a Godel number e such 
that Vx 3 y  T(d, x, y) is PA-provable. Having discussed the Godel numbering 
of recursive functions, we can now state a problem which should, in its correct 
context, actually have been placed in $12, The idea is due to Schiitte. 

PROBLEM 13.8. Let PA* be the system obtained by modifying PA as follows. 
The language is the same as that of PA; the initial sequents are those of PA; 
the rules of inference are those of PA except cut, V : right and ind; the 
constructive w-rule, which is described below, is added as a new rule of 
inference : 

P I . .  .Pa..  . 
r + A , v x A ( ~ )  

(i < w) 

where Pi is a proof ending with r -+ 4, A ( i ) ,  and there is a recursive function 
f such that f(i) = rP i l .  Let e be a Godel number of f. Then the proof ending 
with r - + A ,  Vx A (x) is assigned the number 

5 e .  7 r T + d , V x A ( r ) l ~  

Show that if a sequent S is PA-provable and contains no free variable, 
then S is provable in PA*. [ H i n t :  We adapt the method of the consistency 
proof of PA as follows. Let P be a (regular) proof in PA, with ordinal u 
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(according to the assignment of Definition 12.4). Then assign wa + m to P ,  
where m is the number of free variables in the end-piece of P.  The reduction 
process for the consistency proof goes through almost unchanged, except 
that  if P contains an explicit logical inference and the lowermost such is a 
V :  right, then replace it by the w-rule, which is applied at  the end of the 
proof.] 

PROBLEM 13.9. Let f be a provably recursive function in PA. Then there 
exists an ordinal p (less than E ~ )  such that f is <"-primitive recursive, where 
<@ is the standard ordering of E~ restricted to p. [Hint: Let e be a Godel 
number of f such that Vx 3y T(d, x, y) is PA-provable. Then there is a proof, 
say P(u) ,  of 3 y  T(E,  a ,  y ) ,  with free variable a.  Let p be the ordinal assigned 
to P ( a ) ,  and let P ,  denote P(m) for each natural number m. By the method 
of Problem 13.8, P, can be transformed into a cut-free proof in PA* of the 
same end-sequent. It can be easily shown that the resulting proof does not 
contain the w-rule, since P ( 6 )  does not contain any explicit V :  right. The 
transformation is actually <"-primitive recursive. Thus there is a xu- 
primitive recursive function t such that t( 'P,') is (the Godel number of) 
a cut-free proof of 3y T(d, H ,  y ) .  By examining this proof, we can find 
(primitive recursively in its Godel number) a number n satisfying T(e, wz, n). 
Then n is a <"-primitive recursive function of m and f(m) = U ( n ) .  Thus f 
is <"primitive recursive.] 

$14, An additional topic 

Here we assume again that all the primitive recursive functions are included 
in the language of PA and their defining equations are included as initial 
sequents. 

PROPOSITION 14.1. Let Q, be the set of sentences of PA which have at most n 
logical symbols. Then  there exists a truth definition for Qn in PA, i.e., a formula 
T,(a) of PA such that for every sentence A of Qn 

-~ 
T,('A') = A  

i s  PA-provable. 

PROOF. T ,  is defined by induction on n. We shall present only the induction 
step, in passing from T ,  to Tn+l. 
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A sequence number, say x, is a number which can be decomposed into 
the form 2’0 * 3“l. . . . * $2y1, where xi = 0 or 1 for each i, 0 < i < n. Let 
seq(x, n) be a (primitive recursive) predicate which expresses that x is a 
sequence number of the above form. We call n the length of x. The i th  
exponent of x, xi,  will be denoted x ( i ) .  Let st( rA1 ) express “ A  is a sentence”, 
and let Is( ‘/I1) be the number of logical symbols in A .  Then T,+, is defined 
as follows. 

T n + l (  ‘A1 ) t-) 
t) St( ‘A1) A IS( ‘ A ’ )  < n + 1 

A 3% [seq(x, ‘ A 1 )  A VZ (0 < i < ‘A’> 
r 1 .  (V B [z = ‘1B1> ( x ( i )  = 1 x( rB’) = O ) ]  

A V‘BlV‘C’ [i = ‘ 3  A C1 

A V‘Vy B(y)’ [i = ‘ V y  B ( y ) l  3 ( x ( i )  = 1 ZE V y  T,( ‘B ( j j ) l ) ) ]  
2 ( x ( i )  = 1 E x( ‘B’) = 1 A x(‘C’) = 111 

A V ‘ 3 y  B(y)’[Z = r3y B(y)’ Zl ( X ( i )  = 1 
A X(rA1) = 11. 

3 y  T,( ‘B(y)’))]))  

It is easily seen that 
- 

Tn+,(A (61,. . . 6,)) f A (b1,. . . > bn) 

is PA-provable for every A in @,,, where all the free variables of A are among 
b,, . . . , b,. 

Let S : A , ,  . . . , A ,  + B,, . . . , B ,  be a sequent such that all of A , ,  . . . , A,, 
B,, . . . , B ,  are in @,. Then T,( ‘S’) is defined to  be 

3i (1 < i < m A l T n (  ‘ A i l ) )  v 32 (1 < i < I A T,( rBil 1)). 

Here of course m and 1 are primitive recursive functions of ‘S’ and A i  and 
Bi are determined primitive recursively from ‘S1 and i. 

PROPOSITION 14.2. PA cannot be formulated w i th  f initely m a n y  axioms;  in 
other words, mathematical induction cannot be expressed b y  f ini te ly  m a n y  
formulas.  

PROOF. First note that 
PA k (k ‘S’ + ‘S’), 

by formalizing the cut-elimination theorem for LK in PA. 
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Next, suppose P is a cut-free proof of a sequent S ,  and all the formulas in 
S are in F,. Then every formula in P is in F,. Further, if P is in the language 
of PA, then we can prove in PA that every numerical instance of S is true; 
in other words: 

PA F rS(bl , .  . . , b,)’ + V X ~  . . . X ,  T,( rS(fl,. . . , Z,)l), (2)  

where all the free variables of S are among b,, . . . , b,. The proof of (2)  is by 
induction on the number of sequents in P. 

Now let ro be any finite set (or rather sequence) of axioms of CA u V J 
(Definition 9.5) and let n be the maximum number of logical symbols in any 
formula of To. Letting S be To + b = 1, we obtain from (2)  : 

- 
P A F ~  ‘To + o = i1 - ~ ~ ( ~ r ~  + G  = il). (3) 

Further (of course) : 
PA I- -IT,( ‘T‘, + = 1’ ) 

and hence, from (1) and (3) : 

This sentence, 1 F ‘To + b = i’, can be taken as expressing the consistency 
of To, which, as we see, is provable in PA. Hence, by Godel’s second in- 
completeness theorem (Theorem 10.18), To cannot be proof-theoretically 
equivalent to PA. 

EXERCISE 14.3. Show that ZF (Zermelo-Fraenkel set theory) cannot be 
formulated with finitely many axioms; in other words, the axiom of replace- 
ment cannot be expressed by finitely many formulas. 



CHAPTER 3 

SECOND ORDER SYSTEMS AND SIMPLE TYPE THEORY 

$15. Second order predicate calculus 

DEFINITION 15.1. A language for second order predicate calculus (a second 
order language) is defined by extending a language for first order predicate 
calculus (Definition 1.1) by adding the following. 
5) Second order variables: 

5.1) Free variables with z argument-places (t = 0, 1, 2 , .  . .) : 

a;, cc;,. . .) a; , .  . . (i = 0, 1 , 2 , .  . .). 

5.2) Bound variables with i argument places (i = 0, 1, 2 , .  . .) : 

a t  
po,  TI,.  . ., . . (7 = 0, 1 ,  2 , .  . .). 

We shall call the variables in 2) of Definition 1.1 (uo, a l ,  . . . and xo, xl,. . . )  
the first order variables in order to distinguish them from the second order 
variables. 

Terms are defined as in Definition 1.2. 
As in the preceding sections, we use a and p both as formal and meta- 

variables; cc, /3, y , .  . . may be used for second order free variables (with or 
without subscripts) and q ~ ,  #I, x may be used for second order bound variables. 
The superscripts i in u‘, and p‘, are mostly omitted. 

DEFINITION 15.2. The formulas for a second order language are defined as 
in Definition 1.3 with the following alteration. 

If Ra is a predicate constant or a second order free variable with i argument- 
places and t l , .  . ., ti are terms, then Ri(t,,. . ., ti) is an atomic formula. 

In 3) of Definition 1.3 “ a  is a free variable” and “x is a bound variable” 
should read “a is a first order free variable“ and “x is a first order bound 
variable”, respectively. 
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We also add the clause: 
3’) If A is a formula, a a second order free variable and p a second order 

bound variable not occurring in A ,  which has the same number of argument- 
places as a ,  then Vcp A’ and 3 9  A’ are formulas, where A’ is the expression 
obtained from A by writing 9 in place of u at each occurrence of u in A .  The 
outermost logical symbols of Vcp A’ and 3 q  A’ are V and 3, respectively. 

The quantifier-free formulas and closed formulas (i.e., sentences) are 
defined as before. 

The replacement of symbols, and the notions of indicated and fully indicated 
occurrences of certain symbols, are defined as in Definitions 1.4 and 1.6, 
respectively. Thus from F(a)  we obtained F ( R )  by replacing the indicated 
occurrences of cc by R. Also the notion of alphabetical variant is defined as in 
Definition 2.15 (where we assume, of course, that  bound variables are replaced 
by other bound variables of the same order and, for second order variables, 
the same number of argument places). 

A sequent is an expression of the form r + A ,  where r and A are finite 
sequences of formulas of our language. 

In the following, we shall assume we have a fixed second order language, 
which we call L,. 

We shall first define a second order system which does not contain any 
“comprehension axiom”, and is simply LK with second order variables. Since 
this system is basic to second order systems, we shall call it  the basic calculus 
for second order systems and abbreviate it BC. 

DEFINITION 15.3. The formulas of BC are those of L2 and the sequents of BC 
are those of L2. The rules of inference of BC are defined as those for L K :  
only the following should be added to those in Definition 2.1. 

2.5‘) Second order V: 

where R is an arbitrary second order free variable or predicate constant and 
9 has the same number of argument-places as R. 

where u is a second order free variable which is fully indicated in F(a)  and 



136 SECOND ORDER SYSTEMS AND SIMPLE T Y P E  THEORY [CH. 3, $15 

does not occur in the lower sequent, and p is a second order bound variable 
of the same number of argument-places as u (and does not occur in F ( a ) ,  of 
course). Here M is called the eigenvariable of the inference. 

2.6’) Second order 3: 

where u is a second order free variable which is fully indicated in F ( M )  and 
does not occur in the lower sequent, and ‘p is a second order bound variable 
of the same number of argument-places as u. Then M is called the eigenvariable of 
the inference. 

where R is an arbitrary second order free variable or predicate constant and 
rp has the same number of argument-places as R. 

The auxiliary and principal formulas of these inferences are defined as for 
the other cases. 

In contrast to 2.5’) and 2.6‘), 2.5) and 2.6) will be called “first order V” 
and “first order 3”, respectively. 

DEFINITION 15.4. The proofs of BC and the related notions and terminologies 
are defined as in $2 (cf. Definitions 2.2, 2.3 and 2.8) ; thus, we can define “a 
proof ending with S, or of S”. “S is provable”, “a thread of sequents”, the 
concept of one sequent being “below” or “above” another, etc. The consistency 
of the system is defined exactly as before (Definition 4.1). 

Similarly to Lemma 2.10 we can prove the following. 

PROPOSITION 15.5. (1) Let P(R)  be a BC-Proof of a sequent S (R) ,  where R i s  a n  
arbitrary second order free variable or Predicate constant. Let R’ be a n  arbitrary 
second order free variable or a predicate constant which does not occur in P(R).  
Assume that R and R’ have the same number of argument-places. Thert P(R’) 
i s  a proof of S(R’). 

(2) A proof i s  called regular if it satisfies the condition that, firstly, all second 
order eigenvariables are distinct from one another, and,  secondly, if a second 
order u occurs as an  eigenvariable in a sequent S of the proof, then u OCCUYS onLy 
in sequents above S .  If a sequent S i s  BC-provable then S i s  provable &h a 
regular proof. 
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From now on we assume that we deal with regular proofs whenever necessary. 

DEFIKITION 15.6. The concept of “axiom system” is defined as in Definition 
4.1; an axiom system d (of L,) is a set of sentences (of L,). Clauses 2)-7) 
in Definition 4.1 can be adapted to the second order case. Proposition 4.4 
is re-stated here. 

PROPOSITION 15.7. Let .d be a n  axiom system aizd let RC,, be the system obtained 
from BC b y  adding - + A  as init ial  sequents for all A i?a d. Then a sequent 
r - -+A i s  RCd-provable if and o d y  if for some A , ,  . . ., A, of d, A , ,  . . ., A,, 
r --t A i s  BC-provable. 

When dealing with second order systems it is convenient to work with 
semi-terms and semi-formulas. 

DEFINITION 15.8. (1) Semi-terms are defined as follows. Individual constants 
and first order variables (free or bound) are semi-terms; if t,, . . . , t, are semi- 
terms and f is a function constant with n argument-places, then f ( t l , .  . . , t,) is 
a semi-term. 

(2)  Semi-formulas and the free occurrences of bound variables are defined 
as follows. Let R be a predicate constant or a second order variable (free or 
bound) with i argument-places, and let t,, . . . , t ,  be semi-terms. Then 
R(t , ,  . . . , t,) is an atomic semi-formula; the bound variables in t,, . . . , t ,  occur 
free in R(t,,. . ., t J ,  and if R is a bound variable, then R occurs free in 
R( t , , .  . ., t,). If B and C are semi-formulas, then so is B A C, and the free 
occurrences of bound variables in B A C are those of B and C. For other 
propositional connectives, the definition is analogous. If F ( x )  is a semi- 
formula in which x is fully indicated, then V x F ( x )  is a semi-formula; the 
free occurrences of bound variables in VxE;(x)  are those in F ( x )  except x. 
If F(p) is a semi-formula in which y~ is fully indicated, then Vp, F(p,) is a 
semi-formula and the free occurrences in Vp,F(y) are those in F ( v )  except 
p,. For 3 the definition is analogous. 

It is obvious that terms are semi-terms without bound variables, and 
formulas are semi-formulas without free occurrences of bound variables. 

Now we shall define two important notions of abstracts and substitution. 

DEFINITION 15.9. Let A (b,,. . . , b,) be a formula where some occurrences 
of b l , .  . ., b ,  are indicated. (Some of b l , .  . ., b ,  may not occur in the formula 
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a t  all.) Let yl,. . . , ym be bound first order variables which do not occur in 
A ( b , , .  . ., bm). Then the meta-expression ( y l , .  . ., y m ) A ( y l , .  . ., ym) is called 
an abstract of A(bl , .  . . , b,,,). 

We should emphasize that this is a meta-expression, i.e., not a formal 
expression of L,, and will be used only as an auxiliary aid. 

An abstract of the form {yl , .  . ., y m } A ( y l , .  . ., ym) is said to have m 
argument-places. Abstracts are mostly denoted by V ,  U ,  . . . . An abstract of 
the form {yl, .  . . , ym}a(yl,.  . . , ym) is often identified with a. If V denotes the 
abstract (rl,. . ., ym)A(yl , .  . ., y,) and t l , .  . ., t, are semi-terms, then 
V ( t , ,  . . . , t,) stands for A ( t l , .  . . , tm) .  

DEFINITIOX 15.10. Substitution of an abstract for a second order free variable 
in a semi-formula is defined as follows. Let F ( a )  be a semi-formula where some 
of the occurrences of a are indicated, and let V be an abstract with the same 
number of argument-places as a. (In the following we shall not mention the 
last condition, as the substitution is defined only for a and V which have 
the same number of argument-places.) We define substitution of V for a in 
F(a) ,  denoting the result by F (F) or F ( V ) .  In order to simplify the notation, 
we assume that a and V have one argument-place. One can easily generalize 
the definition to the case of more than one argument-place. So let V be of the 
form { y ) A ( y ) .  F (b) is defined by induction on the logical complexity of 

1) (i) F ( a )  is a(s) and this a is indicated in F(a) .  Then F ($) is A ( s ) .  (ii) F(a)  
is a(s) and this a is not indicated, 3r F(a)  is p(s) for some p other than a. Then 
F (F) is F(a)  itself. 

In the subsequent cases we first replace all the bound variables in F which 
occur in V by bound variables which do not occur in V in a manner such that 
each variable is replaced by another of the same order, distinct variables are 
replaced by distinct ones and a second order variable of i argument-places 
is replaced by another of i argument-places. Thus we may assume that F does 
not contain bound variables which occur in V .  

2 )  F ( a )  is one of l B ( a ) ,  B(a)  A C(a) ,  B(a)  v C(a) ,  and B ( E )  3 C(a) .  Then 
F (t) is, respectively, 4 3  (t), B (“v) A C (;*), B 6) v C 6) and B (;) 3 C it). 

3) F(a)  has one of the forms Vx G ( x ) ( a ) ,  3% G(x ) (a ) ,  Vp G ( y ) ( a )  and 3p G(p)(cr). 
Then F (F) is, respectively, Vx (G(x)  G)), 3x ( G ( x )  (;)), Vp ( G ( y )  G)) and 

I t  is obvious that F (E) is a semi-formula. I t  is also obvious that if F ( a )  is a 

F(a) .  

39, (3). 

formula then so is F (“v). 
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The ambiguity in 2 )  and 3), viz. the choice of new bound variables, can be 
eliminated by requiring that these are the first variables in the list of first and 
second order bound variables which satisfy the conditions. This is not an 
essential restriction, by virtue of the following. 

PROPOSITION 15.11. Let A and B be two formulas zehich are alphabetical variants 
of each other. T h e n  A = B is  BC-provable. 

Thus we shall henceforth deal with any of the alphabetical variants of a 
given formula. 

EXAMPLE 15.12. (1) Let F(a)  be Vx Vy (x = y 3 (a(.) = a ( y ) ) ) ,  where both 
occurrences of a are indicated, and let V be {u} 3% (x f u = 5 ) ,  where it is 
assumed that 5 is an individual constant, + is a function constant and = is 
a predicate constant in the language. Since x in F ( a )  occurs in I/, first change 
it to, say, z :  Vz V y  ( z  = y~ (a(z) E a(y) ) ) .  Let us call this formula F’(a). We 
shall carry out the substitution of I/ for a in F’(cc) step by step. 

4 2 )  (;): 3% (x + z = 5) 

i.e., 

vz  v y  (2 = y 3  (3x (x + z = 5 )  E5 3 y  (y + z = 5))). 

This is a familiar formula, in fact an equality axiom. If we did not first 
replace x by z ,  the result would be 

vx v y  (x = y 3 (3% (x + x = 5) = 3% (x + y = 5))), 

which is not even a formula. 
This can be generalized to an arbitrary abstract {u}B(u) (assuming there 

is no clash of bound variables), thus obtaining Vx V y  (x = y 3 (B(x)  = B ( y ) ) ) ,  
which is an equality axiom. That is to say, the simple schema 
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Vx Vy (x = y ZI ( K ( x )  f a(y))) 

and substitution produce all the equality axioms. 
( 2 )  Let F ( K )  be a(0) A VX (a(x)  3 ~ ( x ' ) )  3 Vx tc(x), where all occurrences of 

tc are indicated, and let V be {u}B(u).  Let us assume that x does not occur 
in V .  Then F (E) is B(0) A Vx (B(x )  3 B(x ' ) )  3 Vx B ( x ) ,  which is an induction 
axiom in arithmetic (in an appropriate language). 

(3) Let F(tc) be 
vx v y  V Z  (a(%, y )  A a(%, Z )  3 y = Z )  3 

3 37.J v y  ( y  E 7.J 3% (X E U A t c ( X ,  y ) ) ) ,  

with all occurrences of tc indicated, and let V be {xl, y l } B ( x l ,  yl), in the 
language of set theory. Then F (t) is 

V X  \Jy V Z  (B(X, y )  A B(X, Z)  3 y = 2) 2 

3 3V v y  ( y  E 7.J 3X (X E U A B(x ,  y ) ) ,  

which is an axiom of replacement in Z F  set theory. Note that B(x ,  y )  may 
contain variables other than x and y ,  including u, but not z, (since this is 
bound in F(tc)). 

We shall return to those examples later. 

The following is easily proved by induction on the number of logical 
symbols in F(or). 

PROPOSITION 15.13. For a n  arbitrary formula F ( a )  and arbitrary abstracts U 
and V ,  the sequent 

vx ( U ( x )  zz V ( x ) ) ,  F (  U) - F (  V ) ,  

(where i t  i s  assumed that the bound variables are Properly taken care of)  i s  
BC-provable. 

DEFINITION 15.14. (1) Let A(b, , .  . ., b,, c l , .  . . ,  c,, PI , .  . ., p,) be a formula, 
all of whose free variables are among b l , ,  . . , b,, cl,. . . , c,, P I , .  . ., Pk (though 
not necessarily all of these occur in A ) ,  and where all occurrences of these 
free variables are indicated. Then a sentence of the form 

(*I VZ1 . . . VZ, V$l . . . V$, 3q v y ,  . . . vy ,  ( q ( y 1 . .  . . , ym)  

= A ( Y l , ' . ' ,  Yln,Zl,...,Zn,$1,...,$,)) 

is called a comprehension axiom. 
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Let V be the abstract 

Then the above comprehension axiom may be written as 

where U is obtained from V by replacing c's and b's by z ' s  and $Is, respectively. 
( 2 )  Let K be an arbitrary set of formulas. (This use of K is only temporary.) 

A formulawhich belongstoKiscalledaK-formula, andif aformulaA(b,, . . . , b,) 
is a K-formula, then the abstract { y ,  . . . ym}A(yl,. . ., ym)  is called a K- 
abstract. If the formula A in a comprehension axiom (cf. (*)) is a K-formula, 
then (*) is called a K-comprehension axiom. 

(3) A set of formulas K is said to be closed under substitution if for every 
K-formula or K-abstract A ( E )  and for every K-abstract V ,  A ( V )  again 
belongs to K .  

DEFINITION 15.15. Let K be a set of formulas. 
1) The K-system is obtained from BC by adding to it all K-comprehension 

axioms as initial sequents (viz. sequents of the form + A ,  where A is a K-  
coniprelierision axiom). 

2 )  KC is the system obtained from BC by adding the following inferences, 
for arbitrary formulas F ( a ) ,  and K-abstracts V (where F ( V )  and I;(?) are 
obtained by replacing the indicated cc by, respectively, V and y ~ )  : 

The auxiliary and principal formulas of these inferences are defined as usual. 

Since a system HC has interest only if K is closed under substitution, we 
shall henceforth assume that K is closed under substitution. 

PROPOSITION 15.16. For an arbitrary set K of formulas (closed under substitution), 
the K-system is equivalent to KC. 
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PROOF. I t  can easily be shown that the K-comprehension axioms are provable 
in KC, while the lower sequents of second order V : left and second order 
3 : right are provable in the K-system from their upper sequents. 

Due to the above proposition we shall henceforth only deal with K- 
comprehension axioms in the form of the system KC. 

DEFINITION 15.17. If K is the set of all second order formulas, then KC is 
called the second order predicate calculus with full comprehension, and is 
denoted by G'LC. 

PROPOSITION 15.18. If the cut-elimination theorem holds for G'LC, then GILC 
is consistent. 

PROOF. The proof is immediate, as for Theorem 6.2. 

In fact the cut-elimination theorem does hold for U'LC, as we will see 
later ($200). The reason why we put Proposition 16.18 in this form is that the 
proof of cut-elimination for OlLC is non-constructive, and hence, on the basis 
of our finitist standpoint, we cannot claim the consistency of GILC from 
that proof. 

$16. Some systcnis of second order predicate calculus 

In this section we sliall deal with some inessential extensionsof the first order 
predicate calculus. 

DEFIKITIOY 16.1. Let S1 and S2 be two formal systems which contain L K .  
S2 is called an inessential extension of S1 if S1 is a subsystem of Sz and for 
any sequent S of the language of S1, if S is S2-provable, then S is S1-provable. 

PROPOSITION 16.2. The cut-elimination theorem holds for BC. 

The proof is exactly as for LK, so we shall not repeat the argument. 
As consequences of this proposition, consistency, the subformula property, 

the midsequent property, etc., all hold for BC. As another consequence we 
can claim: 
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COROLLARY 16.3. BC i s  al.z inessential extension of LK. 

PROOF. If any inference for a second order quantifier is used in a cut-free 
proof of BC, then that quantifier will occur in all sequents below that inference 
(as is easily shown by induction on the number of inferences in such a proof). 

DEFINITION 16.4. (1) A first order formula is one which contains no second 
order quantifiers (although it may contain second order variables). Such a 
formula is also called aritlimetical if the language is that of second order 
arithmetic (i.e., PA, with second order variables). 

A f irst  order abstract is one obtained from a first order formula. 
( 2 )  K ,  is the set of all first order formulas. 
(3) The predicative comprehension axionis are those in which the Zi in 

(**) of Definition 15.14 is a first order abstract; in other words, the Kl-  
cornprehension axioms. 

THEOREM 16.5 (cut-elimination theorem for the system with predicative 
comprehension axioms). If a sequent S i s  provable in the system K,C ( c f .  
Def ini t ion 15.15), then i t  i s  Provable in K,C without cut.  

PROOF. The proof for LK almost goes through. Here we use triple induction 
instead of double induction (cf. Proof of Lemma 5.4). Let A be a formula 
of a second order language. Define a function c by:  c (A)  =df  the number of 
second order quantifiers in A .  It is easily seen that c(F(cx)) = c ( F ( V ) )  if I/ is 
first order. Let c = d f  c(P) = d f  c ( D ) ,  where D is the mix formula of P (assuming 
P has a mix a t  most as the last inference). Then Lemma 5.4 is proved now 
by transfinite induction on w2 * c + w . g(P) + rank(P). M’e may follow the 
proof in $5 but there are some additional cases here. After 1.5) (i) there, add 
the cases that D is Vcp F ( y )  and 39 F ( 9 ) .  P has the form 

where V is a first order abstract. From the above remark, c ( F ( V ) )  = c ( F ( a ) )  = 

c(Vp F(g,))  - 1. As a does not occur in 1’, do or F(9);  F - d, F ( V )  is provable 
without a mix (cf. 1.5) of Proof of Lemma 5.4). Define P‘ as 



144 SECOND ORDER SYSTEMS AND SIMPLE TYPE THEORY [CH. 3, $16 

Since c(P') = c ( F ( V ) )  < c ( V 9  F(p)) = c(P), the induction hypothesis applies 
to P'. Thus we can obtain a proof without a mix of r, n$ ---f A$, A ,  and hence 
a proof without a mix of IT, ITo +do, A. 

Finally, after 2.1.3 (ii) of the Proof of Lemma 5.4, add the cases where D is 
VP, F ( d  and 39  F ( 9 ) .  

COROLLARY 16.6. K I C  i s  a n  inessential extension of L K .  Hence, in  particular, 
K,C i s  consistent. 

PROOF. The proof is as for BC (cf. Corollary 16.3). 

PROPOSITION 16.7. Let L K +  be the system which i s  like L K  except that the 
language includes free second order variables. 

Let r + 0 be a sequefat consisting of first order formulas only and let F,(P,) 
be a first order formula which has a free second order variable P I ,  z = 1, 2,. . . , m. 
Then 

VV, F1(~1)>. . . > v ~ r n  Frn(prn)> r + 0 (1) 

i s  KIC-provable if and oialy if the following i s  satisficd: 
(*) For each i = 1, 2 , .  . ., m there exist first ordcr abstracts J'i,l,. . ., V,,l, 

(la 3 1) such that 

i s  LK+-provable; 
Here {Aj}3=l ,___. rn denotes a sequence of formulas A,, .  . . ,  A,, VZ,,~ denotes a 
(possibly empty)  sequence of universally quantified f irs t  order variables 
VZ, VZZ . . . VZ,, where k (depending on  i and i) i s  the number of free first order 
variables in Vis i ,  and V' i s  obtained from V by  changing the free first order 
variables in V which do not occur in (1) to z l , .  . ., z,, 

PROOF. If: Suppose (*) holds. First we shall prove that for every formula 
F(a)  ; V p  F(p) + Vz F (  V') is KIC-provable, if V is first order. 

- F ( V )  +FW 
V'plF('pl) - F ( V )  . .  

(repeated V : right) 
vg, F(p) + vz F ( V ) .  
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Thus we haveVq, F,(q,) + V Z ~ , ~ F , ( V ; , ~ )  f o r j  = 1 , 2 , .  . ., E ,  a n d i  = 1 , 2 , .  . ., n. 

From these and ( 2 ) ,  by repeated cuts and contractions, we can construct a 
KIC-proof of (1). 

Only if: Suppose (1) is KIC-provable. Then there exists a cut-free proof 
of (1) in K,C. Therefore it is sufficient to prove the following proposition. 

PROPOSITION 16.8. Suepose P i s  a cut-free proof iia K,C of a sequent of the 
form (1) ahone. T h e n  for the end-sequent of P ,  (*) holds. 

Notice that since P is cut-free, all sequents in P have the form (1). The 
proposition may now be proved by mathematical induction on the number 
of inferences in P. 

PROOF. (1) If P consists of an initial sequent D + D ,  then D has no second 
order quantifier. Therefore P --f D itself has the form (2 )  above. 

( 2 )  The induction steps are proved according to the last inference I in P. 
Notice that the only possible inference in P concerning a second order 
quantifier is second order V : left. 

2.1) I is second order V : left. P is of the form 

F ( V ) , n  -+A 
vfp F(fp) ,  n -+ 11 ' 

where VandF(fp) are first order. Bytheinductionhypothesis, w h e n F ( V ) , n  - A  
is taken for the sequent in (l),  there are appropriate abstracts for which a 
sequent like (2) is provable in LKf.  Denote such a sequent by F ( V ) ,  17* + A .  
Now add V to the set of abstracts obtained by the induction hypothesis. 
If V has no first order free variable which does not occur in Vfp F(p), - A ,  
then take F ( V ) ,  n* - A  itself for the sequent ( 2 ) .  If I/ has free variables 
b,,. . ., b, which do not occur in the above sequent, then replace them by 
new bound variables z,, . . . , zk and call the result V' .  The required sequent is 
then Vz,, . . . , Vz, F ( V ' ) ,  IT* + A. 

2.2)  I is not a second order V : left. Such a case is proved trivialIy from the 
induction hypothesis. 

Then replace free second order variables by 0 = 0. 

Notice that it is the inference contraction : left that  results in more than one 
first order abstract V,,l, V i , 2 , .  . . being associated with the same formula 
F,(P,) in ( 2 ) .  



146 SECOND ORDER SYSTEMS AND SIMPLE TYPE THEORY [CH. 3, $16 

PROPOSITION 16.9. If a formula 3p F(p) i s  provable in K,C, where F(p) does not 
have second order quantifiers, then there exist first order abstracts V1 , .  . . , V,, 
such that 3zl F(V; )  v . . . v 3zn F(V:) i s  provable in LKf. 

This is the dual of Proposition 16.7 and is proved similarly. 

PROBLEM 16.10. We define PA', the predicative (second order) extension of 
Peano arithmetic, as follows. Let V J' and Eq' be respectively thesectences: 

V J '  

Eq' 

bJ ($40) A Qx (dx) ' dx')) ' vx dx)) ; 
V p  vx VY (x = Y A Pl(4 ' dY)). 

VJ' is the second order formulation of the principle of mathematical induction 
and Eq' is the second order formulation of one of the equality axioms. 

PA' is then obtained from K,C (in the language of PA augmented by second 
order variables) by adding to it the axioms of CA u VJ' U Eq' as initial 
sequents. (CA was defined in definition 9.2.) 

Show that PA' is an inessential extension of PA. [ H i n t :  Let A be a formula 
of thelanguageofPA.Then A isPA'-provableif andonly if CAuVJ'uEq' -A 
is KIC-provable. Noting that VJ' and Eq' each have one second order V in 
front, apply Proposition 16.7.1 

PROBLEM 16.11. Consider ZF (Zermelo-Fraenkel set theory). The language 
consists of E (a binary predicate symbol), first order variables and logical 
symbols ( a  = b is an abbreviation of Vx ( a  E x = b E x)). The axioms of 
extensionality, pairs, sum, power, regularity and infinity can be stated as 
single sentences. However, the axiom of replacement is actually an axiom 
schema, which is formulated as 

V X  v y  V Z  (B(x ,  y) A B(x,  2) 3 y = 2) 3 

3 3 V  v y  (y E ZJ ? 3% (X E U A B(x,  y)) 

(cf. Example 15.12, (3)). The basic logical system is LK. 
On the other hand BG (Bernays-Godel set theory) is formulated in a second 

order language. The language is that of ZF augmented by second order 
variables. The axioms are those of ZF plus an axiom of equality 

vp, vx VY (x = Y' v(x) = dY)) 
except that the axiom of replacement is now formulated in a single sentence : 
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The basic logical system is K,C. 

problem.] 
Show that BG is an inessential extension of ZF. [Hint: As for the previous 

DEFINITION 16.12. Let us assume that the only logical symbols are 1, A and V. 
(For convenience, we let BC denote also the basic calculus restricted to these 
logical symbols.) 

1) A formula is said to  be positive if every occurrence of a second order 
quantifier is in the scope of an even number of 7's. A sequent 

FI,. . ., F ,  +Hi,. . ., H, 

is called positive if 1 ( F 1  A . . . A F,) v ( H ,  v . . . v H,) is positive (where 
v is defined in terms of 1 and A ) .  Thus, for example, -I(TVF F(p) A V# H(#)) 
is not positive since V# is in the scope of one 1 ,  while l ( B  A i V p ,  F(p)), 
where B and F do not contain second order quantifiers, is positive. 

2) The IT1-predicate calculus, or II'PC, is the system obtained from BC 
by restricting it as follows. (For the sake of simplicity, we assume there are 
no function or predicate constants.) 

(1) The initial sequents consist of first order formulas only. 
(2) There is no second order V : left. 
(3) There is no cut rule. 
It is obvious that any sequent provable in IIlPC is positive. 
Let a and b denote finite sequences of free variables such that all variables 

of a are distinct while in b there may be repetitions, the length of a and b 
are the same, the i th variable of b is first or second order according as the i th 
variable of a is first or second order, and if the i th variable of a has j argument- 
places then so does the i th variable of b. Let 

(i.e., the replacement of Q by b, cf. Definition 1.4). 

(Notice that omitting predicate constants from the language is not an 
essential restriction, since the free variables which are not used as eigenvariables 
can be regarded as such.) 
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PROPOSITIOK 16.13 (Maehara-Takeuti). If a formula F (g) ZI G (g) i s  provable 
in IIlPC, then there exists a first order formula C satisfying the following. 

1) Every variable in C other than those in a occurs both in F and G. 
2 )  F (g) 3 C (g) and C 3 G aye provable i i z  IIlPC. 

(Notice that the provability of I; 3 G is not assumed.) 

PROOF. The proof is almost the same as that of Theorem 6.6 (Craig’s inter- 
polation theorem for LK).  State the proposition for arbitrary partitions of 
provable sequents, introduce + T as an auxiliary initial sequent (cf. Lemma 
6.5) and prove the statement in this system. The conditions (1)-(3) in the 
definition of WPC are indeed crucial. 

PROBLEM 16;14 (Chang). Let x be a sequence X1, .  . . , X ,  of bound variables 
and Qx be Q I X l  . . . Q,X, where Qi is V or 3 and Qi is always V if Xi is a 
second order variable. If Qx ( F ( x )  3 G(x) )  is provable in IllPC, then there 
exists a first order formula C(a)  such that 

is provable in WPC. [ H i n t :  Maehara-Takeuti method. This is a trivial 
consequence of Proposition 16.16, which is a consequence of Proposition 
16.13. 

DEFINITION 16.15. Let G(a)  be a formula whose free variables are all in a. 
For convenience we temporarily introduce, on the meta-level, the third 

order variable d, and new atomic formula &(a), and extend the notion of 
formula accordingly. (However this variable, and any formula containing it, 
are not part of our formal system). Let F be a formula containing d. 

is the formula obtained from F by substituting G(b)  for d ( b )  in F. If S is a 
sequent Fl, .  . ., F ,  - + H I , .  . ., H,, then 
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is 
d &!I sl 

F 1  ( Ax G(x) ” .  .’ F’n (Axz(x)) H 1  (Ax G(x)) ” ’ . ’  Hn ( A X  G(x)) ’ 

An occurrence of d in a formula F is defined as positive or negative, 
inductively as follows. (We assume, as stated above, that we have only 1, A 

and V as logical symbols.) 
1) The occurrence of sl in d ( b )  is positive. 
2 )  If the occurrence of sl in F is positive (negative), then that occurrence 

of d in F A G or G A F is also positive (negative). An occurrence of d in 
1 F  is positive or negative according as that occurrence of sl in F is negative 
or positive. 

3) An occurrence of a2 in Vx F ( x )  or Vy, F(p) is positive or negative according 
as that occurrence of d in F ( a )  or F ( K )  is positive or negative. 

An occurrence of a2 in a sequent F,, . . . , F ,  ---t G I , .  . . , G, is positive or 
negative according as that occurrence of d i n  1 ( F l  A . . . A F,) v G1 v . . . v G, 
is positive or negative (where v is defined in terms of 1 and A ) .  

PROPOSITION 16.16. Let G(a) be a formula all of whose free variables are in a, 
and let S be a sequent in which all the occurrences of at are positive. If 

i s  provable in IIlPC, then there exists a first order formula C(a) satisfying the 
following conditions: 

1) S (Ax:(x)) is provable in WPC; 

2 )  all the free variables of C(a) are in a ;  
3) Vx (C(x) ZJ G(x)) i s  provable in WPC. 

PROOF. The proof is by induction on the number of inferences in a proof of 

Use Proposition 16.13 for the case second order V : right. 

DEFINITION 16.17. The satisfaction relation for second order formulas in a 
given structure 9 = ( D ,  4) (cf. @) is defined as follows. Let +,, be a map 
from variables (first and second order) such that its values for first order 



150 SECOND ORDER SYSTEMS A N D  SIMPLE TYPE THEORY [CH. 3, $16 

variables are elements of D, while its values for second order variables of i 
argument-places are subsets of D x . . . x D ( =  Dz) .  

1) (9, +,) satisfies ajt,, . . ., t,) (p ( t l , .  . ., t ,)) if and only if (+ot,,. . ., dot,) 
belongs to +oa (dop). 

2 )  (9, +,) satisfies V p  F(p) (3p F(p)) if and only if for every 4; (there exists 
a +;) which agrees with +o except at g,, (such that) (2, 4;) satisfies F(g,). 

For other cases the definition is the same as in $8. 
A formula is valid if for every structure 2 = (D, 4) and map +o as above, 

it is satisfied by (9, +o). 

PROPOSITION 16.18. IllPC as complete for positive formulas (or sequentsf : i.e., 
every valid positive formula i s  provable in IllPC. This  implies that the cut-rule 
is admissible in WPC, i.e., if I' --f A ,  D and D ,  T ---f A are provable in IllPC, 
then so i s  T + A .  

PROOF. This can be proved by following the proof of Theorem 8.2 (the 
completeness of LK) ; namely, construct the reduction tree of a given positive 
sequent, and if there is an infinite branch, define a structure in which the 
sequent is false. For the induction steps in the construction of the tree, the 
only new case is the step in which formulas whose outermost logical symbol 
is Vg, are under consideration. These formulas occur only in the succedent 
of a sequent since the sequent is positive. 

Thus (for this step) suppose the sequent 27 ---f A is under consideration, 
and let Vpl F(pl), . . . , Vy, F(y,)  be all the formulas in A whose outermost 
logical symbol is V (second order). Write the sequent 17 +A,  F l ( a l ) ,  . . . , Fn(a,) 
above this, where a l , .  . . , a ,  are the first n (second order) free variables not 
used yet. Note that if F ( a )  is false in a structure, then so is V ~ I  F ( ~ I ) .  

PROBLEM 16.19. Let L be the language consisting of 0, ', =, and <, and let 
To be the first order Peano axioms without mathematical induction for this 
language. We also assume that every axiom in To is in prenex normal form 
and no 3 occur in To. Let N ( a )  be an abbreviation of the formula: 

vp (do )  * 'dx (p,(x) ' pk')) 

A tJx VY (x = Y A p(x) ' d Y ) )  = p(4).  
If To + F ( { x } N ( x ) )  is provable in IllPC, then there exists a formula A ( a )  of 
the form 0 = 0 or a = i i, v a = i iz v . . . v a = ?ik for some numerals 
El,. . . , f i k ,  such that To + F ( { x } A  ( x ) )  is provable in IllPC. 
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PROOF. By Problem 16.14, there exists a first order formula A(a)  of L such 
that 

1) a is the only free variable in A ( a ) ,  
2) To, A (a) - N ( a )  is provable in IIlPC, 
3) To -+ F({x}A (x)) is provable in IIlPC. 

By a well-known decision method, we can assume that A(a)  has one of the 
following forms : 

a) 0 = 0, 
b) 0 = 1, 
c) a = n, v a = n* v . . . v a = n,, 
d)+i < u v u = +i1 v . . .  v u = % k .  

Case 1. A(a)  is 0 = 1. 
Since the occurrences of iV are positive in F ( { x } N ( x ) ) ,  the provability of 

Case 2. A(a)  is f i  < a v a = +i, v . . . v a = %,. 

In this case To, +i < a + N ( a )  is provable by 2). Hence the following 

To + F({x}(O = 1)) implies the provability of To - F({x}(O = 0)). 

sequent is provable : 

To, +i < a,  a(O), Vx (a(%) 2 a(%')) ,  

Vx V y  (x = y A a(%) ZJ a ( y ) )  -.(a). 

Now introduce a new individual constant o and substitute a < w for .(a). 
Then we have a proof of the sequent: 

r,, 0 < 0, vx (x < w ZJ x' < 0) -. 

The usual interpretation of < on O,O' ,  O" , .  , ., w ,  w ' ,  w" , .  . . shows that 
this is a contradiction. 

PROBLEM 16.20 (Kreisel). Consider the system PA' of predicative second order 
arithmetic defined in Problem 16.10. In order to facilitate the use of some 
results in recursive function theory, we use the following notation: Vf A ( f )  
(resp. 3f A ( f ) )  is an abbreviation for Vp' (p' is a function 2 A *(p')) (resp. 3p' (p' is 
a function and A*(p'))), where "p' is a function" is expressed by 

vx 3 y  v2 (p'(x, 2) y = 2) 

and A ( / )  and A*(p') are related in a manner such that subformulas of A ( / )  of 
the form B(f(t))  are (systematically) replaced in A* by 3 y  (p(t, y )  A B(y ) ) .  
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Next we define a I7: (resp. 2;) formula as one of the form V p  A(p) (resp. 
39 A ( y ) )  where A is arithmetical. Any I7; formula is equivalent (in PA’) to 
one in “I7:-normal form”, i.e., Vf 3 y  R(fy),  for some R which is primitive 
recursive (or more strictly, primitive recursive relative to the free second 
order variables in the formula), where f y  is (the Godel number of) the sequence 
(f(O), . . ., f ( y  - 1)).  Similarly, any 2; formula can be transformed to 2:- 
normal form: 3f V y  R(iy), for suitable primitive recursive R. Finally, a I7: 
predicate or relation (of k number variables say) is one which can be expressed 
by a formula with k free first order variables (and no free second order 
variables). Similarly for 2; predicates or relations. 

Now let <* be a 2;-ordering, i.e., <* is a 2: binary relation which is a 
linear ordering of natural numbers. Let We(<.) express that < a  is a well- 
ordering: Vf 3% ~ ( f ( x  + 1) <- /(.)). Suppose We(<.) is provable in PA’, i.e., 
<* is a provable well-ordering of PB’. Show that the ordinal of <. (the order 
type of <.) is less than E ~ .  [Hint: First express a <. b in ,$normal form: 
3f Vy R(fy ,  ab).  Now follow the steps listed below. 

1) Let <* be an enumeration of primitive recursive, binary relations 
(for n = 0, 1, 2 , .  . .), and let W(x) denote We(<,). Then W ( x )  is a (provably) 
complete I I - form,  viz. there is a primitive recursive function S(Y,  x) such 
that for everyII:-predicate A (x), there exists a number yo such that Vx ( A  (x) G 

W(S(i , ,  x))) is PA‘-provable. 
2 )  For any 2; predicate B(x)  there is a number n such that B(n)  -- -~W(i i )  

is PA‘-provable. (We formalize an argument in recursion theory showing 
that a 2: predicate cannot be 17:-complete). 

3) Let W,(x) be the formula expressing that there is an embedding of 
into <., i.e. an order-preserving function from the domain of <% to the 

domain of <. (which implies that  <3c is a well-ordering, with ordinal less 
than or equal to that of <.). Then W,(x) is 2:, and so there is a formula 
W:(x) in 2;-normal form such that Vx (W,(x) -- W,*(x)) is PA’-provable. 
4) Since We(<-) is provable, Vx (W:(x) ZI W ( x ) )  is provable. 
5)  By 2), there is an n such that W,*(+i) E ~ b V ( + i )  is provable. Hence by 

4), W(%) and TW: ( i i )  are provable. 
6) W(ii) being provable in PA‘ means that the primitive recursive relation 

< n  is a provable well-ordering of PA‘, hence of PA. By Gentzen’s result in 
the previous chapter, this implies that the ordinal of < n  is less than E,,. 

7 )  W(ii) and TWT (6) (see 5)) means that < n  is a primitive recursive well- 
ordering which is not embeddable in <-, and hence the ordinal of <* is less 
than that of <,,. This and 6) yield that the order type of <* is less than eO.] 
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$17. The theory of relativization 

DEFINITION 17.1.  A system of relativization consists of a pair of formulas 
RO(a) and R1(m), where Ro(a) and R1(a) each have the one free variable a and 
a, respectively. One or both of Ro(a) and R1(m) may be missing. A system of 
relativization is often denoted by Y .  

For an arbitrary (second order) semi-formula A ,  A' (the relativization of A 
to r )  is defined inductively as follows. (Here it is assumed that r consists of two 
formulas. If one or both of Ro and R1 is missing, then the definition should be 
adjusted accordingly.) 

1) If A has no logical symbol, then A' is A .  
2) ( A  A B)', ( A  v B)', ( A  3 B)r, ( - IA) '  are, respectively, 

A' A B', A' v B', A'> B', i A r .  

3) (Vx F(x))' and (3% F(x))' are V y  (RO(y) 3 F ' ( y ) )  and 3 y  ( R o ( y )  A F' (y ) ) ,  
respectively, where F'(y)  is (F(y)) '  and y is a variable which does not 
occur in Ro(a) or F'(a). 

respectively, where F'($) is (F($))' and i,h is a variable which does not 
occur in R1(a) or F'(m). 

4) (VY F(P))' and (3P F(P))' are V$ (WICI) ' F'(ICI)) and 3$ (R") A F'($))> 

5)  ( { Y l ! .  . . t Y n ) A ( Y I 7 .  . . > Y J ) '  is { Y l , .  . . I  Y u ) ( A ( Y l , .  . . f Y J Y .  

LEMMA 17.2. (1) If A has n o  quantifiers, than A' i s  A .  
(2) A free variable occurs in A if and only  if i t  occurs in A'. 
(3) A bound variable occurs free in A if and only  if it occurs free in A'. 
(4) '4 i s  a formula if and only if A' i s  a formula. 
(5 )  Let A( t )  denote A(a)  (p); then (A( t ) ) '  i s  the same as A ' ( t ) ,  i.e., (A(a) ) '  ( f )  

(6) Let A ( V )  denote A(m) f"v), then (A(V))' i s  the same as A'JV'), i.e., 
("the same", that i s ,  up to bound occurrences of bound variables). 

(A(a) ) '  (;") (again, up to bound occurrences of bound variables). 

PROOF. By mathematical induction on the number of logical symbols in A .  
(1)-(5) are left to the reader. 

(6): Let V be { y } C ( y ) .  (For the sake of simplicity we assume that V has 
only one argument place.) If A(a)  is m(t),  then (A(V))' is (C(t))"  and (A(a))' (;r) 
is (a(t))' (;7), i.e., C'(t). These are the same by ( 5 ) .  

Suppose A(m) is Vx F ( x ,  m). (Vx F ( x ,  V)) '  is V y  ( R o ( y )  ZJ ( F ( y ,  V))').  By the 
induction hypothesis, this is the same as V y  (Ro(y) 3 F r ( y ,  m) (;,)), i.e., 
( V X  F ( x ,  4)' (;,). 
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Suppose A(a)  is Vp, F(p, ct). ( V q  F(p, V))' is V$ (W$) 3 (F(y4 V))'). By 
the induction hypothesis, this is the same as V$ (R1($) 3 F'($, ct) (;,)), i.e., 
(VP, F(P, 4)' (J3. 

The other cases are left to the reader. 

DEFINITION 17.3.  (1)  If r is a sequence of formulas A l , .  . . ,  A,, then r' 
denotes A;, . . . , A;. For the sake of simplicity, we write both Ro and R1 as Y. 
It will be obvious which is meant, since .(a) denotes Ro(a) and ~ ( c t )  denotes 
R1(u).  

( 2 )  Suppose a system of relativization Y is given. Then @ is the set of the 
f ol1owin.g formulas. 

1) Y ( C )  for every individual constant c (in the language). 
2)  V y l  . . . Vy,  (.(yl) A . . . A ~ ( y , ) )  3 r(f(yl,. . ., y,))) for every function 

3) 3x Y(X). 

4) 39,r(p,). 

constant f. 

EXAMPLE 17.4.  The language includes = as a distinguished binary predicate 
constant. Suppose Y consists of R1 only, where R1(tc) is defined to be 

V X  v y  (X = y A a(.) 3 R ( y ) ) .  

Let 24 be the following axiom system : 

vx (x = x), 

VxVy(x = y 3 y  = X), 

3 P ( y l , .  . . , y,)) for every P. 

To apply the theory below to this example, we want to check that i?8 + A 
is provable in the systems considered for every A in @. Since Ro is missing, 
we only have to consider 4). I t  is a routine matter to see that this condition 
is satisfied. (Further, Y and 9 also satisfy condition 5) in Lemma 17.5.)  



CH. 3. $171 THE THEORY O F  RELATIVIZATION 155 

LEMMA 17.5. Let S be HC, where K is a n  arbitrary set of formulas zPihich is 
closed under substitution (c f .  Definitions 15.14 and 15.15). Su@pose the system 
of relativization r satisfies the condition that for a n  arbitrary K-abstract V ,  Vr 
is also a K-abstract. (This is satisfied i f ,  e.g., K consists of all formulas in the 
language.) Let 9 be a n  axiom system such that .%? --+ A i s  S-provable for every 
A in d> and 

5)  r(b) ,  . . . , r(D), . . . , 9 --f Y( V') i s  S-provable for  every K-abstract V ,  where 
b, . . . and P,. . . are all the free variables which occur in V (and hence in 
I/': cf. part (2) of Lemma 17.2). 

Then for a n  arbitrary sequent r + 0 which is S-provable, 

r (a) ,  . . . , r ( ~ ) ,  . . . , %?, rT -+ 0 7  

i s  S-provable, where a , .  . . , u , .  . . are all the free variables whach occur in r, 0. 

We first prove the following sublemma. 

SUBLEMMA 17.6. I f  s is a term, then r ( b ) , .  . ., 9 + r (s )  i s  S-provable, where 
b, . . . are all the (free first order) variables in s. 

This is proved by mathematical induction on the number of function 
constants in s. 

PROOF OF LEMMA 17.5. This is proved by mathematical induction on the 
number of inferences in a proof ending with r + 0. 

1) The proof consists of an initial sequent D --+ D. Then D' + DT is also 
an initial sequent. Therefore 9, D T  -+ D' is obviously S-provable, and hence 
so is r ( a ) ,  . . . , ~ ( u ) ,  . . . , .%9, DT -, D'. 

2) The last inference is a first order V : left: 

F ( ~ ) ,  r' -+ 0 
QX F(x) ,  ri + 0 '  

By the induction hypothesis, 

r ( a ) ,  . . . , ~ ( u ) ,  . . . , ~29, F'(s), r" + Or 

is S-provable (cf. part (5) of Lemma 17.2). Also r (b) ,  . . . , 9 + r (s )  by Sub- 
lemma 17.6 (where the variables b, . . . are included among a , .  . .). Therefore 

r ( a ) ,  . . . , r ( ~ l ) ,  . . . , 9, Vx ( ~ ( x )  3 F r ( x ) ) ,  r ' r  ---f 0'. 
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3) The last inference is a first order V : right: 

r + @', F(d)  
r -+ 0 1 ,  vx F ( ~ )  . 

By the induction hypothesis, 

r (a) ,  . . . , Y ( Q ) ,  . . . , 9, rT + @+, Fr(d ) ,  

where d does not occur in the antecedent. So 

r (a) ,  . . . , r (u) ,  . . ., 9, P + @'*, V x  (r(x) 3 Fr(x ) ) .  

4) The last inference is a second order V : left: 

F ( V ) ,  r' -+@ 
V p  F(p), r' -+ 0 ' 

where V is a K-abstract. By the induction hypothesis, 

r ( a ) , .  . ., ~ ( c t ) , .  . ., 98, F7(VT) ,  r" -0' 

(cf. part (6) of Lemma 17.2). Hence 

r ( a ) , .  . . ,  ~ ( a ) , .  . ., 98 + r ( V T )  

by condition 5) (since a , .  . . , u,. . . include all the free variables in V ) .  So 

r (a) ,  . . . , r ( ~ ) ,  . . . , 9, r (V7)  3 FT(Vr) ,  r" + @. 

Also by the condition on K, V7 is a K-abstract, so that from the last sequent 

~ ( a ) ,  . . . , ~ ( u ) ,  . . . , b, Vg, ( ~ ( g , )  3 F T ( p ) ) ,  Pr  + Or 

is S-provable. 
Other cases are treated similarly. 

DEFINITION 17.7. (1)  An ax iom system (in this section) is defined as a set of 
formulas which do not contain any free first order variables. 

(2) Let d be an arbitrary axiom system and let r be a system of relativiza- 
tion. dr is the set of formulas A r  for all A in d. 

THEOREM 17.8. Let  d and B be axiom systems. Suppose that the formal system 
S and the ax iom system satisfy the conditions of L e m m a  17.5, and, further:  
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for  every formula A of a2 U 38, 37 -,Ar is  S-provable; and for every second 
order free variable ci contained in .d u 9, 9 -+ y(a)  i s  S-provable. T h e n :  

(1) for a n y  formula B ,  if d U 9 + B i s  S-provable, then so i s  37 + B r ;  
( 2 )  if 97 i s  consistent (with S), then so i s  sd u 37. 

NOTE. We can express this result (part (1)) by saying that d u 9 is inter- 
pretable in 37 (relative to s), or more accurately that r provides an interpreta- 
tion (or “inner model”) of d u 38 in 37 (relative to S).  

PROOF. (1) Suppose a2 u 38 -. B (in S). Then there are finite sequences r and 
d from d and 37, respectively, such that T, d --+ B (in S). So by Lemma 
17.5, 

r ( a ) , .  . ., P, d r  -, B‘ (in S). 

(Recall that r a n d  d contain no free first order variables.) But by our assump- 
tion, 37 4 A‘ and 37 --+.(a) are provable for every formula A and second 
order variable a in r u d . Hence 37 --+ B’ (in S).  

Part (2) is proved from (l), by taking, for B,  say C A 1 C  (since (C A T C ) ~  
is Cr A +?). 

DEFINITION 17.9. For the following theorem, let L’ denote the second order 
language with constants 0, ‘ and = , and let do denote the following axioms 
(for arithmetic) in this language : 

v x  (1%’ = O ) ,  

v x  v y  ( x  = y 3  x’ = y’) ,  

v x  v y  (x’ = y’ 3 x = y ) ,  

v x  (x = x ) ,  

V x V y ( x  = y 3 y  = x ) ,  

THEOREM 17.10 (relative consistency of classical analysis). Consider classical 
analysis, formalized as GlLC together with the axiom system do U {Eq’, V J’} in 
the language L‘. (Eq’ and VJ’ were defined in Problem 16.10.) T h e n :  

(1) it  i s  interpretable in do (relative to GlLC); 
(2) i t  i s  consistent, assuming cut-elimination for GlLC. 
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PROOF. The interpretation is carried out in two steps. 
(i) do u {Eq’} is interpreted in do (relative to GlLC) by Theorem 19, 

with Y defined by: @(a) is Vx V y  (x = y A a(.) 3 a ( y ) )  (and no Ro). In fact, 
taking I/ as {u}(u = 0) ,  we can prove in G’LC do + r ( V ) ,  and hence 
do + 3pl rip). Further, condition 5 )  of Lemma 17.5 is easily proved by 
induction on the logical complexity of V ;  and Eq” is provable in GlLC. 

(ii) Next, do u {Eq’ u V J’} is interpreted in do u {Eq‘}, again by Theorem 
17.8, this time with Y defined by: 

R0(4 is ‘dpl (do) A VY (pl(Y) = dY‘)) ’ d4) (and no R1). 

Now r(O), and hence 3 x r ( x ) ,  are easily proved in GILC. Further, for any 
formula A of do u {Eq’), the sequent do, Eq’ + A‘ is provable in GILC; 
and so is do, Eq’ -+ VJ‘‘. 

Thus part (1) is proved. In fact the two steps could be combined, so as to 
give an interpretation of do u {Eq’, V J’} directly in do, by means of a single 
system of relativization Y .  The reader is invited to define such an Y .  

To prove part (Z), we first show that if do is consistent (with GlLC), then 
so is do U {Eq’, V J’}. The method is parallel to that for part ( l ) ,  using 
Theorem 17.8 part ( 2 )  twice. 

The argument is completed by showing that -01, is consistent (with GlLC), 
assuming cut-elimination for GlLC. But this is clear, since a proof of do --f 
in GILC without a cut would in fact be a proof in LK,  which is impossible. 

$18. Truth definition for first order arithmetic 

DEFINITION 18.1. (1) Although we have mentioned second order arithmetic 
from time to time we shall now formulate it more systematically. The language 
of the systems of second order arithmetic is that of PA (cf. $9) augmented 
by second order variables. The basic logical system is BC (cf. Definition 15.3), 
and the axioms (i.e., the mathematical initial sequents) are those of PA and 
the generalized equality axioms : 

s = t ,  A ( s )  A( t )  

for arbitrary terms s and t and arbitrary formulas A .  The various systems 
of second order arithmetic are classified according to the forms of the induc- 
tion ana .dmprehension axioms. They are both introduced as rules of inference 
rather than axioms, and if both are allowed for all formulas and abstracts, 
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then the system will represent classical analysis. In order to simplify the 
arguments, we assume only the logical symbols 1, A ,  V, although other 
symbols may be used occasionally. We recall that  the rule of induction or 
“ind” has the form 

F ( a ) ,  r + 0, F ( d )  
~ ( 0 ) .  r -+ o, ~ ( s )  1 

where a does not occur in T, @ or F(O), and s is an arbitrary term. F ( a )  is 
called the induction formula, and a is called the eigenvariable, of thisinference. 
The comprehension axiom, or V : left rule, has the form 

F ( v ) ,  r + 0 
vp ~ ( p ) ,  r - o 1 

where V and p have the same number of argument places. 
We normally deal with systems where the induction formulas belong to a 

certain class of formulas which is closed under substitution (cf. Definition 
15.14, part (3)) and the abstracts for V : left also belong to a certain class, 
closed under substitution. If the induction formula or the abstract for V : left 
is restricted to a set K, then the corresponding ind or V : left is called a 
K-ind or a K-comprehension axiom, respectively. 

(2) Formulas of second order arithmetic which do not contain second order 
quantifiers are called arithmetical. Also, abstracts are called arithmetical if 
they are formed from arithmetical formulas. 

(3) Let II,? be the class of formulas of the form Vpl 3p2 . . . pi F(p,, y 2 , .  . . , pi), 
where Vql 3p2 . . . pi denotes a string of i alternating quantifiers with second 
order bound variables starting with V, and F is arithmetical. The closure of 
h’,! under substitution will be called II,’ (in wider sense). C,‘ and 2: (in wider 
sense) are defined likewise (with 3p1 Vp2  . . . pi instead of Vp, 3p2 . . . pi). 
(For i = 1, this is essentially the same as the definition in Problem 16.20, 
which used function instead of predicate quantification, since predicates or 
sets can be represented by their characteristic functions.) 

The following are straightforward consequences of the definition. 

PROPOSITION 18.2. (1) The II:-comprehension axiom and the h’: (in wider sense)- 
comprehension axiom, aye equivalent (in BC) . Similarly with the Z;-comprehen- 
sion axiom. 

( 2 )  The II:-comjrehension axiom, and 2:-comprehension axiom, aye equiv- 
alent (in BC). 
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This proposition enables us to identify the I&?-, the II,? (in wider sense)-, 
then,’-, and the Z,? (in wider sense)-comprehension axioms. Therefore we shall 
call them all the II;-comprehension axiom. 

