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PREFACE

This book is based on a series of lectures that I gave at the Symposium
on Intuitionism and Proof Theory held at Buffalo in the summer of 1968.
Lecture notes, distributed at the Buffalo symposium, were prepared with the
help of Professor John Myhill and Akiko Kino. Mariko Yasugi assisted me
in revising and extending the original notes. This revision was completed in
the summer of 1971. At this point Jeffery Zucker read the first three chapters,
made improvements, especially in Chapter 2, and my colleague Wilson
Zaring provided editorial assistance with the final draft of Chapters 4-6.

To all who contributed, including our departmental secretaries, who typed
versions of the materia! for use in my classes, I express my deep appreciation.

Gaisi Takeuti
Urbana, March 1975



CHAPTER 1

FIRST ORDER PREDICATE CALCULUS

In this chapter we shall present Gentzen’s formulation of the first order
predicate calculus LK (logischer klassischer Kalkiil), which is convenient for
our purposes. We shall also include a formulation of institutionistic logic,
which is known as LJ (logischer intuitionistischer Kalkiil). We then
proceed to the proofs of the cut-elimination theorems for LK and LJ, and
their applications.

§1. Formalization of statements

The first step in the formulation of a logic is to make the formal language
and the formal expressions and statements precise.

DerInITION 1.1, A first order (formal) language consists of the following
symbols.
1) Constants:
1.1) Individual constants: kg, ky,. .., A;,... (7 =0,1,2,...).
1.2) Function constants with i argument-places (i = 1,2,...): fo,f},. . .,
e 7=0,1,2,0.0). A
1.3) Predicate constants with ¢ argument-places (1 =0,1,2,...): Ry,
R, .. R,...(1=012..).
2} Variables:
2.1) Free variables: ag, ay,...,4a;,... (j =0,1,2,...).
2.2) Bound variables: %y, x1,...,%;,... (1 =0,1,2,...).
3) Logical symbols:
= (not). A (and), v (or), D (implies), V (for all) and 3 (there exists). The
first four are called propositional connectives and the last two are called

—

quantifiers.
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4) Awuxiliary symbols:
(,) and , {comma).

We say that a first order language L is given when all constants are given.
In every argument, we assume that a language L is fixed, and hence we omit
the phrase “of L".

There is no reason why we should restrict the cardinalities of various kinds
of symbols to exactly No. It is, however, a standard approach in elementary
logic to start with countably many symbols, which are ordered with order
type w. Therefore, for the time being, we shall assume that the language
consists of the symbols as stated above, although we may consider various
other types of language later on. In any case it is essential that each set of
variables is infinite and there is at least one predicate symbol. The other sets
of constants can have arbitrary cardinalities, even 0.

We shall use many notational conventions. For example, the superscripts
in the symbols of 1.2) and 1.3) are mostly omitted and the symbols of 1) and
2) may be used as meta-symbols as well as formal symbols. Other letters
suchasg, 4,. .. may be used as symbols for function constants, whilea, &, c,. . .
may be used for free variables and x, v, z,. .. for bound variables.

Any finite sequence of symbols (from a language L) is called an expression
(of L).

DEeFINITION 1.2, Terms are defined inductively (recursively) as follows:

1) Every individual constant is a term.

2) Every free variable is a term.

3) If ¢ is a function constant with ¢ argument-places and ¢,,.. ., ¢; are
terms, then fi(¢y,. .., ¢,) is a term.

4) Terms are only those expressions obtained by 1)-3). Terms are often
denoted by ¢, s, ¢,.. . .

Since in proof theory inductive (recursive) definitions such as Definition 1.2
often appear, we shall not mention it each time. We shall normally omit the
last clause which states that the objects which are being defined are only
those given by the preceding clauses.

DeriniTION 1.3. If R? is a predicate constant with ¢ argument-places and
ty,...,t; are terms, then Ri(ty,.. ., ¢,) is called an atomic formula. Formulas
and their outermost logical symbols are defined inductively as follows:
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1) Every atomic formula is a formula. It has no outermost logical symbol.

2) If A and B are formulas, then (mA4), (4 A B), (A v B) and (4 2 B) are
formulas. Their outermost logical symbols are =, A, v and D, respectively.

3) If A isa formula, a is a free variable and x is a bound variable not occurring
in A, then Vx A’ and 3x A’ are formulas, where 4’ is the expression obtained
from A by writing x in place of a at each occurrence of 4 in A. Their outermost
logical symbols are V and 3, respectively.

4) Formulas are only those expressions obtained by 1)-3).

Henceforth, A4, B,C,..., F,G,... will be metavariables ranging over
formulas. A formula without free variables is called a closed formula or a
sentence. A formula which is defined without the use of clause 3) is called
quantifier-free. In 3) above, A’ is called the scope of ¥x and 3w, respectively.

When the language L is to be emphasized, a term or formula in the language
L may be called an L-term or L-formula, respectively.

REMARK. Although the distinction between free and bound variables is
not essential, and is made only for technical convenience, it is extremely useful
and simplifies arguments a great deal. This distinction will, therefore, be
maintained unless otherwise stated.

It should also be noticed that in clause 3) of Definition 1.3, x must be a
variable which does not occur in 4. This eliminates expressions such as
Vx (C(x) A 3x B(x)). This restriction does not essentially narrow the class of
formulas, since e.g. this expression Vx (C(x) A 3x B(x)) can be replaced by
Vy (C(y) A 3x B(x)), preserving the meaning. This restriction is useful in
formulating formal systems, as will be seen later.

In the following we shall omit parentheses whenever the meaning is evident
from the context. In particular the outermost parentheses will always be
omitted. For the logical symbols, we observe the following convention of
priority: the connective — takes precedence over each of A and v, and each
of A and v takes precedence over D. Thus A4 A B is short for (—4) A B, and
A ABDCv D is short for (4 A B)D (C v D). Parentheses are omitted also
in the case of double negations: for example ——A abbreviates —(—4).
A = B will stand for (4 D B) A (B2 4).

DerINITION 1.4. Let A be an expression, let 7,,.. ., 7, be distinct primitive
symbols, and let oy,. .., ¢, be any symbols. By
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we mean the expression obtained from A4 by writing oy,..., g, in place of
71,. .., Tn, Tespectively, at each occurrence of 7,,. . ., 7, (Where these symbols
are replaced simultaneously). Such an operation is called the (simultancous)
replacement of (vq,...,1,) by (64,.. ., 6,) in A. Itis not required thatt,,...,1,
actually occur in 4.

ProrosiTiON 1.5. (1) If A contains none of Ty,. .., T, then
(A Ty, - .,Tn)
G1,...,0p
is A itself.
2) If 64,. .., 0, ave distinct primitive symbols, then

((A Tl,...,Tn>O'1,...,U”>
C1,...,0, 61,...,6/"

T+ Th
A .
( 0,,..., 0,,)
DeriniTION 1.6. (1) Let A be a formula and ¢,. .., ¢, be terms. If there is a
formula B and #» distinct free variables b,,. .., b, such that 4 is

(B by,.. .,b,,))

A
then for each 7 (1 <{7 <{ ») the occurrences of {; resulting from the above
replacement are said to be indicated in 4, and this fact is also expressed (less
accurately) by writing B as B(b;,..., b,), and 4 as B(t;,..., ¢,). A may of
course contain some other occurrences of #;; this happens if B contains ¢,.

(2) We say that a term ¢ is fully indicated in A, or every occurrence of ¢
in A4 is indicated, if every occurrence of ¢ is obtained by such a replacement
(from some formula B as above, with » = 1 and ¢ = ).

It should be noted that the formula B and the free variables from which
A can be obtained by replacement are not unique; the indicated occurrences
of some terms of A are specified relative to such a formula B and such free
variables.

1s tdentical with
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ProrosiTiON 1.7. If A(a) is a formula (in which a is not necessarily fully
indicated) and x is a bound variable not occurring in A(a), then Vx A(x) and
Jx A(x) are formulas.

Proor. By induction on the number of logical symbols in A4(a).

In the following, let Greek capital letters I, 4,11, A, I'y, I';,. . . denote finite
(possibly empty) sequences of formulas separated by commas. In order to
formulate the sequential calculus, we must first introduce an auxiliary
symbol —.

DeriniTION 1.8. For arbitrary I' and 4 in the above notation, I' - 4 is
called a sequent. I and A are called the antecedent and succedent, respectively,
of the sequent and each formula in 1" and 4 is called a sequent-formula.

Intuitively, a sequent 44,..., 4,, — B;,..., B, (where m, n 2> 1) means:
if AyA...AnA,, then Byv ...v B,. For m>1, 4,,..., A,, — means
that A; A ... A 4, yields a contradiction. For » > 1, — B,,. .., B, means
that B; v ... v B, holds. The empty sequent — means there is a contradiction.

Sequents will be denoted by the letter S, with or without subscripts.

§2. Formal proofs and related eoncepts

DEFINITION 2.1. An ¢nference is an expression of the form

s T TS

»

where S;, S, and S are sequents. S; and S, are called the upper sequents and
S is called the lower sequent of the inference.

Intuitively this means that when S; (S; and S,) is (are) asserted, we can
infer S from it (from them). We restrict ourselves to inferences obtained
from the following rules of inference, in which 4, B, C, D, F(a) denote formulas.

1) Structural rules:
1.1) Weakening:
left: DI A’ right: T=AD

D is called the weakening formula.
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1.2) Contraction:

o, DDA T —ADD
@t Tpr-oar MY ToaDp

1.3) Exchange:
o, DCDIA—4 T d4,CDA
Y ropcC -4 "8 TSADCA

We will refer to these three kinds of inferences as ‘“‘weak inferences’’, while
all others will be called “strong inferences’.
1.4) Cut:
I'-A,D DI A
ri—a,4

D is called the cut formula of this inference.

2) Logical rules:

I'-4,D D, T4

1 tleft: ————— right: —————. -
2.1) —:left D TSA - :right A )

D and —D are called the auxiliary formula and the principal formula,
respectively, of this inference.

D, A
22) A left: C A Dj’f TA and gA’D’T_)—Z]- ;

I'—-A4,°.¢C I'-A,D
I'>A,CAD )

A cright:

C and D are called the auxiliary formulas and C A D is called the
principal formula of this inference.

C,I'>4 DI -4,

2. : : A A

3) v left DT
v : right: I:—*él,'C F/—’_A’_D
e AT D Y TSACYD

C and D are called the auxiliary formulas and C v D the principal
formula of this inference.
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I-A,C D4 _ . CI=d4D
CoD, I'Il 4.4 ° R A o=y

C and D are called the auxiliary formulas and C 2 D the principal

2.4) o left:

formula.
2.1)-2.4) are called propositional inferences.
Fo), I' -4 . I' > A, Fla)
2. dleft: ——2———, : R LTI —yourd)
B Vilett: o T—A T e e

where £1s an arbitrary term, and a does not occur in the lower sequent.
F(t) and F(a) are called the auxiliary formulas and Vx F(x) the
principal formula. The a in V : right is called the eigenvariable of this
inference.

Note that in V : right all occurrences of 4 in F(a) are indicated. In V:left,

F(t) and F(x) are
<F(a) f) and (F(a) i)

respectively (for some free variable a), so not every ¢ in F(f) is necessarily
indicated.
Fla), I’ > A

2. tleft: — 270 T - right :
6) J:le W F), [ A 3 :right

I'— A, F()
I' >4, 3xF(x)’

where a does not occur in the lower sequent, and ¢ is an arbitrary
term.

F(a) and F(#) are called the auxiliary formulas and Jx F(x) the
principal formula. The a in 3: left is called the eigenvariable of this
inference.

Note that in 3:left ¢ is fully indicated, while in 3:right not necessarily
every t is indicated. (Again, F(f) is (F(a)7) for some a.)

2.5) and 2.6) are called guantifier inferences. The condition, that the eigen-
variable must not occur in the lower sequent in V : right and 3 : left, is called
the eigenvariable condition for these inferences.

A sequent of the form 4 — A is called an initral sequent, or axiom.
We now explain the notion of formal proof, i.e., proof in LK.

DEeFINITION 2.2. A proof P (in LK), or LK-proof, is a tree of sequents
satisfying the following conditions:



12 FIRST ORDER PREDICATE CALCULUS [cu. 1, §2

1) The topmost sequents of P are initial sequents.
2) Every sequent in P except the lowest one is an upper sequent of an
inference whose lower sequent is also in P.

The following terminology and conventions will be used in discussing formal
proofs in LK.

DerixITION 2.3. From Definition 2.2, it follows that there is a unique

lowest sequent in a proof P. This will be called the end-sequent of P. A proof

with end-sequent S is called a proof ending with S or a proof of S. A sequent S is

called provable in LK, or LK-provable, if there is an LK-proof of it. A formula

A is called LK-provable (or a theorem of LK) if the sequent — A is LK-provable.

The prefix “LK-"" will often be omitted from “LK-proof” and “LK-provable”.
A proof without the cut rule is called cut-free.

It will be standard notation to abbreviate part of a proof by .: .. Thus,

for example,
St Se
S and

S
denote a proof of 5, and a proof of S from S, and S,, respectively. Proofs are
mostly denoted by letters P, Q,... . An expression such as P(a) means that
all the occurrences of a in P are indicated. (Of course such notation is useful
only when replacement of @ by another term is being considered.) Then P(¢)
is the result of replacing all occurrences of a in P(a) by ¢.

Let us consider some slightly modified rules of inference, e.g.,

I' A4 I -A,B

T I ~4,4,ArB

This is not a rule of inference of LK. However, from the two upper sequents
we can infer the lower sequent in LK using several structural inferences and
an A :right:

I'—=4,4 17 -A4,B
several weakenings several weakenings
*) and exchanges and exchanges
T A,4,4 I -A,AB

:right:
nene FITSAAANE

Conversely, from thesequents I" -4, A and ' -~ A, BwecaninferI' >4, A A B
using several structural inferences and an instance of the inference-schema J:
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I'—4,4 I'—-AB

Y I''l'-A,A4,4AB
several contract10ns and exchanges
T4 AArB

Thus we may regard J as an abbreviation of (*) above. In such a case we will
use the notation
I'—-4,4 I —-4,B

il —-A,4,AAB

As in this example we often indicate abbreviation of several steps by double
lines.

Another remark we wish to make here is that the restriction on bound
variables (in the definition of formulas) prohibits an unwanted inference
such as

A(a), B() —~ A(a) A B(b)

Afa), B(b) — 3x (A(x) A B{b))

Ala), B(b) — dx 3x (A(x) A B(x))
3x A{x), 3x B{x) — 3x 3x (A(x) A B(x)).

In our system this can never happen, since 3x 3x (4(x) A B(x)) is not a formula.
The quantifier-free part of LK, that is, the subsystem of LK which does
not involve quantifiers, is called the propositional calculus.

ExampLE 2.4. The following are LK-proofs.

A -4
l) - I‘ight ;7/1 1
) — A, =
et :r%ggz SA AvaA
ange: r?ght S Av—d A
contractiov .'r%ght ~Av-od, Ay~
nong gy pvayy

2) Suppose that a is fully indicated in F(a).

. F@) (o)
el F@ =)
Vionen 3T ~F@
—.n:left — 3x F(x), Vy =F(y)

—Vy F(y) - 3x F(x)
— Wy o F(y) 2 3x F(x)

2 :right
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It should be noted that the lower sequent of V : right does not contain the
eigenvariable a.

ExERCISE 2.5. Prove the following in LK.
1) Av B =—(—4 A —=B).
2) AoB=-4v 5.

3) Ix Fx) = Vy F(y).

4) =Yy F(y) = 3x = F(x).

5) —(A A B) =24 v —b.

EXERCISE 2.6. Prove the following in LK.
1y 3x (4 2 B(x)) = 4 D Ix Bx).
) 3x (4(x) D B) = Vx A(x) D B, where B does not contain x.
) 3x (A(x) D B(x)) = Vx A(x) 2 Ix B(x).
)y mADB ->—B2A.
) m4D2—-B ->B2A.

O b W o

ExErcise 2.7. Construct a cut-free proof of Vx A(x) D B — 3x (4(x) D B),
where A(a) and B are atomic and distinct.

DeriNiTioN 2.8, (1) When we consider a formula, term or logical symbol
together with the place that it occupies in a proof, sequent or formula respec-
tively, we refer to it as a formula, term or logical symbol in the proof, sequent
or formula, respectively.

(2) A sequence of sequents in a proof P is called a thread (of P) if the

following conditions are satisfied:

2.1) The sequence begins with an initial sequent and ends with the end-
sequent.

2.2) Every sequent in the sequence except the last is an upper sequent of
an inference, and is immediately followed by the lower sequent of this
inference.

(3) Let Sy, Sy and S be sequents in a proof P. We say S, is above Sy or S,

is below S, (in P) if there is a thread containing both S; and S, in which S,
appears before S,. If Sy is above S, and S, is above S, we say Sy is between
S, and S;.

(4) An inference in P is said to be below a sequent S (in P) if its lower sequent

is below S.
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(5) Let P be a proof. A part of P which itself is a proof is called a subproof
of P. This can also be described as follows. For any sequent S in P, that part
of P which consists of all sequents which are either S itself or which eccur
above S, is called a subproof of P (with end-sequent 5).

(6) Let P, be a proof of the form

r—6
{7
where (*) denotes the part of Py under I' — @, and let Q be a proof ending
with I, D — ©. By a copy of Py from Q we mean a proof P of the form

Q {F, D56
where (**) differs from (*) only in that for each sequent in (*), say I] — A,
the corresponding sequent in (*#*) has the form [1, D — /. That is to say, P is
obtained from P, by replacing the subproof ending with I' — @ by @, and
adding an extra formula D to the antecedent of each sequent in (*). Likewise,
a copy can be defined for the case of an extra formula in the succedent. We can
also extend the definition to the case where there are several of these formulas.

The precise definition can be carried out by induction on the number of
inferences in (*). However this notion is intuitive, simple, and will appear
often in this book.

(7) Let S{a), or I'(a) — A(a), denote a sequent of the form 44(a),. . ., 4 ,{a) —
By(a),...,B,(a). ThenS(),or I'({) - A(t),denotesthesequent 44(t),. . ., A, (¢) —~
By(t),. .., B,®).

We can define: ¢ is fully indicated in S(¢), or I'(t) — A(f), by analogy with
Definition 1.6.

In order to prove a basic property of provability, i.e., that provability is
preserved under substitution of terms for free variables, we shall first list some
lemmas, which themselves assert basic properties of proofs. We first define
an important concept.

DEeFinITION 2.9. A proof in LK is called regular if it satisfies the condition
that firstly, all eigenvariables are distinct from one another, and secondly,
if a free variable a occurs as an eigenvariable in a sequent S of the proof, then
a occurs only in sequents above S.
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LemMa 2.10. (1) Let I'(a) — A(a) be an (LK-)provable sequent in which a is fully
indicated, and let P(a) be a proof of I'(a) — A(a). Let b be a free variable not
occurring in P(a). Then the tree P(b), obtained from P(a) by veplacing a by b at
each occurrence of a in P(a), is also a proof and its end-sequent is I'(b) — A(b).

(2) For an arbitrary LK-proof there exists a vegular proof of the same end-
sequent. Moreover, the vequived proof is obtained from the oviginal proof simply
by replacing free variables (in a sustable way).

Proor. (1) By induction on the number of inferences in P{a). If P{a) consists
of simply an initial sequent A(a) -~ A(a), then P(b) consists of the sequent
A(b) — A(b), which is also an initial sequent. Let us suppose that our proposi-
tion holds for proofs containing at most # inferences and suppose that P(a)
contains # - 1 inferences. We treat the possible cases according to the last
inferences in P(a). Since other cases can be treated similarly, we consider only
the case where the last inference, say J,isaV : right. Suppose the eigenvariable
of J is a, and P(a) is of the form

0D 4
J ' >A¥x A(x)’

where Q(a) is the subproof of P(a) ending with I" — /A, 4(a). It should be
remembered that a does not occur in I, 4 or 4(x). By the induction hypotheses
the result of replacing all @’s in Q(a) by b is a proof whose end-sequent is
I' - A, A(b). I" and A contain no b’s. Thus we can apply a V : right to this
sequent using b as its eigenvariable:

0O {4 ap
I’ - A,V¥x A(x)

and so P(d) is a proof ending with I" — A, ¥x A(x). If a is not the eigenvariable
of J, P{a) is of the form

0@ i) - A(d), 4(a,0)
I'(a) — A{a), Vx Afa, x)

By the induction hypothesis the result of replacing all a’s in Q(a) by b is a
proof and its end-sequent is I'(b) — A(b), A(b, c).
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Since by assumption b does not occur in P(a), b is not ¢, and so we can apply
a V : right to this sequent, with ¢ as its eigenvariable, and obtain a proof P(b)
whose end-sequent is I'(b) — A(b), Vx A(b, x).

(2) By mathematical induction on the number / of applications of V : right
and 3 :left in a given proof P. If [ = 0, then take P itself. Otherwise, P can
be represented in the form:

P, Py... Py

where P; is a subproof of P of the form

_ Rp) I -4,
! y; Fi(vy), I — 4,

Iy~ A, Fyb)

bl I i) v I
TS A Eyy

and I, is a lowermost V : right or 3:leftin P (z = 1,..., &), i.e., there is no
¥ : right or 3 : left in the part of P denoted by (*).

Let us deal with the case where [, is ¥ : right. P, has fewer applications of
Y :right or 3 : left than P, so by the induction hypothesis there is a regular
proof P; of I'; - 4,, F;(b;). Note that no free variable in I'; A4, F(b,)
(including b,) is used as an eigenvariable in P, Suppose ¢y, . . ., ¢, are all the
eigenvariables in all the P,/s which occur in P above Iy - A, Vy; Fy(v,),
i=1,..., k. Then change ¢,,...,¢c,, to d,,...,d,, respectively, where
dq,...,d, are the first m variables which occur neither in P nor in P;, 7=
1,..., k. If b, occurs in P below I'; > 4,, Vy; F,(v,), then change it to d,,,.

Let P be the proof which is obtained from P, by the above replacement
of variables. Then Py,.. ., P}, are each regular. P’ is defined to be

’4

P; ”

Py e P,
' Iy > 4,9y Fi(y,) v

where (*) is the same as in P, except for the replacement of b; by d,,,,. This
completes the proof.
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From now on we will assume that we are dealing with regular proofs
whenever convenient, and will not mention it on each occasion.
By a method similar to that in Lemma 2.10 we can prove the following.

Lemma 2.11. Let ¢ be an arbitrary term. Let I'(a) — A(a) be a provable (in LK)
sequent in which ats fully indicated, and let P(a) be a proof ending with I'(a) — A(a)
in which every eigenvariable is different from a and not contained in t. Then
DP(t) (the vesult of replacing all a’s in P(a) by 1) is a proof whose end-sequent is
Iy — Ag).

LEMMA 2.12. Let t be an arbitrary term, I'(@) — A(a) a provable (in LK) sequent
in which a is fully indicated, and P(a) a proof of I'(a) — A(a). Let P’(a) be a
proof obtained from P(a) by changing eigenvariables (not necessarily replacing
distinct ones by distinct ones) in such a way that in P’(a) every eigenvariable is
different from a and not contained in t. Then P'(t) is a proof of I'(t) — A(¢).

Proor. By induction on the number of eigenvariables in P(a) which are
either a or contained in £, using Lemmas 2.10 and 2.11.

We rewrite part of Lemma 2.11 as follows.

ProposiTION 2.13. Let £ be an arbitrary tevm and S{a} a provable {in LK) sequent
wm which a is fully indicated. Then S(t) is also provable.

We will point out a simple, but useful fact about the formal proofs of our
system, which will be used repeatedly.

ProrosiTiON 2.14. If a sequent 1s provable, then it is provable with a proof in
which all the initial sequents consist of atomic formulas. Furthermore, if a sequent
is provable without cut, then it is provable without cut with a proof of the above
sort.

Proor. It suffices to show that for an arbitrary formula A, A — 4 is provable
without cut, starting with initial sequents consisting of atomic formulas.
This, however, can be easily shown by induction on the complexity of 4.

DEerFINITION 2.15. We say that two formulas 4 and B are alphabetical variants
(of one another) if for some x,..., X, Y1, +, ¥
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A xl,...,ﬁfﬂ>
TR

(3 vi,.. y‘>
Z1,e -y 2n

where z;,. .., z, are bound variables occurring neither in 4 nor in B: that is

to say, if 4 and B are different, it is only because they have a different choice

of bound variables. The fact that 4 and B are alphabetical variants will be
expressed by 4 ~ B.

is

One can easily prove that the relation 4 ~ B is an equivalence relation.
Intuitively it is obvious that changing bound variables in a formula does not
change its meaning. We can prove by induction on the number of logical
symbols in A that if 4 ~ B, then 4 = B is provable without cut (indeed
in LJ, which is to.be defined in the next section). Thus two alphabetical
variants will often be identified without mention.

§3. A formulation of intuitionistic predicate calculus

DEerFINITION 3.1. We can formalize the intuitionistic predicate calculus as a sub-
system of LK, which we call LJ, following Gentzen. {J stands for “intui-
tionistic”’.) LJ is obtained from LK by modifying it as follows (cf. Definitions
2.1 and 2.2 for LKj:

1) A sequent in LJ is of the form I — A, where 4 consists of at most one
formula.

2) Inferences in LJ are those obtained from those in LK by imposing the
restriction that the succedent of each upper and lower sequent consists of
at most one formula; thus there are no inferences in LJ corresponding to
contraction : right or exchange : right.

The notions of proof, provable and other concepts for LJ are defined
similarly to the corresponding notions for LK.

Every proof in LJ is obviously a proof in LK, but the converse is not true.
Hence:

ProrositioN 3.2. If a sequent S of LY is provable in L, then it is also provable
i LK.
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Lemmas 2.10-2.12 and Propositions 2.13 and 2.14 hold, reading “LJ-
provable” in place of “provable” or “provable (in LK)"’. We shall refer to
these results (for LJ) as Lemma 3.3, Lemma 3.4, Lemma 3.5, Proposition 3.6
and Proposition 3.7, respectively. We omit the statements of these.)

ExampLE 3.8. The following are LJ-proofs.

1)
A 1 left #-
— : left L_-‘)i
-4, A A4~
A left

. AN—d, Ar—4d >
contraction : left T ATA

—: right _AA—ﬁA_;
— (4 A —4)
2) Suppose a is fully indicated in F(a).
— F

3 :right H

— : left (a)F_* 39; (*)
exchange : left ;Hx (x), F(“) —
— 1 left (@), ~3x F(x) —
V : right 3x F(x) —~ ()

—dx F(x) - Vy —:F(y)

ExEeRrcIsE 3.9. Prove the following in LJ.
1) mAvB ->ADB.
2} Ix F(x) — —Vy =F(y).
3) ArB —~A.
4

3

)

)

) mA v =B — =4 A B).

) (A v B) = =4 A —B.
yAvCOYA(BvC)=(4AAB)vC.
) dx ~F(x) - —Vx F(x).
)
)
)
)
)

0w -3 3D

9
10
11
2
13

Vx (F(x) A G(x)} = Vx F(x) A Vx G(x).
AD—-B —->B>—4.

Ix (A D B(x)) — 4 > 3x B(x).

Ix (A(x) 2 B) - Vx A(x) 2 B.

dx (A(x) 2 B(x)) — Vx A(x) D 3x B(x).

[
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EXERCcISE 3.10. Prove the following in LJ.
1) =—(A2B),4 - ~—B.
2) —m—B2B,——~(4D>B) ~A>B.
3) ———4d = —4.

Exgrcise 3.11. Define LJ’ to be the system which is obtained from LJ by
adding to it, as initial sequents, all sequents ——R — R, where R is atomic.
Let A be a formula which does not contain v or 3. Then =—4 — 4 is LJ’-
provable. [Hint: By induction on the number of logical symbols in 4; cf.
Exercise 3.10.]

ProBLEM 3.12. For every formula A define A* as follows.

1) If 4 is atomic, then A* is ——A4.

2) If A isof theforms =B, B A C, Bv Cor BDC, then A*is =B* B* A C¥*,
—(—B* A 2C*) or B* D C*, respectively.

3) If 4 is of the form Vx F(x) or x F(x), then A* is Vx F*(x) or —=Vx —F*(x),
respectively.
(Thus A* does not contain v or 3.) Prove that for any 4, A4 is LK-provable
if and only if 4* is LJ-provable. [Hint: Follow the prescription given below.]

1) For any A, 4 = A* is LK-provable.

2) Let S be a sequent of the form 4,,...,4,, -~ B;y,..., B,. Let S" be the
sequent

A, . AY =BF,... =B -

m

Prove that S is LK-provable if and only if $" is LK-provable.

3) A* = —=—A4* 1n LJ, from Exercise 3.11.

4) Show that if S is LK-provable, then S’ is LJ-provable. (Use mathematical
induction on the number of inferences in a proof of S))

What must be proved is now a special case of 4).

§4. Axiom systems

DeriniTION 4.1. The basic system is LK.

1) A finite or infinite set .o/ of sentences is called an axiom system, and each
of these sentences is called an axiom of /. Sometimes an axiom system is
called a theory. (Of course this definition is only significant in certain contexts.)

2) A finite (possibly empty) sequence of formulas consisting only of axioms
of o7 is called an axiom sequence of o7.



22 FIRST ORDER PREDICATE CALCULUS [cH. 1, §5

3) If there exists an axiom sequence [y of & such that [, I -4 is
LK-provable, then I' — A is said to be provable from o (in LK). We express
this by &7, I' - 4.

4) o/ is inconsistent (with LK) if the empty sequent — is provable from .o/
(in LK).

5) If o7 is not inconsistent (with LK), then it is said to be consistent (with
LK).

6) If all function constants and predicate constants in a formula 4 occur
in &7, then 4 is said to be dependent on 7.

7) A sentence A is said to be cousistent (inconsistent) if the axiom system
{A} is consistent (inconsistent).

8) LK , is the system obtained from LK by adding — 4 as initial sequents
forall 4 in &.

9) LK, is said to be inconsistent if — is LK ,-provable, otherwise it is
consistent.

The following propositions, which are easily proved, will be used quite
often.

ProrosITION 4.2. Let & be an axiom system. Then the following ave equivalent:
(a) o is inconsistent (with LK) (as defined above);

(b) for every formula A (of the language), A is provable from o ;
(c) for some formula A, A and —A are both provable from 7.

ProOPOSITION 4.3. Let o/ be an axiom system. Then a sequent I' — A is LK -
provable if and only if I' — A is provable from o (in LK).

COROLLARY 4.4. An axtom System s/ is consistent (with LK) if and only if
LK, is consistent.

These definitions and the propositions hold also for L.

§6. The cut-elimination theorem

A very important fact about LK is the cut-elimination theorem, also known
as Gentzen's Hauptsatz:
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THEOREM 5.1 (the cut-elimination theorem: Gentzen). I} a sequent is (LK)-
provable, then it is (LK-)provable without a cut.

This means that any theorem in the predicate calculus can be proved
without detours, so to speak. We shall come back to this point later. The
purpose of the present section is to prove this theorem. We shall follow
Gentzen’s original proof.

First we introduce a new rule of inference, the mix rule, and show that
the mix rule and the cut rule are equivalent. Let 4 be a formula. An inference
of the following form is called a mix (with respect to A4):

I -4 7—-4
i —4% 4

(4)

where both 4 and IT contain the formula 4, and A* and IT* are obtained from
A and I1 respectively by deleting all the occurrences of 4 in them. We call 4
the mix formula of this inference, and the mix formula of a mix is normally
indicated in parentheses (as above).

Let us call the system which is obtained from LK by replacing the cut
rule by the mix rule, LK*. The following is easily proved.

LemMa 5.2. LK and LK* are equivalent, that is, a sequent S is LK-provable
if and only if S is LK*-provable.

By virtue of the Lemma 5.2, it suffices to show that the mix rule is redundant
in LK*, since a proof in LK* without a mix is at the same time a proof in LK

without a cut.

THEOREM 5.3 (cf. Theorem 5.1}. If a sequent is provable in LK*, then it is provable
in LK* without a mix.

This theorem is an immediate consequence of the following lemma.

LEMMA 5.4. If Pis a proof of S (in LK*) which contains (only) one mix, occurring
as the last inference, then S is provable without a mix.

The proof of Theorem 5.3 from Lemma 5.4 is simply by induction on the
number of mixes occurring in a proof of S.
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The rest of this section is devoted to proving Lemma 5.4. We first define
two scales for measuring the complexity of a proof. The grade of a formula A
(denoted by g{A4)) is the number of logical symbols contained in 4. The grade
of a mix is the grade of the mix formula. When a proof P has a mix (only)
as the last inference, we define the grade of P (denoted by g(P)) to be the
grade of this mix.

Let P be a proof which contains a mix only as the last inference:

]F—>A I-4
I+ -A4* 4

(4).

We refer to the left and right upper sequents as S; and S, respectively, and
to the lower sequent as S. We call a thread in P a left (vight) thread if it contains
the left (right) upper sequent of the mix J. The rank of a thread # in P is
defined as follows: if & is a left (right) thread, then the rank of & is the number
of consecutive sequents, counting upward from the left {right) upper sequent
of J, that contains the mix formula. Since the left (right) upper sequent
always contains the mix formula, the rank of a thread in P is at least 1.
The rank of a thread % in P is denoted by rank(# ; P). We define

rank,(P) = max(rank(# ; P)),
F

where % ranges over all the left threads in P, and

rank (P) = max(rank(# ; P)),
F
where & ranges over all the right threads in P. The rank of P, rank(P), is
defined as

rank(P) = rank,;(P) + rank (P).

Notice that rank(P) is always > 2.

PROOF oF LEMMA 5.4. We prove the Lemma by double induction on the grade
¢ and rank 7 of the proof P (i.e., transfinite induction on w-g + 7). We
divide the proof into two main cases, namely » = 2 and » > 2 (regardless
of g).

Case 1: 7 = 2, viz. rank,(P) = rank(P) = 1.

We distinguish cases according to the forms of the proofs of the upper
sequents of the mix.
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1.1} The left upper sequent S; is an initial sequent. In this case we may
assume P is of the form
A—~A 71 -4
S A=A

We can then obtain the lower sequent without a mix:

-4
some exchanges
A, AIT* >4

some contractions

A 11* - A

1.2) The right upper sequent S, is an initial sequent. Similarly:

1.3) Neither S, nor S, is an initial sequent, and S; is the lower sequent of a
structural inference J;. Since rank,(P) = 1, the formula 4 cannot appear in
the upper sequent of J,, i.e., J; must be a weakening : right, whose weakening
formula is A:

5 B
Ay A -4
T II* >4, A4 )

where 4 does not contain A. We can eliminate the mix as follows:

F indd A 1
some weakenings
1+ r—-A4,4

some exchanges

F,H* ”"AI,A

1.4) None of 1.1)-1.3) holds but S, is the lower sequent of a structural
inference. Similarly:

1.5) Both S; and S, are the lower sequents of logical inferences. In this
case, since rank,(P) = rank,(P) = 1, the mix formula on each side must be
the principal formula of the logical inference. We use induction on the grade,
distinguishing several cases according to the outermost logical symbol of A.
We treat here two cases and leave the others to the reader.

(i) The outermost logical symbol of 4 is . In this case S| and S, must be
the lower sequents of A : right and A : left, respectively:
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I'~4,B  T'-4,C B,IT, A
FQAI,BAC B/\C,Hl'—>11
i -4,,4

(BAC),

where by assumption none of the proofs ending with I' —~4,, B; I' - A,, Cor
B, IT; — A contain a mix. Consider the following:

F""AI,B B,Hl '—>A
I 8,4

(B),

where IT# and A% are obtained from I, and /4, by omitting all occurrences
of B. This proof contains only one mix, a mix that occurs as its last inference.
Furthermore the grade of the mix formula B is less than g(4) (= g(B A ().
So by the induction hypothesis we can obtain a proof which contains no
mixes and whose end-sequent is I',IT{ — /%, A. From this we can obtain
a proof without a mix with end-sequent I', I1; — 4., A.

(ii) The outermost logical symbol of 4 is V. So 4 is of the form Vx F(x) and
the last part of P has the form:

F_)Al,F(a) F(t),”l "A A)
I' -4y, Vx F(x) Vx F(x), 11, - A (
I, —A4,,4

(a being fully indicated in F(a)). By the eigenvariable condition, a does not
occur in I”, A, or F(x). Since by assumption the proof ending with I' — 44, F(a)
contains no mix, we can obtain a proof without a mix, ending with I — A, F(f)
(cf. Lemma 2.12). Consider now

I'—> Ay, F(t) Ew), 11, - A

where IT{ and A7 are obtained from I, and A, by omitting all occurrences
of F(¢). This has only one mix. It occurs as the last inference and the grade of
the mix formula is less than g(4). Thus by the induction hypothesis we can
eliminate this mix and obtain a proof ending with I, IT{ — A%, /A, from which
we can obtain a proof, without a mix, ending with I', I1, — 4,, A.

Case 2. 7 > 2, i.e., rank,(P) > 1 and/or rank(P) > 1.

The induction hypothesis is that from every proof Q which contains a mix
only as the last inference, and which satisfies either g(Q) < g(P), or g(Q) =
g(P) and rank(Q) < rank(P), we can eliminate the mix.
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2.1} rank (P) > 1.
2.1.1) I' (in S,) contains A. Construct a proof as follows.

-4
some exchanges and
contractions

A, IT* - A
some weakenings and
exchanges

i+ —-A4a* 4

2.1.2) S, is the lower sequent of an inference J,, where J, is not a logical
inference whose principal formula is A. The last part of P looks like this:

b -y
roa J2 g P
T+ ->A* A (4),

where the proofs of I" - A and @ — ¥ contain no mixes and @ contains at
least one A. Consider the following proof P’:

riis osw
T o > A=Y

mix (4).
In P’, the grade of the mix is equal tog(P), rank,(P’) = rank,(P)andrank (P’) =
rank (P) — 1. Thus by the induction hypothesis, I', @* — A*, ¥ is provable

without a mix. Then we construct the proof

T, &% 5 A+ W
some exchanges
O* I > A% ¥
T2 7% T A% A

2.1.3) I' contains no A’s, and S, is the lower sequent of a logical inference
whose principal formula is 4. Although there are several cases according to
the outermost logical symbol of 4, we treat only two examples here and leave
the rest to the reader.
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(i) A is B> C. The last part of P is of the form:

] -!71 _bAI:B C:H2 —>A2
F—>A 2 BDC,HI,HZ —’AI,AZ

J T II% IT% — 4% A, 4 (B20)
Consider the following proofs P; and P:
P, o Py
-4 I, - A4,,B (B2C) I' -4 C, I, - A, (B> )

I IF 5 A% A, B T, C % — 4% 4,

assuming that Bo Cisin/l; and [1,. If B2 Cisnotinfi; (t = 1 or 2}, then
ITY is IT; and P, is defined as follows.

II, -4, B C, 1, - A,
weakenings and exchanges weakenings and exchanges
- L% 4% A4, B T CITE ~4% 4,

Note that g(Py) = g{P,) = g(P), rank,(P;) = rank,(P,) = rank,(P) and
rank (P;) = rank,(P,) = rank(P) — 1. Hence by the induction hypothesis,
the end-sequents of P, and P, are provable without a mix (say by P; and P;).
Consider the following proof P’:
Py
L,CIT* 5 A%, 4,
some exchanges
i > A*, Ay, B C. Il — A%, 4,
Ir—A4 BDC,I’,HT,F,H;‘ =A%, Ay, A%, A,
J I, T 0T, T, IT% = 4%, 4%, 4, 4% 4,

’

Py

(B2C).

Then g(P') = g(P), rank,(P’) = rank,(P), rank (P’) = 1, for I' contains no
occurrences of B D C and rank(P’) < rank(P). Thus the end-sequent of P’ is
provable without a mix by the induction hypothesis, and hence so is the end-
sequent of P,

(ii) A is 3x F(x). The last part of P looks like this:

F(a),]]l —-A
I'—»A Ix F(x), 11, = A
J I IT% 4%, 4 (Ix F(x)).

Let b be a free variable not occurring in P. Then the result of replacing a by &
throughout the proof ending with F(a), IT; - A is a proof, without a mix, ending
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with £(8), I{, — /1, since by the eigenvariable condition, a does not occur in
II, or A (cf. Lemma 2.11).
Consider the following proof:

[~A  F@)LI, -4
DR S A B

By the induction hypothesis, the end-sequent of this proof can be proved
without a mix (say by P’). Now consider the proof

Pl

L F), I — 4% A
some exchanges
. F@), LI~ 4%, 4
I'>A  3F@), LT —A4%4
A I o AT T

(3x F(x)),

where b occurs in none of 3x F(x), I',[1,, A, A. This mix can then also be
eliminated, by the induction hypothesis.

2.2) rank,(P) = 1 (and rank,(P) > 1).
This case is proved in the same way as 2.1) above.

This completes the proof of Lemma 5.4 and hence of the cut-elimination
theorem.

It should be emphasized that the proof is constructive, i.e., a new proof
is effectively constructed from the given proof in Lemma 5.2 and again in
Lemma 5.4, and hence in Theorem 5.1.

The cut-elimination theorem also holds for LJ. Actually the above proof
is designed so that it goes through for LJ without essential changes: we only
have to keep in mind that there can be at most one formula in each succedent.
The details are left to the reader; we simply state the theorem.

THEOREM 5.5. The cut-elimination theovem holds for L.

§6. Some consequences of the cut-elimination theorem

There are numerous applications of the cut-elimination theorem, some of
which will be listed in this section, others as exercises. In order to facilitate
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discussion of this valuable, productive and important theorem, we shall first
define the notion of subformula, which will be used often.

DEerFiNITION 6.1. By a subformula of a formula 4 we mean a formula used
in building up 4. The set of subformulas of a formula is inductively defined
as follows, by induction on the number of logical symbols in the formula.

(1) An atomic formula has exactly one subformula, viz. the formula itself. The
subformulas of —4 are the subformulas of 4 and —4 itself. The subformulas
of A A Bor Av Bor A2 B are the subformulas of 4 and of B, and the formula
itself. The subformulas of Vx A(x) or 3x A(x) are the subformulas of any
formula of the form A(f), where ¢ is an arbitrary term, and the formula
itself.

(2) Two formulas 4 and B are said to be equivalent in LK if A = B is
provable in LK.

(3) We shall say that in a formula 4 an occurrence of a logical symbol,
say #, is wn the scope of an occurrence of a logical symbol, say g, if in the
construction of A (from atomic formulas) the stage where % is the outermost
logical symbol precedes the stage where fj is the outermost logical symbol
(cf. Definition 1.3). Further, a symbol # is said to be in the left scope of a D
if D occurs in the form B2 C and # occurs in B.

(4) A formula is called prenex (in prenex form) if no quantifier in it is in the
scope of a propositional connective. It can easily be seen that any formula is
equivalent (in LK) to a prenex formula, i.e., for every formula 4 there is a
prenex formula B such that 4 = B 1s LK-provable.

One can easily see that in any rule of inference except a cut, the lower sequent
is no less complicated than the upper sequent(s) ; more precisely, every formula
occurring in an upper sequent is a subformula of some formula occurring in
the lower sequent (but not necessarily conversely). Hence a proof without
a cut contains only subformulas of the formulas occurring in the end-sequent
(the “‘subformula property”). So the cut-elimination theorem tells us that
if a formula is provable in LK (or LJ) at all, it is provable by use of its sub-
formulas only. (This is what we meant by saying that a theorem in the predicate
calculus could be proved without detours.)

From this observation, we can convince ourselves that the empty sequent
— is not LK- (or LJ-) provable. This leads us to the consistency proof of
LK and LJ.

THEOREM 6.2 (consistency). LK and LJ are consistent.
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ProOF. Suppose — were provable in LK (or LJ). Then, by the cut-elimination
theorem, 1t would be provable in LX (or LJ} without a cut. But thisis impossible,
by the subformula property of cut-free proofs.

An examination of the proof of this theorem (including the cut-elimination
theorem) shows that the consistency of LK (and LJ) was proved by quantifier-
free induction on the ordinal w? We shall not, however, go into the details
of the consistency problem at this stage.

For convenience, we re-state the subformula property of cut-free proofs
as a theorem.

THEOREM 6.3. In a cut-free proof in LK (or Ld) all the formulas which occur in
it ave subformulas of the formulas in the end-sequent.

Proor. By mathematical induction on the number of inferences in the cut-
free proof.

In the rest of this section, we shall list some typical consequences of the
cut-elimination theorem. Although some of the results are stated for LJ as
well as LK, we shall give proofs only for LK ; those for LJ are left to the reader.

THEOREM 6.4 (1) (Gentzen's midsequent theorem for LK). Let S be a sequent
which consists of premex formulas only and is provable in LX. Then there is a
cut-free proof of S which contains a sequent (called a midsequent), say S’, which
satisfies the following:

1. 8’ is quantifier-free.

2. Every inference above S’ is either structural ov propositional.

3. Every inference below S’ is either structural or a quantifier inference.

Thus a midsequent splits the proof into an upper part, which contains the
propositional inferences, and a lower part, which contains the quantifier inferences.

(2) (The midsequent theorem for LJ without v :left.) The above holds
reading ‘LY without v : left” in place of “LK”.

Proor (outline). Combining Proposition 2.14 and the cut-elimination theorem,
we may assume that there is a cut-free proof of S, say P, in which all the
initial sequents consist of atomic formulas only. Let 7 be a quantifier inference
in P. The number of propositional inferences under [ is called the order of I.
The sum of the orders for all the quantifier inferences in P is called the order
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of P. (The term “‘order” is used only temporarily here.) The proof is carried
out by induction on the order of P.

Case 1: The order of a proof P is 0. If there is a propositional inference,
take the lowermost such, and call its lower sequent S,. Above this sequent
there is no quantifier inference. Therefore, if there is a quantifier in or above
So, then it is introduced by weakenings. Since the proof is cut-free, the
weakening formula is a subformula of one of the formulas in the end-sequent.
Hence no propositional inferences apply to it. We can thus eliminate these
weakenings and obtain a sequent S(/) corresponding to S;. By adding some
weakenings under S(', (if necessary), we derive S, and S(’J serves as the mid-
sequent.

1f there is no propositional inference in P, then take the uppermost quantifier
inference. Its upper sequent serves as a midsequent.

Case 2: The order of P is not 0. Then there is at least one propositional
inference which is below a quantifier inference. Moreover, there is a quantifier
inference I with the following property: the uppermost logical inference
under I is a propositional inference. Call it I'. We can lower the order by
interchanging the positions of I and I'. Here we present just one example:
say I is V : right.

P:
I' 50, F(a)
I' >0, Vx F(x)

A4

where the (*}-part of P contains only structural inferences and A contains
Vx F(x) as a sequent-formula. Transform P into the following proof P’:

I' 6, F(a)

structural inferences

r— f‘(a), 6, Vx F()

j ASFaA
g] —-A,Vx FE

44

It is obvious that the order of P’ is less than that of P.
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Prior to the next theorem, Craig’s interpolation theorem*, we shall first
state and prove a lemma which itself can be regarded as an interpolation
theorem for provable sequents and from which the original form of the
interpolation theorem follows immediately. We shall present the argument
for LK only, although everything goes through for LJ as well.

For technical reasons we introduce the predicate symbol T, with 0 argu-
ment places, and admit — T as an additional initial sequent. (T stands for
“true”.) The system which is obtained from LK thus extended is denoted
by LK§.

LemMa 6.5. Let I' - A be LK-provable, and let (I'y, I'y) and (A4, Ay) be
arbitrary partitions of I' and A, vespectively (including the cases that ome or
moreof Iy, I'y, A1, Ay aveempty). Wedenote such a partitionby [{I'y; 4.}, {Iy; A5}
and call it a partition of the sequent I' — A. Then theve exists a formula C of
LK% (called an interpolant of [{I'y; A1}, {I's; As}] such that:

Q) Iy = Ay, Cand C, I'y — Ay are both LK #-provable;

(i) Al free variables and individual and predicate constants in C (apart
from T) accur both in I'y U Ay and I'y U A,.

We will first prove the theorem (from this lemma) and then prove the
lemma.

THEOREM 6.6 (Craig’s interpolation theorem for LK). (1) Lef 4 and B be two
formulas such that A DB is LK-provable. If A and B have at least one
predicate constant in common, then theve exists a formula C, called an interpolant
of A D B, such that C contains only those individual constants, predicate con-
stants and free variables that occur in both A and B, and such that A D C and
C 2 B ave LK-provable. If A and B contain no predicate constant tn common,
then either A — or — B 1s LK-provable.

(2) A's above, with L in place of LK.

Proor. Assume that A 5 B, and hence 4 — B, is provable, and 4 and B
have at least one predicate constant in common. Then by Lemma 6.5, taking
4 as I') and B as A, (with I'; and 4, empty), there exists a formula C
satisfying (i) and (ii). So 4 — C and C — B are LK#-provable. Let R be a
predicate constant which is common to 4 and B and has % argument places.
Let R be Vy;...Vvi R{yy,- .., Vi), where y,. . ., v, are new bound variables.

* A strong general theory on interpolation theorems is established in N. Motohasi:
Interpolation theorem and characterization theorem, Ann. Japan Assoc. Philos. Sci.,
4 (1972) pp. 15— 80.
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By replacing T by R’ D R’, we can transform C into a formula C’ of the original
language, such that 4 — C’ and C' — B are LK-provable. C’ is then the
desired interpolant.

1f there is no predicate common to I'y U4, and I'; U4, in the partition
described in Lemma 6.5, then, by that lemma, thereisa C such that I'; —»4,,C
and C, I'y — A, are provable, and C consists of T and logical symbols only.
Then it can easily be shown, by induction on the complexity of C, that either
—~C or C — is provable. Hence either I'; - A, or I'y — A, is provable.
In particular, this applies to 4 -~ B when A is taken as I'; and B as 4,.

This methou 15 aue to Maehara and its significance lies in the fact that
an interpolant of 4 D B can be constructively formed from a proof of 4 2 B.
Note also that we could state the theorem in the following form: If neither —A
nor B is provable, then there is an interpolant of A D B.

ProoF oF LEMMA 6.5. The lemma is proved by induction on the number of
inferences k, in a cut-free proof of I' — /. At each stage there are several
cases to consider; we deal with some examples only.

1)k = 0. I' - A has the form D — D. There are four cases: (1) [{D; D}, { ; }],
2) [{; ), {D; DY), 3) UD; }, { ; DY), and (4) [{ ; D}, {D; }]. Take for C: =T
in (1), Tin (2), D in (3) and =D in (4).

2) k > 0 and the last inference is A : right:

' -4, 4 I' -A B
I' >4, A A B.

Suppose the partition is [{I'y;4;, A A B}, {I'y; As}]. Consider the induced
partition of the upper sequents, viz. [{I'y; 4y, 4}, {I's; A5}] and [{I'}; A4, B},
{I'y; A5}, respectively. By the induction hypotheses applied to the subproofs
of the upper sequents, there exist interpolants C; and Cyso that I'y -4, 4,Cy;
Cy, Iy »Ay; I'y - A4, B, Cy; and Cy, I'y — Ay are all LK#-provable. From
these sequents, Iy, - A4,, A A B,Cy v Cgand C, v Cy, I'y — Ay can be derived.
Thus C; v C, serves as the required interpolant.
3) £ > 0 and the last inference is V : left:

F(s), I —~4
VxF(x), [ -A°

Suppose by,. . ., b, are all the free variables (possibly none) which occur in s.
Suppose the partition is {{Vx F(x), I'y; 4,}, {I'y; A5}]. Consider the induced
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partition of the upper sequent and apply the induction hypothesis. So there
exists an interpolant C(b,,. .., b,) so that

F(S),Fl —’Al, C(bllrb'n) and C(bl,...,bn>, Fz —’Az

are LK#-provable. Let b, ,. . ., b, , be all the variables among ,,. . ., b, which
do not occur in {F(x), I'y; 4;}. Then

Vyl...VymC(bl,...,yl,.,.,ym,...,bn),

where b;,,. .., b, are replaced by the bound variables, serves as the required
interpolant.
4) k > 0 and the last inference is V : right:

I' A, Fla)
I > A ¥x F(x)’

where 2 does not occur in the lower sequent.

Suppose the partition is [{I'y; 4q, V& F(x)}, {I's; A5}]. By the induction
hypothesis there exists an interpolant C so that I'y - Ay, F(a), C and
C, 'y — A, are provable. Since C does not contain a, we can derive

Fl —-’Al, VxF(x), C,

and hence C serves as the interpolant.
All other cases are treated similarly.

ExXERcISE 6.7. Let A and B be prenex formulas which have only V and A as
logical symbols. Assume furthermore that there is at least one predicate
constant common to 4 and B. Suppose 4 3 B is provable.

Show that there exists a formula C such that

1) AD> C and C D B are provable;

2) C is a prenex formula;

3) the only logical symbols in C are ¥V and A;

4) the predicate constants in C are common to 4 and B.
(Hint: Apply the cut-elimination theorem and the midsequent theorem.]

DEerINITION 6.8. (1) A semi-term is an expression like a term, except that
bound variables are (also) allowed in its construction. (The precise definition
is left to the reader.) Let ¢ be a term and s a semi-term. We call s a sub-semi-
term of ¢ if
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)
(i)
(iii) some subterm of ¢ is obtained from s by replacing all the bound variables
in s by appropriate terms.
(2) A semi-formula is an expression like a formula, except that bound
variables are (also) allowed to occur free in it (i.e., not in the scope of a

quantifier).

s contains a bound variable (that is, s is not a term),
s is not a bound variable itself,

THEOREM 6.9. Let t be a term and S a provable sequent satisfying:
(* There is no sub-semi-term of t in S.

Then the sequent which is obtained from S by replacing all the occurrences of t in
S by a free variable is also provable.

ProoF (outline). Consider a cut-free regular proof of S, say P. From the
observation that if (*) holds for the lower sequent of an inference in P then
it holds for the upper sequent(s), the theorem follows easily by mathematical
induction on the number of inferences in P.

DEFINITION6.10. Let Ry, . . ., R,,, Rbepredicate constants. Let A(R,R;,. . ., R,,)
be a sentence in which all occurrences of R, R;,. .., R,, are indicated. Let R’
be a predicate constant with the same number of argument-places as R. Let
BbeVxy.. .V (R(xq,. .., %) = R'(%4,. .., %;)), where the string of quantifiers
isemptyif # = 0,andlet Cbe A(R, Ry,..., R,) A AR, R,,..., R,). Wesay
that A(R, Ry,. .., R,;) defines (in LK) R implicitly in terms of Ry,..., R, if
C 2 B is (LK-)provable and we say that A(R, R,,..., R,) defines (in LK) R
explicitlyintermsofRy,. . ., R ,and theindividualconstantsin 4(R,Ry,. . ., R,,)
if there exists a formula F(a,. . ., a;) containing only the predicate constants
Ry,..., R, and the individual constants in A(R, R,..., R,,) such that

AR, Ry,..., R, = Vx1.. Vx4, (R(%q,. .., %) = F(xy,..., %)

is LK-provable.

Proros1TION 6.11 (Beth’s definability theorem for LK). If a predicate constant
R is defined implicitly in terms of Ry,..., Ry, by A(R, Ry,..., R,), then R can
be defined explicitly in terms of Ry,..., R, and the individual constants in
AR, Rq,..., R,).
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Proor {outline). Let ¢y,..., ¢, be free variables not occurring in 4. Then

AR, Ry,...,R,),A(R',Ry,...,R,)) > R(cy,...,c,) = R'(cy,..., ¢n)
and hence also
AR, Ry,...,R)AR(cy,...,¢,) = AR, Ry,...,R,) DR (cy,. .., Cpn)

are provable. Now apply Craig’s theorem (i.e., part (1) of Theorem 6.6) to
the latter sequent.

We now present a version of Robinson’s theorem (for LK).

ProposiTiON 6.12 (Robinson). Assume that the language contains no function
constants. Let 7| and s/ 4 be two consistent axiom systems. Suppose furthermore
that, for any sentence A which is dependent on <7 and 74, it 1s not the case that
Ay~ A and oy - A (or Ay — —A and 75 — A) are both provable. Then
&7 U oy is consistent. (See Definition 4.1 for the technical terms.)

Proor (outline). Suppose &7, U &/, is not consistent. Then there are axiom
sequences I and Iy from &7, and &, respectively such that Iy, Iy, — is
provable. Since &/; and .7, are each consistent, neither I nor I is empty.
Apply Lemma 6.5 to the partition [{I'}; }, {Is; }1.

Let LK’ and LJ' denote the quantifier-free parts of LK and LJ, respectively,
viz. the formulations (in tree form) of the classical and intuitionistic proposi-
tional calculus, respectively.

THEOREM 6.13. There exist decision procedures for LK’ and LY.

Proor (outline). The following decision procedure was given by Gentzen.
A sequent of LK’ (or LJ’) is said to be reduced if in the antecedent the same
formula does not occur at more than three places as sequent-formulas, and
likewise in the succedent. A sequent S’ is called a reduct of a sequent S if S’
is reduced and is obtained from S by deleting some occurrences of formulas.
Now, given a sequent S of LK’ (or LJ’), let S’ be any reduct of S. We note
the following.

1) S is provable or unprovable according as S’ is provable or unprovable.

2) The number of all reduced sequents which contain only subformulas
of the formulas in S is finite.
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Consider the finite system of sequents as in 2), say &. Collect all initial
sequents in the systems. Call this set %,. Then examine & — ¥, to see if
there is a sequent which can be the lower sequent of an inference whose
upper sequent(s) is (are) one (two) sequent(s) from %, Call the set of all
sequents which satisfy this condition &;. Now see if there is a sequent in
(&£ — F4) — &1 which can be the lower sequent of an inference whose upper
sequent(s) is (are) one (two) of the sequent(s) in &y U &,. Continue this
process until either the sequent S’ itself is determined as provable, or the
process does not give any new sequent as provable. One of the two must
happen. If the former is the case, then Sis provable. Otherwise Sisunprovable.
(Note that the whole argument is finitary.)

THEOREM 6.14 (1) (Harrop). Let I be a finite sequence of formulas such that
i each formula of I' every occurvence of v and 3 is either in the scope of a — or
th the left scope of a D (cf. Definition 6.1, part 3)). This condition will be veferred
to as (*) in this theovem. Then

1) I' > A v Bis LI-provable if and only if I' — A or I' - B is LI-provable,

2) I' — Ax F(x) @s LI-provable if and only if for some term s, I' — F(s) is
LJ-provable.

(2) The following sequents (which are LK-provable) are not (in general) LJ-
provable.

—(—d4d A =B) >4 v B; =Vx aF (x) — 3x F(x);

ADB - =4 v B; —Wx Fx) — 3x —F(x);
—|(A A B) — A4 v =B,

Proor. (1) part 1): The “if”’ part is trivial. For the “only if"’ part, consider
a cut-free proof of I" — A v B. The proof is carried out by induction on the
number of inferences below all the inferences for v and 3 in the given proof.
If the last inference is V : right, there is nothing to prove. Notice that the last
inference cannot be v, —, or 3 : left.

Case 1: The last inference is A : left:

C,I' -AvB
CAD T ~AvB’

It is obvious that C satisfies the condition (*). Thus the induction hypothesis
applies to the upper sequent; hence either C, I' - 4 or C, I' — B is provable.
In either case, the end-sequent can be derived in LJ.
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Case 2: The last inference is D : left:

I'-~c¢C D, I'>Av B
CoD, I"'>AVvEB’

Itis obvious that D satisfies the condition (*); thus, by the induction hypothesis
applied to the right upper sequent, D, I" —~ A or D, I' — B is provable. In
either case the end-sequent can be derived.

Other cases are treated likewise. The proofs of (1) part 2), and (2), are left
to the reader.

§7. The predicate calculus with equality

DeriniTION 7.1. The predicate calculus with equality (denoted LK,) can be
obtained from LK by specifying a predicate constant of two argument places
(=: read equals) and adding the following sequents as additional initial
sequents (@ = b denoting = (a, b)):

—>S§ =;
Sy =ty Sy =1ty > (51, -, Sn) = flt,- o, tn)
for every function constant f of # argument-places (n = 1,2,...);

Sy =ty Sy =1y, R(sq,...,8,) = R((1,.- ., t,)

forevery predicate constant R (including =) of # argument-places (n = 1,2,. . .);
where s, s1,..., s, f1,..., ¢, are arbitrary terms.
Each such sequent may be called an equality axiom of LK,.

PRrOPOSITION 7.2. Let A(ay,. . ., a,) be an arbitrary formula. Then
Sy =t Sy =ty A(sy,. .o, 8p) = Aty -, 8)

is provable wn LK, for any terms s;, ¢; (1 < @ < n). Furthermore,s = t > =5
and sy = Sy, Sg = S3 — S| = S5 are also provable.

DeriNiTION 7.3. Let I, be the set (axiom system) consisting of the following
sentences:
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Vag. . Vx, Yy Yy, (X1 = y1 Ao A X, = ¥ D fn, . %) = Hyn - o) Ya)l
for every function constant f with #» argument-places (» = 1,2,...},
Vaq. . Vo, Vy1. . VY, % = ViAo AX, = Ya ARy, .., %) DR(Vy, .., V)]

for every predicate constant R of # argument-places (n = 1,2,...). Each
such sentence is called an equality axiom.

PROPOSITION 7.4. A sequent I' — A is provable in LXK, if and only if I' I, — 4
is provable in LK.

Proor. Only if: It is easy to see that all initial sequents of LK, are provable
from I,. Therefore the proposition is proved by mathematical induction on
the number of inferences in a proof of the sequent 1" — 4.

If: All formulas of I', are LK -provable.

DerFINITION 7.5. If the cut formula of a cut in LK, is of the form s = £, then
the cut is called inessential. It is called essential otherwise.

THEOREM 7.6 (the cut-elimination theorem for the predicate calculus with
equality, LK,). If a sequent of LK, 1s LK -provable, then it is LK -provable
without an essential cut.

Proor. The theorem is proved by removing essential cuts (mixes as a matter
of fact), following the method used for Theorem 5.1.

If the rank is 2, S, is an equality axiom and the cut formula is not of the
form s = ¢, then the cut formula is of the form P(¢;,...,¢,). If S; i1s also an
equality axiom, then it has the form

S =ty,e ey Sy = by, P(s1,. .., 8, = Plty,.. ., t,).
From this and S, i.e.,
by =71ty =7y, Plly,. . b)) — Plry,. .., 7,),
we obtain by a mix
Sy =y, Sy =ty by =10, by =¥, P(sy, ..., S0) = Py, o, 7).

This may be replaced by
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(t=1,2,...,n);

si=t,ti =7, >, =1

S1 =P, Sy =70 P(sy,. ., 8,) = Plry,. .., 7))

and then repeated cuts of s; = 7; to produce the same end-sequent. All cuts

(or mixes) introduced here are inessential.
If P(¢,...,¢t,) in S, is a weakening formula, then the mix inference is:

Sy =t1, 0, Sp =Ly, P(sy,. .., 85) = Py, .., t)
Sy =t Plsy,. .., sp), IT — A.

Plty,. .., t), 1T ~A

Slztl,...

Transform this into:

-4

end-sequent.

The rest of the argument in Theorem 5.1 goes through.

PROBLEM 7.7. A sequent of the form
$1 = tl,...,sn =

is said to be simple if it is obtained from sequents of the following four forms
by applications of exchanges, contractions, cuts, and weakening left.

1) »s=z3s.
2) s =1t >t =135
3) s; = Sg, 55 = §3 —> 8 = s3.
4) sy =ty o, Sy =ty > F(51,- -0 Sw) =t ) tw)-
Prove thatif s; = s;,..., s, = s, —§ = tissimple, then s = ¢ is of the form
s = s. As a special case, if — s = ¢ is simple, then s = ¢ is of the form s = s.
Let LK, be the system which is obtained from LK by adding the following

sequents as initial sequents:
a) simple sequents,
b) sequents of the form

’ ’ ’

=ty R(sy,. .., 5,) = R(ty,. .., ),

S1 =1t , Sy

where s; = t,..., S = by, — 5, = £ is simple for each ¢ (¢ = 1,..., n). First
prove that the initial sequents of LK; are closed under cuts and that if

R(sq,...,Sn) = R(ty,. ... L)
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is an initial sequent of LK; (where R is not =), then it is of the form D — D.
Finally, prove that the cut-elimination theorem (without the exception of
inessential cuts) holds for LK;.

ProBLEM 7.8. Show that if a sequent S without the = symbolis LK -provable,
then it is provable in LK (without =).

ProBLEM 7.9. Prove that Theorems 6.2-6.4, 6.6, 6.9, and 6.14, Propositions
6.11 and 6.12 and Exercise 6.7 hold for LK, when they are modified in the
following way: References to LK- (or LJ-) provability are replaced throughout
by references to LK -provability, and further, when the statement demands
that a formula can contain only certain constants, = can be added as an
exception.

The general technique of proof is to change a condition that a sequent
I" — A be provable in LK to one that a sequent /I, I' — A be provable in LK,
where I/ is a set of equality axioms, and in this way to reduce the problem
to LK.

§8. The completeness theorem

Although we do not intend to develop model theory in this book, we shall
outline a proof of the completeness theorem for LK. The completeness theorem
for the first order predicate calculus was first proved by Godel. Here we follow
Schiitte’s method, which has a close relationship to the cut-elimination
theorem. In fact the cut-elimination theorem is a corollary of the completeness
theorem as formulated below. (The importance of the proof of cut-elimination
in §5 lies in its constructive nature.)

DermniTioN 8.1. (1) Let L be a language as described in §1. By a structure for
L (an L-structure) we mean a pair (D, ¢), where D is a non-empty set and
¢ is a map from the constants of L such that
(i) if % is an individual constant, then ¢k is an element of D;
(ii) if f is a function constant of # arguments, then ¢f is a mapping from
Dminto D;
(iii) if R is a predicate constant of » arguments, then ¢R is a subset of D».
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(2) An interpretation of L is a structure (D, ¢) together with a mapping ¢,
from variables into D. We may denote an interpretation ((D, ¢), ¢,) simply
by 3. ¢, is called an assignment from D.

(3) We say that an interpretation 3 = ((C, ¢), ¢y} satisfies a formula 4
if this follows from the following inductive definition. In fact we shall define
the notion of “satisfying” for all semi-formulas (cf. Definition 6.8).

0) Firstly, we define ¢(f), for every semi-term ¢, inductively as follows. We
define ¢(a) = ¢o(a) and $(x) = Po(x) for all free variables a and bound
variables x. Next, if f is a function constant and ¢ is a semi-term for which ¢¢is
already defined, then ¢(f(#)) is defined to be (¢f)(cbt).

1) If R is a predicate constant of #» arguments and ¢, . . ., ¢, are semi-terms,
then J satisfies R(¢y,. . ., ¢,) if and only if {$t,,. .., ¢¢,) € $R.

2) J satisfies =4 if and only if it does not satisfy A ; 3 satisfies 4 A B if and
only if it satisfies both A and B; J satisfies A v B if and only if it satisfies
either A or B; J satisfies A D B if and only if either it does not satisfy 4 or it
satisfies B.

3) 3 satisfies Vx B if and only if for every 430 such that ¢, and ¢, agree,
except p0551bly on x, ((D, ¢), :/>0 ) satisfies B; 3 satisfies 3x B if and only if
for some ¢, such that ¢, and ¢, agree, except possibly on x, ((D, $), éy)
satisfies B.

If I = ((D, ¢), ¢o) satisfies a formula A, we say that A is satisfied in
(D, ¢) by ¢, or simply A is satisfied by 3.

(4) A formula is called valid in (D, ¢) if and only if for every ¢, ({D, ), o)
satisfies that formula. It is called valid if it is valid in every structure.

(6) A sequent I' > 4 is satisfied in (D, ¢) by ¢o (or I = (D, ¢), ¢y)
satisfies I" — A) if either some formula in I" is not satisfied by 3, or some
formula in A is satisfied by 3. A sequent is valid if it is satisfied in every
interpretation.

(6) A structure may also be denoted as

(D; ko, k1, .., $fo, df1,- - .. $Ro, $Ry,. . ).

A structure is called a model of an axiom system I if every sentence of I'is
valid in it. It is called a counter-model of I' if there is a sentence of I" which
is not valid in it.

THEOREM 8.2 (completeness and soundness). 4 formula is provable in LK if
and only if it is valid.
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NotEes. (1) The “if”’ part of the theorem is the statement of the completeness
of LK. In general, a system is said to be complete if and only if every valid
formula is provable in the system (for a suitable definition of validity).

Soundness means: all provable sequents are valid, i.e., the “‘only if’" part
of the theorem. Soundness ensures consistency.

{2) The theorem connects proof theory with semantics, where semantics
means, very roughly, the study of the interpretation of formulas in a structure
(of a language), and hence of their truth or falsity.

Proor or THEOREM 8.2. The “only if”" part is easily proved by induction
on the number of inferences in a proof of the formula. We prove the ““if” part
in the following generalized form:

LeEmMA 8.3. Let S be a sequent. Then either theve is a cut-free proof of S, or there
is an interpretation which does not satisfy S (and hence S is not valid).

Proor. We will define, for each sequent S, a (possibly infinite) tree, called
the reduction tree for S, from which we can obtain either a cut-free proof of
S or an interpretation not satisfying S. (This method is due to Schiitte.) This
reduction tree for S contains a sequent at each node. It is constructed in
stages as follows.

Stage 0: Write S at the bottom of the tree.

Stage & (£ > 0): This is defined by cases:

Case I. Every topmost sequent has a formula common to its antecedent
and succedent. Then stop.

Case I1. Not Case I. Then this stage 1s defined according as

£=0,1,2,...,11,12 (mod 13).

k =0 and &2 =1 concern the symbol —; 2 =2 and # = 3 concern A; B =4
and? = 5concernv; k =6andk = 7concernd; bk =8and k = 9 concernV;
and £ = 10 and 2 = 11 concern 3.

Since the formation of reduction trees is a common technique and will be
used several times in this text, we shall describe these stages of the so-called
reduction process in detail. In order to make the discussion simpler, let us
assume that there are no individual or function constants.

All the free variables which occur in any sequent which has been obtained
at or before stage % are said to be "‘available at stage &”. In case there is none,
pick any free variable and say that it is available.
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0) £ = 0. Let /] — /1 be any topmost sequent of the tree which has been
defined by stage & — 1. Let —A,,. ..,
outermost logical symbol is —, and to which no reduction has been applied
in previous stages. Then write down

—A4, be all the formulas in /7 whose

H"’A,A],...,An

abovell —~A. Wesaythata—:left reductionhasbeenappliedto—4,,...,—4,.
1) 2 =1 Let m4,,..., A, be all the formulas in /1 whose outermost
logical symbol is = and to which no reduction has been applied so far. Then
write down
Ay AL A

above I —/A. We say that a — :right reduction has been applied to
—-4,,...,14,.

2) k = 2. Let A1 A By,..., 4, » B, be all the formulas in IT whose outer-
most logical symbol is A and to which no reduction has been applied yet. Then
write down

Ay, By, A3, Bo,..., A, B, I - A

above IT — A. We say that an A : left reduction has been applied to
A] A B],. ey, An A Bn

3Nk =3.Let A, A By, Ay A By,..., A, A B, be all the formulas in /A whose
outermost logical symbol is A and to which no reduction has been applied yet.
Then write down all sequents of the form

—-A4,Cy...,Cy

where C, is either 4; or B;, above I — /. Take all possible combinations of
such: so there are 2" such sequents above I1 — /1. We say that an A : right
reduction has been applied to 4, A By,..., 4, A B,.
4) k = 4. v : left reduction. This is defined in a manner symmetric to 3).
5) & = 5. v : right reduction. This is defined in a manner symmetric to 2).
6) R =6. Let A;2B,,..., A,D B, be all the formulas in /] whose outer-
most logical symbol is D and to which no reduction has been applied yet.
Then write down the following sequents above IT — A:

BI,B2,. . .,B",H —"A
and
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-4 A4, for 1 <1< n

We say that an 2 : left reduction has been applied to 4,2 B;,..., 4,2 B,.

TVk =17 Let A;2B,,..., 4,2 B, be all the formulas in /4 whose outer-
most logical symbol is 2 and to which no reduction has been applied yet.
Then write down .

Al,Az,...,An,H ‘_’A, Bl,Bz,-..,B"
above [T — /. We say that an D : right reduction has been applied to
A{DB,,..., 4,2 B,.

8) k =8. Let Vx; A1(xy),. .., Vx, A,(x,) be all the formulas in I/ whose
outermost logical symbol is V. Let a, be the first variable available at this
stage which has not been used for a reduction of Vx; A(x) for 1 <{i << n.
Then write down

Ai(ay),. .., Aplan), 1T - A

above IT — /A. We say that a V : left reduction has been applied to
Vxy Ay(x),. .., V%, Ap(x,)-

9) £ =0. Let Vx; 4,(%7),. .., Vx, 4,(x,,) be all the formulas in /1 whose
outermost logical symbol is ¥ and to which no reduction has been applied
so far. Let a4, . . ., a, be the first n free variables (in the list of variables) which
are not available at this stage. Then write down

Il - A, Ay(aq),. .., A,(a,)

above IT - A. We say that a V:right reduction has been applied to
Vay A(%1),- - -, V2, An(x,). Notice that ay,...,a, are new available free
variables.

10) 2 = 10. 3 : left reduction. This is defined in a manner symmetric to 9).

11) £ = 11. 3 : right reduction. This is defined in a manner symmetric to 8).

12) If IT and A have any formula in common, write nothing above IT — A
(so this remains a topmost sequent). If IT and A have no formula in common,
write the same sequent I/ — A again above it.

So the collection of those sequents which are obtained by the above reduc-
tion process, together with the partial order obtained by this process, is the
reduction tree (for S). It is denoted by T(S). We will construct “‘reduction
trees’ like this again.
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Now a (finite or infinite) sequence Sy, Sy, So,... of sequents in 7'(S) is
called a branch if (i} S = S; (i1} S,,, stands immediately above S;; (3) if the
sequence is finite, say Sy,..., S,, then S, has the form I7 — A, where [T and
A have a formula in common.

Now, given a sequent S, let T be the reduction tree T(S). If each branch
of T ends with a sequent whose antecedent and succedent contain a formula
in common, then it is a routine task to write a proof without a cut ending with
S by suitably modifying 7. Otherwise there is an infinite branch. Consider
such a branch, consisting of sequents S = Sy, S1,..., S, ..« .

Let S; be I'; —A,. Let U I' be the set of all formulas occurring in I'; for
some 4, and let U A be the set of all formulas occurring in A4; for some j.
We shall define an interpretation in which every formula in U I holds and
no formula in U A holds. Thus S does not hold in it.

First notice that from the way the branch was chosen, U 7rand U 4 have
no atomic formula in common. Let D be the set of all the free variables. We
consider the interpretation I = ((D, ¢), ¢¢), where ¢ and ¢, are defined as
follows: ¢y(a) = a for all free variables a, ¢y(x) is defined arbitrarily for all
bound variables x. For an n-ary predicate constant R, ¢R is any subset of
Drsuch that:if R{a,,. . .,a,,)eU]’, then (ay,. .., a,)e¢R,andif R(ay,...,a,) €
U A, then (ay,. .., a,) ¢ ¢R.

We claim that this interpretation J has the required property: it satisfies
every formula in U I, but no formula in U A. We prove this by induction on
the number of logical symbols in the formula 4. We consider here only the
case where A4 is of the form Vx F(x} and assume the induction hypothesis:

Subcase 1. 4 is in U I'. Let ¢ be the least number such that 4 is in 7.
Then A4 is in I'; for all j > <. It is sufficient to show that all substitution
instances A4 (a), for a € D, are satisfied by 3, i.e., all these substitution instances
are in U I'. But this is evident from the way we construct the tree.

Subcase 2. 4 is in U 4. Consider the step at which A was used to define
an upper sequent from I'; — A, (or I'; - A2}, 4, A%). It looks like this:

Iy —’A«}H’ F(a), A?—u.
Fi —’Azl, A, A21

Then by the induction hypothesis, F(a) is not satisfied by J, so 4 is not
satisfied by 3 either. This completes the proof.

ProBLEM 8.4 (Scott). (1) Consider a language, denoted by L(R,,..., Ry),
which contains only finitely many predicate constants Ry,..., R, and no
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individual or function constants. If 7 < {1,..., &}, we define an I-formula
tobea formula containing only predicates withindicesin /. Let F < P({1,...,k})
(the power set of {1,..., %}) and F £ 6. An F-formula is defined to be a
propositional combination of I-formulas for / in F, viz. a formula consisting
of I-formulas, for various I's in F, joined together by v and A. If U =
(A, Ry,..., R,) is a structure for our language and I = {i},.. ., 1,,}, let %; be
the structure obtained from % by restricting % to the predicates with indices
inl:thus¥;is(4,R,,..., R, ) Ifand Baretwostructuresof L(Ry,. .., Ry),
they are said to be F-isomorphic if %; and B, are isomorphic for each 7 in F.
Prove the following interpolation theorem concerning F-isomorphic models:
Let J be a theory (axiom system} in L{R;,..., R;) and 4 and B two
sentences in L(R,. .., R;). Suppose that whenever % and B are F-isomorphic
models of 7 and U satisfies 4 then B satisfies B. Then there is an F-sentence
C such that , A — C and 9, C — B are provable in LK. [Hint (Africk’s
method): We first introduce a new predicate constant S; for each R; in the
language. Each S; has the same number of arguments as R;. If 4 is an
expression in the language L(Ry,..., R,), then A* denotes the expression
obtained from A4 by replacing all occurrences of R; by S;foreachi = 1,..., &.]
{2) Corresponding to each I in F we adjoin to the language function
constants f, and g,. f; will represent an isomorphism between %; and 8B; when
9 and B are F-isomorphic, and g, will represent the mapping inverse to f;.
(3) Consider the language L' = L(Ry,..., R, Sy,..., S, frogr: 1€ F), in
which the notion of “F-isomorphism between two structures’ can be syntact-
ically expressed. Let =y be such a sentence.
(4) With the notion of F-isomorphism formulated syntactically, the problem
now boils down to proving the following lemma.

LemMA 8.5. Let @, W, be finite (possibly empty) sequences of formulas in
L(Ry,..., Ry, f1, gr: I € F) such that no function constant contains a bound
variable.

Let®@,' WP, be finite (possibly empty) sequences of formulasinl(Sy, . . ., Se fr.81:
I € F) such that no function constant contains a bound variable.

Let Dy be a finite (possibly empty) sequence of subformulas of formulas in
~ . Suppose @1, @, @5 — W, W, is provable. Then there exists an F-formula
2 in the language L(R,,..., R, [;, g2 1€F) and an F-formula X* in the
language L(Sy,. .., Sy, f1, g1 I € F) such that @, — W, X and X%, @) — P
are provable, and furiher:

1) No function constant of X or Z* contains a bound variable.
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2} Every free variable of X or X% must occur among the free variables of
@, DS, W, and W, .

3) X* may be obtained from X by replacing each predicate constant R; by
S,, and each tevm t by t¥; where either (a) t* is [(4), or (b) ¢ is g,(t*); and Jurther-
more if (a) holds, we requive that t* be an argument of a predicale S, such that
ke I, and if (b) holds, we require that t be an argument of a predicate Ry, such
that ke l.

Proor. The proof is by mathematical induction on the number of inferences
in a cut-free proof of the given sequent. In most cases, the construction of X
is routine; for D :left and those inierences which introduce quantifiers, we
need the following result:

SUBLEMMA 8.6. Let X and X[ be T-formulas such that ©, —Wq, X, and
ZE DS WS are (LK-) provable and having properties 1) and 3) of Lewmma
8.5. Suppose that the only term containing the free variable a which occurs in
Dy, @), Wy or W is a itself. Then there exist F-jormulas X and X* such that
O, W, X and X* OF — WS are provable, and with properties 1) and 3) of
Lemma 8.5, and such that a does not occur in either X ov X%, and all free variables
of X and Z* are contained in Xy and X\

Such a X (resp. £*) can be constructed from X (resp. 27°) by reducing the
number of occurrences of a step by step. This can be done by noting the
following facts.

(i) We may assume that if a term # (¢*) occurs in Xy (X)) in the context of
(b) ((a)) in part 3) of Lemma 8.5 and contains a, then ¢ (#*) is not of the form

gl &) (Fa(g:(8)))-

(i) 2 can be expressed in the form A7, Vj_,

A

formula. For a fixed 7, a term with an occurrence of 4, which is not contained

i, where 4;; Is an I -
in some other term, occurs in 4,; either in the context of (a) for all 7 or in the
context of (b) for all 7. Similarly with #*,

(1ii) Take a term ¢ which contains a and is not contained in some other
term, and is the most complicated such term. If ¢ occurs in 4,;, say 4:(f),
then we can replace 4,; in 2} by Vx 4,;(x). Likewise, we can change X,* in
this way. :

Continue this process until there is no further occurrence of a.

With the help of Sublemma 8.6, the problem of excessive free variables in
constructing an interpolant from the induction hypothesis (in the cases of
D, ¥ and 3) is easily solved.
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ProsrLEM 8.7 (Feferman). Let J be a non-empty set. Each element of [ is
called a sort. A many-sorted language for the set of sorts J, say L(J), consists
of the following.

1) Individual constants: &g, ky,..., &;,..., where to each k&, is assigned one
sort.

2) Predicate constants: Ry, Ry,..., R;,..., where to each R, is assigned
a number # (= 0) (the number of arguments) and sorts fy,...,7,. We say
that (#; 74,- - ., 7a) 18 assigned to R,.

3) Function constants: /o, f1,..., s ..., where to each /; is assigned a
number # (> 1) (the number of arguments) and sorts j,...,7,, 7. We say
that (#;74,.. ., I, 7) 13 assigned to f,.

4) TFree variables of sort § for each in J: a), al,..., al,... .

5) Bound variables of sort § for each j in J: x{) x{ . x{ o

6) Logical symbols: =, A, v, D, ¥, 3.
Terms of sort § for each 7 are defined as follows. Individual constants and
free variables of sort j are terms of sort j; if f is a function constant with

(1;71,...,7n, ) assigned to it and ¢,...,¢, are terms of sort 7y,..., 7,
respectively, then f{#,,.. ., t,) is a term of sort j.

If R is a predicate constant with (#; j,...,j,) assigned to it and #y,..., ¢,
are terms of sort 7,,...,7, respectively, then R(¢;,...,¢,) is an atomic

formula. If F(af) is a formula and x7 does not occur in F(a’), then Vx7 F(x)
and 3x/ F(x/) are formulas; the other steps in building formulas of L(J) are
as usual, The sequents of L(J) are defined as usual.

The rules of inference are those of LK, except that in the rules for V and 3,
terms and free variables must be replaced by bound variables of the same sort.

Prove the following:

(1) The cut-elimination theorem holds for the system just defined.

Next, define Sort, Ex, Un, Fr, Cn and Pr as follows. Sort(4) is the set of
7 in J such that a symbol of sort § occurs in 4; Ex(4) and Un(4) are the
sets of sorts of bound variables which occur in some essentially existential,
respectively universal quantifier in A. (An occurrence of 3, say #, is said to
be essentially existential or universal according to the following definition.
Count the number of =1 and D in 4 such that # is either in the scope of —, or
in the left scope of 3. If this number is even, then # is essentially existential
in A, while if it is odd then # is essentially universal. Likewise, we define,
dually, an occurrence of V to be essentially existential or universal.) Fr(4) is
the set of free variables in 4; Cn(4) is the set of individual constants in 4;
Pr(4) is the set of predicate constants in 4.
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(2) Suppose A4 2 B is provable in the above system and at least one of
Sort(4) n Ex(B) and Sort(B) N Un(4) is not empty. Then there is a formula
C such that ¢(C) € o{4) N o(B), where ¢ stands for I'r, Cn, Pr or Sort, and
such that Un(C) € Un(4) and Ex(C) € Ex(B). [Hint: Re-state the above
theorem for sequents and apply (1), viz. the cut-elimination theorem.]

ProBrLEM 8.8 (Feferman: an extension of a theorem of Los and Tarski). We
can define a structure for a many-sorted language (cf. Problem 8.7) as follows.
Let L(/) be a many-sorted language. A structure for L(]) is a pair (D, ¢},
where D is a set of non-empty sets {D,; 7€ J} and ¢ is a map from the con-
stants of L(J) into appropriate objects. We call D, the domain of the structure
of sort 1. We leave the listing of the conditions on ¢ to the reader; we only
have to keep in mind that an individual constant of sort j is a member of
D; Let & =(D,d) and 4" = (D', ¢') be two structures for L(J). Let
Jo € J. We say that .#" is an extension, of M and write 4 < ; 4" if

(i) foreachjin J, D, < D]

(i1) for every jin Jo, D; = D,
(iif) for each individual constant &, ¢’k = $&,
{iv) for each predicate constant R with (n;7,,..., j,) assigned to it,

R = RN (D; x...xX D),

(v) for each function constant f with (n;7,,...,7,,7) assigned to it and
{di,...,d)eD; x...x D;,

(@Hdp- o0 dn) = (/)ldr,- - ., da).

