


STRUCTURAL PROOF THEORY

Structural proof theory is a branch of logic that studies the general structure
and properties of logical and mathematical proofs. This book is both a concise
introduction to the central results and methods of structural proof theory and a
work of research that will be of interest to specialists. The book is designed to be
used by students of philosophy, mathematics, and computer science.

The book contains a wealth of new results on proof-theoretical systems, includ-
ing extensions of such systems from logic to mathematics and on the connection
between the two main forms of structural proof theory - natural deduction and
sequent calculus. The authors emphasize the computational content of logical
results.

A special feature of the volume is a computerized system for developing proofs
interactively, downloadable from the web and regularly updated.

Sara Negri is Docent of Logic at the University of Helsinki.

Jan von Plato is Professor of Philosophy at the University of Helsinki and author
of the successful Creating Modern Probability (Cambridge, 1994).





STRUCTURAL
PROOF THEORY

SARA N E G R I

J A N VON PLATO

With an Appendix by Aarne Ranta

CAMBRIDGE
UNIVERSITY PRESS



CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www. Cambridge. org
Information on this title: www.cambridge.org/9780521793070

© Sara Negri & Jan von Plato 2001

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of the copyright holder.

First published 2001
This digitally printed version 2008

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Negri, Sara, 1967-
Structural proof theory / Sara Negri, Jan von Plato.

p. cm.
Includes bibliographical references.

ISBN 0-521-79307-6
1. Proof theory. I. von Plato, Jan. II. Title.

QA9.54. N44 2001
511.3 -dc21 00-040327

ISBN 978-0-521-79307-0 hardback
ISBN 978-0-521-06842-0 paperback



Contents

PREFACE page ix

INTRODUCTION xi

Structural proof theory xi
Use of this book in teaching xiv
What is new in this book? xvi

1. FROM NATURAL DEDUCTION TO SEQUENT CALCULUS 1

1.1. Logical systems 1
1.2. Natural deduction 5
1.3. From natural deduction to sequent calculus 13
1.4. The structure of proofs 20
Notes to Chapter 1 23

2. SEQUENT CALCULUS FOR INTUITIONISTIC LOGIC 25

2.1. Constructive reasoning 25
2.2. Intuitionistic sequent calculus 28
2.3. Proof methods for admissibility 30
2.4. Admissibility of contraction and cut 33
2.5. Some consequences of cut elimination 40
Notes to Chapter 2 46

3. SEQUENT CALCULUS FOR CLASSICAL LOGIC 47

3.1. An invertible classical calculus 48
3.2. Admissibility of structural rules 53
3.3. Completeness 58
Notes to Chapter 3 60

4. THE QUANTIFIERS 61

4.1. Quantifiers in natural deduction and in sequent calculus 61
4.2. Admissibility of structural rules 70



vi CONTENTS

4.3. Applications of cut elimination 76
4.4. Completeness of classical predicate logic 81
Notes to Chapter 4 86

5. VARIANTS OF SEQUENT CALCULI 87

5.1. Sequent calculi with independent contexts 87
5.2. Sequent calculi in natural deduction style 98
5.3. An intuitionistic multisuccedent calculus 108
5.4. A classical single succedent calculus 114
5.5. A terminating intuitionistic calculus 122
Notes to Chapter 5 124

6. STRUCTURAL PROOF ANALYSIS OF AXIOMATIC THEORIES 126

6.1. From axioms to rules 126
6.2. Admissibility of structural rules 131
6.3. Four approaches to extension by axioms 134
6.4. Properties of cut-free derivations 136
6.5. Predicate logic with equality 138
6.6. Application to axiomatic systems 141
Notes to Chapter 6 154

7. INTERMEDIATE LOGICAL SYSTEMS 156

7.1. A sequent calculus for the weak law of excluded middle 157
7.2. A sequent calculus for stable logic 158
7.3. Sequent calculi for Dummett logic 160
Notes to Chapter 7 164

8. BACK TO NATURAL DEDUCTION 165

8.1. Natural deduction with general elimination rules 166
8.2. Translation from sequent calculus to natural deduction 172
8.3. Translation from natural deduction to sequent calculus 179
8.4. Derivations with cuts and non-normal derivations 185
8.5. The structure of normal derivations 189
8.6. Classical natural deduction for propositional logic 202
Notes to Chapter 8 208

CONCLUSION: DIVERSITY AND UNITY IN STRUCTURAL PROOF THEORY 211

Comparing sequent calculus and natural deduction 211
A uniform logical calculus 213

APPENDIX A: SIMPLE TYPE THEORY AND CATEGORIAL GRAMMAR 219

A.I. Simple type theory 219
A.2. Categorial grammar for logical languages 221
Notes to Appendix A 224



CONTENTS vii

APPENDIX B: PROOF THEORY AND CONSTRUCTIVE TYPE THEORY 225

B.I. Lower-level type theory 225
B.2. Higher-level type theory 230
B.3. Type systems 232
Notes to Appendix B 234

APPENDIX C: PESCA - A PROOF EDITOR FOR SEQUENT CALCULUS 235
(by Aarne Ranta)

C.I. Introduction 235
C.2. Two example sessions 236
C.3. Some commands 239
C.4. Axiom files 241
C.5. On the implementation 242
Notes to Appendix C 243
Electronic references 243

BIBLIOGRAPHY 245

AUTHOR INDEX 251

SUBJECT INDEX 253

INDEX OF LOGICAL SYSTEMS 257





Preface

This book grew out of our fascination with the contraction-free sequent calculi.
The first part, Chapters 1 to 4, is an introduction to intuitionistic and classical
predicate logic as based on such calculi. The second part, Chapters 5 to 8, mainly
presents work of our own that exploits the control over proofs made possible by
the contraction-free calculi.

The first of the authors got her initial training in structural proof theory in a
course given by Prof. Anne Troelstra in Amsterdam in 1992. The second author
studied logic in the seventies, when by surprise Dag Prawitz mailed a copy of
his book Natural Deduction. We thank them both for these intellectual stimuli,
brought to fruition by the second author with a considerable delay. Since 1997,
collaboration of the first author with Roy Dyckhoff has led us to the forefront of
research in sequent calculi.

Dirk van Dalen, Roy Dyckhoff, and Glenn Shafer read all or most of a first
version of the text. Other colleagues have commented on the manuscript or papers
and talks on which part of the book builds, including Felix Joachimski, Petri
Maenpaa, Per Martin-L6f, Ralph Matthes, Grigori Mints, Enrico Moriconi, Dag
Prawitz, Anne Troelstra, Sergei Tupailo, Rene Vestergaard, and students from our
courses, Raul Hakli in particular; we thank them all.

Aarne Ranta joined our book project in the spring of 1999, implementing
in a short time a proof editor for sequent calculus. He also wrote an appendix
describing the proof editor.

Little Daniel was with us from the very first day when the writing began. To
him this book is dedicated.

Sara Negri
Jan von Plato
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Introduction

STRUCTURAL PROOF THEORY

The idea of mathematical proof is very old, even if precise principles of proof have
been laid down during only the past hundred years or so. Proof theory was first
based on axiomatic systems with just one or two rules of inference. Such systems
can be useful as formal representations of what is provable, but the actual finding of
proofs in axiomatic systems is next to impossible. A proof begins with instances of
the axioms, but there is no systematic way of finding out what these instances
should be. Axiomatic proof theory was initiated by David Hilbert, whose aim was
to use it in the study of the consistency, mutual independence, and completeness
of axiomatic systems of mathematics.

Structural proof theory studies the general structure and properties of math-
ematical proofs. It was discovered by Gerhard Gentzen (1909-1945) in the first
years of the 1930s and presented in his doctoral thesis Untersuchungen iiber das
logische Schliessen in 1933. In his thesis, Gentzen gives the two main formula-
tions of systems of logical rules, natural deduction and sequent calculus. The
first aims at a close correspondence with the way theorems are proved in practice;
the latter was the formulation through which Gentzen found his main result, often
referred to as Gentzen's "Hauptsatz." It says that proofs can be transformed into
a certain "cut-free" form, and from this form general conclusions about proofs
can be made, such as the consistency of the system of rules.

The years when Gentzen began his researches were marked by one great
but puzzling discovery, Godel's incompleteness theorem for arithmetic in 1931:
Known principles of proof are not sufficient for deriving all of arithmetic; more-
over, no single system of axioms and rules can be sufficient. Gentzen's studies
of the proof theory of arithmetic led to ordinal proof theory, the general task of
which is to study the deductive strength of formal systems containing infinitistic
principles of proof. This is a part of proof theory we shall not discuss.

Of the two forms of structural proof theory that Gentzen gave in his doctoral
thesis, natural deduction has remained remarkably stable in its treatment of rules
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xii INTRODUCTION

of proof. Sequent calculus, instead, has been developed in various directions.
One line leads from Gentzen through Ketonen, Kleene, Dragalin, and Troelstra to
what are known as contraction-free systems of sequent calculus. Each of these
logicians added some essential discovery, until a gem emerged. What it is can be
only intimated at this stage: There is a way of organizing the principles of proof
so that one can start from the theorem to be proved, then analyze it into simpler
parts in a guided way. The gem is this "guided way"; namely, if one lays down
what the last rule of inference was, the premisses of that last step are uniquely
determined. Next, one goes on analyzing these premisses, and so on. Gentzen's
basic discovery is reformulated as stating that a proof can be so organized that
the premisses of each step of inference are always simpler than its conclusion.
(To be more accurate, it can also happen that the premisses are not more compli-
cated than the conclusion.)

Given a purported theorem, the question is whether it is provable or unprovable.
In the first case, the task is to find a proof. In the second case, the task is to show
that no proof can exist. How can we, then, prove unprovability? The possibility
of such proofs depends crucially on having the right kind of calculus, and these
proofs can take various forms: In the simplest cases we go through all the rules
and find that none of them has a conclusion of the form of the claimed theorem.
For certain classes of theorems, we can show that it makes no difference in what
order we analyze the theorem to be proved. Each step of analysis leads to simpler
premisses and therefore the process stops. From the way it stops we can decide
if the conclusion really is a theorem or not. In other cases, it can happen that
the premisses are at least as complicated as the conclusion, and we could go on
indefinitely trying to find a proof. Some ingenious discovery is usually needed to
prove unprovability, say, some analyses stop without giving a proof, and we are
able to show that all of the remaining alternatives never stop and thus never give
a proof.

One line of division in proof theory concerns the methods used in the study of
the structure of proofs. In his original proof-theoretical program, Hilbert aimed
at an "absolutely reliable" proof of consistency for formalized mathematics. The
methods he thought acceptable had to be finitary, but the goal was shown to
be unattainable already for arithmetic by Godel's results. Later, parts of proof
theory remained reductive, using different constructive principles, whereas other
parts have studied proofs by unrestricted means. Most of our methods can be
classified as reductive, but the reasons for restricted methods do not depend on
arguments such as reliability. It is rather that we want results about systems of
formal proof to have a computational significance. Thus it would not be sufficient
to show by unrestricted means the mere existence of proofs with some desirable
property. Instead, a constructive method for actually transforming any given proof
so that it has the property is sought. From this point of view, our treatment of
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structural proof theory belongs, with a few exceptions, to what can be described
as computational proof theory.

Since 1970, a branch of proof theory known as constructive type theory has
been developed. A theorem typically states that a certain claim holds under given
assumptions. The basic idea of type theory is that proofs are functions that convert
any proofs of the assumptions of a theorem into a proof of its claim. A connec-
tion to computer science is established: In the latter, formal languages have been
developed for constructing functions (programs) that act in a specified way on
their input, but there has been no formal language for expressing what this spec-
ified way, the program specification, is. Logical languages, in turn, are suitable
for expressing such specifications, but they have totally lacked a formalism for
constructing functions that effect the task expressed by the specification. Con-
structive type theory unites specification language and programming language in
a unified formalism in which the task of verifying the correctness of a program is
the same as the logical task of controlling the correctness of a formal proof. We
do not cover constructive type theory in detail, as another book would be needed
for that, but some of the basic ideas and their connection to natural deduction and
normalization procedures are explained in Appendix B.

At present, there are many projects in the territory between logic, mathematics,
and computer science that aim at fully formalizing mathematical proofs. These
projects use computer implementations of proof editors for the interactive devel-
opment of formal proofs, and it cannot be said what all the things are that could
come out of such projects. It has been observed that even the most detailed in-
formal proofs easily contain gaps and cannot be routinely completed into formal
proofs. More importantly, one finds imprecision in the conceptual foundation. The
most optimistic researchers find that formalized proofs will become the standard
in mathematics some day, but experience has shown formalization beyond the
obvious results to be time-consuming. At present, proof editors are still far from
being practical tools for the mathematician. If they gain importance in mathemat-
ics, it will be due to a change in emphasis through the development of computer
science and through the interest in the computational content of mathematical
theories. On the other hand, proof editors have been used for program verification
even with industrial applications for some years by now. Such applications are
bound to increase through the critical importance of program correctness.

Gentzen's structural proof theory has achieved perfection in pure logic, the
predicate calculus. Intuitionistic natural deduction and classical sequent calculus
are by now mastered, but the extension of this mastery beyond pure logic has been
limited. A new approach that we exploit is to formulate mathematical theories as
systems of nonlogical rules added to a suitable sequent calculus. As examples
of proof analyses, theories of order, lattice theory, and plane affine geometry are
treated. These examples indicate a way to an emerging field of study that could
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be called proof theory in mathematics. It is interesting to note that a large part
of abstract mathematical reasoning seems to be finitary, thus not requiring any
strong transfinite methods in proof analysis.

In the rest of this Introduction we comment on use of this book in teaching
proof theory and what is new in it.

U S E OF THIS BOOK IN TEACHING

Chapters 1-4 are based on courses in proof theory we have given at the University
of Helsinki. The main objective of these courses was to give to the students a con-
cise introduction to contraction-free intuitionistic and classical sequent calculi.
The first author has also given a more specialized course on natural deduction,
based on Chapter 1, the first two sections of Chapter 5, Chapter 8, and Appendices
AandB.

The presentation is self-contained and the book should be readable without any
previous knowledge of logic. Some familiarity with the topic, as in Van Dalen's
Logic and Structure, will make the task less demanding.

Chapter 1 starts with general observations about logical languages and rules of
inference. In a first version, we had defined logical languages through categorial
grammars, but this was judged too difficult by most colleagues who read the text.
With some reluctance, the categorial grammar approach was moved to Appendix
A. Some traces of the definition of logical languages through an abstract syntax
remained in the first section of Chapter 1, though.

The introduction rules of natural deduction are explained through the compu-
tational semantics of intuitionistic logic. A generalization of the inversion prin-
ciple, to the effect that "whatever follows from the direct grounds for deriving
a proposition, must follow from that proposition," determines the corresponding
elimination rules. By the inversion principle, three rules, those of conjunction
elimination, implication elimination, and universal elimination, obtain a form
more general than the standard natural deduction rules. Using these general elim-
ination rules, we are able to introduce sequent calculus rules as formalizations of
the derivability relation in natural deduction. Contraction-free intuitionistic and
classical sequent calculi are treated in detail in Chapters 2 and 3. These chapters
work as a concise introduction to the central methods and general results of struc-
tural proof theory. The basic parts of structural proof theory use combinatorial
reasoning and elementary induction on formula length, height of derivation, and
so on, therefore perhaps giving an impression of easiness on the newcomer. The
main difficulty, witnessed by the long development of structural proof theory, is
to find the right rules. The first part of our text shows in what order structural
proof theory is built up once those rules have been found. The second part of the



INTRODUCTION XV

book, Chapters 5-8, gives ample further illustration of the methodology. There
is usually a large number of details, and a delicate order is required for putting
things together, and mistakes happen. For such reasons, our first cut elimination
theorem, in Chapter 2, considers, to our knowledge, absolutely all cases, even at
the expense of perhaps being a bit pedantic.

In Chapter 3, following a suggestion of Gentzen, multisuccedent sequents are
presented as a natural generalization of single succedent sequents into sequents
with several (classical) open cases in the succedent. We find it important for
students to avoid the denotational reading of sequents in favor of one in terms of
formal proofs.

Chapter 4 contains a systematic treatment of quantifier rules in sequent calculi,
again introduced through natural deduction and the general inversion principle.

Connected to the book is an interactive proof editor for developing formal
derivations in sequent calculi. The system has been implemented by Aarne Ranta
in the functional programming language Haskell. A description of the system, with
instructions on how to access and use it, is given in Appendix C written by Ranta.

The proof editor serves several purposes: First, it makes the development of
formal derivations in sequent calculi less tedious, thereby helping the student. It
also checks the formal correctness of derivations. The user can give axiomatic
systems to the editor that converts them into systems of nonlogical rules of in-
ference by which the logical sequent calculi are extended. Formal derivations are
quite feasible to develop in those extensions we have so far studied. Even though
the extensions need not permit a terminating proof search, the user will soon
notice how neatly the search space can become limited, often into one or two
applicable rules only, or no rules at all, which establishes underivability.

The proof editor produces provably correct ETgX code, with the advantage that
the rewriting of parts of sequents is not needed. The editor is in its early stages;
more is hoped to be included in later releases, including translation algorithms
between various calculi, cut elimination algorithms, a natural language interface,
and so on.

Exercises, mostly to Chapters 1-4 and 8, can be found in the book's home
page (see p. 243). We welcome suggestions for further exercises. Basic exercises
are just derivations of formulas in the various calculi. Other exercises consist in
filling in details of proofs of theorems. Another type of task, for those conversant
with the Haskell language, is to formalize theorems about sequent calculi. Since
these theorems are, almost without exception, proved constructively in the book,
their formalizations give proof-theoretical algorithms for the transformation of
proofs. An example is the proof of Glivenko's theorem in Section 5.4.

Through the use of contraction-free sequent calculi, it is possible for students
to find proofs of results that were published as research results only a few decades
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ago, say, Harrop's theorem in Section 2.5. This should give some idea of what a
powerful tool is being put into their hands.

Finally, a description of what is new in this book (for the expert, mostly).

W H A T IS NEW IN THIS BOOK?

Chapter 1 contains a generalization of the inversion principle of Gentzen and
Prawitz, one that leads to elimination rules that are more general than the usual
ones. Contrary to earlier inversion principles that only justify the elimination
rules, our principle actually determines what the elimination rules corresponding
to given introduction rules should be. The elimination rules are all of the form of
disjunction elimination, with an arbitrary consequence.

Starting from natural deduction with general elimination rules, the rules of
sequent calculus are presented in Section 1.3 as straightforward formalizations
of the derivability relation of natural deduction.

Section 3.3 gives a proof of completeness of the contraction-free invertible
sequent calculus for classical propositional logic known as G3c-calculus in the
literature. The proof is an elaboration of Ketonen's original 1944 proof. It uses a
novel notion of validity defined as a negative concept, the inexistence of a refuting
valuation.

Chapter 4 contains proofs of height-preserving a-conversion and the substi-
tution lemma that we have not found done elsewhere in such detail. Section 4.4
gives a proof of completeness of classical predicate calculus worked out for the
definition of validity as a negative notion.

Chapter 5 studies various sequent calculi, most of which are new to the lit-
erature. Section 5.1 gives a sequent calculus with independent contexts in all
two-premiss rules and explicit rules of weakening and contraction. The calculus
is motivated by the independent treatment of assumptions in natural deduction.
A classical multisuccedent version is also given. Proofs of cut elimination for
these calculi are given that do not use Gentzen's mix rule, or rule of multicut. In
Section 5.2, the calculi of Section 5.1 are modified so that weakening and con-
traction are treated implicitly as in natural deduction. Section 5.4 gives a single
succedent calculus for classical propositional logic based on a formulation of the
law of excluded middle as a sequent calculus rule. A proof of Glivenko's theorem
is given through an explicit proof transformation. It is shown that in the derivation
of a sequent F => C, the rule can be restricted to atoms of C, from which a full
subformula property follows.

Chapter 6 studies extensions of logical sequent calculi by nonlogical rules
corresponding to axioms. Contrary to widespread belief, it is possible to add
axioms to sequent calculus as rules of a suitable form while maintaining the
eliminability of cut. These extensions have no structural rules, which gives a
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strong control over the structure of possible derivations. As a first application, a
formulation of predicate calculus with equality as a cut-free system of rules is
given. It is proved through an explicit proof transformation that predicate logic
with equality is conservative over predicate logic. It is essential for the proof
that no cuts, even on atoms, be permitted. In Section 6.6, examples of structural
proof analysis in mathematics are given. Topics covered include intuitionistic and
classical theories of order, lattice theory, and affine geometry. The last one goes
beyond the expressive means of first-order logic, but the methods of structural
proof analysis of the previous chapters still apply. As an example of such analysis
of derivations without structural rules, a proof of independence of Euclid's fifth
postulate in plane affine geometry is given.

In Chapter 8 the structure of derivations in natural deduction with general
elimination rules is studied. A uniform definition of normality of derivations is
given: A derivation is normal when all major premisses of elimination rules are
assumptions. This structure follows from the applicability of permutation conver-
sions to all cases in which the major premiss of an elimination rule is concluded
by another elimination rule. Translations are given that establish isomorphism of
normal derivations and cut-free derivations in the sequent calculus with indepen-
dent contexts of Chapter 5. It is shown what the role of the structural rules of
sequent calculus is in terms of natural deduction: Weakening and contraction in
sequent calculus correspond to the vacuous and multiple discharge of assump-
tions in natural deduction. Cuts in which the cut formula is principal in the right
premiss correspond to such steps of elimination in which the major premiss has
been derived. (No other cuts can be expressed in terms of natural deduction.) A
translation from non-normal derivations to derivations with cuts is given, from
which follows a normalization procedure consisting of said translation, followed
by cut elimination and translation back to natural deduction.

In the Conclusion, a uniform logical calculus is given that encompasses both
sequent calculus and natural deduction.





From Natural Deduction to Sequent Calculus

We first discuss logical languages and rules of inference in general. Then the rules
of natural deduction are presented, with introduction rules motivated by meaning
explanations and elimination rules determined by an inversion principle. A way is
found from the rules of natural deduction to those of sequent calculus. In the last
section, we discuss some of the main characteristics of structural proof analysis
in sequent calculus.

1.1. LOGICAL SYSTEMS

A logical system consists of a formal language and a system of axioms and rules
for making logical inferences.

(a) Logical languages: A logical language is usually defined through a set of
inductive clauses for well-formed formulas. The idea is that expressions of a
formal language are special sequences of symbols from a given alphabet, as
generated by the inductive definition. An alternative way of defining formal lan-
guages is through categorial grammars. Such grammars are well-known for
natural languages, and categorial grammars for formal languages are in use with
programming languages, but not so often in logic.

Under the first approach, expressions of a logical language are formulas defined
inductively by two clauses: 1. A statement of what the prime formulas are. These
are formulas that contain no other formulas as parts. 2. A statement of what the
compound formulas are. These are built from other simpler formulas by logical
connectives, and their definition requires reference to arbitrary formulas and how
these can be put together with the symbols for connectives to give new formulas.
Given a formula, we can find out how it was put together from other formulas
and a logical connective. Parentheses may be needed to indicate the composition
uniquely. Then we can find out how the parts were obtained until we arrive at the
prime formulas. Thus, in the end, all formulas consist of prime formulas, logical
connectives, and parentheses.

1



2 STRUCTURAL PROOF THEORY

We shall define the language of propositional logic:

1. The prime formulas are the atomic formulas denoted by
P, Q, R,..., and falsity denoted by J_.

2. If A and B are formulas, then the conjunction ASLB, disjunction
A v B, and implication A D B are formulas.

For unique readability of formulas, the components should always be put in
parentheses but in practice these are left out if a conjunction or disjunction is a
component of an implication. Often _L is counted among the atomic formulas,
but this will not work in proof theory. It is best viewed as a zero-place connec-
tive. Negation ~ A and equivalence A DC B are defined as ~ A = A D _L and
A DC B = (A D B)&(B D A).

Expressions of a language should express something, not just be strings of
symbols from an alphabet put together correctly. In logic, the thing expressed
is called a proposition. Often, instead of saying "proposition expressed by for-
mula A" one says simply "proposition A." There is a long-standing debate in
philosophy on what exactly propositions are. When emphasis is on logic, and not
on what logic in the end of a philosophical analysis is, one considers expressions
in the formal sense and talks about formulas.

In recent literature, the definition of expressions as sequences of symbols is re-
ferred to as concrete syntax. Often it is useful to look at expressions from another
point of view, that of abstract syntax, as in categorial grammar. The basic idea
of categorial grammar is that expressions of a language have a functional struc-
ture. For example, the English sentence John walks is obtained by representing
the intransitive verb walk as a function from the category of noun phrases NP to
the category of sentences S, in the usual notation for functions, walk : NP —• S.
John is an element of the category NP and application of the function walk gives
as value walk(John), an element of the category of sentences S. One further step
of linearization is required for hiding the functional structure, to yield the orig-
inal sentence John walks. In logic and mathematics, no consideration is given
to differences produced by this last stage, nor to differences in the grammatical
construction of sentences. Since Frege, one considers only the logical content of
the functional structure.

We shall briefly look at the definition of propositional logic through a categorial
grammar. There is a basic category of propositions, designated Prop. The atomic
propositions are introduced as parameters P, Q, R,..., with no structure and with
the categorizations

P : Prop, Q : Prop, R : Prop, ...

and similarly for falsity, _L : Prop. The connectives are two-place functions for
forming new propositions out of given ones. Application of the function & to the
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two arguments A and B gives the proposition &(A, B) as value, and similarly for
v and D. The functional structure is usually hidden by an infix notation and by
the dropping of parentheses, A&B for &(A, B), and so on. This will create an
ambiguity not present in the purely functional notation, such as A&B D C that
could be both &( A, D (B, C))and D (&(A, 5), C). As mentioned, we follow the
convention of writing A&(B D C) for the former and ASLB D C for the latter,
and in general, having conjunction and disjunction bind more strongly than im-
plication. Appendix A explains in more detail how logical languages are treated
from the point of view of categorial grammar.

Neither approach, inductive definition of strings of symbols nor generation of
expressions through functional application, reveals what is special about logical
languages. Logical languages of the present day have arisen as an abstraction
from the informal language of mathematics. The first work in this direction was
by Frege, who invented the language of predicate logic. It was meant to be,
wrote Frege, "a formula language for pure thought, modeled upon that of arith-
metic." Later Peano and Russell developed the symbolism further, with the aim
of formalizing the language of mathematics. These pioneers of logic tried to give
definitions of what logic is, how it differs from mathematics, and whether the
latter is reducible to the former, or if it is perhaps the other way around.

From a practical point of view there is a clear understanding of what logical
languages are: The prime logical languages are those of propositional and pred-
icate logic. Then there are lots of other logical languages more or less related to
these. Logic itself is, from this point of view, what logicians study and develop.
Any general definition of logic and logical languages should respect this situation.

An essential aspect of logical languages is that they are formal languages,
or can easily be made into such, an aspect made all the more important by the
development of computer science. There are many connections between logical
languages and programming languages; in fact, logical and programming lan-
guages are brought together in one language in some recent developments, as
explained in Appendix B.

(b) Rules of inference: Rules of inference are of the form: "If it is the case that
A and B, then it is the case that C." Thus they do not act on propositions, but on
assertions. We obtain an assertion from a proposition A by adding something to
it, namely, an assertive mood such as "it is the case that A." Frege used the asser-
tion sign I- A to indicate this but usually the distinction between propositions and
assertions is left implicit. Rules seemingly move from given propositions to new
ones.

In Hilbert-style systems, also called axiomatic systems, we have a number
of basic forms of assertion, such as h A D A v B or h A D (B D A). Each in-
stance of these forms can be asserted, and in the case of propositional logic there
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is just one rule of inference, of the form

h A D B \- A
h B

Derivations start with instances of axioms that are decomposed by the rule until
the desired conclusion is found.

In natural deduction systems, there are only rules of inference, plus assump-
tions to get derivations started, exemplified by

[hA]

\-A \-B \-B
h ASLB h AD B

Instances of the first rule are single-step inferences, and if the premisses have been
derived from some assumptions, the conclusion depends on the same assumptions.
In the second rule instead, in which the vertical dots indicate a derivation of h B
from h A, the assumption h A is discharged at the inference line, as indicated by
the square brackets, so that h B above the inference line depends on I- A whereas
h- A D B below it does not.

In sequent calculus systems, there are no temporary assumptions that would
be discharged, but an explicit listing of the assumptions on which the derived as-
sertion depends. The derivability relation, to which reference was made in natural
deduction by the four vertical dots, is an explicit part of the formal language, and
sequent calculus can be seen as a formal theory of the derivability relation.

Of the three types of systems, the first, axiomatic, has some good properties
that are due to the presence of only one rule of inference. However, it is next
to impossible to actually use the axiomatic approach because of the difficulty of
finding the instances of axioms to start with. Systems of the second type corre-
spond to the usual way of making inferences in mathematics, with a good sense
of structure. Systems of the third type are the ones that permit the most profound
analysis of the structure of proofs, but their actual use requires some practice.
Moreover, the following is possible in natural deduction and in sequent calculus:

Two systems of rules can be equivalent in the sense that the same
assertions can be derived in them, but the addition of the same rule
to each system can destroy the equivalence.

This lack of modularity will not occur with the axiomatic Hilbert-style systems.
Once a system of rules of logical inference has been put up, it can be considered

from the formal point of view. The assertion sign is left out, and rules of inference
are just ways of writing a formula under any formula or formulas that have the
form of the premisses of the rules. In a complete formalization of logic, also the
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formation of propositions is presented as the application of rules of proposition
formation. For example, conjunction formation is application of the rule

A : Prop B : Prop
A&B : Prop

Rules of inference can be formalized in the same way as rules of proposition for-
mation: They are represented as functions that take as arguments formal proofs
of the premisses and give as value a formal proof of the conclusion. A hierarchy
of functional categories is obtained such that all instances of rules of proposition
formation and of inference come out through functional application. This will
lead to constructive type theory, described in more detail in Appendix B.

The viewpoint of proof theory is that logic is the theory of correct demon-
strative inference. Inferences are analyzed into the most basic steps, the formal
correctness of which can be easily controlled. Moreover, the semantical justifi-
cation of inferences can be made compositional through the justification of the
individual steps of inference and how they are put together.

Compound inferences are synthesized by the composition of basic steps of in-
ference. A system of rules of inference is used to give an inductive, formal defini-
tion of the notion of derivation. Derivability then means the existence of a deriva-
tion. The correctness of a given derivation can be mechanically controlled through
its inductive definition, but the finding of derivations typically is a different matter.

1.2. NATURAL DEDUCTION

Natural deduction embodies the operational or computational meaning of the log-
ical connectives and quantifiers. The meaning explanations are given in terms of
the immediate grounds for asserting a proposition of corresponding form. There
can be other, less direct grounds, but these should be reducible to the former
for a coherent operational semantics to be possible. The "BHK-conditions" (for
Brouwer-Heyting-Kolmogorov), which give the explanations of logical opera-
tions of propositional logic in terms of direct provability of propositions, can be
put as follows:

1. A direct proof of the proposition A&B consists of proofs of the
propositions A and B.

2. A direct proof of the proposition Aw B consists of a proof of the
proposition A or a proof of the proposition B.

3. A direct proof of the proposition A D B consists of a proof of
the proposition B from the assumption that there is a proof of the
proposition A.

4. A direct proof of the proposition _L is impossible.
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In the third case it is only assumed that there is a proof of A, but the proof of the
conclusion A D B does not depend on this assumption temporarily made in order
to reduce the proof of B into a proof of A. Proof here is an informal notion. We
shall gradually replace it by the formal notion of derivability in a given system
of rules.

We can now make more precise the idea that rules of inference act on assertions;
namely, an assertion is warranted if there is a proof available, and therefore, on
a formal level, rules of inference act on derivations of the premisses, to yield as
value a derivation of the conclusion. From the BHK-explanations, we arrive at
the following introduction rules:

[A]

A&B AvB AvB ADB

The assertion signs are left out. (There will be another use for the symbol soon.)
In the last rule the auxiliary assumption A is discharged at the inference, which is
indicated by the square brackets. We have as a special case of implication intro-
duction, with B = _L, an introduction rule for negation. There is no introduction
rule for _L.

There will be elimination rules corresponding to the introduction rules. They
have a proposition of one of the three forms, conjunction, disjunction, or impli-
cation, as a major premiss. There is a general principle that helps to find the
elimination rules: We ask what the conditions are, in addition to assuming the
major premiss derived, that are needed to satisfy the following:

Inversion principle: Whatever follows from the direct grounds for
deriving a proposition must follow from that proposition.

For conjunction A&B, the direct grounds are that we have a derivation of A and
a derivation of B. Given that C follows when A and B are assumed, we thus find,
through the inversion principle, the elimination rule

[A,B]

A&B C
C

&E

The assumptions A and B from which C was derived are discharged at the infer-
ence. If in a derivation the premisses A and B of the introduction rule have been
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derived and C has been derived from A and B, the derivation

A B
ASLB

&i
C

&E

converts into a derivation of C without the introduction and elimination rules,

A B

C

Therefore, if &/ is followed by &£, the derivation can be simplified.
For disjunction, we have two cases. Either Aw B has been derived from A

and C is derivable from assumption A, or it has been derived from B and C is
derivable from assumption B. Taking into account that both cases are possible,
we find the elimination rule

[A] [B]

AvB C C
C

vE

Assume now that A or B has been derived. If it is the former and if C is derivable
from A and C is derivable from B, the derivation

I [A] [B]

• v / .

AvB C C

c VE

converts into a derivation of C without the introduction and elimination rules,

A

C

In the latter case of B having been derived, the conversion is into

B

C
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Again, an introduction followed by the corresponding elimination can be removed
from the derivation.

The elimination rule for implication is harder to find. The direct ground for
deriving A D B is the existence of a hypothetical derivation of B from the as-
sumption A. The fact that C can be derived from the existence of such a derivation
can be expressed by:

If C follows from B, then it already follows from A.

This is achieved precisely by the elimination rule

[B]

AD B A C

c DE

In addition to the major premiss AD B, there is the minor premiss A in the DE
rule. If B has been derived from A and C from B, the derivation

[A]
! [B]

B : :
AD B A C DE

C

converts into a derivation of C from A without the introduction and elimination
rules,

A

B

C

Finally we have the zero-place connective _L that has no introduction rule. The
immediate grounds for deriving _L are empty, and we obtain as a limiting case of
the inversion principle the rule of falsity elimination ("ex falso quodlibet") that
has only the major premiss _L:

We have still to tell how to get derivations started. This is done by the rule of
assumption that permits us to begin a derivation with any formula. In a given
derivation tree, those formula occurrences are assumptions, or more precisely,
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open assumptions, that are neither conclusions nor discharged by any rule. Dis-
charged assumptions are also called closed assumptions.

Rules &E and DE are usually written for only the special cases of C = A and
C = B for &E and C = B for DE, as follows:

&£l &£2 DE

These "special elimination rules" correspond to a more limited inversion principle,
one requiring that elimination rules conclude the immediate grounds for deriving
a proposition instead of arbitrary consequences of these grounds. The first two
rules just conclude the premisses of conjunction introduction. The third gives a
one-step derivation of B from A by a rule that is often referred to as "modus
ponens." The more limited inversion principle suffices for justifying the special
elimination rules but is not adequate for determining what the elimination rules
should be. In particular, it says nothing about ±E.

The special elimination rules have the property that their conclusions are
immediate subformulas of their premisses. With conjunction introduction, it
is the other way around: The premisses are immediate subformulas of the con-
clusion. Further, in implication introduction, the formula above the inference line
is an immediate subformula of the conclusion. It can be shown that derivations
with conjunction and implication introduction and the special elimination rules
can be transformed into a normal form. The transformation is done by detour
conversions, the removal of applications of introduction rules followed by cor-
responding elimination rules. In a derivation with special elimination rules in
normal form, first, assumptions are made, then elimination rules are used, and
finally, introduction rules are used. This simple picture of normal derivations,
moving by elimination rules from assumptions to immediate subformulas and
then by introductions the other way around, is lost with the disjunction elimina-
tion rule. However, when all elimination rules are formulated in the general form,
a uniform subformula structure for natural deduction derivations in normal form
is achieved. The normal form itself is characterized by the following property:

Normal form: A derivation in natural deduction with general elim-
ination rules is in normal form if all major premisses of elimination
rules are assumptions.

In general, it need not be the case that a system of natural deduction admits
conversion to normal form, but it is the aim of structural proof theory to find
systems that do. There is a series of properties of growing strength relating to
normal form, the weakest being the existence of normal form. This property
states that if a formula A is derivable in a system, there exists also a derivation of
A in normal form. Secondly, we have the concept of normalization: A procedure
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is given for actually converting any given derivation into normal form. The next
notion is strong normalization: The application of conversions to a non-normal
derivation in any order whatsoever terminates after some number of steps in a
derivation in normal form. Last, we have the notion of uniqueness of normal
form: The process of normalization of a given derivation always terminates with
the same normal proof. Note that it does not follow that there would be only one
normal derivation of a formula, for different non-normal derivations would in
general terminate in different normal derivations.

The conjunction and the disjunction introduction rules, as well as the special
elimination rules for conjunction and implication, are simple one-step inferences.
The rest of the rules are schematic, with "vertical dots" that indicate derivations
with assumptions. The behavior of these assumptions is controlled by discharge
functions: Each assumption gets a number and the discharge of assumptions is
indicated by writing the number next to the inference line. Further, the discharge
is optional, i.e., we can, and indeed sometimes must, leave an assumption open
even if it could be discharged.

Some examples will illustrate the management of assumptions and point at
some peculiarities of natural deduction derivations.

Example 1:

[A]
ADA

D/,1.

The rule schemes of natural deduction display only the open assumptions that are
active in the rule, but there may be any number of other assumptions. Thus the
conclusion may depend on a whole set F of assumptions, which can be indicated
by the notation F h A. Now the rule of implication introduction can be written as

F - {A} h A D B

In words, if there is a derivation of B from the set of open assumptions F, there is
a derivation of A 2> B from assumptions F minus {A}. In this formulation there
is a "compulsory" discharge of the assumption A. All the other rules of natural
deduction can be written similarly. We give two examples:

F h A Ahff F h A v f f AU{A}hC QU{ff}hC
F U A h A&B &I F U A U 0 h C VE

The resulting system of inference, introduced by Gentzen in 1936, is usually
known as "natural deduction in sequent calculus style." It can be used to clarify
the strange-looking derivation of Example 1: The assumption of A is written as
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A \- A, and we have the derivation

A h A DI

h A D A

The first occurrence of A has the set of assumptions F = {A}, and so (dropping the
braces around singleton sets) the conclusion has the set of assumptions A — A = $.

Example 2 shows how superfluous assumptions can be added to weaken the
consequent A of the first example into B D A.

Example 2:

[A]

AD(B D A)

The first inference step is justified by the rule about sets of assumptions:
A — B = A. There is a vacuous discharge of B in the first instance of D/,
and discharge of A takes place only at the second instance of DI. Note that there
is a problem here in the case of B = A, for compulsory discharge dictates that A
is discharged at the first inference, the second becoming a vacuous discharge. The
instance of the derivation with B = A is not a syntactically correct one; therefore
the original derivation cannot be correct either. Chapter 8 will give a method for
handling the discharge of assumptions, the unique discharge principle, that does
not lead to such problems.

In sequent calculus style, the derivation is

Ah B D A
h AD(B D A)

Example 3 gives a derivation that cannot be done with just a single use of as-
sumption A.

Example 3:

[AD(ADB)] [A] 1

AD B DE [A]

(AD (AD B)) D(AD B)

Assumption A had to be made twice, and there is correspondingly a multiple
discharge at the first instance of DI with both occurrences of assumption A
discharged. Note the "nonlocality" of derivations in natural deduction: To control
the correctness of inference steps in which assumptions can be discharged, we
have to look higher up along derivation branches. (This will be crucial later with
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the variable restrictions in quantifier rules.) In sequent calculus style, instead,
each step of inference is local:

AD(AD B)h AD(AD B) Ah A
AD (AD B), Ah AD B DE Ah A

AD (AD B), Ah B DE

DI
AD (AD B)h AD B

h (A D (A D B)) D(AD B) ̂

In implication elimination, a rule with two premisses, the assumptions from the
left of the turnstile are collected together. At the second implication elimination
of the derivation, a second occurrence of A in the assumption part is produced.
The trace of this repetition disappears, however, when assumptions are collected
into sets.

The above system of introduction and elimination rules for &, v, and D, to-
gether with the rule of assumption by which an assumption can be introduced at
any stage in a derivation, is the system of natural deduction for minimal propo-
sitional logic. If we add rule _L E to it we have a system of natural deduction rules
for intuitionistic propositional logic.

We obtain classical propositional logic by adding to the rules of intuitionistic
logic a rule we call, in analogy to the law of excluded middle characteristic of
classical logic in an axiomatic approach, the rule of excluded middle:

[A] [~A]

C C

c
Em

Both A and ~ A are discharged at the inference. The law of excluded middle,
A v ~ A, is derivable with the rule:

[A] [~A]
v / v/2Ay ^ A Ay ^

A : E m

Ay ^ A

The rule of excluded middle is a generalization of the rule of indirect proof
("reductio ad absurdum"),

Raa
A

The properties of the classical rules Em and Raa are presented in Chapter 8.
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Rules of natural deduction can be categorized in a way similar to rules of
proposition formation. This is based on the propositions-as-sets principle, and
leads to type systems. We think of a proposition A as being the same as its set
of formal proofs. Each such proof can be called a proof-object or proof term
to emphasize that this special notion of proof is intended. Instead of an assertion
of the form \- A we have a : A, a is a proof-object for A. Rules of inference are
categorized as functions operating on proof-objects.

Type-theoretical rules for proof-objects validate the BHK-explanations, by
showing how proof-objects of compound propositions are constructed from proof-
objects of their constituents. For example, the proof of an implication A D B is a
function that converts an arbitrary proof of A into some proof of B. In earlier times,
the explanation of a proof of an implication A D B was described as "a method
that converts proofs of A into proofs of #," and this was thought to be circular or
at least ill-founded through its reference to an arbitrary proof of A. However, in
constructive type theory, the problem is solved.1 The meaning explanations first
concern only "canonical proofs," that is, the direct proofs of the forms given by the
introduction rules. All other proofs, the "noncanonical" ones, are reduced to the
canonical proofs through computation rules that correspond to the conversions
in natural deduction. For this process to be well-founded, it is required that the
conversion from noncanonical to canonical form terminate. These notions have
deep connections to the structural properties of natural deduction derivations.

An exposition of type theory and its relation to natural deduction is given in
Appendix B.

1.3. FROM NATURAL DEDUCTION TO SEQUENT CALCULUS

If our task is to derive A D B, rule D/ reduces the task to one of deriving B under
the assumption A. So we assume A, but if B in turn is of the form C&D, rule &/
shows how the derivation of C&D is reduced to that of C and D. Thus we have
to mentally decompose the goal A D B into subgoals, but there is no formal way
to keep track of the process. It is as if we had to construct a derivation backwards.