DEFINITION 18 3. We assume a standard Godel numbering of PA, and, if X 
is a formal object of PA, then ‘X1 denotes the Godel number of X (cf. $9 
and $10). We shall list the primitive recursive functions and predicates we 
need. 

Is(a) : the number of logical symbols in a. 

fl(a): a is a formula of PA. 
st(a): a is a sentence (i.e., closed formula) of PA. 
tm(a) : a is a term. 
ct(a): a is a closed term. 
sub( rA1, ‘a,’, ‘t’ ) : the result of substituting t for a, in A .  This may be 

v (  ‘ t l )  : the value of t (if t is closed). 
.(a) : Godel number of the ath numeral. 

V‘A’ ( .  . . rA’ . . .): Vx (fl(x) 3 . . . x . . .), 
V ‘ A  A B’ (.  . . ‘ A  A B’ . . .): Vx (fl(x) A “the outermost logical symbol 

V‘t’ ( .  . . rt’ . . .) : ~x (tm(x) 3 . . . x . . .). 

‘t(v(b))’ for sub( ‘t(a,)’ , ‘ai’, ~ ( b ) ) ,  
rA(v(b))’ for sub( ‘A(a,)’ ,  ‘ai ’ ,  v(b)). 

denoted by ‘ A  (t)’ . 

Abbreviated notions: 

of x is A ”  3 . . . x . . .), 

Also we will write, for terms t(a,) and formulas A (a,) : 

In this section, S1 denotes second order arithmetic with the arithmetical 
comprehension axiom and ind applied to n: (in wider sense) formulas. 

PA‘ is the system of second order arithmetic with the arithmetical ind and 
the arithmetical comprehension axiom. (This is clearly equivalent to the 
system of predicative arithmetic, also denoted by PA’, defined in Problem 
16.10.) 

In order to avoid too many parentheses and brackets, we use dots for 
punctuation in a well-known manner; A .>. B = C, for instance, means 
A > ( B  E C ) .  

This section is devoted to defining the truth definition for PA. The argument 
is carried out within S1. 
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DEFINITION 18.4. F(a,  n) stands for the following formula: 

v ‘ t i1  v ‘tz’ [Ct( rtll ) A Ct( ‘tZ1 ) 3 

3 (a( rt, = t 2 1 )  iz a( r t l l )  = V ( ‘ t 2 1 ) ) ]  

A V‘A1 V‘B1 [St(‘A A B1) A k(‘A A B1) <%=’ 

3 (a( ‘ A  A B1) G a( ‘A1) A rX(‘B1))] 

A V‘TA’ [St( ‘1A’) A IS( ‘-lA1) < 
3 (a(  ‘ 7 4 ’ )  = 1a( ‘A1))] 

A kfrvXiA(x,)l [St(‘Vx,A(Xi)’) A lS(‘Vx,A(Xi)’) ,<n> 

3 ( a ( ‘ ~ x ~ A ( x , ) ~ )  ~ x a ( ‘ A ( v ( x ) ) ~ ) ) ] .  

F ( M ,  n) means: tc is a truth definition for sentences of complexity < n. 
In  fact, a predicate T,, satisfying F({y}T , ( y ) ,  f i ) ,  was defined in $14 for each 
n (separately). Howcvcr, we can now go further, and give a truth definition 
for all sentences, namely: 

T(a)  abbreviates st(a) A 3p (F(p, ls(a)) A ~ ( a ) )  

(Note: This is not a “truth definition” according to Definition 10.10. We 
are generalizing the notion of truth definition. For the meaning of this, see 
Theorem 18.13.) 

LEMMA 18.5. (1) I n  PA’: 

F(a,  n) ,  F(B ,  n),  st( ‘A1), Is( ‘A1) < n +a(  ‘A1) = P( rA1). 

( T h i s  states that any  a for which F ( a ,  n) holds, i s  unique, at least with regard 
to the sentences whose complexities are < n.) 

(2)  F ( a ,  n) ,  rn < n + F(a ,  m) in PA’. 
(3) F(a ,  n),  E(P, M ,  n)  + F(B,  n + 1) in PA‘, where E ( M ,  b, n) i s  a n  abbrevia- 

tion of the following: 

Vx ( B ( x )  G [st(x) A ls(x) < n A a(x)] 

V [st(%) A IS(%) = “2 + 1 

A {3‘A1 (X = ‘-d1 A -lE(rA1)) 



162 S E C O N D  ORDER SYSTEMS A?jD SIMPLE TYPE T H E O R Y  [CH. 3, $18 

v 3‘A’ 3‘B1 (x = ‘ A  A B’A .(‘A’) A .(‘B1)) 

V 3 ‘VX, (X = ‘ V X i  A(x,)’A v y  K( ‘A(Y(yj)’ j j ) ] ) .  

( T h i s  means  that f i  i s  an extension of to the sentences of conifilexity n + 1.) 
(4) Vn Vv 34  E(+, 9, n) in PA’. ( T h e  existence of a n  extension.) 
( 5 )  G ( K )  + F(a ,  0) in PA‘, where G(a) i s  an abbreviation of 

V X  (U(X) 3 ‘tl’ 3 rt2’ [ct( ‘tl’) A ct( ‘tzl) 

A (X = ‘ t ,  = t?’ A V( rt l ’  ) = ’U( ‘tz’ ))I). 

( T r u t h  delinit ion for  n = 0.) 

PROPOSITION 18.6. Vn 3p F(p, n) in S1. 

PROOF. By an application of ind, with induction formula 3p F(p, a),  which 
is Zi, or L7: (in wider sense). Use (4), ( 2 )  and (3) of Lemma 18.5. 

PROPOSITIOX 18.7. T(a)  G st(a) A Vp (F(p, ls(a)) 3 g(a ) )  in S1 

PROOF. Use (1) of Lemma 18.5, and Proposition 18.6. 

The following propositions (18.8-18.10) assert that 7‘ commutes with 
logical symbols. 

PROPOSITION 18.8. st(  ‘’4 ’) -+ T (  ‘-IA’ ) --IT( ‘A’ ) in S1 

PROPOSITION 18.:). st( ‘B’) A st(  ‘Cl )  + T( ‘ B  A C’) E T (  ‘B1 ) A T( ‘C’) 
in S1. 

These propositions follow from Proposition 18.6 and (1) and ( 2 )  of Lemma 
18.5. It should be noted that if we assume Proposition 18.6, then the argument 
goes through in PA’. 

LEMMA 18.11. (1) ct( ‘ t l l ) ,  ct( ‘ t 2 1 )  - T (  ‘ t l  = tz’) 5 zi( ‘tl’) = .( ‘t2’) 
in PA‘. 

(2)  a( ‘ ~ ( b ) ’ )  = b in PA. 
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(3) Let t(a,,  . . . , a k )  be a term with at most a,, . . . , a ,  as free variables. T h e n  

.( ‘ t ( V ( b , ) , .  . ., V ( b k ) ) l )  = t (b , , .  . . )  b,) 

in PA, ze’here b l , .  . ., b, are arbitrary free variables. 

PROPOSITION 18.12. Let A ( a , ,  . . . , a,) be a forinula of PA with at most a,, . . . , ak 
as free eiariables. T h e n  

T (  r A ( v ( b , ) ,  . . . , ~ ( b , ) ) ’ )  E A(b,, . . . , b,) in S’. 

PROOF. By mathematical induction on the complexity of A .  Use (3) of Lemma 
18.11, and Propositions 18.8-18.10. 

THEOREM 18.13 (property of truth definition). Let A be a sentence of PA. T h e n  
T (  rA’ ) z A i s  provable in S1. 

PROOF. This is a special case of Proposition 18.12 

Since we have established this property of T ,  we can prove the consistency 
of PA in S’. 

DEFIXITION 18.14. lye recall (cf. $10) that Provp,($, a )  is the proof-predicate 
for PA: $J is a proof of a in  PA. (The subscript PA may be omitted.) Also, 
3$ Prov($, a )  may be abbreviated to Pr(a). 

LEMhlA 18.15. 
(1) ct( ‘ t l l ) ,  ct( ‘ L a 1 ) ,  ct(  r t ( O ) l ) ,  v( ‘t”) = v( r t z l )  +v( r t ( t l ) l )  = v( ‘ t ( t 2 ) 1 )  

( 2 )  ct( r t l l ) ,  ct( rt21), s t(  r A ( 0 ) l ) ,  v( ‘ t l l )  = z,( r t21) 4 

in PA. 

4 T (  ‘ A  (t,)’ ) iE 7 (  ‘ A  ( t2 ) l  ) in S’. 

PROOF OF ( 2 ) .  By induction on ?z applied to the following formula: 

Vr’A(a,)’ [st(‘A(O)’) A Is( r A ( 0 ) ’ )  < n .> 

3. ‘d ‘ t l l  v ‘tz’ (Ct( ‘ t I1  ) A Ct( rtg’ ) A Zl( ‘ t i1  ) = V (  rt2’ ) 3 

3 T (  ‘A(t,)’) -- T (  ‘ A ( t Z ) ’ ) ) ] .  

This is II: (in wider sense). Use (1) and Propositions 18.8-18.10. 
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THEOREM 18.16. st(a), Pr(a) ---t T ( a )  in S1. 

PROOF. By induction on 7% applied to the following formula: 

VY (i(Y) < n ’ T ( 4 Y ) ) ) J  

where, if y is the Godel number of a proof of A , ,  . . . , A ,  + B,, . . . , B,, then 
i ( y )  is the number of inferences of this proof and ~ ( y )  denotes the “universal 
closure” (i.e., a sentence formed by repeated universal quantification) of 
( A ,  A . . . A A,) 3 (B ,  v . . . v B p ) .  Both i and zt are primitive recursive 
functions. The above formula is L7: (in wider sense). Use Propositions 18.8- 
18.10 and Lemma 18.15. 

THEOREM 18.17. Consis(PA) in S1. 

PROOF. By Theorems 18.13 and 18:16 applied to the formula 0 = 0’.  

PROBLEM 18.18. Let ZF’ be the second order system which is defined as ZF 
with the basic logical system K,C (cf. Definitions 15.15 and 16.4) and (finite) 
induction applied to I7t-formulas. Give a truth definition for ZF in ZF’, thus 
proving the consistency of Z F  in ZF’. [Hin t :  Follow the arguments in this 
section. I t  is important to notice that T(‘Ai ) ,  where A is an axiom of 
replacement, is a formula of ZF’ which is again an axiom of rep1acement.j 

$19. The interpretation of a system of second order arithmetic 

DEFINITION 19.1. (1) Let S2 be second order arithmetic with the arithmetical 
comprehension axiom and full induction, and let S3 be3econd order arithmetic 
with the I7: (in wider sense)-comprehension axiom and L7: (in wider sense)- 
induction. Notice that S2 and S3 are extensions of S1. 

(2) We shall assume a standard Godel numbering of the second order 
language (of arithmetic). In particular, ‘xll, rt121,. . ., rpll, r i  q2 ,. . . 
denote Godel numbers of second order variables. We include abstracts among 
the formal objects. So we need Godel numbers for them: r{’, r}’, ‘{x}A(x)’. 
Actually we only use arithmetical abstracts here.) 

Notice however that aithough abstracts are included among the formal 
objects for convenience, they do not actually occur in the formulas of S2 (as 
explained in $15). 
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(3) We take over from $18 all the notations for primitive recursive functions 
and predicates pertaining to first order arithmetic (some of them, like ls(a), 
now adapted in an obvious way to the second order language). 

Additional primitive recursive functions and predicates needed are : 
fM(a): a is a first or second order formula (of S2). 
st2(a) f a is a sentence, i.e., f12(a) and a is closed. 
ab(a) : a is an arithmetical abstract. 
cab(a) : ab(a) and a is closed. 
sub( ‘A1, ‘a1, V )  : the result of substituting V for a in A if A is a formula, 

cc a second order variable and V an arithmetical abstract. This may be denoted 
by ‘A(”,)? or ‘A(V)’ .  

q2(a) : The number of second order quantifiers in a, if f12(a). 
We also use the other abbreviations in $18, and T is defined as in Definition 

18.4. 

2. a( ‘VpiA(pi)’) =_ V‘V’ (cab(‘Vl)>cr(‘A(V)l))I. 

F’(a, n) means that a is an interpretation for sentences of S2 of (second order 
quantifier) complexity < n. We now give an interpretation for all sentences 
of s2. 

w: 3# F(#J @(a) * #(a ) ) .  

The point is that we can give a kind of truth definition for S2 by interpreting 
the second order variables as ranging over arithmetical predicates or sets (i.e., 
sets and relations of natural numbers defined by the closed arithmetical 
abstracts). This is often expressed by saying that the arithmetical sets form 
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a model of S2. Further (as Lemma 19.14 essentially says) this can be formalized 
and proved in S3. 

LEMMA 19.3. (1) F’(a, n), s t (  ‘ A ’ )  -a (  ‘A’) 3 T (  ‘A’) i n  PA’. (a coincides 
with the truth definitiolt T for arithmetical formulas.) 

(2) st2( ‘A’), F’(a, n),  F’(/3, n) ,  q q  rA1) < n +a(  rA1) = p( ‘A’) in S’. 
(3) F’(a, n) ,  m < n + F‘(a, m) in PA’. 

PROOF OF ( 2 ) .  By double induction on (q2( ‘A1), Is( ‘A’)) applied to the 
above sequent, which is Ilt (in wider sense). 

DEFINITION 19.4. E ( a ,  /I, n, I )  is defined to be 

3. p( ‘vx, A(X1)’) -- vx a( ‘A(y(x))’)] 

A IS( r\Jfpi A(fpi)’) < 1 .> 

2. p( ‘ldfp, A(pt)’) = V‘V’ (cab( ‘V’) 3 P(  ‘A(V)’)] .  

LEMMA 19.5. 
(1) E(a,/3,n,I),st2(‘A1),q2(‘A’) < n  -P(‘A’) -a(‘A’) i n P A ’  
(2)  E(a, B, n, L), E(u,  y ,  n, k ) ,  st2( ‘A’ ), q2( ‘A’ ) < n‘, 

IS( ‘A1) < I ,  k -+ p( ‘A’) z y (  ‘A1) in PA’. 
(Uniqueness of extension.) 

(3) E(a,  a ,  n, 0) in PA‘. 
(4) E(a,  p, n, I) + E(a, ( x ) C ( x ) ,  n, I’) in PA’, where C(x )  stands for: 
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[(st2(x) A q,“(x) < $1 . v .  (q2(x) = n’ A Is(%) < 1’)) A /3(x)] 

A (3  rA’ (X = ‘1A’ A lb( rA’)) 

v 3‘VpLL4(p,)’ (x = ‘VplA(pt)’ A V‘V’ (cab( r V 1 ) > P ( r A ( V ) l ) ) ) ] .  

(Exteizsion of p from (92, I )  to (n,  l‘).) 

every I . )  
(5 )  VI 39 E ( a ,  q, n, I )  iw S1. (Exis teme of an extemion of a ,  for fixed n, for 

PROOF OF ( 5 ) .  By induction on 1 applied to 3 9  E ( a ,  p, n, I ) .  Use (3) and (4) 
of this lemma and the arithmetical comprehension axiom. 

DEFINITION 19.6. G(a,  12, x) : 3p (E(a ,  p, n ,  I+)) A &)). G(a,  n, x) shall be 
abbreviated to G(x) .  

PROOF. (1)  From (1) of Lemnia 19.3 and (1) of Lemma of 19.5. 
( 2 )  From (2) of Lemma 19.5. 
(3) By (2) above and (5) of Lemma 19.5. 
(4)-(6) are proved like (3) above. Notice that in (6) 

q2(‘Vp, A(g,)’)  < PZ‘ implies q2(‘A(V)’) < n. 



168 S E C O N D  O R D E R  S Y S T E M S  A N D  S I M P L E  TYPE THEORY [CH. 3, $19 

LEMMA 19.8. (I) F’(a, n) + F’({x}G(x) ,  n’) in  S1. 
(2) + F’({x}T(x),  0) in PA‘. 

PROOF. By (1) and (3)-(6) of Lemma 19.7, and the definition of F‘. 

PROPOSITION 10.9. Vn 34 F’(4 ,  n) in S3. 

PROOF. By the comprehension axiom applied to {x)G(x)  and also to  { x ) T ( x ) ,  
and induction applied to 3# F‘(4, n),.which are all I7: (in wider sense), and 
Lemma 19.8. 

LEMMA 19.10. F’(a, n), st2( ‘ A ’ ) ,  q2( ‘A’) < n -,a( ‘A’) E I (  ‘A’) in S1. 

PROOF. Use (2) and (3) of Lemma 19.3. 

PROPOSITION 19.11.st2(‘A’),q2(‘A1) =O+I(‘A1)  = T ( ‘ A 1 ) i n S 3 .  

PROOF. By Lemma 19.10, (1) of Lemma 19.3, and (2) of Lemma 19.8. 

The following proposition asserts that  I commutes with logical connectives. 
It is proved by Lemma 19.10 and Proposition 19.9: hence in S3. 

PROPOSITION 19.12. (1) st2( ‘A’) -+I(r-d’) E 4( ‘A’). 
(2)St2(‘A A B ’ )  +{(‘A A B ’ )  E I ( r A 1 ) A I ( r B 1 ) .  
(3) st2( ‘Vxz A(Xi ) l )  + I (  ‘ V X i  A(Xi)’) f vx I( ?4(v (x ) ) l ) .  
(4) st2(‘VyzA(pi)’) +I(rVy iA(p i ) ’ )  = V‘V’ (cab(‘V’)sI(‘A(lr)’)). 

We can now proceed to the consistency proof of S2. 

DEFINITION 19.13. (1) i ( p )  is the number of inferences in (the proof with 
Godel number) 9.  

(2) i(b, a) means: “b is a closed instantiation of a”, viz. i ( b ,  a) if and only if 
a = ‘A@‘,. . ., c , .  . .)’ and b = ‘A(V , .  . ., v(x),. . .)’ for some closed 
arithmetical abstracts V,. . ., and numbers n,.  . ., where /3,. . ., c, .  . . are all 
the free variables in A .  

(3) j ( b ,  9) means: if is a Godel number of a proof in S2 of A l , .  . ., A ,  --f 

Bl , .  . ., B,, then i(b, rA,  A . . . A A,> B1 v . . . v Bn’). 
(4) We write Provz for ProvsB, and Pr,(a) for 3% Prov,(x, a). 
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LEMMA 19.14. Pr,(a) -, Vx (i(x, a) 3 I (%) )  in S3. 

PROOF. Define H ( n t )  as 

vp, x [ i ( P )  < m A i(x, P )  3 I (%)] .  

The proof is carried out by induction on pa applied to H(?n), which is I&’ 
(in wider sense). The argument proceeds according to the “last inference 
of 9”.  The case where the last inference is an induction causes no problem, 
since the induction step is then proved by applying induction (on k )  to a 
formula of the form I (  ‘ A  ( ~ ( k ) ,  V ,  . . . , ~ ( n ) ,  . . .)’ ) (where A (a, p , .  . . , c, . . . )  
is the induction formula of this inference, with eigenvariable a).  

PROPOSITION 19.15. st2( ‘A’), Pr2(rA1) + I (  ‘ A ’ )  in S3. 

PROOF. By Lemma 19.14. 

THEOREM 19.16. Consis(S2) iiz S3. 

PROOF. A corollary of Propositions 19.11 and 19.15, and Theorem 8.13. 

$20, Simple type theory 

In this section we present the higher (finite) order predicate calculus. We 
shall formulate it in the sequential calculus. It is a simplification of a system 
called GLC, which was defined by the author. Now we restrict ourselves to 
predicate variables only. Following common practice, the word “type” is 
used instead of “order” (as in §15), and types start with 0 rather than 1. Thus 
the individual objects are of type 0. 

DEFINITION 20.1. (1) We define types inductively as follows: 0 is a type; if 
zl, . . . , sk are types ( k  3 l ) ,  then so is [zl,. . . , rk] ; types are only as required 
by the above. 

(2) The symbols of our language are classified as follows: 

1.1)  individual constants: co, c l , .  . . ; 
1.2) function constants with i argument-places (i = 1, 2 , .  . .): f;, f;, . . . ; 
1.3) predicate constants of type z # 0: R;, R;, . . . . 

1) Constants : 
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2 )  Variables : 
2.1) free variables: a;, a; , .  . . of each type t, 
2 .2 )  bound variables: x;, xi,. . . of each type t. 

3) LogicalsyvzboEs:i  (not), A (and), v (or),>(iniplies),V (for all), 3 (thereexists). 
4) Auxiliary symbols: (, ), {, 1, [, 1. 

A higher-order language (a language of simple type theory) is given when 
all the constants are given. A predicate variable means a variable (free or bound) 
of some type # 0. We shall use the symbols of the language also as meta- 
variables. Type superscripts are sometimes omitted. IVe shall, further, take 
over all the appropriate notational conventions in $ 1 .  

Intuitively, variables of type 0 range over individual objects while variables 
of type [tl, . . . , zk]  range over predicates whicli are associated with the subsets 
of 1 ,  x . . . x T k ,  where Ti is the set of objects of type T , .  

DEFINITION 20.2 .  Terms (of given types), formulas and outermost logical 
symbols are defined inductively (and simultaneously). 

1)  Individual constants are terms of type 0. 
2)  Free variables of type t are terms of type t. 
3) If 1 is a function constant with i argument-places and t,, . . . , t ,  are terms 

4) Predicate constants of type t are terms of type t. 
5 )  If A is a formula, a:, . . . , aik are distinct free variables of the indicated 

types, x:, . . ., xik are distinct bound variables of the indicated types not 
occurring in A ,  and A '  is the result of simultaneously replacing, in A ,  a ,  by 
x,,. . ., a ,  by xk, then {xu,. . ., x,} A' is a term (called an abstract) of type 

6) If cc is a predicate constant or a free variable of type Lt,,. . ., t,] and 
Ll,. . ., t, are terms of type tl,. . ., T , ,  then cc[tl, , t,] is a formula, which is 
called atomic. There is no outermost logical symbol in this case. 

7 )  If A and B are formulas, then ( - IA) ,  ( A  A B ) ,  ( A  v B ) ,  ( A  3 B )  are 
formulas, and their outermost logical symbols are 1, A ,  v ,  3, respectively. 

8) If A is a formula, ar is a free variable, xr is a bound variable of the same 
type which does not occur in A ,  and A' is obtained from A by replacing all 
occurrences of a' by XI, then Vxr A' and 3xr A' are formulas, and their outer- 
most logical symbols are V and 3, respectively. 

These formation-rules may result in an excessive number of parentheses : 
if no ambiguity results, we may onlit some of these as we did in the preceding 
sections. 

of type 0, then f ( t l , .  . ., ti) is a tern1 of type 0. 

[to,. . ' , t i .  
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Notice that here, unlike the preceding sections, abstracts are taken as 
formal objects. The notion of al@abetical ilaviallt is defined as before : for two 
expressions A and B,  ‘4 is said to be an alphabetical variant of B (and vice 
versa) if A and R differ only in the names of some bound variables. 

DEFIKITIOX 20.3. The hciglit of a type t, h ( t ) ,  is defined inductively as follows: 

h(0) = 0 ;  h(! t , ,  . . . , ti!) = niax(lz(t,),. . ., h(7,))  + 1. 

By the height h(t)  of a term (abstract) t ,  we mean the height of its type. 
The (logical) comjdcxity of a formula or abstract A is defined to be the total 

number of logical symbols and pairs of abstraction symbols {, } in il. 
~ ~ ~ ~ ~ ~ ~ ~ t ~ u ~  of a term t of type 7 f o r  a free variable a of type t in a formula 

or an abstract A is now defined l q r  double induction on the height of 7 and 
the complexity of A .  

1) Basis: the height of 7 is 0, i.e., the type 7 is 0. 
Then A(:) can simply be defined as ( A  :), in accordance with Definition 1.4, 

Let a and b be free variables of type 0 and let t and s be terms of type 0. 
We can easily prove the following. 

or an alphabetical variant of this. 

(i) If A is a formula (term of type 7) then A(:)  is a formula (term of type T). 
(ii) If A is an alphabetical variant of B then .4(:) is an alphabetical 

(iij) A(:) contains only those free variables contained in A or t .  
(iv) If s does not contain a,  then 

variant of I?(;). 

2 )  Induction step: suppose h(t)  = n # 0 and for any nt < n, substitution 
of a term t of type u (with h(u) = m) for a free variable a of type u has been 
defined so as to satisfy the following properties : 

(1) If A is a formula (term of type u), then A(:) is a formula (term of 

( 2 )  If A is an alphabetical variant of B and s is an alphabetical variant of t ,  

(3) A(:) contains only free variables contained in A or t .  

type 4. 

then A(: )  is an alphabetical variant of B(:). 

is an alphabetical variant of A .  
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(5 )  {xi,. . ., x,}u[xl,. . ., xk] ( f )  is an alphabetical variant of t .  
(6) If s does not contain a ,  and the height of b is less than n, then 

is an alphabetical variant of 

(7) If A does not contain a,  then A (!) is an alphabetical variant of A .  
Let a and t be a free variable and a term, respectively, of ti-pe t such that 

h ( t )  = n. If t is a free variable or predicate constant, then A(:)  is defined 
again to be (an alphabetical variant of) ( A  4) .  So suppose t is an abstract. We 
defineA(~)byinductionontliecomplexityofA.Lettbe{x,,. . . ,x ,}U(xl, .  . .,x,), 
wherex,isoftypet,,aisoftypet = [ T ~ , .  . . , tk]andmax(h(t i ) , .  . . , h ( ~ , ) )  + 1 = n. 
First note that for any term s of type 0,  s ( f )  is defined to be s. 

2.1) If A is of the form b [ t l , .  . . ,  t,], where b is a predicate constant or 
variable other than a, then 

2.2)  If A is a[tl,. . ., t k ] ,  then 

where bl , .  . . , b ,  are different from any free variable in A and 

h(b,) < n and ti is “simpler” than A ,  and hence 

has been defined for arbitrary B. 
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2 .3 )  If A is of the form 4 3 ,  B A C, B v C or B 2 C, then A (:) is 

2.4) If A is of the form Vx F ( x )  or 3% F ( x ) ,  then A(:) is V y  G ( y )  or 3 y  G ( y ) ,  
respectively, where G(b)  is F ( b ) ( ; ) ,  b is different from a and does not occur 
in A ,  and y does not occur in G(b) .  

2.5) If A is of the form { x l , .  . ., x k } B ( x l ,  . . . ,  xkj, then 

where C ( b l , .  . . , bk)  is I?(b l , .  . . , bk)  (r), b l , .  . . , b, are different from a and do 
not occur in A ,  and none of the y z ' s  occur in C(b,, . . . , b J .  

Then we can prove (1)-(7) for h ( a )  = n. (The proof is omitted.) We often 
denote A (:) by A ( t ) .  

Here and henceforth we use U ,  V ,  . . . with or without type-superscripts, 
as meta-variables for abstracts. Also, CI, b, . . . are often used for free variables 
instead of a, b , .  . ., and 9, 4,. . . for bound variables instead of x, y,. . ., 
usually when we are thinking of variables of type # 0. 

EXAMPLE 20.4. Let A be V p  3x (.[a; z ~ [ x ] ) ,  wlicre p and ic are of type LO] and 
x and a are of type 0. Let V be { z }  V q  3x (94x1 A P [ z ] ) ,  where p and ,8 are of 
type [O] and x and z are of type 0. V is an abstract of type 101. Consider 
A(",. The substitution is carried out step by step according to Definition 
20.3. Since c( is of type [Oj,  we start with clause 2 )  of the definition and are 
led repeatedly back to 1).  By 2.2) and l ) ,  .[a] (F) is V q  3% (p[x] A P[a]) .  Using 
this, by 2.1) and 2 . 3 ) ,  ( ~ [ a ]  y jb])  ($j (for some b ,  and y different from a 

and CI, respectively) is V p  3x ( ~ [ x ]  A /?[a]) y[b] .  From this and 2.4), we 
obtain 

v'1cI 3 Y  (VY 3x (P?Lxl A /3[aI) = '1cILYl). 

where 1 = [O] and 2 = ~ 4 ; .  Compute A (F::). 
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DEFISITIOS 20.6. Let I/ be an abstract of tlie form 

{ 1;' . . . x?}A (,I;', . . . , I?), 

andlet  V l , .  , . , L-?, be ternii of types.t-,, . . , x n ,  respectively. Then VIVl , .  . . , V,] 
is defined to be 

where a;', . . . , a? are free variables of the indicated type' which do not occur 
111 any of I', l r 1 , .  . ., L77t (and A(a;l,.  . . ,  a:) is 

XI', . . . , x, 

DEFIXITIOX 20.7. The formal system of simple type theory is defined like 
UII,C, in $15. The sequents are, as usual, of the forin I' 4 0, where r and 0 
consist of finitely many formulas. The rules of inference are those of UILC 
(cf. Definition 15.15) with tlie following generalization (to higher types). 
(Lye take over all relevant notions and terminology from the previous 
sections.) 

F(T/), I' - 0 v .  left. -- -- ~ 

vp l ' ( ( c c ) ,  I '  - 0 ' 

where I.' is an arbitrary term (of any t!-pe) and p is a bound variable of the 
same type as I' (and if F ( V )  is F(; )  thcn F ( v )  is (F:)). 

where cx does not occur in the lower sequent and q j  is of the same type as tc. 
Here a is called the cigenvariable of the  inference. \Ve define 3 : left and 
3 : right similarly. 

X sentence of the form 

where A ( a l , .  . . , a,, b,, . . . , b,,,) is an arbitrary formula (andx,, . . . , x,, yl, . . . , y,,, 
are of arbitrar!. types), is called a comprehension axiom (cf. Definition 15.14). 

The following is analogous to Proposition 15.16. 
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PROPOSITION 20.8. The coiripeltcrisioiz axiaiiis ( for  nvbi trnvy A )  are /woiiabLe 
i i i  simple tyfic theory. Cowersc l y ,  co izs idw  the sul isystei ic of .siiii@c tybr  theory 
in which V : left axil 3 : righi a y e  rcstriclcrl to the  case tlzctt I- is  a f r ee  vaviable 
OY firedicate coiistalzt. I11 this siibsq'stciii, aacgrizciitctl b y  tlzc coiitbrehcnsion axioms 
for all A ,  the general V : lcft mid 3 : right a y e  admissible.  

DEFIXITIOX 20.9. ( I )  A soiii-fosmuln is an expression like a formula, except 
that  it may  contain free oc-currences of bound i>.ariables. A semi-term is 
defined likewise. 

(2) The logical coi7zfilc.uity of a semi-formula or semi-term is defined as for 
formulas aiid abstracts (Definition 20.3). 

521. The cat-elimination thcorciii for simple type theory 

About 25 years ago tlic author conjectured that the cut-eliminatioii theorem 
liolds for simple type theory as formulated i n  Definition 20.7. Tliis was known as 
Takeuti's conjecture and it remained unresolved for many j-ears. W, W. Tait 
provided support for my conjecture by proving the cut-elimination theorem 
for second order logic. 'llie full conjecture was then resolved positively by 
Takahashi, and  independentlq~ 1 1 ~ 7  Prawitz. In this section we will present 
a proof of tlic cut-elimination thecirmi for simple t j p  tlicorj-, uqing the 
method of Takaliaslii and I'ra\vitz. lye, however, wish to point out that  in 
1971 J.-Y. Girard made significant improvements on sevc.i-al of the results 
of tliis section including tlic proof of the cut-elimination tlicorcm. (See  the 
Procccdiiigs of the Sccoi id  Scaiidii iminiz Logic Sy1iifiosiiiIii, ed., J .  E. Fenstad 
(Xorth Holland, Amsterdam, 1971).) Girard's basic idea \vas then used by 
Mart in- Lo f and Praw i t z , incle pen den t 1y to producc a variant and so~newl i at 
more elegant form of cut-elimination. 

llirougliout this section we sliall deal with variables a i d  ahtract . ;  of one 
argument-place only aiid restrict tlie logical symbols to I, A and V in  order 
to simplify tlie argument. Thus the tS'pes are 0, , O J ,  1 0:  1 , .  . . wliicli may be 
called 0, 1, 2,.  . . , \I'c sliall also omit tlie constants. Tlie results can  easily 
be extended to tlie geiieral case. 

DEFINITIOS 21.1. An a.z-io7ii of cxteizsioiinlity is a formula of tlie form 

where V ,  and V 2  arc arbitrary abstracts of the iamc type. In simple type 



176 S E C O N D  ORDER SYSTEMS AND SIMPLE TYPE THEORY [CH. 3, $21 

theory this is equivalent to the following rule of inference (the extensionality 
rule) : 

V,(a) ,  T - A ,  V d a )  v , ( a ) ,  r - A ,  vl(a) ____ 
4V11, r + A ,  “V21 

where a does not occur in the lower sequent. 

PROPOSITION 21.2. The following i s  a n  admissible inference in simple type  theory 
augmented by  the exteizsionality rule: 

W a ) ,  r - A ,  V2(a)  W a ) ,  r -4 h ( a )  
________.___ ~__. 

w,), r - A ,  A(v,) 

where A(V, )  i s  obtained from an (arbitrary) formula A(p)  by substitution of 

V ,  for and a does not occur in the lower sequent. 

PROOF. By mathematical induction on the complexity of A .  We shall deal with 
the case where A ( 8 )  is of the form Vp B(p, p). Assume V,(a) ,  r - A ,  V,(a) 
and V,(a), r - A ,  Vl (a ) .  Bytheinduction hypothesis, B(y ,  Vl), r - A ,  B ( y ,  V,) 
is provable, where y is a free variable of appropriate type which does not 
occur elsewhere in this sequent; hence by introducing Vpl on both sides, 
V p  A ( p ,  V, ) ,  r --f A ,  V p  A(p, V,) is provable. 

THEOREM 21.3 (the cut-elimination theorem for simple type theory with 
extensionality: Takaliashi). Let S be simple type theory augmented by  the 
extensionality rule. Then the cut-elimination theorem holds for S .  

The proof is obtained by modifying the original Takahashi-Prawitz method. 
The proof is presented stage by stage, introducing certain notions and 
notations as needed. 

DEFINITION 21.4. (1) A structure (for simple type theory) is an cu-sequence 
of sets, say 9 = (.So, Sl,. . ., S,,. . .), where 

1.1) So is a non-empty set, 
1.2) SI+l is a subset of P(S,) ,  the power set of S,. 
(2)  An assignment 4 (from 9’) is a mapping from all (free and bound) 

variables such that to every variable of type i, 4 assigns an element of S,. 
An interpretation 3 is a pair (9, 4) consisting of a structure 9’ and an assign- 
ment from Y .  

(3) Given an interpretation J = (9, +), we will define the interpretation 
(by 3) of semi-formulas and semi-terms. We use the notation +(:) in order 
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to express the assignment which agrees with 4 except a t  x, where its value 
is S .  

If A is a semi-formula or a semi-term, then its interpretation (by 3) is 
denoted by + ( A ) .  I t  is defined in such a way that for every semi-formula A ,  
exactly one of + ( A )  = T and + ( A )  = F holds (where T stands for “truth” 
and F for “falsehood”), and for a semi-term A of type i ,  + ( A )  is a subset of 
Si. The definition is by induction on the complexity of A .  (If A is a free or 
bound variable then + ( A )  is already defined as the value of 4 a t  A . )  

3.1) +(a[W])  = T if and only if +(W) E +(o!). 

3.2) +(Vx A(%))  = T (for x of any type) if and only if, for every 4’ which 
agrees with + except perhaps a t  x, +’(A(%))  = T. 

3.3) +({x)A(x))  = {S 1 S E Si and # (f) ( A ( x ) )  = T}, where x is of type i. 
3.4) + ( A  A B )  = T if and only if + ( A )  = T and +(B) = T. 
3.5) +(-d) = T if and only if + ( A )  = F. 

Let S : A , , .  . . , A ,  - B,, . . . , B,  be a sequent. Then 

+(s) = + ( i ( A ,  A . . . A A,) V B1 V . . . V B,) 

(where v is defined in terms of 1 and A ) .  

(4) A structure Y is called a Henkin structure if for every assignment 
from 9’ and every abstract U i  of type i (for i = 1, 2 , .  . .), $(Ui) is a member 
of si. 

PROPOSITION 21.5. Suppose Y i s  a H e n k i n  structure and + i s  an assignment 
from 9’. If a sequent S is  provable in S, then +(S)  = T. 

This is proved simply by examining each rule of inference. 

DEFINITION 21.6. A semi-valuation with extensionality is an assignment v of 
a t  most one of the values T and F to formulas, which satisfies the following. 

1) If v ( 1 A )  = T, then v ( A )  = F; if v ( 1 A )  = F, then v(A) = T. 
2) If v(A A B )  = T, then v ( A )  = T and v(B)  = T; if v(A A B)  = F, then 

v(A) = F o r  v(B) = F. 
3) If v ( V x  A ( x ) )  = T, then v(A ( t ) )  = T for every term t of the same type 

as x; if v(Vx A ( % ) )  = F, then there is a free variable a of the same type as x 
such that v ( A ( a ) )  = F. 

4) If A is an alphabetical variant of B, then v(A) = v(B). 
5) Let o! be a free variable of type > 1. If v(.[U,j) = T and v(o![U2]) = F, 

then there is a free variable a of appropriate type such that either v(U,[a]) = T 
and v(U,[a]) = F or v (Ul[a] )  = F and v(U2[a])  = T. 
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If v is a semi-valuation with extensionality, and S is a sequent 

A l , .  . ., A, + B l , .  . ., B,, 
then we define 

V ( s )  = d f U ( i ( A 1  A . . . A A,) V Bl V . . . V B,), 

if the latter is defined. 

PROPOSITION 21.7. If S i s  not cut-free provable, then there i s  a semi-valuation 
with extensionality, say v, such that v ( S )  = F. 

PROOF. This is proved like the completeness theorem; construct a reduction 
tree for S (cf. $8). We shall only outline the definition of the immediate 
successors (i.e., the sequents written down immediately above those being 
considered) when “extensionality” and formulas of the form V q  F ( q )  come 
under attention. For the former let r --f 13 be one of the uppermost sequents 
in the tree which has been constructed so far. Let 

(xl[U111!7 ~ 1 ~ U 1 1 2 1 ) , .  . ( ~ l ~ u l k ~ l ~ ~  u 1 [ U 1 k , 2 1 ) ~ ’  . ’ 

. . ., ( ~ , [ U ~ i i l ,  um[Um121) , .  . . )  (um[Umk,iI, 4 U m k , , , e l )  

be all the pairs of atomic formulas in r, 13 such that ai[Ui j l j  occurs in r and 
ui[Uijzj  occurs in 4 for i = 1 , .  . ., ki. Let b, , , .  . ., b lk , , .  . ., b,,,. . ., bmk, be 
distinct new variables of appropriate types. Write all sequents of the form 
U i j L [ b i j ] ,  r -+A, U i j l , [ b i j ] ,  for i  = 1,. . . , nt, j = 1,. . . , hi, 1 = 1 or 2 and I‘ = 2 
or 1 (according as 1 = 1 or 2)  immediately above r --+ d.  

For the stages when the higher type quantifiers come to attention, we 
proceed as follows. We define the notion of available free variable (at a given 
stage) as in $8, but in such a way that at least one free variable of each type 
is always available. Now, for a (higher type) V : left reduction: let {Vrpi Fi(qi)}Ts1 
be a sequence of all the formulas in the antecedent of a sequent F -+ d which 
start with higher order quantifiers. Suppose it is the kth stage. For all i, 
1 < i < m, let V;,  . . . , V;  be the first k abstracts in some predetermined list 
of abstracts of the same type as pi. Then the immediate successor of r + d is 

FJV;) , .  . ., F ~ ( v ; ) , .  . ., F,JV?),. . ., F,(v:), r + A .  

Next, for a (higher type) V : right reduction, proceed as before (i.e., case 
11, 9) in the proof of Lemma 8.3, replacing bound variables by free variables 
of the same type). 
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In this way we can complete the prescription for constructing the tree. 
As in Lemma 8.3, if each branch of this tree is finite, and (hence) ending with 
a sequent whose antecedent and succedent contain a formula in common, 
then it is easy to convert this tree to a cut-free proof in S of the sequent S. 
So if S is not cut-free provable, then there is an infinite branch. Take one 
such infinite branch and define a semi-valuation v as follows: v(A) = T if A 
occurs in the antecedent of a sequent in the branch and = F if it  occurs in the 
succedent. It is not difficult to see that v satisfies the conditions for a semi- 
valuation. From the definition, v(S) = F. We shall show only that v satisfies 
conditions 5) and 3) of Definition 21.6. 

Suppose v(x[U,] )  = T and v(ccLU2]) = F. Then cc[U,] occurs in the antecedent 
and x[U2]  in the succedent of the branch under consideration. From the 
construction of the tree, it follows that once cc[U,] occurs in the antecedent 
of a sequent, then it occurs in the antecedents of all the sequents above it, and 
likewise with cc[U,]. Thus there is a sequent in which cc[U,] occurs in the 
antecedent and x [ U , ]  occurs in the succedent and to which the “extensionality” 
stage applies; thus there is a free variable a such that its immediate successor 
contains U,[a] in the antecedent and U,[a] in the succedent. Thus, by the 
definition of v, v ( U l [ a ] )  = T and v((U,[u]) = F. 

For the case of a formula Vg, F(g,), suppose v(Vp F(g,)) = T. This means 
that Vg, F ( p )  occurs in the antecedent of a sequent (and hence of all sequents 
above it).  By the construction of the tree, for every abstract V of the same 
type as y ,  F (  V) occurs in the antecedent of some sequent : hence v(F( V)) = T. 

DEFINITION 21.8. Given a semi-valuation with extensionality v, we define 
the Henkin structure Y = (So, S,, . . .) induced by v, as follows. The sets 
So, S,, . . . and relations Un+l < S for S G S, are defined simultaneously. 

1) So is the set of all terms of type 0 (in our simplified case these are only 
free variables). For any terms t l  and t2, tl  < t, means that tl is identical with t2. 

2) Suppose So,. . . , S, and < for these types have been defined. Suppose 
S c S,. Then Un+l < S if and only if for every abstract U i  of type n and 
every Sn which belongs to S,, if Ug < Sn and v(Un+l[U;t]) = T, then Sn 
belongs to S, and if U i  < Sn and v(Un+l[U;f]) = F, then Sn does not belong 
to S. Sntl is defined by 

Sn+, =df  {S I S c S, and there exists a Un+l such that Un+l < S}. 

From the definition it is obvious that S,,, G P(S,). 
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We can think of U < S as meaning: " U  is a possible name for S (under 
the semi-valuation v)". 

For convenience, we use the word "abstract" below to mean (also) a free 
variable of type 0. Then with any free variable a,  we associate an abstract, 
also written a, namely {x}a[x]  if a has type > 0, and a itself if its type is 0. 

PROPOSITION 21.9. For the structure Y defined as in Definit ion 21.8, it holds 
that given a free variable of t ype  n, s a y  a ,  there exists an element of S,, s a y  S, 
such that a < S (a denoting a n  abstract as defined above). 

PROOF. By induction on n .  
Basis: n = 0. For every free variable a of type 0, a belongs to So and 

1nduction.step: let n > 0 and suppose the proposition holds for0,1, .  . . , n - 1.  
a < a .  

Let S be the set defined by 

S =df (9-1 1 Sn-l is in SnP1 and there exists a Un-l such that 

Un-l < Sn-l and v(a[Un-l] = T). 

Then, by definition, S E Sn-l. We claim that a < S. For take arbitrary 
Un-1 and Sn-l such that Un-l < 9 - l .  We show the following. 

(1) If v(a[UTL-l]) = T, then Sn-I belongs to S. 
( 2 )  If v(a[Un-l]) = F, then Sn-l does not belong to S. 

(1) is obvious by definition of S. (2) is proved as follows. Suppose not ( 2 ) :  
v(a[U"-l]) = F and Sn-l belongs to S. Then there is a Wn-l such that 
Wn-1 < Sn-l, v(a[Wn-']) = T. 

Case 1.  n = 1.  Wn-l = Sn-1 = Un--l, yielding a contradiction. 
Case 2. n > 1. Since u ( ~ [ U ~ - ~ ] )  = F and v(a[Wn-9) = T, by condition 5)  

inDefinition21.6, thereisanasuchthateitherv( Un-l[a]) = Fandv(W"-l[a]) = T, 
or v(Un-l[a]) = T and v(Wn-l[a]) = F. By the induction hypothesis, there 
is an Sn-2 in Sn-2 such that a < Sn-2. If v(Un-l[a]) = F and v(Wn-l[a]) = T, 
then (since v(U.-l[a]) = F) Sn-2 does not belong to Sn-l, since Un-' < 9 - l .  
On the other hand, v(Wn-l[a]) = T implies that  Sn-2 belongs to Sn--l, since 
Wn-I < Sn-l. Thus we have a contradiction. 

Similarly, if v(Un-l[a]) = T and v(Wn-l[a]) = F, we obtain a contradiction. 
So ( 2 )  must hold. 

From (1) and ( 2 ) ,  a < S by definition. 
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DEFIKITION 21.10. \Ye shall extend the relation < to formulas and truth 
values as follows. 

1) A < T if and only if v ( A )  # F. 
2) A < F if and only if v (A)  # T. 
As immediate consequences of this, the following hold : 
(1) if A < * (where * stands for F or T) and v(A) = T, then * = T, 
(2) if A < * and v ( A )  = F, then * = F; 

since if v(A) = T, then v ( A )  # F by the definition of v ;  so by l ) ,  A < T. 
* cannot be F for this case by virtue of 2). (2) is proved similarly. 

PROPOSITION 21.11. Let ,4p be the structure which was defwied z n  Defznztaon 
21.8, and let + be a n  assignntei?t froin Y .  Then for a n y  abstract OY formula 

U(a,, . . , a,), where all the free vartables a n  U are among a,,. . ., a,, and for 
a n y  abstracts U l , .  . ., U ,  (of a@@rojmate types) ,  af U ,  < +(cc2) for z = 1, .  . . ,n ,  
the72 U ( U l , .  . ., U,) < q5(U(al,. . ., aJ) .  

PROOF. By induction on the complexity of U(ccl,. . . , a,). 
(1) U is ai. By the hypothesis, Ci < +(ai). 
The following are the induction steps. 
(2) U is ai[W(al , .  . . , a,)]. Let cli be of type ?zi. U i  < +(a,) by hypothesis, 

which implies (by the definition of <) that for every U7- l  and Snx-l in 
S,i-l : 

1) if U2-I  < Sn,--l and v(U,[U:-']) = T, then E +(ai), 
2) if l7;c-l < 9 - l  and v(Ui[U:L- l] )  = F, then Sni--l$ +(a,). 

Now take W (  U,, . . ., U,) as UiL-' and +(W(u,, . . ., a,)) asSni-'. By the induction 
hypothesis, W(U1, .  . ., U,) < #(W(a l , .  . ., a,)), hence the first premiss in 1) 
and 2) holds. If v ( U i [ W ( U , ,  . . . , U,) ] )  = T, then by 1) +(W(al , .  . . , a,)) €$(ai) ,  

and if it = F, then by 2) + ( W ( a , , .  . ., a,)) 4 +(ai). The first case implies 
U,[W(U, , .  . ., U,)] < T by Definition 21.10, and by Definition 21.4, part 
3.1), +(cri[W(al,. . .,a,)]) = T; hence U,[W(U1, .  . . , U,)] < +(ai [W(ai , .  . . ,a,)]) .  
Similarly, thesecondcaseimplies U i [ W ( U l , .  . . , U,)] < F = $(a,[W(al, .  . .,a,)]). 
(Note that if v (U(U, ,  . . . , U,)) is defined then (trivially) U ( U l , .  . . , U,) < 
$(U(a , ,  . . . , a,)), by definition of < in Definition 21.10.) 

(3) U(al, .  . . , a,) is V p  A(p ,  a1,. . . , a,). 
Casel. v(Vp A (p, U,, . . . , U,)) = F. There is a /3 such that v (A(8)  U,, . . . , U,)) 

= F. For this ,l?, take the S which was constructed in Proposition 21.9 so that 
/3 < S. Let +' be #({). Then B < +'(@) and Ui < +'(ai), 1 < i < 9%. By the 
induction hypothesis 
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A (PI U i , .  . Un) < +'(A (P,  a,,. . . , an))) 

so + ' ( A ( p ,  a l , .  . ., a,)) = F by (2) of Definition 21.10, which means that 
$(Vp A(p, a,, .  . ., a,)) = F, so U(Ul , .  . ., U,) < + ( U ( a l , .  . ., a,)). 

be a new free variable of the 
same type as p. For an arbitrary S in S,, define 4' = +( f ) .  There is an abstract 
Ti such that V < S, so V < +'(P). By the induction hypothesis, 

Case 2. v ( V q  A ( y ,  U , , .  . ., U,)) = T. Let 

A ( V ,  LT1,. . ., U,) < +'(AM, a ] , .  . ., an)). 

From the assumption, v(A(Ti,  U l , .  . ., U,)) = T, which implies 

+'(A(P, a,,. . . , a,)) = T. 

This is true for every S in S,, i.e., for every +' which agrees with r$ except at  p. 
Thus 4(Vp A ( q ,  a l , .  . . , a,)) = T, hence U(U, , .  . ., U,)) < +(U(al , .  . . , a,)). 
(4) U ( a l , .  . . , a,) is {x}A(x,  a,,. . . , a,). Let P be a new free variable and 

For arbitrary U ,  and S, of appropriate type which satisfy U ,  < So,  consider 
A ( U,, U , ,  . . . , U,) and $' = +( fJ  ; so U ,  < +'(p). By the induction hypothesis, 
A ( Uo,  U,, . . . , U??)  < $ ' (A  ([I, a l , .  . . , x , ) ) .  Suppose ~ ( ' 4  (U,, II,, . . . , U,)) = T. 
Then 

+'(A (P, M I , .  . . , a,)) = T 

by Definition 21.10, so S, E Q. If v(A(U,,  U,, . . . , U,)) = F, then 

+'(A(P, a,, .  . . , a,)) = F, 

and hence So 6 Q. Therefore, by the definition of <, U(Ul, . . . , U,) < Q. 
Other cases are left to the reader. 

PROPOSITION 21.12. 9 (as  defined in Definit ion 21.5) i s  a Henkin structure. 

PROOF. Let + be an arbitrary assignment from Y .  We have only to show that 
for every U ,  U' < +(U)  for some U' of the same type as U .  Suppose all the 
free variables in U are among al ,  . . . , a,. Since $(a,) belongs to S,%, where n, 
is the type of a,, there exists a U ,  of type n, such that U ,  < $(a,). Hence, by 
Proposition 21.11, U ( U , , .  . . , U,) < +(U(a l , .  . ., an)) .  So take U' to be 
U(U1,. . . >  un). 
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PRoPosrrrox 21.13. Let  9’ be the structure we have been dealing witlz and let (bo 
be a.rz assignwent from Y which satisfies the followiiig: 

(i) +o(a) = a if a is a free cariable of t y p e  0 ;  
(ii) +o(a) = the S which was defifzeri zit ProJlositioit 21.9, if M is a free variable 

Let  A be a n y  formula.  T h e n  v ( A )  = T implies  +o(A) = T, a d  v ( A )  = F implies  
of t y p e  > 0 ( a i d  +o(x) ,  for bound variables x, i s  arbitrary).  

+,,(A) = F. 

PROOF. For +o as above, M < +,,(M) for every free variable x .  Thus, by Proposi- 
tion 21.11, A < +o(A) (by taking U ,  to be a t ) .  Then the proposition is a 
consequence of Definition 21.10. 

PROPOSITION 21.14. If a sequent S i s  ?tot cut-free provable ( z i z  S),  then there 
exists a H e n k i n  structure ,Y arzd an assignment f r o m  9, s a y  +(,, szkch that 

+ O F )  = F. 

PROOF. By Proposition 21.7, there is a semi-valuation with extensionality, 
say v ,  such that v ( S )  = F. Let Y be the Henkin structure induced by 71 

(cf. Definition 21.8 and Proposition 21.12). Let c $ ~  be the assignment from 
Y defined in Proposition 21.13. Then v ( S )  = F implies +,,(S) = F, again 
by Proposition 21.13. 

PROOF OF THEOREM 21.3. By Proposition 21.14, if S is not cut-free provable 
(in S), then there is a Henkin structure 9’ and an assignment (bo from ,Y such 
that +,,(S) = F. But this and Proposition 21.5 imply that S is not provable 
in S at all. In other words, if S is provable in S, then it is provable without a cut. 

REMARK. By Proposition 21.14, we have proved not only cut-elimination 
for S, but also contJlleteizess of S without the cut rule (relative to the semantics 
of Henkin structures). (Soundness  of S follows from Proposition 21 5.) 

Next we shall prove the same theorem for the system without the exten- 
sionality rule. The method is quite similar to the proof of Theorem 21.3. 

THEOREM 21.15 (the cut-elimination theorem for simple type theory with- 
out extensionality : Takahaslii-Prawitz). Let S- be the system of simple ty,be 
theory given in $20. T h e n  the cut-elinkitation theorem holds for S-. 
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PROOF. We follow the proof of Theorem 21.3, pointing out the corresponding 
items of $21. 

DEFINITION 21.16 (cf. Definition 21.4). (1) A structure (for simple type theory 
without extensionality) is an o-sequence of sets, say P = (Po, P,, . . . , Pi,. . . ), 
with a relation E ;  where 

1.1)  Po is a non-empty set, 
1.2) Pi+, is a set of pairs of the form (Ui+l,  S), where Ui+l is an abstract 

of type i + 1 and S is a subset of Pi. Let Pi+l = (Ui+l,  S) be an 
element of Pi+l, and let Pi be an element of Pi. 
Then Pi E Pi+l if and only if Pi belongs to S.  

(2) An assignment from 9 is a map + from variables such that to every 
variable of type i, + assigns an element of Pi. An interpretation is a pair 

(3) For each semi-formula or semi-term A ,  +(A) is defined as in Definition 
21.4 except for the following cases: c#(M[W]) = T if and only if +(E) E +(W);  

3 = (P,+). 

where + ( x i )  = ( U t ,  S,) and all the bound variables occurring free in {x}A (x) 
are among xl , .  . . , x,. 
(4) A structure is called a pre-Henkin structure if for every assignment I$ 

from P and every abstract U of type i, + ( U )  belongs to Pi. 

REMARK. The reason why we must take pairs (U, S) instead of just S in 
defining Pi+l is that  9 is a model of the comprehension axioms for which the 
axiom of extensionality may not hold. Thus, we cannot always identify two 
objects whenever they have the same extension ; in order to distinguish two 
objects with the same extension, we consider pairs so that the names (of the 
extension) are explicitly expressed. 

PROPOSITION 21.17 (cf. Proposition 21.5). Suppose B i s  a pre-Henkin structure 
and + i s  an assignment from 9. If a sequent S i s  provable in S-, then +(S) = T. 

DEFINITION 21.18 (cf. Definition 21.6). Semi-valuations are defined as in 
Definition 21.6, omitting 5). 
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PROPOSITION 21.19 (cf. Proposition 21.7). If S i s  not cut-free provable in S-, 
then there is a semi-valuation, say  v, such that v(S) = F. 

DEFINITION 21.20 (cf. Definition 21.8). Given a semi-valuation w, we define 
the structure B induced by v :  the sets Po, P,, . . . and relations Ui < S and 
Ui < Pa (for abstracts Ui, Pi E Pi and S c Pi)  are defined simultaneously by 
induction on i. 

1) Po is the set of all free variables of type 0. t ,  < tz  if t ,  is tz .  
2) Suppose Po,,  . ., Pi and < for those sets have been defined. Let S be a 

subset of Pa. Ua+l < S is defined to be true if and only if for every Ua and 
every Pi in Pi with U6 < Pi : v( Ui+l[ U;])  = T implies Pi E S, and a( U i f l [  Ud]) = F 
implies Pi $ S. 

3) Pi+, =df  ((Ui+l, S) I S c Pi and Ui+l < S}. 
4) Let Pi+l = ( Ui+', S )  be an element of Pi+, (so Ui+l < S). Then U < Pi+l 

if and only if U is Ui+I. 

PROPOSITION 21.21 (cf. Proposition 21.9). For a n  arbitrary u of type n there 
exists a P in P ,  such that ci < P. 

PROOF. There are two cases. 
1) n = 0. For every a in Po, a < a by definition. 
2) n > 0. Define P as 

= d f  (a, s), 
where 

S = {Pn-I I Pn-l E P,-l and there exists a Un-' such that 

Un-l < Pn-l and v(ci[U"-l]) = T}. 

We have only to show that u < S for this S. In order to prove u < S it 
suffices to show that for any Un-' and Pn-I with Un-' < Pn-l: 

(1) If a(ci[Un-l]) = T, then Pn-l E S; 
(2) if v(u[Un-l]) = F, then Pn-l $ S. 

The proof of (2) in this case is trivial, since Un-1 < P-l here means that 
Pn-1 = (Un-1 ,  S) for an appropriate 3.  

DEFINITION 21.22. We can extend < to formulas as in Definition 21.10. 

PROPOSITION 21.23 (cf. Proposition 21.11). Let B be the structure defined as 
above. Giwen a n  assignment 4, define 4, as follows: If +(a) = ( U l ,  S ) ,  then 
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dl(u) = U1, and for free variables a of type 0, +l(a)  = +(a) = a.  Let U be a 
formula or abstract whose free variables are ul , .  . . , a,. I f  

PROOF. By induction on the complexity of U ( a l , .  . . , a,). The argument is 
very much the same as the proof of Proposition 21.11. We shall give one 
example for the induction step. Suppose U is a i [W(a l , .  . . , a,)]. Let ai be of 
type n, and let +(ai) be ( Ui, Si) (this is the case for ni > 0, since #q(ai) = Ui; 
for ni = 0, +(ai) = a, = U i ) .  Since U, < S,, for every U2-I  and Pni-l in 
rni4 : 

1) If U7-l  < Pni-l and v (Ui [U: ] )  = T, then Pni-l E Si; 
2) if Ulfi-' < P - l  and v(Ui[U?-']) = F, then PP1 $ Si. 

Now take W ( U l , .  . ., U,) as U7-l  and +(W(a,,. . ., a,)) as Pni-l. By the 
induction hypothesis, W(U1, .  . ., U,J < +(W(a,,. . ., a,)), hence the first 
premiss in 1) and 2) holds. If v ( U i [ W ( U 1 , .  . . , U,)]) = T, then by l) ,  
+(U'(al, . . . , a,)) E +(ai) (since +(ai) = (Ui, Si) and +(l.V(al,. . . , tlJ) belongs 
to Si), so +(ai[W(al, .  . ., a,)]) = T, which implies U i [ W ( U l ,  . . ., U,)] < 
+(ai[W(a1, . . ., a,)]). Similarly, if v ( U i [ W ( U l ,  . . . , U,)]) = F, then by 2), 
4(ai[W(a1,.  . . , a,)!) = F, and hence the desired relation holds. 

PROPOSITION 21.24 (cf. Proposition 21.12). 9 i s  $re-Henkin structure. 

PROOF. Let + be an arbitrary assignment from 9'. We have only to show 
that if +(U) = ( V ,  S), then V < S. Suppose all the free variables in U are 
among al,. . ., a,. Let Ui  = +(a,). Then U ( U l , .  . ., U,) < +(U(a l , .  . ., a,)) 
by Proposition 21.23. By the definition of <, this means that U (  U1,. . . , U,) 
is V and hence V < S, again by definition of <. 

PROPOSITION 21.25 (cf. Proposition 21.13). Let 9 be the structure we have been 
dealing with and let + be a n  assignment f r o m  9 which satisfies the following : 

(i) # ( a )  = a if a i s  a free variable of type 0;  
(ii) +(a) = the P which was defined in Proposition 21.21, if a i s  a free variable 

Let A be a n y  formula. Then v ( A )  = T implies + ( A )  = T, and v ( A )  = F implies 
of type > 0 (and +(x), for bound variables x ,  is  arbitrary). 

+(A) = F. 
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PROOF. For 4 as above and as in Proposition 21.23, t( = dl ( K )  for every free 
variable a. Thus, by Proposition 21.23, A < +(A)  (by taking Ui to be ai).  
Then the proposition is a consequence of Definition 21.22. 

PROPOSITION 21.26 (cf. Proposition 21.14). If a sequent S i s  not cut-free 
provable in S-, then there exists a $re-Henkin structure and an assignment from 
9, say +, such that +(S) = F. 

PROOF. The proof is parallel to Proposition 21.14. 

PROOF OF THEOREM 21.15. By Propositions 21.26 and 21.17. Follow the proof 
of Theorem 21.3. 