A formula is said to be existential; if Un(d) C J,.

Suppose given J, € J and a formula of L{]), say 4, whose free variables
are (only) by,..., b, of sorts 7,. .., 7, respectively. Show that the following
two statements are equivalent.

(1} For arbitrary structures .# and .#’, where .4 <, .#’, and arbitrary
maps ¢, and ¢, from variables into the domains (of the correct sorts) of .#
and .4’ respectively which agree on by,..., b,, if (4, ¢y) satisfies A then
so does (', ¢q).

(2) There is a formula B which is existential ;| for which A = B is provable,
and Fr(B) € Fr(4). [Hint (Feferman): Assume (2). It can be easily shown,
by induction on the complexity of B, that (1) holds for B, from which follows
(1) for A. In order to prove the converse, proceed as follows.
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We assume (for simplicity) that the language has no individual and function
constants. The major task is to write down the conditions in (1} syntactically,
by considering an extended language in which we can express the relation of
extension, between two structures.

Let .4 and .#' be two structures of the form

M = <{I)J'}J'€J’ {Rz’}id)’ M= <{D;’};GJ" {Rt}LEI>

where J and ]’ are disjoint and in one-to-one correspondence. We denote
corresponding elements in J and J’ by j and §’, respectively. Let J* be JU J'.
(J*, 1, {k;Ysep) will determine a “type” of structures. Let L* be a corresponding
language. It contains the original language L as a sublanguage. For each
hound variable %, say the nth bound variable of sort §, let %’ be the #nth bound
variable of sort {*. If C is an L-formula, then C’ denotes the result of replacing
each bound variable # in C by #'; hence Fr(C) = Fr(C’). With this notation,
define Ext to be the set of sentences of the form Vu’ Ju (#' = u) for each sort
of variable  in J, and Va 3u’ (2 = #') for each sort of variable in J,. Then
Ext and Hul (u; =b)fori =1,..., nyleld A" — A. So there is a finite subset
Ext; of Ext and a cut-free proof of

(%) Exty, {Ju, (u; =)} _,, 4" —A.

i=1

Now apply the interpolation theorem (2) of Problem 8.7. An interpolant B
can be chosen so as to satisfy:
(i) Fr(B) = Fr(4) = {b;,..., b},
(il) Rel(B) € Rel(4),
(ili) every bound variable in B is of sort in L,
(iv) Un(B) € J,.
Hence B is an existential ;| formula of L. Since

Exty, {3u, (u; = b)}'_,, A" >B and B - A4

i=17

are provable, we obtain that 4 = B is provable ]

Let # = (D, $) and 4’ = (D', ¢,y be two structures for the same
language. .#’ is said to be an extension of .# if D < D', ok = d)ék for each
individual constant k, and ¢of is ¢,/ restricted to D for each function or
predicate constant j.

CoroLLARY 8.9 (Los-Tarski). The following are equivalent: let A be a formula
of an ordinary (i.e., single-sorted) language 1.
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(i) For any structure A (for 1) and extension A, and any assignments ¢, ¢’
from the domains of M, M, respectively, which agree on the free variables of
A, if (M, ) satisfies A, then so does (M7, ¢7).

(1) There exists an (essentially) existential formula B such that 4 = B Is
provable and the free variables of B ave among those of A.

Proor. FFrom the above problem, where [ is a single sort and [, is the empty
set.

ProBLEM 8.10. Let &7 be an axiom system in a language L, Vx 3y A(x, v) a
sentence of L provable from .7, and f a function symbol not in I.. Then any
L-formula which is provable from =/ U {Vx A(x, /(x))} 1s also provable from
&7 in L. (That is to say, the introduction of f in this wav does not essentially
extend the system.) [Hint (Maehara's method): This is a corollary of the

following lemma.]

LemMa 8.11. Let Vx Ay A(x, v) be a sentence of L, f a function symbol not in L,
and I' and O finite sequences of L-formulas. If Vx A(x, f(x)), I" - 6 is (LK-)
provable, then ¥x 3y A(x, v), I' — @ is provable in L.

Proor. Let P be a cut-free regular proof of Vx A (x, f(x)), I" — O. Let t;,.. ., ¢,
be all the terms in P (i.e. proper terms, not semi-terms) whose outermost
function symbol is f. These are arranged in an order such that ¢, is not a
subterm of ¢; for ¢ < j. Suppose ¢, is f(s;) for i = 1,..., n. P is transformed
in three steps.

Step (1): Let ay,...,a, be distinct free variables not occurring in P.
Transform P by replacing ¢, by a;, then £, by a,, and so on. The resulting
figure P’ has the same end-sequent as P, but is not, in general, a proof (as we
will see below) and must be further transformed.

Step (2): Since P is cut-free and / does not occur in I" or 6, it can be seen
that the only occurrences of f in P are in the context. Vx A(x, f(x)), and
further, all these Vx A (x, f(x)) occur in antecedents of sequents in P’, and the
corresponding occurrences of ¥x A(x, f(x)) in P are introduced (in P) only by
weakening : left or by some inferences of the form ’

Alsy, fs), 1 —~ A
Vx A(x, f(x)), [T - A

1

{for some of the 7, 1 <{ ¢ < n). Suppose the upper sequent of [ is transformed
into
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Als;, a;), [T — A

in P’. (So [ is not transformed by step (1) into a correct inference in P’.) Now
replace all occurrences of ¥x A(x, f(x)) in P’ by

Alsy, @), .., A(s,, ay)

(where s, is formed by replacing all ¢; in s; by a;). Then the lower sequent of
(the transform of) 7 can be derived from the upper sequent by several
weakenings.
The result (after applying some contractions etc.) is a figure P’" with end-
sequent
Alsy, ay), ..., Als,, a,), I’ —~ 6.

However it may still not be a proof, as we now show, and must be transformed
turther.
Step (3): Consider a 3 : left in P:

and suppose this is transformed in P”’ (by steps (1) and (2)) to

AV et
Y LB @), A -

Now it may happen that for some ¢, the eigenvariable b occurs in s, {and also
s;), and further, the formula A(s;, a;} occurs in A" or ¥'; so that the eigen-
variable condition is no longer satisfied in /'

So we transform all /" in P (arising from 3 : left inferences J in P) as
follows:

D oefe ¥BE -FBE) B4 ¥
' 3 B'(z) DB'(b), 3z B'(2), A ¥

and carry the extra formula 3z B’(z) 3 B’(b) down to the end-sequent.
For the same reason, for every V : right in P

A =¥, B()
A S W ¥z B(z)

we replace its transform in P
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, A > B(b)
A e 7y ()
by
o A =V B'(b)
— V2 B'(z), 3z =B (z)  —B(b), A >’
 3z-B'(z)2—B'(b), A =¥,V B'(3)

o left

(and carry the extra formula down to the end).
The result (after some obvious adjustments with structural inferences) is a
proof, without 3 :left or V¥ : right, whose end-sequent has the form

(S1) 32 B'(:)D B'(b),..., Als, a),.... T - 6.

Now apply 3 :left and V : left inferences in a suitable order (see below)
(and contractions, etc.) to derive

(So) Foo. ¥x 3y Alx, v), I’ - 6,

where F is the formula obtained from 3Ju (3z B’(z) D B'(#)) by universal
quantification over all its frez variables.
Finally, applying cuts with sequents — I, we obtain a proof, as desired, of

Vo Iy Alx, v), I — 6.

We must still check that it is indeed possible to find a suitable order for
applying the quantifier inferences in proceeding from (S;) to (S,) above, so
that they all satisfy the eigenvariable condition. To this end, we use the
following (temporary) notation. For terms s and ¢ and a formula B, s C¢
means that s is a (proper) subterm of ¢, s € ¢ means that s is a subterm of ¢
or ¢ itself, and s C B means that s is contained in B.

Now note that the following condition (C) is satisfied for any of the
auxiliary formulas B(d) of P with eigenvariable b, considered above, and
I <o me

(C) 1f b C ¢, then t; & B(b).

(For suppose & C¢; and also ¢;, which we write as f(s;(b)), occurs in B(b). Then
in the lower sequent of the inference J with auxiliary formula B(b), f would
occur in the principal formula 3z B(z) (or Vz B(z)) in the context of the semi-
term f(s,(2)}, and so, since P is cut-free, / would also occur (in a similar
context) in all sequents of P below this, and hence in " or 6.)
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Now let Jq,..., [n be all the 3:left and V : right inferences in P, with
eigenvariables by,.. ., b, and auxiliary formulas B,(b,),.. ., B,,(0,), respec-
tively. Consider the partial order on ay,..., a,, by,..., b, generated by the
relation <, which is defined by the following conditions:

(la} If ¢, C ¢, then a; < a;.

(1b) If b; C¢;, then a; < 0,

(2a) If ¢; C B,(b,), then b; < a;,.

(2b) If b, C B,(b;) (7 # 1), then b; < b,.

We will prove below that this does indeed generate a partial order, i.e., no
circularities are formed. Assume this for the moment. Then, starting with
sequent (Sy), we apply, in any <-increasing order, the quantifier inferences

Als), a),. ..
3 :left and V : left

Vx 3y A{x, v)

and
Az Bylz, a4 o by, ) D Byiby a0 by ),

3 : left and ¥ : left
Va...¥y... 3 (32 Bz, %,...,y,...)2B{u, x,...,v,...)),. ..

s0 as to obtain (S,). We can see that the eigenvariable condition is satisfied
throughout, from the way in which < was defined (and since a; C s, = ¢, Ct,,
b;Cs,= b, Ct; a,CB(b,) = t; CB,(b,), and b, C Bi(b,) = b; C B,(5,)).

Finally we must show that the relation < does generate a partial order.
This follows from the following two sublemmas.

SuBLEMMA 8.12 (in the notation of Lemma 8.11). (a) For any <-increasing
sequence b; < ... < by, J, lies above J; in P. (So ¢ # 1))

(b) For any <-increasing sequence a; < ... < a;, we have t; &€ t;. (So, in
particular, 1 # 7.)

Proor oF (a). The proof is by induction on the length of this sequence.

(i) If the length is 2, ie., b, < b;, this follows from the definition of <
{(part 2b) and the eigenvariable condition in P.

(i1} For the case b, < a;, < b;: we have t, C By(b;) (by 2a) and b,;Ct,
(by 1b). Hence b; C B,(b,). Also i # j, by condition (C). So again b, < b;
(by 2b) and J, is above J;.
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(1ii) For the case b; < a; < ... < a; < b; (with only a’s between b, and 4)):
notice that ¢; C ¢, (from la). The argument is now similar to that in (ii).

(iv) For the remaining case, b; < ... < b, < ... < b;, use the induction
hypothesis.

Proor oF (b). The proof is by induction on the length of this sequence.
(i) If the length is 2, i.e. a; < a;, this follows from the definition (part la).

(i1} For the case a; < b, < a;: we have b, C¢, and £; C Bi{by). So ¢, < ¢,
would imply ¢; C B,(b;), contradicting (C).

(iii) For the case a; < b, <...<b, < a; (with anything between &,
and b;) we have b, C ¢, ¢; C By(b,)) and ], is above J, (by Sublemma 8.12(a)).
So ¢, < t; would imply b, C B,{b;), contradicting the eigenvariable condition
in P.

For the remaining two cases:

(iv) a; < a;, <...<a,,

V) a; <...< a, <ajy,
use (la) and the induction hypothesis.

This completes the proof of the sublemmas, and hence of Lemma 8.11.

ProBLEM 8.13. Prove the following, sharpened version of the interpolation
theorem for LK (Maehara-Takeuti).

Let A4 and B be formulas with a predicate constant in common, let @ and b
be two finite sequences of free variables of the same length such that all the
variables in @ are distinct from one another (while some of the variables in b
may be the same), and let A(g) and B(?)) be the formulas obtained from
A and B by replacing each variable in a@ by the corresponding variable in b.
Suppose A(g) ] B(g) is LK-provable. Then there is a formula C such that
the individual constants, predicate constants and free variables of C (apart
from those in @) occur in both A and B and such that A(g) 5C (g) and
C D B are both provable. {Hint: State and prove the theorem for sequents.
The technique of the proof of Theorem 6.6 works.]

The following proposition is not strictly proof-theoretical in nature;
however, it is useful for the next topic (in the proof of Proposition 8.16). We
first give some definitions.

Let R be a set and suppose a set W, is assigned to every pe R. If Ry € R
and fe HWERIW?’ then f is called a parital function (over R) with domain
Dom{f) = R;. If Dom(f) = R, then / is called a fotal function (over R). 1f {



58 FIRST ORDER PREDICATE CALCULUS [cH. 1, §8

and g are partial functions and Dom(f) = Dy € Dom(g) and f(x) = g(x) for
every x € Dy, then we call g an extension of f and write f < gandf = g | D,.

ProposiTioN 8.14 (a generalized Konig’s lemma). Let R be any set. Suppose
a finite set W, is assigned to every p € R. Let P be a property of partial functions
f over R (defined as above) satisfying the following conditions:

1) P(f) holds if and only if there exists a finite subset N of R satisfying
P} N),

2) P(f) holds for every total function f.
Then there exists a finite subset Ny of R such that P(f) holds for every f with
Ny € Dom(f).

Note that R can have arbitrarily large cardinality. The case that R is the
set of natural numbers is the original Konig's lemma.

Proo¥. Let X = [ [,er, W, and give each W, the discrete topology, and X
the product topology. Since each W is compact, sois X (T'ychonoff’s theorem).
For each g such that Dom(g) is finite, let

N, = {f|fis total and g < J}.
Let
C = {N, | Dom(g) is finite, and P(g)}.

C is an open cover of X. Therefore C has a finite subcover, say

N,,...,.N

gyt /s

Let Ny =Dom(g;)U...UDom(g,). We will show that N satisfies the condi-
tion of the theorem. If Ny < Dom{g), then let g </, f total. Then P(f) and
feN, U...UN,. Say feN,. So g; </, P(g) and g; <g. Therefore
P(g). This completes the proof.

What happens if we wish to apply to LJ the technique which has been
used in proving completeness for LK ? This leads us naturally to the study
of Kripke models of LJ, relative to which one can prove the completeness
of LJ. In order to simplify the discussion, we assume again that our language
does not contain individual or function constants. Again, there should be
no essential difficulty in extending the argument to the case where individual
and function constants are included.
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For technical reasons, we will deal with a system which is an equivalent
modification of LJ. This system, invented by Maehara, will be called LJ’.
LY’ is defined by restricting LK (rather than LJ) as follows: The inferences
— : right, O : right and V : right are allowed only when the principal formulas
are the only formulas in the succedents of the lower sequents. (These are
called the “‘critical inferences’ of LJ’.) Thus, for instance, — : right will take
a form:

D, I —
I'--D’

As is obvious from the definition, the sequents of LJ’ are those of LK (so
the restriction on the seduents of LJ, that there can be at most one formula
in the succedent of a sequent, is lifted here). It should be noted that all the
other inferences are exactly those of LK. In particular, in v :right, the
inference

-4, 4

I >A AvB

is allowed even if 4 is not empty.

By interpreting a sequent of L', say I' - B,,...,B,,asl -B,v...vB,,
it is a routine matter to prove that LJ’ and LJ are equivalent. Also, the cut-
elimination theorem holds for LJ’. (Combine the proofs of cut-elimination for
LK and LJ.)

The question now arises: Given a sequent of LJ’, say I" — 4, is there a
cut-free proof of I" — A in LJ'?

Starting with a given I" — 4, we can carry out the reduction process which
was defined for the classical case (cf. Lemma 8.3), except that we omit the
stages 1) (—:right reduction), 7) (3:right reduction) and 9) (V:right
reduction); in other words, all the reductions are as for the classical case,
except those which concern the critical inferences of LJ’, which are simply
omitted. We return to consider this point later.

As an example of the case where the reduction process does not terminate,
consider a sequent of the form

Vx 3y A(x, y) —

where A is a predicate constant.
The tree obtained by the above reduction process is (again) called the
reduction tree for I' — 4.
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In preparation for Kripke's semantics for intuitionistic systems and the
completeness theorem for LJ, we will generalize the above reduction process
to the case where I" and/or A are infinite; i.e., we define reduction trees for
infinite sequents I' — 4.

DEeriNiTION 8.15. Let I" and A be well-ordered sequences of formulas, which
may be infinite. We say that I" — 4 is provable (cut-free provable) (in LJ’)
if there are finite subsequences of I" and 4, say I and 4, respectively, such
that I’ — A is provable (cut-free provable).

(It is clear that [" -» A is provable (in LJ’) if and only if it is provable
without cut, even when I' andfor 4 are infinite, by the cut-elimination
theorem of §5, adapted to LJ’.)

The reduction process which has just been described can be generalized
immediately to the case of infinite sequents. We shall only point out a few
modifications in the stages. Note: for the reduction process, we assume that
the language is augmented by uncountably many new free and bound
variables (in a well-ordered sequence).

8) k = 8. Let Vx; A1(xy),. .., Y%, Au(%,),- - - be all the formulas in JT whose
outermost logical symbol is V. Let ay,..., a5... be all the free variables
available at this stage. Then write down

Ay(@y),. .., Ay(ap),. .., Ay(ay),. .., Aolay),. ... T —A

above Il — A.

10) £ = 10. Let 3x; A,(xy),..., Ix, A (%,),... be all the formulas in I7
whose outermost logical symbol is 3. Introduce new free variables
by, ba,. .., by,. ... Then write down

Aq(by),. .., Aglby),. ... 1T - A
above Il — A.

ProrosiTioN 8.16. (a) If a sequent I" — A is provable (in LY'), then every
sequent of the reduction tree for I' — A is provable.

(b) If a sequent I' — A is unprovable, then there is a branch (in the tree for
I' — A) in which every sequent is unprovable.

ProOF. (a) is obvious. In order to prove (b), we shall first prove the
following: LetI] -+~ A be asequentin the treeandletil, - 1,,A=1,2,...,a,...
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be all its upper sequents, given by a reduction. If each is provable, then
IT — A is provable. In other words, if for each 4, A = 1,2,...,«,..., there
are finite subsets of I7, and A, say [T, and A respectively, such that II; — A,
is provable, then there are finite subsets of /] and /1, say /1" and A’ respectively,
such that II' — A’ is provable. We shall only deal with a few cases.

1) A 3 : left reduction has been applied to /I — A. Then its upper sequent
is of the form

Ai(by),. .., Aby),. ., 1T — A4,

where x, A,(x,) 1s in I1 for each «, and &4,.. ., b,,... are newly introduced
free variables. By the hypothesis, there are finitesubsetsof 41(8,), . . ., A4(b), - - -
(say By(c1),. . ., Bulcy)), of I (say II'), and of A (say A’), such that

Byey),- - ., Balen), 1T — A’

is provable. By repeated 3 : left and some weak inferences, we obtain/l —1’,
which is a subsequent of /I — /. Notice that since By(cy),. . ., Bu(c,), [’ = A’
is provable (with a finite proof), we may regard cy,. . ., ¢, as free variables of
our original language.
2) An A : right reduction has been applied to [T — /. Then its upper sequents
are of the form
H—-A,C...,Cqf. ..,

where A; A By,..., Ay A B,,... are all the formulas of A whose outermost
logical symbol is A and each C, is A, or B,. We shall distinguish these cases
by denoting C, by Cy, if C, is 4, and by C, , if C, is B,. Then the upper
sequents are the sequents

II —*A, Cil,ll' .« ey Cia,av c ey

where ¢, = 0 or 1, for all possible combinations of values of 4;,...,%,,... .
Let f denote any sequence (7y,..., %, ...). By assumption, there is a finite
subsequent of each sequent, say II’ — A/, C,..., Cl, which is provable,
where C},..., C} is a finite subset of C; 1,..., C; - -+ -

In order now to exploit the generalized Konig’s lemma ({Proposition 8.14),
we let R be a set with the order type of the sequence Cy, Cq,..., Cy,. ..
(sayR = {1,2,...,«,...}). Define W, = 2 (= {0, 1}). For any subset R; & R
and any /€ | [wer, Wa We say that a finite sequence of formulas

(Cf(ozl).all vy Cf(a"),a")
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{(with ay,. .., x, € R;) is selected for f if there are finite subsets of /I and 4,
say IT" and A’, respectively, such that

’ ’
I —-2Aa, Cf(ao,au- s Cf(a”).a”

is provable. From the observation above, there is such a selected subset for
any total function f. Now, for any R; © R and any f € | [acr, We, We define

P(f) <4 Ik Aoy. . . Joy (g, - - -, & are in the domain of f and
(Craprayr -+ -+ Criap),ap) 15 selected), where % ranges
over the natural numbers.

Then conditions 1 and 2 in the hypothesis of the generalized K6nig’s lemma
are satisfied; hence by this lemma, there exists a finite subset of R, say
No = {y1,..., v}, such that if Dom(f) contains Ny, then P(f) holds.

Let

F = {f [Dom(f) = No} = [Ty,

F is a finite set and, for every f in F, P(f) holds, i.e., there is a subset of
Yire o Vi SAY ay,. .., &, such that (Cpqyyan- - Crap.ay) 15 selected for f;
i.e., there exist finite subsets of /T and A, say IT’ and A’ respectively, such
that

L4 ’
r -4 ’ Cf(al),uu' c Cf(ozk).a;.

is provable, Therefore, for every possible combination of values of {7y,. . ., )
(= 1), there are finite subsets of IT and A, say II* and A¢ respectively, such
that

Il > A4, Cy s+ Cigog

is provable. Hence by weakenings and repeated A : right, we obtain

~

II'" > A", Ay A By, .., Ay A By,

where IT’ consists of all the IT"”s for fin F, and likewise with A’.
Now, from the argument just completed, if the given sequent I' — 4 is
not provable, then there is one branch in which every sequent is unprovable.
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Having finished these preparations, we now define Kripke (intuitionistic)
structures (for a language L).

DerFINITION 8.17. (1) A partially ordered structure P = {0, <) consists of a
set O together with a binary relation < satisfying the following:

a) p < p,

b) p<gandg < pimply p =g,

¢} p<gand g <rimply p <,
where p, g and 7 range over elements of O.

(2) A Kripke structure for a language L is an ordered triple (P U, ¢)
such that

1) P = (0, <) is a partially ordered structure.

2) U is a map which assigns to every member of O, say p, a non-empty set,
say U, such that, if p < g, then U, € U, (where < means set inclusion).

3) ¢ is a binary function ¢(R, p), where R ranges over predicate constants
in the language L and p ranges over members of O. Further:

3.1) Suppose the number of argument places of R is 0. Then ¢(R, p) = T
or F,and if (R, p) = Tand p < g, then ¢(R, q) = T.

3.2) Suppose R is an n-ary predicate (n > 1). Then ¢(R, p) is a subset of

n times

Up=U,x...x U,
e

and p < ¢ implies ¢(R, p) < $(R, g).

We define U = U,, U,. Then U can be thought of as the universe of the
model or structure, and the elements of O as stages (see below).

Suppose that there is an assignment of objects of U to all the free variables;
i.e., to each free variable a; an object of U, say ¢, is assigned. Let F(a,...,a,)
be a formula with free variables a,,..., a, (at most). The interpretation of
F(a,,..., a,) at (the stage) p (under this assignment) is defined as follows by
induction on the number of logical symbols in F(ay,. .., a,), and this inter-
pretation is expressed as ¢(F(cy,. . ., ¢,), p). The value of such an interpreta-
tionis T or F.

a) G(Rlcy,. .., c,), p} = T if and only if {¢cy,..., ¢,y € (R, p) (for n > 0).

b) (4 A B,p) = Tif and only if (4, p) = Tand ¢(B,p) = T.

c)pAv B, p)=Tifandonlyif $(4,p) = Tor ¢(B,p) =T.

d) (4 D B, p) = Tif and only if for all g such that p < ¢, either (4, ¢) = F
ord(B,q) =T.

e) ¢(—A4, p) = T if and only if for all g such that p < g, ¢(4,¢9) = F.
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f) ¢(Ix A(cq,.. ., cn %), p) = T if and only if there is a ¢ in U, such that
Bdley e 0)p) = T

g) ¢(Vx F(cq,. .., ¢n, x), p) = T if and only if for all ¢ such that p < ¢, and

forall ¢in U,, q‘> (C1,eeerCm), ) =T.

We can generalize the definition of interpretation which has just been
given to the case of sequents (finite or infinite). Let I" — 4 be a sequent.
Then ¢(L" — A, p) is defined to be T if and only if, for all ¢ such that p < g,
either ¢(4, g) = F for some 4 in I"or ¢(B, ¢q) = T for some B in 4.

A sequent I — A is said to be valid in a Kripke structure (P, U, ¢} (with
P=(0,))if ¢(I" = A, p) = Ttorall p in O.

ProposiTiON 8.18. Suppose I' — A is provable in LI, and (P, U, ¢} is a
Kripke structure. Then I' — A is valid in (P, U, ¢).

Proor. This is only a routine matter: by mathematical induction on the
number of inferences in a proof of I" — A (or a subsequent of it).

Now, in order to finish the completeness proof for LJ’, we shall start with
an unprovable sequent I' — A and construct a counter-model in the sense
of Kripke. This will be constructed from the reduction tree for I’ — 4. Let
us call this tree 7. (Remember, in the construction of T, the — : right, D : right
and V : right reductions were omitted.) This situation, i.e., with just this tree
present, is called stage 0. By Proposition 8.16, there is a branch of 7, say
By, containing (only) unprovable sequents. If By is finite, let I’y — 4, be
its uppermost sequent. If B, is infinite, let I'y and Ay be the union of all
formulas in the antecedents and succedents respectively of the sequents in
By (each arranged in a well-ordered sequence), and consider the (possibly
infinite) sequent Iy — 4,. Single out all the formulas in 4, whose outermost
symbols are =1, 3 or V. (If there is no such formula, then stop.) Let the
symbol p range over all such formulas. We call each such p an immediate
successor of 0 (and 0 an immediate predecessor of $.)

Case 1. p is a formula of the form —4. Then consider the sequent A, I'y —

Case 2. p is B D C. Then consider the sequent B, I, — C.

Case 3. p 1s Vx F(x). Let a be a free variable which does not belong to U,.
(This can always be done by introducing a new symbol if necessary.) Then
consider the sequent I'y — F(a).

It is easily shown that (in each case) this new sequent is not provable, since
otherwise Iy — Aq would be provable. Let us call this new sequent I, —»Zl,,,
and let T, be the reduction tree for I", —»2!,,.
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As before, let B, be a branch of T, containing unprovable sequents, and
let I, — A, be either the topmost sequent of B, or (if B, is infinite) the
“union” of all sequents in B, as before. Then follow exactly the same process
as the preceding paragraph. Namely, let g range over all formulas in A4, whose
outermost logical symbol is —, 2 or V. (If there is no such formula, then
stop.) Again, for all such g and p (with gin A, as above), we call g an immediate
successor of p and p an immediate predecessor of ¢g. Then define as before
the tree 7', and branch B,

Continue this procedure o times. Let O be the set of all these $’s, and let
< be the transitive reflexive relation on O generated by the immediate
predecessor relation defined above. O is partially ordered by <{. Now define
U, to be the set of all free variables occurring in B, for all p € O, and define
U = U,,, U,. Notice the following.

NIfp<<Lg thenU, < U,

2) If ¢ is an immediate successor of p, then all formulas in I", occur in the
antecedents of all sequents in T, (and hence in B,).

We now define the function ¢ as follows. For any #n-ary predicate symbol
R (n > 0), and any p €0,

SR, p) = {Kay,...,a,) | ay,...,a,€ U, and R(a,,.. ., a,) occurs in I'}}

(and for » = 0, (R, p) = T if and only if R occurs in I')).

So we have defined a Kripke structure (P, U, ¢). We shall consider the
interpretation of formulas in this structure relative to the (natural) assignment
of each free variable to itself.

ProrositioN 8.19 (with the above notation). Let A be a formula in B,
If A occurs in the antecedent of a sequent in B, then (A, p) = T; if it occurs
i the succedent, then (A, p) = F.

Proor. By induction on the number of logical symbols in 4. First it should
be noticed that if a formula occurs in the antecedent of a sequent in B,
then it does not occur in the succedent of any sequent in B,. The same holds
with “‘antecedent” and ‘‘succedent” interchanged. Also, once a formula
appears on one side of a sequent, it will appear on the same side of all higher
sequents of B, and hence of the sequent I') — 4.

1) A is an atomic formula R(a,,..., a,). If A occurs in an antecedent,
hence in I',, then by definition {ay,..., a,) € (R, p), which implies, again
by definition, that ¢(4, p) = T. If 4 occurs in a succedent, then (ay,...,a,)
¢ $(R, p), s0 (4, p) = F.
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2) A is —B. Suppose 4 occurs in the antecedent. Then A occurs in I7,.
This implies that, given any ¢ such that p <{ ¢, A4 occurs in the antecedent
of all the sequents in B,; hence B occurs in the succedent of a sequent in B,;
therefore, by the induction hypothesis, ¢(5B, g) = F. So $(B, g9) = F for any
g such that p < ¢. This means that ¢(B, p) = T.

Suppose next that .4 occurs in the succedent of a sequent in B,. Then there
exists a next stage, say q. It starts with B, I, —. By the induction hypothesis,
¢(B, ¢q) = T. That is to say, there is a ¢ such that p g and ¢(B,q) = T.
Therefore by definition ¢(A4, p) = F.

3} Ais B a Cor B v C. Those cases are easy; so they are left to the reader.

4) A is Vx F(x). Suppose A4 occurs in the antecedent of a sequent in B, and
suppose p <L ¢. Then 4 occurs in the antecedent of a sequent in B,. Let a
be an element of U,. Then I(a) occurs in the antecedent of a sequent in B,.
Hence, by the induction hypothesis, ¢(F(a), ¢} = T. So for any ¢ such that
p < gandanyain U, ¢(F(a), q) = T, which means that ¢(4, p) = T.

Suppose next that 4 occurs in the succedent of a sequent in B,. So the next
stage, say ¢, starts with ", — F(a), where a is a (new) variable in U,. By the
induction hypothesis, ¢(F(a), q) = T. So there exists a ¢ such that p g,
and a member a of U,, such that ¢(F{a), ¢) = F. This means that

$(Vx F(x), p) = F.

5) A is of the form Jx F(x). This case is left as an exercise.

6) A is of the form B D C. Suppose that 4 occurs in the antecedent of a
sequent in B,. Then either C occurs in [, or B occurs in A,. Let p <g.
Then either C occurs in the antecedent or B occurs in the succedent of a
sequent in B, So for any g, with p <{ ¢, either ¢(C,q) =T or ¢(B,q) = F.
Sod(BDC,p) =T.

Suppose next that 4 occurs in the succedent of a sequent in B,. Then the
next stage, say g, starts with B, I, — C. Hence there is a ¢ such that p < g,
B, g) =Tand $(C,q9) =F;s0d(BDC,p) =F.

So now we can conclude that if 7 — A is unprovable, then we can construct
a Kripke structure (P, U, ¢) such that (under a suitable assignment to free
variables) every formula in [ assumes the value T and every formula in A
assumes the value F; in other words, there is a Kripke counter-model for
I' — A, This ends the completeness proof. Thus we have obtained:

THEOREM 8.20 (completeness of the intuitionistic predicate calculus: a
generalized version; cf. Theorem 8.2). Let I — A be a sequent (finite or infinite).
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If I' — Ais valid in all Kvipke structures, then I' — A is provable. In particular,
LJ is complete.

(Recall that the soundness of LJ was established by Proposition 8.18).
Notice that the method which has been prescribed here for completeness of
LJ works even when the language is not countable, while the method for LK
works only for a countable language. Although we could in fact use a method
for LK similar to this one for LJ’, we do not attempt to do so, since Henkin’s
simple method is sufficient for that purpose.

Exercise 8.21. Construct a Kripke counter-model for each of the following
sequents.

1) - P v =P, where P is a predicate symbol.

2) Vx (P(x) v @) - Vx P(x) v Q, where P and Q are predicate symbols of
the indicated numbers of argument.

3) — 3x (dy P(y) 2 P(x)), where P is a unary predicate.

(Hint for 1): At stage 0.

—Pv =P, P,—~P

— P v =P

Let » be =P. Then at stage p:
P

——

Sodefine O = {0,},0<{p, Uy = U, = {a},$(P,0) = F. Thenp(Pv —P,0) =F
can be easily proved.]



CHAPTER 2

PEANO ARITHMETIC

In this chapter we shall formulate first-order Peano arithmetic, prove
Godel’s incompleteness theorem, develop a constructive theory of ordinals
up to the first e&-number ¢y, and then present a consistency proof of the
system, due to Gentzen.

§9. A formulation of Peano arithmetie

DerFiniTION 9.1. The language of the system, which will be called Ln, contains
finitely many constants, as follows. (See also Definition 1.1.)

Individual constant: 0;

Function constants: ', 4, ;

Predicate constant: =
where ' is unary while the other constants are binary.

The intended interpretation of the above constants should be obvious. We
shall use expressionslike s = ¢, s + £, s - £and s’ rather than formal expressions
like s, ).

A numeral is an expression of the form 0'--/, i.e., zero followed by # primes
for some %, which is used as a formal expression for the natural number #,
and is denoted by 7. Further, if s is a closed term of Ln denoting a number
m (in the intended interpretation), then § denotes the numeral 4 (e.g., if s is
2 + 3, then § denotes 5).

DEerinNtTION 9.2, The first axiom system of Peano arithmetic which we
consider, CA, consists of the following sentences.

Al VxVy (x' = y'2x = y);
A2 Vx (—x' = 0);
A3 VxVyVz(x = yD(x = 2Dy = z));
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A4 VxVy (x = yD ' =1');
A5 Yx (x + 0 = x);

A6 VxVy (x + ¥ = (x + ¥));
AT V¥x (-0 = 0);

A8 VxVy (x v =x-y + x).

The second axiom system of Peano arithmetic which we consider, V],
consists of all sentences of the form

Vzp ... Vz, Vx (F(0, 2) A Vy (F(y, 2) D F(v', 3)) D F(x, %)),

where z is an abbreviation for the sequence of variables z,. .., z,; and all
the free variables of F(x, z) are among %, 2.

The basic logical system of Peano arithmetic is LK. Then CAU V] is an
axiom system with equality, regarding = as the distinguished predicate
constant in §7. Furthermore, Vx Vy (x = v D (F(x) = F(y))) is provable for

every formula of Ln (cf. Proposition 7.2).

As an example of the strength of CAU V], we mention that the theory
of primitive recursive functions can be developed in this system. Although
this point will not be discussed further here, such knowledge is assumed.

DermviTiON 9.3. The system PA (Peano arithmetic) is obtained from LK
(in the language Ln) by adding extra initial sequents (called the mathematical
tnitial sequents) and a new rule of inference called “ind"”’, stated below.

1) Mathematical initial sequents:

s=¢ts=v >t =7,
s=t-—->s =1;
-5+ 0 =s;
s+t =(s+1;
—-s:0=0;

st =s-t+s,

where s, ¢, ¥ are arbitrary terms of Ln.
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2) Ind:
Fa), ' - A, Fa")
F(0), I" = A4, F(s)

where a is not in F(0), I"or 4; s is an arbitrary term (which may contain a);
and F(a) is an arbitrary formula of Ln.

F(a) is called the induction formula, and a is called the eigenvariable of this
inference. Further, we call F(a) and F(a') the left and right auxiliary formula,
respectively, and F(0) and F(s) the left and right principal formula, respec-
tively, of this inference.

The initial sequents of the form D — D are called logical initial sequents
(in contrast to the mathematical initial sequents defined above).

To summarize, then: there are two kinds of initial sequents of PA: logical
and mathematical; and three kinds of inference rules: structural, logical
and ind (cf. Definition 2.1).

Finally, a weak inference is a structural inference other than cut.

We shall adapt the concepts concerning proofs which were defined in
Chapter I with some modifications; the new inference “‘ind”’ must be taken
into account in every definition. In particular, the successor of F(a) (respec-
tively, F(a’)) in ind is F(0) (respectively, F(s)). Otherwise all definitions in
Chapter 1 are relevant here.

As an easy corollary of the definitions we have

ProrosiTiON 9.4. A sequent is provable from CAU V] (in LK) tf and only if
1t is provable in PA. Hence the axiom system CA U V] is consistent if and only
1f — 1s not provable in PA.

Thus we can restrict our attention to the system PA. In the rest of this
chapter, “provability” means provability in PA. It was Gentzen's great
development to formulate first-order arithmetic in the form of PA.

Similarly to Lemma 2.11, we can prove the following proposition, which
we shall use without mention.

ProposiTioN 9.5. Let P be a proof in PA of a sequent S(a), where all the
occurrences of a in S(a) are indicated. Let s be an arbitrary term. Then we may
construct a PA-proof P of S(s) such that P’ is regular (cf. Lemma 2.9, part (2))
and P’ differs from P only in that some free variables are replaced by some other
free variables and some occurvences of a are replaced by s.
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The following lemma will be used later.

LeMMA 9.6. (1) For an arbitrary closed term s, there exists a unique numeral #t
such that s = i is provable without an essential cut and without ind. (See Definition
7.5 for “essential cut’.)

(2) Let s and t be closed terms. Then either —s =t or s =t —~ is provable
without an essential cut ov ind.

(3) Let s and t be closed tevms such that s = t 1s provable without an essential cut
or ind and let qla) and v{a} be two terms with some occurrences of a (possibly
none). Then q(s) = #(s) — qlt) = r»({) s provable without an essential cut or ind.

(4) Let s and t be as in (3). For an arbitrary formula F(a):s = ¢, F(s) — F(t)
is provable without an essential cut ov ind.

Proor. (1) By induction on the complexity of s.

We defined some notions concerning formal proofs in §2. In order to carry
out the consistency proof for PA, however, we need some more of these. We
shall list them all here.

DEeriNITION 9.7. When we consider a formula or a logical symbol together

with the place that it occupies in a proof, in a sequent or in a formula, we

refer to it (respectively) as a formula or a logical symbol in the proof, in the
sequent or in the formula. A formula in a sequent is also called a sequent-
formula.

(1) Successor. If a formula E is contained in the upper sequent of an inference
using one of the rules of inference in §1 or “ind”’, then the successor of E
is defined as follows:

(1.1) If E is a cut formula, then E has no successor.

(1.2) If E is an auxiliary formula of any inference other than a cut or
exchange, then the principal formula is the successor of E. (For the
case of ind, see above.)

(1.3) If E is the formula denoted by C (respectively, D) in the upper
sequent of an exchange (in Definition 2.1), then the formula C
(respectively, D) in the lower sequent is the successor of E.

(1.4) If E is the kth formula of I', I1, A, or A in the upper sequent (in
Definition 2.1), then the kth formula of I', I1, A or A, respectively,
in the lower sequent is the successor of E.

(2) Thread. The notion of a sequence of sequents in a proof, called a thread,
has been defined in Definition 2.8.
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(8) The notions of a sequent being above or below another, and of a sequent
being between two others, were defined in Definition 2.8; so was the
notion of an inference being below a sequent.

{4) A sequent formula is called an initial formula or an end-formula if it occurs,
respectively, in an initial sequent or an end-sequent.

(6) Bundle. A sequence of formulas in a proof with the following properties
is called a bundle:

(5.1) The sequence begins with an initial formula or a weakening formula.

(5.2) The sequence ends with an end-formula or a cut-formula.

(5.3) Every formula in the sequence except the last is immediately followed
by its successor.

(6) Ancestor and descendant. Let 4 and B be formulas. 4 is called an ancestor
of B and B is called a descendent of A if there Is a bundle containing both
A and B in which A appears above B.

(7) Predecessor. Let 4 and B be formulas. If 4 is the successor of B, then B
is called a predecessor of A.

Some principal formulas, e.g., A : right, has two predecessors. In such cases
we call a predecessor the first or the second predecessor of A, according as it
is in the left or right upper sequent.

{8) The concepts of explicit and implicit.

(8.1) A bundle is called explicit if it ends with an end formula.

(8.2) It is called implicit if it ends with a cut-formula.

A formula in a proof is called explicit or implicit according as the bundles
containing the formula are explicit or implicit.

A sequent in a proof is called implicit or explicit according as this sequent
contains an implicit formula or not.

A logical inference in a proof is called explicit or implicit according as the
principal formula of this inference is explicit or implicit.

(9) End-piece. The end-piece of a proof is defined as follows:

(9.1) The end-sequent of the proof is contained in the end-piece.

{9.2) The upper sequent of an inference other than an implicit logical
inference is contained in the end-piece if and only if the lower sequent
is contained in it.

(9.3) The upper sequent of an implicit logical inference is not contained
in the end-piece.

We can rephrase this definition as follows: A sequent in a proof is in the
end-piece of the proof if and only if there is no implicit logical inference below
this sequent.
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(10) An inference of a proof is said to be in the end-piece of the proof if the
lower sequent of the inference is in the end-piece.

(11) Boundary. Let J be an inference in a proof. We say [ belongs to the
boundary (or J is a boundary inference) if the lower sequent of J is in
the end-piece and the upper sequent is not. It should be noted that if J
belongs to the boundary, then it is an implicit logical inference.

(12) Suitable cut. A cut in the end-piece is called suitable if each cut formula
of this cut has an ancestor which is the principal formula of a boundary
inference.

(13) Essential and inessential cuts. A cut is called inessential if the cut formula
contains no logical symbol; otherwise it is called essential.

In PA, the cut formulas of inessential cuts are of the form s = .

(14) A proof P is regular if: (i) the eigenvariables of any two distinct inferences
(V : right, 3:left or induction) in P are distinct from each other; and
(i1) if a free variable a occurs as an eigenvariable of a sequent S of P, then
a only occurs in sequents above S.

ProrosITION 9.8. For an arbitrary proof of PA, there cxists a regular proof of
the same end-sequent, which can be obtained from the oviginal proof by simply
replacing free variables.

Proor. The proof is as for Lemma 2.10, part (2).

§10. The incompleteness theorem

In this section we shall prove the incompleteness of PA. This is a celebrated
result of Gédel. We shall actually consider any axiomatizable system which
contain PA as a subsystem.

DeriniTION 10.1. An axiom system .o (cf. §4) is said to be axiomatizable if
there is a finite set of schemata such that 7 consists of all the instances of
these schemata. A formal system § is called axiomatizable if there is an
axiomatizable axiom system ./ such that § is equivalent to LK, (cf. §4).
(Two systems are called equivalent if they have exactly the same theorems.)

A system 8 is called an extension of PA if every theorem of PA is provable
in 8. Throughout this section we deal with axiomatizable systems which are
extensions of PA. They are denoted by 8. Such an 8 is arbitrary but fixed;
so is the language of 8, say L (which will always extend Ln).
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DeriNiTION 10.2. The class of primitive recursive functions is the smallest
class of functions generated by the following schemata. (These can be thought
of as the clauses of an inductive definition, or as the defining equations of
the function being defined.)
(i) /(x) = &', where ’ is the successor function.
(1) f(xy,..., x,) = &k, where n > 1 and % is a natural number.
(i) f(x1,. .., x,) = x;, where I <7 <{n.
(V) flixy, oo x) = glh(xg, . o, X0)s oo By, o, 1)), where g, By, By
are primitive recursive functions.
(v) f(0) = &, j(x) = g(x, f(x)), where k£ is a natural number and g is a
primitive recursive function.
(Vi) FO, %5, ..o, ) = glxa, . oo, 20, fE, g, xy) = hix, Fix, %0, . ., %),
Xg,. .., %), where g and % are primitive recursive functions.
This formulation is due to Kleene.
An n-ary relation R (of natural numbers) is said to be primitive recursive
if there is a primitive recursive function f which assumes values 0 and 1 only
such that R(ay,. .., 4,) is true if and only if f(a;,..., a,) = 0.

ExEercisE 10.3. We define 4 and - as follows:
a+90=a, a0 =0,
a+b =(a+d), ab=ab+a

Prove the following from the above equations in PA.
(1) a+b=>+a
2y a-b="0b-aqa.
@a-b+cy=ab4a-c

ExXERCISE 10.4. Prove that = and < are primitive recursive relations of
natural numbers.

Here we shall state a basic metamathematical lemma without proof, which
we shall use later.

LemMA 10.5. The consistency of 8 (i.e., S-unprovability of —) is equivalent to
the S-unprovability of 0 = 1. I'n other words, O = 1 is S-provable if and only if
every formula of L 1s S-provable. (Cf. Proposition 4.2.)



cH. 2, §10] THE INCOMPLETENESS THEOREM 75

ProposITION 10.6 (Godel). (1) The graphs of all the primitive recursive functions
can be expressed in Ln, so that (the translations of) their defining equations arve
provable in PA.

Thus the theory of primitive recursive functions can be translated into our
formal system of arithmetic. We may therefore assume that PA (or any of its
extensions) actually contains the function symbols for primitive recursive func-
tons and thetlr defining equations, as well as predicate syinbols for the primitive
recursive relations.

We must distinguish between informal objects and their formal expressions
(although this will lead to notational complications). For example, the formal
expression (function symbol) for a primitive recursive function f will be
denoted by f; if R is a predicate (of natural numbers) which can be expressed in
the formal language, then its formal expression will be denoted by R. Also, as
stated earlier, for any closed term ¢, 7 is the numeral of the number denoted
by ¢ Although in later sections we may omit such a rigorous distinction
between formal and informal expressions, it is essential in this section.

(2) Let R be a primitive recursive velation of n arguments. 1t can be vepresented
in PA by a formula R(a,,..., a,), namely f(a,..., a,) = 0, wheve | is the
characteristic function of R. Then, for any n-tuple of numbers (mq,..., m,),
if R(mq,. .., my) is true, then R(si,,. . ., #1,) is PA-provable.

Proor. The proof of (1} is by induction on the inductive definition of the
primitive recursive functions (i.e., by induction on their construction).

The proof of (2) 1s carried out as follows. We prove that for any primitive
recursive function f (of » arguments) and any numbers my,. .., m,, p, if
fmy,...,m,) = p, then f(si,..., #,) = p is PA-provable. The proof is by
induction on the construction of f (according to its defining equations). Then,
finally, if f is a primitive recursive function which is the characteristic function
of R, we have, forallm,,. .. m,, if R(m,,. .. m,)istrue, then f(#,,. .., ,) =0
is PA-provable,

Since the rest of the argument depends heavily on this proposition, we shall
use it without quoting it each time.

Note that the converse proposition (i.e., for primitive recursive R, if
Ry, .., #,) is PA-provable, then R(m,,. .., m,) is true) follows from the
consistency of PA.

DeFiNITION 10.7 (G6del numbering). We shall define a one-to-one map from
the formal expressions of the language L, such as symbols, terms, formulas,
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sequents and proofs, to the natural numbers. (The following isonly one example
of a suitable map.) For an expression X, we use "X ' to denote the correspond-
ing number, which we call the Gddel number of X.

(1) First assign different odd numbers to the symbols of Ln. (We include
— and — among the symbols of the language here.)

(2) Let X be a formal expression X(X;...X,, where each X, 0 << v < n,
is a symbol of L. Then X is defined to be 2" X* 3 "X" | p ™7 'where p,, is
the nth prime number.

(3) If P is a proof of the form

9 o G

S S

then "P" is27@737 1578 or 2793 AT 577787 respectively.

If an operation or relation defined on a class of formal objects (e.g., formulas,
proofs, etc.) is thought of in terms of the corresponding number-theoretic
operation or relation on their Gédel numbers, we say that the operation or
relation has been arithmetized. More precisely, suppose ¢ is an operation
defined on n-tuples of formal objects of a certain class, and f is a number-
theoretic function such that for all formal objects X;,..., X,, X (of the class
considered), if s applied to X,. .., X, produces X, then /("X ",..., "X, ') =
"X". Then [ is called the arithmetizalion of . Similarly with relations.

Lemya 10.8. (1) The operation of substitution can be avithmetized primitive
recursively, i.e., there is a primitive vecursive function sb of two arguments
such that if X(ag) is an expression of L (where all occurvences of ay in X are
indicated), and Y is another expression, then sb("X(ag)", "Y") = "X(YV)",
wheve X(Y) is the vesult of substituting Y for ay in X.

(2) There is a primitive recursive function v such that v(m) = "the mth
numeral” . In terms of our notation, v(m) = "1 .

(8) The notion that P is a proof (of the system 8) of a formula A (or a sequent S)
is arithmetized primitive vecursively, i.e., there is a primilive recuvsive velation
Prov(p, a) such that Prov(p, a) is true if and only if there is a proof P and a
formula A (or a sequent S) such that p = "P*, a ="A4" (or a ="S") and
P is a proof of A (or S).

(4) Prov may be written as Provg to emphasize the system 8.

(6) As was mentioned before, the formal expression for Prov will be denoted

by Prov.
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We shall not prove this lemma. It is important to note that the axiomatiz-
ability of 8 1s used in (3); (3) is crucial in the subsequent argument. We also
use the following fact about Gédel numbering: we can go effectively from
formal objects to their Gbdel numbers, and back again (i.e., decide effectively
whether a given number is a Gédel number, and if so, of V\hat formal object).

3x Prov(x, 'A") is often abbreviated to Pr( 47 ) or "4

PROPOSITION 10.9. (1) If A is S-provable, then = TA” is S-provable.

(2} It A <> B is S-provable, then Pr r{ 4" Yo Pr{"B"), ie., - AT "B,
18 S-provable.

B) 74" (= ="47 ) is S-provable.

Proor. (1) Suppose 4 is provable with a proof P. Then by (3) of Lemma 10.5,
Prov(er FAW) is true, which implies, by (2) of Proposition 10.6, that
3x Prov(x, "A7), i, F"4" is S-provable.

(2) Suppose 4 = B is provable with a proof P and A is provable with a
proof Q. There is a prescription for constructing a proof of B from P and Q,
uniform in P and @, which can be arithmetized by a primitive recursive
function f. Thus Prov(g," 4"} — Prov (f(p, 9). "B") is true, from which it

follows by (2) of Proposmon 10.6 that —"4" — "B is provable. The same

argument works for =B -~ F"4".

(3) If P is a proof of 4, then we can construct a proof ¢ of + r4° by (1).
This process is uniform in P; in other words, there is a uniform prescription
for obtaining Q from P. Thus

Prov(p,"A") — Prov(f(p),” Pr("4")")
is true for some primitive recursive function f, from which it follows that
FTAY AT s provable.
We shall now consider the notion of truth definition and Tarski’'s theorem
concerning it.

DerixITION 10.10. A formula of L (the language of 8) with one free variable,
say Tlag), is called a truth definition for S if for every sentence 4 of L,

is §-provable.
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TuroreM 10.11 (Tarski). If S is consistent, then it has no truth definition.

PROOF. Suppose otherwise. Then there is a formula 7'{a,) of L such that for
every sentence 4 of L, T Q%) = A is provable in 8. Consider the formula
Fag), with sole free variable ag, defined as: —7T (sb(ag, #(ay))). Put p = "Flag)",
and let 4, be the sentence F(p). Then by definition:

Ay = —T(sb(p, #(F))). (1)

Also, since A, = sb(p, »(p)), we can prove in S the equivalences:

Adp=T(T4,7) (by assumed property of 1)

= T(sb(p, #(p))). (2)

(1) and (2) together contradict the consistency of 8.

An interesting consequence of Theorem 10.11 1s the following. First note
that in the proof of Theorem 10.11, we need nof assume that 8 is axiomatizable
(cf. Def. 10.1). So we may take as the axioms of S the set of all sentences of
Ln which are #rue in the intended interpretation (or standard model) M of
PA (using the ordinary semantic or model-theoretic definition of truth in M).
We then obtain that there is no formula 7'(a,) of Ln such that for any sentence
A of Ln:

A is true <> T("A7) is true
(i.e., true in M). This corollary of Theorem 10.11 can be stated in the form:

“The notion of arithmetical truth is not arithmetical” (i.e., cannot be expressed
by a formula of Ln). This is often taken as the statement of Tarski’s theorem.

DeFINITION 10.12. § is called incomplete if for some sentence A, neither 4
nor —.4 is provable in 8.

Next we introduce “Gddel’s trick” for use in Theorem 10.16.

DErINITION 10.13. Consider a formula F(x) with a metavariable « (1.e., a new
predicate variable, not in L, which we only use temporarily for notational
convenience), where « is regarded as an atomic formula in I'(x) and F(«) is
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closed. I'(— ég(ao, #(ay))) 1 a formula with a, as its sole free variable. Define
p = "F(=sblag, #(a,))) " and A as F( sb(p, #(p))). Note that A, is a sen-
tence of L.

Lemva 1014, A, = F(-"A, ") is provable in S.
Proor. Since "4, = sh(p, »(p)) by definition,
"4,7 = sb(p, #(p)) is provable in 8.
Hence Ap = F(+ FAT ) 1s provable in 8.
From now on, we shall use the abbreviation — A4 for 47,

DEeFINITION 10.15. S is called w-consistent if the following condition is satisfied.
For every formula 4 (a,), if —A(77) is provable in § for every n = 0,1,2,...,

then Jx A(x} 1s not provable in 8. Note that w-consistency of § implies
consistency of 8.

TreOREM 10.16 (Gddel's first incompleteness theorem). If 8 is wm-consistent,
then 8 is tncomplete.

Proor. There exists a sentence A, of L such that A, = =4, is provable
in 8. (Any such sentence will be called a Godel sentence for 8.) This follows
from Lemma 10.14, by taking IF(x) in Definition 10.13 to be —a. Then
Ay = A, is provable in 8. First we shall show that 4, is not provable
in 8, assuming only the consistency of § (but without assuming the w-consistency
of §). Suppose that A were provable in 8. Then by (1) of Proposition 10.9,
A, is provable in 8; thus by the definition of Gdédel sentence, —dy is
provable in 8, contradicting the consistency of 8.

Next weshall show that =4, is not provable in 8, assuming the o-consistency
of 8. Since we have proved that A, is not provable in §, for each n =
0,1,2,... =Prov(7, rzq(j) 1s provable in 8. By the w-consistency of §,
Jx 13;)§'(,v, "A;") is not provable in 8. Since =4, = A, is provable in 8,
=4, is not provable in S.

ReMARrk. In fact, A, although unprovable, is (intuitively) true, since it
asserts its own unprovability.
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DeFiNITION 10.17. EEES is the sentence —H0 = 1. (So Eonsiés asserts
the consistency of 8.)

THEOREM 10.18 (Godel's second incompleteness theorem). If 8 is cousistent,

then Consisg is not provable in 8.

Proor. Let A, be a Gédel sentence. In the proof of Theorem 10.16, we proved
that A is not provable, assuming only consistency of 8. Now we shall prove

a stronger theorem: that 4, = Cbnsiss is provable in S.

(1) To show A; — CgléTss is provable in 8. By Lemma 10.5, —Consisg =
¥ A" (= A4) is provable (where V' A" means: for all Gédel numbers of
formulas A4). Therefore, Ag - —tA4; — =V 4" (- A) — Consisg.

(2) To show Consisg — A, is provable in 8. Again by Lemma 10.5,
Consisg, = A4, — =4, — 1 Ag, since =4, = = 4 (of. (3) of Lemma

10.8). But + A; -t Ag by Proposition 10.9. So Consisg, =4, —
At Ag A A4, and so Consisg — A4, — 4.

Exercise 10.19. Define the system QA as the quantifier-free part of PA.
Show that the following are provable in QA for free variables a, b, c.

(1) a = a,

(2) a =5 —b=aq,

@) atb=20b+a,

4) a-b=2"b-a,
Bla-b4+c)=abt+a-c

Exercise 10.20. In Gdodel's trick (cf. Definition 10.13) we may replace
sb(ag, v(ag)) by e(sb(aq, v(ay))) for some primitive recursive function e which
satisfies that if 4 is a formula then ¢("A") is Godel number of a formula
obtained from A4 by adding some more stages of the definition of formula;
for example, ¢("A") =™—A”. Show that if ¢("A")="—"4", p=
CF(t &(sb(ag, #(ap))))" and Bpis F( é&(sb(p, #(§)))), then "B ' = sb(p, »(p)),
i.e., By is F(——Bg).

ProBLEM 10.21 (L&b). Show that for any sentence 4, if (FA) — A is PA-
provable, then 4 is itself provable. [Hint: By Godel’s trick there is a sentence
B such that B = (-~ B> A4). For such B, if B is provable then - B is provable
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(cf. Proposition 10.9) and (— B) — 4 is provable; thus A4 is provable. This
procedure is uniform in the proofs of B; hence by formalizing the entire
process we obtain (— B) — (= 4). This and the assumption (- 4) — 4 imply
(= B) — A. But, by the definition of B, the last sequent implies B itself, and
hence = B (Proposition 10.9). So, since = B and (F B) — A4 are both provable,
sois 4.}

ProBLEM 10.22 (Rosser). Let e be a primitive recursive function satisfying
e("A") ="=A4" as in Exercise 10.20. Let F(ay) be

YV, (Prov(x,, sblag, #ag))) D xs (xg < %1 A Prov(xs, &(sb(xy, #(xo)))))).-

Define p = "F(ag)' and Ap as F(p). Prove that if § is consistent, then
neither A gz nor —A4 g is provable in §.

RemarK. This strengthens Godel’s first incompleteness theorem. Namely,
the hypothesis of the w-consistency in Theorem 10.16 is weakened to the
consistency.

§11. A discussion of ordinals from a finitist standpoint

When one is concerned with consistency proofs, their philosophical inter-
pretation is always a paramount problem. There is no doubt that Hilbert’s
“finitist standpoint” which considers only a finite number of symbols con-
cretely given and arguments concretely given about finite sequences of these
symbols (called expressions) is an ideal standpoint in proving consistency.
From this standpoint, one defines expressions in the following way (as we
have, in fact, done alreadyy).

(0) Firstly, we give a {inite set of symbols, called an alphabet.

(1) Next, we give a finite set of finite sequences of these symbols, called
initial expressions.

(2) Next, we give a finite set of concrete operations, for constructing or
generating expressions from expressions already obtained.

(3) Finally, we restrict ourselves to considering only expressions obtained
by starting with step (1) and iterating step (2).

As a special case of the above, let us suppose that we are given symbols
ai,..., a, by (1), and concrete operations f,,. . ., f;, to obtain new expressions
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from expressions we already have, and let 2 be the collection of all expressions
thus obtained. Then the definition of & is as follows:

(0) The alphabet consists of {ay,..., a,}.
(1) ay,.. ., a, {considered as sequences of length 1) are in 2.
(2) Uy, .., % are in D, then fi{xy,. .., %) isin D (e =1,...,7).
3) 2 con51sts of only these objects (expresswns) obtained by (1) and (2).
This is called a recursive or inductive definition of the class 2. Corresponding
to this inductive definition, we have a principle of “proof by induction” on
(the elements of) &, namely, let A be any property (of expressions), and
suppose we can do the following.

(1) Prove that 4{(4,),..., 4(a,) hold;

(2) Assuming A(xy),. .., A(x;) hold for x4,.. ., x; in &, infer that

Alfyley o)), Al - 2)

hold.

Then we conclude that A4 (x) holds for all x in &. This follows since for any
% in 2 that is concretely given, one can show that A(x) holds by following
the steps in constructing this x, by applying (1) and (2) above step by step.
According to this viewpoint, we can regard “induction” simply as a general
statement of a concrete method of proof applicable for any given expression
%, and not as an axiom that is accepted a priori.

Though nobody denies that the above way of thinking is contained in
Hilbert’s standpoint, there are many opinions about where to set the boundary
of this standpoint: for example, assuming that transfinite induction up to

each of w, w-2, w-3,... is accepted, whether transfinite induction up to
? should also be accepted; or, assuming that transfinite induction up to
each of w, w®, w®“,... is accepted, whether transfinite induction up to the

first e-number (denoted by g,) should be. If we consider each concretely given
expression (in this case an ordinal less than gg), then it must be less than some
y,, and so should be accepted—or should it ? Here w,, denotes the ordinal

w

w

When one thinks about this in a very skeptical way, how far can one accept
induction? One might even perhaps doubt whether induction up to w itself
is already beyond Hilbert’s standpoint.
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However, if we interpret Hilbert’s finitist standpoint in an extremely pure
and restricted way so as to forbid both transfinite induction and all abstract
notions such as Goédel’s primitive recursive functionals of finite types, then
by G6del’s incompleteness theorem, it is clear that the consistency of PA cannot
be proved if one adheres to this standpoint, since (presumably) such strictly
finitist methods can be formalized in PA (in fact, in “primitive recursive
arithmetic’’: see below).

Therefore in a consistency proof it is always very interesting to see what
is used that goes beyond Hilbert’s finitist standpoint, and on what basis it can
be justified.

At present, the methods used mainly for consistency proofs are firstly
those using transfinite induction (initiated by Gentzen), and, secondly, those
using higher type functionals (initiated by Gédel).

We explain the first method, that of Gentzen. First, in order to make sure
of our standpoint, let us consider an inductive definition of natural numbers
that adheres most closely to the above scheme:

N1 1is a natural number.

N 2 If a is a natural number, then 4l is a natural number.

N 3 Only those objects obtained by N 1 and N 2 are natural numbers.

Although we normally consider a definition like this to be obvious, it seems
that this is because much knowledge is often unconsciously presupposed. In
order to clarify our unconsciously-arrived-at standpoint, let us ask ourselves
questions that a person E who has no understanding of N 1-N 3 might ask.

First, E might say he did not understand N 2 and N 3. For E it is impossible
to understand N 2 using the notion of natural number when one does not
understand ‘‘natural numbers” (a ‘‘vicious circle’’). Moreover, E cannot
understand in N 3 what ‘“‘those objects obtained by N 1 and N 2" means.
There are many possible answers to these doubts. The most practical one
from the didactic point of view will be as follows: 1 is a natural number by N 1.
Now that we know 1 is a natural number, 11 is a natural number by N 2;
now that we know 11 is a natural number, 111 is a natural number by N 2.
Everything obtained in this way by starting with N 1 and iterating the
operation N 2 is a natural number. N 3 says on the other hand, that only
those things obtained in this way are natural numbers. Of course E might
ask more questions about the above explanation: “What do you mean by
‘iterating the operation N 2’'?”’, “What do you mean by ‘everything obtained
in this way’?”" etc., and this kind of discussion can be continued endlessly.
I hope that E will finally get the idea. The important fact is that the general
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concept of a (potentially) infinite process of creating new things by iterating
a concrete operation a finite number of times is presupposed in order to
understand the definition N 1-N 3 of natural numbers, and that the purpose
of the definition N 1-N 3 is to specify the process of defining natural numbers
by such a procedure.

When we analyze precisely the discussion repeated endlessly with E, we
will realize that we must accept or presuppose to some extend the notion
of finite sequence (or finiteiteration of an operation) as our basic notion. Here an
impertant remark should be made: this does not mean that we must accept
large amounts of knowledge about sequences and finiteness separately; only
that which seems absolutely necessary to understand the single notion of
finite sequence.

In order to clarify our standpoint further, let us consider the inductive
definition of the finite (non-empty) sequences of natural numbers:

S1 If » is a natural number, then # itself is a finite sequence of natural

numbers.

S 2 If m is a natural number and s is a finite sequence of natural numbers,

then s x m is a finite sequence of natural numbers.

S 3 Only those objects obtained by S1 and S 2 are finite sequences of

natural numbers.

It should be realized that this kind of definition is regarded as basic and
clear, no matter what standpoint one assumes.

We shall present some more examples of such inductively defined classes
of concrete objects, and properties of them.

For instance, the notion of length of a finite sequence of natural numbers
is defined inductively as follows:

L1 If s is a sequence of natural numbers consisting of a natural number »

only, then the length of s is 1.
L 2 If s is a sequence of natural numbers of the form s, # 7, and the length
of s is 7, then the length of s1sZ + 1.

We can certainly take an alternative definition: given a sequence of natural
numbers, say s, examine s and count the number of #’s in it. If the number
of #’s is /, then the length of s is I + 1. (Each of these definitions presents an
operation which applies to the concretely given figures in a general form.)

These finitist inferences often present striking similarities to the arguments
in the following formalism, which we call primitive recursive arithmetic.

(1) The basic logical system is the propositional calculus.
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(2) The defining equations of primitive recursive functions are assumed as
axioms.

(3) No quantifiers are introduced.

(4) Mathematical induction (for quantifier-free formulas) is admitted:

Afa), "> A, A(@)
A0, T >4, A()

»

where a does not occur in 4(0), I" or A, and ¢ is an arbitrary term.

From the above discussion, it seems quite reasonable to characterize
Hilbert’s finitist standpoint as that which can be formalized in primitive
recursive arithmetic. This standpoint shall be called the “purely {initist
standpoint”. It is therefore of paramount importance to clarify where a
consistency proof exceeds this formalism, i.e., the purely finitist standpoint.
(Thus, in the following, we shall not bother with arguments which can be
carried out within the above formalism.) In order to pursue this point, we
shall first present the recursive definition of ordinal numbers up to g, (the
first e-number); temporarily, by “ordinal” we mean: ordinal less than &,.

O1 01s an ordinal.

02 Let uand py, s, ..., 4, be ordinals. Then g, + o + ... + u, and

w* are ordinals.

O 3 Only those objects obtained by O 1 and O 2 are ordinals.

% will be denoted by 1. Regarding 1 as the natural number 1, 1 + 1 as 2, etc.,
we may assume that the natural numbers are included in the ordinals. (We may
also include 0 among the natural numbers if we wish.)

We can now define the relations = and < on ordinals so that they match
the notions of equality and the natural ordering of ordinals which we know
from set theory, and develop the theory of ordinals for these relations within
the purely finitist standpoint. We can actually inductively define =, <, +,
and - simultaneously so that they satisfy the following.

(1) < is a linear ordering and O is its least element.

(2) w* < w'if and only if yu < ».

(3) Let u be an ordinal containing an occurrence of the symbol 0 but not
Oitself, and let 4’ be the ordinal obtained from u by eliminating this occurrence
of 0 as well as excessive occurrences of 4. Then y = u’.

As a consequence of (3) it can be easily shown that

(4) Every ordinal which is not 0 can be expressed in the form

.
oM 4wt 4 L4 o,
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where each of uy, uo,..., #, which is not 0 has the same property. (Each
term @ is called a monomial of this ordinal.)
(5) Let w and v be of the forms

o 4 o+ e and o e+ ...+ o’
respectively. Then g 4 » is defined as
wh F @t L +w”k+le+wVa+ _}_w"l'

{6) Let u be an ordinal which is written in the form of (4) and contains
two consecutive terms w”/ and "1 with u; < p,,,, 1.e.,  is of the form

“j g
SR )t B R AR T S

and let 4’ be an ordinal obtained from u be deleting “w" 4, so that u’ is
of the form
N7 o an SR
Then p = u'.
As a consequence of (6) we can show that
(7} For every ordinal g (which is not 0) there is an ordinal of the form

u
w*t 4+ w4 L 4 et

where u; > ... = p, such that g = 0* + ... + o"", where y4 > » means:
y < por v = u. The latter is called the normal form of u. (This normal form
of u is unique, since the same holds for every ordinal which is used in con-
structing u: see O 2.)

(8) Let w have the normal form

L T L E A

and » be > 0. Then - @’ = w*'*".
(9) Let p and » be as in (5). Then

”.y:ﬂ-wV1+H.wV=+.'.+Iu.wyl.

(10) (w*)™ is defined as w* - w* ... w* (© times) for any natural number #.
Then (w*)* = w* ™.

As a consequence of our definitions, it can easily be shown that for an
arbitrary ordinal u an ordinal of the form w, which satisfies u << w, can be
constructed.
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1t is obvious that for any given natural number # the length of a strictly
decreasing sequence of ordinals which starts with # is at most #» 4- 1; in other
words, there can be no strictly decreasing sequence of ordinals which starts
with % and has length # + 2. This fact tells us that the notion of arbitrary,
strictly decreasing sequences of ordinals which start with # is a clear notion.

At this point it is not very meaningful to object to this on the grounds
that if we write the statement that a strictly decreasing sequence terminates,
in terms of expressions in the Kleene hierarchy, it turns out to belong to
the I1}-class. The important fact is not to which class of the hierarchy it
belongs but how evident it is. We shall come to this point later.

In the following section, a consistency proof (for PA) will be given in the
following way. In order to emphasize the concrete or “figurative” aspect of
the arguments, we say ‘“‘proof-figure” for formal proof.

1) We present a uniform method such that, if a proof-figure P is concretely
given, then the method enables us to concretely construct another proof-
figure P’; furthermore, the end-sequent of P’ is the same as that of P if the
end-sequent of P does not contain quantifiers. The process of constructing
P’ from P is called the “reduction” (of P) and may be denoted by ». Thus
P’ = 7(P).

2) There is a uniform method by which every proof-figure is assigned
an ordinal < g,. The ordinal assigned to P (the ordinal of P) may be denoted
by o{P).

3) o and r satisfy: whenever a proof-figure P contains an application of
ind or cut, then o(P) > w and o(*(P)) < o(P), and if P does not contain any
such application, then o(P) < w.

Suppose we have concretely shown that any strictly decreasing sequence
of natural numbers is finite, and that whenever a concrete method of con-
structing decreasing sequences of ordinals < ¢, is given it can be recognized
that any decreasing sequence constructed this way is finite {or such a sequence
terminates). (By “‘decreasing sequence” we will always mean strictly decreas-
ing sequence.) We can then conclude, in the light of 1)-3) above, that, for
any given proof-figure P whose end-sequent does not contain quantifiers,
there is a concrete method of transforming it into a proof-figure with the
same end-sequent and containing no applications of the rules cut and ind.
It can be easily seen, on the other hand, that no proof-figure without applications
of a cut or ind can be a proof of the empty sequent. Thus we can claim that
the consistency of the system has been proved.

The crucial point in the process described above is to demonstrate:
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(*) Whenever a concrete method of constructing decreasing sequences of
ordinals is given, any such decreasing sequence must be finite.

We are going to present a version of such a demonstration, which the author
believes represents the most illuminating approach to the consistency proof.

Suppose @, > a; > ... is a decreasing sequence concretely given.

(I) Assume ay << w, or 4, is a natural number.

Consider a decreasing sequence which starts with a concretely given natural
number. As soon as one writes down its first term #, one can recognize that
its length must be at most # 4+ 1. Hence we can assume that a, is not a natural
number.

In order to deal with all ordinals < ¢, we shall define the concept of a-
sequence and a-eliminator for all « < g5, We start, however, with a simple
example rather than the general definition.

(I1) Suppose each a; in ay > a; > ... is written in the canonical form;
a; has the form

o u i
o' twrd w0k,

where ,u;» > 0 and &, is a natural number. (This includes the case where
+ k; does not actually appear.) A sequence in Wthh k; does not appear for

any a; will be called a 1-sequence. We call @ “ + w “ 4+ .0+ w""w in a; the
l-major part of a;. We shall give a concrete method (M 1) which enables us
to do the following: given a descending sequence a, > @, > ..., where each
a; is written in its canonical form, the method M, concretely produces a
{decreasing) 1-sequence by > by > ... s0 as to satisfy the condition

(C1) bgisthe 1-major part of a4, and we can concretely show thatifbg > b, > ...
is a finite sequence, then soisay > ay > ... .

This method M, (a l-eliminator) is defined as follows. Put a; = a; + k,,
where a; is the 1-major part of a;. Then @y > a; > az > ... can be expressed
asa{,+k0>a1—}—k1>a;+k2>.... '

Put b, = a, Suppose by > b; > ... > b, has been constructed in such

. ’ . . ’ ’ ’

a manner that b,, is a; for some j. Then either a; = Bjg1 = - = gy for
;

some $ and a;,,is the last termi in the  sequence, ora = A = e = Ay, >

@;4p41- This is so, since a = a]+1 = ... = a]H, = ... implies k; >

Ris1n > .. >k > but such a sequence (of natural numbers) must

stop (cf. (I)). Therefore, as stated above, either the whole sequence stops, or
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“;‘+p > “;‘+p+1 for some p If the former is the case, then stop. If the latter
holds, then put b1 = @,

From the definition, it is obvious that by > &, > ... > b, > ... . Suppose
this sequence is finite, say b, > b; > ... > b,,. Then according to the
prescribed construction of &, ., the original sequence is finite. Thus the
sequence by > by > ... satisfies (C;), and we have completed the definition
of M.

(ITT) Suppose we are given a decreasing sequence gy > 4, > ..., in which
ay < w?® Then by a l-eliminator M, applied to this sequence, we can con-
struct a l-sequence by > b; > ..., where by <C ay. Then by > b; > ... can
be written in the form w- 2y > w+ £, > ..., which implies &y > &, > ... .
Then by (I), kg > k; > .. must be finite, which successively implies that
by > by > ... and a4 > a4 > ... are finite.

(IV) We now define “‘n-sequences’” as follows. Let @y > a; > ... be a
descending sequence which is written in the form ag + ¢o > a o> ..,
where if a;, = a; + ¢; then each monomial in a, is > " and each monomial
in ¢, is < w™ (a; is called the #-major part of a;.) Such a sequence is called an
n-sequence if every ¢; is empty.

Now assume (as an induction hypothesis) that any descending sequence
dy > d; > ..., withdy < o, is finite. We shall define a concrete method M,

(an n-eliminator) such that, given a decreasing sequence ay > a; > ..., M,

concretely produces an n-sequence, say by > b; > ..., which satisfies:

(C,) by is the n-major part of ag, and if by > b; > ... is finite then we can
concretely show that ay > a; > ... is also finite.

The prescription for M, is as follows. Write each q; as a; -+ ¢;, where u; is
the n-major part of 4;. The definition now proceeds very much like that for
I-sequences in (I). Namely put bo = “0 Suppose bo >b, > ... >b, has

been constructed and b,, is a da; = “;+1 == “;+1> and a]+p is the last
term mtheglvensequence thenstop Otherw1sea =A== 4d, z>>“1+1>+1
for some p, since a] = “;+1 =... = a]ﬂ, 1mphes thate; > ¢ > .0 > ¢y

which, by the induction hypothesis, is finite; hence for some p, ¢;, 11 = €54 p,
which implies a,jﬂ, > “;+p+1- Then define 4, = “;‘+p+1' Then the sequence
by > b; > ... satisfies (C,), and so we have successfully defined M,,.

(V) By means of the n-eliminator M,, we shall prove that a decreasing
sequence ag > ay > ..., where a4y << w®*1, must be finite. By applying M,
toag > aq > ..., wecan construct concretely an n-sequence, say b, > by > . . .,
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where b, < ao. Moreover, b, can be written as w™- k;, where %; is a natural

number. So, w"- ky > w®- k; > ..., and this implies By > k; > ..., which
is a finite sequence by (I), hence by > b; > ... is finite, which in turn
implies that @y > a; > ... is finite.

(VI) From (III) and (V) we conclude: given (concretely) any natural
number #, we can concretely demonstrate that any decreasing sequence
ag > a; > ... with 4y < o is finite.

(VII) Any decreasing sequence @y > 4; > ... is finite if a; < w®, for this
means that ¢, << o™ for some », and hence (VI) applies.

(VIII) Now the general theory of a-sequences and («, #)-eliminators will
be developed, where « ranges over all ordinals < ¢y and # ranges over natural
numbers > 0. A descending sequence dy > d; > ... is called an «-sequence
if in each 4; all the monomials are > w*. If a = a’ 4+ ¢ where each monomial
in @’ is > w* and each monomial in ¢ is < %, then we say that a’ is the
a-major part of 4. An a-eliminator has the property that given any concrete
descending sequence, say a4y > @; > ..., it concretely produces an x-sequence
be > by > ... such that

(i) bg is the a-major part of ay,

(i) if by > b; > ... is a finite sequence then we can concretely demonstrate

that ag > a, > ... is finite.

(Clearly ag == by.)

We delay the definition of a-eliminators. Assuming that an «-eliminator
has been defined for every «, we can show that any decreasing sequence is
finite. For consider a, > a; > ... . There exists an « such that a5 < o*t1.
An x-eliminator concretely gives an a-sequence by > b; > ... satisfying (i)
and (ii) above. Since by < aq, each b, can be written in the form «w*- &;; thus
w* - ko > w*- ky > ..., which implies ky > A, > ... . By (I) this means
that 2, > &y > ... is finite, hence so is &3 > b; > ...; s0 ay > a; > ...
is finite. This proves our objective (*). Therefore, what must be done is to
define (construct) a-eliminators for all o < &.

(IX) We rename an a-eliminator to be an («, 1)-eliminator. Suppose that
(o, n)-eliminators have been defined. A (8, n 4 1)-eliminator is a concrete
method for constructing an («: w?, »)-eliminator from any given («, #)-
eliminator. We must go through the following procedure.

(X) Suppose {Um}m<w IS an increasing sequence of ordinals whose limit is
4 (where there is a concrete method for obtaining u,, for each m), and suppose
£m 1S @ um-eliminator. Then the g defined as follows is a u-eliminator. Suppose
ag > a; > ... is a concretely given sequence. 1f a, is written as a(; + ¢,
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where a is the y-major part of a,, then there exists an m for which ¢, < w*™;
so we may assume that each a; is written as a; + ¢;, where 4] is the Um-major
part of a;. Then g,, can be applied to the sequence a5 > a; > ... and hence
it concretely produces a u,,-sequence

bio > b1y >b1p > ... )]

satisfying (i) and (ii) above (with g, in place of «), with 6,4 = a(;, so that in
fact by is the y-major part of ay,. Write by = by,.

Now consider the sequence by, > by, > ... . Suppose b;; = w*. Then
repeat the above procedure: i.e., for the sequence (1), write by = b;o + ¢10,
where b;o is the u-major patt of by4. Then there exists an m, such that ¢;¢ << "™,
So apply g, to the sequence by; > by5 > b3 > ..., to obtain a u,, -sequence

bar > bgg > b3 > ...

satisfying (i) and (ii) (with u,,, in place of &), with by, the y-major part of b,,.
Put b, = byy. Suppose bys = w*. Then repeat this procedure with the sequence
bas > by > ... to obtain a sequence

bgo > bgg > bgy > ...,
and put b, = b3,. Continuing in this way, we obtain a u-sequence
bo > by > by > ... .

If this sequence is finite with last term (say) b, = b, ;, then it follows that
in the sequence
biii > brerar > bipraae > oo (@)

we must have b, ;.1 < ©* S0 b1 ;. < "™ for some m’. Apply g, to the
sequence (2); we then obtain a finite p,,-sequence with only the term 0;
hence the sequence (2) is finite (by definition of u,,-eliminator); hence the
sequence b; ; ; > b, > ... is finite; and so on (backwards), until we deduce
that the original sequence a; > a, > ... Is finite. .

(XT) Suppose {m}m<w1s a sequence of ordinals whose limit is 4 and suppose,
for each m, a (4m, 7 + 1)-eliminator is concretely given. Then we can define
a (u, n + 1)-eliminator g as follows. The definition is by induction on #. For
n=0(on + 1= 1), (X)applies. Assume (XI) for #; so there is an operation
k, such that for any sequence {y,,}m <., With limit y and any (y,,, #)-eliminator
&> ko applied to g,'” concretely produces a (p, #)-eliminator. Now for # + 1,
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suppose a sequence {f,}n <, With limit § and an («, #)-eliminator p are given.
Since g,, is @ (B, # + 1)-eliminator, it produces concretely an (o- w’m, n)-
eliminator from p, which we denote by g,.(p). So, by taking « - w”m for Voo
gn(p) for g,:n and a - w® for y, we can apply the induction hypothesis; thus
k,, applied to {g,} defines an (« - ?, #)-eliminator ¢. This procedure for defin-
ing g from p is concrete, and so serves as a (f, # + 1)-eliminator.

(XIT) Suppose g is a (u, n + 1)-eliminator. Then we will construct a
(4w, n + 1)-eliminator. In virtue of (XI) it suffices to show that we can
concretely construct (from g) a (u-m, n 4+ 1)-eliminator for every m < w.
Suppose an («, #n)-eliminator, say f, is given. Note that

o Wt = a ot wf L ot
Since g is a (i, # + 1)-eliminator, g concretely constructs an («x- w*, #)-
eliminator from f, which we denote by g(f). Now apply g to this, to obtain an
(o w* + w*, n)-eliminator g(g(f)). Repeating this procedure m times, we obtain
the (« - w*™, n)-eliminator g(g(... g(f)...)).

(XIIT) We can now construct a (1, m 4+ 1)-eliminator for every m = 0.
The construction is by induction on m. We may take M; as a (1, I)-eliminator.
Form > 0, suppose } is an (e, m)-eliminator. Then, by (XII) (with# 4 1 = m),
we can construct an (« + w, m)-eliminator concretely from f. Hence we have a
(1, m + 1)-eliminator.

(XIV) Conclusion: An («, n)-eliminator can be constructed for every « of
the form w,,, i.e.,

w

The construction is by induction on m. If m = 0, then we define « to be
1 = @® Then an (a, #)-eliminator has been defined in (XIII) for every n.
Suppose f is a (1, #)-eliminator, and g is an («, # -+ 1)-eliminator, which we
assume to have been defined. Then g operates on f and produces the required
(1- % n) = (w* #n)-eliminator. This completes the proof.

Our standpoint, which has been discussed above, is like Hilbert’s in the
sense that both standpoints involve “Gedankenexperimente” only on
clearly defined operations applied to some concretely given figures and on
some clearly defined inferences concerning these operations. An a-eliminator
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is a concrete operation which operates on concretely given figures. A (8, 2)-
eliminator is a concrete method which enables one to exercise a Gedanken-
experiment in constructing an o - wf-eliminator from any concretely given
a-eliminator. So if an ordinal, say wy is given, then we have a method for
concretely constructing an w,-eliminator.

We believe that the most illuminating way to view the consistency proof of
PA, to be described in §12, is in terms of the notion of eliminators, as described
above. (In fact, it is not difficult to generalize this notion, so as to include,
say, the concept of (a, w)-eliminator, and so on; however, this is unnecessary
for the consistency proof for PA.)

The ideas we have presented are normally formulated in terms of the
notion of accessibility. It may be helpful to reformulate our ideas in terms
of this notion, which (we believe) is a rough but convenient way of expressing
the idea of eliminators.

We say that an ordinal g is accessible if it has been demonstrated that
every strictly decreasing sequence starting with u is finite. More precisely,
we consider the notion of accessibility only when we have actually seen, or
demonstrated constructively, that a given ordinal is accessible. Therefore
we never consider a general notion of accessibility, and hence we do not define
the negation of accessibility as such. If we mention “‘the negation of accessibil-
ity”’, it means that we are concretely given an infinite, strictly decreasing
sequerce.

First, we assume we have arithmetized the construction of the ordinals
{less than &) given by clauses O 1-0O 3. In other words, we assume a Godel
numbering of these (expressions for) ordinals, with certain nice properties:
namely, the induced number-theoretic relations and functions corresponding
to the ordinal relations and functions =, <, 4, -, and exponentiation by w
{(which we will often continue to denote by the same symbols) are primitive
recursive; also we can primitive recursively represent any (Godel number
of an) ordinal in its normal form, and hence decide primitive recursively
whether it represents a limit or successor ordinal, etc. The ordering of the
natural numbers corresponding to < (on the ordinals) will be called a
“standard well-ordering of type &,”’, or just “‘standard ordering of ¢,”.

Our method for proving the accessibility of ordinals will be as follows.
(We work with our standard well-ordering of type &g.)

(1) When it is known that y; < ps << ps ... — v (i.e., v is the limit of the
increasing sequence {u,}) and that every u,; is accessible, then » is also
accessible.
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(2) A method is given by which, from the accessibility of a subsystem, one
can deduce the accessibility of a larger system.

(3) By repeating (1) and (2), we show that every initial segment of our
ordering is accessible, and hence so is the whole ordering.

The fact that every decreasing sequence which starts with a natural number
is finite can be proved as in (I) above.

Let us proceed to the next stage: decreasing sequences of ordinals less
than w + w. Here we can again see that every decreasing sequence terminates.
This is done as follows. Consider the first term pg of such a sequence. We can
effectively decide whether it is of the form » or of the form w + #, where =
is a natural number. If it is of the form %, then it suffices to repeat the above
argument for natural numbers. If it is of the form w + #, consider the first
n + 2 terms of the sequence

gy < oo < e < g << Hho.

It is easily seen that u,.; cannot be of the form w + m for any natural
number » and hence must be a natural number, so we now repeat the proof
for natural numbers. This method can be extended to the cases of decreasing
sequences of ordinals less than w - #, less than w?, less than w®, etc.

A more mathematical presentation of this idea now follows.

Lemma 11.1. If p and v are accessible, then so is y + .

Proor. We just generalize the proof that w + w is accessible and make use
of the following fact which is easily seen: given ordinals u, &, » such that
u < & < v, we can effectively find a », such that vy <vand & = u + .

LemMma 11.2. If y is accessible, thén S0 1S U+ w.

Proor. We use the following fact, which is easy to show: if » < u- w, then
we can find an » such that » < p-#.

With these lemmas, let us prove that all ordinals less than g, are accessible.
First we introduce the technical term: “n-accessible”’, for every #», by induction
on #.