Sequent calculus corrects the lack of guidance of natural deduction. It has
a notation for keeping track of open assumptions; moreover, this is local: Each
formula C has the open assumptions F that it depends on listed on the same line,
as follows:

^ h e explanation was rejected on these grounds by Godel (1941), for example. The solution
was given, in philosophical terms, by Dummett (1975) and more formally by Martin-Lof
(1975).
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Sequent calculus is a formal theory of the derivability relation. To make a
difference to writing F h C , where the turnstile is a metalevel expression, not
part of the syntax as are the formulas, we use the now common symbol =>•. In
F => C, the left side F is called the antecedent and C the succedent.

As mentioned, the rules of natural deduction are schematic and show only
the active formulas, leaving implicit the set of remaining open assumptions. For
example, the rule of conjunction introduction can be written more completely as
follows, with a derivation of A with open assumptions F and a derivation of B
with open assumptions A:

F A

A B
A&B &/

Rule &/ gives a derivation of A&B with open assumptions F U A. With impli-
cation, we have a derivation of B from A and F, and the introduction rule gives
a derivation of A D B from F. The E-rules are similar; for example, disjunction
elimination gives a derivation of C from A v Z ? , F , A , 0 i f C i s derived from
A, A and from B,S. The management of sets of assumptions was already made
explicit in the rules of natural deduction written in sequent calculus style. Se-
quent calculus maintains the introduction rules thus written, but the treatment of
elimination rules is profoundly different.

The rules of sequent calculus are ordered in the same way as those of natu-
ral deduction, with the conclusion at the root. The introduction rules of natural
deduction become right rules of sequent calculus, where a comma replaces set-
theoretical union:

r = > A r = > B
r , A =^ A&B F ^ AD B F=^Av£ T => Av B

Rule RD can also be read "root-first," and in this direction it shows how the
derivation of an implication reduces to its components. Reduction here means
that the premiss is derivable whenever the conclusion is.

In Gentzen's original formulation of 1934-35, the assumptions F, A, 0 were
finite sequences, or lists as we would now say.2 Gentzen had rules permitting the
exchange of order of formulas in a sequence. However, matters are simplified

2Use of the word "sequent" as a noun was begun by Kleene. His Introduction to Metamath-
ematics of 1952 (p. 441) explains the origin of the term as follows: "Gentzen says 'Sequenz',
which we translate as 'sequent', because we have already used 'sequence' for any succession of
objects, where the German is 'Folge'." This is the standard terminology now; Kleene's usage
has even been adopted to some other languages. But Mostowski (1965) for example uses the
literal translation "sequence."
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if we treat assumptions as finite multisets, that is, lists with multiplicity but no
order, and we shall do so from now on. Example 3 of Section 1.2 showed that if
assumptions are treated simply as sets, control is lost over the number of times
an assumption is made.

The elimination rules of natural deduction correspond to left rules of sequent
calculus. In &E, we have a derivation of C from A, B and some assumptions F,
and we conclude that C follows from AScB and the assumptions F. In sequent
calculus, this is written as

A B F =^ C
' ' L&AScB,V =* C

The remaining two left rules are found similarly:

The formula with the connective in a rule is the principal formula of that rule,
and its components in the premisses are the active formulas. The Greek letters
denote possible additional assumptions that are not active in a rule; they are called
the contexts of the rules.

In natural deduction elimination rules written in sequent calculus style, a
formula disappears from the right; in sequent calculus, the same formula appears
on the left. Inspection of sequent calculus rules shows what the effect of this
change is.

Subformula property: All formulas in a sequent calculus derivation
are subformulas of the endsequent of the derivation.

The usual way to find derivations in sequent calculus is a "root-first proof
search." However, in rules with two premisses, we do not know how the context
in the conclusion should be divided between the antecedents of the premisses.
Therefore we do not divide it at all but repeat it fully in both premisses. The
procedure can be motivated as follows: If assumptions F are permitted in the
conclusion, it cannot do any harm to make the same assumptions elsewhere in
the derivation. Rules R&, L V, and LD can be modified into

The preceding two-premiss rules had independent contexts; the above rules
instead have shared contexts.3 It now follows that, given the endsequent to be

3Lately some authors have called these "additive" and "multiplicative" contexts, but these
are not as easy to remember.
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derived, once it is decided which formula of the endsequent is principal, the
premisses are uniquely determined.

To show how derivations are found in sequent calculus, we derive the sequent

=^(AD(AD B)) D(AD B)

corresponding to Example 3 of Section 1.2:

A=> A B,A^> B
AD B,A^ B

LD

LD

A D (A D B), A =^ B

AD(AD B)^ AD BRD

=>(AD(AD B)) D(AD B)

Both instances of the two-premiss rule LD have the shared context A. This root-
first proof search is not completely deterministic: The last step can be only RD, but
above that, there are choices in the order of application of rules. Further, proof
search need not stop, but we stopped when we reached sequents with the same
formula in the antecedent and succedent. This situation corresponds to the rule
of assumption of natural deduction, by which we can start a derivation with any
formula A as assumption. The rule is given in sequent calculus in the form of a
logical axiom:

In the above derivation, proof search ended in one case with a sequent of the form
A, F =>- A, with a superfluous extra assumption. Its presence was caused by the
repetition of formulas in premisses when shared contexts are used.

The ±E rule of natural deduction gives a zero-premiss sequent calculus rule:

-L
; L±

Often this rule is also referred to as an axiom, but we want to emphasize its
character as a left rule and do not call it so.

Formally, a sequent calculus derivation is defined inductively: Instances of
axioms are derivations, and if instances of premisses of a rule are conclusions of
derivations, an application of the rule will give a derivation. Thus sequent calculus
derivations always begin with axioms or L_L. But we depart in two ways from
this "official" order of things:

First, note that the logical rules themselves are not derivations, for they have
sequents as premisses that need not be axioms. The combination of logical rules
likewise gives sequent calculus derivations with premisses. Each logical rule and
each combination is correct in the sense that, given derivations of the premisses,
the conclusion of the rule or of the combination becomes derivable.
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Secondly, the usual root-first proof search procedure runs counter to the induc-
tive generation of sequent calculus derivations. Proof search succeeds only when
these two meet, i.e., when the root-first process reaches axioms or instances of L _L.

We now come to the structural rules of sequent calculus. To derive the sequent
=^ A D (B D A) corresponding to Example 2 in Section 1.2, we use a rule of
weakening that introduces an extra assumption in the antecedent:

The rule is sometimes called "thinning." The derivation of Example 2 is

=* AD(B D A)

The derivation illustrates the role of weakening: Whenever there is a vacuous
discharge in a natural deduction derivation, there is in a corresponding sequent
calculus derivation an instance of a logical rule with an active formula that has
been introduced in the derivation by weakening.

As noted, our example of proof search in sequent calculus led to a premiss that
was not an axiom of the form A => A, but of the form A, V => A. These more
general axioms are obtained from A =>> A by repeated application of weakening.
If instead we permit instances of axioms as well as the L_L rule to have an arbitrary
context F in the antecedent, there is no need for a rule of weakening in sequent
calculus.

Above we gave a derivation of the sequent corresponding to Example 3 of
Section 1.2 using rules with shared contexts. We give another derivation, this
time with the earlier rules that have independent contexts. A rule of contraction
is now needed:

A, A,T =^C
A , r ^ c ctr

With this rule and axioms of the form A =>• A, the derivation is

A^ A B =» B LD

A^ A A D £, A => B
LDAD (AD 5) , A, A =>> B

A D (A D B), A =» B °r

AD(AD B)=> AD BRD

D —\

^(AD(AD B)) D(AD B)

Contrary to the derivation with shared contexts, a duplication of A is produced



18 STRUCTURAL PROOF THEORY

on the fourth line from below. The meaning of contraction can be explained in
terms of natural deduction: Whenever there is a multiple discharge in natural
deduction, there is a contraction in a corresponding sequent calculus derivation.

If assumptions are treated as sets instead of multisets, contraction is in a way
built into the system and cannot be expressed as a distinct rule.

As with weakening, the rule of contraction can be dispensed with, by use of
rules with shared contexts and some additional modifications.

In Chapter 8 we show in a general way that weakening and contraction amount
to vacuous and multiple discharge, respectively, in natural deduction, whenever
the weakening or contraction formula is active in a derivation. Without this con-
dition, weakening and contraction are purely formal matters produced by the
separation of discharge of assumptions into independent structural and logical
steps in sequent calculus.

We now come to the last and most important general rule of sequent calculus. In
natural deduction, if two derivations F h A and A, A h C are given, we can join
them together into a derivation F, A \- C, through a substitution. The sequent
calculus rule corresponding to this is cut:

F =» A A , A =>• C
Cut

r, A =^c
Often cut is explained as follows: We break down the derivation of C from some
assumptions into "lemmas," intermediate steps that are easier to prove and that
are chained together in the way shown by the cut rule. In Chapter 8 we find a
somewhat different explanation of cut: It arises, in terms of natural deduction,
from non-normal instances of elimination rules. This points to an important anal-
ogy between normal derivations in natural deduction and cut-free derivations in
sequent calculus, an analogy that will be made precise in Chapter 8.

As explained in Section 1.2, there is in natural deduction a series of concepts
from the existence of normal form to strong normalization and uniqueness of
normal form. In systems of sequent calculus, it is possible that two derivations
F =^ A and A, A =>• C are cut-free, but the derivation F, A =>• C obtained by
cut need not, in general, have any such form. (This would correspond to the
inexistence of normal form in natural deduction.) In the contrary case, we say that
a system of sequent calculus is closed with respect to cut: If there is a derivation of
the sequent F => C that uses the rule of cut, there exists also a derivation without
cut. A typical way of proving closure under cut is to show the completeness of
a system that does not have the cut rule: All correct sequents are derivable in
the system so that the addition of cut does not add any new derivable sequents.
Next there is the notion of elimination of cut in which a procedure for the actual
elimination of cuts in a derivation is given. It corresponds to normalization in
natural deduction, but it is typical of sequent calculi that they do not admit of
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properties corresponding to strong normalization or uniqueness of normal form:
in terms of sequent calculi, termination of cut elimination in any order whatsoever
and uniqueness of the cut-free form.

An alternative formulation of the rule of cut is obtained if rule RD is applied
to its right premiss A, A =>• C. The derivation

A, A =>C

Mp

r, A =» c
shows how cut is replaced by rule RD and a sequent calculus version of modus
ponens.

Weakening, contraction, and cut are the usual structural rules of sequent calcu-
lus. Cut has the effect of making a formula disappear during a derivation so that
it need not be a subformula of the conclusion, whereas none of the other rules do
this. If we wanted to determine whether a sequent F =>• C is derivable, by using
cut we could always try to reduce the task into F =>• A and A, F =>• C with a new
formula A, with no end.

A main task of structural proof theory is to find systems that do not need the
cut rule or use it in only some limited way. But note that contraction can be as
"bad" as cut as concerns a root-first search for a derivation of a given sequent:
Formulas in antecedents can be multiplied with no end if contraction cannot be
dispensed with.

Two main types of sequent calculi arise: those with independent contexts,
similar in many respects to calculi of natural deduction, and those with shared
contexts, useful for proof search. Gentzen's original (1934-35) calculi for intu-
itionistic and classical logic had shared contexts for R& and L V and independent
ones for LD. Further, the left rule for & (as well as the Rv rule in the classical
case) was given in the form of two rules

A&B, F =» C A&B, F =^ C

that do not support proof search: It need not be the case that A, F =$> C is derivable
even if A&B, F => C is. The single L& rule we use is due to Ketonen (1944).
He also improved the classical R\/ rule in an analogous way and found a clas-
sical LD rule with shared contexts. With these changes, the sequent calculus for
classical propositional logic is invertible: From the derivability of a sequent of
any of the forms given in the conclusions of the logical rules, the derivability of
its premisses follows. Starting with the endsequent, decomposition by invertible
rules gives a terminating method of proof search for classical propositional logic.

For intuitionistic logic, a sequent calculus with shared contexts was found by
Kleene (1952). The rule of cut can be eliminated in calculi with independent as



20 STRUCTURAL PROOF THEORY

well as shared contexts. In calculi of the latter kind, also weakening and contrac-
tion can be eliminated, so that derivations contain logical rules only. Chapters 2-A
are mainly devoted to the development and study of such calculi. Calculi with
independent contexts are studied in Chapter 5.

1.4. THE STRUCTURE OF PROOFS

Given a system of rules G, we say that a rule with premisses S\,..., Sn and
conclusion S is admissible in G if, whenever an instance of S\,..., Sn is derivable
in G, the corresponding instance of S is derivable in G. Structural proof theory has
as its first task the study of admissibility of rules such as weakening, contraction,
and cut. Our methods for establishing such results will be thoroughly elementary:
In part we show that the addition of a structural rule has no effect on derivability
(as for weakening), or we give explicit transformations of derivations that use
structural rules into ones that do not use them (as for cut). A major difficulty
is to find the correct rules in the first place. Even if the proof methods are all
elementary, the proofs often depend on the right combination of many details and
are much easier to read than write.

If the cut rule has been shown admissible for a system of rules, we see by
inspection of all the rules of inference that no formula disappears in a deriva-
tion. Thus cut-free derivations have the subformula property: Each formula in the
derivation of a sequent F =$• C is a subformula of this endsequent. Later we shall
relax on this a bit, by letting atomic formulas disappear, and then the subformula
property becomes the statement that each formula in a derivation is a subformula
of the endsequent or an atomic formula. Such a weak subformula property is still
adequate for structural proof-analysis.

Standard applications of cut elimination include elementary syntactic proofs of
consistency, the disjunction property for intuitionistic systems, interpolation the-
orems, and so on. For the first, assume a system to be inconsistent, i.e., assume
the sequent =>• J_ is derivable in it. Each logical rule adds a logical constant, and
the axioms and weakening and contraction are rules that have formulas in the
antecedent. Therefore there cannot be any derivation of =>> J_; a cut-free system
is consistent. Similarly, assuming that =>> A v B is derivable in a system of rules,
it can be the case that the only way by which it can be concluded is by the rules
for right disjunction. Thus either =>> A or =>• B can be derived, and we say that
the system of rules has the disjunction property. If a system is both cut-free and
contraction-free, it can have the property that the premisses are proper parts of
the conclusion, i.e., at least some formula is reduced to a subformula. In this case,
we have a root-first proof search resulting in a tree that terminates. If the leaves
of the tree thus reached are axioms or instances of L_L, we can read it top-down
as a derivation of the endsequent. But to show that a sequent is underivable,
we have to be able to survey all possible derivations. For example, assume that
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=>> P V ~ P is derivable in a cut-free intuitionistic system. Then the last rule is
one of the two right disjunction rules, and either =>• P or =>> ~ P is derivable.
No logical rule concludes =£• P, and if =>- ~ P were derivable, the last rule would
have had to be RD. Again, no logical rule concludes the premiss P =>• _L.

Above we found a way that led to the rules of sequent calculus from those of
natural deduction. Often the structure of cut-free sequent calculus derivations is
seen more clearly if it is translated back into natural deduction. This can be made
algorithmic, as shown in Chapter 8. Not all sequent calculus derivations can be
translated, but only those that do not have "useless" weakening or contraction
steps. The translation is such that the order of application of logical rules is
reflected in the natural deduction derivation. The meaning of a cut-free derivation
is that all major premisses of elimination rules turn into assumptions.

The connection between sequent calculus and natural deduction is straightfor-
ward for single succedent sequent calculi, i.e., those with just one formula in the
succedent to the right of the sequent arrow. However, there are also systems with
a whole multiset as succedent. It can be shown that systems of intuitionistic logic
are obtained from classical multisuccedent systems by some innocent-looking
restrictions on the succedents. In Chapter 5 we show that the converse is also
true, at least for propositional logic: We obtain classical logic from intuitionistic
single succedent sequent calculus by the addition of a suitable rule corresponding
to the classical law of excluded middle.

Most of the research on sequent calculus has been on systems of pure logic.
Considering that the original aim of proof theory was to show the consistency
of mathematics, this is rather unfortunate. It is commonly believed that there is
nothing to be done: that the main tool of structural proof theory, cut elimination,
does not apply if mathematical axioms are added to the purely logical systems of
derivation of sequent calculus. In Chapter 6 we show that these limitations can
be overcome. A simple example of the failure of cut elimination in the presence
of axioms is given by Girard (1987, p. 125): Let the axioms have the forms
^ AD B and =>• A. The sequent =>• B is derived from these axioms by

AD B AD B,A^ B
Cut

=• B

Inspection of sequent calculus rules shows that there is no cut-free derivation of
=>• B, which leads Girard to conclude that "the Hauptsatz fails for systems with
proper axioms" (ibid.). More generally stated, the cut elimination theorem does
not apply to sequent calculus derivations with premisses.

We shall give a way of adding axioms to sequent calculus in the form of
nonlogical rules of inference and show that cut elimination need not be lost by
such addition. This depends critically on formulating the rules of inference in a
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particular way. It then follows that the resulting systems of sequent calculus are
both contraction- and cut-free. A limitation, not of the method, but one that is
due to the nature of the matter, is that in constructive systems there will be some
special forms of axioms, notably (P D Q) D R, that cannot be treated through
cut-free rules. For classical systems, our method works uniformly. Gentzen's
original subformula property is lost, but typical consequences of that property,
such as consistency or the disjunction property for constructive systems, usually
follow from the weaker subformula property.

To give an idea of the method, consider again the above example. With P and
Q atomic formulas and C an arbitrary formula, P D Q is turned into a rule by
requiring that if C follows from Q, then it follows from P and P is turned into a
rule by requiring that if C follows from P, then C follows:

P =^C =» C

The sequent =>• Q now has the cut-free derivation

The method of converting axioms into cut-free systems of rules has many applica-
tions in mathematics; for example, it can be used in syntactic proofs of consistency
and mutual independence for axiom systems. If we use classical logic, we can
convert a theorem to be proved into a finite number of sequents that have no
logical structure but only atomic formulas and falsity. By cut elimination, their
derivation uses only the nonlogical rules, and a very strong control on structure of
derivations is achieved. In typical cases such as affine geometry, an axiom can be
proved underivable from the rest of an axiom system by showing its underivability
by the rules corresponding to the latter.

The aim of proof theory, as envisaged by Hilbert in 1904, was to give a con-
sistency proof of arithmetic and analysis and thereby to resolve the foundational
problems of mathematics for good. There had been earlier consistency proofs,
such as those for non-Euclidean geometries, in which a model was given for an
axiom system. However, such proofs are relative: They assume the consistency
of the theory in which the model is given. Hilbert's aim instead was an absolute
consistency proof, carried through by elementary means. The results of Godel in
1931 are usually taken to show such proofs to be an impossibility as soon as a
system contains the principles of arithmetic. However, we shall see in Chapter 6
that, when this is not the case, purely syntactic and elementary consistency proofs
can be obtained as corollaries to cut elimination.

A whole branch of logical research is devoted to the study of intermediate
logical systems. These are by definition systems that stand between intuitionistic
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and classical logic in deductive power. In Chapter 7, we shall study the struc-
ture of proofs in intermediate logical systems by presenting them as exten-
sions of the basic intuitionistic calculus. One method of extension follows the
model of extending this calculus by the rule of excluded middle. Such extension
works perfectly for the logical system obeying the weak law of excluded middle,
~ A V ~ ~ A. A limit is reached here, too, for in order to have a subformula prop-
erty, the characteristic law of an intermediate logic is restricted to instances of the
law with atomic formulas, as for the law of excluded middle. If the law for arbitrary
formulas cannot be proved from the law for atoms, there is no good structural proof
theory under this approach. Such is the case for Dummett logic, characterized by
the law (A D B)v(B D A). Another method that has been used is to start with the
multisuccedent intuitionistic calculus and to relax the intuitionistic restriction on
the RD rule. This approach will lead to a satisfactory system for Dummett logic.

Our approach to structural proof theory is mainly based on contraction- and
cut-free sequent calculi. However, we also present, in Chapter 5, calculi in which
weakening and contraction are explicit rules and only cut is eliminated. The
sequent calculus rules of the previous section are precisely the propositional and
structural rules of the first such calculus, in Section 5.1 (a). Further, we also present
a calculus in which there is no explicit weakening or contraction, but these are built
into the logical rules. This calculus, studied in Section 5.2, can be described as a
"sequent calculus in natural deduction style." Sequent calculi with independent
contexts are useful for relating derivations in sequent calculus to derivations in
natural deduction. The use of special elimination rules in natural deduction brings
problems that vanish only if the general elimination rules are taken into use. In
Chapter 8 we show that this change will give an isomorphism between sequent
calculus derivations and natural deduction derivations. The analysis of proofs by
means of natural deduction can often provide insights it would be hard to obtain
by the use of sequent calculus only.

NOTES TO CHAPTER 1

The definition of languages through categorial grammars, and predicate logic espe-
cially, is treated at length in Ranta's Type-Theoretical Grammar, 1994. A discussion
of logical systems from the point of view of constructive type theory is given in
Martin-Lof's Intuitionistic Type Theory, 1984, but see also Ranta's book for later
developments.

An illuminating discussion of the nature of logical rules and the justification of
introduction rules in terms of constructive meaning explanations is given in Martin-
Lof (1985). Dummett's views on these matters are collected in his Truth & Other
Enigmas of 1978.

Our treatment of the elimination rules of natural deduction for propositional logic
comes from von Plato (1998) and differs from the usual one that recognizes only
the special elimination rules, as in Gentzen's original paper Untersuchungen uber
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das logische Schliessen (in two parts, 1934-35) or Prawitz' influential book Natural
Deduction: A Proof-Theoretical Study of 1965. The change is due to our formulation
of the inversion principle in terms of arbitrary consequences of the direct grounds of
the corresponding introduction rule, instead of just these direct grounds. The general
elimination rule for conjunction is presented in Schroeder-Heister (1984). Chapter 8
will show what the effect of general elimination rules is for the structure of derivations
in natural deduction.

Natural deduction in sequent calculus style is used systematically in Dummett's
book Elements of Intuitionism of 1977.

Our way of obtaining classical propositional logic from the intuitionistic one uses
the rule of excluded middle. It appears in this form, as a rule for arbitrary propositions,
in Tennant (1978) and Ungar (1992), but the first one to propose the rule was Gentzen
(1936). The rule has not been popular, for the obvious reason that it does not have the
subformula property. Prawitz (1965) uses the rule of indirect proof and shows that its
restriction to atomic formulas will give a satisfactory normal form and subformula
property for derivations in the v-free fragment of classical propositional logic. We
restrict in Chapter 8 the rule of excluded middle to atomic formulas and show that
this gives a complete system of natural deduction rules and a full normal form for
classical propositional logic. We also show that the rule can be restricted to atoms of
the conclusion, thereby obtaining the full subformula property.

The long survey article by Prawitz, Ideas and results in proof theory, 1971, offers
valuable insights into the development of structural proof theory. The notes to the
chapters of Troelstra and Schwichtenberg's Basic Proof Theory, 1996, also contain
many historical comments. Feferman's Highlights in proof theory, 2000, discusses
Hilbert's program, sequent calculi, and the proof theory of arithmetic. Finally, the life
story of the founder of structural proof theory is given in Menzler-Trott's Gentzen ys
Problem: Mathematische Logik im nationalsozialistischen Deutschland, 2001.



Sequent Calculus for Intuitionistic Logic

We present a system of sequent calculus for intuitionistic propositional logic. In
later chapters we obtain stronger systems by adding rules to this basic system, and
we therefore go through its proof-theoretical properties in detail, in particular the
admissibility of structural rules and the basic consequences of cut elimination.
Many of these properties can then be verified in a routine fashion for extensions
of the system. We begin with a discussion of the significance of constructive
reasoning.

2.1. CONSTRUCTIVE REASONING

Intuitionistic logic, and intuitionism more generally, used to be philosophically
motivated, but today the grounds for using intuitionistic logic can be completely
neutral philosophically. Intuitionistic or constructive reasoning, which are the
same thing, systematically supports computability: If the initial data in a problem
or theorem are computable and if one reasons constructively, logic will never
make one committed to an infinite computation. Classical logic, instead, does
not make the distinction between the computable and the noncomputable. We
illustrate these phenomena by an example:

A mathematical colleague comes with an algorithm for generating a decimal
expansion O.aia2a3..., and also gives a proof that if none of the decimals at is
greater than zero, a contradiction follows. Then you are asked to find the first
decimal ak such that ak > 0. But you are out of luck in this task, for several hours
and days of computation bring forth only 0's

Given two real numbers a and b, if it happens to be true that they are equal, a
and b would have to be computed to infinite precision to verify a = b. Obviously
the truth of the proposition a = b is not continuous in its two arguments; to see this,
think of a and b as points on the real line, assume that a = b is true, and then
"move" one of the points just a bit. In a constructive approach, we start with
the relation of apartness, or distinctness, of two real numbers, written as a ^ b.
Apartness can be proved by showing that the difference \a — b\ has a positive
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lower bound. This time the proposition is continuous in its arguments: a finite
computation can verify a / b.

What are the axioms of an apartness relation? First, irreflexivity; call it API:

API. ~ a ^ a.

Second, assume a ^ b, and take any third number c. If you are unable to decide
whether a ^ c, it must be the case that b ^ c, and similarly with deciding b / c.
This property, the splitting of the apartness a / b into two cases a ^ c and b / c,
is the second axiom:

AP2. a / Z? D a / c v b ^c.

The principle is intuitively very clear if the points a, b, c are depicted geometri-
cally, as points on the real line.

We now obtain equality as a defined notion:

Definition2.1.1: a = b = ~a^b.

Thus equality is a negative notion, and an infinitistic one also: To prove a = b, we
have to show how to convert any of the infinitely many a priori possible proofs
of a / b into an impossibility.

From API we get at once

EQ1. a=a,

and from the contraposition of AP2

EQ2. a = c&b = cD a = b.

Substitution of a for c in AP2 gives a ^ b D a ^ av b ^ a, so by API, b # a
follows from a ^ b. Symmetry of equality is obtained by contraposition. Thus the
negation of an apartness relation is an equivalence relation.

Let us denote by a the number O.a^as... of our mathematical colleague.
From the proof that a = 0 leads to a contradiction, ~ a = 0 can be concluded.
However, this proof does not give any lower bound for \a — 0|; thus we have not
concluded a / 0. Logically, the difference is one between ~ ~ a / 0 and a ± 0.
The former says that it is impossible that a is equal to zero, the latter says that a
positively is distinct from zero.

Classical logic contains the principle of indirect proof: If ~ A leads to a
contradiction, A can be inferred. Axiomatically expressed, this principle is con-
tained in the law of double negation, ~ ~ ADA. The law of excluded middle,
A v ~ A, is a somewhat stronger way of expressing the same principle.

In constructive logic, the connectives and quantifiers obtain a meaning different
from the one of classical logic in terms of absolute truth. The constructive "BHK
meaning explanations" for propositional logic were given in Section 1.2, and
those for quantifiers will be presented in Section 4.1. One particular feature in
these explanations is that a direct proof of a disjunction consists of a proof of one
of the disjuncts. However, the classical law of excluded middle Av ~ A cannot
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be proved in this way, as there is no method of proving any proposition or its
negation. Under the constructive interpretation, the law of excluded middle is not
an empty "tautology," but expresses the decidability of proposition A. Similarly,
a direct proof of an existential proposition 3x A consists of a proof of A for some
a. Classically, we can prove existence indirectly by assuming that there is no x
such that A, then deriving a contradiction, and concluding that such an x exists.
Here the classical law of double negation is used for deriving 3x A from ~ ~ 3x A.

More generally, the inference pattern, if something leads to a contradiction the
contrary follows, is known as the principle of reductio ad absurdum. Dictionary
definitions of this principle rarely make the distinction into a genuine indirect
proof and a proof of a negative proposition: If A leads to a contradiction, then ~ A
can be inferred. Mathematical and even logical literature are full of examples in
which the latter inference, a special case of a constructive proof of an implication,
is confused with a genuine reductio. A typical example is the proof of irrationality
of a real number x: Assume that x is rational, derive a contradiction, and conclude
that x is irrational. The fallacy in claiming that this is an indirect proof stems from
not realizing that to be an irrational number is a negative property: There do not
exist integers n, m such that x = n/m.

The effect of constructive reasoning on logic is captured by intuitionistic logic.
From the point of view of classical logic, it is no limitation not to use the law of ex-
cluded middle, or the principle of indirect proof, for the following reason: Given a
formula C, there is a translation giving a formula C* such that C and C* are classi-
cally equivalent and C* is intuitionistically derivable if C is classically derivable.
For example, a disjunction can be translated by (A v #)* = ~ (~ A*& ~ B*). The
translation gives an interpretation of classical logic in intuitionistic logic. Another
intuitionistic interpretation will be given in Chapter 5: For propositional logic, if
a formula C is classically derivable, the formula

where P\,..., Pn are the atoms of C, is intuitionistically derivable. By this trans-
lation, classical propositional logic can be interpreted intuitionistically as a logic
in which the proofs of theorems are relativized to decisions on their atoms.

The method of interpreting classical logic in intuitionistic logic through a suit-
able translation applies to predicate logic and axiomatic theories formalizable in it,
such as arithmetic. For such theories, constructive reasoning will only apparently
decrease the deductive strength of the theory.

The essential difference between classical and constructive reasoning concerns
predicativity: The idea, advocated by Poincare and by Russell, is that "anything
involving a totality must not be defined in terms of that totality." Poincare wanted
mathematical objects and structures to be generated from the rock bottom of
natural numbers. In Russell, predicativity was a response to the set-theoretical
paradoxes, particularly Russell's paradox that arises from defining a "set of all
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sets that are not members of themselves." In this impredicative definition, the
totality of all sets is presupposed. Another traditional example of an impredicative
definition is the definition of the set of real numbers through complete ordered
fields. Impredicativity is met in second-order logic in which quantifiers range
over propositions. With X, Y, Z . . . standing as variables for propositions, we can
form second-order propositions such as (iX)X and (VX)((A D (B D X)) D X).
Assertion of the first proposition means that for any proposition X, it is the case
that X. Then (VX)X must be false in a consistent system, and falsity has a second-
order definition as _L = (WX)X. The rule of falsity elimination becomes a special
case of universal instantiation,

The second example of a second-order proposition defines the proposition A&B,
as can be seen by deriving the rules of conjunction introduction and elimination
from the definition, using only the rules for implication and second-order universal
quantification. Through the propositions-as-sets principle, we see that second-
order quantification amounts to quantification over sets.

2.2. INTUITIONISTIC SEQUENT CALCULUS

In this section, we present an intuitionistic sequent calculus with the remarkable
property that all structural rules, weakening, contraction, and cut, are admissible
in it. Classical sequent calculi are obtained by removing certain intuitionistic re-
strictions, and admissibility of structural rules carries over to the classical calculi,
as shown in the next chapter. Other extensions of the basic calculus will be studied
in later chapters. Sequents are of the form F =$• C, where F is a finite, possibly
empty, multiset. The rules of the calculus G3ip for intuitionistic propositional
logic are the following:

G3ip
Logical axiom:

P, F => P

Logical rules:

A&B,
A r -/i, i -

A

AD L

F =^

vfl,

?, r =

^,
r =
» A B,

c
T \ '

F =^ C

A&B
• /?&

r^Av5
A , F => B

. r^B Rv
• « V i — • — KV2
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The axiom is restricted to atomic formulas. It is essential that _L is not considered
an atomic formula, but a zero-place logical operation.

Each rule has a context designated by F in the above rules, active formulas
designated by A and B, and a principal formula that is introduced on the left or
the right by the rule in question.

The above calculus differs in three respects from the sequent calculus rules
presented in Section 1.3: Only atoms appear in axioms, and the formula A D B is
repeated in the left premiss of the LD rule. The reason for the latter will become
apparent later, when admissibility of contraction is proved. Third, the rules have
shared contexts.

The calculus has been developed by Troelstra, as a single succedent variant
of the calculus of Dragalin (1988). None of the usual structural rules of sequent
calculus, weakening, contraction, and cut, need be assumed in it. Exchange rules
are absent because of properties of multisets and the other structural rules; those
of weakening, contraction, and cut will be proved admissible. The structural rules
we consider are

-Wk

A A , A =>• C
c«f

r, A =» c
In Gentzen's original calculus of 1934-35, the structural rules were first assumed,
and then it was shown how to eliminate applications of the cut rule. A calculus
for intuitionistic logic of the above type, with no structural rules, was first devel-
oped by Kleene in 1952 for the purpose of proof search. In Gentzen, negation is
primitive, but this does not make a great difference. It has the simplifying effect
that derivations begin with axioms only, not LJ_. Gentzen's calculus maintained
the rule of weakening; therefore axioms were of the form A =^ A, with no con-
text since it could be added by weakening. In the calculus G3ip, weakening is
admissible because it is built into the axiom and the L_L rule.

The logical rules of the calculus are intuitionistic versions of the rules of
Ketonen (1944); In Gentzen's calculus, there were two left rules for conjunction,
one for each premiss of the form A, F => C and B, F =>• C, and the conclusion
as in the above rule. Further, the left implication rule was as follows:

F => A B, A => C
AD B,F,A=>C

There are two contexts that are joined in the conclusion, so that the rule has inde-
pendent contexts. In the calculus G3ip, instead, all two-premiss logical rules are
context-sharing, or have the same context. A shared context is needed for hav-
ing a contraction-free calculus. Further, the principal formula in LD is repeated
in the left premiss for the same purpose, a device invented by Kleene in 1952.
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(He repeated the principal formula in all the left rules, but such repetition is needed
only for noninvertible rules.)

2.3. PROOF METHODS FOR ADMISSIBILITY

Our task in the next two sections is to establish the admissibility of structural
rules for the calculus G3ip. Proofs of admissibility will use induction on weight
of formulas and height of derivations. Formula weight can be defined in different
ways, depending on what is needed in a proof. For the next few chapters a simple
definition, amounting to the length of a formula, will be sufficient. In Section 5.5,
we shall encounter more complicated formula weights.

Definition 2.3.1: The weight w(A) of a formula A is defined inductively by

w(±) = 0,
w(P) = I for atoms P,
w(A o B) = w(A) + w(B) + I for conjunction, disjunction, and implication.

It follows that tu(~ A) = w(A) + tu(_L) + 1 = w(A) + 1.

Definition 2.3.2: A derivation in G3ip is either an axiom, an instance of LI.,
or an application of a logical rule to derivations concluding its premisses. The
height of a derivation is the greatest number of successive applications of rules
in it, where an axiom and L_L have height 0.

Lemma 2.3.3: The sequent C, F =>> C is derivable for an arbitrary formula C
and arbitrary context F.

Proof: The proof is by induction on weight of C. If w(C) ^ 1, either C = J_
or C = P for some atom P or C = J_ D _L. In the first case, C, F =>• C is an
instance of L_L; in the second it is an axiom. If C = J_ D _L, then C, F =>• C is
derived by

_L,-L D _L , r => J_
L±

The inductive hypothesis is that C, F => C is derivable for all formulas C with
w(C) ^ n, and we have to show that D, F =>• D is derivable for formulas D of
weight ^ n + 1. There are three cases:

D = ASLB. By the definition of weight, w(A) < n and w(B) ^ n. Noting that
the context is arbitrary, we have that A, F' => A and 5 , F" =>• 5 are derivable,
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where Tf = B, F and F" = A, F. We now derive A&B, F => A&B by

R&
A&B, F => A&£

Z) = A v B. As before w(A) ^ n, w{B) ^ n, and we have the derivation

LVAv B,T => Av B

D = A D B. As before w(A) ^ n, w(B) ^ n, and we have the derivation

A A ~") R V —^ A R A V —^ P

AD B,T ^ AD B

Here A , A D 5 , F ^ A and B,V =>• B are derivable by the inductive hypo-
thesis. QED.

Proof by induction on height of derivation is a usual method, often as a subin-
duction in an inductive proof on formula weight. In the following, the notation

will stand for: the sequent F =>• C in G3ip is derivable with a height of derivation
at most n.

When proving the admissibility of a rule by induction on height of derivation,
we prove it for subderivations ending in a topmost occurrence of the rule in
question, then generalize by induction on the number of applications of the rule
to arbitrary derivations. Therefore it can be assumed that in a derivation there is
only one instance of the rule in question, the last one.

Theorem 2.3.4: Height-preserving weakening.If \-n F=^C, then \-n D,T=>
C for arbitrary D.

Proof: The proof is by induction on height of derivation. If n = 0, then F =>• C
is an axiom or conclusion of L_L and either C is an atom and a formula in F or _L
is a formula in F. In either case, also D, F =>• C is an axiom or concluded by L_L.
Assume now that height-preserving weakening is admissible up to derivations of
height < ft, and let \-n+x F => C. If the last rule applied is L&, F = A&B, F'
and the last step is

A&B, r^cL&
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so the premiss A, B, Fr => C is derivable in ^ ft steps. By inductive hypothesis,
also D, A, 5 , F' =>• C is derivable in ^ ft steps. Then an application of L& gives
a derivation of D, A&B, F = ^ C i n ^ f t + l steps.

A similar argument applies to all the other logical rules. QED.

A more direct way of obtaining height-preserving weakening is to transform the
given derivation by adding the weakening formula to the antecedents of all its
sequents. Two-premiss rules of G3ip have the same context in both premisses,
and the conclusion inherits only one copy of these. In the proof transformation
showing admissibility of height-preserving weakening, the weakening formula is
added always into the contexts of axioms or L_L, and therefore no multiplication of
the weakening formula is produced. By repeating weakening, we find weakening
admissible for an arbitrary context F': If \-n F =>• C, then \-n F, F' =>• C.

For proving the admissibility of contraction, we will need the following
inversion lemma:

Lemma 2.3.5:
(i) / / \-n ASLB, F =• C, then hn A, B, F => C,
(ii) If\-nAvB,r=>C, then \-n A, F => C and \-n B, F => C,
(iii) If\-nADB,F=>C, then \-n B, F =>• C.

Proof: By induction on n.

(i) If A&B, F =>• C is an axiom or conclusion of L_L; then, A&5 not being
atomic or J_, also A, 5 , F =>• C is an axiom or conclusion of L_L.

Assume height-preserving inversion up to height n, and let hn + i A&B, F =^
C.

If ASLB is the principal formula, the premiss A, B,F =} C has a derivation of
height ft.

If ASLB is not principal in the last rule, it has one or two premisses
A&B, Ff => C\ A&B, F" =>• C", of derivation height ^ n; so by inductive hy-
pothesis, \-n A, B, Ff => C" and \-n A, B, F/r ^ C". Now apply the last rule to
these premisses to conclude A, B, F =>> C in at most n + 1 steps.

(ii) As in (i), if A V 5 , F =>• C is an axiom, also A, F => C and 5 , F = ^ C
are axioms.

If A v 5 is the principal formula, the two premisses A, F =>• C and 5 , F =>• C
are derivable in n steps.

If A v B is not principal in the last rule, it has one or two premisses
A v ^ r ' ^ C , A V B, V" =$> C", of derivation height < n, so by inductive
hypothesis, \-n A, F' =^ Cr and hn 5 , F ; =^ C7 and \-n A,T" => C" and
\-n B,Y" ^ C"\ Now apply the last rule to the first and the third to conclude
A, F =>• C and to the second and the fourth to conclude B, F =>• C in at most
ft + 1 steps.
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(iii) As above for the case that A D B, F ==> C is an axiom.
If A D B is the principal formula, the premiss B, F =$> C has a derivation of

heights.
If A D B is not principal in the last rule, it has one or two premisses

AD B,T' =>C, AD B, F" => C", of derivation height ^ n, so by inductive
hypothesis, \-n B, Ff =» C and \-n B,F" => C": Now apply the last rule to these
premisses to conclude B, F =$• C in at most n + 1 steps. QED.

If a rule is invertible, we often indicate use of the inverse rule by writing Inv at
the inference line. Similarly, if a step is permitted by an inductive hypothesis, we
write Ind next to the inference line.

The following example shows that LD is not invertible with respect to its first
premiss: The sequent I D l ^ l D l i s derivable in G3ip by

D _L
• L±

If LD were invertible with respect to its first premiss, from the derivability of a
sequent with an implication in the antecedent would follow the derivability of its
first premiss as determined by the LD rule. For the sequent _L D JL =>> _L D _L,
this first premiss would be _L D _L =>• J_. The sequent _L => ± is an instance of
L_L, and RD gives => _L D _L. An application of the cut rule now gives =>±,
which would make the system G3ip inconsistent. (The formula _L D J_ of this
example is the "standard" true formula, abbreviated as T = _L D _L.)

2.4. ADMISSIBILITY OF CONTRACTION AND CUT

Next we prove the admissibility of the rule of contraction in G3ip:

Theorem 2.4.1: Height-preserving contraction. If \-n D, D, F => C, then
\-n D, F =^ C.

Proof: The proof is by induction on the height of derivation n. If n = 0,
D, D, F =>• C is an axiom or conclusion of L_L and either C is an atom in the
antecedent or the antecedent contains _L. In either case, also D, F =>• C is an
axiom or conclusion of L_L.

Let contraction be admissible up to derivation height n. We have two cases
according to whether the contraction formula is not principal or is principal in
the last inference step.

If the contraction formula D is not principal in the last (one-premiss) rule
concluding the premiss of contraction we have

£>, P , T => C
D, D, T = ^ C
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which has a derivation height ^ n, so by inductive hypothesis we obtain
\-n D, Fr =>• Cr and by applying the last rule hn + i D, F =>• C. Two-premiss rules
have two occurrences of D in both premisses and the same argument applies.

If the contraction formula D is principal in the last rule, we have three cases
according to the form of D:

D = A&B. Then the last step is L& and we have \-n A, B, A&B, F =^ C. By
Lemma 2.3.5, we obtain \-n A, B, A, B, F =>• C and by inductive hypothesis ap-
plied twice, \-n A, B,F =>• C. Application of L& now gives hn + 1 A&J5, F =>• C.

D = A v 5 . Then the last step is Lv and we have \-n A, A v B, F =>• C and
h n 5 , A v 5 , T = > C . Lemma 2.3.5 gives hn A, A, F =^ C and hn B,B,F =>
C so by inductive hypothesis, hn A, F =>• C and \-n B, V =>• C, so by
Lv, hn+1 A v 5 , r ^ C .

D = A D 5 . Then the last step is LD and we have \-n A D B, A D B,F ^
A and hn 5 , A D 5 , F ^ C. By inductive hypothesis, the first gives
\-nADB,V=^A. By Lemma 2.3.5, the second gives \-n B, B, V =» C
so by inductive hypothesis, hn 5 , F =>• C. Application of LD now gives
hn+i A D f i J ^ C . QED.

Remarkably, the weaker result of admissibility of contraction without preserva-
tion of height is more difficult to prove than admissibility of height-preserving
contraction, for its proof requires a double induction on formula weight with a
subinduction on height of derivation.