CHAPTER 4 

INFINITARY L 0 GIC 

In this chapter we will deal with a proof-theoretic development of infinitary 
logic. One reason for our interest in infinitary logic is that  it enables us t o  
establish a stronger link between model theory and proof theory. Model theory 
and proof theory are related to each other in many respects. For example, 
Craig’s theorem, Beth’s theorem and Tarski’s theorem, stated in Chapter I, 
can be regarded as theorems of both model theory and proof theory. On the 
other hand proof theory is somewhat narrower than model theory in the 
sense that one cannot always express a model-theoretic result in proof-theoretic 
terms although the converse is usually possible. For example, although there 
are several proof-theoretic results containing part of the Lowenheim-Skolem 
theorem, one of the most fundamental theorems in model theory, we do not 
have a proof-theoretic version of the full theorem in ordinary (finitary) proof 
theory. However, if we introduce infinitary logic with an appropriate notion 
of proof, then the Lowenheim-Skolem theorem can be stated syntactically 
(see Problem 22.20). 

Let u be an ordinal number, let f be a mapping from CI into {V, 3) and let 
s,, denote the sequence { x ~ ) ~ < , .  Then Q f x , ,  is a quantifier of “arity” u. If all 
the values of f are V or all the values of f are 3, then Q f x < ,  is a homogeneous 
quantifier that  we denote by Vx,, or 3x, , ,  respectively. A quantifier that 
is not homogeneous is called heterogeneaus. 

Heterogeneous quantifiers can occur in more general forms (Henkin). Let 
X and Y be disjoint sets of bound variables and let T be a function that maps 
Y onto a subset S of P ( X ) .  We associate with T ,  X ,  Y a quantifier Q ( T ,  X ,  Y ) .  
For simplicity let x and y be sequences composed of all the elements of X and 
Y ,  respectively, ordered by some well-ordering of X and Y .  Then for a 
formula A ( a ,  b) ,  Q(T,  x, y )  A ( x ,  y )  (denoted QTxy A ( x ,  y ) )  is a formula 
having the following meaning. Given any values of the variables x there exist 
values of the variables y such that (1) for each q, the value of y n  is dependent 
on the values of those xF’s that are in T(y,), (2) for each q,  the value of y n  
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is independent of the values of those xt's that are not in T(y,), and (3) A ( x ,  y ) .  
In other words QTxy A (3, y )  is equivalent to the second order formula. 

( Y o , . .  ., f ,  , . . .  ) (Vx) ~ ~ ~ ~ , f O ~ ~ O 0 , ~ O , ~ " ' ~ ~ ' ~ ~ , f ~ ~ ~ ~ ~ , ~ ~ , ~ ~ ~ ~ ~ , ~ ~ ~ ) ,  

where xq0, x,,,,. . . are the elements of T(y , ) .  For example, if X = {x, y } ,  
Y = {u, v} and T is defined by 

T ( 4  = @I> T(4 = {r>, 
then we have the formula Q(T ,  X ,  Y )  A ( X ,  Y )  that  we denote by 

I t  is known (Mostowski) that this quantifier cannot be defined in terms of 
ordinary quantifiers V and 3. Other examples of this kind will be given below. 

We shall consider both homogeneous and heterogeneous quantifiers. Were 
we to restrict ourselves to homogeneous quantifiers, the theory obtained 
would be more or less like a finitary first order theory, whose nature is well- 
understood. The situation with regard to heterogeneous quantifiers is more 
interesting. One of our objectives will be to determine whether logics with 
heterogeneous quantifiers are like finite first order logics or finite second order 
logics. 

An infinitary logic, with heterogeneous quantifiers Qfx,, such that f(p) = V 
if p is even and f (B)  = 3 if B is odd, is of particular interest in connection with 
the axiom of determiiaateness, an axiom that implies many interesting 
theorems in set theory. The axiom of determinateness asserts that  for each 
quantifier Q f ,  and for every formula $I, exactly one of the two formulas 

or 

is true, where f is the dual of f, that is, f(7) = V if f ( r )  = 3, and f ( y )  = 3 if 

Through the axiom of determinateness we can see connections between 
proof theory and set theory. For example, one of the important properties 
of rules of inference is that they come in symmetrically related pairs. This 
property was essential in the proof of the cut-elimination theorem of LK but 
apparently cannot be preserved when we introduce heterogeneous quantifiers. 
So it seems rather hopeless to expect that the cut-elimination theorem holds 

f (7)  = v. 
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in infinitary logic with heterogeneous quantifiers. However, in a determinate 
logic (to be defined in $23, roughly as an infinitary logic in which the axiom 
of determinateness holds) the rules of inference are symmetric. This offers 
hope that the cut-elimination theorem might hold in such a logic. I t  is known, 
however, that  the cut-elimination theorem fails for a determinate logic that 
has disjunction and conjunction symbols of arity 2*O, that  is, disjunction 
symbols and conjunction symbols that operate on sequences of length 2'O. 
Is this also the case for a determinate logic in which disjunction and con- 
junction are only of arity o ? 

There are two approaches to  the study of determinate logic, one assuming 
the axiom of choice, and the other without it. Without the axiom of choice, 
some proofs turn upon very delicate arguments. Nevertheless we can prove 
the following without this axiom. 

Let M be a transitive model of Z F  + DC, that is, Zermelo-Fraenkel set 
theory augmented by the axiom of dependent choice, and let the power set 
of o belong to  M .  Then the axiom of determinateness, AD, holds in M if 
and only if the cut-elimination theorem holds for every determinate logic 
of M ,  i.e., every determinate logic that is M-definable. 

This theorem suggests that  there is a close relationship between the cut- 
elimination theorem and the axiom of determinateness. Furthermore there 
is a natural reduction in LK that provides a basis for proving the cut-elimination 
theorem. This suggests that by extending the notion of reduction to infinitary 
languages we may be able to prove the cut-elimination theorem and thereby 
learn more about the axiom of determinateness. We shall, therefore, generalize 
the cut rule so that a natural reduction exists for infinitary languages. 

The simplest cases of infinitary logic are those systems with propositional 
connectives of countable arity, but quantifiers only of finite arity. Although 
these are very interesting logics we will give only one result concerning such 
systems (cf. Problem 22.21 : Lopez-Escobar). For more information the reader 
should see: J. Barwise, Infinitary logic and admissible sets, Journal of 
Symbolic Logic 34(1969). 

An infinitary logic can be regarded as a subsystem of a second order logic 
simply because one can formulate the truth definition of any significant 
infinitary system in a reasonable second order system. An example is given 
as Problem 22.26. 

In defining an infinitary language, the basic idea is to determine a set of 
variables, a set of constants, and formation rules for formulas. There are 
various ways of defining the formulas of the language: 
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a) Accept all the formulas that are inductively defined from the constants 
and the variables. 

b) Restrict the “admissible” formulas to some subsets of all the formulas 
defined as in a), with the provision that the set of admissible formulas 
must be closed with respect to subformulas. 

Unless we state otherwise, the systems we will study are ones in which the 
formulas are defined as in a). Although it is common practice to set an upper 
bound on the cardinality of the various sets of language symbols we will 
not always do so. 

By an infinitary language we mean the following: 
1) a set of bound variables; 
2) a set of free variables; 
3) a set of predicate constants each with its own arity, i.e., “number” of 

4) a set of individual constants; 
5 )  a set of logical symbols. 
The set of logical symbols consists of the usual unary negation sign -I, and 

the binary implication sign 3, together with a collection of disjunction, 
conjunction, universal quantification, and existential quantification signs 
each with its own arity. However, we will not use different symbols for 
signs with different arity. We will use only one symbol for disjunction V, one 
for conjunction A, one for universal quantification V, and one for existential 
quantification 3. We wiil then rely upon the context to  make clear which 
symbols are “distinct”, for example, two V’s followed by sequences of bound 
variables are different symbols if the lengths of the sequences are different, 
i.e., the V’s in Vx,, and V X , ~  are different if u # /3. The same is true of 3, 
V, and A. For example, the A’s in A,,, A ,  and A,<B A ,  are different if u # p. 

In the case of formulas defined by b) the logical symbols of the language 
are determined by the admissible formulas. That is, a particular symbol A is 
a symbol of the language if it occurs in some admissible formula. 

argument places ; 

$22. Infinitary logic with homogeneous quantifiers 

In this section we shall formulate an infinitary logic with homogeneous 
quantifiers by extending the Gentzen-style calculi. Although the treatment 
of languages with function constants is not difficult, we will, for simplicity, 
consider only languages without function constants. 
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DEFINITION 22.1. (1) The language L consists of the following: 
1) Logical symbols : 
1 (not), 
A (conjunction of arity a for certain a’s), 
V (disjunction of arity a for certain a’s), 
V (universal quantifier of arity M for certain cc’s), 
3 (existential quantifier of arity cc for certain a’s). 

We will sometimes write A, and V, for A5<a and V5<a,  when the meaning is 
clear from the context (and especially in the case a = w ) .  

2) Auxil iary symbols: (, ) and , (comma). 
3) Constants : 

3.1) Individual constants; c,, c,,. . ., cy,. . ., 6 < p for some p. 
3.2) Predicate constants of arity a ;  $:, . . ., jb;, . . ., 6 < y for some y and 

certain a’s. 
4) Variables : 

4.1) Bound variables: xo, x l , .  . . , x,, . . . , q < K,. 
4.2) Free variables: a,, a l , .  . ., at , .  . . , 6 < K,. 

Here K ,  and K z  are ordinals but they are not arbitrary. We must have a 
sufficiently large supply of bound and free variables. 

We proceed in the following way. First we fix the number of constants and 
logical symbols. We then add a sufficiently large supply of bound variables. 
We then need a very large collection of free variables. Indeed the cardinality 
of the set of free variables must be the same as the cardinality of the set of 
all formulas. 

Of course the number of free variables we have influences the number of 
formulas. Nevertheless, in set theory, we can show that if the number of 
language symbols is fixed, except for the free variables, then for a sufficiently 
large collection of free variables, the number of free variables will be the same 
as the number of formulas. 

(2) A term is either a free variable or an individual constant. 
(3) Formulas and their outermost logical symbols we define in the following 

way. 
(3.1) If p is a predicate constant with arity a and {ta}o<a,  is a sequence of 

terms, then ?(to,. . ., t,,, . .) is an atomic formula. An atomic formula does 
not have an outermost logical symbol. 

(3.2) If A is a formula, then i A  is a formula and its outermost logical 
symbol is 1. 

(3.3) If A (V) of arity u belongs to our language and {A, } , , ,  is a sequence 
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of formulas then A, , ,A ,  (Ve< ,At )  is a formula and its outermost logical 
symbol is A (V). 
(3.4) If V (3) of arity ,4l belongs to our language, if A is a formula, if a is a 

sequence of free variables of length ,4l, and if x is a sequence of bound variables 
of length p none of whose terms occur in A ,  then (Vx) A(x)  ((3x) A ( x ) )  is a 
formula whose outermost logical symbol is V (3), where A ( x )  is the expression 
obtained from A by writing x’s for the corresponding a’s a t  all occurrences of 
a’s in A .  

Subformulas are defined as for first order finite languages: If A = A4<, A ,  is 
a formula of L (L-formula), then each A ,  is a subformula of A ,  if A : Vx A ( $ )  
is an L-formula, then A ( s )  is a subformula of A for an arbitrary sequence of 
terms s. 

Of course, L must be so defined that each subformula of an L-formula is 
an L-formula. Since formulas are defined inductively, properties of formulas 
are normally proved by transfinite induction on the construction of formulas. 

(4) In order to introduce the notion of proof we use auxiliary symbols + 

and - as before. In the following T, A ,  17, A ,  To, TI,. . . denote sequences of 
formulas of length < K+, where K is the cardinality of the set of all formulas 
in L. 

r - -+A is called a sequent. r and A are called the antecedent and succedent 
of the sequent, respectively. 

The rules of inference of L are as follows: 
(4.1) (Weak) structural rule of inference: 

where every formula occurring in r occurs in r’, and every formula occurring 
in A occurs in A ’ .  

(4.2) Logical rule of inference: 

for some y < K+. 

for some y < K+. 
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for some y < K+, where /$,<DL belongs to L for every 2 < y .  

for some y < K+, where Vu<4A belongs to  L for each A < y .  

r - + A >  {AA,,),<L?,."Y 

r + A ,  { V p < D , ,  ' A . u } ~ < y  
V : right: 

for some y < K+, where Vu<4A belongs to L for each 1 < y .  

for some y < K+, where the t ' s  are sequences of arbitrary terms of appropriate 
length. 

for some y < K f ,  where the a's are sequences of distinct free variables of 
appropriate length. Each variable occurring in the a's is called an eigenvariable 
of the inference. When an eigenvariable a ,  of such an inference occurs in a,, 
then Vx, A,(x , )  is called the principal formula of a and A,(a,)  is called the 
auxiliary formula of both a and of the principal formula. The pth variable 
u , , ~  in a, is said to be of order ,LA with respect to the principal formulavx, A,($ , ) .  

for some y < K+, where the a's are sequences of distinct free variables of 
appropriate length. Each of the a's is called an eigenvariable of the inference. 
When an eigenvariable a of such an inference occurs in a,, then 3x, A,(%,) is 
called the principal formula of the eigenvariable and A,(a,) is called the 
auxiliary formula of a and of the principal formula. The pth variable a,,u in 
a,, is said to be of order p with respect to the principal formula 3XA A,(%,) .  
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for some y < K+, where the t’s  are sequences of arbitrary terms of appropriate 
length. 
(4.3) Cut rule: 

for some y < K+. 

A semi-proof P is a finite or infinite tree of sequents defined as follows: 
The topmost, or initial, sequents are of the form D + D. Each sequent in P, 
but one, is an upper sequent of an inference followed by its lower sequent. 
The exceptional sequent is called the end sequent. A more precise definition 
of semi-proof is formulated inductively as follows : 

1) A sequent of the form D - D alone is a semi-proof. 
2 )  If each P, is a semi-proof with end-sequent I’, --LA, and 

. . . ; r, --+A*,;. . . 
r - A  

. . . ;  Pa;  . . .  
r + A -  

is an inference, then 

is a semi-proof. 

Since semi-proofs are defined inductively, one can assign ordinals to sequents 
in a semi-proof, so that the ordinal assigned to S ,  is smaller than the ordinal 
assigned to S ,  if S ,  is an ancestor of S,. Therefore it is also important to note 
that although a semi-proof may be an infinite figure, that is, the tree form 
may have infinitely many branches, each string of sequents traced up from 
the end-sequent or down from an initial sequent through the tree figure will 
be of finite length. 

A semi-proof P is called a proof if P satisfies the following eigenvariable 
conditions. 

(I) If a free variable occurs in two or more places as an eigenvariable, the 
principal formulas of these eigenvariables must be identical and the order 
of this eigenvariable with respect to  each principal formula is the same in 
each of the inferences. 

3) Every semi-proof is obtained by 1) or 2 ) .  
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(11) For each free variable a in a proof, an ordinal number, h(a) called its 
height, can be defined so that the height of a free variable occurring in an 
inference as an eigenvariable is larger than any of the heights of the free 
variables contained in the principal formula of that eigenvariable. 

(111) No variable occurring in an inference as an eigenvariable can occur in 
the end sequent. 

REMARK. The following is an alternate form of the eigenvariable conditions 
in the presence of the cut rule. 

If J is an inference 

or 

then the following conditions must be satisfied: 
(i) any member of at does not occur as an eigenvariable or in a principal 

formula of a V : right or 3 : left under J ,  
(ii) for any pair 5,  q such that 5 < q, each member of a, cannot 

(iii) each member of aE does not occur in VX, A,(x,) or 3x, A,(x,),  
(iv) no variable occurring in an inference as an eigenvariable can 

A A%) J 

the end-sequent. 

occur in 

occur in 

It is evident that if the conditions (i)-(iv) are satisfied, then one can define 
“height” to satisfy (11), after renaming variables if necessary, and hence the 
original eigenvariable conditions hold. The converse can be proved by a 
method similar to that used in the last half of the proof of Proposition 22.25. 

EXAMPLE 22.2. (1) A cut-free proof of the axiom of dependent choice in an 
infinitary logic with homogeneous quantifiers : 
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Here Fo is F(ao,xl)  and Fi+, is F ( X ~ + , , ~ ~ + ~ )  for every i < w ,  and x = (x,,x,, . . .). 
The heights are defined by h(a,) = m, m < w .  

( 2 )  A proof of 

VXO . . . ( 1 A  x,+1 E x,), VX ( V y  E x A ( Y )  3 A ( x ) )  + A(uo), 
n 

where V y  E x A ( y )  is an abbreviation of V y  ( y  E x 3 A ( y ) )  : 
1) v x ( V y E x A ( y ) > A ( x ) )  + A ( a , ) , a l E a o .  

PROOF. Similar to that of 1). 

3) Vx (Vy E x A ( y )  3 A (x)) - A(un-,), a,+, E a, for k = 0, 1,. . . , n. 

n 

From 4) we then conclude 

In this proof a,, a 2 , .  . ., an, .  . . are eigenvariables and h(a,) = n 
5 )  VXO . . . ( l A n  %,+I E x,), VX ( V y  E x A ( y )  3 A(%))  + A(a0) .  
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(3) Malitz’s example. Malitz found a counterexample to the interpolation 
theorem for homogeneous infinitary languages. His example is the following. 
Let A and B be two well-ordered sets with the same order type, and let F 
be a predicate that defines the order preserving map from A one-to-one 
onto B. That there is exactly one such map is easily proved. If the inter- 
polation theorem held then this order preserving map could be defined in the 
homogeneous infinitary language without using the predicate F. This, however, 
is impossible because the length of the defining formula would set an upper 
bound on the order type of A ,  but that order type is not bounded. Let Ln( = , <) 
be a formula which expresses that < together with = is a linear ordering 
relation. Let r be the following sequence of formulas. 

1 2 Ln( l ,  <), Ln(2, <). 

VX v y  V U  VZJ ( X  2 y A U 7.J 3 (F(X, ‘24) F ( y ,  V))), 

V X  V y  Vu Vv ( X  I y A u Z ?I 3 (G(x ,  u) = G ( y ,  Y))), 

1 2 
V X  v y  VU V V  (F(X,  U )  A F ( y ,  a)  3 ( X  < y 

VX v y  vzt VV (G(x,  U) A G ( y ,  V )  3 ( X  < y 

U < 8) A (X & y E U 2 V ) )  

u < V )  A (X y f u P v ) )  
1 2 

It should be remarked that all the quantifiers in r are universal and at  the 
front of a formula. The following sequent is easily proved to be valid. 

r, v X  3Y ~ ( x ,  y ) ,  v X  g y  G(%, y )  

Vx 3 y  F ( y ,  4, VX 3 y  G ( y ,  4, F(a,  b) ,  

V X ~  XI . . . i A  ( ~ , + 1  x,) -+ G(u, b) 
n 

We are going to present a cut-free proof of this sequent. Let T be the set of 
all finite sequences of 1’s and 2’s. I t  is understood that the empty sequence 
is a member of T .  We use t as a variable on T.  The set D of free variables is 
defined as follows. 

1) a E D. (a is a‘, where t is an empty-sequence.) 
2) If a‘ E D, then brl and br2 are members of D. 
3)  If b’ E D ,  then arl and ar2 are members of D. 
4) All members of D are obtained by l), 2)  and 3). 

The members of D are a, bl, b2, al l ,  a12, aZ1, a22, blll,  b112,. . . . r‘ is a sequence 
of all the formulas which are obtained from a formula in r by deleting all 
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the universal quantifiers and replacing bound variables by the members of D. 
(From one formula, infinitely many formulas will be obtained. Of course, in 
one instance of substitution, the same member of D should be substituted 
for the same bound variable in a formula.) A' is a sequence of all the formulas 
of the form 

F(a', bZ1), F(aT1,  b'), G(a', bt2), G(ar2, b')), z E T .  

In the following lemmas, we state several sequents which are provable in the 
ordinary first order predicate calculus and hence cut-free provable in Gentzen's 
L K .  

We define "T', A' + b'll 2 b' is provable" to mean that T*, A* 4 brl1 Z b' 
is provable for some r* that is a finite subsequence of r' and some A* that  
is a finite subsequence of A' .  

LEMMA 22.3. The following aye LK-$rovable. 
1) T', A' + btll  = b', where b'l = bT2 i s  an abbreviation for brl 2 br2. I n  the 

2) r', A' -+ b722 = b'. 
3) r', A' - -+~' l l  - - a'. 
4) r', A' + arZ2 - - a'. 

same way, a'l = ar2 i s  an abbreviation for arl 2 ar2. 

PROOF. Obviously, r', F(atl ,  brll), F(arl ,  b7) + brll = b7. From this, 1) follows 
trivially. The proofs of a), 3) and 4) are similar. 

PROOF. 1) From G(ar2, b'), G(a71, br12), the fourth formulaof r w i t h  ar2, arl, brl, b r I 2  

as x, y ,  u, v respectively and from b' = b'12 it  follows that a'l = ar2. 

PROOF. Under the hypotheses of r', and A',  brl1 = br12 --+ b' = br12 4 arl = ar2 
(Lemmas 22.3 and 22.4). The other cases are proved similarly. 
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LEMMA 22.6. T h e  following i s  provable in LK. 
1) r', A',  b'1 = b'2 --+ bl = b2. 

PROOF. By induction on the length of T ,  using Lemma 22.5. 

LEMMA 22.7. T h e  following are provable in LK. 
1) r ' , A ' ,  bl = b2 + G ( a ,  b l ) .  
2) r', A', bl < b2 + a12 < a,  where brl < bz2 and arl < ar2 are abbreviations 

3) r', A', b2 < bl 4 aZ1 < a.  
for brl 3 bz2 and arl ar2, respectively. 

PROOF. 1) I", G(a,  b2), b1 = b2 -+ G(a,  bl) .  
2) r', F ( a ,  b l ) ,  bl < b2, G(a ,  b2),  G(a12, b') +a1% < a. 
3) r', F ( a ,  b l ) ,  b2 < bl ,  F(aZ1, b2) + aZ1 < a. 

LEMMA 22.8. T h e  following are provable in LK. 
1) r', A',  brl = br2 + G ( a ,  bl) .  
2) r', A', brl = br2 -+ az12 < a'. 
3) r', A' ,  br2 < brl --+ arZ1 < at. 

PROOF. 1) follows from Lemma 22.6 and 1) of Lemma 22.7. The proofs of 2 )  
and 3) are similar to the proof of Lemma 22.7. 

DEFINITION 22.9. (i) R0(z) iff bzl = bZ2. 
(ii) R1(t) i f f  bzl < br2. 

(iii) P(T) iff br2 < b'l. 
(iv) To = (t E T 1 the length of t is odd}. 

LEMMA 22.10. T h e  following i s  cut-free provable for each i : T ,  4 (0, 1, 2} 

{Rir(~)ITET,  r', A' -+ A t,+l 

where t ,  i s  a member of D whose length i s  2n. 

t,, G ( a ,  b'), 
n 

PROOF. Obvious from Lemma 22.8. 

LEMMA 22.11. T h e  following i s  cut-free provable. 

1 T, A',  Vx, x1 . . . 4 (xnil < x,) -+ G(a,  bl). 
n 
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2 PROOF. This follows from Lemma 22.10, since Vx V y  (x < y v x Z y v y 
is contained in r. 

x) 

THEOREM 22.1 2. The following i s  cut-free provable. 

r, A ,  Vx, x1 . . . 4 (x,+l 2 xn) ,  F ( a ,  b )  - G(a,  b) ,  
n 

where A consists of Vx 3 y  F ix ,  y ) ,  Vx 3 y  F ( y ,  x), V x  3 y  G ( x ,  y )  and V X  3 y  G ( y ,  x). 

PROOF. Take b to be bl, and define h(a7)  and h(b*') to be the length of T and t' 
respectively. The conclusion then follows from Lemma 12.11. 

We now introduce a new cut rule, one we will find more convenient in 
infinitary languages than the old one. As we will prove, the new rule is a 
generalization of the old one. 

DEFINITION 22.13 (the generalized cut rule). Let T + A  be a sequent and 9 
be a set of formulas. Let (F1, F2)  denote a partition of 9 (i.e., Fl U F2 = S 
and s1 n F2 is empty). Suppose for an arbitrary partition of fl, (Sl, F2), 
there exists a pair of sets of formulas, say @ G fl,, and y /  G P2, such that 
there exists a semi-proof of @, T - A ,  Y. Then the generalized cut rule allows 
us to infer r A .  This may be expressed as follows: 

PROPOSITION 22.14. (1) The usual cut rule i s  a special case of the g.c. rule. 
( 2 )  The following i s  a n  admissible rule of inference 

where i s  obtained from r by replacing some of the formulas by  alphabetical 

variants. Similarly  with A .  
(3) Suppose that some (Possibly all) of the u$per sequents of a g.c. aye obtained 

b y  applications of the g.c. rule. Then  we can change the proof so that the lower 
sequent will be obtained by onc a$@lzcation of the g.c. rule. 

(4) In  homogeneous systems the g.c. rule is a n  admissible rule of inference. 
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(5) T h e  5.c. rule can be equivalently expressed as 

0, r’ + A’,  Y for all i s l ,  F2) 
- _ _ _ ~  

I ’ + A  

where r’ c r and A’ c A are determined b y  (Fl, 9,) and @ and Y have the 
same meaning as before. 

PROOF. (1) Consider a cut : 

I’ + A ,  D, for all p < A ;  {D,),,,, I7 + A 

First we obtain I’, II + A ,  A,  D,  and {D,}, r, II + A ,  A by applications of 
weakening. Let 9 be {D,},,, and let (F1, F2) be a partition of 9. 

Case 1. F2 is not empty. Then take @ to be the empty set and Y to be 
{D,}, where D, is the first formula in F2. 

Case 2 .  F2 is empty. Then take @ to be Fl, which is 9, and Y t o  be the 
empty set. 

For any (@, u’) above, di, T + A ,  Y is an upper sequent of the cut in 
consideration. By the g.c. rule 

r,n + A , A  

di, r + A ,  Y, for all (@, Y) as above 
r + A  

__ ___.._ 

( 2 )  We shall show that if a sequent r + A is provable, then another 
sequent f + A  can be deduced, where is obtained from r by simply 
renaming some of the bound variables. Similarly with A .  For any formula A ,  
if A is an alphabetical variant of A ,  then A 3 A is easily proved. If r + A  
is provable, then { A ,  E A,},,,, f + A is provable for some A,’s and d,’s. 
Using + A ,  = 6, for all A < p, we obtain 

(3) Let I be the cut under consideration: 

- 
- 

- 
- 

+ A  by the g.c. rule. 

@, F + d,  Y for all appropriate (@, Y) 
r + A  

The proof is by transfinite induction on the complexity of the subproof ending 
with r + A .  Suppose, as the inductive hypothesis, that  there is a t  most one 
cut along any string of sequents above I .  Let {(di,, Y,)},,,o be an enumeration 
of the (@, Y)’s in I and let .F be the set of cut formulas. Let S, denote the 
sequent @,, r + A ,  Y,. Let {I~),,,, be an enumeration of all the cuts above 
S, and let 9: be the set of cut formulas of 1: for each (p, 1 ) .  Let {@:*‘, Y:+)}y<6/: 
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be an enumeration of the pairs of formulas which are related to If and hence 
to Ff. 

For each I:, consider 

for every y < df. For every combination of y's,  i.e., (yo, y l ,  . . . , y',  . . . ), y' < Sf, 
copy the part of the original proof from I7f' - A :  to S,, starting with 
Df, 0c8' - Y;', A: obtained as above, in place of II? +A: .  Thus we obtain 

for every p and (yo, y l ,  . . . , y l , .  . .). Call such a sequent Su( {y l } l <vp ) .  
Now consider the set of formulas Po = 9 u Uu,* 9; and an arbitrary 

partition of Po, say Fl and F2. There exist p < po and { y L } l < v p  such that 
QjU E Fl n 9, Yl, c F2 n 9, @;;' G F; n F l  and Y;;' G 9: n F2, for PI 
and F2 determine partitions of F and 9:. Define 

@ = @, u u W;', Y = Y, u u Y;;'. 
L<Up r i v p  

It is obvious that @ c Fl, Y c P2 and @, r - A ,  !P is one of the sequents 
in (*). There is no cut above it. Since this holds for every partition of Po, we 
obtain 

0, I' - A ,  Y for all appropriate (0, !?') 
r - A  

g.c. 

(4) As will be proved in Theorem 22.17, this follows easily from the com- 
pleteness of the homogeneous systems and the fact that  the g.c. rule preserves 
the validity of sequents. 

(5) Obvious. 

DEFINITION 22.15. Let L be an infinitary language. We define a structure 
for L, (D, +), an interpretation 3 = ((D, +), c$~), the relation that an 
interpretation 3 satisfies a formula A of L, the validity of a formula, the 
satisfaction relation for sequents and the validity of a sequent, as in Defini- 
tion 8.1. 

PROPOSITION 22.16 (consistency; Maehara-Takeuti). Let d be a n  arbitrary 
structure for L. T h e n  every Provable sequent i s  valid in d. 
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PROOF. For each formula of the form 3x A($, a)  in which x is of length a,  
and a are exactly the free variables in A ,  we introduce a Skolem function 
gY,(a) for each y < a,  and define the following interpretation of gyA in d: 

If Vx A (x, a)  is satisfied in .d for an assignment +,,, then the values of the 
gyA’s are those satisfying 

A (g2 “(4 a). 
Let 0 be an element of the domain of d.  If 3x A($, a) is not satisfied by +,, 
in d, then the gY,(a)’s are interpreted to be 0. 

Let P be a proof. We well-order all the eigenvariables in P,  arranging the 
well-ordered sequences a,,, a l , .  . ., a,,. . ., in such a way that h(u,) < h(a,) 
if f i  < y. We define terms t, by transfinite induction on 8. Assuming that 
t , ,  has been defined, we define 1, in the following way. Let Vx A(%, 6) (or 
3% A ( x ,  b ) )  and A ( d ,  b) be the principal formula and an auxiliary formula 
of u4 and let the order of u4 with respect to this principal formula be y, i.e., 
let uB be d,. For each b,  let s, be either the already defined t ,  for which b,  is 
a,, if b ,  is an eigenvariable; or else b, itself. Then t ,  is defined to be gYA(s) 
(orgyA(s)). By (I) of the eigenvariable condition, this definition does not depend 
on the choice of A (a ,  b ) .  

Let P‘ be the result obtained from P by substituting t, for a,  for every f i .  
The bottom sequent of P‘ is the end sequent of P since it contains no eigen- 
variables. 

For an arbitrary assignment of members of D to the free variables, any 
sequent S in P‘ is satisfied in A ,  where the &’s are interpreted as above. 
This can be proved by transfinite induction on the complexity of the figure 
in P above S. As a consequence, the end-sequent of P is valid, since it does not 
involve eigenvariables. The other cases being obvious, we only consider 
3 : left and V : right. 

1) 3 : left. The corresponding part of P’ is 

where u,  is gyA(s). I t  suffices to show that 

3x A (x, s) --f A (u, s),  

is satisfied in xi‘‘; but this follows from the definition of the gyA’s. 
2 )  V : right. The corresponding part of P’ is 

r + A , .  . ., A ( ~ ,  q, .  . . 
r-to,. . . , V x A ( x ,  s), .  . 

____- 
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where z’, is gTA(s).  So it suffices to show that 

A ( u ,  s) + vx A ( x ,  s), 

is satisfied in .d. This follows from 

3% 1 A  (x, s) 4 A (0, s), 

which follows from the definition of the 
We shall now prove the completeness theorem in combination with the 

cut-elimination theorem for an infinitary logic with homogeneous quantifiers. 
The method is basically the same as that for the proof of the completeness 
theorem in Chapter I. 

As a corollary to the completeness theorem (Theorem 22.17) and Proposi- 
tion 22.16 we have the cut-elimination theorem: Every provable sequent is 
provable without the cut rule. 

THEOREM 22.17 (Maehara-Takeuti). Every sequent zalid in a n y  non-empty 
domain i s  Provable without the cut rule. 

PROOF. Let S be an arbitrary sequent and let Do be an arbitrary non-empty 
set containing all free variables and individual constants in S. Let D be the 
closure of Do with respect to all the function symbols g; and g; for all formulas 
A ,  i.e., let D be generated by all g2’s and t i ’ s  from Do. Here & is g q A .  

We define the tree T ( S )  step by step. 
Stage 0. We write S. 
Stage n + 1 .  (1) n + 1 = 1 (mod 5 ) .  When a sequent Il + r l  contains a 

formula whose outermost logical symbol is 1, we write above 17 + A  

{ D U } L l < d ,  17’ - n’{cA}A<,, 
where {1CA},<, and {-D,},<6 are the sequences of all formulas in L7 and in 
A ,  respectively, whose outermost logical symbol is 7, and I7’ and A’ are 
obtained from 17 and A respectively by omitting the -4,’s and the iD , ’ s .  

( 2 )  n + 1 Z E  2 (mod 5). When a sequent 17 - A  contains a formula whose 
outermost logical symbol is A,  we write above r + A 

( C p . A ~ A < Y p . p < Y ’  n‘ -A ’J  ( L ) U . 0 u I G < 6  

for all sequences {pG}o<d such that pG < Y,, where 
{A,,< 

C,,,},,, and 
Du,,},,6 are the sequences of all formulas in 17 and in A ,  respectively, 
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whose outermost logical symbol is A, and T’ and A’ are obtained from f7 
and A ,  respectively, by omitting the A,cylr C,,,’s and the A,<yo Da,,’s. 

(3) ?z + 1 E 3 (mod 5 ) .  When a sequent I7 + A contains a formula whose 
outermost logical symbol is V, we write above 17 + A 

for all sequences { & ] u < y  such that A,, < yi l ,  where (V,,, C,,,},,, and 
{V,<va D,,,},,, are the sequences of all formulas in II and A ,  respectively, 
whose outermost logical symbol is V, and I7‘ and A’ are obtained from f7 
and ‘4, respectively, by omitting the V,<yp C,,I’s and the V,,,, D,,D’s. 
(4) n + 1 E 4 (mod 5 ) .  When a sequent 17 - A  contains a formula whose 

outermost logical symbol is V, we write above I7 - A 

where {Vx, A n ( x n ) } n < y  and {Vy,, B,(y,)},,, are the sequences of all formulas 
in f7 and A ,  respectively, whose outermost logical symbol is V, and 17’ and 
‘1‘ are obtained from 11 and il respectively by omitting the Vx, A,(x,)’s and 
the Vy, B,(y,)’s. Furthermore, ti,,, runs over all sequences of members of D 
that  are the same lengtli as x,. 

If u,, ,  is u,, , ,~,  u, , , ,~ ,  . . . , u . , , ~ , ~ ,  v being the length of y,,, then u,,, ,~ is 
gip(u,) ,  where [ < v and u, is the sequence of free variables in B,(y,). 

(5)  n + 1 = 0 (mod 5). When a sequent 17 -11 contains a formula whose 
outermost logical symbol is 3, we write above 17 - il 

where {3x, A, (xE , ) }A<y  and {3y, B,(y,)),,d are the sequences of all formulas 
in I7 and in A ,  respectively, whose outermost logical symbol is 3, and f7’ and 
A’are obtained fromllandA, respectively, by omitting the 3 x , A , ( x , ) ’ s  and the 
3y,B,(y,)’s. Here up, ,  runs over all sequences of the same length as that 
of yo,  and, if t,,u is t,,,,o, . ., t,,G,n, q being the length of x,, then 
t,,,,< is gfi,(s,) for [ < q,  where s, is the sequence of free variables in A,(%,) .  

Let 5, and S, be sequents in T ( S ) .  S 2  is called an immediate ancestor of 
S, if S, is one of the sequents written above S, by applying one of (1)-(5) 
to S,. A branch of T ( S )  is a sequence S = So, S,, . . . , possibly infinite, such 
that Sn+l is always an immediate ancestor of S,. 

For any sequent r + A  only one of two cases is possible: 
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Case 1 .  In every branch of 7’(r + A )  there exists a t  least one sequent of 
the form 

rl, D ,  r, -+ ol,  D ,  A , .  

In this case we can obtain a proof of T - + A  without the cut rule by modifying 
T ( S ) ,  and regarding the elements of D - Do as free variables. (The proof 
is left to the reader). 

Case 2 .  There exists a branch B of T ( r  - A )  in which no sequent is of the 
form 

rl, n, r, + A , ,  D ,  A , .  

In this case we claim that there is an interpretation in which every formula 
occurring in r i s  true and every formula occurring in A is false. In the remainder 
of this proof we fix such a branch B and consider only the formulas and 
sequents occurring in B,  i.e., “sequent” means “sequent in B”. 

First observe the following lemmas : 

LEMMA 22.18 (1) If a foriiiula d OCCUYS z n  the aiztecedent (sztccedeizt) of a 

sequent, then the formula A OCLUYS t n  the succedeiit (aiztecedeiit) of a sequent 
(2) If a formula Aicq A ,  occzi~s z i z  the aiiteccdcizt (succedcizt) of a reqzteiat, then 

for every (some) 3, < /?, A ,  occurs i ~ z  the aiztcccderit (succedent) of a sequent 
(3) If a formitla V,<q A ,  occuuys i n  thi, aiitccedcnt (succcdcnt) of a sequent, then 

for some (euery) 1 < f i ,  A ,  occurs wa the antecedelit (succedeizt) of a sequent 
(4) If V X  A ( x )  occuuys z?z the anteccderzt of a sequent, then for evcry seqatence 

t of elenicizts of D zhose lcizgtla zs the same as that of x ,  the for?nula A ( t )  occurs 
zn the antccedciit of a sequeizt. If Vx A ( x )  occurs zn the succedent of a sequelif, thepi 
the formula A ( t )  occurs ~n the succedeizt of a seguelit, 2eheve t ,  as &is), s being the 
sequencc of the free variables zii A ( x ) .  

(5) If 3x A ( x )  occurs zii the aiztecedeiit of a sequeizt, then the formula A ( t )  
occurs i n  the antecedent of a sequc?zt, where t ,  I S  gyA(s), s bczitg the sequence of  
the free zarzables zn A ( x ) .  If 3 x  A ( x )  OCCUYS an the succedent of a scquerzt, then 
for a?i arbztrary sequence t of elervicnts of D whose length zs the same as that of 
X, the forinzda A ( t )  occatrs a i z  the sztccedcizt of a sequent. 

( 6 )  If a formula occurs 211 the antecedelit of a sequent, then zt does iiot occur 
an the succedent of a n y  sequeizt. 

PROOF. (1)-(5) are obvious from the definition of T ( S ) .  (6) can be proved by 
transfinite induction on the complexity of the formula using (1)-(5). 
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It is now evident how to define 4: For each term t E D 4t = t. For any 
predicate constant R, R ( t )  holds in ( D ,  4) if and only if it occurs in the 
antecedent of a sequent. This completes the proof of Theorem 22.17. 

Note that in the proof of the completeness theorem we need a sequence of 
new free variables a for every subformula 3x A (x) of the end sequent. More- 
over for each such sequence a we need another free variable for each instance 
A ( a ) .  We then see why we must have a very large supply of free variables 
available or we must be able to rename the variables that are present. 

Briefly we shall consider systems with equality. 

DEFINITION 22.19. We define an infinitary logic with homogeneous quantifiers 
with equality by specifying a binary predicate constant = and adjoining 
the following rules of inference to  those of L:  

1 )  First rules for equality: Let rca) stand for a sequence of formulas r in 
which some occurrences of a are indicated. 

p a )  ,A (b )  r ( a )  
a = b, r ( b )  + A ( a )  ' b = 0 ,  r ( b )  +d(b, ' 

Here a = b denotes the sequence (a, = b,},,, and Pb) -+ A ( b )  denotes the 
result obtained from Fa)  --f A(.) by replacing the indicated occurrences of 
a ,  by b ,  for each 1 < y .  

2) Second rule for equality: Let 2 be an arbitrary set of free variables 
and let 2 be the set of all atomic formulas a = b such that a and b belong 
to 2. (OIY) is called a deconzfiosition of 2 if O U Y = 2 and O n !?' = 0. 

@, r + A ,  Y for all decompositions (@iY) of 2 
r+A 

-~ 

Theorems corresponding to Proposition 22.16 and Theorem 22.17 hold for 
this system. Proofs can be obtained as special cases of the proofs of the 
corresponding theorems in the following section. 

PROBLEM 22.20. Consider a finite, first order language L with K individual 
constants, where K is a cardinal. The Lowenheim-Skolem theorem is stated 
as follows: Let F be a set of L-formulas. If 9 has a model then there exists 
a model of cardinality K .  Let L' be an infinitary homogeneous language 
which is an extension of L (hence L' has a t  least K individual constants). It 
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is easily seen that the Lowenheim-Skolem theorem can be stated syntactically 
as follows: Let r + d be a sequent of L, where the lengths of r and d can 
be any ordinal less than K + .  If the sequent 

3xo 3x1 . . . 3x, . . . v y  (VS<K y = XJ, r + d 

is provable in the homogeneous system, then so is T - A ,  where = is not 
singled out in L or in L’. 

Give a proof-theoretical proof of the Skoleni-Lowenheim theorem in the 
syntactical form. 

[Hint: 1) Introduce new constants {ze,~,},~~. Let L ,  = L u { w , } , < ~  and 
consider the closed Lo-formulas of the form 3% F ( x ) .  We can define an enumera- 
tion (with repetition) of such formulas, { 3% F,(x)},< K ,  in such a manner that 

(a  = w,). The relativization 
of formulas (of f )  to R, (the relativization of A to  R is denoted by A R ) ,  is 
defined as in $17: (3y A ( Y ) ) ~  is 3y (V,,, R(y,) A AR(y ) ) ,  where y is y < , .  

3) It is obvious that R(m,) is provable for every y < K ;  hence 
(3x V y  ( V a < K  y = x ~ ) ) ~  is provable. With the same method as in the theory 
of relativization in $17, we can prove the following: 

Let I7 + A  be a sequent of L’. Let {bi}i<q be the sequent of all free variables 
in I7 + A .  If 17 + A is provable in the homogeneous system (with language 
L‘), then 

(i) in F,(x) no my with y 3 cc occurs. 
2) Let L = L’ U {w, ) ,<~ and let R(a) be V,, 

- 

{ W J } a < D 9  IJIR + A R  

is provable in the homogeneous system with language Lo, where IIR is obtained 
from 17 by replacing each of its formula, say A ,  by A R ;  similarly with AR. 
4) A proof-like figure is called a quasi-proof (of the homogeneous system) 

if it  satisfies all the conditions of the proofs, except (11) and (111) of the 
eigenvariable conditions. 

Besides the condition (i) in I ) ,  we may require furthermore that for the 
enumeration of 3x F,(x)’s the following holds. 

(ii) There is an o-type subset of {w,}, say 2 = {w,,, w y , , .  . . }  such that if 
I‘* consists of all the 3% F,(x) ZI F,(w,), except those with w, E 2, then for 
every closed formula A of Lo there is a quasi-proof ending with 

r* + A  f A R .  
5 )  Suppose now that 

3XVy(Va<.Y = x , ) , T - d  
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is provable (in the homogeneous system). Then by 3) 

is provable, where {bi)i<u is the sequence of the free variables in r and A .  
Then ,u < w. Mie may identify bi with w,, in Z; thus we may assume that 

{R(uWyJIi<u, r R { w v J i < u  AR{wvJi<u> 

is provable where rR(wvi} i<u is obtained from rR by replacing bi by wvi, and 
similarly with A*.  

6) Finally, 3), 4) and 5 )  imply 

r*, r{wv i }  -+ A{W,J  or r*, r + A  

has a quasi-proof. Recall that  if 3% F ( x )  2 F ( w )  belongs to T*, then w does 
not belong to Z. Regarding these w’s as free variables, we obtain 

m (3x ~ ( x )  2 ~ ( y ) ) } ,  r + A ,  

whereas 3 y  (3x F ( x )  2 F ( y ) )  is provable for each F .  Therefore, by the cut 
rule, we have r +A. Assuming that we have carefully chosen the free variables, 
we may claim that the eigenvariable conditions are satisfied except for 11, 
on heights. In the quasi-proof of { 3 y  (3% F ( x )  3 F ( y ) ) } ,  T + A ,  the zel where 
3% F ( x )  2 F ( w )  is the rth formula in T*, is assigned the height r ;  each eigen- 
variable in the quasi-proof in (ii) of 4) is assigned the height K ,  and any 
eigenvariable in the proof ending with {R(bi)}, rR + A R  is assigned the 
height K+.] 

If one wishes to  study an infinitary logic which is closer to first order logic, 
he may restrict the quantifiers to those that operate as in the finite case. 
Lopez-Escobar has defined such a system, calledLW1 ,,and proved the complete- 
ness and the interpolation theorem for it. The version of these theorems for 
LUl,,  is the same as that of LK. We shall present the results in the form of a 
problem. 

PROBLEM 22.21 (Lopez-Escobar). The language L,l,m is an extension of that  
of LK, and is defined as follows. There are arbitrarily many constants but 
the arity of each predicate and each function constant is finite. The number 
of variables is countable. For simplicity, we take only 1, A and V as logical 
symbols. The formulas are defined as usual: If A i ,  i < w, is a sequence of 
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formulas, then hi<, A i  is a formula. Notice that V behaves as in the finite 
case. A sequent consists of a t  most countably many formulas. The rules of 
inference, as well as the initial sequents, are those of LK except the following: 

F - A  Weak inference: -~ 
I i + A ’  

where every formula in r occurs in L’ and every formula in A occurs in A .  

Ai, r 4 d for some i 
A : left - 

A,<, A , ,  r - A  

I’ ---* d, A ,  for all i 
I’ - A ,  A,,, A i  

A : right - 

(1) Prove the completeness of the system. 
(2)  Prove the interpolation theorem for this system; viz. if A 3 B is provable 

and A and B have at  least one predicate symbol in common, then there 
exists a C of L,l,w such that A 3 C and C 2 B are provable. 

(3) Show that the following is an admissible rule of inference: 

r - A  
F - L i  

where 17 is obtained from r by replacing each formula of r by one of its 
alphabetical variants (possibly the formula itself) ; similarly with A .  

[Hint: (1) Consistency is obvious. For the opposite direction proceed in the 
following way. 

1) Given a sequent of Lwl,,, say S, there are countably many terms which 
are obtained from the constants which occur in S and all the free variables. 

2)  Given a sequent S, the S-subformulas are defined as the ordinary sub- 
formulas of the formulas of S except for the following case: If Vx A(%)  is an 
S-subformula, then for every term s which satisfies the condition in 1) A ( s )  
is an S-subformula. 

- 

3) There are countably many S-subformulas. 
4) Given a sequent S, construct a tree T(S) .  We may assume that there are 

countably many free variables which do not occur in S. This and the construc- 
tion of T ( S )  guarantee that a t  each step there will still be countably many 
free variables unused. From 3) we may assume that all the S-subformulas 
are indexed in w. We define the tree step by step. 

Stage 0. We write the sequent S. 
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Stage n + 1. Let I‘ + A  be a topmost sequent. 
Case 1 .  n + 1 =_ 1 (mod 5 ) .  Let { l A , } , ” = ,  and { T B ~ ) ~ = ~  be all the formulas 

in r and A ,  respectively, whose outermost logical symbol is 1 and whose 
indices in the fixed enumeration of subformulas are < n + 1. Then write 
{B j } iS l ,  r‘ + A ’ ,  {A,),”=l above r - A ,  where r’ is obtained from r by 
deleting { iA,}r=l  and A’ is obtained from A by deleting { T B ~ } ; = ~ .  

Case 2 .  n + 1 3 2 (mod 5 ) .  Let {A, < w  A:};=’=, be all the formulas in T whose 
outermost logical symbol is A and whose indices are < n + 1. Then write 

above F - A ,  where r‘ is obtained from r by deleting { A i < w  A!}YFl. 

outermost logical symbol is A and whose indices are < n + 1. Then write 
Case 3. n + 1 z 3 (mod 5 ) .  Let {AiGw A:):=’=, be all the formulas in r w h o s e  

r + A ’ ,  {~:~)y=’=, 
for all combinations of (il,. . . , i,) above r + A .  

4 (mod 5 ) .  Let {Vx, Ai(xi)}tm_l be all the formulas in r 
whose outermost logical symbol is V and whose indices are < n + 1. Let 
Ai( s i ) ,  . . ., Ai(sr+’)  be the first n + 1 formulas in the enumeration that are 
S-subformulas of Vx, A ,(xi). Write 

Case 4. n + 1 

{ ~ ~ ~ $ ) } ; 5 n + i ,  ,m r‘ -+A’ 
above r - ,A .  

Case 5 .  n + 1 E 0 (mod 5 ) .  Let {Vx, Ai(xi)}y=l be all the formulas in A 
whose outermost logical symbol is V and whose indices are < n + 1.  Let 
u j l , .  . ., aim be the first rn free variables which have not occurred so far. 
Write 

above r --f A .  

succedent then stop. 

r + A ’ ,  { A , ( ~ ~ J L  

At any stage, if some formula occurs both in the antecedent and the 

5) Let T ( S )  be the tree defined in 4). 
Case 1. All branches are finite. Then S is provable without the cut rule. 
Case 2 .  There is an infinite branch, say B. Let D be the set of all terms 

which satisfy the condition in 1). We define the structure with the domain D 
and the interpretation of formulas in the usual way. Then the formulas in the 
antecedent of B are true, while those in the succedent are false. This completes 
the proof of (1) .  
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( 2 )  From the proof of (1) above, any provable sequent is cut-free provable. 
Restate the interpolation theorem for sequents. Consider only cut-free proofs 
and show the described result by induction on the complexities of the proofs. 
The procedure is exactly the same as the corresponding theorem for LK. 

(3) Obvious from the completeness.] 

PROBLEM 22.22 (corollary to the Lopez-Escobar theorem). Suppose that 
r ---t A is a provable sequent of L,, and r and A are finite sequences. Then 
there exists a cut-free proof of r - A  in which every sequent consists of 
finitely many formulas. (Such a proof may be infinite.) 

PROBLEM 22.23.  Consider a language consisting of the following: 
Predicate symbol : E. 

Variables: xo, x l , .  . . , xu,. . . , p E On. 
Logical symbols: 1, A, V. 

Formulas are defined as usual. The atomic formulas are of the form x E y. If 
A is a formula, 1 A  is a formula. If A,,  i < A, is a sequence of formula for A 
an ordinal, then Ai < A is a formula. If A (y) is a formula, where y is a sequence 
of variables none of which is in the scope of a quantifier, then Vy A ( y )  is a 
formula. Show that the truth definition of this language can be developed 
in a system of second order set theory, i.e., Z F  augmented by second order 
quantifiers and some comprehension axioms. 

[Hint: The method is similar to the truth definition of PA in a second order 
system. First assign sets to the formal objects of the language. The set assigned 
to a formal symbol we call the godelization of that symbol. If A is a formal 
expression, its godelization is denoted by ‘A’. For example, E = (0 ,  0), 
‘xi1 = (1, i), ‘1’ = ( 3 ,  0), ‘x’ = (5, x), where x is the name of a set x, 
rx E yi = ( ‘E’, r ~ i ,  ry’ ), rA ,< l  A i l  = ( ‘A’, ( ‘AO1, rAil , .  . .)). Wecan 
then formally define “ A  is a closed formula” (cf( ‘A1)) and “the complexity 
of a formula A ”  (cm( ‘A’ ), which is an ordinal). Let a be a second order free 
variable and let p be a variable which ranges over ordinals. Define F(a ,  p)  as 
we defined F ( a ,  R )  in the case of PA to state that a is the truth definition of 
forniulas whose complexities are < p. The clause for VX A (x) is expressed as : 

r i  

r -I . 

~ ‘ x A ( s ) ’ ( c f ( ~ V x A ( x ) ~ )  A cm(‘VxA(x)’) < p >  

> Vz (x is a sequence of order type 2, say (xo, xl,. . . )) 2 

3 a ( r A ( x o , x l , . . . ) 1 ) .  
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Then define T ( a )  edf cf(a) A El+ ( F ( 4 ,  cm(u)) A + ( a ) ) .  Now prove T (  r A ’ )  = A  
for all closed formulas A . ]  

REMARK. We can generalize the proposition in Problem 22.23 to the cases 
where there are predicate constants Po,  PI,. . . and where the quantifiers are 
not homogeneous. 

Next we will show that for any homogeneous system there is an equivalent 
homogeneous system whose eigenvariable conditions are “ordinary” ones, 
that  is, the eigenvariable conditions are conditions on inferences and not on 
proofs. In order to simplify the argument we take only the logical symbols 
1, V, 3, and regard others as a combination of these. 

DEFINITION 22.24. The V3-calculus is defined as the homogeneous system 
with the following alteration: Replace 3 : left by 

where none of the free variables contained in b,’s can occur in the lower sequent. 
Each variable in b, is an eigenvariable. All of the variables of b, must be 

distinct and none of them can occur in A, , (u , , ,  b,,) for A‘ < I,. There are no 
other eigenvariable conditions. 

Note that VX, can be empty. 

PROPOSITION 22.25 (Llaehara-Takeuti). The V3-calculus i s  equivalent to the 
homogeneous system (for the same language). 

PROOF. Let P be a proof in the V3-calculus. We may assign a height to every 
free variable; if b is the pth variable of b, in the V3-rule, then the height of 
b is sup,(height of a)  + (1 + p), where a ranges over all the free variables in 
A ,  other than b,  and by sup we mean the strict supremum. If b is not used 
as eigenvariable, then the height of b is 0. Transform P as follows. If there is 
an application of the V3-rule, then replace it by: 
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It can be easily seen that the resulting figure is a proof in the homogeneous 
system with the same heights as P. 

The opposite direction is proved as follows: Let P be a proof in the homoge- 
neous system ending with r ---f d. Let {3%, A,(a,, x,)},<~ be an enumeration 
of all the principal formulas of the 3 : left in P, where a, is the sequence of all 
free variables in A , .  Then eliminate every application of the 3 : left as follows: 
for simplicity we demonstrate a case where there is only one auxiliary formula: 

A ( a ,  b ) ,  L7 - A  3 : left ~- 

3% A ( a ,  s), I7 + A  
is changed to 

Since no eigenvariables are involved we obtain a proof in the homogeneous 
system as well as in the VI-calculus. From this proof, which ends with 

we obtain, by applying the V3-rule, 

On the other hand, 

is provable with the V3-rule. Hence r ---+ d is provable in the V3-calculus. 

PROBLEM 22.26. The compactness of LK (the first order predicate calculus) 
can be syntactically expressed as follows. Let r + A  denote a sequent 
consisting of formulas of LK with cardinality < K ,  where K is the cardinality 
of the set of formulas of LK (for a given language). For any such sequent 
that is provable in the homogeneous system (of an appropriate language), 
there exist finite subsets To andd,  of r a n d d ,  respectively, for which To -+Ao 
is LK-provable. 

Prove the compactness of the first order predicate calculus in this syntactic 
form. 
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[Hint: Let r + A be a sequent as above and let P be a proof of r - + A .  
(*) For each sequent, say I7 + A ,  in P, we can select a finite subsequent 

no +Ao, i.e., no G I7, (1, G A and no and do are finite. If I7 - A  is the 
lower sequent of an inference, we can select finitely many upper sequents 
corresponding to it in such a manner that that part of P which consists of all 
the selected sequents corresponding to -+ A is a quasi-proof of 17 + A .  In 
particular, 17 + A can be F 4 A ; hence there is a finite subsequent To + A , ,  
which is provable. 

Then applying Proposition 22.25, we can construct an LK-proof of To +do. 
(*) is proved by transfinite induction on the construction of the subproof of 
P ending with I7 + A .  For A : right and V : left, use the generalized Konig’s 
lemma. (Cf. the proof of Proposition 8.16.)] 

PROBLEM 22.27. First we shall define a formal infinitary language in set 
theoretical terms. 

A basic language is an ordered triple (C, P, S), where C is a set of individual 
constants, P is a set of predicate constants, and S is a set of logical symbols. 
Each element of P is an ordered pair ( A ,  a )  where a is an ordinal called the 
arity of ( A ,  a) .  An element of S is either -I or of the form (A, a) ,  (V, a) ,  (V, a )  
or (3, a ) ,  where tc is an ordinal called the arity of (A, a ) ,  (V, a ) ,  (V, a )  or 
(3, a) ,  respectively. A basic language (C, P, S), also satisfies the following 
conditions. 

1) The sets C, P,  and S are mutually disjoint. 
2 )  The symbols 1, A, V, V, and 3 are different. 
A language L is an ordered set (C, P ,  S, B ,  F ) ,  where (C, P,  S) is a basic 

language, B and F are a set of bound variables and a set of free variables 
respectively, and C, P ,  S, B,  and F are mutually disjoint. 

Since the terms, formulas, etc. of L are what we commonly, in logic, 
understand them to be, we skip their formal set theoretical definitions. We 
however make the following deviations from our previous treatment. We call 
r + A  a sequent in L if r and A are sets of formulas in L. This change is 
useful when we wish to avoid the use of the axiom of choice as much as 
possible. 

A tree is an ordered pair ( T ,  <) satisfying the following conditions. 
1 .  T # 0. 
2 .  The relation < is a partial ordering on T.  
We read s1 < s2 as “sl is below s2” or “s2 is above sl”. There is a unique 

lowermost point so in T ,  i.e., there is a unique so in T such that 
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VSE T (so < s v so = s). 

This lowexmost point so is called the end point of the tree. Every point, except 
the end point, has a unique point below it, i.e., 

v s f T ( s # s ~ ~ 3 ! t E T V ~ ( . u < s  E U  = t v u < t ) ) .  

If s1 < s2 and 1 3 s  (sl < s A s < s2 ) ,  then s2 is said to  be immediately above 
s1. If s1 < s, then there exists a unique s2 such that s1 < s2 \< s and s2 is 
immediately above sl. A topmost point is called an initial point. 

3. Any linearly ordered subset of T (with respect to <) is finite. A semi-proof 
P in L is a function f from a tree into a set of sequents in L satisfying the 
following conditions. 

1) If S is an initial point and f ( s )  is of the form T - A ,  then 

r n A  # 0. 

Note that here an initial sequent need not be of the form D --j D. This 
change enables us to prove the completeness theorem with a minimal use of 
the axiom of choice. 

2 )  Let . . ., s ~ , .  . . be the collection of all points immediately above s. 
Then 

. . . , f(s,), . . . 
f (4 

is an inference in L. 
A proof P in L is an ordered pair (Po,  +), where Po is a semi-proof in L 

and < is a well-founded partial ordering on the free variables in Po which 
satisfies our eigenvariable conditions. 

A structure for L is defined in the usual manner. 
Let M be a transitive set which needs not satisfy the axiom of choice. Let 

S and A be a structure for L in M and a sentence in L, respectively. Then 
"S satisfies A in M" denoted by S lg A is defined as usual except for 3 and V. 
Since V is defined as 1 3 1 ,  we give only the definition for 3. 

s 3xo XI . . . A (xg, XI,. . . )  

3f f M (S 1" A(f(O), f(l), . . .)). 

is defined to be 

A sentence F is called M-valid, if for every structure S in M ,  S Ir F .  
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THEOREM A. Let L be a basic language and suppose that Va E M (aa E M )  /or 
every arity u in L. If a n  L-proof P i s  a n  element of M ,  then the end-sequent of 
P i s  M-valid. 

[Hint  : Follow the proof of the validity theorem with the following modifica- 
tion. Define Skolem functions using the axiom of choice. The Skolem func- 
tions are possibly outside M but the sequences of terms made by these 
Skolem functions are members of M by the hypotheses of the theorem, 
provided their lengths are arities of L. Therefore the proof can be carried out 
as before.] 

THEOREM B. Let L be a basic language and let A be the first regular cardinal 
greater than all the arities in L .  TYe assume A > w .  Let S be an L-sequent. If 
M satisfies the following conditions, then either S has a cut free proof in M or 
there exists a counter model of S in M .  

~ ) L E M , S E M ~ ~ ~ A E M .  
2) Va, b E M ( { a ,  b} E M )  and Va E M (u (a) E M ) ,  where u (a) i s  the union of a. 
3) M satisfies the axiom of replacement. 
4) V a E M V u E A  ( a a E M ) .  

I n  case that L has =, the condition P(D x D )  E 111 i s  added, wheve P ( D  x D )  
i s  the power set of D x D ,  D i s  ata adequate set of free variables, and D E M i s  
a consequence of 1)-4). 

[ H i n t :  Follow the proof of the completeness theorem in the following 
manner. 

1 )  Introduce 1-many bound variables in 111. 
2) Construct all atomic semi-formulas in M .  
3) Construct all semi-formulas without free variables in 11.f. Here we use a 

definition by transfinite induction up to 1. This can be done in M since M 
satisfies the axiom of replacement. 
4) In M ,  introduce Skolem function letters corresponding to each semi- 

formula without free variables. 
5)  Construct the set D of all free variables as the set of all possible function 

combinations of Skolem function letters in M. Here we again use a definition 
by transfinite induction up to A. 