DEFINITION 11.3. 4 is said to be 1-accessible if u is accessible. y is said to be
{(n + 1)-accessible if for every » which is n-accessible, ¥ - w* is n-accessible.
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It should be emphasized that “» being n-accessible”” is a clear notion only
when it has been concretely demonstrated that » is n-accessible.

Lemma 11.4. If p is n-accessible and v < u, then v is n-accesstble.

LemMa 11.5. Suppose {u,} is an increasing sequence of ordinals with limit .
If each p., is n-accesstble, then so is .

LEMMA 11.6. If v s (n + 1)-accessible, then so is v+ w.

Proor. We must show that for any #-accessible u, u - w*'* is n-accessible. For
this purpose it suffices to show that u- "™ is n-accessible for each m (cf.
Lemma 11.5). This is, however, obvious, since

protm=p () =p ... 0
and v is (n + 1)-accessible.
ProposiTioN 11.7. 1 ¢s (n -+ 1)-accessible.

ProoF. Suppose u is n-accessible. Then by Lemma 11.6, p:w = p- w! is
n-accessible, which means by definition that 1 is (n 4 1)-accessible.

DEFINITION 11.8. wg = 1; @,,1 = 0"
ProposiTioN 11.9. w, s (n — &)-accessible for an arbitrary n > k.

ProorF. By induction on %. If 2 = 0, then w, = 1 and hence is n-accessible
for all » (cf. Proposition 11.7). Suppose w,, is (# — k)-accessible. Since 1 is
[# — (k 4+ 1)]-accessible, 1+ w* is [n — (k 4 1)]-accessible by Definition 11.3,
ie., Wx,q I8 [# — (kB + 1)]-accessible.

As a special case of Proposition 11.9 we have:
ProrosiTION 11.10. w, s accessible for every k.

Given any decreasing sequence of ordinals (less than ¢g), there is an w, such
that all ordinals in the sequence are less than w,. Therefore the sequence must
be finite by Proposition 11.10. Thus we can conclude:

ProposiTiON 11.11. g, ¢s accessible.
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An important point to note is this. Our proof of the accessibility of ¢, (by the
method of eliminators, (I)-(XIV), or by the method of Proposition 11.11)
depends essentially on the fact that we are using a standard well-ordering
of type g, for which the successive steps in the argument are evident. Of
course this is not so for an arbitrary well-ordering of type &, nor for the
general notion of well-ordering or ordinal.

Comparison of our standpoint with some other standpoints may help one
to understand our standpoint better. First, consider set theory. Our stand-
point does not assume the absolute world as set theory does, which we can
think of as being based on the notion of an “infinite mind”. It is obvious
that, on the contrary, it tries to avoid the absolute world of an “‘infinite mind”
as much as possible. It is true that in the study of number theory, which does
not involve the notion of sets, the absolute world of numbers 0, 1, 2,... is
not such a complicated notion; to an infinite mind it would be quite clear
and transparent. Nevertheless, our minds being finite, it is, after all, an
imaginary world to us, no matter how clear and transparent it may appear.
Therefore we need reassurance of such a world in one way or another.

Next, consider intuitionism. Although our standpoint and that of intui-
tionism have much in common, the difference may be expressed as follows.

Our standpoint avoids abstract notions as much as possible, except those
which are eventually reduced to concrete operations or Gedankenexperimente
on concretely given sequences. Of course we also have to deal with operations
on operations, etc. However, such operations, too, can be thought of as
Gedankenexperimente on (concrete) operations.

By contrast, intuitionism emphatically deals with abstract notions. This
is seen by the fact that its basic notion of “‘construction’” (or “proof”) is
absolutely abstract, and this abstract nature also seems necessary for its
impredicative concept of “implication”. It is not the aim of intuitionism to
reduce these abstract notions to concrete notions as we do.

We believe that our standpoint is a natural extension of Hilbert’s finitist
standpoint, similar to that introduced by Gentzen, and so we call it the Hilbert-
Gentzen finitist standpoint.

Now a Gentzen-style consistency proof is carried out as follows:

(1) Construct a suitable standard ordering, in the strictly finitist standpoint.

(2) Convince oneself, in the Hilbert-Gentzen standpoint, that it is indeed

a well-ordering.
(3) Otherwise use only strictly finitist means in the consistency proof.
We now present a consistency proof of this kind for PA.
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§12. A consisteney proof of PA

We assume from now on that PA is formalized in a language which includes
a constant f for every primitive recursive function /. We call this language L.

As initial sequents of PA we will also take from now on the defining equa-
tions for all primitive recursive functions, as well as all sequents - s = {,
where s, t are closed terms of L denoting the same number, and all sequents
s = t —, where s, ¢ are closed terms of L denoting different numbers.

We shall follow Gentzen’s second version of his consistency proof for first
order arithmetic. This involves a ‘‘reduction method”. Since this method
will recur often, we shall abstract the concept here. (We assume that the
ordinals less than e, are represented as notations in a fixed standard well-
ordering, as described in §11.)

First, suppose that ordinals less than ¢, are effectively assigned to proofs.
Now let R be a property of proofs such that:

(*) For any proof P satisfying R, we can find (effectively from P) a proof P’
satisfying R such that P’ has a smaller ordinal than P.

We can then infer from (*), and the accessibility of g;:
(**} No proof satisfies R.

The procedure of finding (or constructing) P’ from P in (¥*) is called:
a reduction of P to P’ (for the property R).

The property R of proofs that we will be interested in, is the property of
having — as an end-sequent.

By giving a uniform reduction procedure for this property (Lemma 12.8),
we will have shown (by (*¥)) that no proof of PA ends with —; in other
words:

THEOREM 12.1. The system PA is consistent.

Of course the importance of this theorem exists in its proof, which, apart
from the assumption of the accessibility of &, is strictly finitist. (Nobody sus-
pects the consistency of Peano arithmetic!)

Theorem 12.1 follows from Lemma 12.8 (as just stated)}. First, we need:

DEerrNiTION 12.2. A proof in PA is simple if no free variables occur in it, and
it contains only mathematical initial sequents, weak inferences and
inessential cuts.
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(Recall that a weak inference is a structural inference other than a cut.
Cf. §9 for other definitions.)

LemMA 12.3. There ts no simple proof of —.

Proor. Let P be any simple proof. All the formulas in P are of the forms = ¢
with s and £ closed. Note that with the natural interpretation of the constants,
it can be determined (finitistically) whether s = ¢ is true or false (since this
only involves the evaluation of certain primitive recursive functions). A
sequent in P 1s then given the value T if at least one formula in the anticedent
is false, or at least one formula in the succedent is true, and it is given the
value F otherwise. It is easy to see that all mathematical initial sequents take
the value T, and weak inferences and inessential cuts preserve the value T
downward for sequents. So all sequents of P have the value T. But — has the
value F.

DEeFINITION 12.4. (1) The grade of a formula, is (as defined in §5) the number
of logical symbols it contains. The grade of a cut is the grade of the cut formula;
the grade of an ind inference is the grade of the induction formula.

(2) The height of a sequent S in a proof P (denoted by 4(S; P) or, for short,
h(S)) is the maximum of the grades of the cuts and ind’s which occur in P
below S.

Prorosition 12.5. (1) The height of the end-sequent of a proof 1s 0.
(2) If Sy s above Sy in a proof, then h(S1) 2= h(Ss};if S; and Sy are the upper
sequents of an inference, then h(S,) = h(S,).

Before defining the assignment of ordinals to proofs, we introduce the
following notation. For any ordinal « and natural number %, w,(«) is defined
by induction on #; wo(a) = &, w,1(a) = W), So

DerINITION 12.6. Assignment of ordinals (less than ) to the proofs of PA.
First we assign ordinals to the sequents in a proof. The ordinal assigned to
a sequent S in a proof P is denoted by o(S; P) or o(S). Now suppose a proof P
is given. We shall define o(S) = o(S; P), for all sequents S in P.
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We shall henceforth assume that the ordinals are expressed in normal
form (cf. §11). If u and » are ordinals of the form w* 4 w* + ... + "
and @™ + " + ... + @' respectively (so that p; > ps > ... > u, and
¥1 = vy = ... = v,), then u § v denotes the ordinal w* + w* + ... -+ wam“‘,
where {4y, 4s,. .., Ay} = {801, o, -, v, ve,. . and A, 2 2 00 = A,
w1 $ v is called the natural sum of y and ».

(1) An initial sequent (in P} is assigned the ordinal 1.

(2) If S is the lower sequent of a weak inference, then o(S) is the same
as the ordinal of its upper sequent.

(3) If S is the lower sequent of A :left, v :right, D:left or an inference
involving a quantifier, and the upper sequent has the ordinal g, then o(S) =
u+ 1

(4) If S is the lower sequent of A :right, v : left, or 2 : left and the upper
sequents have ordinals g and », then o(S) = u §».

(6) If S is the lower sequent of a cut and its upper sequents have the
ordinals g and », then o(S) is w,_,(u § 7), i.e.,

Pl

k—1,
w

where £ and / are the heights of the upper sequents and of S, respectively.

(6) If S is the lower sequent of an ind and its upper sequent has the ordinal
W, then o(S) is w1 (g + 1), 1e,,

wu,+l
(B —10+1,
)

where ghasthenormalformew* 4 w** 4 ... 4- o'r (sothatu; = pe > ... 2= ty),
and k and ! are the heights of the upper sequent and of S, respectively.

(7) The ordinal of a proof P, o(P), is the ordinal of its end-sequent.

We use the notation

L

to denote a proof P of I' — 4 such that o(I" - 4; P) = o(P) = pu.
LEmMMA 12.7. Suppose P is a proof containing a sequent S, theve is no ind below

S,, Py is the subproof of P ending with Sy, P; is any other proof of Sy, and P’
is the proof formed from P by replacing Py by Pllz
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’

P: Pl{ S1 P Pl{Sl
Suppose also that o(Sy; P) < o(Sy; P). Then o(P’) < o(P).

Proor. Consider a thread of P passing through S;. We show that for any
sequent S of this thread at or below S :if S’ is the sequent “corresponding to”
S in P’, then

* o(S"; P') < o(S; P).

This is true for S = S, by assumption, and this property (¥) is preserved
downwards by all the inference rules, as can be checked. (We use the fact that
thenatural sumisstrictly monotonicineachargument,ie.,a <<= afy < £y,
etc.) Finally, letting S be the end-sequent of P, we obtain the desired con-
clusion.

This lemma is used repeatedly in the consistency proof.

Now let R be the property of proofs of ending with the sequent —; i.e,,
for any proof P, R(P) holds if and only if P is a proof of —.

Notice first that if P is a proof of —, then every logical inference of P is
implicit! (cf. Definition 9.7} (since otherwise a bundle containing the principal
formula of this inference would end with an end-formula).

Hence the definition of end-piece for such proofs can be simply stated as
follows.

The end-piece of a proof of — consists of all those sequents that are
encountered as we ascend each thread from the end-sequent and stop as soon
as we arrive at a logical inference. (Then the upper sequent of this inference
no longer belongs to the end-piece, but the lower sequent, and all sequents
below it, do.) This inference belongs to the boundary.

Lemma 12.8. If P is a proof of —, then theve is another proof P’ of — such that
o{P) < o(P).

Proor. Let P be a proof of —. We can assume, by Proposition 9.8, that P is
regular. We describe a “reduction’ of P to obtain the desired P’. The reduction
consists of a number of steps, described below. Each step is performed,
perhaps finitely often (as will be clear), and at each step, we assume that the
previous steps have been performed (as often as possible).
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At each step, the ordinal of the resulting proof does not increase, and at
least at one step, the ordinal decreases.

Step 1. Suppose the end-piece of P contains a free variable, say a, which
is not used as an eigenvariable. Then replace a by the constant 0. This results
in a proof of — (using the analogue of Lemma 2.10 for PA), with the same
ordinal.

Step 1 is performed repeatedly until there is no free variable in the end-
piece which is not used as an eigenvariable.

Step 2. Suppose the end-piece of P contains an ind. Then take a lowermost
one, say I. Suppose [ is of the following form:

Pola) {F(al, re @)

F), I >4, F(s) ’

—>

where Py(a) is the subproof ending with F(a), I" - A4, F(a’), and let / and & be
the heights of the upper sequent (callit S) and the lower sequent (call it Sy) of I,
respectively. Then

0(So) = wii{py + 1),

where u = o(S) = o* + w** + ... + & and p, < ... < pp < py. Since
no free variable occurs below I, s is a closed term and hence there is a number
m such that — s = is PA-provable without an essential cut orind (cf. Lemma
9.6); hence there is a proof Q of F(m) — F(s) without an essential cut or ind
(cf. Lemma 9.6). Let Py(#) be the proof which is obtained from P, by replacing
a by # throughout. Consider the following proof P’.

Py(0) Po(I) _
Po(2)
S, F(0), A, FO)y F(), T -4, F0")
S, F(0), ' > 4, F(0) F(0), I" — 4, F{0'")
S, F(0), T > A, F0")
S, F(©), I —A, Fm) F(m) > Fls)
Se F(0), I - A, F(s)

-
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where Sj, So,..., S¢ denote the sequents shown on their right, S;,..., S,
all have height /, since the formulas F(#), n = 0,..., m, all have the same
grade. Therefore,

o(F#A), ' > A, F(#'); Py =u for n=01,..,m

Since @ has no essential cut or ind, o(F(m) — F(s); P') = q (say) < o,
0{Se) = i u;0(Ss) =pufpufpu; ,..., and in general, writing px*xn =
uiuf. .. funtimes), ofS,) = uxnforn =12,..., m Thus

0(So) = w,x(p*xm + q)
and u * m + g < w**1, since ¢ << w. Therefore
0(Soi P') = wrslpe # 1 + ) < wnylpr + 1) = 0(So; P).

Thus 0(Sg; P') < 0(Sy; P), and hence by Lemma 12.7, o(P") < o(P).

Thus, if P has an ind in the end-piece, we are done: we have reduced P to
a proof P’ of — with o(P’) << o(P). Otherwise, we assume from now on that
P has no ind in its end-piece, and go to Step 3.

Step 3. Suppose the end-piece of P contains a logical initial sequent D — D.
Since the end-sequent is empty, both D’s (or more strictly, descendants of
both D’s) must disappear by cuts. Suppose that (a descendant of) the D in the
antecedant is a cut formula first (viz. in the following figure a descendent of
the D in the succedent of D — D occurs in ).

D ~>D

I'>AD DI-SE
S TIHSAE '

P is reduced to the following P’:
r>aDp

weakenings and exchanges

S’ rmn-a4.:x2

—

Then o(S’; P’) < o(S; P). (This is to be expected, since the ordinal of a proof
is a measure of its complexity, and the subproof of S’ in P’ is clearly simpler
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than the subproof of S in P. However, the proof is not trivial, since the height
of I' - A, D and of sequents above it may drop if the grade of D is greater
than 4(S; P). The proof uses the inequality w* # w® < w** for «, f# # 0.)

Hence, by Lemma 12.2, o(P’) < o(P).

The other case is proved likewise.

So, if the end-piece of P contained a logical initial sequent, we have found a
P’ as desired. Otherwise, we assume from now on that the end-piece of P con-
tains no logical initial sequents, and go on to Step 4.

Step 4. Suppose there is a weakening in the end-piece of P. Then we shall
define a ““‘weakening elimination”. It is actually convenient to define this
weakening elimination for proofs P which satisfy the conclusion of steps 1-3
(i.e., their end-piece contains no free variables other than eigenvariables,
no ind, and no logical initial sequent), but with the end-sequent possibly non-
empty. Let P be such a proof. We define another such proof P* which satisfies
the further conditions that its end-piece contains no weakenings, its end-
sequent is obtained from that of P by eliminating some (possibly none) of its
formulas, and o(P*) < o(P). In particular, if P is a proof of —, then so is P*.

P*is obtained by eliminating all the weakenings in the end-piece of P. The
definition of P* is by induction on the number of inferences in the end-piece
of P.

(1) If the end-piece of P does not contain any weakening, then P* is P.

Suppose the end-piece of P contains a weakening. We define P* according
to the last inference I of P.

We use the following notation below. I'*, A*, etc. will denote throughout
sequences of formulas formed from I, A, etc. (respectively) by deleting some
formulas (possibly none).

(2) I is a weakening : left.

-4

d D, I' -4

Let P’ be the subproof of P ending with the upper sequent of 1. By the induction
hypothesis, P'* is defined. Take P'* as P*.

If I is a weakening : right, then P* is defined similarly.

(3) I is a cut. Suppose P is of the form

nlrian Pons
rin-a4 '

By the induction hypothesis, P* and P, have been defined.
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(3.1) The end-sequent of P is I'* — A*. Then P* is P},

(3.2) If (3.1) is not the case but the end-sequent of Py is IT* — A*, then
P*is Pf.

(3.3) If the end-sequent of P)¥ is I'* — A*, D and that of P, is D, [T* — A*,
then P* is

Py {I’*"';"A*,D P {D,H*";A*
T* IT* — A%, A% .

(4) I is a contraction : left.

Py {D, D, I

D, I'~4"
By the induction hypothesis, P; is defined.
(4.1) The end-sequent of Py is D, I'* — A% or I'* — A* Then P* is P .
(4.2) The end-sequent of P*is D, D, I'* — A%, P* is defined to be

Py{p b e e
D, T'* > A%"

1f I is a contraction : right; similarly.
(6) I is an exchange : left. Suppose P is of the form:

Po {I’l, ¢, D, T, >A
T DCT,oA

By the induction hypothesis, Py is defined.
(5.1) The end-sequent of Py is I'f, Iy —»A* orI'Y,C, IV —A4* or
'}, D, I} — A Define P* to be Py .
(5.2) The end-sequent of Py is I't', C, D, I'y — A*. P* is defined as

I*,C,D, It 5 A%
*D,C T >4

Similarly if I is an exchange : right.

This completes the definition of P*. It is easily seen that o(P*) < o(P).
So (returning to the case where P is a proof of —) we assume from now on
that the end-piece of P has no weakening (by replacing P by P*).
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Step 5. We can now assume that P is not its own end-piece, since otherwise
it would be simple (Definition 12.2}, as is easily seen, and hence by Lemma 12.3,
could not end with —.

Under these assumptions, we shall prove that the end-piece of P contains
a suitable cut (cf. Definition 9.7). We actually prove a stronger result, which
is used again later (for Problem 12.11):

SusLEMMA 12.9. Suppose that a proof in PA, say P, satisfies the following.
(1) P is not its own end-piece.
(2) The end-piece of P does not contain any logical inference, ind or weakening.
(3) If an instial sequent belongs o the end-piece of P, then it does not contain
any logical symbol.
Then there extists a suitable cut in the end-piece of P.

{Notice that we do not assume here that the end-sequent is —.)

Proor. This is proved by induction on the number of essential cuts in the
end-piece of P. The end-piece of P contains an essential cut, since P is not
its own end-piece. Take a lowermost such cut, say I. If I is a suitable cut, then
the sublemma is proved. Otherwise, let P be of the form

Py {F»A p P {D, 1o .

g I i—-44

Since I is not a suitable cut, one of two cut formulas of I is not a descendent
of the principal formula of a boundary inference. Suppose that Din I" —~ A4, D
is not a descendent of the principal formula of a boundary inference. Now
we prove:

(i) P; contains a boundary inference of P.

Suppose otherwise. Then D in I" —~ 4, D is a descendent of D in an initial
sequent in the end-piece of P, by (2). This contradicts the assumption that I
is an essential cut, by (3).

(ii) If an inference J in P, is a boundary inference of P, then [ is a boundary
inference of P;.

This is easily seen by the fact that I is a lowermost essential cut of P and
D is not a descendent of the principal formula of a boundary inference.

(iii) P; is not its own end-piece and the end-piece of P, is the intersection
of P; and the end-piece of P.
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This follows immediately from (i), (ii) and (1).
Now from the induction hypothesis, the end-piece of P, has a suitable
cut. This cut is a suitable cut in the end-piece of P.

Returning to our proof P of — which satisfies the conclusion of steps 14,
we have, as an immediate consequence of Sublemma 12.9, that the end-piece
of P contains a suitable cut. We now define an essential reduction of P.

Take a lowermost suitable cut in the end-piece of P, say I.

Case 1. The cut formula of 7 is of the form A A B. Suppose P is of the form

ried Iae.B AT A

h "0 ArE 't ANBIT S
, T50,4.B ANBII %A ()
rT—~64
ALE W

where 4 — 5 denotes the uppermost sequent below I whose height is less than
that of the upper sequents of I. Let / be the height of each upper sequent
of I, and & that of 4 — 5. Then k < . Notice that A — Z may be the lower
sequent of I, or the end-sequent. The existence of such a sequent follows from
Proposition 12.5.

A — E must be the lower sequent of a cut J (since there is no ind below I).
Yet u =0l -0, AAB), v=0A4ABIl >A), 2 =o0(d - E) as shown.
Consider the following proofs:

P, I'5>e 4
T 46
54,0478

(weakening : right)

I's4,8, AnB AABI%A ()

J1 Il —~4,68,4

AS A4 E

4 ~E 4

(m)
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P,: AT > A
ma-Aa

ANBIT, A4 (weakening : left)

I'™0,ArAB AABILAXA ()

J2 Il 4A-6,4
AArs
4453 ™

(where [ and m are the heights of the sequents shown, not in P, and P,, but
in P’, defined below, which contains these as subproofs.)
Define P’ to be the proof:

P, P,
"1"“’—. Ea
354 3£
r 4 : (m) p 4,4 (m) (cut for A4)
4,455 5 (k)
4~

So m is the height of the upper sequents of I’ (the cut for 4). Note that the

height of the lower sequent of I is k.
It is obvious that m = & if 2 > grade of 4 and m = grade of A otherwise.

In either case 2 << m < [.
k(F——)A,@,AI\BIPI) =h(A AB,H —)A’P') ._—.l,

since all cut formulas below I in P occur in P’ below J;, all cut formulas
below J; in P’ except A occur in P under I, and grade of 4 < grade of

A A B < I. Similarly,
M —~©,ANB;P)=hAABIA—~AP)=1L
Let
pr=0I">A,0,ArB;P), v, =0AABIl -A;P'), A =0d—-4,EP),
up =0l 0,4 A B; P}, vg = 0(d A B/ II,A - A4; P,
Ao =0(d, A - E; P, Ao =o0d,4 -5 Z;P).

Then p; < u, vy = v, g = pand v, < 7.
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Now let
’ Si (kl)
J *S/

(k2)

be an arbitrary inference between J; and 4 — 4, 5 and let

@

;5SS

be the corresponding inference between I and 4 — 5. Let

a = 0(S;; P,  ag=0(Sy; P), o =o(S;P),
o = o(Sy; P), o = (Sq, P), @ = o(S; P),
ki = h(S;, P') = h(S,, P"), ks = h(S’, P).

Theno = a; $opif Sisnotd — A, Z,anda = w,_,(a; Foo)if S"isA -4, 5.
On the other hand o' = wy_y (o # o0).

Starting with u, < u and », = », it is easily seen by induction on the number
of inferences between [, and S that

o < wz—k,(“)' (1)

if Sisnot A — A4, E. Let 4 = w,_(x). Then (1) implies that 4; < w;_,,(k).
Similarly, 1, < w,_,,(x). Hence

WAy + A2) < wy_glse),

since | — k = ({ — m) + (m — k). Therefore 2y < A. Finally, from 1, < 4
it follows that o(P’) < o(P).
Case 2. The cut formula of I is of the form Vx F(x). So P has the form:

I 56, Fla) Fis), [T > A

5 I' ~@,¥x F(x) Iy Vx F(x), II" - A’
, 1 =0,¥:F) Vx F(x), [T > A
I =64
A58

—
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The definition of A — = is the same as in case 1. The proof P’ is then defined
in terms of the following two subproofs P, and P,:
Py I 6,y
RYIEN
I" - F(s), O, Vx F(x)

Vx F(x), IT', F(s) - A’

IS0 Ve Fx)  VxF), 11, F(s) > A
1T, Fis) = 6,4 :

A F(s) > 5
F(s),4 - &£

P’ is defined to be

Lo

Note that o(I" — ©', F(s); P') = o(I" - &', F(a); P). The argument on ordi-
nals goes through as in case 1.

For the other cases, the proof 1s similar.
This completes the proof of Lemma 12.8 and hence the consistency proof

for PA (Theorem 12.1).

ReMARK 12.10. We wish to point out the following. One often says that the
consistency of PA is proved by transfinite induction on the ordinals of proofs,
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as if we were using a general principle of transfinite induction in order to
prove the consistency of mathematical induction.

This is misleading, however. The point is that the consistency proof uses
the notion of accessibility of g, as explained in §11, and otherwise strictly
finitist methods. To re-state the matter from a more formal viewpoint:

The principle of transfinite induction on some (definable) well-ordering <
of the natural numbers can be expressed (in first-order formal systems) by
the schema

TI(<, F(x)): Vx (Vy (v < x D F(y)) D F(x)] —Vx F(x)

for arbitrary formulas F(x) of the system considered.

Now Gentzen'’s consistency proof of PA can be formalized in the system
of primitive recursive arithmetic, together with the axiom TI{<, F(x)),
where < is the standard well-ordering of type g and F(x) is a certain
quantifier-free formula.

ProBLEM 12.11. We can extend the reduction procedure of Lemma 12.8 to
the following situation.

A sequent S (of the language of PA) is said to satisfy the property P if:

(1) All sequent-formulas of S are closed;

{2) Each sequent-formula in the succedent of S is either quantifier-free or
of the form 3yy,. .., Iy, R(Y1,- - -, Ym), Where R(y,,. . ., ¥,,) is quantifier-free;

(3) Each sequent formula in the antecedent of S is either quantifier-free or
of the form Vyy,. .., V¥ R(¥1,- - -, Ym), Where R(yy,. . ., ¥,,) is quantifier-free.

Show that if a sequent satisfying P is provable in PA, then it is provable
without an essential cut or ind. [Hint: We may assume that there is no free
variable which is not used as an eigenvariable in the end-piece of a proof of
such a sequent.]

If the end-piece has an explicit logical inference, take the lJowermost explicit
logical inference 1. Without loss of generality, we assume that the proof is
of the following form:

T'5A 3y, 3y RE Yare ) Yom)

1
r "’4> 3}’13%" R(yl’ Yo,- s ym)

Ty =40 Iy1. . 3Ym R(V1- -+, Yu), Ay

where I'y — Ao, 3y, ... 3y R(¥1,- - ., ¥m), 4, is the end-sequent of the proof.
We can eliminate I by replacing the proof by a proof whose end-sequent is
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either of the form

FO —’AQ, 3y2 e EymR(t, Vo, ey ym)’Al
or of the form

Iy —>40,3y1 ... 3V R(Y1, - Ym), A1, 32 - By RE you- -+, V)

ProBLEM 12.12. Intuitionistic arithmetic can be formalized as the subsystem
of PA defined by the condition that in the succedent of every sequent there
can be at most one sequent-formula which contains quantifiers. This system
may be called HA (for Heyting arithmetic). The reduction method for PA
works for HA with a slight modification: roughly, in an essential reduction,
if the cut formula of the suitable cut under consideration contains a quantifier
then the weakening : right will not be introduced.

Define the reduction for HA precisely, thus proving the consistency of HA
directly (not as a subsystem of PA).

ProBLEM 12.13. Let (*) be the property of formulas defined in Theorem 6.14,
l.e., a formula satisfies (*) if every v and 3 in it is either in the scope of a —
or in the left scope of a D. Show that, if each formula in [ satisfies (*) and all
formulas in I', A, B and 3x F(x) are closed, then in HA (cf. Problem 12.12):

(1) ' A v Bifandonlyif I' - A or I' - B,

(2) I' - 3x F(x) if and only if for some closed term s, I' — F(s).

[Hint (B. Scarpellini): By transfinite induction on the ordinal of a proof P
of ' > A v B (for 1) or I' — 3x F(x) (for 2), respectively, following the
reduction method for the consistency of PA. First deal with explicit logical
inferences in the end-piece of P.]

ReEmARK 12.14. As an application of Gentzen’s reduction method, one can
easily prove the following.

The consistency of arithmetic in which the induction formulas are restricted
to those which have at most 2 quantifiers can be proved by transfinite
induction on w;q.

The outline of the proof is as follows. Suppose there is a proof of — in this
system. We shall carry out a reduction of such a proof.

(1) We assume that the induction formulas are in prenex normal form.

(2) A formula 4 in a proof (in this system) will be temporarily called free
if either it has no ancestor which is an induction formula, or it has an induction
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formula as an ancestor but a logical symbol is introduced in an ancestor of 4
between any such induction formula and A4 itself. A cut is called free if both
cut formulas are free. Notice that if a formula is not free, then it is in prenex
form with at most 2 quantifiers. Now we can prove the following partial
cut-elimination theorem:

If a sequent is provable in our system, then it is provable without free
cuts.

{We simply adapt the cut-elimination proof for LK.)

Thus we obtain a proof of — in which there are no free cuts, and so all the
cut formulas, as well as induction formulas, are in prenex form with at most
k quantifiers. We assume % >= 1.

(3) Further we can assume, for convenience, that the inference rules are
modified in such a way that all formulas in the proof are in prenex form, with
at most k2 quantifiers.

This system is called PA,.

We must now modify some notions slightly. The grade of a formula A4 is
now defined to be: the number of quantifiers in 4, minus 1; the grade of a
cut or induction inference is the grade of the cut formula or the induction
formula, respectively. The height of a sequent in a proof is defined as before,
using the new definition of grade. The ordinals are assigned as before, except
that the initial sequents are assigned the ordinal 0 and the propositional
inferences as well as quantifier-free cuts are treated in the same manner as
the weak inferences, i.e., the ordinals do not change. (In case there are two
upper sequents, take the maximum of the two ordinals.) It can easily be seen
that the ordinal of a proof (of the kind we are considering) is less than wg(/)
for some natural number /.

A boundary inference is defined to be an inference which introduces a
quantifier and is a boundary inference in the previous sense. A suitable cut
is a cut whose cut formula contains quantifiers and which is suitable in the
previous sense. In eliminating initial sequents from the end-piece, one
eliminates only those which have quantifiers. The existence of a suitable cut
(under certain conditions) can be proved just as before.

(4) In an essential reduction, if the suitable cut is of grade > 0, then we can
proceed as before (Step 5 in the proof of Lemma 12.8). If its grade is 0, then
the cut formula is either of the form Vx F(x) or 3x F{x), where I is quantifier-
free. Let us take the first case as an example. Let I'(s) be the auxiliary formula
of a boundary inference which is an ancestor of the cut formula Vx F(x).
s is a closed term, and so either — F(s) or F(s) — is a mathematical initial
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sequent (with ordinal 0). Suppose — F(s) is a mathematical initial sequent.

Consider the proof:

~F(s)  F(s),II' A
[{/ —*A, a

Ve F(x), T — A

F @ Vx F(x) Vx F(x), I1 —+A
T, H—»@ A

(taking I, Il — ©, A as the sequent 4 — = shown in Lemma 12.8, Step 5).
It is easy to see that the ordinal decreases again.

REMARK 12.15. Here we define an extended notion of primitive recursiveness.
Let < be a primitive recursive well-ordering of natural numbers. The class
of < --primitive recursive functions is defined as the class of functions f
generated by the following schemata:

() fla) = a + 1,

(i) flay,- .-, @) =0,
(ii)) flay,. .., ap) = a; (1 <0 <m),
(iv) flaq,. .., an) = gh(ay,. .., an),. .-, hplay,. .., ay,)),
where g and 4;(1 < ¢ <{ m) are <--primitive recursive.
(V) f(or ag,. . . )an) :g(ﬂg,...,ﬂ"),
Hat 1 ag. .., a) = ha fla, ag,. ... a,), az,. .., ),

where g and % are <(--primitive recursive.
(vi) (Definition by <C--recursion.)

Mi(tlag,. .., ay), 42, . ., @y), 1, .., &y)
Haq,. .., a,) = it tlay,. .., a,) < aq,

glay,. .., a,) otherwise,

where g, & and T are <--primitive recursive.
The idea of (vi) is that f(a, as,. . ., a,) is defined either outright or in terms

of (b, ay,. . ., a,) for certain b <- a.
The consistency proof for PA, which has just been presented has the

following application.
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COROLLARY 12.16. Suppose R is a primitive recursive predicate and there is a
proof of — Ix R{a, x) in PA,, with ordinal < wy(l) for some numbers k and !
(as defined just above Definition 12.6). Then the number-theoretic function f
defined by

fim) = the least n such that R{m, n)

1§ < --primitive recursive, where <<- 18 the initial segment of the standard ordering
of &g, of order type w,(l).

Proor. We divide the proof into steps.

(i) Let P(a) be a proof in PA; of — Jx R(a, x) (where all occurrences of a
are indicated). Then for all m, P(m) is a proof in PA, of — Jx R(, x) with
the same ordinal, and with Godel number primitive recursive in #. Also note
that — 3x R(#, x) satisfies property P of Problem 12.11.

(ii) We {temporarily) call a proof reducible if it is a proof in PA,, with
ordinal << w,(l), containing an essential cut or ind, and with end-sequent
satisfying P. If P is reducible, then by applying repeatedly the reduction
procedure of Lemma 12.8 (modified for PA, as in Remark 12.14), we obtain
a proof in PA; of the same sequent, without an essential cut or ind. Let » be the
function such that if  is a G6del number of a reducible proof, then »(2) is
the Gddel number of the proof obtained by applying this reduction procedure
(once), otherwise 7(p) = p. Clearly  is primitive recursive.

Let O be the function such that if p is a Gédel number of a proof in PA,
with ordinal < w,(/), then O(p) is the Godel number of its ordinal (and, say
O(p) = 0 otherwise). Clearly O is primitive recursive. Note also that for all p,
O(r(p)) <+ O(p) < p is the Godel number of a reducible proof.

(iii) Now given a proof P of — Jx R(#, x) without an essential cut or ind, we
can effectively find from P a number » such that R(m, #) holds (and in fact
the least such #). This is done in the following way.

First, we may assume that no free variables appear in P. Hence if I" -» 4
is a sequent in P, every formula in I is a closed atomic formula and every
formula in 4 is either 3x R(#, x) or a closed atomic formula.

Now consider the following property  of sequents: Every atomic formula
in the antecedent is true and every atomic formula in the succedent is false.

Notice that the end-sequent of P satisfies Q; and if the lower sequent of a
cut in P satisfies Q, then so does one upper sequent (since the cut formula
is closed and atomic). Now start to construct a thread of sequents in P
satisfying (), working from the bottom upwards: the end-sequent is in the
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thread, and if the lower sequent of an inference is in the thread, take an upper
sequent which satisfies Q. Since no initial sequent of P satisfies @, this procedure
must stop before we reach an initial sequent. The only way for this to happen
is in the following case:

I' > A, R(m, k)

I — A, 3x R(m, x)

where R(#, k) is true. Finally, take the least » < % for which R(m, n) holds.
Clearly there is a primitive recursive function /4 such that if P is a proof of
— 3x R(#, x) without an essential cut or ind, then A("P™") is the number »
found as above.

(iv) Now we can define a < --primitive recursive function g such that if
P is a proof of — 3x R(s, x) in PA,, with ordinal < w(}), then g("P") =
the least »# such that R(m, #) holds:

{g(f(;b)) it 0((p) < 0(p),

8(p) = h(p) otherwise.

Then it is easily seen that g is <(--primitive recursive function.
(v} Finally, let P(a) be a proof of — 3x R(a, x) in PA,, with ordinal < w,(!)
as stated. Then we define f by:

fim) = g("P(m)").

As a special case of Corollary 12.16 we have: if — Jx R(x, a) is provable
within the system whose induction formulas have at most one quantifier,
then f (defined as above) is primitive recursive (by a theorem of R. Peter
that w'-primitive recursiveness implies primitive recursiveness for any finite [).

§13. Provable well-orderings

In this section, in order to distinguish between the natural ordering of
natural numbers and the order relation on numbers given by the standard
ordering of type &y, we denote the latter by < in this section.

A partial function is a number-theoretic function that may not be defined
at all arguments.

DerINITION 13.1. (1) The class of partial recursive functions is the class of
partial functions generated by the schemata (i)—(vi) for primitive recursive
functions (cf. Definition 10.2), and also the schema:
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(vii) f(xq,..., x,) > uvg(xy,..., X, ¥) = 0], where g is partial recursive,
the right-hand side means the least y such that Vze<<y (g(x5,. .., %, 2)
is defined and # 0) and g(x,,..., %,, ¥) = 0, if such a y exists, and
undefined otherwise; and ~ means that the left-hand side is defined
if and only if the right-hand side is, in which case they are equal.

(2) A general rvecursive or tolal vecursive or recursive function is a partial

recursive function which is ¢ofal, i.e., defined at all arguments.

(3} A relation on natural numbers, say R, is called recursive if there is a
recursive function f which assumes values 0 and 1 only such that R(x,.. ., x,)
holds if and only if f(x,,..., x,) = 0.

(4) A X{-formula of the language L is a formula of the form

Iy (flxy,- o, %0 ) = 0),

f a primitive recursive function symbol. A [7{-formula is similarly of the form

Yy (F(x1,. .., X, ¥) = 0, f primitive recursive.

It can be shown that any recursive relation R can be represented in PA
by a Xi-formula, i.e., there is a X9-formula R(x,,.. ., x,) of the language L
such that, for all m4,. .., m,:

R(m,,. .., m,) holds «> R(s#,,. .., m,) is PA-provable.

(]

Also, any recursive relation can be represented in PA by a I79-formula.

DEFINITION 13.2. Let ¢ be a new predicate constant. L(¢) is the language
extending L {(cf. §12), formed by admitting ¢(¢) as an atomic formula for all
terms ¢£.

PA(¢) is the system PA in the language L{¢); more precisely, we extend PA
by admitting as mathematical initial sequents s = ¢, &(s) — &(¢) for all terms
s, t and applying the rule ind to all formulas of L(g).

DEerFiniTION 13.3. Let <C- be a recursive (infinite) linear ordering of the natural
numbers which is actually a well-ordering. (Without loss of generality we may
assume that the domain of <+ is the set of all natural numbers and the least
element with respect to <<+ is 0.) We use the same symbol <<+ in order to
denote the X7-formula in PA which represents the ordering <-.

Consider the sequent

TI(<): Vx (Vy<<-x (g(y) D (%))} — &(a)
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(cf. the formula TI(<, F(x)) of Remark 12.10). If TI(<") is provable in
PA(g), then we say that <« is a provable well-ordering of PA.

The following theorem is proved by analyzing Gentzen’s proof of the
unprovability of the well-ordering of < (where < was defined at the beginning
of this section).

THeEOREM 13.4 (Gentzen). If <<+ is a provable well-ordering of PA, then theve
exists a recursive function which s a <<+ — < order-preserving map into an
initial segment of «. That 1s to say, there s a recursive function | such that
a < b if and only if f(a) < f(b), and theve 1s an ovdinal pu(<< &) such that for
every a, f{{a) < @ (where i is the Godel number of u).

This section is devoted to Gentzen’s proof, and the arithmetization of it,
which proves Theorem 13.4.
I'rom now on, let <C- be a fixed provable well-ordering of PA.
13.1) First we define TJ-proofs, where TJ stands for “transfinite induction”.
TJ-proofs are defined as PA(e)-proofs with some modifications:
(1) The initial sequents of a TJ-proof are those of PA(e), and the following
sequents, called TJ-initial sequents:

Vi (x < tDe(x)) —elf)

for arbitrary terms ¢.
{2) The end-sequent of a TJ-proof must be of the form

- g(1my),. . ., e(m,),

where #i4,. .., %, are numerals.

Let |m|.. be the ordinal denoted by m with respect to <, i.e., the order
type of the initial segment of < - determined by m. Then the minimum of
M| <.,. .., [my]<. is called the end-number of the TJ-proof.

13.2) Since <¢- is a provable well-ordering of PA, the sequent TI(<)
{Definition 13.3) is PA(g)-provable, and hence we can obtain in the system

formed from PA(e) by adjoining TJ-initial sequents, a proof P(a) of — ¢(a)
(for a free variable a). Note that for each number m, P(#) is a TJ-proof of
— g(im).

13.3) A TJ-proof is called non-critical if one of the reduction steps for PA
(in the proof of Lemma 12.8) which lower the ordinal (i.e., step 2, 3 or 5)
applies to it. Otherwise it is called critical.



118 PEANO ARITHMETIC [cH. 2, §13

13.4) We shall assign ordinals (less than &) to TJ-proofs and define a
reduction for Td-proofs following the reduction method for PA given in the
proof of Lemma 12.8: if a TJ-proof is critical, then more manipulation is
required. The reduction is defined in such a manner that a TJ-proof P with
end-number > 0 is reduced to another with the same end-number if P is not
critical and with an arbitrary end-number which is smaller than the original
one if P is critical. At the same time the ordinal decreases.

13.5) If we can define an ordinal assignment and a reduction method with
the properties stated in 13.4), we can prove:

LeEMMA 13.5 (Fundamental Lemma). For any Td-proof, its end-number is not
greater than its ovdinal.

Proor. By transfinite induction on the ordinal of the proof. Let P be a
Td-proof with ordinal x4 and end-number ¢. We assume as the induction
hypothesis that the lemma is true for any TJ-proof whose ordinal is less than
u# and show that ¢ < u. If P is non-critical then P is reduced to a TJ-proof
P’ with the same end-number ¢ and an ordinal » < u. By the induction
hypothesis ¢ <{ », and hence ¢ <{ u. Now suppose P is critical. If ¢ were
greater than u, we could reduce P to a TJ-proof whose end-number is 4 and
whose ordinal is less than y, contradicting the induction hypothesis.

Now let us proceed to the reduction method for TJ-proofs.

13.6) The ordinals are assigned to the sequents of the TJ-proofs as in §12;
the ordinal of a TJ-initial sequent is 7, i.e., @® 4 ... + «® (7 times). The
lower sequent of a term-replacement inference is assigned the same ordinal
as the upper sequent. For convenience, the formula in the succedent of a
TJ-initial sequent will be considered as a principal formula.

13.7) We can follow the reduction steps given for the consistency proof of
PA up to Step 4 (in the proof of Lemma 12.8), i.e., until we reach a TJ-proof
P with the following properties p 1-p 4.

p 1. The end-piece of P contains no free variable.

p 2. The end-piece of P contains no induction.

p 3. The end-piece of P contains no logical initial sequent.

p 4. If the end-piece of P contains a weakening I, then any inference below

1 is a weakening.

REMARK. Since the end-piece of a TJ-proof is not empty, the end-sequent S’
of the proof obtained from P by eliminating weakenings in the end-piece
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(in Step 4) may be different from the end-sequent of P. In this case we add
weakenings below S’ so that the end-sequent becomes the same as the end-
sequent of P.

13.8) We can easily show the following. Let P be a TJ-proof satisfying
p 1-p 4. Then P contains at least one logical inference (which must be implicit)
or TJ-initial sequent. Therefore the end-piece of P contains a principal
formula at the boundary or in a TJ-initial sequent.

13.9) Let P be a TJ-proof satisfying p 1-p 4. By 13.8), the end-piece of P
contains a principal formula either at the boundary or in a TJ-initial sequent.
We call a formula 4 in the end-piece of P a principal descendant or a principal
TJ-descendant, according as A is a descendant of a principal formula at the
boundary or a descendant of the principal formula of a TJ-initial sequent in
the end-piece of P. _

Note that a principal TJ-descendant in the end-piece of P always occurs
in the succedent cf a sequent, and has the form &(¢).

13.10) Let P be a TJ-proof satisfying p 1-p 4, and S a sequent in the end-
piece of P. If S contains a formula B with a logical symbol, then there exists
a formula A in S or in a sequent above S such that A is a principal descendant
or a principal TJ-descendant.

Proor. Suppose S contains a formula with a logical symbol. Then S is above
the uppermost weakening in the end-piece. The property of sequents, of
containing a logical symbol, is preserved upwards, to one of the upper sequents
of each inference in the end-piece (but not necessarily beyond a boundary
inference), or a TJ-initial sequent, when we follow upward the string to which
S belongs. Notice that B may not be 4, since B may be a descendant of a
formula which is “‘passive” at a boundary inference.

13.11) Let P be a TJ-proof satisfying p 1-p 4 and not containing a suitable
cut. Then its end-sequent contains a principle TJ-descendant.

Proo¥r. It suffices to prove that the end-sequent of P contains a principal
descendant or a principal TJ-descendant, since the end-sequent contains no
logical symbol. Suppose not. Since the end-piece contains a principal descendant
or a principal TJ-descendant by 13.8), let us consider the following property
(P) of cuts in the end-piece of P: A cut in the end-piece of P is said to have
the property (P) if (at least) one of its upper sequents contains such a formula
and its lower sequent contains no such formula. Since the end-piece contains
such a formula, but the end-sequent does not (by assumption), there must be
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such a cut. Let I be an uppermost cut with the property (P) in the end-piece
of P:
I'—A,D D, IT -4

! rif—-a4

Let S, and S; be the left and right upper sequents of I, respectively. By
our assumption one of the cut formulas is a principal descendant or a principal
TJ-descendant. First suppose D in S; has this property. If D contains a
logical symbol, then it is a principal descendant. Then also, S, contains a
formula with a logical symbol (namely D). Therefore, by 13.10), there is a
formula 4 in S, or above it such that A is a principal descendant or a principal
TJ-descendant. If there is no such formula in S,, there must be a cut having
the property (P) above I, contradicting our choice of I. If such a formula 4
1sin Sg, A must be D itself, which contradicts our assumption that P does not
contain a suitable cut. Thus D must be of the form ¢(f). Now suppose S,
contains a logical symbol. Then there exists a principal descendant or a
principal TJ-descendant either in S, or above it. If it is in Sy, it cannot be
D (since D is ¢(¢) and is in the left side of a sequent, it cannot be a principal
TJ-descendant), and so it must also appear in the lower sequent of I, contra-
dicting our assumption that I has the property (P). This means that such a
formula is in a sequent above S but not in S itself, contradicting our assump-
tion that 7 is an uppermost cut with the property (P). Thus S, cannot contain
a formula with a logical symbol. Since 7 is an uppermost cut with the property
(P}, no logical inference at the boundary or TJ-initial sequent in the end-piece
is above S,. Therefore the proof down to S, is included in the end-piece and
no logical initial sequents or TJ-initial sequents occur there and it is impossible
that S, contains &(f}, and so D cannot be (¢). Hence we have shown that D
in S; cannot be a principal descendant or principal TJ-descendant. Next,
suppose that the cut formula in S, is a principal descendant or principal
TJ-descendant. As was seen above, D cannot be a principal TJ-descendant:
D must contain a logical symbol. Hence there is a principal descendant or a
principal TJ-descendant either in S; or in a sequent above S;. If such a
formula is not in S}, there must be a cut having the property (P) above S,
which contradicts our assumption about /. Therefore D in S; must have that
property, since the lower sequent of I cannot contain such a formula. This
again contradicts our assumption that P does not contain a suitable cut.

13.12) Now let P be a critical TJ-proof to which the reduction of Lemma
12.8 has been applied as far as possible (i.e., up to Step 4). Then P satisfies
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p 1-p 4 and does not contain a suitable cut (since it is critical). We define the
notion of critical reduction. By 13.11), the end-sequent of P contains a
principal TJ-descendant, (s,), say, the descendant of a principal formula
£(r) (where the closed term » denotes the number m,). Let m be any number
such that |m|.. is less than the end-number of P. Then # <- 7 is a true -
sentence of PA, and hence the sequent — # <C-7 can be derived from a
mathematical initial sequent of PA (say -» F) by one application of 3 : right.
So we replace the TJ-initial sequent

Vx (¥ << 7 De(x)) - e?)

in P by an ordinary proof in PA(e):

—)F
ol < v () — &)
W < v D g(m) — e(n)
Vx (x <<- 7 De(x)) — ()
Vx (x <7D e(x)) — e(m), elr).

The ordinal of this proof is 6 and is less than that of a TJ-initial sequent
(which is 7). By this replacement and some obvious changes, P is transformed
into a TJ-proof P’ whose end-sequent is

- 8(71_1)7 6(1’7_11), SR E(mn)>

where — g(7;), . . ., £(##,) is the end-sequent of P, and such that the ordinal
of P’ is less than that of P and the end-number of P’ is |m|... We shall refer
to P’ as the proof obtained from P by an application of a critical reduction
at m.

Now suppose P is any TJ-proof (not necessarily critical), and |m|.. is less
than the end-number of P. We shall define what is meant by the proof
obtained from P by an application of a critical reduction at .

If P is critical, the definition is as.above. Otherwise, apply a sequence of
reductions (as in the proof of Lemma 12.8). At each reduction, the ordinal
of the proof decreases, so this process must terminate after a finite number of
steps with a crifical proof satisfying p 1-p 4. Now take the proof obtained
from this proof as above.

13.13) Adjoining the reduction in 13.12) to the previous reductions, and
applying the fundamental lemma in 13.5), we obtain the original form of
Gentzen’s theorem:
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THEOREM 13.6. The order type of < is less than &,.

13.14) Let P(a) be a proof of — ¢(a), obtained as described in 13.2. Let us
define for each number % a TJ-proof P, by induction on %k, where the end-
number of Py is |k|...

(1) The case where Yn<k (n < k). We define P, to be the proof P(k)

obtained from P(a) by replacing a by the numeral & throughout P(a).

(2) The case where In<<k (kR << n). Let

(**) Ny < oo < Myq(= k) <omyq <o oo < my

be the re-ordering of the numbers < & with respect to <-. Then we
define P to be the proof obtained from P,  , by applying a critical
reduction at & (cf. 13.12)). It is obvious that this definition is recursive.
13.15) We now define a map f, which will turn out to be an order-preserving
recursive map as required for Theorem 13.4, by making use of the P,. Define
/(®) by induction on k:
f(0) = wotP,

and for 2 > 0, (&) = f(n,_1) + ”"¥ where o{P) is (the Gédel number of)
the ordinal of P, 4 is (the primitive recursive function representing) addition
of ordinals, w?®is (the primitive recursive function representing) exponentiation
by w, and #;_, is as in (**) (such a number always existing if £ > 0).

13.16) Let my <<*my <~ ... <<-m; be the re-ordering of the numbers
<1 -+ 1 with respect to <-. Then

fm;py) = flm;) + o™ Fmis),

where 0 <{j < 4. This is proved by mathematical induction on 7. For ¢ = 0,
this is trivial. Assume it for 1. For the case of + 4 1, it is sufficient to show
{(with my,. .., m; as above):

16+ 1) = fm,) + oFi+? (1)

and
fm) = 16 + 1) + o Fmid, (2)

wherem; <-7 4 1 <> m;, ;. Here (1) holds by definition of f, and (2) follows from
(1) and f(m;,,) = f(m;) + &’ "™+1 (by induction hypothesis) and o(P,,;) <
O(ij+1) (by definition of P; ;). The second point of Theorem 13.4 is also
easily seen if one puts y = @°P'@)+1 This completes the proof of Theorem
13.4.
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To end this section, another result of Gentzen will be stated. The proof is
straightforward.

THEOREM 13.7. Let <, be the standard well-ordering of g,, restricted to w,.
Then <, is a provable well-ordering of PA.

Kleene’s T-predicate (for unary, i.e., one-argument functions) is a primitive
recursive relation 7 such that for an arbitrary partial recursive function f
(of one argument) there exists a number ¢ for which

f(x) = Uluy Te, %, y))

for all x. (U is a fixed primitive recursive function). Such an e is called a
Godel number of /. The definition can be extended to functions of many
arguments.

If ¢ is the Godel number of a unary partial recursive function, then clearly

f is (total) recursive if and only if Vx 3y T'(e, x, ).

Further, f is called provably recursive (in PA) if it has a Gédel number e such
that Vx 3y T(¢, x, y) is PA-provable. Having discussed the Gédel numbering
of recursive functions, we can now state a problem which should, in its correct
context, actually have been placed in §12. The idea is due to Schiitte.

ProBLEM 13.8. Let PA* be the system obtained by modifying PA as follows.
The language is the same as that of PA; the initial sequents are those of PA;
the rules of inference are those of PA except cut, V:right and ind; the
constructive w-rule, which is described below, is added as a new rule of
inference :

D,...P;. ..

T oA vedm <@

where P, is a proof ending with I" — 4, A (%), and there is a recursive function
f such that f(i) = "P,". Let ¢ be a Godel number of /. Then the proof ending
with I" — A, ¥x A(x) is assigned the number

5¢.7 Fr-4¥xA(x)" .
Show that if a sequent S is PA-provable and contains no free variable,

then S is provable in PA*. [Hint: We adapt the method of the consistency
proof of PA as follows. Let P be a (regular) proof in PA, with ordinal «
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(according to the assignment of Definition 12.4). Then assign o® + m to P,
where m is the number of free variables in the end-piece of P. The reduction
process for the consistency proof goes through almost unchanged, except
that if P contains an explicit logical inference and the lowermost such is a
V : right, then replace it by the w-rule, which is applied at the end of the
proot.]

ProBLEM 13.9. Let f be a provably recursive function in PA. Then there
exists an ordinal u (less than g) such that f is <*-primitive recursive, where
<* is the standard ordering of ¢, restricted to u. [Hint: Let e be a Géodel
number of f such that Vx 3y T(¢, %, v) is PA-provable. Then there is a proof,
say P(a), of 3y T(¢, a, y), with free variable a. Let u be the ordinal assigned
to P{a), and let P,, denote P(#) for each natural number m. By the method
of Problem 13.8, P, can be transformed into a cut-free proof in PA* of the
same end-sequent. It can be easily shown that the resulting proof does not
contain the w-rule, since P(#) does not contain any explicit V: right. The
transformation is actually <“-primitive recursive. Thus there is a <*-
primitive recursive function 7 such that 7("P,,") is (the Gddel number of)
a cut-free proof of Iy T(¢, m, y). By examining this proof, we can find
{(primitive recursively in its Godel number) a number # satisfying T'(e, m, n).
Then 7 is a <*-primitive recursive function of m and f(m) = U(n). Thus f
is <*-primitive recursive.]

§14. An additional topic

Here we assume again that all the primitive recursive functions are included
in the language of PA and their defining equations are included as initial
sequents.

ProrosiTioN 14.1. Let @, be the set of sentences of PA which have at most n
logical symbols. Then there exists a truth definition for @, in PA, i.e., a formula
T, (a) of PA such that for every sentence A of @,

is PA-provable.

Proor. T, is defined by induction on #. We shall present only the induction

step, in passing from T, to T, ;.



cH. 2, §14] AN ADDITIONAL TOPIC 125

A sequence number, say x, is a number which can be decomposed into
the form 2%-3%. ... p»7!, where x; = 0 or 1 for each 7, 0 <4 <{ n. Let
seq(x, #) be a (primitive recursive) predicate which expresses that x is a
sequence number of the above form. We call # the length of x. The ¢th
exponent of x, x;, will be denoted x(z). Let st(" 4 ") express ““4 is a sentence”,
and let Is(" A4 ") be the number of logical symbols in 4. Then T, is defined
as follows.

Tn+1(rA_l)H
ost(TA)Al(TAY <+ 1
Adxseqlr," AYAVi(0LiL AD
(V"B ="=B"2(x(1) =1 =x("B") = 0)]
AV BIY C'i="BAC"

D) =1=x("B")=1ax("C") =1)]
AY'VyB(y)'[i ="Vy B(}')j (x() = 1 =Vy T.("B(¥) )]
AY 3y B(y)"[i ="3y By)" 2 (x(1) = 1 = 3y T,.("B(H) "))
A x('_A y =1].

It is easily seen that

T,1(A(y,. ... 5,)) = A(by,. .., b,)
is PA-provable for every 4 in @,, where all the free variables of 4 are among
bl" ey bn.
letS:4,,...,4A,, — By,..., B, be asequent such that all of 4,,..., 4,
By,...,B,are in @,. Then T,("S™) is defined to be

BALi<maT,("47)vIA<Le<IAT("B)).

Here of course m and ! are primitive recursive functions of S and A4, and
P i
B, are determined primitive recursively from "S™ and 1.

ProrosiTionN 14.2. PA cannot be formulated with finitely many axioms; in
other words, mathematical induction cannot be expressed by finitely many
formulas.

Proor. First note that
PAH(—"S" > rS"‘) (1)

by formalizing the cut-elimination theorem for LK in PA.
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Next, suppose P is a cut-free proof of a sequent S, and all the formulas in
S are in F,. Then every formula in P is in F,. Further, if P is in the language
of PA, then we can prove in PA that every numerical instance of S is true;
in other words:

PAF L "S(by,. o by) > Vay o B Tl "SGR E) ), )

where all the free variables of S are among b,,. . ., b,,. The proof of (2) is by
induction on the number of sequents in P.

Now let Iy be any finite set (or rather sequence) of axioms of CAUV]
(Definition 9.5) and let # be the maximum number of logical symbols in any
formula of I'y. Letting S be I, — 0 = I, we obtain from (2):

PA'-(!V—FFF0—>6=T—|—->T,1(FF0—>6=11). (3)

Further (of course):
PAF T, ("I —~0=1")

and hence, from (1) and (3):
PAb—-F Ty -0=1".

This sentence, = "Iy — 0 = 1, can be taken as expressing the consistency
of I'y, which, as we see, is provable in PA. Hence, by Goédel’s second in-
completeness theorem (Theorem 10.18), I, cannot be proof-theoretically
equivalent to PA.

ExErcISE 14.3. Show that ZF (Zermelo-Fraenkel set theory) cannot be
formulated with finitely many axioms; in other words, the axiom of replace-
ment cannot be expressed by finitely many formulas.



CHAPTER 3

SECOND ORDER SYSTEMS AND SIMPLE TYPE THEORY

§15. Second order predicate caleulus

DEerFINITION 15.1. A language for second order predicate calculus (a second
order language) is defined by extending a language for first order predicate
calculus (Definition 1.1) by adding the following.
5) Second order variables:

5.1) Free variables with ¢ argument-places ( = 0,1, 2,...):

&gy Ay, (G=012...).

5.2) Bound variables with ¢ argument places (z = 0,1, 2,...):

tpé,(pf,...,(p;-,... (1=012...).

We shall call the variables in 2) of Definition 1.1 (ag, a4,... and xg, x,...)
the first order variables in order to distinguish them from the second order
variables.

Terms are defined as in Definition 1.2.

As in the preceding sections, we use « and ¢ both as formal and meta-
variables; «, 8, 9,... may be used for second order free variables (with or
without subscripts) and ¢, , ¥ may be used for second order bound variables.
The superscripts ¢ in o:j- and (pj. are mostly omitted.

DEeFINITION 15.2. The formulas for a second order language are defined as
in Definition 1.3 with the following alteration.

If R?is a predicate constant or a second order free variable with 7 argument-
places and ¢y,. . ., ¢; are terms, then Ri{¢,,..., ;) is an atomic {formula.

In 3) of Definition 1.3 “a is a free variable” and “x is a bound variable”
should read “a is a first order free variable” and “x is a first order bound
variable”, respectively.
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We also add the clause:

3’) If 4 is a formula, « a second order free variable and ¢ a second order
bound variable not occurring in A4, which has the same number of argument-
places as o, then Vg A" and 3¢ A’ are formulas, where A’ is the expression
obtained from A by writing ¢ in place of « at each occurrence of o in 4. The
outermost logical symbols of V¢ A" and 3¢ 4 are V and 3, respectively.

The quantifier-free formulas and closed formulas (i.e., sentences) are
defined as before.

The replacement of symbols, and the notions of indicated and fully indicated
occurrences of certain symbols, are defined as in Definitions 1.4 and 1.6,
respectively. Thus from F(x) we obtained F(R) by replacing the indicated
occurrences of o by R. Also the notion of alphabetical variant is defined as in
Definition 2.15 (where we assume, of course, that bound variables are replaced
by other bound variables of the same order and, for second order variables,
the same number of argument places).

A sequent is an expression of the form I' — A, where I" and 4 are finite
sequences of formulas of our language.

In the following, we shall assume we have a fixed second order language,
which we call L.

We shall first define a second order system which does not contain any
“‘comprehension axiom’’, and is simply LK with second order variables. Since
this system is basic to second order systems, we shall call it the basic calculus
for second order systems and abbreviate it BC.

DeriniTioN 15.3. The formulas of BC are those of 1., and the sequents of BC
are those of L,. The rules of inference of BC are defined as those for LK:
only the following should be added to those in Definition 2.1.

2.5") Second order V:
F(R), I' -4

left: W »

where R is an arbitrary second order free variable or predicate constant and
@ has the same number of argument-places as R.

I' >4, Fla)

rlght . ]_T:A‘,VW »

where « is a second order free variable which is fully indicated in F(x) and
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does not occur in the lower sequent, and ¢ is a second order bound variable
of the same number of argument-places as a (and does not occur in F(x), of
course). Here « is called the eigenvariable of the inference.

2.6’) Second order 3:
F), I' >4

left . W >

where « 1s a second order free variable which is fully indicated in F(x) and
does not occur in the lower sequent, and ¢ is a second order bound variable
of the same number of argument-places as«. Then ais called the eigenvariable of
the inference.

I' >4, F(R)

rlght : mmj‘ »

where R is an arbitrary second order free variable or predicate constant and
@ has the same number of argument-places as R.

The auxiliary and principal formulas of these inferences are defined as for
the other cases.

In contrast to 2.5) and 2.6), 2.5) and 2.6) will be called “‘first order V"
and “first order 3", respectively.

DEerinITION 15.4. The proofs of BC and the related notions and terminologies
are defined as in §2 (cf. Definitions 2.2, 2.3 and 2.8); thus, we can define “‘a
proof ending with S, or of S”’. ‘S is provable”, “‘a thread of sequents”, the
concept of one sequent being “below’” or ““above’ another, etc. The consistency

of the system is defined exactly as before (Definition 4.1).
Similarly to Lemma 2.10 we can prove the following.

Prorosytion 15.5. (1) Let P(R) be a BC-proof of a sequent S(R), where R is an
arbitrary second ovder free vaviable or predicate constant. Let R’ be an arbitrary
second order free variable or a predicate constant which does not occur in P(R).
Assume that R and R’ have the same number of avgument-places. Then P(R')
is a proof of S(R').

(2) A proof is called vegular if it satisfies the condition that, firstly, all second
order eigenvariables are distinct from one another, and, secondly, if a second
order o occurs as an eigenvariable in a sequent S of the proof, then « occurs only
in sequents above S. If a sequent S is BC-provable then S is provable with a
regular proof.
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From now on we assume that we deal with regular proofs whenever necessary.

DerINITION 15.6. The concept of “axiom system’ is defined as in Definition
4.1; an axiom system .o/ (of L,) is a set of sentences (of L,). Clauses 2)-7)
in Definition 4.1 can be adapted to the second order case. Proposition 4.4
is re-stated here.

ProprosITION 15.7. Let o7 be an axiom system and let BC , be the system obtained
from BC by adding —> A as initial sequents for all A wm oF. Then a sequent
I’ — A is BC ,-provable if and only if for some Aq,..., Ay 0f o7, Ay, .., Ay,
I' - A is BC-provable.

When dealing with second order systems it is convenient to work with
semi-terms and semi-formulas.

DEFINITION 15.8. (1) Semi-terms are defined as follows. Individual constants
and {irst order variables (free or bound) are semi-terms; if £y,. . ., £, are semi-
terms and f is a function constant with #» argument-places, then f(¢;,. .., {,) is
a semi-term.

(2) Semi-formulas and the free occurrences of bound variables are defined
as follows. Let R be a predicate constant or a second order variable (free or
bound) with ¢ argument-places, and let f£,..., ¢ be semi-terms. Then
R(t,...,t,) is an atomic semi-formula; the bound variablesin ,. .., #; occur
free in R(t;,...,t;), and if R is a bound variable, then R occurs free in
R(t;,...,t). If B and C are semi-formulas, then so is B A C, and the free
occurrences of bound variables in B A C are those of B and C. For other
propositional connectives, the definition is analogous. If F(x) is a semi-
formula in which x is fully indicated, then Vx F(x) is a semi-formula; the
free occurrences of bound variables in Vx F(x) are those in F(x) except x.
If F(g) is a semi-formula in which ¢ is fully indicated, then Vo F(¢) is a
semi-formula and the free occurrences in VYo F(¢g) are those in F(g) except
@. For 3 the definition is analogous.

It is obvious that terms are semi-terms without bound variables, and
formulas are semi-formulas without free occurrences of bound variables.
Now we shall define two important notions of abstracts and substitution.

DerFiniTION 15.9. Let A{bq,..., b,) be a formula where some occurrences
of by,..., b,, are indicated. (Some of &,,.. ., b,, may not occur in the formula
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at all.) Let y,,..., ¥,, be bound first order variables which do not occur in
A(by,. .., by). Then the meta-expression {yy,..., ¥n}A4{¥1,. .., ¥m) is called
an abstract of A(by,..., b,).

We should emphasize that this is a meta-expression, ie., not a formal
expression of Ly, and will be used only as an auxiliary aid.

An abstract of the form {yy,..., ¥n}d(¥1,..., ¥u) Is said to have m

argument-places. Abstracts are mostly denoted by V, U,... . An abstract of
the form {y;,. .., Vmta(¥1, . . ., ¥n) s often identified with «. If V" denotes the
abstract {vi,..., Vm}4A(¥1,.--, Ym) and #,..., ¢, are semi-terms, then

Vit;,..., ¢, stands for A(¢,. . ., ty).

DEerinITION 15.10. Substitution of an abstract for a second order free variable
in a semi-formula is defined as follows. Let F(«) be a semi-formula where some
of the occurrences of  are indicated, and let V be an abstract with the same
number of argument-places as «. (In the following we shall not mention the
last condition, as the substitution is defined only for « and V' which have
the same number of argument-places.) We define substitution of V for a in
F(o), denoting the result by F (§) or F(V). In order to simplify the notation,
we assume that o and V have one argument-place. One can easily generalize
the definition to the case of more than one argument-place. So let V' be of the
form {y}A(y). F (%) is defined by induction on the logical complexity of
Fla).

1) (i) F() is a{s) and this « is indicated in F(a). Then F (}) is A(s). (ii) F{a)
is a(s) and this e« is not indicated, or F(«) is A(s) for some £ other than «. Then
F () is Fla) itself.

In the subsequent cases we first replace all the bound variables in F which
occur in V' by bound variables which do not occur in V in a manner such that
each variable is replaced by another of the same order, distinct variables are
replaced by distinct ones and a second order variable of ¢ argument-places
is replaced by another of 7 argument-places. Thus we may assume that F does
not contain bound variables which occur in V.

2) F(a) is one of —B(a), B(a) A C(a), B{a) v C(a), and B(a) D C(«). Then
F (%) is, respectively, =B (3}, B() A C (1), B vC (B and B($)2C ().

3) F(«) has one of the forms Vx G(x)(«), 35 G(x)(a), Vo G(¢) (o) and T Gg){e).
Then F () is, respectively, Vx (G(x) (})), 3x (G(x) (), Yo (G(p) () and
3p (Glo) ())-

It is obvious that F (%) is a semi-formula. It is also obvious that if F(x) is a
formula then so is F (§).
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The ambiguity in 2} and 3), viz. the choice of new bound variables, can be
eliminated by requiring that these are the first variables in the list of first and
second order bound variables which satisfy the conditions. This is not an
essential restriction, by virtue of the following.

ProrosiTiON 15.11. Let A and B be two formulas which ave alphabetical variants
of each other. Then A = B is BC-provable.

Thus we shall henceforth deal with any of the alphabetical variants of a
given formula.

ExampLe 1512, (1) Let F(a) be Vx ¥y (x = yD (a(x) = a{y))), where both
occurrences of « are indicated, and let V be {u} 9x (x + » = 5), where it is
assumed that 5 is an individual constant, + is a function constant and = is
a predicate constant in the language. Since x in F(x) occurs in V, first change
it to, say, z: Y2 ¥y (z = ¥ D (a(2) = a(y))). Let us call this formula F'(a). We
shall carry out the substitution of V for « in F'(e) step by step.

o(2) (;): dx (x + 2 =5)

a(y) <;> 35 (x + y = 5)

(afz) = oc(y))(V>: x(x+2=5)=3x(x+y =5)

F<;> ie., VzVy(z = v (az) = ay) <;) :

VaVy (z=yD2(Ax (x +2=5) =3y (y + 2 = 5))).

This is a familiar formula, in fact an equality axiom. If we did not first
replace x by z, the result would be

VeVy(x = y2(3x (x + x =5) = Ix (x + y = 5))),

which is not even a formula.

This can be generalized to an arbitrary abstract {#}B(u) (assuming there
is no clash of bound variables), thus obtaining Vx Vy (x = y 2 (B(x) = B(¥))),
which is an equality axiom, That is to say, the simple schema
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Vi ¥y (x = v3 (a(x) = «(v)))

and substitution produce all the equality axioms.
(2) Let F(x) be a(0) A Vx {o(x) D a(x')) D V¥ a(x), where all occurrences of
o are indicated, and let V be {#}B(u). Let us assume that x does not occur
in V. Then F (}) is B(0) A Vx (B(x) D B(x")) 2 Vx B(x), which is an induction
axiom in arithmetic (in an appropriate language).
(3) Let F{a) be
Vax Vy Vz (x(x, ¥) Aoy, 2) Dy =2)2

SIuVy(vev = 3x (xeu A alx, ),

with all occurrences of « indicated, and let V be {1, y}}B(#}, 41), in the
language of set theory. Then F () is

Yx Yy Vz (B{x, ¥) A B{x,2)Dy = 2)D
DIy (vev = Ix (xeu A Bx, ),

which is an axiom of replacement in ZF set theory. Note that B(x, y) may
contain variables other than x and y, including #, but not v (since this is
bound in Fa)).

We shall return to those examples later.

The following is easily proved by induction on the number of logical
symbols in F(a).

ProvrosiTioN 15.13. For an arbitrary formula Fo) and arbitrary abstracts U
and V, the sequent
Vx (Ulx) = V(x)), F(U) — F(V),

(where it 1s assumed that the bound variables arve properly taken care of) is
BC-provable.

DeriNiTION 15.14. (1) Let A(by,..., by, C1,-- -, Cu, B1,- .-, By) e a formula,
all of whose free variables are among b,,. .., 8,,, ¢1,. .., ¢p, B1,. . ., By {though
not necessarily all of these occur in 4), and where all occurrences of these
free variables are indicated. Then a sentence of the form

*) Ve o Ve Vil o Vi 30 V9 o Y (00 )
=AWV Vi 200 2 Y1, )

is called a comprehension axiom.
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Let V be the abstract

Vi o vt A VL Y €1 - oy o B1a -0 Bi)-

Then the above comprehension axiom may be written as

(**) Vay,..., Vz, Vi . YV 3o Vyy oo VY (@Y oY) = U0 V),

where U is obtained from V by replacing ¢'s and f§’s by z's and /'s, respectively.

(2) Let K be an arbitrary set of formulas. (This use of K is only temporary.)
A formulawhich belongsto Kiscalleda K-formula, andifaformula A (4, . . ., 5,,)
is a K-formula, then the abstract {y; ... v,}4(¥1,- .., ¥m) Is called a K-
abstract. If the formula 4 in a comprehension axiom (cf. (*)) is a K-formula,
then (*) is called a K-comprehension axiom.

(3) A set of formulas K is said to be closed under substitution if for every
K-formula or K-abstract A(x) and for every K-abstract V, A(V) again
belongs to K.

DEeriniTION 15.15. Let K be a set of formulas.

1) The K-system is obtained from BC by adding to it all K-comprehension
axioms as initial sequents (viz. sequents of the form — A4, where 4 is a K-
comprehension axiom).

2) KC is the system obtained from BC by adding the following inferences,
for arbitrary formulas F(«), and K-abstracts V (where I'(V)} and F(g) are
obtained by replacing the indicated « by, respectively, V and ¢):

FV),I' -4
dleft: e ——
Second order V : left Vo Flp), K
... I'=A4 F()
Second order 3 : right: 439 Fg)

The auxiliary and principal formulas of these inferences are defined as usual.

Since a system K€ has interest only if K is closed under substitution, we
shall henceforth assume that K is closed under substitution.

PROPOSITION 15.16. For an arbitrary set K of formulas (closed under substitution),
the K-system is equivalent to KC.
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ProoF. It can easily be shown that the K-comprehension axioms are provable
in KC, while the lower sequents of second order V :left and second order
3 : right are provable in the K-system from their upper sequents.

Due to the above proposition we shall henceforth only deal with K-
comprehension axioms in the form of the system KC.

DEeriNiTION 15.17. If K is the set of all second order formulas, then KO is
called the second order predicate calculus with full comprehension, and is
denoted by G'LC.

ProrosiTionN 15.18. If the cut-elimination theorem holds for GILC, then GILC
s consistent.

Proor. The proof i1s immediate, as for Theorem 6.2.

In fact the cut-elimination theorem does hold for GILC, as we will see
later (§20). The reason why we put Proposition 15.18 in this form is that the
proof of cut-elimination for GILC is non-constructive, and hence, on the basis
of our finitist standpoint, we cannot claim the consistency of GILC from
that proof.

§16. Some systems of second order predicate calculus

In this section we shall deal with some inessential extensions of the first order
predicate calculus.

DEerFixITION 16.1. Let 8, and S, be two formal systems which contain LK.
S is called an inessential extension of 8; if 8; is a subsystem of 8, and for
any sequent S of the language of 8,, if S is S,-provable, then S is §;-provable.

ProprosiTION 16.2. The cut-elisnination theorem holds for BC.

The proof is exactly as for LK, so we shall not repeat the argument.

As consequences of this proposition, consistency, the subformula property,
the midsequent property, etc., all hold for BC. As another consequence we
can claim:
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CoROLLARY 16.3. BC is an tnessential extension of LK.

ProoF. If any inference for a second order quantifier is used in a cut-free
proof of BC, then that quantifier will occur in all sequents below that inference
(as is easily shown by induction on the number of inferences in such a proof).

DeFINITION 16.4. (1) A first order formula is one which contains no second
order quantifiers (although it may contain second order variables). Such a
formula is also called arithmetical if the language is that of second order
arithmetic (i.e., PA, with second order variables).

A first ovder abstract is one obtained from a first order formula.

(2) Ky is the set of all first order formulas.

(3) The predicative comprehension axioms are those in which the U in
(**) of Definition 15.14 is a first order abstract; in other words, the K-
comprehension axioms.

THEOREM 16.5 (cut-elimination theorem for the system with predicative
comprehension axioms). If a sequent S is provable in the system K,C (cf.
Definition 15.15), then it is provable in K,C without cut.

Proo¥. The proof for LK almost goes through. Here we use triple induction
instead of double induction (cf. Proof of Lemma 5.4). Let 4 be a formula
of a second order language. Define a function ¢ by: ¢(4) =4 the number of
second order quantifiers in 4. It is easily seen that ¢(F(a)) = ¢(F(V)) if V is
first order. Let ¢ = 4 ¢(P) = 4 ¢(D), where D is the mix formula of P (assuming
P has a mix at most as the last inference). Then Lemma 5.4 is proved now
by transfinite induction on w?- ¢ 4+ - g(P) + rank(P). We may follow the
proof in §5 but there are some additional cases here. After 1.5) (i) there, add
the cases that D is Vg I'(¢) and d¢ F(g). P has the form

I — Ay, Fla) F(V), [y, — A

I'> A0, Vo Flg) Ve Flg), 1, > A
T 1ly > Ay A (Vo F(p)),

where V is a first order abstract. From the above remark, ¢(F(V)) = ¢(F(a)) =
c(Vp F(p)) — 1. As a does not occurin I, Ag or F(@); I' = 4, F(V) is provable
without a mix (cf. 1.5) of Proof of Lemma 5.4). Define P’ as
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T Ay F(V)  F(V), I, ~4
T 7 S 474

Since ¢(P’) = ¢(F(V)) < c(¥Vp F(gp)) = ¢(P), the induction hypothesis applies
to P’. Thus we can obtain a proof without a mix of I', IT§ — A%, A, and hence
a proof without a mix of I, I1, — 4,, A.

Finally, after 2.1.3 (ii) of the Proof of Lemma 5.4, add the cases where D is
Vo F(g) and 3¢ F(g).

(F(V)).

COROLLARY 16.6. K,C 7s an inessential extension of LK. Hence, in particular,
K. C is consistent.

Proor. The proof is as for BC (cf. Corollary 16.3).

ProrositioN 16.7. Let LK+ be the system which is like LXK except that the
language includes free second ovder variables.

Let I' — O be a sequent consisting of first order formulas only and let F;(5,)
be a first order formula which has a free second order variable f;,1 = 1,2,..., m.
Then

Vo1 Fi{@r),- - o, Vo Fulen), I' =0 (1)
is K,C-provable if and only if the following is satisfied:
(*) For each 1 = 1,2,..., m there exist first order abstracts V..., V“’.
({; = 1) such that
V20,3 Fy (Vi himtato - o0 V%0 FalV )ity ' > O @)
1s LK *-provable;
Here {A}; 1. m denotes a sequence of formulas Ay, ..., Ay, V3; ; denotes a
(possibly empty) sequence of universally quantified first ovder wvariables
Va1 V2o ... Yoy, where k (depending on © and {) is the number of free first ovder

variables in V, ;, and V' is obtained from V by changing the free fivst order
vartables in V which do not occur in (1) to zq,. . ., 2.

Proor. If: Suppose (*) holds. First we shall prove that for every formula
F(a); Yo F(p) — Vz F(V’) is K,C-provable, if V is first order.
F(Vy - F(V)
Vo Flg) — F(V)
{repeated V : right)
Vo F(g) —Vz F(V).
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Thus we have Vo, Fy(g,) —Vz,; F,(V; Jfori = 1,2,..., Landi = 1,2,..., %
From these and (2), by repeated cuts and contractions, we can construct a
K, C-proof of (1).

Only if: Suppose (1) is K;C-provable. Then there exists a cut-free proof
of (1) in K,C. Therefore it 1s sufficient to prove the following proposition.

ProposITION 16.8. Suppose P is a cui-free proof in K,C of a sequent of the
form (1) above. Then for the end-sequent of P, (¥) holds.

Notice that since P is cut-free, all sequents in P have the form (1). The
proposition may now be proved by mathematical induction on the number
of inferences in P.

Proor. (1) If P consists of an initial sequent D — D, then D has no second
order quantifier. Therefore P — D itself has the form {2) above.

(2) The induction steps are proved according to the last inference I in P.
Notice that the only possible inference in P concerning a second order
quantifier is second order V : left.

2.1) I is second order ¥ : left. P is of the form

R, 1 .y
Vo Flg), 11 -~ A"

where V and F () are first order. By the induction hypothesis, when F(V),II —A
is taken for the sequent in {1}, there are appropriate abstracts for which a
sequent like (2) is provable in LK+, Denote such a sequent by F(V), IT* — A.
Now add V to the set of abstracts obtained by the induction hypothesis.
If V has no first order free variable which does not occur in Vo F(g), 11 — A,
then take F(V}), II* — A itself for the sequent (2). If V' has free variables
by, - ., b, which do not occur in the above sequent, then replace them by
new bound variables z;,. . ., 2; and call the result V’. The required sequent is
then Vzy,..., Vz, F(V"), I[I* — A.

2.2) I is not a second order V : left. Such a case is proved trivially from the
induction hypothesis.

Then replace free second order variables by 0 = 0.

Notice that it is the inference contraction : left that results in more than one
first order abstract V,,, V,o,... being associated with the same formula

F,(8,) in (2).
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PROPOSITION 16.9. If a formula I F(¢p) is provable in K,C, where F (@) does not
have second ovder quantifiers, then theve exist first ovder abstracts V,,..., V,
such that 3z, F(V)) v ... v 3z, F(V.) is provable in LK*.

This is the dual of Proposition 16.7 and is proved similarly.

ProBLEM 16.10. We define PA’, the predicative (second order) extension of
Peano arithmetic, as follows. Let VJ' and Eq’ be respectively the sentences:

\AK Yo (¢(0) A Vx (p(x) D p(x')) D Vx ¢(x));
Eq’ Yo VxVy (x = v A (%) 2 @(y)).

V]’ is the second order formulation of the principle of mathematical induction
and Eq’ is the second order formulation of one of the equality axioms.

PA’ is then obtained from K,C (in the language of PA augmented by second
order variables) by adding to it the axioms of CAU V] UEq’ as initial
sequents. (CA was defined in definition 9.2.)

Show that PA’ is an inessential extension of PA. [Hint: Let A be a formula
of thelanguage of PA’. Then 4 isPA’-provableifand only if CAUV]J'UEq — 4
is K;C-provable. Noting that V]’ and Eq’ each have one second order V in
front, apply Proposition 16.7.]

ProBLEM 16.11. Consider ZF (Zermelo-Fraenkel set theory). The language
consists of € (a binary predicate symbol), first order variables and logical
symbols (¢ = b is an abbreviation of Vx (aex =bex)). The axioms of
extensionality, pairs, sum, power, regularity and infinity can be stated as
single sentences. However, the axiom of replacement is actually an axiom
schema, which is formulated as

Vx ¥y ¥z (B(x, ¥) A B{x,2) 2y = 2)D
DIvVy{yev = 3Ax (xeu A B(x, y))

{cf. Example 15.12, (3)). The basic logical system is LK.

On the other hand BG (Bernays-Godel set theory) is formulated in a second
order language. The language is that of ZF augmented by second order
variables. The axioms are those of ZF plus an axiom of equality

Yo VxVy (x = y2 g(x) = ¢(y))

except that the axiom of replacement is now formulated in a single sentence:
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Vo (Ve Vy ¥z (p(x, ¥) A @lx, 2) Dy = 2)D
DIvVy(vev = Ix (xeu A @x, v))).

The basic logical system is K;C.
Show that BG is an inessential extension of ZF. [Hint: As for the previous
problem.]

DEFINITION 16.12. Let us assume that the only logical symbols are =, A and V.
(For convenience, we let BC denote also the basic calculus restricted to these
logical symbols.)

1) A formula is said to be positive if every occurrence of a second order
quantifier is in the scope of an even number of —'s. A sequent

F,,...,F, —H, ... H,

is called positive if —(F, A ... A F,) v (Hyv ... v H,) is positive (where
v is defined in terms of — and A). Thus, for example, =(=Ve F(p) A Vib H())
is not positive since Vi is in the scope of one —, while —(B A V¢ F(gp)),
where B and F do not contain second order quantifiers, is positive.

2) The I'-predicate calculus, or II'PC, is the system obtained from BC
by restricting it as follows. (For the sake of simplicity, we assume there are
no function or predicate constants.)

(1) The initial sequents consist of first order formulas only.

(2) There is no second order V : left.

{(3) There is no cut rule.

It is obvious that any sequent provable in II'PC is positive.

Let a and b denote finite sequences of free variables such that all variables
of a are distinct while in b there may be repetitions, the length of @ and b
are the same, the sth variable of b is first or second order according as the sth
variable of a is first or second order, and if the ith variable of @ has j argument-
places then so does the ith variable of b. Let

a a
F—
(i.e., the replacement of @ by b, cf. Definition 1.4).

(Notice that omitting predicate constants from the language is not an
essential restriction, since the free variables which are not used as eigenvariables
can be regarded as such.)
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ProrosITION 16.13 (Maehara-Takeuti). If a formula F (§) 2 G (§) is provable
in TXYPC, then there exists a fivst ovder formula C satisfying the following.

1) Every variable in C other than those in @ occurs both in F and G.

2) F(§)2C (§) and C> G are provable in TI'PC.

(Notice that the provability of F D G is not assumed.)

Proor. The proof is almost the same as that of Theorem 6.6 (Craig’s inter-
polation theorem for LK). State the proposition for arbitrary partitions of
provable sequents, introduce — T as an auxiliary initial sequent (cf. Lemma
6.5) and prove the statement in this system. The conditions (1)~(3) in the
definition of II'PC are indeed crucial.

ProBLEM 16:14 (Chang). Let & be a sequence X,..., X, of bound variables
and Q« be Q, X ... Q, X, where Q,isVor 3 and Q; is always Vif X;is a
second order variable. If Qx (F(x) 2 G(x)) is provable in II'PC, then there
exists a first order formula C(a) such that

Qs (£ (%) 2 C(x)) A (C(%) 2 G()))

is provable in IT'PC. [Hini: Maehara-Takeuti method. This is a trivial
consequence of Proposition 16.16, which is a consequence of Proposition
16.13.

DeriNITION 16.15. Let G(a) be a formula whose free variables are all in a.

For convenience we temporarily introduce, on the meta-level, the third
order variable .7, and new atomic formula #/(a), and extend the notion of
formula accordingly. (However this variable, and any formula containing it,
are not part of our formal system). Let F be a formula containing /.

N4
E <Ax G(x))

is the formula obtained from F by substituting G{b) for &/(b) in F. lf Sis a
sequent F,,..., F,, - H,,..., H,, then

K4
> (zx c<x>)
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K4 R4 o R4
Fy (zx G(x))" o <zx G<x>> ~ (zx G<x)> oo H (zx G<x>>'

An occurrence of &/ in a formula F is defined as positive or negative,
inductively as follows. (We assume, as stated above, that we have only —, A
and V as logical symbols.)