The repetition of the principal formula in the first premiss of rule LD is needed
in order to apply the inductive hypothesis that permits contraction in a derivation
of less height. In classical sequent calculus with shared contexts, all rules are
invertible and there is no need for such repetition. The same is true in G3ip in the
sense that the rule without repetition,

A D B,V =^C

is admissible in G3ip. This follows by the application of weakening with A D B
to the left premiss F =>• A.

We now come to the main result of this chapter, the admissibility of cut for the
calculus G3ip. Gentzen called his cut elimination theorem the "Hauptsatz," the
main theorem, and this is how cut elimination is often called today also. The proof
uses, explicitly or implicitly, all the preceding lemmas and theorems to show that
cuts can be permuted upward in a derivation until they reach the axioms and
conclusions of L_L the derivation started with. When both premisses of a cut are
axioms or conclusions of L_L, the conclusion also is an axiom or conclusion of
LJ_: If the first premiss is _L, F =^ C, the conclusion has _L in the antecedent,
and if the first premiss is P, F =>• P, the second premiss is P, A =>• C. This is
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an axiom only if C = P or C is an atom in A, and it is a conclusion of L_L only
if _L is in A. In each case, the conclusion of cut P, F, A =^ C is an axiom or
conclusion of L_L. As a consequence, when cut has reached axioms and instances
of L_L, the derivation can be transformed into one beginning with the conclusion
of the cut, by just deleting the premisses.

The proof of admissibility of cut for G3ip is by induction on the weight of the
cut formula and a subinduction on the sum of heights of derivations of the two
premisses. This sum is called cut-height:

Definition 2.4.2: Cut-height. The cut-height of an instance of the rule of cut in
a derivation is the sum of heights of derivation of the two premisses of cut.

We give transformations that always reduce the weight of cut formula or cut-
height. Actually, what happens is that cut-height is reduced in all cases in which
the cut formula is not principal in both premisses of cut. In the contrary case, cut
is reduced to formulas of lesser weight. This process terminates since atoms can
never be principal in logical rules.

Cut-height is not monotone as we go down in a derivation; that is, a cut below
another one can have a lesser cut-height: In the derivation of one of its premisses
there is the first cut, and this derivation has a greater height than either of the
premisses of the first cut. But the other premiss may have a height much shorter
than either premiss of the first cut, making the sum less than the sum in the first
cut. It follows that the permutation of a cut upward does not always reduce cut-
height but can increase it. For this reason, we shall explicitly calculate the height
of each cut in what follows. As with weakening and contraction, we may assume
that there is only one occurrence of the rule of cut, as the last step.

Theorem 2.4.3: The rule of cut,

F => D £>, A => C

r, A => c

is admissible in G3ip.

Proof: The proof is organized as follows: We consider first the case that at least
one premiss in a cut is an axiom or conclusion of L_L and show how cut is
eliminated. For the rest there are three cases: 1. The cut formula is not principal
in either premiss of cut. 2. The cut formula is principal in just one premiss of cut.
3. The cut formula is principal in both premisses of cut.

Cut with an axiom or conclusion of L_L as premiss: If at least one of the
premisses of cut is an axiom or conclusion of LJ_, we distinguish two cases:

1. The left premiss F => D of cut is an axiom or conclusion of L_L. There are
two subcases:

-Cut
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1.1. The cut formula D is in F. In this case we derive F, A =^ C from D, A => C
by weakening.

1.2. _L is a formula in F. Then F, A =>> C is a conclusion of L_L.

2. The right premiss D, A =^ C is an axiom or conclusion of L_L. There are
four subcases:

2.1. C is in A. Then F, A =^ C is an axiom.

2.2. C = D. Then the first premiss is F => C and F, A =$• C follows by weakening.

2.3. _L is in A. Then F, A =>- C is a conclusion of L_L.

2.4. D = _L. Then either the first premiss F => _L is an axiom and F, A =^ C
follows as in case 7, or F =^ _L has been derived by a left rule. There are three
cases according to the rule used. These are transformed into derivations with
less cut-height. Since the transformations are special cases of the transformations
3.1-3.3 below, with D = _L, we do not write them out here.

Cut with neither premiss an axiom: We have three cases:

3. Cut formula D is not principal in the left premiss, that is, not derived by
an /?-rule. We have three subcases according to the rule used to derive the left
premiss. In the derivations, it is assumed that the topsequents, from left to right,
have derivation heights n,m,k,

3.1. L&, with F = A&B, F'. The derivation with a cut of cut-height n + l+m
is

A, B, F' =» D
• L&

A&B,T'^D P, A=>C
A&B, Vf,A^C

and it is transformed by permuting the order L&,Cut into the order Cut,L&. The
result is the derivation with a cut of cut-height n + m:

Cut

• L&

3.2. Lv, with V = Av B,Vf. The derivation with a cut of cut-height
max(n, m) + 1 + k
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is transformed into the derivation with two cuts of heights n + k and m + k:

A,F'^D D, A
Cut

5.3. LD, with r = A D 5 , r ; . The derivation with a cut of cut-height
max(n, m) + 1 + k

AD B,Tf => D LD D,A=>C
Cut

A D B,r\ A =>C

is transformed into the derivation with a cut of cut-height m + k:
- Wk Cut

A P ff,T, A =» A B,Tf, A ^
ADBF\ A C

We observe that cut-height is reduced in each transformation.

4. Cut formula D is principal in the left premiss only, and the derivation is
transformed into one with a cut of lesser cut-height according to the derivation of
the right premiss. We have six subcases according to the rule used:

4.1. L&, with A = A&B, A\ and the derivation with a cut of cut-height
n -\-m + 1

Z), A,£, A' =^ C
— L&

, A7 =» C

is transformed into the derivation with a cut of cut-height n + m:

r, A&# , A7 => c
L&

4.2. Lv, with A = A V 5, A', and the derivation with a cut of cut-height
ft + max{m, k) + I

T => D D,AvB, A'=^C
Cut

r A 5 A ; C
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is transformed into the derivation with two cuts of heights n + m and n + k:

r =» D D,A,Af=>C V^D D,B,A'^C

r A A ' c Cut
 T B A ' C

 Cut

r , A v £, A' =^ C LV

4.3. LD, with A = A D 5 , A', and the derivation with a cut of cut-height
n +max(m, k) + 1

D,AD B,Af ̂  A D,B,Af^C
r =» £ > D , A D ^ , A ^ C LD

C

is transformed into the derivation with two cuts of heights n + m and n + k\

F => D D, A D B, A' => A r => £> D,B,A'=>C

r ,g ,A / =>c Cut

, with C = A&#, and the derivation with a cut of cut-height
n + maxim, k) + 1

D, A=^A D,A^B
7 J D ^

r ^> z> D , A ^
r, A =• A & B

 Cut

is transformed into the derivation with two cuts of heights n + m and n + k:

F^D D, A^A T^D D,A=>B

r, A => A c" r, A => g c"
r, A

4.5. Rv, with C = A V B, and the derivations with cuts of cut-heights n + m + 1
a n d n + k + l , respectively,

Cut r A ^ A v 5 Cut

are transformed into the derivations with cuts of cut-heights n + m and n + k:

T^D D,A^A V => D D,A=>B
C C
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4.6. RD, with C = A D B, and the derivation with a cut of cut-height n + m + 1

Z), A, A =
D,

n - N

is transformed into the derivation with a cut of cut-height n + m\

T ^ D L>, A, A
-Cut

In each case, cut-height is reduced.

5. Cut formula D is principal in both premisses, and we have three subcases:

5.7. D = A&Z?, and the derivation with a cut of cut-height max(n, m) + 1 +
Jk + l i s

T^A T^B A,B,A^C
A8BA^CT^AScB A8iB,A^C

f^^c Cut

This is transformed into the derivation with two cuts of heights n + k and
m + max(n, k) + 1:

T=»A A,B, A=>C
r =>• B F , B , A ^ C Cut

Cut

ctr

Note that cut-height can increase in the transformation, but the cut formula is
reduced.

5.2. D = A V B, and the derivation is either

r =>• A A , A = ^ C 5, A =^ C

r , A =>• c

with cut-height n + 1 + max(m, k) + 1 or

- C M ?

; L v

- C M ?
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with the same cut-height. These are transformed into derivations with cuts of
cut-heights n +m andn + k,

r =>A A,A=^C r^B B,A^C
r,A^c Cut r , A ^ c Cut

where both cut-height and weight of cut formula are reduced.

5.3. D = A D B, and the derivation with a cut of cut-height n + 1 +
maxim, k) + 1 is

A , F = ^ £ A D 5 , A ^ A £, A => C
V ^ AD B AD B,A^C

^—: 7; Cut

This is transformed into the derivation with three cuts of heights n + 1 +m,n
and max(n + 1, m) + 1 + max(n, k) + 1

B B,A=>C
T A ^ C Cut

In the first and second cut, cut-height is reduced; in the second and third, weight
of cut formula. QED.

In many of the permutations of cut upward in a derivation, the number of cuts
increases exponentially.

In contrast to the logical rules, the contexts in the two premisses of the cut rule
are independent. However, by the admissibility of structural rules, we can show
that also the cut rule with a shared context,

is admissible. To see this, first apply the usual cut rule to the two premisses to
derive F, F, =>• C, then contract the duplication of F in its conclusion.

2.5. SOME CONSEQUENCES OF CUT ELIMINATION

(a) The subformula property: Since structural rules can be dispensed with in
G3ip, we find by inspection of its rules of inference that no formulas disappear
from derivations:

Theorem 2.5.1: If F =>• C has a derivation in G3ip, all formulas in the deriva-
tion are subformulas ofV, C.
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Similarly, a connective that has once appeared in a derivation cannot disappear.
From this it follows in particular that =>± is not derivable, i.e., the calculus is
syntactically consistent.

Theorem 2.5.2: If =^ A V B is derivable in G3ip, then =>Aor =^B is derivable.

Proof: Only right rules can conclude sequents with an empty antecedent so the
last rule can only be R v. QED.

This theorem establishes the disjunction property of the calculus for intuitionis-
tic propositional logic. That such a property should hold follows from the construc-
tive meaning of disjunction as given in Section 2.1. The result can be strengthened
into a disjunction property under suitable hypotheses:

Definition 2.5.3: The class of Harrop formulas is defined by

(i) P, <2, R,..., and _L are Harrop formulas,
(ii) A&B is a Harrop formula whenever A and B are Harrop formulas,
(iii) A D B is a Harrop formula whenever B is a Harrop formula.

Theorem 2.5.4: IfV=>AvBis derivable in G3ip and F consists of Harrop
formulas, then F =>• A or F =$> B is derivable.

Proof: The proof is by induction on the height of derivation. For the base case,
V => Av B is not an axiom, and if it is the conclusion of L_L also F =>> A
is. If the last rule in the derivation of F => A V B is Rv, the premiss is ei-
ther F =>• A or F =» B. If the last rule is L&, then F = C&D, Fr and the pre-
miss is C, D, F' =>• A v B. Since CSLD is a Harrop formula, also C and D are
and the inductive hypothesis applies to the premiss. If the last rule is LD, then
F = C D D, Ff and the inductive hypothesis applies to the right premiss
D , r ; ^ A v 5 . The last rule cannot be Lv. QED.

Proof by induction on the height of derivation in a system with no structural rules
is remarkably simple compared with the original proof of the result in Harrop
(1960).

(b) Hilbert-style systems: We show that, from G3ip, the more traditional Hilbert-
style axiomatic formulation of intuitionistic propositional logic follows. In a
Hilbert-style system, formulas rather than sequents are derived, starting with in-
stances of axioms and using in the propositional case only one rule of inference,
modus ponens. The axioms are given schematically as

1. I D A ,
2. AD(BDA&B), 3.A&BDA, 4.A&BDB,
5.ADAVB, 6.BDAWB, 7. (ADC)D((BDC)D(Av BDQ),
8. AD(BDA), 9. (AD(BDC))D((AD B)D(ADC)).
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In Hilbert-style systems, substitution of formulas is done in the schematic axioms
to obtain the top formulas of derivations. These systems are next to impossible to
use for the actual derivation of formulas because of the difficulty of locating the
substitution instances that are needed. A notorious example is the derivation of
A D A by substitutions in axioms 8 and 9:

(A D ((ADA) D A)) D ((A D (A D A)) D (A D A)) AD ((A D A) D A)

(AD (AD A)) D(AD A) A D (A D A)

A~5~A

There seems to be very little relation between the simplicity of the conclusion and
the complexity of its derivation. In order to translate derivations in the Hilbert-
style system into G3ip we shall write axiom schemes as sequents with empty
antecedents and the rule of modus ponens as the sequent calculus rule

^ AD B => A __
— Mp=> B

We show that this translation of derivations in the Hilbert-style system gives
derivations in G3ip:

Theorem 2.5.5: If formula C is derivable in the Hilbert-style system, then =>• C
is derivable in G3ip.

Proof: In a derivation of C, each instance A of an axiom is replaced by a derivation
of the sequent =>• A. All the axiom schemes as sequents with empty antecedents
are easily derived in G3ip, and we show only the first two:

A,B =» A&B

=>±D A =>AD(BD ASLB)

Each application of modus ponens in the derivation of C is replaced by its sequent
calculus version. We note that a rule is admissibile in G3ip if it is derivable using
also structural rules. Modus ponens as a sequent calculus rule concluding =^B
from =>> A D B and =^ A is derived by

AD B,A^ A B => B
^ AD B AD B,A^ B LD

; ^ Cut

=» B

By cut elimination, a derivation of =^ C in G3ip is obtained. QED.

Hilbert-style systems are widely used in model theory and related fields, but in
proof theory they are more of historical interest. It is possible, although very
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laborious, to prove a converse to Theorem 2.5.5, by the following translations:
Sequents A i , . . . , Am => B are translated into formulas A\&... &Am D B, and
instances of sequent calculus rules, say

A i , . . . , Am => A Bu...,Bn^ B
C\,..., Ck => C

into implications

(Ai& . . . &Am D A)&(Bi& . . . &Bn DB)D(Ci& . . . &Ck DC).

(c) Underivability results: Certain sequents require for their derivation logical
systems stronger in deductive strength than intuitionistic logic. Examples of such
sequents are

=> A v ~ A, the law of excluded middle,
=>• ~ A v ~ ~ A, the weak law of excluded middle,
=>• ~ ~ A D A, the law of double-negation,
^ ( A D 5 ) V ( 5 D A), Dummett's law,
=>> ((A D 5) D A) D A, Peirce's law,
^ ( A D 5 v C ) D ( A D 5 ) v ( A D C ) , disjunction property under hypoth-

esis,
=> (~ A D 5 V C) D (~ A D B) V (~ A D C), disjunction property under

negative hypothesis.

The underivability of these sequents in intuitionistic logic is usually established
by model-theoretical means. We show their underivability proof-theoretically by
the elementary method of contraction- and cut-free derivability. We note that
if a sequent is underivable for atomic formulas, such as = ^ P v ^ P , then the
corresponding sequent =>A\/~ A with arbitrary formulas is also underivable.
Whenever in a root-first proof search a premiss is found that is equal to some
previous sequent, proof search on that branch is stopped. One says that a loop
obtains in the search tree. Stopping the proof search is justified by the fact that a
continuation from the repeated sequent succeeds if and only if a search from its
first occurrence succeeds.

Theorem 2.5.6: The following sequents are not derivable in G3ip:

(i) =^Pv~P,
(ii) ^^pv~^P,
(iii) = » ( ( /> D Q ) D P ) D P ,
(iv) =^(P D Qv R)D (P D Q)V(P D R).

Proof: (i) Assume there is a derivation of =>• P V ~ P. By the disjunction prop-
erty, either =^ P or =^~ P is derivable. No rule concludes =>• P for an atom P,
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and only RD concludes =^~ P, so by invertibility of RD, P =>• _L is derivable.
But no rule concludes such a sequent.

(ii) For = ^ ~ P v ~ ~ P to be derivable, by proof of (i), =>• ~ ~ P must be deriv-
able. Proceeding root-first, the last three steps must be

Since the left premiss of the uppermost instance of LD is equal to its conclusion,
this proof search does not terminate. Therefore there is no derivation of =>• ~ ~ P.

(iii) With =>((P D Q) D P) D P, the last two steps must be

(PDQ)DP^PDQ P => P

If we continue by RD we get

P,(P D Q)D P ^ P D Q P,P => Q
- LD

but the right premiss is not derivable by any rule. If we apply LD instead we get

(PDQ)DP^PDQ P => P D Q

This proof search fails because the sequent P, P =>• 2 is not derivable. Therefore
=>((P D Q)D P)D P is not derivable.

(iv) Derivations of =>• (P D g V R) D (P D Q) V (P D P) must end with PD.
The premiss is P D Qv R => (P D Q)v (P D R), and if the last rule was Rvu

the derivation has either RD or LD. If it is the former, we have the steps

P,P D Qw

P,P D Qv R^ Q
PDQVR=>PDQRD

P D Qv R^(P D g) V (P D R)RVl
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But the premiss P, R =>> Q is not derivable. Else the last steps are

P D Qv R=> P Qv R^ P
P D Qv R^ P LD Qv R^ P D Q

P D Qv R=> P D Q LD

P D Q V R => (P D Q) V (P D R)

Conclusion of LD is repeated in the premiss. If the last rule was R V2, underiv-
ability follows in an entirely similar way. The only remaining possibility is that
the rule was LD, and we have as the last steps

P D Qv R=> P Qv R^ P
P D Qv R^ P LD Qv R^(P D Q)V(P D R)

P D QV R^(P D Q)V(P D R) LD

Again the conclusion of the upper LD was repeated in the premiss. We do not
need to analyze the right premiss, since the proof search fails in any case. QED.

(d) Independence of the intuitionistic connectives: None of the standard in-
terdefinabilities of classical propositional logic obtain in intuitionistic logic. By
arguments similar to those above, it is shown that the following sequents are
underivable:

(i) ~0
(ii) ~y
(iii) ~(.

~ A& ~ h
\DB^
A&L-B)

0 =
A

= > •

= > •

v
A

A

D

V B ,

(e) Decidability of intuitionistic propositional logic: In the above examples,
we were able to survey all possible derivations and found by various arguments
that none turned out to be good. This depended essentially on having all derivations
contraction- and cut-free.

Theorem 2.5.7: Derivability of a sequent T =^ C in the calculus G3ip is decid-
able.

Proof: We generate all possible finite derivation trees with endsequent T => C
and show them to be bounded in number. Starting with F =^ C, we write all
instances of rules that conclude it, then do the same for all the premisses of the
last step. All rules except LD reduce the sequent to be derived into ones with less
weight, where the weight of a sequent is the sum of the weights of its formulas.
If in a proof search we arrive at a sequent that does not reduce by any rule, then
if it is not an axiom or conclusion of L_L, we terminate the proof search. If in a
proof search we have two applications of LD that conclude the same sequent, we
also terminate the proof search. Application of LD root-first can produce only a
bounded number of different sequents as premisses. Therefore each proof search
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tree terminates. If there is one tree all leaves of which are axioms or conclusions
of LJ_, the endsequent is derivable; if not, it is underivable. QED.

This algorithm of proof search is not very efficient, as one can see by trying, say,
the disjunction property under negative hypothesis. There are sequent calculi for
intuitionistic propositional logic that are much better in this respect. One such
calculus will be studied in Section 5.5.

NOTES TO CHAPTER 2

Constructive real numbers and constructive analysis is treated in Bishop and Bridges
(1985). The two-volume book of Troelstra and van Dalen (1988) is an encyclopedia of
metamathematical studies on constructive logic and formal systems of constructive
mathematics. A discussion of predicativity, with references to original papers by
Poincare and Russell, is found in Kleene (1952, p. 42). The same reference also
discusses the background and development of intuitionism (ibid., p. 46).

The calculus G3ip is the propositional part of a single succedent version of
Dragalin's (1988) calculus and is presented as such in Troelstra and Schwichtenberg
(1996). The proofs of admissibility of contraction and cut follow the method of
Dragalin, with inversion lemmas and induction on height of derivation. The proof in
Dragalin (1988) is an outline; a detailed presentation is given in Dyckhoff (1997).



Sequent Calculus for Classical Logic

There are many formulations of sequent calculi. Historically, Gentzen first found
systems of natural deduction for intuitionistic and classical logic, denoted by NJ
and NK, respectively, but was not able to find a normal form for derivations in NK.
To this purpose, he developed the classical sequent calculus LK that had sequences
of formulas also in the succedent part. In our notation, such multisuccedent
sequents are written as F =>> A, where both F and A are multisets of formulas.
Gentzen (1934-35) gives what is now called the denotational interpretation of
multisuccedent sequents: The conjunction of formulas in F implies the disjunction
of formulas in A. But the operational interpretation of single succedent sequents
F =>• C, as expressing that from assumptions F, conclusion C can be derived,
does not extend to multiple succedents.

Gentzen's somewhat later explanation of the multisuccedent calculus is that it
is a natural representation of the division into cases often found in mathematical
proofs (1938, p. 21). Proofs by cases are met in natural deduction in disjunc-
tion elimination, where a common consequence C of the two disjuncts A and
B is sought, permitting to conclude C from A V B. There is a generalization of
natural deduction into a multiple conclusion calculus that includes this mode
of inference. Gentzen suggests such a multiple conclusion rule for disjunction
(ibid., p. 21):

Ay B
A B

Disjunction elimination corresponds to arriving at the same formula C along both
downward branches.

Along these lines, we may read a sequent F =>• A as consisting of the open
assumptions F and the open cases A. Logical rules change and combine open
assumptions and cases: L& replaces the open assumptions A, B by the open
assumption A&B, and there will be a dual multisuccedent rule Rv that changes
the open cases A, B into the open case Av B, and so on. If there is just one case,
we have the situation of an ordinary conclusion from open assumptions. Finally,

47
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we can have, as a dual to an empty assumption, an empty case representing
impossibility, with nothing on the right of the sequent arrow.

In an axiomatic formulation, classical logic is obtained from intuitionistic logic
by the addition of the principle of excluded third to the logical axioms (Gentzen
1934-35, p. 117). In natural deduction, one adds that derivations may start from
instances of the law A v ~ A (Gentzen, ibid., p. 81). Alternatively, one may add ei-
thertherule ^ ^ (Gentzen, ibid.) or the rule of indirect proof (Prawitz 1965,p.20):

_L

In sequent calculus, in the words of Gentzen (ibid., p. 80), "the difference is char-
acterized by the restriction on the succedent," that is, a calculus for intuitionistic
logic is obtained from the classical calculus LK by restricting the succedent to
be one (alternatively, at most one) formula. The essential point here is that the
classical RD rule

A,V => A,ff
V ^ A,AD B

becomes

A,T => B

T^AD5

An instance of the former is

A =^ A,_L
=>> A, AD _L

By the multisuccedent Rv rule, the cases A, A D _L can be replaced by the dis-
junction A V (A D J_), a derivation of the law of excluded middle that gets barred
in the intuitionistic calculus.

It is, however, possible to give an operational interpretation to a restricted
multisuccedent calculus corresponding precisely to intuitionistic derivability, as
will be shown in Chapter 5. Therefore, it is not the feature of having a multiset as
a succedent that leads to classical logic, but the unrestricted RD rule. If only one
formula is permitted in the succedent of its premiss, comma on the right can be
interpreted as an intuitionistic disjunction.

3.1. A N INVERTIBLE CLASSICAL CALCULUS

We give the rules for a calculus G3cp of classical propositional logic and show
that they are all invertible. Then we describe a variant of the calculus with negation
as a primitive connective.
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(a) The calculus G3cp: Sequents are of the form F =>• A, where F and A are
finite multisets and F and A can be empty. In contrast to the single succedent
calculus, it is possible to have sequents of the form F =>• and even =>>. One of the
admissible structural rules of the multisuccedent calculus will be right weakening,
from which it follows that if F =>• is derivable, then also F =>• JL is derivable.

G3cp

Logical axiom:

P, F =• A , P

Logical rules:

At

A,

F

fc£,F

F =*
A v

=» A,

A
B,

A

A^

D T
D , 1

F =»

B,T

A
1 _\—r

• A

• A

=̂  A, A&S

A , A , 5

-R&

A , r
7 ~)

-L,r
•LJ_

The logical rules display the perfect duality of left and right rules for conjunction
and disjunction, of which only the duality Lv-R& could be observed in the
intuitionistic calculus. Here there is only one right disjunction rule, and it is
invertible, and also the left implication rule is invertible, with no need to repeat
the principal formula in the left premiss, which has profound consequences for
the structure of derivations and for proof search.

Theorem 3.1.1: Height-preserving inversion. All rules of G3cp are invertible,
with height-preserving inversion.

Proof: For L&, LV, and the second premiss of LD, the proof goes through as
in Lemma 2.3.5, with A in place of C. We proceed from there with a proof by
induction on height of derivation:

If the endsequent is A D B, F =>• A with A D B not principal, the last rule
has one or two premisses A D B, F' =>> A/ and A D B, F" =>> A", of deriva-
tion height < ft, so by inductive hypothesis, Fr =>• A', A and F" =>• A", A have
derivations of height ^ n: Now apply the last rule to these premisses to conclude
F =>• A, A with height of derivation ^ n + 1.

If A D B is principal in the last rule, the premiss F =>• A, A has a derivation
of height ^ n.
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We now prove invertibility of the right rules:
If Y =>• A, A&B is an axiom or conclusion of L_L, then, A&B not being

atomic, also F =>• A, A and Y =$> A, B are axioms or conclusions of L J_. Assume
height-preserving inversion up to height n and let \-n+i Y =$> A, A&#. There are
two cases:

If A&B is not principal in the last rule, it has one or two premisses,
F' =» A', A&B and Y" =» A", A&£, of derivation height ^ n, so by induc-
tive hypothesis, \-n Yf =» A', A and \-n Yf =^ A', 5 and hn r " =^ A", A and
hrt F" =>• A", B. Now apply the last rule to these premisses to conclude
F =>• A, A and F =>> A, B with a height of derivation ^ n + 1.

If ASLB is principal in the last rule, the premisses Y =^ A, A and F =>• A, 5
have derivations of height ^ n.

If F =>• A, A V 5 is an axiom or conclusion of L_L, then, Av B not being
atomic, also Y =>• A, A, 5 is an axiom or conclusion of L_L. Assume height-
preserving inversion up to height n and let \-n+\ Y ^ A, Av B. There are again
two cases:

If Av B is not principal in the last rule, it has one or two premisses
Yf ^ A\Av B and F" =>• A", Av B, of derivation height ^ n, so by inductive
hypothesis, \-n F' =* Ar, A, 5 and hn r ^ A ' U , ^ Now apply the last rule
to these premisses to conclude Y => A, A, B with a height of derivation ^ n + 1.

If A v B is principal in the last rule, the premiss F =$> A, A, B has a derivation
of height ^ n.

If F =>• A, A D 5 is an axiom or conclusion of L_L, then, A D B not being
atomic, also A, F =>• A, 5 is an axiom or conclusion of LJ_. Assume height-
preserving inversion up to height n and let hn + i F =>> A, A D 5 . As above, there
are two cases:

If A D 5 is not principal in the last rule, it has one or two premisses Yf =>
A', A D B and F" =>• A", A D 5 , of derivation height ^ n, so by inductive
hypothesis, \-n A, Yf => Af, B and \-n A, F/r => A", B. Now apply the last
rule to these premisses to conclude A, F =>• A, 5 with a derivation of height
^ n + 1.

If A D B is principal in the last rule, the premiss A, F =>• A, 5 has a derivation
of height^ n. QED.

Given a sequent F =$ A, each step of a root-first proof search is a reduction
that removes a connective and it follows that proof search terminates. The leaves
are topsequents of form

where the number of _L's in the antecedent or succedent as well as m or n can
beO.
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Lemma 3.1.2: The decomposition of a sequent F =>> A into topsequents in G3cp
is unique.

Proof: By noting that successive application of any two logical rules in G3cp
commutes. QED.

Root-first proof search gives a method for finding a representation of formulas
of propositional logic in a certain normal form: Given a formula C, apply the
decomposition to =$> C, and after having reduced all connectives, remove those
topsequents that are axioms or conclusions of L_L, i.e., those that have the same
atom in the antecedent and succedent or _L in the antecedent.

Definition 3.1.3: A regular sequent is a sequent of the form P\,..., Pm =>•
Qi,..., Qn, _L,.. . , J_ where Pt ^ Qjy the antecedent is empty if m = 0, and
the succedent is ±ifn = 0. The trace formula of a regular sequent is

1. P1Sc...&Pm D g i V . . . V Qn form,n > 0,
2. Qx V . . . V Qn for m = 0, n > 0,
3. ~(Pl&...&Pm)form >0,n = 0,
4. _L for m, n = 0,

where possible repetitions of the P( or Qj in the regular sequent are deleted.

Regular sequents correspond to Gentzen's (1934-35) "basic mathematical se-
quents," except that Gentzen did not have _L as a primitive. The term "regular"
is explained in Chapter 6. Trace formulas of regular sequents are unique up to
the order in the disjunctions and conjunctions. By the invertibility of the rules of
G3cp, a regular sequent with trace formula C is derivable if and only if the se-
quent =>• C is derivable. It follows that a formula is equivalent to the conjunction
of its trace formulas:

Theorem 3.1.4: A formula C is equivalent to the conjunction of the trace for-
mulas of its decomposition into regular sequents.

Proof: Let the topsequents ofthe decomposition of =>• CbeFi =>> A i , . . . , Tm=$>
Am, with the n first giving the trace formulas C\,..., Cn and the rest, if m > n,
having _L in the antecedent or the same atom in the antecedent and succedent.
We have to show that = ^ C D C C i & . . . &Cn is derivable. We have a deriva-
tion of =>• C from Fi => A\,..., Tm => Am that uses invertible rules. By adding
the formula C to the antecedent of each sequent in the derivation, we obtain a
derivation of C =» C from C, Fi => A i , . . . , C, Fm =>• Am by the same invertible
rules. Therefore each step in each root-first path, from C =>• C to C, F/ =^ Ai9

is admissible. Since C =>• C is derivable, each C, F,- =» A, is derivable. It fol-
lows that, for each trace formula, up to n, the sequent C =^ Ct is derivable.
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Therefore, by repeated application of R&, C =>• C\ & . . . ScCn is derivable, and by
R D, =» C D C i & . . . &Cn is derivable.

Conversely, starting from the given derivation of =>• C from topsequents
Fi => A i , . . . , Fm =>• Am, add the formulas C i , . . . , Cn to the antecedent of each
sequent in the derivation to obtain a derivation of C\,..., Cn =>• C from new
topsequents of the form C\,..., Cn, F; =>• A/. For / > n, such sequents are ax-
ioms since they have _L in the antecedent or the same atom in the antecedent and
succedent. For / ^ n they are derivable since each C\,..., Cn =>• Ct is deriv-
able. Application of L& and RD to C\,..., Cn =>• C now gives a derivation of
=^ C1&.. .&G, D C. QED.

As a consequence of Lemma 3.1.2, the representation given by the theorem is
unique up to order in the conjunction and the conjunctions and disjunctions in the
trace formulas. Each trace formula P\SL . . . &Pm D Q\ v . . . v Qn is classically
equivalent to ~ P\ v . . . v ~ Pm V Qi v . . . v Qn\ the representation is in effect
a variant of the conjunctive normal form of formulas of classical propositional
logic.

(b) Negation as a primitive connective: In Gentzen's original classical sequent
calculus LK of 1934-35, negation was a primitive, with two rules that make a
negation appear on the left and the right part of the conclusion, respectively:

F =* A, A A ,F => A

Now negation displays the same elegant symmetry of left and right rules as the
other connectives. Some years later, Gentzen commented on this property of the
multisuccedent calculus as follows (1938, p. 25): "The special role of negation,
an annoying exception in the natural deduction calculus, has been completely
removed, in a way approaching magic. I should be permitted to express myself
thus since I was, when putting up the calculus LK for the first time, greatly
surprised that it had such a property."

Gentzen's rules for negation, with the definition ~ A = A D _L, are admissible
in G3cp, the first one by

F => A, A

and the second one by

where RW is right weakening, to be proved admissible in the next section.
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3.2. ADMISSIBILITY OF STRUCTURAL RULES

We shall prove admissibility of weakening, contraction, and cut for the calcu-
lus G3cp. There will be two weakening rules, a left one for weakening in the
antecedent and a right one for weakening in the succedent, and similarly for
contraction. The rules are as follows:

r ^ A , , ^ ^ , ,
-LW — — -RW LC ;—RC

The proofs of admissibility of left and right weakening are similar to the proof of
height-preserving weakening for G3ip in Theorem 2.3.4:

Theorem 3.2.1: Height-preserving weakening. If \-n F =>> A, then \-n A, F =>•
A. / / \-n F =^ A, then hn F =^ A, A.

Proof: The addition of formula A to the antecedent and consequent, respectively,
of each sequent in the derivation of F =>> A will produce derivations of A, F =>• A
and F =^ A, A. QED.

It follows that if a sequent F =>• with an empty succedent is derivable, the sequent
F =>• J_ also is derivable.

Theorem 3.2.2: Height-preserving contraction. If \-n C, C, F =>• A, then
\-n C, r =» A. / / hn F =• A, C, C, */H?W h J ^ A , C.

Proof: The proof of admissibility of left and right contraction is done simultane-
ously by induction on height of derivation of the premiss. For n = 0, if the premiss
is an axiom or conclusion of L_L, the conclusion also is an axiom or conclusion of
L_L, whether contraction was applied on the left or right. For the inductive case,
assume height-preserving left and right contraction up to derivations of height n.
As in the proof of contraction for the single succedent calculus, Theorem 2.4.1,
we distinguish two cases: If the contraction formula is not principal in the last
rule applied, we apply the inductive hypothesis to the premisses and then the rule.
If the contraction formula is principal, we have six subcases according to the last
rule applied.

If the last rule is L& or Lv, the proof proceeds as in Theorem 2.4.1. If the
last rule is R&, the premisses are \-n F =>• A, A&B, Aandhn F =>• A, A&B, B.
By height-preserving invertibility, we obtain \-n F => A, A, A and hn F =>
A, B, B, and the inductive hypothesis gives \-n F =>• A, A and \-n F =>> A, B. The
conclusion hn + i F =>• A, AScB follows by R8L. If the last rule is R V, the premiss
isl-^ F = ^ A , A v Z ? , A , i ? and we apply height-preserving invertibility to con-
clude \-n V ^ A, A, B, A, B, then the inductive hypothesis twice to obtain
\-n F =» A, A, B, and last flv.
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If the last rule is RD, the premiss is h n A, F =^ A, ADB, B and we apply

height-preserving invertibility to conclude h n A , A , F = ^ A , Z ? , Z ? , then the in-

ductive hypothesis to conclude \-n A, F =>> A, Z? and t h e n / O . If LD was applied,

we have the derivation of the premiss of contraction,

A P ff, F =j> A, A B,ADB,F=>A

AD B,AD B,T => A LD

By height-preserving inversion, we have \-n F => A, A, A and hn 5 , 5 , F =>-
A. By the inductive hypothesis, we have \-n F =>> A, A and hn # , F =^ A, and
obtain a derivation of A D #, F =>• A in at most n + 1 steps. QED.

A proof by separate induction on left and right contraction will not go through if
the last rule is LD or RD.

Theorem 3.2.3: The rule of cut,

l Cut

r, rr=> A, A'
is admissible in G3cp.

Proof: The proof is organized as that of Theorem 2.4.3, with the same numbering
of cases.

Cut with an axiom or conclusion of L_L as premiss: If at least one of the
premisses of cut is an axiom, we distinguish two cases:

1. The left premiss F =>• A, D of cut is an axiom or conclusion of L_L. There
are three subcases:

1.1. The cut formula D is in F. In this case we derive F, F" =>> A, Af from the
right premiss D, Ff => A' by weakening.

1.2. F and A have a common atom. Then F, F' =>• A, A' is an axiom.

1.3. _L is a formula in F. Then F, F7 => A, A' is a conclusion of L_L.

2. The right premiss D, Fr =>• A; is an axiom or conclusion of L± . There are
four subcases:

2.1. D is in A'. Then F, F ; =>• A, Ar follows from the first premiss by weakening.

2.2. Ff and A' have a common atom. Then F, F ; =>• A, Ar is an axiom.

2.5. _L is in F'. Then F, Vf =^ A, A' is a conclusion of L_L.

2.4. D = _L. Then either the first premiss is an axiom or conclusion of L_L and
F, Ff =>• A, Af follows as in case 1, or F =» A, _L has been derived. There are six
cases according to the rule used. These are transformed into derivations with cuts
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of lesser cut-height. Since _L is never principal in a rule and the transformations
are special cases of transformations 3.1-3.6 below, with D = _L, they need not
be written out here.

Cut with neither premiss an axiom: We have three cases:

3. Cut formula D is not principal in the left premiss. We have six subcases
according to the rule used to derive the left premiss. For L& and Lv, the trans-
formations are analogous to those of cases 3.1 and 3.2 of Theorem 2.4.3. For
implication, we have

3.3. LD, with T = AD B, F". The derivation

V" =» A,D,A B,T" => A,D

AD B,T/f ^ A,D LD D,V'=>Af

A D B,r", r'=» A, A' Cut

is transformed into the derivation

r " ^ > A , P , A P , r = » A/ B, V" ^ A , P P , V => Af

Cut Cr/f, r^A,A\A Cut B, r", r => A,
A D 5,r/;, r=> A, A7

with two cuts of lower cut-height.

3.4. R&, with A = A&B, A". The derivation

r ^ A\A,D r=^ A", B,D

p p , r =» A
r, rr =^ A7

is transformed into the derivation with two cuts of lower height

r => A", A,D p , r = ^ A / r ^ A \ B, D p,r ^ A'
r, rr =̂  A;/, A, Af Cut r, rr =» A", B, A' Cut

r, r => A",

3.5. Rv, with A = A V 5 , A". The derivation

r =» A/;, A , £ , P
r =» A/r, A V B,DRV D, r ^ Ar

r, r r =^ Ar/, A V 5 , A ' Cut

is transformed into the derivation with a cut of lower cut-height:

r =^ A ; /, A,g, p p , r ^ A /

r , r / ^ A",A,B, Ar CM?

r, r => A", A v B, Af
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3.6. RD, with A = AD B, A". The derivation

r , A =» A", B, D
r => A", AD B,DRD D, T => Ar

r , Vf => A", AD B,Af

is transformed into the derivation with a cut of lower cut-height:

r, A =» A", g, p p, r => Af

r, r, A => A", B
r,r => A",AD B,A'RD

4. Cut formula D is principal in the left premiss only, and the derivation is
transformed in one with a cut of lower cut-height according to derivation of the
right premiss. We have six subcases according to the rule used. Only the cases of
LD and Rv are significantly different from the cases of Theorem 2.4.3:

4.3. LD, with A = AD B, A'. The derivation and its transformation are similar
to those of previous case 3.3.

4.5. Rv, with A = A v B, A". The derivation

D, T' => A,B, A
; r, Rv

F =>• A , D D , Ff =>• A V B, A "

T,Tr => A,AvB,A" Cm

is transformed into the derivation with a cut of lower cut-height

r, r=> A,AV5,A/;

5. Cut formula D is principal in both premisses, and we have three subcases,
of which conjunction is very similar to that of case 5.1 of Theorem 2.4.3.

5.2. D = A v B, and the derivation

r,r=* A, A7

is transformed into

-Cut

Cut s,r^Af

Cutr,r, r=> A, A7, A;

: ; Ctrr, r =̂  A, A

with two cuts of lower cut-height.
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5.5. D = A D B, and the derivation

Cut

is transformed into the derivation with two cuts of lower cut-heights:

Cutr, r=»A,A', B , »
r,r, r =» A, A;, A/ Cut

r, n=^A,A'
QED.

We obtain, just as for the calculus G3ip, the following subformula property.

Corollary 3.2.4: Each formula in the derivation of F =>• A m G3cp w a sub-
formula ofT, A.

It follows in particular that the sequent =>> is not derivable. We concluded from
the admissibility of weakening that if F =>• is derivable, then also F =>• _L is
derivable. We now obtain the converse by applying cut to F =>• _L and ± =>•;
thus an empty succedent behaves like _L.

In intuitionistic logic, all connectives are needed, but in classical logic, negation
and one of &, V, D can express the remaining two. How does the interdefinability
of connectives affect proof analysis? Gentzen says that one could replace some
rules by others in classical sequent calculus, but that if this were done, the cut
elimination theorem would not be provable anymore (1934-35, III. 2.1).

If we consider, say, the D, J_ fragment of G3cp, the cut elimination theorem
remains valid. Conjunction and disjunction can be defined in terms of implication
and falsity; thus for any formula A there is a translated formula A* in the fragment
classically equivalent to it. Similarly, sequents F =>• A of G3cp have translations
F* =>• A* derivable in the fragment if and only if the original sequent is derivable
in G3cp. By the admissibility of cut, the derivation uses only the logical rules for
implication and falsity.

Gentzen's statement about losing the cut elimination theorem is probably based
on considerations of the following kind: According to Hilbert's program, logic
and mathematics had to be represented as formal manipulations of concrete
signs. In propositional logic, the signs are the connectives, atomic formulas, and
parentheses. Once these are given, there is no question of defining one sign by
another. However, it is permitted to reduce or change the set of formal axioms
and rules by which the signs are manipulated. Thus one gets along in propo-
sitional logic with just one rule, modus ponens. The axioms for conjunction
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and disjunction in Hilbert-style, in Section 2.5(b) above, could in classical logic
be replaced by the axioms (~ADB)DAvB,AvBD(^ADB) and
~(AD ~B)DA&B, A&BD ~(AD ~J3). If these axioms are added to the
fragment of G3cp in the same way as in Section 2.5(b), as sequents with empty
antecedents, they can be put to use only by the rule of cut, and it is this phenomenon
that Gentzen seems to have had in mind.

Later on Gentzen admitted, however, the possibility of "dispensing with the
sign D in the classical calculus LK by considering A D B as an abbreviation for
~ A v B; it is easy to prove that rules RD and LD can be replaced by the rules
for v and ~" (1934-35, III. 2.41).1

3.3. COMPLETENESS

The decomposability of formulas in G3cp can be turned into a proof of com-
pleteness of the calculus. For this purpose, we have to define the basic semantical
concepts of classical propositional logic:

Definition 3.3.1: A valuation is a function v from formulas of propositional logic
to the values 0, 1 assumed to be given for all atoms,

v(P) = 0 or v(P)=l,

and extended inductively to all formulas,

v(±) = 0,
V(ASLB) = min(v(A),
v(A V B) = max(v(A),
v(A D B) = max{\ - v(A),

Observe that, by definition of v, v(A D B) = 1 if and only if v(A) ^ v(B).
Valuations are extended to multisets F by taking conjunctions /\(T) and dis-
junctions \f(T) of formulas in F, with / \ ( ) = _L and \ / ( ) = T for the empty
multiset and by setting

v A(H = min(v(C)) for formulas C in F,
v V(r) = max(v(C)) for formulas C in F.