6) Construct a reduction tree in M .  We define a reduction tree up to the 
nth step in M by mathematical induction. Then it is easily shown that the 
whole reduction tree is in $1, 

7) Construct a countermodel or a cut free proof in M .  This can be done 
as usual. 
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8) If L has =, we need P ( D  x D) E M since all possible partitions of free 

Without using E, we can express the axiom of choice in the form 
variables are taken into consideration in the equality axiom.] 

Since 3f occurs in this form, this is a second order form. Since some second 
order notions can be expressed in an infinitary language, it is natural to ask 
whether the axiom of choice can be expressed in an infinitary language. 
Actually, a weak form of the axiom of choice is elegantly expressed in an 
infinitary language: The axiom of dependent choice can be expressed as 

Vx 3 y  A ( x ,  y )  + Vx, 3x1 x2  . . . A A ( x i ,  xi+l). 
l < W  

COROLLARY. T h e  axiom of choice i s  not expressible in a n  inf ini tary language. 
[ H i n t :  Suppose the axiom of choice can be expressed in an infinitary language 

L. Then since the axiom of choice is true, there must be a proof P of the axiom. 
Let a be a large ordinal so that L E R(a) ,  P E R ( K )  and 13 < K ,  where R(a) = 

{ a  I rank(a) < K } .  This is a contradiction since it is very easy to prove the 
existence of a transitive set M with the following properties : 

1) The axiom of choice is not M-valid. 
2) A4 satisfies the conditions of Theorem A. (For example, take M to be 

the smallest transitive set satisfying the conditions in Theorem A andR(a) EM.)] 

$23. Determinate logic 

In this section we will discuss determinate logic with equality (=) as a 
special case of infinitary logic with heterogeneous quantifiers. In order to 
simplify the discussion, we will only consider languages that have no individual 
constants, 

DEFINITION 23.1. (1) By a heterogeneous quantifier of arity a we mean a 
symbol Qf, where f is a map from a into {V, 3) .  For such a map f, the map f ,  
called the dual of f, is defined in the following way. 

(i) The domain of f is the same as that of f, 
(ii) i ( P )  = V or 3 according as f(P) = 3 or V respectively. 

If f and g are dual, then Qf and Qg are called dual quantifiers. 
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( 2 )  By the language L, we mean the language obtained from the language 
in $22 by replacing the quantifiers V and 3, of arity K ,  by heterogeneous 
quantifiers Qf of the same arity. 

(3) Let d be a structure for L,. We define satisfaction and validity in d 
as in Definition 22.15. The structure is said to be determinate if for each 
formula A in L, exactly one of the two formulas 

Q f x < ,  A (4 
and 

is valid in d.  
(4) A logical system S with language I, is called a determinate logic if 

for every closed formula A in L,, “ A  is provable in S” is equivalent to 
“A is valid in every determinate structure”. 

In this section we will define a logical system DL and prove that (i) DL is 
a determinate logic, (ii) if a formula A is provable in DL by using heterogeneous 
quantifier introduction only once at  the end of the proof, then A is valid, and 
(iii) in Di the completeness theorem, the cut-elimination theorem, and the 
interpolation theorem hold in a certain form. 

The language of our formal system DL is L, with equality. Consequently, 
we will develop the theory of determinate logic with equality. First we modify 
the notion of proof as defined in $22.  

Qfx < , 1 A  (x) 

DEFINITION 23.2.  (1) The rules for = are as in Definition 22.19. 
( 2 )  The rules for V and 3 in Definition 22.1 are replaced by the following. 

where a,  denotes a sequence u ~ , ~ ,  . . . , a,,,, . . . (a < p,) for some pl. The pth 
variable of this sequence, u ~ , ~ ,  we call the variable of a,  of order p. If f,(p) = 3, 
then a,,u is called an eigenvariable of the inference 

If f,(p) = V, then a,,” is called an eigenvariable of the inference. 
If aA.u is an eigenvariable of either inference, Q’lx, A , ( x , )  is called a 

principal formula of a,,u and also a principal formula of the inference. Further- 
more, A,(a,)  is called an auxiliary formula of Qfax, A , ( x , ) ,  of the eigenvariable 
a,,,, and of the inference. 
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If two different variables a and b have tlie same principal formula then a 

is said to precede b with respect to that principal formula if tlie order of a is 
less than the order of b. 

(3) Every proof must satisfy the following eigenvariable conditions. 
1) If a free variable a occurs in two or more places as an eigenvariable, 

then for each occurrence a must have the same principal formula and a must 
have the same order. Moreover, if a occurs in two different auxiliary formulas 
A(a l )  and A(a,) as an eigenvariable of order p then a l , ,  and a2,, must be the 
same variable for all v < p. 

2) To each free variable a, we assign an ordinal number h(a ) ,  called the 
height of a, which has the following properties : 

2.1) The height, h(a),  of an eigenvariable a, is greater than the height, 
h(b), of every free variable b in the principal formula of the eigenvariable a. 

2.2) The height of an eigenvariable a is greater than the height of b if b 
precedes a with respect to a principal formula of a. 

3) No variable occurring in an inference as an eigenvariable may occur in 
the end sequent. 

REMARK. The following weaker modification of the foregoing eigenvariable 
conditions is enough to assure that a logic is determinate. 

Replace the last half of 1) by tlie following: If A (a)  is an auxiliary formula 
of a principal formula Q f x  .4(xj  and a, and a,, are eigenvariables of Q f x  A ( x )  
with v # p, then a, and a, are different. If a occurs in two different auxiliary 
formulas A (al) and A (a2)  as an eigenvariable of a principal formula Q f x  A (x) 
then a l , ,  and a2," are the same for each non-eigenvariable al,, of Q f x  A ( x )  
for each Y less than the order of a. 

Replace 2.2) by the following: If a is an eigenvariable with principal formula 
Q f x  A ( x )  then the height of a is greater than the height of b if b precedes a 
with respect to the principal formula Q f x  A ( x )  but b is not an eigenvariable 
of this principal formula. 

We will use either the original form of 2.2) or the latter version choosing 
whichever is more convenient for our purposes. 

EXAMPLE 23.3. Proof of the axiom of determinateness: Let a be a,,, and b 

be h < B .  
A (a ,  b) - A (a ,  b) 

-+ A(a,b) ,  i A ( a ,  b) 
---f Q f x  A ( x ,  b) ,  Qfx ~ A ( x ,  b) 

---f Q f x  A ( x ,  b) Q ~ x  i A ( x ,  b) .  

. . ~  ___ - 

.- 
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In this proof, h(a,) = 1 + 1 and h(b,) = 0. 

THEOREM 23.4 (validity for determinate structures). Let d be a determinate 
structure and F --f A be provable in the determinate logic DL. T h e n  F + A  i s  
satisfied in d. 

PROOF. Take an arbitrary formula with a quantifier at the beginning, say 

where a is the sequence of all free variables in this formula and the length 
of x is M. For each y < cc, we introduce a Skolem function 

f v  g i  (xeo,.  . . , xtp,. . . , a) or &‘(x,,, . . . , x V p , .  . . , a)  

according as f ( y )  = 3 or f ( y )  = V, where to,. . ., E , , .  . . are all the ordinals 
< y for which f ( 6 )  = V and qo,.  . . , q,,, . . . are all the ordinals < y for which 
f (7)  = 3. We define the following interpretation of g’Ay and (p with respect 
to d.  

If Q f x  A ( x ,  a)  is satisfied in d, then 
1) Vxco xt, . . . A (Z0,. . . , a) ,  where 2y is xry if f ( y )  = V and 1, is gy(xto,  . . . , a) 

if f ( y )  = 3. 
Let D be the universe of d and 0 be a member of D. Here a is understood 

to be a sequence of members of D. If Q f x  A ( x ,  a) is not satisfied in d, then 
the gy’s are interpreted to be the constant function 0 in d. 

If Q f x  -4 ( x ,  a) is satisfied in d, then 
2)  Vxso xc, . . . A (Z0,. . . , a) ,  where 2, is xtlY if f ( y )  = 3, and 1, is &(xco,. . . , a) 

If Q f x  l A ( x ,  a)  is not satisfied in d ,  then the gfky’s are interpreted to be 

Now let P be a proof in our system. Let 

if f ( y )  = V. 

the constant function 0 in d. 

ao, a l , .  . ., a,,. . . 

be a list without repetition, of all the eigenvariables in P with h(aJ < h(a,) 
if p < y ,  h being the height function. By transfinite induction on p we will 
define terms to,  t,, . . . , t,, . . . corresponding to the above list of eigenvariables. 
Assuming that t , ,  have been defined, we define t ,  in the following way. 

Suppose the principal formula of a, is Q f x  A ( x ,  b) and 6 is the order of a,. 

Let d be a free variable that precedes a, with respect to the principal formula. 
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With the variable d we associate a variable u in the following way. If d is not 
an eigenvariable, let u be d itself. Otherwise, since h(d) < h(a,) by our 
eigenvariable conditions, d occurs in the above list of eigenvariables as a, 

for some y < p. By the induction hypothesis t ,  has been defined. Let the u 
associated with d be this t,. 

Let b be a free variable in b. A variable s associated with b is defined in the 
same manner as the u associated with d ;  recall that  h(b) < Iz(a,). It should 
be noted that these d’s  and b’s are the same for all auxiliary formulas of a, 

by virtue of the eigenvariable conditions. Thus t, can be defined to b e g y ( u l ,  s) 

if the order of a, is 6 and f ( d )  is 3 ,  where u1 is the sequence of the u’s cor- 
responding to appropriate d’s as defined above. Similarly, t, is defined to be 
gyju,; s) if the order of n, is S and f(d) is V, where u2 has the same meaning 
as ul. 

Now substitute to, t,, . . ., t,, . . . for ao, a,, . . ., a,,. . . respectively in P. Let 
P’ be the figure thus obtained from P. The end-sequents of P‘ and P are 
the same because the end-sequent of P has no eigenvariables. We shall show 
that every sequent of P’ is satisfied in d; this will imply that the end sequent 
of P is satisfied in d. We have only to show that if the upper sequents of an 
inference in P‘ are satisfied in d, then the lower sequent of this inference is 
also satisfied in d. Since the other cases are obvious, we only consider the 
inferences on quantifiers. 

An introduction of Q : left in P‘ is of the following form 

..., ~ ( u , ~ ) , .  . ., r + A  
3, . . . , Q f x  A ( x ,  s ) ,  . . . , r + A  ’ 

where u, is of the form gy(uuEo,. . ., s) if f ( y )  = 3. 
An introduction of Q : right in P’ is of the following form 

r - + A , .  . ., ~ ( u ’ ,  s),. . . __ 
4, T - A ,  Q f x A ( x ,  s),. . . ’ 

where ub is of the form “Ay(uio,. . . , s), if f ( y )  = V. 
For 3) we have to show that 
5 )  Q f x A ( x ,  S) + A ( u ,  s). 

But this is immediate from 1) .  For 4) we must show that 
6) A (u’, S) + Q f x  A ( x ,  s). 
Assume that ~ Q f x  A (x, s )  holds in d. Since d is determinate, Q f x  i A  (x, S) 

holds in sl. Therefore what we have to show is that 
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Qfx i A ( x ,  S) + i A ( u ' ,  s). 

But this follows from 2). This completes the proof of Theorem 23.4. 

Since in this proof the determinateness of d was used only for 6) and since 
the axiom of determinateness always holds for a homogeneous quantifier, we 
have the following. 

PROPOSITION 23.5. Let P be a proof in our determinate logic in which every 
quantifier, introduced in a succedent in P,  i s  homogeneous. Then  the end-sequent 
of P i s  valid. 

Next we shall prove two versions of completeness. 

THEOREM 23.6. Let r --+ A be a sequent. T h e n  either there exists a cut-free proof 
of r ---t A in our determinate logic or else there exists a structure a? (possibly 
not determinate) such that every formula in r i s  satisfied in d and no formula 
in A i s  satisfied in d. 

PROOF. Let Do be an arbitrary non-empty set containing all free variables 
in T and A .  Let D be the closure of Do with respect to all the functions g y  
and &' for all formulas A in our language, i.e., D is generated by all &'s 

and &''s from Do. (Actually it is sufficient if D is closed under all the functions 
g'Ay and &' for all subformulas A of formulas in r and A ) .  In this proof, a 
member of D - Do is treated as a free variable and a member of Do is treated 
as an individual constant. Let E be the set of all formulas of the form s = t ,  
where s and t are-members of D. Let (@l!P) be an arbitrary decomposition of 
E and consider the following sequent : 

If all the sequents of the form 0) are provable without the cut rule, then 
F - + A  is also provable without the cut rule. 

Let S be T - + A .  We shall define a tree T ( S )  by considering the following 
eight cases. 

1) The lowest sequent is S.  
2) Immediate ancestors of S are all the sequents of the form 0). 
3) When a sequent II --+ A is 

0) Q, r + A ,  Y. 
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where r‘ and A‘ have no formulas whose outermost logical symbol is 1, and 
17 -A is constructed by 2 )  or 8) (which is to be defined) the immediate 
ancestor of I7 -A is 

{DJU<69 r‘ + A ’ >  {Cd,<,. 

4) When a sequent I7 + A  is 

{ v C,,,},<,, I” + A ’ ,  { v D U , U ) O < d >  
I<lp P<& 

where r‘ and A ’  have no formillas whose outermost logical symbol is V, and 
when 17 + A is constructed by 3), the immediate ancestors of I7 4 A are 

{ ~ A p . u ~ u < y ’  r‘ + A ’ >  { D U , O o ) O < 6 , . U < 6  

for all sequences {A,},,, such that A, < a,. 
5 )  When a sequent I7 + A  is 

{ A c,,,>,4,, r‘ + A ’ >  { A  D U , U L < d >  
I<aP P i &  

where I” and A’  have no formulas whose outermost logical symbol is A, and 
when 17 - A  is constructed by 4), then the immediate ancestors of 17 - A  
are 

(cLI,,L<yp.il<YI r‘ - /l’> P O , , . O ) O < 6  

for all sequences {po}o<d such that p,, < 8, 
6) When a sequent I7 + A  is 

{Q”x, A,($,, s , ) ) ~ < ~ ,  r‘ - A ’ ,  

where F‘ has no formulas whose outermost logical symbol is Q, and when 
I7 -A is constructed by 5 ) ,  then the immediate ancestor of - A  is 

for all t A , ,  satisfying the following: 

where y is the length of x, if Eo,  El,. . . , are all the ordinals < y such that 
I ( [ )  = V and qo, yi1,. . . are all the ordinals < y such that f ( 5 )  = 3, then 
t,,u,t,,tA,,,c,, . . . is an arbitrary sequence of members of D and 
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t n .u ,4  = g ! i ; ( L E o ’ .  ‘ . S,)> 

for each q = qo, q,,. . . . 
7 )  When a sequent I7 --+A is 

r’ + A ’ ,  (Q’lx, A,(x , ,  S J ) ~ < ~ ,  

where A‘ has no formulas whose outermost logical symbol is Q, and when 
II - A  is constructed by 6), then the immediate ancestor of 17 - A  is 

for all tA.u satisfying the following: 

t A , p  is { t a , u . ~ , .  . . I  t a , u , v J .  . . > Y < , J  

where y is the length of x,; if Eo,  El , .  . . are all the ordinals < y such that 
f ( E )  = V, and, if qo, q,,. . . are all the ordinals < y such that f(q) = 3, then 
tA,,,,,, t , , u , v l , .  . . are arbitrary members of D and tA,,,e = &:(t,,,,,,,. . ., sA). 

8) When a sequent 17 ---f A is 

(sa = tA}n<B,  r‘ --+A’, 

where r‘ has-no formulas of the form s = t and when I7 + A  is constructed 
by 7 ) ,  then the immediate ancestor of I7 --+A is the sequent 1T’ -+ A’, where 
U‘ and A‘ are sequences of all the formulas obtained from a formula in II and 
A, respectively, b y  arbitrary interchange of s ,  and t ,  (A < P) .  (So 17’ and A’ 
obviously include L7 and A, respectively.) 

This completes the description of T ( S ) .  
A branch of T ( S )  is an infinite sequence S = So, S,, Sz,. . . such that 

Case 1. I n  every branch of T ( S ) ,  there exists at least one sequent of the 
S,,, is an immediate ancestor of S,. We have two case_% 

form 
r,, D ,  rz + A , ,  D, Az or r + A l ,  s = S, Az .  

Case 2 .  There exists a t  least one branch of T ( S ) ,  in which there are no 
sequents of the form 

r , , ~ , r ~ + r , , ~ , ~ ~  or ~ + A , , S = S , A , .  

For case 1, S is provable without the cut rule. In  order to prove this we define 
the height of the free variables as follows. 

(1) If a belongs to Do, then h(a) = 0. 
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(2) If a is gy(b, ,  . . . , b,, . . . )  or g!Ay(b,, . . . , b,, . . .), then h ( a )  is the supremum 
of all h(b,) + 1’s. 

It is easily shown that T ( S )  satisfies the conditions 1) and 3) in (3) of 
Definition 23.2. 

In  the remainder of this proof we will refer to a figure P as a semi-proof 
if P satisfies all the conditions of a proof except 4) of Definition 23.2. P is 
said to be a quasi-proof if P satisfies all the conditions of a proof except 3) 
in (3) of Definition 23.2. 

We now consider the following conditions on P. 
(3) P is a cut-free semi-proof. 
(4) Every free variable in P occurs in T ( S )  and every inference on Q in P 

(5) The end sequent of P is S. 
If P satisfies (3), (4) and (5) then P obviously satisfies 1) and 3) in (3) of 

Definition 23.2 and therefore P is a cut-free quasi-proof. Now consider the 
condition C on a sequent S’, that  S’ has a quasi-proof P satisfying (3), (4) and 
(5). Let S’ be in T ( S ) .  It is easily seen that if every ancestor of S’ satisfies 
C, then S’ satisfies C. Suppose that S is not provable without the cut rule. 
Then S does not satisfy C. (Recall that the height is defined). Then some 
ancestor of S, say S,, does not satisfy C. Continuing this argument, we obtain 
a sequence S, S,, S p ,  . . . , where Snsl is an ancestor of S, and does not satisfy 
C for each n. This contradicts the hypothesis of case 1. 

For case 2 ,  we will show that there exists a structure a? in which every 
formula in T is true and every formula in d is false. In the rest of this proof, 
we fix one branch, whose existence is assumed in the hypothesis of case 2, and 
consider only the formulas and sequents in this branch, that is, throughout 
this discussion a sequent always means a sequent in this branch. We only 
have to define an interpretation which makes all the sequents in this branch 
false with respect to D. 

occurs in T ( S ) .  

LEMMA 23.7. (1) If a formula 1 A  occurs in the antecedent (succedent) of a 
sequent, then the formula A occurs in the succedent (antecedent) of a sequent. 

(2) If a formula V , < p  A ,  occurs in the antecedent (succedent) of a sequent, 
then a formula A ,  for some (every) 1 < f i  occurs in the antecedent (succedent) 
of a sequent. 

(3) If a formula A,<4 A ,  occurs in the antecedent (succedent) of a sequent, 
then a formula A ,  for every (some) 1 < f i  occurs in the antecedent (succedent) 
of a sequent. 
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( 4 )  If Qfx  A ( x ,  S )  occurs in the antecedent of a sequent and to, E l , .  . . are all 
ordinals such that f(t) = V and qo, q1,. . . are all ordinals such that f (q)  = 3 ,  
then for a n  arbitrary sequence t,,, t,,,. . . of members of D ,  the formula A ( t )  
occurs in the antecedent of a sequent, where t ,  = &(t,,,. . . , s) for each 7 = 

ro>~l> .  . . . 
(5) If Q f x  A ( x ,  s)  occurs in the succedent of a sequent and to, t,, . . . are all 

ordinals such that f ( 6 )  = V and  ?lo, q l , .  . . are all ordinals such that f (q)  = 3,  
then for a n  arbitrary sequence t,,, t q L , .  . . of members of D,  the formula A ( t )  
occursin the succedent of a sequent, where t ,  = [$‘(t,,, . . . , s) for each 6 = f o ,  El,. . . . 

PROOF. Obvious. 

LEMMA 23.8. If a formula occurs in the antecedent of a sequent, then it does not 
occur in the succedent of a n y  sequent. 

PROOF. By transfinite induction on the complexity of formulas using Lemma 
23.7. 

LEMMA 23.9. (1) For every member t of D ,  the formula t = t occurs in the 
antecedent of a sequent. 

(2) Let  s and t be members of D. If s = t occurs in the antecedent of a sequent, 
then t = s occurs in the antecedent of a sequent. 

(3) Lett , ,  t2 and t3  be members of D. If t ,  = t ,  and t ,  = t3  occur in the antecedent 
of a sequent, then the formula t ,  = t3  occurs in a n  antecedent of a sequent. 
(4) Let  sA ,  t,, A < /3, be members of D. I /  A(s,,. . ., sA , .  . . )  and is,, = t,},,p 

occur in the antecedent of a sequent, then A (uo,. . . , u,, . . .) OCCUYS in the antecedent 
of a sequent for each sequence uo,. . . , uA,.  . . such that u,, i s  s,, or t,. 

PROOF. (1) t = t must be contained in @ or YJ in 2 )  6f the tree construction. 
Since t = t cannot be contained in !P because of the hypothesis of case 2 ,  
t = t must be contained in @. 

(2) Let s = t occur in the antecedent of a sequent and t = s occur in the 
succedent of a sequent, then there is a sequent which contains s = t in the 
antecedent and t = s in the succedent. By the construction 8) of T ( S ) ,  there 
must be a sequent of the form TI + A l ,  s = s, A,. This is a contradiction. 

(3) and (4) can be proved similarly. 

According to Lemma 23.9, D can be decomposed into equivalence classes 
by =. Let D ,  be the set of equivalence classes so obtained; from now on 
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we will denote a class of D= by a representative of it. We define a structure 
d over D= as follows. Let s be a variable in D. Then the value of s with 
respect to d is defined to be the class represented by s. If P is a predicate 
constant, then P ( t o , .  . ., t A , .  . .) is defined to be true with respect to  d if 
P ( t o , .  . . , t,, . . . ) is in the antecedent of a sequent and is defined to be false 
with respect to d otherwise. By transfinite induction on the complexity of 
A ,  we shall prove that A is true with respect to &' if A is in the antecedent 
of a sequent and A is false with respect to d if A is in the succedent of a 
sequent. Since the other cases are easy, we only consider the cases where 
A is Q f x  A ( x ,  s ) .  

Case 1.  Q f x  A ( x ,  s) occurs in the antecedent of a sequent. In this case, it  
follows from the induction hypothesis and 6) of the construction of T ( S ) ,  
that A ( t ,  s) is true with respect to d for every t satisfying the following 
condition. If to, tl , .  . . are all the ordinals such that f ( t )  = V and qo, ql,. . . 
are all the ordinals such that f(q) = 3, then t ,  = gY( t to , .  . . , s) for every q. 
This implies that  Q f x  A ( x ,  s )  is true with respect to d. 

Case 2 .  Q f x  A ( x ,  s )  is in the succedent of a sequent. In this case, it  follows 
from the induction hypothesis and 7 )  of the construction of T ( S ) ,  that  
A ( t ,  s) is false with respect to d for every t satisfying the following condtion. 
If to, El , .  . . are all the ordinals such that f( t)  = V and qo, ql , .  . . are all the 
ordinals such that f (q)  = 3, then t ,  = g$'(tno,. . . , s). This implies that  l A ( t ,  s) 
is true with respect to &' for every such t .  Therefore Q f x  1 A  ( x ,  s )  is true with 
respect to d. Since Q f x  l A ( x ,  s)  --L 1 Q f x  A(x ,  s) is satisfied in all the 
structures, Q f x  A ( x ,  s) is false with respect to d. 

This completes the proof of our first version of completeness. 

Before we proceed to the second version of completeness, we shall first 
prove the following. 

PROPOSITION 23.10. Let D and Do be the same as in the proof of Theorem 23.6. 
Po i s  defined to be the sequence consisting of all formulas of the form 

Q f x  A ( x ,  S )  v Q f x  i A ( x ,  S )  

where A ( x ,  s) i s  a n  arbitrary formula in our language and s i s  a n  arbitrary 
sequence of members of D. Without  loss of generality, we m a y  assume that no 
member of Do i s  ever used as a n  eigenvariable in a n y  quasi-proof. Now let 
r - + A  be a sequent of the original language and let be To, r. T h e n  either there 
i s  a cut-free quasi-proof whose end-sequent i s  + A  or else there exists a deter- 
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minate structure a? such that every formula in 
formula in A i s  satisfied in d. 

i s  satisfied in d and no 

PROOF. This is proved similarly to the proof of Theorem 23.6 by replacing 
“proof” and “T” by “quasi-proof‘’ and ‘ I F ’ ’ ,  respectively. Since f includes 
r,, it is easily shown that a? is determinate. 

THEOREM 23.11. Let r + A  be a sequent. T h e n  either r ---+A i s  provable in 
our determinate logic or there exists a determinate structure d such that every 
formula in r i s  satisfied in a? and no formula in A i s  satisfied in d. 

PROOF. Since every formula in r, is provable in our determinate logic, (cf. 
Example 23.3) r ---+ d is obtained from F + A  by the cut rule as follows. 

---+ B,,. . . B ~ , .  . ., B,,. . ., r ---+A _ _ ~ -  ---+ Bo,. . . 
r - + A  

where {B,, . . . , B,, . . . }  is I‘,. Thus, if f + A  has a quasi-proof, then from 
this quasi-proof we can obtain a proof of I’ + A ,  since r + A  is a sequent of 
the original language. Otherwise Proposition 23.10 guarantees that there is a 
determinate structure a? in which every formula of p, and hence every 
formula of r, is satisfied, while no formula of d is satisfied. 

REMARK. We cannot improve Theorem 23.1 1 by replacing “provable” by 
“provable without the cut rule”. This is clear from the following example 
by Gale and Stewart. Let a. be the cardinal number of 2”, the set of functions 
from w to 2. Let f E 2w. Then $ ( f )  is defined to be a,  = i,, a ,  = i , ,  . . . , where 
i, = 0 or 1 according as f ( k )  = 0 or 1. The formula $ ( f )  implicitly defines the 
function f .  If A E 2”, then A is implicitly defined by the formula VrEA # ( f )  
where V i E A  is defined in terms of Vuo. It can be shown that there exists a set 
A G 2” such that the axiom of determinateness fails for the game defined 
by A .  (The proof is given below.) If a formula z,h implicitly defines A ,  then 

V x ( x = O v x = 1 ) - t 0 = 1 ,  

1(Vx,  3x1 vx2 . . . $(xo, x,,. . .) v 3x0 vx, 3x2 . . . 1$(xo, x,,. . .)) 

is provable in our determinate logic, where # is constructed from 0, 1, =, hEo 
and Va0. This means that Vx (x  = 0 v x = 1) --f 0 = 1 is provable in our 
determinate logic if our language has Vuo, since the negation of the last 
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formula is an instance of the axiom of determinateness. However, this is not 
provable without the cut rule even if our language has V,,,. 

The proof of the existence of A goes as follows. We shall show that there 
is a subset A of 2" for which there is no winning strategy. 

DEFINITION 23.12. (1) For any subset of 2", say A ,  G ( A ) ,  a game for A ,  is 
defined as follows: A first player I and a second player I1 alternately chooses 
a 0 or 1 ; thus 

I :  xo x2 x4 . . . xzi . . . 
11: x1 x3 x5 . . . x2i+l . . . 

for i < w .  
(2 )  the sequence (xo, xl, x2, .  . . ) generated in this manner, called a play of 

the game, determines the winner, that  is, if (xo, xl, x2,. . .) E A ,  then I wins, 
otherwise I1 wins. 

(3) A sequence (xo, f 2 ,  f4,. . ., f Z i , .  . . )  i < w is called a strategy for I if 
xo E 2 and f z i  is a function from all i-tuples of 0's and 1's to 2. 

(4)Leto = ( x o , f 2 , f a , .  . .)beastrategyforIandletx = (x1,x3,. . . , x ~ ~ + ~ , .  . .) 
be a function from odd numbers to 2. Then ~ ( x )  is defined by 

= (%O, xl> f 2 ( X 1 ) t  %3, f4(%1, x3)>. . .). 

(5) A strategy (T for I is called a winning strategy for I if 

vx 2(2i+lli<W) (~(x) E A .  

(6) A sequence (fl,  f 3 , .  . . , f 2 i + l , .  . . ) is called a strategy for I1 if f2t+1 is a 

(7) Let T = ( f l ,  f 3 , .  . . ) be a strategy for I1 and let x = (xo, x2, .  . . , x z z , .  . . ) 
function from all (i + 1)-tuples of 0's and 1's for every i < w. 

be a function from even numbers to 2. Then T ( X )  is defined by 

= (%OJ f l ( x O ) ,  x2> f 3 ( x O ~  xZ), . . . >. 

(8) Astrategytfor I1 iscalledawinningstrategyforI1 i f V x ~ 2 ( ~ ' ~ ~ < ~ )  + ) $ A .  

THEOREM 23.13 (Gale-Stewart). In  ZF, we can show that if 2" i s  well-ordered, 
then there exists a subset of 2", s a y  A ,  for which neither I nor I1 has a winning 
strategy in the game G(S ) .  

PROOF. I t  is easy to see that 
1 .  The cardinality of all strategies for I is ct0, and 
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2. The cardinality of all strategies for I1 is ao. 
3. If a is a strategy for I, then the cardinality of the set {(a, T) 1 t is a strategy 

for II} is ao. 
4. If T is a strategy for 11, then the cardinality of {(a, T) I a is a strategy 

for I> is ao. 
Let oo, ol,. . . , a,,. . ., a < a. and to, T ~ , .  . . , t,, . . ., a < ao, be enumera- 

tions of all strategies for I and 11, respectively. By transfinite induction we 
define plays 

xz = (x;, x;", . . .) g,. . .), y" = (YE, y;",. . . , yq,. . .), 

where x:, y: = 0 or 1 :  

(1) xo = (Go, t o ) .  
(2) yo = (oo, T ~ ) ,  where 
(3) S, = (x4 1 P < a> and T, = ( y 4  1 P < a}. 
(4) xa = (aB, T ~ ) ,  where p is the smallest ordinal such that (c4, t,), $ S,  u T,. 
(5 )  y" = (a,, zB), where p is the smallest ordinal such that (G,, to) - $ S, U T ,  

It is obvious that if a < a0, then S, n T, = 0, ?, < cco, and 

is the smallest ordinal such that (ao, to) # xo. 

and (a,, to) # 
T, < ao. 
- - 

(6) A = Ua<ao Sa. 
We claim that for this A neither I nor I1 has a winning strategy. Suppose 

that I has a winning strategy, say a,. Let P be the smallest ordinal such 
that 

t g )  $ Sa U T ,  A (a,, TO) # 

Then (G,, zB) = ya $ A ,  which means that I1 has a winning strategy, yielding 
a contradiction. 

In order to prove the interpolation theorem, we need the following proof- 
theoretic notion. 

DEFINITION 23.14. Let P be a cut-free semi-proof and let I be an inference 
in P. Let A be a formula in an upper sequent of I and B be a formula in the 
lower sequent of I .  B is said to be the immediate successor of A if the following 
is satisfied. 

Case 1. If I is a structural inference 
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and A is a formula of r ( A ) ,  then B is the first formula in n(A) which is 
identical with A .  

Case 2. If I is a logical inference 

17, r - A ,  A 
ni, r + A ,  A’ 

where I applies to the formulas of 
corresponding formula in r (A) .  

is the corresponding principal formula. 

in Fa) ( A ( a ) )  then B is the corresponding formula in rtb) 

formula in r(d), then B is the corresponding formula in r(A). 

and A ,  and A is in r (A) ,  then B is the 

Case 3. If I is a logical inference and A is an auxiliary formula of I ,  then B 

Case 4. If I is the first equality rule (cf. Definition 22.19) and A is a formula 

Case 5. If I is the second equality rule, (cf. Definition 22.19) and A is a 

Our interpolation theorem is then stated in the following form. 

THEOREM 23.15 (an interpolation theorem for homogeneous languages). If a 
sequent TI, r2 -+ A l ,  A 2  i s  valid and has no heterogeneous quantifiers, then there 
exists a formula C such that both the sequents 

rl - A I ,  C and C, r2 - A 2  

are valid and every free variable or Predicate constant in C ,  except = , occurs in 
both TI, A l  and r2, A 2 .  (C m a y  have heterogeneous quantifiers and also logical 
connectives or quantifiers that are longer than the logical symbols in the original 
language). 

PROOF. The proof will be divided into several parts. 
1. First we shall introduce two auxiliary systems. 

DEFINITION 23.16. A proof P in our determinate logic is said to satisfy 
condition (Q) if every inference I in P of Q : right is either homogeneous or 
is of the form 

(Q) 

where no eigenvariable in P used above r+ A ,  Q f x  A ( x )  occurs in r- A ,  
Q f x  A ( x )  . 
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PROPOSITION 23.17. If a sequent S i s  provable w i th  a proof which satisfies ( Q ) ,  
then S i s  valid. 

PROOF. Define g’Ay and gy as in the proof of Theorem 23.4 except that &‘ is 
defined only for homogeneous f .  Then define substitution also as in the proof 
of Theorem 23.4 except that all eigenvariables in the inference of (Q) remain 
unsubstituted. Then P will be transformed into P‘. What we have to show 
is that every sequent S‘ in P’ is satisfied in d. This is shown by transfinite 
induction on the complexity of the semi-proof of S. We can repeat the proof 
of Theorem 23.4 except in the following case. S is inferred by the inference I: 

r - A ,  A ( d ,  b) 
r --+A, Q ~ X  A (x, b) 7 

where Qf is not homogeneous. In order to illustrate the proof, we assume that 
Qfx is Vx,j 3x, Vxz 3x, . . . and d is do, d,, d z , .  . . . Since I satisfies (Q) and 
h(d,) < h(d,) < h(d,) < . , . , (r -, d,  A ( d ,  b))’ is of the form 

It follows from the induction hypothesis that (*) is satisfied in &’ for every 
sequence do, d Z ,  d 4 , .  . . of members of d.  Therefore F‘ + A ’ ,  Qfx A(x, S) is 
satisfied in d. 

Next we shall consider another logical system, the restricted homogeneous 
system RHS. 

DEFINITION 23.18. A figure P is said to be a proof in RHS if P satisfies the 
following conditions : 

1) All quantifiers in P are 3. 
2) P satisfies all conditions of a proof of determinate logic except (3) of 

3) Every inference in P on the introduction of Q in the antecedent is of the 
Definition 23.2. 

following form 

where no variable in aA occurs in the lower sequent. 

Then we have the following proposition. 
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PROPOSITION 23.19. If I’ + A  i s  provable in RHS and height (see Definition23.2) 
i s  defined for all free variables in r + A ,  then there exists a proof P‘ in RHS 
ending with r + A  f o r  which the heights are defined in such a way that the 
free variables in r + A  have the same heights as the original ones. 

PROOF. We may assume that the same eigenvariable is never used in two 
different places. (Otherwise, we can reletter some eigenvariables.) Then i t  is 
easy to define heights of free variables from the bottom. 

2.  Next we prove the following lemma. 

LEMMA 23.20. Let P be a cut-free proof of rl, r, ---t Al, A, in the homogeneous 
system (see Definition 22.1) ,  a proof satisfying the following conditions : 

(1) Every quantifier in P i s  3. 
( 2 )  Every Q-introduction inference in P i s  a 3-introduction inference in the 

T h e n  there exist cut-free proofs Pl and P ,  in RHS and a formula C satisfying 

(2.1) T h e  end-sequent of P ,  i s  C, rl ---f A l  and the end-sequent of P2 i s  

(2.2) Every free variable or predicate constant in C, except =, occurs in both 

succedent. 

the following conditions. 

rz -+A, ,  c. 

Tl, A l  and r,, Az.  

PROOF. The proof is by transfinite induction on the complexity of P. 
Case 1. P consists of a single initial sequent. The theorem is obvious. 
Case 2. The last inference of P is of the form 
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a sequence of all the variables in C’(a, b) which are not in rl, dl  and b is a 
sequence of all the variables in C’(a, 6)  which are not in r 2 , A 2 .  Then the 
required formula C is 3x Vy C’(x, y ) ,  where V is considered as an abbreviation 
Of 1 3 1 .  

Case 3. The last inference of P is of the form 

where r, is a,  = b,,  This can be divided into 
two steps; first, the substitution of a ,  for b, ;  then the substitution of a2 for 
b,. So we may assume that u1 = b, is empty. By the induction hypothesis, 
there exists aformulaC’(a, b) which satisfies the lemmaforr;(a), Aka), 
where a is a sequence consisting of all variables in C‘(a, b) which are not in 
r,, A ,  and b is a sequence of all the variables in C’(a, b) which are not in 
r,, A 2 .  If there exists a unique i such that a2,p is the i th  variable of a then we 
define i,,, to be the i th  variable in x. Otherwise we define G2,u  to  be a,,,. 

Then take C to be 3% Vy (A, a,,, = bz,u A C’(X, y)). 

and I‘, is a, = b,, 

Case 4. The last inference of P is of the form 

By the induction hypothesis, there exist formulas C(@ly)  such that C(oly,, 
rl - + A ,  and @, r2 + A 2 ,  Y, C(@ly)  are provable in RHS. So 

v C(0IYb I‘l +dl  
(@lV 

and 
r2 4 4 2 ,  v C W I Y )  

(@P(Y) 

are provable in R’HS. Let a be a sequence of all the free variables in V(@lY)  C(@iyl 
which do not appear in F,, A ,  and let b be those which do not occur in rl, A l .  
We rewrite V(@lY)  C(@lY)  as C’(a ,  b).  Then take C to be VX 3y C’(x, y). 

Other cases. The proof is similar to the one above. 

REMARK. In  Lemma 23.20, note that (1) is not an essential restriction on P 
because V can be expressed by 1 and 3. Note also that any sub-proof of P,  
i.e., any part of P consisting of all sequents above and including a given 
sequent, is a proof in RHS because there are no eigenvariables in P. 
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3. Let T i ,  r2 ---t A , ,  A ,  be as in the statement of the theorem. There exists 
a cut-free proof P of Pi, r2 - A , ,  A 2  in the homogeneous system. For the 
completeness proof, we map assume that P satisfies the following condition. 

3.1. If a variable occurs in two different auxiliary formulas as an eigen- 
variable, then these two formulas are the same. 

Moreover, without loss of generality we may assume the following for P. 
3.2. Every quantifier in P is 3. 
3.3. The height of a free variable in TI, r2 + A l ,  A ,  is less than the height 

3.4. The heights of two different variables in P are different. 
Let I'; -0; beasequent in P. Let@(r;,A;) be thesequenced,,, A,, . . . , A , ,  . . . 

of all A,'s such that A,  is of the form 1 3 3  A ( x )  v A(a) ,  where 3% A ( x )  is a 
principal formula of a 3 : left above 1'; + 0; and A (a)  is its auxiliary formula. 
Replacing I'l - 0 ;  by @(T;, A ; ) ,  Ti -0 ;  and inserting some appropriate 
structural inferences, we obtain a new figure P' satisfying the following 
conditions : 

of any eigenvariable in P. 

1) P' satisfies (1) and (2) of Lemma 23.20. 
2) The end-sequent of P' is of the form (cf. the proof of Proposition 22.25) 

(73x2 A&,, c,) v A,(a, ,  c,)>, r1, 

3) The height of any cA,= is less than the height of any u , , ~ .  The height of 
any d,,m is less than the height of any b,,fl. 

4) Every free variable or predicate constant, except =, in 32, 3x, A ,(x,, 2,) 

occurs in T1, A ,  and every free variable or predicate constant, except =, 

occurring in 32, 3x, B,(y,, 2,) occurs in r,, A, .  
5) Any u , , ~  and b,,b are different. (Otherwise we can modify P' so that P' 

satisfies 5) because P satisfies 3.1.) 
Applying Lemma 23.20, there is a formula C ( a )  such that 

(a) C(a) ,  W x ,  A,(x, ,  c,) v A,(a, ,  c , ) } ,  I'l +d l  

and 
{+Y, B,(Y,, d,) v B,(b, ,  d,)17 rz + C ( 4  

are provable in RHS. Let Q1 and Qz be proofs of these sequents in RHS. 

is in both {A , (a , ,  c,)}, Ti,  A ,  and {B,(b,, d,)} ,  T2, A 2 .  
(b) Every free variable or predicate constant, except =, occurring in C(U) 
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(c) a is the sequence of all the free variables in C(U) which are not in both 

4. Then consider the following figure 
Ti, A ,  and r2, A 2  and well-ordered according to heights. 

Qi 

W ) ,  (+$A A,(x, ,  c,) v A,(a,, C A I ) ,  rl - dl  
v ~,x(x;, c,))>, ri -+A1 

C(a) ,  {VZ, 3x; ( 4 X A  A,($,, z,) v A&;> ZA))l> TI +dl 

. .  . .  . .  

c ( a ) ,  { q x l ( i 3 ~ A  A,($ , ,  

~- ~ _ _ _ ~  .___ .___ 

Q f x  C(x), {VzA (13x1 A,(x , ,  ~ 2 )  v A,(x; ,  z,))}, Ti -+ A i  

where f is defined as follows. 
(e) If a, is bu,y  for some 7, then f (a)  = 3. 
(f) If a, is an,y,  for some y ,  then / ( a )  = V. 
(g) If a, is contained in TI, A ,  but not in r2, A2, then / ( a )  = V. 
(h) If a, is contained in T,, A2,  but not in TI, A l ,  then f ( c c )  = 3. 
(i) If (e)-(h) are not the case, then / (a )  = 3. 
The heights for the free variables in a,, c,, C(a) ,  Ti, A ,  are defined to be the 

heights in P.  The heights of all other variables in Q1 can be so defined, 
according to Proposition 23.10, that  the whole figure will become a proof in 
determinate logic. This means that Q f x  C(x), TI 4 A l  is valid. The validity 
of r2 - A 2 ,  Q f x  C(x) is also easily seen from the following proof which 
satisfies (Q) (cf. Definition 23.14). 

Qz 

F Y ,  B,(Y,> 4) v B,(b,, d”)l, r2 - 4 2 ,  C ( 4  
-___._____ 

- PY; (+Y, Bu(Yu, _ _ _  4) v m y ; ,  du))}, rz + A 2 1  C ( 4  

-~ w, 3Y; (-3Yu B,(Y,, z u )  v B,(Y;> Z U ) ) l >  T2 + A %  C ( 4  
V z U  3 ~ ;  ( 1 3 ~ ~  B,(Y,, zu) v B,(Y,, z u ) ) } >  rz 4 A 2  Q f x C ( x ) .  

This completes the proof of Theorem 23.15. 

Using the same method we can prove the following theorem. 

THEOREM 23.21 (cf. Theorem 23.15). If every quaiztifier in PI, r, - dl, dz 
as homogeneous, if T l ,  r2 ---f A l ,  A 2  i s  valid and  does not conta in  =, and  i f  
TI, Al and r2, A z  have at Least one predicate constant in common,  then  there 
exists a formula  C such  that both C, rl + A ,  and rz + A2,  C are valid and  every  
free variable or predicate constant in C i s  contained in both TI, A 1  and r,, A 2 .  
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REMARK 23.22. In  Theorems 23.15 and 23.21, we may add the condition that 
C contains only one heterogeneous quantifier in the front of C. 

REMARK 23.23. For Malitz's example (cf. $22) we can construct an isomorphism 
between < and < by the following formula. 1 2 

1 2 
VX1 3y1 '4x2 3 y ,  . . . (A xi < u - A yi < b A A (xi xj t-f y i  : y j )  

i i i j  

A ( X i  A X j  t) y i  2 yj)) 

2 1 1 2 
A Vyl 3xl Vy, 3x2 . . . (A y i  < b - A xi < a A A (x i  < x, t) yi c yj) 

1. z t i  

A (Xi X j  t) yi y j ) ) .  

The order type of a in (L, 2) is denoted by (all and the order type of b in 
(2, :) is denoted by /biz.  Then lull < lblz is equivalent to 

(*) 
2 1 

V X ,  3 ~ 1  Yx, 3yZ . . . (A xi cz - A yi < b A A (xi < xi t) y, : yj) 
z i t i  

A ( X i  X j  t-) yi yj)) .  

This is easily shown by transfinite induction on lull, as follows. 
Let the formula (*) be denoted by A(a, b ) .  Suppose that for each c < a 

and each d,  A(c,  d )  is equivalent to JcI1 < Id/,. Suppose also that A(a, b)  
holds. Then for each a ,  a, there exists a b, such that A(a,, b,) holds 
because A+, (xi < ai) implies Ai2z (xi < a)  and hence for x,, y 2 , .  . . selected 
for (a,, b,) in A ( a ,  b)  we have hiaz yi < b,. Then making the appropriate 
substitutions into A ( a ,  b)  we obtain A(a,, b l ) .  Since a,  a weh ave, by the 
induction hypothesis lulll < /bl12 < lb12. Therefore /all < Ib12. 

1 

1 1 

2 

The converse is obvious. 
The axiom of determinateness, AD, is a very powerful axiom that has 

numerous interesting and important applications. Augmented by the axiom 
of dependent choice 

DC V X  3 y  R(x, y) 4 VX, 3x1 3x2 . . . A R ( x ~ ,  ~ i + l )  
1 

the AD has even more implications for mathematics. 
Unlike the axiom of choice, AC, which also has important implications 

for mathematics, the status of the AD is as yet unsettled. We do not know 
whether the AD is consistent with set theory. Neither do we know whether 
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the AD and DC are consistent. We do know that although the AD implies 
the axiom of countable choice it is incompatible with the AC. 

If it should develop that the AD is inconsistent with set theory we would, 
of course, cease to be interested in it. But even a proof of consistency would 
not be sufficient for our purposes, for in order to reap the benefits of the AD 
for mathematics we must have a transitive model of Z F  + AD that contains 
the power set of w ,  P(w) ,  as an element. Indeed we would like to have a 
transitive model of ZF + AD + DC that contains P ( w )  as an element. 

Concerning the existence of such models we know the following. Let L,(P(w)) 
be the set obtained from P(w)  by a p-fold transfinite iteration of Godel's 
eight fundamental operations and let tc be the smallest ,B such that L,(P(w)) 
is a model of ZF. Then we know that if there exists a transitive model of 
ZF + AD that contains P ( w ) ,  L,(P(w)) is a model of the AD. But we also 
know that L,(P(w)) satisfies DC. 

There are then three possibilities : 
1) The AD is inconsistent with set theory. 
2 )  The AD is consistent with set theory but no transitive model of Z F  + AD 

3) L,(P(w)) is a model of the AD. 
If alternative 1) or 2) should be the case, we would have no further interest 

in the AD. Our hopes center around alternative 3) which we conjecture to 
be true. We are, however, unable to prove that L,(P(w)) is the model we 
conjecture it to be. Moreover, at the present time no one appears to have a 
method that might resolve the question. In view of the implications of this 
conjecture for mathematics it is important that  a thorough study of the AD 
be made. As a contribution to this study we will prove a relation between the 
AD and the cut-elimination theorem. 

Let M be a transitive model of ZF + DC that contains P ( w )  as an element. 
M may be a set or a proper class. Although we cannot assume the AC in hi' 
we will assume it in V ,  the universe of all sets. Using the AC in V we will 
prove that the AD holds in a model hl if and only if the cut-elimination 
theorem holds in M-definable determinate logic. For the proof we need the 
following definitions. 

exists that contains P(w).  

DEFINITION 23.24. A set A is at most the continuum in Ji' iff  A E M ,  A # 0 and 
there is a function f in M such that f maps P ( w )  onto A .  

Clearly, if A and B are nonempty sets in M and B G A ,  then B is a t  most 
the continuum in M if A is a t  most the continuum in M. 
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Since 111 is a model that contains P ( w )  as an element it follows that for 
any language L, having not more than K1 symbols, we can assign to each 
symbol and to each formula of L a godelization in M. This enables us to 
identify collections of language symbols and formulas with sets in 121. Since 
we know that these identifications can be made we will follow the convention 
of speaking simply of sets of language symbols as being in '11. With this 
convention in mind we define M-definable determinate logic. 

DEFINITION 23.25. A language L for W d c f i n a b l e  determinate logic consists 
of the following: 
1) Free variables: A free variable a ,  for each s in P ( w ) .  
2) Bound variables: xo, x,,. . . , x,, . . ., M. < wl. 
3) Individual  constants: A set of individual constants that is at  most the 

continuum in M and which contains 0, 1, 2 , .  . . . 
4) Predicate constants: A set of predicate constants that  is a t  most the con 

tinuum in M .  The arity of each predicate constant is a t  most w.  
5)  Logical symbols: 

= (equality), 

A (conjunctions of arity a for a < w ) ,  

V (disjunctions of arity cc for a < w ) ,  

Q f  (heterogeneous quantifiers of arity c( for 1 < a < w ) .  
Note that the set of free variables is a t  most the continuum in M .  Further- 

more, since P ( w )  is in M ,  wul = or, that  is, w1 is M-absolute. 
The formulas of L we define in the following way: 
Let R be a predicate constant or = and let the arity of R be a.  Let {ti}i<a 

Let A be a formula. Then i A  is a formula. 
Let { A j } i < ,  be a sequence of formulas. Then h i<aAi  and V i < a A i  are 

formulas. 
Let A ( Q )  be a formula where Q is the sequence of free variables {ai}i<cr,  

with a < w .  Let x be the sequence of bound variables and let f map 
a into {V, 3). Then Q f x  A ( x )  is a formula, where A ( % )  is obtained from A ( Q )  
by replacing some occurrences of ai by xi for each i. 

Let I' and d be sets of formulas of a t  most the continuum. Then r + d is 
called a sequent. 

Notice that we cannot assume the well-ordering of r a n d  A ,  since the axiom 
of choice is not assumed in M .  

1 (not), 

be a sequence of terms. Then R ( t o ,  t,, . . .) is an atomic formula. 
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COROLLARY 23.26. (1) If a language L i s  fixed, then the set of L-formulas i s  at 
most the continuum. 

(2) Given a n  L-formula, the number of variables, constants and logical symbols 
which occur iia it  i s  at most countable. 

When we consider a set of formulas {AAJA or a set of free variables, we must 
remember that they are just sets; they may not be well-ordered. 

LEMMA 23.27. (1) Consider a tree of length o which has co branches extending 
from each node. W e  m a y  identify this with cow, which i s  at most the continuum. 

(2) Let u be a n  ordinal which i s  at most the continuum. Consider a tree of length 
o which has u branches extending from each node. We m a y  identify this with 
uw, which i s  at most the continuum. 

DEFINITION 23.28. The notion of proof and the rules of inference for M -  
definable determinate logic are defined as follows. 

1) The initial sequents are the logical initial sequents; -+ t = t ,  where t is 
an arbitrary term; those sequents of the form i = j 4, where i # j and 
i, j < w ;  and those sequents of the form + t = 0, t = 1 ,  t = 2 , .  . . , where t is 
an arbitrary term. 

2 )  The rules of inference are those rules of determinate logic, which we 
have already presented. One should keep in mind that in the sequents the 
formulas form sets that  are not necessarily well-ordered. As  an example, 
V : right looks like this: 

r + A >  { & i A l i A < q  

r + A ,  { V i < E l  A,,.) 

where uA < co and A ranges over a set of a t  most the continuum. 
3) A proof in M ,  say P,  is a member of M which is a proof in the ordinary 

sense except that  the notion of height must be replaced by a relation < : 
3.1) Suppose a is an eigenvariable in P,  and b is a free variable which occurs 

in its principal formula. Then b < a. 
3.2) Suppose a is an eigenvariable, A (a)  is its auxiliary formula, Qfx A (x) 

is its principal formula, and suppose a corresponds to  f(i). If b also occurs in 
a and b corresponds to  / ( I ) ,  where j < i, then b < a. 

The eigenvariable condition is simply that < is well-founded. If b < a ,  let 
us say that a depends on b. 
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REMARK. “< is well-founded” is M-absolute because a countable subset of 
free variables (in V )  is a countable subset of P ( o )  and P ( u )  belongs to M ,  
hence this set of free variables is a countable subset of M .  

Before we get into the next argument, we should remark that we may and 
will restrict the indices of free variables, the s in a,, where s E P ( w ) ,  to subsets 
of even numbers. This way, we will be free to introduce new free variables. 

LEMMA 23.29. Consider a countable set of free variables, s a y  
where A belongs to M and . . . < as2 < as,  (in V ) .  Define R ( a ,  b) by  

= {as, ,  as2, .  . . I  

R ( a ,  b) edf a E A 2 ( b  E A A b < a ) .  

T h e n  Vx, 3x, x 2  . . . hi R(x,, xiil) in M 

PROOF. It is easily seen that Vx 3 y  R(x ,  y )  in M ;  hence by DC the desired 
formula is obtained. 

DEFINITION 23.30. A quantifier Q in a formula A is said to be essentially 
succedent in A if i t  is in the scope of an even number of 1’s. A sequent 
r + A  is said to  be succedent-homogeneous if every quantifier in a formula 
of A which is essentially succedent is homogeneous and every quantifier in a 
formula of r which is not essentially succedent is homogeneous. 

For the following proposition, we assume that 0, 1, 2 , .  . . are the only 
individual constants in L. This simplifies the discussion. 

PROPOSITION 23.31. ( I )  If the AD holds in M ,  then all the provable seqGents 
of M-definable determinate logic are M-val id ,  that i s ,  valid in every M-definable 
structure. 

( 2 )  If a sequent i s  provable wi th  a proof in which all the sequents are succedent- 
homogeneous, then i t  i s  M-val id .  

Note that in (2) the AD is not assumed for M 

PROOF. Suppose P is a proof for r + A .  Let < be the well-founded relation 
defined for free variables of P. We can assign ordinals to these free variables 
in such a manner that if a < b, then the ordinal of a is less than the ordinal 
of b. Start with those variables that do not depend on any other variables 
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and assign them the value 0. Xext, assign the ordinal 1 to those variables that 
depend only on variables whose ordinals are 0. Continuing in this way we will 
assign ordinals to all variables in P for the following reason. Suppose there 
are variables in P which are not assigned ordinals by this process. Let A be 
the set of those free variables. Then by Lemma 23.29, 

vxo 3x1 x2 . . . A (xi E A 3 (xi+l E A A xIil < x2)). 

Since A is not empty, this means tliere is an infinite sequence { u ~ } ~  from A 
such that < ai, contradicting the well-foundedness of <. 

The ordinals assigned to the free variables of P as above will be called 
heights. I t  is easy to see that they satisfy the conditions of heights in the 
previous sense. 

Consider an Ill-definable structure d .  Notice that the natural numbers 
of &' are not necessarily the natural numbers in the absolute sense. They are, 
however, in one-to-one correspondence with the actual natural numbers. 
Therefore we may assume, without loss of generality, that  the universe of ~2 
is o and the constants 0, 1, 2 , .  . . in the language are interpreted in the 
obvious way; thus d = (0, 0, 1,2,. . .). 

Then consider all the formulas and subformulas in P and their Skolem 
functions, g 2  and g'Ay, defined as before. Let Q f x  A ( x ,  a) be a formula and 
suppose a exhausts all the free variables in this formula. If g'Ay is regarded 
as a function of x or of some variables of x, while a is held fixed, then such a 
function is a member of M .  If g y  is regarded as a function of a as well as some 
variables of x, it  is not guaranteed that the function belongs to hl .  In spite 
of this, we can carry out the subsequent argument entirely in M, for once 
the values of a are assigned, g p  is an element of M ,  and ,& occurs only in 
this context. What we will do is to construct such functions and substitute 
them for eigenvariables. The resulting figure P' may not be an element of 
M ,  but each formula in P' becomes a formula of ,Ti' once those functions are 
computed. 

The process of obtaining P' and determining the interpretation of the 
g y ' s  and g y ' s  parallels the p:oof of Theorem 23.4 for (l),  and the proof of 
Proposition 23.5 for (2). In a similar manner we can show that for an arbitrary 
sequent in P', say r - A ,  either there exists a formula of T which is false 
in d or there is a formula of d which is true in Sa. For 6) in the proof of 
Theorem 23.4 we need the determinateness of Sa. That s4 is a determinate 
structure is a consequence of the fact that the AD holds in M .  Since substitu- 

i 
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tion for eigenvariablcs does not change tlie end-sequent, this means that the 
end-sequent is true in .J. 

DEFISITION 23.3%. X generalized cut is called inessential if all its cut formulas 
are equalities, i.e., of the form t ,  = t,; it  is called essential otherwise. 

Throughout the remainder of this cliapter we call a proof cut-free if i t  has 
only inessential generalized cuts. 

PROPOSITIOL 23.33. (1) I f  the AD holds i ~ i  M, then all the ?lalid M-sequevts are 
cut-jrce pvoaable. 

(2) I f  I‘ + A  I S  succcdeiit-lionzogerisous mid valid, tlzcii T -/I zs cut-free 
provnhle. 

PROOF. Lye follow the proof of Theorem 23.6. Ak was mentioned before, we 
may assume tha t  the indices of the free variables are subsets of even numbers; 
this way we can introduce new free variables when necessary. Let 

1’ = I ’u  {VX (.Y = 0 v M = 1 v . . . ) )  

and Irt Q f x  A (x, a) be an arbitrary formula in 1’ 4 A .  I;or each such formula 
we introduce a function sgmbol gfA), (interpreted as a Skolern function) for each 
xt in x if Q f x  A ( x ,  a) is essentially antecedent, and  we introduce g!;’ if it  is 
essentially succedent. Let 11 be tlie set of terms wliicli are generated from 
the individual constants and free variables by these Skolem functions. By 
Lemma 23.27, tlie set of those subformulas is a t  most tlie continuum, hence 
D is a t  most the continuum, because the individual constants and free 
variables form a set, I),,, of at  most the continuum, and  each stage of applying 
the Skolem functions increases the set by at most tlie continuum and we 
need to repeat the application of Skolein functions times, more precisely 
cc times for all u < (ol. 

We regard the terms in I1 - Do as free variables and identify them with 
the free variables wliicli have been saved. (So it may happen that more than 
one such free variable corresponds to one term in D - Do.)  A natural partial 
ordering < can be defined for the free variables from D - Do. If s occurs 
in t ,  then s < t .  I t  can be easily shown that < is a well-founded relation and 
< is a member of .If. 

%‘e are now prepared for the complete~iess proof of Tlieoreni 23.6. I n  this 
proof we use appropriate terms from D - Do in the reduction of quantifiers. 
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Since all the terms in D are members of M ,  it  is obvious that the sequents 
thus obtained (in forming a tree) are members of M ,  and that they consist of 
at  most the continuum of formulas. For example, in part 6) in the proof of 
Theorem 23.6 the possibility for tA,u is at  most (2”)” = 2”, which is a t  most 
the continuum. 

Case 1. Every branch of T ( F  + A )  has a sequent of the form 

. .  D . . . - . . . D . . .  or . . . + . . .  s = s  

As before, consider the condition C. In order to show that F + il satisfies C, 
we take the following step. Let S’, S“, . . . denote sequents in T ( F  - A )  and 
define R(S’, S”) by 

R(S’, S”) edf (S’ E T ( P  - A )  A (S’ does not satisfy C) 2 

3 S“ E T ( P  + A )  A (S” does not satisfy C) 

A (S” is an immediate ancestor of S’). 

If we assume that 
in M‘, hence by DC, 

- A  does not satisfy C, then VS’ 3s’’ R(S’, S”) is true 

VS, 3S,  S2 . . . A R(S,, Si+l). 
i 

Letting So be r ---f A ,  we conclude that there is an infinite branch which does 
not satisfy C, contradicting the assumption of case 1. 

Case 2 .  In this case we can construct a counterexample for I? + A  in the 
same manner as before. Recall that  the domain D belongs to M .  Consequently, 
the fact that  a formula occurs in the antecedent or in the succedent can be 
expressed in M. 

In proving ( l) ,  we need to show that Qfx l A ( x ,  s) -, ~ Q f x  A ( $ ,  s) is true 
in any Wstructure, (cf. 2 in the proof of Theorem 23.6). This holds since 
the AD holds in M. In proving (a), this case does not arise, since the given 
sequent is succedent-homogeneous. 

We now have a cut-free proof of 

V ~ ( ~ = O ~ ~ = I V  . . . ) ,  r 4 ~  
and since 

- + a = o , a = 1 ,  . . .  
- a  = O v a  = I v  . . .  
+Vx(x  = o v  x = 1 v . . . )  
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we have, from the cut rule 
r - A .  

This last cut however is easily eliminated. 

THEOREM 23.34. T h e  AD holds iiz M if a n d  on ly  if the cut-elimination theorem 
holds for M-def inable  determinate logic. 

PROOF. 1. Suppose that the cut-elimination theorem holds for M-definable 
determinate logic but the AD does not hold in M ,  namely, there is a set of M ,  
say A ,  such that A c ww and the AD fails for A .  Use A as a predicate symbol 
and let i,, il,. . . be individual constants corresponding to 0, 1,.  . . . Then 
consider two sets of atomic sentences: 

To = {A(io,  i,, . . .)  1 A(io, i,, . . . )  is true when A 

and i,, i,, . . . are interpreted as above} 
and 

We claim that 
do = { A  (io, i,, . . . )  I A (io, i , ,  . . . )  is false}. 

and 

are both valid. Then, since both are lioniogeneous-succedent, 2 )  of Proposition 
23.33 implies that  those sequelits are cut-free provable. 