1) The occurrence of &/ in &7(b) is positive.

2) If the occurrence of .« in F is positive (negative), then that occurrence
of & in F A G or G A F is also positive (negative). An occurrence of .o/ in
—F is positive or negative according as that occurrence of &7 in F is negative
or positive.

is

3) An occurrence of &7 in Vx F(x) or Yo F(g) is positive or negative according
as that occurrence of ./ in F(a) or F{a) is positive or negative.

An occurrence of & in a sequent Fy,..., F,, — G4,..., G, is positive or
negative according as that occurrence of &/ iIn—(FyA ... AF )vGiv...v(,
is positive or negative (where v is defined in terms of — and A).

ProrosiTioN 16.16. Let G(a) be a formula all of whose free variables are in a,
and let S be a sequent 1w which all the occurvences of o ave positive. If

K4
° (zx G<x>>

1s provable in IIPC, then there exisis a first ovder formula C(a) satisfying the
following conditions:

R4
: le in IT'PC-
1) S (lx C(x)) is provable in II'PC;

2) all the free variables of C(a) are in a;
3) V& (C(x) D G(x)) is provable in II'PC.

Proor. The proof is by induction on the number of inferences in a proof of
o
$(ae )
Use Proposition 16.13 for the case second order V : right.

DeriNiTION 16.17. The satisfaction relation for second order formulas in a
given structure @ = (D, ¢) (cf. §8) is defined as follows. Let ¢, be a map
from variables (first and second order) such that its values for first order
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variables are elements of D, while its values for second order variables of ¢
argument-places are subsets of D x ... X D (= D?).

1) (2, ¢o) satisfies afty,.. ., t) (p{ty,. .., t)) if and only if (dgty,. . .. Poty)
belongs to ¢y (dop).

2) (2, ¢y) satisfies Vo F(p) (Ip F(p)) if and only if for every 4’0 (there exists
a qSO) which agrees with ¢, except at ¢, (such that) (2, qS(',) satisfies F(g).

For other cases the definition is the same as in §8.

A formula is valid if for every structure & = (D, ¢) and map ¢, as above,
it is satisfied by (2, ¢y).

ProposiTioN 16.18. TIPC is complete for positive formulas (or sequents); t.e.,
every valid positive formula is provable in IIPC. This implies that the cut-rule
is admassible in XIPC, i.e.,if I' -~ A, D and D, I' — A are provable in IIPC,
then sots I' — A.

Proor. This can be proved by following the proof of Theorem 8.2 (the
completeness of LK) ; namely, construct the reduction tree of a given positive
sequent, and if there is an infinite branch, define a structure in which the
sequent is false. For the induction steps in the construction of the tree, the
only new case is the step in which formulas whose outermost logical symbol
is Yo are under consideration. These formulas occur only in the succedent
of a sequent since the sequent is positive.

Thus (for this step) suppose the sequent I7 — A is under consideration,
and let Vo, Flg,),..., Yo, F(@,) be all the formulas in A whose outermost
logical symbol is ¥ (second order). Write the sequent I7 — A, Fi(a;),. . ., Fpla,)
above this, where a4,.. ., a, are the first # (second order) free variables not
used yet. Note that if F(a) is false in a structure, then so is Vo F{g).

ProBrem 16.19. Let L be the language consisting of 0, ', =, and <, and let
Iy be the first order Peano axioms without mathematical induction for this
language. We also assume that every axiom in 7 is in prenex normal form
and no 3 occur in [. Let N(a) be an abbreviation of the formula:

Vo (p(0) A Vx (p(x) 2 ¢(x))
AVx Yy (x = y A o(x) 2 (y)) D @la).

It I'y — F({x}N(x)) is provable in IT'PC, then there exists a formula A(a) of
the form 0 =0 or a =%, va=1sv ... va=#; for some numerals
fiy,. .., fi, such that I'y — F({x}A(x)) is provable in II'PC.
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ProoF. By Problem 16.14, there exists a first order formula 4(a) of L such
that

1) a is the only free variable in A{(a},

2) I'y, A(a) — N{a) is provable in II'PC,

3) I'y — F({x}A(x)) is provable in II'PC.
By a well-known decision method, we can assume that A(a) has one of the
following forms:

a) 0 =0,
b)0 =1,
a=ayva="7fgV ...V a=fy,
da<ava=ida v ...va=,,

Case 1. A(a)is 0 = 1.

Since the occurrences of N are positive in F({x}N(x)), the provability of
Iy — F{{x}(0 = 1)) implies the provability of Iy — F({x}(0 = 0)).

Case 2. d(a)isi<<ava=a Vv ...va=i.

In this case Iy, # << a — N(a) is provable by 2). Hence the following
sequent is provable:

Iy, 2 < a, «(0), Vx {a(x) D a(x)),
Ve Vy (x = y A a(x) Daly)) — «(a).

Now introduce a new individual constant w and substitute a < o for a(a).
Then we have a proof of the sequent:

T, 0 <w,Vx(x <wdx <w —

The usual interpretation of < on 0,0, 0”,..., w, ®’, ®",... shows that
this is a contradiction.

ProBLEM 16.20 (Kreisel). Consider the system PA’ of predicative second order
arithmetic defined in Problem 16.10. In order to facilitate the use of some
results in recursive function theory, we use the following notation: Vf A{f)
(resp. 3f A(f)) is an abbreviation for V¢ (¢ is a function D A *(¢)) (resp. 3¢ (¢ is
a function and A*(p))), where “@ is a function” is expressed by

VYV Iy Vz (p(x, 2) =y = 2)

and A(f) and A*(p) are related in a manner such that subformulas of A(f) of
the form B(f(f)) are (systematically) replaced in A* by 3y (p{t, v) A B(y)).
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Next we define a I7; (resp. Z;) formula as one of the form Vo A(p) (resp.
Jp A(p)) where 4 is arithmetical. Any /7; formula is equivalent (in PA’) to
one in “I1}-normal form”, i.e., ¥f 3y R(fy), for some R which is primitive
recursive (or more strictly, primitive recursive relative to the free second
order variables in the formula), where fy is (the G&del number of) the sequence
{{0),..., f(y — 1)). Similarly, any X} formula can be transformed to X}-
normal form: 37 Vy R(fy), for suitable primitive recursive R. Finally, a I}
predicate or relation (of 2 number variables say) is one which can be expressed
by a II; formula with % free first order variables (and no free second order
variables). Similarly for X] predicates or relations.

Now let < be a X]-ordering, i.e., <- is a X] binary relation which is a
linear ordering of natural numbers. Let We(<C) express that < is a well-
ordering: Vf 3x —(f(x + 1) <* f(x)). Suppose We(<<-) is provable in PA’, i.e.,
<+ is a provable well-ordering of PA’. Show that the ordinal of <+ (the order
type of <) is less than e, [Hint: First express a <- b in Xj-normal form:
3f Yy R(fy, ab). Now follow the steps listed below.

1) Let <, be an enumeration of primitive recursive, binary relations
{form = 0,1, 2,...), and let W{x) denote We(<,). Then W(x) is a (provably)
complete [1}-form, viz. there is a primitive recursive function S(r, x) such
that for every I7;-predicate A (x), there exists a number 7, such that Vx (4 (x) =
W(S(7,, x))) is PA"-provable.

2) For any X} predicate B(x) there is a number # such that B() = —W (%)
1s PA’-provable. (We formalize an argument in recursion theory showing
that a X7 predicate cannot be I7T}-complete).

3) Let W(x) be the formula expressing that there is an embedding of
<, Into <, i.e. an order-preserving function from the domain of <, to the
domain of < (which implies that <, is a well-ordering, with ordinal less
than or equal to that of <-). Then Wi(x) is X}, and so there is a formula
WE(x) in Zl-normal form such that Vx (W(x) = W} (x)) is PA’-provable.

4) Since We(<) is provable, Yx (W, (x) D W(x)) is provable.

5) By 2), there is an # such that W' (#) = =W () is provable. Hence by
4), W(#) and =W (7)) are provable.

6) W(#) being provable in PA’ means that the primitive recursive relation
<, is a provable well-ordering of PA’, hence of PA. By Gentzen’s result in
the previous chapter, this implies that the ordinal of <, is less than &,.

7) W(#) and =W/ (i) (see 5)) means that <, is a primitive recursive well-
ordering which is not embeddable in <, and hence the ordinal of <- is less
than that of <C,. This and 6) yield that the order type of <- is less than &,.]
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§17. The theory of relativization

DEFINITION 17.1. A system of relativization consists of a pair of formulas
R%a) and RY«), where R%a) and R*(x) each have the one free variable a and
«, respectively. One or both of R%a) and R'(x) may be missing. A system of
relativization is often denoted by 7.

For an arbitrary (second order) semi-formula 4, A" (the relativization of 4
to 7) is defined inductively as follows. (Here it is assumed that 7 consists of two
formulas. If one or both of R? and R! is missing, then the definition should be
adjusted accordingly.)

1) If A has no logical symbol, then A" is 4.

2) (4 A B)", (A v B)", (A2 B)7, (mA)" are, respectively,

AT A Br, A" v BT, ATD BT, = A".

3) (Vx F(x))" and (3x F(x))" are Vy (R%(y)2 F"(y)) and 3y (R%(y) A F7(y)),
respectively, where F7(y) is (F(y})" and y is a variable which does not
occur in R%a) or Fr(a).

4) (Y F(9))" and (3p F(@))" are Vi (RU) > F(f)) and 3p (RY) A Fr()),
respectively, where Fr(if) is (F())* and ¢ is a variable which does not
occur in RY«) or Fr(a).

5 ((yn- -0 ¥ud AWy ¥ i v YA -, )"

LeMMa 17.2. (1) If A has no quantifiers, than A7 is A.

(2) A free variable occurs in A if and only if it occurs in AT,

(8) A bound variable occurs free in A if and only if it occurs free in A"

(4) A is a formula if and only if A" is a formula.

(5) Let A(t) denote Ala) (§); then (A(F))" is the same as A"(f), i.e., (A(a))" ()
(“the same”, that is, up to bound occurrences of bound variables).

(6) Let A(V) denote Alw) (), then (A(VY)T is the same as A7(V7), 1.e.,
(A()" () (again, up to bound occurvences of bound variables).

Proor. By mathematical induction on the number of logical symbols in 4.
(1)-(5) are left to the reader.

(6): Let V be {y}C(y). (For the sake of simplicity we assume that V has
only one argument place.) If A(x) is «(f), then (A (V)" is (C(¢))" and (A ()" (;7»)
is (a(f) (;77), i.e., C7(¢). These are the same by (5).

Suppose A (x) is Vx F(x, ). (Vx F(x, V)" is Yy (RO(v) 2 (F(y, V))7). By the
induction hypothesis, this is the same as Vy (R%y)D Fr(y, &) (), i.e.,
(Vx F(x, )7 ().
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Suppose A(x) is Vo Flp, o). (Yo Flp, V)" is Vi (RU($) 2 (F(¢, V))7). By
the induction hypothesis, this is the same as Vi (RY () 2 F7(, «) (%)), i.e.,

VV
(Vo F(p, )" ()
The other cases are left to the reader.
DeFiniTION 17.3. (1) If I' is a sequence of formulas A4,,..., 4, then I

denotes 47,. .., A7,. For the sake of simplicity, we write both R® and R as 7.
It will be obvious which is meant, since #(a) denotes R%a) and r(x) denotes
Ri(a).

(2) Suppose a system of relativization 7 is given. Then @ is the set of the
following formulas.

1) 7{c) for every individual constant ¢ (in the language).

2) Yy oo Yy (P(v1) A oo AP(y0)) 2 7(f(y1,- - -, Ym))) for every function
constant f.

3) dxr(x).
4) Ip7(e).

ExampLE 17 4. The language includes = as a distinguished binary predicate
constant. Suppose # consists of R only, where R(«) is defined to be

Yx Vy (x = v A afx) D ay).
Let # be the following axiom system:
Vx (x = %),
Ve Vy (x = yDy = x),
VeVyVe(x = yAy =zDx = z),
Vg oo VA YY1 o Y9 (B = V1A o A Xy = Vi
Df(xe,. .o, Xm) = fy,. .., ¥n)) for every f,
Vo) oo o V2, Yy VY (81 = YA oo Ay = Vi A P(X,. .0, %)
D P(yy,. .., Ym)) for every P.

To apply the theory below to this example, we want to check that & — 4
is provable in the systems considered for every 4 in @. Since RO is missing,
we only have to consider 4). It is a routine matter to see that this condition
is satisfied. (Further, » and # also satisfy condition 5) in Lemma 17.5.)
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LEMMA 17.5. Let 8 be KC, where K is an arbitrary set of formulas which is

closed under substitution (cf. Definitions 15.14 and 15.15). Suppose the system

of relativization r satisfies the condition that for an arbitrary K-abstract V, V®

is also a K-abstract. (This is satisfied if, e.g., K consists of all formulas in the

language.) Let & be an axiom system such that B — A is S-provable for every

A ind and

5) #(®),...,#(f),..., B —r(V") is S-provable for every K-abstract V, where

b,... and 8,... are all the free variables which occur in V (and hence in
Vr:cf. part (2) of Lemma 17.2).

Then for an arbitrary sequent I' —~ O which is S-provable,

ra),...,r),. .., &I —>0Or

1is S-provable, where a,..., ... areall the free variables which occur in I, ©.
We first prove the following sublemma.

SuBLEMMA 17.6. If s is a term, then v(b),..., B —v(s) is S-provable, where
b,... are all the (free first ovder) variables in s.

This is proved by mathematical induction on the number of function
constants in s.

Proor oF Lemma 17.5. This is proved by mathematical induction on the
number of inferences in a proof ending with I” — 6.

1) The proof consists of an initial sequent D — D. Then D™ — Dr is also
an initial sequent. Therefore &, D™ — D7 is obviously 8-provable, and hence
so is #(a),..., 7(a),..., B, D" - Dr.

2) The last inference is a first order V : left:

F(s), I" -6
Vi F(x), I" 6"

By the induction hypothesis,
ra),...,r(a),..., &, Fris), I'" - 6

is S-provable (cf. part (5) of Lemma 17.2). Also #(3),..., B — r(s) by Sub-
lemma 17.6 (where the variables b,. .. are included among q,...). Therefore

r@),. .., 7&),. .., B,Vx (r(x) D Fr(x)), ["" - 6.
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3) The last inference is a first order V : right:

I' -6, Fd)
I' >0 ,Vx Fx)’

By the induction hypothesis,
ra),..., ra),..., B, 1" -0 F(d),
where 4 does not occur in the antecedent. So
r@,..., r),..., B, I'" - @ Vx (v(x) D Fr(x)).
4) The last inference is a second order V : left:

F(v),I" -0
Vo Flp), I" -0’

where V is a K-abstract. By the induction hypothesis,
r(a),...,v(),..., B, Fr(V", ' - @
{cf. part (6) of Lemma 17.2). Hence
ria),...,r(@),..., B —r(V"
by condition 5) (since a,...,a,... include all the free variables in V). So
ria),...,v(a),..., B, r(V)D F(V"), I - O
Also by the condition on K, V" is a K-abstract, so that from the last sequent
r(a),...,v@),..., b, Yo (r(@) 2 F(g), I — O

is S-provable.
Other cases are treated similarly.

DeriniTioN 17.7. (1) An axiom sysiem (in this section) is defined as a set of
formulas which do not contain any free first order variables.

(2) Let &/ be an arbitrary axiom system and let # be a system of relativiza-
tion. /7 is the set of formulas A" for all 4 in 7.

THEOREM 17.8. Let of and AB be axiom systems. Suppose that the formal system
S and the axiom system B satisfy the conditions of Lemma 17.5, and, further:
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for every formula A of L OB, B — A" is S-provable; and for every second
order free variable o contained in o U B, B — v(a) ts S-provable. Then:

(1) for any formula B, if o</ U B — B is S-provable, then so is B — BT;

(2) if & is consistent (with 8), then sois o/ U A.

NoTE. We can express this result (part (1)) by saying that o/ U & is inter-
pretable in # (relative to 8), or more accurately that » provides an interpreta-
tion (or “‘inner model”) of & U # in & (relative to 8).

Proo¥. (1) Suppose &/ U # — B (in 8). Then there are finite sequences I" and
A from o7 and %, respectively, such that I 4 — B (in 8). So by Lemma
17.5,

ra),..., I, A7 — B (in §).

(Recall that I"and 4 contain no free first order variables.) But by our assump-
tion, Z# — A" and # — r(x) are provable for every formula A and second
order variable o in I’U 4. Hence # — B7 (in 8).

Part (2) is proved from (1), by taking, for B, say C A —C (since (C A =C)"
is CT A (7).

DEeFINITION 17.9. For the following theorem, let L’ denote the second order
language with constants 0, and =, and let .2/, denote the following axioms
(for arithmetic) in this language:

’

VexVy(x = y2x' =%,

’

Vi Vy (" = y'2x = v),

VxVy (x = y2y =13,

VxVyVz(x = yAy=2Dx =2).

THEOREM 17.10 (relative consistency of classical analysis). Consider classical
analysis, formalized as GILC together with the axiom system Lo U{EqQ’, V]'} in
the language L. (Eq" and V]’ were defined in Problem 16.10.) Then:

(1) 2t is interpretable in 4y (velative to GILC);

(2) 1t vs consistent, assuming cut-elimination for GILC.
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Proor. The interpretation is carried out in two steps.

(i) &y, U{Eq’} is interpreted in &, (relative to G'LC) by Theorem 19,
with 7 defined by: RY(a) is Vx Yy (x = y A a(x) D a(v)) (and no RY. In fact,
taking V as {u}(u = 0), we can prove in GILC &/, —#(V), and hence
o — Jp ¥(p). Further, condition 5) of Lemma 17.5 is easily proved by
induction on the logical complexity of V'; and Eq’" is provable in G!LC.

(ii) Next, &/, U {Eq’ UV J'}is interpreted in &7 U {Eq'}, again by Theorem
17.8, this time with » defined by:

Ra) is Yo (p(0) A VY (p(3) 2 ¢(»)) 2 ¢(4)) (and no RY).

Now 7(0), and hence 3x #{x), are easily proved in G'LC. Further, for any
formula 4 of &y U{Eq’}, the sequent &7y, Eq" — A" is provable in G'LC;
and so is &y, Eq" -V ]J'.

Thus part (1) is proved. In fact the two steps could be combined, so as to
give an interpretation of &7y U {Eq’, VJ'} directly in ./, by means of a single
system of relativization . The reader is invited to define such an 7.

To prove part (2), we first show that if .7 is consistent (with GILC), then
so 1s &g U{Eq’, V]J'}. The method is parallel to that for part (1}, using
Theorem 17.8 part (2) twice.

The argument is completed by showing that .« is consistent (with G!LC),
assuming cut-elimination for GLC. But this is clear, since a proof of &7, —
in GILC without a cut would in fact be a proof in LK, which is impossible.

§18. Truth definition for first order arithmetic

DEriniTION 18.1. (1) Although we have mentioned second order arithmetic
from time to time we shall now formulate it more systematically. The language
of the systems of second order arithmetic is that of PA (cf. §9) augmented
by second order variables. The basic logical system is BC (cf. Definition 15.3),
and the axioms (i.e., the mathematical initial sequents) are those of PA and
the generalized equality axioms:

s =1t A(s) - A(@)

for arbitrary terms s and ¢ and arbitrary formulas A. The various systems
of second order arithmetic are classified according to the forms of the induc-
tion ana ..omprehension axioms. They are both introduced as rules of inference
rather than axioms, and if both are allowed for all formulas and abstracts,
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then the system will represent classical analysis. In order to simplify the
arguments, we assume only the logical symbols —, A, V, although other
symbols may be used occasionally. We recall that the rule of induction or
“ind”" has the form

F(a), I' - 0, F(a')

FO), I -0, F(s) '

where a does not occur in I', @ or F(0), and s is an arbitrary term. F(a) is
called the induction formula, and a is called the eigenvariable, of this inference.
The comprehension axiom, or V : left rule, has the form

_En, I -6
Vo Fg) T 0

where V' and ¢ have the same number of argument places.

We normally deal with systems where the induction formulas belong to a
certain class of formulas which is closed under substitution (cf. Definition
15.14, part (3)) and the abstracts for V : left also belong to a certain class,
closed under substitution. If the induction formula or the abstract for V : left
is restricted to a set K, then the corresponding ind or V:left is called a
K-ind or a K-comprehension axiom, respectively.

(2) Formulas of second order arithmetic which do not contain second order
quantifiers are called arithmetical. Also, abstracts are called arithmetical if
they are formed from arithmetical formulas,

(3) Let I1} be the class of formulas of the form Vo, g, . . . ¢; F(@1, g, - - ., @),
where Yo, 3@, . .. @, denotes a string of ¢ alternating quantifiers with second
order bound variables starting with V, and F is arithmetical. The closure of
IT} under substitution will be called I7} (in wider sense). 2} and Z} (in wider
sense) are defined likewise (with 3¢, Ve, ... @, instead of Ve, gy ... ¢.).
(For 7 = 1, this is essentially the same as the definition in Problem 16.20,
which used function instead of predicate quantification, since predicates or
sets can be represented by their characteristic functions.)

The following are straightforward consequences of the definition.

ProposITIoN 18.2. (1) The I1 -comprehension axiom and the [T} (in wider sense)-
comprehension axiom, ave equivalent (in BC). Similarly with the X}-comprehen-
sion axtom.

(2) The IT}-comprehension axiom, and X}-comprehension axiom, are equiv-
alent (in BC).
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This proposition enables us to identify the I7}-, the I} (in wider sense)-,
the I7}-, and the X} (in wider sense)-comprehension axioms. Therefore we shall
call them all the /T;-comprehension axiom.

DEerFiNiTION 18 3. We assume a standard Gédel numbering of PA, and, if X
is a formal object of PA, then "X denotes the Godel number of X (cf. §9
and §10). We shall list the primitive recursive functions and predicates we
need.

Is(a): the number of logical symbols in a.

fl{a): a is a formula of PA.

st(a): a is a sentence (i.e., closed formula) of PA.

tm(a): a is a term.

ct{a): a is a closed term.

sub("47, "a;7, "£7): the result of substituting ¢ for a; in A. This may be
denoted by "A(¥)".

v("¢7): the value of ¢ (if £ is closed).

v{a): Godel number of the ath numeral.

Abbreviated notions:

VA7 (.. TAT L)Y (iDL x L),

VIAAB' (... "TAABY ...): Vx (fl(x) A “the outermost logical symbol

ofxisA”D...x...),

VOO (LT L)Y (tm(x) D L. x ).

Also we will write, for terms #(a;) and formulas 4 (a,):

"t(»(b))" for sub( ta,)", "a; ', »()),

TA(»(b))" for sub("A(ay)”, "a;, v(b)).

In this section, §! denotes second order arithmetic with the arithmetical
comprehension axiom and ind applied to /1] (in wider sense) formulas.

PA’ is the system of second order arithmetic with the arithmetical ind and
the arithmetical comprehension axiom. (This is clearly equivalent to the
system of predicative arithmetic, also denoted by PA’, defined in Problem
16.10.)

In order to avoid too many parentheses and brackets, we use dots for
punctuation in a well-known manner; A .2. B = C, for instance, means
A>3 (B =)

This section is devoted to defining the truth definition for PA. The argument
is carried out within S
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DerINITION 18.4. F{x, #) stands for the following formula:
Vo VT [et(TH ) A ct(T4 ) D
(T =t")=v"4") =u("L))]
AVTATV ™ B [st("AAB Y Als("AAB)<nD
S(("AAB)=a("A") A a("BY)]
AY A7 [st(T=A ) A ls("—A7) < nD
> (a("=4") = —a("A"))]
AV TV, A(x)” stV A(x) ) A ls("Vx; A(x) ) < nd
O {a("Vx; Ax)) = Vral A@E) )]

F(a, n) means: « is a truth definition for sentences of complexity < .
In fact, a predicate T, satisfying F({y}T (), #), was defined in §14 for each
n (separately). However, we can now go further, and give a truth definition
for all sentences, namely:

T(a) abbreviates st(a) A 3¢ (F(p, 1s(a)) A @(a)).

(Note: This is not a “truth definition” according to Definition 10.10. We
are generalizing the notion of truth definition. For the meaning of this, see
Theorem 18.13.)

Lemma 18.5. (1) In PA’:

Fla,n), F(8,n),st("47), Is("A)<n —a("47) =p("4").

(This states that any o for which F(a, n) holds, is unique, at least with regard
to the sentences whose complexities are < n.)

(2) Fla, ), m << n — Fla, m) in PA’.

(3) F(o, n), E(B, &, n) — F(B, n + 1) in PA’, where E(\oc, B, n) is an abbrevia-
tion of the following:

Vx (B(x) = [st(x) A ls(x) << n A a(x)]

v [st(x) A ls{x) = n + 1
A{3TAT (x ="A" A =x(TAT))
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viTAT3ITB  (x ="AAB Ax("A)rax("B")
v ATV A() " (v ="V A(w) A Yy oA () ).

(T his means that 5 is an extension of o to the sentences of complexity n 4 1.)
(4) VuNo IS E(@f, @, n) in PA’. (The existence of an extension.)
(8) Gla) — Fla, 0) in PA’, where G(a) 1s an abbreviation of

Va (a{x) = 3787 378" [et("H7) A ct(T8T)
Ax ="t =" ao(ThT) = (Tt )))

(Truth definition for n = 0.)
Prorosition 18.6. Vi I F (g, n) 1n 8.

Proor. By an application of ind, with induction formula 3¢ F(p, a), which
is X7, or I} (in wider sense). Use (4), (2) and (3) of Lemma 18.5.

ProrosiTiON 18.7. T{(a) = st(a) A Vo (F(gp, 1s{a)) D ¢(a)) in St.
Proor. Use (1) of Lemma 18.5, and Proposition 18.6.

The following propositions (18.8-18.10) assert that 7 commutes with
logical symbols.

PrROPOSITION 18.8. st("A7) - T("—A") = —=T( A7) in 8.

ProPOSITION 18.9. st("B ) ast("C") - T("B A C) = T("B7) A T(7CT)
in St

ProposITION 18.10. st("Vx, B(x,) ) = T("Vx,; B(x,) ") = Vx T("B(y(x)) ") in SL

These propositions follow from Proposition 18.6 and (1) and (2) of Lemma
18.5. It should be noted that if we assume Proposition 18.6, then the argument
goes through in PA’.

Lemma 1811 (1) ct("4), ct{("6) = T("t =) =o("t,") = v("t7)

in PA’.
2) v("¥(®)") = b in PA.
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(3) Let t{ay,. .., ay) be a term with at most ay,. . ., a, as free variables. Then
v(TEw(by),. .., v(b)) ) = by, ..., by)
in PA, where by,. .., b, ave arbitrary free variables.

ProposiTION 18.12. Let A(ay,. . ., a;) be a formula of PA with at most ay,. . ., a;
as free variables. Then

T("A@(by), ..., (b)) = Ay, ..., by) in S

Proor. By mathematical induction on the complexity of 4. Use (3) of Lemma
18.11, and Propositions 18.8-18.10.

THEOREM 18.13 (property of truth definition). Let A be a sentence of PA. Then
T("A7) = A is provable in S\

Proor. This is a special case of Proposition 18.12.

Since we have established this property of T', we can prove the consistency
of PA in 8L

DerINiTION 18.14. We recall (cf. §10) that Provp,(p, a) is the proof-predicate
for PA: p is a proof of a in PA. (The subscript PA may be omitted.) Also,
3p Prov(p, a) may be abbreviated to Pr(a).

Lemma 18.15.

(1) et ), et "), et (TH0) ), (T T) = o(Th ) e Ut ) = v(THE) )
i PA.

(2) et("t ), et ), st(TAO)), v(Th ) = v(Th ) —

> T(TAn)") = 7( (2)1) in S‘

Proor oF (2). By induction on # applied to the following formula:

YV A(a) " [st(TA0) ) Als("A0) ) < n D

DV VLT (ct(ThT ) ATt YA (Tt ) = u(TE ) D
DT("A()") = T("Alt) ).

This is 7] (in wider sense). Use (1) and Propositions 18.8-18.10.
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THEOREM 18.16. st(a), Pr{a) — T'(a) in S.

ProorF. By induction on » applied to the following formula:

Yy (i(y) < n2 T(u(y)),

where, if y is the Godel number of a proof of 4,,..., 4,, > By,..., B,, then
7(y) is the number of inferences of this proof and «(y) denotes the “universal
closure” (i.e., a sentence formed by repeated universal quantification) of
(Aga...AnA4,)23(Byv ... vB,). Both i and # are primitive recursive
functions. The above formula is /7] (in wider sense). Use Propositions 18.8-
18.10 and Lemma 18.15.

THEOREM 18.17. Consis(PA) in St
ProoF. By Theorems 18.13 and 18:16 applied to the formula 0 = 0.

PROBLEM 18.18. Let ZF’ be the second order system which is defined as ZF
with the basic logical system K€ (cf. Definitions 15.15 and 16.4) and (finite)
induction applied to IT}-formulas. Give a truth definition for ZF in ZF’, thus
proving the consistency of ZF in ZF’. [Hint: Follow the arguments in this
section. It is important to notice that T("4™)
replacement, is a formula of ZF" which is again an axiom of replacement.]

where A 1s an axiom of

s

§19. The interpretation of a system of second order arithmetic

DEeFINITION 19.1. (1) Let 82 be second order arithmetic with the arithmetical
comprehension axiom and full induction, and let 8 besecond order arithmetic
with the I7] (in wider sense)-comprehension axiom and IT} (in wider sense)-
induction. Notice that 82 and §? are extensions of 8.

{2) We shall assume a standard Godel numbering of the second order
language (of arithmetic). In particular, "oy ', "az',. .., Ty, T@s ...
denote Gddel numbers of second order variables. We include abstracts among
the formal objects. So we need Gédel numbers for them: “{7, "}7, "{x}4(x)".
Actually we only use arithmetical abstracts here.)

Notice however that although abstracts are included among the formal
objects for convenience, they do not actually occur in the formulas of 82 (as
explained in §15).



cH. 3, §19] THE INTERPRETATION OF A SYSTEM OF SECOND ORDER ARITHMETIC 165

(8) We take over from §18 all the notations for primitive recursive functions
and predicates pertaining to first order arithmetic (some of them, like ls(a),
now adapted in an obvious way to the second order language).

Additional primitive recursive functions and predicates needed are:

fI2(a): a is a first or second order formula (of §2).

st2(a)f a is a sentence, i.e., f12(a) and a is closed.

ab(a): a is an arithmetical abstract.

cab{a): ab(a) and a4 is closed.

sub("47, "a", V): the result of substituting V for «in 4 if 4 is a formula,
o a second order variable and V an arithmetical abstract. This may be denoted
by "TA®%)T or TA(V)".

q2(a): The number of second order quantifiers in a, if f12(a).

We also use the other abbreviations in §18, and T is defined as in Definition
18.4.

DeriniTION 19.2. F'(a, #) stands for:
VAT (st2(TAM) A q2("A7) = 02 a(TAT) = T("47))]
AVIAT [st2("TAN A0 < q2(T =AY <n D a("=47) = —a(T4A7))
AV AAB [st2("AAB)YA0<q@2("AAB)Y<nD
SallAABY)=a( 47 )Aa("B)]
AY Y A(x) " [st2(7Vx; A(x) ) A0 < q2("Vx; A(x) ) <D
5. a("Vx; Ax)7) = Yaa"A@EE) )
AV Vg, Alg)” [st2( "V, Alg) ") A0 < q2( Vg, Alp) ) <n.3
.o Vs Alp)") = VTV (cab("V )2 "A(V) ).

F’(«, n) means that « is an interpretation for sentences of 8% of (second order
quantifier) complexity < #n. We now give an interpretation for all sentences
of 82

La): 3 (F'(h, q2(a) A $(a)).

The point is that we can give a kind of truth definition for 82 by interpreting
the second order variables as ranging over arithmetical predicates or sets (i.e.,
sets and relations of natural numbers defined by the closed arithmetical
abstracts). This is often expressed by saying that the arithmetical sets form
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a model of §2. Further (as Lemma 19.14 essentially says) this can be formalized
and proved in $2.

LemMa 19.3. (1) F'(a, n), st(" A7) —a( A7) = T("A") in PA'. (« coincides
with the truth definition T for avithmetical formulas.)
(2) st2("A7), F'(a, n), F'(B,7),q2("A") <n —a( A7) = p("4") in SL
(3) F'ia, n), m << m — F'(o, m) in PA’.

ProoF oF (2). By double induction on (q2("4"),1s("A4™")) applied to the
above sequent, which is IT} (in wider sense).

DeFinITION 19.4. E(a, 5, 7, ) is defined to be:
VA [st2("A) A q2("AY ) <n o B(T4AY) =a("47))
AV =47 [st2(T—AM A q2(T A ) = A ls(T0A) <UD
. [)’(r_!Aj) = ﬂﬂ(rAj)}
AVTAAB [st2("AABYAQ2("AABYY=n als("AAB")<IlD
D. ﬁ(rA A BT E,B(rAj) A /f(rBj)]
AY VR A [st2( TV A(x) V) A Q2T A(x) ) = n A ls(TVx A(x,) ) <D
2. BV Al ") = Vx o TAB())]
AVFV‘P:’ A(‘Pz‘)—l [5t2(rv% Alpy)7) A q2(‘_\1(pi A(‘Pz‘)-‘) =n'
Als(Vg Alp) ") <UD
2. 8"V Alp)") =V V (cab("VT )2 B("A(V) )]
LemMma 19.5.
(1) Eo, B, m,0),st2("A47), q2(" Ay <n - B("A") =a( A7) in PA".
(2) E(a, 8, n, ), E{a, y, n, k), stQ(FA_'), qZ(FAj) <,
IS("TATY <Lk ->B("4A7) =y("A47) in PA".
(Uniqueness of extension.)

(3) E(at, &, 7, 0) 21 PA’.
4) E(ot, 8, n, 1) — E(x, {x}C(x), n, ') in PA’, where C(x) stands for:
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[(st2(x) A q2(x) < n v, (Q2(x) = 5" A Is(x) < V) A B(x)]
Vo [st2(x) A q2(x) = # A ls(x) =7
AATAT (x =T=ATASB(TAT))
vITAAB (x="AABAB("AT) A B("B))
v ATV Ar) (= TV A(x)" A Yy BTAER) )
v 3T, Alp) " (v = Ve Alg)™ AYTV (cab(TV )2 4(TA) )]

(Extension of 8 from (n, f) to (n, I').)
(6) Vi @ E(a, @, n, 1) in St (Existence of an extenston of a, for fixed n, for
every l.)

ProoF oF (5). By induction on / applied to 3¢ E{a, ¢, #, /). Use (3) and (4)
of this lemma and the arithmetical comprehension axiom.

DerFINITION 19.6. G, n, x): 3¢ (E{x, ¢, n,1s(x)) A @(x)). Ga, #, x) shall be
abbreviated to G(x).

LeEmMA 19.7. (1) F'(a, n), st("4") > G("A")
@) E(ot, f,m,0),5t2("47),q2("4A ) <nv (@2(TA7) =" als("AT) <) —
—G("AYy = p(TAT) m PA’,
(3) st2("A™), F'(a, n), q2("—A4") <w' > G("T—A") =—G("A") in S
4) st2("4 A B"), F'(, n), q2( A/\B_')gn —
—~G("TAABY) =G("A") AG("B") in 8L
(6) st2( "V, A(x)7), F'lw, m), q2( Vo, A(xy) ) < ' —
—G("Vx; Ax)") = V2 G("A(p(x))") in SL
(6) st2( V%A(%)j), Fr(a, m), q2("Vo; Alg) ') < »' —
- GV, A(p)") =V V7 (cab("VT )2 G("A(V)T)) in SN

Proor. (1) From (1) of Lemma 19.3 and (1) of Lemma of 19.5.
(2) From (2} of Lemma 19.5.
(3) By (2) above and (5} of Lemma 19.5.
(4)-(6) are proved like (3) above. Notice that in (6)

q2( Ve, Alg)") < »' implies q2("A(V) ") < n.
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Lemma 19.8. (1) F'a, n) — F'({x}G(x), ') in SL.
@) — F'({x}T(x), 0) in PA".

Proor. By (1) and (3)-(6) of Lemma 19.7, and the definition of F’.
PropOSITION 10.9. Vo I F'(if, n) in 83,

Proor. By the comprehension axiom applied to {x}G(x) and also to {x}T(x),
and induction applied to 3 F’(if, n),-which are all 7] (in wider sense), and
Lemma 19.8.

LEMMA 19.10. F'(a, n), st2("A47),q2("4") <n »a( A"y = I("4") in SL
Proor. Use (2) and (3) of Lemma 19.3.

PROPOSITION 19.11. st2("A47),q2("47) = 0 > I("A7) = T("4A") in §3.
ProOF. By Lemma 19.10, (1) of Lemma 19.3, and (2) of Lemma 19.8.

The following proposition asserts that I commutes with logical connectives.
It is proved by Lemma 19.10 and Proposition 19.9: hence in $3.

ProrosiTion 19.12. (1) st2("A7) - I(T—A4A") = =I("47).
2)st2("TAAB") - I("TAABY)Y =I("A") A I("B").
(3) st2("Vx, A(x,)") — I("Vx; A(x)") = Vx I(TA(w(x)").
(4) st2("Vo, A(g) ") ~ IV A(@)") =V V7 (cab("VT) 2 I("A(V) 7).

We can now proceed to the consistency proof of S2.

DeriniTION 19.13. (1) 4(p) is the number of inferences in (the proof with
Gédel number) .

(2) i(b, a) means: ‘b is a closed instantiation of a”’, viz. (b, @) if and only if
a="AB,...,c,...)" and &= "AWV,...,v(n),...)" for some closed
arithmetical abstracts V,..., and numbers #,..., where §,...,¢,... are all
the {ree variables in 4.

(3) 7(b, ) means: if p is a Godel number of a proof in 8% of 4,,...,4,, —
By,...,B, theni(b, "A A ... AAp,DByv ... v B,

(4) We write Prov, for Provg, and Pry(e) for 3x Provy(x, 4).
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LEmMmaA 19.14. Pry(a) — Vx (i(x, a) D I(x)) in S3.

Proor. Define H(m) as:
Vp, x [i(p) < m A j{x, p) D I(x)].

The proof is carried out by induction on = applied to H(m), which is I1;
{in wider sense). The argument proceeds according to the “last inference
of . The case where the last inference is an induction causes no problem,
since the induction step is then proved by applying induction {(on %) to a
formula of the form I("A(w(k), V,..., v(n),...)") (where A(a, §,...,¢c,...)
is the induction formula of this inference, with eigenvariable a).

ProPOSITION 19.15. st2("A7), Pry("A") - I("A7) in $8.
Proor. By Lemma 19.14.
THEOREM 19.16. Consis(82%) in 83.

ProorF. A corollary of Propositions 19.11 and 19.15, and Theorem 8.13.

§20. Simple type theory

In this section we present the higher (finite) order predicate calculus. We
shall formulate it in the sequential calculus. It is a simplification of a system
called GLC, which was defined by the author. Now we restrict ourselves to
predicate variables only. Following common practice, the word “type” is
used instead of “order” (as in §15), and types start with O rather than 1. Thus
the individual objects are of type 0.

DerFinNiTION 20.1. (1} We define fypes inductively as follows: 0 is a type; if
Ty,..., T are types (k > 1), then so is {ty,. .., 7;]; types are only as required
by the above.
{2) The symbols of our language are classified as follows:
1) Constants:
1.1) individual constants: ¢g, ¢q,. . .;
1.2) function constants with ¢ argument-places (# = 1,2,...): f;, ]‘1‘ o
1.3) predicate constants of type v # 0: R}, R}, .. .
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2) Variables:

2.1) free variables: ay, aj,... of each type t,

2.2) bound variables: «{, «7,. .. of each type 7.
3) Logical symbols:— (not), A (and), v {or),D (implies), V {for all), 3 (there exists).
4) Auxiliary symbols: (, }, {, }, [, 1.

A higher-order language (a language of simple type theory) is given when
all the constants are given. A predicate variable means a variable (free or bound)
of some type # 0. We shall use the symbols of the language also as meta-
variables. Type superscripts are sometimes omitted. We shall, further, take
over all the appropriate notational conventions in §1.

Intuitively, variables of type 0 range over individual objects while variables
of type (74, . . ., 7] range over predicates which are associated with the subsets
of T, x ... x T,, where T, is the set of objects of type 7,.

DeriNiTION 20.2. Terms (of given types), formulas and outermost logical
symbols are defined inductively (and simultaneously).

1) Individual constants are terms of type 0.

2) Free variables of type 7 are terms of type t.

3) If f is a function constant with 7 argument-places and ¢y,. . ., #; are terms
of type 0, then f{#,..., ) is a term of type 0.

4) Predicate constants of type 1 are terms of type 7.

5) If 4 is a formula, ag,.. ., ajF are distinct free variables of the indicated
types, x%,..., x;* are distinct bound variables of the indicated types not
occurring in A, and A’ is the result of simultaneously replacing, in 4, a, by
Xg,- - ., 4z DY %y, then {x,,..., %} A" is a term (called an abstract) of type
(Tg, - -, To)-

6) 1f « is a predicate constant or a free variable of type [t13,..., ;] and
tq,. .., 1 are terms of type 7q,. .., 7, then afty,. . ., 4] is a formula, which is

called atomic. There is no outermost logical symbol in this case.

7) f A and B are formulas, then (—A4), (4 A B), (4 v B), (A2 B) are
formulas, and their outermost logical symbols are —, A, v, 3, respectively.

8) If 4 is a formula, a* is a free variable, x* is a bound variable of the same
type which does not occur in 4, and A’ is obtained from 4 by replacing all
occurrences of 4* by #*, then V¥x* 4" and 3x* 4’ are formulas, and their outer-
most logical symbols are YV and 3, respectively.

These formation-rules may result in an excessive number of parentheses:
if no ambiguity results, we may omit some of these as we did in the preceding
sections.
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Notice that here, unlike the preceding sections, abstracts are taken as
formal objects. The notion of alphabetical variant is defined as before: for two
expressions 4 and B, 4 is said to be an alphabetical variant of B (and vice
versa) if A and B differ only in the names of some bound variables.

DeriNiTION 20.3. The height of a type 7, i(t), is defined inductively as follows:
h0) = 0; My, .., 1)) = max{h(zr)),..., h{zy)) + 1.

By the height A(f) of a term (abstract) ¢, we mean the height of its type.
The (logical) complexity of a formula or abstract 4 is defined to be the total
number of logical symbols and pairs of abstraction symbols {, } in A.
Substitution of a term ¢ of type 7 for a free variable a of type 7 in a formula
or an abstract A is now defined by double induction on the height of 7 and
the complexity of 4.
1) Basis: the height of 15 0, i.e., the type 7 is 0.
Then A () can simply be defined as (A4 %), in accordance with Definition 1.4,
or an alphabetical variant of this.
Let a and b be free variables of type 0 and let ¢ and s be terms of type 0.
We can easily prove the following.
(1) If 4 isa formula (term of type 7) then 4(f) is a formula (term of type 7).
(i) If A is an alphabetical variant of B then A(}) is an alphabetical
variant of B().
(i) A(#) contains only those free variables contained in A or ¢.
(iv) If s does not contain a, then

a

a\ [b\ b
A is A <b>
t/\s s/\¢
s
2) Induction step: suppose 4(f) = n % 0 and for any m < #, substitution
of a term ¢ of type o (with A(c) = m) for a free variable 4 of type ¢ has been
defined so as to satisfy the following properties:
(1) If A is a formula (term of type o), then A(f) is a formula (term of
type o).
(2) If A is an alphabetical variant of B and s is an alphabetical variant of ¢,
then A (%) is an alphabetical variant of B(}).
{(3) A(%) contains only free variables contained in 4 or £

a
(4) A(

is an alphabetical variant of A.
{x1,. ., xpalxy,. .., xk]> p
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(5) {%1,. .., xx}alxy,. . ., %) () is an alphabetical variant of ¢.
(6) If s does not contain 4, and the height of & is less than », then

A (a) (b>
ti\s
is an alphabetical variant of

a
qeley
s/\¢
s

(7) If A does not contain a, then A({) is an alphabetical variant of 4.

Let a and ¢ be a free variable and a term, respectively, of type v such that
h(z) = n. If ¢ is a free variable or predicate constant, then A(f) is defined
again to be (an alphabetical variant of) (4). So suppose ¢ is an abstract. We
define A(?)byinductionon the complexityof 4. Lettbe {xy,. .., 2.} U(xq, . - ., %),
where x;isof typet,, aisof typer = [14,. . ., 7 ]andmax(h(zy),. . ., {ty)) + 1 = n.
First note that for any term s of type 0, s(f} is defined to be s.

2.1) If 4 is of the form &[ty,. .., ¢], where & is a predicate constant or
variable other than a, then

() = bl ol

22y If 4is alty,. .., 4], then
by by

A(j) is Ulby,..., by t1<a> tk(a> ,
H ¢

where b4,. .., b, are different from any free variable in 4 and

Ulby,..., by is Ulxy,..., %) (H)
Lo by

h{b;) < m and ¢; is “‘simpler”” than A4, and hence

has been defined for arbitrary B.
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2.3) If 4 is of the form =B, B A C, Bv C or BDC, then A(}) is

i) ool of2)e() o ool

2.4) If A is of the form Vx I(x) or 3x F(x), then A(}) is Vy G(y) or Iy G(y),
respectively, where G(b) is I'(b)(}), b is different from 4 and does not occur
in 4, and y does not occur in G(5).

2.5) If 4 1s of the form {x,. .., x;}B(xy,. .., x;), then

a . .
A<t> is {vy, o Ve Cve o Vi)

where C(bq,..., b0,) 1s B(by,. .., b)) (), bq,. .., by are different from a and do
not occur in A, and none of the y,;’s occur in C(by,. . ., b,).

Then we can prove (1)~(7) for 4(a) = n. (The proof is omitted.) We often
denote A(}) by A(t).

Here and henceforth we use U, V,... with or without type-superscripts,
as meta-variables for abstracts. Also, «, 8,. .. are often used for {ree variables
instead of a,6,..., and @, ¢,... for bound variables instead of &, v,...,
usually when we are thinking of variables of type # 0.

ExampLE 20.4. Let A be V¢ 3y (xla] = ¢ix]), where ¢ and o are of type [0] and
x and a are of type 0. Let V be {2} Vo 3x (p(x] A f[z]), where ¢ and § are of
type [0] and x and z are of type 0. V is an abstract of type [0]. Consider
A(}). The substitution is carried out step by step according to Definition
20.3. Since « is of type [0], we start with clause 2) of the definition and are
led repeatedly back to 1). By 2.2) and 1), «[a] (}) is Vo 3x (¢lx] A Sla]). Using
this, by 2.1) and 2.3), (a[a] = 9{b]) (}) (for some b, and y different from a
and «, respectively) is Ve 3x (@[a] A fla}) = y[6]. I'rom this and 2.4}, we
obtain

Vi 3y (Vo 3x (glx] A Slal) = Sly]).

EXERCISE 20.5. Let A be
{vial{zHalz] = By])],
and let 72 be
{1y Vo 3x (Pl[a] = ¢'[x]),

where 1 = [0] and 2 = {1]. Compute 4 (%.).
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DerFINITION 20.8. Let ¥V be an abstract of the form

(A, 0,
andlet Vy,..., V', betermsof typesty,. .., T, respectively. Then VIV4,. .., V,]
1s defined to be
T
LZT‘ a n
A(al ar ! . »
Afal,. .., a, ) I ,
I/ 1 V'rz
where a}’,. .., a,* are free variables of the indicated types which do not occur
inanyof V, I"y,..., V, (and A(al,..., a) is
T Tn
T Tn X1, » Xn
Al | (n" Tn))
A1 ,. .., Ay

DeFiNiTION 20.7. The formal system of simple type theory is defined like
GILC in §15. The sequents are, as usual, of the form /7 — @, where I"and ©
consist of finitely many formulas. The rules of inference are those of GILC
(cf. Definition 15.15) with the following gencralization (to higher types).
(We take over all relevant notions and terminology from the previous
sections.)
FW), I' -
Vo left: JL )*Tf —@
Vo F(g). I' = O
where V' is an arbitrary term (of any type) and ¢ is a bound variable of the
same type as V' (and if I'(V) is I'(}) then I'(g) is (I%;))
. I -6, F()
Voiright: o — — i
T 6. Fg)
where o does not occur in the lower sequent and ¢ is of the same type as a.
Here g is called the cigenvariable of the inference. We define 3 : left and
3: right similarly.
A sentence of the form

VY, Vi 3 Vg, X (@, o %) = A Gn Vi V)

where A(ay,. .., a,,by,...,b,)isanarbitrary formula (and xy,. . ., %, ¥1,- . . Vi
arc of arbitrary types), is called a comprehension axiom (cf. Definition 15.14).
The following is analogous to Proposition 15.16.
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ProPOSITION 20.8. The comprehension axioms (for arbitrary A) ave provable
in simple type theory. Conversely, consider the subsvstem of simple type theory
im which N @ left and 3 1 vight ave vestricted to the case that V is a free variable
or predicate constant. In this subsystent, augmented by the comprehension axioms
for all A, the general ¥ : left and 3 : vight ave admissible.

DerixtTION 20.9. (1} A semi-formula is an expression like a formula, except
that it may contain free occurrences of bound variables. A semi-term is
defined likewise.

(2) The logical complexity of a semi-formula or semi-term 1s defined as for
formulas and abstracts (Definition 20.3).

§21. The cut-elimination theorem for simple type theory

About 25 years ago the author conjectured that the cut-climination theorem
holds for simple type theory as formulated in Definition 20.7. This was known as
Takeuti’s conjecture and it remained unresolved for many years. W, W, Tait
provided support for my conjecture by proving the cut-elimination theorem
for second order logic. The full conjecture was then resolved positively by
Takahashi, and independently by Prawitz. In this section we will present
a proof of the cut-elimination theorem for simple type theory, using the
method of Takahashi and Prawitz. We, however, wish to point out that in
1971 J.-Y. Girard made significant improvements on several of the results
of this section including the proof of the cut-elimination theorem. (Sce the
Proceedings of the Second Scandinavian Logic Symposium, ed., J. E. Ienstad
(North Holland, Amsterdam, 1971).) Girard’s basic 1dea was then used by
Martin-L&éf and Prawitz, independently to produce a variant and somewhat
more elegant form of cut-elimination.

Throughout this section we shall deal with variables and abstracts of one
argument-place only and restrict the logical symbols to —, A and ¥ in order
to simplify the argument. Thus the tvpes are 0, {0], ].0;],... which may be
called 0, 1, 2,. ... We shall also omit the constants. The results can easily
be extended to the general case.

DerFINITION 21.1. An axiom of extensionality is a formula of the form
Vi (Va(x) = Va(v)) D Vg (p. V1] = ¢17)),

where V', and V, are arbitrary abstracts of the same type. In simple type
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theory this is equivalent to the following rule of inference (the extensionality
Tule):
Vila), I' > 4, Vyla) Va(a), I' > 4, Vy(a)
Vi), I' > 4, o[ V)

where a does not occur in the lower sequent.

Propros1TioN 21.2. The following is an admissible inference in simple type theory
augmented by the extensionality rule:

Vi), I =4, Vole)  Vifa), I’ >4, Vila)

A(Vy), I’ - A, A(Vy)

where A(Vy) 1is obtained from an (arbitrary) formula A(B) by substitution of
Vy for B and a does not occur in the lower sequent.

Proor. By mathematical induction on the complexity of A. We shall deal with
the case where A(f) is of the form V¢ B(g, ). Assume V(a), I" — 4, Vy(a)
and Vy{a), I' -~ A, V,(a). By the induction hypothesis, B(y, V), I’ —~ A4, By, V)
is provable, where p is a free variable of appropriate type which does not
occur elsewhere in this sequent; hence by mtroducing Y on both sides,
Yo A(p, Vi), I' = 4, Yo Alp, V,) is provable.

THEOREM 21.3 (the cut-elimination theorem for simple type theory with
extensionality: Takahashi). Let S be simple type theory augmented by the
extensionality rule. Then the cut-elimination theovem holds for 8.

The proof is obtained by modifying the original Takahashi-Prawitz method.
The proof is presented stage by stage, introducing certain notions and
notations as needed.

DeriNiTION 21.4. (1) A structure (for simple type theory) is an w-sequence
of sets, say & = (Sy, Sy,..., S;,...), where

1.1) S4 is a non-empty set,

1.2) S, is a subset of P(S,), the power set of S,.

(2) An assignment ¢ (from ) is a mapping from all (free and bound)
variables such that to every variable of type ¢, ¢ assigns an element of S,.
An interpretation 3 is a pair (&, ¢) consisting of a structure % and an assign-
ment from .

(3) Given an interpretation 3 = (&, ¢), we will define the interpretation
(by 3) of semi-formulas and semi-terms. We use the notation ¢(Z) in order
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to express the assignment which agrees with ¢ except at », where its value
is S.

If A4 is a semi-formula or a semi-term, then its interpretation (by J) is
denoted by ¢(4). It is defined in such a way that for every semi-formula 4,
exactly one of ¢(4) = T and ¢(4) = F holds (where T stands for “truth”
and F for “falsehood”), and for a semi-term A of type i, ¢(d) is a subset of
S;- The definition is by induction on the complexity of 4. (If 4 is a free or
bound variable then ¢(4) is already defined as the value of ¢ at 4.)

3.1) (x[W]) = T if and only if (W) € ¢(a).

3.2) §(Vx A(x)) = T (for x of any type) if and only if, for every ¢’ which

agrees with ¢ except perhaps at x, ¢'(4(x)) = T.

3.3) p({x}A(x)) = {S|SeS;and ¢ ({) (A(x)) = T}, where x is of type i.

34)pA AB)=Tifand only if ${4) = T and $(B) = T.

3.5) (—d4) = T if and only if $(4) = F.

Let S: 4,,...,4,, > B4,..., B, be a sequent. Then

HS) =d((4d1A ... AA4,)vByv ... vB,)

{(where v is defined in terms of — and A).

(4) A structure & is called a Henkin structure if for every assignment ¢
from & and every abstract U? of type ¢ {(fori = 1, 2,...), $(U?) is a member
of S,.

ProprosITION 21.5. Suppose & is a Henkin structure and ¢ is an assignment
from . If a sequent S is provable in 8, then $(S) = T.

This is proved simply by examining each rule of inference.

DeFINITION 21.6. A semi-valuation with extensionality is an assignment v of
at most one of the values T and F to formulas, which satisfies the following.

1 If v(—A) = T, then v{4) = F; if v(—A4) = F, thenv(4) = T.

D If v{AAB) =T, then v(4) =T and v(B) = T, if v(4 A B) = F, then
v{d) = Foro(B) = F.

3) If v(Vx A(x)) = T, then v(A(f)) = T for every term ¢ of the same type
as x; if (Vx A(x)) = F, then there is a free variable a of the same type as «
such that v(4(a)) = F.

4) If A is an alphabetical variant of B, then v(4) = v(B).

5) Let o be a free variable of type > 1. If v(«[U;]) = T and v(a[U;]) = F,
then there is a free variable a of appropriate type such that either »(U,[a]) =T
and v(Uy[a)) = F or v(U,[a]) = Fand v(Uyfa]) = T.
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If v is a semi-valuation with extensionality, and S is a sequent

Ao A, > By, .., By,
then we define

o(S) =g v(m(Ay A ... AAL VY BV ... v B,),

if the latter is defined.

ProrosITION 21.7. I} S is not cut-free provable, then there 1s a semi-valuation
with extensionality, say v, such that v(S) = F.

Proor. This is proved like the completeness theorem; construct a reduction
tree for S (cf. §8). We shall only outline the definition of the immediate
successors (i.e., the sequents written down immediately above those being
considered) when “extensionality’” and formulas of the form Y F(¢) come
under attention. For the former let I — 4 be one of the uppermost sequents
in the tree which has been constructed so far. Let

<°‘1[U111]: oﬁﬂUusz c <°‘1[U1klﬂ, Oll[Ulk.z]>»- e
Sy <‘xm[Um11:|: “m[Um12]>: e <°Cm[Umkm1]x am[Umkm‘z])

be all the pairs of atomic formulas in I, A such that o,{U,;;] occurs in I" and
o; (U] occurs in ¢ for § = 1,..., k. Let byy,. o0, bigs o Duts e - - By, DE
distinct new variables of appropriate types. Write all sequents of the form
Ui, I = A, Uyyp[by], fori =1,...,m,j=1,...  k,l=1o0r2and !’ = 2
or 1 (according as / = 1 or 2) immediately above I" — 4.

For the stages when the higher type quantifiers come to attention, we
proceed as follows. We define the notion of available free variable {(at a given
stage) as in §8, but in such a way that at least one free variable of each type
is always available. Now, for a (higher type) V : left reduction: let {Vo,; Fi(@;)}im,
be a sequence of all the formulas in the antecedent of a sequent I — A which
start with higher order quantifiers. Suppose it is the kth stage. For all ¢,
1 <o <Cm, let V; . V; be the first & abstracts in some predetermined list
of abstracts of the same type as ¢,. Then the immediate successor of I" — 4 is

i

FyVY,. ., F(V}),...,F (V!,..., F(V), T - A.

Next, for a (higher type) V : right reduction, proceed as before (i.e., case
11, 9) in the proof of Lemma 8.3, replacing bound variables by free variables
of the same type).
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In this way we can complete the prescription for constructing the tree.
As in Lemma 8.3, if each branch of this tree is finite, and (hence) ending with
a sequent whose antecedent and succedent contain a formula in common,
then it is easy to convert this tree to a cut-free proof in 8 of the sequent S.
So if S is not cut-free provable, then there is an infinite branch. Take one
such infinite branch and define a semi-valuation v as follows: v(4) = T if 4
occurs in the antecedent of a sequent in the branch and = F if it occurs in the
succedent. It is not difficult to see that v satisfies the conditions for a semi-
valuation. From the definition, v(S) = F. We shall show only that v satisfies
conditions 5) and 3) of Definition 21.6.

Suppose v(e[U;]) = T and v(a[U,)) = F. Then «[ U] occurs in the antecedent
and «[U,] in the succedent of the branch under consideration. From the
construction of the tree, it follows that once «[U,] occurs in the antecedent
of a sequent, then it occurs in the antecedents of all the sequents above it, and
likewise with «[U,]. Thus there is a sequent in which «[U;] occurs in the
antecedent and «[U,] occurs in the succedent and to which the “extensionality”
stage applies; thus there is a free variable 4 such that its immediate successor
contains U;{4] in the antecedent and U,[a] in the succedent. Thus, by the
definition of v, »(U;[a]) = T and v((U,a]) = F.

For the case of a formula V¢ F(p), suppose v(Vp F(¢)) = T. This means
that Vo F(g) occurs in the antecedent of a sequent (and hence of all sequents
above it). By the construction of the tree, for every abstract V of the same
type as @, F(V) occurs in the antecedent of some sequent: hence v(F(V)) = T.

DeriniTION 21.8. Given a semi-valuation with extensionality v, we define
the Henkin structure S = (Sg, Si,...) induced by v, as follows. The sets
So, S1,- - . and relations Ul << S for S € S, are defined simultaneously.

1) S; is the set of all terms of type 0 (in our simplified case these are only
free variables). For any terms ¢, and ¢, §; < ¢, means that £, isidentical with 4.

2) Suppose Sy,..., S, and < for these types have been defined. Suppose
S < S,. Then Un*! < S if and only if for every abstract Uj of type » and
every S™ which belongs to S, if Uy << S and (U [Uj]) = T, then S©
belongs to S, and if Uy < S* and »(U[Ug]) = F, then S™ does not belong
to S. S, is defined by

Sni1 =at 1S | S = S, and there exists a U+l such that U+l < S}.

From the definition it is obvious that S,,; € P(S,).
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We can think of U < S as meaning: “U is a possible name for S {under
the semi-valuation v)"".

For convenience, we use the word “abstract”” below to mean (also) a free
variable of type 0. Then with any free variable a, we associate an abstract,
also written a, namely {x}a{x] if 2 has type > 0, and a itself if its type 1s 0.

ProrosITION 21.9. For the structure & defined as in Definition 21.8, it holds
that given a free variable of type n, say a, there exists an element of S, say S,
such that o < S (a denoting an abstract as defined above).

ProoOF. By induction on #.

Basis: # = 0. For every free variable a of type 0, a4 belongs to Sy and
a <a.

Inductionstep: let # > Oand suppose the proposition holdsfor0,1,...,7n — 1.
Let S be the set defined by

S =g {S* 1| S 1lisin S, ; and there exists a U"~! such that
Un—1 < S*land »(a(Ur1] = T}

Then, by definition, S < S,_;. We claim that « < S. For take arbitrary
Un—t and $*71 such that Un—! << S»~1. We show the following.

(1) If v(«[U» 1)) = T, then S*~1 belongs to S.

(2) If v{«{U"1]) = F, then S~ does not belong to S.

(1) is obvious by definition of S. (2) is proved as follows. Suppose not (2):
v(a[U" 1)) = F and S»1 belongs to S. Then there is a Wn»~1 such that
Wr=l < Sn1 pla[Wn1]) = T.

Case 1.7 = 1. W»~1 = S»=1 = Un~1, yielding a contradiction.

Case 2. # > 1. Since v(a[U* 1)) = F and v(a[W"1)) = T, by condition 5)
inDefinition 21.6, thereisanasuchthateithero(U1[a]) = Fandy(W"a]) =T,
or o(Un1a]) = T and »(W""{a]) = F. By the induction hypothesis, there
isan S*~%in S,_, such that a < S72 If v(Un1[a]) = Fand o(W»-1[a]) = T,
then (since v(U"~1[a]) = F) S*~2 does not belong to S$»~, since Un-1 < §%-1.
On the other hand, v(W"-1[4]) = T implies that S*~% belongs to S®~1, since
We=1 < S»-1 Thus we have a contradiction.

Similarly, if »(U?1{a]) = T and v(W"1[a]) = F, we obtain a contradiction.
So (2) must hold.

From (1) and (2), « < S by definition.
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DerFiniTION 21.10. We shall extend the relation << to formulas and truth
values as follows.

1) A < T if and only if v(4) # F.

2) A < Fif and only if v{4) # T.

As immediate consequences of this, the following hold:

(1) if A < * (where * stands for F or T) and v(4) = T, then » =T,

(2)if A < = and v(4) = F, then = = F;
since if v(4) = T, then v(4) % F by the definition of v; so by 1), 4 < T.
* cannot be F for this case by virtue of 2). (2) is proved similarly.

ProrosiTioN 21.11. Let F be the structure which was defined in Definition
21.8, and let ¢ be an assignment from . Then for any abstract ov formula
Ulay,. .., ), where all the free variables in U ave among ay,. . ., o,, and for
any abstracts Uq,. .., U, (of appropriate types), if U; < ¢lo) for i =1,...,#n,
then UU,..., Uy < ${Uloy,. .., o,

Proor. By induction on the complexity of Uay,. .., a,).

(1) U is ;. By the hypothesis, U; < ¢(a,).

The following are the induction steps.

(2) U is o;[W(ay,- - ., 2,)]. Let a; be of type n;. U; < ¢(«;) by hypothesis,
which implies (by the definition of <) that for every Upi ' and S®1 in
Spiot

1) if Up™! < Smiland o(U,[Up ") = T, then Sm—te ¢(a),

2)if Upi™' < S®~land o(U,[U; ) = F, then S®1¢ d(a,).
NowtakeW(U,,...,U,)as Uy~ and (W (ay, .. ., &) @S S™~! By the induction
hypothesis, W(Uy,..., U,) < ¢(W{«y,. .., x,)), hence the first premiss in 1)
and 2) holds. I v(U,[W(U,,..., U,)]) = T, thenby 1) ¢(W(ay,. . ., atn)) € plax;),
and if it = F, then by 2) ¢(W(ay,..., «,)) ¢ ¢(e;). The first case implies
UW(U,,...,U,] <T by Definition 21.10, and by Definition 21.4, part
3.1), dlo[ Wy, . .., a)]) = T;hence U, [W(U,,. .., U] < Ploi[ Wi, - - ., 20)]).
Similarly, thesecond caseimplies U,[W(U,,. .., U,)] <F=@la i W(ay, . . ., a)]).
(Note that if v(U(U,,..., U,)) is defined then (trivially) U(U,,..., U,} <
H(U(xy,- - ., ), by definition of < in Definition 21.10.)

(8 Uloey, - -+ o) 18 Vp A, atq,. .+, &p).

Casel. v(Vp A(p,Uy,...,U,))=F. Thereisa f such that (4 (8, U;,...,U,))
= F. For this §, take the S which was constructed in Proposition 21.9 so that
B <S. Let ¢’ be $(2). Then 8 < ¢'(8) and U; < ¢'(,), 1 < ¢ < n. By the
induction hypothesis
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A(/J)r (Jl""! ¢ /J)O(.l,... ))
so ¢'(A(f, «y,...,a,)) = F by (2) of Definition 21.10, which means that
dVp A(p, oy, .., a)) = F,so UUy,..., U,) < d(Ulng,. . -, o))

Case 2. v(Vp A(p, Uy,..., U,)) = T. Let § be a new free variable of the
same type as ¢. For an arbitrary Sin S,, define ¢’ = ¢(£). Thereis an abstract
V such that V < S, so V < ¢’(8). By the induction hypothesis,

AV, Uy, < $AB, o, . . ., a))-

From the assumption, v(4(V, Uy,..., U,)) = T, which implies

FAPB, oy, o)) = T.

This is true for every Sin S,, i.e., for every ¢’ which agrees with ¢ except at 5.
Thus ¢(Vp A(p, oy, .., @,)) =T, hence U(U;,..., U,)) < $(Uley,. .., o).
4) Uy, . .., on) 18 {2} A (%, &y, . . ., «,). Let § be a new free variable and

14
{S]d) (B,21,. .., 0,)) =T, where q‘)’=¢(S>}=¢({x}A(x,oc1,...,oc,,)).

For arbitrary U0 and S, of appropriate type which satisfy Uy << Sq, consider

AUg, Uy,...,U,)and ¢’ = $(£);s0 Uy < ¢'(8). By the induction hypothesis,
AUy, Uy, .. Un < ¢'(A(B, oy, .., %,)). Suppose v(A(Uy, Uy,..., Up)) = T.
Then

¢./(A(ﬁ: 25 PIRIRIRIN dn)) = T
by Definition 21.10, so Sy Q. If vw(A(U,, Uy,..., U,)) = F, then

(AL a1, o)) = F,

and hence Sy ¢ Q. Therefore, by the definition of <, U(U,,..., U,) < Q.
Other cases are left to the reader.

ProposiTioN 21.12. & (as defined in Definition 21.5) is a Henkin structure.

ProOF. Let ¢ be an arbitrary assignment from . We have only to show that
for every U, U’ < $(U) for some U’ of the same type as U. Suppose all the
free variables in U are among ay, . . ., a,. Since ¢(«,) belongs to S,,,, where #;
is the type of a;, there exists a U, of type #, such that U, < ¢(«,). Hence, by
Proposition 21.11, U(Uy,..., U,) < ¢(Ulay,- .., x,)). So take U’ to be
UUy,...,U,).
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PrOPOSITION 21.13. Let F be the structuve we have been dealing with and let ¢,
be an assignment from F which satisfies the following:
(i) dola) = a if a is a free variable of type O;
(1) ¢ole) = the S which was defined in Proposition 21.9, if o is a free variable
of type > 0 (and ¢y(x), for bound variables x, is arbitrary).
Let A be any formula. Then v(A) = T implies ¢o(A) = T, and v(A) = Fimplies

‘1’0(/1) = F.

ProoF. For ¢ as above, « < ¢y(«) for every free variable . Thus, by Proposi-
tion 21.11, A < ¢o(A4) (by taking U, to be a,). Then the proposition is a
consequence of Definition 21.10.

ProrosiTioN 21.14. If a sequent S ts not cut-free provable (in 8), then there
exists a Henkin structure & and an assignment from &, say ¢, such that

$o(S) = F.

Proor. By Proposition 21.7, there is a semi-valuation with extensionality,
say v, such that v(S) = F. Let % be the Henkin structure induced by v
{cf. Definition 21.8 and Proposition 21.12). Let ¢y be the assignment from
& defined in Proposition 21.13. Then »(S) = F implies ¢4(S) = F, again
by Proposition 21.13.

Proor oF THEOREM 21.3. By Proposition 21.14, if S is not cut-free provable
{in 8), then there is a Henkin structure & and an assignment ¢, from % such
that ¢4(S) = F. But this and Proposition 21.5 imply that S is not provable
in § at all. In other words, if S is provablein §, then it is provable without a cut.

ReMarK. By Proposition 21.14, we have proved not only cut-elimination
for S, but also completeness of 8 without the cut rule (relative to the semantics
of Henkin structures). (Soundness of § follows from Proposition 21.5.)

Next we shall prove the same theorem for the system without the exten-
sionality rule. The method is quite similar to the proof of Theorem 21.3.

THEOREM 21.15 (the cut-elimination theorem for simple type theory with-
out extensionality: Takahashi-Prawitz). Let 8~ be the system of simple type
theory given in §20. Then the cut-elimination theorem holds for S—.
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Proor. We follow the proof of Theorem 21.3, pointing out the corresponding
items of §21.

DerFiNITION 21.16 (cf. Definition 21.4). (1) A structure (for simple type theory
without extensionality) is an w-sequence of sets, say & = (Py, Py,..., P,,...),
with a relation €; where

1.1) Py is a non-empty set,

1.2) P,,, is a set of pairs of the form (U#+}, S), where U?+!is an abstract
of type 7 + 1 and S is a subset of P;. Let P! = (U1, S) be an
element of P,,,, and let P? be an element of P,.

Then P? € Pi+1 if and only if P* belongs to S.

(2) An assignment from £ is 2 map ¢ from variables such that to every
variable of type ¢, ¢ assigns an element of P, An interpretation is a pair
I = (2, ¢).

(3) For each semi-formula or semi-term A4, ¢(A4) is defined as in Definition
21.4 except for the following cases: ¢(a[W]) = T if and only if ¢(«) € H(W);

¢({xn}A (xn, LATERRY) xm)) =

- <{x"}A @, Uy, .., Un), {pn

PnEPnA ¢(;7;> (A(x’ X1+« 'rxm)) = T}>;

where ¢(x;) = (U,, S;) and all the bound variables occurring free in {x}4(x)
are among xy,. . ., X,

{4) A structure is called a pre-Henkin structure if for every assignment ¢
from P and every abstract U of type 4, ¢(U) belongs to P,.

ReMaRK. The reason why we must take pairs (U, S) instead of just S in
defining Pi+! is that £ is a model of the comprehension axioms for which the
axiom of extensionality may not hold. Thus, we cannot always identify two
objects whenever they have the same extension; in order to distinguish two
objects with the same extension, we consider pairs so that the names (of the
extension) are explicitly expressed.

Proposrtion 21.17 (cf. Proposition 21.5). Suppose P 1s a pre-Henkin structure
and ¢ is an assignment from P. If a sequent S is provable in 8-, then $(S) =T.

DerFNITION 21.18 (cf. Definition 21.6). Semi-valuations are defined as in
Definition 21.6, omitting 5).
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ProrosiTioN 21.19 (cf. Proposition 21.7). If S is not cut-free provable in 8-,
then theve 1s a semi-valuation, say v, such that v(S) = F.

DEFINITION 21.20 (cf. Definition 21.8). Given a semi-valuation v, we define
the structure & induced by v: the sets Py, P;,... and relations U* < S and
Ut < P? (for abstracts U?, Pie P;and S < P?) are defined simultaneously by
induction on <.

1) P, is the set of all free variables of type 0. ¢ < ¢, if ¢, is 5.

2) Suppose Py,..., P, and < for those sets have been defined. Let S be a
subset of P;. Ui+l < S is defined to be true if and only if for every Uj and
every Piin P, with U} < P¢:9(U*#1[U}]) = Timplies P‘€ S, and o(Ui[U;)) = F
implies P ¢ S.

3) Py =4 (U, S) | S < Pyand Ut < S}

4) Let P+l = (U, S) be an element of P, ; (so Ui+! < S). Then U < P+l
if and only if U is U,

ProrosiTioN 21.21 (cf. Proposition 21.9). For an arbitrary o of type n there
exists a P in P, such that o < P.

Proor. There are two cases.
1) n = 0. For every a in Py, a < a by definition.
2) #n > 0. Define P as
P =4 (e, S),
where
S = {pP»1| Pr-1e P, _; and there exists a U1 such that

Ur-1 < P*~tand v(«U"1])) = T}.

We have only to show that « < S for this S. In order to prove a << S it
suffices to show that for any U®~! and P*—1 with Ur1 < P»1;

(1) If v(«[Ur1]) = T, then P*1eS;

(2) if v(a[U™1]) = F, then P*-1¢4 S.
The proof of (2) in this case is trivial, since Un~! < P"~1 here means that
Pr-1 = (Ur-1 §) for an appropriate S.

DEFINITION 21.22. We can extend < to formulas as in Definition 21.10.

ProrosiTioN 21.23 (cf. Proposition 21.11). Let & be the structure defined as
above. Given an assignment ¢, define ¢y as follows: If ¢(o) = (U, S), then
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d1(0) = Uy, and for free variables a of type 0, $y(a) = ¢(a) = a. Let U be a
formula ov abstract whose free variables ave a4, . . ., dp. If

¢1(°‘1) =Uy,..., d1(an) = Uy,

then

UUy,..., Uy) < $(Ulay,. .., o).
Proor. By induction on the complexity of Ulxy,..., a,). The argument is
very much the same as the proof of Proposition 21.11. We shall give one
example for the induction step. Suppose U is a;[W(a,,. . ., «,)]. Let o; be of

type #; and let ¢(a,) be (U, S;) (this is the case for #n; > 0, since ¢{a;) = Uy;
for n; = 0, $p(o)) = a; = U,). Since U, < S,, for every Ugi~' and P" " in
VRS

1) If Uy~ < Pvtand (U, [Up)) = T, then PrleS;;

2)if Uy~ < Pt and o(U,[Ug ")) = F, then Pr1¢ S,
Now take W(Uy,..., U,) as Up™ and ¢(W(ay,. .., «,)) as P71 By the
induction hypothesis, W(U,,..., U,) < ¢(W(ay,..., ,)), hence the first
premiss in 1) and 2) holds. If »(U,fW(U,,...,U,]) =T, then by 1),
d(Wiay,. .., a,) €dla,) (since @) = (U, S;) and p(W(ey,. . ., a,)) belongs
to S,), so ¢la W(ay,..., %y)]) =T, which implies U,[W(U,,..., U,)] <
Gl [W(as,. .., a))). Similarly, if o(U,[W(U,,..., U,)]) = F, then by 2),
o, [Wiay,. .., )]} = F, and hence the desired relation holds.

ProprosiTioN 21.24 (cf. Proposition 21.12). 2 is pre-Henkin structure.

PrOOF. Let ¢ be an arbitrary assignment from &. We have only to show
that if $(U) = (V, S), then V < S. Suppose all the free variables in U are
among o;,. .., &, Let U; = ¢{a;). Then U(U,,..., U,) < $(Ulay,. .., ay,))
by Proposition 21.23. By the definition of <, this means that U(U,,..., U,)
is V and hence V' < S, again by definition of <.

ProrosiTion 21.25 (cf. Proposition 21.13). Let P be the structure we have been
dealing with and let ¢ be an assignment from P which satisfies the following:
(i) ¢pla) = a if a is a free variable of type O;
(i1) ¢() = the P which was defined in Proposition 21.21, if a is a free variable
of type > 0 (and ¢(x), for bound variables x, is arbitrary).
Let A be any formula. Then v(A) = T implies $(A) = T, and v(A) = Fimplies
$(4) = F.
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ProoF. For ¢ as above and ¢, as in Proposition 21.23, « = ¢,(a) for every free
variable «. Thus, by Proposition 21.23, 4 < ¢(4) (by taking U; to be «,).
Then the proposition is a consequence of Definition 21.22.

ProrosiTioNn 21.26 (cf. Proposition 21.14). If a sequent S is not cut-free
provable tn S8—, then there exists a pre-Henkin structure and an assignment from
P, say ¢, such that $(S) = F.

Proor. The proof is parallel to Proposition 21.14.

Proor oF THEOREM 21.15. By Propositions 21.26 and 21.17. Follow the proof
of Theorem 21.3.



CHAPTER 4

INFINITARY LOGIC

In this chapter we will deal with a proof-theoretic development of infinitary
logic. One reason for our interest in infinitary logic is that it enables us to
establish a stronger link between model theory and proof theory. Model theory
and proof theory are related to each other in many respects. For example,
Craig’s theorem, Beth’s theorem and Tarski’s theorem, stated in Chapter I,
can be regarded as theorems of both model theory and proof theory. On the
other hand proof theory is somewhat narrower than model theory in the
sense that one cannot always express a model-theoretic result in proof-theoretic
terms although the converse is usually possible. For example, although there
are several proof-theoretic results containing part of the Léwenheim-Skolem
theorem, one of the most fundamental theorems in model theory, we do not
have a proof-theoretic version of the full theorem in ordinary (finitary) proof
theory. However, if we introduce infinitary logic with an appropriate notion
of proof, then the Lowenheim-Skolem theorem can be stated syntactically
(see Problem 22.20).

Let « be an ordinal number, let / be a mapping from o into {V, 3} and let
¥ ., denote the sequence {x,},., Then Q'x_, is a quantifier of “arity” «. If all
the values of { are V or all the values of f are 3, then Qfx_, is a homogeneous
quantifier that we denote by V¥, or dx_,, respectively. A quantifier that
is not homogeneous is called heterogencous.

Heterogeneous quantifiers can occur in more general forms (Henkin). Let
X and Y be disjoint sets of bound variables and let T be a function that maps
Y onto a subset S of P(X). We associate with T, X, Y a quantifier Q(7, X, Y).
For simplicity let ¥ and y be sequences composed of all the elements of X and
Y, respectively, ordered by some well-orderings of X and Y. Then for a
formula 4(a, b), Q(T, », y) A(x, y) (denoted Q7xy A(x, y)) is a formula
having the following meaning. Given any values of the variables & there exist
values of the variables y such that (1) for each 7, the value of y, is dependent
on the values of those x,’s that are in 7(y,), (2) for each #, the value of y,
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is independent of the values of those x,’s that are not in T(y,), and (3) A(x, y).
In other words Q”xy A(x, y) is equivalent to the second order formula.

(Hore oo fure ) (V%) (A8, folXog Fop- - )s- - o FalKngs Xair- - )+ ),

where x,, x,,... are the elements of 7(y,). For example, if X = {x, 4},
Y = {u, v} and T is defined by

Tu) = {z}, T@) ={}
then we have the formula Q(7, X, Y) A(X, Y) that we denote by

(Vx Ju

vy 31,> Alx, y; u, v).

It is known (Mostowski) that this quantifier cannot be defined in terms of
ordinary quantifiers ¥ and 3. Other examples of this kind will be given below.

We shall consider both homogeneous and heterogeneous quantifiers. Were
we to restrict ourselves to homogeneous quantifiers, the theory obtained
would be more or less like a finitary first order theory, whose nature is well-
understood. The situation with regard to heterogeneous quantifiers is more
interesting. One of our objectives will be to determine whether logics with
heterogeneous quantifiers are like finite first order logics or finite second order
logics.

An infinitary logic, with heterogeneous quantifiers Q7x ., such that /(§) =V
if Biseven and f(f) = 3 if fis odd, is of particular interest in connection with
the axiom of determinateness, an axiom that implies many interesting
theorems in set theory. The axiom of determinateness asserts that for each
quantifier Q, and for every formula ¢, exactly one of the two formulas

Qfx<cz l)b(x<w a<3))
or

Qfx<cz —“l’(x<w a_,)

is true, where f is the dual of f, that is, f(y) = Vif f(y) = 3, and f(y) = 3 if
fly) = ¥.

Through the axiom of determinateness we can see connections between
proof theory and set theory. For example, one of the important properties
of rules of inference is that they come in symmetrically related pairs. This
property was essential in the proof of the cut-elimination theorem of LK but
apparently cannot be preserved when we introduce heterogeneous quantifiers.
So it seems rather hopeless to expect that the cut-elimination theorem holds
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in infinitary logic with heterogeneous quantifiers. However, in a determinate
logic (to be defined in §23, roughly as an infinitary logic in which the axiom
of determinateness holds) the rules of inference are symmetric. This offers
hope that the cut-elimination theorem might hold in such a logic. It is known,
however, that the cut-elimination theorem fails for a determinate logic that
has disjunction and conjunction symbols of arity 280 that is, disjunction
symbols and conjunction symbols that operate on sequences of length 20,
Is this also the case for a determinate logic in which disjunction and con-
junction are only of arity w?

There are two approaches to the study of determinate logic, one assuming
the axiom of choice, and the other without it. Without the axiom of choice,
some proofs turn upon very delicate arguments. Nevertheless we can prove
the following without this axiom.

Let M be a transitive model of ZF 4 DC, that is, Zermelo-Fraenkel set
theory augmented by the axiom of dependent choice, and let the power set
of @ belong to M. Then the axiom of determinateness, AD, holds in M if
and only if the cut-elimination theorem holds for every determinate logic
of M, i.e., every determinate logic that 1s M-definable.

This theorem suggests that there is a close relationship between the cut-
elimination theorem and the axiom of determinateness. Furthermore there
is anatural reduction in LK that provides a basis for proving the cut-elimination
theorem. This suggests that by extending the notion of reduction to infinitary
languages we may be able to prove the cut-elimination theorem and thereby
learn more about the axiom of determinateness. We shall, therefore, generalize
the cut rule so that a natural reduction exists for infinitary languages.

The simplest cases of infinitary logic are those systems with propositional
connectives of countable arity, but quantifiers only of finite arity. Although
these are very interesting logics we will give only one result concerning such
systems (cf. Problem 22.21: Lopez-Escobar). For more information the reader
should see: J. Barwise, Infinitary logic and admissible sets, Journal of
Symbolic Logic 34(1969).

An infinitary logic can be regarded as a subsystem of a second order logic
simply because one can formulate the truth definition of any significant
infinitary system in a reasonable second order system. An example is given
as Problem 22.26.

In defining an infinitary language, the basic idea is to determine a set of
variables, a set of constants, and formation rules for formulas. There are
various ways of defining the formulas of the language:
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a) Accept all the formulas that are inductively defined from the constants
and the variables.

b) Restrict the “admissible” formulas to some subsets of all the formulas
defined as in a}, with the provision that the set of admissible formulas
must be closed with respect to subformulas.

Unless we state otherwise, the systems we will study are ones in which the
formulas are defined as in a). Although it is common practice to set an upper
bound on the cardinality of the various sets of language symbols we will
not always do so.

By an infinitary language we mean the following:

1) a set of bound variables;

2) a set of free variables;

3) a set of predicate constants each with its own arity, i.e., “number” of

argument places;

4) a set of individual constants;

5) a set of logical symbols.

The set of logical symbols consists of the usual unary negation sign —, and
the binary implication sign 2, together with a collection of disjunction,
conjunction, universal quantification, and existential quantification signs
each with its own arity. However, we will not use different symbols for
signs with different arity. We will use only one symbol for disjunction V, one
for conjunction A, one for universal quantification V, and one for existential
quantification 3. We will then rely upon the context to make clear which
symbols are “‘distinct”’, for example, two V’s followed by sequences of bound
variables are different symbols if the lengths of the sequences are different,
i.e, the V's in V&_, and Va_, are different if o # f. The same is true of 3,
V, and A. For example, the A'sin A, ., 4, and A, _; 4, are different if « # .

In the case of formulas defined by b) the logical symbols of the language
are determined by the admissible formulas. That is, a particular symbol A is
a symbol of the language if it occurs in some admissible formula.

§22. Infinitary logic with homogeneous quantifiers

In this section we shall formulate an infinitary logic with. homogeneous
quantifiers by extending the Gentzen-style calculi. Although the treatment
of languages with function constants is not difficult, we will, for simplicity,
consider only languages without function constants.
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DeriniTion 22.1. (1) The language L consists of the following:
1) Logical symbols:

= (not),

A (conjunction of arity « for certain a’s),

V (disjunction of arity « for certain a’s),

V (universal quantifier of arity « for certain a’s),

3 (existential quantifier of arity « for certain «’s).
We will sometimes write A; and V; for A, and V,.,, when the meaning is
clear from the context (and especially in the case « = ).
2) Auxiliary symbols: (, ) and , (comma).
3) Constants:

3.1) Individual constants; ¢, ¢3,..., ¢s. .., & < u for some u.
3.2) Predicate constants of arity «; 2§,..., p3,..., & <y for some y and
certain a’s.

4) Vartables:

4.1} Bound variables: x4, x1,. .., %,,. .., 1 < K;.