Definition 3.3.2: A sequent F =>• A is refutable if there is a valuation v such that
v /\(T) > v\J(A). Sequent F =>• A is valid if it is not refutable.

It follows that F =5- A is valid if for all valuations v, v /\(T) ^ v \J(A). For
proving the soundness of G3cp, we need the following lemma about valuations:

text has "NK" (also in the English translation) that is Gentzen's name for classical
natural deduction, but this must be a misprint since he expressly refers to rules of sequent
calculus.
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Lemma 3.3.3: For a valuation v, min(v(A), v(B)) ^ v(C) if and only if
v(A)^v(B D C).

Proof: If v(A) = 0 the claim trivially holds. Else min(v(A), v(B)) = v(B); thus
min(v(A), u(B)) ^ u(C) if andonly if u(#Ku(C), if andonly if i;(£ D C) = 1,
i.e., v(A) ^ v(B D C). QED.

Corollary 3.3.4: min(v(A D B), v(A)) ^ v(B).

Proof: Immediate by Lemma 3.3.3. QED.

Theorem 3.3.5: Soundness. If a sequent V =>• A is derivable in G3cp, it is valid.

Proof: Assume that F => A is derivable. We prove by induction on height of
derivation that it is valid. If it is an axiom or conclusion of L_L, it is valid since
we always have i; /\(P, V)^v \/(A, P) and v /\(_L, T)^v V(A).

If the last rule is L&, we have by inductive hypothesis for all valuations
v that u / \ (A , f l , r )^u \ / (A) , and v f\(A&B, T) ^v V(A) follows by
v /\(A&B, F) = v /\(A, B, T). The case for Rv is dual to this. For Lv, we have
v /\(A, V)^v V(A) and v y\(B, F) < u V(A). Then

v /\(A V5,T) = max(i; y\(A, F), v /\(B, F)) ^ i; V(A).

The case of R& is dual to this. If the last rule is LD, suppose

v /\(r)^max(v V(A), v(A)) and min(v(B), v /\(T)) ^ u V(A).

There are two cases: If i; V( A) = 1, then the conclusion is trivial. If v \f( A) = 0,
then v /\(F) ^ v(A) and min(v(B), v A(O) ^ 0- F r o m t h e former follows

min(v(A D B), v /\(r))^min(min(v(A D B), v(A)), v /\(T))

and therefore, by using Corollary 3.3.4, we obtain

min(v(A D B), v /\(T))^min(v(B), v /\(F)) ^ 0 .

If the last rule is RD, we have

min(v(A), v /\(F))^max(v V(A), v(B))

and there are two cases: If v V(A) = 1, then the conclusion is trivial. Otherwise
we have min(v(A), v /\(T)) ^ v(B): hence by Lemma 3.3.3, v /\(T) ^ v(A D B)
and a fortiori v /\(T) ^ max(v V(A), v(A D 5)). QED.

Theorem 3.3.6: Completeness, /f a sequent F =>• A w va//J, /r /.s1 derivable in
G3cp.
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Proof: Apply root-first the rules of G3cp to the sequent F =^ A, obtaining
leaves that are either axioms, conclusions of L_L, or regular sequents. We prove
that if F => A is valid, then the set of regular sequents is empty, and therefore
F => A is derivable. Suppose that the set of regular sequents consists of Fi =>•
A i , . . . , Vn =$> An, with n > 0, and let Ct be their corresponding trace formulas.
We have, by Theorem 3.1.4, ^ C X C i & . . . &Cn, where C is y\(F) D \/(A).
Since F =>• A is valid, by definition v(C) = 1 for every valuation v, and since
C => Ci&.. . &Cn, by soundness v(C)^v(Ci&...&Cn), which gives v(Q) = 1
for each Ct and every valuation v. No Ct is _L, since no valuation validates it.
No Ct is ~ ( P i & . . . &Pm) since the valuation with v(Pj) = 1 for all j ^m does
not validate it. Finally no Q is Px&... &Pm D g,- v . . . V Qr or Qt v . . . v Qr

since it is refuted by the valuation with v(Pj) = 1 for all j ^ m and v{Qk) = 0
f o r a l U ^ r . QED.

Decomposition into regular sequents gives a syntactic decision method for for-
mulas of classical propositional logic: A formula C is valid if and only if no
topsequent is a regular sequent.

NOTES TO CHAPTER 3

The logical rules of the calculus G3cp first appear in Ketonen (1944, p. 14), the
main results of whom were made known through the long review by Bernays (1945).
Negation is a primitive connective, derivations start with axioms of the form A =$> A,
and only cut is eliminated, the proof being similar to that of Gentzen. Invertibility is
proved by structural rules.

Direct proofs of invertibility were given by Schiitte (1950) and Curry (1963). The
proofs of admissibility of structural rules we give follow the method of Dragalin, sim-
ilarly to the intuitionistic calculus. Normal form by means of decomposition through
invertible rules and the related completeness theorem are due to Ketonen (1944). He
seems to have found his calculus by making systematic the necessity that anyone
trying root-first proof search experiences, namely, that one has to repeat the contexts
of the conclusion in both premisses of two-premiss rules. In an earlier expository
paper, he gives an example of proof search and states that, because of invertibility
of the propositional rules, the making of derivations consists of purely mechanical
decomposition (1943, pp. 138-139).

The idea of validity as a negative notion, as in Definition 3.3.2, was introduced in
Negri and von Plato (1998a).



4

The Quantifiers

In this chapter, we give the language and rules for intuitionistic and classical
predicate logic. Proofs of admissibility of structural rules are extensions of the
previous proofs for the propositional calculi G3ip and G3cp. We then present
some basic consequences of cut elimination, such as the existence property and
the lack of prenex normal form in intuitionistic logic. The invertible rules for the
classical sequent calculus G3c are exploited to give a, possibly nonterminating,
procedure of proof search. This procedure, called construction of the reduction
tree for a given sequent, is the basis of Schtitte's method for proving completeness
of classical predicate logic. We give a completeness proof, using the reduction
tree, but define validity through valuations, as an extension of the definition of
validity of classical propositional logic in Section 3.3.

4.1. QUANTIFIERS IN NATURAL DEDUCTION AND IN SEQUENT CALCULUS

(a) The language of predicate logic: The language of first-order logic con-
tains constants a,b,..., variables x, y , . . . , n-place functions fn, gn,..., and
predicates Pn, Qn,..., for any n ^ 0, the zero-place connective _L, the two-
place connectives &, V, D, and the quantifiers V, 3. The arity of functions and
predicates is often left unwritten. Constants and variables are sometimes writ-
ten as a\, a2,..., JCI, Jt2, . . . , or a,a\..., x, xf, Constants can be thought
of as zero-place functions, and there can be, analogously, zero-place constant
propositions.

Terms are denoted by t, u,... or t\, t2,... or t, tf,... and are defined inductively
by the clauses:

1. Constants are terms,

2. Variables are terms,

3. Application of an n-ary function fn to terms t\,..., tn gives a term

61
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Formulas are defined inductively by the clauses:

1. J_ is a formula,

2. Application of an n-ary predicate Pn to terms t\,...,tn gives a
formula P(h,..., tn\

3. If A and B are formulas, ASiB, A v B, and A D 5 are formulas,

4. If A is a formula, VxA and 3JC A are formulas.

The set of free variables FV(t) in a term £ is defined inductively by:

1. Fort = a,FV(a) = 0,
2. Forf =x,FV(x) = {x},
3. For? = fn(tu • • •, *„), FV(/(ri, ...,*„)) = F Vft) U . . . U FVfe).

The set of free variables FV(A) in a formula A is defined inductively by:

1.

2. FV(P(tu • • •, tn)) = FV(h) U . . . U

3. FV(A&B) = FV(A v 5 ) = FV(A D 5 ) = FV(A) U

4. FV(VJCA) = FV(3xA) = FV(A) - {x}.

A term or formula that has free variables is open; otherwise it is closed. In 4, x is a
bound variable. In first-order logic, a principle of renaming of bound variables,
or of-conversion, is often assumed: It consists in identifying formulas differing
only in the names of bound variables, usually expressed as VJC A(X) = VyA(y) and
3xA(x) = 3yA(y). Such a principle is intuitively justified by the role of bound
variables as placeholders, as in fa f(x)dx, which is the same as fa f(y)dy.
We shall not need to assume this principle here, as it will be formally derivable
once the quantifier rules are given an appropriate formulation. Also, we shall not
use the notation A(x) to indicate that A contains, or may contain, the free variable
x. The parenthesis notation is used for application of a function or predicate, as
in the definition of terms and formulas above. If a variable does not occur in a
formula, sequent, or derivation, we say it is fresh for that formula, sequent, or
derivation.

In terms t, as well as in formulas A, a variable x can be substituted by a term
t'. To identify what is substituted for what, the notation [t'/x] is used. The result
of substitution [t'/x'] is written as t(t'/x) for a term t and as A(t'/x) for a formula
A. Substitution is defined by induction on the terms and formulas in which the
substitution is performed:
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Substitution [t/x] in a term:

1. a(t/x) — a,

2. y(t/x) = y if y ^ x a n d y(t/x) = tify=x,

3 . fn(tu . . . , tn){t/x) = fn(h(t/x\ . . . , tn(t/x)).

Substitution [t/x] in a formula:

1. ±(t/x) = ±,

2. ( P ^ f o , . . . , tn))(t/x) - Pn(h(t/x),..., tn{t/x)\

3. (A o B)(t/x) = A(t/x) o B(t/x), for o = &, V, D,

4. QiyA)(t/x) = VyA(t/x) ify^x, (WyA)(t/x) = WyA ify = x,

5. (3yA)(t/x) = 3yA(t/x) \iy+x, (3yA)(t/x) = 3yA ify=x.

The last two clauses in the above definition guarantee that substitution does
not act on bound variables. We shall call A(t/x) a substitution instance of A.
Simultaneous substitution of n terms t\,..., tn for n variables x\,..., xn is writ-
ten as [t\/x\,..., tn/xn], and its result in a term t is written as t(t\/x\,..., tn/xn)
and in a formula A as A(t\/xi,..., tn/xn).

When a term r is substituted for a variable x in a formula A, it may happen that
some variables of the term t "get caught" in the substitution, by some quantifiers in
A. If this happens, the validity of substitution instances of a universal formula is no
longer guaranteed. As an example, consider the formula Vy3x(y < x) that holds
in a linearly ordered set without greatest element. Dropping the first quantifier
and substituting x for y produces 3x(x < x), which is not satisfiable in the same
domain. However, if we rename the bound variable x by z before performing the
substitution, we obtain 3z(x < z) that is satisfiable.

We say that a term t is free for x in A if no variable of t becomes bound as
an effect of the substitution of t for x in A. The binding may happen if some
variables of t are in the scope of quantifiers in A. However, instead of con-
trolling the condition for each substitution, we observe that the condition can
always be met by appropriate renaming of bound variables in the formula A:
If A is, say, VxB and y is a variable not occurring in A, a-conversion guar-
antees that we can identify A with VyB(y/x). In this way we can ensure that
a variable does not occur both free and bound in a formula. When consider-
ing a substitution, we shall assume that this condition is satisfied, if neces-
sary by renaming of bound variables, and shall sometimes omit recalling the
condition.
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(b) Quantifiers in natural deduction: The intuitionistic meaning explanations
for quantified formulas VJCA and =bt A are as follows:

1. A direct proof of VxA consists of a proof of A(y/x) for an arbi-
trary y.

2. A direct proof of 3xA consists of a proof of A(a/x) for some
individuals.

In natural deduction, the premiss for the introduction rule of a universal propo-
sition WxA is that A(y/x) has been derived for an arbitrary y. To be arbitrary
means that nothing more than the range of possible values is assumed known
about y. This condition is expressed as a variable restriction on the introduction
rule for the universal quantifier. The premiss for an existential proposition is that
A has been derived for some individual a.

The introduction rules for the quantifiers are:

A(y/x) A(a/x)
v / 31

The rule of universal introduction has the variable restriction that y must not
occur free in any assumption that A(y/x) depends on nor in VxA. The latter
condition can be equivalently expressed by requiring that y is equal to x or
else y is not free in A. The variable restriction guarantees that y stands for an
"arbitrary individual" for which A holds, which is the direct ground for asserting
the universal proposition.

Usually rule V/ is written as ^ ^ and the restriction is that x is not free in
any of the assumptions that A depends on, where one must keep in mind that if
A is an assumption it depends on itself. With this rule, a-conversion has to be
postulated as a principle to be added to the system. In the rule we use, instead,
this conversion is built in. We also modify rule 3 / for the same reason: Instead of
having the premiss for some individual, the premiss will have an arbitrary term f,
thus the rule we use for the existential quantifier is:

A{t/x)
3xA

To determine the general elimination rule corresponding to rule V/, assume a
derivation of A(y/x) for an arbitrary y. In deriving consequences from A(y/x)
for y arbitrary, any instances A(t/x) may be used; thus the auxiliary deriva-
tion of the general elimination rule leads to some consequence C from assump-
tions A(t\/x),..., A(tn/x). We simplify this situation by admitting only one
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assumption A(t/x) and obtain the rule

[A(t/x)]

VxA C
C

-WE

The rule with the assumptions A(t\/x),..., A{tn/x) is admissible, by the repeti-
tion of the above rule n times.

Rules V7 and WE satisfy the inversion principle: Given a derivation of A(y/x)
for an arbitrary y, a derivation of A(t/x) is obtained for any given term t by
substitution. Therefore, the derivation

: [A(t/x)]

\

converts through the use of the substitution into a derivation of C without rules
V/andV£:

A(t/x)

C

The standard elimination rule for universal quantification is obtained when
C = A(t/x):

A(t/x)

The standard elimination rule for the existential quantifier already is of the form
of general elimination rules:

[A(y/x)]

3xA C
C

• 3E

It has the restriction that y must not occur free in 3x A, C nor in any assumption
C depends on except A(y/x). The rule is in accordance with our inversion prin-
ciple: The direct grounds for deriving 3xA can consist in deriving A for any one
individual in the domain of the bound variable. For C to be derivable from 3x A,
in order to take all possible cases into account, it must be required that C follow
from A{y/x) for an arbitrary y, and this is what the variable restriction in rule



66 STRUCTURAL PROOF THEORY

3E expresses. If in a derivation 3xA was inferred by 3 / from A(t/x) and 3xA is
the major premiss of 3E, then C follows in particular from A(t/x). The inversion
principle is satisfied, for the derivation

: [A(y/x)]
A(t/x) !

c
converts into a derivation of C without rules 31 and 3E:

A(i/x)

C

The addition of the above introduction and elimination rules to the system of
natural deduction for intuitionistic propositional logic will result in the system of
natural deduction for intuitionistic predicate logic.

The introduction rule for existence is in accordance with the intuitionistic or
constructive notion of existence. Further, the definability of existence in terms
of negation and universal quantification, 3xA = ^Wx ~ A, fails in intuitionistic
predicate logic, and all four quantifier rules are needed.

In classical logic, indirect existence proofs are permitted and existence cannot
have the same meaning as in intuitionistic logic, but no finitary system of natural
deduction with normalization and subformula property has been found for full
classical predicate logic. There is a natural deduction system with good structural
properties only for the v- and 3-free fragment, to be presented in Chapter 8. The
idea is to translate formulas with v or 3 into formulas known to be classically
equivalent but not containing these operations: For any formula C that should be
derivable but is not, there is a translated formula C* that is derivable. An example
of such a translation is Prawitz' system of natural deduction for stable logic, i.e.,
a system of propositional logic in which the law of double negation is derivable.
The translation gives a v-free fragment by translating disjunctions Av B into
implications ~ADB. However, such a translation is not suited for representing
the structure of derivations in full classical logic, disjunction included.

(c) Quantifiers in sequent calculus: As mentioned, there is at present no fini-
tary normalizing system of natural deduction for the full language of classical
predicate logic. In sequent calculus, instead, cut-free calculi for intuitionistic as
well as full classical predicate logic were found already by Gentzen. To obtain
a sequent calculus for intuitionistic predicate logic, quantifier rules are added to
the intuitionistic propositional calculus G3ip. The rules are, with repetition of the
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principal formula in LV similarly to LD,

G3i
A(t/x), VxA, F =* C

LV, r =» c LV r =
A(y/x), F =» C F => A(f/*)

L3

The restriction in RV is that y must not occur free in F, VxA. The restriction in
L3 is that y must not occur free in 3xA, F, C.

Unlike in natural deduction, in sequent calculus all propositional rules are
local. In quantifier rules, fulfillment of the variable restrictions is controlled in
the same local way.

We obtain the rules of sequent calculus for classical predicate logic by adding
to the propositional calculus G3cp the rules

G3c
A(t/x), VxA, F =• A F =̂  A, A(y/x)

TV — /?V

F ^ A F ^ A V A

A(y/x), F => A F =» A, 3xA, A(t/x)
3xA, F =^ A L 3 F ^ A,3JCA * 3

The restriction in /̂ V is that y must not occur free in F, A, Vx A. The restriction
in L3 is that y must not occur free in 3xA, F, A. We may summarize these
conditions by the requirement that y must not occur free in the conclusion of the
two rules. In the propositional part of G3c, because of invertibility of all rules
there was no need to repeat principal formulas in premisses of rules, but to obtain
admissibility of contraction for G3c, repetition is needed in LV and R3.

The weight of quantified formulas is defined as

wp/xA) = w(A)+l,
w(3xA) = w(A)+l.

Height of derivation is defined as before.
The following lemma is a formal version of the principle of renaming of bound

variables:

Lemma 4.1.1: Height-preserving a-conversion. Given a derivation V of
F => C in G3i (o/F => A in G3c), it can be transformed into a derivation V of
Tf => C (of Vf => A') where F', Ar, C, andV differ from F, A, C, and V only
by fresh renamings of bound variables.

Proof: We shall give the proof for G3i, the proof for G3c being similar, by
induction on the height n of the derivation. If n = 0, F =>• C is an axiom or
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conclusion of L_L, then also F' =>> C", where the bound variables have been
renamed by fresh variables, is an axiom or conclusion of L_L. Else F =>• C has
derivation height > 0. If all the rules in the derivation are propositional ones,
the renaming is inherited from the premisses (axioms) to the conclusion of the
derivation. Otherwise we consider the last quantifier rule in the derivation. If it
is LV, with conclusion VxA, r " =>• C and premiss A(t/x), WxA, r " =>• C, and
x has to be renamed by the fresh variable y, by inductive hypothesis from the
premiss we obtain a derivation of the same height of A(t/x), WyA(y/x), V =>> C,
that is, of A(y/x)(t/y), VyA(y/x), V =» C", and therefore, by applying LV, we
obtain a derivation of the same height of the conclusion VyA(y/x), Tr =>• C.
If the last quantifier rule is Ri, with conclusion F =>• WxA from the premiss
F =>• A(z/x), by inductive hypothesis we have a derivation of the same height of
F / =>• A'(z/x), where bound occurrences of x have been renamed by y. This is
the same as F" =»• A\y/x){z/y)\ thus we obtain by #V, F" =>• VyA'(y/x), with
the same bound on the derivation height as the sequent F =>• V* A. The cases of
L3 and /?3 are treated symmetrically to RW and L3. QED.

If in a sequent F ^ A a term t is substituted for a variable x, derivability of
the sequent is maintained, with the same derivation height. The proviso for the
substitution is that the term t be free for x in every formula of the sequent F =>> A
(or, for short, t is free for x in F =>• A). Substitution of free occurrences of x by
t in all formulas of F is denoted by T(t/x).

Lemma 4.1.2: Substitution lemma.
(i) IfV=>C is derivable in G3i and t is free for x inV, C, then T{t/x)^

C(t/x) is derivable in G3i, with the same derivation height.
(ii) IfV^Ais derivable in G3c and t is free for x inV, A, then T(t/x) =>

A(t/x) is derivable in G3c, with the same derivation height.

Proof: We only give the proof of (i), the proof of (ii) being similar. The proof is
by induction on height of derivation.

By Lemma 4.1.1, it is not restrictive to suppose that in the derivation of F =>• C
the bound variables have been renamed so that the sets of free and bound vari-
ables are disjoint. With this assumption, some cases in the proof can be avoided.
Furthermore, by the choice of fresh variables not occurring in the term to be
substituted, the condition of being free for x in the sequent where the substitution
occurs is maintained.

If F => C is an axiom or conclusion of L_L, then T{t/x) => C(t/x) also is
an axiom or conclusion of L_L. Else F =>> C has derivation height n > 0, and
we consider the last rule in the derivation. If F =>• C has been derived by a
propositional rule, we observe that if t is free for x in the conclusion of any such
rule, then it is free for x in the premisses, since there is no alteration in the sets
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of free and bound variables. Therefore the inductive hypothesis can be applied to
the premisses, and the conclusion follows by application of the rule.

If F =>• C has been derived by LV, we can exclude the case in which x is
the quantified variable in the rule since in this case x would not be free and the
substitution would be vacuous. Therefore we can assume that the premiss is

A(t'/y),VyA,r' => C

with y ̂  x. Since t is free for x in A(t'/y), by inductive hypothesis we have a
derivation of height ^ n — 1 of

) , QfyA)(t/x), T\t/x) => C(t/x)

Observe that by definition of substitution and the fact that x / y, we have

QiyA)(f/x) = VyA(t/x).

The two substitutions in (A(tf / y))(t / x) can be given as one simultaneous substi-
tution A(t'(t/x)/y, t/x)\ Since t is free for x in VyA, the term t does not contain
the variable y, so the latter is equal to (A(t/x))(tf(t/x)/y). Summing up, we have
a derivation of height ^ n — 1 of

{A(t/xW/y),VyA(t/x\ T\t/x) =» C(t/x)

where t" = tf(t/x)\ so by LV we obtain a derivation of height < n of

VyA{t/x\ T\t/x) => C(t/x)

that is, of

QiyA){t/x\ T\t/x) => C(t/x)

If the last rule is /?V, we can exclude, as above, the case in which x is the
quantified variable. Therefore the derivation ends with

T =» A(z/y)

where j ^ x , and z is not free in F, and z = y or z is not free in A. By inductive
hypothesis we can replace z by a fresh variable v not in r. So we have a derivation
of height ^ n — 1 o fF =>- A(v/y). Again by inductive hypothesis we obtain a
derivation of height ^ n — 1 of

T{t/x) =• A(vly)(t/x)

By the choice of f and the fact that £ does not contain the variable y (as it is free
for x in Vj A) we can switch the order of substitutions and obtain a derivation of
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height < n — 1 of

T{t/x) =* A(t/x)(v/y)

where the variable conditions for applying RW are met and we can infer T(t/x) =$>
VyA(t/x), and since x / y this is the same as T{t/x) => (VyA)(t/x).

The cases of L3 and R3 are treated symmetrically to RV and LV. QED.

4.2. ADMISSIBILITY OF STRUCTURAL RULES

We first prove the admissibility of structural rules for the intuitionistic calculus.
The corresponding proofs for the classical calculus are very close to this because
of the similarity of the quantifier rules.

(a) Admissibility of structural rules for G3i: The proofs extend those for the
propositional calculus in Chapter 2.

Lemma 4.2.1: Sequents of the form C, F =>• C are derivable in G3i.

Proof: As for G3ip in Lemma 2.3.3, by induction on weight of C. The new
cases are for the quantified formulas. If C = VxA, by inductive hypothesis
A(y/*)> VxA, F => A(y/x) is derivable, where y is a fresh variable. By appli-
cation of LV and RV, VxA, F =>• VxA is derivable. If C = EbcA, by inductive
hypothesis we have a derivation of A(y/x), F =>• A(y/x) and the conclusion fol-
lows by application of R3 and L3. QED.

Theorem 4.2.2: Height-preserving weakening for G3i.

/ / \-n F => C, then hn D, F => C.

Proof: By induction on height of derivation, as in weakening for G3ip,
Theorem 2.3.4. For applications of LV and R3, the weakening formula can be
added to the context of the premiss. For RV and L3, we have to consider the effect
of variable restrictions.

If the last rule applied is RW, the premiss is F =>• A(y/x). If y is not free in
D, by inductive hypothesis we get D, F =>• A(y/x) and hence Z), F => VxA(x)
by /^V. If j is free in D, we choose a fresh variable z and apply Lemma 4.1.2
to F =>• A(y/x) to obtain F =^ A(z/x). The inductive hypothesis gives Z), F =>•
A(z/x), so that by î V we derive D, F =» Vx A.

If the last rule is L3, with premiss A(y/x), V =>• C and j is not free in D,
we derive the conclusion by applying the inductive hypothesis to the premiss and
then the rule. If y is free in D, we choose a fresh variable z for substitution in the
premiss and obtain A(z/x), F / =>• C. By inductive hypothesis D, A(z/x), F' =>>
C is derivable, and by L3 the conclusion D, 3xA, Fr =>• C follows. QED.
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Lemma 4.2.3: Height-preserving inversion of L3 for G3i.

/ / \-n 3xA, F => C, f/ien hn A(v/x), F =^ C.

Proof: By induction on height of derivation. If n = 0 and if i t A, F =>• C is an
axiom or conclusion of L_L, then also A(y/x), F =>• C is an axiom or conclusion
ofL_L.

For the inductive case, if 3x A is not principal in the last rule and y is not free in
its premisses, we have one or two premisses, 3xA, Ff =>> C and 3xA, Y" =>• C".
Now apply inductive hypothesis and then the rule again to conclude A(y/x), F =^
C. If instead the last rule is a rule with a variable restriction on y, we need a
substitution before applying the inductive hypothesis to the premiss of the rule,
as the substitution [y/x] could bring in free occurrences of y that would then
prevent applying the rule again. Suppose for instance that the derivation ends
with

V => B(y/z)

By the substitution lemma we can replace y by a fresh variable v in the premiss
and obtain, using B(y/z)(v/y) = B(v/z), the derivation,

B(v/z)
IndA(y/x), F => B(v/z)

If 3x A is principal in the last rule, the premiss gives a derivation of A(z/x), F =>
C, where z is not free in F, C. By Lemma 4.1.2 we obtain a derivation with the
same height of A(y/x), F =» C. QED.

We can now prove that contraction is admissible and height-preserving in G3i:

Theorem 4.2.4: Height-preserving contraction for G3i.

/ / \-n D,D, F =» C, ^ n K D , T 4 C.

Proof: Continuing the proof of admissibility for G3ip, Theorem 2.4.1, with n > 0
and D = WxA principal, we have as the last step

VJCA,VJCA,F => C

and this is transformed into

A(t/x),WxA,V
-Ind
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With D = 3xA as principal formula, we have as the last step

A(y/x), 3xA,F =^C
3xA,3xA,V =^C L3

where y is not free in F, C By Lemma 4.2.3, we have the derivation

A(y/x),3xA,V=*C
I

A(y/x\ T^C

r c L3

QED.

Theorem 4.2.5: The rule of cut is admissible in G3i.

Proof: Continuing the proof of admissibility of cut for G3ip with its numbering
of cases, Theorem 2.4.3, we have to consider only the case that neither premiss
is an axiom. There are three such cases:

3. The cut formula is not principal in the left premiss. There are two additional
subcases:

3.4. The left premiss has been concluded by LV. Then F = Wx A, Tf and we have
the derivation

A(t/x),VxA,Vf => D
VJCA, r => D L V D, A =» C

r A c Cut

This is transformed into

A(t/x), VJCA, Fr =» D D,T ^ C

A(t/x),VxA,Ff, A ^C
VXA, r, A =̂  c LV

3.5. If the left premiss has been concluded by the L3 rule, F = 3xA, Ff and we
have

A(y/x), r => D
3xA, r =^ D LB D, A =^ C

The cut cannot simply be permuted with L 3 as it can bring in formulas that do not
meet the variable restriction necessary for the application of L3, and a variable
substitution has to be performed first. Let z be a fresh variable. We have the
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derivation, where the left premiss is derivable by Lemma 4.1.2,

A(z/x), r => D D, A =» C

A(z/x), r , A => c Cut

4. If D is principal in the left premiss only, the derivation is transformed accord-
ing to the last rule in the derivation of the right premiss. There are four additional
subcases with quantifier rules:

4.7. LV, and A = VxA, A'. The derivation

D, A(f/jt),VjcA, A'=^C

rA^c Cut

is transformed into

r => Z) Z), A(f/jt), VJCA, A7 =^ C

A(r/x),V;cA,r, A ; ^ C

, r, A; =» c

4.8. L3, and A = 3xA, A'. We have

D, A(y/x), A' => C
T => D , , ^

3xA,F, A'^C

Let z be a fresh variable. Using Lemma 4.1.2, we obtain the derivation

r => D D, A(z/x), Af =» C

A(Z/JC), r , Ar ^ c Cwr

L3

4.9. RV and C = VxA. We have the derivation

P , A => A(y/JC)

r => D D, A =^ VxA
c

By substituting a fresh variable z, we obtain by Lemma 4.1.2:

T ^ D D, A ^ A(z/x)

r, A =»
T, A ^ VxA

-Cwr



74 STRUCTURAL PROOF THEORY

4.10. R3, and C = 3xA. The derivation

D, A =» A(f/jc)
*3

r =* D D, A =» x

r , A => 3xA Cut

is transformed into

r => D D, A =
r, A = ( / )
r, A' 3A

5. If D is principal in both premisses, we have two additional subcases:

5.4. WxA is principal in both premisses, and we have the derivation

T =• A(y/x) A(t/x), VJCA, A =^ C

, A ^ C
Cut

LV

F , A =>• C

By Lemma 4.1.2, F =>• A(t/x) is derivable with the same height as the premiss
of the left branch F =>• A(y/x), and we transform the derivation into

F => VxA A(*/JC), VxA, A => C

A(t/x), F, A =̂  C
r, F, A => c

5.5. Finally, we have the case of 3x A principal in both premisses:

), A = > C

r, A =^c
Again, A(t/x), A =>• C is derivable with the same height as A(y/x), A =>• C,
and we transform the derivation into

F =̂  A(t/x) A(t/x), A =̂  C

QED.

(b) Admissibility of structural rules for G3c: The proofs extend those for the
propositional calculus in Chapter 3. We indicate only the differences with the
proofs for G3i and additions to those for G3cp.

Lemma 4.2.6: Sequents of the form C, F =>• A, C are derivable in G3c.
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Proof: Similar to the proof of Lemma 4.2.1. QED.

Theorem 4.2.7: Height-preserving weakening for G3c.
/ / \ - n r =>• A, then hn D,T =» A. / / hn T=• A, then \-n T =» A, D.

Proof: Similar to the proof of Theorem 4.2.2. QED.

In order to prove contraction admissible in G3c, we need the analogue of
Lemma 4.2.3, concerning invertibility of L3, plus invertibility of RW. The for-
mer is used, as in the intuitionistic calculus, in the proof of admissibility of left
contraction, the latter of right contraction.

Lemma 4.2.8: Height-preserving inversion of L3 and RV for G3c.
(i) / / \~n 3xA, r =» A, then \~n A(y/x), V => A.
(ii) / / \-n r =• A, VxA, then hn V =• A, A(;y/jt).

Proof: The proof of (i) is similar to that of Lemma 4.2.3, by induction on n. The
proof of (ii) is symmetric to the proof of (i). QED.

Theorem 4.2.9: Height-preserving contraction for G3c.
(i) / / hn £>, D, T =» A, then hn D, F => A.
(ii) / / \-n r =» A, D, D,

-Cut

Proof: The proof extends the proof for G3cp by considering the new cases arising
from the addition of the quantifier rules, as in Theorem 4.2.4. The only essentially
new case is the one for right contraction in which the contraction formula is Wx A
and this is principal in the last rule used in the derivation. This case is taken care
of by the inversion lemma for RV. QED.

Theorem 4.2.10: The rule of cut

F=>A,D p, r=> A'
r,r=^ A, A7

is admissible in G3c.

Proof: The proof is an extension of the proof for G3cp, similar to the proof for
G3i. The only new case to be considered is the one in which the cut formula is
not principal in the last rule used in the derivation of the left premiss, and this is a
right rule with variable restrictions, i.e., RV. This situation is treated as the case
in which the last rule used to derive the left premiss is L3: first, the free variable
of the active formula is substituted by a fresh variable, by use of the substitution
lemma, then cut is permuted to the premiss of the left premiss, and finally rule
RV is applied. QED.
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4.3. APPLICATIONS OF CUT ELIMINATION

As applications of cut elimination, we conclude subformula properties and the
existence property and underivability results for G3i.

(a) Subformula property and existence property for intuitionistic deriva-
tions: The notion of subformulas for predicate logic has to be independent of the
particular choice of bound variables and substitution instances:

Definition 4.3.1: A(t/x) is a subformula ofixA and 3xAfor all terms t.

By inspecting the respective rules, we obtain from the admissibility of cut,
Theorem 4.2.5, the subformula property for G3i and G3c:

Corollary 4.3.2: All formulas in the derivation ofF=$C in G3i (of T => A in
G3c) are subformulas of T, C (of T, A).

As a consequence of the subformula property, we obtain underivability of the
sequent => _L in the systems G3i and G3c; therefore we have:

Corollary 4.3.3: The systems G3i and G3c are consistent.

Since in a cut-free derivation of =$3xA in G3i the last rule must be R3, we
obtain the existence property of intuitionistic predicate logic:

Corollary 4.3.4: If =^3xA is derivable in G3i, then =$A(t/x) is derivable for
some term t.

In G3c, instead, =>3xA can be concluded from =^3xA, A(t/x), and there is no
existence property. In case A is quantifier-free, a weaker result than Corollary
4.3.4 can be obtained: If =^3xA is derivable in G3c, there are terms t\,..., tn

such that =$A(t\/x) V . . . v A(tn/x) is derivable. By the subformula property,
the derivation uses only propositional logic. The formula A(t\/x) v . . . v A(tn/x)
is called the Herbrand disjunction of 3xA. This result follows from a more
general result to be given in Section 6.6.

(b) Underivability results for intuitionistic predicate logic: We show for intu-
itionistic logic that existence is not definable in terms of the universal quantifier,
that Glivenko's theorem does not extend to predicate logic, and that there is no
prenex normal form for formulas contrary to classical predicate logic.

Theorem 4.3.5: The sequent =>• ~ Vx ~ A D 3xA is not derivable in G3i.

Proof: We show that a root-first proof search for a derivation of the sequent
goes on forever. The last two steps in root-first order must be RD,LD or RD,R3.
In the second case the continuation can only be LD, so we have search trees
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beginning with

Ait/x) ^
A(t/x)

R3

—•? VX /\ —) ~^Xi\

The second search succeeds only if the first one does, and the first one has two
continuations, with LD and Ri. Continuation with LD leads to a loop since it
reproduces the conclusion in its first premiss. Therefore we continue with RW,
which gives the premiss ~ VJC ~ A =$> ~A(y/x). Continuation with LD gives
again a loop, and the same pattern repeats itself. What remains is the search tree:

r^j W Y ^ ^ A, A(y/x), A(z/x) =^ _L

, A(y/x) => Wx ~A ^V ±,A(y/x)=>±

RD
A(y/x)

VJC A ± > 3JCA

Each time LD is applied, its left premiss must be the conclusion of Ri since
LD would give a loop. The only remaining search tree never terminates but
produces, by the variable restriction in rule Ri, ever-longer sequents
-VJC ~ A, A(y/x), A(z/x),... ^ _L to be derived. QED.

In Chapter 5, Theorem 5.4.9, we prove Glivenko's theorem that states that if a
negative formula of propositional logic is derivable classically, it is also derivable
intuitionistically. A corresponding result for predicate logic fails, as is shown
through a sequent that is easily derived in G3c but underivable in G3i:

Theorem 4.3.6: => — VJC(AV —A) is not derivable in G3i.

Proof: We prove underivability for an atom P(x) by showing that looping caused
by rule LD and variable restrictions produce an infinite derivation. The last two
steps must be

- (VJC(P(JC)V - P(x))) => Vx(P(x)v - P(x)) _L =• _L
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If LD is used, its left premiss will reproduce the left topsequent. Therefore
we continue by RV, which gives as the premiss ~(VJC(P(JC)V ~ P(x))) =>•
P(y)v ~ P(y). As before, the next rule cannot be LD, so it is one of the Rv
rules. The first Rv rule leaves the atom P(x) in the succedent so from there the
continuation would have to be from the antecedent, by LD, but this is forbid-
den by looping. Therefore only the second Rv rule remains, with ~ P(x) in the
succedent. Now continuation is possible through RD, and we have the search
tree

'(Vx(P(x)v ~P(x))), P(v) =k -L
RDP(y)

~(VJC(P(JC)V ~ P ( J C ) ) ) => P(y)v ~ P(y) Rw

(VJC(P(JC)V ~P(x))) => Vx(P(x)v ~P(x)) ™ J_ =» -L
~(VJC(P(JC)V ~ P ( J C ) ) ) =^ _L

Proof search now goes on exactly as from the second line from root, except for
the addition of the atom P(y) in the antecedent. When we arrive at applying
RV for the second time root-first, since the antecedent has y free, a variable z
distinct from y has to be chosen, which leads in two more steps to the sequent
^(Wx(P(x)v ~P(x))), P(y), P(z) => -L. Continuing again as from the second
line from root, but with also P(z) added in the antecedent, proof search produces
a third formula P(v) in the antecedent, with v / v, z, with no end. QED.

A formula is in prenex normal form if it has a string of quantifiers followed
by a formula with only propositional connectives. In classical logic, all formulas
can be brought to an equivalent prenex normal form, but in intuitionistic logic,
this is not so:

Theorem 4.3.7: The following sequents, with x not free in A, are not derivable
in G3i:

(i) =^Vx(Av B)D AWxB,
(ii) 4 ( A D 3xB) D 3x(A D B),
(iii) =>(VxB D A)D 3x(B D A).

Proof: We show that the sequents are not derivable when A and B are atoms P
and Q(x).

For (i), assume that there is a derivation of =>V;t(P v Q(x))DP V VxQ(x).
The last step isRD, and therefore Wx(P v Q(x)) =^P vWxQ(x) is derivable.
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Since there is no implication in this sequent, in any of its derivations only formulas
of the forms Vx(P v <2(x)), P v Q(t), P, Q(t) can appear in antecedents and
formulas of the forms P V VJK Q(x), P, Vx Q(x), Q{y) in succedents. Further, top-
sequents can be only of the forms P, F =$> P or <2(jX T =>• <2(j). We show that
every proof search leads to a branch that cannot have an axiom of these two forms
as topsequent.

A sequent is a nonaxiom in the derivation of (i) if: 1. Whenever P is a sub-
formula of the succedent, P is not in the antecedent, or 2. For any y, whenever
Q(y) is the succedent, Q(y) is not in the antecedent.

We now define a branch such that all of its sequents are nonaxioms, from which
underivability of sequent (i) follows. Note that the only branchings that can appear
are due to rule Lv, with principal formula P v Q(t). If the succedent contains P
as subformula, we choose the premiss with Q(t), and if not, we choose the premiss
with P . The proof that all sequents in the branch so defined are nonaxioms is by
induction on length of the branch. There are four cases that depend on the prin-
cipal formula of an inference:

1. Vx(P v Q(x)) in antecedent: The active formula in the premiss is P V Q(x)
so that if the conclusion is a nonaxiom the premiss also is.

2. P V Q(x) in antecedent: If the succedent has P as subformula the chosen
branch has Q(x) in the premiss and the property of being a nonaxiom is preserved.
Else premiss with P is chosen and being a nonaxiom is preserved.

3. P V Wx Q(x) in succedent: Since the conclusion is a nonaxiom, P is not in
the antecedent so having P or Wx Q(x) in the succedent of the premiss preserves
being a nonaxiom.

4. VxQ(x) in the succedent: If Q(y) is in the antecedent, by the variable
restriction in PV the premiss contains in the succedent Q(z) with z / y so the
property of being a nonaxiom is preserved.

For (ii), we attempt a proof search of the sequent for atoms P and Q(x). The last
step is RD, the one above it either LD or R3. The former gives as the left premiss
P D 3xQ(x) => P , but this is underivable since only LD applies and it gives a
loop. So the next-to-last step is R3 and the premiss is P D 3x Q{x) =+> P D Q(t)
for some term t. Again, LD would produce a loop, and the only remaining search
tree is

P D 3xQ(x), P => P SxQjx), P => Q(t)
Q(t)

-RDP D3xQ(x)^ P D Q(t)
PD3xQ(x)^3x(PD Q(x))R3

=> P D 3xQ(x) D 3x(P D Q(x))
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The sequent Q(y), P =$> Q(t) is not an axiom since, by the variable restriction in
L3, we must have t ^ y.

The proof of (iii) is similar to that of (ii). QED.

Derivations of sequents containing only formulas in prenex normal form can be
turned into derivations in which the propositional rules precede all the quantifier
rules. In the system G3c this result, called the midsequent theorem, can be stated
as follows:

Theorem 4.3.8: If F =>> A is derivable in G3c and F, A have all formulas in
prenex normal form, the derivation has a midsequent V =>> A' such that all in-
ferences up to the midsequent are propositional and all inferences after it quan-
tificationai

Proof: For each derivation and each instance of a quantifier rule Q in it, con-
sider the number n(Q) of applications of propositional rules that are below the
quantifier rule in the derivation, and let n be the sum of the n(Q) for all the
applications of quantifier rules. We show by induction on n that every deriva-
tion can be transformed into a derivation in which n is zero. If n = 0, there is
nothing to prove. If n > 0, we consider the downmost application of a quantifier
rule with a propositional rule Prop immediately below it. There are several cases,
all dealt with similarly, and we consider the case in which the quantifier rule is
L3 and the propositional rule has one premiss. We have the following steps of
derivation:

A(y/x), F" =» A"

Prop
©=> A

Since by hypothesis the endsequent of the derivation consists of prenex formulas
only, by the subformula property all the sequents in the derivation consist of
prenex formulas only. Therefore 3xA cannot be active in the propositional rule,
for otherwise 0 would contain a formula of the form B o 3x A or 3x A o B that
is not in prenex form. Thus 0 = 3xA, T'" and the two steps of derivation can be
permuted as follows:

A(y/x), F" => A"
Prop

A(y/x), T"r => A
L3

The variable restrictions are satisfied since the propositional rules do not alter the
variable binding. By inductive hypothesis the derivation of A(y/x), Y" =>• A"
can be transformed into one that satisfies the midsequent theorem, and all the
inferences below the steps considered are quantificational. QED.
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4.4. COMPLETENESS OF CLASSICAL PREDICATE LOGIC

We shall give a proof of completeness for pure classical predicate logic, where
pure means that the language contains no functions or constants. A denumerable
set of variables x\, jt2, • • • ordered by the indices is needed in the proof. The notion
of a valuation for formulas of classical predicate logic is defined as an extension
of the definition for classical propositional logic:

Definition 4.4.1: A valuation is a function v from formulas of predicate logic to
the values 0 and 1, assumed to be given for all atoms,

v(Pn{Xi, . . . , jc,-)) - 0 or v(Pn(xt, . . . , xj)) = 1,

and extended inductively to all formulas,

v(±) = 0,

V(ASLB) = min(v(A),

v(A V B) = max(v(A),
v(A D B) = max{\ - v(A),
vQ/xA) = inf{v{A(Xilx))\
v(3xA) = sup(v(A(Xi/x))).