Case 1. A is interpreted differently from the given set A .  Then, since 
To U do exhausts all the possibilities for A(zo, i,, . . .), there is a t  least one 
(io, i , ,  . . . )  such that either A(io ,  i,, . . . )  is in To and it is false or A ( z o ,  il, . . . )  
is in A,  and it is true. Hence To + A o  is true, which implies that both sequents 
are true. 

Case 2 .  A is interpreted as the given set A .  Then neither 

vxo 3Yo Vx1 3 Y ,  . . . A(x0, Y O >  x1, Y 1 ) .  ' .) 

3x0 vyo 3x1 VY1  . . . d ( x o ,  Yo2 x1> Y 1 > .  . ' 1  
nor 

is true; hence both sequents are true. 
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From (1) and (2) we obtain 

is provable in M-definable determinate logic. On the other hand 

is provable in the same system. Hence by the cut rule To +do is provable; 
but this is impossible. Therefore the AD must hold in M .  

2 .  If AD holds in M, then by (1) of Proposition 23.33 together with 1) of 
Proposition 23.19, the cut-elimination theorem holds. 

This completes the proof of the theorem. 

Next we point out a relation between the cut-elimination theorem and the 
infinitary propositional calculus IPC wliicli is the quantifier-free part of 
infinitary logic. IPC is common to determinate logic and ordinary infinitary 
logic. Consequently, provable sequents in IPC are valid. 

Let To be a set of quantifier-free sentences. It is well known that if To is 
consistent (with IPC), then T,, has a model. 

PROPOSITIOK 23 35. Let ,I1 be as above 7 hen the follosuziig two coizditzons are 
equtmleizt  

( I )  The cut-PLL?lziization theorem holds t i t  ;If-definable de termiza te  logzc 
(2) L e t  r, be a set of quantifier-free seiitelzces and su@pose To belongs to M .  

If To zs consistent uzth IPC, t hen  To zs consictent w t h  AI-de fzmble  deterrnznate 
logzc. 

PROOF. Obviously (1) implies (2). Suppose the cut-elimination theorem does 
not hold. Then by Theorem 23.34 there exists a counterexample for the AD 
in X ,  say A E OP. In the proof of the theorem, the set of formulas To u do, 
where do consists of all the formulas of the form -IB for B in do, is consistent 
with IPC, since an A as above can be a model. On the other hand, To +do 
is provable in JI-definable determinate logic, hence To U 4, is not consistent 
with determinate logic. 
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PROBLEM 23.36. Let us again assume the AC and assume that the antecedents 
and succedents of sequents are well-ordered. Consider the following language. 

1.  Individual constants: 0,  1, 2 , .  . . . 
2 .  Bound variables: xo, xl, .  . ., x,,. . . (a  < wl). 

3. Free variables: a,, a,,. . . , a,, . . . (a  < 2’O). 
4. Predicate constants: = and R,, R,, R 3 , .  . ,, where Ri has i argument 

5 .  Logical symbols: -I, A, V, V, 3, Q1, Q2. 

By a term, we mean an individual constant or a free variable. 
Formulas and their orders are defined simultaneously as follows. The order 

of a formula is a natural number. 
1. If ti is a term for i < n, then to = tl  and Rn(to,. . ., are atomic 

formulas and an order of an atomic formula is zero. 
2. If A is a formula, so is T A .  The order of 1 A  is the same with the order 

of A .  
3. If A i  is a formula for each i < u and the maximum of orders of A i  (i < w )  

exists, then A i c w  Ai  and V i < w  A i  are formulas and the order of these formulas 
are the same with the maximum of orders of A i  (i < 0). 

4. If A (a,, a,, . . . , ai, . . . )  (i < w )  is a formula and xo, xl,. . . , xi.. . . (i < w )  
are distinct bound variables not occurring in A(a,, al, .  . .), then 

places. 

Vx, x, . . . A(%,, xl,. . .) and 

are formulas and the order of these formulas is n + 1, where n is the order of 

5 .  If A(a,, a l , .  . . , ai,. . .) (i < u) is a formula without any occurrence of 
Q, or Q2 and xo, x,,. . ,, xi,. . . (i < w )  are distinct bound variables not 
occurring in A(ao, al , .  . .), then Qixo x1 . . . A(%,, xl,. . . )  (z = 1, 2 )  are 
formulas and the order of these formulas is n + 1, where n is the order of 
A (a,, a,, . . .). Qlxo x1 . . . and Q2xo x1 . . . are also denoted by 3x0 Vx1 3x2 . . . 
and Vx, 3x1 Vx2 . . . , respectively. 

3xo x1 . . . A(%,, x,,. . .) 

A@,, a,, . . .). 

A sequent is of the form 

A,, A l , .  . ., A , , .  . . 4 Bo, B1,. . ., BO,. . ., 

where A,’s and B,’s are formulas and u and ,@ range over ordinals less than 
a. and Po, respectively, where a, and Po are some countable ordinals. 

Inference rules are the same as in 922, except that the length of a sequent is 
restricted to be countable. Of course, V, 3, Q1, Qz should be expressed by an 
adequate form Qf. 
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Non-logical initial sequents are of the following form. 
1.  4 t = t ,  where t is an arbitrary term. 
2. i = i -+, where i and i are distinct individual constants. 
3. -, t = 0, t = 1, t = 2 , .  . ., where t is an arbitrary term. 
Now prove the following theorem. 

THEOREM 23.37. T h e  Projective determinacy holds if and only if every provable 
sequent in the system defined above i s  Provable without essential cuts. 

The proof goes as in Theorem 23.34. 

$24. A general theory of heterogeneous quantifiers 

The problem of the completeness of logical systems is an interesting and 
important one. While much is known, open questions still exist. We know, 
for example, that  first order logic is complete and second order logic is 
incomplete. For infinitary languages we know that homogeneous systems are 
complete but whether heterogeneous systems are complete is an open question. 

Incompleteness is an inherent weakness in any logical system. In second 
and higher order systems we can partially compensate for this weakness by 
a heavy dependence on comprehension axioms and the axiom of choice. In 
the infinitary languages however, we do not have the comprehension axioms 
and indeed in determinate logic we are even denied the axiom of choice. This 
raises the very practical question of whether there exist useful alternatives 
to the comprehension axioms and the axiom of choice for infinitary languages. 
In this section we will explore such alternatives. In order to do this we will 
develop a very general theory of heterogeneous quantifiers, a theory that 
encompasses the quantifiers Qf of determinate logic as a special form (well 
ordered) of heterogeneous quantifiers. 

The system we will present is a very useful one. How to extend it to a 
complete system is an open question. But before we take up the definition 
we would like to point out a few things about the system. For one thing, in 
the right and left quantifier introduction rules we do not have the duality 
that exists in finite languages and in determinate logic. Although we will 
assume that the formal objects of our system are well ordered, that  assumption 
is only for convenience and is not essential for the theory. For further simplifi- 
cation we will always omit the individual and function constants unless 
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otherwise stated. Finally we point out that we will not specify the number 
of bound and free variables. It is understood that we first adjoin a sufficient 
supply of bound variables. Having fixed the number of bound variables we 
then adjoin a sufficient supply of free variables. For an explanation of what 
constitutes a “sufficient supply” we refer the reader to the discussion after 
Definition 22.1. 

DEFINITION 24.1. (1 )  By a language with heterogeneous quantifiers, L( J), where 
J is a set of mapping such that each T in J is a mapping from p to P(a)  for 
some a and f i ,  we mean the following collection of symbols. 
1)  Variables : 

1.1) Free variables : ao, a,, . . . , a,, . . . . 
1.2) Bound variables : xo, xl , .  . . , x,, . . . . 

2) Predicate constants of arity a for certain a’s: 

P;, P?, . . . , P;, . . . . 
3) Logical symbols : 

2 (implication), 
V (disjunctions of arity a for certain a’s), 
A (conjunctions of arity a for certain a’s), 
V (universal quantifiers of arity a for certain a’s), 
3 (existential quantifiers of arity a for certain a’s). 

1 (not), 

4) Heterogeneous quantifiers: We have a quantifier QT for each T i n  the set J .  
5 )  Auxiliary symbols: (, ) .  

(2) The formulas of L(J) are defined in the usual way with the following 
modifications. 

(2.1) If V (A) of arity a belongs to L(J) and A,, ,u < a is a sequence of 
formulas then V,,, A, (A,,, A,) is a formula. 

(2.2) Let I’ be a function in J. Then for some a and /I, T maps f i  into 
P(a) .  Let A ( a ,  b) be a formula, where a and b are sequences of free variables 
of length a and f i ,  respectively. We assume that some (possibly none) of the 
occurrences of a and b in A are indicated. Let x and y be sequences of bound 
variables, of length a and /I respectively which do not occur in A(a,  6). Then 
Q T ( s ;  y )  A ( x ,  y )  is a formula. 

(3) As before we assume that the collection of formulas of the language 
L(J) is closed under subformulas. 
(4) Let K be the cardinality of the formulas of the language. A sequent 

r + A  is defined as usual, where the lengths of r and A are less than K+. 
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EXAMPLE 24.2. Consider a language L(J) where there are countably many 
free variables (arranged in the order type of w), the logical symbols are of 
finite arity and J is arbitrary. This means that the propositional connectives 
are defined as for the usual, finite languages and there are w-many free 
variables. We shall assume that there are w-many bound variables and a 
single predicate constant =. Let T be a function from 2 to P(2) such that 
T(0) = (0) and T(1) = {I}. Then 

(Uo = a, bo = b1) A bo # C 

is a formula of the language which we denote by A(a,, al, b,, b l ) ,  where all 
the occurrences of a,, a l ,  b,, b ,  are supposed to be indicated. Then 

QT(xo, xi:  yo, ~ 1 )  xi, YO,  Y )  

is a formula. We are going to define a system in which this formula will have 
the meaning that for every x, there exists a y o ,  depending on x, only, and 
for every x, there exists a yl, depending on x1 only, such that A (x,, xl,  yo ,  yl) 
holds. Such quantifiers, called dependent quantifiers, were first proposed 
by Henkin. 

DEFINITION 24.3. The rules of inference of our intended system are those of 
Definition 2211 with some alterations. We shall remark only on the crucial 
changes. 

1) The A : left, A : right, V : left and V : right rules in (4.2) of Definition 
22.1 are admitted only for conjunctions and disjunctions that belong to the 
language L(J), that is, only for values of p, that are arities of conjunctions 
and disjunctions that belong to L(J). 

2 )  The rules for quantifiers are quite different here. 
2.1) Q : left: * 

{A,(a,, b,)).a<Y> r - A  _ _ ~ -  
{QT'(%,: Y,) A,($,, Y.J>,~<, ,  I' + A  ' 

where the variables of b, do not occur in A,($, ,  y,). If a,  and b, are of types 
a, and p, respectively, then T ,  is a function in J from p, to P(E,). 

Any variable of b,, say b ,  is called an eigenvariable of the inference, 
A,(a, ,  b,) is called an auxiliary formula of b, and QTA($ , ;  y,) A,($, ,  y,) is 
called the principal formula of 6. 

2.2)  Q : right: 
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where if a,  and b, are of types cc, and P A  respectively, then T ,  is a function 
in J from f iA  to P(cc,). 

Every variable of a,, say a, is called an eigenvariable of the inference, 
A,(a,, b,) is called an auxiliary formula of a, and QTA(z,;  y , )  A,(%,, y , )  is 
called the principal formula of a. 

3) The cut rule is replaced by the generalized cut rule (g.c.). 

DEFIKITION 24.4. A proof P in the system is defined in the usual way, as a 
tree consisting of sequents, where the following eigenvariable conditions must 
hold in P. 

1) If a free variable b is used as an eigenvariable in more than one place, 
then the principal formulas of b must be the same. 

2) Suppose A(a,,  b,) and A(a,, b,) are auxiliary formulas of applications 
of Q : left in which b is an eigenvariable. 

2.1) If b occurs as the ccth variable of b, then b occurs as the ccth variable 
of b,. 

2.2) Let a,,, and a,,), denote the i t h  variable in a,  and a2, respectively. 
Suppose b is the ccth variable in b, and b,. Then for any A in T(cc), a l ,A  and 

Let a be a free variable which is either an a, , ,  or a2,, where A E T(cc), or it is 
a free variable in the principal formula of b. Then we say that b depends on 
a,  and we write a < b.  

are the same. 

REM4RK 24.5. The above conditions do not imply that, in the notation of 2),  
the sequences b, and b, are identical. It is not guaranteed either that a, and 
a, are the same. Even if b, and b, happened to be the same, a,  and a2 may 
not be the same. For example, it is possible to have different a, ,A and a2,A 
if none of the variables of b, depend on and none of the variables of b, 
depend on a,,,. 

3) All the auxiliary formulas of an eigenvariable of the Q : right rule are 
identical. 

For this case the dependence is defined only between the eigenvariables 
and the free variables in the principal formula: Let a be an eigenvariable in 
a and let c be a free variable in A(%,  y ) .  Then a depends on c, i.e., c < a.  

4) No eigenvariable occurs in the end-sequent of P. 
5) We shall relate a and b by a < b if there is a finite sequence of frec 

variables ao,. . ., a,, where a,, = a, a ,  = b, and ai < a,+, for 0 < z < n - 1 
in the sense of 2) and 3). Then < is a partial well-ordering; that is there is no 
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cycle a, < a2 < . . . < a, and there is no infinite decreasing sequence of 
variables (a,}i<w such that ai+, < ai. 

6) We define a, 5 a2 to mean that a ,  < a2 or a ,  and a2 are the same. 
There exists a well ordering of all the auxiliary formulas of occurrences of 
the Q : right rule in the proof, say {A,(a, ,  b,)},, which satisfies the following, 
where the same A,(a,, b,) may appear in several different places in P. 

Let QTC(sE : y,) A,(x, ,  y,) be the principal formula of an eigenvariable and 
let A ,(a,, b,) be the corresponding auxiliary formula. 

6.0) If b,,n is the dh variable of b,, then 

(e 1 e 5 bo,,  and e is an eigenvariable of a Q : right) 

is a subset of 

1 is the Ath  variable of a, and A E T,(a)} 

and if c is a free variable in A ,  which is neither in a, nor b,, then for no 
eigenvariable e of a Q : right, is e 5 c. 

6.6) If b,,= is the t(th variable of b,, then 

{ e  I e 5 b,,= and e is an eigenvariable of a Q : right} 

is a subset of 
u a, " (ac.1 I A E T,(41. 

71< 5 

Also, if c is a free variable in A ,  which does not belong to at ,  or b,, then 

( e  1 e 5 c and e is an eigenvariable of a Q : right} 

is a subset of u,,, a,. 

NOTATIONAL CONVENTION. For quantifiers that are relatively simple, we shall 
use more intuitive notation. For example 

can express Q T ( x y ;  ~hw)  A(%, y ,  M ,  w), where T(0) = (0) and T(1) = (1). 
QT(x,x,. . . ;) can be expressed with the usual notation Vxo x1 . . . and 
Q T (  ; xoxl. . .) with 3x0 x1 . . . . 
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EXAMPLE 24.6. Examples of proofs with heterogeneous quantifiers. 

is provable. 

PROOF. 

( l )  ( ( c k + j  = c k  c k : , j + l  = A C k + g + l  # C O } k . j < w  - A  ( c ~  # c j )  

r f l  

is obvious. From ( l ) ,  by a Q :  right, where there are no eigenvariables 
involved, 

( 2 )  ( ( c h + j  = ch c/i+j+l = ‘1,) * ‘h+i+l f C O ) h . j < w  32021 ’ ’ ’ A (’1 f ‘j) 
i# j 

Consider ( c k + j  = ck = c k + j + l  = a,) A c k + j + l  # co, or A ( C k + j ,  c ~ + ~ + ~ ,  a,), leaving 
out c,,. Define T(0) = (0) and T ( l )  = (1). Then Q T ( x y ;  U W )  A(%,  y ,  u, W )  

means (:;::) ((X = y SZ U = U) A U # 60) .  

This applies to all pairs ( K ,  i) ; hence by a QT : left applied to all the formulas 
in the antecedent of (2), followed by contraction, we obtain 

Q T ( % y ;  .UU) A(x ,  y ,  U ,  W )  4 32, 21 . . . A (zi  # zj). 
<fJ 

By renaming c,, as a, we obtain the required sequent. In order to see that we 
have given a proper proof, we examine the conditions in Definition 24.4. 
Since all the principal formulas are the same, 1) is obvious. Also 2.1) is 
obvious, since the c’s are the first and the a’s are the second eigenvariables in 
any auxiliary formulas. For 2 . 2 ) ,  let b = c ~ + ~ + ~ .  Then T(0) = (0) and the 
0th variable in (c,+~, cJ, i.e., c , + ~  is uniquely determined by b. Similarly with 
a,. Since there is no eigenvariable for a Q : right, we do not have to worry 
about 3).  Since the eigenvariables are c k + j + l  and a, and not co 4) is obvious. 
As for 5 ) ,  c , + ~  < c , + ~ + ~ ,  c, < a,, c,, < C k + . j + l ,  c,, < a, exhaust all the depend- 
ence relations. I t  is then easily seen that < is a partial well-ordering. Clearly 
6) is irrelevant. 
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PROOF. 

-.(" j U )  ( ( x  = U = 'U) A U # Cg). 
v y  3v 

A(a,  c) A A ( b ,  d)  3 (a = b G c = d)  --r 

-+ (a = b = c = d) A c # co 

is obvious. We can introduce V ' s  to all the variables in the antecedent except 
c,,. Let A(a, b,  c, d) denote (a = b 3 c = d)  A c # co. Let T(0)  = (0) and 
T(1) = (1). Then Q T ( x y  : uv) A(%, y ,  u, v) is the formula in the succedent. 

Furthermore, 5)  of the eigenvariable conditions is obviously satisfied. Since 
there is only one auxiliary formula of a Q : right introduction, 6) is also easy 
to see. 

DEFINITION 24.7. Let & be a structure for our language. Let @ be an assign- 
ment from &. The relation that a formula A is satisfied in d by @ is defined 
as usual. Q'(x; y) A (x, y )  is satisfied if and only if the following holds. Let x 
and y be of lengths a and p and let a and b be new free variables corresponding 
to x and y. There exists a sequence of functions f corresponding to b such 
that for every sequence d of elements of d of length a, if 

then A(a,  b) is satisfied in d by @', where f(d) is a sequence of terms such 
that if 

T ( y )  = { t o ,  E l , . . . ,  t i , . . . ) ,  

then the yth expression is f,(d,,, d,,, . . . , dti , .  . .). 

THEOREM 24.8 (validity for heterogeneous quantifiers). Every  theorem of our 
system of heterogeneous quantifiers i s  valid. 
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PROOF. The proof is similar to the proof of Theorem 23.4. Given a proof P 
in the system, a structure .d and an assignment froin d we first take an 
arbitrary formula in the antecedent of a sequent with a quantifier at the 
beginning, say 

QW; Y) A($,  Y ,  4, 

where c is the sequence of all the free variables in this formula and the lengths 
of x and y are c( and p respectively. For each y < B we introduce the Skolem 
function 

T Y  g.4’ ( X < o !  x{,>. . ’ > c ) >  

where xto, xt,,  . . . are all the variables of x such that E i €  T ( y ) .  gy is interpreted 
as follows with respect to d. If Q T ( $ ;  y )  A ( x ,  y ,  c )  is satisfied in d, then the 
g y ’ s  are the functions satisfying 

where the yth expression of y’ is g.:+’(xco, x:,, . . . , c). If Q T ( x ;  y )  A ( x ,  y )  is not 
satisfied in d, then the g.2y’s are interpreted to be constant functions for a 
distinguished element of the universe of d. 

Well-order all tlie eigenvariables in P for Q : left introductions in such a 
way that if a < b ( b  depends on u ) ,  tlien a prewdes b in  tlie ordering: 

b,, b,, . . ., b6, .  . . 

We shall define terms to, t,, . . . , t,, . . . by transfinite induction on P. Assuming 
that t < ,  have been defined, we sliow how to define t,. 

Suppose the principal formula of b,  is Q T ( x ;  y )  A ( $ ,  y ,  c )  and let d be a 
variable in an auxiliary formula of b, which corresponds t o  a variable in 
x with d < b. If d is not used as an eigenvariable of any Q :  left, then 
define u corresponding to d to be d itself; otherwise d occurs in the above list 
of eigenvariables, hence is a b,, K < 6, since d < b. Therefore t ,  has been 
defined and we take u to be this t,. Let c be a free variable in c.  A term s 
corresponding to c is defined as the u corresponding to d ;  recall that  c < b by 
the eigenvariable condition. I t  should be noticed that those d’s  and c’s are 
tlie same for all auxiliary formulas of b,  by virtue of the eigenvariable condition. 
Thus t ,  can be defined to be gz,’.(u, s). From the definition, a free variable 
in t,, say d,  satisfies d < b.  h’ow substitute to ,  t,, . . . , t,, . . . for b,, b,, . . . , b,, . . . , 
respectively, in P. Let P‘ be the figure thus obtained from P.  
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Let {A,(a,, b,, cJ}, be the well-ordering of the auxiliary formulas of the 
Q : right in P satisfying the conditions in 6) of Definition 24.3, where c, is 
the sequence of all the free variables in A ,  which do not occur in a, or b,. 

We shall define substitutions of terms for eigenvariables of the Q : right 
introductions in P' in the following manner. Suppose the substitution has 
been completed for the tth stage, giving us a figure P,. 

Applying this substitution to {A,(a, ,  b,, c,)}, we obtain formulas in P' that  
we will denote by ( A  ,(a,, b;, c;)],. Here b; and c; are terms that may contain 
many free variables. Because of (6) of Definition 24.3, b& and G;,, satisfy the 
following condition. 

(*) The eigenvariables of the Q :  right that are contained in bi,, form a 
subset of 

u a, " {a,,,,, a t . l l> .  . . >  

{ l o ,  11,. . ' 1 = T,(4 

r)< E 
where 

and any eigenvariable of a Q : right that  is contained in c : , ~  is an eigenvariable 
of an a, for some q < 6. 

Next we define, by transfinite induction on t, substitutions of members 
of d for a,, 

Suppose we have completed the definition of substitutions for eigenvariables 
of a,, q < 5. Consider the stage t. We shall define a:, corresponding to each 

Case 1 .  Q T ' ( x y ;  y , )  A,(%,, yc)  is true, where A,(x,, y , )  is obtained from 
A,($, ,  y , )  by substitutions up to the tth stage. Let k ,  be a distinguished 
element of the given structure d.  Then a:, is interpreted to be KO. 

Case 2 .  QT'(x , ;  y < )  A, ($ , ,  y , )  is false. Henceforth we omit the subscript ( 
unless needed. 

By hypothesis, 7 Q T ( x ;  y) A ( $ ,  y )  is true, or 3% 7 A ( x ,  f ( x ) )  is true no 
matter what the interpretation off is, where f(x) stands for the sequence 

in a,. 

f o ( x o ) ,  f l P I ) > .  ' ' 7  f a ( % ) > '  ' ' (0 < 4, 
xu being x,,, xul , .  . ., x u L , .  . ., with T(o) = {q,, u l , .  . ., ui,. . .}. A ( a ,  b,  c) has 
become A ( a ,  U ,  W )  where p,, is a term that may contain unsubstituted a's 

as free variables. By (*), the free variables in u,, form a subset of a, = 

{a,,, a U l , .  . . , aui , .  . .}, where 

{ao, GI , .  . . , G t , .  . . }  = qu). 
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Therefore, we may put /@(a,) = u,. Since for this interpretation of the fa 's ,  

3x l A ( x ,  f ( x ) )  is true, there are values of a, say a*, for which - d ( a * ,  / (a* ) ) .  
When these substitutions are completed, all the eigenvariables are replaced 
by the g,'s and the u*'s.  We shall call the resulting figure P*. 

Now we can show that every sequent in P* is true. Since the end-sequent 
does not contain any eigenvariable, this implies that  the end-sequent of P 
is true. 

For the proof that every sequent in P* is true in d, under the given 
assignment, we shall deal with three crucial cases only. 

1) g.c.: 
@, I' + A ,  Y for all appropriate (@, u') ~________ 

r - A  

where 9 is the set of cut formulas. 
Let g1 be the set of all formulas of 9 which are true and let F2 be the 

rest of the formulas. If for 0 _c and !P _c S2, @, r + A ,  !P is provable, 
then by the induction hypothesis this sequent is true, where all the formulas 
in @ are true and those in y/ are false. Therefore r + A must be true. 

2 )  Q : left: 

I t  suffices to sliow that if Q'(x; y )A' (x ,  y) is true then so is A'(w, u) .  However, 
this is obvious since the g p ' s  are so chosen (cf. (+) in the definition of g:'). 

3) Q : right : 
r + A ,  {A(w ,  4) _______ 
r A ,  (QW Y) A (g, Y)I 

I t  suffices to show that if Q T ( x ;  y )  A ( $ ,  y) is false, then so is A(w,  u), but 
this too is obvious, since the a:'s are so chosen. 

Since a homogeneous system is a subsystem of a system which satisfies 
(Q), Proposition 22.14 implies that  a homogeneous system is a subsystem of 
a heterogeneous system. 

Heterogeneous quantifiers, even the finite ones, are stronger than homoge- 
neous quantifiers. 

PROPOSITIOX 24.9. The lacterogeizeous quantifier 
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(c f .  E x a m p l e  24.6) cannot be expressed b y  ( f in i te )  f irst  order quantif iers.  

PROOF. Consider a formula of the form 

in which 

is the only quantifier that occurs. In a second order system with function 
quantifiers and the axiom of choice, (1) is equivalent to the following formulas: 

3f % ('dx VY (x = Y f f ( 4  = dY)) A vx VY A(% Y3 f (4J  g ( y ) ) ) ;  

3 f  vx VY A(% Y >  f(4, f ( Y ) ) .  

Define A(%,  Y ,  f (4 ,  f ( y ) )  to be 

Y = x + 1 ' f ( Y )  < f (4 .  

Then 3f Vx Vy  A ( x ,  y ,  f ( x ) ,  f ( y ) )  expresses "< is not well-founded". Although 
the set of natural numbers is well-founded its nonstandard enlargement is 
not well-founded. Since both of them satisfy the same first order sentences, 
we conclude that (1) cannot be expressed in terms of homogeneous, first 
order quantifiers. 

Proposition 24.9 explains why we have to place-different eigenvariable 
conditions according as a quantifier is introduced in the antecedent or the 
succedent. If we were to use the same conditions on eigenvariables in the 
succedent as those in the antecedent, we would have 

On the other hand, 

(;;;)w(%, y , u ,  v ) t f  3% 3 y V u V v 1 A ( x , . u ,  y ,  v). 
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So it would follow that 

contradicting Proposition 24.9 

EXAMPLE 24.10. Let S(a,, b l , .  . ., a,, b,, . . .) be a formula with free variables 
a,, b,, . . . , a,, b,, . . . and let S,(al, b,,.  . . , a,, b,) be short for 

3u1 Vv ,  . . . (V S,(u,, v,,. . ., u,, 8,)) + 

n 

First of all, since 

is easily proved, we can identify 

by using cuts. 
For every n, we first consider a figure Pn ending with 

We shall demonstrate P ,  as an example: 

It is important to note that we do not introduce S3(. . . )  + So in one step. 
Now, 

P,, n < w 
~- 

V, S,(a,, b l , .  . . >  an, b,) - So 
324, Wd, . . . (V, S,(u,, 81,. . . , u,, v,)) ---f So. 
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I t  is easy to see that the eigenvariable conditions are satisfied: The P,’s 
are carefully constructed so that the auxiliary formulas of an eigenvariable 
bi are all identical. (S,(al, b,, . . . , a,, bn) Inzo  is the required enumeration of 
the auxiliary formulas of the Q : right introductions. 

EXAMPLE 24.11. In order to state the next example we need some auxiliary 
definitions. Consider a quantifier of the form Q T ( x ;  y ) ,  where the lengths 
of x and y are u and b, respectively. Suppose tl and p can each be decomposed 
into two sets E l ,  Z, and B1, Pz respectively, i.e., u = El u E, and f i  = B1 U 8, 
where CC, n E, = 0 and 8, n Bz = 0, and in addition, 

(1) T(y )  5 if y E Pi, 
( 2 )  ~ ( y )  c CC, if y E 1,. 

If we well-order E l ,  E,, B1, B, each and restrict T to B1 and BZ respectively, 
then we obtain T ,  and T ,  such that 

v y  E B1 ( T , ( y )  = T ( y )  c E d  v y  E B e  (T,(y) = W )  c E d .  

Suppose A($,  y )  can be expressed as A’($ , ,  xz, yl, y 2 ) ,  where (xl, 3,) is the 

We now show that under those circumstances 
partition of x determined by ( E l ,  CC,) ; and similarly with ( y , ,  y , ) .  

Q’(x; Y )  A (x, Y )  QT1($i;  y1) QT2(xz ;  yz) A’($,, $2, ~ 1 ,  Y Z )  

is provable. 
Suppose that A ( a ,  b) can be written as A’(a , ,  a2, b,, b,) corresponding to 

E l ,  Zz, 81, B,. 
1) ~~ A’(a1, bi, b2) + A ( a ,  b) 

In introducing QTa,  the variables of b, depend on all the variables of U ,  

as well as those of b, and some of the variables of u2 (determined by Tz) .  

From the partition of the variables, it  is evident that  the variables of dl do 
not depend on the variables of c,, hence a cycle can be avoided. 
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It is easy to see that 6) of the eigenvariable conditions (Definition 24.4) is 
satisfied. The other conditions are obvious. 

We can improve our system of heterogeneous quantifiers as follows. 

DEFINITION 24.13 (cf. Definitions 24.3 and 24.4). (1) Add to 2) of Definition 
24.4 the following. If A(al )  and A ( a z )  are auxiliary formulas of an eigen- 
variable a of an application of a homogeneous Q : right and a is the ath 
variable of a,, then a is the C C ~ ~  variable of az. 

To the definition of <, the following is added. If a is an eigenvariable of a 
homogeneous Q : right and b is a free variable which occurs in the principal 
formula of a,  then b < a,  i.e., a depends on b. 

( 2 )  Part 3) of Definition 24.4 should read: All the auxiliary formulas of an 
eigenvariable of a heterogeneous Q : right are identical. 

(3) In  6) of Definition 24.4, read "heterogeneous Q :right" in place of 
" Q  : right". 
(4) Suppose QT(x ;  y )  can be split into QT1(xl;  y l )  and QT*(x2; y z )  in the 

sense of Example 24.15. We shall abbreviate those quantifiers as Q, Q1 and Qz. 
Then introduce a new rule of inference: 
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This new system has the advantage that some proofs become much simpler, 
even cut-free. 

EXAMPLE 24.14. A game is called an open game if the winner is determined 
after a finite number of steps. Let Y ( a , ,  bl ,  a,, b,,. . .)  denote the game in 
which the players I and I1 choose the terms of the sequences a l ,  a,,. . . and 
b,, b,, . . . alternately and the winner of the game is determined. Then a game 
is open if 

In our new system, there is a simple proof of the fact that  an open game is 
determinate, i.e., (1) implies 

v x ,  3y1 vx, 3 y ,  . * . Y(x1,  y1, .  . .) v 3x1 v y ,  3x2 v y ,  . . . l Y ( X , ,  y1,.  . .). 

vXn+1Yn+l. . . Y ( a 1 , .  . . , b,, xn+1,. . .) + 

+ v x ,  3y , .  . . vx, 3y,. . . Y ( x 1 , .  . . , x,, y,,. . .). 

Notice that our new rule of inference is applied repeatedly. From ( Z ) ,  by 
V : left, 
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In  this proof, the auxiliary formulas of the heterogeneous Q : right are 

with eigenvariables a:+l, a:+,, . . . and b,, b,, . . . , respectively. The eigen- 
variables of homogeneous quantifications are a,, a,,. . . . Enu~nerate the 
auxiliary formulas of applications of Q : right introductions in the order of 

Then one can check the eigenvariable conditions (cf. Definition 24.4). We 
shall examine only condition 6). Here A ,  is i Y ( a , ,  b,, . . .), each a, satisfies 
the condition, and in 6.0) a, is used as an eigenvariable of a homogeneous 
inference. 

If e is an eigenvariable of a heterogeneous Q : right and e < ai, then e is 
one of b l , .  . . , bi-l. If 3x1 VYI . . . 3xi V y i  . . . is denoted by Q T o ( y ;  x), then 
b ,  (1 < j < i - 1) is the jth eigenvariable of the Q : right applied to A ,  and 
j E To(;). Consider 6.n), where n >, 1. Let A ,  be Y ( a l , .  . . , b,, . .). Sup- 
pose d is one of 

a,, b1, . . . , a,, b,, b",,,, b:+,,, . . . . 

If d is used as an eigenvariable of a heterogeneous Q : right then it is one of 
b l , ,  . . , b,, its auxiliary formula is A ,  and 0 < n. Since by, j = n + 1, n + 2 , .  . . 
is not used as an eigenvariable, a relation e 4 b3 never happens. Next, let c 
be one of the variables a,, bl,. . . ,a,, b,. If c is an ai, then the first possibility 
of an eigenvariable e of a heterogeneous Q : right, such that e < ad is one of 
the variables bl,. . . , bi-l. These are eigenvariables of A , .  Since the b,, . . . , b,-l 
do not depend on any variable, this completes the discussion of eigenvariables. 

EXAMPLE 24.15. Let US consider another formulation of determinateness of 
an open game. An open game is expressed as V, Y,(a,, b,, . . . , a,,,, bm). Let 
us provethat thisisdeterminate. Let Y(a,,.  . . , b,, a:+,, . . . , b,) beY,(a,,. . . , bk)  
i f l , ( k < m  
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m 
a;+1, a;+2, .  . . for V Y k ( a l , .  . . , b,, a,,,,. . .). 

k 

The reader should go over the eigenvariable conditions. 

EXAMPLE 24.16. 

REMARK. There are examples which are cut-free provable in our new system, 
but which require the cut rule in the old system. For example, consider 

Here (Vx 3y)  and (3% V y )  are regarded as heterogeneous, while Vx 3y and 
3x  V y  are considered two applications of homogeneous quantifiers. 
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(1) This is provable with a cut in the old system: 

( 2 )  This cannot be proved without the cut rule in the old system, for if we 
assume a cut-free proof, then 

-z . . . A(a,, h a ) , .  . . ?A(c,, d,) . . . 

is provable for some free variables. Then for some tc and f i ,  a ,  is cq and 6, is 
d,. Therefore in 

---+ . . . A ( a ,  b ) ,  . . . )  1 A ( a ,  b ) ,  . . . 

both a and b are eigenvariables of a heterogeneous Q : right. But this implies 
that A(a,  b) and l A ( a ,  b)  cannot be ordered. 

(3) This sequent is provable in our new system without the cut rule: 

PROPOSITION 24.17. A $roof in determinate logic that satisfies the condition ( Q )  
in Definit ion 23.16 i s  a proof in the (extended) heterogeneous system. 

PROOF. Suppose a proof P in a given language, say L, of determinate logic 
satisfies (Q). Define a language L( J )  by admitting logical symbols of precisely 
the same arities as those of L and defining J as follows. Let Q f z  be a quantifier 
of the determinate logic. 

Let x be the sequence of all variables of z for which f assumes the value 
V and let y be the sequence of all the variables of z for which f  assures the value 
3. Let y be the Pth variable of y .  Then tc E T(P) if and only if the ath variable 
of x precedes y in z.  Such a T belongs to J .  Therefore we can translate Q f z  
into QT(x;  y ) .  Thus the formulas of P are regarded as those of the language 
L(J) .  



INFINITARY LOGIC [CH. 4, $24 268 

By renaming variables in P (if necessary), we can assume the following 
condition because of (Q). 

(*) If the inference 
I’ - A ,  A ( Q ,  b) 

I‘ - A ,  Q7’(x, Y )  A ( $ ,  Y )  
- . ~ ~ _ _ _ ~  - 

is a heterogeneous Q : right in P ,  then no eigenvariables in P used above 
I‘ - A ,  QT(q y )  A ( $ ,  y )  occur below r - A ,  Q”(x, y )  A($ ,  y ) .  

In order to see that P is a proof in this heterogeneous system, it suffices 
to examine the eigenvariable conditions in Definitions 24.4 and 24.14. There 
l ) ,  2) and 4) are exactly conditions on P. By virtue of (Q), 3) is satisfied. 
Suppose c < a holds in P. Then the height of c is less than the height of a ;  
hence 5 )  is obvious. 

We can define an enumeration of the auxiliary formulas of the heterogeneous 
Q : right in P in such a manner that it satisfies the eigenvariable condition 
6). Let J1 and J z  be heterogeneous Q : right in P ,  with J1 above J z  and 
with J1 and J z  having the form 

I‘l 4 A b  A ( @ ,  b) 

J 1  rl -+A QT1(x, y )  A (x, y )  

r, - A z ,  B(c ,  4 4 
J z  F-fdYQT,(Xl,yl) B(x’,  y ’ 2  

where e is the sequence of variables that are neither in c nor in d .  Suppose 
that d is in d (or e ) ,  a‘ is an eigenvariable in P ,  and a‘ < d (or a‘ < e). Since (*) 
implies that  d (or e) is not an eigenvariable above Fl ---f A,, Q T 1 ( x ,  y )  A ( x ,  y ) ,  
a‘ cannot be in Q. An appropriate enumeration of the auxiliary formulas in P 
is obtained if we enumerate them from the bottom. 

We shall now investigate the interpolation theorem for subsystems of 
heterogeneous systems. 

DEFINITION 24.18. Let q be an arbitrarlr symbol and let A be a formula. We 
say that an occurrence of q is positizle or negative according as q lies in the 
scope of an even or odd number of 1’s. A 2 B is understood to be i A  v B. 
We say that q is positive in r + A  if it is positive in A or negative in r; and 
that  q is negative in r + A  if it is negative in A or positive in r. 

A sequent r 4 A is said to be negative if all the heterogeneous quantifiers 
in it are negative. 
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PROPOSITION 21  19. (1) 112 our old sv , ten i ,  e w z ’  mlgattve sequent zs eather 
cut-fvee firovable OY has  a coitiztcv-model 

( 2 )  T h e  iizterpolatioii theorciii Izolds fov mgat ioe  scquozts Suppoce I’ - + A  as 

a zlaliti ifegatzve sequelit m i d  1{1’1, A]} ,  {T2 ,  A,}] zs n dccompositzoii of r + A  
such that {TI, A , }  aizd {T2,  A?} have at least o m  pi~cdzcate  symbol  1 1 1  conzwtoia 
Then there exasts a joririula C (Fqot izccessarily Izegative) S Z L C ~ L  that I’, + A l ,  C 
and C, r2 + A 2  are i lal id ,  m i d  all the jhrcilicate s.twbols aiid frcp ijariables zn C 
occur both z ~ z  {T1, A ] }  aizd {T2,  </I2}. 

PROOF. (1) This can be proved similarly to other completeness proofs, by coil- 
structing a tree for a given sequent. Notice that in a stage which concerns 
heterogeneous quantifiers tlie reduction is done in the antecedent only. 

( 2 )  For technical reasons, we assuiiie that all the homogeneous quantifiers 
are 3. This restriction is not essential. Following Definition 23.18, we say 
that a figure P is a proof in RHS’ if P satisfies the following: 

(i) P satisfies all the conditions of a proof in  our system except tlie eigen- 
variable conditions. 

(ii) The only inferences whicli introduce quantifiers are 3 : left introduc- 
tions, 

where no variable in a,  occurs in the lower sequent. 

Notice that P may contain heterogeneous quantifiers, but they are introduced 
either by initial sequents or weakenings. Then in a manner similar to the 
proof of Proposition 23.19, we can prove the following: Let P be a proof in 
RHS’ ending with I’ + -1, and suppose a well-founded relation <,, is defined 
for the free variables in 1’ - A .  Then <,) can be extended to a dependence 
relation for eigenvariables in P.  

LEMMA 24 20. Let P be a cut-free proof of TI, r2 - A l ,  A 2  i n  our sy s t em tn 
uihich ez‘erv hoirtogeizcous quaiitz f icr  zs 3 ,  120 rule of heterogeiieous quanttfaerr 
applies,  a i d  every  ziifeveizee of tlzc idvoductioia of a quaittzfier zs apt anference 
of the iiztroriuctzoia of 3 t i i  the  succedcitt  S u p p o s e  also that {rl, A,} and {r,; d p }  
have a predacate syiizbol 111. co~iznzo~z.  The i t  there exist  cut-fvee pvoofs  P I  a i d  P ,  
zn IIHS’ aud a fovmula C a u c h  that the eiid-sequeizt of P I  15 

c ,  rl +L 
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the end-segueizt o j  P,  is 

r, + A , ,  c, 
and every jree varzable a i d  fwedzeate symbol in C as contnaon t o  { T I ;  A , )  and 

{r,, A d .  

PROOF. Similar to that of Lemma 23.20. 

We now return to t h e  proof of Proposition 24.19 ( 2 )  which we will do in a 
manner similar to  3. of the proof of Theorem 23.15. 

Consider a cut-free proof, I ) ,  of TI, I’, --t A , ,  A,. The eigenvariable condi- 
tions for such a proof can be expressed in terms of a well-founded relation 
<. E‘ix such a < tlirougliout. il’e may assunie that every homogeneous 
quantifier in P is 3, that heterogeneous quantifiers are introduced in the 
antecedent only, and that free variables which occur in T I ,  r, - - tA, ,  A ,  do 
not depend on any eigenvariables in 1’. Let {Q*(x; y )  A(x,  y ,  d ) }  be an 
enumeration of all principal formulas of the Q : left introductions (heteroge- 
neous Q or lioniogencous 3 : left) in  tlie given proof wliose descendents are in 
I’, or A,. \Ye define {QT(x; y )  B(x, y ,  d ’ ) }  similarly for r, and A,. Then we 
can construct a proof P‘ of 

{1QT(x;  y )  z4(x, y ,  4 v A ( c ,  a,  d ) } ,  +QT(s; Y )  W, Y ,  d’) v B(e ,  b, d ’ ) } ,  

such that ever!. homogeneous quantifier in P’ is 3 ; such that tlie only inference 
wliicli introduces a quantifier is 3 : riglit; such that c, d < a for any a in a,  
c in c and d in  d ;  such that e ,  d’ < b for any b in b, e in e and d’ in d ’ ;  such 
that every free variable in A (x, y ,  z) occurs in TI or A ,  ; such that every free 
variable in B(x, y ,  z) occurs in r, or A , ;  and such that all variables in a and 
b are different. (lye have used ambiguous notation such as the same letters 
x and y for different quantifiers. The meaning of the above expressions should, 
however, be obvious.) 

Then, by Lemma 24.20, there exists a forniula C such that 

C, { ~ Q * ( x ;  y )  A ( % ,  y ,  d )  v Ajc ,  U ,  d ) } ,  1’1 + A 1  

{ l Q T ( ~ ;  Y )  H(x, y, d )  v B ( c ,  b, d ) ,  1 ’ 2  --t A,, C 

are provable in  HIIS’ and C satisfies some appropriate conditions. Let f be 

and 
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a sequence of all free variables in C which are not coninion to {TI; ill} 
and (r2; A,}. We assunie that the variables in f are arranged so that if f l  
precedes f 2 ,  then it is not the case that f 2  < f l .  (< is the relation which is 
defined for the original proof P.) Let P ,  and P, be proofs in IIHS’ of the 
above two sequents and let X 1  and < 2  be the dependence relations for the 
free variables in the end sequents of P ,  and P,, respectively, which are 
induced from < (for P). Then, we can extend these relations to all the free 
variables. Let us denote these extended relations by and <p,. 

Next, consider the following quasi-proofs, Pi and P;: 
p, 

There are three kinds of variables in f, tliose of u, those of b, and the rest. 
The first ones, denoted by f l ,  are eigen\miables in Pi; the second ones, 
denoted byf,, are eigenvariables in Pi ;  and the third ones are denoted by 
f3. Define T‘, a function from f2 to subsets of fl, so that it satisfies the 
dependence relation <. Note that 

V Z  (QT(u;  0)  ( i Q T ’ ( x ;  y )  A ( $ ,  y .  Z) v A ( u ,  0 ,  z)) 

is provable. Therefore, we obtain 
p; 

\Jw QT’(w,; w,) C(W, ,  ~ 2 ,  w ) ,  

where w l ,  w,, and w replace f l ,  f, and f3, respectively. Similarly, we obtain 

r, ---t A,, VW Q”(w1; w?;) C(w1, w2, w ) .  

Since we may assunie that the eigenvariables of the proofs of 

are different from those of Pi,  we naturally extend < p ,  to the entire proof of 
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I t  is easily shown that it satisfies the dependence relation; indeed, T’ was SO 

chosen. In a similar manner we extend 

Even with our new inference, the cut-elimination theorem for the entire 
system can hardly be expected to hold. Defining a complete system for a 
heterogeneous language is a difficult problem. It is even more difficult if we 
wish to define a cut-free complete system. We can see this clearly from the 
following example. 

EXAMPLE 24.21. Consider 

This sequent is provable in our system: 

{ct  # c ~ } , + ~ ,  A ( a  = c, 3 zt = c,+J A (A a # c, 2 Z.I = a),  
% * 

A ( b  = c , 3  v = c , + ~ )  A (A b # c , >  v = b) + (a  = b z u = 8) A u # co 
% t 

can be easily proved. I t  then follows that 

Va 321 ( A  ( a  = C, 3 zt = c,, I )  A ( A a  # C, 3 $6 = a ) ) ,  

V b  3v (A (b  = c, 2 ‘u = cttl) A (A b # c, 3 z’ = b ) ) ,  

z E 

I z 

On the other hand 

4 Va 3zt (A ( a  = C, 3 u = c,+,) A (A a # C, 3 zt = a ) )  
k t 

and 
4 V b  3v (A ( b  = c, > v = c,+,) A (A b # c, 3 v = b ) )  

i I 

are provable in our system. Therefore by the cut rule 

is provable. 
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If we apply Gentzen-type reduction, which was primarily defined for 
finite languages, to the proof given above, which contains a cut, then we will 
obtain a “proof-like’’ figure 

{ci # cj}i+ j 4 { ( a  = b ci+l = cj+l) A c i + ~  Z cO}i,j> 
{ ( a  = b = a = c ~ + ~ )  A a # c0Ij, 
{ ( a  = b = ci+l = b )  A ci+l # c0}*, 
( a  = b = a = b)  A a # co 

___-. 

{ci f cjIi+j + (i;:) ( ( a  = b = u = v )  A u # c,,). 

It is obvious that in this figure the auxiliary formulas of the eigenvariables 
a and b are not unique. Therefore it cannot be a proof in our sense. 

From this figure, we see that there is little hope of expanding our system 
so that this figure will fit into it and hence little hope of establishing a complete 
cut-free system. 

Although our system is far from being complete, a weak completeness can 
be proved. For the proof, we employ a more general formulation of the 
generalized cut rule that we will call the strong generalized cut rule (s.g.c.) : 
Let 9 be a non-empty set of formulas. Suppose, for an arbitrary decomposition 
of 9, say (P1, F2), there are subsets of Sl and F2, say @ and Y, respectively, 
and subsets of r a n d  A ,  say T’ and A’, respectively, such that @, r‘ --f A‘,  Y. 
Then I‘ ---t A can be inferred. We also allow the case where F(A’) has some 
repetition of some formulas of T(il). 

It is obvious that the s.g.c. rule is a generalization of the g.c. rule that  
involves two types of inferences, inferences that are essential cuts and 
inferences that are basically weakenings. 

PROPOSITION 24.22. Consider a language with heterogeneous quantifiers L that 
contains individual constants co, c l , .  . . , c,, . . . , a < K ,  and contains the logical 
symbols and V a s K ,  where K i s  an  ordinal. T h e n  this system, augmented 
b y  the axioms 

- t t  = c0,t = c1,. . . )  t = c,,. . . (a  < K )  

for arbitrary terms t ,  i s  complete. If a sequent i s  provable in this system i t  i s  
also provable without a n  essential cut. 

PROOF. Let 8 be the length of J and let z denote the set (co, cl , .  . ., c,?.. .>. 
Consider a formula of L of the form QT(x; y )  A ( $ ,  y ) .  Let a be an ordinal and 
suppose that T(u) is of type pa, according to the natural ordering of ordinals. 
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Let f" be a function from tPa, the Cartesian product of t, to z; let m, n, etc., 
be sequences (of appropriate type) of elements of t. Suppose ma, a sequence 
my,,, myl , .  . ., where T ( a )  = {yo,  y l , .  . .}, is given for each a < 8. Then f (m)  
will denote the sequence of sequences fo(mo), fl(ml),  . . . , f*(m"), . . . . Finally, 
let L' be the extended language in which Vf and A, are allowed, where 
in Vf, f ranges over all sequences of functions defined as above and in A,, 
m ranges over all the sequences of elements of t defined as above. When 
those symbols are involved, provability means provability in the system with 
language L'. Note that L' is an extension of L. 

Under these conventions we shall first show that 

(1) Q T ( ~ ;  Y )  A (x, Y )  - V A A (m,  f (m)) 

is provable. Let us abbreviate A, (a, = m,) to u = m. Let g be an arbitrary, 
but fixed sequence of functions, defined as f above, and let mf denote an 
arbitrary, but fixed sequence of elements of t, of appropriate length, chosen 
for f .  Let 

f m  

( 2 )  . . . , A ( n ,  g (n ) ) ,  . . . + . . . , A (mj, f(mf)), . . . 

be a sequence, where g is fixed, n and f range over all possibilities and the 
mj's are arbitrarily chosen. f = g, where n = mf Then ( 2 )  is provable. 

Now we assume that L' has an adequate number of free variables so we 
can carry out the subsequent argument. For each a < 8, and for each n, 
choose a free variable of L'. Then 

(3) + %,n = C O ~  Qm,n = C 1 ,  

is an axiom. We assume that we can choose different variables for different 
(a ,  n). For each c, there is a g such that g"(n") = c. Therefore, for an arbitrary 
choice of (c,,, c u 1 , .  . . )  a sequence of constants of length 8, ( 2 )  for such a 
g implies 

(4) . . . , ao,n = coo, ~ 1 , n  = c u l l .  . . , A ( n ,  an) ,  . . . + . . . , A(mj, f (mj ) ) ,  . . . > 

where an is the sequence u ~ , ~ ,  u ~ , ~ ,  . . . . Then by an application of the strong 
generalized cut rule to (3) and (4), 

(5)  . . ., A ( n ,  un),. . . + . . ., A(mf, f ( m j ) ) , .  . . 

for all possible combinations of my Therefore from (5 )  
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. . . , A ( # ,  un),  . . . --t . . . , A A(m, f (m) ) ,  . . . 
m 

or 
(6) . . . , A ( n ,  an), . . . 4 V A A(m,f(m)) .  

fm 

Finally, introducing quantifiers in (6), we obtain 

which is (1). Since we have chosen distinct free variables for different (a ,  n), 
it  is obvious that the eigenvariable conditions are satisfied. 

In  the proof of (l), the strong generalized cut rule is applied only to atomic 
formulas. 

Next, we want to prove the converse of (1) in the form: 

(7) V x 3 y A ( x  = n I y  =f(n)) ,vAA(m,f(m))  - Q T ( x ; y ) A ( x ; y ) .  
n f m  

First, we have 

Q = t t , ~  = n ~ b  = f ( n ) , A ( n , f ( n ) )  + A ( a , b )  

for every f and n, and 
+a ,  = co, a, = c l ,  

Therefore, by the strong generalized cut rule, 

From this we obtain 

V x 3 y A ( x  = n 2 y  = f ( n ) ) , A A ( m , f ( m ) )  - + A ( u , b ) ,  
n m 

and 

Since (8) holds for everyf, it follows that 

(9) V ~ 3 y A ( x  = n ~ y  =f(n) ) ,vAA(m,f (m))  - Q T ( x ; Y )  A ( x , y ) ,  
n fm 

which is (7).  
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On the other hand 

- V x 3 y A ( x  = n 3 y  =f(n)) 
n 

(10) 

is provable for every f in the following way. For an arbitrary r~ and m, 

a = n - a =  m = fW,  
hence 

a = n + 3y A (a = rn 3 y = f(m)). 
rn 

Also, 
+ a,  = co, a ,  = c l , .  . . for each a. 

Therefore by the strong generalized cut rule, 

+ 3y A (a = m 3 y = f(m)). 
m 

From this, (10) follows. 

examined. 

Q T ( x ;  y )  A(%, y ) .  Then the set of formulas 

The eigenvariable conditions in the proofs of (1) and (7)  can be easily 

We can extend the above method. Let A be a formula of the form 

{Vx 3y A (x = n 3 y = f(n))}j 

in (7)  corresponding to A will be denoted by @(A). Note that @(A) actually 
depends only on the length of x; therefore it does not matter what free variables 
A may contain. 

n 

LEMMA 24.23. Let B,, B 2 , .  . . be all the subfornzulas of A of the above form. 
T h e n  there i s  a quantifier free formula A (in the extended language) such 
that A contains exactly the same free variables as A and 

are provable without essential cuts. 

PROOF (by transfinite induction on the complexity of A ) .  Since other cases 
are obvious, we shall work on the case where A is of the form Q T ( x ;  y )  A(%,  y ) .  
To prove the first sequent, we proceed as follows. Consider A(d, e)  where d 
and e are new free variables. Then, by the induction hypothesis, there is a 
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quantifier free formula A ( d ,  e )  such that 

@(Bl) ,  . . . , A ( d ,  e )  -+ A ( d ,  e)  

is provable without cuts. Therefore with the same reasoning as for (a ) ,  

@(B]),. . ., ~ ( n ,  g ( n ) ) , .  . . - . . . ,  A(mj,f(mj)),. . . 

is provable without cuts (cf. ( 2 )  above). The proof of (1) then follows. 
In proving the second sequent, start with 

@(B,), . . . , A(d, e)  -+ A ( d ,  e) 
From this we obtain 

@(Bl) ,  . . . , u = n,  u = n 2 b = f (n) ,  A(n, f (n))  4 A(u,  b) ,  

without cuts. Then, by following the proof of (7),  we obtain a cut-free proof of 

@(A), @(B,) , .  . . )  A A .  

Now consider an arbitrary, valid sequent of L, say 

A, ,  A ] , .  . . +B,, B,,. . . ,  

and attempt to prove it. Since our system with language L' is consistent, the 
validity of the given sequent and (11)  imply that 

(12) @, A,, A,, . . . + B,, El, .  . , 

is valid, where @ consists of the formulas of the form 

VX 3y A (X = n 2 y = f(n)) 
n 

Therefore (12) is provable (without essential cuts) in the homogeneous part of 
our extended system. 

On the other hand, @, A ,  + A, and @, 3, + 3, are provable in the system 
with language L' without essential cuts. Now by the strong generalized cut 
rule with the cut formulas 

(13) @, A,, A,, . . . , B,, B,, . . . 

we obtain the given sequent. 
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Therefore, what remains to be shown is that this essential cut in the proof 
of the given sequent can be eliminated (in the language of L’). If so, then the 
given sequent of the language L can be proved in the original system with 
language L and without essential cuts. 

In proving the cut-elimination theorem, we shall make use of the proof 
given above. 

The proof is carried out with a generalized Gentzen’s reduction method. 
In order to simplify the discussion, we assume that the language L has no 
function symbols. I t  will also be assumed that the initial sequents consist of 
atomic formulas only. We shall prove the cut-elimination theorem in the 
following form. 
(*) Let P be a proof (in L’) such that 

(i) Along each branch of the sequents there is a t  most one essential g.c., 
(ii) the principal formulas of the quantifier introductions which are 

ancestors of cut formulas are of the form 

3y A (a = rn 3 y = f(rn)) 
m 

and 
V x 3 y A ( x =  r n > y = f ( m ) ) ,  

m 

while the auxiliary formulas are of the form 

A (a = rn 3 b = f(rn)) 
rn 

(in the antecedent), 

A (a = rn 3 f ( n )  = f(rn)) 
m 

(in the succedent), 

3 y h  ( X  = r n 3 y  =f(m))  
m 

respectively (cf. (13) above). 
Let S : r - A  be the lower sequent of a s.g.c. We then list some consequences 

(iii) S as well as the descendents of S remain unchanged. 
(iv) Either the s.g.c. by which S is obtained in P is eliminated, or sequents 

of the form . . . D . . . 4 . . . D . . . are eliminated, or some introduc- 
tions of logical symbols above S are eliminated, or the essential g.c. 
is pushed up one step. 

of a reduction. 
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Let 9 be the set of cut formulas of the s.g.c. above S. The reduction is 
defined according to the stage number k (mod 10). 

k = 0 (mod 10). Look for a sequent of the form 

. . , D  , . . .  --L . _ . ,  D , . . .  or . . . +  . . . ,  a = a ,  

among the upper sequents of S. Suppose there is one. In the subsequent 
treatment, the cases with earlier numbers have priority over those with later 
numbers. 

Case 1.  For some D as above, D occurs both in r and A .  Change the figure 
above S to 

D - D  
(no cuts). ~~ - _  r - A  

Case 2 .  An equality a = a occurs in A .  Change the figure above S to 

+ a  = a  -_ ~ 

. . .  + . . . ,  a = a  , . . .  

Case 3. For any such D ,  D does not occur in either r or A .  This case cannot 
happen, since then D must belong to both F1 and F2 for any partition 

Case 4. D occurs in r but not in A .  Then the D in the antecedent is not a 
cut formula but the D in the succedent is a cut formula. Eliminate all the 
upper sequents which contain D in the succedent. If D occurs in the antece- 
dent in one of the remaining sequents (and such a sequent exists), then 
regard it as a formula in r. Do the same to  all such D’s. Thus the set 
of cut formulas will be F-{all such D’s) and Case 4 can be eliminated. 

Case 5. D occurs in A but not T. The reduction is defined as for Case 4. 
k 

(Fl, F*) of F. 

1 (mod 10). There is an upper sequent of the form 

. . . + . . ., t = co,. . ., t = c l , .  . ., t = c,,. . . (a < K ) .  

If all the t = c, occur in A ,  then r --f A can be obtained from 

and hence without cuts. Otherwise consider the following. Let G be the set 
of all formulas of the form t = c, wliicli are cut formulas and let H be the rest 
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of the cut formulas. Let (Fl, F2) be apartition of 9. Then there is aOl E 

a Yl s Fl n H ,  a O2 c F2 n G and a Y2 _c F2 n H such that 
n G, 

@is Yi, + A f ,  @ 2 ,  u/, 
is an upper sequent of S. 

fixed. Then for each such partition there are Yl and Y2 such that 
Consider all the partitions of F which leave GI = F1 n G and G2 = 9, n G 

G,, y1, r' + A ' ,  G,, lu, 

is provable without cuts, without increasing the number of inferences. Hence, 
by the s.g.c. rule applied to H ,  we obtain 

G ~ ,  r + A ,  G ~ .  

This is true for all possible partitions of G ;  hence by the s.g.c. rule applied 
to G, we obtain T 4.4. Here the last s.g.c. is regarded as a weak inference. 
Thus this case can be eliminated. 

k 3 2. Suppose there are cut formulas whose outermost logical symbols 
are 1. (If there is no such symbol, pass on to the next stage.) Take an arbitrary 
upper sequent So : 

s : . . . , 1 ~ ,  . . . , ro +do,. . . , 1 ~ ,  . . ., 

where l A ,  4 3 , .  . . are cut formulas and To c r and do c A .  Let Qo be the 
sub-proof of P above and including So. Then, by changing Qo slightly, we 
obtain a proof of 

S; : . . ., B , .  . ., To +do,.  . ., A , .  . . 

without increasing the number of inferences. Recall that  there is no essential 
cut in Qo. Replace each formula of 9 whose outermost logical symbol is 
1, say l A ,  by A ,  thus obtaining 9'. Then an arbitrary partition of 9, 
say (9;, S;), induces a partition of 9, say (Fl, F2), in a natural manner. 
If So, as above, is an upper sequent of S corresponding to  (Fl, F2), then 
Si corresponds to (Fi, Fi). Thus the assumption for the s.g.c. rule applied 
to 9' is satisfied. By a s.g.c. we obtain S. In this case some inferences which 
introduce 1 are eliminated. 

k G 3. Consider all the formulas in 9 whose outermost logical symbols 
are A. Let So be an upper sequent of S: 

. . . , A Ci,. . ., To +do,. . . , A A j , .  . . , A B,, . . ., 
i j h 



CH. 4, $241 A GENERAL THEORY O F  HETEROGENEOUS QUANTIFIERS 28 1 

where ro c r and do c d and A, C, etc., are only some of the cut formulas 
whose outermost logical symbols are A. Let Qo be the figure which is above 
and including So. Then, changing Qo in an obvious manner, we can construct 
a quasi-proof of the sequent 

. . ., {C,},,. . ., ro -*do,. . ., A j , .  . ., Bh, .  . . 

for every combination of (. . ., j , .  . ., h,.  . .). Let 9‘ be the set of formulas 
obtained from F by replacing all the formulas of the form hi Ci by 

{CO, C,, . . . , Ci, . . .}. 