4.2) Free variables: ag, a4,..., @y, .., & < K,.

Here K, and K, are ordinals but they are not arbitrary. We must have a
sufficiently large supply of bound and free variables.

We proceed in the following way. First we fix the number of constants and
logical symbols. We then add a sufficiently large supply of bound variables.
We then need a very large collection of free variables. Indeed the cardinality
of the set of free variables must be the same as the cardinality of the set of
all formulas.

Of course the number of free variables we have influences the number of
formulas. Nevertheless, in set theory, we can show that if the number of
language symbols is fixed, except for the free variables, then for a sufficiently
large collection of free variables, the number of free variables will be the same
as the number of formulas.

(2) A term is either a free variable or an individual constant.

(3) Formulas and their outermost logical symbols we define in the following
way.

(3.1) If p is a predicate constant with arity « and {f;},.,, is a sequence of
terms, then pltg,. .., t,...) is an atomic formula. An atomic formula does
not have an outermost logical symbol.

(3.2) If 4 is a formula, then —A4 is a formula and its outermost logical
symbol is —.

(3.3) If A (V) of arity « belongs to our language and {4}, ., Is a sequence
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of formulas then A, ., A; (Vicy 4;) is a formula and its outermost logical
symbol is A (V).

(3.4) If V (3) of arity § belongs to our language, if 4 is a formula, if @ is a
sequence of free variables of length £, and if ¥ is a sequence of bound variables
of length £ none of whose terms occur in 4, then (V&) A(x) ((Ix) A(x)) is a
formula whose outermost logical symbol is V (3), where A () is the expression
obtained from A by writing x’s for the corresponding a’s at all occurrences of
a'sin A.

Subformulas are defined as for first order finite languages: If 4 = A; ., A is
a formula of L (L-formula), then each A, is a subformula of 4, if 4 : V& A(%)
is an L-formula, then A(s) is a subformula of 4 for an arbitrary sequence of
terms s.

Of course, L must be so defined that each subformula of an L-formula is
an L-formula. Since formulas are defined inductively, properties of formulas
are normally proved by transfinite induction on the construction of formulas.

(4) In order to introduce the notion of proof we use auxiliary symbols —
and — as before. In the following I', A, I1, A, I'y, I';,. .. denote sequences of
formulas of length < K+, where K is the cardinality of the set of all formulas
m L.

I' - A is called a sequent. I' and A are called the antecedent and succedent
of the sequent, respectively.

The rules of inference of L are as follows:

(4.1) (Weak) structural rule of inference:

I -4

=

where every formula occurring in I” occurs in [, and every formula occurring
in 4 occurs in A"
(4.2) Logical rule of inference:

I'-4, {4} <y

s left:
e {—1AA}).<YF -4
for some y << K.
: {AA}A<7>F'—’A
: right:
B & F_’A’{_‘Al}).«r
for some y < K+.
A legt: Arsdu<sacn I =4

{Au<3,1 Aiubicy I =4
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for some y << K+, where A, .4, belongs to L for every 1 <y.

I' > A, {A; ,} i<y for all {u,}; ., such that u, < B,(2 <)

A : right:
& F"A»{'\Mﬂ; Al.u}l<7

for some y << K+, where A, .4, belongs to L for every 4 <y.

{414 i<y I — A for all {u;},, such that p; < (4 <)

V:left:
{VH<B,1 A/I’,u}/1<y, I' -4

for some y << K*, where V,,_;, belongs to L for each 4 <y.

P—*A, A <
Voright: o M idecaiaer
T =4, (Vs Araties

for some y << K+, where V, ,, belongs to L for each 4 < y.

{A).(t}.)}}.<y: I -4

v left: —
W, Ay w8 I oA

for some y << K+, where the t's are sequences of arbitrary terms of appropriate
length.
I >4, {Aa)}he,

Y :right: ————— ,
€ I' >4, {Vx, A;(%:)} i<y

for some y < K+, where the a’s are sequences of distinct free variables of
appropriate length. Each variable occurring in the @’s is called an eigenvariable
of the inference. When an eigenvariable a, of such an inference occurs in a,,
then V&, 4,(x,) is called the principal formula of a and 4,(a,) is called the
auxiliary formula of both a and of the principal formula. The uth variable
a, ,in @, is said to be of order p with respect to the principal formula Vx, 4 ,(,).

{4.,(@)}aey, I~ 4

3 left:
¢ (3w, A;(%)} sy, I~ 4

for some y << K+, where the a’s are sequences of distinct free variables of
appropriate length. Each of the a’s is called an eigenvariable of the inference.
When an eigenvariable a of such an inference occurs in a,, then 3, A ,(x;) is
called the principal formula of the eigenvariable and A4,(a,) is called the
auxiliary formula of 4 and of the principal formula. The uth variable a, , in
a, is said to be of order u with respect to the principal formula 3x; 4,(%,).
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F"A, {Al(tl>}i.<7 .
I -4, {Elxl A;.(x;.)}/1<v

3 : right:

for some y << K+, where the t’s are sequences of arbitrary terms of appropriate
length.
(4.3) Cut rule:

P —=A4,4,;, 0 ~g,As;...; 0 A4, A4,;...(A<y);{4:}hey, 1T - A
rog-aA1

for some y < K+.

A semi-proof P is a finite or infinite tree of sequents defined as follows:
The topmost, or initial, sequents are of the form D — D. Each sequent in P,
but one, is an upper sequent of an inference followed by its lower sequent.
The exceptional sequent is called the end sequent. A more precise definition
of semi-proof is formulated inductively as follows:

1) A sequent of the form D — D alone is a semi-proof.

2) If each P, is a semi-proof with end-sequent I, — A4, and

T, —~d,;. ..
I -4

i1s an inference, then

Py

-4
Is a semi-proof.

3) Every semi-proof is obtained by 1) or 2).

Since semi-proofs are defined inductively, one can assign ordinals to sequents
in a semi-proof, so that the ordinal assigned to S, is smaller than the ordinal
assigned to S, if S is an ancestor of S,. Therefore it is also important to note
that although a semi-proof may be an infinite figure, that is, the tree form
may have infinitely many branches, each string of sequents traced up from
the end-sequent or down from an initial sequent through the tree figure will
be of finite length. :

A semi-proof P is called a proof if P satisfies the following eigenvariable
conditions.

{I) If a free variable occurs in two or more places as an eigenvariable, the
principal formulas of these eigenvariables must be identical and the order
of this eigenvariable with respect to each principal formula is the same in
each of the inferences.
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(I1) For each free variable 4 in a proof, an ordinal number, A(a) called its
height, can be defined so that the height of a free variable occurring in an
inference as an eigenvariable is larger than any of the heights of the free
variables contained in the principal formula of that eigenvariable.

(I11) No variable occurring in an inference as an eigenvariable can occur in
the end sequent.

ReMARK. The following is an alternate form of the eigenvariable conditions
in the presence of the cut rule.
If J is an inference
I' >4, {48y} <«
I' >4, {8 A(%)}e<a

or
{Ada)}teco, I' — 4
{3%; Ae(®g)}ico, I > 4

then the following conditions must be satisfied:
(i) any member of a, does not occur as an eigenvariable or in a principal
formula of a V: right or 3: left under J,

(i) for any pair &, 5 such that £ < 7, each member of a, cannot occur in
An(an)'

(iii) each member of a, does not occur in Va, A (%) or Ix, A (%),

(iv) no variable occurring in an inference as an eigenvariable can occur in
the end-sequent.

It is evident that if the conditions (i)-(iv) are satisfied, then one can define
“height” to satisfy (II), after renaming variables if necessary, and hence the
original eigenvariable conditions hold. The converse can be proved by a
method similar to that used in the last half of the proof of Proposition 22.25.

ExaMpLE 22.2. (1) A cut-free proof of the axiom of dependent choice in an
infinitary logic with homogeneous quantifiers:

F(ay, app1) = F(an, any1)
{Flam, @mi1)mew —> Fl@n, @yyq) foreach n < w
{F(am, @mi1)tm<o = Mncw Flan an+1_)
{F(am @mi1)tm<w > o Maco Fa
)
¥)

{F (@ 1) meco = V%0 e Auco F(xp, Xny1)
{39 F(am, VWim<ow = V% I8 Apco F(%n, ¥p11)
Vx Ay F(x, Whneo — V20 3% Apc FXn, %041)
Vx 3y F(x, y) — Vo 382, Aco F )

1

Xns Xnsl
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Here Fyis F(ag, x1) and F 1 is F (%, 1, %;,0) forevery i << w, and x = (xy,%,,. . .).
The heights are defined by k(a,,) = m, m < w.
(2) A proof of

Vxg ... (CAx, 1 E%,), Vx (Vyex A(y) D A(x)) — A(ay),

where Yy € x A(y) is an abbreviation of Vy (y e x 2 4(y)):
1) Vx (Vy e x A(y) 2 A(x)) — A(ay), a1 € ao.

Proor.
al & ﬂo -— al S ao

> a1 € ay, alquﬂal)
A(ap) — A(ay) —a; € ag, Vy € ag A(y)
Vy € ag A(y) 2 A(ao) — A(ao), a1 € a9
Vx (Vyex A(y) D A(x)} — A(ay), a1 € aq.

2) Vx (Yy e x A(y) D A(x)) — A(an), @i € ay.

Proor. Similar to that of 1).

3)Vx (Vyex A(v)D Ax)) —> A(ap_y), n1€a, for k =0,1,..., x5

Proor. By induction on & we construct a figure ending with the sequent 3).

Since the sequent 2) is the case £ = 0 we need only show how to proceed
fromktok + 1:

(VyexA(y)24(x)) > A(2y_x), 4ns1€ 8y,
A(an 1) > A(@n-es1) Vx(Vyex A(y)2A (%) >Vy€a, 1) A(Y), @ni1 € an
Vy€a, iy A(¥) DA (a0 1) V¥ (Vyex A(y) DA (x)) > A(@n_x11), A1 1€An
Va(Vyex A(y)2A(x)) > A(an_(ki1)): @ni1€an

4) Vx(Vy e x A(y) D A(x)) — A(ag), A ay;1 € dy.

ProoF. From 3) with £ = n we have

Vx (Vy € x A(y) D A(x) — A(dy), any1 € @
Vx (Wyex A(¥) D A(x)) — A(ag), Ay € ay’

From 4) we then conclude
5)Vxg ... (0A, %, 1 Ex,), VX (Vyex A(y) D A(x)) — Alay).
In this proof a,, ag,. . ., 4,,. .. are eigenvariables and A(a,) = n.
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(8) Malitz’s example. Malitz found a counterexample to the interpolation
theorem for homogeneous infinitary languages. His example is the following.
Let 4 and B be two well-ordered sets with the same order type, and let F
be a predicate that defines the order preserving map from A one-to-one
onto B. That there is exactly one such map is easily proved. ‘I‘f the inter-
polation theorem held then this order preserving map could be defined in the
homogeneous infinitary language without using the predicate F. This, however,
is impossible because the length of the defining formula would set an upper
bound on the order type of 4, but that order type is not bounded. Let Ln(=, <)
be a formula which expresses that < together with = is a linear ordering
relation. Let I' be the following sequence of formulas.

Ln, 1), Ln, &).
VaVyVuVo (x Ly auod (F(x, u) = F(y,v)),

VaVyVYuVo (x Ly au2vd (Gx, u) = Gy, v))),

VeVy VuVo (F(x,u) A F(y,0)D (x 2y =u2v) A (x1y = u20))

Vx Vy Vi Vo (G(x, u) A G(y, 9) D (x £ v Eugv)/\ (xly=ulv)

It should be remarked that all the quantifiers in I are universal and at the
front of a formula. The following sequent is easily proved to be valid.

I Vx 3y F(x, ), Vx 3y G(x, y)
Vx 3y F(y, x), Vx 3y G(y, %), F(a, b),

Vi %y ... =A (pyq < %) — Gla, b)

We are going to present a cut-free proof of this sequent. Let T be the set of
all finite sequences of 1’s and 2’s. It is understood that the empty sequence
is a member of T. We use 7 as a variable on 7. The set D of free variables is
defined as follows.

1) a € D. (a is 47, where T is an empty-sequence.)

2) If a* € D, then 5™ and b* are members of D.

3) If " € D, then a™ and a*2 are members of D.

4) All members of D are obtained by 1), 2} and 3).
The members of D are a, b1, 82, all, a'2, a®, a22, p111 p112 | [ is a sequence
of all the formulas which are obtained from a formula in I" by deleting all
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the universal quantifiers and replacing bound variables by the members of D.
(From one formula, infinitely many formulas will be obtained. Of course, in
one instance of substitution, the same member of D should be substituted
for the same bound variable in a formula.) A’ is a sequence of all the formulas
of the form

F(a*, %), F(a™, 57), G(a%, b?), G(a®2, b%), ve T.

In the following lemmas, we state several sequents which are provable in the
ordinary first order predicate calculus and hence cut-free provable in Gentzen’s
LK.

We define “I", 4" — b1 2 b* is provable”’ to mean that I'*, A% — p711 2 pr
is provable for some I'* that is a finite subsequence of I and some A* that
is a finite subsequence of A".

LeEMMA 22.3. The following are LK-provable.
DI, A - b1 = bt where bt = b2 is an abbreviation for b1 2 b2, In the
same way, al = a*2 is an abbreviation for a™l L a*2,
217, A - b2 = p
) I" A —all =a.
H 1A —»a? = a

Proor. Obviously, I, F{a*, o™W), F(a®, b") — b"1 = b*. From this, 1) follows
trivially. The proofs of 2), 3) and 4) are similar.

LevMa 22.4. The following are LK-provable.
LI, A, b = b2 g = g
DI A 0" = a2 - pt = bR

Proor. 1} From G(a™, b*), G(a™, b1?), the fourth formula of I"with a2, a™, b7, 5712
as x, v, , v respectively and from &* = 52 it follows that a™ = a™.

LEMMaA 22.5. The following are provable in LK.
I A, b =02 g = g2 () =1,2).
I A, 4t = a® > b = b2 (5 = 1,2).

Proor. Under the hypotheses of I, and A’, b1 = p*12 — p* = p*12 - g7l = 42
{Lemmas 22.3 and 22.4). The other cases are proved similarly.
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LEMMA 22.6. The following is provable in LK.
1) I, A, 07 = 62 - b = B2

Proor. By induction on the length of 7, using Lemma 22.5.

LemMa 22.7. The following are provable in LK.
VI, A, B = 52— Gla, bY).
2) I, A, bt < b2 — al? < a, where b < b* and a™! < a® ave abbreviations
for &1 2 b2 and a™ X a%2, respectively.
(I A bB<b —-a¥ <a.

Proor. 1) 1", G(a, b?), bt = b2 — G(a, bY).
2) I, F(a, bY), b* < b2, Ga, b%), G(a'?, BY) — a¥? < a.
3) I, F(a, bY), B® < bY, F(a®, 8% — a® < a.

LemMA 22.8. The following are provable in LK.
1) I", A4, b = 6% — Ga, bY).
2 I", A", b1 = b — a™2 < gt
NI A, 02 < b > a? < g

Proor. 1) follows from Lemma 22.6 and 1) of Lemma 22.7. The proofs of 2)
and 3) are similar to the proof of Lemma 22.7.

DrFINITION 22.9. (i) RY(7) iff 0™ = b2
(i) RY(z) iff b9 < b™2.
({if) R*(z) iff &2 < b,
(iv) To = {r € T | the length of 7 is odd}.

LeMMA 22.10. The following is cut-free provable for each i Ty — {0, 1, 2}
(RO yer, T A — Aty < by, Gla, BY),

where t, is a member of D whose length is 2n.

Proor. Obvious from Lemma 22.8.

Lemma 22.11. The following 1s cut-free provable.
I A Vg xy . =N (Bgay < %) — Gla, BY).
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Proo¥. This follows from Lemma 22.10, since Vx Vy (x z yvxZyvy 2 x)
is contained in I

THEOREM 22.12. The following is cut-free provable.

I A, Vg1 ... = (01 < %), Fla, b) — G(a, b),

where A consists of Vx Ay F(x, v), Vx 3y F(y, x), Vx 3y G(x, y) and Vx 3y G(v, x).

Prookr. Take b to be b1, and define 2(a™) and k(6" to be the length of v and 7’
respectively. The conclusion then follows from Lemma 22.11.

We now introduce a new cut rule, one we will find more convenient in
infinitary languages than the old one. As we will prove, the new rule is a
generalization of the old one.

DEerINITION 22.13 (the generalized cut rule). Let I" — 4 be a sequent and #
be a set of formulas. Let (#,, &) denote a partition of # (1.e., F, U F, = F
and & N %, is empty). Suppose for an arbitrary partition of &, (F, %),
there exists a pair of sets of formulas, say @ = #, and ¥ < #,, such that
there exists a semi-proof of @, I' — A, ¥. Then the generalized cut rule allows
us to infer I' — A. This may be expressed as follows:

. D, I' > A4, ¥ for all (F,, )
g.c. o =

Prorosition 22.14. (1) The usual cut rule 1s a special case of the g.c. rule.
(2) The following 1s an admissible rule of inference:

where I' is obtained from I' by replacing some of the formulas by alphabetical

variants. Simtlarly with A.

(3) Suppose that some (possibly all) of the upper sequents of a g.c. are obtained
by applications of the g.c. rule. Then we can change the proof so that the lower
sequent will be obtained by one application of the g.c. rule.

{4) In homogeneous systems the g.c. vule is an admissible rule of inference.
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(8) The g.c. rule can be equivalently expressed as
D, I" > A, ¥ for all (F,, F)
I -4 ’

where I" < I and A’ = A are determined by (%1, F3) and © and ¥ have the
same meaning as before.

Proor. (1) Consider a cut:

A, D forall y < 4;{D}, o, [T - A
ri—-a.4 '

First we obtain I, Il - A, 4, D, and {D,}, I, Il — 4, A by applications of
weakening. Let & be {D,}, ., and let (¥, %) be a partition of #.

Case 1. &, is not empty. Then take @ to be the empty set and ¥ to be
{D,}, where D, is the first formula in &5,

Case 2. #, is empty. Then take @ to be # |, which is &, and ¥ to be the
empty set.

For any (@, ¥) above, @, I' > A, ¥ is an upper sequent of the cut in
consideration. By the g.c. rule

QE ' AW, for all (D, V) as al?ple
I -4 '

(2) We shall show that if a sequent I' — 4 is provable, then another
sequent I' — /A can be deduced, where I is obtained from I' by simply

renaming some of the bound variables. Similarly with A. For any formula 4,
if A is an alphabetical variant of A, then 4 = 4 is easily proved. If I' — 4

is provable, then {4, = 4,},.,, I — 4 is provable for some 4,’s and 4,’s.
Using — 4, = 4, for all A < u, we obtain I" — 4 by the g.c. rule.
(3) Let I be the cut under consideration:

&, I' - A, ¥ for all appropriate (@, ¥)
J i '

The proof is by transfinite induction on the complexity of the subproof ending
with I' — A. Suppose, as the inductive hypothesis, that there is at most one
cut along any string of sequents above I. Let {(®,, ¥,)},«,, be an enumeration
of the (@, ¥)’s in I and let F be the set of cut formulas. Let S, denote the
sequent @, I' > A4, ¥,. Let {I}.<,, be an enumeration of all the cuts above
S, and let # be the set of cut formulas of /# for each (u, ¢). Let {@, P} <ot



cH. 4, §22] INFINITARY LOGIC WITH HOMOGENEOUS QUANTIFIERS 203

be an enumeration of the pairs of formulas which are related to I and hence
to F1.
For each I¥, consider

(pu gI* Am{ju ®

¢

Hﬂd)# N 5[/# LAu

for every y << 8. For every combination of y’s, i.e., (30,91,. . ., p", ... ), pt < 6%,
copy the part of the original proof from [I¥ —~A¥ to S,, starting with
I1%, @ — W', A¥ obtained as above, in place of II}' — AY. Thus we obtain

*) D, T, (@4 ey = (P icr D, P,

for every p and (%, 9',..., »',...). Call such a sequent S,({y‘},<y,)-

Now consider the set of formulas %, = % ulU, , #* and an arbitrary
partition of &, say #; and &#,. There exist u < up and {y" }L<v such that
S, cFINF V¥, c FnF O c FinF, and ¥Vl c FinF Fo, for F
and &, determine partitions of and #*¥. Define

& =¢,ulU o, ¥ = ‘PMUUW;’;‘.
vy Y <y
It is obvious that ® = &, ¥ < F, and @, I' - A, ¥ is one of the sequents
in (*). There is no cut above it. Since this holds for every partition of %, we

obtain
@D, I' - A, ¥ for all appropriate (@, SU)
I'—=4

(4) As will be proved in Theorem 22.17, this follows easily from the com-
pleteness of the homogeneous systems and the fact that the g.c. rule preserves
the validity of sequents.

(6) Obvious.

DEerFiniTION 22.15. Let L be an infinitary language. We define a structure
for L, (D, ¢), an interpretation I = ((D, ¢), ¢y), the relation that an
interpretation J satisfies a formula 4 of L, the validity of a formula, the
satisfaction relation for sequents and the validity of a sequent, as in Defini-
tion 8.1.

ProposiTiON 22.16 (consistency; Maehara-Takeuti). Let of be an arbitrary
structure for L. Then every provable sequent is valid in 7.
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Proor. For each formula of the form 3x A(x, @) in which x is of length «,
and a are exactly the free variables in 4, we introduce a Skolem function
g% (@) for each y < «, and define the following interpretation of g% in &7:
1f V& A(x, a) is satisfied in o7 for an assignment ¢,, then the values of the
&%’s are those satisfying
Ag5(a), a).

Let O be an element of the domain of /. If 3x A(«, @) is not satisfied by ¢,
in .7, then the g%(a)’s are interpreted to be 0.

Let P be a proof. We well-order all the eigenvariables in P, arranging the
well-ordered sequences ay, ay,.. ., 45, .., in such a way that k(a,;) < A(a,)
if § < y. We define terms #; by transfinite induction on 4. Assuming that
t_, has been defined, we define ¢; in the following way. Let V& A(x, b} (or
Jx A(x, b)) and A(d, b) be the principal formula and an auxiliary formula
of a; and let the order of @, with respect to this principal formula be y, i.e.,
let a4 be d,. For each b, let s, be either the already defined ¢, for which b, is
a,, if b, is an eigenvariable; or else b, itself. Then ¢, is defined to be g ,4(s)
(or g%(s)). By (I) of the eigenvariable condition, this definition does not depend
on the choice of A(a, b).

Let P’ be the result obtained from P by substituting ¢, for a, for every /.
The bottom sequent of P’ is the end sequent of P since it contains no eigen-
variables.

For an arbitrary assignment of members of D to the free variables, any
sequent S in P’ is satisfied in A, where the g%’s are interpreted as above.
This can be proved by transfinite induction on the complexity of the figure
in P above S. As a consequence, the end-sequent of P is valid, since it does not
involve eigenvariables. The other cases being obvious, we only consider
3 : left and V : right.

1) 3 : left. The corresponding part of P’ is

LA s, -4

L 3x A, s),. .., [ —~A°
where u, is g% (s). It suffices to show that

dx A(x, s} — A(u, s),

is satisfied in «7"; but this follows from the definition of the g%’s.
2) V : right. The corresponding part of P’ is

-4, Av,s),. ..

IS A,. . Nxd(x,s),. ..
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where v, is g% ,4(s). So it suffices to show that
A, s) - Vx A(x, s),
is satisfied in .o7. This follows from
dx —A(x, s) > A(v, s),

which follows from the definition of the g%,’s.

We shall now prove the completeness theorem in combination with the
cut-elimination theorem for an infinitary logic with homogeneous quantifiers.
The method is basically the same as that for the proof of the completeness
theorem in Chapter L.

As a corollary to the completeness theorem (Theorem 22.17) and Proposi-
tion 22.16 we have the cut-elimination theorem: Every provable sequent is
provable without the cut rule.

TueoOREM 22.17 (Maehara-Takeuti). Every sequent valid in any non-empty
domain 1s provable without the cut rule.

Proor. Let S be an arbitrary sequent and let D, be an arbitrary non-empty
set containing all free variables and individual constants in S. Let D be the
closure of Dy with respect to all the function symbols g% and &’ for all formulas
A, ie., let D be generated by all g%’s and g%’s from D,. Here &% is g% .

We define the tree T(S) step by step.

Stage 0. We write S.

Stage n + 1. (1) n + 1 = 1 (mod 5). When a sequent /I — A contains a
formula whose outermost logical symbol is =, we write above I/ — /A

{Du}u<t§: I — A,{Ci}i<y:

where {—C,}, ., and {—D,}, ., are the sequences of all formulas in /7 and in
A, respectively, whose outermost logical symbol is ~, and /I" and A’ are
obtained from /7 and A respectively by omitting the —C,’s and the —=D,’s.

(2) » +1 =2 (mod 5). When a sequent /7 — /| contains a formula whose
outermost logical symbol is /1, we write above I" — A

{Cu.A}R<ywu<yv I - A, {Dv.pu}a<6

for all sequences {p,},<, such that p, < w, where {A;c,, C\;}.<y and

{As<vy Do,p}o<s are the sequences of all formulas in /7 and in A, respectively,
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whose outermost logical symbol is A, and I and A’ are obtained from I/
and /A, respectively, by omitting the ANicy, C,.i'sand the Ay, D, ,'s.

(8)  + 1 = 3 (mod 5). When a sequent I7 — /1 contains a formula whose
outermost logical symbol is V, we write above I — A

{Cu.iﬂ}u<y’ mw—-AaA, {Da,o}p<v6.g<é

for all sequences {1,},<, such that 4, <y, where {V,, C,;}.<, and
{Vy<v, Ds.p}s<s are the sequences of all formulas in /1 and /1, respectively,
whose outermost logical symbol is V, and [I’ and A’ are obtained from I/
and /1, respectively, by omitting the V., C, ;’s and the V, ., D, ,'s.

(4) n + 1 = 4 (mod 5). When a sequent IT — /1 contains a formula whose

outermost logical symbol is V, we write above I/ — A

{AA(tA.u)}l<y,u I - A, {Ba(up.o)}a<b.ot

where {V&, 4,(x,)},<, and {Vy, B,(¥,)},<s are the sequences of all formulas
in [T and A, respectively, whose cutermost logical symbol is ¥, and /T’ and
A" are obtained from [/ and /1 respectively by omitting the V&, 4,(x,)’s and
the Vy, B,(y,}’s. Furthermore, ¢, , runs over all sequences of members of D
that are the same length as x,.
u

Hu,,is u,,0, %561, » being the length of y,, then u,, . is

T TpLa, v

gf,p(vp), where £ < v and v, is the sequence of free variables in B,(y,).
(8) n 4+ 1 =0 (mod 5). When a sequent I7 — A contains a formula whose
outermost logical symbol is 3, we write above I — /

{Al(tﬂ.u)}y</l.ur I]’ i A,’ {Bp(un.a)}a<é.ﬁ'

where {3x; 4,(x,)},<, and {3y, B,(¥,)},<s are the sequences of all formulas
in II and in A, respectively, whose outermost logical symbol is 3, and [1" and
A" are obtained from /7 and A, respectively, by omitting the 3x, 4 ,(x,)’s and the
Jy, B,(y,)’s. Here u, , runs over all sequences of the same length as that
of y,, and, if ¢, , 15 ¢, 0,451, -, t1un m being the length of »,, then
bruels gﬁl(sl) for & < n, where s, is the sequence of free variables in 4 ,(x,).

Let S; and S5, be sequents in 7°(S). S; is called an immediate ancestor of
S, if S is one of the sequents written above S, by applying one of (1)-(5)
to S;. A branch of T(5) is a sequence S = S;, Sy,.. ., possibly infinite, such
that S,,; is always an immediate ancestor of S,,.

For any sequent I" — 4 only one of two cases is possible:
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Case 1. In every branch of T'(I" — A) there exists at least one sequent of
the form

Flr D, Fg —-’Al, D,Ag.

In this case we can obtain a proof of I" — A without the cut rule by modifying
T(S), and regarding the elements of D — D, as free variables. (The proof
is left to the reader).

Case 2. There exists a branch B of T(I' — /) in which no sequent is of the
form

FI,D, Fg —>Al, D,Ag.

In this case we claim that there is an interpretation in which every formula
occurring in I'is true and every formula occurring in A is false. In the remainder
of this proof we fix such a branch B and consider only the formulas and
sequents occurring in B, i.e., “sequent’” means ‘‘sequent in B”.

First observe the following lemmas:

Levma 22.18. (1) If a formula —A occurs in the antecedent (succedent) of a
sequent, then the formula A occurs in the succedent (antecedent) of a sequent.

(2) If a formula N, . 5 A, occurs in the antecedent (succedent) of a sequent, then
for every (some) A << B, A, occurs in the antecedent (succedent) of a sequent.

(8) If a formulaV, .5 A, occurs in the antecedent (succedent) of a sequent, then
for some (every) A < B, A, occurs in the antecedent (succedent) of a sequent.

(4) If V& A(x) occurs in the aniecedent of a scquent, then for every sequence
t of elements of D whose length is the same as that of %, the formula A(t) occurs
wn the antecedent of a sequent. If Nx A (%) occurs in the succedent of a sequent, then
the formula A(t) occurs in the succedent of a sequent, where t, is §7(s), § being the
sequence of the free variables in A(x).

(5) I} Ax A(x) occurs in the antecedent of a sequent, then the formula A(f)
occurs in the antecedent of a sequent, where t, is gh(s), s being the sequence of
the free variables in A(x). I} Ix A(x) occurs in the succedent of a sequent, then
for an arbitrary sequence t of elements of D whose length is the same as that of
%, the formula A(t) occurs in the succedent of a sequent.

(6) If a formula occurs in the antecedent of a sequent, then it does not occur
in the succedent of any sequent.

Proor. (1)~(5) are obvious from the definition of T°(S). (6) can be proved by
transfinite induction on the complexity of the formula using (1)-(5).
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It is now evident how to define ¢: For each term te D ¢f = ¢ For any
predicate constant R, R(t) holds in (D, ¢) if and only if it occurs in the
antecedent of a sequent. This completes the proof of Theorem 22.17.

Note that in the proof of the completeness theorem we need a sequence of
new free variables a for every subformula 3% 4 (%) of the end sequent. More-
over for each such sequence a we need another free variable for each instance
A(a). We then see why we must have a very large supply of free variables
available or we must be able to rename the variables that are present.

Briefly we shall consider systems with equality.

DEeFINITION 22.19. We define an infinitary logic with homogeneous quantifiers
with equality by specifying a binary predicate constant = and adjoining
the following rules of inference to those of L:

1) First rules for equality: Let I'® stand for a sequence of formulas I” in
which some occurrences of g are indicated.

@ _ A e - A
a=>nb, I'b) 5 Ala)’ b=aqa I'® —»A(b—)'

Here a = b denotes the sequence {a, = b,},., and I'® - A® denotes the
result obtained from I'® — A® by replacing the indicated occurrences of
a, by b, for each A < y.

2) Second rule for equality: Let X' be an arbitrary set of free variables
and let X be the set of all atomic formulas @ = b such that ¢ and b belong

to 2. (D|¥) is called a decomposition of Jifou¥W=Xand®n¥ = 0.

@, I' -~ A,V for all decompositions (D|¥F) of z
I >4 '

Theorems corresponding to Proposition 22.16 and Theorem 22.17 hold for
this system. Proofs can be obtained as special cases of the proofs of the
corresponding theorems in the following section.

ProBLEM 22.20. Consider a finite, first order language L with K individual
constants, where K is a cardinal. The Lowenheim-Skolem theorem is stated
as follows: Let & be a set of L-formulas. If # has a model then there exists
a model of cardinality K. Let L’ be an infinitary homogeneous language
which is an extension of L (hence L’ has at least K individual constants). It
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is easily seen that the Léwenheim-Skolem theorem can be stated syntactically
as follows: Let I" — /1 be a sequent of L, where the lengths of /" and 4 can
be any ordinal less than K+. If the sequent

g 3xy ... e . VY Vegy =2, I' > 4

is provable in the homogeneous system, then so is I' — /A, where = is not
singled out in L or in L".

Give a proof-theoretical proof of the Skolem-Léwenheim theorem in the
syntactical form.

[Hint: 1) Introduce new constants {w,},<x. Let Ly = LU {w,},.x and
consider the closed Ly-formulas of the form 3x F(x). We can define an enumera-
tion (with repetition) of such formulas, {Ix F (%)}, < %, in such a manner that

(i) in Fo(x) no w, with y > « occurs.

2) Let L=Lu {w,}a< x and let R(a) be V. x (a = w,). The relativization

of formulas (of f,) to R, (the relativization of 4 to R is denoted by A%), is
defined as in §17: (Jy A(¥))% is 3y (V,<s R(y,) A A%(y)), where yis y_,.

3) It is obvious that R(w,) is provable for every y < K; hence
(FxVy (Vgox v = %,))F is provable. With the same method as in the theory
of relativization in §17, we can prove the following:

Let Il — A be asequent of L. Let {b,}, .5 be the sequent of all free variables
in /1 —A. If [l - A is provable in the homogeneous system (with language
L"), then

{R(0)}i<s 11" - A*

is provable in the homogeneous system with language L,, where 1% is obtained
from I by replacing each of its formula, say 4, by A%; similarly with A%

4} A proof-like figure is called a guasi-proof (of the homogeneous system)
if it satisfies all the conditions of the proofs, except (II) and (I1I) of the
eigenvariable conditions.

Besides the condition (i) in 1), we may require furthermore that for the
enumeration of Jx F,(x)’s the following holds.

(ii) There is an w-type subset of {w,}, say X' = {w,, w,,,...} such that if
I'* consists of all the 3x F (x) D F,(w,), except those with w, €2, then for
every closed formula 4 of L, there is a quasi-proof ending with

' >4 = AR
5) Suppose now that
VY Vacr ¥y = %), I' >4
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is provable (in the homogeneous system). Then by 3)
(RO} icu I — AT

is provable, where {b,};., is the sequence of the free variables in I" and 4.
Then u < w. We may identify b, with w,, in 2'; thus we may assume that

{R(wvi)}i<w FR{wvi}i<u - AR{wvi}i<m

is provable where I'*{w, }, ., is obtained from I'* by replacing b, by w,, and
similarly with A%,
6) Finally, 3), 4) and 5) imply

I+ I'fw,} > Afw,} or I'*, T —4

has a quasi-proof. Recall that if 3x F(x) 2 F(w) belongs to I'*, then w does
not belong to 2. Regarding these w’s as free variables, we obtain

{3y @x F) 2 Fy), I' -~ 4,

whereas 3y (3x F(x) D F(y)) is provable for each F. Therefore, by the cut
rule, we have I' — A. Assuming that we have carefully chosen the free variables,
we may claim that the eigenvariable conditions are satisfied except for II,
on heights. In the quasi-proof of {3y (Ix F(x) D F(y))}, I" — A, the w where
Jx F(x) D F{w) is the 7th formula in I'*, is assigned the height 7; each eigen-
variable in the quasi-proof in (ii} of 4) is assigned the height K, and any
eigenvariable in the proof ending with {R(b,)}, I'® — A% is assigned the
height K+.]

If one wishes to study an infinitary logic which is closer to first order logic,
he may restrict the quantifiers to those that operate as in the finite case.
Lopez-Escobar has defined such a system, calledL,,  ,and proved the complete-
ness and the interpolation theorem for it. The version of these theorems for
L., ., is the same as that of LK. We shall present the results in the form of a
problem.

ProBLEM 22.21 (Lopez-Escobar). The language L, , is an extension of that
of LK, and is defined as follows. There are arbitrarily many constants but
the arity of each predicate and each function constant is finite. The number
of variables is countable. For simplicity, we take only —, A and V as logical
symbols. The formulas are defined as usual: If 4,, i < w, Is a sequence of
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formulas, then A, 4, is a formula. Notice that ¥ behaves as in the finite
case. A sequent consists of at most countably many formulas. The rules of
inference, as well as the initial sequents, are those of LK except the following:

I' -4

Weak inference: T4

where every formula in I" occurs in I and every formula in 4 occurs in /.

A;, I' - A for some ¢

A left Ao A, T 4
. I'—>4,A, forall
A : right ToAA_ A

(1) Prove the completeness of the system.

(2) Prove the interpolation theorem for this system; viz. if 4 D B is provable
and 4 and B have at least one predicate symbol in common, then there
exists a C of L,, ,, such that 4 2 C and C D B are provable.

(3) Show that the following is an admissible rule of inference:

I -4

]

where I is obtained from I' by replacing each formula of I" by one of its

alphabetical variants (possibly the formula itself); similarly with A.

[Hint: (1) Consistency is obvious. For the opposite direction proceed in the
following way.

1} Given a sequent of L,, ,, say S, there are countably many terms which
are obtained from the constants which occur in S and all the free variables.

2) Given a sequent S, the S-subformulas are defined as the ordinary sub-
formulas of the formulas of S except for the following case: If Vx A(x) is an
S-subformula, then for every term s which satisfies the condition in 1) A(s)
is an S-subformula.

3) There are countably many S-subformulas.

4) Given a sequent S, construct a tree T(S). We may assume that there are
countably many free variables which do not occur in S. This and the construc-
tion of T(S) guarantee that at each step there will still be countably many
free variables unused. From 3) we may assume that all the S-subformulas
are indexed in w. We define the tree step by step.

Stage 0. We write the sequent S.
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Stage n + 1. Let I" — 4 be a topmost sequent.

Casel.#n 4 1 =1 (mod 5). Let {—4,}%, and {—|Bj};=1 be all the formulas
in I" and A4, respectively, whose outermost logical symbol is — and whose
indices in the fixed enumeration of subformulas are < # -+ 1. Then write
B}y, I > A", {A}] | above I' -4, where I" is obtained from I' by
deleting {—A4,};"; and A’ is obtained from ‘A by deleting {—.B]-}fj:l.

Case 2.n + 1 = 2 (mod 5). Let {A; ., A]}7., be all the formulas in I" whose
outermost logical symbol is A and whose indices are <{ » 4- 1. Then write

(A icm - AP e T > 4,

above I' — A, where I is obtained from I” by deleting {A; ., Af};f‘zl.
Case3.n + 1 = 3 (mod 5). Let {A, ., 47}7_, be all the formulas in I" whose
outermost logical symbol is A and whose indices are <{ # + 1. Then write

A, {437

for all combinations of {iy,..., 7,,} above I' - A.

Case 4. n + 1 =4 (mod 5). Let {Vx, 4,(x,)}/~; be all the formulas in I"
whose outermost logical symbol is ¥V and whose indices are <{# + 1. Let
Aysh,. .., Ays™th) be the first # 4 1 formulas in the enumeration that are
S-subformulas of Vx; 4;(x,). Write

AdsPpsrn I -
above I' — A.

Case 5. n + 1 =0 (mod 5). Let {Vx; 4,(x,)}7-; be all the formulas in 4

whose outermost logical symbol is ¥ and whose indices are <{# + 1. Let

Ajpoens @G, be the first m free variables which have not occurred so far.
Write

r—-a, {Ai(“:’i) 1
above I' - A.

At any stage, if some formula occurs both in the antecedent and the
succedent then stop.

5) Let T(S) be the tree defined in 4).

Case 1. All branches are finite. Then S is provable without the cut rule.

Case 2. There is an infinite branch, say B. Let D be the set of all terms
which satisfy the condition in 1). We define the structure with the domain D
and the interpretation of formulas in the usual way. Then the formulas in the
antecedent of B are true, while those in the succedent are false. This completes
the proof of (1).
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(2) From the proof of (1) above, any provable sequent is cut-free provable.
Restate the interpolation theorem for sequents. Consider only cut-free proofs
and show the described result by induction on the complexities of the proofs.
The procedure is exactly the same as the corresponding theorem for LK.

(3) Obvious from the completeness.]

ProBLEM 22.22 (corollary to the Lopez-Escobar theorem). Suppose that
I' — A is a provable sequent of L, ,, and I"and A are finite sequences. Then
there exists a cut-free proof of I' -4 in which every sequent consists of
finitely many formulas. (Such a proof may be infinite.)

ProBLEM 22.23. Consider a language consisting of the following:

Predicate symbol: €.

Variables: xg, 1,..., %,,..., g € On.

Logical symbols: =, A, V.

Formulas are defined as usual. The atomic formulas are of the form x € y. If
A is a formula, =4 is a formula. If A4,, ¢ < 4, is a sequence of formula for 4
an ordinal, then A, . ; A, is a formula. If A(y) is a formula, where y is a sequence
of variables none of which is in the scope of a quantifier, then Yy A(y} is a
formula. Show that the truth definition of this language can be developed
in a system of second order set theory, i.e., ZF augmented by second order
quantifiers and some comprehension axioms.

[Hint: The method is similar to the truth definition of PA in a second order
system. First assign sets to the formal objects of the language. The set assigned
to a formal symbol we call the gddelization of that symbol. If A is a formal
expression, its godelization is denoted by "A™. For example, "€’ = (0, 0),
Tx, = (1,4), "= = (3,0), "x' = (5, x), where "x ' is the name of a set x,
Txey’ = (e, "7,y AN A = AL (T4y, TAT, .. )). Wecan
then formally define “4 is a closed formula” (cf("4 ")) and “the complexity
of a formula A” {(cm("A "), which is an ordinal). Let « be a second order free
variable and let u be a variable which ranges over ordinals. Define F(a, ) as
we defined F(«, #) in the case of PA to state that « is the truth definition of
formulas whose complexities are < 4. The clause for V& A4 () is expressed as:

Vix A(x) " (cf("Va A(%) ") A cn(Vx A(x)") < pD
S Vx {x is a sequence of order type 4, say {xg, %1,...)} D

Sa( A(xg %1, --) )
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Then define T'(a) <=4 cf(a) A 3¢ (F(¢, cm(a)) A $(a)). Nowprove T("47) = A
for all closed formulas A.]

ReEMARK. We can generalize the proposition in Problem 22.23 to the cases
where there are predicate constants pg, pq,... and where the quantifiers are
not homogeneous.

Next we will show that for any homogeneous system there is an equivalent
homogeneous system whose eigenvariable conditions are “ordinary” ones,
that is, the eigenvariable conditions are conditions on inferences and not on
proofs. In order to simplify the argument we take only the logical symbols
-, V, 3, and regard others as a combination of these.

DerFmNiTION 22.24. The V3-calculus is defined as the homogeneous system
with the following alteration: Replace 1 : left by

ey bl I 4
V&, 3y, Auxs, Y hica I > 47

V3 rule:

where none of the free variables contained in b,’s can occur in the lower sequent.
Each variable in b, is an eigenvariable. All of the variables of b, must be
distinct and none of them can occur in A ,.(a,., b,.) for I’ < A. There are no
other eigenvariable conditions.
Note that V&, can be empty.

ProrosiTioN 22.25 (Maehara-Takeuti), The V3-caleulus is equivalent to the
homogeneous system (for the same language).

Proor. Let P be a proof in the ¥V3-calculus. We may assign a height to every
free variable; if 6 is the uth variable of b, in the V3-rule, then the height of
b is sup,(height of a) 4 (1 4+ u), where a ranges over all the free variables in
A, other than b, and by sup we mean the strict supremum. If 4 is not used
as eigenvariable, then the height of 4 is 0. Transform P as follows. If there is
an application of the Y3-rule, then replace it by:

{3y, 4@, Yo) i L =4
I' > 4, {=3y. 4,(a;, ¥2)}r<a

I' >4, {3x, 03y, A%, yx)}/1<u‘

{(—3x, =3y, A%, Y e I — 4.
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It can be easily seen that the resulting figure is a proof in the homogeneous
system with the same heights as P.

The opposite direction is proved as follows: Let P be a proof in the homoge-
neous system ending with I" - 4. Let {3x, 4,(a,, ¥,)}, .., be an enumeration
of all the principal formulas of the 3 : left in P, where a, is the sequence of all
free variables in 4. Then eliminate every application of the 3 : left as follows:
for simplicity we demonstrate a case where there is only one auxiliary formula:

, A(a, b),IT — A
3 ¢ left 3x A(a, %), 11 > A

1s changed to

Aa, b), 1 - A
Aa, b), 3x A(a, b}, I -~ A —3x A(a, %), 3x A(a, x), 1] - 4
—3ixr A(a, x) v A(a, b), Jx A(a, ), 1T - A ’

Since no eigenvariables are involved we obtain a proof in the homogeneous
system as well as in the V3-calculus. From this proof, which ends with

{(m3w du(a,, %) v Ay(a,, b)bico [ = 4,
we obtain, by applying the V3-rule,
{Vy: 32, (3%, A,(3, %) v AV 2) icw [ — 4.

On the other hand,

Yy, 3z, (3%, Ay %) v Ay, 24)]

is provable with the V3-rule. Hence I" — 4 is provable in the ¥3-calculus.

ProBLEM 22.26. The compactness of LK (the first order predicate calculus)
can be syntactically expressed as follows. Let I' — A denote a sequent
consisting of formulas of LK with cardinality <{ K, where K is the cardinality
of the set of formulas of LK (for a given language). For any such sequent
that is provable in the homogeneous system (of an appropriate language),
there exist finite subsets Iy and Ay of I"and 4, respectively, for which I'y — A4,
is LK-provable.

Prove the compactness of the first order predicate calculus in this syntactic
form.
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(Hint: Let I' — A be a sequent as above and let P be a proof of I' - A.

(*) For each sequent, say Il — A, in P, we can select a finite subsequent
Iy — Ay, ie., Iy < 11, Ay < A and 11, and A, are finite. If I7 — A is the
lower sequent of an inference, we can select finitely many upper sequents
corresponding to it in such a manner that that part of P which consists of all
the selected sequents corresponding to I7 -~ A is a quasi-proof of /T —A. In
particular, IT — A can be I' — 4 ; hence there is a finite subsequent I’y — A4,
which is provable.

Then applying Proposition 22.25, we can construct an LK-proof of I’y —A4,.
(*) is proved by transfinite induction on the construction of the subproof of
P ending with /T — /. For A: right and V : left, use the generalized Kénig's
lemma. (Cf. the proof of Proposition 8.16.)]

ProsLEM 22.27. First we shall define a formal infinitary language in set
theoretical terms.

A basic language is an ordered triple {(C, P, S), where C is a set of individual
constants, P is a set of predicate constants, and S is a set of logical symbols.
Each element of P is an ordered pair {4, «) where « is an ordinal called the
arity of (4, «). An element of S is either - or of the form (A, o), {V, &), (¥, «)
or (3, a), where o is an ordinal called the arity of (A, a), (V, «}, (¥, a) or
(3, o), respectively. A basic language (C, P, S), also satisfies the following
conditions.

1) The sets C, P, and S are mutually disjoint.

2) The symbols —, A, V, ¥, and 3 are different.

A language L is an ordered set (C, P, S, B, I'), where (C, P, S) is a basic
language, B and F are a set of bound variables and a set of free variables
respectively, and C, P, S, B, and F are mutually disjoint.

Since the terms, formulas, etc. of L are what we commonly, in logic,
understand them to be, we skip their formal set theoretical definitions. We
however make the following deviations from our previous treatment. We call
I" > A a sequent in L if I" and A are sets of formulas in L. This change is
useful when we wish to avoid the use of the axiom of choice as much as
possible.

A tree is an ordered pair (7', <) satisfying the following conditions.

1.T # 0.

2. The relation < is a partial ordering on 7.

We read s, << sq as “‘s; is below s, or “‘sy is above s;”". There is a unique
lowermost point sy in 7, i.e., there is a unique sy in T such that
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VseT (s < svsy=s5s).

This lowermost point s, is called the end point of the tree. Every point, except
the end point, has a unique point below it, i.e.,

VseT (s # 523 eTVu(u <s=u==tvu<t).

If s; << sg and ~13s (s; << s A s < sy), then s, is said to be immediately above
s;- If s <Us, then there exists a unique s, such that s; <<s, <{s and s, is
immediately above s;. A topmost point is called an initial point.

3. Any linearly ordered subset of T (with respect to <) is finite. A semi-proof
P in L is a function f from a tree into a set of sequents in L satisfying the
following conditions.

1) If S is an initial point and f(s) is of the form I" — A, then

I'nA 0.

Note that here an initial sequent need not be of the form D - D. This
change enables us to prove the completeness theorem with a minimal use of
the axiom of choice.

2) Let ..., s, ... be the collection of all points immediately above s.
Then
 1(84),
£(s)

is an inference in L.

A proof P in L is an ordered pair (P, <), where P, is a semi-proof in L
and < is a well-founded partial ordering on the free variables in Py which
satisfies our eigenvariable conditions.

A structure for L is defined in the usual manner.

Let M be a transitive set which needs not satisfy the axiom of choice. Let
S and 4 be a structure for L in M and a sentence in L, respectively. Then
“S satisfies 4 in M denoted by S ]":4 4 is defined as usual except for Jand V.
Since V 1s defined as 13—, we give only the definition for 3.

SI¥ 3oy ... A(xg, xy,...)
is defined to be
3jeM (S |¥ A(J0), F(1),. . ).

A sentence F is called M-valid, if for every structure S in M, S |£ F.
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THEOREM A. Let L be a basic language and suppose that Yae M (a* € M) for
every arity o tn L. If an L-proof P is an element of M, then the end-sequent of
P is M-valid.

[Hint: Follow the proof of the validity theorem with the following modifica-
tion. Define Skolem functions using the axiom of choice. The Skolem func-
tions are possibly outside M but the sequences of terms made by these
Skolem functions are members of M by the hypotheses of the theorem,
provided their lengths are arities of L. Therefore the proof can be carried out
as before.]

TuEOREM B. Let L be a basic language and let A be the fivst vegular cardinal
greater than all the arities in L. We assume 1 > w. Let S be an L-sequent. If
M satisfies the following conditions, then either S has a cut free proof wn M or
there exists a counter model of S in M.

1) LeM,SeMand e M.

2)VYa, be M({a, by e M) andYae M (U (a) € M), where U (a) is the union of a.

3) M satisfies the axiom of replacement.

4)Vaec M Vo€ A (a*€ M).

In case that L has =, the condition P(D X D) e M is added, where P(D X D)
is the power set of D X D, D 1s an adequate set of free variables, and D € M 1s
a consequence of 1)-4).

[Hint: Follow the proof of the completeness theorem in the following
manner.

1) Introduce A-many bound variables in M.

2) Construct all atomic semi-formulas in M.

3) Construct all semi-formulas without free variables in M. Here we use a
definition by transfinite induction up to A. This can be done in M since M
satisfies the axiom of replacement.

4) In M, introduce Skolem function letters corresponding to each semi-
formula without free variables.

5) Construct the set D of all free variables as the set of all possible function
combinations of Skolem function letters in M. Here we again use a definition
by transfinite induction up to A.

6) Construct a reduction tree in M. We define a reduction tree up to the
nth step in M by mathematical induction. Then it is easily shown that the
whole reduction tree is in M.

7) Construct a countermodel or a cut free proof in M. This can be done
as usual.
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8) If L has =, we need P(D x D) e M since all possible partitions of free
variables are taken into consideration in the equality axiom.]
Without using €, we can express the axiom of choice in the form

Vx dy A(x, v) — 3f Vx A{x, f(x)).

Since 3f occurs in this form, this is a second order form. Since some second
order notions can be expressed in an infinitary language, it is natural to ask
whether the axiom of choice can be expressed in an infinitary language.
Actually, a weak form of the axiom of choice is elegantly expressed in an
infinitary language: The axiom of dependent choice can be expressed as

Vx 3y A(x, v) = Vg 3%y %5 ... A A(xy, %ip9).

<w

COROLLARY. The axiom of choice is not expressible in an infinitary language.

[Hint: Suppose the axiom of choice can be expressed in aninfinitary language
L. Then since the axiom of choice is true, there must be a proof P of the axiom.
Let « be a large ordinal so that L € R(«), P € R(«) and A < o, where R(x) =
{a | rank(a) < «}. This is a contradiction since it is very easy to prove the
existence of a transitive set M with the following properties:

1) The axiom of choice is not M-valid.

2) M satisfies the conditions of Theorem A. (For example, take M to be
the smallest transitive set satisfying the conditions in Theorem A and R{x) € M .)]

§23. Determinate logic

In this section we will discuss determinate logic with equality (=) as a
special case of infinitary logic with heterogeneous quantifiers. In order to
simplify the discussion, we will only consider languages that have no individual
constants.

DeriNiTioN 23.1. (1) By a heterogeneous quantifier of arity o we mean a
symbol Qf, where f is a map from « into {V, 3}. For such a map f, the map f
called the dual of f, is defined in the following way.

(i) The domain of f is the same as that of £,

(ii) /(8) = V¥ or 3 according as f(8) = 3 or V respectively.
If f and g are dual, then Q” and Q7 are called dual quantifiers.
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(2) By the language L, we mean the language obtained from the language
in §22 by replacing the quantifiers V and 3, of arity «, by heterogeneous
quantifiers Q' of the same arity.

(3) Let & be a stracture for L;,. We define satisfaction and validity in &/
as in Definition 22.15. The structure is said to be determinate if for each
formula 4 in L exactly one of the two formulas

Qlx_, A(x)
and

Qfx<a —d (x)
1s valid in 7.

(4) A logical system 8 with language L is called a determinate logic if
for every closed formula A in Lj, “A is provable in 8" is equivalent to
“4 1s valid in every determinate structure’.

In this section we will define a logical system DL and prove that (i) DL is
a determinate logic, (ii) if a formula 4 is provable in DL by using heterogeneous
quantifier introduction only once at the end of the proof, then A4 is valid, and
(iii) in DL the completeness theorem, the cut-elimination theorem, and the
interpolation theorem hold in a certain form.

The language of our formal system DL is L, with equality. Consequently,
we will ‘develop the theory of determinate logic with equality. First we modify
the notion of proof as defined in §22.

DeriniTION 23.2. (1) The rules for = are as in Definition 22.19.
(2} The rules for V¥ and 3 in Definition 22.1 are replaced by the following.
A — A
Q : 1eft: 4},4{ ia@,<lif_ R
{Q, 4,(%)}i<r I' > 4
where a, denotes a sequence a, ¢,..., a,,,... (& < ;) for some u,. The uth
variable of this sequence, a, ,, we call the variable of @, of order w. If f,(u) = 3,
then a, , is called an eigenvariable of the inference

I' >4, {4,(a;)},<,

Q : right: ' >4 {Q}ijAl(xA)};.(.,.

If f,(u) =V, then a, , is called an eigenvariable of the inference.

If a,, is an eigenvariable of either inference, Q/‘xA A (x;) 1s called a
principal formula of a, , and also a principal formula of the inference. Further-
more, 4,(a,) is called an auxiliary formula of Q"xA A,(x,), of the eigenvariable
a,., and of the inference.
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If two different variables a and b have the same principal formula then a
is said to precede b with respect to that principal formula if the order of a is
less than the order of b.

(8) Every proof must satisfy the following eigenvariable conditions.

1) If a free variable a occurs in two or more places as an eigenvariable,
then for each occurrence a must have the same principal formula and a must
have the same order. Moreover, if @ occurs in two different auxiliary formulas
A(ay) and A(a,) as an eigenvariable of order u then a,,, and a, , must be the
same variable for all ¥ < u.

2) To each free variable a, we assign an ordinal number %(a), called the
height of 4, which has the following properties:

2.1} The height, A{a), of an eigenvariable a, 1s greater than the height,
h(b), of every free variable b in the principal formula of the eigenvariable a.

2.2) The height of an eigenvariable a is greater than the height of 4 if b
precedes a with respect to a principal formula of a.

3) No variable occurring in an inference as an eigenvariable may occur in
the end sequent.

Remark. The following weaker modification of the foregoing eigenvariable
conditions is enough to assure that a logic is determinate.

Replace the last half of 1) by the following: If A(a) is an auxiliary formula
of a principal formula Q/x A(x) and 4, and a, are eigenvariables of Q/x A(«)
with » # g, then a, and a, are different. If a occurs in two different auxiliary
formulas 4 (a,) and A(ay) as an eigenvariable of a principal formula Q’x A (x)
then a; , and a, , are the same for each non-eigenvariable 4, , of Q/x A(x)
for each v less than the order of a.

Replace 2.2) by the following: If a is an eigenvariable with principal formula
Qfx A(x) then the height of a is greater than the height of b if & precedes a
with respect to the principal formula Q’s A(«) but &4 is not an eigenvariable
of this principal formula.

We will use either the original form of 2.2) or the latter version choosing
whichever is more convenient for our purposes.

ExampLE 23.3. Proof of the axiom of determinateness: Let a be a,., and b
be b, . 5.
Ala, b) —

A(a, b)

—~ A(a, b), ~A(a, b)
(
(

b
b)
- Q'x A(x, b), Q/x —A(x, b)
— Qs A(x, b) Qs —A(x, b).




222 INFINITARY LOGIC [cH. 4, §23
In this proof, k(a;) = 1 + A and A(b,) = 0.

THEOREM 23.4 (validity for determinate structures). Let &7 be a determinate
structure and I' — A be provable in the determinate logic DL. Then I' - A is
satisfred in .

Proor. Take an arbitrary formula with a quantifier at the beginning, say
Q'x A(x, a),

where a is the sequence of all free variables in this formula and the length
of & is a. For each y < «, we introduce a Skolem function

g (agre s g, @) O F(He e, Hye o, @)

according as f(y) = 3 or f(y) =V, where &, ..., &, ... are all the ordinals
<y for which (&) = V and #q,. .., 7,,. .. are all the ordinals < y for which
f(n) = 3. We define the following interpretation of g/}’ and ¢}’ with respect
to o

If Q/x A(x, a) is satisfied in .27, then

1) Vxy, %y, - .. A(fg,- .., 6), where £, is %, if f(y) = V and ,is g (xy,, . . ., a)
if fly) = 3.

Let D be the universe of &/ and 0 be a member of D. Here a is understood
to be a sequence of members of D. 1f Q% A(«, @) is not satisfied in &7, then
the g/?’s are interpreted to be the constant function 0 in .&7.

If Q'x —A(x, @) is satistied in .27, then

2) Vag, %y, ... AlZo,. . ., @), where X, is x, i f(y) = 3, and %, is AL )
if fly) = V.

If Qx —A(x, a) is not satisfied in &7, then the glV’s are interpreted to be
the constant function 0 in &.

Now let P be a proof in our system. Let

Ag, A1, - -, Agy o - -

be a list without repetition, of all the eigenvariables in P with k(a,) << A(a,)
if § <y, h being the height function. By transfinite induction on 4 we will
define terms ¢, #;,. . ., t5,. . . corresponding to the above list of eigenvariables.
Assuming that ¢, have been defined, we define £; in the following way.
Suppose the principal formula of a; is Q& A(», b) and ¢ is the order of a,.
Let d be a free variable that precedes a; with respect to the principal formula.
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With the variable d we associate a variable « in the following way. If 4 is not
an eigenvariable, let # be 4 itself. Otherwise, since A(d) << h(ag) by our
eigenvariable conditions, ¢ occurs in the above list of eigenvariables as «,
for some ¢ < . By the induction hypothesis ¢, has been defined. Let the «
associated with 4 be this ¢,.

Let & be a free variable in b. A variable s associated with & is defined in the
same manner as the u associated with &; recall that 4(6) <C A(a,). It should
be noted that these d’s and &’s are the same for all auxiliary formulas of a,
by virtue of the eigenvariable conditions. Thus ¢; can be defined to be gid(uy, s)
if the order of a, is ¢ and f(d) is 3, where 1, is the sequence of the #’s cor-
responding to appropriate d’s as defined above. Similarly, #; is defined to be
ghl(uy; s) if the order of g, is § and f{8) is ¥, where u; has the same meaning
as u;.

Now substitute £y, #y,. .., £, ... forag, a;,. .., a,,. .. respectively in P. Let
P’ be the figure thus obtained from P. The end-sequents of P’ and P are
the same because the end-sequent of P has no eigenvariables. We shall show
that every sequent of P’ is satisfied in .o7; this will imply that the end sequent
of P is satisfied in «/. We have only to show that if the upper sequents of an
inference in P’ are satisfied in 7, then the lower sequent of this inference is
also satisfied in 7. Since the other cases are obvious, we only consider the
inferences on quantifiers.

An introduction of Q :left in P’ is of the following form

L Aws),... T —4

3) QA s),..., >4

where u, is of the form gl (u,,,. . ., §) if f(y) = 3.
An introduction of Q : right in P’ is of the following form

I'—A,... AW,s),...
' A,QxAx,s),...

4)

where uy is of the form g'fg”(u;o,. ., 8), i fly) = V.

For 3) we have to show that

5) Qv Awx, s) — A(u, s).
But this is immediate from 1). For 4) we must show that

6) A(u’, s} - Q'x A(x, 5).

Assume that =Qfx A (#, s) holds in &7. Since & is determinate, Q7 A4 (%, s)
holds in 7. Therefore what we have to show is that
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Q'x —A(x, s) ——A4(u', s).

But this follows from 2). This completes the proof of Theorem 23.4.

Since in this proof the determinateness of &/ was used only for 6) and since
the axiom of determinateness always holds for a homogeneous quantifier, we
have the following.

ProrosiTiON 23.5. Let P be a proof in our determinate logic in which every
quantifier, tntroduced in a succedent tn P, 1s homogeneous. Then the end-sequent
of P is valid.

Next we shall prove two versions of completeness.

THEOREM 23.6. Let I' — A be a sequent. Then either theve exists a cut-free proof
of I' > A in our determinate logic or else theve exists a structure o {possibly
not determinate) such that every formula in I' is satisfied in o and no formula
in A s satisfied in 7.

Proor. Let Dy be an arbitrary non-empty set containing all free variables
in I" and A. Let D be the closure of D, with respect to all the functions g/
and g7 for all formulas A in our language, i.e., D is generated by all g7’s
and g"’s from Dy, (Actually it is sufficient if D is closed under all the functions
g and g for all subformulas A of formulas in I" and A). In this proof, a
member of D — Dy is treated as a free variable and a member of D, is treated
as an individual constant. Let E be the set of all formulas of the form s = ¢,
where s and ¢ are members of D. Let (@|P) be an arbitrary decomposition of
E and consider the following sequent:

0, I' -4, V7.
If all the sequents of the form 0) are provable without the cut rule, then
I' — 4 is also provable without the cut rule.

Let S be I' - A. We shall define a tree T(S) by considering the following
eight cases.

1) The lowest sequent is S.

2) Immediate ancestors of S are all the sequents of the form 0).

3) When a sequent IT — A is

{—'Cl}i.<y) F/ ’*A/: {_1D;z}u<6r
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where I and A’ have no formulas whose outermost logical symbol is —, and
Il — A 1is constructed by 2) or 8) (which is to be defined) the immediate

ancestor of JI — A is
{Du}u<0' F/ HA,) {Cl}/1<y-

4) When a sequent [T — A is

v Cu.}.}u<w I —a, {V Da.o}a<o:

l<acy p<B;

where I and A’ have no formulas whose outermost logical symbol is V, and
when /T — /1 is constructed by 3), the immediate ancestors of 11 — /| are

{Clﬂ.u}u<w F/ _’A/’ {Da.o}o<éa.a<é

for all sequences {4,}, <, such that 1, < a,.
5) When a sequent I7 —~ A is

{A Cu,}.}u<v’ [v %A,’ {A Do,a}a<é:
"

23 p<Bg

where 1" and 4’ have no formulas whose outermost logical symbol is A, and
when IT — A is constructed by 4), then the immediate ancestors of I] — A
are

{Cu,l}i<y#,ﬂ<}" I - A, {Dog,a}o<é

for all sequences {p,},<; such that p, < f,.
6) When a sequent [ — /1 is

(Q%, Ay(%1, 8} <o I > 4,

where I has no formulas whose outermost logical symbol is Q, and when
IT — A is constructed by 5), then the immediate ancestor of /T — A is

{A,(t1uSua<e I > A
for all ¢, , satisfying the following:

t/lvu 1 {tl,u.Ow s t/l,u.v' e ‘}V<y:

where y is the length of &, if &, &;,..., are all the ordinals <y such that
7(&) = ¥ and 7, %1,. .. are all the ordinals <y such that f(§) = 3, then
tiwtoliue, - - 1s an arbitrary sequence of members of D and
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bawn = gﬁi'}(h,u,fo,- o 84,
for eachn = 79, 7y, - - -

7) When a sequent [T — A1 is
-4, {Q/lxz A% $)}a<o

where A’ has no formulas whose outermost logical symbol is Q, and when
IT — A is constructed by 6), then the immediate ancestor of I7 — A is

I" >4, {450 )} ua<o
for all ¢, , satisfying the following:

ti, 1S {tauo -t tvem

where 9 is the length of x,; if &, &,... are all the ordinals < y such that

&) =V, and, if 59, 71, . . . are all the ordinals < ¢ such that f(n) = 3, then

t3umes Ly - - - ar€ arbitrary members of D and ¢, ,.s = §45(tsuner- - -» $2)-
8) When a sequent I7 - A is

{s; =titacp I" = 4",

where I'" has-no formulas of the form s = ¢ and when /1 — A is constructed
by 7), then the immediate ancestor of [T — A is the sequent /I’ — A’, where
1T’ and A’ are sequences of all the formulas obtained from a formula in /7 and
A, respectively, by arbitrary interchange of s, and ¢; (4 < ). (So [I" and A’
obviously include /7 and A, respectively.)

This completes the description of T(S).

A branch of T(S) is an infinite sequence S = Sy, S, So,... such that
Sas1 1s an immediate ancestor of S,. We have two cases.

Case 1. In every branch of T(S), there exists at least one sequent of the
form

I, D, Iy -A4,D, 4, or I' Ay, s =5, 4.

Case 2. There exists at least one branch of T(S), in which there are no
sequents of the form

Fl,D,Fzﬁpl,D,Az or F‘*Al,szs,AZ.

For case 1, S is provable without the cut rule. In order to prove this we define
the height of the free variables as follows.
(1) If a belongs to Dy, then A{a) = 0.
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@) I aisglf(by, ..., by...)or @by, ..., bs...), then h(a) is the supremum
of all (b)) + 1’s.

It is easily shown that 7'(S) satisfies the conditions 1) and 3} in (3) of
Definition 23.2.

In the remainder of this proof we will refer to a figure P as a semi-proof
if P satisfies all the conditions of a proof except 4) of Definition 23.2. P is
said to be a quasi-proof if P satisfies all the conditions of a proof except 3)
in (3) of Definition 23.2.

We now consider the following conditions on P.

(3) P is a cut-free semi-proof.

(4) Every free variable in P occurs in 7(S) and every inference on Q in P
occurs in T(S).

(8) The end sequent of P is S.

If P satisfies (3), (4) and (5) then P obviously satisfies 1) and 3) in (3) of
Definition 23.2 and therefore P is a cut-free quasi-proof. Now consider the
condition C on a sequent S’, that S” has a quasi-proof P satisfying (3), (4) and
(5). Let S’ be in T'(S). It is easily seen that if every ancestor of S’ satisfies
C, then S’ satisfies C. Suppose that S is not provable without the cut rule.
Then S does not satisfy C. (Recall that the height is defined). Then some
ancestor of S, say S;, does not satisfy C. Continuing this argument, we obtain
a sequence S, Sy, Sy,. .., where S, is an ancestor of S, and does not satisfy
C for each #. This contradicts the hypothesis of case 1.

For case 2, we will show that there exists a structure ./ in which every
formula in I"is true and every formula in 4 is false. In the rest of this proof,
we fix one branch, whose existence is assumed in the hypothesis of case 2, and
consider only the formulas and sequents in this branch, that is, throughout
this discussion a sequent always means a sequent in this branch. We only
have to define an interpretation which makes all the sequents in this branch
false with respect to D.

Lemma 23.7. (1) If a Jormula —A occurs in the antecedent (succedent) of a
sequent, then the formula A occurs in the succedent (antecedent) of a sequent.

(2) If a formula N, .5 A, occurs in the antecedent (succedent) of a sequent,
then a formula A, for some {every) A << B occurs in the antecedent (succedent)
of a sequent.

(3) If a formula AN, ; A, occurs in the antecedent (succedent) of a sequent,
then a formula A, for every (some) A << f occurs in the antecedent (succedent)
of a sequent.
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(4) I} Q'x A(x, s) occurs in the antecedent of a sequent and &q, &1,. .. ave all
ordinals such that f(&) = N and 0y, 11,. .. are all ordinals such that f(n) = 3,
then for an arbitrary sequence ty, iy, ... of members of D, the formula A(t)
occurs in the antecedent of a sequent, where t, = g'(ts,,. .., s) for each 5 =
N0 N1se - - -

(5) If Q's A(%, s) occurs in the succedent of a sequent and &g, &y,. .. ave all
ordinals such that f(&) = NV and ng, 1y,. .. are all ordinals such that f(n) = 3,
then for an arbitrary sequence t,,t, ... of members of D, the formula A(t)
occurs inthe succedent of a sequent, wherety = §if(t, . . ., 8) foreach & = &g, &, . ..

Proor. Obvious.

LemMa 23.8. If a formula occurs in the antecedent of a sequent, then it does not
occur in the succedent of any sequent.

ProoF. By transfinite induction on the complexity of formulas using Lemma
23.7.

LemMma 23.9. (1) For every member ¢ of D, the formula t = ¢t occurs in the
antecedent of a sequent.

(2) Let s and ¢ be members of D. If s = t occurs in the antecedent of a sequent,
then t = s occurs in the antecedent of a sequent.

(8) Let tq, ty and ty be members of D. If ) = 1y and ty = tg occur in the antecedent
of a sequent, then the formula t, = t3 occurs in an antecedent of a sequent.

(4) Let s;, t;, A << f3, be members of D. If A(sy,..., $4,-..) and {s, = £} 15
occur in the antecedent of a sequent, then A(uy, . .., u,,. . .) occurs in the antecedent
of a sequent for each sequence ug,. .., U,,. .. such that u, is s, or t,.

ProOF. (1) ¢ = ¢ must be contained in @ or ¥ in 2) 6f the tree construction.
Since ¢ = ¢ cannot be contained in ¥ because of the hypothesis of case 2,
¢ = ¢ must be contained in @.

(2) Let s = ¢ occur in the antecedent of a sequent and ¢ = s occur in the
succedent of a sequent, then there is a sequent which contains s = ¢ in the
antecedent and ¢ = s in the succedent. By the construction 8) of T(S), there
must be a sequent of the form I'y -4, s = s, 4,. This is a contradiction.

(3) and (4) can be proved similarly.

According to Lemma 23.9, D can be decomposed into equivalence classes
by =. Let D_ be the set of equivalence classes so obtained; from now on



CH. 4, §23] DETERMINATE LOGIC 229

we will denote a class of D_ by a representative of it. We define a structure
o7 over D_ as follows. Let s be a variable in D. Then the value of s with
respect to .7 is defined to be the class represented by s. If P is a predicate
constant, then P(t,,...,¢,,...) is defined to be crue with respect to o if
Pfty,..., t;...) is in the antecedent of a sequent and is defined to be false
with respect to 7 otherwise. By transfinite induction on the complexity of
4, we shall prove that A4 is true with respect to &7 if 4 is in the antecedent
of a sequent and A4 is false with respect to & if 4 is in the succedent of a
sequent. Since the other cases are easy, we only consider the cases where
Ais Q/x A(x, s).

Case 1. Q7 A(x, s) occurs in the antecedent of a sequent. In this case, it
follows from the induction hypothesis and 6) of the construction of T(S),
that A(t, s) is true with respect to 7 for every ¢ satisfying the following
condition. If &, &;,... are all the ordinals such that (&)} = V and #q, 13, . -
are all the ordinals such that f() = 3, then ¢, = gi’(t,,,. . ., §) for every .
This implies that Q7 A(x, s) is true with respect to 7.

Case 2. Q/x A(®, s) is in the succedent of a sequent. In this case, it follows
from the induction hypothesis and 7) of the construction of T(S), that
A(t, s) is false with respect to o for every ¢ satisfying the following condition.
If &, &,. .. are all the ordinals such that f(§) = V and #g, %y,... are all the
ordinals such that f() = 3, then{, = g’f(t,,o,. .., §). This implies that =4 (¢, 5)
is true with respect to .« for every such ¢. Therefore Q’x —A (¥, s) is true with
respect to /. Since Q/xw—A(x, 5) > —Qfx A(x, s) is satisfied in all the
structures, Q’x A(x, ) is false with respect to 7.

This completes the proof of our first version of completeness.

Before we proceed to the second version of completeness, we shall first
prove the following.

ProrositioN 23.10. Let D and D be the same as in the proof of Theorem 23.6.
Iy is defined to be the sequence consisting of all formulas of the form

Qix A(x, s) v Q/x —A(x, s)

wheve A(x, ) is an arbitrary formula in our language and s is an arbitrary
sequence of members of D. Without loss of genevality, we may assume that no
member of Dg is ever used as an eigenvariable in any quasi-proof. Now let
I — A be a sequent of the original language and let [ be Iy, T'. Then either therve
is a cul-free quasi-proof whose end-sequent is I' — A or else there exists a deter-
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minate structure <Z such that every formula in I' is satisfied in o/ and no
Jormula in A is satisfied in .

Proor. This is proved similarly to the proof of Theorem 23.6 by replacing
“proof” and “I" by “‘quasi-proof” and “I™”’, respectively. Since I" includes
Ty, it is easily shown that o is determinate.

THEOREM 23.11. Let I' > A be a sequent. Then either 1" —~ A 1s provable in
our determinate logic or theve exists a determinate structure s such that every
formula in I is satisfied in of and no formula in A is satisfied in 2.

ProOEF. Since every formula in Iy is provable in our determinate logic, (cf.
Example 23.3) I" — 4 is obtained from I" — A by the cut rule as follows.

_’Bo,... _’Bﬂ,... Bo,...,BB,...,F_’A
I'—~4 ’

where {By,..., Bg, ...} 1s I'y. Thus, if I’ — A has a quasi-proof, then from
this quasi-proof we can obtain a proof of I' - A, since I — A is a sequent of
the original language. Otherwise Proposition 23.10 guarantees that there is a
determinate structure ./ in which every formula of I', and hence every
formula of I, is satisfied, while no formula of A is satisfied.

ReMARK. We cannot improve Theorem 23.11 by replacing “provable” by
“provable without the cut rule”. This is clear from the following example
by Gale and Stewart. Let «y be the cardinal number of 2%, the set of functions
from w to 2. Let f € 2. Then (f) is defined to be ay = 1o, @y = 13,..., where
1z = 0 or 1 according as f(k) = 0 or 1. The formula (f) implicitly defines the
function /. If 4 < 2%, then A is implicitly defined by the formula V,_, (f)
where V,_, is defined in terms of V,, . It can be shown that there exists a set
A < 2% such that the axiom of determinateness fails for the game defined
by A. {The proof is given below.) If a formula ¢ implicitly defines 4, then

Vi(x =0vax=1) —-0=1,
—1(on 3x1 sz e l/}(xo, X1y« ) A\ 3960 Vxl EX2 Ce "11/1(960, X1y- - ))

is provable in our determinate logic, where i is constructed from 0, 1, =, A,
and V, . This means that Vx {(x =0v x = 1) -0 =1 is provable in our
determinate logic if our language has V,, since the negation of the last
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formula is an instance of the axiom of determinateness. However, this is not
provable without the cut rule even if our language has V.

The proof of the existence of A goes as follows. We shall show that there
is a subset A4 of 2¢ for which there is no winning strategy.

DerINITION 23.12. (1) For any subset of 2, say 4, G(4), a game for 4, is
defined as follows: A first player I and a second player II alternately chooses
a0orl; thus

I:x0x2x4...x2i...
I1: %y %3 %5 ... Xospq - - -
for 1 < w.

(2) the sequence {xg, %1, Xo,. . . » generated in this manner, called a play of
the game, determines the winner, that is, if {xp, %1, %3,...) € 4, then I wins,
otherwise IT wins.

(3) A sequence (¥, f2, f4,. -, fos,. - . ) 1 < w is called a strategy for I if
%o € 2 and f,; is a function from all ¢-tuples of 0’s and 1’s to 2.

(4) Leto = {xq, g, /4. . . y beastrategy forIandletx = (x1,%3,. .., %2;1,+ . - )
be a function from odd numbers to 2. Then ¢(x) is defined by

o(x) = {xo, %1, f2(%1), X3, fa(x1, 73),- - ).
(5) A strategy o for I is called a winning strategy for I if
Vx e 2BHti<el gx) e 4.

(6) A sequence {f, f3,. . ., fais1,. - - p is called a strategy for IT if f5;,; is a
function from all (i + 1)-tuples of 0’s and 1’s for every ¢ < w.

(7) Let 7 = {f1, f5,. - . ) be a strategy for Il and let x = (%, %3,..., X4, - -}
be a function from even numbers to 2. Then 7{x) is defined by

(%) = (%o, f1(%0), %2, f3(%0, %2), . - ).
(8) A strategy 7 for ITis called a winning strategy for ITif Vxe2® "= z(x) ¢ 4.
THEOREM 23.13 (Gale-Stewart). In ZF, we can show that if 2° is well-ordered,

then theve exists a subset of 22, say A, for which neither 1 nor 11 has a winning
strategy in the game G(S).

Proor. It is easy to see that
1. The cardinality of all strategies for I is &g, and
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2. The cardinality of all strategies for II is «.

3. If ais a strategy for I, then the cardinality of the set {(c, 7) | 7 is a strategy
for II} is oy.

4. If 7 is a strategy for II, then the cardinality of {(g, 7) | o is a strategy
for 1} is a.

Let 65,61,...,04 ., 2 <oy and T, T1,. .., Te, - - -, & < Op, D€ enumera-
tions of all strategies for I and II, respectively. By transfinite induction we
define plays

x* = (wd, 25,4, v o= (v, v YD),

where x7, ¥ = 0 or 1:

(1) 2% = (00, To)-

(2) ¥° = (0¢, T5), where B is the smallest ordinal such that (oo, 7,) # %°

B)Se = |B<a}and T, = {y* | < a}.
(4) x* = (04, 75), where £ is the smallest ordinal such that (g4, 7,), ¢ Sq U T.
(5) y* = (04, T4), where § is the smallest ordinal such that (c,, 75) ¢ S, U T

nd (0, 74) # % It is obvious that if & < ag, then S, N T = 0, S, < ato, and

Ty < .

6) 4 = U, .o Sae

We claim that for this 4 neither I nor II has a winning strategy. Suppose
that I has a winning strategy, say o,. Let § be the smallest ordinal such
that

(O'ou Tﬂ) ¢ Soc u Toc A (Gw Tﬁ) # X%

Then (o, 75) = ¥* ¢ A, which means that 1T has a winning strategy, yielding
a contradiction.

In order to prove the interpolation theorem, we need the following proof-
theoretic notion.

DerINITION 23.14. Let P be a cut-free semi-proof and let I be an inference
in P. Let A be a formula in an upper sequent of I and B be a formula in the
lower sequent of I. B is said to be the immediate successor of 4 if the following
is satisfied.

Case 1. If I is a structural inference

I -4
A’
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and A4 is a formula of I'(A), then B is the first formula in I7(/1) which is
identical with 4.
Case 2. If I is a logical inference

I, Ir-4,4
mw,r-a.4a’

where I applies to the formulas of IT and A, and 4 is in I'(A), then B is the
corresponding formula in I'(A).

Case 3. If I is a logical inference and 4 is an auxiliary formula of I, then B
is the corresponding principal formula.

Case 4. If I is the first equality rule (cf. Definition 22.19) and 4 is a formula
in I'® (A®) then B is the corresponding formula in I'® (4®),

Case 5. If I is the second equality rule, (cf. Definition 22.19) and 4 is a
formula in I'(4), then B is the corresponding formula in I'(4).

Our interpolation theorem is then stated in the following form.

THEOREM 23.15 (an interpolation theorem for homogeneous languages). If a
sequent I'y, I's — Ay, Ay is valid and has no heterogencous quantifiers, then theve
exists a formula C such that both the sequents

]-'1 —>A1,C and C,Fz —’AZ

are valid and every free variable ov predicate constant in C, except =, occurs in
both I'y, Ay and I'y, Ay. (C may have heterogeneous quantifiers and also logical
connectives or quantifiers that ave longer than the logical symbols in the original
language).

Proor. The proof will be divided into several parts.
1. First we shall introduce two auxiliary systems.

DEFINITION 23.16. A proof P in our determinate logic is said to satisfy
condition (Q) if every inference 7 in P of Q : right is either homogeneous or
is of the form

I > A, Ad)
Q) I'>A, Q% Ax)’

where no eigenvariable in P used above I'— 4, Q’x A(x) occurs in I'— 4,

Qs A(x).
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Prorosrtion 23.17. If a sequent S is provable with a proof which satisfies (Q),
then S s valid.

ProoF. Define g/ and g’ as in the proof of Theorem 23.4 except that g7 is
defined only for homogeneous f. Then define substitution also as in the proof
of Theorem 23.4 except that all eigenvariables in the inference of (Q) remain
unsubstituted. Then P will be transformed into P’. What we have to show
is that every sequent S’ in P’ is satisfied in 7. This is shown by transfinite
indaction on the complexity of the semi-proof of S. We can repeat the proof
of Theorem 23.4 except in the following case. S is inferred by the inference I:

I A, Ad, b)
I'>A,Qx A(x,b)’

where Q is not homogeneous. In order to illustrate the proof, we assume that
Q’x is Vxg 3%y Vxg 3% ... and d is dy, dy, ds,. .. . Since I satisfies (Q) and
h(dg) < hdy) < B{dy) < ..., (I" = A4, A(d, b))' is of the form

*) I" > A, A(dy, t1(dy, §), ds, t3(do, 5, $), . . ., $).

It follows from the induction hypothesis that (*) is satisfied in & for every
sequence dg, dy, dg,. .. of members of 7. Therefore I — A4’, Q’x A(«x, 5) is
satisfied in 7.

Next we shall consider another logical system, the restricted homogeneous
system RHS.

DeriniTrON 23.18. A figure P is said to be a proof in RHS if P satisfies the
following conditions:

1) All quantifiers in P are 3.

2) P satisfies all conditions of a proof of determinate logic except (3) of
Definition 23.2.

3) Every inference in P on the introduction of Q in the antecedent is of the
following form

{4:(8)}i<y ' >4
{Ix, A;(®)daey, I > 47

where no variable in @, occurs in the lower sequent.

Then we have the following proposition.
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PRrOPOSITION 23.19. If I — A is provable in RHS and height (see Definition 23.2)
is defined for all free variables in I’ — A, then there exists a proof P’ in RHS
ending with I' — A for which the heights ave defined in such a way that the
free variables in I' — A have the same heights as the original ones.

Proor. We may assume that the same eigenvariable is never used in two
different places. (Otherwise, we can reletter some eigenvariables.) Then it is
easy to define heights of free variables from the bottom.

2. Next we prove the following lemma.

LemMa 23.20. Let P be a cut-free proof of I'y, I's — Ay, Ag in the homogeneous
system (see Definition 22.1), a proof satisfying the following conditions:

(1) Every quantifier in P is 3.

(2) Every Q-introduction inference in P is a I-introduction inference in the
succedent.

Then there exist cut-free proofs Py and Py in RHS and a formula C satisfying
the following conditions.

(2.1) The end-sequent of Py s C,I'y — A, and the end-sequent of Py is
Iy > A4, C.

(2.2) Every free variable or predicate constant in C, except =, occurs in both

FI’AI and Fz,Az.

Proor. The proof is by transfinite induction on the complexity of P.
Case 1. P consists of a single initial sequent. The theorem is obvious.
Case 2. The last inference of P is of the form

I, I, ”"Alrr {A}.<aﬂ.)}l<ﬂl» A;, {Bu(bu)}u<62
Fl» P2 _’Air {axl AA(x/l)}/1<B,’ A;' {ayu Bu(yu)}u<ﬁz

where 4y is A;{3%, 4,(%:)}1<5, and Az i A5{3y, Bu(¥u)}u<s,:
By the induction hypothesis, there exists a C’(a, b) for which

C'(a, b), Fl _’A;y {Az(a}.)}i»<5x

and
Ty = 4z, {Bu(b)}us, C'(a, )
are provable in RHS.
Moreover, every free variable and predicate constant in C’(a, b) is either =
or contained in both I'y, 4, {4;(a,)}i<s, and I, A, {Bu(b,)},<s, Here ais
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a sequence of all the variables in C’(a, b) which are not in I';, 4; and bis a
sequence of all the variables in C’(a, b) which are not in I'y, A5. Then the
required formula C is 3¢ Yy C'(x, y), where V is considered as an abbreviation
of =3,

Case 3. The last inference of P is of the form

Fl(a)’ Fz(a) —’A(fl)’ A(Za)
a, = by, a, = b,, p{(b)’ pé(b) »A&b),Aéb)

where I'; is a; = by, I''"0) and I'; is @, = by, TP This can be divided into
two steps; first, the substitution of a; for b;; then the substitution of a; for
b,. So we may assume that a@; = b, is empty. By the induction hypothesis,
thereexistsaformulaC’(a, b) whichsatisfies thelemmafor I @, '@ — 4@ A,
where a is a sequence consisting of all variables in C’(a, b) which are not in
I}, 4, and b is a sequence of all the variables in C’(a, b) which are not in
Iy, Ay, If there exists a unique ¢ such that a, , is the ¢th variable of a then we
define @, , to be the ith variable in #. Otherwise we define @, , to be ap ,.
Then take C to be 3% Vy (A, dg, = by, A C'(%, ).
Case 4. The last inference of P is of the form

@,,l__vl,]—vg '—’Al,Ag,':p
ry,r, —’111,112

for all (P|¥P).