The infimum is taken over the denumerable sequence of values v(A(xt/x)) for
JCI, Jt2, • • •, and similarly for the supremum. These two classical valuations are
in general infinitary, and no method of actually computing values is assumed.
As in Section 3.3, we extend valuations to contexts by taking conjunctions and
disjunctions of their formulas and by setting v/\(T) = min(v(C)) for formulas C
in r and i;\f(F) = max(v(C)) for formulas C in I\

Definition 4.4.2: A sequent T =>• A is refutable if there is a valuation v such that
v/\(T)> t>\/(A). A sequent F =>> A is valid if it is not refutable.

A valuation showing refutability is called a refuting valuation. A sequent F =>• A
is valid if for all valuations v, v/\(T) ^ v\/(A). We now prove soundness of
the sequent calculus G3c for classical predicate logic, continuing the proof of
Theorem 3.3.5:

Theorem 4.4.3: If a sequent F =>• A is derivable in G3cp, it is valid.

Proof: Assume that F =̂> A is derivable. We prove by induction on height of
derivation that it is valid. The new cases to consider are when the last rule in the
derivation is a quantifier rule. If the last rule is LV, suppose

min(v(A{y/x)\ vQ/xA), u(A(H)) ^ v\J(A)
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and show that

min(v(VxA),v(/\(r)))^v\/(A).

This follows by v(Vx A) ^ v(A(y/x)). If the last rule is RW, we have, by inductive
hypothesis,

v/\(F) ^ max{v\J(A\ v(A(y/x))).

Since y does not occur in F, this implies

v/\(V) ^ infy(max(v\J(A), v(A(y/x)))\

and since y does not occur in A,

v/\(F) ^ max(v\/(A), infy{v(A{y/x)))\

that is,

v/\(F) ^ max(v\/(A), v(VxA)).

The cases of L3 and R3 are symmetric to RW and LV, respectively. QED.

The main idea of the completeness proof for the system G3c of classical
predicate logic is the following: Given a sequent F ^ Awe construct, by applying
root-first the rules G3c in all possible ways, a tree, called a reduction tree for
F =>> A. If all branches reach the form of an axiom or conclusion of L_L, the tree
gives a proof of the given sequent. Otherwise, we prove by classical reasoning
that the construction does not terminate. By Konig's lemma, a nonconstructive
result for infinite trees recalled below, the tree has an infinite branch. Given such
an infinite branch, we define a refuting valuation for the sequent.

We remark that the procedure that follows gives as a special case the com-
pleteness proof for the calculus G3cp; as in the propositional case the procedure
of construction of the reduction tree reduces to a finite one. In the first-order case
instead, we cannot know in general if the tree terminates or goes on forever, and
no decision method is obtained.

The following property of trees will be necessary in the proof of Lemma 4.4.3.
Its proof is nonconstructive, and we shall not give it.

Lemma 4.4.4: Konig's lemma. Every infinite, finitely branching tree has an in-
finite branch.

Theorem 4.4.5: Any sequent T =^ A either has a proof in G3c or there is a
refuting valuation for the sequent.

Proof: The proof consists of two parts. In the first part we define for each sequent
a reduction tree that gives a proof when finite. In the second part we show that an
infinite tree gives a refuting valuation.
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1. Construction of the reduction tree: We define for each sequent T =>• A a reduc-
tion tree having T =>> A as root and a sequent at each node. The tree is constructed
inductively in stages, as follows:

Stage 0 has V =>• A at the root of the tree. Stage n > 0 has two cases:

Case I: If every topmost sequent is an axiom or conclusion of LA., the construction
of the tree ends.

Case II: If not every topmost sequent is an axiom or conclusion of L_L, we
continue the construction of the tree by writing above those topmost sequents
that are not axioms or conclusions of L_L other sequents, which we obtain by
applying root-first the rules of G3c whenever possible, in a given order. When no
rule is applicable the topmost sequent has distinct atoms in the antecedent and
succedent and no _L in the antecedent, and the sequent is repeated. (Thus, for
propositional logic, each branch terminates or starts repeating itself identically.)

For stages n = 1 , . . . , 10, the reduction is illustrated below. For n = 11 we
repeat stage 1, for n = 12 stage 2, and so on for each n.

We start for n = 1 with L&: For each topmost sequent of the form

where B\&C\,..., BmScCm are all the formulas in the antecedent with conjunc-
tion as outermost logical connective, we write

fli,Ci,...,Bm,cw,r'=> A

on top of it. This step corresponds to applying root first m times rule L&.
For n = 2, we consider all the sequents of the form

r=^5i&Ci , . . . ,5 m &C m , A'

where B\ 8cC\,..., BmScCm are all the formulas in the succedent with conjunction
as the outermost logical connective, and write on top of them the 2m sequents

where Dt is either Bt or Ct (and all possible choices are taken). This is equivalent
to applying RSc root-first consecutively with principal formulas Bi&C\, . . . ,
Bm&Cm.

For n = 3 and 4 we consider Lv and Rv and define the reductions symmet-
rically to the cases n = 2 and n = 1, respectively.

For n = 5, for each topmost sequent having the formulas B\ D C\,...,
Bm D Cm with implication as the outermost logical connective in the antecedent,
Fr the other formulas, and succedent A, write on top of it the 2m sequents
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where i\,..., ik e {1, . . . , m] and j k + \ , . . . , jm e { 1 , . . . , m] — {i\,..., ik}. This
step (perhaps less transparent because of the double indexing) corresponds to the
root-first application of rule LD with principal formulas B\ D C\, ..., Bm D Cm.

For n = 6, we consider all the sequents having implications in the succe-
dent, say B\ D C\,..., Bm D Cm, and A7 the other formulas, and write on top of
them

B\,..., Bm, F =>• C i , . . . , C m , A

that is, we apply root-first m times rule RD.
For n = 1, consider all the topsequents having universally quantified formulas

Vxi B\, . . . , Vxm Z?m in the antecedent. For / = 1 , . . . , m, let yt be the first variable
not yet used for a reduction of VJC/2?/, and write on top of these sequents the
sequents

S i (y iM) , • • •, Bm(ym/xm), VJCISI, . . . , Vxm£m, T; => A

that is, apply root-first rule LV with principal formulas V^i^i, . . . , WxmBm. It is
essential that the variable yt be chosen starting from the beginning of the ordered
set of variables and by excluding those variables that have already been used in
a similar reduction for Vx; Bt, as the purpose of this step of the reduction is to
obtain, sooner or later, any substitution instance of Bt.

For n = 8, let Vxi B\,..., Wxm Bm be the universally quantified formulas occur-
ring in the succedent of a topsequent of the tree, and let Ar be the other formulas.
Let z\,..., zm be fresh variables, not yet used in the reduction tree, and write on
top of each such sequent the sequents

that is, apply root-first m times rule RV.
For n = 9 and 10 we consider L3 and R3 and define the reduction in a way

symmetric to the cases n = 8 and n = 1, respectively.
For each n, for sequents that are neither axioms nor conclusions of L_L, nor

treatable by the above reductions, we write the sequent itself above them.
If the reduction tree is finite, all its leaves are axioms. We observe that the tree,

read top-down from leaves to root, gives a proof of the endsequent F =>• A.

2. Definition of the refuting valuation: If the reduction tree is infinite, by Konig's
lemma it has an infinite branch. Let Fo => Ao be the given sequent T =>• A
and let

r o = > A o , . . . , r f - = > A i 9 . . .
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be one such branch, and consider the sets of formulas

We define a valuation in which all formulas in F have value 1 and all formulas in
A have value 0, thereby refuting the sequent F => A.

Observe that, by definition of the reduction tree, F and A have no atomic
formulas in common. For if P is in F and A, then for some i, j , P is in F;
and Aj, but then P is in F^ and A^ for k^ i, j , contrary to the assumption that
Ffc =>> A^ is not an axiom. Consider the valuation v defined by setting v(P) = 1
for each atomic formula in F and v(P) — 0 for P in A.

We show by induction on the weight of formulas that v(A) = 1 if A is in F
and v(A) = 0 if A is in A . Therefore v is a refuting valuation.

If A is _L, A cannot be in F, for otherwise the infinite branch would contain
a conclusion of L_L, so A can be in only A and v(A) = 0 by the definition of a
valuation.

If A is atomic, the claim holds by definition of the refuting valuation.
If A = B&C is in F, there exists / such that A e F/, and therefore B, C are

in Tf+k for some k^O. By inductive hypothesis, v(B) = 1 and v(C) = 1, so
v(B&C) = 1.

If A = B&C is in A, consider the step / in which the reduction for A applies.
This gives a branching, and one of the two branches belongs to the infinite branch,
so either B or C is in A, and therefore by inductive hypothesis v(B) = 0 or
v(C) = 0, and therefore v(B&C) = 0 is satisfied.

If A = B v C is in F, we reason similarly to the case of A = B&C in A. If
A = B V C is in A, we argue as with A = B&C in F.

If A = B D C is in F, then either B e A or C e F. By inductive hypoth-
esis, in the former case v(B) = 0 and in the latter v(C) = 1, so in both cases
v(B D C)= 1.

If A = B D C is in A , then for some i, B e F; and C e Ai9 so by inductive
hypothesis v(B) = 1 and v(C) = 0, so v(B D C ) = 0.

If A = VxB is in F, let / be the least index such that A occurs in F,. Any
substitution instance B(y/x) occurs sooner or later in F7 for j ^ /, so by inductive
hypothesis v(B(y/x)) = 1 for all y, and therefore v(VxB) = 1.

If A = WxB is in A, consider the step at which the reduction applies to A.
At this step we have, for some z and some j , B(z/x) e A7, and therefore by
inductive hypothesis v(B(z/x)) = 0, so v(VxB) = 0.

The cases of A = 3xB in F and A = 3xB in A are symmetric to the cases of
A = WxB in A and of A = VxB in F, respectively. QED.

By the theorem, we conclude:
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Corollary 4.4.6: If a sequent T =>• A is valid, it is derivable in G3c.

NOTES TO CHAPTER 4

Our general elimination rule for the universal quantifier is presented in von Plato
(1998). It follows the pattern of general elimination rules as determined by the inver-
sion principle of Section 1.2.

The calculus G3i is a single succedent version of Dragalin's (1988) contraction-
free intuitionistic calculus, first given in Troelstra and Schwichtenberg (1996). The
calculus G3c is the standard contraction-free classical calculus. The syntactic proofs
of underivability in Section 4.3 follow Kleene (1952).

Our completeness proof for G3c uses valuations as a continuation of the proof for
propositional logic in Theorem 3.3.6. This is suggested, although not carried out in
detail, in Ketonen (1941). His result is mentioned in the introduction to Szabo's 1969
edition of Gentzen's papers (p. 7). The construction of the refutation tree is carried out
in Schutte (1956). In Takeuti (1987), whose exposition we closely follow, Schiitte's
method is applied to Gentzen's original calculus LK. For the use of Konig's lemma
in the completeness proof, see Beth (1959, p. 195).



Variants of Sequent Calculi

In this chapter we present different formulations of sequent calculi. In Sections
5.1 and 5.2 we give calculi with independent contexts in two versions, one with
explicit rules of weakening and contraction, the other with these rules built into
the logical rules similarly to natural deduction. The proofs of cut elimination for
these calculi are quite different from each other and from the earlier proofs for the
G3 calculi. For calculi of the second type in particular, with implicit weakening
and contraction, cut elimination will be limited to cut formulas that are principal
somewhere in the derivation of the right premiss of cut. All other cut formulas
are shown to be subformulas of the conclusion already.

The structure of derivations in calculi with independent contexts is closely
connected to the structure of derivations in natural deduction. The correspondence
will be studied in Chapter 8.

In Section 5.3 we present an intuitionistic multisuccedent calculus and its basic
properties. The calculus has a right disjunction rule that is invertible, which is
very useful in proof search. The calculus is also used in the study of extensions
of logical sequent calculi with mathematical axioms in Chapter 6.

We also present a single succedent calculus for classical propositional logic. Its
main advantage compared with the multisuccedent calculus G3cp is that it has an
operational interpretation and a straightforward translation to natural deduction.
The calculus is obtained from the intuitionistic calculus G3ip by the addition
of a sequent calculus rule corresponding to the law of excluded middle. The
propositional part, from this point of view, amounts to an intuitionistic calculus
for theories with decidable basic relations.

In the last section, we present a calculus for intuitionistic propositional logic,
called G4ip, with the property that proof search terminates.

5.1. SEQUENT CALCULI WITH INDEPENDENT CONTEXTS

The motivation of the rules of sequent calculus from those of natural deduction
in Section 1.3 produced rules with independent contexts: Two-premiss rules had

87
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contexts that were added together into the context of the conclusion. In later
chapters we used shared contexts in order to obtain calculi that do not need the
rule of contraction and for purposes of proof search.

We present two calculi with independent contexts, analogous to Gentzen's
original calculi LJ and LK in that weakening and contraction are primitive rules,
and establish their basic properties.

A long-standing complication in the proof of cut elimination is removed by
a more detailed analysis of derivations: Gentzen in his 1934-35 proof of the
"Hauptsatz" for sequent calculus, or cut elimination theorem, had to hide con-
traction into one of the cases. If the right premiss of cut is derived by contrac-
tion, the permutation of cut with contraction does not move the cut higher up
in the derivation. The rule of multicut permits eliminating m ^ 1 occurrences
A , . . . , A = Am of the cut formula in the right premiss in one step:

V => A Am,A=>C
-Cut*r , A =>• c

The reason for having to make recourse to this rule is the following: Consider the
derivation

A, A, A => C

r => A A, A => c Ctr

Permuting cut with contraction, we obtain

r => A A , A , A ^ > C
T = ^ A A,T, A = ^ C

Cut

-Cut

r, r, A => c
p A ^ c Ctr

Here the second cut is on the same formula A and has a sum of heights of
derivations of the premisses not less than the one in the first derivation. With
multicut, instead, we transform the derivation into

r =* A A2, A =* c
Cut*r , A =>• c

Here the height of derivation of the right premiss is diminished by one. A proof
of multicut elimination can be given by induction on the length of the cut formula
and a subinduction on cut-height. The proof consists of permuting multicut up
with the rules used for deriving its premisses, until it reaches logical axioms
the derivation started with, and disappears (see, for example, Takeuti 1987). A
calculus with multicut is equivalent to a calculus with cut, in the sense that the
same sequents are derivable. Ordinary cut is a special case of multicut, so that cut
elimination follows from elimination of multicut.
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We shall give proofs of cut elimination without multicut for an intuitionistic
single succedent and a classical multisuccedent calculus. These can be consid-
ered standard calculi when contexts in rules with two premisses are treated as
independent.

(a) Cut elimination for the intuitionistic calculus: In the proof of cut elimi-
nation without multicut, the problematic case of contraction is treated by a more
global proof transformation by cases on the derivation of the premiss of contrac-
tion. The proof is given for a sequent calculus with independent contexts, GOi,
with the following rules:

GOi

Logical axiom:

A^ A

Logical rules:

A&B, r =» c r, A =• A&B

A , r ^ c #, A = > C r => A

A v 5 , r , A ^ c Lv r=^Av#*Vl

r^A 5,A^C A,r^5

- /?&

, T , A 4 C T ^ AD B

: L±

RD

A(t/x), T ^C r =>• A(y/x)
V * A , r =^ c LV r > wA RV

), r =>. c r ( / )
rc r 3 A

Rules of weakening and contraction:

The variable restrictions in RV and L3 are that y is not free in the conclusion. In
the derivations below, Ctr* will indicate repeated contractions.

To prove the admissibility of cut, formula length and cut-height are defined
as before. The proof of cut elimination is organized as follows: We first con-
sider cases in which one premiss is an axiom of form A =>• A or the left pre-
miss a conclusion of L_L, then cases with either premiss obtained by weakening.
Next we have cases in which the cut formula is principal in both premisses and
cases in which the cut formula is principal in the right premiss only. Then we have
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the case that both premisses are derived by a logical rule and the cut formula is not
principal in either. The last cases concern contraction. Cut elimination proceeds
by first eliminating cuts that are not preceded by other cuts. The following lemma
will be used in the proof:

Lemma 5.1.1: The following inversions hold in GOi:
(i) If A&B, F => C is derivable, also A,B,T ^ C is derivable.
(ii) IfAvB,T^Cis derivable, also A, F =^ C and B,T => C are deri-

vable.
(iii) If A D B, F =>• C is derivable, also B,V => C is derivable.
(vi) If T =$> VxA is derivable, also F =>• A(t/x) is derivable.
(v) If 3xA, F =» C w derivable, also A(t/x),F => C is derivable.

Proof: In each case, trace up from the endsequent the occurrence of the formula
in question. If at some stage the formula is principal in contraction, trace up from
the premiss both occurrences. In this way, a number of first occurrences of the
formula are located, (i) If a first occurrence of AScB is obtained by weakening,
weaken with A and with B and continue as before after the weakenings until either
a derivation of A, B, F => C is reached or a step is found in which a contraction
on A&B was done in the given derivation. In the latter case, the transformed
derivation will have A, A, B, B in place of A&B, A&B, and a contraction on
A and on B is done and the derivation continued as before. If a first occurrence
A&B is obtained by an axiom A&B =$> A&B, the axiom is substituted by

A,B^ A&B

and the derivation is continued as before. Otherwise, a first occurrence A&B is
obtained by L&, and deletion of this rule will give a derivation of A, B, F =>• C
as before. For (ii), weakening and axiom are treated similarly as in (i). Otherwise,
the L V rule introducing A v B in the antecedent is

A v B, r => C

where Fr = F", Fr//. Repeated weakening of the premisses gives A, Fr =>• C and
2?, F' =>• C , and continuing as before derivations of A, F =^ C and B, F =>• C
are obtained, (iii) is proved similarly to (ii). (iv) If a first occurrence of VxA
is obtained by an axiom, replace it by A(t/x) =>• A(t/x) and then apply LV. If
it is obtained by RV from Fr =>• A(y/x), j is not free in Fr and, by arguments
similar to the substitution Lemma 4.2.1 for G3i, a substitution of t for x gives a
derivation of Fr =>• A(t/x). (v) If 3xA, F =>• C is obtained by L3, the premiss is
A(y/x), F =* C and substitution gives A(t/x), F => C. QED.
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The lemma gives inversions of the left rules, with shared contexts as in the inver-
sions for the calculus G3i, except that the inversions are not height-preserving.

Theorem 5.1.2: The rule of cut

Y => D D, A =»C
F, A => C

is admissible in GOi.

Proof: The proof is by induction on length of cut formula with a subinduction on
cut-height. It is sufficient to consider a derivation with just one cut. For all cases,
a transformation is given that either reduces length of cut formula or reduces
cut-height while leaving the cut formula unchanged. We proceed by analyzing
the cut formula and show how to dispense with the cut or replace it by a cut on
shorter formulas. In all the cases in which the cut formula cannot be reduced the
derivations of the premisses of cut are analyzed. There are seven cases according
to the form of the cut formula:

1. The cut formula D is _L. Consider the left premiss of cut Y =>> J_. If it is an
axiom, then the conclusion of cut is the right premiss. If it is a conclusion of LJ_,
then _L is in F and thus the conclusion of cut is also a conclusion of LJ_. Else
F =$> _L is obtained by a rule R with _L not principal in it. If R is a one-premiss
rule the derivation ends with

r=»-L

Cut

r, A
and the rule and cut are permuted into

-Cut
r , A =• c
r, A =• cR

with reduced cut-height. A similar conversion applies if R is a two-premiss
rule.

2. The cut formula D is an atom P. If the left premiss Y =>• P of cut is an axiom,
then the conclusion of cut is given by the right premiss P , A = ^ C . I f F ^ P i s
a conclusion of L_L, the conclusion of cut is also a conclusion of L_L. If Y =>> P
is derived by a rule, P is not principal in it and cut is permuted with the rule as
incase 1.

We consider now the cases in which the cut formula is a compound formula.
Observe that if the cut formula is not principal in the last rule used to derive
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the left premiss, cut can be permuted. If the left premiss is an axiom, the right
premiss gives the conclusion of cut. If the left premiss is a conclusion of L_L, the
conclusion of cut is also a conclusion of L_L. Thus those cases are left in which
the cut formula is principal in the last rule used to derive the left premiss of cut.

3. The cut formula D is AScB. The derivation

r, A =* A&B A&B, e^c
r A 0 c Cut

is transformed by Lemma 5.1.1 into

A&B, 0 =» C
Inv

A=>£ A,B, 0=»C

r^A AA@^C Cut
Cut

Note that cut-height can increase in the transformation, but the cut formula is
reduced.

4. The cut formula D is A V B. The derivation

is transformed by Lemma 5.1.1 into

A, A =• c
/nv

and similarly if the second Rv rule was used. Length of cut formula is reduced.
We shall next analyze the case of cut formula 3x A and consider last the cases of

A D B and VA. Because of lack of invertibility, these last cases require a different
analysis.

5. The cut formula D is 3xA. The derivation

r => A(t/x)
R3 3xA,A^C
^ ^ c Cut
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is transformed by Lemma 5.1.1 into

3xA, A =» C
-Inv

, A

with length of cut formula reduced.

(5. The cut formula D is A D B. There are three subcases.

6.1. The formula A D J 5 i s not principal in the right premiss, and the last rule
used to derive the right premiss is not a contraction on A D B. In all such cases
cut is permuted with the last rule used to derive the right premiss of cut.

6.2. The formula A D B is principal in the right premiss; thus the derivation is

A,T => B A => A £ , 0 = ^ C

and it is transformed into the derivation with two cuts on shorter formulas

A=> A A,F =^ B

F,A^B
 Cut B,e^c

r A @ ^ c CM

6.3. The right premiss of cut is derived by contraction on A D B. Since LD is
invertible with respect to only its right premiss, we analyze the derivation of the
right premiss of cut. Tracing up this derivation until the rule applied is not a
contraction on A D B, we find a sequent with n copies of formula A D B in the
antecedent:

If A D 5 is not principal in the rule concluding this sequent, we permute down
the rule through the n — 1 contractions until it concludes the right premiss of cut,
or, if copies of A D B come from two premisses, these are contracted and cut
permuted up with two cuts of reduced cut-height as result.

If the rule concluding the sequent with n copies of A D B in the antecedent is
weakening with A D B, the weakening step is removed and one contraction less
applied.

The remaining case is that one occurrence of A D B in the sequent with n
copies of A D B in the antecedent is derived by LD; thus the step concluding the
premiss of the uppermost contraction is

A => A B, & =* C
-LD

Here (A D B)n~\ 0 = A, 0 ' . The n - 1 copies of formula A D 5 are divided
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in A and 0 ' with A = (A D B)\ A and & = (A D B)1, 0" and k + / = n - 1.
Each formula in A and in 0 " is also in 0 . The derivation can now be written,
with Ctrn standing for an n — 1 fold contraction, as

(A D B)\ A =» A 5, (A D £)' , 0" =• C

- RD ^ - ^ r — Or"
B AD , ^

r 0 c Cut

The transformed derivation, with a k — 1 fold contraction before the first cut, is

A,T ^ B (A D B)\ A =» A
r ^ A D / 3 ~A~P £, A =» A Qr*

r , A =^ A CM? A , r = ^ #
r 2 , A =>• /? 5 , 0 =>• c

r2, A, 0 =» c
Or*

Cut

where B, 0 =>• C follows by Lemma 5.1.1 from the right premiss of cut. Since
k ^ ft — 1, the first cut has a reduced cut-height. Reduction of k goes on until
k = 0. The other two cuts are on shorter formulas, and finally the contractions in
the end are justified by the fact that each formula of A is a formula of 0 .

7. The cut formula is Vx A. Since RW is not invertible, the derivation of the right
premiss of cut is analyzed.

7.1. The formula Vx A is not principal in the right premiss of cut. As for case 6.1.

7.2. The formula Vx A is principal in the right premiss, and the derivation

r=>A(y/x)_ A ( ; / * ) , A = > C L V

Cut

is transformed into

r =» A(t/x) A(t/x), A => C
r, A =>> c

in which the left premiss is obtained by substitution and length of cut formula is
reduced.

7.3. The right premiss of cut is derived by contraction on VxA. As in case 6.3,
we trace up the derivation of the right premiss of cut until a rule that is not a
contraction on WxA is encountered. If the rule is neither LV nor weakening on
VxA, we proceed by permuting the rule down with the contraction steps, thus
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reducing this case to case 7.7. If the rule is weakening on VxA the weakening and
one contraction step are removed and cut-height is diminished. Else the deriva-
tion is

A(t/x), (WxA)n~\ A =>C
F =>• A(y/x) WxA, (WxA)n~\ A =^ C

-X* *. < ^ ^ c Ctr"

Cut

This is transformed into the derivation

F => A{y/x) A(t/x), Q/xA)n-\ A => C
p v A V̂ Or""1

r =^ A(r/jc) A(t/x), r , A =>• c Cwr

in which the premiss F =$> A(t/x) is derivable by Lemma 5.1.1 and the first cut
has a reduced cut-height and the second a reduced cut formula. QED.

(b) Cut elimination for the classical calculus: The rules for the calculus, des-
ignated GOc, are as follows:

GOc

Logical axiom:

Logical rules:

r => A, A r; ^ A;, 5
ASLB

A,F
A v

,r
= > •

B,

A,

= > •

A

r,
A

A L "

5 ,
F 7 =

r

r

f => A r

A,

' =

A'

» A r

A(f/ac)
V A ; A ,

A(y/x,

-L±

r ^
),r =

^ A
• A

=» A

r, r=^ A, A;,
r =̂  A ,A,5

A,F ^ A, 5

F => A, A(y/;c)

F =^ A,

-/?&
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Rules of weakening:

-LW — --L- -RW
A , F ^ A F = ^ A , A

Rules of contraction:

A , A , F = ^ A F = ^ A , A , A
LC RC

The restrictions in the L3 and RW rules are that y must not occur free in the
conclusion.

Lemma 5.1.3: The following inversions hold in GOc:
(i) If A&B, F =» A is derivable, also A,B,T => Ais derivable.
(ii) If F =>• A, A&£ w derivable, also F =>• A, A and T => A, B are

(iii) TjTA V B, F => A w derivable, also A, F =>• A and 5 , F

(iv) IfT=>A,AvBis derivable, also V ^ A, A, B is derivable.
(v) IfADB,r=>Ais derivable, also B,T =^ Ais derivable.
(vi) If T => A, AD B is derivable, also A,F ^> A, B is derivable.
(vii) If F =>• A, VJCA W derivable, also F => A, A(t/x) is derivable.
(viii) 7/* 3xA, F =>- Aw derivable, also A(t/x), F =>> C w derivable.

Proof: (i) Similar to that of Lemma 5.1.1. For (ii), if A&B is obtained by weak-
ening, weaken first with A, then with B. If it is obtained as an axiom, conclude
instead A&B =^ A from A =)> A by weakening with 5 and L&, and similarly
for ASLB => B. If A&# is introduced by /?&, apply repeated weakening instead,
dually to case (ii) of Lemma 5.1.1. (iii) and (iv) are dual to previous, (v) If A D B
in the antecedent is obtained by weakening, weaken with B on left instead. If
A D B is obtained by an axiom A D B =>• AD B, conclude B ^ A D B from
B =>• B by left weakening with A followed by RD. If A D B is obtained by LD,
proof is similar to that of (ii). (vi) If A D B in the succedent is obtained by right
weakening, do left weakening with A and right weakening with B instead. If
A D B is obtained by axiom AD B ^ AD B, conclude A, A D B =>• 5 from
A =>• A and 5 =>• Z? by LD instead. If A D B is concluded by RD, delete the rule.
Proofs for (vii) and (viii) are similar to those above and to those of (iv) and (v) of
Lemma 5.1.1. QED.

With independent contexts, rule LD is invertible with respect to only its right
premiss, in contrast to the previous context-sharing classical calculus G3c that
has all rules invertible. We note that, as with GOi, the inversions of GOc are not
height-preserving.
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Theorem 5.1.4: The rule of cut

r=» A , P D, r=> A',
r, r=» A, A7

/s admissible in GOc.

Proof: The proof is by induction on length of cut formula and cut-height. All
cases in which the cut formula is not a contraction formula are treated by the
methods used in Theorem 5.1.2. We show the cases in which the cut formula has
been derived by contraction in the right premiss, and the premiss of contraction
is derived by another contraction on the cut formula, until the cut formula is
principal. There are five cases:

1. The derivation is

(A&B)n, T =» A'
rrn

Cut

By Lemma 5.1.3, (he sequentsT ==» A, A andT => A, B and A, B, V =» A'are
derivable. The derivation is transformed into one with cuts on shorter formulas,
analogously to case 3.1 of Theorem 5.1.2.

2. The cut formula is A V B. Application of Lemma 5.1.3 followed by cuts on A
or B gives the result, similarly to above.

3. The cut formula is A D B. The derivation is

(A D B)k, T" =^ A", A B,(AD B)1, T" => A"

AD B,Vf => Af

Cut

Here (A D B)n~\ V = (A D B)\ T"', (A D fi)z, T/r/ with k + l = n - \ and

Ar = Ar /, A / /r. All formulas of Tr/ and Tm are formulas of Tr and all formulas of

A" are formulas of A7.

By Lemma 5.1.3, the sequents A, V => A, 5 and 5 , F7 =^ Ar are derivable.

We transform the above derivation into

(A D B)k, T;/ =^ A / r, A

r =» A, A D ^ A D B,r ; / => ^\A~WC

r, r / r =» A , A/r, A CM? A , r
r 2 , rr/ => A 2 , Ar/, g

r2, r , rr/ =̂  A2, A;, A"
r, r=^ A, Ar c*
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Since k ^ n — 1, the uppermost cut has a reduced cut-height, and the other two
are on shorter formulas. The final left and right contractions C* are allowed by
the inclusion of formulas of F" in Fr and A" in A'.

4. The cut formula is VxA. The proof uses Lemma 5.1.3 and is analogous to
case 7.6 of Theorem 5.1.2.

5. The cut formula is 3x A. As for case 4. QED.

5.2. SEQUENT CALCULI IN NATURAL DEDUCTION STYLE

We give a formulation of sequent calculi "in natural deduction style," with no ex-
plicit rules of weakening or contraction, guided by the following points (compare
also the discussion of weakening and contraction in Section 1.3):

Discharge in natural deduction corresponds to the application of a
sequent calculus rule that has an active formula in the antecedent of
a premiss.

A vacuous discharge corresponds to an active formula that has been
obtained by weakening, and a multiple discharge to an active formula
that has been obtained by contraction.

In an intuitionistic sequent calculus, the rules in question are the left rules and the
right implication rule. Ever since Gentzen, weakening and contraction have been
made into steps independent of the application of these rules. Cut elimination is
much more complicated than normalization, with numerous cases of permutation
of cut that do not have any correspondence in the normalization process. Moreover,
in sequent calculi, because of the mentioned independence, there can be formulas
concluded by weakening or contraction that remain inactive through a whole
derivation. These steps with unused weakenings and contractions do not contribute
anything, and the formulas can either be pruned out (for unused weakening) or
left multiplied (for unused contraction). The calculi we present avoid such steps
with unused formulas altogether.

In the calculi we give, only those cuts need be eliminated in which the cut
formula is principal in at least the right premiss of cut, or principal somewhere
higher up in the derivation of the right premiss of cut, and the cut is moved up
there in one step. For all other cases of cut, we prove that the cut formula is a
subformula of the conclusion. Therefore the subformula property, Gentzen's orig-
inal aim in the "Hauptsatz," can be concluded by eliminating only those cuts in
which the cut formula is principal in the derivation leading to the right premiss.
The proof of cut elimination uses induction on formula length and the height of
derivation of the left premiss of cut.
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(a) Cut elimination for the intuitionistic calculus: In the detour conversions of
natural deduction, the multiset of assumptions can become changed, in that for-
mulas become multiplied, where zero multiplicity (i.e., deletion) is also possible.
The changed context is called a multiset reduct of the original one:

Definition 5.2.1: If a multiset A is obtained from T by multiplying formulas in
F, where zero multiplicity is also permitted, A is a multiset reduct of Y.

The relation of being a multiset reduct is reflexive and transitive. We also call a
sequent a reduct of another if its antecedent is a multiset reduct. These reducts
are generated by steps of cut elimination in the same way as assumptions are
multiplied in the conversions to normal form in natural deduction.

The intuitionistic single succedent sequent calculus in natural deduction style
is denoted by GN. As before, multiple occurrence of a formula is denoted by Am.

GN

Logical axiom:

A =» A

Logical rules:

r^A A > *
r A > A&BA&£, r => C r, A => A&B

Am,T^C g",A=>C
A v * r A ^ c Lv

T —) 1 D—)

r ) A D BB, r, A=>C r=)>ADB

A(t/x)m,r=>c r= ... .
vxA,r^c LV r •- • RV

,r=^c r =
^ ^ — i 3 —^ _' ' . ' «3

The variable restrictions in RV and L3 are that y is not free in the conclusion.
Rules with exponents have instances for any m, n ^ 0. For example, from L&
with m = 1, ft = 0 we get the first of Gentzen's original left conjunction rules:

A,T =>C
L&

, r =̂  c
We say that formulas A and 5 with exponents are used in the rules of GN.
Whenever m = 0 or n = 0 in an instance, there is a vacuous use, corresponding to
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weakening, and whenever m > lorn> 1, there is a multiple use, corresponding
to contraction. Since in Gentzen's L& rules m = 0 or n = 0, they contain a hidden
step of weakening.

The logical rules of the calculus are just like those of GOi, with the exponents in
the rules added. There will be no structural rules. An example shows a derivation
with structural rules in GOi and the corresponding derivation with an implicit
treatment of weakening and contraction in GN:

;Wk

A v 5 , T , A ^ C L v AvB,F, A = ^ C L v

Many steps of cut elimination lead to a sequent the antecedent of which is a reduct
of the antecedent of the original cut. In usual cut elimination procedures, once the
cut has been permuted up, this original antecedent is restored by weakenings and
contractions following the permuted cut. In our calculus, these are not explicitly
available, but the restriction is not essential. The following proposition shows that
the new antecedent can be left as it is:

Proposition 5.2.2: If in the derivation ofF =>• C in GN+Cut the sequent A =>•
D occurs and if the subderivation down to A => D is substituted by a derivation of
A* =>• D, where A* is a multiset reduct of A, then the derivation can be continued
to conclude F* =>• C, with F* a multiset reduct of F.

Proof: It is sufficient to consider an uppermost cut that we may assume to be the
last step of the whole derivation. First consider the part before the cut, having only
axioms and logical rules. Starting with the derivation of A* =>> D, the derivation
is continued as with A =>• D, save for the steps that use formulas. It is enough
to consider such rules when one premiss is A* =>> D. If in the original derivation
a formula from A was used that does not occur in A*, a vacuous use is made,
and similarly for formulas that occur multiplied with A*, as compared with A, a
multiple use is made.

It remains to show that the conclusion of cut can be replaced with a
sequent having a multiset reduct as antecedent. Let the original cut concluding
F^Cbe

Fi => A A,F2=>C

r r > c Cut

where Fi, F2 = F, and let the reduced premisses be Fi* =>> A and An, F2* =>- C.
If n = 1, a cut with the reduced premisses will give a conclusion with a multiset
reduct of F as antecedent. If n — 0, the conclusion of cut is replaced by the right
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premiss. If n > 1, we make n cuts with left premiss I V =>• A in succession and
the conclusion of the last cut has a multiset reduct of F as antecedent. QED.

The proposition shows two things: 1. It is enough to consider derivability in
GN modulo multiset reducts. 2. It is enough to perform cut elimination modulo
multiset reducts.

Definition 5.2.3: A cut with premisses F =>• A and A, A =>• C is redundant in
the following cases:

(i) r contains A,
(ii) F or A contains _L,
(iii) A = C,
(iv) A contains C,
(v) The derivation of A, A =>> C contains a sequent with a multiple occur-

rence of A.

Theorem 5.2.4: Elimination of redundant cuts. Given a derivation of T => C
in GN+Cut there is a derivation with redundant cuts eliminated.

Proof: In case (i) of redundant cut, if F contains A, then A, A is a multiset reduct
of F, A and by Proposition 5.2.2, the cut is deleted and the derivation continued
with A, A =>• C. In case (ii), the conclusion has _L in the antecedent and the
derivation begins with _L =>• C. In case (iii), if A = C, the cut is deleted and the
derivation continued with F =>• C. In case (iv), if A contains C, the derivation
begins with C ^ C.

Case (v) of redundant cut can obtain in two ways: 1. It can happen that A has
another occurrence in the context A of the right premiss and therefore also in
the conclusion of cut. In this case, the antecedent A, A of the right premiss is
a multiset reduct of F, A and, by Proposition 5.2.2, the cut can be deleted. 2. It
can happen that there was a multiple occurrence of A in some antecedent in the
derivation of the right premiss and all but one occurrence were active in earlier
cuts or logical rules. In the former case, if the right premiss of a cut is A, Af =>> C
and Af contains another occurrence of A, the cut is deleted and the derivation
continued from A' =>• C. In the latter case, using all occurrences of A will give
a derivation of A =>> C. Again, since A is a multiset reduct of the antecedent
of conclusion of cut, the cut can be deleted and the derivation continued from
A =» C. QED.

Redundant cuts (i)-(iv) have as one premiss a sequent from which an axiom or
conclusion of L_L is obtainable as a multiset reduct. In particular, if one premiss
already is an axiom or conclusion of L_L, a special case of redundant cuts (i)-(iv)
obtains.
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Definition 5.2.5: A cut is hereditarily principal (hereditarily nonprincipal) in a
derivation if its cut formula is principal (is never principal) in some rule in the
derivation of the right premiss of cut.

Proposition 5.2.6: The first occurrence of a hereditarily principal cut formula
in a derivation without redundant cuts is unique.

Proof: Assume there are at least two such occurrences. Then there is a sequent
with a multiple occurrence of the cut formula and the derivation has a redundant
cut as in case (v) of Definition 5.2.3. QED.

A principal cut is the special case of hereditarily principal cut, with the cut formula
principal in the last rule deriving the right premiss. The idea of cut elimination is
to consider only hereditarily principal cuts and to permute them up in one step to
the first occurrence of a cut formula A hereditarily principal in the derivation of
the right premiss.

It can happen that the instance of a rule concluding a hereditarily principal
cut formula had vacuous or multiple uses of active formulas. These cuts are
hereditarily vacuous and hereditarily multiple, respectively:

Definition 5.2.7: If a hereditarily principal cut formula is concluded by rule L&
andm, n = 0, by rule Lv and m = 0 or n = 0, by rule LD, LV, L3 and m = 0,
the cut is hereditarily vacuous. If the formula is concluded by LSL and m > 1 or
n > 1, by Lv andm, n > 1, or by LD, LV, L3 and m > 1, a hereditarily multi-
ple cut obtains.

We now prove a cut elimination theorem for hereditarily principal cuts. The proof
is by induction on the length of cut formula, with a subinduction on height of
derivation of the left premiss of cut. Length is defined in the usual way, 0 for _L,
1 for atoms, and sum of lengths of components plus 1 for proper connectives.
Height of derivation is the greatest number of consecutive steps of inference in
it. In the proof, multiplication of every formula occurrence in F to multiplicity m
is written Fm .

Theorem 5.2.8: Elimination of hereditarily principal cuts. Given a deriva-
tion ofT^C with cuts, there is a derivation of F* =>• C with no hereditar-
ily principal cuts, with F* a multiset reduct ofT.

Proof: First remove possible redundant cuts. Then consider the first hereditarily
principal cut in the derivation; we may assume it to be the last step. If the cut
formula is not principal in the left premiss, the cut is permuted in the derivation
of the left premiss, with its height of derivation diminished.
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There remain five cases with the cut formula principal in both premisses. In
each case, if a step of cut elimination produces redundant cuts, these are at once
eliminated.

1. Cut formula is ASLB. If m > 0 or n > 0 we have the derivation

Am,Bn,& => C
ASLB, & => C L &

, A => A&B A&B, ®=>C
r A 0 ^ c Cut

We make m cuts with F =>• A, starting with the premiss Am, Bn, 0 ' =>• C", and up
to 5" , Fm, 0 ' =>> C", then continue with n cuts with A =>> 5 , up to the conclusion
Fm, A", 0 ' =^ C". Now the derivation is continued as before from where ASLB

was principal, to conclude Fm, An, 0 =>• C, all cuts in the derivation being on
shorter formulas than in the initial derivation.

If m, n = 0, we have a hereditarily vacuous cut, with 0 r =>• Cr the premiss
of rule L&. It is not a special case of the previous since there is nothing to
cut. Instead, the derivation is continued without rule L& until 0 =>• C is
concluded.

2. Cut formula is A v 5 . With A v B principal in the left premiss, assume that
the rule is RV\ with m > 0:

Av B, Ar, 0 r => C"

Cut

We make m cuts with F =>• A, starting with the premiss Am, A/ =>• Cr, obtain-
ing Fm, Ar =>• Cr. The derivation is continued as before from where A V B was
principal; where a formula from & was used in the original derivation, there will
be a vacuous use. The derivation ends with Fm, A =>• C where A is a multiset
reduct of the context A, 0 of the right premiss of the original cut. All cuts are on
shorter formulas than the initial cut. If in the left premiss the rule was R v2 and
n > 0, the procedure is similar.

If m = 0, assuming still that the rule concluding the left premiss is RV\, the
cut is hereditarily vacuous, and, proceeding analogously to case 7, we continue
from the premiss A' =>• C without cuts to a sequent A =>• C where A is by
Proposition 5.2.2 a reduct of F, A, 0 . The other cases of hereditarily vacuous
cuts are handled similarly.
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3. Cut formula is A D B. With n > 0, the derivation is

-LD
A D B, A', ©' => C"

We first cut m times with Af => A, starting with Am, F =>• # , and obtain
r , A/m =>> 5 , then cut with this n times, starting with #w, 0 ' =>> C", to obtain
Fn , A /mn, 0 ' =>• C". Continuing, if a formula from A' was used, there will be an
ran-fold use. All cuts are on shorter formulas.

The case of n = 0 gives a hereditarily vacuous cut handled as in case 1.

4. Cut formula is VJCA. With m > 0 the derivation is

A(t/x)m, A' =>C
/ 7~LW

r=>A(y/x) ' :.