Let (9;, 9;) be a partition of 9 for which A, Ci belongs to g2 if Ai Ci belongs 
to 9 and there is one Ci which belongs to  Fi; A, Ci belongs to if all 
Co, C,, . . . , C,, . . . belong to Fi; and all other formulas belong to F1(F2) 
if and only if they belong to 9;(9;). There is an upper sequent of S cor- 
responding to (PI, S2) : 

. , ., A Ci,. . ., I‘, +do, .  . ., A A j , .  . ., A Bh,. . . . 
1. j h 

Then, as was shown above, we can change this to 

. . ., {C,},,. . . , ro -.do,. . ., A j , .  . ., B,,,. 

for every combination of . . ., j , .  . ., h,.  . . . Since A, Ci belongs to F, only 
if all C,’s belong to F;, 

. . ., {C,},,. . . E 9; and . . ., Ai,. . ., Bh,. . ,, G 9;. 

This argument goes through for any partition of 9’. Therefore the s.g.c. rule 
can apply to 9‘: 

k 
k z 5 .  Consider all the formulas in F whose outermost logical symbols are 

quantifiers. If such a formula occurs in the antecedent of a sequent, then the 
auxiliary formula of such qualifications is either of the form 

4. The reduction for V can be defined likewise. 

h ( a  = m > b  = f ( m ) )  
m 

or 
3yA(a = m 3 y  =f(m))  

m 

If it occurs in the succedent, then the auxiliary formula is either of the form 
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A (a = m >f(n) = f (m) )  
rn 

or 
3y A (u = m 3 y = f (m) ) .  

rn 

If 1) and 3) are the case, then substitutef(n) for b with tz arbitrary; if 2 )  and 
4) are the case, then do nothing. For the first case, replace the original cut 
formula by 3) and for the second case replace it by 2 ) .  If there are other 
formulas with b, then they are also replaced byf(n).  Given a partition of the 
new set of cut formulas, it should be obvious how to induce a partition of the 
original set. 

k = 6. Suppose @, To + A o ,  Y is an upper sequent of S.  Let i A ,  . . . be all 
the formulas in To whose outermost logical symbols are 7, and let p be the 
rest of ro. l B ,  . . . and A are defined likewise. Then we can construct a quasi- 
proof of 

@ , P , B  , . . .  - A , A  ,..., Y 

- 

I 

without increasing the number of inferences. By the s.g.c. rule applied to the 
same cut formulas, we obtain F +A' ,  where F is obtained from r by 
replacing some 1 A ' s  by B's, and A' is defined likewise. So we obtain 

where - stands for two inferences, a i : left and a i : right. In this 
case some logical inferences (introduction of 1) are eliminated from above 
the s.g.c. 

k = 7. Let @, To + A o ,  Y be an upper sequent .of  S.  Consider all the 
formulasinAowhoseoutermostlogicalsymbolsareA,say. . . AiAi , .  . . , A j B j , .  . . 
and let A. denote the remaining formulas in do. We can construct a quasi- 
proof of 

- 

I @,ro -+do ,..., A ~ , . .  ., B ,  ,..., Y 

for every combination of ( .  . ., i,. . ., i,. . .). Hence by the s.g.c. rule we 
obtain 

r' + A , .  . . , A i , .  . . , B,, . . . , 

from which we can infer r + A .  
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k E 8. Consider the formulas in To whose outermost logical symbol is A. 
k f 9. Let @, To + A o ,  Ybe  an upper sequent of S .  Let Q'(x; y) A(%, y), . . . 

be all the formulas in To whose outermost logical symbol is Q T ,  and let Po 
be the rest of I',. Let QT'(u; u)  B(u,  u ) , .  . . be all the formulas in A. whose 
outermost logical symbol is QT',  and let io be the rest of do. Then we can 
construct a quasi-proof of 

I 

@> Po, { ~ ( s ,  ~)>a,s>-. . + ( ~ ( b i ,  t i ) > i , .  . - 9  dot YJ 

for some u,  s and a's. Applying the s.g.c. rule we obtain 

Introducing quantifiers to both sides, we can infer I' + A .  Since the eigen- 
variable conditions are defined for an entire proof, it is obvious that those 
conditions, which are satisfied in P, are transferred to the new figure. 

This completes the description of the reduction. 
Take an arbitrary inference which is not one of the weak inferences, i.e., 

which is an introduction of a logical symbol. The principal formulas of such 
an inference are either cut formulas or formulas in r + A .  Let 9 be a string 
of sequents to which the lower sequent of this inference belong. Since the 
number of inferences along a string is finite, and the reduction process reduces 
the number of logical inferences above the s.g.c., the inference under con- 
sideration will eventually be either eliminated or carried down under the 
s.g.c. Hence along any string of sequents, there will eventually be no s.g.c. 
within a finite number of stages. Therefore we will obtain a cut-free proof 
of the given sequent. 

REMARK. Let us introduce a function symbol f corresponding to each function 
f from t6 to t. Let A ( f )  be the set of sentences of the form j(n) = m, where 
f(n) = m. From 

~ ( j ) ,  u = n, ~ ( n , j ( n ) )  + ~ ( u , f ( u ) )  fbr all n 
and 

-+ a, = co, a, = cl,. . . for all R, in u, 

we can infer, by the s.g.c. rule, 
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where n ranges over all possible sequences of constants. This is true for 
everyf; hence we obtain (7) in the form 

. . ., A $ ) , .  . ., A A(n,f(n)) - Q'(x; Y) A($,  Y), 
n 

or 

Going through the same argument as before, we claim that, if r + A  is a 
valid sequent of the original language, then 

. . . ,  A ( & .  ., r - + A  

is cut-free provable. This formulation may be more convenient for some 
purposes. 



CHAPTER 5 

CONSISTENCY PROOFS 

$25. Introduction 

This chapter is devoted to  the consistency problems of systems of second 
order arithmetic. Before we take up these problems there are two points we 
would like to call to the reader’s attention. 

1 .  Mathematicians have an extremely good intuition about the world of 
the natural numbers as conceived by an infinite mind. Consequently, con- 
sistency for the natural numbers is not a particularly important question. 
In  contrast, we can conceive of the world of sets only through our imagination 
and our mathematical experience. Consequently, the problem of the con- 
sistency of the comprehension axioms is a serious and important foundational 
question. 

2. Mathematicians use the term “consistency” as a sort of foundational 
watchword. The first implication of the term is that  no contradiction is derived. 
Of course this is the most important assurance for our imaginary world of 
the infinite mind. But sometimes we would like to  know more. For example, 
the fact that  no contradiction arises does not explain what it means to  say 
that a theorem is provable from the comprehension axiom. Nonconstructive 
proofs provide no insight into this important question. On the other hand 
a constructive proof strengthens our intuition and adds meaning to the 
theorem. In  particular, a constructive proof of the cut-elimination theorem 
would give us greater confidence in the comprehension axioms and hence 
strengthen our convictions about our imaginary world of sets. 

In this chapter we will be interested in second order arithmetic. Here our 
comprehension axioms are 

In  any cut free proof our comprehension axioms mean roughly that we can 
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introduce a new variable + to express a given abstract V ,  and that we later 
use an abbreviation V+ F(+) or 34 F ( 4 )  in place of 

We will discuss this at greater length later. We point out that a similar 
interpretation holds in systems of higher order although there the situation 
is more complicated. 

We begin our study with a theory of modulations, a theory that provides 
our basic argument against “practical” foundations. Given a formula A ,  we 
will define left modulations of A and right modulations of A .  The definition 
is according to the outermost logical symbol of A .  We assume these symbols 
to be 1, A, V, and V, For each case a left modulation of A is defined as a 
formula of the form A l  A . , . A A,,  where A l , .  . ., A ,  are some left atomic 
modulations of A ,  while a right modulation of A is defined as a formula of 
the form B,  v . . . v B,, where B,, . . . , B, are some right atomic modulations 
of A .  I t  is also required that if A’ is a modulation of A ,  then every free 
variable in A‘  occurs in A .  

DEFINITION 25.1. (1) If A is an atomic formula, then the left and the right 
(atomic) modulations of A are A itself. 

(2) If A is of the form l B ,  a left atomic modulation of A is of the form 
-&I, where B‘ is a right modulation of B ;  a right atomic modulation of A is of 
the form l B ” ,  where B” is a left modulation of B. 

(3) If A is of the form B A C, a left atomic modulation of A is of the form 
B‘ A C‘, where B‘ and C‘ are left modulations of B and C, respectively. 
A right atomic modulation of A is of the form B” A C”, where B“ and C” 
are right modulations of B and C respectively. For B v C, the definition is 
similar. 

(4) If A is of the form Vx F(x) ,  and t is an arbitrary term such that no free 
variables in t occur in Vx F(x) ,  then Vxxl . . . Vxn G is an atomic left modulation 
of A ,  where G is a left modulation of F ( t )  and Vxl . . . Vx, bind all free variables 
in t. A right atomic modulation of Vx F ( x )  is of the form Vx G(x),  where a does 
not occur in F(x)  and G(a) is a right modulation of F(a) .  

( 5 )  If A is of the form V+ F(+), and V is an arbitrary abstract such that 
no free variables in V occur in V+ F(+), then V+l . . . V&, Vx, . . . Vx, G is 
a left atomic modulation of A ,  where G is a left modulation of F(V)  and 
Vq31 . . . V& Vx1 . . . Vx, bind all free variables in I/. A right atomic modulation 
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of V+ F(+) is of the form V+ F'(+), where u does not occur in F ( x )  and F'(u) 
is a right modulation of F(u) .  

PROPOSITION 25.2. Let u and p be either free variables or constants. If A'(u) i s  
a modulation (right or left) of A(u),  then A'@') i s  also a modulation (right or 

left) of  A (4. 

PROPOSITION 25.3. If A' i s  a left modulation of A ,  then A + A '  i s  provable. 
If A" i s  a right modulation of A ,  then A" -+ A i s  provable. 

PROOF. Since other cases are easy, we shall consider only the first part for 
the crucial case, (5): i.e., A is of the form V+ F ( 4 ) .  A' is of the form 
A ;  A . . . A A:, where A:  is an atomic left modulation of A .  I t  suffices to 
show A + A :  for each i. Let A:  be of the form V+l . . . V& Vxl . . . Vx, G, 
where G is a left modulation of F ( V ) .  Suppose F ( V )  --* G is provable. Then 

F ( V )  + G _ _ ~  
V+F(4) - G  
v+ F(+) + v+, . . . V+l vx, . . . vx, G. 

The eigenvariable condition is satisfied. 

DEFINITION 25.4. (1) A sequent A;,, . . . , A: + B;, . . . , Bk is called a modulation 
of A , , .  . ., A ,  + Bl, .  . ., B,  if A i  is a left modulation of A i  for each z and 
Bi. is a right modulation of B j  for each 1. 

( 2 )  Let P be a cut free proof. For each sequent I7 - A  in P, we define a 
modulation IT +A' of I7 + A  by induction on the number of inferences 
above Ilr + A .  17' -,A' is called the P-modulation of Ilr + A  and is so 
defined that if 17 + A  is A l , .  . ., A ,  + Bl, .  . ., B,, then 17' +A' is 
A; ,  . . . , A: -, B;, . . . , B:, where A:  is a left modulation of A i  and B j  is a right 
modulation of B j .  We shall give explicit definitions only for some exemplary 
cases. 

1) If Ilr + A  is an initial sequent in P, then 17' +A' is I7 + A  itself. 
2) The last inference is an interchange : left. 

r, C, D, 5 + A 
r , D , C , S + A '  

I fP ,C ' ,D ' ,F -  A'istheP-modulationofI',C,D,%+A, thenr',D',C',Z' +A' 
is the P-modulation of I', D ,  C, 5 -.+A. 
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3) The last inference is a weakening : left. 

r + A  
C , r - + A '  

If I" --+A' is the P-modulation of T - -LA,  then C ,  r' .+A' is the P-modulation 
of C, r + A .  

4) The last inference is a contraction : left. 

c, c, r - A  
C , r . + A '  

If C,, C,, r' + A '  is the P-modulation of C, C, F + A ,  then C 1  A C2,  I" --+ A' 
is the P-modulation of C, r + A .  

The last inference is a contraction : right. 

r .+A,c,c 
r + ~ , c  . 

If r' .+ A', C , ,  C ,  is the P-modulation r + A ,  C, C then r' -+A',  C1 v C ,  
is the P-modulation of r - ,A ,  C. 

5) The last inference is a second order V : left. 

F ( v ) ,  r + A  
v+ I;(+), r Z i  . 

If G, r' -A'  is the P-modulation of F ( V ) ,  I' - , A ,  then 

V+1 . . . V+, V X ,  . . . VX, G, I" + A '  

is the P-modulation of V+ F(+), F + A ,  where V+] . . . V+, Vx, . . . Vx, binds 
all free variables in V .  More precisely, let V = V(crl,. . . , a,, a,, . . . , am), where 
all the free variables are indcated, and let p,,. . ., Pn, b,,. . ., b ,  be free 
variables which are not contained in F ( V ) .  Let G'(P,,.  . ., &, b,,. . ., b,) be 
a left modulation of F(V(,8,, . . . , fin, b,, . . . , b,)) so that G'(al,. . . ,a,, al, . . . ,a,) 

is G. By V+, . . . V+, Vx, . . . Vx, G we mean 

V+1 . . . V+n VxI .;. Vxm G'(+l> .  . ., +n> . .> xm). 

6) The last inference is a second order V : right. 

r + A ,  F(a)  
r - A ,  V+ F(+) 
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Suppose r’ + A ’ ,  F‘(a) is the P-modulation of the upper sequent. Then 
I” + A ’ ,  V+ F’(+) is the P-modulation of the lower sequent. 

PROPOSITION 25.5. Let P be a cut-free proof of r --f A ,  and let r‘ + A ‘  be the 
P-modulation of r + A .  T h e n  there exists a cut-free predicative proof of r’ + A’. 

PROOF. This is an immediate corollary of Definition 25.5. That is, in Definition 
25.5, if S ,  is a lower sequent of S, (and S) then Si, the P-modulation of S2,  
can be derived from S; (and S‘) without a cut and without impredicative 
comprehension axioms. The latter fact is obvious from the definition of P- 
modulation in Case 5 )  of Definition 25.5. From Proposition 1 it is obvious 
that the eigenvariable condition is satisfied for any application of V : right. 

Our theory of modulations, and in particular Proposition 25.6, makes clear 
one important reason for our interest in cut-free proofs, namely, a cut-free 
proof of a theorem enables us to give to that theorem an interpretation that 
avoids Russell’s vicious circle. Of course, each theorem has as many vicious- 
circle-free interpretations as it has cut-free proofs, and each different inter- 
pretation of a theorem determines a different interpretation of the theory. 

If we had a uniform “method” that transformed every formal proof into 
a cut-free proof, then that “method” would itself determine an interpretation 
of mathematics that avoids Russell’s vicious circle. Consequently, producing 
such a method of transformation should be a matter of high priority. 

We would, of course, prefer an interpretation that is as close to the original 
(natural) meaning as possible. Consequently, the cut-elimination theorem 
should be proved by an elimination procedure that preserves as much as 
possible of the meaning of the original proofs. 

It is on precisely this issue that we oppose the recent trend of foundational 
studies in the direction of what we have chosen to call “quasi” foundations. 
Let us illustrate our point with an example. 

One may view analysis in different ways. One view is that analysis is a 
theory. An alternate view is that analysis is not a system of axioms but a 
collection of results. It is this alternate view that gives rise to the problem 
of quasi foundations. 

The job of quasi foundations is to develop a kind of quasi-analysis; to find 
a collection of theorems, that are similar to a given collection of theorems of 
analysis, but which are in fact weaker results than the given theorems. 
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There are two points we wish to  make that explain why we do not view 
“quasi” foundations as the proper direction for foundational studies to take. 
First of all, when one develops a collection of results that  are “similar” to a 
given set of theorems of analysis it is not a t  all clear what metamathematical 
conclusions can be drawn or what kind of theory has been founded. But, 
second, and of greater importance, our theory of modulations shows that  in 
principle the problems of quasi foundations are solved: If we wish a “quasi 
foundation” for a certain collection of results we simply start with predicative 
comprehension axioms and develop the modulations of the results that  we 
wish. Of course the results we obtain will not be classical theorems but 
modulations. However, as we have shown, modulations are stronger results 
than the theorems of classical mathematics. 

We may, therefore, regard the predicative comprehension axioms as what 
is really important. The theorems of classical mathematics are simply 
approximations to stronger theorems. Consequently, so long as our concern 
is with practical foundations we need not prove the cut-elimination theorem ; 
we only need to justify the predicative comprehension axioms. Having done 
this, our task is to  construct sufficient and appropriate modulations for our 
purposes. 

We, however, advocate a different viewpoint with respect to which proving 
the cut-elimination theorem constructively is a matter of paramount impor- 
tance. Indeed, only through a constructive proof of cut-elimination can the 
theory of modulations become truly a significant theory in a world of predica- 
tive mathematics. The proof of the cut-elimination theorem as presented in 
Chapter 3 is set-theoretical, and therefore useless for our purpose. 

$26. Ordinal diagrams 

In this section we will develop a theory of ordinal diagrams which, as we 
pointed out earlier, will play a fundamental role in our study of consistency 
problems. For each pair of nonempty, well-ordered sets Z and A we will 
define the set of ordinal diagrams based on I and A .  At the same time we will 
also define the notion of connected ordinal diagrams. 

DEFINITION 26.1. Let Z and A be nonempty, well-ordered sets with 0 the 
smallest element in I .  The system of ordinal diagrams, based on Z and A ,  we 
define inductively in the following way. 
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1) 0 is a connected ordinal diagram. 
2) Let i be an element of I ,  a an element of A ,  and let u be an ordinal 

diagram. Then (i, a,  a) is a connected ordinal diagram. 
3) Let n 2 2 and let ul,. . . , u, be connected ordinal diagrams. Then 

al # u2 # . . . # u, is a nonconnected or lna l  diagram. 
For convenience, in discussing ordinal diagrams we will use i ,  j ,  k etc., as 

variables on I ;  a ,  b ,  c ,  etc., as variables on A ;  and a, p, y ,  etc., as variables on 
ordinal diagrams. Hereafter “ordinal lagram” will mean “ordinal diagram 
based on I and A ” .  

Definition 26.1 defines an inductive procedure for constructing ordinal 
diagrams. If the ordinal diagram y enters the construction of u we call y a 
sub-ordinal diagram of u. But from the definition it is clear that an ordinal 
diagram y could enter the construction of u at several different stages of the 
construction. In  the work to follow it is sometimes important to identify a 
specific occurrence of a sub-ordinal diagram. For this purpose we will use the 
notation j j ,  that is, the notation j j  is to inlcate  that we are talking about a 
specific occurrence of y and not just about the ordinal diagram y itself. 
Thus jj = 8 means not only that y = p but also that 7 and 8 denote the same 
occurrence of this ordinal diagram. 

DEFINITION 26.2. (1) Each connected ordinal diagram ul,. . . , u, is a com- 
ponent of the nonconnected ordinal diagram u1 # . . . # u,. 

(2) Each connected ordinal diagram u has only one component, namely 
itself. 

DEFINITION 26.3. Let l(u) be the total number of ( )’s and #’s in a. Then 

DEFINITION 26.4. Equality for ordinal diagrams we define inductively on 
l(a, p) in the following way. 

(1) 0 = 0. 
(2) Let u be of the form (i, a,  y ) .  Then 0: = p if and only if 

(3) Let a be u1 # . . . # urn and let p be 

is of the form 
(i, a, a), where y = 6. 

# . . . # p,, where al,. . . , urn and 
P I , .  . ., p, are connected. Then u = /3 if and only if m = n and there is a 
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permutation of (1, 2 , .  . ., m}, say (il,. . ., j m } ,  such that 

I t  can be easily proved that = is an equivalence relation. Note also that 
u = 0 or 0 = u if and only if u is 0. 

DEFINITION 26.5. (1) Consider an occurrence (2, a, y )  in u. If f i  is an occurrence 
of p in y ,  then the occurrence of i and of a in (i, a, y )  are said to be connected 
to f i  in u. We also say that the occurrence of the pair (i, a) in (i, a, y )  is 
connected to f i .  

(2)  Let f i  be an occurrence of j in u and let i be an element of I .  If for every 
element i of I that occurs in a and is connected to we have that i 3 j ,  then 
f i  is said to be j-active in u. 

(3) A connected, j-active occurrence of a sub-ordinal diagram of u is called 
a j-subsection of u. 
(4) Let (i, a,  y )  be a j-subsection of u for some j > i. Then the occurrence jj 

in (i, a,  y )  is called an i-section of a. If there is an i-section of u, then we say 
that i is an index of u. 

Note that an i-section of u is a special case of an i-subsection. An i-section 
of u is an occurrence of a proper sub-ordinal diagram of u, but an i-subsection 
of tc may be a itself. 

For certain purposes ahead we introduce a special symbol a, that we adjoin 
to I and regard as the maximal element of the extended set. 

DEFINITION 26.6. (1) f = I U (03). The ordering of f is that of I with 03 the 
maximal element of f. 

(2) If i~ f and j E I ,  then i is called a super index of j with respect to 
u, b, . . . , y ,  if either i is 03 or i > j and i is an index of at least one of u, b, . . . , y. 

(3) io(i, u, b,. . ., y )  is the least super index of j with respect to a, b,. . ., y. 
(4) i(j, a, p, . . . , y )  denotes the number of super indices of i with respect 

(5) The outermost index of the ordinal diagram (i, a, u) is i. 
(6) A pair (2, a), where i E I and a E A is called a vatue. The set of values 

(7) The value (i, a) is the outermost value of (i, a, u). 

to u, b,. . . , y when j is an element of I ;  it is defined to be 0 if j is co. 

is ordered lexicographically. 
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Note that a value is not an occurrence. 
For each i in f we now define an ordering <i of ordinal dagrams (based 

on I and A ) .  The definition is by transfinite induction on w * l(u, p) + ~ ( i ,  a, p). 

DEFINITION 26.7. (1) 0 << p if /3 # 0. 
(2)  If u is al # . . . # u, and b is 

a <i P if one of the following conditions hold. 
# . . . # f i n ,  where m + n > 2,  then 

i) There exists a q such that 1 < q < n and a,  <i p, for all p with 
l < P < m .  

ii) m = 1, n > 1 and u1 = p, for some q with 1 < q < n. 
iii) m > 1, n > 1 and there exists a q and a p such that 1 < q < m, 

1 < p < n, uq = p, and 

a1 # . ’ . # a,-1 # %+I# . . * # urn < i  P 1 #  . . . # P , 4 #  &+I # . . . # P n .  

(3) If u and /3 are connected, if i # oc) and if j = j o ( i ,  a,  p), (cf. (2) of 

i) There exists an i-section 5 of p such that u Gi CT, i.e., u <i cr or u = IT. 

ii) a < i  P and for every i-section 8 of u, 6 <i p .  
(4) If u = ( j ,  a,  y )  and p = ( k ,  b, d), then u <a, p if 

i) j < k (in I )  or 
ii) j = k and a < b (in A )  or 

iii) j = k ,  a = b, and y < j  6. 
The ordering <a, is slightly different from the original version in which 

Definition 26.6) then u < i  p if one of the following holds. 

a and b were compared first. 

PROPOSITION 26.9. For each i in f the definition of <i is  sound and <i is a 
linear ordering of the ordinal diagrams based on I and A .  

PROOF. By induction on w . l (a ,  /3, y )  + ~ ( i ,  u, P, y )  and w * I(u, P) 4- ~ ( i ,  a, /3), 
respectively, we can prove simultaneously that 

I if ct < i  P and P <i y ,  then u < i  y, 
I1 if u = p a n d p  < i y ,  then u < < y  andif u ciP a n d p  = y thenu <, y, 

I11 exactly one of u < i b, u = p and ,8 <i u holds. 
If I ( u ,  p, y )  = 0 or l(u, p) = 0, respectively, then u = /3 = y = 0 and hence 

I, I1 and I11 hold trivially. For l(u, D, y )  > 0 and Z(u, P) > 0 we will present 
proofs only for some exemplary cases of I and 111. We assume that u, p and 
y are (j, a ,  u’), ( k ,  b, P’) and (m, c ,  y’) ,  respectively. 
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(1) r(i, a,  p, y )  = r ( i ,  tc, p) = 0 and hence i = a. 

I. If u <m p and f i  <m y ,  it follows from the definition of that i < m 
anda < c. If1 < mora  < c, thenu<mfi .  I f i  = manda  = c,thenj = k = m 

and a = b = c ; hence u’ < p’ and 8’ < y‘. Then by the induction hypothesis 
u‘ < y‘, hence u < y. 

111. If u # /3, then (i, a) # (k, b) or ( j ,  a) = (k, b) andu’ # p’. If ( j ,  a) # (k, b), 
then u tc by definition of <m. If ( j ,  a) = (k, b) ,  then by the 
induction hypothesis a’ < p’ or p’ < u’ and hence tc p or p <m u as the 
case may be 

p or p 

(2) ~ ( i ,  u, p, y )  > 0 and r(i ,  u, p) > 0, respectively. 
I. We consider only one case: There exists an i-section of p, say 8, such 

that u bi cr, and p <io 7, where i, = jo(i, b, y )  and for each i-section of p, 
say 8, 6 <,. y .  Then tc Gi a, cr <i y and l(u, cr, y )  < l(u, p, y ) ;  hence by the 
induction hypothesis u < i  y .  

111. Suppose u 6, /I, i.e., u # p and it is not the case that u <, p. Then 

(*) for every i-section of p, say 5,  M 4 , a, 
hence by the induction hypothesis cr <i u. 

Let i, = io(i, u, p). If p < i o  tc, then by (*) and Definition 26.7 p <, u. If 
,8 Ki0  tc then since r ( i o ,  tc, p) < r(i, a, p) it follows from the induction hypothesis 
that u <io p. If for every i-section of M ,  say 8, 6 < i  /?, then 0: < i  8. But this 
contradicts our initial assumption. Therefore there is an i-section of u, say 8, 
such that p \ci 6. But then by Definition 26.7 p <i u. 

PROPOSITION 26.9. If 5 is an i-section of u, then a <, a. 

PROOF. If a is connected, then by (3)i) of Definition 26.7 applied to cr and 
the component of u in which 8 is an i-section, cr < i  u. If cr is not connected, 
then for each component of cr, say 6, 6 < i  cr by (2)ii) of Definition 26.7 and 
hence by (3)i) of Definition 26.7, 6 < i  u. Then from (2)i) it follows that a <i u. 

PROPOSITION 26.10. Let tc be a connected ordinal diagram and let be a proper 
i-subsection of a. Then p tc for every j < i. 
PROOF. The proof is by induction on o - L ( u ,  p) + r ( i ,  u, p) for each j’ < i. 

1. If p = 0, then p < 3  u for all i. 
2. Suppose u = (k, b, y )  and p is a component of y. Then i < k and since 

y occurs as a k-section of u we have by Proposition 26.9 that p Gk y < k  u. 
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Consequently, p < k  u. If j < k ,  then every j-section of p is a j-section of a. 
But this implies that for every 3, a j-section of p, 0 < u, and hence ,i? < u 
(by induction on t ( j ,  u, p)). 

3. Suppose a = ( k ,  b, y )  and p is not a component of y .  Then k 3 i and 
there is a component of y ,  say 6, such that p occurs as an i-subsection of 6. 
Therefore by the induction hypothesis P < i  6 for all j < i. But 6 y by 
definition, and y < j  a for every j ,< k ;  therefore, j < i by 2. above and 
Definition 26.7(2). Consequently, p < j  6 if < i. 
PROPOSITION 26.11. If p has a n  i-active occurrence as a proper subordinal 
diagram of  u, then p <i u for every j < i. 

PROOF. Apply Proposition 26.10 to each component of such an occurrence of P. 

DEFINITION 26.12. Let a be an ordinal diagram and let i be an element of f. 
Then [.Ii = [ul,. . ., u,li will mean that ul, a2,. . ., u, are the components 
of a and 

u1 >i u2 3, . . . 3, a,. 

DEFINITION 26.13. O ( I ,  A )  will denote the structure consisting of the set of 
ordinal diagrams based on I and A and the orderings <, for all i in f. 

We will follow the usual convention of using O ( I ,  A )  to denote the universe 
of this structure, that is, the set of ordinal diagrams based on I and A.  

Our next objective is to  present a nonconstructive accessibility proof for <i: 

THEOREM 26.14. For each i in I ,  < i  well-orders O ( I ,  A ) .  

PROOF. This theorem will be proved as a sequence of lemmas using the notion 
of <,-accessibility of ordinal diagrams. 

DEFINITION 26.15. Let u be of the form u1 #uz # . . . # u, and p be of the form 
P I #  P z  # . . . # Pn. Then u # P will denote the ordinal diagram 

DEFINITION 26.16. (1) Let B be a subset of O(1,  A )  and let i be an element of f. 
An ordinal diagram u is <,-accessible in B if u is an element of B and, with 
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respect to <,, there is no infinite (strictly) decreasing sequence of elements 
of B starting with a. 

(2) a is <,-accessible if a is <,-accessible in O ( I ,  A ) .  

DEFINITION 26.17. We define F ,  a subset of O ( I ,  A )  for every i in I .  
(1) F ,  = O ( I ,  A ) .  
( 2 )  Fi+l = {a E F ,  1 For every 5 an i-section of a, cr is <,-accessible in F,}, 

(3) F ,  = nj<i F j  if i is a limit element of 1. 
From the definition it is obvious that if a E Fi,  then a E F j  for all j < i. 

where i + 1 denotes the successor of i in I .  

LEMMA 26.18. Let B be a set of ordinal diagrams and let i be a n  element of f. 
If every element of B is <,-accessible in B,  then B is well-ordered b y  < i .  

Lemma 26.18 assures us that for such a set B we may use transfinite 
induction on ci. 

LEMMA 26.19. If every connected ordinal diagram i s  <,-accessible, then every 
ordinal diagram i s  <,-accessible. 

PROOF. I t  is sufficient to prove the following: 
(*) If there is an infinite (strictly) <,-decreasing sequence of ordinal 

diagrams starting with a ,  then there is an infinite <,-decreasing sequence 
of connected ordinal diagrams starting with a1 where [a],  = [al , .  . . , a,li. 

Let C be the set of all the connected ordinal diagrams. We will prove (*) 
by transfinite induction on a1 along in C using Lemma 26.18. Let {p,} 
be a <,-decreasing sequence, where p1 = a. 

1) If all the components of a are 0, then all the components of each pl, pz, . . . 
are 0. Therefore the number of components must decrease from term to term 
in the infinite sequence {p,}. Since this is impossible, a must have a nonzero 
component. Suppose a1 > 0. 

2) Suppose m = 1. Then a1 = a = p1 >, pz > i  . . . . If a1 is a limit element 
of C (with respect to <i relativized to C), then there is a connected ordinal 
diagram p such that al > i  ,B >, Bz >, . . . . Then by the induction hypothesis 
(applied to p) we can construct a <,-decreasing sequence of connected ordinal 
diagrams starting with p. Adding a1 to this sequence as a first term, we obtain 
a <,-decreasing infinite sequence of connected ordinal diagrams starting 
with ul. 
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3) Suppose m = 1 and u1 is the successor of p in C (presuming that such 
a case is possible). Then IJ = p # p  # . . . # p  > , p 2  >, . . . and p < i a .  

Consequently, by the induction hypothesis we can construct an infinite 
<,-decreasing sequence of elements of C starting with p. Adding u1 to  the 
sequence as  first term, we obtain the desired sequence. 
4) Suppose m > 1 and there is an n such that p,, does not contain ul as a 

component. Let [ f i n ] ,  = [By,. . . , p;],. Then p: <, al.  By the induction 
hypothesis there is a <,-decreasing sequence of connected ordinal diagrams 
beginning with p;. To this sequence we add u1 as first term to obtain the 
desired sequence. 

5) Suppose m > 1 and for every n, p, contains u1 as a component (hence 
as a maximum one). We prove (*) for this case by induction on the number 
of occurrences of u1 in a. Let v(u) be the number of occurrences of u1 in a. 
For each n, define p i  to  be the ordinal diagram obtained from 8, by deleting 
one occurrence of ul. We define a’ similarly: a’ = a2 # . . . # a,. If v(u) = 1, 
then a’ does not have an occurrence of a1 so by the induction hypothesis there 
is a <,-decreasing sequence from C which starts with u2. Adding u1 to this 
sequence we obtain the desired sequence. If v(a) > 1, then 0 < v ( d )  < v(a).  
If there is an n such that ~(8:) = 0 then 4) applies to {pi} .  The resulting 
sequence starts with al. If there is no such n then 5) applies and by the induc- 
tion hypothesis we can construct the desired sequence starting with u2( = ul). 
This completes the proof. 

COROLLARY 26.20. Let [u], = [al, u p , .  . . , a,],. T h e n  a i s  <,-accessible if and 
on ly  if each ul, a2, .  . . , u, i s  <,-accessible in C.  

PROOF. The “only if” part is obvious. Suppose a is not <,-accessible. Then 
by (*) in the proof of Lemma 26.19, ul is not <,-accessible in C. 

Lemma 26.19 assures us that in order to show that < i  is a well-ordering 
of O ( I ,  A ) ,  it  is sufficient to show that with respect to <,, there is no infinite 
decreasing sequence of connected ordinal diagrams. 

LEMMA 26.21. A n  ordinal diagram u belongs to F ,  if and only  if each component 
of u belongs to Fi.  

PROOF (by transfinite induction on i) .  If i = 0 the result is obvious. Suppose 
u E Fi+l but some component of U, say p, does not belong to Fi+l. If ,8 4 Fi 
then by the induction hypothesis u 4 F,. But this is impossible since u E Fi,l 



CH. 5, $261 ORDINAL DIAGRAMS 301 

implies u E F,. Therefore f i  E F, and there is an i-section of P, say 5, such 
that CT is not <,-accessible in F,. But such an i-section of is also an i-section 
of u. Since this implies that  u 4 F,+, we have a contradiction. 

Suppose all the components of u are in F,+,. Let 3 be an i-section of u. Then 
5 is an i-section of one of the components of u and CT is <,-accessible in Fi. 
Therefore u E Fi+l. 

For a limit element of I the conclusion is obvious from the induction 
hypothesis. 

LEMMA 26.22. If there exists a n  infinite sequence {an} of connected ordinal diagrams 
that i s  strictly decreasing with respect to <o, then there exists a n  infinite sequence 
(/In) of connected ordinal diagrams such that 

1) for all n, P, E F,, 

3) if u, = pl,. . . , uh = Ph but ccIhi1 # Phil, then there i s  a n  occurrence of P h + l  

4) { P n }  i s  strictly decreasing with respect to <o and 

2) if tc1, M e , .  . . , tch E F,, then tc1 p i ,  U2 P z , .  . . , ah = P h ,  

in ah+,, i.e., Ph+l i s  a subordinal diagram of ah+,, 

PROOF. Suppose u,,. . . , ah E F, and uh+l$ F,, where h 3 0. Then let 
PI = ul,. . . , Ph = uh. Since ah+, 4 F ,  there exists a 0-section of Uh+1, say 7, 
for which y is not <o-accessible. Then by Corollary 26.20, y has a component 
yo that is not <o-accessible. If yo E F,, then let ph+,  be yo. I f  yo  4 F,, then 
there exists a 0-section of yo, say 6, for which 6 is not <o-accessible. After 
a finite number of such steps we will arrive a t  a Ph+* which is a connected 
sub-ordinal diagram of Mh+l ,  hence P h + l  <o uh+], p h + l  E F1 and Ph+l  is not 
<o-accessible. This last property of D h + l  and Corollary 26.20 imply that 
there exists an infinite decreasing sequence of connected ordinal diagrams 
starting with &+l, sayPh+, > o  > o  . . . .  hen PI,  ~ 2 , .  . . , Ph, P h + l r  Ph+2,. . . 
satisfies the same conditions as {u,}, namely it is an infinite decreasing 
sequence of connected ordinal diagrams. 

We then apply the same process to the above sequence and produce 

It is obvious that 1)-3) hold. Also {pn}  is a decreasing sequence with respect 
to <,,. We next show that {p,} is decreasing with respect to <,. Suppose for 
example <, &. Since P1 and p2 are connected it follows that if /Iz < o  pl, 
then there is a 0-section of pl, say 8 such that Be <o 6. But since fi1 E F,, 6 
is <o-accessible while PZ is not <o-accessible. Since this is impossible, f i z  < o  PI 
implies f ie <, P.  

P1,. . . , Phr  Ph+l, Ph+2>. * . . 



302 CONSISTENCY PROOFS LCH. 5 ,  $26 

In a similar manner we can show that pz+l < o  BZ implies pL+l for 
each 1. 

LEMMA 26.23. If {a,} i s  a n  infinite <,-strictly decreasing sequence of connected 
elements of Fi ,  then there exists a sequence {p,} of connected ordinal diagrams 
for which 

1) fin E Fitl for each n, 
2) if ul , .  . . , tch E Fi+i, then M i  = 81 . . . a h  = P h ,  

3) if U1 = 81,. . ., tch = but Uh+l  # , 8h+ i ,  then b h + l  i S  a (C0n"ZeCted) Sub- 
ordinal diagram of cth+l .  

4) {p,} i s  strictly decreasing with respect to < i  and <i+l. 

PROOF. Similar to that of Lemma 26.22. 

LEMMA 26.24. Suppose {a,} i s  a n  inf ini te  sequence of connected ordinal diagrams 
that i s  strictly decreasing with respect to <,,. T h e n  for each i we can construct 
a sequence {ct;}, of connected ordinal diagrams from Fi such that 

1) f o r  all n, cc: = a,. 
2) {ci;},, i s  strictly decreasing mith respect to <i .  

3) if ctf = ct?',. . ., ctk = a?' and 

4) if i i s  a l imit  element of I ,  then 

# xi',:, then a;:: i s  a connected 
sub-ordinal diagram of hence l(uf::) < l ( ~ f + ~ ) .  

VP 3 j E  I [i < i A Vi  [i < 1 < i -+ [a; = a;111. 

PROOF. If cc: = cc, for all n, then 1) and 2 )  obviously hold. Suppose we have 
constructed {a;},. Then, by Lemma 26.23, there exists a sequence of connected 
elements of F,+l, ( u ~ ~ ' ) ,  that is strictly decreasing with respect to < I  and 
<t+l; if a;, .  . ., U ~ E  F,+l, then a;" = a;,. . ., a;" = a;; and if h + 1 is the 
first number such that a;:; # then u ~ ~ l  is a (connected) sub-ordinal 
diagram of 

We therefore only have to worry about the case where i is a limit element 
of I .  Suppose for every k < 2, (a:}, has been defined satisfying the condition. 
We claim that 

(*I V h  3 j E  I [i < i A V k  [ j  < k < i z~ct; = ax]]. 

Suppose not. Then 
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There is then a smallest such h. We can then find an infinite sequence of j ' s ,  
say jl, j z , .  . ., is,. . ., such that 

This is possible because if we take i = jD, then the least k such that j < k < i 
and u; # ui is a successor element (by 4) of the conditions of this lemma 
applied to  any limit element which is less than i). Let + 1 be this least 
k. Then by 3), 

1(uifi+1+') < Z(a{++l) = ~(c++'). 

Thus we obtain a decreasing sequence of natural numbers. But this is 
impossible, consequently (*) must hold. 

If we define by uf = ui for an appropriate j h ,  then 4) holds. Further- 
more, for each k < i, u$ E F ,  and uf = u{ E n k < i  F ,  = Fi, that  is, a: E F,. 

Next we will prove that { ~ l f } ~  is <,-decreasing., For each h = 1, 2, 3 , .  . . 
it  follows by the construction of (u;}~ that  there is a j h  and a jh+l for which 
a; = ut for every k such that j h  < k < = for every k such 
that j h f l  < k < i. Let j o  = max(jh, ih+l ) .  Then uf = yf; and &+, = u h f l  for 
each k such that j o  < k < i. Consequently, <, ul for all such k ,  by the 
induction hypothesis. Suppose uf < i  uf+,. Then for each k such that j o  < k < i 
there must be a k' such that k < k' < i and there is a k'-section of ui, say 7 ,  
for which <,, y .  But since the number of indices of a6 is finite, there is 
a maximum index in a;, say k,. Then if k ,  < k < i (such a k exists) there is 
no way of getting &+, <, a;. But this is a contradiction; so ul <, a;+,. 

DEFINITION 26.25. F ,  = nj,, Fj if the order type of I is a limit ordinal. 

the greatest element of I .  

and 
k 

F ,  = {u E Fi [ for each 8 an i-section of u, 6 is <,-accessible in Fi) if i is 

Clearly if u E F,, then a E Fi for each i. 

LEMMA 26.26. Suppose there i s  a n  infinite sequence of connected ordinal diagrams 
which i s  strictly decreasing with respect to <o. T h e n  there exists a sequence of 
connected ordinal diagrams from F ,  that i s  strictly decreasing with respect to <,. 

PROOF. Similar to that of Lemma 26.24 with 00 instead of i. If I has a maximal 
element, then the first half of the proof goes through, if I does not have a 
maximal element, then the latter half of the proof goes through. 
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LEMMA 26.27. If there is a sequence of connected ordinal diagrams from Fi  that 
is strictly decreasing with respect to < j, then there exists a sequence of connected 
ordinal diagrams from F ,  that is strictly decreasing with respect to <,. 

PROOF. Similar to Lemma 26.24 with F j  in the place of F,. 

LEMMA 26.28. Every element of F ,  is <,-accessible in F,. 

PROOF. Suppose not, that  is, suppose there is a sequence {u,} of elements 
of F ,  that  is strictly decreasing with respect to <,. We may assume that 
the an’s are connected (Lemma 26.19). Recall that  for <,, ordinal diagrams 
are first compared by their outermost values (i, a). Since those values are 
well ordered (cf. (5) and (6) of Definition 26.6), a decreasing sequence of values 
must be finite. Thus after a certain stage, the outermost values of u, will be 
constant, say (i, a). Then the u,’s are compared by their i-sections for all 
large n. If i is the maximal element in I, then M, E F ,  means that if 8 is an 
i-section of u,, then 6 is <,-accessible in F,. If i is not the maximal element 
of I ,  then a, E F,+l and hence if 8 is an i-section of a, then 6 is <,-accessible in 
F,. Therefore, the comparison of a, with respect to <, is reduced to  the com- 
parison of i-sections of a,  which are <,-accessible in F,. Therefore, there 
cannot be an infinite decreasing sequence of such i-sections (cf. Lemma 26.18), 
hence {a,} cannot be strictly decreasing with respect to <,. 

Next we will prove that,  for every i, F ,  = F ,  = O(I, A )  and that every 
ordinal diagram is <,-accessible in Fi, hence is <,-accessible. 

LEMMA 26.29. F ,  = O(I, A )  and every ordinal diagram is <,-accessible for 
all i in I. 

PROOF. F ,  = O ( I ,  A ) ,  by definition. Suppose there exists an infinite sequence 
of connected ordinal diagrams which is strictly decreasing with respect to 
<,. Then by Lemma 26.26 there is an infinite sequence of connected elements 
of F ,  which is decreasing with respect to <,. But this contradicts Lemma 
26.28. Consequently, there cannot be such a sequence. Therefore, by virtue 
of Lemma 26.19, all ordinal diagrams are <o-accessible. 

Suppose that Fi = O ( I ,  A )  and the <,-accessibility of all ordinal diagrams 
has been proved. Then for each element of Fi each of its i-sections are <i- 
accessible, hence Fi+l = Fi = O ( I ,  A ) .  Using Lemmas 26.27, 26.28 and 
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26.19, we can show, in a similar manner as above, that  every ordinal diagram 
is <,+l-accessibleinF,+,, henceis <,+l-accessible. Foralimitj ,  F ,  = n,,, F ,  = 

O(1, A ) ,  by the induction hypothesis. That every ordinal diagram is <3- 

accessible can be proved as for i + 1 .  The proof is valid also when i + 1 or 
j is co. 

Reversing the processes in the foregoing argument we obtain a somewhat 
constructive proof due to A. Kino which we outline below. First we shall 
list a few preliminary lemmas. 

LEMMA 26.30. If ul, a2,.  . . , ci, aye <,-accessible in F i ,  then cil # a2 # . . . 8 an 
i s  <,-accessible in  F,. 

PROOF. Relativize the proof of Lemma 26.18 to Fi.  

LEMMA 26.31. Let j3 be a n  element of F ,  and let 7 be a n  i-subsection of /I. T h e n  
y E Fi. 

PROOF. (By transfinite induction on i.) For i = 0 the result is obvious. If i is 
a limit element then the result follows from the induction hypothesis since 
an i-subsection is a j-subsection if j < i. If i = j + 1, then since p E Fi ,  
p E F ,  and for every 7'-section of p, say 8, S is <?-accessible in F ,  which 
implies that 6 E F,. If p is an i-subsection of /I, then it is a j-subsection of ,!I, 
and hence y E F j .  Let 8 be a j-section of y .  Then 6 is a j-section of p and hence 
6 is <j-accessible in F j .  Therefore, by definition, y E F,. 

We now begin the proof of accessibility. 

LEMMA 26.32. For each a in F,+l if  ci i s  <,+,-accessible in Fi+l, then ci i s  
<,-accessible in Fi.  

PROOF. (By transfinite induction on <,+, for those ordinal diagrams which 
are <,+,-accessible in F,,,. See Lemma 26.18.) 

Consider any p in Fi  for which /3 < i  a. We will prove that /I is <,-accessible 
in Fi and hence u is <i-accessible in F,. Note that by definition ci E Fi. 

Let I'( = r,) be the set of sub-ordinal diagrams of /I defined inductively 
as follows: 

1) Each component of /I belongs to r. 
2) If y E I', then every component of every i-section of y belongs to r. 
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3) Only those ordinal diagrams satisfying 1) and 2) belong to r. 
I t  is obvious from the definition and Lemma 26.31 that 

(*I r G F ~ .  

We now wish to prove by induction on l ( y )  that 

(**I y E F,+l and y is <,-accessible in F ,  for each y in r. 
Then, as a special case, every component of p is <,-accessible in F,. So, by 
Lemma 26.30, p is <,-accessible in F,. This will complete the proof of the 
lemma. 

We now turn to the proof of (**). 
If y E T is minimal in the sense that y has no i-section, then y E Fi implies 

Case 1. y .<i+l u. Then y is <,+,-accessible in F,+l. Consequently, by the 
induction hypothesis, y is <,-accessible in F,. 

Case 2. u <i+l y ;  y <, p < i  u. Then there is an i-section of u, say 5, such 
that y Gi u. But since u E Fi+,, u is <,-accessible in F,, and hence so is y. 

If y E r is not minimal, let 6 be a component of an i-section of y. Then by 
the induction hypothesis, 6 E r, so 6 is <,-accessible in F,. Therefore, by 
Lemma 26.30, if f is an i-section of y then z is <,-accessible in F,. But this 
means that y E F,+,. Repeating cases 1 and 2 above we conclude that y is 
<i-accessible in F,. 

y E Fi+1. By (*)> E Fi. 

LEMMA 26.33. Let i be a limit element. T h e n  

V j  < i Vp [ (p  i s  <j-accessible in Fj) 3 V k  < j ( p  i s  <,-accessible in F,)] 

3 Vk < i VU [(u i s  <,-accessible in F,) 3 (u i s  <,-accessible in F,)]. 

PROOF. (By transfinite induction on the elements of F ,  which are <,-accessible 
in Fi. See Lemma 26.18). 

Let i, be the greatest index of u which is less than i (cf. (4) of Definition 
26.5) assuming that such an index exists. Then assuming the premise of the 
lemma it suffices to show that 
(*) for each u that is <,-accessible in F,, and for every k such that i, < k < i, 

u is <,-accessible in F,. 
If no such io exists, then we prove (*) for all k < i. Indeed, if (*) holds 

and k < io, then there is a j such that k < i, < j < i (since i is a limit 
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element) and u is <,-accessible in F,. So by the premise of our lemma, a 
is <,-accessible in F,. We can prove (*) by transfinite induction on such 
u’s along <,. 

We may assume that io, as above, can be defined. Note that for each k 
and j for which i, < k < i and k < j < i, if f i  < k  tc, then P < j  a because 
there is no h-section of a when k < h < i. In order to prove (*) for any u, 
let p be a member of F ,  such that f i  < k  u. If we can show that any such P is 
<,-accessible in Fk we are done. We will prove that 
(**) If j j  is a k-subsection of /l, then y E Fi  and y is <,-accessible in F j  for all 

As a special case of (**), ,fl is <,-accessible in F,. We also know that for 
any j j  for which (**) holds, y E F ,  because f i  E F ,  (cf. Lemma 26.31). 

Suppose j j  is a minimal k-subsection of p, i.e., y does not contain a k- 
subsection, then y E Fi because y E F,, and there is no j-section of y for any 
j between k and i. 

Case 1. y <i a. Then y is <,-accessible in Fi  since u is, and, by the induction 
hypothesis y is <,-accessible for all j such that k < j < i. 

Case 2. u <, y.  Then a <, y for every j such that zo < j < z .  In particular, 
u < k  y. But since j j  is a k-subsection of ,8, y Gk p < k  u. Since this is a contra- 
diction this case is impossible. 

Next, suppose that 7 is a k-subsection of /l which is not a minimal one. 
Then y E F,. Let k < j < i and let 6 be a j-section of y. Then 6 is a k-sub- 
section of p and hence by the induction hypothesis (6 E Fi and) 6 is <j- 

accessible in F j .  This is true for every such i. So y f  F ,  implies ~ E F ~ .  Repeating 
Cases 1 and 2 above, we can prove that y is <j-accessible in F ,  for all j such 
that k < j < i. This completes the proof. 

LEMMA 26.34. For every i in I and every u, if a is <,-accessible in Fi, then 
Q j  < i [a is < ,-accessible in F j ] .  

j such that k < j < i. 

PROOF. (By transfinite induction on i.) Suppose u is <,-accessible in Fi. If 
= k + 1, then by Lemma 26.32 a is <,-accessible in F,. so by the induction 

hypothesis u is <,-accessible in F ,  for all j < k. 
Suppose i is a limit element. For every k < i the lemma holds by the 

induction hypothesis. This means that the premise in Lemma 26.33 holds. 
Consequently, the conclusion of Lemma 26.33 holds. But this is the result we 
were t o  prove. 

LEMMA 26.35 (cf. Lemma 26.28). Every member of F ,  is <,-accessible an F,. 



308 CONSISTENCY PROOFS [CH. 5,  $26 

LEMMA 26.36. Every  member of F ,  i s  <,-accessible in Fi for every i in I 

PROOF. Every ordinal diagram of F ,  is <,-accessible in F ,  by Lemma 26.35. 
Hence by Lemma 26.34 it is <,-accessible in Fi for every i in I .  

LEMMA 26.37. Every ordinal diagram of F i  i s  <,-accessible in F ,  for every j ,  
hence, in particular, F ,  i s  weLl-ordered b y  < ,. 
PROOF. Let a be an element of F j .  

Case 1. I has no maximal element. Let i be an element of I which is greater 
than all the elements of I occurring in a. Then (i, 0, 0) E F ,  and M < i  (i, 0, 0). 
By Lemma 26.36, (i, 0, 0) is <,-accessible in F,, hence so is a. 

Case 2. I has a maximal element but A does not. Let i be the greatest 
element of I occurring in a and let a be an element of A which is greater 
than any element of A that occurs in a. Then (i, a ,  0 )  E F ,  and a < 3  (i, a,  0 ) .  
By Lemma 26.36 (i, a ,  0) is <,-accessible, hence so is a. 

Case 3. Both I and A have maxima1 elements. Let z and a be the greatest 
elements in I and A ,  respectively. Then there is a p of the form 

(i, a, (i, a,. . . , (i, a,  0 ) .  . .)) 

such that a < j  P. If we can show that E F,, then it will follow from Lemma 
26.36 that  p is <;-accessible in F j .  From this in turn it follows that a is 
<j-accessible in F ,  and this will complete the proof. 

If = (2, a, 0 ) ,  then obviously P E F,. Suppose 

Po = (i, a,  . . .(i, a, 0). . .) E F,. 

Then by Lemma 26.36, Po is <,-accessible in Fi.  Therefore, by definition, 
P = (2, a,  P o )  E F,. 

As a special case of Lemma 26.37 we have the following. 

THEOREM 26.38. Every  ordinal diagram i s  <,,-accessible. 

REMARK. As an alternate proof, case 3 of Lemma 26.37 can take the 
following form. Let a,  be a new symbol. Define A to be A U {ao},  where A i s  
ordered as A with a,  greater than every element of A .  We then define O ( I ,  A) 
and its ordering '&, one for each i in f. Then O ( I ,  A )  is a subsystem of 
O ( I ,  A) and Y i  is an extension of <i. 
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Let i be the largest element of I occurring in CI. Then M T o  (i, a,, 0) and 
(i, a,, 0) is ?,-accessible in O ( I ,  A) .  Therefore, u is ?,-accessible in O ( I ,  A). 
But this implies that CI is <,-accessible (in F ,  = O ( I ,  A ) ) .  

When this method is employed, we need only a weaker version of Lemmas 
26.36 and 26.37: 

LEMMA 26.39 (cf. Lemma 26.36). Every member of F ,  is <o-accessible. 

LEMMA 26.40 (cf. Lemma 26.37). Every ordinal diagram i s  <,-accessible. 

The proof of accessibility depends strongly on F ,  which is a highly abstract 
notion. If one wishes to justify this proof he should interpret the definition 
of Fi as follows: M E Fi+l if and only if it can be concretely assured that 
U E  Fi  and for every 8, an i-section of a, 6 is <,-accessible in F,. ( I t  can be 
concretely assured that 6 is <,-accessible in F,.) 

One problem with our system of ordinal diagrams is that the order relations 
< i  are defined by induction on w .  ~ ( c I ,  p)  + i ( i ,  CI, p )  and hence the structure 
of those order relations is not clearly understood. It is very important to be 
able to visualize the proof of accessibility if we are to claim that the system 
of ordinal diagrams provides a good basis for the study of foundations. 

We would like to emphasize that neither the first nor the second proof 
of accessibility given above is not very constructive. We will present a more 
constructive proof in a soon to  be published papers entitled “Fundamental 
sequences of ordinal diagrams” and “An accessibility proof of ordinal di- 
agrams”. 

In order to explain the difficulty we would like to review from Chapter 2 
some of the ideas in the accessibility proof for the ordinals up to F,. In 
Chapter 2 ,  several useful devices were taken for granted. For example, we 
can assign a natural number n to each ordinal u < E,, with (0, < u < C U , + ~ .  

This number n, the height of M ,  gives a rough indication of the “size” of u. 

For two ordinals M ,  p < E,  we can define u < P by, firstly, comparing the 
height of M with the height of h, and, secondly, assuming that M and ,8 have 
the same height and that M = c o a l  + . . . + wan and P = c o o l  + . . . + won 

with 

M~ 3 u2 3 . . . 3 CI, and P1 3 P2 > . . . >, P,, 

by comparing C I ~  with PI,  cc2 with P2, etc. For ordinal diagrams the approxima- 
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tion theory corresponding to  this approach is rather involved but we will 
develop it at  the rest of this section, though they are not necessary after 
this section. 

There is another difficulty. We defined in Chapter 2 u1 < u2 < . . . to be 
a fundamental sequence of u if u is the limit of the sequence. Then for an 
u < E~ we had a simple uniform method for constructing fundamental se- 
quences for U. However for ordinal diagrams the construction of a fundamental 
sequence and the proof of its basic properties are very involved. Nevertheless, 
all these ideas are necessary for an accessibility proof in the style of Chapter 2. 

The major problem of constructive mathematics lies in the complications 
of the expressions and the descriptions in the arguments. This is due to the 
fact that  in constructive mathematics we must constantly take into account 
delicate distinctions. 

Now we shall explain the theory of approximations. That is, given an 
element j of 1 and a connected ordinal diagram u, we are to define the (n, k)th 
j-approximation of u for n, k = 0, 1, 2 , .  . ., and see that they present good 
criteria for the comparison of two ordinal diagrams with respect to j .  

We shall now define j-valuations and j-approximations of u for every 
j E I and every connected nonzero ordinal diagram u. 

DEFINITION 26.41. (1) When (i, a )  is the outermost value of a connected 
ordinal diagram, i is its outermost index. 

(2) Let 7 be a j-subsection of u where the outermost index of y is < j .  
Then we say that j j  is a j-kernel of u. We include as a j-kernel. 

DEFINITION 26.42. Let vo( j ,  u) be the maximum of the outermost values of the 
ordinal diagrams represented by the j-subsections of u. Then vo(j, u) is called 
the Oth j-valuation of u. 

Note that every non-zero connected ordinal diagram has a Oth j-valuation. 

PROPOSITION 26.43. Let P and u be non-zero connected ordinal diagrams. If 

uO(j, P) < vo(j ,  u) then P < i  U. 

PROOF. Let u o ( j ,  u) = (i, a ) .  For any j-subsection of a, say 8, 6 Gj u (cf. 
Proposition 26.10). Therefore it suffices to show that P < i  ( i ,  a ,  y )  for any 
j-subsection of u of the form (2, a, y )  (i.e., the outermost value of the ordinal 
diagram represented by it is (i, a ) ) .  We shall, however, show that 
(*) q <,,, (i, a ,  y )  for all m 3 j and each 4 a j-subsection of P. 
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Then as a special case we have ,O < (i, a ,  y ) .  
The proof of (*) is by induction on l(q). Note that vo(j ,  q)  < v,,(j, p) < (2, a) .  
(1) r? is a j-kernel of 8. Either 7 is 0 or of the form ( k ,  b ,  7’) where K < j .  

Then obviously q < m  (i, a ,  y )  for every m 3 1 .  
(2) q is of the form ( k ,  b, q’), where k 3 j .  Since ( k ,  b) < (i, a ) ,  q <m (i, a ,  y )  

if m > k .  Let j < m < k and let 8 be an m-section of 75. Let 8, be any com- 
ponent of 6. Then 8, is a j-subsection of p ;  hence by the induction hypothesis 
6, < m  (i, a,  y ) .  This implies that 6 <m (i, a,  y )  so by induction on ~ ( m ,  q), 
q < m  (i, a ,  y )  for all m for which j < m < k .  

DEFIN1~1oN26.44. (1) Letabeaconnectedordinaldiagramandlet (i, a )  = vo(j,a). 

Consider any j-subsection of a whose outermost value is (i, a ) ,  say (i, a ,  y ) .  
Let apr(0, j, E) be the greatest such (i, a ,  y )  with respect to  <i. Any j-active 
occurrence of apr(0, j ,  a), say apr(0, j ,  a), is called a 0th j-approximation of a. 

We shall use a. as an abbreviation for apr(0, j ,  a) .  There may, of course, be 
many occurrences of a. that are not 0th j-approximations of a. However, we 
are not interested in such occurrences. Therefore, for notational convenience 
we will hereafter use the symbols a. and apr(O,j, a) only for occurrences 
that are 0th j-approximations of a. 

(2) If a j-subsection of a,  sayfj, does not contain an a,, a j-active occurrence 
of apr(0, j ,  a ) ,  and is not contained by any a,, then we say that fj j-omits 
u0. When j is understood we will say simply that 

- ~ _ _  

- 

- 

- - 

omits ao. 

~ _ _  
LEMMA 26.45. (1) apr(0, j ,  a)  i s  a j-subsection of a. 

(2) Let a‘ = (i, a ,  6 )  be a j-subsection of a whose outermost value is  (i, a )  and 
which is  different from a,. Then a’ < i  a,, and hence 6 < i  y (where a, = (2, a ,  y ) ) .  
T h i s  implies that a‘ <, a,, for all m 3 i. 

- _ _  

- 

(3) If f j  is  a j-kernel of a which is not a,, thcn q <m a. for all m 

(4) If q, a j-subsection of a, j-omits a0, then q <n a, for all m 3 j .  
(5) Let (i, a)  = vo(j ,  a) and dl, d,, . . . , 8, be all the j-subsections of a. Then 

j .  - 

a,, = apr(O,j, a) = max(S1, a2,. . ., am). 
< i + l  

PROOF. (3) Let q = ( k ,  b, 7’) and k < j .  If i < i, then evidently q < m  a. for 
all m 2 j .  Suppose j > i. Then a = a, and there is no j-kernel except a,. 

is a j-kernel of a. Then q <m u for all m 3 j by (3). (4) (i) 
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(ii) Let q = ( k ,  b, q’), where k 3 j .  If ( k ,  b) = (i, a ) ,  then by ( 2 )  q < m  a. for 
all m 3 i. If j 3 i this will do. Suppose j < i. Let j < m < i and let 8 be a 
component of an m-section of q. Then 8 is a j-subsection of a which j-omits Gco. 