By the induction hypothesis, there exist formulas Cejy) such that Cge),
I't A, and @, I'y — Ay, ¥, C sy are provable in RHS. So

M C(wlm» ry—4,
(P}¥)

and

I's -4,V C(d>|‘1’)

(@|¥)
are provable in RHS. Let a be a sequence of all the free variablesin V4 v) C(ow)
which do not appear in I, 45 and let b be those which do not occur in 17}, 4;.
We rewrite Vi) Cioly) as C’(a, b). Then take C to be V& 3y C'(x, ¥).
Other cases. The proof is similar to the one above.

REMARK. In Lemma 23.20, note that (1) is not an essential restriction on P
because V can be expressed by — and 3. Note also that any sub-proof of P,
i.e., any part of P consisting of all sequents above and including a given
sequent, is a proof in RHS because there are no eigenvariables in P.
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3. Let I'}, I'y — Ay, 4, be as in the statement of the theorem. There exists
a cut-free proof P of I'}, I'y — Ay, 4, in the homogeneous system. For the
completeness proof, we may assume that P satisfies the following condition.

3.1. If a variable occurs in two different auxiliary formulas as an eigen-
variable, then these two formulas are the same.

Moreover, without loss of generality we may assume the following for P.

3.2. Every quantifier in P is 3.

3.3. The height of a free variable in I'}, I'y — A, 4, is less than the height
of any eigenvariable in P.

3.4. The heights of two different variables in P are different.

Let I', -4 beasequentin P. Let®(I';, A;) bethesequence Ao, A1, . ., A,, . . .
of all 4,’s such that 4, is of the form —3x A(x) v A{a), where Ix A(x) 15 2
principal formula of a 3 : left above I’{ — A; and A (a) is its auxiliary formula.
Replacing I, — A, by @I, 4;), I, —~ A, and inserting some appropriate
structural inferences, we obtain a new figure P’ satisfying the following
conditions:

1) P’ satisfies (1) and (2) of Lemma 23.20.

2) The end-sequent of P’ is of the form (cf. the proof of Proposition 22.25)

{—3x, A%, c) v Aylag, ¢}, Iy,
{(=3y. Bu(y,, d)) v Bu(b,, d)}, Iy — A, A,

3) The height of any ¢, , is less than the height of any a, ;. The height of
any d, . is less than the height of any o, ,.

4) Every free variable or predicate constant, except =, in 3z, 3%, 4,{¥;, ;)
occurs in Iy, 4, and every free variable or predicate constant, except =,
occurring in 3z, 3x, B,(y,, 2,) occurs in Iy, A,.

5) Any a, , and b, ; are different. (Otherwise we can modify P’ so that P’
satisfies 5) because P satisfies 3.1.)

Applying Lemma 23.20, there is a formula C(a) such that

(a) C(a), {—3x, A,(x;, ¢,) v A,(a;, ¢,)}, 'y =4y

and
{_‘ayu Bu(yw du) v Bu(bu’ du)}: F? - 42, C(a)

are provable in RHS. Let Q; and Q, be proofs of these sequents in RHS.
(b) Every free variable or predicate constant, except =, occurring in C(a)
is in both {4 ,(a;, ¢,)}, I, 4, and {B,(b,, d )}, I, 4.
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(c) a is the sequence of all the free variables in C(a@) which are not in both
Iy, A, and Iy, 4, and well-ordered according to heights.
4. Then consider the following figure

Q-
Cla), (—3x, A,(s,, ¢) v Ayfa, ), Iy — 4
C(a), {3’”:1 (—3x, A,(x,, ) v A (x;, ) Fl -4y
} C(a), {Vz; 3"7:1 ("‘axa A%, 3) v A4 (xx» Db I =4y
Qs C(x), {Vz, 3%, (—Ix, A,(x,, Z/l) v (xz: z:))} Fl -4

where f is defined as follows.

(e) If a, is b, , for some y, then f(a) =

(f) If a, is a,,,, for some y, then fla) = V.

(g) If a, is contained in I'}, A; but not in I'y, Ay, then f(x) = V.

(h) If 4 is contained in Iy, Ay, but not in I'y, 4,, then f(«) = 3

(i) If (e)-(h) are not the case, then f(a) = 3.

The heights for the free variablesin a,, ¢;, C(a), I';, 4, are defined to be the
heights in P. The heights of all other variables in Q; can be so defined,
according to Proposition 23.19, that the whole figure will become a proof in
determinate logic. This means that Q/x C(x), I'y — A, is valid. The validity
of I'y - A5, Q%x C(x) is also easily seen from the following proof which
satisfies (Q) (cf. Definition 23.14).

-3y, B (yxx , du)
{Sy,, (—3y Bu(9 du)

{VZ ﬂyﬂ (—'Hyu (yu' zu) v Bu y;u [
v

{vz, 33’,4 (—'3yu u(yn’ 2,

This completes the proof of Theorem 23.15.
Using the same method we can prove the following theorem.

THEOREM 23.21 (cf. Theorem 23.15). If every quantifier in I'y, I'y — Ay, 4,
is homogeneous, 1f I'y, I'y — Ay, Ay is valid and does not contain =, and if
Iy, Ay and Iy, Ay have at least one predicate constant in common, then there
exists a formula C such that both C, I'y - Ay and Iy — Ay, C are valid and every
Jree variable or predicate constant in C is contained in both I\, Ay and I'y, A,.
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REMARK 23.22. In Theorems 23.15 and 23.21, we may add the condition that
C contains only one heterogeneous quantifier in the front of C.

REMARK 23.23. For Malitz’s example (cf. §22) we can construct an isomorphism
between & and 2 by the following formula.

Vi 3y  Vae 3y .. (Axsta > Ay, ZOAAN (1 2 2,009, 2 )

i i g
AxiLx; e v 2y))

AYyy 3%, Vyg 3xs . . (Ayigb—»Ax,-}\a/\/\(xiixje»yigyj)

[ L

A(xy L xoy; 2 yi))-

The order type of a in (&, <1) is denoted by [a|; and the order type of & in
(2, 2) is denoted by b]. Then |a|; < |b|y is equivalent to

() VY 3y Vae 3y ... Axta Ay, ZhAN( La o 2 )

i i )
AL ey 2y)).

This is easily shown by transfinite induction on |a|,, as follows.

Let the formula (*) be denoted by A(a, b). Suppose that for each ¢ la
and each d, A(c, d) is equivalent to |c|; << |d|. Suppose also that A(a, b)
holds. Then for each a, L a, there exists a b, such that Af(a,, b;) holds
because A, (¥; 2 a;) implies A, (%; 2 a) and hence for xy, s,... selected
for (ay, b;) in A(a, b) we have A, y; z b,. Then making the appropriate
substitutions into A(a, b) we obtain A(a, b;). Since a, 1 a weh ave, by the
induction hypothesis |a;|; < |b)|z < [b]o. Therefore |a|; < [bls.

The converse is obvious.

The axiom of determinateness, AD, is a very powerful axiom that has
numerous interesting and important applications. Augmented by the axiom
of dependent choice
DC Vx 3y R(x, y) —Vag xg 32 ... AR{x;, 2,.4)
the AD has even more implications for mathematics.

Unlike the axiom of choice, AC, which also has important implications
for mathematics, the status of the AD is as yet unsettled. We do not know
whether the AD is consistent with set theory. Neither do we know whether
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the AD and DC are consistent. We do know that although the AD implies
the axiom of countable choice it is incompatible with the AC.

If it should develop that the AD is inconsistent with set theory we would,
of course, cease to be interested in it. But even a proof of consistency would
not be sufficient for our purposes, for in order to reap the benefits of the AD
for mathematics we must have a transitive model of ZF 4+ AD that contains
the power set of w, P(w), as an element. Indeed we would like to have a
transitive model of ZF 4 AD + DC that contains P(w) as an element.

Concerning the existence of such models we know the following. Let Ly (P(w))
be the set obtained from P{w) by a f-fold transfinite iteration of Gédel’s
eight fundamental operations and let « be the smallest 8 such that L;(P(w))
is a model of ZF. Then we know that if there exists a transitive model of
ZF + AD that contains P(w), L (P(w)) is a model of the AD. But we also
know that L,(P(w)) satisfies DC.

There are then three possibilities:

1) The AD is inconsistent with set theory.

2) The AD is consistent with set theory but no transitive model of ZF + AD
exists that contains P(w).

3) L (P(w)) is a model of the AD.

If alternative 1) or 2) should be the case, we would have no further interest
in the AD. Our hopes center around alternative 3) which we conjecture to
be true. We are, however, unable to prove that L,(P(w)) is the model we
conjecture it to be. Moreover, at the present time no one appears to have a
method that might resolve the question. In view of the implications of this
conjecture for mathematics it is important that a thorough study of the AD
be made. As a contribution to this study we will prove a relation between the
AD and the cut-elimination theorem.

Let M be a transitive model of ZF 4 DC that contains P(w) as an element.
M may be a set or a proper class. Although we cannot assume the AC in M
we will assume it in V, the universe of all sets. Using the AC in V we will
prove that the AD holds in a model M if and only if the cut-elimination
theorem holds in M-definable determinate logic. For the proof we need the
following definitions.

DEFINITION 23.24. A set A is at most the continuum in M iff Ae M, A # 0 and
there is a function f in M such that f maps P(w) onto 4.

Clearly, if A and B are nonempty sets in M and B < 4, then B is at most
the continuum in M if 4 is at most the continuum in M.
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Since M is a model that contains P(w) as an element it follows that for
any language L, having not more than §§; symbols, we can assign to each
symbol and to each formula of L a gddelization in M. This enables us to
identify collections of language symbols and formulas with sets in M. Since
we know that these identifications can be made we will follow the convention
of speaking simply of sets of language symbols as being in 3. With this
convention in mind we define M-definable determinate logic.

DerFiNITION 23.25. A language L for M-definable determinate logic consists
of the following:

1) Free variables: A free variable a, for each s in Plw).

2} Bound variables: xg, x1,. .., %q,- . ., & < 1.

3} Individual constants: A set of individual constants that is at most the

continuum in M and which contains 0,1, 2,... .

4) Predicate constants: A set of predicate constants that is at most the con

tinuum in M. The arity of each predicate constant is at most w.

5) Logical symbols:

= (equality),

- (not),

A (conjunctions of arity « for « < w),

V (disjunctions of arity a for a < w),

Q’ (heterogeneous quantifiers of arity a for 1 < « << w).

Note that the set of free variables is at most the continuum in M. Further-
more, since P(w) is in M, w; = !, that is, w; is M-absolute.

The formulas of L we define in the following way:

Let R be a predicate constant or = and let the arity of R be a. Let {£;}, .,
be a sequence of terms. Then R(¢, ¢;,...) is an atomic formula.

Let A be a formula. Then —4 is a formula.

Let {4,};<x be a sequence of formulas. Then A, ., A, and V,; ., 4, are
formulas.

Let A(a) be a formula where a is the sequence of free variables {a;}; .,
with o <{ w. Let & be the sequence of bound variables {x,},., and let { map
« into {V, 3}. Then Q’x A(#) is a formula, where A(x) is obtained from 4{(a)
by replacing some occurrences of ; by x, for each 1.

Let J" and A be sets of formulas of at most the continuum. Then I" — 4 is
called a sequent.

Notice that we cannot assume the well-ordering of I"and 4, since the axiom
of choice is not assumed in M.
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COROLLARY 23.26. (1) If a language L is fixed, then the set of L-formulas is at
most the continuum.

(2) Given an L-formula, the number of variables, constants and logical symbols
which occur in it 1s at most countable.

When we consider a set of formulas {4,}, or a set of free variables, we must
remember that they are just sets; they may not be well-ordered.

LeMMa 23.27. (1) Consider a tree of length w which has o branches extending
from each node. We may identify this with w®, which is at most the continuum.

(2) Let o be an ordinal which is at most the continuwm. Consider a tree of length
 which has o branches extending from each node. We may identify this with
a®, which is at most the continuum.

DEeFINITION 23.28. The notion of proof and the rules of inference for M-
definable determinate logic are defined as follows.

1) The initial sequents are the logical initial sequents; —¢ = ¢, where / is
an arbitrary term; those sequents of the form ¢ =7 —, where 7 # § and
1, ] < w; and those sequents of the form —¢ = 0,¢=1,¢ = 2,..., where{is
an arbitrary term.

2) The rules of inference are those rules of determinate logic, which we
have already presented. One should keep in mind that in the sequents the
formulas form sets that are not necessarily well-ordered. As an example,
V : right looks like this:

F_’Ar{Al.i;_}iA<ai
>4, {Vica, 45}

where «; <X @ and A ranges over a set of at most the continuum.

3) A proof in M, say P, is a member of M which is a proof in the ordinary
sense except that the notion of height must be replaced by a relation <:

3.1) Suppose a is an eigenvariable in P, and b is a free variable which occurs
in its principal formula. Then b < a.

3.2) Suppose a is an eigenvariable, A(a) is its auxiliary formula, Q’x A(x)
is its principal formula, and suppose a corresponds to f(¢). If & also occurs in
a and b corresponds to f(j), where j < 4, then b < a.

The eigenvariable condition is simply that < is well-founded. If < a, let
us say that @ depends on &.
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REMARK. “< is well-founded” is M-absolute because a countable subset of
free variables (in V) is a countable subset of P(w) and P(w) belongs to M,
hence this set of free variables is a countable subset of M.

Before we get into the next argument, we should remark that we may and
will restrict the indices of free variables, the s in a,, where s € P(w), to subsets
of even numbers. This way, we will be free to introduce new free variables.

LEmMA 23.29. Consider a countable set of free variables, say A = {a;, a,,,. . .}
where A belongs to M and . . , < a,, (in V). Define R(a, b) by

R(a, b) <gyacAd(bed rb <a).

Then Nxg A%y %9 ... A, R(x;, x,,,) in M.

ProoF. It is easily seen that Vx 3y R(x, y) in M ; hence by DC the desired
formula is obtained.

DeFINITION 23.30. A quantifier Q in a formula 4 Is said to be essentially
succedent in A if it is in the scope of an even number of —’s. A sequent
I — A is said to be succedent-homogeneous if every quantifier in a formula
of A which is essentially succedent is homogeneous and every quantifier in a
formula of I" which is not essentially succedent is homogeneous.

For the following proposition, we assume that 0, 1,2,... are the only
individual constants in L. This simplifies the discussion.

Prorosition 23.31. (1) If the AD holds in M, then all the provable sequents
of M-definable determinate logic are M-valid, that 1s, valid in every M-definable
Structure.

(2) If a sequent is provable with a proof in which all the sequents are succedent-
homogeneous, then it is M-valid.

Note that in (2) the AD is not assumed for M.

ProoF. Suppose P is a proof for I — 4. Let < be the well-founded relation
defined for free variables of P. We can assign ordinals to these free variables
in such a manner that if @ < b, then the ordinal of a is less than the ordinal
of b. Start with those variables that do not depend on any other variables
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and assign them the value 0. Next, assign the ordinal 1 to those variables that
depend only on variables whose ordinals are 0. Continuing in this way we will
assign ordinals to all variables in P for the following reason. Suppose there
are variables in P which are not assigned ordinals by this process. Let 4 be
the set of those free variables. Then by Lemma 23.29,

Voo Iy % ... Ae A (€ A A xpy < 1,)).

1

Since 4 is not empty, this means there is an infinite sequence {a,};, from 4
such that a,,, < a;, contradicting the well-foundedness of <.

The ordinals assigned to the free variables of P as above will be called
heights. It is easy to see that they satisfy the conditions of heights in the
previous sense.

Consider an M-definable structure /. Notice that the natural numbers
of &7 are not necessarily the natural numbers in the absolute sense. They are,
however, in one-to-one correspondence with the actual natural numbers.
Therefore we may assume, without loss of generality, that the universe of .o/
is @ and the constants 0,1, 2,... in the language are interpreted in the
obvious way; thus &/ = {w,0,1,2,...).

Then consider all the formulas and subformulas in P and their Skolem
functions, g/ and g7, defined as before. Let Q’x A(x, @) be a formula and
suppose a exhausts all the free variables in this formula. If g’y is regarded
as a function of ¥ or of some variables of &, while a is held fixed, then such a
function is a member of M. If g7 is regarded as a function of a as well as some
variables of ¥, it is not guaranteed that the function belongs to M. In spite
of this, we can carry out the subsequent argument entirely in M, for once
the values of @ are assigned, g/ is an element of M, and g’ occurs only in
this context. What we will do is to construct such functions and substitute
them for eigenvariables. The resulting figure P’ may not be an element of
M, but each formula in P’ becomes a formula of 3 once those functions are
computed.

The process of obtaining P’ and determining the interpretation of the
glt's and g's parallels the proof of Theorem 23.4 for (1), and the proof of
Proposition 23.5 for (2). In a similar manner we can show that for an arbitrary
sequent in P’, say I' — /, either there exists a formula of I" which is false
in &/ or there is a formula of 4 which is true in /. For 6) in the proof of
Theorem 23.4 we need the determinateness of 7. That &/ is a determinate
structure is a consequence of the fact that the AD holds in M. Since substitu-
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tion for eigenvariables does not change the end-sequent, this means that the
end-sequent is true in /.

DerixiTION 23.32. A generalized cut is called inessential if all its cut formulas
are equalities, 1.c., of the form ¢, = £,; it 1s called essential otherwise.

Throughout the remainder of this chapter we call a proof cut-free if it has
only inessential generalized cuts.

Prorositiox 23.33. (1) If the AD holds in M, then all the valid M-sequents are
cul-free provable.

(2) If I' > A is succedent-homogeneous and valid, then I' — A is cut-free
provable.

Proor. We follow the proof of Theorem 23.6. As was mentioned before, we
may assume that the indices of the free variables are subsets of even numbers;
this way we can introduce new free variables when necessary. Let

F=Tu{vx{(x =0vx=1v .. )}

and let Q/x A(x, @) be an arbitrary formula in I — A. For each such formula
we introduce a function symbol g/ (interpreted as a Skolem function) for each
x, in % if Q/x A(x, a) is essentially antecedent, and we introduce ¢}/ if it is
essentially succedent. Let D be the set of terms which are generated from
the individual constants and free variables by these Skolem functions. By
Lemma 23.27, the set of those subformulas is at most the continuum, hence
D is at most the continuum, because the individual constants and free
variables form a set, 1)y, of at most the continuum, and each stage of applying
the Skolem functions increases the set by at most the continuum and we
need to repeat the application of Skolem functions e, times, more precisely
o times for all « << ;.

We regard the terms in D — Dy as free variables and identify them with
the free variables which have been saved. (So it may happen that more than
one such free variable corresponds to one term in D — Dg.) A natural partial
ordering < can be defined for the free variables from D — D,. If s occurs
in ¢, then s < ¢, It can be easily shown that < is a well-founded relation and
< is a member of M.

We are now prepared for the completeness proof of Theorem 23.6. In this
proof we use appropriate terms from D — Dy in the reduction of quantifiers.
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Since all the terms in D are members of A, it is obvious that the sequents
thus obtained (in forming a tree) are members of M, and that they consist of
at most the continuum of formulas. For example, in part 6) in the proof of
Theorem 23.6 the possibility for ¢, , is at most (29)? = 2%, which is at most
the continuum.

Case 1. Every branch of T(I" — A) has a sequent of the form

.D...—-...D... or ... > ...5=5....

As before, consider the condition C. In order to show that I — A satisfies C,

we take the following step. Let S, S”,. .. denote sequents in 7(I" — /) and
define R(S’, S’") by

R(S", 8") <4 (S e T(I" - A) a (S does not satisfy C) >

287" eT(I' - A) A (S does not satisfy C)
A (S§” is an immediate ancestor of S').

If we assume that I" — A does not satisfy C, then ¥S’ 35S R(S’, S”') is true
in M’, hence by DC,
VS35, Se ... AR(S,, S,.0).

Letting Sy be I — 4, we conclude that there is an infinite branch which does
not satisfy C, contradicting the assumption of case 1.

Case 2. In this case we can construct a counterexample for " — A in the
same manner as before. Recall that the domain D belongs to M. Consequently,
the fact that a formula occurs in the antecedent or in the succedent can be
expressed in M.

In proving (1), we need to show that Qfx —A(x, s) - Q’x A(x, s) is true
in any M-structure, (cf. 2 in the proof of Theorem 23.6). This holds since
the AD holds in M. In proving (2), this case does not arise, since the given
sequent is succedent-homogeneous.

We now have a cut-free proof of

Vi(x=0vx=1v ...}, I -4
and since
—»a=0,a=1,...
>a=0va=1v...

—Vx(x=0vx=1v...)
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we have, from the cut rule
I —A.

This last cut however is easily eliminated.

THEOREM 23.34. The AD holds in M if and only if the cut-elimination theovem
holds for M-definable determinate logic.

Proor. 1. Suppose that the cut-elimination theorem holds for M-definable
determinate logic but the AD does not hold in M, namely, there is a set of M,
say 4, such that 4 € ©® and the AD f{ails for A. Use 4 as a predicate symbol
and let 7y, ¢;,... be individual constants corresponding to 0,1,... . Then
consider two sets of atomic sentences:

FO = {A(lo, 1/'1,. . ) |A(10, il" . ) is true when A

and iy, i;,. .. are interpreted as above}
and
Ao = {A(ly, 1y,...) | A(ig, 1y, . .) is false}.
We claim that

(L) Yxo 3yo Yoy vy -+ A%, Yo, X1, Y1, - ), g =g
and
(2) Ixo Vyo 31 Vi ... =A%, Yoo %1 Y- -1 4o — o

are both valid. Then, since both are homogeneous-succedent, 2) of Proposition
23.33 implies that those sequents are cut-free provable.

Case 1. 4 is interpreted differently from the given set 4. Then, since
Iy u A,y exhausts all the possibilities for A(ig, ¢1,...), there is at least one
{Zg, 23, - - .} such that either A (g, 74,...) is in Iy and it is false or A(zg, 71,...)
isin 4y and it is true. Hence Iy — A is true, which implies that both sequents
are true.

Case 2. 4 is interpreted as the given set A. Then neither

Vg 3ve V21 3y - .. A{xg, Yo, X1, V1, - -)
nor

3960 Vyo ﬂxl Vyl N ‘_1A(XO, Yo, X1, Y1, + )

is true; hence both sequents are true.
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From (1) and (2) we obtain
Vxo 3vo V&1 3vq - -+ A{%g, Yo, X1, Y1, - -)
v 3xy Vyg 31 Vyq ... —A (g, Yo, %1, Y1,- -2 ), Lo = Ao
is provable in M-definable determinate logic. On the other hand

Vg 3vo Yy 3y1 ..o A%, Yo, X1, Y1, - -)
v dxg Vyy 3%, Yy ... 1A (%, Yo, X1, Y1b- - )

is provable in the same system. Hence by the cut rule I'y — 4, is provable;
but this is impossible. Therefore the AD must hold in M.

2. If AD holds in M, then by (1) of Proposition 23.33 together with 1) of
Proposition 23.19, the cut-elimination theorem holds.

This completes the proof of the theorem.

Next we point out a relation between the cut-elimination theorem and the
infinitary propositional calculus IPC which is the quantifier-free part of
infinitary logic. IPC is common to determinate logic and ordinary infinitary
logic. Consequently, provable sequents in IPC are valid.

Let I'y be a set of quantifier-free sentences. It is well known that if I is
consistent (with IPC), then Iy has a model.

ProrositioN 23.35. Let M be as above. Then the following two conditions are
equivalent.

(1) The cut-elimination theovem holds tn M-definable determinate logic.

(2) Let I'y be a set of quantifier-free sentences and suppose Iy belongs to M.
1f Iy is consistent with YPC, then I'y is consistent with M-definable determinate
logic.

Proor. Obviously (1) implies (2}. Suppose the cut-elimination thecrem does
not hold. Then by Theorem 23.34 there exists a counterexample for the AD
in M, say A € w®. In the proof of the theorem, the set of formulas I'y U =4,
where —/ consists of all the formulas of the form —B for B in 4, is consistent
with IPC, since an 4 as above can be a model. On the other hand, Iy - 4,
is provable in M-definable determinate logic, hence I'y U —/ is not consistent
with determinate logic.
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ProBLEM 23.36. Let us again assume the AC and assume that the antecedents
and succedents of sequents are well-ordered. Consider the following language.
1. Individual constants: 0,1, 2,... .

2. Bound variables: xg, X1,. .., %4,. .. (& << wy).

3. Free variables: a4, ay,.. ., ay,. .. (& < 2“0).

4. Predicate constants: = and Rj, Ry, Rg,..., where R; has ¢ argument
places.

5. Logical symbols: =, A, V, V¥, 3, Q;, Q..

By a term, we mean an individual constant or a free variable.

Formulas and their orders are defined simultaneously as follows. The order
of a formula is a natural number.

1. If ¢; is a term for ¢ < #, then ¢, = ¢, and R,(4,. .., {,_1) are atomic
formulas and an order of an atomic formula is zero.

2. If 4 is a formula, so is = A. The order of —4 is the same with the order
of 4.

3. If 4, is a formula for each 7 < @ and the maximum of orders of 4, ( < w)
exists, then A, ., A;and V, ., A; are formulas and the order of these formulas
are the same with the maximum of orders of 4; (i < w).

4. 1f A(ay, ay,. .., a;...) (1 < w)isaformulaand %y, %;,..., %;,. .. (1 < w)
are distinct bound variables not occurring in 4(ay, a4,...), then

Vxg 29 ... A(xg, %1, ..) and  Fxgx, ... A(xg, %p,.-.)

are formulas and the order of these formulas is # 4- 1, where # is the order of

Alag, ay,. . .).

5. If A{ag, ay,. .., a;...) {t < w) is a formula without any occurrence of
Q; or Q; and xg, %1,..., %;,... (1 < @) are distinct bound variables not
occurring in Af(ag, ay,...), then Qugxy ... A(xg, %5,...) (¢ =1,2}) are
formulas and the order of these formulas is # 4+ 1, where » is the order of
Alag, ay,.-.). Qxg %, ... and Quxy ;... are also denoted by 3x4 Yy Jxp . ..
and Vx, 3x; Vx, ..., respectively.

A sequent is of the form
Ao,Al,...,Aa,... "’Bo,Bl,...,Bﬂ,...,

where A4,'s and By’s are formulas and « and £ range over ordinals less than
wg and B, respectively, where o and f, are some countable ordinals.

Inference rules are the same as in §22, except that the length of a sequent is
restricted to be countable. Of course, V, 3, Q;, Q, should be expressed by an
adequate form Q.
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Non-logical initial sequents are of the following form.

1. — ¢ = ¢, where { is an arbitrary term.

2.4 = j —, where 7 and § are distinct individual constants.
3. »t=0,i=1,¢t=2,..., where ¢ is an arbitrary term.
Now prove the following theorem.

THEOREM 23.37. The projective determinacy holds if and only if every provable
sequent tn the system defined above is provable without essential cuts.

The proof goes as in Theorem 23.34.

§24. A general theory of heterogeneous quantifiers

The problem of the completeness of logical systems is an interesting and
important one. While much is known, open questions still exist. We know,
for example, that first order logic is complete and second order logic is
incomplete. For infinitary languages we know that homogeneous systems are
complete but whether heterogeneous systems are complete is an open question.

Incompleteness is an inherent weakness in any logical system. In second
and higher order systems we can partially compensate for this weakness by
a heavy dependence on comprehension axioms and the axiom of choice. In
the infinitary languages however, we do not have the comprehension axioms
and indeed in determinate logic we are even denied the axiom of choice. This
raises the very practical question of whether there exist useful alternatives
to the comprehension axioms and the axiom of choice for infinitary languages.
In this section we will explore such alternatives. In order to do this we will
develop a very general theory of heterogeneous quantifiers, a theory that
encompasses the quantifiers QF of determinate logic as a special form (well
ordered) of heterogeneous quantifiers.

The system we will present is a very useful one. How to extend it to a
complete system is an open question. But before we take up the definition
we would like to point out a few things about the system. For one thing, in
the right and left quantifier introduction rules we do not have the duality
that exists in finite languages and in determinate logic. Although we will
assume that the formal objects of our system are well ordered, that assumption
is only for convenience and is not essential for the theory. For further simplifi-
cation we will always omit the individual and function constants unless
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otherwise stated. Finally we point out that we will not specify the number
of bound and free variables. It is understood that we first adjoin a sufficient
supply of bound variables. Having fixed the number of bound variables we
then adjoin a sufficient supply of free variables. For an explanation of what
constitutes a “‘sufficient supply” we refer the reader to the discussion after
Definition 22.1.

DerinrTION 24.1. (1) By a language with heterogeneous quantifiers, L(J), where
J is a set of mapping such that each 7 in J is a mapping from S to P{«) for
some a« and £, we mean the following collection of symbols.
1) Variables:

1.1) Free variables: ag, ay,...,a,,... .

1.2) Bound variables: xg, x,..., %,,. . . .
2) Predicate constants of arity « for certain o’s:

Py, P},... P;....
3) Logical symbols:

- (not),

O (implication),

V (disjunctions of arity « for certain «’s),

A (conjunctions of arity « for certain o’s),

Y (universal quantifiers of arity « for certain «’s),

J (existential quantifiers of arity « for certain «’s).

4) Heterogeneous quantifiers: We have a quantifier QT for each 7 in the set J.
5) Auxiliary symbols: (, ).

(2) The formulas of L(J) are defined in the usual way with the following
modifications.

(2.1) If V (A) of arity « belongs to L(J) and 4,, 4 < « is a sequence of
formulas then V, ., 4, (A, ., 4,) is a formula.

(2.2) Let T be a function in J. Then for some « and f, T maps § into
P(a). Let A(a, b) be a formula, where a and b are sequences of free variables
of length « and B, respectively. We assume that some (possibly none) of the
occurrences of @ and b in A are indicated. Let # and y be sequences of bound
variables, of length « and f respectively which do not occur in A(a, b). Then
Q7(x; y) A(x, ¥) is a formula.

(8) As before we assume that the collection of formulas of the language
L(J) is closed under subformulas.

(4) Let K be the cardinality of the formulas of the language. A sequent
I — A is defined as usual, where the lengths of I" and A are less than K+,
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ExampLE 24.2. Consider a language L(J) where there are countably many
free variables (arranged in the order type of w), the logical symbols are of
finite arity and J is arbitrary. This means that the propositional connectives
are defined as for the usual, finite languages and there are w-many free
variables. We shall assume that there are w-many bound variables and a
single predicate constant =. Let T be a function from 2 to P(2) such that
T(0) = {0} and T(1) = {1}. Then

(ag = ay =bg = by) A by # ¢

is a formula of the language which we denote by A(ay, a;, by, b;), where all
the occurrences of ay, 44, by, b; are supposed to be indicated. Then

QT (xo, %15 Yo, V1) A0, %1, Yo, V)

is a formula. We are going to define a system in which this formula will have
the meaning that for every x, there exists a y,, depending on x4 only, and
for every x; there exists a y;, depending on x; only, such that 4 (x,, x;, ¥, ¥1)
holds. Such quantifiers, called dependent quantifiers, were first proposed
by Henkin.

DEeriNiTiON 24.3. The rules of inference of our intended system are those of
Definition 22:1 with some alterations. We shall remark only on the crucial
changes.

1) The A :left, A right, V :left and V :right rules in (4.2) of Definition
22.1 are admitted only for conjunctions and disjunctions that belong to the
language L(J), that is, only for values of £, that are arities of conjunctions
and disjunctions that belong to L(J]).

2) The rules for quantifiers are quite different here.

2.1) Q: left: -

{Ai(as, b:)}acy, I —’_A
{QTaxs; ¥2) Aa(%s, Y)}a<y I = 47

where the variables of b, do not occur in 4,(x,, y,). If a, and b, are of types
o, and B, respectively, then T, is a function in J from g, to P(a,).

Any variable of b,, say b, is called an eigenvariable of the inference,
A,(a;, by) is called an auxiliary formula of b, and QT‘(x,l; y.) A%, y,) 1s
called the principal formula of &.

2.2) Q :right:

I'—A4,{A,a;, b))} 1<y
I — A4, {QT4%,;3:) A% ¥:)}bacy
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where if @, and b, are of types a, and /3, respectively, then T, is a function
in J from g, to Pl(a,).

Every variable of a,, say qa, is called an eigenvariable of the inference,
A,(a,, b)) is called an auxiliary formula of a, and Q"*(x,; ¥,) 4,(x,, y,) is
called the principal formula of a.

3) The cut rule is replaced by the generalized cut rule (g.c.).

DEFINITION 24.4. A proof P in the system is defined in the usual way, as a
tree consisting of sequents, where the following eigenvariable conditions must
hold in P.

1) If a free variable b is used as an eigenvariable in more than one place,
then the principal formulas of & must be the same.

2) Suppose A(ay, b)) and A(a,, b,) are auxiliary formulas of applications
of Q: left in which b is an eigenvariable.

2.1) If b occurs as the ath variable of b, then b occurs as the ath variable
of b,.

2.2) Let a, , and a, , denote the Ath variable in a; and a,, respectively.
Suppose b is the ath variable in b; and b,. Then for any 4 in T'(«), a,,, and
as,, are the same.

Let a be a free variable which is either an a, ; or a, , where A € T'(«), or it is
a free variable in the principal formula of . Then we say that & depends on
a, and we write a < b.

REMARK 24.5. The above conditions do not imply that, in the notation of 2),
the sequences b; and b, are identical. It is not guaranteed either that @; and
a, are the same. Even if b; and b, happened to be the same, a; and a, may
not be the same. For example, it is possible to have different a, , and a;,,
if none of the variables of b; depend on a, ; and none of the variables of b,
depend on ay ;.

3) All the auxiliary formulas of an eigenvariable of the Q : right rule are
identical.

For this case the dependence is defined only between the eigenvariables
and the free variables in the principal formula: Let a be an eigenvariable in
a and let ¢ be a free variable in A(x, y). Then a depends on ¢, i.e., ¢ < a.

4} No eigenvariable occurs in the end-sequent of P.

5) We shall relate @ and b by a < b if there is a finite sequence of frec
variables ag,. . ., 4,, where ay = a, a4, = b, and a;, < a; for0Li<n — 1
in the sense of 2) and 3). Then < is a partial well-ordering; that is there is no
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cycle a4y < as < ... < a, and there is no infinite decreasing sequence of
variables {a;}, ., such that a,;, < a;.

6) We define a; <a, to mean that a; < a; or 4, and a, are the same.
There exists a well ordering of all the auxiliary formulas of occurrences of
the Q: right rule in the proof, say {4.(a;, b;)},, which satisfies the following,
where the same A4,(a,, b,) may appear in several different places in P.

Let QT‘E(xf 1y A%, ¥,) be the principal formula of an eigenvariable and
let A.(a,, b,) be the corresponding auxiliary formula.

6.0) If by , is the o™ variable of by, then

{e|e < by, and ¢ is an eigenvariable of a Q : right}
is a subset of
{ao., | 40,1 is the 2™ variable of @y and 4 € Ty(0)}

and if ¢ is a free variable in Ay which is neither in ay nor by, then for no
eigenvariable ¢ of a Q:right, ise <.
6.£) If b, , is the «™ variable of b,, then

{e |e < b, and e is an eigenvariable of a Q : right}

is a subset of
Ua,u{a,,|ie T ()}

n<§

Also, if ¢ is a free variable in 4, which does not belong to a,, or b, then
{e | e < cand e is an eigenvariable of a Q : right}

is a subset of U, ., a,.

NoOTATIONAL CONVENTION. For quantifiers that are relatively simple, we shall
use more intuitive notation. For example

(Vx Ju

vy 3w> Alx, v, u, w)

can express QT(xy; uw) A(x, v, u, w), where T(0) = {0} and T(1) = {1}.
Q7T(xgx;...;) can be expressed with the usual notation Vx,x; ... and
QT(; %oxy...) with Jwgxy ... .
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ExampLE 24.6. Examples of proofs with heterogeneous quantifiers.

Vx Ju
1) <Vy3w>((x=y5%=w)/\%#a)—»ﬂzozl.../\(ziyéz].)

i%g

is provable.

Proor.

(1) {(crys = ek = Crjpr = @) A Ceyjpr # Cotricw = A6 # ¢))

ing
is obvious. From (1), by a Q:right, where there are no eigenvariables
involved,

(2) {lenrs=cn =cCnisi1 = M) AChys1 # Codnscn > 32021 - A2; # 25).

iA]
Consider (¢, ; = ¢, = Crajy1 = @) A Cpji1 F Co, OF A{Crijy Crujuts Gx), leaving
out ¢g. Define T(0) = {0} and T(1) = {1}. Then Q7(xy; uw) A(x, v, 4, @)
means

(Vx Ju

V!yaw)((xzyzu:w)/\u¢co),

This applies to all pairs (%, 7); hence by a Q7 : left applied to all the formulas
in the antecedent of (2), followed by contraction, we obtain

QT (xy; uw) A(x, v, u, w) — Jzg 21 ... N (z; # 2;).

1%
By renaming ¢, as a, we obtain the required sequent. In order to see that we
have given a proper proof, we examine the conditions in Definition 24.4.
Since all the principal formulas are the same, 1) is obvious. Also 2.1) is
obvious, since the ¢’s are the first and the a’s are the second eigenvariables in
any auxiliary formulas. For 2.2), let b = ¢;,;.;. Then T(0) = {0} and the
Oth variable in (¢, ;, ¢), 1.€., ¢4, ; 1S uniquely determined by &. Similarly with
ay. Since there is no eigenvariable for a Q: right, we do not have to worry
about 3). Since the eigenvariables are ¢, ;.; and a, and not ¢, 4) is obvious.
Asfor d), ¢, ; < Cppjuts Cr < g, Co < Cryjrt, Co < @y exhaust all the depend-
ence relations. It is then easily seen that < is a partial well-ordering. Clearly
6) is irrelevant.
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2) Vx dy A(x, v),
VxVy (Ax, y)2y # <o),
Ve VyVu Vo (A(x, u) A Aly, ) D (x = y = u = v))

Vx Ju _
Q<vyav>((x=y=u—v)/\u;éco).

Proor.
Afa, c), A{(b, d), Ala, c) D¢ # ¢y,

Ala,c) A, d)D(a=b=c=d) —
—{a=b=c=d)Arc+# ¢,

is obvious. We can introduce V’s to all the variables in the antecedent except
co. Let A(a, b,¢c,d) denote (a = b =c =d) A c# ¢g. Let T(0) = {0} and
T(1) = {1}. Then Q7 (xy : uv) A(x, ¥, %, v) is the formula in the succedent.

Furthermore, 5) of the eigenvariable conditions is obviously satisfied. Since
there is only one auxiliary formula of a Q : right introduction, 6) is also easy
to see.

DErFINITION 24.7. Let &7 be a structure for our language. Let @ be an assign-
ment from 7. The relation that a formula A4 is satisfied in 7 by @ is defined
as usual. Q7(x; y) A(x, y) is satisfied if and only if the following holds. Let
and y be of lengths « and f and let @ and b be new free variables corresponding
to x and y. There exists a sequence of functions f corresponding to b such
that for every sequence d of elements of & of length «, if

(p,__(a b )
" \d fd)’

then A4(a, b) is satisfied in &/ by @', where f(ti) is a sequence of terms such
that if

T('}’) = {EO: fl:' L) Eir' 4 '}‘

then the yth expression is fdey deyye sy, 2).

THEOREM 24.8 (validity for heterogeneous quantifiers). Every theorem of our
system of heterogeneous quantifiers is valid.
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Proor. The proof is similar to the proof of Theorem 23.4. Given a proof P
in the system, a structure .7 and an assignment from .o/ we first take an
arbitrary formula in the antecedent of a sequent with a quantifier at the
beginning, say

Q7(x; y) A(x, y, ¢),

where ¢ is the sequence of all the free variables in this formula and the lengths
of ¥ and y are a and /3 respectively. IFor each y < § we introduce the Skolem
function

gﬁ‘y(xéo, Xepeo, €),

where x,,, %, ,. .. areall the variables of ¥ such that &€ T(y). g&” is interpreted
as follows with respect to &7. If Q7T(x; y) A(x, v, ¢) is satisfied in &, then the

g%"'s are the functions satisfying

(+) Vx A(x, y', ©),

where the yth expression of ¥’ is g37(xs, xs,,. .., €). If QT(x; y) A(x, ¥) is not
satisfied in .7, then the g1”’s are interpreted to be constant functions for a
distinguished element of the universe of .27.

Well-order all the eigenvariables in P for Q: left introductions in such a

way that if a < b (b depends on a), then a precedes b in the ordering:

g0

b byye by

We shall define terms 4y, ¢,. . ., ¢, . . . by transfinite induction on £. Assuming
that £ _,; have been defined, we show how to define ¢;.

Suppose the principal formula of b, is QT(x; ¥) A(», y, ¢) and let d be a
variable in an auxiliary formula of b, which corresponds to a variable in
x with d < b. If 4 is not used as an eigenvariable of any Q:left, then
define # corresponding to d to be d itself; otherwise 4 occurs in the above list
of eigenvariables, hence is a b,, « < 6, since d < b. Therefore £, has been
defined and we take % to be this £.. Let ¢ be a free variable in ¢. A term s
corresponding to ¢ is defined as the # corresponding to 4; recall that ¢ < & by
the eigenvariable condition. It should be noticed that those d’s and ¢’s are
the same for all auxiliary formulas of b, by virtue of the eigenvariable condition.
Thus ¢, can be defined to be g’*(u, s). From the definition, a free variable
int,, say d, satisfiesd < b. Now substitutefy, £;,..., £y, ... for by, by,.. ., bs,. . .,
respectively, in P. Let P’ be the figure thus obtained from P.
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Let {A.(a;, b,, )}, be the well-ordering of the auxiliary formulas of the
Q: right in P satisfying the conditions in 6) of Definition 24.3, where c, is
the sequence of all the free variables in A, which do not occur in @, or b,.

We shall define substitutions of terms for eigenvariables of the Q: right
introductions in P’ in the following manner. Suppose the substitution has
been completed for the & stage, giving us a figure P,.

Applying this substitution to {4 (a., b;, ¢;)}: we obtain formulas in P’ that
we will denote by {4 .(a,, b;, c’é)}f. Here b; and c; are terms that may contain
many free variables. Because of (6) of Definition 24.3, b;,a and c;ya satisfy the
following condition.

(*) The eigenvariables of the Q:right that are contained in b;,,, form a
subset of

Ua,u {830 Azapre o}
n<é
where

{0, A, .} = T(o)

and any eigenvariable of a Q : right that is contained in c;q is an eigenvariable
of an a, for some 5 < &.

Next we define, by transfinite induction on £, substitutions of members
of & for a,.

Suppose we have completed the definition of substitutions for eigenvariables
of @, n < & Consider the stage & We shall define af, corresponding to each
A,y in a,.

Case 1. QTf(xE;yé) A.(%., y;) is true, where A,(x,, y,) is obtained from
A.(xg, ¥:) by substitutions up to the &™ stage. Let k, be a distinguished
element of the given structure 7. Then a_ffy is interpreted to be &.

Case 2. QTf(xé; y:) A%, ¥;) is false. Henceforth we omit the subscript &
unless needed.

By hypothesis, = Q7T(x; y) A(x, y) is true, or Jx ~A(x, f(»)) is true no
matter what the interpretation of f is, where f(x) stands for the sequence

fol%0), f1(%1),. .., fo(%,),. .. (@ < B),

x, being x,, %5, - -, %g,,- - ., With T(o) = {0g, 01,...,0;,...}. A(a, b, c) has
become A(a, u, v) where u, is a term that may contain unsubstituted a’s
as free variables. By (*), the free variables in u,, form a subset of a, =
{@5g Agys- « s gy, - - - 3, Where

{00,01,...,04...} = T(0).
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Therefore, we may put f,(a,) = u,. Since for this interpretation of the /,’s,
dx -4 (x, f(x)) is true, there are values of a, say a*, for which =4 (a*, f(a*)).
When these substitutions are completed, all the eigenvariables are replaced
by the g,’s and the a*’s. We shall call the resulting figure P*,

Now we can show that every sequent in P* is true. Since the end-sequent
does not contain any eigenvariable, this implies that the end-sequent of P
Is true.

For the proof that every sequent in P* is true in &/, under the given
assignment, we shall deal with three crucial cases only.

1) g.c.:
@, I' > A, ¥ for all appropriate (P, ¥)

I -4 -

where % is the set of cut formulas.

Let #, be the set of all formulas of & which are true and let %, be the
rest of the formulas. If for @ = F| and ¥ < Z,, ©, " - A4, ¥ is provable,
then by the induction hypothesis this sequent is true, where all the formulas
in @ are true and those in ¥ are false. Therefore 1" — /4 must be true.

2) Q : left:

{(A'(w, u)}, I' - A
QT y) A'x Y} I ~4

It suffices to show that if QT(x; ¥)A’(%, ¥) is true then sois A"(w, u). However,
this is obvious since the gZ?'s are so chosen (cf. (4) in the definition of g%?).
3) Q: right:
I'—> A, {A(w, u)}
I~ A,{Q%(x; y) A%, y)}

It suffices to show that if Q7(s: y) A(, ¥) is false, then so is A(w, u), but
this too is obvious, since the a;"’s are so chosen.

Since a homogeneous system is a subsystem of a system which satisfies
(Q), Proposition 22.14 implies that a homogeneous system is a subsystem of
a heterogeneous system.

Heterogeneous quantifiers, even the finite ones, are stronger than homoge-

neous quantifiers.

ProrosiTiON 24.9. The heterogeneous quantifier

Y Ju
Yy Jv
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(cf. Example 24.6) cannot be expressed by (finite) first order quantifiers.

Proor. Consider a formula of the form

Vx Ju
(Vy 311) ((x =vy=u=1v)n Ax,y,u,v)), (1)

Vx Ju
Yy v

is the only quantifier that occurs. In a second order system with function

in which

quantifiers and the axiom of choice, (1} is equivalent to the following formulas:
gy A Alx, v, (%), g(¥));

I g (Vx ¥y (x =y = [lx) = g(y)) A Vx ¥y A(x, v, f(x), ¢));

3 VxVy A(x, v, f(x), /(y))-

Define A(x, v, f(x), f(v)) to be

3f g Vx vy ((x

il
<
Il
=
2
Ii

y=x+ 12/ <f@).

Then 3f Vx Vy A(x, v, f(x), f(v)) expresses ‘< is not well-founded”. Although
the set of natural numbers is well-founded its non-standard enlargement is
not well-founded. Since both of them satisfy the same first order sentences,
we conclude that (1) cannot be expressed in terms of homogeneous, first
order quantifiers.

Proposition 24.9 explains why we have to place_different eigenvariable
conditions according as a quantifier is introduced in the antecedent or the
succedent. If we were to use the same conditions on eigenvariables in the
succedent as those in the antecedent, we would have

Vx Ju 4 dx Vu "
- vy 3v (%, v, , v) <> 2y Vo —A(x, y, u, v).

On the other hand,

<3x Yu

3y Vv) =AWy, u, 0) > 36 3y Yu Vo 2 (x, u, y, ).
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So it would follow that

<Vx Ju

vy Elv) Alx, v, u,v) o> Ve Vy Ju Jv A(x, v, u, v),

contradicting Proposition 24.9.

ExampLE 24.10. Let S(ay, b4,. .., a,, b,,...) be a formula with free variables
a;, by,..., a, b,,... and let S (aq, by,. .., a,, b,) be short for

Elxn+1 Vyn-H s S(dl, blr' < A, b'nr X+l Yntlo o - )
Then

Jog Yor oo (VS (0, vq, ..o, sy, 9,) —

= Ay Yy oo 3, Yy, oo SR Y B Yiee )
First of all, since
Sp1(@1, b1, -y Any, Opy) = 3%, Yy Splay, . oo byly, X, Vi)
is easily proved, we can identify
Sp_il@y,. . baz1) and Fx, Yy, Splaq,. ., bnq, Xy Vi)

by using cuts.
For every n, we first consider a figure P, ending with

Sn(al, bl! e, Ay, bn) gl So.
We shall demonstrate P3 as an example:

Sa{ay, by, ap, by, . . .) — Sg(ay, by, ay, by, a3, by)

§3(~ )~ 3753&'&%}» by, @y, by, %3, Vs)
Sg(--+) — 3%y Vy, 323 Yy, Sylay, by, %p, V2, %3, ¥s)
Sa(-- )

(...) = 3xg Yy, 3 Vys x5 Vg Sa(x1, Y1, X2, Y2, X3, ¥3)-

It is important to note that we do not introduce Sj(...) — S, in one step.
Now,
P,,n<w
V. Sulay, by,. .., a,, 0,) — S
Juuy Yoy .. (Vy Splveg, vy, 0, By, 9,)) — Sy
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It is easy to see that the eigenvariable conditions are satisfied: The P,’s
are carefully constructed so that the auxiliary formulas of an eigenvariable
b; are all identical. {S,{ay, b1,.. ., @n, bu)}nso is the required enumeration of
the auxiliary formulas of the Q : right introductions.

ExampLE 24.11. In order to state the next example we need some auxiliary
definitions. Consider a quantifier of the form Q7(x; y), where the lengths
of ¥ and y are o and B, respectively. Suppose « and § can each be decomposed
into two sets &;, &, and f§;, f, respectively, i.e., « = & Udy and f = S, U B,
where &; N &, = 0 and §; N B, = 0, and in addition,

(1) T) € iy f,

2) T(y) c & ifye /32; . B )
If we well-order &, &, f1, P each and restrict T to §; and f§, respectively,
then we obtain 7; and T, such that

Vye B (T1ly) = Tly) € &) Vy € By (Toly) = T(y) € &).

Suppose A(x, y) can be expressed as 4’(%;, ¥z, ¥, ¥2), Where (¥, #5) is the
partition of ¥ determined by (&;, &.) ; and similarly with (y;, ¥s).
We now show that under those circumstances

QT(x; y) A(x, y) > QT2 (xy; y1) QT*(x2; ¥5) A’ (%1, %2, ¥1, ¥2)

Is provable.
Suppose that A(a, b) can be written as A'{a;, a,, by, by) corresponding to

&'17 &2’ 31’ 52'
1) A,(al» ay, bl) bZ) —)’(a’ b)

QTx(%g; yo) A'(ay, %9, by, yz) — (a, b)
QT (%1; ¥1) Q7x(%y; y2) A'(%1, %2, Y1, ._3’2) — A(a, b)
Q7u(wy; 1) QTx{xg; o) A'(%y, %2, y1, ¥2) — QT(%;3) A%, ¥)

In introducing Q7 the variables of by, depend on all the variables of a;
as well as those of b; and some of the variables of a, (determined by T).

2) Alc, d) ~ A'(¢y, ¢y, dy, dy) o
A(c, d) - QT:(wy; ¥5) A'(C1, %2, d1, ¥)
Alc, d) —~ QN (x1; y1) QTx(%y; ¥o) A'(%1, %2, Y1, ¥)

Q7(x; 3)A(x, y) — QTi(%1; ¥1) QTx(%2; ¥2) A'(%), %2, 1, ¥2)

From the partition of the variables, it is evident that the variables of d; do
not depend on the variables of ¢y, hence a cycle can be avoided.
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It is easy to see that 6) of the eigenvariable conditions {Definition 24.4} is
satisfied. The other conditions are obvious.

ExXERCISE 24.12. Show that the following is provable
Ixy P(xy), Vo, Yy 3xg (P1(x) D Py(xy, y1, %3)),- - -,
VXp o Yuog 3%, (Plxg) A Palxy, y1, 22) A . A Py, Y1,0 o) Xng) D

2 pn(xlx' M) yn—lr xn))x
Vo vy oo (NPp(xq,. .., %) D S(x1, 41,...)) —

— 3x Yy 3%, Yy, - - S(xq, ¥4, %o, Va,. . ).
(Hint: The sequent
Pilay), Pi(ar) 2 Pylay, by, ay), . . .,
AP (ag, ..., bp1,a,) D S(ay, by,...) > Slay, by,...)

can easily be seen to be provable. From this the desired sequent follows.]
We can improve our system of heterogeneous quantifiers as follows.

DeriNiTION 24.13 (cf. Definitions 24.3 and 24.4). (1) Add to 2) of Definition
24.4 the following. If A(a;) and A(ay) are auxiliary formulas of an eigen-
variable a of an application of a homogeneous Q:right and a is the a™
variable of @, then a is the «' variable of a,.

To the definition of <, the following is added. If 4 is an eigenvariable of a
homogeneous Q : right and & is a free variable which occurs in the principal
formula of a, then b < a, i.e., @ depends on b.

(2) Part 3) of Definition 24.4 should read: All the auxiliary formulas of an
eigenvariable of a heterogeneous Q : right are identical.

(3) In 6) of Definition 24.4, read ‘“‘heterogeneous Q :right” in place of
“Q:right”.

(4) Suppose QT(x; y) can be split into QT*(x;; y;) and QT*(x,; y,) in the
sense of Example 24.15. We shall abbreviate those quantifiers as Q, Q; and Q..

Then introduce a new rule of inference:

Ty, {QEQ% A (3%, )} Iy — Ay, {QIQS By(1#, v9)},, 4, _
Ty, {Qo(x%; y) A, y9) 1y, T2 — Ay, {QF(u#; 0%) B(uf, vf)}4, Ay
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This new system has the advantage that some proofs become much simpler,
even cut-free.

ExXAMPLE 24.14. A game is called an open game if the winner is determined
after a finite number of steps. Let Y(ay, b3, ag, bs,...) denote the game in
which the players I and II choose the terms of the sequences a,, a,,... and
by, bg, . . . alternately and the winner of the game is determined. Then a game
is open if

(1) Y(anbu. ) =V (Vost Ynar - ) Y(@0,b1r- -1, b1, Y- -

n

In our new system, there is a simple proof of the fact that an open game is
determinate, i.e., (1) implies

Vg Iy Vag 3ve oo Yixy, vp,- ) v 3%, Yy 3xg Vs -0 Y (%, v,. ).
2) V%01 Vas1 - Y41, o0, by Xty Yngts- - -) =

—>VYxy Ay; .. Vx, 3y, oo YVixg, vy,.0)

for each »:
” ”
Y(dl,. N bn) a::_;.l, bn+1,. . ) - Y((ll,. Cey bn) [/ S TR )
Vxn+1yn+l‘ . Y(“l:' R bnxn+lx yn+1r' . ) -
—>Vxn+1 Hyn“... Y(ﬂl,...,bn,xn+1, yn+1,...)
Vxn+1yn+1... Y(al,...,bn,xn+1,...)—>

e Hyn (eru—l Elyn+1- . ) Y(alx‘ v By Yoy Xngds - - )
Vi1Vt - Y(@1,oo 0, by Xppr, o) —

= 3V, Va0 Wasr--- Y@, o, 80 Voo Xpats- - +)
V¥i1VYns1- -« Y(@1,. o, bpy Xpiry oo 2) —

= Vx, (Y, V%1 IV --) Y(ay, ..o by, %y Voo 2)

V%1 Vne1- - Y{A1,. oo, by Xy, - .) — .
‘“’Vxn Eiyn Vxn+1 3yn+1. PN Y(ﬂl,A NN bn—b Xny Yoo+ .)

Ve 1Vni1- - Y(@g, ..., by Kpagy. ) —
—=Vxy3yg.e. . Va, Ay Y (g, o0, X, Yy e - 0).

Notice that our new rule of inference is applied repeatedly. From (2), by
V: left,

(B) VY% 3 Yurr --- Y(ag,. ., 0y, %, Yowrs- - -) = V2 3y ... Yi(xyg, 94,..0).
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Hence,
Y(ay, by, )V V2 1 Voiq. .- Yiay,..., b, x

s Vil o0 ) —
- Vxy 3y Yixg, yy,.00), Y (ay, by, .. 0)
Yoiwy. .. (Y{vy, wg,...)2 Vo (V%p1Vnir- o Yy, wy,.

—=Vay Ay, Yixg, yq,..0)

s Xnal Yosds - ))):
v 3x; Yy =Y (g, vy, ...

In this proof, the auxiliary formulas of the heterogeneous Q : right are
Vi@ o b @) mY(ay . by @)

with eigenvariables aj . , @, 5,... and by, by,..., respectively. The eigen-
variables of homogeneous quantifications are @y, a,,... . Enumerate the

auxiliary formulas of applications of Q : right introductions in the order of

_|Y<a1, by, ..., an, bnv~ . -), {Y(al,. . b, a:+1,. . )}n

Then one can check the eigenvariable conditions (cf. Definition 24.4). We
shall examine only condition 8). Here A4 is Y (ay, b;,...), each a; satisfies
the condition, and in 6.0) a; is used as an eigenvariable of a homogeneous
inference.

1f ¢ is an eigenvariable of a heterogeneous Q: right and ¢ < a;, then ¢ is
one of by,..., by_y. I A%y ¥y, ... Ix; ¥y, ... is denoted by QT(y; &), then
b, (1 <7 <1 — 1) is the jth eigenvariable of the Q: right applied to 4, and
j € To(t). Consider 6.1}, where n > 1. Let A, be Y(a,,..., b,, a},,,...). Sup-
pose d is one of

n s
ai, b1;~ sy A, bn, bn+1, A2 e -

1{ 4 is used as an eigenvariable of a heterogeneous Q: right then it is one of
by,. .-, by, itsauxiliary formulais Agand 0 < #. Since b}, =n+1,n + 2,...
is not used as an eigenvariable, a relation ¢ < &7 never happens. Next, let ¢
be one of the variables ay, 8y,...,a,,b,. If ¢ is an a,, then the first possibility
of an eigenvariable ¢ of a heterogeneouns Q : right, such that ¢ < g, is one of
the variables by, . . ., b,_;. These are eigenvariables of A,. Since the &,,..., b,
do not depend on any variable, this completes the discussion of eigenvariables.

ExaMpPLE 24.15. Let us consider another formulation of determinateness of
an open game. An open game is expressed as V,, Y, (@, by,. .., @y, by). Let
usprovethat thisisdeterminate. Let Y(ay,. . ., by, apn 11, . . -, ) beY(ay, . . ., by)
Hfl1<hm
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Y lag,. .., b — Ym([ll,. . .,bm)

Yo(as, - b)) > Ve Yalar o b @pir, -, BF)

Yo(ay, .. b = Vi 3ym+1 ’Y Yk(al,. . bm, Xmalr- s Vi)

M_a}r s bnﬁ) :?ym (V¥m+1 3ym+l ) Vi Yk(al Y Xmslo 5 Vi)
in(ﬁl’ ',,,',é.l") g aym me+1 EIme—l V_ Yk(al’- co Yo Xmyts e - oy yk)

Y ,(a;, s o) —~Vax (aymvxm+13ym+l Ve Y (al" Ko, Y Xmit - - V)

Ym(al: 7 4 b"m) _’VX 3}’ me+1 3ym+1 V}gryi (“17";" ’km’iy'm,xmf‘l_: Tt yk)

Yo(ay,....0, )“’Vxl Fyr- - Ve Yiloy, oo, va)
VmYm<a]r' . m) ﬁvxl 33’1 V Y (xl yl 4 )

— Vx; 3)’1 - Vi Yk(xl yl'- Vi) WV Y (“hbl;-“ ,bm)

SV 301 Vo Vouln, Ve oy Vs 30 W01 Vo Youl60, Y1) V)

The auxiliary formulas of applications of the heterogeneous Q : right can be
listed in the order of

SV Y (g, by @ b Y Yalar o B @t B

with eigenvariables &y, b, . . ., for the first formula, and

m m wm
Ay oy, Ao,y for NV Yylag,. .., by ap g, )
k
The reader should go over the eigenvariable conditions.

ExaMPLE 24.16.

A((ll, bl, a9, bz,. (al, bl’ as, bz,...)

by, .. ) —
sz VyZ (alv bl’ X9, Yo,- ) R ¥
—|3x1 V)H A(xl, yl’ ) :—’ —IHXQ Vyz A(ﬂl, bl: X9, Yo, . - )
=3xy Vy1. - Alxg, v, ) — 3y, =3 Vys. . A(ag, y1, %2, Y2, )
A(x )

—3x, Vy;. .. s V1. -) = Vx; 3y =3, Vy2 CAx, v )

»Elxl Vyl A(Xl, yl"")

ReMARK. There are examples which are cut-free provable in our new system,
but which require the cut rule in the old system. For example, consider

— (Vx 3y) A(x, v), (Ix Vy) 1A (x, y).

Here (Vx 3y) and (3x Vy) are regarded as heterogeneous, while Vx 3y and
Jx Vy are considered two applications of homogeneous quantifiers.
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(1) This i1s provable with a cut in the old svstem:

Afa,b) =A@ b)  =d(e d) ~=d(e,d)

Vi By Alx, ) = (V2 39) Alx, 3 3xVy—-d(x, y) > (32 Vy) oAl y)
SVx Iy A(x, y) v IxVy—A(x, v) Vrdy A(x, y) v IxVy —A(x, y) —
~ (Vx 33) A(x, ¥), (3 ¥y) ~d(x

- (Yx 3y) A(x, ¥), (3x Vy) =A(x, y).

¥)

(2) This cannot be proved without the cut rule in the old system, for if we
assume a cut-free proof, then

o Alag, by, Aeg dy) -

is provable for some free variables. Then for some « and £, a, is ¢; and b, is
dg. Therefore in

— ... Aa, b),...,1A(ab),...

both @ and b are eigenvariables of a heterogeneous Q : right. But this implies
that A(a, b) and —4(a, b) cannot be ordered.
(3) This sequent is provable in our new system without the cut rule:

”-;"A(a b), ~A(a, )
—VYx 3y A(x, v), SxVy—uA(x,ﬂ
> (Vx 3y) A(x, y), (3x Vy) =4 (v, v).

PROPOSITION 24.17. A proof in determinate logic that satisfies the condition {Q)
in Definition 23.16 is a proof in the (extended) heterogeneous system.

ProoF. Suppose a proof P in a given language, say L, of determinate logic
satisfies (Q). Define a language L(J) by admitting logical symbols of precisely
the same arities as those of L and defining [ as follows. Let Q/% be a quantifier
of the determinate logic.

Let & be the sequence of all variables of z for which f assumes the value
Y and let y be the sequence of all the variables of z for which f assures the value
3. Let y be the ™ variable of y. Then « € T(f) if and only if the '™ variable
of % precedes vy in 2. Such a T belongs to J. Therefore we can translate Q/z
into Q% (x; ). Thus the formulas of P are regarded as those of the language

L{).



268 INFINITARY LOGIC [cH. 4, §24

By renaming variables in P (if necessary), we can assume the following
condition because of (Q).
(*) If the inference
I' >4, A, b)
I ~4,Q%(x 3 A(xy)

is a heterogeneous Q : right in P, then no eigenvariables in P used above
I A, Q%(x, v) A(x, y) occur below I' -4, Q"(x, y) A(x, ¥).

In order to see that P is a proof in this heterogeneous system, it suffices
to examine the eigenvariable conditions in Definitions 24.4 and 24.14. There
1), 2) and 4) are exactly conditions on P. By virtue of (Q), 3) is satisfied.
Suppose ¢ < a holds in P. Then the height of ¢ is less than the height of a;
hence 5) is obvious.

We can define an enumeration of the auxiliary formulas of the heterogeneous
Q: right in P in such a manner that it satisfies the eigenvariable condition
6). Let J; and J, be heterogeneous Q:right in P, with J; above j; and
with J; and J, having the form

Iy —~A,, A(a, b)
JU F T T AT e Al
Iy —4,, Q% y) Alx, ¥)

I'y A5, B(c,d, e

Jo IS4, Q") Bl¥. v

where e is the sequence of variables that are neither in ¢ nor in d. Suppose
that d isin d (or e), a’ is an eigenvariable in P, and ' < d (or a’ < ¢). Since (*)
implies that d (or ¢) is not an eigenvariable above I'; — 4;, Q"'(x, y) A(x, ),
@’ cannot be in @. An appropriate enumeration of the auxiliary formulas in P
is obtained if we enumerate them from the bottom.

We shall now investigate the interpolation theorem for subsystems of
heterogeneous systems.

DEFINITION 24.18. Let ¢ be an arbitrary symbol and let 4 be a formula. We
say that an occurrence of ¢ is positive or negative according as g lies in the
scope of an even or odd number of —'s. 4 D B is understood to be =4 v B.
We say that g is positive in I" — A if it is positive in A or negative in I'; and
that ¢ is negative in I" — A if it is negative in A or positive in I'.

A sequent I" — A is said to be negative if all the heterogeneous quantifiers
in it are negative.



CH. 4, §24] A GENERAL THEORY OF HETEROGENEOUS QUANTIFIERS 269

ProrosiTiON 24.19. (1) In our old svstem, every megative sequent is erther
cut-free provable or has a counter-model.

(2) The interpolation theorem holds for negative sequents. Suppose I' — A is
a valid negative sequent and ({1'y; A1}, {I's; As}] is a decomposition of I' — A
such that {I'y; Ay} and {I'y; Ao} have at least one predicate symbol in common.
Then theve extsts a formula C (not necessarily negative) such that I'y - A,, C
and C, I'y — Ay ave valid, and all the predicate symbols and free variables in C
occur both in {I'y; A} and {I's; A5},

Proor. (1) This can be proved similarly to other completeness proofs, by con-
structing a tree for a given sequent. Notice that in a stage which concerns
heterogeneous quantifiers the reduction is done in the antecedent only.

(2) For technical reasons, we assume that all the homogeneous quantifiers
are 3. This restriction 1s not essential. Following Definition 23.18, we say
that a figure P is a proof in RHY’ if P satisfies the following:

(1) P satisfies all the conditions of a proof in our system except the eigen-
variable conditions.

(i) The only inferences which introduce quantifiers are 3 : left introduc-
tions,

V{A 47(9;‘)}4«/, IWW” A

{337‘:;.714/1(7"’;)}/1<«,» r-—-A’

where no variable in @, occurs in the lower sequent.

Notice that P may contain heterogeneous quantifiers, but they are introduced
either by initial sequents or weakenings. Then in a manner similar to the
proof of Proposition 23.19, we can prove the following: Let P be a proof in
RHS’ ending with I" — .1, and suppose a well-founded relation < is defined
for the free variables in [’ — 4. Then <, can be extended to a dependence
relation for eigenvariables in P.

LeMMA 24.20. Let P be a cut-free proof of I'y, I'y — Ay, Ay tn our system in
which every homogencous quantifier is 3, no rule of heterogeneous quantifiers
applies, and every inference of the introduction of a quantifier is an inference
of the introduction of 3 in the succedent. Suppose also that {I'y; A} and {I'y; A5}
have a predicate symbol in common. Then there exist cut-free proofs Py and Py
in RHS' and a formula C such that the end-sequent of Py 1s

C, I'y - 4y,
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the end-sequent of Py 1s
F‘Z - Ag, C,

and every free vaviable and predicate symbol in C is common to {I'y; A,} and

{1, 45}
Proor. Similar to that of Lemma 23.20.

We now return to the proof of Proposition 24.19 (2) which we will do in a
manner similar to 3. of the proof of Theorem 23.15.

Consider a cut-free proof, P, of I'y, I'y — Ay, A,. The eigenvariable condi-
tions for such a proof can be expressed in terms of a well-founded relation
<. Fix such a < throughout. We may assume that every homogeneous
quantifier in P is 3, that heterogeneous quantifiers are introduced in the
antecedent only, and that free variables which occur in Iy, I's — 4, 4, do
not depend on any eigenvariables in P. Let {QT(x;y) A(x, y, d)} be an
enunieration of all principal formulas of the Q : left introductions (heteroge-
neous Q or homogencous 3 : left) in the given proof whose descendents are in
I'; or A;. We define {Q7(x; y) B{x, y, d")} similarly for I', and A,. Then we
can construct a proof P’ of

{—QT(x; y) A(x, y,d} v Alc,a,d)}, {--QT(x;y) B(x,y,d") v Ble, b, d’)},
Iy, Iy A, A,

such that every homogeneous quantifier in P’ is 3; such that the only inference
which introduces a quantifier is 3 : right; such that ¢, 4 < a for any a in a,
cincand d ind; such that e, d” < b forany bin b, ¢ in e and 4’ in d’; such
that every free variable in A (¥, y, 2) occurs in I} or Ay; such that every free
variable in B(x, y, z) occurs in I or A,; and such that all variables in a and
b are different. (We have used ambiguous notation such as the same letters
¥ and y for different quantifiers. The meaning of the above expressions should,
however, be obvious.)
Then, by Lemma 24.20, there exists a formula C such that

C,{0Q%(x;y) A(x,y,d) v A(c,a,d)}, I} — A,
and
{(—Q%(x; ¥) B(x,y,d)v B(c,b,d), I's - A,, C

are provable in RHS’ and € satisfies some appropriate conditions. Let f be
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a sequence of all free variables in C which are not common to {I";; 4}
and {I'y; 4,}. We assume that the variables in f are arranged so that if /;
precedes fo, then it is not the case that fy < f;. (< is the relation which is
defined for the original proof P.) Let P, and P, be proofs in RHS’ of the
above two sequents and let <; and < be the dependence relations for the
free variables in the end sequents of P, and P,, respectively, which are
induced from < (for P). Then, we can extend these relations to all the free
variables. Let us denote these extended relations by <p, and <p,.

Next, consider the following quasi-proofs, P; and P,
P,

C(f), (V2 QT(u; v) (~QT(x; ¥) A(x, ¥, 2) v A(u, v, 2))}, Iy = 4y
and
P,

{Vz QT(u; v) (—QT(x; ¥) B(x, y, 2) v B(u, v, 2))}, I, ‘—;IAZ, C(f).

There are three kinds of variables in f, those of a, those of b, and the rest.
The first ones, denoted by f;, are eigenvariables in P.; the second ones,
denoted by f,, are eigenvariables in P,; and the third ones are denoted by
f3. Define T’, a function from f, to subsets of f;, so that it satisfies the
dependence relation <. Note that

Yz (QT(u; v) (—QT(x; y) A%, ¥y, %) v A(u, v, 7))

is provable. Therefore, we obtain

’

1

P

Yw Q7' (w,; wy) C(w,, wy, w), p]t ;Al
where w,, w,, and w replace f,, f, and f3, respectively. Similarly, we obtain
P

o

I‘ZA;AZ, Vw QT (wy; wy) C(wy, wy, w).
Since we may assume that the eigenvariables of the proofs of
¥z Q(u; v) (~QT(x; ¥) A%, ¥, 2) v A(u, v, 7))
are different from those of P;, we naturally extend <p, to the entire proof of

vw QT (w; wy) Clw,, wy, w), I'y — 4.
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It is easily shown that it satisfies the dependence relation; indeed, T was so
chosen. In a similar manner we extend <p,.

Even with our new inference, the cut-elimination theorem for the entire
system can hardly be expected to hold. Defining a complete system for a
heterogeneous language is a difficult problem. It is even more difficult if we
wish to define a cut-free complete system. We can see this clearly from the
following example.

ExaMpLE 24.21. Consider

Ya Ju
{ei # Cilivsiicw — Vh v (a=0b=u=10vAu#c.

This sequent is provable in our system:
{e;# cligp Na=c¢;Du=c, ) A(Aa# c;Du = a),
Ab=cDv=c)AANb#cDv=0) >(a=b=u="0v)Au#c
can be easily proved. It then follows that

Vadu(Ala=c;Du=c)A(Aa#c;Du=a)),

1 1

VoI (A(b=c;2v =c,q)A(AD#c;Dv = b)),

i

Va du o
{ci # Citins H(Vb 37}) ((a=0b=u=0v)Au#c).

On the other hand

—~Vadu(A{a=c¢,2u =c; ) A(Aa+#c;Du=a)
and

VoI Ab=cDv=c ) AANb#E ;D0 =10))

3

are provable in our system. Therefore by the cut rule

Ya Ju
{ci # Cilins — Vb Jv ((a=0=u=1v)Au# )

is provable.
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If we apply Gentzen-type reduction, which was primarily defined for
finite languages, to the proof given above, which contains a cut, then we will
obtain a “proof-like” figure

{c: # ¢iliv; = {{la =0 =ciy = cji1) A Cia # Cobirj
{la=b=a=cq)na#
{(ﬂ =b = Ciy1 = b) A Cipa # C()},;,
(@a=b=a=0)aa#c
Ya 3u

{c; # ¢ilin; — Vb 3o ((a = b =mu=v)Au# cp.

It is obvious that in this figure the auxiliary formulas of the eigenvariables
a and b are not unique. Therefore it cannot be a proof in our sense.

From this figure, we see that there is little hope of expanding our system
so that this figure will fit into it and hence little hope of establishing a complete
cut-free system.

Although our system is far from being complete, a weak completeness can
be proved. For the proof, we employ a more general formulation of the
generalized cut rule that we will call the strong generalized cut rule (s.g.c.):
Let # be anon-empty set of formulas. Suppose, for an arbitrary decomposition
of F,say (F,, &), there are subsets of # | and F ,, say @ and ¥, respectively,
and subsets of I"and 4, say I” and A’, respectively, such that @, I'" -~ A", V.
Then I" — A can be inferred. We also allow the case where I(4") has some
repetition of some formulas of 1'(4).

It is obvious that the s.g.c. rule is a generalization of the g.c. rule that
involves two types of inferences, inferences that are essential cuts and
inferences that are basically weakenings.

ProPOSITION 24.22. Consider a language with heterogeneous quantifiers L that
contains individual constants cq, ¢1,- - -, Cqr- - -, & < K, and contains the logical
symbols Ay o g and Vo g, where K is an ordinal. Then this system, augmented
by the axioms

(e < K)

*"t=00,t261,...,t=ca,...

for arbitrary terms t, is complete. If a sequent is provable in this system it is
also provable without an essential cut.

ProOF. Let & be the length of J and let t denote the set {cg, ¢1,..., ¢4« -}
Consider a formula of L of the form Q%(x; y) A(%, ). Let « be an ordinal and
suppose that T(«) is of type f,, according to the natural ordering of ordinals.
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Let f* be a function from 5% the cartesian product of 7, to 7; let m, n, etc.,
be sequences (of appropriate type) of elements of 7. Suppose m®, a sequence
My, My, . .., where T(a) = {yg,¥1,...}, is given for each « < 6. Then f(m)
will denote the sequence of sequences fo(m?), f{(ml),..., /*(m*),... . Finally,
let L be the extended language in which Vg and A, are allowed, where
in Vg, f ranges over all sequences of functions defined as above and in A,
m ranges over all the sequences of elements of 7 defined as above. When
those symbols are involved, provability means provability in the system with
language L’. Note that L’ is an extension of L.
Under these conventions we shall first show that

(D QT(x; y) A(x,y) >V A A(m, j(m))
fm

is provable. Let us abbreviate Ag (4, = my) to @ = m. Let g be an arbitrary,
but fixed sequence of functions, defined as f above, and let my denote an
arbitrary, but fixed sequence of elements of 7, of appropriate length, chosen
for f. Let

2) LA g(m),. ..~ .., A(my, fimy),. ..

be a sequence, where g is fixed, n and f range over all possibilities and the
my’s are arbitrarily chosen. f = g, where n = my. Then (2) is provable.

Now we assume that L’ has an adequate number of free variables so we
can carry out the subsequent argument. For each « < 0, and for each n,
choose a free variable a, 4, of L’. Then

(3) > Ay = Co Ay = C1,. - .

is an axiom. We assume that we can choose different variables for different
{o, n). For each ¢, there is a g such that g*(n*) = ¢. Therefore, for an arbitrary

choice of (c,,, ¢,;,,...) a sequence of constants of length 0, (2) for such a
g implies

) -l =Cop g =Coh..n, AN ay), 0~ A(my, f(my)),. . .,
where ay, is the sequence a; 4, @, ,. .. . Then by an application of the strong
generalized cut rule to (3) and (4),

(5) o An,ay),. .. — .. A(my, f(my)),. ..

for all possible combinations of my. Therefore from (5)
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o An,ay),... —~ ., AA(m, fim)),. ..
or i

(6) LA ag),. .. > Y AA(m, flm)).
fm

Finally, introducing quantifiers in (6), we obtain

QT(x;y) A(x,y) > VA A(m, f(m)),
fm

which is (1). Since we have chosen distinct free variables for different (x, n),
it is obvious that the eigenvariable conditions are satisfied.

In the proof of (1), the strong generalized cut rule is applied only to atomic
formulas.

Next, we want to prove the converse of (1) in the form:

(1) Vo 3y A (s = ndy = f(n)), VA A(m, fim)) - Q"(x;y) A(x;y).

n fm
First, we have
a=n,a=ndb = f(n), A(n, f(n)) - A(a, b)

for every f and n, and
—ady = g, Ay = C1,. .. .

Therefore, by the strong generalized cut rule,

Afa =n>b = f(n), AA(m, fim)) — A(a, b).

n
From this we obtain

VxdyA{x = ndDy = f(n)), NA(m, f(m)) — A(a, b),
and " "

® eIy Als=ndy = fm), Adim, fm) ~ Q7(; 3) Alx. 3).
n

Since (8) holds for every f, it follows that

(9) VadyA(s=n2dy =f(")),}’/\/1(m,f(m)) - Q%(x; y) A(x, y),
n m

which is (7).
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On the other hand

(10) Vs Iy A(x =ndy = f(n))

is provable for every f in the following way. For an arbitrary n and m,

a=n->a=mbdDf(n) = fim),
hence
a=n—3yA(a=mdDy = f(m)).
m

Also,
—d, = Cp, Gy = Cy,... fOr each a.

Therefore by the strong generalized cut rule,

—3dyA(a =mdy = f(m)).
m

From this, (10) follows.

The eigenvariable conditions in the proofs of (1) and (7) can be easily
examined.

We can extend the above method. Let 4 be a formula of the form
Q7(x; y) A(x, v). Then the set of formulas

{Vx 3y 1\1 (x = ndy = f(n)lf

in (7) corresponding to 4 will be denoted by @(4). Note that @(4) actually
depends only on the length of &; therefore it does not matter what free variables
A may contain.

LemMA 24.23. Let By, B, ... be all the subformulas of A of the above form.
Then there is a quantifier free formula A (in the extended language) such
that A contains exactly the same free variables as A and

(11)  D(B,),PBy),..., 4 -4, DBy, PBy),.... A - 4,

*

are provable without essential cuts.

ProorF (by transfinite induction on the complexity of 4). Since other cases
are obvious, we shall work on the case where 4 is of the form Q7(x; y) A(x, y).
To prove the first sequent, we proceed as follows. Consider 4(d, e) where d
and e are new free variables. Then, by the induction hypothesis, there is a
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quantifier free formula A4(d, e) such that
D(B)),..., A(d, &) -~ A(d, e)
is provable without cuts. Therefore with the same reasoning as for (2),
PB,),..., A(n, gn),... — ..., A(my, fimy)),. ..

is provable without cuts (cf. (2) above). The proof of (1) then follows.
In proving the second sequent, start with

¢(Bl)x' N /I(d, e) "A(d, e).
From this we obtain

®(B,),...,a =n,a =n>b = f(n), A(n, f(n)) — A(a, b),
without cuts. Then, by following the proof of (7), we obtain a cut-free proof of
DAY, PBY),..., 4 ~A.
Now consider an arbitrary, valid sequent of L, say
Ay, 44,... > By, By,. ..,

and attempt to prove it. Since our system with language L’ is consistent, the
validity of the given sequent and (11) imply that

(12) &, 4, A,,... = By, By, ...
is valid, where @ consists of the formulas of the form

VedyA(x = ndy = f(n)).
n

Therefore (12) is provable (without essential cuts) in the homogeneous part of
our extended system.

On the other hand, @, 4, — A, and @, B, — B, are provable in the system
with language L’ without essential cuts. Now by the strong generalized cut
rule with the cut formulas

(13) ® Ay Ay,..., By By ..

we obtain the given sequent.
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Therefore, what remains to be shown is that this essential cut in the proof
of the given sequent can be eliminated (in the language of L’). If so, then the
given sequent of the language L can be proved in the original system with
language L and without essential cuts.

In proving the cut-elimination theorem, we shall make use of the proof
given above,

The proof is carried out with a generalized Gentzen’s reduction method.
In order to simplify the discussion, we assume that the language L has no
function symbols. It will also be assumed that the initial sequents consist of
atomic formulas only. We shall prove the cut-elimination theorem in the
following form.

(*) Let P be a proof (in L) such that
(1) Along each branch of the sequents there is at most one essential g.c.,

(ii) the principal formulas of the quantifier introductions which are

ancestors of cut formulas are of the form

3yr/r\‘<a =mD>Dy = f(m))

and
VedyA(x = m>Dy = f(m)),
m

while the auxiliary formulas are of the form

A(a = m>Db = f(m)) (in the antecedent),
m

A(a = mD f(n) = f(m)) (in the succedent),

WA (x=mDy = fim)
m

respectively (cf. (13) above).

Let S: I — A be the lower sequent of a s.g.c. We then list some consequences

of a reduction.

(i) S as well as the descendents of S remain unchanged.

(iv) Either the s.g.c. by which S is obtained in P is eliminated, or sequents
of the form ... D ... — ... D ... are eliminated, or some introduc-
tions of logical symbols above S are eliminated, or the essential g.c.
is pushed up one step.
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Let # be the set of cut formulas of the s.g.c. above S. The reduction is
defined according to the stage number 2 (mod 10).
k = 0 (mod 10). Look for a sequent of the form

...D,...—~...,D,... or ... —>...,a=a,...

y

among the upper sequents of S. Suppose there is one. In the subsequent
treatment, the cases with earlier numbers have priority over those with later
numbers.

Case 1. For some D as above, D occurs both in I"and A. Change the figure
above S to '

=== (no cuts).

Case 2. An equality @ = a occurs in 4. Change the figure above S to

— q =

L .L,a=a,...

Case 3. For any such D, D does not occur in either I" or 4. This case cannot
happen, since then D must belong to both % and %, for any partition
(F,, F,) of F.

Case 4. D occurs in " but not in A. Then the D in the antecedent is not a
cut formula but the D in the succedent is a cut formula. Eliminate all the
upper sequents which contain D in the succedent. If D occurs in the antece-
dent in one of the remaining sequents (and such a sequent exists), then
regard it as a formula in I". Do the same to all such D’s. Thus the set
of cut formulas will be & —{all such D’s} and Case 4 can be eliminated.

Case 5. D occurs in 4 but not I'. The reduction is defined as for Case 4.

k =1 (mod 10). There is an upper sequent of the form
Gt =Cg b =6y, b= .. (e < K).

If all the ¢ = ¢, occur in A, then I' — A can be obtained from

and hence without cuts. Otherwise consider the following. Let G be the set
of all formulas of the form ¢ = ¢, which are cut formulas and let H be the rest
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of thecutformulas. Let (#, #,) beapartitionof #. Then thereisa®, < #,nG,
aSIll EylﬂH,a@g Eg"znGandang szanuchthat

O, ¥V, I" > A, D, Y,
is an upper sequent of S.
Consider all the partitions of # whichleave G, = F;NGand G, = F,NG
fixed. Then for each such partition there are ¥, and ¥, such that

Gl’ gjl, F’ —>A’, Gg, sz

is provable without cuts, without increasing the number of inferences. Hence,
by the s.g.c. rule applied to H, we obtain

Gl’ F “’A, Gg.