Cut

In F =>• A(y/x), substitution can be applied as in Lemma 4.1.2 to obtain a deriva-
tion of F =^ A(t/x)\ then m cuts with A(t/x)m, Ar =^ Cr give Fm , Ar ^> C The
derivation is continued as before from where WxA was principal.

If m = 0, the derivation is continued from Af => C\ without LV, to A =>• C.

5. Cut formula is 3xA. With m > 0 the derivation is

A(y/x)m,A'^C

, A =* C
Cut

In A(y/jc)m, Ar =>• Cr, substitution is applied to obtain a derivation of
A(t/x)m ,Af=>C. The rest of the proof is as in case 4. QED.

Corollary 5.2.9: Subformula property. If the derivation ofT^C has no
hereditarily principal cuts, all formulas in the derivation are subformulas of

r,c.
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Proof: Consider the uppermost hereditarily nonprincipal cut,

Ff =» A A, Af => C
T',A'^ C

Since A is never active in the derivation of the right premiss, its first occurrence
is in an axiom A =$> A. By the same, A =$> A can be replaced by the derivation of
the left premiss of cut, F' =>• A, and the derivation continued as before, until the
sequent F', A/ =>• C is reached by the rule originally concluding the right premiss
of cut. Therefore the succedent A is a subformula of F', A! =>• C'. Repeating this
for each nonhereditary cut formula in succession, we conclude that they all are
subformulas of the endsequent. QED.

Theorems 5.2.4 and 5.2.8 and the proof of Corollary 5.2.9 actually give an elim-
ination procedure for all cuts:

Corollary 5.2.10: Given a derivation ofT^C in GN+Cut, there is a deriva-
tion ofT*^Cin GN, with F* a multiset redact ofT.

There are sequents derivable in calculi with explicit weakening and contraction
rules that have no derivation in the calculus GN, for example, A => A&A. The
last rule must be R&, but its application in GN will give only A, A => A&A.
Even if the sequent A =>• A&A is not derivable, the sequent =} A D A&A is, by
a multiple use of A in rule RD.

The completeness of the calculus GN is easily proved, for example, by de-
riving any standard set of axioms of intuitionistic logic as sequents with empty
antecedents and by noting that modus ponens in the form

=^ AD B =• A
=• B

is admissible: Application of LD to A =>• A and B => B gives A D B, A =>• /?,
and cuts with the premisses of modus ponens give =$• B. We also have com-
pleteness in another sense: Sequent calculi with weakening and contraction mod-
ify the derivability relation in an inessential way, for if F =>• C is derivable in
such calculi, obviously there is a derivation of F* =>• C in GN, with F* a multi-
set reduct of F. In particular, if =>• C is derivable in such calculi, it is derivable
inGN.

(b) A multisuccedent calculus: We give a classical multisuccedent version of
the calculus GN, called GM. We obtain it by writing the right rules in perfect
symmetry to the left rules.
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GM

Logical axiom:

j \ —j? / \

Logical rules:

F=^A,Am V =» A', Bn

r,r'=» A, Af,
A

A

F

m
i

\ &

m

A

V
7

Tjn 1

D . 1

#,r
F = > •

V B ,

> A , ,

1 __>
7

A

r,

> A
A '

B'

r =

r o

> A, A

=^

Ar

A'

-R&

F^A,AVBRV

Am, T => A, Bn

A D 5 , r , r ^ A , A ' ~LD r ^ A , A D S D

A(^/x)m,F ^ A F => A,A(j/x)m

V x A , F ^ A LV F ^ A , V x A ^

A(j/x)m, F =^ A F ^ A, A(^/x)m

dxA, 1 =>> A 1 =^A,dxA

Compared with the calculus GOc, GM has the exponents in the rules added and
no explicit weakening or contraction.

Proposition 5.2.11: If in the derivation o / F = > A a subderivation of 0 =>• A is
substituted by a derivation of 0* =>• A* wzY/z Z?6tf/z contexts reducts of the original
ones, then there is a derivation o/F* =>> A* wzY/z contexts similarly reduced.

Proof: Similar to proof of Proposition 5.2.2. QED.

A proof of elimination of hereditarily principal cuts and of the subformula pro-
perty is obtained similarly to the results for the single succedent intuitionistic
calculus:

Theorem 5.2.12: Elimination of hereditarily principal cuts. Given a deriva-
tion ofF=^A with cuts, there is a derivation of F* =>> A* with no hereditarily
principal cuts, with F* and A* multiset reducts of F and A.

Theorem 5.2.13: Subformula property. If the derivation of F => A has no
hereditarily principal cuts, all formulas in the derivation are subformulas ofV,A.

Corollary 5.2.14: Given a derivation ofF=>A in GM+Cut, there is a deriva-
tion o/F* =>• A* in GM, with F* and A* multiset reducts ofT and A.
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The calculus GM is complete for classical logic by the following derivation:

Av

R

-Rv

The instance of RD has m = 1, n = 0, with F empty, A = A, and 2? = _L. More
generally, we obtain the full versions of Gentzen's original left and right negation
rules from LD and RD by suitable choices:

L±
A,A _L =* A,T

L

Gentzen had two Rv rules, dually to the two L& rules. We obtain them in GM
by setting m = 1, n = 0 and n = 1, m = 0 in rule /?v, respectively:

A, A r =» A, 5
^ RvF =* A,A V 5 r =• A,A

Applications of Gentzen's rules contain, as for the single succedent version, a
"hidden" weakening. It is quite conspicuous in derivations of =>• Av ~ A in his
classical calculus. The last step of the derivation can be only a contraction, doing
away with what the hidden weakenings had brought into the derivation:

-R~

-Rv
==> Av —A,
Av ~ A , Av —A

^ A v A

(c) Correspondence with earlier sequent calculi: By using weakening and con-
traction, derivations in GOi and GOc can be converted into derivations in G3i and
G3c and the other way around. Derivations in GN can be translated into deriva-
tions in GOi by simple local transformations. Only rules that use assumptions
are different, and vacuous uses are replaced by weakenings and multiple uses by
contractions. The translation from GOi to GN consists in deleting the weakening
and contraction steps and in adding the exponents to active formulas in rules that
use formulas from antecedents. If in a derivation of F =>• C in GOi there are no
inactive weakening or contraction formulas, the translation produces a derivation
of F =>• C, and if there are it produces a derivation of F* =>• C, with F* a multiset
reduct of F. The relation between GOc and GM is analogous.

A direct translation from a derivation of F =>• A in G3c to a derivation in GM is
obtained as follows: First trace all uppermost sequentsofthe forms A, F' =>• A;, A
and _L, F' => A' and prune the subderivations above each. Next delete F' and A'
from the former and F' from the latter form of sequents, and continue deleting
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all formulas descending from these contexts. Whenever there is a formula to
be deleted that is used in a rule, a vacuous use is made in GM. The result is
a derivation of F* =>> A* in GM, where F* and A* are multiset reducts of the
original contexts. Similar remarks apply to the single succedent calculi.

5.3. A N INTUITIONISTIC MULTISUCCEDENT CALCULUS

The propositional part of the intuitionistic multisuccedent calculus G3im is the
same as the classical calculus G3cp, except for the rules of implication. The
left quantifier rules are the same as in G3c, but the right rules are different.
This calculus is due to Dragalin (1988), who called it GHPC (for Gentzen-style
Hey ting predicate calculus). For the propositional part, we show only the two
rules that are different from those of the classical calculus G3c:

G3im

Rules for implication:

A , F = • B
J —\

, T => A,AD B

Rules for quantifiers:

A(t/x), VJCA, F => A F =• A{y/x)
IV — /?V

F ^ A V A
A(y/x), r => A F =^ A, 3xA, A(t/x)

T^A T^A3A

The left implication rule has a repetition of the principal formula in the left
premiss; further, its succedent is just A instead of A, A. With the former, the
rules of the single succedent calculus G3i are directly special cases of the rules
of G3im. The rule of right implication has only one formula in the succedent of
its premiss, a feature discussed in the introduction to Chapter 3. However, it is
essential that there be an arbitrary context in the succedent of the conclusion in
order to guarantee admissibility of right weakening.

The universal quantifier behaves like implication (in a way made exact in type
theory); thus there is a repetition of the principal formula in the premiss of the
left rule and a restriction to one formula in the succedent of the premiss of the
right rule. Variable restrictions are as in the classical calculus.

To start with the proof theory of the calculus G3im, we need a substitution
lemma:

Lemma 5.3.1: Substitution lemma. IfV=>Ais derivable in G3im and ift is
free for x in F, A, then T{t/x) =>• A(t/x) is derivable in G3im, with the same
derivation height.
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Proof: The proof is analogous to the proof of the substitution lemma for the
calculus G3i, Lemma 4.1.2. QED.

Theorem 5.3.2: Height-preserving weakening for G3im.
( i ) / / \-n F = > A , t h e n \-n D , T ^ A ,
(ii) / / \-n F =*• A, then hn F =>• A, L>.

Proof: For (i), proceed as in the proof for G3i, Theorems 2.3.4 and 4.2.2. For
(ii) proceed similarly except in the cases in which the last rule is followed by a
rule with a restriction on the succedent of its premiss, i.e., RD or RV. In all such
cases, weakening is absorbed into the downmost occurrence of the rule. QED.

All rules of the intuitionistic single succedent calculus G3i except Rv and R3
are special cases of rules of G3im, and Rv and R3 are easily shown admissible
in G3im through the admissibility of weakening.

Lemma 5.3.3: The sequent C, F =>• A, C is derivable in G3im.

Proof: By right weakening from the corresponding result for G3i, Lemmas 2.3.3
and 4.2.1. QED.

Lemma 5.3.4: Height-preserving inversions. Rules L&, Lv, Rv, L3, and R3
are invertible and height-preserving in G3im. Rule LD is invertible and height-
preserving for the right premiss.

Proof: By induction on the height of derivation. If the principal formula of the
rule to be proved invertible is not principal in the last rule of the derivation and
this last rule is RD or RV, the inductive hypothesis cannot be applied because
of the restriction in the succedent of the premiss. The conclusion is instead ob-
tained by an instance of RD or RV with a matching context in the conclusion.
For instance, we obtain invertibility of Rv in the case that the sequent F =$•
A, A V B,CD D has been derived from C, F =>• D by RD by taking as the con-
text A, A, B instead of A, A v B. For the remaining cases, the proof goes through
for the propositional part as in Lemma 2.3.5 and for invertibility of L3 as in
Lemma 4.2.3. For R3, invertibility follows from height-preserving admissibility
of right weakening. QED.

We remark that RV also is invertible with height preserved, but this property is
not needed below. In the variant of G3im with A, A as succedent in rule LD,
invertibility obtains for its left premiss also.

Theorem 5.3.5: Height-preserving contraction for G3im.
(i) / / \-n D, D, F => A, then \-n D, F =» A,
(ii) / / hn F => A, D, D, then hn F =^ A, D.
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Proof: By induction on n. For (i), proceed, mutatis mutandis, as in the proof of
Theorem4.2.4. For (ii), if \-n T =>> A, D, D is an axiom, then also \-n T ==> A, D
is an axiom. If n > 0, we distinguish the cases in which D is principal and not
principal in the last rule of the derivation. In the latter cases, we apply the inductive
hypothesis to the premisses of the last rule and then the rule, except for RD or
RV. These latter are taken care of by an application of the same rule but with a
suitably modified context. If D is principal and the last rule is R&, Rv, or R3,
the conclusion is obtained by application of height-preserving invertibility to the
premisses of the rule, the inductive hypothesis, and then the rule. If the last rule
is RD or RW, because of the restriction in the succedent, the formula D does not
occur in the premiss and the conclusion is obtained by application of the rule with
the context A in the conclusion. QED.

Theorem 5.3.6: The rule of cut is admissible in G3im.

Proof: The proof is similar to the proof of admissibility of cut for the calculus
G3c, except for those cases involving rules with a restriction in the succedent of
a premiss. Continuing the numbering in the proof of Theorem 3.2.3, we have the
following cases to consider:

3. The cut formula is not principal in the left premiss: There are three new cases
of last rule in the left premiss to consider:

3.3. The last rule in the left premiss is LD. The derivation

r " = > A B,T" => A , C

AD B,r" => A,C LD c , r=»A /

AD s,r", n=> A, A'
 Cut

is transformed into the derivation

-LW — Cut

r", r =» A B,rf, r=> A, A'
A D B,V",r' => A, A'

with a cut of lower cut-height.

3.6. The last rule in the left premiss is RD, with A = A", A D B. The derivation

B
RD

A", AD B,C c, r =» Af

r, n =• A", AD B,Af Cut
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is transformed into the derivation

RD
r => A", A D B, Af

r, r'=> A", A D 5, A/Lvy

in which no cut is used.

3.7. The last rule in the left premiss is /?V. The derivation

V^Bjy/x)
r =» Ar/, VxB, c ™ c, rr =̂  A ;

— CM?

is transformed into the derivation

r, r ; ^ A
in which, as in case 3.6, no cut is used.

4. The cut formula is principal in the left premiss only and the right premiss
is derived by a rule with a restriction in the succedent of the premiss, that is,
LD, RD, or J?V. In these cases, we cannot permute the cut up on the right, but
consider instead the five subcases arising from the derivation of the left premiss:

4.L The last rule is L&, and the derivation

r => A, A r => A , #

r >̂ A, A&^ A&^, r

r,r=^ A, A;

is transformed into the derivation

A&£, T; =

, r, T /^A,A /

Cut

A / / W V

Cut

r, r,r=^ A, A, A1

— ' — LC,RC

r, r=^ A, Ar

4.//. The last rule is Rv, and the derivation

r =» A, A,fl
r ^ A , A v ^ D A v B , r

r, T /^A,A /
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is transformed into

A v B, T =» A'

r, r=> A, A7,

Inv A v B,rf => Ar

f B r / A /

F, F', r '=» A, A', A'
— LC,RC

r, n=> A, Af

4. Hi. The last rule is RD and the right premiss is derived by LD. The derivation

A , F = > g AD B,ED F,T" ^> E F,AD B, F" => A7

V ^ A,AD BRD A D B, E D F, F" => A'
F, £ D F , F"=^ A, A' C"r

is transformed into the derivation with two cuts of lower cut-heights:

,r" =̂  £ Cwf r ,F ,r / r ^ Ar

r, F D F, r;/ =» A' LD

F, E D F, F" =^ A, A'

If the right premiss is derived by RD or RV we proceed similarly: First we
apply RD to the first premiss to derive F ^ A D 5 , then cut with the premiss of
the right premiss, and apply again RD or RW.

4.iv. The last rule is Ri. Instead of concluding F =^ A,VxB, apply RW with A
empty to obtain F =>• Vjcg, then permute the cut up on the left premiss.

4.v. The last rule is R3, and the derivation

F =• A,3xB,B(t/x)
F =^ A, 3x5 * 3 3 J C 5 , F / = ^ A /

Cut

is transformed into

F =* A,
F, F7 =» A, gq/jc), A; Cm B(t/x), rf

F, F ;, F ; ^ A, A', Af

— LC,RC

r,r ^ A, Af
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5. The cut formula is principal in both premisses.

5.5. The cut formula is A D B, and the derivation is

Cut

This is transformed into

F =» A, A D ff A D B,r => A

r , r=> A, A A, r => B
r, r, r=» A , #

r ,r , r ' , r '=> A, A'
— ! LC,RC

r,r=^ A, A'

with one cut of lesser cut-height and two on shorter formulas.

5.4. The cut formula is WxB. The derivation
r => Biy/x) VxB, B(t/x), T =̂  A;

^V / A / LV

r , r =̂  A, A'
is transformed into

r ^ B(y/x) r ^ A,
Cut

r , r , r =» A,A^
 CMf

r , r = ^ A , A '
 LC

QED.

Next we show that the single succedent and multisuccedent intuitionistic cal-
culi are equivalent. In the proof, V A denotes the disjunction of formulas in A,
with \ / A = _L if A is empty. We also write iterated disjunctions as multiple
disjunctions without parentheses:

Theorem 5.3.7: Equivalence of G3i and G3im. The sequent T=$\J /± is deriv-
able in G3i if and only ifV^A is derivable in G3im.

Proof: Assume that F =>• \ / A is derivable in G3i. Since all rules in the derivation
are also rules in G3im or admissible in G3im, F =>• V ^ ^s derivable in G3im.
By invertibility of Rv, also F =>• A is derivable.

The other direction is proved by induction on height of derivation of F =^ A.
If F => A is an axiom, F and A have a common atom P. Then F =>• P is an
axiom of G3i and T ^>\/A follows by repeated application of R v. If F =^ A is
a conclusion of L_L, then _L is in F and F =^ V A also is a conclusion of LJ_.



114 STRUCTURAL PROOF THEORY

Assume now that F =>• A has been derived in G3im and that A is nonempty
and A = C\,..., Cn. If the last rule is a left rule, we apply the inductive hypothesis
to the premisses and then we apply the rule again. If the last rule is a right rule,
we have five cases according to the form of principal formula; say it is Cn.

1. Cn = A&B.
and the inductive hypothesis gives that F =>• Ci v . . . v Cn_i V A and F =>•
C\ v . . . v Cn-\ v B are derivable in G3i. Now apply R8c, and a cut with the
easily derivable sequent

(Ci v . . . v Cw_i v A)&(C1 v . . . v Cn-X v B) =^ Cx v . . . v Crt_i v ASLB

gives F => Ci v . . . v Cn-\ v A&B.

2. Cn = A v B. The premiss is F =>• C i , . . . ,Cw_i, A, Z? and the inductive hy-
pothesis gives that F =>• Ci v . . . v Cn_i v A v 5 is derivable in G3i.

3. Cn = A D 5 . The premiss is A, F =^ Z? and by the inductive hypothesis
and RD, the sequent F =>> A D B is derivable in G3i. Now apply Rv to derive
r =* Ci v . . . v Cn_i v (A D B).

4. Cn =WxA. First apply the inductive hypothesis and /?V to the premiss and
then Rv.

5. Cn = 3xA. The premiss is F =>• Ci, . . . , Cn_i, A(t/x), 3xA, so by the in-
ductive hypothesis, we obtain that F =^ Cx V . . . v Cn_i V A(^/x) V 3xA is
derivable in G3i. By derivability of Cx v . . . v Cn_i V A(f/*) V 3xA =>•
C\ v . . . v Cn_i v 3JCA and admissibility of cut, we have that F =>>
Ci v . . . v Cn_i v 3xA is derivable in G3i.

If A is empty, the sequent F => can only be a conclusion of L_L. But then
F =>• V ^ ' which is the same as F => _L, also is a conclusion of L_L. QED.

The result shows that the comma on the right in sequents of the calculus G3im
behaves like intuitionistic disjunction.

5.4. A CLASSICAL SINGLE SUCCEDENT CALCULUS

We show that the addition of a rule of excluded middle for atomic formulas to
G3ip gives a complete calculus for classical propositional logic:

Rule of excluded middle:

Gem-at
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The structural rules, weakening, contraction, and cut, are admissible, and, further,
the rule of excluded middle for arbitrary formulas is admissible. Thus we have
the rule

Gem

An analogous rule for arbitrary formulas, for natural deduction in sequent calculus
style, was considered already in Gentzen (1936, §5. 26). But the subformula
property fails for the rule, and Gentzen used a rule corresponding to the law of
double negation instead. When the rule of excluded middle is restricted to atoms,
the subformula property becomes the following: All formulas in the derivation
of F =>• C are either subformulas of the endsequent or of negations of atoms
(i.e., atoms, negations of atoms, or _L). This principle already is sufficient for
establishing many properties, but we also show that a simple transformation
converts derivations into ones in which the rule of excluded middle is applied
only to atoms that appear in the succedent of the conclusion so that we have a
subformula property of the usual kind.

In the single succedent sequent calculus, all connectives are present and obey
the rules of intuitionistic logic, excluded middle is applied to atoms only, but still
derivations remain cut-free. A single succedent calculus is immediately trans-
latable into natural deduction: The rule of excluded middle for atoms gives a
generalization of the usual principle of indirect proof for atoms in natural deduc-
tion, and we obtain, in Chapter 8, as a corollary to admissibility of structural rules
and excluded middle for arbitrary formulas a fully normal form for derivations in
full classical propositional logic.

The main reason for formulating a single succedent calculus is to extend the
operational meaning of sequents to classical propositional logic. The calculus
can equally well be seen as a system of intuitionistic proof theory of decidable
relations. Examples of this point of view will be treated in the next chapter.

We cannot prove decidability of Vx A or 3x A from decidability of A(t/x) for
arbitrary t\ the addition of quantifiers will not result in classical predicate logic,
but in a logic with a classical propositional part and intuitionistic quantifiers, such
as encountered in, say, Heyting arithmetic.

(a) Admissibility of structural rules: In proving that admissibility of structural
rules in G3ip extends to G3ip+Gem-at, we need the following inversions:

Lemma 5.4.1: The following inversions are admissible in G3ip+Gem-at. Each
conclusion has a derivation of at most the same height as the premiss:

, r => c A v B , T ^ c A v # , r => c A D B,V = > C
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Proof: By induction on the height of the derivation of the premiss. If in the first
inversion A&B, F =>• C was derived by Gem-at, we have the derivation

p, A&LB, F =» c ~ p, A&#, r =• c

A & S , r => c Gm"

and this is transformed into the derivation

P,
P,A,B,T ^cInd

 ~P,A,B,T =>cInd

A , z ? , r ^ c Gem-at

where 7nJ denotes the inductive step. All the other cases of the first rule go through
as in the proof for G3ip, Lemma 2.3.5. The proofs for disjunction and implication
are similar to those for conjunction. QED.

Structural rules are proved admissible by induction on formula length and
derivation height, extending the proof for G3ip, Theorem 2.3.4.

Theorem 5.4.2: Height-preserving weakening. If \-n r=>C,then \-n A, F=̂ >
C.

Proof: By adding the formula A to the antecedent of each sequent in the derivation
of r =>• C, we obtain a derivation of A, Y =$> C. QED.

Theorem 5.4.3: Height-preserving contraction. If \-n A, A, T =>• C, then

hn A, r =̂  c.

Proof: The proof is by induction on height of derivation of A, A, F =^ C. We
consider only the case in which A, A, F =̂> C has been derived by Gem-at and
the last step is

P, A, A ,F =^C ~ P , A, A ,F =^C

We transform this into

Ind p A r c lnd

For the rest, the proof goes through as that for G3ip in Theorem 2.4.1. QED.
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We note that contraction for atoms is not only admissible in G3ip-\-Gem-at, but
is actually derivable by Gem-at:

r^ P P P __L D I P F —k C

Theorem 5.4.4:
r =>> A A , A

- C M ?

r, A^C
w admissible in G3ip+Gem-at.

Proof: The proof is by induction on weight of the cut formula with subinduction
on cut-height. If the first premiss in a cut was derived by Gem-at we have

P, r = ^ A ~ P , T=^A
G "

and cut is permuted upward to cuts on the same formula but with lower cut-height,

Cut p r A c Cut

and similarly if the second premiss was derived by Gem-at. For the remaining
cases, the proof goes through as that for G3ip in Theorem 2.4.3. QED.

(b) Applications: We first show the completeness of the classical single suc-
cedent calculus, then give a proof of Glivenko's theorem through a proof-
transformation, and finally derive a strict subformula property showing that in
the derivation of a sequent T =̂> C, the rule of excluded middle can be restricted
to atoms of C.

To prove the admissibility of excluded middle for arbitrary formulas and
thereby the completeness of the calculus G3i\)+Gem-at, we need the follow-
ing inversion lemma for implication:

Lemma 5.4.5: The inversion

A D B,F => C
Inv

is admissible in G3ip+Gem-at.
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Proof: A cut of A D B, F =>> C with the easily derivable sequent ~ A ^ AD B
gives the result. QED.

Theorem 5.4.6: The rule of excluded middle for arbitrary formulas

/ \ , 1 —f K^ r^y i\., 1 ——p' O

p ^ Gem

is admissible in G3ip+Gem-at.

Proof: We prove admissibility of excluded middle by induction on formula
length. Structural rules were shown admissible and can be used in the proof.
To narrow down, quite literally, the derivations, we shall indicate routine propo-
sitional derivations in G3ip by vertical dots.

For A := _L, we derive the conclusion from the right premiss already:

V̂. r^y ^N> I ^. (
——r -i- _ L , 1 —7^ ^

Cut

For A := P, excluded middle is rule Gem-at.

For A := A8LB, we have the derivation

A,B,V => CInV ~ A , 5 , r ^ C C"f ~ 5 ^ ( ) ( ) , ^

^T^c M ^r^c Cut
Ind

For A := A v B, we have the derivation

A v £ , r = > C
A, T => C ~ A , ~B^> - ( A v B) ~ ( A v B),F ^C

^ - ^ ~Wk ; ^—=: Cut

Ind

For A := A D 5 , we have the derivation

: AD B,F

D B) - ( A D ,g), T =» C
AD B,V ^ c A , ~ 5 , r ^ c Cwr - A , - 5 , r

/

QED.

From A =$> Av ~ A and ^ A =>- Av ~ A, we now conclude by Gem that each
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instance of the scheme =>• Av ~ A is derivable. With cut admissible, we have
proved:

Corollary 5.4.7: The calculus G3ip+Gem-at is complete for classical proposi-
tional logic.

We show that the classical calculus G3i^-\-Gem-at is conservative over the
intuitionistic calculus G3ip for sequents with a negation as succedent.

Lemma 5.4.8: If F =>> C is derivable in G3ip+Gem-at, applications of rule
Gem-at can be permuted last, each concluding a sequent with succedent C.

Proof: Commutation of the rule Gem-at with all the rules of G3ip is readily ver-
ified. Premisses in Gem-at have the same succedent formula as the conclusion.
QED.

The following result is a sequent calculus formulation of Glivenko's theorem
for propositional logic, proved here by an explicit transformation of a classical
derivation of a negative formula into an intuitionistic one.

Theorem 5.4.9: If F =>> ~ C is derivable in G3ip+Gem-at, it is derivable in
G3ip.

Proof: Using Lemma 5.4.8, permute down the applications of Gem-at, and let
the first one of them be

Gem-at

The premisses are derivable in G3ip, and we have, by using invertibility of RD and
admissibility of contraction and cut in G3ip, the derivation

P, A = ^ ~ C
Inv

Repeating the proof transformation, we obtain a derivation of F => ~ C in
G3ip. QED.

The admissibility of cut permits a structural analysis of proofs for the sequent
calculus G3ip-\-Gem-at. This is based on the following:

Theorem 5.4.10: All formulas in the derivation ofF^C in G3ip+Gem-at are
either subformulas of the endsequent or of negations of atoms.
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Proof: Inspection of the rules in a cut-free derivation shows that only the rule
Gem-at can make formulas disappear in a derivation, and these are atoms or
negations of atoms. QED.

For the usual logical calculi, consistency is a trivial corollary to cut elimination,
but here the argument is not altogether simple:

Corollary 5.4.11: G3ip+Gem-at is consistent.

Proof: Assume that =>• _L is derivable in G3ip+Gem-at. The only rule that can
have an empty antecedent in the conclusion is Gem-at, and therefore the last step
in the derivation is

Gem-at

The left premiss can have been derived only by Gem-at, but this would lead to an
infinite derivation. Therefore there is no derivation of =>> _L. QED.

Many other standard results for logical sequent calculi extend to the calculus
G3ip+Gem-at.

An application of the rule of excluded middle to an atom not appearing in the
conclusion should have nothing to do with the derivation, for if such an atom
were effectively used, it would be a subformula of the conclusion.

Theorem 5.4.12: IfT^Cis derivable in G3ip+Gem-at, it has a derivation
with the rule Gem-at restricted to atoms ofC.

Proof: Permute down applications of Gem-at with atoms P that are not subfor-
mulas of C Let the first such step be

P, A=^C ~P,A=>C
— Gem-at

A => C

We transform this derivation into

C,P,
-C,P,

Or*
C, A => C ~ C , A =>• C

A 7^ Gem

A =>• C

By Theorem 5.4.6, application of the rule of excluded middle to C converts to
atoms of C. The proof transformation is repeated until F => C is concluded, with
Gem-at restricted to atoms of C. QED.
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The proof gives an effective transformation into a derivation with Gem-at applied
to atoms of C only. A root-first proof search for a sequent F =^ C can begin by a
splitting into P, F =>• C and ~ P, F =>> C for atoms P of C. For example, to de-
rive Peirce's law =^((AD B)DA)DA it is enough to derive (A D 5) D A =>• A
and then to apply / O . By the theorem, Peirce's law is derivable with Gem ap-
plied to A only. In writing the derivation, we leave out repetitions of the principal
formula in the left premiss of LD as these are not needed and the rule without
repetition is admissible:

B
RD

LD

A D B
A, (AD B)D A ^ A ~ A , ( A D B) D A

=» ((A D B)D A)D A

(c) Quantifier rules: The addition of quantifiers to the single succedent classi-
cal calculus gives a calculus with a classical propositional part and intuitionistic
quantifiers, G3i-\-Gem-at. Proofs of the basic results for systems with quantifiers
are mostly similar to previous proofs.

Lemma 5.4.13: The rule of weakening is admissible and height-preserving in
G3/+Gem-at.

Proof: Similar to that of Theorem 5.4.2. QED.

Lemma 5.4.14: The inversions of Lemmas 5.4.1 and 5.4.5 and the following two
inversions are admissible in G3i+Gem-at.

Inv ———;— — Inv
A(t/x), VJCA, F =* C A(y/x), F =* C

Proof: Inversion for LV follows by the admissibility of weakening. For L3, the
proof is by induction on the height of derivation of the premiss. QED.

Theorem 5.4.15: The rules of contraction and cut are admissible in G3i+
Gem-at.

Proof: By induction, analogously to Theorems 5.4.3 and 5.4.4. QED.

The most natural interpretation of the calculus G3i+Gem-at is that it is a
cut-free intuitionistic system for theories that have decidable atomic formulas.
Illustrations of this point of view will be given in Section 6.6. Note that the proof
of admissibility of excluded middle for arbitrary formulas for the propositional
part cannot be extended to quantified formulas.
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5.5. A TERMINATING INTUITIONISTIC CALCULUS

In Section 2.5(c), we gave proofs of underivability in an intuitionistic calculus
for propositional logic. In these proofs, it was shown that each possible deriva-
tion tree of a given sequent either begins with at least one sequent of the form
Pi, . . . , Pn => g , where Pt ^ Q for all /, or else produces a loop, a subderiva-
tion that repeats itself to infinity. The latter is produced by the repetition of the
principal formula AD B of rule LD.

It was discovered in Hudelmaier (1992) and in Dyckhoff (1992) that the left
implication rule of G3ip can be refined into four different rules, according to
the form of the antecedent A of the principal formula, to the effect that proof
search terminates. The refinement gives a calculus, designated as G4ip (not to
be confused with the calculus G4 in Kleene's book of 1967, p. 306), with left
implication rules corresponding to the cases A = P, A = C&D, A = C V D,
A = C D D, respectively:

Left implication rules of G4ip:

p

c

p ,
, p

D

D

B,

r

D
r
D

= > •

E

CD(D
C&D

C,DD
(C

D

B,
D

B)
D 1
D . J

r :
D)

,r
r =

D

—i.
7

D

• E

B, r ^ E

r ^ EC V D D B, r =^ E LV

The rules for conjunction and disjunction and the right implication rule are iden-
tical to the rules of G3ip. The first three left implication rules of G4ip are based
on the intuitionistically provable equivalences

PSLB DC P&(P D B),

(C D(DD B)) DC (C&D D B),
(C D B)8L(D D B) DC (C V D D B).

The fourth rule is not intuitive, but it can be justified as follows: From the
left premiss C, D D B,T =>• D we obtain by RD the sequent D D £, T =>
C D D. A cut with the derivable sequent (CDD)DB^DDB gives
(C D D) D B, T => C D D. Now the conclusion of LDD follows by LD only:

Rules LOD, L&D, and LVD are invertible with height of derivation preserved.
Similarly to rule LD of G3ip, rule LDD is invertible with respect to its second
premiss only.
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The structural proof theory of G4ip is an example of the subtle organization
of many details in order to obtain admissibility of structural rules in a direct and
purely syntactic way. We shall not give full details that would be too long to be
included here, but just some of the leading ideas. Proofs of all results can be found
in Dy ckhoff and Negri (2000). To start with, the naive definition of formula weight
as corresponding to formula length will be changed so that the active formulas in
rules have a weight that is strictly less than the weight of the principal formula.
Following Dyckhoff (1992), we set

w(±) = 0,
w(P) = 1 for atoms P,
w(A DB) = w(A) + w(B)+l,
w(A&B) = w(A) + w(B) + 2,
w(A v B) = w(A) + w(B) + 3.

Other choices are also possible. The rules of G4ip are routinely shown admissible
in G3ip, since structural rules can be used, as in the justification of LDD above.
In the other direction, one has to prove first the admissibility of the left implica-
tion rule without repetition of the principal formula in the antecedent of the left
premiss. By induction on the height of derivation, we easily prove

Proposition 5.5.1: The rule of weakening,

;Wk

is admissible and height-preserving in G4ip.

Lemma 5.5.2: The sequent A, T =>> A is derivable in G4ip/or any formula A.

Proof: By induction on w{A). If A is an atom or _L, then A, T => A is an ax-
iom or conclusion of L_L. Else A is a compound formula. For conjunction and
disjunction, the claim follows from its validity for the components, obtained by
the inductive hypothesis. For implication, we have to analyze the structure of the
antecedent. If A = _L D B, the sequent ± D B,T ^ ± D B follows from the
axiom _L, ± D B,V ^ Bby RD. For antecedents of the form P, C&D, C V D,
and C D D, application of the inductive hypothesis to lighter formulas combined
with the rules for LD of G4ip and corresponding inversions gives the conclusion.
(For details, see Dyckhoff and Negri 2000.) QED.

The proof of admissibility of contraction is not a routine matter: The essential
step is given by a lemma in which duplication of a formula in the conclusion is
shown admissible. The lemma shows that if the sequent (C D D) D B, V =>• E
is derivable, also C, D D B, D D B,V =>• E is derivable. The effect of this
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lemma is to reduce contraction to lighter formulas in the problematic case of
an implication, the antecedent of which is also an implication.

Theorem 5.5.3: The rule of contraction

A,A,V => E

is admissible in G4ip.

Proof: See Dyckhoff and Negri (2000). QED.

The next step is to prove

Lemma 5.5.4: The rule

r =» A B , F => E

AD B,F => E

is admissible in G4ip.

Proof: See Dyckhoff and Negri (2000). QED.

Theorem 5.5.5: The rule
A D B , T => A B , T : -LD

AD B,F => E

is admissible in G4ip.

Proof: From the right premiss, by admissibility of weakening, we obtain
B, A D B,F ^ E, and from the first premiss, by Lemma 5.5.4, we obtain
ADB,ADB,F=>E. The conclusion follows by admissibility of contraction.
QED.

The theorem shows that the calculi G3ip and G4ip are equivalent. By admissibility
of cut in G3ip, we can conclude closure with respect to cut for G4ip, but the
stronger result of direct cut elimination is also provable. The proof, in Dyckhoff
and Negri (2000), is quite long and involved.

Proofs of admissibility of structural rules can also be given to a multisuccedent
version of G4ip and to corresponding systems with quantifier rules. They can also
be given to extensions of these calculi with nonlogical rules, as shown in Dyckhoff
and Negri (2001).

NOTES TO CHAPTER 5

The proofs of cut elimination for GOi and GOc come from von Plato (2001). The
rules of the calculus GN were first found in Negri (2000), in connection with studies



VARIANTS OF SEQUENT CALCULI 125

on linear logic. The results of Section 5.2 come from Negri and von Plato (2001).
The multisuccedent intuitionistic calculus is presented in Dragalin (1988, Russian
original 1979). Dragalin's proof is given in outline only, and few readers seem to have
worked their way through it. Our detailed proof of cut elimination for this calculus
follows mainly Dyckhoff (1997), who in turn refers to correspondence with Dragalin
on the details of the proof. The classical single succedent calculus is due to von
Plato (1998a). The terminating intuitionistic calculus was discovered by Hudelmaier
(1992) and Dyckhoff (1992), or actually rediscovered, for related ideas were already
presented by Vorob'ev in the early 1950s (see Vorob'ev 1970). The direct proof of
admissibility of structural rules for G4ip and its extensions was found by Dyckhoff
and Negri (2000, 2001).



Structural Proof Analysis of Axiomatic Theories

In this chapter, we give a method of adding axioms to sequent calculus, in the
form of nonlogical rules of inference. When formulated in a suitable way, cut
elimination will not be lost by such addition. By the conversion of axioms into
rules, it becomes possible to prove properties of systems by induction on the
height of derivations.

The method of extension by nonlogical rules works uniformly for systems
based on classical logic. For constructive systems, there will be some special forms
of axioms, notably (P D Q) D R, that cannot be treated through cut-free rules.

In the conversion of axiom systems into systems with nonlogical rules, the
multisuccedent calculi G3im and G3c are most useful. All structural rules will be
admissible in extensions of these calculi, which has profound consequences for the
structure of derivations. The first application is a cut-free system of predicate logic
with equality. In earlier systems, cut was reduced to cuts on atomic formulas in
instances of the equality axioms, but by the method of this chapter, there will be no
cuts anywhere. Other applications of the structural proof analysis of mathematical
theories include elementary theories of equality and apartness, order and lattices,
and elementary geometry.

6.1. FROM AXIOMS TO RULES

When classical logic is used, all free-variable axioms (purely universal axioms)
can be turned into rules of inference that permit cut elimination. The constructive
case is more complicated, and we shall deal with it first.

(a) The representation of axioms as rules: We shall be using the intuitionistic
multisuccedent sequent calculus G3ipm of Section 5.3. In adding nonlogical rules
representing axioms, we follow

Principle 6.1.1: In nonlogical rules, the premisses and conclusion are sequents
that have atoms as active and principal formulas in the antecedent and an arbi-
trary context in the succedent.

126
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The most general scheme corresponding to this principle, with shared contexts, is

gl'r^,A.,/>m",r,S'I^A*eg

where F, A are arbitrary multisets, P i , . . . , Pm, <2i> • • •» Qn are fixed atoms, and
the number of premisses n can be zero.

Once we have shown structural rules to be admissible, we can conclude that
a rule admitting several atoms in the antecedents of the premisses reduces to as
many rules with one atom; for example, the rule

2 i , G 2 , r = ^ A P , F = ^ A

p, r
reduces to the two rules

p, r => A p, r =» A

The second and third rule follow from the first by weakening of the left premiss. In
the other direction, weakening R,T =>• A to P, Q2S =>• A, we obtain the con-
clusion P, Q2, F =>• A from Qi* <22, F =>• A by the second rule, and weakening
again P, F =>• A to P, P, F =>• A, we obtain by the third rule P, P, F => A,
which contracts to P, F =>> A. This argument generalizes, so we do not need to
consider premisses with several atoms.

The full rule-scheme corresponds to the formula Pi & . . . &Pm D Q1 v . . . v Qn.
In order to see what forms of axioms the rule-scheme covers, we write out a few
cases, together with their corresponding axiomatic statements in Hilbert-style
calculus. Omitting the contexts, the rules for axioms of the forms Q&R, QvR,
and P D Q are

Q =» A R ^ A Q => A P => A Q => A

The rules for axioms of the forms Q,~ P and ~ (Pi&P2) are

Q ^ A
=^ A P = ^ A P i , P 2 ^ A

We recall the definition of regular sequents and their trace formulas from
Section 3.1: A sequent is regular if it is of the form

Qu...,Qn,±,...,±

where the number of occurrences of _L, m, and n can be 0, and Pt ^ Qj for all
/, j . Regular sequents are grouped into four types, each with a corresponding
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trace formula:

1. A & . . . &Pm D Qi V . . . V Qn if m > 0, n > 0,
2. Qx V ... V Qn if m = 0, n > 0,
3. ~ ( P i & . . . & P w ) if m > 0,n = 0,
4. _L if m = 0, n = 0.

Regular sequents are precisely the sequents that correspond to rules (Latin
"regulae") following our rule-scheme. In terms of the rule-scheme, the formation
of trace formulas corresponds to the deletion of all but one of several identical
premisses in a rule when any of the Qj are identical and to the contraction of
repetitions in the antecedent of the conclusion when any of the Pt are identical.

Given a sequent =>• A, we can perform a root-first decomposition by means
of the rules of G3ipm. If the decomposition terminates, we reach leaves that are
either axioms or conclusions of L_L or regular sequents. Among such leaves,
we distinguish those that are reached from =>• A by "invertible paths," ones that
never pass via a noninvertible rule of G3ipm:

Definition 6.1.2: In a terminating decomposition of a sequent => A in G3ipm,
if a topsequent is reached without passing through the left premiss ofLD or via
an instance ofRD with a nonempty context A in its conclusion, it is an invertible
leaf, and in the contrary case it is a noninvertible leaf.

We now define the class of regular formulas:

Definition 6.1.3: A formula A is regular if it has a decomposition that leads
to invertible leaves that are logical axioms, conclusions of L_L, or regular se-
quents and noninvertible leaves that are logical axioms or conclusions of
L±.

We observe that the invertible leaves in a decomposition of =$• A are independent
of the order of decomposition chosen, since any two rules among L&, RSc, Lv,
Rv, and RD with empty right context A commute with each other, and each of
them commutes with the right premiss of LD. This uniqueness justifies:

Definition 6.1.4: For a regular formula A, its regular decomposition is the set
{A\,..., Ak], where the At are the formula traces of the regular sequents among
the invertible leaves of A. The regular normal form of a regular formula A is

Note that the regular decomposition of a regular formula A is unique, and A is
equivalent to its regular normal form. Thus regular formulas are those that permit
a constructive version of a conjunctive normal form, one in which each conjunct is
an implication of form P\8c... &Pm D Q\ V . . . V Qn, instead of the classically
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equivalent disjunctive form ~ Pi v . . . v ~ Pm V Q\ V . . . v Qn. The class of
formulas constructively equivalent to usual conjunctive normal form is strictly
smaller than the class of formulas having regular normal form. The following
proposition shows some closure properties of the latter class of formulas:

Proposition 6.1.5:

(i) If A has no Z>, then A is regular.
(ii) If A, B are regular, then A&B is regular.
(iii) If A has no D and B is regular, then A D B is regular.

Proof: (i) By invertibility of the rules for & and V. (ii) Obvious, (iii) Start-
ing with RD, a decomposition of =>• A D B has invertible leaves of the form
P i , . . . , Pm, F =>• A, where Pi,..., Pm are atoms (from the decomposition of A)
and F => A is either a logical axiom or a regular sequent. Thus also
P i , . . . , Pm, F =>• A is either a logical axiom or a regular sequent. QED.

From the two cases of noninvertible rules we see that typical formulas that need
not be regular are disjunctions that contain an implication and implications that
contain an implication in the antecedent. But sometimes even these are regular,
such as the formula (P D Q) D (P D R).