Therefore by the induction hypothesis 6 <, a. for all m 3 j .  By induction 
on i (m,q) we can then prove that 7 <mao. If ( k ,  b) < (i, a ) ,  then q <,a, for all 
m > k .  Let j < m < k ,  and let 8 be a component of an 172-section of q. Then 
by the induction hypothesis 6 <,,,ao. From this in turn it follows that 
q <mao.  

PROPOSITION 26.46. Let a and P be connected ordinal diagrams, where v o ( j ,  a )  = 

vo(i, /3) = (i, a)  and apr(O,j, /3) < i  apr(0, j ,  a).  T h e n  P < j a. 

PROOF. Since iio is a j-subsection of a,  it suffices to show that /3 <j ao, for then 
/I <j u0 Gj a. We can easily show that 

(1) If f j  is a j-subsection of /I, then u o ( j ,  q)  < (2, a) .  
Furthermore, if v o ( j ,  7 )  = (i, a ) ,  then apr(0, j ,  q)  < i  ao, and 
(2)  for any two ordinal diagrams of the form (2, a ,  6) and (i, a ,  y ) ,  

(i, a ,  6 )  <i (i, a ,  y )  implies (i, a ,  6) <,,, (i, a ,  y )  for all m 3 i. 
Using (1) and ( 2 )  we shall prove by induction on l(7) 
(3) for any j-subsection of P ,  say fj, q < m  cco for all m >, j .  
As a special case of (3) we have P < j  cc0. 

1) i j  is a j-kernel of P .  Then q is 0, or q is of the form ( k ,  6 ,  q’), where k < i. 
Then ( k ,  b)  < (i, a ) .  If ( k ,  b) < (i, a ) ,  then 7 <maO for all m > k ,  hence for 
all m >, j .  If ( k ,  b) = (i, a ) ,  then q Gi Po < i  ao, hence by ( 2 )  above, q <mao  
for all m 3 i. Since k = i and k < j ,  we have j > z .  So q <,,, a. for all m 3 1. 

2) q is of the form ( K ,  b, q’), where k 2 i and ( k ,  b) < (i, a) .  It is obvious 
that q < m  cco if m > k .  Let j < m < k and let 8 be a component of an m- 
section of q. Then by the induction hypothesis 6 < cco for all m 3 i. Therefore, 
by induction on i(m, q ) ,  7 < m  a. for all m such that j < m < k .  

3) q is of the form (i, a, q’). Since q ,Ci Bo <i cco it follows from ( 2 )  that  
q <maO for all m >, i. If j 3 i this will do. Suppose j < i. Consider any m 
such that j < m < i and suppose 8 is a component of an m-section of q. Then 
by the induction hypothesis 6 <, a. for all m 3 j .  From this it follows that 
7 < m  a0 for all such m .  

PROPOSITION 26.47. Let i j  be a j-subsection of a that contains a n  k0. Suppose 
in addition that for each go in f j  there i s  a n  occuuyrence of a n  element of I that 
i s  less than i and connected to Eo. Let  zi, Zi,. . . , c(T be all such occuwences of 
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a. in f j  and let qk be the least such element of I for iit as described above. Define 
q = q(7) = max(q,, . . . , qm). T h e n  7 < p  a. for every p such that q < p < i. 

PROOF. First note that q 3 j .  Since f j  is a j-subsection of a it  can be easily 
shown that vo(p, 7) < vo(j ,  a) ( =  (2, a ) )  for every 9 3 j ,  and in particular 
for a ~5 such that q < p < i .  Also v0(p ,  ao) = (i, a )  and apr(0,p,  uo) = ao. 
So if v o ( p , 7 )  < ( i ,  a ) ,  then7 <pao by Proposition 26.43. Supposev,(p,q) = (i, u ) .  

Then apr(0, $, 7) <t  a. = apr(0, $, ao), for Eo is not $-active in f j  (cf. (2)  of 
Lemma 26.45). Therefore ljl <9 ao. 

DEFINITION 26.48. Let 7 be a j-subsection of a for which there is an Zo in y 
as a j-subsection of y and such that i is the only element of I that  occurs in 
y and is connected to Eo. (Namely, such an Ct, is i-active in 7.) Let apr(1, j ,  a) 
be the greatest with respect to  < z  of such y. Any such occurrence of apr(1, j ,  a)  
is called a first j-approximatzon of a. 

We will use the symbol aI  as an abbreviation for apr(1, j ,  a) .  Hereafter 
we will use the symbols El and apr(1, j ,  a) only for occurrences that are first 
j-approximations of a. 

Note that according to the definition, a. = a1 is possible. 

LEMMA 26.49. Let vo( j ,  a)  = (2 ,  a ) ,  a. = apr(0, j ,  a)  and a1 = apr(1, j ,  a) .  
(1) If El properly contains a n  E ~ ,  then j ,< i and a, <k al for every k < i. 
( 2 )  If (i, b, 6 )  i s  a sub-ordinal diagram of a1 such that 6 contains an Zo i-active, 

(3) c1 i s  “maximal” in the sense that if ( k ,  c, y )  is  a j-subsection of a, where 
i s  a conzfionent of 7, then k < i. 

then b < a. 
~ _ _  ~ 

DEFINITION 26.50. Let f j  be a j-subsection of a. If ij neither contains an ti1 
nor is contained by an El and is not properly contained by any Oro, then fj 
is said to j-omit El. When j is understood we will say simply that f j  omits ii1. 

PROPOSITIOK 26.51. If a 1‘-subsection of a, say  f j ,  omits El, then 7 <k u1 for all 
k such that j < k < i .  

PROOF. (By induction on l(q).)  

then a. < k  a1 (see ( 1 )  of Lemma 26.49), hence 7 < k  a] .  
1) f j  omits iio. Then <k a. for all k >, j by (4) of Lemma 26.45. If j < R < i ,  
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2 )  r ]  = a, < k  a if j < k < i. 
3) f j  contains tio and i is the only element of I that occurs in r ]  and is 

connected to Eo. Then q < i  a,  by definition of a,. Let i < k < i and let 6 
be a component of a k-section of f j .  If 8 omits ito or contains tio, then 8 omits 
El, so by the induction hypothesis 6 < k  eel, if 6 is contained in E,, then 6 is 
a k-subsection of clot hence 6 < k  < k  ul. so  6 <k E ,  in any case, and by 
induction on ~ ( k ,  q ) ,  q <r a,. 

4) i j  contains ito and for every occurrence of tio there is an element of I 
that has an occurrence in $ connected to iio and which is less than i. By 
Proposition 26.47, 7 < t  tc0 < i  al .  For a k satisfying j < k < i, refer to 3) 
above. 

PROPOSITION 26.52. Let  E and  be connected ordinal d iagrams and vo(j, a)  = 

vo(i, p)  = (i, a ) .  Le t  a,, = apr(0, j ,  a )  = apr(0, j ,  P )  = Po, a1 = apr(1, i, a )  and  

P1 = apr(1, j ,  P ) .  I f  P1 c1 a l ,  then  P < j  a. 

PROOF. In order that  f i ,  < i  al under the assumption, til must properly contain 
&,. Therefore j < i. We shall show that for any j-subsection of P, say f j , which 
either contains Po or omits P o .  
(*) q <k a ,  for all k such that j < k < i. 

As a special case we have P < a ,  < a. The proof of (*) is by induction on 

1) q = /Yo or $ omits Po. Then q <, ,& = a. <k a ,  if 
2 )  i j  properly contains b o  and there is a Bo such that the only element of I 

which has an occurrence in $ connected to Po is i. Then by definition of pl, 
r ]  Gi P1 < $  al.  Let j < k < i and let 6 be a component of a k-section of f j .  
Then 6 either omits Po in which case 6 <k a ,  by 1) above; or 6 contains Po 
and hence 6 <k a1 by the induction liypothesis; or 8 is a k-subsection of Po 
and hence there is a k-active occurrence of 6 in ?i,, &I 6 < k ~ l .  In any case 
6 <r a,. so  by induction on i(k,  q ) ,  q < k  a, can be proved. 

DEFINITION 26.53. Let uo(j, a)  = ( 2 ,  a ) ,  apr(0, j ,  a) = a, and apr(1, i ,  E )  = al. 

Define, as a matter of notational convenience i, = i ,  = i .  
Suppose we have defined some pairs of j-subsections of a and elements of 

I wl~ick have occurrences in x ,  say (ao, io), (a1, i,), . . . , (an, i,,), which satisfy 
the following conditions: 
(') i) For every m, I < m < n, j < i9n+l < i,. 

4 l ) .  
< k < i. 

ii) For each m, m 3 I ,  im+l is the maximum k for which there is a j-sub- 
section of a,  of the form ( k ,  b ,  y )  such that ti,,, is a component of 7. 

~~ ~ 
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iii) Let f j  denote any j-subsection of u such that i j  contains tim and all the 
elements of I that  occur in f j  and are connected to  E m  are 3 imel. Then 

is the maximum, with respect to <im+l,  among those 7 and 
denotes such an occurrence of 

Now we define (CC,+~, in+l) as follows, provided that En is not a. We define 
as im+l in ii) of (*) reading i z  in place of m and we define as 

in iii) of (*) reading n in place of m. 

We call E, an nth j-approximation of u and denote it by apr(n, 1, a) ,  i.e., 
a ,  = apr(n, j ,  u). Define v, by v,(j, a)  = in, n = 1, 2 , .  . . . 

If ti, = u, then tc,l+l needs not be defined. We may, however, use the 
expression ~ ~ + ~ ( j ,  8) < ~ , + ~ ( i ,  a) to mean that ~ , + ~ ( j ,  p) is not defined while 
iln+l(j, a)  is. 

~~ ~ 

COROLLARY 26.54. (1) Let ( p ,  e ,  6) be a j-subsection of ci in which  ii, as a com- 
ponent  of f .  T h e n  p < i,. 

- -~ 
( 2 )  j < in+l < in. 
(3) There  i s  at least one E ,  which  occurs a s  a component of y in (in+l, b, y ) ,  

which  i s  a j-subsection of u presuming  that u, # a. 

DEFIXITIOX 26.55. Let i j  be a 1-subsection of a. We say that f j  j-omits En if 
f j  is not contained b g ,  an\' tin, I /  does not contain any En, and f j  IS not properly 
contained by any of tio, iil,. . . , tin-l. 

PROPOSITIOX 26.56. I". Let f j  be a j-subsection of a that coiatains ti,. Suppose  for 
each occurrence of ti, in  f j  there i s  a n  element of I that has  a n  occuwence an +j 
that i s  connected to ti, and i s  less t han  in+-l. Let  ci;, . . . , ur be all the OccwYences 
of ti,, in  f j  and  let qr be the least element of I that has  a n  occurrence connected to 
u:. Let  q = qn( f j )  = max(q,,. . . ,  qm).  T h e n  7 <I) u, for every p such  that 
q < p < in. ( R o t e  that j < q < in+l.) 

I I n + 1 .  If ij j-onzits 

IIIn'1. Let  u and /3 be connected ordinal d iagrams aizd suppose that apr(n, j ,  a ) ,  

apr(n, j ,  8) ond  apr(n + 1, j ,  a )  ayc defined. S u p p o s e  also that an = apr(n, j ,  E) = 

apr(n, j ,  8) = /3, (hcnce uo = 8 0 ,  

then  ^/I a,+1 for a n y  p such  that j < p < i,+l. 

_ _ _ _ ~  

= 81,. . . , ~ , - 1  = Pn-1). 

(1) If ~ n + l ( j ,  B)  = i i 4 . 1  < i n + l  = U n + l ( i r  

( 2 )  I f  
t hen  8 <j M .  

L!n+l(is 8) = U n + l ( j >  a) = in+l  

and 
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PROOF. (By induction on n.) Note that 10, ITO, 111, IIIO and IIIl have been 
established (cf. Proposition 26.47, Lemma 26.45, Propositions 26.51, 26.43 
and 26.46). First we will prove I" by assuming 111' for all Y such that 
1 < Y < n. Then we will prove [In+' from I" and 11%. Finally we will prove 
IIIn+l from 11" and [In+'. 

I". For any$, j < $ < i, and any Y, 0 < Y < n, a,($, a,) = v,(i, a,) = a,(i, x )  ; 

also apr(Y, $, a,) = apr(r, j ,  01,) = apr(r, j ,  01). Now let q < $ < i,. Then for 
somer ,O~r<n,apr (O,$ , r )  =apr(O,$,u,),. . ., apr(r-l ,@,q) = a p r ( ~ -  ~ , P , K , )  
and either v,($, q) < v,($, u,) or v,($, q)  = a,($, a,)(= i,) and apr(r, P, q)  <,, 
apr(r, $, u,)( = u,). So by 111' applied to $, q <*a, for every such $. 

IIn+l. By induction on L(q). 
1) f j  is ti, or f j-omits ti,. Then by 11" q GP M, < D  

2) f j  contains 
if j < $ \< in+l. 

properly and there is an occurrence of ti, such that all the 
elements of I that  have occurrences in ?j that  are connected to it are 3 in+l. 
Then and let 8 be a 
component of a $-section of f .  Then either 8 omits k, or 8 is a $-subsection 
of ti,. Therefore 6 < p  a, < D  u,+~. Then by induction on i ( P ,  q) ,  q <= uatl for 
all such $. 

3) f j  properly contains ti, and for every occurrence of &,, in ?j there is an 
element of I which is less than in+l and has an occurrence in 71 that is connected 
toti, .ByI",q <.anif ( q < ) z , + l  <$<i, .Inparticularq<j,+lu,  < i , + l ~ , + l .  

Let j < $ < in+l and let 8 be a component of a $-section of f .  Then, as in 2) 
incorporated with induction on l (q) ,  6 < D  CC,+~, which implies q < p  M,+~ for 
all such $. 

b ,  y )  be any j-subsection of M whose outermost 
index is in+l and 7 contains ti, as a component. We shall show that, for every 
j-subsection of b, say ?j, which either j-omits $, or contains ,8,, q < D  E if 
j < p < in+l. As a special case 8 <? [ Gi u. 

c(,+~ by definition of u , , + ~ .  Let j < @ < 

__ 
III"+1. (1) Let = 

1) f j  is b, or f j  omits ,8,. Then q G D  p, by 11". So q GP b, = u, < D  E .  
2 )  properly contains In. Recall that $, occurs in fj in the following context. 

There is a j-subsection of ?j, say ( k ,  c, p) ,  where Bn occurs in p as a component 
and j < k < iL+l < 

We can show that 
(*) There is a number Y ,  0 < Y < n, such that 
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apr(r - 1, in+l, 7 )  = M ,  ( =  apr(Y - 1, in+l, 5 ) )  
and either 

7),(i,+lt r j )  < i,, 
or 

zlr( in+l> r j )  = i r  and a p r ( ~ ,  in+l ,  7 )  <ir  M ,  (= apr(7, in+lr  6)) 

Applying(*)andIII ' to~,  &andi,+,it followsthat7 <i,+lE.Letj<p <in+, 
and let 6 be a component of a p-section of i j .  If 8 satisfies the same condition 
as f j ,  then h < p  [ by the induction hypothesis. If 8 is a $-subsection of 8, 
for some Y, 0 < Y < n, then 6 < p  p, G v  p, = M, 5. In any case, 6 < p  [, 
and by induction on t ( p ,  7). 21 < p  5. 

(**) Let i j  be an arbitrary j-subsection of p that  properly contains b,. Let m 
be any element of I such tha.t m > i:+l ( =  v,+l(j, p ) ) .  Then there is a 
number Y, 0 < Y < n, such that apr(r -- 1, m, 7 )  = /?r-l ( =  and 
either vu,(m, 7 )  < i, = v,(j ,  p)  or v,(m, r j )  = i, and apr(r, nz, r j )  <i, 8, ( =  M ~ ) .  

(Note that m > in+l includes m = When Y = 0, v,(m, r j )  < (i, a)  = 

z j , (m ,  p) or v,(nz, r j )  = (i, a)  and apr(0, m, 7 )  < i  Po. 

7 )  < vo(i ,  p) (= (i, a)). 
If this is a strict inequality we are done. If equality holds, then consider Y = 1. 
Continuing the same argument, suppose that we have reacliedapr(n - 1 ,  m, q )  = 

and v,(m, r j )  = in. Then apr(n, rn, 7 )  must contain b,-l. This, rn > ii+l, 
and the fact that  f j  properly contains Bn imply that apr(n, m,q) # p,. 
So bv definition of apr(n, i ,  r j ) (  = b,), apr(n, rn, 7 )  <in p,. 

(***) for any f j  a j-subsection of p which either omits f i n + ] ,  is fin+l or properly 

As a special case of (***) we have /I < j  <, M. The proof of (***) is by 
induction on Z(rj). 

1) f j  is Bn+, or f j  omits bn+l. By IIn+l,  r j  <$n+l Pn+l <in+l M,+I. Using an 
argument similar to one employed earlier we can prove by induction on I ( @ ,  q)  
that  r j  < v  u , + ~  provided i < p < in+l. 

2 )  f j  contains bn+l properly and there is an occurrence of f i n  in f j  such that 
every element of I that has an occurrence in f j  and is connected to it is 
Then, by definition of ,L!?,+~, 

The assertion (*) is a special case of the following. 

We prove (**) in the following way. Since m 3 j ,  

( 2 )  We shall show that 

contains ji?n+l, r j  < p  tl,+] for any p such that i < p < infl. 

r j  <;,+I Pn+l  <;+,+I M n + l .  

That r j  cP untl for i < p < i,,, can be shown as above. 
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3) ij properly contains and, for every occurrence of in f j n ,  there is an 
element of I which has an occurrence connected to pn, andis <i,+l+l. Then, by 
I", r j  < p  f in  if q < p < in, where j < q < inti. Therefore, letting # = in+, 
we obtain 

r j  < z n + l  Pn <,,,+I Pn+ l  <%,,+I an+ , .  

If i < p < in+l, then q < p  an+l is proved as before. 

We next define refinements of approximations. We shall define 
induction on k in such a way that C((,,k) is an i,+,-subsection of En+,. 

by 

DEFINITION 26.57. 

Suppose 
sections of En+, that  properly contain an occurrence of E.(n,k). Let 

is any occurrence of En that  is i,+,-active in tintl. 
Suppose has been defined so that is an in+,-subsection of Entl .  

# an+,. Let TI , .  . . , y m  be all the occurrences of i,+,-sub- 

a [ n , k + l )  = max ( y l ~  ' ' . I rm). 
<*n+1+1 

Then i i ( , , k+ l )  denotes any such occurrence of a ln ,k+l)  in ti,,+,. 

Note that although?,, . . . , Y m  above are determined relative to an occurrence 
of y,,. . ., y m  (as ordinal diagrams) are determined uniquely from 
an+,. The same is true  oft^^,,^+,). 

o I ( , , k )  is called the (n, k)th j-approximation of a and is denoted by 
~. 

apr((n, k ) ,  j ,  a) .  

____ 
PROPOSITION 26.58. Ei ther  ti[n,k) i s  En+, OY it occurs i n  (in+l, c ,  6)  as a com- 
ponent of 8. 

_ _ _  
PROOF.  Suppose i i ( n , k )  occurs in (9, c,  6) as a component of 8. Then by the 
definition of tin+,, p 3 inti. If p > in+l, then p 3 inIl + 1 hence C q n , k )  in 8 
is an in+, + 1-subsection of ( p ,  c ,  6). S o t ~ ( , , ~ )  < Z n + l + l  ( p ,  c ,  6 ) .  Furthermore, 
(p,  c, 6) contains some occurrence of E ( n , k - l )  as an in+,-subsection, hence, by 
definition of Z ( n , k ) ,  (9, c,  6) < z n + l + l  a(n,k) ,  which is a contradiction. Therefore, 

__- 

P = i n + l .  

DEFINITION 26.59. An i,,,-subsection of En+l,  say i j ,  j-omits E ( n , k ) ,  if it  does 
not contain any occurrence of E l n , k l ,  is not contained by and is not 
contained by any occurrence of E ( m , p l ,  where (m, 9) < (n, k ) .  



CH. 5, $261 ORDINAL DIAGRAMS 319 

Note that if k = 0, it is possible that f j  j-omits ti(,,o) but not En.  

PROPOSITION 26.60. Su$@ose that f j  i s  a n  i,+,-suhsection of that j -omi ts  

E ( n , k ) .  Then 7 <in+l a ( n , k ) .  

PROOF. (By induction on k within which by induction on l(q).) 
k = 0 :  f j  omits ti(,,0). 

1)  i j  oniits ti,. Then q < t n + l  a,  ( =  a(,,o)) by 11" of Proposition 26.50. 
2 )  f j  contains En. Then for each j-active E n  in q there is an element of I that  

has an occurrence in f j  connected to ti,,, and which is < inTl. So by In of 
Proposition 26.56, q a,  = M ( , , ~ ) .  

k > 0 :  f j  omits ti(,,k). 
1) f j  omits 

2)  f j  is E(,,k-,). Then q <in+l x(n,k). 

3) f j  properly contains Then q by the definition of 
t i (n,k) .  Let 8 be a component of an in+,-section of i j .  Since 8 omits ti(n,kl, 
6 <i,Ef a(,,k) by the induction hypothesis. 

Then q <,n+l 
ti(n,k+l) is an z,+,-subsection of E ( n , k )  (by definition). So 6 

by the induction hypothesis. But 

PROPOSITION 26.61. S u p p o s e  

are defivied for a and B. If 
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3)  7 properly contains j(n,k-l) .  Let y be of the form (9, c, y') ,  where$> in+l. 
Then y P(n,k)  by definition of f l (n,k), and hence 

y <i%+li-l P ( n . k )  <i,,+lfl x ( n , k )  

by the hypothesis of the proposition. Let d be a component of an i,+,-section 
of 7. If d satisfies the same condition as 7, then 6 <,,+lp(n,k) by the induction 
hypothesis. The remaining possibility is that  8 is a p ( m , p ) ,  where (yn,$) < 
(n, k - 1). Therefore 6 = in+ l  P ( m , p )  = x ( m , p )  <"n-i-l E ( , , ~ ) .  From this it follows 

In order to finish the proof of the proposition we need only prove that 
(3)  for any f j  an in+l-subsection of @,+, which either omits B(n,k) or contains 

This we prove by induction on l (q) .  

2 )  f j  omits @(n,k). By Proposition 26.60, q 
3) f j  properly contains @cn,k, .  Let 7 be (9, c, q ' ) ,  where 

that y x ( n . k ) .  

p ( n , k ) ,  7 <;,+I x ( n . k ) .  

1) r is B ( n , k ) .  BY ( I ) ,  q <;,+I q n . l c ) .  

tion of / L , k ) ,  q <in+l+l &.k) and hence 

f i ( n , k )  <In+l  cc(,,k). 

> in+l. By defini- 

1̂7 <;,+it1 P ( n . k )  <;,,+i-tl M ( n , k ) .  

From this it follows in the same manner as 3)  in the proof of (2) above that 
7 < t n + l  u ( n . k ) .  

This completes the theory of approximations. As we have seen, this theory 
supplies a criterion for the evaluation of ordering between two connected 
ordinal diagrams. 

927. A consistency proof of second order arithmetic with the 17i-comprehension 
axiom 

The following lemma, concerning the system of oi-dinal diagrams O(w + 1, w3) 
is essential for the consistency proof of this section. 

LEMMA 27.1 (the Main Lemma). Let p be a natural number and let y and 6 be 
ordinal diagrams for which there exist two finite sequences of ordinal diagrams 
y = yo,. . ., ym and 6 = do,. . ., 6, which satisfy the following conditions 

(1) Each yi, i < m, is of the form ( k ,  0, yZ+,)  for some natural number k > $, 
(1)-(4). 

or (w, a + 1, ya+1$q). 
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(2) Each di, i < m, is ( k ,  0, d,,,) or ( w ,  a + 1, 6,+, # q )  according as y i  i s  

(3) 6, < j  y, for each i such that p < j < Q. 

(4) For each j such that p \< i < w and for each j-section ti of d,, there exists 

T h e n  6 < j  y for each j such that p < j < w ,  and for each i with p < j < w 

( k ,  0, Yi+d or (a, a + 1, yi+,, # 7) .  

a j-section ) of y m  for which a <? p. 

and each j-section ti of 6 ,  there exists a j-section f i  of y such that a Gj p. 

PROOF. (By double induction on m and n = ~ ( i ,  y, S).) 
1. If m = 0, then the result is obvious from (3)  and (4). 
2 .  Suppose nz > 0,  y = ( k ,  0 ,  y,) and 6 = ( k ,  0 ,  6,) where k 3 p .  
2.1. Then 6, < k  y 1  by the induction hypothesis so that 6 
2.2. If k < i < w ,  then 6 < 3  y since there are no q-sections of y or S for 

q 3 j ,  and since by 2.1 6 cc0 y. 
2.3. If j = k ,  then 2.2 implies that  6 <j k if 6 ,  < j  y. Since 6 ,  <j y1 by the 

induction hypothesis on and since y1  <j y because y, is a j-section of 
y it follows that 6, <? y. 

2.4. If p < i < k ,  then 6 <jr y ,  where jl = i(i, y ,  6). Therefore, 6 <+ y 
if, for each j-section ti of 6, a < j  y .  Suppose ti is a j-section of 6. Then ti is a 
j-section of 6, so by the induction hypothesis on m there exists a j-section ) 
of y1 such that a G j  j’. Furthermore, p is a 1’-section of y as well. Therefore, 

y .  

u , ( j P < j y .  
3. Suppose m > 0,  y = (w,  c + 1, y1 # 7)  and S = (w,  c + l,al # q) .  
3.1. Since, by the induction hypothesis on m, 6, < w  y ,  it follows that 

3.2. If y ,  that  is, dl < o  y 

and q < w  y .  Since 6, < o  y1 and y1 # q  is an w-section of y ,  it  follows that 

3.3. If p < i < w ,  then by the induction hypothesis on n, 6 <jl y, where 
j ,  = ~ ( j ,  7, 6). Hence 6 ci y if for any 1-section ti of 6, a <j y. Let ti be a 
j-section of 6. Then ?i is either a j-section of 6 ,  or a j-section of 7 .  If the former 
is the case, then by the induction hypothesis on m, there exists a j-section 
of y1 such that a G j  /I. Moreover, f l  is a j-section of y .  Therefore, u < j  y .  
If ti is a 1-section of q,  then ti is a j-section of y ,  and hence a < y .  

6 <COY. 

= W, then it is sufficient to show that 6 ,  # q 

61 < o  Y and q < w  Y. 

We now proceed to the consistency proof of a system of second order 
arithmetic. In  order to simplify the discussion we will use 1, A ,  and tl as 
primitive logical symbols. Other symbols will be used as abbreviations. 



322 CONSISTENCY PROOFS [CH. 5, $27 

DEFIKITION 27.2. (1) The language, formulas, abstracts, sequents and proofs 
of second order arithmetic are as in Definition 18.1. 

(2) A semi-formula or a semi-abstract is respectively a formula-like, or an 
abstract-like expression, where a bound variable may occur free. The outer- 
most logical symbol of a semi-formula or a semi-abstract is defined naturally. 

(3) Let A be a semi-formula or a semi-abstract, let V 4  B be a semi-formula 
in A and let # be the outermost V in V+ B, i.e., the V which precedes 4. Let G 
be an arbitrary symbol in B. Then we say that # ties G and G is tied by # in A.  
If G is a V on a second order variable in B and G ties 4 in B, then we say that 
8 affects G in A .  
(4) Let # be a V on a second order variable in A .  We say that # is isolated 

in A if the following conditions are satisfied. 
(4.1) No V on a second order variable in A affects #. 
(4.2) # does not affect any V on a second order variable. 
(5) A semi-formula or a semi-abstract A is called isolated if every V on a 

second order variable in A is isolated. Originally we used “semi-isolated” 
instead of “isolated”. 

The following result is easily shown. 

PROPOSITION 27.3. T h e  class of isolated formulas (abstracts) is 17;-in-the-wider- 
sense (cf. (3) of Dgfinition 18.1). l‘hevefore, if I/ i s  an isolated abstract and 
F(u) i s  isolated, then so i s  F ( V ) .  

From Proposition 27.3 we see that when we study isolated formulas, we are 
essentially dealing with n:-formulas. 

DEFINITION 27.4. By the isolated system of natural numbers,  INN, we mean 
a system of second order arithmetic as in Definition 18.1, where the induction 
formulas are arbitrary, i.e., the system has full induction, and the abstracts 
for V : left, the V in (1) of Definition 18.1, are restricted to the isolated ones, 
that  is, the system has isolated comprehension. 

Originally this system was called the semi-isolated system of natural 
numbers, SINN. 

This section is devoted to the proof of the following. 

THEOREM 27.5. INN is consistent. 
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PROOF. Theorem 27.5 will be proved using the system of ordinal diagrams 
O(w + 1, w3) .  The proof will be presented stage by stage. We shall take over 
much of the terminology from first order arithmetic, for example, explicit 
and implicit bundles and formulas, end piece, boundary inferences, etc. 

DEFINITIOK 27.6. Let A be a formula. We define the y-degree of A ,  denoted 
y ( A ) ,  as follows: 

In the following we assume that A is not isolated. 
1) y ( A )  = 0 if A is isolated. 

2 )  If A is of the form -IB, then y ( A )  = y ( B )  + 1. 
3) If A is of the form B A C, then y ( A )  = max(y(B), y ( C ) )  + 1. 
4) If A is of the form V x  G ( x ) ,  then ?(A)  = y(G(a)) + 1. 
5 )  If A is of the form V+ F ( # ) ,  then y ( A )  = y ( F ( a ) )  + 1. 
6) The y-degree of an abstract {xl,. . ., x,} H ( x l ,  . . . , x,) is defined to be 

y(H(a1,. ' ' > an)). 

PROPOSITION 27.7. If V is an isolated abstract, then y ( F ( V ) )  = y ( F ( a ) )  

PROOF. If y ( F ( a ) )  = 0,  the proposition is evident (cf. Proposition 27.3). If 
y ( F ( a ) )  # 0, we shall prove the proposition by mathematical induction on 
the number of logical symbols in F(a) .  Since other cases are treated similarly 
we shall consider only the case where F(a)  is of the form V 4  G($, x ) .  By the 
induction hypothesis, y(G(B, V ) )  = y(G(/?, K)). This implies that  

y ( F ( v ) )  = y(G(B, V ) )  + 1 = y(G(B, 4) + 1 = y ( F ( 4 )  

PROOF. Let V be isolated and y ( F ( V ) )  > 0. By Proposition 27.7, y(F(cc)) > 0, 
that  is, F(a)  is not isolated. Hence V$ F(+) is not isolated either. Then 
y ( V $ W ) )  = y ( W )  + 1 = y ( F ( V )  + 1 .  

DEFINITION 27.9. Let A be an occurrence of a formula in a proof P, in INN. 
Thegrade of A with respect to P,  denoted byg(A ; P) or simplyg(A), is defined 
to  be w2 * y ( A )  + w * m, + ma, where m, is the number of second order free 
variables used as eigenvariables of second order V : right under the sequent 
containing A ,  and ma is the number of logical symbols in A .  

To prove Theorem 27.5,  we shall modify the notion of proof in INN, by 
introducing the following rule of substitution : 
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DEFINITION 27.10. Rule of substitution in 1R” 

where u is a second order free variable and V is an isolated abstract with the 
same number of argument-places as a. Here u is called tlie eigenvariable of 
the substitution. This schema is essentially redundant in INN, but the introduc- 
tion of it helps us in the reduction of proofs in IhT. 

DEFINITION 27.11. We say that an inference j ,  which is either a substitution 
or a second order V : right, disturbs a semi-formula A if the eigenvariable of 
J is tied by a second order V in A .  

DEFINITION 27.12. Let P be a proof in INN. We call P a proof with degree if 
the following conditions are satisfied. 

1) Every substitution is in the end-piece and there is no ind under a substi- 
tution. 

2) We can assign an ordinal number < o to every semi-formula A or 
substitution J in P as follows. We denote this assigned number by d(A ; P )  
or d ( J ;  P ) ,  or, for short, d ( A )  or d ( J )  read “degree of A or J”. 

2.1) If A is explicit, then d ( A )  = 0. Suppose A is implicit. 
2.2) If A is not isolated, then d ( A )  = o. Suppose A is isolated. 
2.3) d ( A )  = 0 if A contains no logical symbol. 
2.4) d(A)  = d(B) + 1 if A is of the form -&. 
2.5) d(A)  = max(d(B), d(C) )  + 1 if A is of the form B A C. 
2.6) d ( A )  = d(B(x ) )  + 1 if A is of the form Vx B(x) .  
2.7) d(A)  = max(d(F(4)), d ( J , ) )  + 1 if A is of the form VC$ F ( 4 ) ,  where 

2.8) d(B) < d ( J )  for every implicit formula B in the upper sequent of J .  
2.9) 0 < d ( J )  < o. 

J o  ranges over substitutions which disturb V+ F ( 4 ) .  

DEFINITION 27.13. Let P be a proof with degree and let S be a sequent in P. 
The z-resolvent of S is the upper sequent of the uppermost substitution under 
S whose degree is not greater than i, if such exists; otherwise, the i-resolvent 
of S is the end-sequent of P.  

DEFINITION 27.14. Consider the system of ordinal diagrams O ( o  + 1 ,  w3). 
We shall assign an ordinal diagram from O(o + 1, w3) to every sequent of a 
proof with degree, as follows: 
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1 )  The ordinal diagram of an initial sequent is 0. 
2 )  If S, and S, are the upper sequent and the lower sequent, respectively, 

of a weak structural inference J ,  then the ordinal diagram of S, is equal to 
that of S,. 

3) If S, and S ,  are tlie upper sequent and the lower sequent respectively 
of 1, A : left, first order V, second order V : right or explicit second order 
V : left, then the ordinal diagram of S, is ((0, 0, B ) ,  where u is the ordinal 
diagram of S,. 

4) If S, and S2 are the upper sequents and S is the lower sequent of an 
A : right inference, then the ordinal diagram of S is ((0, 0, o1 # B ~ ) ,  where (T, 

and B, are tlie ordinal diagrams of S, and S,, respectively. 
5) If S, and S, are the upper sequent and the lower sequent respectively 

of an implicit, second order V : left of the form 

F ( v ) ,  r + A  
V p @ L I T  ' 

then the ordinal diagram of S2 is (w, g(t;(V)) + 2 ,  B ) ,  where o is the ordinal 
diagram of s,. 

6) If S, and S2 are the upper sequents and S is the lower sequent of a cut 
J ,  then the ordinal diagram of S is (cu, wz + 1, o1 # B?),  where m is the grade 
of the cut formula and crl and o, are the ordinal diagrams of S, and S,, 
rexpectively. 

7) If S, and S, are the upper sequent and the lower sequent respectively 
of a substitution with degree i, then the ordinal diagram of S, is (2, 0, (T), 

where (T is the ordinal diagram of S,. 
8) If S, and S, are the upper sequent and the lower sequent respectively 

of an application of induction, then the ordinal diagrani of S, is ((0, m + 2, c ) ,  
where nt is the grade of the induction formula and B is the ordinal diagram 

9) The ordinal diagram assigned to the end-sequent of a proof P with 

The ordinal diagram of a sequent S in P will be denoted by O ( S ;  P )  or 

of s,. 

degree is called the ordinal diagram of P. 

simply O ( S ) ;  the ordinal diagram of P will be denoted by O(P). 

DEFIKITIOS 27.15. \Ye shall define the notion of reduction of proofs. 
1) Let S,,. . ., S, and S be sequents. S is reducible to S,,. . ., S, if S is 

provable without a cut presuming that S,, . . . , S, are provable without a cut. 
2) Let P,, . . . , P,, and P be proofs with degree. We say P is reduced to 

P,, . . . , P, if tlic following conditions are satisfied: 



326 COSSISTENCY P R O O F S  [CH. 5,  $27 

2.1) Tlie ordinal diagram of each Pi is less than that of P (in the sense 

2.2) The end-sequent of P is reducible to the end-sequents of PI,. . . , P,. 
of <o) .  

(1) Preparation for tlie reduction. Suppose that the sequent + is provable 
in ISN. In the following we shall reduce a proof P of -. to another proof of +. 
Then by transfinite induction on <,,, we can prove tliat there exists a proof 
in INN of + of wliicti the entire part is tlie end-piece. Following the method 
of tlie consistency proof of PA, we can eliminate the cut inference from tlie 
proof of + so obtained. But tliis is impossible. 

Without loss of generality we may assume that all free variables used as 
eigenvariables in a proof are distinct and are not contained in the sequents 
under the inference in wliicli it is used as an eigenvariable. 

Let P be a proof of +. 
1) We add the following rules of inference, called term-replacement. 

r + A , ,  F ( ~ ) , A ,  
.~ 

TI, w), r, --f 
r,,(fiy~TpyA ’ r ---f A , ,  F(t ) ,  A, ’ 

where s and t are terms wliicli do not contain any free variable and which 
express the same number. (These rules of inference are redundant in the 
original system.) 

2) If S, and S, are the upper sequent and the lower sequent of an application 
of term-replacement, then tlie ordinal diagram of S2 is equal to that of S,. 

3) We substitute 0 for every free variable of type 0 in P except if it is used 
as an eigenvariable. In tliis alteration the proof remains correct and neither 
tlie end-sequent of P nor the ordinal diagram of P changes. 

( 2 )  Suppose that P contains an application of ind in its end-piece. Because 
of 3), immediately above, P contains no first order free variables in its end- 
piece other than those used as eigenvariables. Let J be a lowermost induction 
in the end-piece o f  P :  

O ( 4  

where t contains no free variables and Q(a) is the proof of the upper sequent 
of J .  We obtain a proof P’ from P by replacing J by tlie following: 
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Case 1. t = 0. Replace tlie part of P above A(O), r --f d,  A ( t )  (inclusive) by 

A@) ---+ A (0) 

A ( o ) ,  r - A ,  ~ ( 0 )  
A(o) ,  r - A ,  ~ ( t ) .  

___-_- 
some weakenings and exchanges 
- _ _ _ _ ~  ~ _ _ _  

~- - - 

Since the ordinal diagram of A @ ) ,  l‘ - -8, A(t )  IS 0, it is obvious that 

Consider the following 
O(P’) < o  O(P).  

Case 2 .  t # 0. Then t = n for some numeral 
proof P’: 

Q (0) Q (0’) 

A (o), r, r - A ,  A ,  A (0”) 

A(o) ,  r - A ,  ~ ( 0 ” )  

A(o) ,  r 5.4, ~ ( 0 ‘ )  A(o’) ,   LA, ~ ( 0 ” )  ___~_ - __ ____ 

Q(0“) 

A(O”), r 5 A ,  A(0”’) 

___ 
some exchanges and contractions _ _ _ _ _ ~ _ _ ~  ~ 

_______ __ ~ - _  ~ 

A(o) ,  r, r - A ,  A ,  A ( O ~  

A(o) ,  r - A(o”’), n 
some exchanges and contractions __  __ 

4 

Every substitution i n  P’ is assigned tlie same degree as the corresponding 
substitution in P. I t  is easily seen that P‘ is a proof with degree whose end- 
sequent is 4. 

That O(P’) < o  O(P) is shown as follows. First compare 

po = O ( A ( O ) ,  I’ - A ,  A ( t )  ; P)  = (0, g ( A ( 4 ;  P )  + 2, p) 

p1 = O(A(O), I’ - A ,  A(0”);  P’) = ( w ,  g(A(0’);  P’) + 1, ,u p) .  

and 

Since g ( A ( a ) ;  P )  = g ( A ( 0 ) ;  P’), pl <m po. The only w-section of p 1  is p # p, 
and since p is an w-section of p o ,  ,u # ,u ,uo. There is no 
substitution above an ind, so this implies 

po. Thus pL1 

o ( A ( o ) , ~  - A , A ( ~ ) ; P ’ )  < , o ( A ( o ) , r  - A , A ( ~ ) ;  P )  

for every 1, where j is co or j < w .  Let { y o , .  . . , yn}  and {ao,. . . , 6,) be se- 
quences of ordinal diagrams such that 
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i) ym = O(A(O) ,  r - A ,  A ( t ) ;  P ) ,  
ii) 6, = O(A(O), I'--d, A ( t ) ;  P'), 

111) ym-lr.  . . , yo are the ordinal diagrams of the sequences in P which are 

iv) 6m-l,. . . , a0 are the ordinal diagrams of the corresponding sequences 

Then these sequences of ordinal diagrams satisfy the conditions in Lemma 
27.1. Thus by this Main Lemma, taking$ to be 0, a0 <o yo, or O(P') < o  O(P).  

(3) Because of the reduction in (2), we may now assume that there is no 
ind, hence no first order free variable, in the end-piece of P. Suppose that there 
occur axioms of the form s = t ,  A(s) -+ A(t )  in the end-piece of P. Let 
s = t ,  A (s) - A ( t )  be one such. Then there are numerals m and n such that 
m and n are equal to s and t ,  respectively. Either m = n + or -+wz = n 
is a mathematical, initial sequent. 

... 

under A(O), I' - A ,  A(t ) ,  in that  order, and 

in P'. 

Case 1. If wz = n - is an axiom, then replace that axiom by 

m = T t +  
weakenings and an exchange 

m = n. A ( m )  - .A(%) 
term replacements -~ 
s = t ,  A ( s )  4 A(t )  

This does not change the ordinal diagram. 

initial sequent by: 
Case 2 .  If m = n + is not a mathematical, initial sequent, replace the 

A ( 4  + A(%) 

+ A(t)  
s = t ,  A (s) + A ( t ) .  

term replacements 
- 

_________ 

(4) By virtue of (3), we may assume that there are no applications of ind 
and no equality axioms as initial sequents in the end-piece of P. Suppose 
that the end-piece of P contains logical, initial sequents. Suppose P is of the 
following form and D ---f B is one of the initial sequents in the end-piece of P :  

D - D  

r $ A ,  D D,1T < A l ,  D ,  A,  -___ 
r, 17 - A ,  ill, D,  A, 

4 
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where two D’s in tlie riglit upper sequent of the cut denote the descendants 
of the D’s occurring in the initial sequent which is explicitly written. 

We shall consider a proof P‘ of the following form: 

some weakenings and exchanges 
- ~ -~ r, II + A ,  A ~ ,  ii, A, 

where every substitution in P‘ is assigned the same degree as the corresponding 
one in P. 

while 
O ( r ,  fl + A ,  A, ,  D ,  A,; P )  1 (w, g ( D )  + 1 ,  /A # v), 

O(r,rl +d7Ai,D,11z;P’) = p < < , ( w , g ( D )  + ~ ? / A # V Y )  

for a11 j < w and, If j < w, for each b a 7-section of /A, @ IS also a j-section of 
(w, g ( D )  + 1, p # v). Thus by Lemma 27.1, O(P’) < o  O(P). 

If P is of the form 
D - D  

rl, D, r-, + A ,  D r7, /I + A  
r], D,  r,, n + A ,  A 

-~ - ~- ~ _ _  ~- 

then tlie reduction is carried out similarly. 
( 5 )  We may assume besides the condition in (3) that  the end-piece of P 

contains no logical, initial sequent. Let Q be a proof with degree whose end- 
sequent is not necessarily + but which satisfies the same conditions as those 
required for P. We can define Q*, obtained from Q by eliminating weakenings 
in the end-piece of Q ,  by induction on the number of inferences in the end- 
piece of Q as for PA. We deal with the following case only: If the last inference 
of Q is a substitution, say 

r+n 

where I’ and A are A , ,  . . ., A ,  and H,, . . ., B,, respectively, and r (F) and 
A (t) denote A ,  (:,),. . ., A,, (;) and B ,  (;),. . . ,  B ,  (:.), respectively, and the 
end-sequent of @,*, where Qo is the proof of the upper sequent, is f* + A * ,  
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then Q* is 
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Q* 
r* - A *  

r*(;) + A * ( ; ) ’  

If the end-piece of P contains a weakening, we can reduce P to P*, where 
every substitution in P* has the same degree as the corresponding substitution 
in P. 

(6) In the following we shall assume that the end-piece of a proof with 
degree contains no logical inference, ind, weakening or axioms other than 
mathematical axioms. Moreover, we may assume that the proof is different 
from its end-piece, for if the entire proof is its end-piece, then we can eliminate 
cuts as mentioned at  the beginning of (1) .  

Let P be a proof with degree. We repeat the definition of a suitable cut: 
A cut in the end-piece of a proof with degree, P, is called suitable if both of 
its cut formulas have ancestors which are principal formulas of boundary 
(hence logical) inferences. We can show, exactly the same way as for PA, 
that under those conditions there exists a suitable cut in the end-piece of P. 

Now, let P be a proof with degree whose end-sequent is + and let J be a 
suitable cut in P. To define the essential reduction, we must treat separately 
several cases according to the form of the outermost logical symbol of the 
cut formulas of J .  

(7) We shall first treat the case where the outermost logical symbol of J 
is second order I -” LI; ui  me following form: 

s6 

where m = g(V+ F(+)),  n = g(F,(V)),  and S6: r3 - A 3  is the i-resolvent of 
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S,: r,, 17, ---+ A, ,  A,, i being d(V+ Fl(+)). Here we should remark that the 
i-resolvent r3 - A 3  will be used only for the case when V+ F(+) is isolated. 

Case 1 .  V+ F(+) is isolated. 
Let, in the above figure, 

s,: rl -d1, v+ w+), s,: r, +d2,  v+ q+), 
s3: v+ F2(+), 171 +A1, s4: v+ F(+),  a! -A2. 

Here we should remark that V+ F1(+) and V+ F2(4)  are V+ F ( 4 )  itself up to 
term-replacement ; that is, no substitution applies to those formulas, for if 
there were a substitution with degree k between S1 and S 2  which applies to 
V+ F,(+), then this substitution would disturb V+ Fl(+). But this implies 
that k < i, which contradicts 2.8) of Definition 27.12. Thus V 4  Fl(+) is 
V+ F(+) up to term-replacement. By the same reasoning, V+ F,(+) is V+ F(+) 
up to term-replacement. In the inference J o ,  d(Fl(+)) < i ( =  d(V+ Fl(+))). 
Let P' be the following: 

Ji 

a' 
+ 

where J1 is a substitution whose eigenvariable is u and whose degree is defined 
to be i. Every substitution in this proof other than J1 is assigned the same 
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degree as the corresponding substitution in P. Here we should remark that,  
in the upper sequent of J1, the descendant of F,(a) in Fl + A l ,  Fl (a )  isF(a) .  
As was remarked, no substitution disturbs F ( a )  between rl + A l ,  Fl(cr) and 
F,, IT, + A , ,  11, in P. If there were such a substitution with degree k 
between F,, IT, + A 2 ,  11, and r3 + A 3 ,  it would disturb V+ F(+),  i.e., k < i. 
But this contradicts the fact that r3 + A ,  is the z-resolvent of r,, IT, + A 2 ,  11,. 

We shall show that P' is a proof with degree. For this it is sufficient to show 
that d(F l (a )  ; P')  < z .  If there is an inference other than J 1  which disturbs 
F,(a) (in P') ,  the corresponding substitution in P disturbs Fl(+). J1 does not 
disturb F(a) for otherwise the outermost V of V+ El(#) affects another V 
for a second order variable in V+ Fl(+) .  But this contradicts the fact that  
V+ F1(+) is isolated. So d ( F l ( a ) ;  I") = d(F , (a ) ;  P )  < i. 

In order to prove O(P') < o  O(P), or B' <o B, we first prove v' <? v,  where 
j < w ,  and, for any 1, 0 < i < z ,  and a i-section of v',  say ij, there is a i- 
section of Y, say f ,  such that q Gj t. This is shown below (cf. (7 .5)) .  

(7.1) For any i < w, t' <jt, where t = O(S,; P )  and t' = O(S,; I"). If 
j < w ,  and ti is any j-section of t', then there exists a 1-section of t, say p, such 
that a Gj p. 

PROOF. Since there is no substitution above S1 we see by the k i n  Lemma, 
with 9 = 0, that it is sufficient to show that A' <> (0, 0, A)  for all i < w.  

1) j = w. Then A' Gw A, by the definition of Y'. Obviously A < w  (w ,  0, A).  
Therefore A' < w  (w, 0, A). 

2 )  j < w .  Since there is no j-section of A', A' <? (w ,  0, A) if A' < w  ( w ,  0, A ) .  
But A' <@ (w, 0, A) by 1) .  

(7.2) 8 < i  v for kacli j < w .  If i < w ,  then for each j-section E of 8 ,  tliere 
exists a j-section of v such that a < 8. 

PROOF. By the Main Lemma, with @ = 0, it is sufficient to prove 
1) (w,  m + 1 ,  z' # p) < (w, nz + I ,  t # p) for all i < w ,  and 
2 )  for each i < (0, and for each j-section ?x of t', there exists a j-section p 

of t such that 0: G i  8. 
But 2 )  is part of (7.1). We therefore need only prove 1). This we will do by 

induction on the total number of indices greater than j (super indices of i) 
in (0, m + 1, t' # p) and in (m ,  vz + 1 ,  t # p ) .  

i) Since t' < w  t it  follows from (7.1) that  

( w ,  m + 1 , t '  # p)  ( w ,  m + 1, t # p).  

ii) If i = w ,  then t' # p < w  T # B by (7.1). Since t # p < w  ( w ,  m + 1, T # p ) ,  
1) follows from i). 
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iii) If j < o, then by the induction hypothesis and i), 

((0, 912 4- 1 ,  z’ # p) <?‘ (0, 9% + 1, 7 # p), 

where jl = j(,(j, (LO,  nz + 1 ,  z’ # p) ,  (0, m + 1, z # p) ) .  Let Cr be a j-section of 
(0, nz + 1 ,  z # p ) .  Then ti is also a j-section of T’ # p. If ii is a j-section of T’, 
then tl <, (m,  m + 1, z j$ p )  by (7.1). If ti is a j-section of p, then Cr is a j-section 
of (0, f n  + I ,  5 # p )  and hence c( < j  (to, m + 1 ,  z # p) .  Thus 

((0, wi -t I ,  z’ # p) < j  ( m ,  m + 1, T # p).  

(7.3) O(S,; P’) <, O(S,; P )  for i < j < o or j = co. 

PROOF. O(S,) = ( w ,  tz + 2 ,  p)  and O(S,) = (w,  n + 1 ,  (i, 0, v) #p) .  The proof 

1) Since n + 1 < n + 1, O(S,) <m O(S,). 
2 )  If j = 0 ,  then since p < m  O(S,) and O(S,) < m  O(S,), it is sufficient to 

prove that (2, 0, 0) O(S,). But this is clearly the case since (i, 0,  0) has 
no w-section and ( i ,  0,  0) <m O(S,). 

3) If i < j < w ,  then O(S,) < O(S,) because neither (2, 0, 0) nor p has a 
j-section and from 2 )  O(S,) < w  O(S,). 

(7.4) If i < j < 0 ,  then p’ < i  p. If i < j < cu then for each j-section E 
of p’ tlicre exists a j-section 

PROOF. Let us regard i + 1, O(S,)(= p) ,  and O(S, ) (= p’) as p ,  y ,  and’6, 
respectively, in the Main Lemma. Let yo ( =  O(S,)) ,  y l , .  . . , y m  ( =  O(S,))  be 
the sequence of distinct ordinal diagrams of sequents from S, to S3 in P and 
let do ( =  O(S,)) ,  d l , .  . . , 6, ( =  O(S,)) be the sequence of distinct ordinal 
diagrams of sequents from S, to S, in P‘. The proposition then follows from 
the Main Lemma and (7.3). Here we should recall that  O(S,) has no j-section 
if i < j < Q. 

is by induction on i(j, O(S,), O(S,)) .  

of p such that c( Gj p. 

(7.5) v‘ < i  v for j < o. 
PROOF. We first show that v‘ < j  v for any 1, i < j < o. Let 9 be any 

number, i < @ < w and let @ < j < GO. Take O(S,)(= v ) ,  O(S,)(= v ’ )  and 
O asy, 6, p respectively in the Main Lemma. Let yo ( =  0(s,)), . . . , ym  (= O(S,)) 
be the sequence of distinct ordinal diagrams of sequents from s,?, to  s5 in P 
and let 

be the sequence of distinct ordinal diagrams of sequents from S,, to S,, in 
P‘. LVe then only have to prove that the conditions of the Main Lemma are 
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satisfied for O(S,) and O(Slo). This we prove by induction on ~ ( j ,  O(S,), O(.Slo)), 
where O(S,) = (w,  m + 1, t # p) and O(Slo) = (a, m + 1, t # p'). 

1) From (7.4) p' <, p. Therefore, O(Slo) <m O(S,). 
In 2)-3) we assume that O(Slo) <j O(S,), where j l  = j o ( j ,  O(S5), O(Slo)). 

2 ) I f j  = w,thenO(Slo) <,O(S,) providedt#p' <,0(S5)andO(Slo) <,O(S,). 
But this follows from (7.4) and 1) .  

3) If < j < w ,  then O(Slo) < j  O(S,) provided for each j-section ?i of 
O(Slo), u < j  O(S,). Let & be a j-section of O(Slo), i.e., of t # p'. If & is a j -  
section of z, then ?i is a j-section of O(S5)  as well. Therefore, u < O(S,). If E 
is a j-section of p', then u < j  O(S,) by (7.4). 

Having established v' < v, i < j < w, now consider an i-section of v'. If 
it is not 8, then it is an i-section of v. If it is 8, then 8 < i  v has been established 
in (7.2). For j < i ,  let Cr be a j-section of v'. It can be easily shown that 
there is a j-section of v whose 0. d. is u. So u <j v. Thus v' < v for any j < i. 
This completes the first objective, Y' <j v for all j < w .  

Next, recall that either r3 - A 3  is the end-sequent or r3 + A 3  is the 
upper sequent of a substitution of degree ( =  KO) < i. If the former is the 
case, then v' <o v means u' < o  (T. Suppose the latter is the case. Then a' <o (T 

follows from (7.5) by virtue of the Main Lemma; notice that KO as above 
prevents 8 from being an i-section of an 0. d. between v' and u'. 

Case 2. V$ F ( 4 )  is not isolated. 
Let P" have the following form: 

some exchanges and a weakening _~ some exchanges and a weakening 
rl - F l ( V ) ,  dl9 v4 Fl(4) v4 F 2 ( 4 ) >  1 7 1 ,  F 2 V )  -.+ A1 

r 2  -+ W),  A29 v4 F(4) v4 F(4), 1 7 2  ______  - A 2  r 2  -+ A21 v4 F(4) v4 F(4), n 2 ,  F ( V )  ---+ A2 
r,, n 2  - F ( V ) ,  A 2 , 4 2  r 2 , 1 7 2 ,  F (  V) -+ A 2 ,  (12 

some exchanges some exchanges 

r 2 ,  n 2 ,  r 2 ,  n~ - 4 2 ,  A2,A2,A2 
some exchanges and contractions 

r 2 , n 2  -+ A 2 > A 2  

r 2 ,  n 2  -+ A 2 ,  (12, F ( V )  ~ ( v ,  r,, n2 -+ d 2 ,  A~ 

U" 
-+ 

where every substitution is assigned the same degree as the corresponding 

substitution in P, and the proof of rl - A l ,  F,(V)  is obtained from the proof 
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of rl --f A l ,  Fi(a) by substituting I/ for a everywhere. Since V is isolated, 
y(G(V))  = y(G(a)) by Proposition27.7. Hence the ordinal diagram of rl + A , ,  
F,(V)  is not greater than 2 in the sense of < ?  for every 1. 

P“ is clearly a proof with degree. Since g ( F ( V ) )  < g(V4 F ( 4 ) ) ,  we can 
easily see that a” <@ 0. 

(8) Next we treat the case in which the outermost logical symbol of the cut 
formula of J is A .  Let P be of the following form: 

A2,172 +A1 
A ,  A B 2 , n i  +A1 
___-_____ ri - + A ~ , A ,  r, + A , ,  B, 

TI, rz - + A l p  A,,  A i  A Bi 

r3 + A ~ ,  A A B A A B,17, -+A,  __ 
r3.172 - A 3 , 4  

+ 

We see that P can be reduced to a P’ of the following form: 

some exchanges and a weakening 
TI. rz -+ A,, A , ,  A , ,  A ,  A B,  

some exchanges and a weakening 
Az A B,, 171, Az + Ai 

some exchanges and contractions 
r3, 17, + 4 3 ,  ( 1 2  

---L 

Every substitution in P‘ is assigned the same degree as the corresponding 
substitution in P. Thus P’ is a proof with degree whose ordinal diagram is 
less than that of P. 

(9) The remaining cases, i.e., the case in which the outermost logical 
symbol of the cut-formula of J is 1 and the case in which the outermost 
logical symbol of the cut-formula of J is V, for a first order variable, are 
treated in the same way as the above cases. 

This completes the proof of Theorem 27.5. 
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$28. A consistency proof for a system with inductivc definitioris 

In this section we will prove the consistency of a system obtained from 
INN by adding inductive definitions with 17;-clauses. This system we call 
the system of isolated inductive definitions, IID. 

DEFINITION 18.1. IID is the system INPU' with the following modifications. 
1) IID contains a unary primitive recursive predicate I and a binary 

primitive recursive predicate <*, where <* is a well-ordering of { a  I I ( a ) } .  
1) IID contains ternary predicate symbols A,, A,,  . . . for which A,(s, t ,  V) 

is an atomic formula for s and t terms and V an abstract. 
3) If V+ H is a semi-formula of HI), then the outermost quantifier V affects 

A ,  in B if there is a 4 in an argument of A,, i.e., if A ,  occurs in in the form 
A,(a, b, V )  and 4 occurs in V .  
4) A semi-formula or abstract A of III) is isolated if no V for a second order 

variable affects any other V for a second order variable or .4,, A , ,  . . . , in A .  
5 )  Tlie initial sequents of IID are those of IKN, extended to include formulas 

with An's, and the sequents of the following forms: 

I ( s ) ,  G,(s, t ,  J', {x, y} ) (A , ( x ,  Y, J') A x <* s) - A,,(s, t ,  V )  

for n = 0, 1, 2 , .  . . . Each G,(a, b, cc, p) is an arbitrary isolated formula 
containing none of A, ,  A,+1,. . . , and V is an arbitrary abstract, which may 
contain V for second order variables or A,, A,, ,, . . . . 

6) The rules of inference for IID are those of INN. 

The purpose of this section is to prove the consistency of IID 

THEOREM 28.2. IID is consistent. 

PROOF. This we will prove using the system of ordinal diagrams 

O ( d "  + 1, w * m  * 0 * wZ"),  

where I ,  = ( 2 .  1Z1 + 1) . w and 111 is the order-type of <*. The proof is 
similar to the proof of Theorem 27.6, therefore we will present only new 
aspects of the proof. 
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PROPOSITION 28.3. Let F ( x )  and V be a?% isolated fovnzula aizd an isolated 
abstvact, resfiectiaely. Thera F (  T I )  i s  isolated. 

PKOOF. (By induction on the number j z  of logical symbols contained in F ( x ) . )  
If n = 0, the assertion is clear. Let PZ > 0. We shall treat several cases 
according to the outermost logical symbol of F(cc). Since the other cases are 
easy, we shall consider the case where F(a)  is of the form V$ G ( x ,  $). By the 
induction hypothesis G ( V ,  p) is isolated, where p is a free second order 
variable not contained in V .  We have only to show that the outermost V of 
V+ G(V, +) affects none of the V’s for second order variables or A , ,  A, ,  . . . . 
But this is obvious since V+ G(a,  $1 and G ( V ,  p) are isolated. 

We next define several well-ordered systems. 

DEFINITION 28.4. (1) Let 111 be the ordinal of the well-ordering <*. Let f be 
{i I i E I }  and let I ,  = I u P .  Then <.+ is the well-ordering of I ,  defined as 
follows : 

( 1 . 1 )  If i E I ,  then i <* i. 
(1.2) If i <* j ,  then i <* 1. 
(1.3) If i <* 1, then i <* j .  
(1.4) If i <* i ,  then i <* I. 
(1.5) If i <* i ,  then i <* j .  

( 2 )  Let FZ be a natural number. Then I ,  = ((2, n) I i E I,) U {m,} and <n 

(2.1) If i <* 1, then (i, n) <, (i, n).  
(2.2) If i E I,, then (i, 92) <, a,. 
(3) I, = I, u I ,  u . . . and <, is the well-ordering of I m  defined as follows: 
(3.1) If i E I,, i E I ,  and 1% < m, then i <, i. 
(3.2) If i < i in I ,  for some n, then z <mi. 

The ordinal of <* is 2 .  ) I ( .  

is the well-ordering of I ,  defined as follows: 

The order type of <, is ( 2 .  II/ + 1) . w .  