This is true for all possible partitions of G; hence by the s.g.c. rule applied
to G, we obtain I' — A. Here the last s.g.c. is regarded as a weak inference.
Thus this case can be eliminated.

k = 2. Suppose there are cut formulas whose outermost logical symbols
are —. (If there is no such symbol, pass on to the next stage.) Take an arbitrary
upper sequent Sy:

St ., =4,..., Ty —4...,mB,...,

where =4, =B, . .. are cut formulas and I’y € I"and 4, < 4. Let Qg be the
sub-proof of P above and including Sy. Then, by changing Q, slightly, we
obtain a proof of

’

SO:""BJ""FO -*Ao,...,A,...

without increasing the number of inferences. Recall that there is no essential
cut in Q. Replace each formula of # whose outermost logical symbol is
—, say —A4, by A4, thus obtaining &#’. Then an arbitrary partition of #,
say (9’1, F,), induces a partition of #, say (%, &), in a natural manner.
If Sy, as above, is an upper sequent of S corresponding to (%, %), then
S(I) corresponds to (F 1 F,). Thus the assumption for the s.g.c. rule applied
to & is satisfied. By a s.g.c. we obtain S. In this case some inferences which
introduce — are eliminated.

k = 3. Consider all the formulas in &# whose outermost logical symbols
are A. Let S, be an upper sequent of S:

...,/\Ci,...,PO "’Ao,...,AAj,...,/\Bh,.--,
i h

i
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where I'y < I"and 4, < 4 and A, C, etc., are only some of the cut formulas
whose outermost logical symbols are A. Let Qg be the figure which is above
and including S,. Then, changing Q, in an obvious manner, we can construct
a quasi-proof of the sequent

...,{Ci}i,...,Fo —PAo,...,Aj,...,Bh,...

for every combination of (...,7,..., A,...). Let &’ be the set of formulas
obtained from & by replacing all the formulas of the form A; C; by

{COI Cl)'-q Cir"'}'

Let (.?‘71’ 572) be a partition of & for which A; C; belongs to %, if A; C; belongs
to & and there is one C; which belongs to & 2 A; C; belongs to &, if all
Co, Cq,...,C,, ... belong to 3"1 and all other formulas belong to % ()
if and only if they belong to &(&%,). There is an upper sequent of S cor-
responding to (F;, F,):

o NCyoo Ty Ao AAy...,ABy, ... .
i h

7
Then, as was shown above, we can change this to
oG, Ty Ay, A By,

for every combination of ..., 7,..., k... . Since A; C; belongs to %, only
if all C;’s belong to #7,
o {Cle... < F, and ..., A;.... Bh..., S F,

This argument goes through for any partition of #”. Therefore the s.g.c. rule
can apply to #'.

k = 4. The reduction for V can be defined likewise.

k = 5. Consider all the formulas in & whose outermost logical symbols are
quantifiers. If such a formula occurs in the antecedent of a sequent, then the
auxiliary formula of such qualifications is either of the form

A{@a =m>db = fim)) 1)
m
or
IyA(a=mdy = fim). 2)
m

If it occurs in the succedent, then the auxiliary formula is either of the form
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$w=m3ﬂm=ﬂM) 3)
or
yA(a =m>dy = f(m)). 4)

If 1) and 3) are the case, then substitute f(n) for b with n arbitrary; if 2) and
4) are the case, then do nothing. For the first case, replace the original cut
formula by 3) and for the second case replace it by 2). If there are other
formulas with b, then they are also replaced by f(n). Given a partition of the
new set of cut formulas, it should be obvious how to induce a partition of the
original set.

k = 6. Suppose @, I'y — Ay, ¥ is an upper sequent of S. Let mA4,. .. be all
the formulas in Iy whose outermost logical symbols are =, and let T be the
rest of I'y. —B,. .. and A are defined likewise. Then we can construct a quasi-
proof of

&I B,... A A4, . ¥

without increasing the number of inferences. By the s.g.c. rule applied to the
same cut formulas, we obtain I” — A’, where I" is obtained from I" by
replacing some —A’s by B’s, and A’ is defined likewise. So we obtain

F/_‘)A/
I'—~4

where stands for two inferences, a = :left and a —:right. In this
case some logical inferences (introduction of —) are eliminated from abcve
the s.g.c.

k=17 Let @, I'y >4y ¥ be an upper sequent *of S. Consider all the

formulasin 4, whose outermostlogicalsymbolsareA,say .. . A;A,,. . ., A;By, . ..

and let jo denote the remaining formulas in 4,. We can construct a quasi-
proof of

@,FO —’Z‘ifo,...,A,',...,Bj,...,yl

for every combination of (...,4,...,7,...). Hence by the s.g.c. rule we
obtain

I">A,... Ay....B,...

from which we can infer I" — A.



cH. 4, §24] A GENERAL THEORY OF HETEROGENEOUS QUANTIFIERS 283

k = 8. Consider the formulas in Iy whose outermost logical symbol is A.

kE=9.Llet®, I'y -4, ¥ bean uppersequent of S. Let QT(x; y) A(x,y),. ..
be all the formulas in Iy whose outermost logical symbol is QT, and let [,
be the rest of I'y. Let QT'(u; v) B(u, v),... be all the formulas in 4, whose
outermost logical symbol is Q7’, and let A~0 be the rest of 4. Then we can
construct a quasi-proof of

@, I, {A(s, Q)}g s - — {B(bs 1}, do, ¥
for some a, s and ¢’s. Applying the s.g.c. rule we obtain
I {A(s, 0)}g s ... — (B, t)}s- .., A

Introducing quantifiers to both sides, we can infer I" — 4. Since the eigen-
variable conditions are defined for an entire proof, it is obvious that those
conditions, which are satisfied in P, are transferred to the new figure:

This completes the description of the reduction.

Take an arbitrary inference which is not one of the weak inferences, i.e.,
which is an introduction of a logical symbol. The principal formulas of such
an inference are either cut formulas or formulas in I — 4. Let & be a string
of sequents to which the lower sequent of this inference belong. Since the
number of inferences along a string is finite, and the reduction process reduces
the number of logical inferences above the s.g.c., the inference under con-
sideration will eventually be either eliminated or carried down under the
s.g.c. Hence along any string of sequents, there will eventually be no s.g.c.
within a finite number of stages. Therefore we will obtain a cut-free proof
of the given sequent.

REMARK. Let us introduce a function symbol f corresponding to each function
# from 78 to 7. Let A{f) be the set of sentences of the form f(n) = m, where
f(n) = m. From

A(f), a = n, A(n, f(n)) — A(a, f(a)) foralln
and
—a, = €9, 4y = C1,... forall a,in a,

we can infer, by the s.g.c. rule,

A(f),..., A(n, f(n)) ... — A(a, f(a)),
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where n ranges over all possible sequences of constants. This is true for
every f; hence we obtain (7) in the form

e A -,'/:A(",f(ﬂ)) - Q7(x; y) Alx, y),
or
LA, L Y ANAR, f(n) - QT(x; y) A(x, ).
fn

Going through the same argument as before, we claim that, if ' >4 is a
valid sequent of the original language, then

LA, T 4

is cut-free provable. This formulation may be more convenient for some
purposes.



CHAPTER 5

CONSISTENCY PROOFS

§25. Introduction

This chapter is devoted to the consistency problems of systems of second
order arithmetic. Before we take up these problems there are two points we
would like to call to the reader’s attention.

1. Mathematicians have an extremely good intuition about the world of
the natural numbers as conceived by an infinite mind. Consequently, con-
sistency for the natural numbers is not a particularly important question.
In contrast, we can conceive of the world of sets only through our imagination
and our mathematical experience. Consequently, the problem of the con-
sistency of the comprehension axioms is a serious and important foundational
question.

2. Mathematicians use the term “‘consistency’” as a sort of foundational
watchword. The first implication of the term is that no contradiction is derived.
Of course this is the most important assurance for our imaginary world of
the infinite mind. But sometimes we would like to know more. For example,
the fact that no contradiction arises does not explain what it means to say
that a theorem is provable from the comprehension axiom. Nonconstructive
proofs provide no insight into this important question. On the other hand
a constructive proof strengthens our intuition and adds meaning to the
theorem. In particular, a constructive proof of the cut-elimination theorem
would give us greater confidence in the comprehension axioms and hence
strengthen our convictions about our imaginary world of sets.

In this chapter we will be interested in second order arithmetic. Here our
comprehension axioms are

I > A, F(V)
T >4, 36F@)

F(V), I' >4

v : left Wm'

J: right

In any cut free proof our comprehension axioms mean roughly that we can
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introduce a new variable ¢ to express a given abstract ¥, and that we later
use an abbreviation V¢ F(¢) or 3¢ F(¢) in place of

Fg)n ... nF(g) or Flg)v ... v Flg,).

We will discuss this at greater length later. We point out that a similar
interpretation holds in systems of higher order although there the situation
is more complicated.

We begin our study with a theory of modulations, a theory that provides
our basic argument against ‘‘practical” foundations. Given a formula 4, we
will define left modulations of 4 and right modulations of A. The definition
is according to the outermost logical symbol of A. We assume these symbols
to be —, A, V, and V, For each case a left modulation of A is defined as a
formula of the form 4; A ... A 4, where 4,,..., A, are some left atomic
modulations of 4, while a right modulation of A4 is defined as a formula of
the form B, v ... v B,, where B,,..., B, are some right atomic modulations
of 4. It is also required that if A’ is a modulation of 4, then every free
variable in 4’ occurs in 4.

DEeFINITION 25.1. (1) If 4 is an atomic formula, then the left and the right
(atomic) modulations of A are A itself.

(2) If A is of the form —B, a left atomic modulation of 4 is of the form
—B’, where B’ is a right modulation of B; a right atomic modulation of 4 is of
the form —B’’, where B"' is a left modulation of B.

(3) If A is of the form B A C, a left atomic modulation of 4 is of the form
B’ A C’, where B” and C’ are left modulations of B and C, respectively.
A right atomic modulation of 4 is of the form B"” A C”, where B"" and C”
are right modulations of B and C respectively. For B v C, the definition is
similar.

(4) If A is of the form Vx F(x), and { is an arbitrary term such that no free
variables in ¢ occur in Yx F(x), then Vx, ... ¥x, G is an atomic left modulation
of A, where G is a left modulation of F (f) and Vx, ... Vx, bind all free variables
in £. A right atomic modulation of Vx F{x) is of the form Vx G(x), where a does
not occur in F(x) and G(a) is a right modulation of F(4).

(5) If 4 is of the form V¢ F(¢), and V is an arbitrary abstract such that
no free variables in V occur in V¢ F(¢$), then Ve ... V¢, Vx, ... Vx, G is
a left atomic modulation of 4, where G is a left modulation of F(V) and
Vé1 ... V¢, V¥x; ... Vx, bind all free variables in V. A right atomic modulation
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of V¢ F(¢) is of the form V¢ F'(¢), where « does not occur in F(x) and F'(«)
is a right modulation of F(a).

PROPOSITION 25.2. Let o and B be either free variables or constants. If A'(a) is
a modulation (right or left) of A(x), then A’(B) is also a modulation (right or

left) of A(B).

ProrositioN 25.3. If A’ is a left modulation of A, then A — A’ is provable.
If A” is a right modulation of A, then A" — A is provable.

ProOF. Since other cases are easy, we shall consider only the first part for
the crucial case, (5): i.e., A is of the form V¢ F(¢). 4’ is of the form
A; Al A A;, where A; is an atomic left modulation of 4. It suffices to
show 4 — A, for each 7. Let A4; be of the form V¢, ... Yé; Va1 ... Vx,, G,
where G is a left modulation of F(V)}. Suppose F(V) — G is provable. Then
FV)y -G
V$ Fig) G
Vo F($) > Vey ...V, Vx; ... V¥, G.

The eigenvariable condition is satisfied.

DeFiNITION 25.4. (1) A sequent A1 ..,A, —~B,,..., B, is called a modulation
of Ay,..., A, = B,,..., B, if A, is a left modulation of 4, for each 7 and
B;- is a right modulation of B, for each j.

(2) Let P be a cut free proof. For each sequent /I - A in P, we define a
modulation I1* — A’ of II - A by induction on the number of inferences
above II - A. II' - A’ is called the P-modulation of /I —/ and is so
defined that if /T -4 is A,,...,4,, > B1,..., B,, then II' > A" is
A;,. . A;" —B,,..., B, where 4, is a left modulation of 4; and B, is a right
modulation of B;. We shall give explicit definitions only for some exemplary
cases.

1) If II — A is an initial sequent in P, then I’ — A’ is IT — A itself.

2) The last inference is an interchange : left.

I'c,D,E >4
T)D7 C;

| g

A
IfI1',c’, D', 5" — A’isthe P-modulationof I'C,D,5 —A,then ", D', C", &' - A’
is the P-modulation of I, D, C, & — A.
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3) The last inference is a weakening : left.

-4
C,I'-4°

1f I — A’ is the P-modulation of I' — 4, then C, I" — A’ is the P-modulation
of C, I" =+ A.
4) The last inference is a contraction : left.

C,C,I' - A
C,.I' A"

If Cy, Cy, I'" — A’ is the P-modulation of C, C, I" - A4,then C, A Cy, I — A’
is the P-modulation of C, I' — A.
The last inference is a contraction : right.

I'-4,¢¢C
Ir-4,¢c °

I I > A, Cq, Cyis the P-modulation I' - A4, C, C then I" - A, C; v C,
is the P-modulation of " - 4, C.
5) The last inference is a second order V : left.

FV), I’ >4
Vo Fi¢), ' -4~
If G, I" - A’ is the P-modulation of F(V), I' — A4, then
Véy ...V, V2 ... Vx, G, " - A

is the P-modulation of Y¢ F($), I" — A, where ¥¢, ... V¢, Vx, ... Vx,, binds
all free variables in V. More precisely, let V = V(xy,.. ., oy, @4,. . ., @), Where
all the free variables are indicated, and let 8,,..., 8., b1,..., b,, be free
variables which are not contained in F(V). Let G'(8,..., Bn, b1,..., by) be
aleft modulationof F(V(f1,. .., 8y, b1,. .., 0y))s0that G'(ay, . . ., @n, @1se o, Ay)
is G. By V¢, ... V¢, V1, ... Vx,, G we mean

Véy oo Vo V2y o Vi G (b1, o b K1 s %)

6) The last inference is a second order V : right.

I' -4, F(a)
T ~A,Y$ F(¢)
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Suppose I — A’, F'{«) is the P-modulation of the upper sequent. Then
I" - A', ¥¢ F'(¢) is the P-modulation of the lower sequent.

ProposITION 25.5. Let P be a cut-free proof of I' — A, and let I" — A’ be the
P-modulation of I' — A. Then there exists a cut-free predicative proof of I — A’.

Proor. This is an immediate corollary of Definition 25.5. That is, in Definition
25.5, if S, is a lower sequent of S, {and S) then S;, the P-modulation of S,,
can be derived from S; (and S’) without a cut and without impredicative
comprehension axioms. The latter fact is obvious from the definition of P-
modulation in Case 5) of Definition 25.5. From Proposition 1 it is obvious
that the eigenvariable condition is satisfied for any application of V : right.

Our theory of modulations, and in particular Proposition 25.6, makes clear
one important reason for our interest in cut-free proofs, namely, a cut-free
proof of a theorem enables us to give to that theorem an interpretation that
avoids Russell’s vicious circle. Of course, each theorem has as many vicious-
circle-free interpretations as it has cut-free proofs, and each different inter-
pretation of a theorem determines a different interpretation of the theory.

If we had a uniform “‘method” that transformed every formal proof into
a cut-free proof, then that “method” would itself determine an interpretation
of mathematics that avoids Russell’s vicious circle. Consequently, producing
such a method of transformation should be a matter of high priority.

We would, of course, prefer an interpretation that is as close to the original
{(natural) meaning as possible. Consequently, the cut-elimination theorem
should be proved by an elimination procedure that preserves as much as
possible of the meaning of the original proofs.

It is on precisely this issue that we oppose the recent trend of foundational
studies in the direction of what we have chosen to call “quasi” foundations.
Let us illustrate our point with an example.

One may view analysis in different ways. One view is that analysis is a
theory. An alternate view is that analysis is not a system of axioms but a
collection of results. It is this alternate view that gives rise to the problem
of quasi foundations.

The job of quasi foundations is to develop a kind of quasi-analysis; to find
a collection of theorems, that are similar to a given collection of theorems of
analysis, but which are in fact weaker results than the given theorems.
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There are two points we wish to make that explain why we do not view
“‘quasi” foundations as the proper direction for foundational studies to take.
First of all, when one develops a collection of results that are ‘‘similar” to a
given set of theorems of analysis it is not at all clear what metamathematical
conclusions can be drawn or what kind of theory has been founded. But,
second, and of greater importance, our theory of modulations shows that in
principle the problems of quasi foundations are solved: If we wish a “quasi
foundation” for a certain collection of results we simply start with predicative
comprehension axioms and develop the modulations of the results that we
wish. Of course the results we obtain will not be classical theorems but
modulations. However, as we have shown, modulations are stronger results
than the theorems of classical mathematics.

We may, therefore, regard the predicative comprehension axioms as what
is really important. The theorems of classical mathematics are simply
approximations to stronger theorems. Consequently, so long as our concern
is with practical foundations we need not prove the cut-elimination theorem;
we only need to justify the predicative comprehension axioms. Having done
this, our task is to construct sufficient and appropriate modulations for our
purposes.

We, however, advocate a different viewpoint with respect to which proving
the cut-elimination theorem constructively is a matter of paramount impor-
tance. Indeed, only through a constructive proof of cut-elimination can the
theory of modulations become truly a significant theory in a world of predica-
tive mathematics. The proof of the cut-elimination theorem as presented in
Chapter 3 is set-theoretical, and therefore useless for our purpose.

§26. Ordinal diagrams

In this section we will develop a theory of ordinal diagrams which, as we
pointed out earlier, will play a fundamental role in our study of consistency
problems. For each pair of nonempty, well-ordered sets I and 4 we will
define the set of ordinal diagrams based on I and 4. At the same time we will
also define the notion of connected ordinal diagrams.

DerINITION 26.1. Let I and A be nonempty, well-ordered sets with O the
smallest element in I. The system of ordinal diagrams, based on I and 4, we
define inductively in the following way.
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1) 0 is a connected ordinal diagram.

2) Let 7 be an element of 7, 4 an element of 4, and let « be an ordinal
diagram. Then (7, @, &) is a connected ordinal diagram.

3) Let »>2 and let «,,..., «, be connected ordinal diagrams. Then
o $ogdt ... ¥, is a nonconnected ordinal diagram.

For convenience, in discussing ordinal diagrams we will use 4, 7, & etc., as
variables on I'; a, b, ¢, etc., as variables on 4 ; and «, £, y, etc., as variables on
ordinal diagrams. Hereafter “ordinal diagram” will mean “ordinal diagram
based on 7 and 4”.

Definition 26.1 defines an inductive procedure for constructing ordinal
diagrams. If the ordinal diagram y enters the construction of « we call y a
sub-ordinal diagram of a. But from the definition it is clear that an ordinal
diagram y could enter the construction of « at several different stages of the
construction. In the work to follow it is sometimes important to identify a
specific occurrence of a sub-ordinal diagram. For this purpose we will use the
notation ¢, that is, the notation § is to indicate that we are talking about a
specific occurrence of y and not just about the ordinal diagram y itself.
Thus 7 = f§ means not only that 9 = £ but also that § and f denote the same
occurrence of this ordinal diagram.

DEeFINITION 26.2. (1) Each connected ordinal diagram «y,. .., «, is a com-
ponent of the nonconnected ordinal diagram a; # ... # ay.

(2) Each connected ordinal diagram o« has only one component, namely
itself.

DEFINITION 26.3. Let [(a) be the total number of ( )’s and #’s in «. Then

Ua, B ) =g ) + HB) + ... + 1),

DEeFINITION 26.4. Equality for ordinal diagrams we define inductively on
la, B) in the following way.

(1) 0 = 0.

(2) Let « be of the form (7, 4, ¢). Then « = g if and only if 8 is of the form
(1, a, 8), where y = 4.

8 Letabea ¥ ... fa,,andlet Sbe Sy % ... ¥ 8, where ay,. .., a,, and
Bi,..., Bn are connected. Then « = B if and only if m = » and there is a
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permutation of {1, 2,..., m}, say {f1,.. ., Jm}, such that

% = ﬁjl: g = ﬁ:iz" e Oy = ﬂ:im'

It can be easily proved that = is an equivalence relation. Note also that
o = 0 or 0 = « if and only if « is 0.

DEFINITION 26.5. (1) Consider an occurrence (Z, a, y) in «. If 8 is an occurrence

of #in y, then the occurrence of 7 and of a in (7, a, y) are said to be connected

to B in a. We also say that the occurrence of the pair (i, a) in (¢, 4, y) is
connected to B.

(2) Let f be an occurrence of § in « and let § be an element of /. If for every
element 7 of I that occurs in « and is connected to 8 we have that ¢ >> 7, then
B is said to be j-active in a.

(3) A connected, j-active occurrence of a sub-ordinal diagram of « is called

a j-subsection of «.

(4) Let (4, a, ) be a j-subsection of « for some j > 4. Then the occurrence y

in (¢, a, y) is called an i-section of «. If there is an ¢-section of «, then we say
that 7 is an index of «.

Note that an i-section of a is a special case of an é-subsection. An -section
of & is an occurrence of a proper sub-ordinal diagram of «, but an 7-subsection
of « may be « itself.

For certain purposes ahead we introduce a special symbol o that we adjoin
to I and regard as the maximal element of the extended set.

DEFINITION 26.6. (1) I = I U {}. The ordering of I is that of I with o the
maximal element of I.

(2) If el and je I, then ¢ is called a super index of j with respect to
«, B,...,y, if either ¢is co or ¢ > jand ¢ is an index of at least one of , 8,. . ., .

() 7ol7, &, B,. .., ) is the least super index of § with respect to o, £,..., .

4) i(j, «, B,. .., y) denotes the number of super indices of § with respect
towa, B,. ..,y when 7 is an element of I; it is defined to be 0 if  is .

(6) The outermost index of the ordinal diagram (7, a, o) is 4.

{6} A pair (i, @), where i € ] and a € A is called a value. The set of values
is ordered lexicographically.

(7) The value (7, a) is the outermost value of (7, a, «).
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Note that a value is not an occurrence.
For each 1 in I we now define an ordering <; of ordinal diagrams (based
on I and A). The definition is by transfinite induction on w - {(«, 8) + (2, «, 8).

DEFINITION 26.7. (1) 0 <; 8 if § # 0.
@2 foaisoa #...fa, and 8is f1 § ... %/, where m + n > 2, then
o <; B if one of the following conditions hold.
i) There exists a ¢ such that 1 < ¢ <% and a, <; B, for all p with
1<p<m
ii)m =1, %> 1and oy = B, for some g with 1 < g << n.
iii) m > 1, » > 1 and there exists a ¢ and a p such that 1 < g < m,
1< p<na =p,and

a’l# #aq—lﬁa«hﬂﬁ: ﬂ“m <i51# #ﬂp—l#ﬁp+1# #ﬁn

(8) If « and f are connected, if ¢ # o and if § = fo(f, &, £), (cf. (2) of
Definition 26.6) then « <C; A if one of the following holds.
i) There exists an i-section G of f such that & <; 0, 1., & <;0 0r o0 = 0.
ii) « <; 8 and for every i-section 6 of &, 6 <; f.
4 Ha=(,ay) and § = (kb 0), then o <, B if
1)j < k{inl)or
i) = kand a < b (in A) or
i) j =k, a =b,andy <, d.
The ordering < is slightly different from the original version in which
a and b were compared first.

PROPOSITION 26.8. For each i in I the definition of <, is sound and <;is a
Linear ovdering of the ordinal diagrams based on I and A.

ProoF. By induction on o - x, 8, y) + i, «, f,y) and w - la, B) + o7, a, B),
respectively, we can prove simultaneously that
Tifa <, Band f <;y, thena <<;y,
Hifa =Band f <;p, thena <;yandifa <; fand f = y thena <;y,

I11 exactly one of & <(; 8, « = 8 and § <; « holds.

If l{a, B, ¥) = Oorl(a, B) = O, respectively, thena = § = p = 0 and hence
I, II and III hold trivially. For /(«, B, y) > 0 and /(«, f) > 0 we will present
proofs only for some exemplary cases of I and I1II. We assume that «, § and
y are (, 4, &), (k, b, ) and (m, c, 9"), respectively.
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(1) o, &, B, y) = t(z, o, f) = 0 and hence 7 = .

I Ifa < B and § <, 9, it follows from the definition of <, that § < m
anda < c. Ifj <mora <c thena <, f6.1f; = manda = c,thenj =k =m
anda = b = ¢; hencea’ <; " and f' <;9’. Then by the induction hypothesis
o' <;¥, hence a <, 7.

IIL. Tf« # B, then (j, a) # (k, b)or(j,a) = (k, b) anda’ # . I (], a) # (k, b),
then « <<, B or f <, « by definition of <. If (j, a) = (&, ), then by the
induction hypothesis o’ </; #’ or 8’ <(; «’ and hence a <, f or f <, « as the
case may be

(2) (s, &, B,7) > 0 and (4, «, B) > 0, respectively.

1. We consider only one case: There exists an ¢-section of §, say &, such
that « <{; 0, and £ <, ¥, where 1, = 7,{z, £, ¥} and for each ¢-section of 5,
say 8,0 <;p. Then a <; 0, ¢ <;¥ and l(«, 0, y) < (a, B, y); hence by the
induction hypothesis a <; y.

II1. Suppose « €, B, i.e.,, o« # B and it is not the case that « <; 8. Then

{*) for every i-section of §, say &, « € ; 0,

hence by the induction hypothesis ¢ <; a.

Let 15 = fo(¢, &, B). If § <;, «, then by (*) and Definition 26.7 8 <;a. If
B L, o then since ¢(1y, «, f) < 1(¢, &, B) it follows from the induction hypothesis
that & <, B. If for every i-section of «, say 8, 6 <; B, then o <; §. But this
contradicts our initial assumption. Therefore there is an i-section of «, say 9,
such that 8 <{; 6. But then by Definition 26.7 § <; «.

ProrosITION 26.9. If & is an i-section of «, then ¢ <; a.

Proor. If ¢ is connected, then by (3)i) of Definition 26.7 applied to ¢ and
the component of « in which & is an ¢-section, o <C; a. If ¢ is not connected,
then for each component of ¢, say 6, 6 <, o by (2)ii) of Definition 26.7 and
hence by (3)i) of Definition 26.7, é <; «. Then from (2)i) it follows that ¢ <; «.

PROPOSITION 26.10. Let o be a connected ovdinal diagram and let B be a proper
i-subsection of . Then § << ;o for every | < 1.

ProoF. The proof is by induction on @ - {(a, ) + (7, &, £) for each 7 < 2.
1.If 8 = 0, then § <, « for all 4.
2. Suppose « = (k, b, y) and £ is a component of y. Then ¢ < & and since
v occurs as a k-section of a we have by Proposition 26.9 that § <,y <;«.
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Consequently, § <<, . If § <C &, then every j-section of § is a -section of .
But this implies that for every &, a j-section of §, ¢ <; &, and hence § <; «
(by induction on i, «, £5)).

3. Suppose « = (%, b, ) and £ is not a component of y. Then 2 > 7 and
there is a component of y, say 6, such that f occurs as an ¢-subsection of ¢.
Therefore by the induction hypothesis § <; 6 for all § 7. But 6 <;y by
definition, and y <;« for every j <C &; therefore, 7 <C ¢ by 2. above and
Definition 26.7(2). Consequently, § <; § if § < 7.

ProposiTiOoN 26.11. If B has an i-active occurrence as a proper subordinal
diagram of a, then B < ; o for every § < 1.

Proor. Apply Proposition 26.10 to each component of such an occurrence of §.

DEFINITION 26.12. Let a be an ordinal diagram and let 7 be an element of .
Then [a]; = [eq,- . -, &,,); Will mean that oy, «s,. .., «, are the components
of « and

&y 220y 24 oo g Oy

DEFINITION 26.13. O(I, A) will denote the structure consisting of the set of
ordinal diagrams based on I and 4 and the orderings <; for all 4 in [.

We will follow the usual convention of using O(f, 4) to denote the universe
of this structure, that is, the set of ordinal diagrams based on I and 4.

Our next objective is to present a nonconstructive accessibility proof for <;:
THEOREM 26.14. For cach ¢ in I, <; well-orders O(I, A).

Proor. This theorem will be proved as a sequence of lemmas using the notion
of <C;-accessibility of ordinal diagrams.

DEFINITION 26.15. Let « be of the form oy o § . . . # «,, and S be of the form
Bi# B8 ... ¥4, Then a # 8 will denote the ordinal diagram

w oot Fon B E0: 8 ... 88

DEFINITION 26.16. (1) Let B be a subset of O(Z, 4) and let 7 bean element of I.
An ordinal diagram o is <C;-accessible in B if « is an element of B and, with
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respect to <;, there is no infinite (strictly) decreasing sequence of elements
of B starting with .
(2) a0 is <C;-accessible if « is <C;-accessible in O(Z, A4).

DEFINITION 26.17. We define F; a subset of O(I, A) for every ¢ in I.

(1) Fo = 0(1, A).

(2) Fiyy = {xe F, | For every & an i-section of «, ¢ is < ;-accessible in F},
where ¢ + 1 denotes the successor of 7 in I.

(3) F, = N,_; F, if i is a limit element of I.

From the definition it is obvious that if a € F;, then a € F; for all § < 4.

LEMMA 26.18. Let B be a set of ordinal diagrams and let 1 be an element of I.
If every element of B is <C;-accessible in B, then B is well-ordered by <.

Lemma 26.18 assures us that for such a set B we may use transfinite
induction on <,.

LeMma 26.19. If every connected ovdinal diagram is << accessidle, then every
ordinal diagram 1is < -accessible.

Proor. It is sufficient to prove the following:

(*) If there is an infinite (strictly) <C;-decreasing sequence of ordinal
diagrams starting with «, then there is an infinite <,-decreasing sequence
of connected ordinal diagrams starting with «; where [a]; = [«q,- - -, %l

Let C be the set of all the connected ordinal diagrams. We will prove (*)
by transfinite induction on «; along <(; in C using Lemma 26.18. Let {£,}
be a <C;-decreasing sequence, where 8; = a.

1) If all the components of « are 0, then all the components of each 8, £, . . .
are (. Therefore the number of components must decrease from term to term
in the infinite sequence {f,}. Since this is impossible, « must have a nonzero
component. Suppose «; > 0.

2) Supposem = 1. Thena; = a = f; >; By >; ... . If oy is a limit element
of C (with respect to <, relativized to C), then there is a connected ordinal
diagram 8 such that a; >, f >; B3 >, ... . Then by the induction hypothesis
(applied to B) we can construct a < ;-decreasing sequence of connected ordinal
diagrams starting with 8. Adding «; to this sequence as a first term, we obtain
a <decreasing infinite sequence of connected ordinal diagrams starting
with a;.
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3) Suppose m = 1 and «, is the successor of § in C (presuming that such
a case is possible). Then o =808 ... $8 >0 >,... and £ <;«.
Consequently, by the induction hypothesis we can construct an infinite
< ~decreasing sequence of elements of C starting with f. Adding «, to the
sequence as first term, we obtain the desired sequence.

4) Suppose m > 1 and there is an # such that g, does not contain «, as a
component. Let [8,); = [7,..., ). Then g7 <,«;. By the induction
hypothesis there is a <(;,-decreasing sequence of connected ordinal diagrams
beginning with £7. To this sequence we add «,; as first term to obtain the
desired sequence.

5) Suppose m > 1 and for every », 8, contains «; as a component (hence
as a maximum one). We prove (*} for this case by induction on the number
of occurrences of «; in «. Let »(«) be the number of occurrences of «; in a.
For each #, define ,8; to be the ordinal diagram obtained from £, by deleting
one occurrence of a;. We define o’ similarly: o’ = o 8 ... $ o, If () = 1,
then «” does not have an occurrence of «; so by the induction hypothesis there
is a <C;-decreasing sequence from C which starts with a,. Adding «; to this
sequence we obtain the desired sequence. If ¥(«) > 1, then 0 < »(&) < v(«).
If there is an # such that »(f,) = O then 4) applies to {£.}. The resulting
sequence starts with . If there is no such # then 5) applies and by the induc-
tion hypothesis we can construct the desired sequence starting with as(= a4).
This completes the proof.

COROLLARY 26.20. Let [a); = [0y, tta, - - ., % ls Then o is < -accessible 1f and
only if each oy, ag,. . ., oty 1S <;~accessible in C.

Proor. The “only if"’ part is obvious. Suppose « is not <C,-accessible. Then
by (*) in the proof of Lemma 26.19, «; is not < ,-accessible in C.

Lemma 26.19 assures us that in order to show that <, is a well-ordering
of O(I, 4), it is sufficient to show that with respect to <C;, there is no infinite
decreasing sequence of connected ordinal diagrams.

LEMMA 26.21. An ordinal diagram o belongs to F, 1f and only if each component
of o belongs to F,.

Proor (by transfinite induction on 7). If ¢ = 0 the result is obvious. Suppose
a € F;,; but some component of «, say 8, does not belong to F,,;. If 8¢ F;
then by the induction hypothesis « ¢ F,. But this is impossible since « € F;, 4
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implies « € F;. Therefore € F; and there is an i-section of f, say &, such
that ¢ is not <C;-accessible in F,. But such an ¢-section of £ is also an z-section
of «. Since this implies that « ¢ F,,, we have a contradiction.

Suppose all the components of « are in F, ;. Let & be an i-section of . Then
g is an ¢-section of one of the components of « and ¢ is <(;-accessible in F,.
Therefore a € F ;.

For a limit element of I the conclusion is obvious from the induction
hypothesis.

LEMMA 26.22. I} there exists an infinite sequence {o,} of connected ordinal diagrams
that is strictly decreasing with vespect to <<, then theve exists an infinite sequence
{B.} of connected ordinal diagrams such that

1) for all n, 8, € F,,

2) if g, g, .., %p € Fy, then oy = 1, 000 = fo,..., 04 = B,

N ifay =Py, .., 00 = Brbut oy # Bryy, then theve is an occurrence of B4

M oy, 1.6, Bryq 1S a subordinal diagram of oy, 4,
4) {8,} is strictly decreasing with vespect to <y and <y.

ProoF. Suppose ay,...,a,€F; and o, ¢ F;, where £ 2>0. Then Iet
B1 =&, .., Bn = xy Since a1 ¢ F; there exists a 0-section of a,,;, say 7,
for which ¢ is not <Cg-accessible. Then by Corollary 26.20, ¥ has a component
o that is not <(g-accessible. If y4 € Iy, then let f,,, be y,. If y5 ¢ Fy, then
there exists a 0-section of y, say 6, for which § is not < g-accessible. After
a finite number of such steps we will arrive at a f,,, which is a connected
sub-ordinal diagram of a,,q, hence 5,1 <o %pi1, Bre1 € 1 and Sy, 1s not
<g-accessible. This last property of £,,.; and Corollary 26.20 imply that
there exists an infinite decreasing sequence of connected ordinal diagrams
starting with 8,1, say Bus1 >0 Bhia >0 - - - - Then By, Bo,. . ., Ba, Basss Bases- - -
satisfies the same conditions as {w,}, namely it is an infinite decreasing
sequence of connected ordinal diagrams.

We then apply the same process to the above sequence and produce
'81:- P ,Bh» /}h+l: ﬁk+2,- e

It is obvious that 1)-3) hold. Also {8,} is a decreasing sequence with respect
to <o. We next show that {8,} is decreasing with respect to <;. Suppose for
example f; < B5. Since f; and f, are connected it follows that if f, < 61,
then there is a O-section of f;, say & such that 8, <, 8. But since §, € Fy, §
is <y-accessible while f, is not <C4-accessible. Since this is impossible, £y <o £
implies fo <y 0.
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In a similar manner we can show that §,,, <, 8; implies 8,,, <; 8, for
each /.

Lemma 26.23. If {a,} is an infinite <-strictly decveasing sequence of connected
elements of F, then there exists a sequence {8,} of connected ordinal diagrams
for which

1) B, € Fi.q for each n,

2)tfoy,. .., ap€F, 1, thenoy = 1 ... ap = By,

3 tf oy = L., 0 = By but apy # Buir, then L.y ts a (connected) sub-

ordinal diagram of oy y.
4) {B,} ts strictly decreasing with respect to <<; and <<;,;.

Proor. Similar to that of Lemma 26.22.

LEMMA 26.24. Suppose {«,} 15 an infinite sequence of connected ovdinal diagrams
that is strictly decveasing with respect to <<o. Then for each © we can construct
a sequence {0}, of connected ordinal diagrams from F, such that

1) for all n, o8 = a,.

2) {al},, is strictly decreasing with respect to <.

3)if o =it a = ot and o, # Gt then o) is a connected
. ) . " ;
sub-ordinal diagram of oy, hence Nojty) < Lot ,).

4) if 1 is a limit element of I, then

VpHEl[j <inVi[<I<i—(a =

PRrOOF. If « = «, for all », then 1) and 2) obviously hold. Suppose we have
constructed {a},,. Then, by Lemma 26.23, there exists a sequence of connected
elements of F, ;, {«’''}, that is strictly decreasing with respect to <; and

< ifal, ., el eF, 4, thenattl = o, .., ait! = of; and if & + 1 is the
i+1 1 h i+1 1 1 h h

first number‘such that et} # o}, ,, then ot} is a (connected) sub-ordinal
diagram of o, ;.

We therefore only have to worry about the case where 7 is a limit element
of 1. Suppose for every k < 1, {a%}, has been defined satisfying the condition.

We claim that
*) Vhjellj<iaVR[j<hk<idad =af]l.

Suppose not. Then
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IVielj<iddk[f<h<ino # o]l

There is then a smallest such #. We can then find an infinite sequence of §’s,
S&Y {1, 25 - +» Jm- - -» Such that

7 Jpt+1 Jpt2 7, J. +1
wf =t =t = =Pt P

This is possible because if we take j = f,, then the least k£ such thatj < 2 < ¢
and of # of is a successor element (by 4) of the conditions of this lemma
applied to any limit element which is less than 7). Let 7,,; ++ 1 be this least
k. Then by 3),

Hapt 7)< Uy = Ui ™).

Thus we obtain a decreasing sequence of natural numbers. But this is
impossible, consequently (*) must hold.

If we define {a}}, by @ = o] for an appropriate §,, then 4) holds. Further-
more, for each k < 7, aj € F, and o = cx,{e N,., F, = F,, that is, aheF,.

Next we will prove that {«i}, is <,-decreasing. For each # = 1,2,3,...
it follows by the construction of {«}}, that there is a j, and a 7, for which
o), = of for every k such that j, << k < 4 and w0 = ath for every k such
that j,,, <<k <i. Let j, = max(f, fp.1)- Then af = of and o, = o, for
each k such that j, << & <{i. Consequently, o}, < «; for all such %, by the
induction hypothesis. Suppose «} <; o, +1- Then for each k such thatj, <<k <4
there must be a &’ such that £ <{ " < 7 and there is a &’-section of oy, say 7,
for which o, <z . But since the number of indices of «j is finite, there is
a maximum index i in ), say ko Then if kg < k < 7 (such a & ex1sts) there is
no way of getting o} ., < «;. But this is a contradiction; so a; <, oty ;.

DEeFiniTION 26.25. F o = [ lif F; if the order type of [ is a limit ordinal.
F, = {xe F, | for each 6 an i-section of «, 6 is < ;-accessible in F} if ¢ is
the greatest element of 7.
Clearly if o € F, then « € F; for each 1.

LeMMA 26.26. Suppose there is an infinite sequence of connected ordinal diagrams
which is strictly decveasing with respect to <<, Then there exists a sequence of
connected ordinal diagrams from F o, that is strictly decreasing with respect to <.

PRroOF. Similar to that of Lemma 26.24 with o instead of . If I has a maximal
element, then the first half of the proof goes through, if I does not have a
maximal element, then the latter half of the proof goes through.
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LEMMA 26.27. If there is a sequence of connected ordinal diagrams from F; that
is strictly decreasing with vespect to << ;, then theve exists a sequence of connected
ordinal diagrams from F, that is strictly decreasing with vespect to <.

Proor. Similar to Lemma 26.24 with F, in the place of F,.
LEMMA 26.28. Every element of F, is < 4-accessible in F,.

Proor. Suppose not, that is, suppose there is a sequence {«,} of elements
of F,, that is strictly decreasing with respect to <. We may assume that
the a,’s are connected (Lemma 26.19). Recall that for <, ordinal diagrams
are first compared by their outermost values (¢, 4). Since those values are
well ordered (cf. (5) and (6) of Definition 26.6), a decreasing sequence of values
must be finite. Thus after a certain stage, the outermost values of «,, will be
constant, say (¢, a). Then the «,’s are compared by their ¢-sections for all
large #. If 7 is the maximal element in /, then «, € F, means that if 8 is an
i-section of a,, then § is <C-accessible in F,. If 7 is not the maximal element
of I, then o, € F,,; and hence if ¢ is an i-section of «,, then § is < ;-accessible in
F,. Therefore, the comparison of «, with respect to <, is reduced to the com-
parison of i-sections of a, which are <(;-accessible in F,. Therefore, there
cannot be an infinite decreasing sequence of such i-sections (cf. Lemma 26.18),
hence {a,} cannot be strictly decreasing with respect to <.

Next we will prove that, for every ¢, I, = Fy = O(I, A} and that every
ordinal diagram is <C;-accessible in F,, hence is < -accessible.

LEmMA 26.29. F, = O(I, A) and every ovdinal diagram is <;-accesstble for
alliin 1.

Proor. Fy = O(I, A), by definition. Suppose there exists an infinite sequence
of connected ordinal diagrams which is strictly decreasing with respect to
<. Then by Lemma 26.26 there is an infinite sequence of connected elements
of F, which is decreasing with respect to <. But this contradicts Lemma
26.28. Consequently, there cannot be such a sequence. Therefore, by virtue
of Lemma 26.19, all ordinal diagrams are <-accessible.

Suppose that F; = O(I, A) and the <,-accessibility of all ordinal diagrams
has been proved. Then for each element of F; each of its i-sections are <.~
accessible, hence F,.; = F; = O(I, 4). Using Lemmas 26.27, 26.28 and
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26.19, we can show, in a similar manner as above, that every ordinal diagram
is <<;,1-accessiblein F;,;, henceis <, ;-accessible. Foralimitj, F; = M, F, =
O(I, 4), by the induction hypothesis. That every ordinal diagram is < -
accessible can be proved as for ¢ + 1. The proof is valid also when ¢ + 1 or
7 1S 0.

Reversing the processes in the foregoing argument we obtain a somewhat
constructive proof due to A. Kino which we outline below. First we shall
list a few preliminary lemmas.

LeEMMA 26.30. If oy, 009, . . ., &, ave <<,-accessible in F,, then oy $os 8t ... Fa,
is <;-accessible in F,.

Proor. Relativize the proof of Lemma 26.18 to F,.

LeMMmA 26.31. Let [ be an element of F,; and let 7 be an i-subsection of . Then
yel,

Proor. (By transfinite induction on ¢.) For ¢ = 0 the result is obvious. If 7 is
a limit element then the result follows from the induction hypothesis since
an i-subsection is a j-subsection if j < 4. If ¢+ = + 1, then since fe F,,
B e F,; and for every j-section of f, say 3, 8 is < ;-accessible in F; which
implies that ¢ € F;. If 7 is an ¢-subsection of §, then it is a j-subsection of 5,
and hencey € F,. Let § be a j-section of v. Then 8 is a j-section of 8 and hence
0 is < ;-accessible in F;. Therefore, by definition, y € F,.

We now begin the proof of accessibility.

LemmA 26.32. For cach o in F, q tf o is <, q-accessible in F, ., then o is
< ;-accessible in F .

Proor. (By transfinite induction on <, for those ordinal diagrams which
are <, j-accessible in F,; ;. See Lemma 26.18.)

Consider any f in F; for which § <, «. We will prove that 8 1s < ;-accessible
in F; and hence « is <C-accessible in F;. Note that by definition « € F,.

Let I'(= I';) be the set of sub-ordinal diagrams of § defined inductively
as follows:

1) Each component of § belongs to I.

2) If y € I, then every component of every i-section of y belongs to I'.



306 CONSISTENCY PROOFS {cH. 5, §26

3) Only those ordinal diagrams satisfying 1) and 2) belong to I".
It is obvious from the definition and Lemma 26.31 that

*) I'cF,
We now wish to prove by induction on /(y) that
** y€ F 1 and y is <-accessible in F; for each y in 1.

Then, as a special case, every component of £ is <;-accessible in F;. So, by
Lemma 26.30, 8 is <C-accessible in F,. This will complete the proof of the
lemma.

We now turn to the proof of (**).

If y € I' is minimal in the sense that ¢ has no ¢-section, then y € F; implies
yeF, . By (*),yeF,

Case 1. y <C;,; «. Then y is <,  -accessible in F, ;. Consequently, by the
induction hypothesis, y is <(;-accessible in F,.

Case 2. o <;1 ¥; ¥ <; B <;o. Then there is an i-section of «, say &, such
that y <{; 0. But since a € F,, 1, ¢ is <-accessible in F;, and hence so is y.

If y € I' is not minimal, let § be a component of an ¢-section of y. Then by
the induction hypothesis, d € I', so 0 is <C;-accessible in F,. Therefore, by
Lemma 26.30, if 7 is an ¢-section of ¢ then 7 is <;-accessible in F,. But this
means that y € F,, ;. Repeating cases 1 and 2 above we conclude that y is
< ;-accessible in F :

LEMMA 26.33. Let ¢ be a limit element. Then
Vi < VB {(B is < ;accessible in F;) DYk < (B is <,-accessible in F,))]

DVEk << 2 Va [{x ts <;-accessible in F,) D (« 15 <<j-accessible in F)).

Proor. (By transfinite induction on the elements of F; which are <;-accessible
in F;. See Lemma 26.18).

Let 7y be the greatest index of « which is less than ¢ (cf. (4) of Definition
26.5) assuming that such an index exists. Then assuming the premise of the
lemma it suffices to show that
(*) for each « that is < -accessible in F,, and for every k such that iy <k <1,

o is < j-accessible in F,,

If no such ¢, exists, then we prove (*) for all £ < ¢. Indeed, if (*) holds

and % <{ 4, then there is a § such that 2 <4y << j < ¢ (since ¢ is a limit
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element) and « is < ;-accessible in F;. So by the premise of our lemma, «
is <Cj-accessible in F,. We can prove (*) by transfinite induction on such
o’s along <.

We may assume that iy, as above, can be defined. Note that for each &
and j for which 45 < &k <7 and &2 <{j <4, if f <, «, then § <; « because
there is no A-section of « when 2 <{ 4 < 7. In order to prove (*) for any «,
let § be a member of F, such that f <, a. If we can show that any such 8 is
<-accessible in F, we are done. We will prove that
{(**} If 7 is a k-subsection of 8, then y € F, and y is <C;-accessible in F; for all

7 such that 2 <{7 < 4.

As a special case of (*¥*), 8 is << -accessible in F,. We also know that for
any 7 for which (**) holds, y € F; because § € F, {cf. Lemma 26.31).

Suppose ¥ is a minimal k-subsection of §, i.e., ¥ does not contain a k-
subsection, then y € F; because y € F,, and there is no j-section of y for any
7 between % and 1.

Case 1.y <C; a. Then p is <C;-accessible in F; since « is, and, by the induction
hypothesis ¢ is < ;-accessible for all  such that 2 <7 < 7.

Case 2. « <C; v. Then a <; y for every j such that ¢y < 7 < 7. In particular,
o < p. But since § is a k-subsection of 8, y <{; 8 <, «. Since this is a contra-
diction this case is impossible.

Next, suppose that 7 is a k-subsection of § which is not a minimal one.
Then y € Fy. Let £ <{j < 7 and let § be a j-section of y. Then § is a k-sub-
section of £ and hence by the induction hypothesis (6 € F; and) d is <C,-
accessible in F;. This is true for every such j. Soy€ F implies y € F . Repeating
Cases 1 and 2 above, we can prove that y is <;-accessible in F; for all § such
that £ <{ 7 < . This completes the proof.

LeMMA 26.34. For every ¢ in I and every a, if a ¢s < -accessible in F;, then
Vi < ¢ [a s <j-accessible in F].

Proor. (By transfinite induction on 7.} Suppose « is < ;-accessible in F,. If
{ = k + 1, then by Lemma 26.32 « is <;-accessible in F;. So by the induction
hypothesis a is <C;-accessible in F; for all § < k.

Suppose 7 is a limit element. For every £ < ¢ the lemma holds by the
induction hypothesis. This means that the premise in Lemma 26.33 holds.
Consequently, the conclusion of Lemma 26.33 holds. But this is the result we
were to prove.

LemMA 26.35 (cf. Lemma 26.28). Every member of F, is < -accessible in F .
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LeMMA 26.36. Every member of F is <;-accessible in F; for every ¢ in I.

Proor. Every ordinal diagram of F, is < -accessible in F, by Lemma 26.35.
Hence by Lemma 26.34 it is <;-accessible in F; for every 7 in I.

LEMMA 26.37. Every ordinal diagram of F; 1s < ;-accessible in F; for every j,
hence, in particular, F; is well-ordeved by <;.

ProoF. Let « be an element of F;.

Case 1. I has no maximal element. Let ¢ be an element of I which is greater
than all the elements of I occurring in «. Then (¢, 0, 0} € F,and « <; (¢, 0, 0).
By Lemma 26.36, (7, 0, 0) is <C;-accessible in F;, hence so is a.

Case 2. I has a maximal element but 4 does not. Let 7 be the greatest
element of I occurring in o and let @ be an element of 4 which is greater
than any element of A that occurs in «. Then (i, ¢, 0) € F, and « << (4, 4, 0).
By Lemma 26.36 (7, a, 0) is <;-accessible, hence so is a.

Case 3. Both I and A have maximal elements. Let 7 and a be the greatest
elements in I and A, respectively. Then there is a § of the form

(¢, a (t,a,. ..,(4a0)...))

such that @ <<; 8. If we can show that ff € I, then it will follow from Lemma
26.36 that f is < gaccessible in F,. From this in turn it follows that « is
< ;accessible in F; and this will complete the proof.

If § = (4, a, 0), then obviously £ € F . Suppose
Bo=(t,a, ...(2,a,0)...)eF,.

Then by Lemma 26.36, 8, is <;-accessible in F,;. Therefore, by definition,
B=(ia Bp)el,.
As a special case of Lemma 26.37 we have the following.

THEOREM 26.38. Every ordinal diagram 1s <g-accessible.

REMARK. As an alternate proof, case 3 of Lemma 26.37 can take the
following form. Let a, be a new symbol. Define 4 to be 4 U {a,}, where 4 is
ordered as A with a, greater than every element of A. We then define O(Z, 4)
and its orderings =,, one for each ¢ in I. Then O(I, A) is a subsystem of
O(I, &) and =, is an extension of <.
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Let 7 be the largest element of I occurring in «. Then a & (¢, a4, 0) and
(i, ag, 0) is = g-accessible in O(I, A). Therefore, « is = y-accessible in O(I, 4).
But this implies that « is <(g-accessible (in Fy = O(I, 4)).

When this method is employed, we need only a weaker version of Lemmas
26.36 and 26.37:

LemuMa 26.39 (cf. Lemma 26.36). Every member of F o is < g-accesstble.
LeMMA 26.40 (cf. Lemma 26.37). Every ordinal diagram is < y-accessible.

The proof of accessibility depends strongly on F; which is a highly abstract
notion. If one wishes to justify this proof he should interpret the definition
of F, as follows: a e F;,; if and only if it can be concretely assured that
a € F; and for every 8, an i-section of a, d is <(;-accessible in F,. (It can be
concretely assured that d is <C;-accessible in F.)

One problem with our system of ordinal diagrams is that the order relations
<; are defined by induction on w - /(e §) + (¢, «, ) and hence the structure
of those order relations is not clearly understood. It is very important to be
able to visualize the proof of accessibility if we are to claim that the system
of ordinal diagrams provides a good basis for the study of foundations.

We would like to emphasize that neither the first nor the second proof
of accessibility given above is not very constructive. We will present a more
constructive proof in a soon to be published papers entitled “Fundamental
sequences of ordinal diagrams” and ““An accessibility proof of ordinal di-
agrams’’.

In order to explain the difficulty we would like to review from Chapter 2
some of the ideas in the accessibility proof for the ordinals up to &. In
Chapter 2, several useful devices were taken for granted. For example, we
can assign a natural number # to each ordinal a < gy, with w, < « < w, ;.
This number #, the height of «, gives a rough indication of the “size” of o.
For two ordinals o, 8 < &g we can define « << £ by, firstly, comparing the
height of « with the height of £, and, secondly, assuming that « and § have
the same height and that « = o 4 ... + o™ and = wf + ... + w’r
with

ay g = ... =z, and B == ... =B,

by comparing «; with 8, az with §,, etc. For ordinal diagrams the approxima-
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tion theory corresponding to this approach is rather involved but we will
develop it at the rest of this section, though they are not necessary after
this section.

There is another difficulty. We defined in Chapter 2 a; << ag < ... to be
a fundamental sequence of « if o is the limit of the sequence. Then for an
« < &y we had a simple uniform method for constructing fundamental se-
quences for «. However for ordinal diagrams the construction of a fundamental
sequence and the proof of its basic properties are very involved. Nevertheless,
all these ideas are necessary for an accessibility proof in the style of Chapter 2.

The major problem of constructive mathematics lies in the complications
of the expressions and the descriptions in the arguments. This is due to the
fact that in constructive mathematics we must constantly take into account
delicate distinctions.

Now we shall explain the theory of approximations. That is, given an
element § of I and a connected ordinal diagram «, we are to define the (x, £)th
j-approximation of « for #, 2 = 0,1, 2,..., and see that they present good
criteria for the comparison of two ordinal diagrams with respect to ;.

We shall now define j-valuations and j-approximations of « for every
j € I and every connected nonzero ordinal diagram o.

DEeFINITION 26.41. (1) When (4, a) is the outermost value of a connected
ordinal diagram, z is its outermost index.

(2) Let ¥ be a j-subsection of « where the outermost index of y is < 7.
Then we say that 7 is a j-kernel of «. We include 0 as a j-kernel.

DEFINITION 26.42. Let vy(j, «) be the maximum of the outermost values of the
ordinal diagrams represented by the j-subsections of «. Then vy(j, «) is called
the 0" j-valuation of «.

Note that every non-zero connected ordinal diagram has a 0" j-valuation.

PRrROPOSITION 26.43. Let 8 and a be non-zero connected ordinal diagrams. If
vo(f, B) < volf, &) then f <<; a.

PROOF. Let v(j, «) = (2, a). For any j-subsection of «, say 8, & <;a (cf.
Proposition 26.10). Therefore it suffices to show that 8 <, (i, a,y) for any
j-subsection of « of the form (7, a, ) (i.e., the outermost value of the ordinal
diagram represented by it is (¢, a)). We shall, however, show that

(*) 1 <m {t, 4, y) for all m == § and each 7} a j-subsection of .
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Then as a special case we have § <, (4, a, ¥).

The proof of (*) is by induction on I(n). Note that vy(7, ) << v(, 8) < (¢, a).

(1) 7 is a j-kernel of g. Either % is 0 or of the form (&, b, ') where & < 4.
Then obviously n <, (4, a, y) for every m > j.

(2)  is of the form (%, &, n"), where & > . Since (k, b) << (1, @), <, (1, @, 7)
if m > k. Let § <<m <k and let 8 be an m-section of 7. Let &, be any com-
ponent of . Then &, is a j-subsection of #; hence by the induction hypothesis
8o <m (i, @, p). This implies that é <<, (¢, 4, ¥} so by induction on (m, ),
1 <m (1, @, p) for all m for which j << m < k.

DEeFINITION26.44. (1) Letabeaconnected ordinaldiagramandlet (7, a) = vy(7, o).

Consider any j-subsection of « whose outermost value is (7, a), say (¢, a, p).
Let apr(0, 7, ) be the greatest such (¢, a4, y) with respect to <<;. Any j-active
occurrence of apr(0, 7, «), say apr(0, j, «), is called a Oth j-approxvimation of «.

We shall use &, as an abbreviation for apr(0, 7, ). There may, of course, be
many occurrences of oy that are not Oth j-approximations of x. However, we
are not interested in such occurrences. Therefore, for notational convenience

we will hereafter use the symbols ;0 and Z;;(E,ﬁ') only for occurrences
that are Oth j-approximations of «.

(2) If a j-subsection of «, say 7, does not contain an ;;, a j-active occurrence
of apr(0, 1, @), and is not contained by any ;;, then we say that # j-omits

op. When § is understood we will say simply that 7 omits «.

LEMMA 26.45. (1) apr(0, , «) ¢s a j-subsection of «.

(2) Let o” = (4, a, 8) be a j-subsection of o whose outermost value is (i, a) and
which is different from og. Then o’ <, oy, and hence § <<,y (wheve oy = (1, a,)).
This implies that o' <., ag for all m = 1.

{3) If 77 ts a §-kernel of o which is not oy, then v <<, oy for all m = j.

(4) If 7}, a j-subsection of &, j-omits oy, then 1 <, ag for all m = j.

(8) Let (3, @) = volf, &) and 8y, Og,. . ., O, be all the j-subsections of «. Then

®g = apr(0, 7, «) = max(dy, ds,. .., Om)-
<i+l

Proor. (3) Let = (&, b, ") and & < §. If j <{ 4, then evidently 5 <, o for
all m 2= . Suppose § > 7. Then a = a, and there is no j-kernel except o,.
(4) (i) 77 is a j-kernel of a. Then 5 <,,, o for all m > § by (3).
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(i) Let n = (&, b, '), where & > 7. If (k, b) = (i, a), then by (2) n <, &, for
all m > 4. If § > ¢ this will do. Suppose j < 7. Letj <m < iandlet dbea
component of an m-section of 9. Then § is a j-subsection of « which j-omits &.
Therefore by the induction hypothesis ¢ <<, a9 for all m = ;. By induction
on t(m,n) we can then prove that#n <,,ao. If (k,8) < (7, 4}, thenn <, «, for all
m > k. Let j <<m <k, and let § be a component of an m-section of 5. Then
by the induction hypothesis § <, . From this in turn it follows that
N <m Og-

PROPOSITION 26.46. Let o and [3 be connected ovdinal diagrams, where vy(j, «) =
vplf, B) = (4, a) and apr(0, 1, B) <<, apr(0, 1, «). Then f <;a.

PROOF. Since a, is a 7-subsection of «, it suffices to show that § <; «, for then
B <, xy <; o. We can easily show that

(1) If 7 is a j-subsection of £, then vy(7, n) << (4, ).

Furthermore, if vy(f, ) = (7, a), then apr(0, 1, ) <<, ay, and

(2) for any two ordinal diagrams of the form (i, a,d) and (i, a,y),
(i, a, 8) <; (¢, a, ) implies (¢, a, 8) <, (z, a, y) for all m = 1.

Using (1) and (2) we shall prove by induction on /()

(3) for any j-subsection of §, say 7, <., «p for all m > 7.

As a special case of (3) we have f <, a.

1) 77 is a j-kernel of 8. Then # is 0, or 5 is of the form (%, b, %), where kB < 7.
Then (&, &) < (7, a). If (R, b) < (i, a), then 5 <, oy for all m > &, hence for
all m 2= 7. I (R, b) = (¢, a), then n <{; f, <; «p, hence by (2) above, n <,, ag
forallm > 1. Since £ = rand & < 7, we have | > 1. Son <, o for all m = j.

2) n is of the form (&, b, %), where & == and (&, b) < (¢, a). It is obvious
that 5 <<, a9 if m > k. Let § << m <k and let  be a component of an m-
section of 7. Then by the induction hypothesis & <<, oo for all m 2= 5. Therefore,
by induction on (m, 1), <<, «g for all m such that § < m < &

3) n is of the form (i, a, %'). Since n <, By <; oy it follows from (2) that
7 <mop for all m 2> 4. If § > ¢ this will do. Suppose § < 4. Consider any m
such that j <{ m < ¢ and suppose ¢ is a component of an m-section of 5. Then
by the induction hypothesis <<, oy for all m > 7. From this it follows that
7 <m g for all such .

PROPOSITION 26.47. Let 7] be a j-subsection of o that contains an &,. Suppose
in addition that for each & in 7 there is an occurrence of an element of 1 that
is less than i and connected to & Let &5, &, . . ., &y be all such occurrences of
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g in 7] and let g, be the least such element of I for & as described above. Define
g = g(n) = max(q,,..., ¢,). Then n <, aqy for every p such that ¢ << p < 1.

Proor. First note that ¢ > 7. Since 7 is a 7-subsection of « it can be easily
shown that vo(p, ) < vo(f, &) (= {2, a)) for every p >4, and in particular
for a p such that ¢ < p < 1. Also vy(p, ag) = (7, a) and apr(0, p, ay) = «.
Soifwe(p,n) < (7, a), thenn <,y by Proposition 26.43. Suppose vo(p, n) = (¢, a).
Then apr{0, p, n} <, &y = apr(0, p, «g), for &, is not p-active in # (cf. (2) of
Lemma 26.45). Therefore 1 <<, a.

DEFINITION 26.48. Let $ be a j-subsection of « for which there is an & in y
as a j-subsection of y and such that ¢ is the only element of I that occurs in
y and is connected to &,. {Namely, such an &, is ¢-active in $.) Let apr(l, 7, «)
be the greatest with respect to <C; of such y. Any such occurrence of apr(l, 7, «)
is called a first j-approximation of e.

We will use the symbol «; as an abbreviation for apr(l, 7, «). Hereafter

we will use the symbols &; and apr(1, 7, «) only for occurrences that are first
j-approximations of «.

Note that according to the definition, oy = «; 1s possible.

LEMMA 26.49. Let vo(f, o) = (4, a), oy = apr(0, §, a) and oy = apr(l, 7, «).

(1) If &, properly contains an &y, then | < 1t and oy << 0y for every £ < 1.

(2) If (i, b, 8) is a sub-ordinal diagram of oy such that & contains an @, i-active,
then b < a.

(3) &; 1s “‘maximal’ in the sense that if (I;Ty) is a j-subsection of «, where
&, s @ component of 7, then k < 1.

DEFINITION 26.50. Let 7 be a j-subsection of «. If % neither contains an &,
nor is contained by an &, and is not properly contained by any &g, then 7
is said to j-omit &;. When j is understood we will say simply that 7 omits &;.

ProprosITION 26.51. If a j-subsection of o, say 1, omits &, then  <j ay for all
k such that ] < kb < 1.

Proo¥. (By induction on /(x).)
1} 77 omits &,. Theny <<} ag for all & = 7 by (4) of Lemma 26.45. If § <C £ <7,
then ay <<; &; (see (1) of Lemma 26.49), hence 7 <7, «;.
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Dy =ay <paiff <R

3) 7 contains &, and 7 is the only element of I that occurs in % and is
connected to &,. Then 5 <; «; by definition of ;. Let 1 << & < i and let §
be a component of a k-section of 7. If § omits &, or contains &,, then 4 omits
&, 50 by the induction hypothesis § <; a,, if & is contained in &, then 6 is
a k-subsection of ag, hence d <<, @y <, o;. S0 0 <, & in any case, and by
induction on (%, 1), n <<y «;.

4} 4 contfains &, and for every occurrence of &, there is an element of [
that has an occurrence in 7 connected to &, and which is less than 7. By
Proposition 2647, n <;xy <; ;. For a & satistying j <C & < 1, refer to 3)
above.

PROPOSITION 26.52. Let o and S be connected ordinal diagrams and vy(j, o) =
volf, B) = (i, a). Letwy = apr(0, 7, «) = apr(0, 7, ) = Bo, 0y = apr(l, 7, o) and
B = apr(l, 1, B). If fy <; ey, then B <;a.

ProoOF. In order that 8; <; a; under the assumption, &; must properly contain
&o- Therefore ; < 7. We shall show that for any j-subsection of §, say 7, which
either contains f, or omits B;.
(*) n <<, o; for all £ such thatj << & <4

As a special case we have f <<; a; < ; «. The proof of (*) is by induction on
In). ]

1) 5 = By or 77 omits fy. Then n <, flg = g <poq if ] <AL L

2) 7 properly contains f, and there is a §, such that the only element of I
which has an occurrence in 7 connected to f, is 7. Then by definition of £,
n <; B <.,x. Let § <<k < 7 and let 0 be a component of a k-section of 7.
Then § either omits f, in which case & <, «; by 1) above; or § contains f,
and hence 6 <, a; by the induction hypothesis; or & is a k-subsection of Bo
and hence there is a k-active occurrence of ¢ in &;, o 6 </, «y. In any case
0 << ay. So by induction on (&, ), 7 <, &y can be proved.

DEFINITION 26.53. Let vo(7, &) = (i, a), apr(0, j, «) = ag and apr(l, 7, &) = o;.
Define, as'a matter of notational convenience 75 = 7; = 1.

Suppose we have defined some pairs of j-subsections of « and elements of
I wlhirk have occurrences in «, say (o, %), (%1, 71), - - -, (0, ,,), which satisfy
the following conditions:
(Vi) Foreverym, 1 <<m < n, ] <t < ipe

i) For each m, m > 1, 1,,,; is the maximum & for which there is a j-sub-

section of «, of the form (&, b, y) such that &,, is a component of 7.
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iii) Let 7 denote any j-subsection of « such that 7 contains &, and all the
elements of I that occur in % and are connected to a,, are 2> 7,,,,. Then
%my1 18 the maximum, with respect to <i,,,;, among those nand &,,,,
denotes such an occurrence of e, ;.

Now we define {(a,,1, 2,,1) as follows, provided that &, is not «. We define
Tpy1 88 1,49 10 11) of (¥) reading » in place of m and we define &,,, as a,,,,
in iii) of (*) reading » in place of m.

We call &, an #™ j-approximation of « and denote it by apr(s, 7, ), i.e.,
o, = aprin, j, o). Define v, by v,(j, o) = 1,,, » = 1,2,... .

If &, = «, then &,.; needs not be defined. We may, however, use the
expression v, (7, f) < v,,1(j, «) to mean that v, 4(j, £) is not defined while

Z"n+1(].’ O() is.

COROLLARY 26.54. (1) Let (p',ie,ﬁf) be a j-subsection of o tn which &, ts a com-
ponent of & Then p < i,

@) iy < i

(3) There is at least one &, which occurs as a component of y in (;;l, b, v),
which 1s a 7-subsection of o presuming that o, # o.

DEeFINITION 26.55. Let 77 be a j-subsection of «. We say that 7 j-omits &, if
7 is not contained by any &,, 7 does not contain any &,, and 7 is not properly
contained by any of &g, &;,. .., %,_;.

ProPOSITION 26.56. I™. Let 7 be a j-subsection of o that contains &,. Suppose for
each occurvence of &, in 7 there is an element of I that has an occurrvence 1 1
that is connected to @, and is less than 1,,,. Let al,.. ., &2 be all the occurrences
of &, in 7 and let q, be the least element of I that has an occurrence connected to
al. Let q = q,() = max(qy,..., gm). Then n <,u, for every p such that
g <p < i, (Notethat ] << g < i,,.1.)

117+, If 57 j-omils &, then i <<, oy for any p such that | < p < 1y

11172, Let o and B be connected ovdinal diagrams and suppose that apr(n, ], «),

apr(#, ]?) and apr(n + 1,1, a) are defined. Suppose also that o, = apr(n,j, o) =
apr(n, j, B) = B, (h(/’”f“/’ ag = Bo, % = B, oo, Gpey = Bosa)
D) I vp1lf, B) = typr < tuy1 = Vpalf, o), then f < .
(2) If
Cuyrlfs B) = vnall, @) = tny1
and
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Brs1 = apr(n + 1,7, 8) <y, apr(n + 1,7, &) = aony1,

then f <, «.

Proor. (By induction on #.) Note that I, 119, II%, I1I° and III! have been
established (cf. Proposition 26.47, Lemma 26.45, Propositions 26.51, 26.43
and 26.46). First we will prove I* by assuming III" for all » such that
1 < » < #n. Then we will prove II*+1 from I" and 11*. Finally we will prove
ITI#+1 from II” and 117+

In. Forany p,j < p < i, andanyr, 0 <7 < n, o,(p, o) = 04, ) = v,{f, )’
also apr(r, p, a,) = apr(r, j, «,) = apr(r, {, o). Now let ¢ << p < 7,. Then for
some 7,07 <#n,apr(0,p,n) = apr(0,p,a,),. . ., apr(r — 1,p,n) =apr(r — 1, p,0,)
and either v,(p, 1) < T,(p, ) OF 0,(p, 1) = v,(p, aa)(= 1) and apr(r, p, m) <,
apr(r, p, a,) (= a,). So by III" applied to p, y <, «, for every such p.

1I7+1, By induction on {(x).

1) 77 is &, or 7 j-omits a&,. Then by 11" n <, o0 <p appy if 7 <P iy

2) 77 contains &, properly and there is an occurrence of &, such that all the
elements of I that have occurrences in 7 that are connected to it are > 7, 5.
Then <, | %1 by definition of a,,;. Let § < p < i,y and let S be a
component of a p-section of 7. Then either ¢ omits &, or 0 is a p-subsection
of &,. Therefore 6 <, &, <, «,,,. Then by induction on «(p, %), 1 <, a, for
all such p.

3) 77 properly contains &, and for every occurrence of &, in # there is an
element of J which is less than 7, ; and has an occurrence in # that is connected
tod, BylInn <,a,if (g <_)z'n+1 < p <ip Inparticulary < o, <ip ) dnya-
Let § << p < i,,., and let & be a component of a p-section of 7. Then, as in 2)
incorporated with induction on (%), 6 <, &, y, Which implies 5 <, &,y for
all such p.

III"+1, (1) Let & = (i,41, b, ) be any j-subsection of & whose outermost
index is 7,,, and 7 contains &, as a component. We shall show that, for every
j-subsection of £, say 7, which either j-omits Bn or contains /f?n n <<, &1f
] < p < Tyi1- As aspecial case f <; & < a.

1) 7 is B, or 4 omits f,. Then 5 <, B, by II*. Son <, B, = a, <, &

2) 7 properly contains f,. Recall that §, occurs in 7 in the following context.
There is a j-subsection of 7, say (kTp) where §,, occurs in § as a component
and j <<k <) < 1.

We can show that
(*) There is a number 7, 0 < ¥ <{ #, such that
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apr(r — 1, 1,40, ) = a, 4 (= apr(r — 1, 4,4, §))
and either
vr(in+1r 77) < ir:
or

vr(i’nJrlJ 77) = ir and apr("; in+1’ 7]) <i, &y (= apr(": in+1J 5))

Applying (*) and ITI" toy, £and s, it follows thaty <, & Let] <<p <4y
and let d be a component of a p-section of 7. If J satisfies the same condition
as 7], then 0 <, & by the induction hypothesis. If § is a p-subsection of B,
for some 7, 0 <{# << n, then & <, B, <, B, = o, <, & Inany case, 6 <, ¢,
and by induction on ¢(p, n), n <, §.

The assertion (*) is a special case of the following.

(**) Let 4 be an arbitrary j-subsection of § that properly contains §,. Let m
be any element of I such that m > i;,ﬂ (= ?ne(j, 8)). Then there is a
number 7, 0 < 7 < n, such that apr{r — 1, m, ) = f,_; (= a,_;) and
eitherv,(m,n) < i, = v,(f, ) orv,(m,n) = ¢, and apr(r, m,n) <, B, (= «,).
(Note that m > 2, ; includes m = i,.;.) Whenr = 0,v,(m, n) < (4, a) =
v,(m, B) or v,(m,n) = (i, a) and apr(0, m, n) <; B,.

We prove (**) in the following way. Since m = 7, vo(m, 1) << vo(f, B) (= (4, a)).
If this is a strict inequality we are done. If equality holds, then consider » = 1.
Continuing the same argument, suppose that we havereached apr(n — 1,m, %) =
By and v,(m, ) = ¢,. Then apr(n, m, n) must contain B,_1. This, m > i;ﬂ,
and the fact that # properly contains f, imply that apr(n, m,n) # f,.

So by definition of ;pr(n, i, (= B.), apr(n, m, n) <, B,

(2) We shall show that

(***) for any # a j-subsection of § which either omits f,.,, is B, or properly
contains f,,1, M <, ,,; for any p such that j < p < 7,44

As a special case of (***) we have f§ <, &, <; «. The proof of (**¥) is by
induction on /(n).

1) 7 is By, or 7} omits Bri1- By 11741 g i1 Brsr iy %1 Using an
argument similar to one employed earlier we can prove by induction on ¢(p, n)
that <, 0,4 provided 7 << p < 7,,,;.

2) 7j contains f,,; properly and there is an occurrence of f, in 7 such that
every element of I that has an occurrence in 7] and is connected toitis >; ..
Then, by definition of 8, ,

N <ipoy Bnrt <<iyyg %ns1e

That <<, ap,; for 1 << p < 7,.y can be shown as above.
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3) 7 properly contains f,,,, and, for every occurrence of f in 7, there is an
element of 7 which has an occurrence connected to f,,, andis <4, 1+1- Then, by
In, n <, B, if g < p <7, where j < g < 1,,;. Therefore, letting p = 7,4
we obtain

N <iyyq Br <iyiy Brir <iypq Fnsr-

If j < p < 4py1, then g <, @, Is proved as before.

We next define refinements of approximations. We shall define &, , by
induction on & in such a way that &, ;, is an ¢, ;-subsection of &, ;.

DEeFINITION 26.57. &, ¢ is any occurrence of &, that is 7, ;-active in &, ;.

Suppose &, 5 has been defined so that &, ;) is an %,,,-subsection of &,_.
Suppose (n,x) # %pi1- Let $1,..., Pm be all the occurrences of i,,,-sub-
sections of &,,, that properly contain an occurrence of &, ,. Let

Xn,k+1y — max ('}/1, ey ‘}/WL).
Sipp1tl

Then &, 5,1y denotes any such occurrence of a, 51y 1D &pyq-

Note that although$,,. . .,7,, above are determined relative to an occurrence
of &,,1, ¥1,---,¥Ym (as ordinal diagrams) are determined uniquely from
®np1- The same is true of «, ;11

&n.xy 15 called the (u, £)th j-approximation of « and is denoted by

apr((n, &), 1, o).

PRrOPOSITION 26.58. Either iy x) S &npq 07 18 0cCUrs in (i,,q, ¢, 8) as a com-
ponent of 6.

ProoF. Suppose &, ;) occurs in (p, ¢, 5) as a component of 8. Then by the
definition of &,,;, p = 7,,1. If p > 7,1, then p > 4,1 + 1 hence &, 4 in &

is an ¢,y + l-subsection of (p, ¢, d). S0 &, 1y <ipo1+1 (P, ¢, 9). Furthermore,

(p, ¢, 8) contains some occurrence of &, ;_;) as an 7, ,-subsection, hence, by
definition of &, 1), (p, ¢, 0) <i,11+1 %n.z), Which is a contradiction. Therefore,

P =tnsr

DeriNiTION 26.59. An 1, -subsection of &,,,, say 7}, j-0mits &, g, if it does
not contain any occurrence of &, ), is not contained by «(, ), and is not
contained by any occurrence of &, ,, where (m, p) << (n, k).
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Note that if & = 0, it is possible that 77 j-omits &,,q, but not ,,.

PROPOSITION 26.60. Suppose that 7 is an i, -subsection of &,y that j-omits
An. 1y Lhen m iy Knaker-

Proor. (By induction on & within which by induction on /(3).)

k = 0: 7 omits &, g)-

1) 7 omits &,. Then n <, &, (= % n.0y) by II™ of Proposition 26.56.

2) 4 contains &,. Then for each j-active &, in % there is an element of I that
has an occurrence in 7 connected to a,, and which is <7 . So by I" of
Proposition 26.56,  <<i, | &, = %z.0)-

k > 0: 7 omits &, p)-

1) 77 omits & ,_1)- Then 1 <; ., ®(n k-1 by the induction hypothesis. But
E(n k1) 15 an 7, j-subsection of &, ,, (by definition). So 7 <<;, | %)

2) 738 A x-1)- Thenm <i, ot py-

3) 7 properly contains &g z_1). Then n <i, |1 %n,x by the definition of
&1y Let & be a component of an 7, i-section of 7. Since 8 omits &, ),

d < %(n,2y Dy the induction hypothesis.

ini 1

ProrosiTioN 26.61. Suppose

C—7~n+1 = apr("’ + I?;;): Bn-d = ;PR”—:F 1! 7.1 ﬂ)’

By = apr(n B foa), B = apr((n,8),1.8)
are defined Jor « and 8. I}
Bink-1) = %n.p—11 Vi1, B) = vp1(f, @) = ey and By ipp1+1%n.k)
then fn1 <iyyq %ns1, hence B <a.

Proor. We first claim that

(D) Bino <inyy %noier:
But (1) is a special case of the following.

(2) For any § an 1, -subsection of f(,,x which either contains Bin.k-1y OF
j—OmitS ﬁ(n,k—l)’ Y <in+1 L(n, k-

We prove (2) by induction on /(y).

1) 718 Bine—p. Theny = o 1) <iyyy %n -

2) # omits f, -1 Then by Proposition 26.60 y <, | Bn.x-1) hence

Y <ipia Bine—1) = %n.x—1) <in+1 %n, k)
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3) 7 properly contains f, ,_1,- Let ¥ be of the form (p, ¢, ¥’), where p >1,,.
Then y <, \+1 Ben.1y by definition of §, ), and hence

Y SNyl B iy q+1 %k

by the hypothesis of the proposition. Let 6 be a component of an 7, ;-section
of 7. If § satisfies the same condition as 7, then § <; +1 %n,k DY the induction
hypothesis. The remaining possibility is that d is a f, ,, where (m, p) <
(n, k — 1). Therefore 6 =;, | Bim.py = %m.m) <ipyq %m.ip- From this it follows
that y <y, | %n.x)-

In order to finish the proof of the proposition we need only prove that

(3) for any 7 an ¢,,,-subsection of B,,; which either omits f, ) or contains
Binionr M iy g Lt

This we prove by induction on /().

1) 7 is /g(n,k)_- By (1), n <4,y %n.n-

2) 7] omits B, r). By Proposition 26.60, n <i__, Binry <i,,; %n.p-

3) 7 properly contains f, ). Let 5 be (9, ¢, '), where p > ¢,.;. By defini-
tion of fia %, 7 <<i,,,+1 Bin.xy and hence

N <iyy1+1 Binsy <igyy+1%n,n-

From this it follows in the same manner as 3) in the proof of (2) above that

n <in+l %(n. k)

This completes the theory of approximations. As we have seen, this theory
supplies a criterion for the evaluation of orderings between two connected
ordinal diagrams.

§27. A consistency proof of second order arithmetic with the /7]-comprehension
axiom

The following lemma, concerning the system of ordinal diagrams O(w + 1, 0®)
is essential for the consistency proof of this section.

LemmMa 27.1 (the Main Lemma). Let p be a natural number and let y and § be
ovdinal diagrams for which there exist two finite sequences of ordinal diagrams
Y =% s ¥Vm and 8 = 0y,..., 0, which satisfy the following conditions
(1)-(4).
(1) Eachy;, i << m, is of the form (k, 0, y.,1) for some natural number k 2= p,
ot (w,a+ 1,y 8%n).
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(2) Each 6;,1 < m, is (k,0,0,,1) o (w,a + 1,0,,, §n) according as v, is
(R, 0,y51) 07 (w, @ + 1, y501, $ 7).
(3) Oy <<;Vm for each | such that p < | < w.
(4) For each 7 such that p < j < w and for each j-section & of 8,,, there exists
a j-section B of y., for which a <; .
Then & <;y for each | such that p <7 << w, and for each j with p <] < w
and each j-section & of O, theve exists a j-section B of y such that o <, f.

Proor. (By double induction on m and # = «(7, p, 6).)
1. If m = 0, then the result is obvious from (3) and (4).

2. Suppose m > 0, y = (&, 0,y;) and § = (&, 0, §,;) where & > p.

2.1. Then §; <, y; by the induction hypothesis so that d <, y.

22. If # <7< o, then § <,y since there are no g-sections of y or § for
g 2= 1, and since by 2.1 § < y.

2.3. If j = &, then 2.2 implies that 6 <, & if §; <; y. Since §; <; y; by the
induction hypothesis on m and since y; <; ¥ because y; is a j-section of
y it follows that &; <C; y.

24. If p<j <k, then 6 <, y, where j; = (], y, 8). Therefore, d <,y
if, for each j-section & of §, « <<, 7. Suppose & is a j-section of 4. Then & is a
j-section of §, so by the induction hypothesis on m there exists a j-section f
of 9, such that « <{; . Furthermore, £ is a j-section of y as well. Therefore,
<8<y

3. Suppose m > 0,y = (w, ¢ + Ly fn)and 6 = (w,c + 1, 6; § 7).

3.1. Since, by the induction hypothesis on m, d; <, vy, it follows that
0 <oy

3.2. 1f{ = w, then it is sufficient to show that 8, ¥ 1 <, y, thatis, §; <,y
and 5 <, y. Since 8, <, y; and ¢, §# is an w-section of y, it follows that
&) <pyandn <, 7.

3.3. If p <7 < w, then by the induction hypothesis on #, 6 <;, v, where
71 = tlf, , 0). Hence 6 <,y if for any j-section & of 6, a <;y. Let & be a
j-section of §. Then & is either a j-section of §; or a j-section of #. If the former
is the case, then by the induction hypothesis on #, there exists a j-section
of y, such that « <, . Moreover, § is a j-section of 9. Therefore, « <;y.
If & is a j-section of 7, then & is a j-section of y, and hence « <(; y.

We now proceed to the consistency proof of a system of second order
arithmetic. In order to simplify the discussion we will use —, A, and V as
primitive logical symbols. Other symbols will be used as abbreviations.
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DeFinNITION 27.2. (1) The language, formulas, abstracts, sequents and proofs
of second order arithmetic are as in Definition 18.1.

(2) A semi-formula or a semi-abstract is respectively a formula-like, or an
abstract-like expression, where a bound variable may occur free. The outer-
most logical symbol of a semi-formula or a semi-abstract is defined naturally.

(3) Let A be a semi-formula or a semi-abstract, let V¢ B be a semi-formula
in A and let # be the outermost V in V¢ B, i.e., the ¥ which precedes ¢. Let G
be an arbitrary symbol in B. Then we say that # ties G and G is tied by #in 4.
1f G is a V on a second order variable in B and G ties ¢ in B, then we say that
¥ affects G in 4.

(4) Let £ be a V on a second order vanable in 4. We say that # is isolated
in 4 if the following conditions are satisfied.

(4.1) No V on a second order variable in 4 affects %.

(4.2) # does not affect any V on a second order variable.

(6) A semi-formula or a semi-abstract A is called isolated if every V on a
second order variable in A is isolated. Originally we used ‘‘semi-isolated”
instead of “isolated”.

The following result is easily shown.

PRrOPOSITION 27.3. The class of isolated formulas {abstracts) is II}-in-the-wider-
sense (cf. (3) of Definition 18.1). Therefore, of V is an 1solated abstract and
F(a) s 1solated, then so is F(V).

From Proposition 27.3 we see that when we study isolated formulas, we are
essentially dealing with IT]-formulas.

DerinNiTION 27.4. By the isolated system of natural numbers, INN, we mean
a system of second order arithmetic as in Definition 18.1, where the induction
formulas are arbitrary, i.e., the system has full induction, and the abstracts
for V¥ : left, the V in (1) of Definition 18.1, are restricted to the isolated ones,
that is, the system has isolated comprehension.

Originally this system was called the semi-isolated system of natural

numbers, SINN.

This section is devoted to the proof of the following.

TueoreM 27.5. INN 1s consistent.
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Proor. Theorem 27.5 will be proved using the system of ordinal diagrams
Olw + 1, w3). The proof will be presented stage by stage. We shall take over
much of the terminology from first order arithmetic, for example, explicit
and implicit bundles and formulas, end piece, boundary inferences, etc.

DEeFINITION 27.6. Let A be a formula. We define the y-degree of 4, denoted
y(4), as follows:
1) y(4) = 0if 4 is isolated.
In the following we assume that A is not isolated.
2} If A is of the form —B, then y(4) = y(B) + 1.
3) If 4 is of the form B A C, then y(4) = max(y(B), y(C)) +
4) If 4 is of the form Vx G(x), then y(4) = y(G(a)) + 1.
5) If A is of the form V¢ F(¢), then y(A) = p(F(a)) + 1.
6) The y-degree of an abstract {x,,..., x,} H(x,,..., x,) is defined to be

y(H(al» RIS an))'
PropoOSITION 27.7. If V is an isolated abstract, then p(F(V)) = y(F(a)).

Proor. If p(F(«)) = 0, the proposition is evident (cf. Proposition 27.3). If
y(F(a)) # 0, we shall prove the proposition by mathematical induction on
the number of logical symbols in F'(a). Since other cases are treated similarly
we shall consider only the case where F(a) is of the form V¢ G(¢, «). By the
induction hypothesis, »(G(8, V)) = y(G(#, «)). This implies that

YIEWV) =p(GAE V) +1=ypGH ) + 1 =yF)
ProPOSITION27.8.1fVisisolatedandy(F (V) > 0,theny(Nd F($)) = p(F(V)) + 1.

ProoF. Let V be isolated and p(F(V)) > 0. By Proposition 27.7, y(F(«)) > 0,
that is, F{a) is not isolated. Hence V¢ F(¢) is not isolated either. Then

y(Vé F($)) = y(F(«)) -+ 1 = p(F(V)) 4 L.

DEFINITION 27.9. Let 4 be an occurrence of a formula in a proof P, in INN.
The grade of A with respect to P, denoted by g(4; P) or simply g(4), is defined
to be w?-y(A) + w - my; + m,, where m; is the number of second order free
-variables used as eigenvariables of second order V : right under the sequent
containing A, and m, is the number of logical symbols in 4.