In the next section we show that the class of regular formulas consists of
formulas the corresponding rules of which commute with the cut rule. The reason
for adopting Principle 6.1.1 will then be clear.

(b) Extension of classical systems with nonlogical rules: For the extension of
classical systems, we use the classical multisuccedent sequent calculus G3c in
which all structural rules are built in. All propositional rules of G3c are invertible,
but instead of analyzing regularity of formulas through decomposability as in
Section 3.1, we can use the existence of conjunctive normal form in classical
propositional logic: Each formula is equivalent to a conjunction of disjunctions of
atoms and negations of atoms. Each conjunct can be converted into the classically
equivalent form P i & . . . &Pm D g i v . . . v Qn which is representable as a rule
of inference. As special cases we can have m = 0 or n = 0 as in the four types
of trace formulas. We therefore have

Proposition 6.1.6: All classical quantifier-free axioms can be represented by
formulas in regular normal form.

Thus, to every classical quantifier-free theory, there is a corresponding sequent
calculus with structural rules admissible.

(c) Conversion of axiom systems into systems with rules: Conversion of a
Hilbert-style axiomatic system into a Gentzen-style sequent system proceeds,
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after quantifier-elimination, by first finding the regular decomposition of each
axiom and then converting each conjunct into a corresponding rule following
Principle 6.1.1. Right contraction is unproblematic because of the arbitrary con-
text A in the succedents of the rule scheme. In order to handle left contrac-
tion, we have to augment this scheme. So assume that we have a derivation of
A, A, F =>• A, and assume that the last rule is nonlogical. Then the derivation
of A, A, F =>• A can be of three different forms. First, neither occurrence of A
is principal in the rule; second, one is principal; third, both are principal. The
first case is handled by a straightforward induction, and the second case by the
method, familiar from the work of Kleene and exemplified by the LD rule of
G3ip, of repeating the principal formulas of the conclusion in the premisses.
Thus the general rule-scheme becomes

Q u P i , • • •, Pm, r = » A . . . Qn, P l 9 • • . , P m , r = > A ^

Here P\,..., Pm in the conclusion are principal in the rule, and P\,..., Pm and
<2i, . . . , Qn in the premisses are active in the rule. Repetitions in the premisses
will make left contractions commute with rules following the scheme. For the
remaining case, with both occurrences of formula A principal in the last rule,
consider the situation with a Hilbert-style axiomatization. We have some axiom,
say ~(<z < b & b < a) in the theory of strict linear order, and substitution of
b with a produces ~(<z < a & a < a) that we routinely abbreviate to ~a < a,
irreflexivity of strict linear order. This is in fact a contraction. For systems with
rules, the case in which a substitution produces two identical formulas that are
both principal in a nonlogical rule, is taken care of by the

Closure condition 6.1.7: Given a system with nonlogical rules, if it has a rule
where a substitution instance in the atoms produces a rule of the form

QuPl,..., Pm-2, P, P, r => A . . . Qn,PU..., Pm-2, P, P, F =» A^

P i , . . . , p w _ 2 , p , p , r = > A eg

then it also has to contain the rule

QU PU • • • , Pm-2, P, F => A . . . Qn,PU..., Pm-2, P, V => A
Res

P i , . . . , p m _ 2 , p , r = > A
The condition is unproblematic, since the number of rules to be added to a given
system of nonlogical rules is bounded. Often the closure condition is superfluous;
For example, the rule expressing irreflexivity in the constructive theory of strict
linear order is derivable from the other rules, as will be shown in Section 6.6.
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6.2. ADMISSIBILITY OF STRUCTURAL RULES

In this section we shall prove the admissibility of the structural rules of weakening,
contraction, and cut for extensions of logical systems with nonlogical rules of
inference. We shall deal in detail with constructive systems and just note that the
proofs go through for classical systems with inessential modifications.

We shall denote by G3im* any extension of the system G3im with rules
following our general rule-scheme and satisfying the closure condition. Starting
from the proof of admissibility of structural rules for G3im in Section 5.1, we
then prove admissibility of the structural rules for G3im*.

Theorem 6.2.1: The rules of weakening

-LW rRW

are admissible and height-preserving in G3im*.

Proof: For left weakening, since the axioms and all the rules have an arbitrary
context in the antecedent, adding the weakening formula to the antecedent of
each sequent will give a derivation of A, F =>• A. For right weakening, adding
the weakening formula to the succedents of all sequents that are not followed by
an instance of rules RD or Ri will give a derivation of F =^ A, A. QED.

The proof of admissibility of the contraction rules and the cut rule for G3im
requires the use of inversion lemmas. We observe that all the inversion lemmas of
Section 5.1, holding for G3im, hold for G3im* as well. This is achieved by having
only atomic formulas as principal in nonlogical rules, a property guaranteed by
the restriction given in Principle 6.1.1.

Theorem 6.2.2: The rules of contraction

A, A , F => A F =» A, A, A

A , F ^ A LC F ^ A , A RC

are admissible and height-preserving in G3im*.

Proof: For left contraction, the proof is by induction on the height of the derivation
of the premiss. If it is an axiom or conclusion of L_L, the conclusion also is.

If A is not principal in the last rule (either logical or nonlogical), apply inductive
hypothesis to the premisses and then apply the rule.

If A is principal and the last rule is logical, for L& and Lv apply height-
preserving invertibility, inductive hypothesis, and then the rule. For LD apply
inductive hypothesis to the left premiss, invertibility and inductive hypothesis to
the right premiss, and then apply the rule. If the last rule is LV, apply the inductive
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hypothesis to its premiss, and Li. If the last rule is L3, apply height-preserving
invertibility of L3, the inductive hypothesis, and L3.

If the last rule is nonlogical, A is an atomic formula P and there are two cases.
In the first case, one occurrence of A belongs to the context, another is principal
in the rule, say, A = Pm(= P). The derivation ends with

and we obtain

2 i , i , , V i , , , g w , f i , , m i , , ,

QUPu• • • , p m - u P , r => A Ind... Qn,pu...,pm_up,r =» Ap
Ind

P i , . . . , p w _ 1 , p , r / = ^ A "

In the second case both occurrences of A are principal in the rule, say, A —
Pm_1 = Pm = P ; thus the derivation ends with

< 2 i , P i , . . . , p m - 2 , p , p , r ^ A . . . a l , p 1 , . . . , p w _ 2 , p , p , r ' = » A w

a n d w e ob ta in

e B , p 1 , . . . , p M - 2 , p , p , r / = » A
I n d Q p p p r ' A Jnd6 1 , P i , . . . , p m - 2 , P , r =• A Ind... Qn,pt,...,pm_2,p,

with the last rule given by Closure Condition 6.1.7.
The proof of admissibility of right contraction in G3im* does not present

any additional difficulty with respect to the proof of admissibility in G3im since
in nonlogical rules the succedent in both the premisses and the conclusion is
an arbitrary multiset A. So in the case in which the last rule in a derivation of
F =^ A, A, A is a nonlogical rule, we simply proceed by applying the inductive
hypothesis to the premisses and then applying the rule. QED.

Theorem 6.2.3: The cut rule

-Cut

r, r=> A, A'
is admissible in G3im*.

Proof: The proof is by induction on the length of A with subinduction on the sum
of the heights of the derivations of F =>- A, A and A, Fr =^ A'. We consider here
in detail only the cases arising from the addition of nonlogical rules. The other
cases are treated in the corresponding proof for the intuitionistic multisuccedent
calculus G3im, Theorem 5.3.6.
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1. If the left premiss is a nonlogical axiom (zero-premiss nonlogical rule), then
also the conclusion is, since nonlogical axioms have an arbitrary succedent.

2. If the right premiss is a nonlogical axiom with A not principal in it, the con-
clusion is a nonlogical axiom for the same reason as in case L

3. If the right premiss is a nonlogical axiom with A principal in it, A is atomic
and we consider the left premiss. The case that it is a nonlogical axiom is covered
by case 7. If it is a logical axiom with A not principal, the conclusion is a logical
axiom; else F contains the atom A and the conclusion follows from the right
premiss by weakening. In the remaining cases we consider the last rule in the
derivation of F =>> A, A. Since A is atomic, A is not principal in the rule. Let
us consider the case of a nonlogical rule (the others being dealt with similarly,
except RD and RV, which are covered in case 4). We transform the derivation,
where Pm stands for Pi,..., Pm,

Pm,F"=> A, A €g A,T'=»A'

P m , F ' , F " ^ A , A ' Cut

into

6 i , P m , r " = > A, A A,T '=» A' Qn,Pm,r" => A, A A,F r=> A;

Qu Pw , F /, F" =» A, A' Cm ... Qn, Pm, V, F" ^ A, A'R
pw,r',r"=> A,A' eg

where the cut has been replaced by n cuts with left premiss with derivation of
lower height.

Let us now consider the cases in which neither premiss is an axiom.

4. A is not principal in the left premiss. These are dealt with as above, with cut
permuted upward to the premisses of the last rule used in the derivation of the left
premiss (with suitable variable renaming in order to match the variable restrictions
in the cases of quantifier rules), except for RD and RW. By the intuitionistic
restriction in this rule, A does not appear in the premiss, and the conclusion is
obtained without cut by RD or RV and weakening.

5. A is principal in the left premiss only. Then A has to be a compound formula.
Therefore, if the last rule of the right premiss is a nonlogical rule, A cannot be
principal in the rule, because only atomic formulas are principal in nonlogical
rules. In this case cut is permuted to the premisses of the right premiss. If the right
rule is a logical one with A not principal in it, the usual reductions are applied.

6. A is principal in both premisses. This case can involve only logical rules and
is dealt with as in the usual proof for pure logic. QED.
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The conversions used in the proof of admissibility of cut show why it is neces-
sary to formulate the nonlogical rules so that they have an arbitrary context in
the succedent, both in the premisses and in the conclusion. Besides, as already
observed, active and principal formulas have to be atomic and appear in the
antecedent.

Theorem 6.2.4: The rules of weakening, contraction, and cut are admissible in
G3c*.

Proof: The proof is an extension of the results for the purely logical calcu-
lus in Sections 3.2 and 4.2. The new cases are analogous to the intuitionistic
case. QED.

6.3. FOUR APPROACHES TO EXTENSION BY AXIOMS

We found in Section 1.4 that the addition of axioms A into sequent calculus in
the form of sequents =$> A, by which derivations can start, will lead to failure of
cut elimination. Another way of adding axioms, used by Gentzen (1938, sec. 1.4)
already, is to add "mathematical basic sequents" which are (substitution instances
of) sequents

P l , . . . , P w = > Ql Gn.

Here Pt, Qj are atomic formulas (typically containing free parameters) or _L.
By Gentzen's "Hauptsatz," the use of the cut rule can be pushed into such basic
sequents. A third way of adding axioms, first found in Gentzen's consistency proof
of elementary arithmetic (1934-35, sec. IV.3), is to treat axioms as a context F
and to relativize all theorems into F, thus proving results of the form F ^ C . Now
the sequent calculus derivations have no nonlogical premisses and cut elimination
applies. A fourth way of adding axioms is the one of this chapter.

We shall specify formally the four different ways of extending logical sequent
systems by axioms and then establish their equivalence. Below, let T) be a finite
set of regular formulas. We define sequent systems of four kinds:

Definition 6.3.1:

(a) An A-system for V is a sequent system with axioms G3ipm+LW+RW+LC+
RC+Cut+AD, where AT) is the set of sequents =>> D obtained from elements D
in T). In derivations of a sequent F =^ A in an A-system, sequents from AT) may
appear as premisses. Derivability is denoted by \~AV F =>• A.

(b) A B -system for V is a sequent system with basic sequents, G3ipm+LW+RW+
LC+RC+Cut+Z?P, where BV is the set of regular sequents 1-3 of Definition
6.1.2 that correspond to elements ofT). In derivations of a sequent F =>> A in a



STRUCTURAL PROOF ANALYSIS 135

B -system, sequents from BV may appear as premisses. Derivability is denoted
by \-BV F =>• A.

(c) A C-system for V is a sequent system with a context. In derivations of a

sequent F =>• A in a C-system, instances of formulas in CV are permitted in
the antecedent. Derivability is denoted by \-Cv F =>• A. (We can also write it
as derivability in G3ipm, that is, as hG3 F, 0 =>• A, where 0 is the multiset of
instances of formulas in V used in the derivation.)

(d) An /^-system for V is a sequent system with rules, G3ipm+/?X>, where RV
is the set of rules of inference given by the regular decomposition of the formulas
in V. In derivations of a sequent F ==> A in an R-system, rules from RV are
permitted. Derivability is denoted by \-RV F =>• A.

Theorem 6.3.2: \-AV F =>> A iff \-BV F => A *J h ^ T ^ A #f h ^ F =>• A.

Proof: Axioms and basic sequents are interderivable by cuts, so A- and B-
systems are equivalent. We show equivalence of /^-systems with A-systems and
C-systems. If a regular formula has to be considered, we take it to be the split
formula P D Q v R, as other formulas convertible to rules are special cases or
inessential generalizations of it.

7. Equivalence ofR- and A-systems: The rule

g , P => A R, P =$> A
Split

P => A

can be derived in the A-system with axiom ==> P D Q V Z? by means of cuts and
contractions:

=> p ev

p :

R

>Q v R,
P :

p =

^,

=» P
v R,

P ^

ap =

//

p

,P=> Q
v R

v R

VR
T - >

,P,P^

Q,

> A
r

P =>• A
Gvi?,

^,
p =» A

r

• A

In the other direction, ^ P D Qw Ris provable in the /^-system with Split.

Q,P =^ Qv R R,P =» 2 V R
RV

2. Equivalence of C- and R-systems: Assume that F =>> A was derived in the
7^-system with Split, and show that F =>• A can be derived in the C-system with
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P D Qv R. We assume that Split is the last rule in the derivation and therefore
r = P, n . By induction, \-Cv Q, P, F' =» Aandh C p R, P, T => A; thus there
are instances A\,..., Am and A\,..., A!n of the schemes in CV such that

hG 3 e , P, F', A i , . . . , Am => A and hG 3 R, P, r',A'l9...,A'n=> A

Structural rules can be used, and we have, in G3ipm, a derivation starting with
weakening of the At and A'- into a common context A'[,..., A^ of instances
from CV:

<2, P, V, A'[, ...,A'l=>A R,P, V, A'(,..., A£ =* A
p D Q V R , P , r f , Af[,...,A£ =» P e v/?,p,r,A;;,..., A ^ A LV

P D Qv R,P, V, A'{,..., A£ => A

Since the split formula and the A" , . . . , A^ are in CP , we have shown
hCv r =̂  A.

In the other direction, assume \-Cv r =>• A. Suppose for simplicity that only
one axiom occurs in the context, i.e., that hG3 PD Qv R,F^A. We have the
derivation in G3ipm+^D+Cut:

Q,P ^ QV R R,P => QV R
P^QVR

Rv

=>PDQvR P D QV R,F => A
Cutr =̂  A

By admissibility of cut in G3ipm*, the conclusion follows. QED.

Derivations in A- and 5-systems can have premisses, and therefore cut must be
assumed, whereas C- and /^-systems are cut-free. The strength of /^-systems is
that they permit proofs by induction on rules used in a derivation. This leads
to some surprisingly simple, purely syntactic proofs of properties of elementary
axiom systems.

6.4. PROPERTIES OF CUT-FREE DERIVATIONS

The properties of sequent systems representing axiomatic systems are based on
the subformula property for systems with nonlogical rules:

Theorem 6.4.1: If V ^ A is derivable in G3im* or G3c*, then all formulas in
the derivation are either subformulas of the endsequent or atomic formulas.

Proof: Only nonlogical rules can make formulas disappear in a derivation, and
all such formulas are atomic. QED.
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The subformula property is weaker than that for purely logical systems, but suffi-
cient for structural proof analysis. Some general consequences are obtained: Con-
sider a theory having as axioms a finite set V of regular formulas. Define V to be
inconsistent if =>• J_ is derivable in the corresponding extension and consistent
if it is not inconsistent. For a theory V, inconsistency surfaces with the axioms
through regular decomposition, with no consideration of the logical rules:

Theorem 6.4.2: Let V be inconsistent. Then

(i) All rules in the derivation of =>• _L are nonlogical.
(ii) All sequents in the derivation have _L as succedent.
(iii) Each branch in the derivation begins with a nonlogical rule of the form

(iv) The last step in the derivation is a rule of form

<gl=»-L ... g w = > ±

Proof: (i) By Theorem 6.4.1, no logical constants except _L can occur in the
derivation, (ii) If the conclusion of a nonlogical rule has A as succedent, the
premisses of the rule also have. Since the endsequent is => _L, (ii) follows,
(iii) By (ii) and by _L not being atomic, no derivation begins with P, F => P.
Since only atoms can disappear from antecedents in a nonlogical rule, no deriva-
tion begins with _L, F =>• _L. This leaves only zero-premiss nonlogical rules,
(iv) By observing that the endsequent has an empty antecedent. QED.

It follows that if an axiom system is inconsistent, its formula traces contain
negations and atoms or disjunctions. Therefore, if there are neither atoms nor dis-
junctions, the axiom system is consistent, and similarly if there are no negations.

By our method, the logical structure in axioms as they are usually expressed is
converted into combinatorial properties of derivation trees and completely sep-
arated from steps of logical inference. This is especially clear in the classical
quantifier-free case, in which theorems to be proved can be converted into a finite
number of regular sequents F =>• A. By the subformula property, derivations of
these sequents use only the nonlogical rules and axioms of the corresponding se-
quent calculus, with the succedent remaining the same throughout all derivations.
It becomes possible to use proof theory for syntactic proofs of mutual indepen-
dence of axiom systems, as follows. Let the axiom to be proved independent be
expressed by the logic-free sequent F =>• A. When the rule corresponding to the
axiom is left out of the system of nonlogical rules, underivability of F =>• A is
usually very easily seen. Examples will be given in the last section of this chapter.
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6.5. PREDICATE LOGIC WITH EQUALITY

Axiomatic presentations of predicate logic with equality assume a primitive re-
lation a = b with the axiom of reflexivity, a = a, and the replacement scheme,
a = b&A(a/x) D A (b/x). In sequent calculus, the standard way of treating equal-
ity is to add regular sequents with which derivations can start (as in Troelstra
and Schwichtenberg 1996, p. 98). These sequents are of the form =>> a = a and
a = b, P{a/x) => P(b/x), with P atomic, and Gentzen's "extended Hauptsatz"
says that cuts can be reduced to cuts on these equality axioms. For example,
symmetry of equality is derived by letting P be x = a. Then the second ax-
iom gives a = b,a = a =>• b = a, and a cut with the first axiom => a = a gives
a = b =$> b = a. But there is no cut-free derivation of symmetry. Note also that, in
this approach, the rules of weakening and contraction must be assumed, and only
then can cuts be reduced to cuts on axioms. (Weakening could be made admissible
by letting arbitrary contexts appear on both sides of the regular sequents, but not
contraction.)

By our method, cuts on equality axioms are avoided. We first restrict the re-
placement scheme to atomic predicates P, Q, R,..., and then convert the axioms
into rules:

a=a,V => A P(b/x), a = b, P(a/x), T => A
r => A Ref a = b,P(a/x),r=>A ^

There is a separate replacement rule for each predicate P, and a = b, P(a/x)
are repeated in the premiss to obtain admissibility of contraction. By the restric-
tion to atomic predicates, both forms of rules follow the rule-scheme. A case
of duplication is produced in the conclusion of the replacement rule in case P
is x = b. The replacement rule concludes a = b,a = b,T =>• A from the premiss
b = b,a = b,a = b,r^A. We note that the rule in which both duplications are
contracted is an instance of the reflexivity rule so that the closure condition is
satisfied. Intuitionistic and classical predicate logic with equality is obtained by
adding to G3im and G3c, respectively, rules Ref and Repl.

Theorem 6.5.1: The rules of weakening, contraction, and cut are admissible in
predicate logic with equality.

Next we have to show the replacement rule admissible for arbitrary predicates.

Lemma 6.5.2: The replacement axiom a = b, A(a/x) =>> A(b/x) is derivable for
arbitrary A.

Proof: The proof is by induction on length of A. If A = _L, the sequent follows
by L_L, and if A is an atom, it follows from the replacement rule. If A = BSLC
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or A = B v C, we apply inductive hypothesis to B and C and then left and right
rules. If A — B D C, we have the derivation

b = a, B(b/x) => B(a/x)
-w,wb = a,a = b,a = a, B(b/x) =>> B(a/x)

a = b,a = a, B(b/x) =>- B(a/x)
a = b, B(b/x) =^ B(a/x) M _ a = b, C(a/x) =* C(b/x)

a = b, B(a/x) D C(a/x), B(b/x) => B(a/x) a = b, C(a/x), B(b/x) => C(b/x)
a = b, B(a/x) D C(a/x), B(b/x) =» C(b/x) L

-RDa = b, B(a/x) D C(a/x) =• B(b/x) D C(b/x)

If A = WyB, the sequent a = b,VyB(a/x)^VyB(b/x) is derived from
a = b, B(a/x) =>• B(b/x) by applying first LV and then 7?V. Finally, the se-
quent a = b, 3yB(a/x) =>• 3yB(b/x) is derived by applying first /^3 and then
L3. QED.

Repl

Theorem 6.5.3: T/ẑ  replacement rule

A(b/x), a = b, A(a/x), V =» A

w admissible for arbitrary predicates A.

Proof: By Lemma 6.5.2, a = b, A(a/x) =>• A(b/x) is derivable. A cut with the
premiss of the replacement rule and contractions lead to a = b, A(a/x), T =>• A.
Therefore, by admissibility of contraction and cut in the calculus of predicate
logic with equality, admissibility of the replacement rule follows. QED.

Our cut- and contraction-free calculus is equivalent to the usual calculi: the
sequents =>> a = a and a = b, P(a/x) => P(b/x) follow at once from the reflex-
ivity rule and the replacement rule. In the other direction, the two rules are easily
derived from ^ a = a and a = b, P(a/x) => P(b/x) by cut and contraction. The
formulation of equality axioms as rules has the advantage of permitting proofs
by induction on height of derivation. The conservativity of predicate logic with
equality over predicate logic illustrates such proofs. In a cut-free derivation of a
sequent F =>• A that contains no equalities, the last nonlogical rule must be Ref.
To prove the conservativity, we show that instances of this rule can be eliminated
from the derivation. Above we noticed that the rule of replacement has an instance
with a duplication, but that the closure condition is satisfied since the instance in
which both duplications are contracted is an instance of reflexivity. For the proof
of conservativity, the closure condition will be satisfied by the addition of the
contracted instance of Repl as a rule Repl*:
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Lemma 6.5.4: If T =>• A has no equalities and is derivable in G3c+Ref+Repl+
Repl*, no sequents in its derivation have equalities in the succedent.

Proof: Assume that there is an equality in a succedent. Only a logical rule can
move it, but then it is a subformula of the endsequent. QED.

Lemma 6.5.5: If V =>• A has no equalities and is derivable in G3c+Ref+Repl+
Repl*, it is derivable in G3c+Repl+Repl*.

Proof: It is enough to show that a topmost instance of Ref can be eliminated
from a given derivation. The proof is by induction on the height of derivation of
a topmost instance:

a=a,V => A'

r = » A ' Ref

If the premiss is an axiom the conclusion also is, since by Lemma 6.5.4 the
succedent A' contains no equality, and the same if it is a conclusion of L_L. If the
premiss has been concluded by a one-premiss logical rule R, we have

a = a,F =^ A' R

r > A ' Ref

and this is transformed into

a=aS" => A"
-Ref

T' =» A'

There is by the inductive hypothesis a derivation of Y" =>• A" without rule Ref.
If a two-premiss logical rule has been applied, the case is similar.

If the premiss has been concluded by Repl, there are two cases, according
to whether a = a is or is not principal. In the latter case the derivation is, with

n = p(b/x), r",
P(c/x), a=a,b = c, P(b/x), T" =» A'

a=a,b = c, P(b/x), T" => Af

-Ref

-Repl

b = c, P(b/x), T" =• A'

By permuting the two rules, the inductive hypothesis can be applied. If a = a is
principal, the derivation is, with Tf = P(a/x), V",

P(a/x), a = a, P(a/x), T" =• A'
a=a, P(a/x), T" =^ A'

-Ref

Repl

P(a/x), T" =d> Af

By height-preserving contraction, there is a derivation of a = a, P(a/x), F" => Af
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so that the premiss of Ref is obtained by a derivation with lower height. The
inductive hypothesis applies, giving a derivation of r" =>• A' without rule Ref

Last, if the premiss of Ref has been concluded by Repl*, with a = a not principal,
the derivation is

c = c, a = a, b = c, V =>> A'
a=a,b = c, r ' = > A'

The rules are permuted and the inductive hypothesis applied. If a = a is principal,
the derivation is

a =a,a =a, Tf =>• A '

and we apply height-preserving contraction and the inductive hypothesis. QED.

Theorem 6.5.6: IfV^A is derivable in G3c+Ref+Repl+Repl* and if T, A
contain no equality, then T =>• A is derivable in G3c.

Proof: By Lemma 6.5.5, there is a derivation without rule Ref Since the end-
sequent has no equality, Repl and Repl * cannot have been used in this deriva-
tion. QED.

Note that if cuts on atoms had not been eliminated, the proof would not go through.
Also, if the closure condition were satisfied by considering the contracted rule to
be an instance of Ref elimination of contraction could introduce new instances
of Ref above the Ref"to be eliminated in Lemma 6.5.5.

6.6. APPLICATION TO AXIOMATIC SYSTEMS

All classical systems permitting quantifier-elimination, and most intuitionistic
ones, can be converted into systems of cut-free nonlogical rules of inference. In
the previous section, we gave the first application, predicate logic with equality.
In Section 5.4, we showed how to turn the logical axiom of excluded middle for
atomic formulas into a sequent calculus rule. Also the calculus G3ip-\-Gem-at
can be seen as an intuitionistic calculus to which a rule corresponding to the
decidability of atomic formulas has been added, and, from this point of view, it is
more natural to consider the law of excluded middle as a nonlogical rather than
a logical axiom.

We shall first give, as a general result for theories with purely universal axioms,
a version of Herbrand's theorem. Then specific examples from elementary intu-
itionistic axiomatics are given: Theories of equality, apartness, and order, as well
as algebraic theories with operations, such as lattices and Hey ting algebras, are
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representable as cut-free intuitionistic systems. On the other hand, the intuition-
istic theory of negative equality does not admit of a good structural proof theory
under the present approach: This theory has a primitive relation a # b, and the
two axioms ~a / a and ~ a / c & ~ i / c D ~a ^ b expressing reflexivity and
transitivity of negative equality.

As a further application of the methods of this chapter, we give a structural
proof theory of classical plane affine geometry, with a proof of the independence of
Euclid's fifth postulate obtained by proof-theoretical means. Another application
of the fact that logical rules can be dispensed with is proof search. We can start
root-first from a logic-free sequent F =>• A to be derived: The succedent will be
the same throughout in derivations with nonlogical rules, and in typical cases very
few nonlogical rules match the sequent to be derived.

(a) Herbrand's theorem for universal theories: Let T be a theory with a finite
number of purely universal axioms and classical logic. We turn the theory T into
a system of nonlogical rules by first removing the quantifiers from each axiom,
then converting the remaining part into nonlogical rules. The resulting system
will be denoted by G3cT.

Theorem 6.6.1: Herbrand's theorem. If the sequent ^Wx3yi. • - 3 ^ A, with A
quantifier-free, is derivable in G3cT, then there are terms ti} with i ^ n, j ^ k
such that

\f A(th/yu...,tik/yk)

is derivable in G3cT.

Proof: Suppose, to narrow things down, that k = 1. Then the derivation of
=>• Wx3yA ends with

=> A{z/x,h/y), 3yA(z/x)
/?3

Wx3yA
• /?V

If the derivation continues, root-first, with a propositional inference, the next pre-
miss i s l^ =>• Ai, 3yA(z/x), where Pi, AiConsistofsubformulasof A(z/x, t\/y).
(For the sake of simplicity, only a one-premiss rule is considered.) Otherwise R3
was applied, and the premiss is

=• A(z/x, tx/y), A(z/x, t2/y), 3yA(z/x)

The derivation can continue up from the second alternative in the same way,
producing possible derivations in which R3 is applied and instances of the formula
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3yA{z/x) multiplied, but since the derivation cannot grow indefinitely, at some
stage a conclusion must come from an inference that is not R3.

Every sequent in the derivation is of the form

r => A, A(z/x, tm/y),..., A(z/x, tm+l/y), 3yA(z/x)

where F, A consist of subformulas of A(z/x, tt/y)9 with / < m. In particular, the
formula 3 y A(z/x) can occur in only the succedent. Consider the topsequents of the
derivation. If they are axioms or conclusions of L_L, they remain so after deletion
of the formula 3 y A(z/x). If they are conclusions of zero-premiss nonlogical rules,
they remain so after the deletion since the right context in these rules is arbitrary.
After deletion, every topsequent in the derivation is of the form

r =^ A, A(z/x, tm/y),..., A(z/x, tm+l/y)

Making the propositional and nonlogical inferences as before, but without the
formula 3yA(z/x) in the succedent, produces a derivation of

=• A(z/x, h/y),..., A(z/x, tm^/y), A(z/x, tm/,..., A(z/x, tn/y)

and repeated application of rule R v now leads to the conclusion. QED.

In the end of Section 4.3(a) we anticipated a simple form of Herbrand's theo-
rem for classical predicate logic as a result that corresponds to the existence pro-
perty of intuitionistic predicate logic: Dropping the universal theory from
Theorem 6.6.1, we have no nonlogical rules to consider and we obtain

Corollary 6.6.2: If =>• 3xA is derivable in G3c, there are terms t\,..., tn such
that =$> A(t\/x) V . . . V A(tn/x) is derivable.

(b) Theories of equality and apartness: The axioms of an apartness relation
were introduced in Section 2.1. We shall turn first the equality axioms and then
the apartness axioms into systems of cut-free rules.

1. The theory of equality has one basic relation a = b that obeys the following
axioms:

EQ1. a=a,
EQ2. a = b&a = cD b = c.

Symmetry of equality follows by substitution of a for c in EQ2. Note that
the formulation is slightly different from the transitivity of equality as given
in Section 2.1, where we had a = c&b = cDa = b. The change is dictated by
the form of the replacement axiom of Section 6.5: Now transitivity is directly an
instance of the replacement axiom, with A equal to x = c.
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Addition of the rules

a = a,T => A b = c, a = b, a = c, F =
Rf

where a = b,a = c are repeated in the premiss of rule Trans, gives a calcu-
lus G3im+Ref-\-Trans the rules of which follow the rule-scheme. As noted in
Section 6.5, a duplication in Trans is produced if b is identical to c, but the cor-
responding contracted rule is an instance of rule Ref. The closure condition is
satisfied and the structural rules admissible.

2. The theory of decidable equality is given by the above axioms EQ1 and
EQ2 and

DEQ. a = bv ~a = b.

The corresponding rule is an instance of a multisuccedent version of the scheme
Gem-at\

a = b,T => A ~a = b, T => A
D

Admissibility of structural rules for this rule is proved similarly to the single
succedent version in Section 5.4. For the language of equality, we have
G3im+Gem-at = G3im+Deq, a cut-free calculus. Proof of admissibility of
structural rules is modular for the rules Ref, Trans, and Deq, and it follows that
the intuitionistic theory of decidable equality, which is the same as the classical
theory of equality, is cut-free.

3. The theory of apartness has the basic relation a / b (a and b are apart,
a and b are distinct), with the axioms

V b

a ^ c, a ^ b, F = ^ A b ^ c, a ^ b, F =^ A
href — - — — — — Split

a ^a, i => A a ^b,V => A

The first, premissless rule represents ^a / a by licensing any inference from
a ^ a; the second has repetition of a / b in the premisses. Both rules follow the
rule-scheme; the closure condition does not arise because there is only one prin-
cipal formula, and therefore structural rules are admissible in G3im+Irref+Split.

4. Decidability of apartness is expressed by the axiom

DAP. a^bv ~a^b,

API.
AP2.

The rules

~a
a / i

are

^a,
bD a
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and the corresponding rule is

a*b, T ^ A ~a^b, F =̂  A

T^A
 Dap

As before, it follows that the calculus G3im+Irref-\-Split+Dap is cut-free.

5. The intuitionistic theory of negative equality is obtained from the axioms
of apartness, with the second axiom replaced by its constructively weaker con-
traposition:

NEQ1. ~a*a,
NEQ2. ~a ? c & ~b # c D ~a^b.

It is not possible to extend G3im into a cut-free theory of negative equality by
the present methods. If a classical calculus such as G3c or G3i+Gem-at is used,
a cut-free system is obtained since NEQ2 becomes equivalent to AP2.

The elementary theories in 1-4 can also be given in a single succedent formula-
tion based on extension of the calculus G3i, as in Negri (1999). As a consequence
of the admissibility of structural rules in such extensions, we have the following
result for the theory of apartness:

Corollary 6.6.3: Disjunction property for the theory of apartness. If
=>• A V B is derivable in the single succedent calculus for the theory of apartness,
either => A or => B is derivable.

Proof: Consider the last rule in the derivation. The rules for apartness cannot
conclude a sequent with an empty antecedent, and therefore the last rule must be
rule/?vofG3i. QED.

Let us compare the result to the treatment of axiom systems as a context, the
third of the approaches described in Section 6.3. Each derivation uses a finite
number of instances of the universal closures of the two axioms of apartness,
say, P. The assumption becomes that F =>• A v B is derivable in G3i. When-
ever F contains an instance of the "split" axiom, it has a formula with a dis-
junction in the consequent of an implication. Therefore F does not consist of
Harrop formulas only (Definition 2.5.3), so that Corollary 6.6.3 gives a proper
extension of the disjunction property under hypotheses that are Harrop formulas,
Theorem 2.5.4.

(c) Theories of order: We first consider a constructive version of linear order
and, next, partial order. The latter is then extended in 6.6(d) by the addition of
lattice operations and their axioms.
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1. Constructive linear order: We have a set with a strict order relation with
the two axioms:

LO1. ~(a< b&b< a),
LO2. a < bD a< c V c < b.

Contraposition of the second axiom expresses transitivity of weak linear order.
Two rules, denoted by Asym and Split, are uniquely determined from the ax-
ioms. Both rules follow the rule scheme, and the first one has an instance with a
duplication, produced when a and b are identical:

-Asym
a < a, a < a, F =$> A

The contracted sequent a < a, F =>• A is derived by

Asym Asym

a < a, a < a,T =>> A a < a, a < a,F =>• A
^ x — ! sPlit

a < a, r =>• A

We observe that the contracted rule is only admissible, rather than being a rule of
the system. This makes no difference unless height-preserving admissibility of
contraction is required. It is not needed for admissibility of cut.

2. Partial order: We have a set with an order relation satisfying the two
axioms

POL a^a,

PO2. a^b&b^cD a^c.

Equality is defined by a = b = a^b Scb^a.li follows that equality is an equiv-
alence relation. Further, since equality is defined in terms of partial order, the
principle of substitution of equals for the latter is provable. The axioms of partial
order determine by the rule-scheme two rules, the one corresponding to transi-
tivity producing a duplication in case a = b and b = c. The rule in which both the
premiss and conclusion are contracted is an instance of the rule corresponding
to reflexivity, and therefore the structural rules are admissible. The rules corre-
sponding to the two axioms are denoted by Refund Trans:

a^a,F => A a^c,a^b,b^c,r=>A
Ref — Trans

T » A b b T ^ A

Derivations of a regular sequent F =̂> A in the theory of partial order begin with
logical axioms, followed by applications of the above rules. As is seen from the
rules, these derivations have the following peculiar form: They are all linear and
each step consists in the deletion of one atom from the antecedent. If classical
logic is used, by invertibility of all its rules, every derivation consists of derivations
of regular sequents followed by application of logical rules only.
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3. Nondegenerate partial order: We add to the axioms of partial order two
constant 0, 1 satisfying the axiom of nondegeneracy ~ 1 < 0. The corresponding
rule has zero premisses:

- Nondeg

u o, r =
Partial order is conservative over nondegenerate partial order:

Theorem 6.6.4: IfF^Ais derivable in the classical theory of nondegenerate
partial order and F, A are quantifier-free and do not contain 0, 1, then F =>• A
is derivable in the theory of partial order.

Proof: We can assume F =>• A to be a regular sequent. We prove that if a derivation
of F =>> A contains atoms with 0 or 1 the atoms are instances of reflexivity, of
the form 0 ^ 0 or 1 ^ 1. So suppose the derivation contains an atom with 0 or 1
and not of the above form. Its downmost occurrence can only disappear by an
application of rule Trans

where a < c contains 0 or 1 and is not an instance of reflexivity. If a = 0, i.e., a
is syntactically equal to 0, then a ^ b in the conclusion must be an instance of
reflexivity and we have b = 0, therefore also c = 0. But then a < c is an instance
of reflexivity contrary to assumption. The same conclusion follows if a = 1 or
c = 0 or c = 1.

By the above, the derivation does not contain instances of 1 < 0 and therefore
no instances of rule Nondeg. QED.

If intuitionistic logic is used, the result follows whenever F =>• A is a regular
sequent.

(d) Lattice theory: We add to partial order the two lattice constructions and their
axioms:

Lattice operations and axioms:

a/\b the meet of a and b, avb the join of a and b,
a/\b < a (Mtl), a < avb (Jnl),
a/\b ^ b (Mtr), b ^ avb (Jnr),
c^a Scc^b D c^ a^b (Unirnt), a^c Scb^c D avb < c (Unijn).

All of the axioms follow the rule-scheme, and we shall use the above identifiers
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as names of the nonlogical rules of lattice theory:

a/\b ^ a, F => A a < avb, F =$> A

r =» A M" r => A
 J"f

< ft, F => A ft < avb, F =>• A
Mtr — Jnr

r A
Mtr

r =^ A r =» Ac ^ flA^, c^a,c^b, F = ^ A avft ^ c, a ^ c, b ^ c, F =>> A
—— Unimt : — Unijn

c^a,c^b, F =^ A a^c, b^c, F=^A

The uniqueness rules for the meet and join constructions can have instances with
a duplication in the premiss and conclusion:

c < a/\a, c < a , c ^ a , F =$- A
zz Unimt
T A

and similarly for join. The rule in which c < a is contracted in both the premiss
and conclusion can be added to the system to meet the closure condition. If
height-preserving contraction is not required, the contracted rule can be proved
admissible: Using admissibility of left weakening, admissibility of the rule ob-
tained from Unimt is proved as follows, starting with the contracted premiss

A:

, c ^ a, F =>• A
LW

c ^ dAd, c ^ a , a ^ a/\a, V =>• A
— Trans

c ^ a , a ^ ciAd, F =>• A
LW,LW

c ^ a, a < ^Afl, a ^ a , a ^ a , F =^ A
— Unimt

c^a,a^a,a^a,T => A
4 Ref>Ref^ 4

c<:a,r =>• A

All structural rules are admissible in the proof-theoretical formulation of lattice
theory. The underivability of =>> _L follows, by Theorem 6.4.2, from the fact that
no axiom of lattice theory is a negation,

As a consequence of having an equality relation defined through partial order,
substitution of equals in the meet and join operations,

b = c D a/\b = a/\c b = c D avb = avc

need not be postulated but can instead be derived. For example, we have a/\b ^ a
by Mtl and a/\b ^ c by Mtl, b < c and Trans, so #AZ? < a/\c follows by Unimt.

Lattice theory is conservative over partial order:

Theorem 6.6.5: If F =>> A is derivable in classical lattice theory and F, A are
quantifier-free and do not contain lattice operations, then F =>> A is derivable in
the theory of partial order.
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Proof: We can assume that F =>• A is a regular sequent. The topsequent is a
logical axiom of the form a < c, Fr =>• A', a < c where A', a < c = A and a, c
contain no lattice operations. We can also assume that the first step removes a ^ c
from the antecedent; if not, the steps and removed atoms before a ^ c can be
deleted.

If the first rule is Ref, then a = c and a ^ c , F = ^ A i s a logical axiom from
which the conclusion follows by Ref. Else the first rule must be Trans with the
step

a^ c, a^ b, b^ c, r" =>• A
Trans

Z & F r A

The atoms a ^ b, b ^ c are activated in an instance of rule Trans by the removed
atom a < c. They form a chain of two atoms a < b, Z? < c in the topsequent. We
may assume a ^ Z? or Z? < c to be the removed atom in the next step, for otherwise
the step and its removed atom can be deleted. If a ^ b is removed by Trans,
two atoms a^d,d^b are activated by a < b and similarly if b < c is removed
by Trans. Among the atoms activated so far there is a chain of three atoms
a^d,d^b,b^c each of which is in the topsequent. Starting with a ^ c, we form
the transitive closure of atoms activated in instances of Trans. Each such instance
will substitute one atom in the chain by two, until we come to the last instance
of Trans with the chain a ^ bo, b0 ^ b\,..., bn < c in the topsequent. If an atom is
not in the chain and is removed by a rule other than Trans, the atom and rule are
deleted. Thus, we only have to show that atoms in the chain with lattice operations
can be removed, and let bk ^ bk+\ be the first such atom. (If there are none, there
is nothing to prove.) If it is removed by Ref we have bk = bk+i and consider the
pair of atoms bk-i^bk,bk^ bk+2, and so on, until both atoms must be removed by
lattice rules. Similarly, let b\ with / > k be the first of the bt that does not contain
lattice operations. (If there are none, consider the last term c in the chain.)

We claim that in the chain a^bo,bo^bi,... ,bn^c there is a contiguous pair
of atoms that are removed by rules Unimt, Mt or Jn, Unijn: Start with bk-\ < bk.
If the outermost lattice operation of bk is A, the atom bk-\ < bk has to be removed
by Unimt, for bk_\ does not contain lattice operations. Then bk < bk+\ must be
removed by Jn, Unimt or Mt. In the last case we are done, else we continue
along the chain, analyzing bk+\ ^ bk+2- If the first case had occurred, bk+\ ^ bk+2

is removed by Unijn, Jn, or Unimt; if the second, it is removed by Jn, Unimt, or
Mt. In the last case we have the conclusion. In the other cases, we continue the
case analysis until we have that &/_2 ^ fc/_i is removed by Jn or Unimt. But then
bi^i^biis removed by Unijn or Mt, respectively, since b\ does not contain lattice
operations.
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We prove the result in a similar fashion if the outermost lattice operation of
bk is v.

Let two contiguous atoms b ^ d/\e and d/\e < d be removed by Unimt, Mt. For
Unimt to be applicable, the topsequent has to contain the atoms b ^ d and b ^ e.
Then replace the two atoms b ^ d/\e and d/\e ^ d with the single atom b ^ d, and
continue the derivation as before except for deleting the instances of Trans where
the two atoms were active and the two steps Unimt, Mt. In this way the number
of atoms containing lattice operations is decreased. If there are two contiguous
atoms that are removed by Jn, Unijn, let them be b ^ bvd, bvd ^ e. Then replace
them with the atom b^e that is found in the topsequent and delete the steps where
the two atoms were active. Again, this proof transformation decreases the number
of atoms containing lattice operations. QED.