DEFISITION 28.5. Let A be a formula. The rank of A, in A ,  denoted by 
r (A, :  A ) ,  is an element of I ,  defined as follows: 

1 )  If A,(s, t ,  V )  A s <* i, occurs in A ,  where I ( i )  is provable and either s 
is a variable or s is a numeral for which one of i l ( s )  or i <* s is provable, 
then r (A , :A)  = (2, n) .  
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2) If A,( j ,  t ,  V) occurs in A ,  where I ( j )  is provable, and 1) does not hold, 

3) If A ,  occurs in A and neither 1) nor 2) applies, then r(Am: A )  = a,. 
then r ( A , : A )  = ( T ,  n) .  

PROPOSITION 28.6. Let B and C be two arbitrary formulas in which A,,, and A ,  
occur, respectively. T h e n  r ( A m  : B)  r (Am : C )  if m < n. 

DEFINITION 28.7. The y-degree of a formula or an abstract, y ( A ) ,  is a number 
less than cola, defined in the following way, Here < is the ordering of wIW. 

In 2)-6), A is assumed not to be isolated. 
1) If A is isolated, then y ( A )  = 0. 

2) If A is of the form i B ,  then y ( A )  = y(B)  + 1. 
3) If A is of the form A,(s ,  t ,  V )  A s <* i, then y ( A )  = y ( V )  + ~ ~ ( ~ n : ~ ) + ~ ,  

If A is of the form B A C and not of the form just mentioned, then y ( A )  = 

max(r(B)> y(C)) + 1- 
4) If A is of the form Vx (G(x ) ) ,  then y ( A )  = y(G(a))  + 1.  
5)  If A is of the form V 4  F(+), then y ( A )  = y ( F ( u ) )  + 1. 
6) If A is of the form A,(s ,  t ,  V ) ,  then y ( A )  = y ( V )  + C O ~ ( ~ ~ : ~ ) .  

7) If A is of the form {xl,. . . , xn}B(xl,. . . , x,), then y ( A )  = y(B(al , .  . . , a m ) ) .  

PROPOSITION 28.8. Let {xl,. . . , x,)H(xl,. . . , x,) be an abstract and let sl,. . . , s, 
be arbitrary terms. T h e n  

y(Hts1,. . . J 4) < y((x1,. . . , x , ) H ( x 1 , .  . . , x,)). 

LEMMA 28.9. If G(B, u) i s  a n  isolated quasi-formula (allowing other second order 
free variables as well) which contains none of A,, A,+1,. . . , if s i s  a constant 
for which I ( s )  is  provable, and if V i s  a n  arbitrary abstract which i s  not isolated, 
then 

k 

y ( G ( V ,  A i ( V ) ) )  < y ( V )  + ~ o ' ( = % : ~ ~ )  + m 

for some jl,. . ., j ,  < n, for some formulas B l , .  . ., B,, and for a number m, 
where A:( V )  Zs a n  abbyeviation for 

2=1 

{x, y) (A, (x ,  y ,  V )  A x <* s), and r ( A j l  : B,) < .(A, : A,)  

for 1 < k 

PROOF. By induction on the construction of G. 
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PROPOSITION 28.10. If s i s  a constant for which I ( s )  i s  provable, if V is  not 
isolated and if G,(a, b, ct, p) i s  as in Definition 28.1, then 

y(Gn(S, t ,  v, Ai(v) ) )  < y(An(s, t ,  v)), 

PROOF. As a special case of Lemma 28.9, 
k 

y ( G ( V ,  A”,V))) < y ( V )  + IoT(Aji:Bl) + m, 
1=1 

where r(A,, : B,) < r ( A ,  : A,)  and m < o. On the other hand, 

y(A,(s, t ,  V ) )  = y ( V )  + o Y ( A f i : A f i ) .  

The proposition then follows. 

Next we add the rule of substitution to the system IID (cf. Definition 
27.10). 

DEFINITION 28.11. A substitution or a V : right for a second order variable, 
say J ,  is said to disturb a semi-formula A if the eigenvariable of J occurs in 
the scope of V for a second order variable or in an argument of an A n  occurring 
in A .  

We define a proof with degree to  be a proof satisfying the following con- 
ditions. 

1) Every substitution is in the end-piece, and no ind occurs under a sub- 
stitution. 

2) We can assign an element of or“ + 1 to every semi-formula or abstract 
A and every substitution J in the end-piece, which is called the degree of A 
or of J (written d ( A )  or d ( J ) ) ,  respectively, so as to satisfy the following 
conditions : 

2.1) If A is explicit, then d ( A )  = 0. 
2.2) If A is implicit and not isolated, then d ( A )  = arm. 
2.3) Let A be implicit and isolated. 
2.3.1) d(A)  = 0 if A contains no logical symbol or A,, A l , .  . . . 
2.3.2) d(A)  = d(B) + 1 if A is of the form i B .  
2.3.3) d(A) = max,(d(V), d ( J ) )  + d ( A f i : A )  + 1, where J ranges over all the 

d ( A )  = max(d(B), d(C))  + 1, if A is of the form B A C and not of the form 
substitutions which disturb A ,  if A is of the form A,(s, t ,  V )  A s <* i. 

just mentioned. 
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2.3.4) d ( A )  = d ( B ( x ) )  + 1, if A is of the form Vx B ( x ) .  
2.3.5) d(A)  = maxJ(d(F($)), d ( J ) )  + 1, where J ranges over all the sub- 

2.3.6) d ( A )  = max,(d(V), d ( J ) )  + ~ ~ ( ~ n : ~ n ) ,  where J ranges over all the 

3) d ( A )  = d(B) ,  if '4 is an abstract of the form {xl,. . . , x,}B. 
4) If J is a substitution in the end-piece, then d(B)  < d ( J )  for every 

5) If J is a substitution, then 0 < d ( J )  < o ~ ' ~ .  

stitutions which disturb V$ F ( $ ) ,  if A is of the form V$ F($) .  

substitutions which disturb A ,  if A is of the form A,(s, t ,  V). 

formula B in the upper sequent of J .  

LEMMA 28.12. Suppose G(B ,  a) i s  a n  isolated quasi-formula whose only second 
order free variables are B and a ,  and which contains none of A,, A,+1,. . . . 
A s s u m e  also that i i s  II constant for zeihich I ( i )  i s  provable. If V i s  isolated, then 

d ( G ( V ,  A i ( V ) ) )  < max(d(V), d ( J ) )  + 2 W ' ( ~ J L : ~ ~ )  + nz, 

for some j l , .  . ., j k  < "rz, some B l , .  . ., B, a i d  a itumber na < (0, where 

r(A,, B,) <m r ( A n  : A n )  a d  J raiiges o w r  all substi tutiom wlzich influeiace V .  

k 

J 1=1 

PROPOSITION 28.lS.'Su$~pose An( i ,  t ,  V) i s  isolated, i .e. ,  V i s  isolated, and i i s  a 
constant for which I ( i )  i s  provable. If either 

i s  a n  ini t ial  sequent in a proof wi th  degree, in which A,(i, t ,  V )  i s  implici t ,  then 

PROOF. This is a special case of Lemma 28.12 

DEFINITION 28.14. Let A be a semi-formula or an abstract. We define the 
norm of A ,  n ( A ) ,  to be an element of corm as follows: 

1) If A contains no logical symbol or A,, A,, A?, .  . ., then n(A)  = 0. 
2) If A is of the form - I B ,  then % ( A )  = n(B) + 1. 
3) If A is of the form A,(s, t ,  V )  A s <* i, then x ( A )  = n ( V )  + ~ ~ ( ~ n : ~ )  + 1. 

If A is of the form B A C and not of the above form, then 

n ( A )  = max(n(B), n(C) )  + 1. 
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4) If A is of the form Vx B ( x ) ,  then n(A)  = n ( B ( a ) )  + 1. 
5) If A is of the form VC$ F(C$), then % ( A )  = n ( F ( a ) )  + 1. 
6) If A is of the form A,(s, t ,  V ) ,  then n ( A )  = n(V)  + d A n r A ) .  

7) If A is of the form {xl,. . . , xm}H(x l , .  . . , xm), then n(A)  = n ( H ( a l ,  . . . , am)) .  

LEMMA 28.15. If G(P, a)  contains none of A,, A,+1, .  . . , i! i i s  a constant for 
which Z ( i )  i s  provable and if V i s  an arbitrary abstract, then 

where iL < n, r(A, ,  : B,) < Y ( A ,  : A , )  and m < o. 

PROPOSITION 28.16. Zf  

or 

i s  a n  initial sequent o f  our system, and i i s  a constant for which I ( i )  i s  provable, 
then 

n(G,(i, t ,  V, A X V ) ) )  < % ( A n @ ,  t ,  V ) ) .  

PROOF. A special case of Lemma 28.15. 

DEFINITION 28.17. Let Ar(Zm) = w ' ~  x w x wIrn and let < be the lexico- 
graphical ordering of IV(Zm). Thegrade  of a formula A ,  g(A) ,  is ( y ( A ) ,  a ,  % ( A ) ) ,  
where a is the number of eigenvariables in A for second order V : right under 
A ,  and g(A)  is an element of (Im). 

PROPOSITION 28.18. If 

i s  an initial sequent of a proof with degree, and i i s  a constant for which I(;) i s  
provable, then 

g(G,(i, t ,  A i V ) ) )  < g(A,(i, t ,  V ) ) .  
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DEFINITION 28.19, We shall assign an element of 0(wrm + 1, corm x co x corm) 

to every sequent of a proof P with degree as follows. We denote corm, the 
maximum element of UJ'" + 1, by 6. 

1.1) The ordinal diagram of an initial sequent of the form 

D -+ D ,  s = t ,  A(s )  4 A ( t )  

or a mathematical initial sequent is (0, 0, 0). 
1.2) The ordinal diagram of an initial sequent of the form 

is g(A,(i, t ,  V ) ) .  
2) If S, and S, are the upper sequent and the lower sequent of a weak, 

structural inference, then the ordinal diagram of S 2  is equal to that of S1. 
3) If S, and S, are the upper sequent and the lower sequent of one of the 

inferences 1, A : left, V for a first order variable, V : right for a second order 
variable and explicit V :left for a second order variable, then the ordinal 
diagram of S ,  is ([, (0 ,  0, O), IS), where IS is the ordinal diagram of S,. 
4) If S, and S, are the upper sequents and S is the lower sequent of A : right, 

then the ordinal diagram of S is ( E ,  (0, 0, 0), IS, # a,), where crl and a, are 
the ordinal diagrams of S, and S,, respectively. 

5 )  If S, and S, are the upper sequent and the lower sequent of an implicit 
V : left for a second order variable of the form 

then the ordinal diagram of S, is (6, (p ,  k ,  v $ 0  # 0), a), where a is the ordinal 
diagram of S, and (p ,  k ,  Y) isg(F(V)).  

6) If S, and S 2  are the upper sequents and S is the lower sequent of a cut, 
then the ordinal diagram of S is (t, (p ,  K, Y $ O ) ,  IS, # a,), where (p, k ,  Y) 
is the grade of the cut-formula and IS, and IS, are the ordinal diagrams of S, 
and S,, respectively. 

7) If S1 and S, are the upper sequent and the lower sequent of a substitution 
J ,  then the ordinal diagram of S, is ( d ( J ) ,  (0, 0, 0), IS), where IS is the ordinal 
diagram of S,. 



CH. 5,  $281 A CONSISTENCY PROOF FOR A SYSTEM WITH INDUCTIVE DEFINITIONS 343 

8) If S, and S, are the upper and the lower sequents of an ind, then the 
ordinal diagram of Sz is (6, (p, k ,  v $ 0  go), B ) ,  where {p, k ,  v) is the grade 
of the induction formula and B is the ordinal diagram of S,. 

9) The ordinal diagram of P is defined to be the ordinal diagram assigned 
to the end-sequent of P. 

Suppose the sequent - is provable in this system. We shall reduce a proof 
P of --+ to another proof of +. This reduction will be carried out in the same 
way as in $27. We can assume that the end-piece of P contains no first order 
free variable, ind, axiom of the form m = n, A ( m )  + A ( n )  or D - D, or 
weakening and we assume that term-replacement has been introduced. 
Suppose that the end-piece of P contains an initial sequent of the form 5)  of 
Definition 28.1, say 

where we can assume without loss of generality that i and t are numerals. By 
our assumption either I ( i )  +or - I ( i )  is an initial sequent. We shall abbreviate 
{x, y}(A,(x,  y ,  V )  A x <* i) as AI(V).  

I(2) -+ 

Case 1. I(2)  4 is an initial sequent. Replace (*) by the following: 

weakenings and an exchange 
I ( i ) ,  An( i ,  t ,  V )  - Gn(i, t ,  I/, A f ( V ) )  

The ordinal diagram of the proof is less than that of (*). Hence evidently P 
is reduced to the proof obtained by replacement. 

Case 2. - I ( i )  is an initial sequent. Since every formula in P is implicity, 
there exists a cut J where one of the cut-formulas is a descendant of A,,(Z, t ,  V )  
in (*). Let P be of the following form: 

___.~_ 

I ( i ) ,  A,,(i,  t ,  V) - G,,(i, t ,  V ,  Af(v ) )  
. .  A n 6  t ,  V )  + An@, t ,  V )  

. .  

r % A ,  ~ ~ ( i ,  t ,  V )  A J ~ ,  t ,  v), IT 2 A 
T , I T : A , A  

J 
. .  

4 

where An(i ,  t ,  V )  + An(2, t ,  V )  need not appear. Here we should note that no 
substitution applies to An(i, t ,  V ) :  in fact, if there were such a substitution 
Jo ,  it would disturb An(2, t ,  V), i.e., d ( J o )  < d(A,,(i, t ,  v)). But this contradicts 
4) of Definition 28.11. 
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Consider the following proof P’ : 

I ( i ) ,  An(i, t ,  V )  +G,(i, t ,  V ,  AL(V)) 
A,(i,t, V ) , I ( i )  -Gn(i ,k  V ,&(V))  G,(i,t, V , A i ( V ) )  +G,(i,t, V ,  A l ( V )  

. .  

r, ~ ( i )  ‘20, G J ~ ,  t ,  V ,  A:(v)) ~ , ( i , t ,  V ,  ~ ; ( v ) ) , n%i l  
r, ~ ( i ) ,  n + A ,  A 

q i ) ,  r, IT + A ,  A 

__ 
some exchanges 

~~ 

+ q i )  
r,u 40,il 

- 
Every substitution in P’ has the same degree as the corresponding substitution 
in P. Then P‘ is a proof with degree by virtue of Proposition 28.10. Further- 
more, 

and 
= ( 5 ,  (p ,  j ,  A # 0)) o1 # 04 

0’ = ( 5 ,  (0, 0, 0 # 0)) (0, 0, 0) # (6, (v, k ,  6 # O),  .; # .J), 
where (p ,  j ,  A )  = g(An(i ,  t ,  V ) ) ,  and (v, K, S) = g(G,(i, t ,  I/, A k ( V ) ) ) .  Proposi- 
tion 6 implies that  G’ < L  o(Z < t), from which it follows that the ordinal 
diagram of P‘ is less than that of P. Thus P is reduced to P‘. (For the compura- 
tion of ordinal diagrams, one should refer to $27.) 

Suppose that the end-piece of P does not contain a logical inference, ind, 
or initial sequents other than mathematical ones, or weakening. If P contains 
a logical symbol, we can find a suitable cut in P in the same way as in 26.16 
and define an essential reduction in the same way as in $27. 

As an addendum to this section, as well as the previous section, we shall 
explain the general theory of y-degree. We consider a second order language. 

DEFINITION 28.20. A function y from semi-formulas and abstracts to ordinals 
is called monotone if i t  satisfies the following conditions. 

1 )  Y ( l A )  3 y ( A ) -  
2) Y ( A  A B)  3 max(y(A), Y ( 4 ) .  
3) Y(VX G ( 4 )  3 y ( G ( 4 ) .  
4) y({x, ,  . . . , xnW(x1, .  . ’ , Xn)) = y(H(x , ,  . . ‘ , %)I. 
5 )  Y ( V 4  W)) 3 Y(F(4)). 
6) If A is an alphabetical variant of B, then y ( A )  = y(B) .  
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7) If y ( V )  = 0 and y(V+ F(+)) > 0, then y(V+ I;(+)) > y ( F ( V ) ) .  
We say that A is y-simple if y ( A )  = 0. 
A second order V : left, say 

F ( V ) ,  I’-d 
V T ( K F - A  ’ 

is called y-simple if V is y-simple; it is called strictly y-szmple if both I/ and 
V+ F(+) are y-simple. 

A proof P in GILC is called (strictly) y-simple if every implicit, second 
order V : left in P is (strictly) y-simple. 

PROPOSITION 28.21. Suppose y i s  moqzotone am? for every strictly y-simnple proof 
the cu t - e lmina t ion  theorem holds. The?t the cu t -e l iminat ion  theorem holds for 
ever y y-simple proof .  

PROOF. The grade of a formula in a proof, say A ,  is defined as w 2 .  y ( A )  + 
w m + I ,  where m is the number of eigenvariables of the second order V : right 
introductions which occur under A ,  and I is the number of logical symbols 
in A .  The grade of A will be denoted by g(‘4). Let P be a y-simple proof and 
let J be a cut in P. J is called “y-simple” if the cut formula of J is y-simple. 
The grade of J ,  g( J ) ,  is defined to be the grade of the cut formula of J .  The 
grade of P ,  g ( P ) ,  is defined to be xJ where J ranges over all the cuts 
in P which are not y-simple, and we assume that in 2 are arranged in 
the decreasing order. 

If g(P) = 0, then there is no implicit formula which is not y-simple, in 
particular, the principal formula of every implicit V : left is y-simple, which 
means that P is strictly y-simple. Therefore, by the assumption of the proposi- 
tion, the cut-elimination theorern holds for P. Suppose now that g(P) > 0; 
hence there is a cut J in P which is not y-simple and such that every cut 
above J is y-simple. Since other cases are easily treated, we shall deal with 
the case where the cut formula is of the form V+ F(+) : 

Let Po be the proof ending with F,  11 4 A ,  A. Let A be the left cut formula 
of J and let B be the right cut formula of J .  We may assume that the upper- 
most ancestor of A ( B )  which is identical with A (B)  is the principal formula 
of a logical inference and F ( a )  is the auxiliary formula of such inference 
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related to A .  By replacing the ancestors of A which are identical with A by 
F(u), we obtain a proof P1 ending with r - -+A,  F(u) .  

Let 17, --+ Al be an arbitrary sequent which occurs above the right upper 
sequent of J .  We can construct a proof ending with a sequent of the form 
U,*, r + A ,  ill, whereU,* is obtained from 17, by eliminating all the ancestors 
of B which are identical with B. This can be done by induction on the number 
of inferences in the proof ending with Ilr, + A l .  As an example, suppose 
17, -+Al is the lower sequent of a cut: 

1 7 2  + 1 1 2 ,  D D ,  I 7 3  + A3 
17% 1 7 3  4, A3 

where IIz, Ilr3 is II, and &, A3 is A,. Define the following: 

I Q , r + A , A 2 , D  D , I I $ , r + A , A 3  
n,*, r, n,* , r 4 A ,  A,, A ,  113  

~- 

II;, n:, r - A ,  A ~ ,  A ~ .  

As another example, let I?, +A,  be the lower sequent of a second order 
V : left whose principal formula is an ancestor of B which is identical with B: 

F ( V ) , D 2  +A1 
v4 F(4)> I J 2  -131 ' 

where VC#J F(+)), nZ is nl. Consider the following: 

r +A,qv) q v ) , n ; , r + A , A l  
r,n; + A , A ,  A __ 
I I ; , I ' + A , A ,  

where I' - ,A ,  F ( V )  is obtained from P1 by substituting V for a everywhere. 
By takingI7, + A l  to be V$ F(+), Il +A, we o b t a i n n ,  r + A ,  and hence 

r, 17 - A ,  A .  The grade of this proof, say Q, is less than g(P,), since 
y ( F ( V ) )  < y(V4 F ( 4 ) )  by assumption. Now replace Po by Q in P, obtaining 
a proof of the same end-sequent, but with a grade less than P. Then by the 
induction hypothesis the cuts can be eliminated. 

DEFINITION 28.22. A set of semi-formulas and abstracts, say F, is said to 
be closed if the following hold. 



C H .  5, $281 A CONSISTENCY PROOF FOR A SYSTEM WITH INDUCTIVE DEFINITIONS 347 

1) If A is atomic, then A belongs to 9. 
2) If i B  belongs to 9, then B belongs to F. 
3) If B A C belongs to 9, then B and C belong to 9. 
4) If Vx F(x )  belongs to 9, then F(s)  belongs to 9 for every semi-term s. 
5) If V 4  F ( 4 )  belongs to 9, then F(a)  belongs to F for every second order 

variable a. 
6) If (xl,. . ., xn}H(xl , .  . ., x,) belongs to F then H(a,, .  . ., a,) belongs to 
F for every a,, . . . , a,; if H ( a l , .  . . , a,) belongs to F for some a,, . . . , a,, then 
{x,,. . ., x,)H(x,, . . . , x,) belongs to F. 

7) If B and C are alphabetical variants of one another, then B belongs to  
F if and only if C belongs to 9. 

8) If F(a)  and V belong to  F, then F ( V )  belongs to F. 
We define a function y relative to S, which we call they  determined by 9. 
(1) y ( A )  = 0 if A belongs to F. 

(2) y ( A )  = y(B)  + 1 if A is 1B. 
(3) y ( A )  = max(y(B), y (C) )  + 1 if A is B A C. 
(4) y ( A )  = y ( F ( x ) )  + 1 if A is Vx F(x) .  

Assume A does not beIong to 9. 

(5 )  y ( A )  = y ( F ( 4 ) )  + 1 if A is v+ W). 
(6) Y({%. . ' >  x,}H(x,,. . ' )  x,)) = y(H(x1,. . .)  x,)). 

In a manner similar to the proof of Proposition 27.7, we can easily prove 
the following. 

PROPOSITION 28.23. Suppose 9 is  closed and  y i s  the function determined b y  
F. If V belongs to 9, then y(F(cr)) = y ( F ( V ) ) .  

PROPOSITION 28.24. Suppose 9 i s  closed and y is  the function determined b y  
9. T h e n  y as monotone. 

PROOF. Immediate from the definition of y and Proposition 28.23. 



CHAPTER 6 

SOME APPLICATIONS OF CONSISTENCY PROOFS 

$29. Provable well-orderings 

We shall consider provable well-orderings of INN and show that any 
provable well-ordering of INN has order type less than that of the system of 
ordinal diagrams O(w + 1, w3) ,  with respect to <o. We will borrow much 
of the argument of $13. The results we will prove can be extended to IID with 
little modification. 

DEFINITION 29.1. Let < a  be a recursive linear ordering of the natural numbers 
which is actually a well-ordering. (Without loss of generality we may assume 
that <- is defined for all natural numbers and the least element with respect 
to <- is 0.) We use the same symbol <*  to denote the formula in INN which 
expresses the ordering <-. 

Let TI( <.) be a formula expressing the principle of transfinite induction 
along <. : 

v+ (Vx (VY (Y <* x ’ + ( Y ) )  ’ +(4) ’ v x  +(XI ) .  

If TI(<.) is INN-provable, then we say that <*  is a provable well-ordering 
of INN. 

We assume that an arithmetization of the system of ordinal diagrams 
O(w + 1, 03) has been carried out. We use the same notation to denote both 
an object and its arithmetization. 

THEOREM 29.2. Let < o  be the well-ordering of the system of ordinal diagrams 
O(w + 1, w3) with respect to 0. (Recall that the consistency of INN was proved 
b y  using <o.) If <* i s  a provable well-ordering of INN, then there exists a 
recursive function from natural numbers to an  initial segment of < o  which i s  
<--<o order-preserving. That  i s  to say ,  there i s  a recursive function f such that 
a < a  b if and only  if f ( a )  < o  f ( b )  and there i s  a n  ordinal diagram p in O(w + 1, w3) 

such that for every a ,  f ( a )  < o  p. 
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PROOF. We will follow the proof of Theorem 13.4; and shall only point out 
how to modify that proof so that the arguments fit INN. 

(1) TJ-proofs (for IYS) are defined as in 13.1); in particular the T J  initial 
sequents have the form 

vx (x <* t 3 &(X)) + & ( t ) ,  

and the end-sequents have the form 

-&(??%I),. . .)  &(mn). 

(2) imlc. and the end-number of a TJ-proof are defined as in 13.1). 
(3) For 13.2), 13.5) simply read IKVN in place of PA. We will, however, repeat 

the Fundamental Lemma: 

LEMMA 29.3, the Fundamental Lemma (cf. Lemma 13.5). The end-number of 

a n y  TJ-proof i s  not greater than the order type of its ordinal diagram (with 
respect to <o) .  

(4) Ordinal diagrams are assigned to the sequents of the TJ-proofs as for 
INN: The ordinal diagram of a TJ-initial sequent is 

( w ,  0, (w 0, (w 0, ( w ,  0, (0, 0, 0))))). 
See 13.6). 

(5) The proofs of 13.7) through 13.11) go through as before. 
(6) In 13.12), the ordinal diagram of the proof presented there is 

regarding A 3 B as an abbreviation for l ( A  A 1 B ) .  This is less than the 
ordinal diagram of a TJ-initial sequent. By this, and obvious changes, P 
becomes a TJ-proof P' whose end-sequent is 

where + &(ml), . . . , s(mn) is the end-sequent of P. The ordinal diagram of P' 
is less than that of P and the end number of P' is lml,. . 

(7) As in 13.13), we obtain the Gentzen-type theorem: 

THEOREM 29.4 (cf. Theorem 13.6). The order type of <. is  less than the order 
type of O(w + 1, w3) with respect to <o.  
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(8) As in 13.14), we can define a proof P,  for every k ,  where the end-number 
of P, is Ikl<. . Then we define a function h as in 13.15), where + is the ordinal 
sum. 

(9) In order to claim that h is recursive, and that 13.16) holds, we need 
the following. 

1) The ordinal sum, +, of ordinal diagrams is recursive. 
2 )  If two ordinal diagrams, ,u and v, are connected (i.e., the last operations 

used to form ,u arid v are not #) and ,u < o  v, then ,u + v = v. 
(10) From (9), we conclude that h is recursive and 13.16) holds. This implies 

that  h is order-preserving. 

$30. The IT:-comprehension axiom and the o-rule 

An analogue to Problem 13.9 can be proved for INN, viz., the elimination 
of cuts in a system with the constructive w-rule. We repeat some of the 
definitions which were given in Chapter 5. 

DEFINITION 30.1. (1)  \lie assume a standard Godel numbering for axioms and 
for rules of finite inference. The w-rule is expressed as follows: 

Po Pn 

I- - A ,  ~ ( 0 ) .  . . . . .r - A ,  A ( % ) .  . . 
- ~~~~~ r - . A , \ J ~ A ( ~ )  

Here P,  is defined for every natural number n and is a proof of r -+ d,  A (n)  . 
To P, assign a Godel number of ‘P,’ . If there exists a recursive function 
such that f(n) = rPnl for every n, then the w-rule is said to be constructive 
and 3 - 5’ is assigned to the whole proof, where e is fhe Godel number of f, 
i.e., {el(%) = ‘Pn’. Let S be any logical system. A proof, in the system 
obtained from S by adjoining the constructive w-rule to it, is called an 
w-proof in, S. 

( 2 )  Let S(a) and a <. h be primitive recursive predicates such that < a  is 
a well-ordering of ( a :  S(a) } ,  whose first element is 0.  A number-theoretic 
function If/ is called <.-recursive if it is defined by the following scheme 
which is a repetition of a previous definition. 

(i) 

(ii) 

/ ( a )  = a + 1 .  

f ( U 1 , .  . . )  a,) = 0. 
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where g, 1 and t are <.-recursive and 

z (a ,  a2 , .  . . , a,) if z (a ,  a2 , .  . . , a,) <. a + 1, c otherwise. 
t * ( a ,  a,,. . . )  a,) = 

We shall transform a proof in INN whose end-sequent contains no first order 
free variables, into a proof of the same end-sequent in the system with the 
constructive w-rule. In proving the consistency of IKN in $27 we defined 
reductions on a proof of 4. This notion, however, can easily be extended to 
any proof whose end-sequent has no first order free variables. 

DEFISITION 30.2. (1) O(IlV3) = O(w + 1, w3) isthesystemof ordinaldiagrams 
used to prove the consistency of INN and < is its well-ordering (namely <o). 

( 2 )  For an ordinal diagram cc, and natural number i, a(i) is defined by 

(3) For an ordinal diagram p and natural number m, (p ,  m )  =df (O,O,  p 
By an abuse of notation, we shall use the notations for proofs, ordinal 

diagrams and .< both for formal objects and their Godel numbers. 
To the sequents in a proof we make the same assignment of ordinal diagrams 

as in $27 and we define the ordinal diagram of a proof Y to be (p, m),  where 
p is the ordinal diagram assigned to its end-sequent and m is the number of 
first order free variables in its end-piece (denoted . z (P)) .  If the ordinal diagram 
of P is less than the ordinal diagram of Q, then we write rP1 < rQ1, or 
simply P < Q. 

i! cc. alO) = a and c c ( z + l )  = M ( 2 >  
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REMARK. In the definition of a reduction, we may be asked to take, say, a 
lowermost inference satisfying a certain condition. Such an inference may not 
be uniquely determined; however, we may suppose that the inferences are 
Godel-numbered, and then take an inference as required with smallest Godel 
number. 

THEOREM 30.3. There exists a <-recursive function f such that, for every proof 
P in INN whose end sequent contains no first order free variable, f (  rP1 ) i s  the 
Gi;del number of an w-proof of the end-sequent of P which contains no cut and 
no application of mathematical induction or first order V : right. 

PROOF. Let P be a proof in INN whose end-sequent contains no first order 
free variables. We define reductions r ( P )  and q(i ,  P )  for each i < w and a 
transformation f (  ‘P’) by transfinite induction on the ordinal diagram of P. 

1) The end-piece of P contains an application of induction or an explicit 
logical inference. 

1.1) The end-piece of P contains a first order free variable which is not 
used as an eigenvariable. We define r (P)  to be the Godel number of the proof 
obtained from P by substituting 0 for each of such first order free variables. 
Obviously, r (P)  < P. We define f(P) to be f(r(P)).  

1.2) The end-piece of P does not contain a first order free variable which 
is not used as an eigenvariable. Let J be a lowermost induction or (explicit) 
logical inference. We consider several cases. 

1.2.1) J is an induction. Let r ( P )  be the proof obtained from P by applying 
to J the reduction in (2 )  of $27 and let f(P) be f ( r ( P ) ) .  Then r ( P )  -< P. 

1.2.2) J is an explicit logical inference. 
1.2.2.1) J is not a first order V : right. Since all the cases are treated sim- 

ilarly, we consider the case where J is A : left. Let P be 

A A B, r -2 

r,, -+do. 

A , r - d  

We define r (P)  to be the proof 

some exchanges and weakening 
A A B , ~ , A  -+A 

r,, A -.do. 
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Since r ( P )  < P ,  f(,(P)) has been defined by the induction hypothesis. We 
define f(P) to be the following propf 

. -  _ _ ~ ~  
some exchanges 

some exchanges and a contraction 
- r, + A , .  

We shall refer to this figure as g( f ( r ($) ) ) .  
1.2.2.2) I is a first order V :  right. Let P be the following form: 

r ' A ,  A ( a )  
r - + A , V x A ( X )  

r, + A,.  

For each i we consider the proof (referred to as q(i, P)) : 

r -+A, ~ ( i i  
some exchanges and a weakening 

r + ~ ( i ) ,  A ,  vx A(%) 

ro ' A ( i ) , A O  

where the proof of r - + A ,  A ( i )  is obtained from the proof of the upper 
sequent of J by substituting the numeral i for a. Obviously q(i, P )  < P for 
each numeral z .  Thus f (q( i ,  P ) )  has been defined for each z .  We define f ( P )  
to be the proof 

some exchanges 
- 

.. .  ro + A o ,  A(;) . . . for each z 

r, + A f l ,  vx A ( x )  w-rule 

some exchanges and a contraction 
-____ r, ' A o .  

2 )  The endpiece of P contains no explicit logical inference or induction, 
but does contain an explicit, logical initial sequent. Then the end-sequent 
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of P is obtained from it by some weakenings and exchanges. Let f (P)  be one 
such proof. 

3) The end-piece of P contains no induction or logical inference or explicit, 
logical sequent. We define r(P)  to  be the proof obtained from P by applying 
the reductions in (1) through (9) of $27, retaining explicit weakenings. Then 
r(P) < P. Since the end sequent is unchanged by the reductions, we define 

We have identified many notions with their Godel numbers, e.g., a proof 
P sometimes means its Godel number. Thus we can consider the functions Y ,  

q, g, f to be number-theoretic functions. We can obviously take r ,  q and g to 
be primitive recursive. Let P(a) be a primitive recursive predicate stating 
that a is a proof in INN whose end sequent contains no first order free variables. 
Let Po, P,, P,  and P 3  be defined by: 

f (P) to  be f ( r (P) ) .  

P,(m) edf P(m) and one of the conditions l . l ) ,  1.2.1) or 2) applies. 
Pl(m) edf P(m) and the end piece of m contains an explicit logical inference, 

P,(m) edf P(m) and the reduction will apply to a first order V : right 
other than first order V : right, to  which the reduction applies. 

in the end piece of m. 

Obviously, Po, P,, P ,  and P3 are primitive recursive and in the light of the 
consistency proof have the following properties : 

P3(m) O d f  l(PO(m) p 2 ( m ) ) .  

Vx 3 !i (i < 3 and P,(x)) ; 

Po@) 3 ~ ( m )  < m ;  

P I @ )  r(m) < m ;  

With the help of recursion theory we shall show that f is recursive, in fact 
<-recursive. In fact, 

if Po(m), 

if P3(m), 

where co is the general recursive index An, e, m{e}(q(n, m)) (i.e., an index for 
{e}(q(n, m)) as a function of n, e, m ;  see: Kleene, Introduction to Meta- 
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mathematics (NorthHolland, Amsterdam, 1967), p. 344. By the recursion 
theorem (op. cit., @6), there is a number c such that fo(c ,  m) N {c}(m) .  Then 
define f by f(m) N { c } ( m ) ,  i.e., 

otherwise. 

Thus f  is partial recursive. By transfinite induction on < we can show that 
f is totally defined. I t  is also hasy to see that f is <-recursive, that  f(P) has 
the same end-sequent as P ,  and that f(P) has no cut or mathematical induction 
or first order free variable. This completes the proof. 

DEFINITION 30.4. A number-theoretic function f ( a l , .  , . , a,) is called provably 
recursive in IPU" if the following sequent is provable in INN: 

+ Vxl . . . Vx, 3 y  T,(e, xl , .  . ., x,, y ) ,  

where T ,  expresses Kleene's primitive recursive predicate T ,  (cf. $13; we can 
easily extend the definition in $13 to the case where there are more than 
one x )  and e is a Godel number of f. 

As an application of our technique we can give an alternate proof of a 
theorem which was first proved by Kino. This is an analogue to Problem 
13.8. 

THEOREM 30.5. Let $ be a Provably recursive function in INN. T h e n  we can 
find a n  ordinal diagram p of O(1NN) such that $ i s  <"-recursive, where <" i s  
< restricted to arguments < p. 

PROOF. Without loss of generality we may assume that $ is a function of one 
argument. Let e be a Godel number of #such that the sequent + Vx 3 y  T,(e, x ,  y )  
is provable in INN. Let P be a proof of + 3 y  T,(e, a ,  y )  whose ordinal diagram 
is p. We define P ,  to be the proof obtained from P by substituting the 
numeral m for a. The process of obtaining P ,  from P is primitive recursive. 
To each P, we apply the transformation f of  the previous theorem. Then 
f (Pm) is a proof without a cut. Since P does not contain any explicit V : right 
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for a first order variable (which is the only inference which induces an 
application of the w-rule in the transformation), it is easily proved by 
transfinite induction that f(P,) does not contain any application of the 
w-rule. By checking the proof f (Pm) we can find primitive recursively a 
numeral n satisfying T,(e, m, n).  Since n = $(m) and f is <'-recursive by 
Theorem 30.3, we see that $ is <"-recursive. 

In defense of the constructive infinite rule we submit the following argument. 
Many theorems in first order proof theory follow from the cut-elimination 
theorem. This is still true even for higher order proof theory in which the 
cut-elimination theorem is proved constructively. However, if one wishes 
to consider an extension of arithmetic, it is impossible to eliminate all cuts 
due to  the fact that  the formal proofs contain applications of mathematical 
induction. Schiitte has introduced the w-rule and eliminated all applications 
of the cut rule and ind in first order arithmetic. This is an excellent idea and 
can be considered an improved form of cut-elimination when ind is involved. 
However, since the main objective of our investigation is a finite proof, it 
is better if we can restrict the w-rule so that the infinite proofs considered are 
possessed of some important properties of finite proofs. For this reason we 
consider the constructive w-rule. 

The adequacy of the constructive w-rule has been proved by Shoenfield 
for first order arithmetic, and by Takahashi for second order arithmetic. 
Therefore, mathematically the constructive w-rule is strong enough. 

931. Reflection principles 

DEFINITION 31.1. (1) Let P be PA augmented with second order free variables 
which function as parameters. 

(2) For the sake of technical convenience, we .restrict the constants in INN 
to the individual constants 0,  1 ;  function constants +, * ; predicate con- 
stants =, <; and we will use V, 3 and 3 as well as 1, A and V as logical 
symbols. 

(3) A first order formula with second order parameters al,. . . , tc, is called 
rudimentary in a,, . . . , a,,, if every (first order) quantifier is bounded, that  is, 
quantifiers occur in the form Vx (x < s 3 . . .) or 3% (x < s A . . . )  for a term 
s. These formulas will be denoted by Vx < s ( .  . . )  and 3% < s (. . .), respec- 
tively. 
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We assume a standard Godel numbering for expressions and notions 
concerning INN. Because of ( 2 )  of Definition 31.1, we may assume that the 
mathematical initial sequents are those of Definition 9.3. The first purpose 
of this section is to prove the reflection principle in the following form. 

THEOREM 31.2 (Takeuti and Yasugi). Let R(u, a ,  b) be rudimentary in a and 
let Ind,(O(INN)) be the formula which expresses transfinite induction through 
O(1NN) for the Z:-formulas (i.e., the formulas of the form 3x R ( x ,  a ) ,  R recursive 
without second order parameters). T h e n  

Ind,(O(lNN)), Prov( ‘Vx 3 y  R(u, x ,  y)’ ) + Vx 3 y  R(a,  x, y )  

i s  provable in P, where rA1 i s  the Godel number of A and Prov( ‘A1)  means 
that “ A  i s  provable in INN”. 

In order to prove this we first observe the following. 

PROPOSITION 31.3. Let R ( a ,  u) be rudimentary in u with one first order free 
variable a ,  and let 3x R(x ,  a) be provable in INN. T h e n  there i s  a proof of 
3 x  R(x ,  a)  in INN containing no essential cut or induction. Moreover, this can 
be proved with the system of ordinal diagrams O(1NN). 

The proposition could be stated for several parameters, uI, . . . , a,, instead 

Let S be a sequent A l , .  . ., A,,, + B,, . . ., B,  of INN. S is said to have the 

pl .  S contains no first order free variable. 
p2. Every A , ,  1 < i < nz is rudimentary in u. 
p3, Every Bi, 1 < i < n is rudimentary in a or is of the form 3x R’(x, u), 

We will prove the proposition in the following form: 

of just one a. 

property (P) if the following conditions are satisfied: 

where R’(a, a)  is rudimentary in cc. 

PROPOSITION 31.4. We can define a reduction, using O(INN), in such a w a y  
that if a sequent S has the property (P) and is provable in INN, then i t s  proof 
can be reduced to one with no essential cut or induction. 

Proposition 31.3 is only a special case of this proposition. 

PROOF. The proof is for the most part thc same as in $27. We introduce a new 
rule of inference bq, “bounded quantification” : 
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r - t d , ( O < k > S ( O ) ) ~  . . .  ~ ( k - l < k 3 S ( k - l ) )  
bq r - A ,  vx (x < k 3 S ( x ) )  

where k is a numeral, S(a )  is rudimentary, and in which the formulas 

(0 < k 2 S ( 0 ) )  A . . . A ( k  - 1 < k 3 S ( k  - l ) ) ,  Vx ( x  < k 3 S(x)) 

are called, respectively, the auxiliary formula and the principal formula of 
the inference. 

This rule is not regarded as one of the logical rules of inference but as a 
structural rule. ( I t  is easily seen that the lower sequent of bq can be proved 
from its upper sequent without an essential cut or induction.) The ordinal 
diagram of the lower sequent of bq is defined to be the same as that of the 
upper sequent. 

A proof is called a proof with degree if it contains applications of bq only 
in its end-piece as explicit inferences and is a proof with degree in the sense 

We shall define the reduction of a proof P of a sequent satisfying (P). 
By a reduction-step we mean a process which decreases the ordinal diagram 
of the proof together with one or more preceding auxiliary processes which 
preserve the ordinal diagram of the proof. See the proof of Theorem 30.3. 

Case 1 .  P contains an application of explicit logical inference or induction 
in its end-piece. &Ve treat the cases according to tlie bottom most such 
inference. 

of 927. 

Subcase 1. Induction. As in $27. 
Subcase 2 .  Explicit logical inference other than V : right for a first order 

variable. Since all the cases can be treated similarly, we give an example: 

We reduce this to P' 

a weakening and some exchanges 
I' --f F(t) ,  A ,  3~ F(x)  

____ 
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The end-sequent of P’ obviously satisfies (P) and P’ has a smaller ordinal 
diagram than that of P,  hence P’ can be transformed to a proof without 
essential cuts and inductions. Then add some explicit inferences to obtain 
r, +do. 

Subcase 3. Explicit V : right for a first order variable: 

I‘ ; A ,  b < t 3 R(b, a )  ____~___ 
I’ - A ,  Vy (y < t 3 R ( y ,  a ) )  

To + A l ,  V y  ( y  < s 3 I?’(?, a ) ) ,  A , ,  

where Rjb, a )  is rudimentary in a ,  t contains no variable, and s and R’(y,  a )  
are obtained from t and R ( y ,  a ) ,  respectively, by zero or more term-replace- 
ments. Let 1 = n for a numeral n. If n = 0, hence s = 0, then, P is reduced to 

c < s +  
.~ 

To + A , ,  V y  (y < s 3 R‘(y ,  a ) ) ,  &. 
If n > 0, then for each k < FZ, let P, be 

r - A ,  k < n 2 B ( k ,  a )  

r - k < n 3 R ( k ,  a ) ,  A ,  V y  ( y  < n 3 R ( y ,  a ) )  
- - - - - ____ ~ _ _ _  

To L k < n 3 R’(k,  a ) ,  ill, V y  ( y  < s 3 n ’ ( y ,  a ) ) ,  A , ,  

where r 4 A ,  k < n 3 R ( k ,  a)  is the end-sequent of the proof obtained from 
that of r 4 A ,  b < t 3 R(b, a)  by substituting k for b. Every substitution 
in PI, is assigned the same degree as the corresponding one in P.  Then P is 
reduced to Po, P,, . . . , Pn-,, for 

.____ 
P, P ,  . . . Pn-, 

~__- 
r, - to ’ , (O<n>I?’ (O ,a ) )~ ( l<n3R’ ( l , c r ) )~ .  . . ~ ( n - l < n 3 R ‘ ( n - 1 , ~ ~ )  

- To -+A’,  V y  ( y  < n 3 R ’ ( y ,  a) )  

r, + A , ,  v y  ( y  < s 3 R’(Y, a ) ) ,  dz, 

bq - 
~- _ ~ _ _ _ _ _ _  _______- 

where A’ denotes A , ,  V y  (y < s 3 a ’ ( y ,  a ) ) ,  dz, is a proof of the end-sequent 
of P. 

Case 2. P contains no explicit logical inference or induction but contains 
an axiom of the form s = t ,  A(s)  + A ( t )  in its end-piece. Do the reduction 
as in $27. 
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Case 3. P contains no explicit logical inference or induction or axiom of 
the form s = t ,  A ( s )  --f A(t),  but contains either an explicit logical axiom or 
an implicit logical axiom of the form D + D ,  e.g., 

- 
where D and 5 in the right upper sequent of the cut are the descendants of 
D’s in the antecedent and succedent of D + D ,  respectively. If the former, 
then the end-sequent of P is obtained from it by weakenings, exchanges and 

bq’s. If the latter, and D and D are the same, up to  term-replacement, we 

apply the corresponding reduction in $27. Otherwise, D and D are of the form 

I - 
- I 

and V y  ( y  < t 3 S’ (y ) ) ,  respectively, where s = n and t = n for some numeral 
n, si = i (i < n) and S‘(y) is either S ( y )  itself or else obtained from it by term 
replacements. Then P is reduced to 

r + A , D  
r + A ,  (0 < n 3 S’(0)) A . .  . A  (n - 1 < n 3 S’(n - 1)) 

bq F + A ,  V y  ( y  < n 3 S’(y)) 

i, A2 

Case 4. Elimination of 
If the last inference of a 

weakenings in the end-piece of P is defined as usual. 
proof Q is a bq, say 

Q Qo (r - + A ,  (0 < k 3 s(0)) A .  . . A  ( k  - 1 < k 3 s(k - 1)) 
* 

then the definition goes as follows, 
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Case 5 .  In  the following we assume that the end-piece does not contain any 
logical inference, induction, initial sequent other than mathematical initial 
sequents or weakening, while it may contain some applications of bq. We may 
also assume that the proof is different from its end-piece, for if the entire 
proof is the end-piece, then the end-sequent is provable from the mathematical 
initial sequents by bq, exchanges, contractions and non-essential cuts, and 
hence bq can be eliminated without use of an essential cut or induction. The 
existence of an essential cut and the essential reduction are carried out as 
usual, since applications of bq are all explicit. 

This completes the proof of the proposition. 

We consider an arithmetization of INN in P. Let us introduce the following 

Pf( rP1 ) for “P is a proof in INN”; 
Prov( rP1, ‘S1 ) for “ P  is a proof of a sequent S” ; 
Prov( ‘S’) for “S is provable”; 
Prov(‘A’) for “Prov(‘+ A ’ ) ” ;  
Pf*( ‘P’) for “P is a proof without an essential cut or induction”; 
Prov*( rP1, ‘S’) for “P is a proof of S without an essential cut or induc- 

Prov*( ‘S’) for “S is provable without an essential cut or induction”; 
Prov*( rA1 ) for “Prov*( ---f A’ )”.  
I t  should be noted that under the assumption of this section INN is 

axiomatizable, i.e., the set of the schemata for mathematical initial sequents 
is finite. 

notational conventions : 

tion”; 

PROPOSITION 31.5. Let R(a, a) be rudimentary in CI. Then 

Ind,(O(INN)), Prov( r3y R(y ,  N)’) - Prov*( ‘ 3 y  R(y ,  a)’) 

is provable an P. 
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PROOF. This is proved by arithmetization of the proof of Proposition 31.3. 
We shall give only the outline of the proof that Indl(O(INN)) is adequate. 

First let us introduce some notational conventions. Assume that p denotes 
the Godel number of a proof P in INX. Then 

end@) is the Godel number of the end-sequent of P ;  
Q($) is true if and only if the end-sequent of P has the property (P) ; 
C ( P )  is true if and only if P is a proof which has no essential cut or induction ; 
6(P) is defined by a(@) = o ( p )  # O ( P - - l ) ,  where o ( p )  is the ordinal diagram 

of P and O ( p - 1 )  is as defined in Definition 30.2 ( 2 ) .  Note that a($) is an ordinal 
diagram of O(INN) and all these predicates and functions are primitive 
recursive. 

Now from the proof of Proposition 31.4, we can define a primitive recursive 
function Y as follows. Let p be the Godel number of a proof P.  If C(9) v l Q ( P ) ,  
then define r ( p )  = $. If l C ( p )  A Q($) ,  define r ( p )  to be the Godel number of 
the resulting proof of the reduction of P. Then Y is primitive recursive and 
satisfies the following. 

1) W P ) )  
2 )  WQ)) = a($) if C ( P ) .  

49) if - C ( P )  A Q(9).  

Define T(a, b) by 

Then T(a, b)  is primitive recursive. Finally, define 

Then <. is a primitive recursive well-ordering of the natural numbers. 
Furthermore, the order type of <. is that of O(1KS) .  So transfinite induction 
can be applied to the ordering <*, with induction formula Q(+) 3 3% C ( r ( n , @ ) ) ,  
or equivalently, 3% ( Q ( p )  3 C ( r ( n ,  p ) ) ) ,  which is 2:. 

DEFINITION 31.6. (1) A formula of INX is said to have the property (Q) if it 
contains no second order quantifiers or first order free variables. 

For every formula A having the property (Q) we define the subformulas 
of A as follows: A is a subformula of A ; if B A C is a subformula of A then 
so are B and C. If 1 C  is a subformula of A then so is C; if Vx B(x)  is a sub- 
formula of A ,  then so is B(n) for every numeral n. Evidently, every sub- 
formula of A has the property (Q). 
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( 2 )  We can give a truth-definition T ,  for the subformulas of 4 and also 
for sequents consisting only of such subformulas. The truth definition is an 
arithmetical formula with second order parameters (i.e., free variables). 

PROPOSITION 31.7. Let A be a formula having theproperty ( Q ) .  Then  the following 
are provable in P. 

(1) TA( ‘7B1)t, lT,( ‘B’ ) for every subformula 3 of A .  
(2) TA( ‘B v C’ ) H TA( rB1 ) v TA( ‘C1 ) for every pair  B and C subforinulas 

of A .  
(3) TA( ‘Vx, B((xi)’) f--f Vx T2,( ‘B(n(x ) ) ’ )  for every subformda Vx, B(x)  of 

A ;  here n ( a )  denotes the ath izuwzeral. 
(4) TA( ‘B(n(b,), . . . , n(b,))’) + B(b,, . . . , b k ) ,  where B(0,. . . , 0) i s  a n  arbi- 

trary subformula of A such that originally B(y,, . . . , y k )  for some bound variables 
y l , .  . . , vk occurred in A .  

(5)  P A ( a )  A Prov*(a) - T A ( a ) ,  where &‘,(a) means “ a  i s  (the Godel number 
of )  a sequent consisting of subformulas of A”. 

PROOF. (1) through (4) can be proved in the same manner as for the truth 
definition of PA. 

(5)  Assume P A ( a )  and Prov*(a), andlet P b e  aproof such that Prov*( rP’, a ) .  
We can show by induction on the number of inferences in P ,  using (1)-[4), 
that 

T A (  r ~ ’ ( ~ ~ ( c l ) ,  . . . , n(ck) )  - d ( n ( c ~ ) ,  . . . , n(c,))l)  

is provable in P, where n ( c )  denotes the cth numeral and r - d is a sequent 
in P. 

PROOF OF THEOREM 31.2. Take Vx 3 y  R(x,  y ,  a) as the A in Proposition 31.7 
and let T ( a )  denote T,(a). Then 

(1) Prov( ‘Vx 3 y  R(x ,  y ,  a)’) +VaProv( ‘ 3 y R ( n ( a ) ,  y,a)’) isprovableinp. 
By Proposition 31.5, 
(2) Indl(U(INN)), Provj r 3 y  R ( n ( a ) ,  y ,  a)’) - Prov*( ‘ 3 y  R ( n ( a ) ,  Y ,  a)’) is 

By virtue of Proposition 31.7 the following are provable in P :  
(3) Prov*( ‘ 3 y  R ( n ( a ) ,  y, a ) l )  - T (  r 3 y  R(.rz(a), y ,  a)’), since 

(4) V a  T( ‘ 3 y  R ( n ( a ) ,  y ,  a ) l )  - T( ‘Vz 3 y  R (x ,  y ,  a)’);  
(5)  T( ‘Vx 3 y  R(x ,  y ,  a ) l )  - Vx 3 y  R(x ,  Y ,  a ) .  
The theorem follows from (1)-(5). 

provable in P for any free variable a.  

PA( ‘ 3 y  R ( n ( a ) ,  y, a)’) is provable in P;  
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We can prove the uniform reflection principle by modifying the proof of 
Theorem 31.2. 

THEOREM 31.8. In  P :  

Ind,(O(INN)) + Vm (Prov( ‘Vx 3 y  R (x ,  y ,  a, n(m))’) ZI Vx 3 y  R(x ,  Y, a, m))  

PROOF. We first note that a modified version of Proposition 31.5 

is provable, by replacing ‘3x R ( x ,  a)’ by ‘3x R’(x, 01, n(m))’ in Proposition 
31.5. Taking Vz Vx 3 y  R’(x, y, 01, z )  as A in Proposition 31.7, i t  follows that 
(1)-(5) in the proof of Theorem 31.2 are provable with ‘Vx 3 y  R’(x, y ,  a, n(m))’ 
instead of ‘Vx 3y R ( x ,  y ,  a)’. With this observation, the theorem follows 
easily. 

Now let B(a) be an arbitrary formula of P of the form 

where B0(a, a,, b,, . . . , an, b,) is a quantifier-free formula whose only free 
variables are a, a,, b,, . . ., an, 6,. 

The subformulas of B(a)  are defined as in Definition 31.6. 

PROPOSITION 31.9. Given B(a)  which satisfies (*), me can define the truth 
definition TB(a)  for subformulas of B(a\ in P w i t h  a 2iB-formula having the 
second order parameter a. It i s  obvious that T,(,, can be extended to sequents 
consisting of some subformulas of B(a) .  

DEFINITION 31.10. Let B(a)  be a formula satisfying (*). We define the condition 
YE(,) as follows; let ‘S’ denote the Godel number of the sequent S. We use 
quotes to mean that the quoted sentence is actually an arithmetized formula. 

Y, (B(a )  ; ‘S’ ) : “Each formula of S is a subformula of B(a)”. 
Y2( ‘S’ ) : “Each formula in the antecedent of S is quantifier-free”. 

y B ( a ) ( r S ’ ) :  y I ( B ( a ) ;  ‘s’) A Y ~ ( ‘ s ’ )  A Y ~ ( B ( o ~ ) ;  ‘s’). 
From now throughout, B(a) shall be arbitrary but fixed so that it satisfies 

(*). For simplicity we shall abbreviate TBca) and 9’B(a) as T and Y ,  respectively. 

Y 3 ( B ( a ) ;  ‘sl) : l ~ e ( a ) (  ‘s’ 1. 
~ 
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PROPOSITION 31.11. 

Ind2(0(INN)), Prov(p, ‘B(u) ’ ) ,  l T (  ‘ B ( u ) l )  + 3q < . p  (Pf*(q) A Y(ends(q))) 

is P-provable, where <*  is the well-ordering of natural numbers defined in the 
proof of Proposition 31.5 and Ind,(O(INN)) is the schema which allows transfinite 
induction along the order <- applied to Z~n,l-formulas. 

The proposition is an immediate consequence of the following: 
(**) Ind,(O(INN)), Y (  rS1), Prov(p, ‘S’) + 3q < - p  (Pf*(q) A Y(ends(q))) is 

Therefore, we shall prove (**). I t  is proved by applying Ind,(O(INN)) to the 
P-provable. 

following formula: 

(1)  Y(ends(P)) A Pf(P) ’ 3q <* P (Pf*(q) A Y(ends(q))). 

Since T and Y are in 2:” and I7:,,, respectively, the induction formula is in 
Z:,,+, with the parameter u. 

It is now obvious that in order to prove (1) it suffices to show 

(2) Y(ends(p)) A Pf@) A l P f * ( P )  2 3q (Y(ends(q)) A Pf*(q) A q <- P), 
for if Pf*(p), then we may take p itself as q in ( 1 ) .  

Assume Y(ends(p)) A Pf(p) A lPf*(P)  and find a q which satisfies (2). 
This is done in the same manner as in the consistency proofs of INN, although, 
strictly speaking, the whole argument is developed in the arithmetized 
language. 

Let P be the proof with Godel number p. 
1) Preparations for reduction as in $27 are applicable. 
2) If there is an explicit logical’inference or an induction in the end-piece 

of P ,  then the proof is carried out according to the bottom most such inference. 
2.1) The last such inference is a first order 3 : right. Let P be of the form 

. .  

r -i A ,  v y ,  . . . 3xn vyn Bda,  t i ,  ~ 1 , .  . . , ti, y i ,  ’ . . , xn, Yn) 

r -+A,  3xi V y ,  . . . 3xn V y n  B,(a, t i ,  ~ 1 , .  . . , xi, yi, . . . I x,, Y n )  

I7 
. .  . .  . .  

Al ,  3 ~ i  V y i  . . . 3xn Vyn B ~ ( u ,  ml, 11,. . . , xi, y i , .  . . , x n .  yn), ( 1 2 .  

Notice that ti is a closed term which consists of 0, 1, + and . . Therefore, 
ti can be computed and is equal to a numeral mi. P is reduced to  the following. 
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2.3) All other cases of logical inferences are proved easily. By virtue of 
Y , ( B ( a ) ,  ends($)) and Y,(ends(p)), there is no first order V : left and no first 
order 3 : left. 

2.4) The last inference which satisfies the condition is an ind. This case is 
proved as in $27. 

3) Now we may assume that there is no explicit logical inference or induction 
in the end-piece of P. Hereafter we can follow exactly the consistency proof 
of $27. Thus we have proved (**). 

PROPOSITION 31.12. Ind,(O(INN)), Prov( ‘ B ( a ) l ) ,  iT( ‘ B ( a ) l )  --+ is  P-prov- 
able, where B ( M )  satisfies (*). 

PROOF. From the definition of T, Pf*(q) + T(ends(q)). But this contradicts 
9’,(ends(q), B(a)) .  Thus the proposition follows from Proposition 31.11. 

Now we can present another form of the reflection principle for INN, 

THEOREM 31.13 (Takeuti and Yasugi). 

Indz(O(INN)), Prov( ‘A(a)’) -+ A ( a )  

i s  P-provable for an arbitrary arithmetical sentence A(a)  with a second order 
parameter a, where Tnd2(O(INN)) appEies to the formulas o/ P, that is, to the 
formulas arithmetical in some second order parameters. 

PROOF. It is well known that 

(1) A (4  +-+ B ( 4  

is P-provable for some B(a)  which satisfies (*) 

(2)  

and 

Ind,(O(INN)), Prov( ‘B(a)’ ) + T B ( a ) (  ‘ B ( a ) l )  

(3) TB(cc)( ‘B(a) l  - B(a)  

are P-provable from Propositions 31.12 and 31.7, respectively. It is also known 
that 

(4) 

is P-provable. Then (1)-(4) yields the theorem. 

Prov( ‘ A  (N)’ ) t--) Prov( ‘B(a)’ ) 

Here again we can prove the uniform reflection principle. 
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THEOREM 31.14. 

Ind,(O(INN)) -+ V m  (Prov( ‘A(u ,  ~z(m))’) 3 A ( a ,  nz)), 

where Ind,(O(INN)) applirs to the formdas  of P. 

PROOF. This is proved with modifications similar to those that have been 
carried out in the proof of Theorem 31.8: First apply (**) in the proof of 
Proposition 31.11 to ‘B(u,  n(m))’ in the place of ‘B(a)’ . Then take VzB(u ,  z )  
as B(E)  and define the truth definition for B(a) .  The rest of the proof of 
Theorem 31.13 goes through after this alteration. 

We now present another formulation of the reflection principle for the 
formulas V+ A(+) ,  where A ( a )  is arithmetical in u. We shall state it in the 
form of the uniform reflection principle. 

THEOREM 31.15. Let A ( u ,  a )  be arithmetical i i z  cc and let u and a be the only free 
variables of A .  T h e n  

(1) Ind’(O(INN)), Prov( ‘V+ A ( + ,  ?z(a))’) - V+ A(+, a )  

is  INN-provable, where Ind’ applies to L’:-forinulas with a second order param- 
eter. 

PROOF. First, wit11 a slight extension of the language of INN as specified in 
Definition 31.1, there exists a quantifier-free formula R(a, b, c, a )  for which 

( 2 )  v+ A (4, a )  ++ v+ 3x v y  R(+, x, y >  a )  

is INN-provable. Then ( 2 )  implies that  

(3) Prov( ‘v+ A(+, %(a))’)++ Prov( ‘V+ 3% ~y R(+, x, y ,  %(a))’ ) 

is INN-provable. Finally, ( 2 )  and (3) guarantee that, in order to prove ( l ) ,  we 
only have to prove 

(4) Ind’(O(INN)), Prov( ‘3% V y  R(E,  x, y ,  %(a))’) - 3x V y  R(u, x, y ,  a )  

in INN. But (4) follows from 

( 5 )  Ind’(O(INN)), Prov( ‘ 3 x V y R ( a , x ,  y ,  ?z(a))’), lT( ‘ 3 x V y R ( a , x ,  y ,  ? z ( a ) ) l )  4, 

which is proved like Proposition 31.11. 

Notice that T is the truth definition for 3% Vy R(a,  x, y ,  a )  so that  we may 
assume it is a 2;-formula with the parameter a. But this implies that  
Ind‘(O(INN)) applies to  Z:-formulas with the parameter a. 
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