To prove Theorem 27.5, we shall modify the notion of proof in INN, by
introducing the following rule of substitution:
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DEFINITION 27.10. Rule of substitution in INN.
Ay..., A, = By,..., B,

L R R v

where « is a second order free variable and ¥ is an isolated abstract with the
same number of argument-places as «. Here « is called the eigenvariable of

’

the substitution. This schema is essentially redundant in INN, but the introduc-
tion of it helps us in the reduction of proofs in INN.

DEeFinITION 27.11. We say that an inference J, which is either a substitution
or a second order V : right, disturbs a semi-formula A if the eigenvariable of
J 1is tied by a second order V in 4.

DEFiNITION 27.12. Let P be a proof in INN. We call P a proof with degree if
the following conditions are satisfied.

1) Every substitution is in the end-piece and there is no ind under a substi-
tution.

2) We can assign an ordinal number <{ @ to every semi-formula 4 or
substitution J in P as follows. We denote this assigned number by 4(4; P)
or d(J; P), or, for short, d(A4) or d(J) read “‘degree of 4 or J'.

2 1) If 4 is explicit, then d(4) = 0. Suppose A4 is implicit.
2.2) If A is not molated, then d(4) = w. Suppose A Is isolated.
2.3) d(4) = 0 if A contains no logical symbol.
2.4) d(A) = d(B) + 1if A is of the form —B.
2.5) d(4) = max(d(B), d(C)} + 1 if A is of the form B A C.
2.6) d(A) = d(B(x)) + 1 if A is of the form Vx B(x).
2.7) d(4) = max(d(F(¢)), d(Jo)) + 1 if A is of the form V¢ F(¢), where
Jo ranges over substitutions which disturb V¢ F(¢).
2.8) d(B) < d(]) for every implicit formula B in the upper sequent of J.
2.9) 0 < d(]) < o.

DeFINITION 27.13. Let P be a proof with degree and let S be a sequent in P.
The 1-resolvent of S is the upper sequent of the uppermost substitution under
S whose degree is not greater than 4, if such exists; otherwise, the 7-resolvent
of S is the end-sequent of P.

Derinition 27.14. Consider the system of ordinal diagrams O(w -+ 1, w3).
We shall assign an ordinal diagram from O(w + 1, w®) to every sequent of a
proof with degree, as follows:
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1) The ordinal diagram of an initial sequent is 0.

2) If S; and S; are the upper sequent and the lower sequent, respectively,
of a weak structural inference J, then the ordinal diagram of S, is equal to
that of S,.

3) If Sy and S, are the upper sequent and the lower sequent respectively
of —, A:left, first order V¥, second order V :right or explicit second order
V : left, then the ordinal diagram of S, is (w, 0, 6), where ¢ is the ordinal
diagram of S;.

4) If S| and S, are the upper sequents and S 1s the lower sequent of an
A : right inference, then the ordinal diagram of S is (w, 0, 6 # ¢2), where ¢,
and g, are the ordinal diagrams of S; and S,, respectively.

5) If S; and S; are the upper sequent and the lower sequent respectively
of an implicit, second order V : left of the form

FWV), I -4
Ve F(¢$), I~ 4
then the ordinal diagram of S, is {(w, g(F(V}) + 2, g), where o 1s the ordinal
diagram of S;.

6) It S; and S, are the upper sequents and S is the lower sequent of a cut
J, then the ordinal diagram of S is (w, m + 1, 0, § 0.), where m is the grade
of the cut formula and o, and o, are the ordinal diagrams of S; and S,,
respectively.

7) If Sy and S, are the upper sequent and the lower sequent respectively
of a substitution with degree 7, then the ordinal diagram of S, 1s (7, 0, o),
where ¢ is the ordinal diagram of S;.

8) If Sy and S, are the upper sequent and the lower sequent respectively
of an application of induction, then the ordinal diagram of S, is (w, m + 2, 0),
where m is the grade of the induction formula and ¢ is the ordinal diagram
of S;.

9) The ordinal diagram assigned to the end-sequent of a proof P with
degree is called the ordinal diagram of P.

The ordinal diagram of a sequent S in P will be denoted by O(S; P) or
simply O(S); the ordinal diagram of P will be denoted by O(P).

DerFiniTION 27.15. We shall define the notion of reduction of proofs.
1) Let Sy,...,S,, and S be sequents. S is reducidle to Sy,..., S, if S1s
provable without a cut presuming that Sy,..., S,, are provable without a cut.
2) Let Py,..., P, and P be proofs with degree. We say P is reduced to
P,..., P, if the following conditions are satisfied:
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2.1) The ordinal diagram of each P; is less than that of P (in the sense
of <y).
2.2) The end-sequent of P is reducible to the end-sequents of Py,..., P,.

(1) Preparation for the reduction. Suppose that the sequent — is provable
in INN. In the following we shall reduce a proof P of — to another proof of —.
Then by transfinite induction on <, we can prove that there exists a proof
in INN of — of which the entire part is the end-piece. Following the method
of the consistency proof of PA, we can eliminate the cut inference from the
proof of — so obtained. But this is impossible.

Without loss of generality we may assume that all free variables used as
eigenvariables in a proof are distinct and are not contained in the sequents
under the inference in which it is used as an eigenvariable.

Let P be a proof of —.

1) We add the following rules of inference, called term-replacement.

Iy, F(s), Iy =4 I' > 4,, F(s), 4,

FLFH, Ty > A I S AL F@), A

where s and ¢ are terms which do not contain any free variable and which
express the same number. (These rules of inference are redundant in the
original system.)

2} If S, and S, are the upper sequent and the lower sequent of an application
of term-replacement, then the ordinal diagram of S, is equal to that of S.

3) We substitute 0 for every free variable of type 0 in P except if it is used
as an eigenvariable. In this alteration the proof remains correct and neither
the end-sequent of P nor the ordinal diagram of P changes.

(2) Suppose that P contains an application of ind in its end-piece. Because
of 3), immediately above, P contains no first order free variables in its end-
piece other than those used as eigenvariables. Let J be a lowermost induction
in the end-piece of P:

0w
Ala), I' 5 A, A(a)
T 40, T4, 40

where ¢ contains no free variables and Q(a) is the proof of the upper sequent
of J. We obtain a proof P’ from P by replacing jJ by the following:
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Case 1.t = 0. Replace the part of P above A(0), I" — A4, A(f) {inclusive) by
A(0) — A(0) B

some weakenings and exchanges
A4(0), I — A4, 4(0)

A(0), T > 4, A(1).

Since the ordinal diagram of A(0), I' — A, A(f) is 0, it is obvious that
O(P") < O(P).
Case 2. t # 0. Then ¢t = n for some numeral n. Consider the following

proof P’:
0(0) 00
_QF_M< > ), ﬁt_ 417
A(O) ~>A _A A(07) Q(Ou)
some exchanges and contractions ’
A0y, I -~ A, A(07) A, “4, 40

A0), T ~4,4,40)

some exchanges and contractions

()F A("')A

A4(0), I' - —»A An)

A(0), '~ 4, Alt)
Every substitution in P’ is assigned the same degree as the corresponding
substitution in P. It is easily seen that P’ is a proof with degree whose end-

sequent is —.
That O(P’) <<q O(P) is shown as follows. First compare

wo = O(4(0), I' = A4, A(t); P) = (0, glA(a); P) + 2, )
and
p = 0(4(0), I' >~ 4, A(0"); P') = (o, g(4(0'); P') + L, p % ).
Since g(A(a); P) = g(A(0); P’), py <q to- The only w-section of y; is u ¥ g,
and since 7 is an w-section of po, w # pu <<, po- Thus py <<, 4. There is no
substitution above an ind, so this implies

O(A(0), ' —~ A, A(t); P') <, 0(4(0), ' - 4, A(f); P)

for every §, where 7 is « or ] << w. Let {yy,..., ¥n} and {d,. .., d,.} be se-
quences of ordinal diagrams such that



328 CONSISTENCY PROOFS [cH. 5, §27

1) ym = 0(4(0), I' ~ 4, A(t); P),
ii) 8,, = O(4(0), I = 4, A(%); P'),
iil) Ym_1,. . ., ¥o are the ordinal diagrams of the sequences in P which are
under A(0), I' = A, A(f), in that order, and
1) 8p_1,. . ., Oy are the ordinal diagrams of the corresponding sequences
in P’

Then these sequences of ordinal diagrams satisfy the conditions in Lemma
27.1. Thus by this Main Lemma, taking p to be 0, 6y < 4, or O(P) < O(P).

(3) Because of the reduction in (2), we may now assume that there is no
ind, hence no first order free variable, in the end-piece of P. Suppose that there
occur axioms of the form s = ¢, A(s) — A(t) in the end-piece of P. Let
s = t, A(s) - A(t) be one such. Then there are numerals m and » such that
m and » are equal to s and ¢, respectively. Either m = # — or —m ==
is a mathematical, initial sequent.

Case 1. If m = n — is an axiom, then replace that axiom by

m=n —

weakenings and an exchange
m = n, Alm) — A{n)
term replacements
s =1, A(s) —~A).

This does not change the ordinal diagram.
Case 2. If m = » — is not a mathematical, initial sequent, replace the
initial sequent by:
A(m) — A(n)
term replacements
Als) —~ A1)
s =1t A(s) - A().

(4) By virtue of (3), we may assume that there are no applications of ind
and no equality axioms as initial sequents in the end-piece of P. Suppose
that the end-piece of P contains logical, initial sequents. Suppose P is of the
following form and D — D is one of the initial sequents in the end-piece of P:

DD

riAD DI %A, DA,
F,H _FA,AI, D,A2

—
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where two D’s in the right upper sequent of the cut denote the descendants
of the D’s occurring in the initial sequent which is explicitly written.
We shall consider a proof P’ of the following form:

rAaD
some weakenings and exchangﬁesﬁ
i —a,A4,D, A,

-

where every substitution in P’ is assigned the same degree as the corresponding
one in P.
O M - 4,4, D, Ay; P = (w,g(D) + 1, u$»),
while
O Il -A, 4, D, Ag; Py = p <, (0,8(D) + 1, u g »)

for all j < w and, if j < w, for each f a j-section of u, § is also a j-section of
(w,g(D) + 1, u # ). Thus by Lemma 27.1, O(P") <, O(P).
If P is of the form
D->D

IyD. Iy 4D DIl A
- I, D, I, -4, A4

then the reduction Is carried out similarly.

{8) We may assume besides the condition in (3) that the end-piece of P
contains no logical, initial sequent. Let Q be a proof with degree whose end-
sequent is not necessarily — but which satisfies the same conditions as those
required for P. We can define ¢*, obtained from @ by eliminating weakenings
in the end-piece of @, by induction on the number of inferences in the end-
piece of Q as for PA. We deal with the following case only: If the last inference
of Q is a substitution, say

L4
r(*) a(®)
v) T\
where I and A are 4,,..., 4,, and B,,..., B,, respectively, and I" (}) and

A () denote A, (3),..., 4, (}) and By (}),..., B, (}), respectively, and the
end-sequent of O, where (, is the proof of the upper sequent, is I™* — A%,
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then Q* is
o*

r(p)-o ()

If the end-piece of P contains a weakening, we can reduce P to P*, where
every substitution in P* has the same degree as the corresponding substitution
in P.

{6) In the following we shall assume that the end-piece of a proof with
degree contains no logical inference, ind, weakening or axioms other than
mathematical axioms. Moreover, we may assume that the proof is different
from its end-piece, for if the entire proof is its end-piece, then we can eliminate
cuts as mentioned at the beginning of (1).

Let P be a proof with degree. We repeat the definition of a suitable cut:
A cut in the end-piece of a proof with degree, P, is called suitable if both of
its cut formulas have ancestors which are principal formulas of boundary
(hence logical) inferences. We can show, exactly the same way as for PA,
that under those conditions there exists a suitable cut in the end-piece of P.

Now, let P be a proof with degree whose end-sequent is — and let J be a
suitable cut in P. To define the essential reduction, we must treat separately
several cases according to the form of the outermost logical symbol of the
cut formulas of J.

(7) We shall first treat the case where the outermost logical symbol of J
is second order ¥ 7 -1 T ¢ u1 tne tollowing form:

; 54, Fia) Fo(V), T, 5 4,

0 2,0, @, n+2,

S ISP AL Fi($) S5 Y Fald), I, "5 4,
S Ty 5 A, ¥4 F($) Se VY F(d), My oA,
Ss Do I, "5 4, 4,

Se Iy54,

where m = g(V¢ F()), n = g(Fo(V)), and Sg: I's — A3 is the i-resolvent of



CH. b, §27] A CONSISTENCY PROOF OF SECOND ORDER ARITHMETIC 331

Sy: Iy, IT, — Ay, Ay, i being d(Vep Fy($)). Here we should remark that the
i-resolvent I'y — Ag will be used only for the case when V¢ F(¢) is isolated.
Case 1. V¢ F(¢) is isolated.
Let, in the above figure,

Si: Iy =4, V4 Fi(d), S Iy — Ay, YV F(¢),
S3: Vo Fo(¢), Il = Ay, Sy N F(), Il — As.

Here we should remark that V¢ F(¢) and V¢ Fo(¢) are Vé F(¢) itself up to
term-replacement ; that is, no substitution applies to those formulas, for if
there were a substitution with degree & between S; and S, which applies to
V¢ Fi($), then this substitution would disturb V¢ Fy(¢). But this implies
that % < 4, which contradicts 2.8) of Definition 27.12. Thus V¢ F,(¢) is
V¢ F(¢) up to term-replacement. By the same reasoning, V¢ Fy(e) is Vb F(¢)
up to term-replacement. In the inference Jo, d(Fy($)) < i (= d(¥Vé F,(¢))).
Let P’ be the following:

I % Ay, Fio) Fo(V), IT, 5 A,

S, F_l_f"vﬂ(“),Al»V‘f’Fl(‘ﬁ) S3 V¢F2(¢):H1___—_"{11

T F@), AV E($) S Ve E@) I, 5 A,

7 S, T IL“" 5™ F(a), 4y, Ay
Se g T % Ay, F(a)
S, TN I, Fvy  S,F(V), I, 5 A,
F3, Hl (w,n+l,_(i,0,6)#/4)A3’Al
o Se Vg F(g), [Iy, Ty =4 4,
s, I LA VP E($) Sy Ve F(g), Iy, Iy 55 A3, Ay

Ty, Iy, Tyem w4, As, Ay
S T Il Ty —dy Ay, 4,
To Ty 5 Ay, Ay
S Iy % 4

ot
—

where [, is a substitution whose eigenvariable is « and whose degree is defined
to be <. Every substitution in this proof other than J, is assigned the same
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degree as the corresponding substitution in P. Here we should remark that,
in the upper sequent of J;, the descendant of Fy(a) in I'y —A,, F (a)is F(a).
As was remarked, no substitution disturbs F{x) between I, — Ay, F/{{«) and
Ly, IT, ~ Ay, Ay in P. If there were such a substitution with degree %
between I'y, [l — Ag, Ay and 'y — Ag, it would disturb Ve F(¢), ie., & < 7.
But this contradicts the fact that Iy — Agis the i-resolvent of Iy, I1, — Ay, A.

We shall show that P’ is a proof with degree. For this it is sufficient to show
that d(F(«); P') < . If there is an inference other than J; which disturbs
Fi(«) (in P’), the corresponding substitution in P disturbs Fy(¢$). J; does not
disturb Fla} for otherwise the outermost V of V¢ I (¢} affects another ¥
for a second order variable in V¢ F(¢). But this contradicts the fact that
Vé F(¢) is isolated. So d(F(a); P') = d(F{«); P) < 1.

In order to prove O(P’) <, O(P), or ¢’ < o, we first prove v’ <; », where
1 < w, and, for any §, 0 <{7 < 4, and a j-section of »’, say 7, there is a j-
section of », say &, such that % <(; & This is shown below (cf. (7.5)).

(7.1) For any 1 < w, T <; 7, where 7 = O(S; P) and v’ = O(S,; P'). 1f
{ < w, and & is any j-section of 7, then there exists a j-section of 7, say f, such
that a <; 4.

PRrOOF. Since there is no substitution above S; we see by the Main Lemma,
with p = 0, that it is sufficient to show that ' <, (w, 0, 4) for all | < w.

1} 1 = w. Then X <, A, by the definition of P’. Obviously 1 <, {w, 0, 1).
Therefore ' <, (w, 0, ).

2) { < w. Since there is no j-section of A, ' <7 (w, 0, 1) if 1’ <, (w,0, 4).
But 1" <, (w, 0, 2) by 1).

(7.2) 6 <; v for each j < w. If { < w, then for each j-section & of 6, there
exists a j-section B of » such that o <, §.

Proor. By the Main Lemma, with p = 0, it is sufficient to prove

) (w,m+ 1,7 %p) <;{w,m+ 1, t%p) for all ] < w, and

2) for each 7 < w, and for each j-section & of 7/, there exists a j-section f
of 7 such that « <; £.

But 2) is part of (7.1). We therefore need only prove 1). This we will do by
induction on the total number of indices greater than j (super indices of 7)
in(w,m4+ 1,7 $p)and in (w, m + 1,7 % p).

1) Since t° <, 7 it follows from (7.1) that

(0,m + 1,7 $p) <o (w,m + 1,7%p).

i) If{ = w,thent' $p <, 7% B by (7.1). Sincer # p <, (w,m + L, v §p),
1) follows from i).
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iii) If j < w, then by the induction hypothesis and 1),
{w,m + 1,7 $p) <, (w,m+ 1, 78p),

where j; = jo(j, (w0, m + 1,7 £ p), (w,m + 1,7 ¥ p)). Let & be a j-section of
(w,m 4+ 1,7 % p). Then & is also a j-section of " & p. If & is a j-section of 7/,
theno << (w, m + 1, T ¥ p) by (7.1). If & is a j-section of p, then & is a j-section
of (w,m + 1, v # p) and hence o« <<; (w, m + 1, v # p). Thus

(0,m + 1,7 #p) <;(w,m+1,7%p).

(7.3) O(Sg; P') <, 0(S4; P) for1 <j K worj = .

ProOF. 0(S3) = (w, n 4 2, u) and O(Sg) = (w, n + 1, (1, 0, ») § u). The proof
1s by induction on i(, O(S,), O(Ss)).

1) Since n + 1 < n + 2, O(Sg) <, O(S3).

2) If § = w, then since u <<, O(S;3) and O(Sg) <<, O(Ss), it is sufficient to
prove that (7, 0, 0) <, O(S;3). But this is clearly the case since (7, 0, 8) has
no w-section and (2, 0, 8) <<, O(Ss).

3) If ©+ < 7 < w, then O(Sg) <¢; O(Ss) because neither (z, 0, #) nor y has a
j-section and from 2} O(Sg) <<, O(S3).

(7.4) If + < j << w, then p" <<; p. If 7 <7 < w then for each j-section &
of p’ there exists a j-section f of p such that a <; 4.

Proor. Let us regard ¢ + 1, O(S)(= p), and O(Sg)(= p’) as p, p, and §,
respectively, in the Main Lemma. Let py (= O(S,)), 71, . ., ¥m (= O(S3)) be
the sequence of distinct ordinal diagrams of sequents from Sy to Sy in P and
let 8o (= O(Sy)), 61, -, 0, (= O(Sg)) be the sequence of distinct ordinal
diagrams of sequents from S, to Sg in P’. The proposition then follows from
the Main Lemma and (7.3). Here we should recall that O(Sg) has no j-section
ifi <7 <.

(7.5) v < ;v for ] < w.

Proor. We first show that »" <<;» for any 7, i <j << w. Let p be any
number, i << p < w and let p << j << w. Take O(Sg)(= »), O(S4)(= ') and
O asy, é, p respectively in the Main Lemma. Let po (= O(Sg)),. - -, ¥m (= O(Ss))
be the sequence of distinct ordinal diagrams of sequents from Sg to Sg in P
and let

b0 (= O(S11)),- - -, 8m (= O(S10))

be the sequence of distinct ordinal diagrams of sequents from Sy, to Sy in
P’. We then only have to prove that the conditions of the Main Lemma are
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satisfied for O(S;) and O(S,). This we prove by induction on «(f, O(Ss), O(S10)),
where O(S5) = (w,m + 1,7 % p) and O(Syq) = (w, m + 1, v § p).

1) From (74) p’ <, p. Therefore, O(S1q) <, O(Ss)-

In 2)-3) we assume that O(S;o) <<; O(Ss), where 7; = 7o(7, O(Ss), O(S10))-
2)1f§ = w,then O(Sp) <, 0(S;) providedr p’ <, 0(S5) and O(S1p) < O0(Ss).
But this follows from (7.4) and 1).

3) If p <J < w, then 0(S;p) <; O(S;5) provided for each j-section & of
O(S10), ¢ <<; O(Ss). Let & be a j-section of O(Syy), ie,, of t#p’. If xis a j-
section of 7, then & is a j-section of O(S;) as well. Therefore, « <; O(S5). I &
is a j-section of p’, then a <C; O(S;) by (7.4).

Having established v <;», ¢ <</ <<, now consider an s-section of »'. If
it is not f, then it is an -section of . If it is §, then 6 <; » has been established
n (7.2). For j <7, let @ be a j-section of »". It can be easily shown that
there is a j-section of » whose 0. d. is a. So & <C; . Thus v' <C; ¥ for any 7 < +.
This completes the first objective, »' < ; » for all | < w.

Next, recall that either I'; —~ A3 is the end-sequent or Iy — Ay is the
upper sequent of a substitution of degree (= ky) < ¢. If the former is the
case, then »" <4 ¥ means a’ <y 6. Suppose the latter is the case. Then o’ << o
follows from (7.5) by virtue of the Main Lemma; notice that &, as above
prevents f from being an i-section of an o. d. between »' and o’

Case 2. V¢ F(¢) is not isolated.

Let P’ have the following form:

Iy 2 Ay, Fy(V) Fy(V), I, 5 4,

some exchanges and a weakening some exchanges and a weakening
Ty~ F(V), A,V Fi() o Ve Fo(@), 1Ty, Fo(V) — 4,
Ty > F(V), 45, ¥ F($) ¥ F($), [T, > Ay I'y > A5,V F($) V4 F(¢), 1Ty, F(V) ~ 4,
Iy, 11, ~F(V), 45, 4, Iy, 11, F(V) — 44, 4,
some exchanges some exchanges
Iy, Iy — Aq, Ay, F(V) F(V), Iy, [Iy - 45, 4,

FZ; HZ: FZ) HZ _>A21 AZ» AZ: A2
some exchanges and contractions

Fg, H2 “’42, A2

of?
-

where every substitution is assigned the same degree as the corresponding

substitution in P, and the proof of I'; i 4,, F(V) is obtained from the proof
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of I'; > A,, F(a) by substituting V' for a everywhere. Since V is isolated,
y(G(V)) = y(G{«)) by Proposition 27.7. Hence the ordinal diagram of I"; — A4,
F (V) is not greater than 4 in the sense of <; for every j.

P” is clearly a proof with degree. Since g(F(V)) < g(Vé F(¢)), we can
easily see that ¢”" < 0.

(8) Next we treat the case in which the outermost logical symbol of the cut
formula of J is A. Let P be of the following form:

I 5A, 4, TySdy B A, IT, 5 A,

o PI’FZ '»A]!AQ»AIABI AzABz,Hl —>A1
I-‘3-<;;A3,A/\’B AAB,H2—>A2
Iy, Il — A3, 4y

We see that P can be reduced to a P’ of the following form:

Iy 54, Ay Ay IT, 5 A,

some exchanges and a weakening some exchanges and a weakening
1’1, F2 —~ A1, 41,45, Ay A By AQABg,Hl,Az —»/11
F3—+A As, ANB AAB, H2—>/12 F3—>A3,AAB A AB,II,, A —+A2
Ly, Iy, - 4,45, 4, I3, 11, A > A5, 4,
some exchanges some exchanges
Ly, 11, — A5, 45, A A, I3, Iy A3, A,y

g, Iy, I'y, Iy —~ A3, Ay, 43, 4,
some exchanges and contractions

F3,§2_ f’ASy Ay

Every substitution in P’ is assigned the same degree as the corresponding
substitution in P. Thus P’ is a proof with degree whose ordinal diagram is
less than that of P.

(9) The remaining cases, i.e., the case in which the outermost logical
symbol of the cut-formula of J is — and the case in which the outermost
logical symbol of the cut-formula of J is V, for a first order variable, are
treated in the same way as the above cases.

This completes the proof of Theorem 27.5.
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§28. A consisteney proof for a system with inductive definitions

In this section we will prove the consistency of a system obtained from
INN by adding inductive definitions with IT)-clauses. This system we call
the system of isolated inductive definitions, IID.

DEerFINITION 28.1. HID is the system INN with the following modifications.

1) IID contains a unary primitive recursive predicate I and a binary
primitive recursive predicate < *, where <* is a well-ordering of {a | I{a)}.

2) 11D contains ternary predicate symbols 44, 4,,. .. for which 4,(s, ¢, T)
is an atomic formula for s and ¢ terms and V an abstract.

3) If V¢ B is a semi-formula of 1ID, then the outermost quantifier V affects
A, in B if there is a ¢ in an argument of 4,, i.e., if 4, occurs in B in the form
Ay(a, b, V) and ¢ occurs in V.

4) A semi-formula or abstract A of IID is isolated if no ¥ for a second order
variable affects any other V for a second order variable or 4y, 4;,.. ., in 4.

5) The initial sequents of HID are those of INN, extended to include formulas
with 4,’s, and the sequents of the following forms:

1(s), Anls, £, V) = Gals, £V, {2, 3} da(x, 3, V) A ¥ <F )
I(s), Guls, &, V, {x, yP(Aulx, v, V) A 2 <Fs) = Ay(s, 8, V)

tor n =0,1,2,.... Each G,{a, b, «, ) is an arbitrary isolated formula
containing none of 4,, 4,,1,..., and V is an arbitrary abstract, which may
contain V for second order variables or 4, 4,.1,- .- .

6) The rules of inference for IID are those of INN.

The purpose of this section is to prove the consistency of IID:
Tueorem 28.2. 1D s conststent.

Proor. This we will prove using the system of ordinal diagrams

w)’

where I, = (2-|I| + 1)- @ and |I| is the order-type of <<*. The proof is
similar to the proof of Theorem 27.5, therefore we will present only new
aspects of the proof.

O(wl"‘J + 1, o' we o
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ProprosiTION 28.3. Let F(a) and V be an isolated formula and an isolated
abstract, respectively. Then F(V) is isolated.

Proor. (By induction on the number » of logical symbols contained in £{«}.)
If » = 0, the assertion is clear. Let #» > 0. We shall treat several cases
according to the outermost logical symbol of F(a). Since the other cases are
easy, we shall consider the case where F(x) is of the form V¢ G(«, ¢). By the
induction hypothesis G(V, f) is isolated, where § is a free second order
variable not contained in V. We have only to show that the outermost V of
Vé G(V, ¢) affects none of the ¥’s for sccond order variables or 4q4, 4,,... .
But this is obvious since V¢ G(x, ¢) and G(V, ) are isolated.

We next define several well-ordered systems.
DEFINITION 28.4. (1) Let |I] be the ordinal of the well-ordering <*. Let [ be

{|iel}and let I, = TUI. Then <, is the well-ordering of I, defined as
follows:

(1.1) If i€ I, then 1 <<, 7.

(1.2) If & <<* 4, then © <y 7.
(1.3) If £ <<* 4, then i <, 7.
(1.4) If £ <<*4, then T <, 7.

(1.5) If © <<* 4, then ¢ < 7.
The ordinal of < is 2+ |I|.
(2) Let n be a natural number. Then 1, = {(¢, n) | i€ [,} U {»,} and <,
is the well-ordering of I, defined as follows:
(2.1) Tf 7 < 7, then (i, n) <, (j, ).
(2.2) If i € I, then (¢, n) <<, 00,.
(8) I, = IoUI; U ... and < is the well-ordering of I, defined as follows:
8.1 Iftrel, jel,and n < m, thens <.
(3.2) If + < j in I, for some #, then 7 < 7.
The order type of <, is (2- |[I] + 1)+ w.

DermviTION 28.5. Let 4 be a formula. The rank of 4, in 4, denoted by
7(A,: A), is an element of I, defined as follows:

1) If A, (s, ¢, V) As <*4, occurs in A, where I(Z) is provable and either s
is a variable or s is a numeral for which one of —I{(s) or ¢ <{* s is provable,
then #(A4,: 4) = (s, n).
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2) If A,{7,t, V) occurs in 4, where I(f) is provable, and 1) does not hold,
then 7(4,:4) = (, n).
3) If A, occurs in 4 and neither 1) nor 2) applies, then 7{4,: 4) = «,,.

ProprosITION 28.6. Let B and C be two arbitrary formulas in which A, and A,
occur, respectively. Then ¥(A,,: B) <o r(d,: C) if m < n.

DeFiniTION 28.7. The y-degree of a formula or an abstract, y(4), is a number

less than o'®, defined in the following way. Here <C is the ordering of o'
1) If A4 is isolated, then y(4) = 0.

In 2)-6), 4 is assumed not to be isolated.

2) If A4 is of the form -B, then y(4) = y(B) + 1.

3) If 4 is of the form A,(s, ¢, V) A s <* 1, then p(4) = p(V) + om4n'd+1,
If A is of the form B A € and not of the form just mentioned, then y{4) =
max(y(B), y(C)) + 1.

4) If A4 is of the form Vx (G(x)), then y(4) = y(G(a)) +

5) If 4 is of the form V¢ F(¢), then y(4) = y(F(a)) +

6) If 4 is of the form A4,(s, ¢, V), then (4) = y(V) + w"‘”" L

7) If 4 is of the form {xy,. . ., x,}B{(xy,. . ., %), theny(4) = y(B(ay,. .., a,)).
ProposITION 28.8. Let {xy,. .., x,}H(%q,. . ., ;) be an abstract and let sy,. . ., s,

be arbitrary terms. Then

Y(H (st 52) <yl 2dH Ew- , 20)):

Lemma 28.9. If G(B, «) ts an isolated quasi-formula (allowing other second order
Jree variables as well) which contains none of A,, Apir,---, 3 S s a constant
for which I(s) is provable, and if V is an arbitrary abstract which 1s not isolated,
then

GV, 4,(V) <»(V) + %w"“ﬁ:‘g” +m

=1

for some jq,..., 7, < n, for some formulas By,..., B,, and for a number m,
wheve A, (V) 1s an abbreviation for

% M Aulx, y, V) A x <*5), and r(d;: B) <7(d,:4,)
Jor i < k

Proor. By induction on the construction of G.
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ProrositioN 28.10. If s is a constant for which I(s) is provable, if V is not
isolated and if G,(a, b, «, B) 1s as in Definition 28.1, then

Y(Guls, &, V, A (V) <p(4als, 8, V).

PROOF. As a special case of Lemma 28.9,

k
PGV, A4,(0) <p(V) + 3 o™ 4’ + m,
=1

where 7(4j,: By) < 7(4,: 4,) and m < w. On the other hand,
(A (s, t, V) = (V) + @' 4nidn),

The proposition then follows.

Next we add the rule of substitution to the system KD (cf. Definition
27.10).

DerFinNITION 28.11. A substitution or a V : right for a second order variable,
say J, is said to disturb a semi-formula 4 if the eigenvariable of J occurs in
the scope of ¥ for a second order variable or in an argument of an 4, occurring
in 4.

We define a proof with degree to be a proof satisfying the following con-
ditions.

1) Every substitution is in the end-piece, and no ind occurs under a sub-
stitution.

2} We can assign an element of w'® + 1to every semi-formula or abstract
A and every substitution J in the end-piece, which is called the degree of 4
or of J (written d(4) or d(])), respectively, so as to satisfy the following
conditions:

2.1) If A4 is explicit, then 4(4) = 0.

2.2) If A is implicit and not isolated, then d(4) = ',

2.3) Let A be implicit and isolated.

2.3.1) d(4) = 0 if A contains no logical symbol or Ay, 44,... .

2.3.2) d(A) = d(B) + 1if A is of the form —B.

2.3.3) d(A) = max,(d(V), d(J)) + w44 4+ 1, where J ranges over all the
substitutions which disturb A4, if 4 is of the form A4,(s, £, V) A s <* 4.

d(A) = max(d(B), d(C)) + 1, if A is of the form B A C and not of the form
just mentioned.
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2.3.4) d(A) = d(B(x)) + 1, if A is of the form Vx B(x).

2.3.5) d(A) = max;(d(F(¢)), d(])) + 1, where J ranges over all the sub-
stitutions which disturb Ve F(¢), if 4 is of the form V¢ F(¢).

2.3.6) d(4) = max,(d(V), d(])) + w"4n4n) where [ ranges over all the
substitutions which disturb A4, if 4 is of the form A4,(s, ¢, V).

3) d(4) = d(B), if A is an abstract of the form {x,,..., x,}B.

4) If J is a substitution in the end-piece, then d(B) < d(]) for every
formula B in the upper sequent of J.

5) If J is a substitution, then 0 < d(]) < o=

Lemma 28.12. Suppose G(f, a) is an isolated quasi-formula whose only second
order free variables are B and o, and which contains none of A,, A,iq,--. .
Assume also that i is a constant for which 1(i) vs provable. If V is 1solated, then

GV, Af,(V))) < max{@(V), 4(])) + iw““ij‘fﬂl’ -+ m,
J =1

for some jy,..., 7, << m, some By,..., By and a number m < w, where
(4, B) <o r(Ad,: A,) and ] vanges over all substitutions which influence V.

ProrositTioN 28,13.'Supj>ose Az, t, V) 1sisolated, i.e., V is isolated, and © is a
constant for which 1(i) is provable. If either

I(), A (i, t, V) — G0, ¢, V, AL (V)
or

1), G,(i, ¢, V, AL(V)) — 4,6, ¢, V)

1s an initial sequent in a proof with degree, in which A, (i, ¢, V) is implicit, then

AGyli, t, V, AUVY)) < d(A, (0,1, V).
Proor. This is a special case of Lemma 28.12.

DeriniTION 28.14. Let A be a semi-formula or an abstract. We define the
norm of A4, n(A), to be an element of o' as follows:

1) If A contains no logical symbol or 4y, 4, A,,. .., then n(d) = 0.

2) If A4 is of the form —B, then n(4) = »(B) + 1.

3) If Aisof the form 4,(s, ¢, V) A s <* 1, then n(4) = n(V) + o™4n'd 1.
If A is of the form B A C and not of the above form, then

n(4) = max(n(B), n(C)) + 1.
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4) If A4 is of the form Vx B(x), then n(A4) = n(B(a)) + 1.

5) If A is of the form V¢ F(¢), then #n(4) = n(F(x) .

6} If A is of the form A, (s, ¢, V), then #{d) = »n(V) + @ 4n'4),

7T)If Aisof theform {x,,. .., X, }H (%,. . ., ¥p), thenn(d) = n(H(ay,. . ., a,)).

Lemma 28.15. If G(B, «) contains none of A,, A,.q,--., if i is a constant for
which 1{7) is provable and if V is an avbitrary abstract, then

k
WGV, AfV)) < n(V) + > o™ 4B 4 m,
=1

!

where [ < n, r(Aj 0 By) <#(4,:A4,) and m < o.
ProrosiTiON 28.16. If

1(), Gu(i, ¢, V, AL(V)) — AL, ¢ V)
or

IG), An(i, t, V) = G,(i, ¢, V, AL(V))

1§ an tnitial sequent of our system, and 1 is a constant for which I1(t) s provable,
then
wGa(i, 4, V, AL (V)) < m(da(i t, V).

ProoF. A special case of Lemma 28.15.

DeriNiTION 28.17. Let N(I ) = o'® X o X ' and let < be the lexico-
graphical ordering of N(I). The grade of a formula 4, g(4), is {y(4), a,n(4)),
where a is the number of eigenvariables in 4 for second order V : right under
A4, and g(4) is an element of (I,).

ProrositionN 28.18. If

I(), A, (i, t, V) = G, (i, ¢, V, AL(V))
or

1), Guli, 1, V, AL(Z, 1, V)

is an tnitial sequent of a proof with degree, and i is a constant for which I(1) is
provable, then
8(Ga(i, 8, V, 4,(V))) < g(Aali, 8, V).
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DEFINITION 28.19. We shall assign an element of O(coI°l7 + 1, ©'® X o X w1°°)
to every sequent of a proof P with degree as follows. We denote w'®, the
maximum element of o'® +1, by &

1.1) The ordinal diagram of an initial sequent of the form

D —>D,s =1t A(s) > A()

or a mathematical initial sequent is {0, 0, 0).
1.2) The ordinal diagram of an initial sequent of the form

1), AL, 8, V) > Guli, 8, V, {x, y}HAL(x, v, V) A x <¥1))
or
I@), G0, 6, V, {x, v} Aplx, v, V) A x <*1)) = A,(,¢, V)

is g{A.u(, ¢, V).

2) If S; and S, are the upper sequent and the lower sequent of a weak,
structural inference, then the ordinal diagram of S, is equal to that of S;.

3) If S; and S, are the upper sequent and the lower sequent of one of the
inferences —, A : left, V for a first order variable, V : right for a second order
variable and explicit V : left for a second order variable, then the ordinal
diagram of S, is (£, {0, 0, 0), 6), where ¢ is the ordinal diagram of 5;.

4) If S, and S, are the upper sequents and S is the lower sequent of A : right,
then the ordinal diagram of S is (£, (0,0, 0), 0, ¥ ¢), where ¢, and o, are
the ordinal diagrams of S; and S,, respectively.

5) If S; and S, are the upper sequent and the lower sequent of an implicit
Y : left for a second order variable of the form

FV), I >4
VéE(p), T -4’

then the ordinal diagram of Sy is (&, (u, &, v # 0 £ 0), o), where ¢ is the ordinal
diagram of Sy and {u, &, v) is g(F(V)).

6) If S; and S, are the upper sequents and S is the lower sequent of a cut,
then the ordinal diagram of S is (£, {u, &, v $0), o, # 0,), where (u, &, »)
is the grade of the cut-formula and g, and g, are the ordinal diagrams of S;
and S,, respectively.

7) If S; and S; are the upper sequent and the lower sequent of a substitution
J, then the ordinal diagram of S, is (d(]), €0, 0, 0), ¢), where ¢ is the ordinal
diagram of S;.
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8) If S; and S, are the upper and the lower sequents of an ind, then the
ordinal diagram of Sy is (&, {u, &, v £ 0 £ 0), 6), where {u, %, v) is the grade
of the induction formula and ¢ is the ordinal diagram of S;.

9) The ordinal diagram of P is defined to be the ordinal diagram assigned
to the end-sequent of P.

Suppose the sequent — is provable in this system. We shall reduce a proof
P of — to another proof of —. This reduction will be carried out in the same
way as in §27. We can assume that the end-piece of P contains no first order
free variable, ind, axiom of the form m = n, A(m) - A{(n) or D - D, or
weakening and we assume that term-replacement has been introduced.
Suppose that the end-piece of P contains an initial sequent of the form 5) of
Definition 28.1, say

(*) 1), 4,6, 6, V) = G0, 1, V, {x, y}(Anlx, y, V) A 2 <*7)),

where we can assume without loss of generality that ¢ and ¢ are numerals. By
our assumption either I(¢) —or — I{z) is an initial sequent. We shall abbreviate
{x, yVHA,(x, v, V) A x <*3) as A (V).

Case 1. I(z) — is an initial sequent. Replace (*) by the following:

I(3) —
weakenings and an exchange
I(7), A, 8, V) - G,(i, 8, V, AL(V)).

The ordinal diagram of the proof is less than that of (*). Hence evidently P
is reduced to the proof obtained by replacement.

Case 2. — I(#) is an initial sequent. Since every formula in P is implicity,
there exists a cut J where one of the cut-formulas is a descendant of 4,(z, ¢, )
in (*). Let P be of the following form:

Alis 6, V) = 4,06, 8, V) 1), i, &, V) = Goli, , V, A4(V))
; A AAGLY) At V), %A
rI1% A A

where 4,(¢, ¢, V) — A,(i, ¢, V) need not appear. Here we should note that no
substitution applies to 4,(7, ¢, V): in fact, if there were such a substitution
Jo, it would disturb 4,(z, ¢, V), i.e., d(Jo) < d(A,(i, ¢, v)). But this contradicts
4) of Definition 28.11.
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Consider the following proof P’:

I(), A, (3,8, V) = G,(i,t, V, AL(V))
A8, V),10) - Goli,t, V, AL(V) Gali,t, V, AV)) =Gt V, ALV))

T I0) A, G668V ALY Guli,t, V, ALV)), T 2
I I16), 11 —A,A
~some exchanges
~I(6) I, I’ —4,4
risaAa

—

Every substitution in P’ has the same degree as the corresponding substitution
in P. Then P’ is a proof with degree by virtue of Proposition 28.10. Further-
more,

o= (& (u1,2%$0), 0, %0

and

o' = (£40,0,040%¢0,0,0)% (& (k64 0), 0, £0,)),

where (u, 7, A) = g(A,4(i, ¢, V), and (v, k, 8) = g(G,(i, ¢, V, AL(V))). Proposi-
tion 6 implies that ¢’ <<, o(l << €), from which it follows that the ordinal
diagram of P’ is less than that of P. Thus P is reduced to P’. (For the computa-
tion of ordinal diagrams, one should refer to §27.)

Suppose that the end-piece of P does not contain a logical inference, ind,
or initial sequents other than mathematical ones, or weakening. If P contains
a logical symbol, we can find a suitable cut in P in the same way as in 26.16
and define an essential reduction in the same way as in §27.

As an addendum to this section, as well as the previous section, we shall
explain the general theory of y-degree. We consider a second order language.

DEeriniTION 28.20. A function y from semi-formulas and abstracts to ordinals
is called monotone if it satisties the following conditions.
1) y(=d4) = y(4).

2) y(4 A B} = max(y(4), y(B)).

3) y(Vx G(x)) = p(G(x)).

4y y({xg, .o, A H (g, 00, %)) = p(H (%, - .., X))

5) (V¢ F(¢)) = p(F(¢)).
6) If 4 is an alphabetical variant of B, then y(4) = y(B).
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7Ty If (V) = 0 and y(Y¢ F($)) > 0, then y(Vé F(¢)) > p(F(V)).
We say that 4 is y-simple if y(4) = 0.
A second order VY : left, say

is called y-simple if V is y-simple; it is called strictly p-simple if both ¥V and
Vé F(¢) are y-simple.

A proof P in GILC is called (strictly) y-simple if every implicit, second
order V : left in P is {strictly} y-simple.

PROPOSITION 28.21. Suppose y is monotone and for every strictly y-simple proof
the cut-elimination theovem holds. Then the cut-elimination theorem holds for
every y-simple proof.

Proor. The grade of a formula in a proof, say 4, is defined as w?- y(4) +
w * m + I, where m is the number of eigenvariables of the second order V : right
introductions which occur under 4, and ! is the number of logical symbols
in 4. The grade of 4 will be denoted by g(4). Let P be a y-simple proof and
let J be a cut in P. J is called “p-simple” if the cut formula of J is y-simple.
The grade of J, g(J), is defined to be the grade of the cut formula of J. The
grade of P, g(P), is defined to be >, w*/), where J ranges over all the cuts
in P which are not y-simple, and we assume that w®”) in > are arranged in
the decreasing order.

If g(P) = 0, then there is no implicit formula which is not y-simple, in
particular, the principal formula of every implicit V : left is y-simple, which
means that P is strictly y-simple. Therefore, by the assumption of the proposi-
tion, the cut-elimination theorem holds for P. Suppose now that g(P) > 0;
hence there is a cut J in P which is not y-simple and such that every cut
above [ is y-simple. Since other cases are easily treated, we shall deal with
the case where the cut formula is of the form Vé F(¢):

I"' >AN$F($) VoF($), Il ~A
J ri—-A4 '

Let Py be the proof ending with I', II — /A, A. Let 4 be the left cut formula
of J and let B be the right cut formula of J. We may assume that the upper-
most ancestor of A(B) which is identical with A(B) is the principal formula
of a logical inference and F(«) is the auxiliary formula of such inference
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related to A. By replacing the ancestors of A which are identical with 4 by
F(x), we obtain a proof P ending with I' — 4, F(«).

Let II; — A, be an arbitrary sequent which occurs above the right upper
sequent of J. We can construct a proof ending with a sequent of the form
II¥, I’ - A, Ay, where T} is obtained from IT; by eliminating all the ancestors
of B which are identical with B. This can be done by induction on the number
of inferences in the proof ending with I/; — ;. As an example, suppose
II; — A, is the lower sequent of a cut:

Hg —-*AQ,D D,H3 —>A3
Hz,H3 — Ay, A3

where Il;, I1; is 11, and Ay, Agis A;. Define the following:

I T SA, A, D DIIE T 5 A, Ay
H;,F,H;,F——"A,AQ,A,Aﬁ
H;,H;,F—*A,Az,/l:;-

As another example, let JT; — A; be the lower sequent of a second order
VY : left whose principal formula is an ancestor of B which is identical with B:

F(V), 1, - A,
Vo F($), I, A,

where Y F(¢), 11, is I1,. Consider the following:

FSAFWY)  FV),IOE T SAA,
TIF 54,44
IIF T A4,

where I" = A, F(V) is obtained from P, by substituting V for « everywhere.

By taking /T, — A, to be V¢ F(¢), Il — A, we obtainII, I' — A, and hence
I IT -~ A4,A. The grade of this proof, say @, is less than g(P,), since
y(F(V)) < y(Vé F(¢)) by assumption. Now replace P, by @ in P, obtaining
a proof of the same end-sequent, but with a grade less than P. Then by the
induction hypothesis the cuts can be eliminated.

DEFINITION 28.22. A set of semi-formulas and abstracts, say &, is said to
be closed if the following hold.
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1) If A is atomic, then A belongs to &.

2) If —B belongs to &, then B belongs to &.

3) If B A C belongs to &, then B and C belong to &#

4) 1f Vx F(x) belongs to %, then F(s) belongs to % for every semi-term s.

5) If V¢ F(¢) belongs to &, then F(«) belongs to F for every second order
variable «.

6) If {x,,..., x,}H(xy,. .., x,) belongs to & then H(ay,..., a,) belongs to
F forevery ay,. .., a,; it H(ay,. .., a,) belongs to # for some ay,. . ., 4, then
{x1,- .., X} H(%4,. . ., x,) belongs to &F

7) If B and C are alphabetical variants of one another, then B belongs to
& if and only if C belongs to #.

8) If F(a«) and V belong to &, then F(V) belongs to #

We define a function y relative to .#, which we call they determined by &#.

(1) y(4) = 0 if A belongs to F#.

Assume 4 does not belong to #.
(2) y(4) =y(B) + 11if 4is —B.
(3) (4) = max(y(B),y(C)) +1if Ais B a C.
(4) y(4) = y(F(x)) + 1 if 4 is Vx F(x).
(5) y(4) = p(F($)) + 1 if A is V¢ F(§).
6) y(Ux1, - -, H (%1, o, 20)) = p(H(x, . . -, %))

In a manner similar to the proof of Proposition 27.7, we can easily prove

the following.

ProrosITION 28.23. Suppose F is closed and y s the function determined by
F.If V belongs to F, then y(F(a)) = y(F(V)).

PROPOSITION 28.24. Suppose F is closed and vy is the function determined by
% . Then y is monotone.

Proo¥. Immediate from the definition of ¥ and Proposition 28.23.



CHAPTER 6

SOME APPLICATIONS OF CONSISTENCY PROOFS

§29. Provable well-orderings

We shall consider provable well-orderings of INN and show that any
provable well-ordering of INN has order type less than that of the system of
ordinal diagrams O{w + 1, ®®), with respect to <<y,. We will borrow much
of the argument of §13. The results we will prove can be extended to IID with
little modification.

DEFINITION 29.1. Let <+ be a recursive linear ordering of the natural numbers
which is actually a well-ordering. (Without loss of generality we may assume
that <- is defined for all natural numbers and the least element with respect
to <+ is 0.) We use the same symbol < to denote the formula in INN which
expresses the ordering <C-.

Let TI(<) be a formula expressing the principle of transfinite induction
along <-:

Vé (Vx (Vy (v <" %2 ¢(y)) D $(x)) 2 Vx $(x)).

If TI(<-) is INN-provable, then we say that < is a provable well-ordering
of INN.

We assume that an arithmetization of the system of ordinal diagrams
O(w + 1, @%) has been carried out. We use the same notation to denote both
an object and its arithmetization.

THEOREM 29.2. Let < be the well-ovdering of the system of ordinal diagrams
Ol{w + 1, wd) with respect to 0. (Recall that the consistency of INN was proved
by using <o.) If <+ is a provable well-ordering of INN, then there exists a
vecursive function from natural numbers to an initial segment of <, which is
<<-< g order-preserving. That is to savy, there is a vecursive function | such that
a <<-bif and only if f(a) <o [(b) and there is an ordinal diagram pin O(w + 1, wd)
such that for every a, f(a) <, u.
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Proor. We will follow the proof of Theorem 13.4; and shall only point out
how to modify that proof so that the arguments fit INN.
(1) TI-proofs (for INN) are defined as in 13.1); in particular the TJ initial
sequents have the form
Vx (x << £ Dg(x)) — e(t),

and the end-sequents have the form
—e(my),. .., e(m,).

(2) {m|_. and the end-number of a TJ-proof are defined as in 13.1).
(3) For 13.2), 13.5) simply read INN in place of PA. We will, however, repeat
the Fundamental Lemma:

LeMma 29.3, the Fundamental Lemma (cf. Lemma 13.5). The end-number of
any TI-proof is not greater than the ovder type of its orvdinal diagram (with
respect to <g).

(4) Ordinal diagrams are assigned to the sequents of the TJ-proofs as for
INN: The ordinal diagram of a TJ-initial sequent is

(w,0, (w0, (w, 0, (w, 0, (w, 0,0))))).
See 13.6).
(6) The proofs of 13.7) through 13.11) go through as before.
(6) In 13.12), the ordinal diagram of the proof presented there is

(@, 0, (0,0, (0,0,0 % (v, 0,0)))),

regarding A D B as an abbreviation for —(4 A —B). This is less than the
ordinal diagram of a TJ-initial sequent. By this, and obvious changes, P
becomes a Td-proof P’ whose end-sequent is

—e(m), g(my),. . ., elmy,),

where — e(m,),. .., e(m,) is the end-sequent of P. The ordinal diagram of P’
is less than that of P and the end number of P’ is lm| . .
(7) As in 13.13), we obtain the Gentzen-type theorem:

THEOREM 29.4 (cf. Theorem 13.6). The order type of <C- is less than the order
type of Olw + 1, @) with vespect to <.
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(8) As in 13.14), we can define a proof P, for every &, where the end-number
of Py is |k|. . Then we define a function % as in 13.15), where + is the ordinal
sum.

(9) In order to claim that % is recursive, and that 13.16) holds, we need
the following.

1) The ordinal sum, +, of ordinal diagrams is recursive.

2) If two ordinal diagrams, u and », are connected (i.e., the last operations
used to form y and v are not §) and u <<, v, then p 4+ v = ».

(10) From (9), we conclude that % is recursive and 13.16) holds. This implies
that % is order-preserving.

§30. The /1}-comprehension axiom and the w-rule

An analogue to Problem 13.9 can be proved for INN, viz., the elimination
of cuts in a system with the constructive w-rule. We repeat some of the
definitions which were given in Chapter 5.

DEeriniTION 30.1. (1) We assume a standard Godel numbering for axioms and
for rules of finite inference. The w-rule is expressed as follows:

PO Pn

T oA, A0)... .. T A Aw...
I —A,¥x A(x) a

Here P, is defined for every natural number # and is a proof of I' — 4, A(#n).
To P, assign a Gidel number of "P,”. If there exists a recursive function
such that f(n) = "P,” for every #, then the w-rule is said to be constructive
and 3 - 5° is assigned to the whole proof, where e is the Godel number of f,
ie., {e}{n) = "P,". Let 8§ be any logical system. A proof, in the system
obtained from § by adjoining the constructive w-rule to it, is called an
w-proof in 8.

(2) Let S{a) and a << b be primitive recursive predicates such that < is
a well-ordering of {a: S(a)}, whose first element is 0. A number-theoretic
function ¥ is called < --recursive if it is defined by the following scheme
which is a repetition of a previous definition.

(i) fla) = a+ 1.
(ii) Hay, ..., a,) =0.
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(i) flay,. .., ay) = a;(1 < i< n).

(iv) Han ... a,) = glday, .. an), oo, Aglay,. .., a,)),
where g and 4, (1 < ¢ < m) are <C--recursive.
v) 70, ay,..., a,) = glag,. .., a,)
fla+1,ay,...,a,) = Aa, f(a, ay,. .., a,), ag,- . ., a,),

where g and 1 are <--recursive.

(vi) 10, ay,. .., a,) = glag,...,a,)
Ha+ 1, ae,...,a,) = Ma, flx*a, as,. .., a,), 29, .., Ay}, 4o, . ., @),

where g, 4 and v are <C--recursive and

t*(a, ay, . . .

(a, as,...,a,) H 71(a,a....,a,) < a+1,
RS :
0 otherwise.

We shall transform a proof in INN whose end-sequent contains no first order
free variables, into a proof of the same end-sequent in the system with the
constructive w-rule. In proving the consistency of INN in §27 we defined
reductions on a proof of —. This notion, however, can easily be extended to
any proof whose end-sequent has no first order free variables.

DEeFixiTION 30.2. (1) O(INN) = O(w0 + 1, 0?) is the system of ordinal diagrams
used to prove the consistency of INN and < is its well-ordering (namely <(;).

(2) For an ordinal diagram «, and natural number 7, «) is defined by
@9 = o and etV = o # 4.

(3) Foran ordinal diagram g and natural number m, {u, m) =4 (0,0, u $0)™.

By an abuse of notation, we shall use the notations for proofs, ordinal
diagrams and < both for formal objects and their Gdel numbers.

To the sequents in a proof we make the same assignment of ordinal diagrams
as in §27 and we define the ordinal diagram of a proof P to be {u, m), where
p is the ordinal diagram assigned to its end-sequent and # is the number of
first order free variables in its end-piece (denoted m(P)). I the ordinal diagram
of P is less than the ordinal diagram of @, then we write "P" < "Q7, or
simply P < Q.
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Remark. In the definition of a reduction, we may be asked to take, say, a
lowermost inference satisfying a certain condition. Such an inference may not
be uniquely determined; however, we may suppose that the inferences are
Godel-numbered, and then take an inference as required with smallest Godel
number.

TuroreM 30.3. There exists a <-recursive function | such that, for every proof
P in INN whose end sequent contains no first ovder free variable, (" P") is the
Godel number of an w-proof of the end-sequent of P which contains no cut and
no application of mathematical induction or first order N : vight.

Proor. Let P be a proof in INN whose end-sequent contains no first order
free variables. We define reductions #(P) and ¢(7, P) for each ¢ << w and a
transformation f("P") by transfinite induction on the ordinal diagram of P.

1) The end-piece of P contains an application of induction or an explicit
logical inference.

1.1) The end-piece of P contains a first order free variable which is not
used as an eigenvariable. We define #(P) to be the Gédel number of the proof
obtained from P by substituting 0 for each of such first order free variables.
Obviously, 7(P) < P. We define f(P) to be f(r(P)).

1.2) The end-piece of P does not contain a first order free variable which
is not used as an eigenvariable. Let J be a lowermost induction or (explicit)
logical inference. We consider several cases.

1.2.1) J is an induction. Let »(P) be the proof obtained from P by applying
to J the reduction in (2) of §27 and let f(P) be f(#(P)). Then »(P) < P.

1.2.2) J is an explicit logical inference.

1.2.2.1) J 1s not a first order V : right. Since all the cases are treated sim-
ilarly, we consider the case where [ is A : left. Let P be

AT 5A

AANB T 4
Ty = 4q.
We define 7{P) to be the proof
AT 54

some exchanges and weakening
AAaB, I A4 -4

Ty 4 5 A,
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Since #(P) < P, f(r(P)) bas been defined by the induction hypothesis. We
define f{P) to be the following proof

ey {4,

some exchanges
_ ATy~
AA B, FO —’AO
some exchanges and a contraction

Fg —>A0.

We shall refer to this figure as g(f(#(p))).
1.2.2.2) I is a first order V: right. Let P be the following form:

IS4, Al)

J I >4, ¥x A(x)

Ty = .
For each 7 we consider the proof (referred to as ¢(i, P)):
'S A, AG)

some exchanges and a weakening
I' > A@), 4, Vx A(x)

Iy AG), A,

where the proof of I' — A, A(z) is obtained from the proof of the upper
sequent of J by substituting the numeral ¢ for a. Obviously ¢(i, P) < P for
each numeral . Thus f(g(¢, P)) has been defined for each i. We define f(P)
to be the proof

et PY A r s gy a,
some exchanges
oo Ty —dy, A@) ... foreachi
wrule P vy AR)
some exchanges and a contraction
I'y —4,.

2) The endpiece of P contains no explicit logical inference or induction,
but does contain an explicit, logical initial sequent. Then the end-sequent
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of P is obtained from it by some weakenings and exchanges. Let f(P) be one
such proof.

3) The end-piece of P contains no induction or logical inference or explicit,
logical sequent. We define #(P) to be the proof obtained from P by applying
the reductions in (1) through (9) of §27, retaining explicit weakenings. Then
7(P) < P. Since the end sequent is unchanged by the reductions, we define
f(P) to be f(r(P)).

We have identified many notions with their Godel numbers, e.g., a proof
P sometimes means its Gédel number. Thus we can consider the functions 7,
g, g, { to be number-theoretic functions. We can obviously take 7, g and g to
be primitive recursive. Let P(a) be a primitive recursive predicate stating
that a is a proof in INN whose end sequent contains no first order free variables.
Let Py, P;, Py and Py be defined by:

Py(m) <4 P(m) and one of the conditions 1.1), 1.2.1) or 2) applies.

P(m) <=4 P(m) and the end piece of m contains an explicit logical inference,
other than first order V: right, to which the reduction applies.

Py(m) <=4 P(m) and the reduction will apply to a first order V :right
in the end piece of m.

Pa(m) <> —(Polm) v Py(m) v Py(m)).

Obviously, Py, Py, P, and Pj are primitive recursive and in the light of the
consistency proof have the following properties:

Vx 36 (1 < 3 and P,(x));
Po(m) = #(m) < m;
Py(m) = r(m) < m;
Py(m) = ¥n (q(n, m) < m).

With the help of recursion theory we shall show that f is recursive, in fact
<-recursive. In fact,

{e}(r(m)) if Py

{
_ Jelieyrim)))  if - Py(m

(

(

)

fole, m) ~ )
, 3. 55 ewem)  if P, (m)

)

m if Py

where ¢, is the general recursive index An, e, m{e}(g(n, m)) (i.e., an index for
{e}(q(n, m)) as a function of #, e, m; see: Kleene, Introduction to Meta-
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mathematics (North-Holland, Amsterdam, 1967), p. 344. By the recursion
theorem (op. cit., §66), there is a number ¢ such that fy(c, m) ~ {c}(m). Then
define f by f(m) ~ {c}(m), i.e.,

[f(?(m)) it Po(m),
{g(f(f(m))) if Py(m),

fom) =
(m) {3.5S1‘1ca.c,m> if  Py{m),

m otherwise.

Thus f is partial recursive. By transfinite induction on < we can show that
f is totally defined. It is also easy to see that f is <-recursive, that f(P) has
the same end-sequent as P, and that f(P) has no cut or mathematicalinduction
or first order free variable. This completes the proof.

DEeFINITION 30.4. A number-theoretic function f(ay,. . ., a,) is called provably
recursive in INN if the following sequent is provable in INN:

—>Vx; ... Vx, 3y Tole, xq,. .., x,, V),

where T, expresses Kleene’s primitive recursive predicate T, (cf. §13; we can
easily extend the definition in §13 to the case where there are more than
one x) and ¢ is a Godel number of /.

As an application of our technique we can give an alternate proof of a
theorem which was first proved by Kino. This is an analogue to Problem
13.8.

THEOREM 30.5. Let o be a provably recursive function in INN. Then we can
find an ordinal diagram p of O(INN) such that i is <“-recursive, wheve <* is
< restricted to arguments < u.

Proor. Without loss of generality we may assume that ¢ is a function of one
argument. Let ¢ be a Gédel number of ¢ such that the sequent — Vx 3y T4(e, x, ¥)
is provable in INN. Let P be a proof of — 3y T4(e, a, y) whose ordinal diagram
is p. We define P,, to be the proof obtained from P by substituting the
numeral m for a. The process of obtaining P,, from P is primitive recursive.
To each P,, we apply the transformation f of the previous theorem. Then
J(P.,) is a proof without a cut. Since P does not contain any explicit V : right
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for a first order variable (which is the only inference which induces an
application of the w-rule in the transformation), it is easily proved by
transfinite induction that f(P,) does not contain any application of the
w-rule. By checking the proof f(P,) we can find primitive recursively a
numeral # satisfying T'(e, m, #n). Since #n = (m) and f is <*-recursive by
Theorem 30.3, we see that ¢ is <*-recursive.

In defense of the constructive infinite rule we submit the following argument.
Many theorems in first order proof theory follow from the cut-elimination
theorem. This is still true even for higher order proof theory in which the
cut-elimination theorem is proved constructively. However, if one wishes
to consider an extension of arithmetic, it is impossible to eliminate all cuts
due to the fact that the formal proofs contain applications of mathematical
induction. Schiitte has introduced the w-rule and eliminated all applications
of the cut rule and ind in first order arithmetic. This is an excellent idea and
can be considered an improved form of cut-elimination when ind is involved.
However, since the main objective of our investigation is a finite proof, it
is better if we can restrict the w-rule so that the infinite proofs considered are
possessed of some important properties of finite proofs. For this reason we
consider the constructive w-rule.

The adequacy of the constructive w-rule has been proved by Shoenfield
for first order arithmetic, and by Takahashi for second order arithmetic.
Therefore, mathematically the constructive w-rule is strong enough.

§31. Reflection principles

DEFINITION 31.1. (1) Let P be PA augmented with second order free variables
which function as parameters.

(2) For the sake of technical convenience, we restrict the constants in INN
to the individual constants 0, 1; function constants +, -; predicate con-
stants =, <; and we will use V, D and 3 as well as —, A and V as logical
symbols.

(3) A first order formula with second order parameters «y,. .., «,, is called
rudimentary in o, . . ., «,, if every (first order) quantifier is bounded, that is,
quantifiers occur in the form Vx (x < s2...) or Ix (x << s A ...) for a term
s. These formulas will be denoted by Vx < s (...) and 3x << s (...), respec-
tively.
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We assume a standard Godel numbering for expressions and notions
concerning INN. Because of (2) of Definition 31.1, we may assume that the
mathematical initial sequents are those of Definition 9.3. The first purpose
of this section is to prove the reflection principle in the following form.

THeEOREM 31.2 (Takeuti and Yasugi). Let R{x, a, b) be rudimentary in o and
let Ind (O(INN)) be the formula which expresses transfinite tnduction through
O(INN) for the XY-formulas (i.e., the formulas of the form 3x R(x, a), R recursive
without second orvder parameters). Then

Ind,(O(INN)), Prov("Vx 3y R(x, %, ¥) ') — Vx Iy R{«, %, y)

is provable in P, wheve " A" is the Godel number of A and Prov("A") means
that ‘A is provable in INN".

In order to prove this we first observe the following.

ProrosITiON 31.3. Let R(a, o) be rudimentary in o with one first order free
variable a, and let Ix R{x, o) be provable in INN. Then there is a proof of
Ix R(x, «) in INN containing no essential cut or induction. Moreover, this can
be proved with the system of ovdinal diagrams O(INN).

The proposition could be stated for several parameters, «,,. . ., a,, instead
of just one a.

Let S be a sequent 4,,..., 4,, — B;,..., B, of INN. S is said to have the
property (P) if the following conditions are satisfied:

pl. S contains no first order free variable.

p2. Every 4,;, 1 <7 < is rudimentary in «.

p3. Every B,, 1 <{j <{ n is rudimentary in « or is of the form 3x R'(x, «),

where R'(a, «) is rudimentary in a.
We will prove the proposition in the following form:

ProrosITION 31.4. We can define a reduction, using O(INN), tn such a way
that if a sequent S has the property (P) and is provable in INN, then its proof
can be reduced to one with no essential cut oy induction.

Proposition 31.3 is only a special case of this proposition.

PRrOOF. The proof is for the most part the same as in §27. We introduce a new
rule of inference bq, ‘bounded quantification’:
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r

-4, (0 <EDSONA...AR—1<kDSk—1))
' > A Vx (x < kD S(x))

..... ,

bq

where & is a numeral, S() is rudimentary, and in which the formulas
0<hkDSONA...A(R—1<kDSk 1)), Vx (x < k3 S(x))

are called, respectively, the auxiliary formula and the principal formula of
the inference.

This rule is not regarded as one of the logical rules of inference but as a
structural rule. (It is easily seen that the lower sequent of bq can be proved
from its upper sequent without an essential cut or induction.) The ordinal
diagram of the lower sequent of bq is defined to be the same as that of the
upper sequent.

A proof is called a proof with degree if it contains applications of bq only
in its end-piece as explicit inferences and is a proof with degree in the sense
of §27.

We shall define the reduction of a proof P of a sequent satisfying (P).
By a reduction-step we mean a process which decreases the ordinal diagram
of the proof together with one or more preceding auxiliary processes which
preserve the ordinal diagram of the proof. See the proof of Theorem 30.3.

Case 1. P contains an application of explicit logical inference or induction
in its end-piece. We treat the cases according to the bottom most such
inference.

Subcase 1. Induction. As in §27.

Subcase 2. Explicit logical inference other than V : right for a first order
variable. Since all the cases can be treated similarly, we give an example:

I' > A4, F()

' - A, 3Ix F(t)
Ty 5 A,
We reduce this to P’:
I 54, F()

a weakening and some exchanges
I > F@), 4, 3x F(»)

Ty S F(Y), Ay



cH. 6, §31] REFLECTION PRINCIPLES 359

The end-sequent of P’ obviously satisfies (P) and P’ has a smaller ordinal
diagram than that of P, hence P’ can be transformed to a proof without
essential cuts and inductions. Then add some explicit inferences to obtain
Iy — A

Subcase 3. Explicit V: right for a first order variable:

I'SA b < toR(b, %)
I' > A, Vy (y <t2R(v, o)

Ty 54, ¥y (y < 53 Ry, @), Ay,

where R(b, o) Is rudimentary in «, ¢ contains no variable, and s and R’(y, o)
are obtained from ¢ and R(y, «), respectively, by zero or more term-replace-
ments. Let { = » for a numeral »#. If # = 0, hence s = 0, then, P is reduced to

If n > 0, then for each 2 < #n, let P, be

oMk <noRka)

'k <udRRE o), A, Vy(y <n3dR(y a)

I, Sk <nIR'(k &), 4, Vy (y < sDR'(y,a)), s,
where I' — A, k < n 2 R(k, «) is the end-sequent of the proof obtained from
that of I' > A, b < ¢ D R(b, «) by substituting k for b. Every substitution

in Py is assigned the same degree as the corresponding one in P. Then P is
reduced to Py, Pq,..., P,_,, for

pPyP,... P, _
Iy -4, 0<n3R0,0))A(1<#dR (1L, a))A...A(n—1<udR'(n—1,a)
Ty =4, ¥y (y <nDR'(y,a)
Ty —4,Vy (y <s3R'(y, ), 4s,
where A’ denotes A,, Vy (y < s R'(y, a)), Ay, is a proof of the end-sequent
of P.
Case 2. P contains no explicit logical inference or induction but contains

an axiom of the form s = ¢, A(s) — A({} in its end-piece. Do the reduction
as in §27.
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Case 3. P contains no explicit logical inference or induction or axiom of
the form s = ¢, A(s) — A(f), but contains either an explicit logical axiom or
an implicit logical axiom of the form D — D, e.g.,

D —>D
Ir'>AD DI 5A,D, A,
I'IT A, A, D, A,

Ty 54,

where D and D in the right upper sequent of the cut are the descendants of
D’s in the antecedent and succedent of D — D, respectively. If the former,
then the end-sequent of P is obtained from it by weakenings, exchanges and

bq’s. If the latter, and D and D are the same, up to term-replacement, we

apply the corresponding reduction in §27 Otherwise, D and .5 are of the form
pply p g
(S0 < sIS(s)) A -+ A (Spoy < 52 S(5,-1))

and Vy (v < t 2 S’{y)}, respectively, where s = » and { = # for some numeral
n,s; = 1 (i < n) and S’(y) is either S(y) itself or else obtained from it by term
replacements. Then P is reduced to

r'saD
I'>A4,0<ndS0)A...An—1<udS5n—1)
I'>4,Vy (y <n2S(y))

T IT > A, Ay, D, A,

bq

Ty 5 4,

Case 4. Elimination of weakenings in the end-piece of P is defined as usual.
If the last inference of a proof Q is a bq, say

0 Qo {I’A 0O <EDSO) A...A(k—1<EDSE—1)
T A, Yy <k Sy

*

then the definition goes as follows.
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If QF is I'* - A*, then Q* is QF. If QF is

I* A% (0 < E3SO) A ... A (E—1 <hoSE— 1)),

then Q¥ is
2
I* > 4% Yy (y <k S(y)

Case 5. In the following we assume that the end-piece does not contain any
logical inference, induction, initial sequent other than mathematical initial
sequents or weakening, while it may contain some applications of bq. We may
also assume that the proof is different from its end-piece, for if the entire
proof is the end-piece, then the end-sequent is provable from the mathematical
initial sequents by bq, exchanges, contractions and non-essential cuts, and
hence bq can be eliminated without use of an essential cut or induction. The
existence of an essential cut and the essential reduction are carried out as
usual, since applications of bq are all explicit.

This completes the proof of the proposition.

We consider an arithmetization of INN in P. Let us introduce the following
notational conventions:

Pf("P") for “P is a proof in INN”;

Prov(" P, "S7) for “P is a proof of a sequent S”’;

Prov("S™) for ““S is provable’’;

Prov("A") for “Prov(" > 47)";

Pf*("P") for “P is a proof without an essential cut or induction”;

Prov*("P", "S™") for “P is a proof of S without an essential cut or induc-
tion"’;

Prov*("S7) for ‘S is provable without an essential cut or induction”;

Prov¥("A™) for “Prov¥(" - A™)".

It should be noted that under the assumption of this section INN is
axiomatizable, i.e., the set of the schemata for mathematical initial sequents
Is finite.

ProposiTioN 31.5. Let R(a, «) be rudimentary tn o. Then

Ind,;(O(INN)), Prov("3y R(y, )" ) — Prov*("3y R(y, «)")

1s provable in P.
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Proo¥F. This is proved by arithmetization of the proof of Proposition 31.3.
We shall give only the outline of the proof that Ind;(O(INN)) is adequate.

First let us introduce some notational conventions. Assume that p denotes
the Godel number of a proof P in INN. Then

ends(P) is the Godel number of the end-sequent of P;

Q(p) is true if and only if the end-sequent of P has the property (P);

C(p) is true if and only if P is a proof which has no essential cut or induction;

4(P) is defined by 6(p) = o(p) # 0P, where o(p) is the ordinal diagram
of P and 071 is as defined in Definition 30.2 (2). Note that 4{p) is an ordinal
diagram of O(INN) and all these predicates and functions are primitive
recursive.

Now from the proof of Proposition 31.4, we can define a primitive recursive
function 7 as follows. Let p be the Godel number of a proof P. If C{p) v ~Q{(P},
then define #(p) = p. If =C(p) A Q(p), define #(p) to be the Godel number of
the resulting proof of the reduction of P. Then 7 is primitive recursive and
satisfies the following.

1) 6(r(p)) < o(p) it =C(p) A Q(P).

V2
2) o(r(p)) = o(p) if C(p).
Define #(a, b) by

’7(0’ p) = p; 77(72 + 1, j)) = 7(’7(”’) p))

Then #(a, b) is primitive recursive. Finally, define
D < g g 0(p) < 0(g).

Then <- is a primitive recursive well-ordering of the natural numbers.
Furthermore, the order type of < is that of O(INN). So transfinite induction
can be applied to the ordering <<+, with induction formula Q(p) 2 In C(r(n, )),
or equivalently, 3n (Q(p) D C{r(n, $))), which is 2¢.

DerintTION 31.6. (1) A formula of INN is said to have the property (Q) if it
contains no second order quantifiers or first order free variables.

For every formula 4 having the property (QQ) we define the subformulas
of A as follows: A is a subformula of 4; if B A C is a subformula of A4 then
so are B and C. If —C is a subformula of A then so is C; if Vx B(x) is a sub-
formula of 4, then so is B(x) for every numeral ». Evidently, every sub-
formula of 4 has the property (Q).
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(2) We can give a truth-definition T, for the subformulas of 4 and also
for sequents consisting only of such subformulas. The truth definition is an
arithmetical formula with second order parameters (i.e., free variables).

ProprosITION 31.7. Let A be a formula having the property (Q). Then the following
are provable in P.

(1) T ("B Yo =T ("B} for every subformula B of A.

2) TA " Bv C e T ("B v Tu("C") for every pair B and C subformulas
of A.

(3) To("Vx,; B(x)) ) e Yx T (" B(n(x))") for every subformula ¥x; B(x) of
A; here n(a) denotes the a™ numeral.

(4) T,("B(n(by),. .., n(®)N") — B(by,. .., by, where B(O,. .., 0) is an arbi-
trary subformula of A such that oviginally B(y1,. .., v.) for some bound variables
Y1+ .., Vi occurred in A.

(5) P4(a) A Prov*(a) — T y(a), where P 4(a) means “‘a is (the Godel number

of) a sequent consisting of subformulas of A",

Proor. (1) through (4) can be proved in the same manner as for the truth
definition of PA.

(5) Assume P 4(a) and Prov#(a), and let P be a proof such that Prov#(" P, a).
We can show by induction on the number of inferences in P, using (1)-(4),
that

T T(nley).. .., nlew) —Alnler), ., nle)")

is provable in P, where n(c) denotes the ¢ numeral and I" — 4 is a sequent
in P

ProoF oF THEOREM 31.2. Take Vx 3y R(x, v, «) as the A in Proposition 31.7
and let T(a) denote T 4(a). Then

(1) Prov("Vx 3y R(x, v, «) ') —VYa Prov(" 3y R(n(a), y,«) ') is provable in P.

By Proposition 31.5,

(2) Ind,(ONN)), Prov(" 3y R(n(a), v, ) ") — Prov*(" 3y R(n(a), y, «) '} is
provable in P for any free variable a.

By virtue of Proposition 31.7 the following are provable in P:

(3) Prov¥*("3y R(n(a), y, «)”) — T(" 3y R(n{a), y, «) "), since
P,("3y R(n(a), v, «)") is provable in P;

(4) Ya T("3y Rin(a), y, @)") —~T("Vx Iy R(x, ,9)7);

(5) T("V¥x 3y R{x, v, ) ') — Vx Iy R{x, y, ).

The theorem follows from (1)-(5).
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We can prove the uniform reflection principle by modifying the proof of
Theorem 31.2.

THEOREM 31.8. In P:

Ind,(O(INN)) — Vm (Prov("Vx 3y R(x, ¥, o, #(m))") D Vx Iy R(x, ¥, «, m))

Proor. We first note that a modified version of Proposition 31.5:
Ind,;(O(INN)), Prov(" 3x R'(x, «, #(m)") — Prov*("3x R'(x, «, n(m))"),

is provable, by replacing "3x R(x, o) by "3x R'(x, «, n(m))" in Proposition
31.5. Taking Vz Vx 3y R'(%, y, «, 2) as A in Proposition 31.7, it follows that
(1)~(5) in the proof of Theorem 31.2 are provable with "Vx 3y R’'(x, v, «, #(m))”
instead of “Vx 3y R(x, v, «)". With this observation, the theorem follows
easily.

Now let B(a) be an arbitrary formula of P of the form

(*) 3xl Vyl e axn Vyn BO(“: X1, Yoo o or Xns yn)y
where Byla, aq, by,. .., a,, b,) 1s a quantifier-free formula whose only free
variables are «, aq, by,.. ., a,, b,.

The subformulas of B(«) are defined as in Definition 31.6.

ProposiTioN 31.9. Given B(a) which satisfies (*), we can define the truth
definition Ty for subformulas of Bla) in P with a 22 -formula having the
second order parameter o. It 1is obvious that Ty, can be extended to sequents
consisting of some subformulas of B(e).

DEerFiniTION 31.10. Let B{a) be a formula satisfying (*). We define the condition
& B as follows; let S denote the Godel number of the sequent S. We use
quotes to mean that the quoted sentence is actually an arithmetized formula.

F1(Ba); "S7): “Each formula of S is a subformula of B(a)".

F5("S7): “Each formula in the antecedent of S is quantifier-free’.

F3(Bla); "S7): Tp("S7).

L "ST): F1(Ba); ST A Fa(7ST) A Fy(Bla); “S7).

From now throughout, B(a) shall be arbitrary but fixed so that it satisfies
{*). For simplicity we shall abbreviate T z(,) and & 5, as Tand &, respectively.
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ProrosiTioN 31.11.
Indy(O(INN)), Prov(p, "B(x)"), =T("B(x) ') — 3¢ < p (Pf*(g) A L(ends(q)))

is P-provable, where <C- is the well-ordering of natural numbers defined in the
proof of Proposition 31.5 and Indy(O(INN)) 1s the schema which allows transfinite
induction along the order <- applied to Xy, . ,-formulas.

The proposition is an immediate consequence of the following:
(**) Ind,(O(INN)), #("S7), Prov(p, "S7) — 3¢ <- p (Pf*(g) A F(ends(q))) is
P-provable.
Therefore, we shall prove (**). It is proved by applying Ind,(O(INN)) to the
following formula:

(1) (ends(p)) » P(p) 2 3¢ < p (PI*(g) A F(ends(q))).

Since T and & are in X3, and IT},, respectively, the induction formula is in
29+, with the parameter a.
It is now obvious that in order to prove (1) it suffices to show

(2) S(ends(p)) A Pl(p) » =PI*(p) 2 3 (¥ (ends(q)) A Pi*(g) A ¢ <- 2),

for if Pf*(p), then we may take p itself as ¢ in (1).

Assume & (ends(p)) A Pi(p) A =Pf*(p) and find a ¢ which satisfies (2).
This is done in the same manner as in the consistency proofs of INN, although,
strictly speaking, the whole argument is developed in the arithmetized
language.

Let P be the proof with Gddel number .

1) Preparations for reduction as in §27 are applicable.

2) If there is an explicit logical‘inference or an induction in the end-piece
of P, then the proof is carried out according to the bottom most such inference.

2.1) The last such inference is a first order 3 : right. Let P be of the form

F—» A, Vy; oo 3%, Vy, Bolo, by, S1,e o b, Yir o o -y Xy Vi)
I = A, 3%, Vy, ... 3%, Yy, Bolot, £1, 81, +, %5, Yire - oy %y Vi)

J7 Ay, I Vy, oo 3, Vya Bolo, My, byye oo X iy ooy Xy Vi), Ao

Notice that #; is a closed term which consists of 0, 1, + and - . Therefore,
¢; can be computed and is equal to a numeral #,. P is reduced to the following.
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I —>A, Vyt PN axn Vyn BO((X, tl: Stye e 178 Yire s Xs y")

P _"Vyz e 3x'n Vy'n BO(“: tl’ S1ye v, My, Vige oo, Xy yn)’ A’
x; Yy .. 3%, Vv, Bola, by, St o0 Xiy YVise v o0 Xpo Vi)

H—-) Vyz e axn Vy'n BO(a, my, ll,. e My Vi ooy Xy yn)’ Al’
I, Yy, o 3x, Yy, Bola, my, Ly, o0, Xy Yise ooy Xy V), Ao

~T(3x; Vy; ... Ix, Yy, Bole, my, b, o, % Vi ooy Xy V) 7)
implies
=T("Vy; ... 3, Vv, Bolo, my, Do, 1y, Yoy Xy V)7 ).

2.2) The last inference which satisfies the condition is a first order V:right.
Let P be of the form

TS, ey - 30, V90 Bofoty by 1, 0 @, Ko %y )
f —>4, Vy; 3,44 . 3%, Yy, Bola, B, St 0oy Yoo Zagls e - -5 Xy V)

H.;‘AI, Vo Wi oo 30, Yy, Bolo, My, 4,0, ¥iy Xig, -+ oy %ne V), Ag
This is reduced to
. ()
P —»A w1 - - - 34 V0 Bolow b1, 81, o0 Ly Xip1y - o, Xy Vi)

T - 3x,q .. 3%, Yy, Bolo, by, $y,- o0 by Xats- - o) %, Y0), 4,
Yy, iy - .- 3%, Yy, Bol, 81, S1,- - <0 Yis it - o5 Xny V)

H“’ 3xi+1 P axn Vyn Bo(a, ml! 11,. . lil le,. oy Xy, y"), Al’
Vyi 3xi—f—l tee Vy'n BO(OC» my, zl:' s Yo Xt o o5 Xy yn), A2!

where (/;) means the substitution of the numeral /; for the free variable a in
the proof and {; is chosen so that

T("Vauy - Vo, 3y, —Bolo, my, by, o by Xits v v X Vi) )
holds, when
=T( VY Ixipy - I Yy, Bolo, my, by ooy iy K- - -, Xy ya) ')
is assumed, or
Iy T("Vx,q ... Y%, 3Ya —Bolot, M1, by, oo, 1Y), Fitre e oy py V) )

where #(y) is the y'* numeral.
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2.3) All other cases of logical inferences are proved easily. By virtue of
S 1(Blx), ends(p)) and F,(ends(p)), there is no first order V : left and no first
order 3 : left.

2.4) The last inference which satisfies the condition is an ind. This case is
proved as in §27.

3) Now we may assume that there is no explicit logical inference or induction
in the end-piece of P. Hereafter we can follow exactly the consistency proof
of §27. Thus we have proved (**).

ProposiTION 31.12. Indy(O(INN)), Prov( " B(«) '), =T("B(a)") — s P-prov-
able, where B(a) satisfies {*).

Proor. From the definition of T, Pf*(g) — T(ends(g)). But this contradicts
F3(ends(g), B(a)). Thus the proposition follows from Proposition 31.11.

Now we can present another form of the reflection principle for INN.
THEOREM 31.13 (Takeuti and Yasugi).
Indy(O(INN)), Prov("A(«) ") — 4 ()

is P-provable for an arbitrary arithmetical sentence A(a) with a second ovder
parameter o, where Indy(O(INN)Y) applies to the formulas of P, that is, to the
formulas arithmetical in some second order pavameters.

Proor. It is well known that

(1) A(e) <> B(a)

is P-provable for some B(«) which satisfies (*).

2) Indy(O(INN)), Prov("B(®)") = T ( B(2)")
and

3) Tpw("B@)") — Ba)

are P-provable from Propositions 31.12 and 31.7, respectively. It is also known
that

(4) Prov("A(a)" )<= Prov("B(®) ")
is P-provable. Then (1)-(4) yields the theorem.

Here again we can prove the uniform reflection principle.
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TueOREM 31.14.

Indy(O(INN)) — Ve (Prov("A(«, n(m))") 2 A(x, m)),
where Indy(O(INN)) applies to the formulas of P.
ProoF. This is proved with modifications similar to those that have been
carried out in the proof of Theorem 31.8: First apply (**) in the proof of
Proposition 31.11 to "B(a, n(m))" in the place of "B(a)'. Then take Vz B(«, 2)

as B(a) and define the truth definition for B(a). The rest of the proof of
Theorem 31.13 goes through after this alteration.

We now present another formulation of the reflection principle for the
formulas V¢ A(¢), where A(«) is arithmetical in o. We shall state it in the
form of the uniform reflection principle.

THEOREM 31.15. Let A, a) be arithmetical in o and let o and a be the only free
variables of A. Then

(1) Ind’(O(INN)), Prov(" V¢ A(¢, n(a))™) — Ve A($, a)
is INN-provable, where Ind’ applies to Xs-formulas with a second order param-

eter.

Proor. First, with a slight extension of the language of INN as specified in
Definition 31.1, there exists a quantifier-free formula R(«, 8, ¢, 4) for which

(2) Ve A($, a) > Vo Ix Vy R(¢, 7, ¥, a)
is INN-provable. Then (2) implies that
(3) Prov( Ve A(é, n(a))") <> Prov("Vé Ix Vy R(¢, x, ¥, n(a)) )

is INN-provable. Finally, (2) and (3) guarantee that, in order to prove (1), we
only have to prove

(4) Ind’(O(INN)), Prov("3x Vy R(«, %, ¥, #(a))") — 3x Vy R(«, x, v, a)
in INN. But (4) follows from
(5) Ind’(O(INN)), Prov("3xVy R(a, x, v, n(a)) "), T("IxVyR(a, %, y,n(a)) ") -,
which is proved like Proposition 31.11.
Notice that T is the truth definition for 3x Yy R(«, %, ¥, 4) so that we may

assume it is a Xy-formula with the parameter «. But this implies that
Ind’(O(INN)) applies to X9-formulas with the parameter «.
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