If F => A is a regular sequent, the result applies also in the intuitionistic theory.

(e) Affine geometry: We have two sets of basic objects, points denoted by
a,b,c,... and lines denoted by /, m, n, In order to eliminate all logical struc-
ture from the nonlogical rules, we use a somewhat unusual set of basic concepts,
written as follows:

a # b, a and b are distinct points,
I ^ m, I and m are distinct lines,
/ ft m, I and m are convergent lines,
A(a, I), point a is outside line /.

The usual concepts of equal points, equal lines, parallel lines, and incidence of a
point with a line, are obtained as negations from the above. These are written as
a = b, I =m,l\\m, and I(a, /), respectively. The axioms, with names added, are
as follows:

I. Axioms for apartness relations:
^a ^ a (Irref), a^bDa^cVb^c (Split),

~Z / / (Irref), I ^ rn D I ^nV m ^n (Split),

~l I I (Irref), I # m D / # n V m # n (Split).

These three basic relations are apartness relations, and their negations are equiv-
alence relations.

Next we have three constructions, two of which have conditions: the con-
necting line ln(a, b) that can be formed if a ^ b has been proved, the inter-
section point pt(l, m) where similarly / ft m is required to be proved, and the
parallel line par (I, a) that can be applied without any conditions uniformly in
/ and a.

Constructed objects obey incidence and parallelism properties expressed by
the next group of axioms:
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II. Axioms of incidence and parallelism:
a ± b D I(a, ln(a, b)) (Inc), a^bD I(b, ln(a, b)) (Inc),
I If m D I(pt(l, m), /) (Inc), I jf m D I(pt(l, m), m) (Inc),
I(a,par(l,a)) (Inc),
l\\par(l,a) (Par).

Uniqueness of connecting lines, intersection points, and parallel lines is guaran-
teed by the following axioms:

III. Uniqueness axioms:
a^bScl ^ ra D A(a, I) V A(b, I) V A(a, m) V A(b, m) (Uni),
I ^m D A(a, I) V A(a, m)v I ftm (Unipar).

The contrapositions of these two principles express usual uniqueness properties.
Last, we have the substitution axioms:

IV. Substitution axioms:
A(a,l)D a^bv A(b, I) (Subst),
A(a, 1) D I # m V A(a, m) (Subst),
I im^l ^nvm^n (Subst),

Again, the contrapositions of these three axioms give the usual substitution prin-
ciples.

The above axiom system is equivalent to standard systems, such as Artin's
(1957) axioms. These state the existence and uniqueness of connecting lines and
parallel lines, and existence and properties of intersection points are obtained
through a defined notion of parallels. As is typical in such an informal discourse,
the principles corresponding to our groups I and IV are left implicit. There is
a further axiom stating the existence of at least three noncollinear points, but
as explained in von Plato (1995), we do not use such existential axioms, say
(3JC : Pt)(3y : Pt)x # y and (VJC : Ln)(3y : Pt)A(y,x). We achieve the same
effect by systematically considering only geometric situations containing the
assumptions a : Pt, b : Pt, a ^ b,c : Pt, A(c, ln(a, b)).

An axiom such as a # b D I (a, ln(a, b)) hides a structure going beyond first-
order logic. Contrary to appearance, it does not consist of two independent for-
mulas a ^ b and I (a, ln(a, b)) and a connective, for the latter is a well-formed
formula only if a / b has been proved. (For a detailed explanation of this structure,
dependent typing, see Section 3 of Appendix B.) As an example of conditions
for well-formed formulas, from our axioms a "triangle axiom"

A(c,ln(a,b)) D A(b,ln(c,a))

can be derived, but the conditions a / b and c / a are required for this to be
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well-formed. Here we can actually prove more, the lemma

a ? b & A ( c , l n ( a , b ) ) D c^a

Assume for this a ̂  b and A(c, ln(a, b)). By the first substitution axiom,
A(c, ln(a, b)) gives c ̂  a V A(a, ln(a, b)). By incidence axioms, I(a, ln(a, b)),
so that c ̂  a follows. By the second substitution axiom, A(c, ln(a, b)) gives
ln(a,b) / ln(c,a)vA(c,ln(c,a)), so that ln(a, b) # ln(c, a) follows. By
the uniqueness axiom, a ± b and ln(a, b) ^ ln(c, a)) give A(a, ln(a, b)) V
A(b, ln(a, b)) V A(a, ln(c, a)) V A(b, ln(c, a)), so the incidence axioms lead to
the conclusion A(b, ln(c, a)).

Examples of conditions can be found in mathematics whenever first-order logic
is insufficient. A familiar case is field theory, where results involving inverses
x~l, y~l, ... can be expressed only after the conditions x ^ 0, y / 0 , . . . have
been established.

In a more formal treatment of conditions, they can be made into progressive
contexts in the sense of type theory (see Martin-Lof 1984 and von Plato 1995).
Such contexts can be arbitrarily complex, even if the formulas in them should all be
atomic. For example, the formula ln(pt(l, m), a) / /presupposes that pt(l, m) ^ a
which in turn presupposes that / jf m.

The reason for having basic concepts different from the traditional ones is not
only that the "apartness" style concepts suit a constructive axiomatization; there
is a reason for the choice of these concepts in classical theories also, namely, if the
conditions a # b and /# m were defined as a = b D ± and /1| m D _L, the natural
logic-free expression of the incidence axioms would be lost.

All of the axioms of plane affine geometry can be converted into nonlogical
rules, moreover, closure condition 6.1.7 will not lead to any new rules. We con-
clude that the structural rules are admissible in the rule system for plane affine
geometry.

We first derive a form of Euclid's fifth postulate from the geometrical rules:
Given a point a outside a line /, no point is incident with both / and the parallel
to / through point a. Axiomatically, we may express this by the formula

A(aJ)D ~(I(bJ)&I(b,par(l,a)))

The sequent

A(a,l)^A(b,l),A(b,par(l,a))

is classically equivalent to the previous one and expresses the same principle
as a logic-free multisuccedent sequent. To derive this sequent, we note that, by
admissibility of structural rules, all rules in its derivation are nonlogical, and
therefore the succedent is always the same, A(b, I), A(b,par(l, a)). Further, no
conditions will appear. With these prescriptions, root-first proof search is very
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nearly deterministic. Inspecting the sequent to be derived, we find that the last
step has to be a substitution rule in which the second premiss is immediately
derived. In order to fit the derivations in, the principal formulas are not repeated
in the premisses, and the second formula in the succedent is abbreviated by
A = A(b,par(l,a)):

Inc
I *par(l, a) =• A(b, /), A A(a,parQ, a)) => A(b, /), A

A(a,l)=>A(b,l),A Subst

The first premiss can be derived by the uniqueness of parallels, and now the rest
is obvious:

-Par
A(b, 1) => A(b, I), A A^ A(b, /), A I ftparQ, a) =» A(b, /), A

Unipar

)A
We shall show that when the rule of uniqueness of parallels is left out, the sequent

A(a, 1) => A(b, I), A(b,parQ, a))

is not derivable by the rules of affine geometry. We know already that if there is
such a derivation, it must end with one of the two first substitution rules. If it is
the first rule, we have

a^b=> A(b, /), A A(b, 1) =» A(b, I), A
SubstA(a, I) => A(b, /), A

Then the first premiss must be derivable. It is not an axiom, and unless a — b,
it does not follow by Irref. Split only repeats the problem, leading to an infinite
regress. This leaves only the second substitution rule, and we have

/ ± m =» A(b, 1), A A(a, m) => A(b, I), A
Sbt

As in the first case, rules for apartness relations will not lead to the first premiss.
Otherwise it could be derived only by uniqueness of parallels, but that is not
available. By theorem 6.3.2, derivability in the system of rules is equivalent to
derivability with axioms, and we conclude the

Theorem 6.6.6: The uniqueness axiom for parallel lines is independent of the
other axioms of plane affine geometry.

In case of theorems with quantifiers, assuming classical logic, a theorem to
be proved is first converted into prenex form, then the propositional matrix into
the variant of conjunctive normal form used above. Each conjunct corresponds
to a regular sequent, without logical structure, and the overall structure of the
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derivation is as follows: First the regular sequents are derived by nonlogical rules
only, then the conjuncts by L&, Rv, and RD. Now R& collects all these into
the propositional matrix, and right quantifier rules lead into the theorem. The
nonlogical rules typically contain function constants resulting from quantifier
elimination. In the constructive case, these methods apply to formulas in the
prenex fragment that admits a propositional part in regular normal form.

An example may illustrate the above structure of derivations: Consider the
formula expressing that, for any two points, if they are distinct, there is a line on
which the points are incident:

WxWy(x ^yD 3z(I(x, z)&I(y, z)))

In prenex normal form, with the propositional matrix in the implicational variant
of conjunctive normal form, this is equivalent to

VxVy3z((x * y&A(x, z) D ±)&(x / y&A(y, z) D _L))

In a quantifier-free approach, we have instead the connecting line construction,
with incidence properties expressed by rules in a quantifier-free form:

- Inc ———-— ———— — Inc
a^b, A(a, ln(a, b)), V => A a*b, A(b, ln(a, b)\ T => A

We have the following derivation:

ncx ± y, A(x, ln(x, y)) =» _L n° x ± y, A(y, ln(x, y)) =» _L
-L& • L&

x ^ y &A(x, ln(x, y)) =$> _L x ^ y &A(y, ln(x, y)) =>• _L
=>• x # y &A(x, ln(x, y)) D _L => x / y &A(y, ln(x, y)) D ±

=^(x ^y &A(x, ln(x, y)) D J_) &(JC # y &A(y, ln(x, y)) D ±) ^&

nq

=» 3z((x # y &A(x, z) D ±) &(x # y &A(y, z) D JQ)
=> V;cVy3z((x ^ y &A(JC, z) 3 ±) &(JC ^ y &A(y, z) D X ) ) ^ ' ^

Derivations with nonlogical rules and all but two of the logical rules of multi-
succedent sequent calculi, RD and RW, do not show whether a system is classical
or constructive. The difference appears only if classical logic is needed in the
conversion of axioms into rules.

NOTES TO CHAPTER 6

Most of the materials of this chapter come from Negri (1999) and Negri and von
Plato (1998). The former work contains a single succedent approach to extension of
contraction- and cut-free calculi with nonlogical rules. These calculi are used for a
proof-theoretical analysis of derivations in theories of apartness and order, leading
to conservativity results which have not been treated here. The latter work uses a
multisuccedent approach. The examples in subsections (b) and (c) of Section 6.6 are
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treated in detail in Negri (1999). The proof-theoretic treatment of constructive linear
order in subsection (c) is extended in Negri (1999a) to a theory of constructive ordered
fields. The geometrical example in subsection (e) comes from von Plato (1998b).

Our proof of Theorem 6.6.1 was suggested by the proof in Buss (1998, sec. 2.5.1).
In Section 6.4, we mentioned some previous attempts at extending cut elimination

to axiomatic systems. The work of Uesu (1984) contains the correct way of presenting
atomic axioms as rules of inference. As to the use of conjunctive normal form in
sequent calculus, we owe it to Ketonen's thesis of 1944, in which the invertible
sequent calculus for classical propositional logic was discovered.



7

Intermediate Logical Systems

Intermediate logical systems, or "intermediate logics" as they are often called, are
systems between intuitionistic and classical logic in deductive strength. Axiomatic
versions of intermediate logical systems are obtained by the addition of different,
classically valid axioms to intuitionistic logic. A drawback of this approach is
that the proof-theoretic properties of axiomatic systems are weak.

In this chapter, we shall study intermediate logical systems by various methods:
One is to translate well-known natural deduction rules into sequent calculus.
Another is to add axioms in the style of the rule of excluded middle of Chapter 5
and the nonlogical rules of Chapter 6. We have seen that failure of the strict
subformula property is no obstacle to structural proof analysis: It is sufficient to
have some limit to the weight of formulas that can disappear in a derivation. A
third approach to intermediate logical systems is to relax the right implication
rule of multisuccedent intuitionistic sequent calculus by permitting formulas of
certain types to appear in the succedent of its premiss, in addition to the single
formula of the intuitionistic rule.

From a result of Godel (1932) it follows that there is an infinity of nonequivalent
intermediate logical systems. Some of these arise from natural axioms, such as
the law of double negation, the weak law of excluded middle, etc.

There are approaches to intermediate logical systems, in which some prop-
erty such as validity of an interpolation theorem or some property of algebraic
models is assumed. The general open problem behind these researches concerns
the structure of the implicational lattice of intuitionistic logic (in the first place,
propositional logic). This is the problem of generating inductively all the classes
of equivalent formulas between _L and 1 D 1 , ordered by implication. For for-
mulas in one atom (and _L, of course), this structure, the free Heyting alge-
bra with one generator, is known, but above that only special cases have been
mastered.

Our aim here is to present a few natural classes of intermediate logical systems
and to study their proof-theoretical properties by elementary means. We shall

156
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study, in particular, the following logical systems:

1. Logic with the weak law of excluded middle ~Av~~A.
2. Stable logic, characterized by the law of double-negation ~ ~ ADA.
3. Dummett logic, characterized by the law (AD B)v (BD A).

We shall consider only the propositional parts of intermediate logical systems in
what follows.

7 .1 . A SEQUENT CALCULUS FOR THE WEAK LAW OF EXCLUDED MIDDLE

We study the weak law of excluded middle by adding a rule to a single succedent
calculus, analogous to the rule of excluded middle of Section 5.4.

We add to G3ip a rule of weak excluded middle for atomic formulas P:

Wem-at

The weak law of excluded middle for atoms follows. In the other direction, that
law in the form of an axiomatic sequent =>• ~ P v ~ ~ P, together with a cut on
~ P v ~ ~ P, leads to the rule of weak excluded middle.

In a proof-theoretical analysis of G3ip-\-Wem-at, we first have to establish
inversion lemmas and, with their help, the admissibility of structural rules. Finally,
we have to investigate the admissibility of the rule for arbitrary formulas. Since
this method is by now familiar, we indicate only the main results.

We prove inversion lemmas by noting that application of the rule commutes
with the inversions of the invertible rules of G3ip. Proofs of admissibility of
weakening, contraction, and cut go through similarly to the corresponding proofs
for the rule of excluded middle in Section 5.4. This is so because the rule has
no principal formula: If an application of the rule is followed by weakening or
contraction, we simply permute the order of application of the rules. With cut,
we show the conversion for the case that the left premiss is derived by the rule,

P T—1 . A D T 1 V A
, 1 •? l \ ^*"^*> £* ^ Y f f\

Wem-at
! Cut

This is transformed into the derivation with lower cut-height,

- Cut _ _ _ — Cut

p, r, r =» c ~~ p, r, r =• c
r r c Wem-at

and similarly if the right premiss has been derived by Wem-at.
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Admissibility of the rule

-Wem

for arbitrary formulas A is proved by induction on weight of A. If A = _L, the
rule is derivable using the left premiss only:

± , r =>• c
c Cut

If A = P, we have the rule Wem-at. For the rest, it is easily shown that if the weak
law of excluded middle holds for A and B, it holds for ASLB, A V B, and AD B
as well.

A logical system with the weak law of excluded middle Wem-at is well-behaved
proof-theoretically. The subformula property needs to be adjusted into: All formu-
las in derivations are subformulas of the endsequent or of negations of negations
of atoms.

7.2. A SEQUENT CALCULUS FOR STABLE LOGIC

We shall investigate the single succedent sequent calculus corresponding to the
system of natural deduction with a principle of indirect proof for atomic formulas.
Translation of this principle into sequent calculus gives the rule

r =̂  p
Raa-at

The calculus G3i^-\-Raa-at has the same strength as a calculus with the rule
corresponding to stability for atoms:

r =^~~ p
r => p

Rule Raa-at is admissible in G3ip+Gera-atf:

~ P , T =^ _L _L =>• P
r1 CM?

— p ^ p ! Gem'at

The other direction, from Raa-at to Gem-at, does not work:

Theorem 7.2.1: 77&e calculus G3ip+Raa-at w no^ complete for classical propo-
sitional logic.

Proof: Assume there is a (cut-free) derivation of =^ P v ~ P . The last rule
cannot be Raa-at; therefore it is P v , and =>• P or =>• ~ P is derivable. In the
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first case, =>• P was derived by Raa-at but this is impossible because the premiss
~ P =>• _L would then have to be derivable in G3ip. In the second case, => ~ P
was derived by RD, but this is again impossible since P =>• J_ is not derivable in
G3ip. QED.

The sequent ~ (P V ~ P) =>• _L is easily derived in G3ip. Application of the rule
of indirect proof to P v ~ P would give a derivation of =>• P v ~ P , and we
conclude that the rule of indirect proof for arbitrary formulas is not admissible in
G3ip+Raa-at. This is already obvious from the fact that A v B is not intuition-
istically derivable from ~ ~ ( A V B), ~ ~ A D A and ~ ~ BD B.

Theorem 7.2.2: The structural rules are admissible in G3ip+Raa-at.

Proof: Consider an instance of rule Raa-at in the derivation. Weakening and con-
traction can be permuted up since there is no principal formula in the antecedent
of the conclusion. For cut, if the right premiss has been derived by rule Raa-at, it
can be permuted with cut. If the left premiss has been derived by Raa-at, we have

Raa-at 4 „

p, A =̂  c
^ c cut

Consider the right premiss. If it is an axiom, either C is an atom in A and the
conclusion of cut also is an axiom, or C = P and the conclusion of cut follows
by weakening from the premiss T =>• P. If the right premiss has been concluded
by L_L, the conclusion of cut also follows by LJ_. If the right premiss has been
concluded by a logical rule, cut is permuted up to its premisses, for P is an atom
and cannot be principal in the right premiss. QED.

Theorem 7.2.3: Rule Raa/or arbitrary formulas is admissible in G3ip+Raa-at
for the disjunction-free fragment of propositional logic.

Proof: By adapting the conversions for & and D in the proof of Theorem 5.4.6
to G3ip+Raa-at. QED.

If to G3ip we add rule Raa for arbitrary formulas, a rule that corresponds
to Gentzen's original rules of natural deduction for classical propositional logic,
we obtain a complete calculus: Application of the rule to the intuitionistically
derivable premiss ~ ( P v ~ P ) =>• _L gives the conclusion => P v ~ P . There-
fore this calculus is also closed with respect to cut, even if it does not permit a cut
elimination procedure. To see the latter, consider the case that the left premiss of
cut has been derived by Raa:

Raa

CM
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If A is principal in the right premiss, cut does not permute up. Now, if A is atomic,
it is never principal in the left premiss, and we see why Prawitz had to restrict the
rule of indirect proof to atomic formulas.

For the structure of derivations in G3ip-\-Raa, we obtain the following: Con-
sider the first application of rule Raa, with premiss ~ A, A => ± . We conclude
instead by RD the sequent A =>• ~ ~ A . Continuing in this way, the derivation
of F =>> C in G3ip+Raa is transformed into a derivation of F* =>• C* in G3ip,
where F* and C* are partial double-negation translations of F and C: Those
parts of F, C that are principal in instances of Raa in the derivation are substituted
by their double negations.

The first one to suggest a translation from classical to intuitionistic logic was
Kolmogorov (1925) and related translations were found by Godel, Gentzen, and
Bernays in the early 1930s. In Kolmogorov's translation, each subformula of a
given formula A is substituted with its double negation, with the result that the
translated formula A* is intuitionistically derivable if and only if A is classi-
cally derivable. Moreover, A DC A* is classically derivable. The Godel-Gentzen
translations, in turn, make disjunction and existence disappear with a result on
translated formulas analogous to that of Kolmogorov.

The translation we have defined is not only a coding of classically derivable
formulas into intuitionistically derivable ones, but is produced by the translation
of a classical derivation into an intuitionistic one. Further, as long as we only con-
sider propositional logic, the translation can be simplified: If =>• C is classically
derivable, then =>• ~ ~ C also is, and by Theorem 5.4.9, =>• ~ ~ C is derivable
in G3ip. Here the last rule must be RD, so we have the intuitionistic derivation

If instead of R D we apply rule Raa, we obtain the derivation

C
-Raa

The premiss is derivable in G3ip, so there is only one application of the classical
rule, namely, the last.

Note that the laws of double-negation and weak excluded middle together are
equivalent to the classical law of excluded middle.

7.3. SEQUENT CALCULI FOR DUMMETT LOGIC

The classically valid propositional law (A D B) v (B D A) first gained attention
in Dummett's study of logical systems with a linearly ordered set of "truth values."
This law is rather counterintuitive to most people: One instance is that Goldbach's
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conjecture implies Riemann's hypothesis or Riemann's hypothesis implies
Goldbach's conjecture, but hardly anyone thinks these have much to do with
each other. Any two propositions can be substituted for A and B, and Dummett's
law is valid, not because of derivability of one from the other, but by classical
two-valued semantics: If A is true, B D A is true irrespective of B, and so is
(A D B) V (B D A). If A is false, truth of (ADB)v(BD A) equally follows. A
somewhat more intuitive formulation of Dummett's law is the equivalent dis-
junction property under hypotheses, (AD B v C)D(AD B)v (AD C).

Underivability of the law (P D Q) v (Q D P) for atoms P, Q in intuitionistic
logic is easily shown. It is of interest to study the corresponding proof theory
of what is usually called Dummett logic. We look at two approaches to this in-
termediate logical system:

(a) A left rule for Dummett logic: We shall first add to G3ipm a left rule called
Dmt-at:

Dmt-at

The corresponding rule for arbitrary A, B in place of P, Q will make the formula
(A D B) V (B D A) derivable. Inversion lemmas follow as for the rule Wem-at,
and so does admissibility of all the structural rules as there is no principal formula.
Since only atomic implications, i.e., implications in which both antecedent and
consequent are atoms, disappear in derivations, the rule supports a weak subfor-
mula principle: All formulas in a derivation are subformulas of the endsequent or
of atomic implications.

Admissibility of the left Dummett law for arbitrary formulas can be posed
as the claim that the law for a formula follows intuitionistically from Dummett
law for its components. If one of A and B, say, B, is equal to _L, the Dummett
law (A D 1 ) V ( 1 DA) follows since _L D A is provable. If A is a conjunction or
disjunction, the proofs go through, but if A is an implication C D D, we obtain
((C D D)D B)v (BD(C D D)). Application of Dummett law to the components
brings six cases, two of which, CD B, DD B, DDC and BDC, DD B, DDC,
do not imply the Dummett law. Rule Dmt-at is not sufficient for obtaining
Dummett logic. A formulation as a left rule for arbitrary formulas A, B in place
of the atoms of rule Dmt-at does not give any subformula property, and there is
no satisfactory proof theory under this approach.

(b) Dummett logic through a right implication rule: We can obtain a sequent
calculus for Dummett logic by relaxing the constraint on the succedent of the
premiss of rule RD of G3ipm by permitting any number of implications in the
succedent of the premiss. Following Sonobe (1975), the right implication rule can
introduce simultaneously n implications A\ D B\,..., An D Bn in the succedent
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of the conclusion. The right contexts A; of the premisses consist of all the impli-
cational formulas of A except At D Bt, and in the succedent of the conclusion A
can contain other formulas that are not implications:

Au r => Ai, Bi . . . An, F =» Aw, Bn

The left implication rule of G3ipm has to be modified by allowing the succedent
A of the conclusion to appear as a context also in the succedent of its left premiss:

A 7T~^ A L D

The calculus thus obtained will be called G3LC. Admissibility of all the structural
rules for G3LC can now be proved by inductive means:

Lemma 7.3.1: The rules of left and right weakening are admissible in G3LC.

Proof: Admissibility of left weakening is routinely proved by induction on deriva-
tion height. For right weakening we use induction on formula length and height
of derivation. If A is nonimplicational, we just apply the inductive hypothesis
on the premisses of the last rule (lower derivation height) and then the rule. We
proceed similarly if A is implicational and the last step is not RD.

If A is an implicational formula C D D and the last step is SR D we obtain from
the n premisses A{, F => A;, Bt the stronger conclusion F => A \ D B\, . . . , An D Bn.
Using admissibility of left weakening and the inductive hypothesis on the lighter
formulas C , D w e obtain

By applying the inductive hypothesis with a lower derivation height we ob-
tain from the n premisses also the derivability of At, F =>> At, Bt,C D D for
I ^ i ^ n. This, together with (1) gives by SRD the conclusion F ^ A . C D D .
QED.

We prove by induction on the length of A the

Lemma 7.3.2: All sequents of the form A =>• A are derivable in G3LC.

Thus, by admissibility of left and right weakening, we obtain

Corollary 7.3.3: All sequents of the form A, F =>• A, A are derivable in G3LC.

Lemma 7.3.4: The rule

c,
is admissible in G3LC.
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Proof: By induction on derivation height. QED.

Lemma 7.3.5: The rule

r => A,BDC

£ , F => A , C

is admissible in G3LC.
Proof: By induction on derivation height. If B D C is not principal in the last
step, use the inductive hypothesis and apply the rule. If it is principal, one of the
premisses is B, F =>> A', C for some A' contained in A. The conclusion is then
obtained by admissibility of right weakening. QED.

Proposition 7.3.6: The rules of left and right contraction are admissible in
G3LC.

Proof: Admissibility for both rules is proved by induction on the length of A with
subinduction on derivation height. We shall consider only those cases in which
the proof differs from the proof already given for the system G3im.

For left contraction, assume that A is principal and not atomic, the last rule in
the derivation being LD. Thus A = B DC, and the derivation ends with

BDC,BDC,r ^ A,B BDC,C,T => A
BDC, BDC, F=^ A LD

From the left premiss, we obtain by the inductive hypothesis a derivation of the
sequent B D C,T => A, B, and by Lemma 7.3.4 applied to the right premiss we
get a derivation of C, C, F =>• A, and hence, by length induction, a derivation of
C, r =>• A. The conclusion follows by applying LD.

For right contraction assume that the last step of the derivation is RD, i.e., A
is B DC and the derivation ends with

B, T => A',C,BDC fi,T => Af,C,BDC {Bt,r =>• Ai,BDC,BDC,Ci,}n
i=l

r => A,BDC,BDC SRD

ByLemma7.3.5 applied to B, F =>• A;, C, B D C,weobtain£, B, F =» A7, C, C
and thus, by induction on formula length and left contraction a derivation of
B, F =>> A', C Induction on height of derivation applied to all the n other pre-
misses gives {B(,r => A/, B D C, Q }"=1, and the conclusion follows by applying
5/?D to these n + \ premisses. QED.

Theorem 7.3.7: The rule of cut is admissible in G3LC.

Proof: The proof is by induction on length of the cut formula with subinduction
on the height of cut. The only new case with respect to the proof detailed for the
system G3im is when the cut formula A is an implication B DC that is principal
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in both premisses. In this case the step

fl,r=>A",C {B(,r ^ Ai,Ci,BDC}^=l 5DC,r^A;,6 C, T => Af

F^MDC SRD flDC,r'=> A' L D

r,r '=»A,A' Cut

is replaced by one cut of lower height and two cuts on shorter formulas:

T ^ A,BDC BDC,r'=> A', B

r,r=> A,A',B
 Cut

 B, r =» A", C
r, r, r = » A, A', A", C

 Cltf
 C , T / = » A /

r, r, r , r = » A, A', A7, A" #
 Cut

r, r, r , r=> A, A', A', A W*
—-—-— —-—-—c*

r,r'=* A, A'
where W* and C* denote possibly repeated applications of left and right weak-
ening and contraction. QED.

NOTES TO CHAPTER 7

For formulas in one atom and ±, the structure of the implicational lattice of in-
tuitionistic logic was determined by Rieger (1949) and Nishimura (1960). Further
partial results can be found reported in the book by Balbes and Dwinger, Distributive
Lattices, of 1974. It is somewhat odd for a logician to find studies of intuitionistic
logic repeated there in an algebraic disguise.

We have studied only the propositional parts of intermediate logical systems in this
chapter. An intermediate system characterized through a law for quantified formulas
is the "logic of constant domains" (Gornemann 1971, van Dalen 1986).

Dummett logic was first studied by Dummett (1959), whose idea was to have a
generalized linearly ordered set of truth values such as the unit interval [0, 1], instead
of the two classical values 0 and 1. Linearity is expressed as a condition on valuations:
For any valuation v and any two formulas A and B, either v(A) ^ v(B) or v(B) ^ v(A).
In the former case, v(A D B) = 1, so also v((A D B)v (B D A)) = 1, and similarly
in the latter case v((A D B)v (B D A)) = 1. Thus the Dummett law is validated in a
linearly ordered set of truth values. Sometimes the name of Godel is also mentioned
in this connection. The reason is that in the proof of the result of Godel (1932), the
impossibility of interpreting intuitionistic logic as a many-valued logical system with
a finite number of truth values, a denumerable sequence of formulas is constructed
which, as observed by Dummett, determines as a limit Dummett logic.

The proof of admissibility of structural rules for the system G3LC presented here is
due to Roy Dyckhoff. A terminating propositional system for Dummett logic, G4LC,
based on the calculus G4ip is given in Dyckhoff (1999).
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Back to Natural Deduction

The derivability relation of single succedent sequent calculus, written F =>• C,
is closely related to the derivability relation of natural deduction, written F h C
in Chapter 1. Usually the latter is intended as: There exists a natural deduction
derivation tree finishing with C and with open assumptions contained in F. Thus
the derivability relation is not a formal but a metamathematical one. As a conse-
quence, weakening is "smuggled in": If C is derivable from F and if each formula
of F is contained in A, then C is derivable from A. If the metamathematical deriv-
ability relation is used, it will be difficult to state in terms of natural deduction
what weakening amounts to. We shall consider only a formal derivability relation
for natural deduction, in which F is precisely the multiset of open assumptions
in a natural deduction derivation.

One consequence of the use of a formal derivability relation is that not all
sequent calculus derivations have a corresponding natural deduction derivation.
For example, if the last step is a left weakening, it will have no correspondence
in natural deduction and similarly if the last step is a contraction. However, such
steps are artificial additions to a derivation. Equivalence of derivability in natural
deduction and sequent calculus will obtain if no such "useless" weakenings or
contractions are present.

We shall show in detail that weakening is, in terms of natural deduction, the
same as the vacuous discharge of assumptions and that contraction is the same
as multiple discharge. This explanation was already indicated in Section 1.3.
In the other direction, a logical inference in natural deduction that at the same
time discharges assumptions, vacuously or multiply, consists, in terms of sequent
calculus, of two steps that have been purposely made independent: There is the
logical step in which a formula is active, and there is a preceding weakening or
contraction step in which the formula was principal.

The availability of weakening and contraction as independent steps of infer-
ence leads in sequent calculus to instances of the cut rule that do not have any
correspondence in natural deduction. We shall call such instances nonprincipal
cuts. Different ways of permuting up a nonprincipal cut can lead to different

165
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cut-free derivations, where a corresponding natural deduction derivation permits
of just one conversion toward normal form.

In Section 1.3, we found a way from natural deduction to sequent calculus.
It was essential that the elimination rules for conjunction and implication were
formulated as general elimination rules analogous to disjunction elimination. In
usual systems of natural deduction, only the special elimination rules for con-
junction and implication are available. We shall show that it is these rules and
the rule of universal elimination of predicate logic that are responsible for the
lack of structural correspondence between derivations in natural deduction and
in sequent calculus. With the general rules, the two ways of formalizing logical
inferences are seen to be variants of one and the same thing.

Gentzen found the rules of natural deduction through an analysis of actual
mathematical proofs, and they have been accepted ever since as "the rules" of
natural deduction. How natural are the general elimination rules in comparison?
In an informal proof, we would use an assumption of form A & B by analyzing it
into A and B and by deriving consequences directly from them, without the two
intermediate logical steps of the usual conjunction elimination rules. Similarly,
we use A D B by decomposing it into A and B, then deriving consequences from
B, and if at some stage A obtains, those consequences obtain. The same natural
use of logic is found when A V B is split into A and B in a proof by cases.

A further reason for the general elimination rules is that they follow from a
uniform inversion principle, as in Section 1.2. Semantically, the change to general
elimination rules is neutral as the meaning explanations for the connectives and
quantifiers are given in terms of the introduction rules.

8.1. NATURAL DEDUCTION WITH GENERAL ELIMINATION RULES

In the formalist tradition originating with Hilbert, rules of inference operate on
formulas to produce new formulas as conclusions. In Section 1.2, it was empha-
sized that rules of inference informally act on assertions. On a formal level, they
act on derivations of the premisses to yield a derivation of the conclusion.

Discharge of assumptions in natural deduction is indicated by the "little num-
bers" written next to the mnemonic sign for the rule of inference. The correspond-
ing discharged assumptions are put in brackets and the number written on top of
them. The way these little numbers are managed has the same importance as the
rules of weakening and contraction in sequent calculus.

In natural deduction, the number of times an assumption has been made is
well determined, and we shall consider open assumptions in derivations to form
multisets with the same notational conventions as in the previous chapters on
sequent calculi. For each instance of a rule that can discharge assumptions, it
must be uniquely determined what assumptions are discharged, through a label
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written next to the sign of the inference rule and on top of the discharged, bracketed
assumptions. We shall refer to these as discharge labels and assumption labels,
respectively, and use the numbers 1, 2, 3 , . . . as labels. Uniqueness of discharge
is achieved by the following

Principle 8.1.1: Unique discharge of assumptions. No two instances of rules
in a derivation can have a common discharge label.

We shall now give an inductive definition of the derivation of a formula A from
open assumptions F. Derivability in natural deduction will then be a relation
between a formula and a multiset. Whenever more than one derivation is assumed
given in the definition, it is also assumed that these derivations do not have
common discharge labels. Similarly, new labels must be chosen fresh.

Definition 8.1.2: A derivation from open assumptions in intuitionistic natural
deduction is defined by the following clauses:

1. A is a derivation of A from the open assumption A.

2. Given derivations

r A

A B

of A from open assumptions F and of B from open assumptions A,

r A

AZ?

is a derivation of A&B from open assumptions F, A.

3. Given derivations

r A

A B
with assumptions and conclusions as indicated,

r A

A v B A v B

are derivations of A V B from open assumptions F and from A, respectively.
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4. Given a derivation

Am,F

B

as indicated, with m ^ 0,

[Aml F

AD B

is a derivation of A D B from open assumptions V.

5. Given a derivation

r

A(y/x)

of A(y/x)from open assumptions V, ify does not occur free in T, VxA,

r

Aiy/x)
WxA - v/

is a derivation of VxAfrom open assumptions F.

6. Given a derivation

of A(tIx) from open assumptions Y,

r

A(t/x)

3xA 3'

is a derivation of 3x A from open assumptions I \
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7. Given derivations

T Am,Bn,A

A&B C

as indicated, with m, n ^ 0,

r [Am], [Bnl A

^B C&El2

C

is a derivation of C from open assumptions F, A.

8. Given derivations

A v B C C

as indicated, with m, n ^ 0 ,

T [Am], A [Bnl 0

is a derivation of C from open assumptions F, A, 0.

9. Given derivations

F A B\ 0

A D 5 A C

a.? indicated, with n ^ 0,

r A [B"L©

w a derivation of C from open assumptions F, A, 0.
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10. Given a derivation

F

i
of _L from open assumptions F,

F

is a derivation of C from open assumptions F.

11. Given derivations

r A(t/x)m,A

VxA C

ofVxAfrom open assumptions F and of C from open assumptions A(t/x)m, A,

r [A(t)xn A

ViA c C ' " •

is a derivation of C from open assumption F, A.

12. Given derivations

r A(y/x)m, A

3xA C

of 3x A from open assumptions F a^J of C from open assumptions A(y/x)m, A,
ot occur free in 3xA, C, A,

r [A(y)'xri A

- • • •c

w a derivation of C from open assumption F, A.

In 7 and 8 the labels must be chosen distinct. Note that formulas indicated as
discharged from open assumptions can have other occurrences in the contexts.
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The definition makes formal the observation in Section 1.2 that logical rules do not
act on formulas or even assertions, but on derivations. Derivability of a formula
A from open assumptions F naturally means that there is a derivation.

In the definition, the formula with the connective or quantifier in the elimination
rules is the major premiss of the inference and the antecedent of implication in
DE, the minor premiss. The discharged formulas in elimination rules are often
referred to as "auxiliary" assumptions and the derivations in which they are made
as "auxiliary" derivations. Conjunction and disjunction eliminations have special
cases in which A = B.

Definition 8.1.3:
(i) The height of a derivation is the greatest number of consecutive rules of

inference in it.
(ii) A discharge is vacuous if in Definition 8.1.2 m = 0 or n = 0.
(iii) A discharge is multiple if in Definition 8.1.2 m > 1 or n > 1.

Theorem 8.1.4: Composition of derivations. If

r A, A

are derivations of A from F and of C from A, A, respectively, with disjoint dis-
charge labels and with no clashes of free variables, then

A, A

C

is a derivation of C from F, A.

Proof: The proof is by induction on the height of the given derivation of C from
A, A. If it is 0, then C = A and A is empty, so the second derivation is A. The
composition of derivations is the same as the first derivation. In the inductive case,
the proof is according to the last rule used in deriving C from A, F, and there are
12 cases. For each case, the inductive hypothesis is applied to the derivations of
the premisses of the last rule, and then the rule is applied. QED.

In practice, labels and variables are renamed if the conditions regarding them
are not met. The property of derivations stated by the theorem is often referred
to as closure under substitution. When derivations in natural deduction are
written in sequent calculus style, as in the examples of Section 1.2, composition
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of derivations can be expressed by the rule of substitution:

F h A A, A h C

r, A h-c
- Subst

This rule resembles cut, but is different in nature: Closure under substitution just
states that substitution through the putting together of derivations produces a cor-
rect derivation. This is seen clearly from the proof of admissibility of substitution.
In natural deduction in sequent calculus style, there are no principal formulas in
the antecedent, and therefore the substitution formula in the right premiss also
appears in at least some premiss of the rule concluding the right premiss. Sub-
stitution is permuted up until the right premiss is an assumption. Elimination of
substitution is very different from the elimination of cut.

By Theorem 8.1.4, the practice of pasting together derivations in natural deduc-
tion is justified. This is not perhaps clear a priori: Consider the reverse of cutting
a derivation into two pieces at any formula in it. The two parts will not usually
be formal derivations as defined in 8.1.2, because of the nonlocal character of
natural deduction derivations. The contexts F, A , . . . in the rules of natural de-
duction must be arbitrary for the compositionality of derivations to obtain. They
must also be independent: With shared contexts, as in the G3 sequent calculi,
Theorem 8.1.4 would fail.

Substitution produces a non-normality whenever in A, A h C the formula A
is a major premiss of an elimination rule.

The multiplicity of open assumptions grows in general exponentially in the
composition of derivations. This is exemplified by the composition of a derivation
of A from F and of C from Am, A, by the application of the composition of
Theorem 8.1.4 m times:

A, ™.x. , A, A

C

The composition gives a derivation of C from Fm , A.

8.2. TRANSLATION FROM SEQUENT CALCULUS TO NATURAL DEDUCTION

We shall give an inductive definition of a translation from cut-free derivations
in the sequent calculus GOi of Section 5.1 to natural deduction derivations with
general elimination rules. As mentioned, it is sometimes thought that natural
deduction would not be able to express the rule of weakening and therefore
derivability in natural deduction is defined as: C is derivable from F if there is
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a derivation with open assumptions contained in P. We shall instead consider
the formal derivability relation of natural deduction, Definition 8.1.2, and only
translate sequent calculus derivations in which all formulas principal in weakening
or contraction are used in a logical rule:

Definition 8.2.1: A formula in a sequent calculus derivation is used if it is active
in an antecedent in a logical rule.

Rules that use a formula make it disappear from an antecedent. In natural de-
duction, this corresponds to the discharge of assumptions, and a count of the
assumption labels in the translated derivation will tell if there were weakenings
or contractions in the sequent calculus derivation.

(a) The translation: The translation from cut-free sequent calculus derivations
in GOi will be defined for derivations that contain no unused weakening or con-
traction formulas. The translation starts with the last step and works root-first
step by step until it reaches axioms or instances of L_L. The translation produces
labels whenever formulas are used. We also add square brackets and treat labeled
and bracketed formulas in the same way as other formulas when continuing the
translation. The natural deduction derivation comes out from the translation all
finished. To satisfy Principle 8.1.1, each rule that discharges assumptions must
have fresh discharge labels. Below, in each case of translation, we write the re-
sult of the first step of translation with a rule in natural deduction notation and
the premisses from which the translation continues in sequent calculus notation,
except that formulas in antecedents may appear with brackets and labels.

In a derivation with no unused weakenings or contractions, the last rule is a
logical one, and we therefore begin with derivations that end with a logical rule:

Translation of logical rules:

r
i

A,r=^
A vZ

r

A, B,
A&B,

=^ A

C 5 ,

=> A

r =̂  c
r =>• c

A ^ 5
A&5

A ^ C

A&B [A], [B], V =>C
L& ~ * ' &E,1.,2.

A V B [A], r = > C [B], A=>C
Lv ~> ^ ^ — — v£,l.,2.

=^A r =̂  B r => B
- . , v/i Rv2 ~> v/2

AvB AvB V^AvB Av B
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A B,A^C AD B V => A [B], A => C

RD

Translation of weakening:

r = ĉ
n.

Translation of contraction:

C

A, r =k B [A], r =* B

), r =̂  c VxA [A(^/x)], r =k c

c

WxA
V/

A(y/x), r =* C 3xA [A(y/x)], F ^ C_ _ _ _ L 3 ^ _ 3£iI.

r 4 A(r/x) _ ^ r =
3/

:

r =» c

Translation of axioms and L±:

- j i ^ ^ —

By the assumption of no unused weakening or contraction formulas, the transla-
tion can reach only weakening or contraction formulas indicated as discharged
by square brackets. The topsequents of derivations are axioms or instances of
L_L. If the translation arrives at these sequents and they do not have labels, their
antecedents turn into open assumptions of the natural deduction derivation. When
a formula is used, the translation produces formulas with labels and we can reach
topsequents [A]=4> A and [_L]=^ C with a label in the antecedent. These are
translated into [A] and ^J -£ , with discharged assumptions. Note that if a labeled
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formula gets decomposed further up in the derivation, the labeled formula itself
becomes a major premiss of an elimination rule that has been assumed. The com-
ponents, instead, do not inherit that label but only those indicated in the above
translations. The translation produces derivations in which the major premisses
of elimination rules always are (open or discharged) assumptions:

Definition 8.2.2: A derivation in natural deduction is in full normal form if all
major premisses ofE-rules are assumptions.

We shall refer to such derivations briefly as normal. Note that _L in _L E is counted
as a major premiss of an £-rule.

The translation from sequent calculus to natural deduction is an algorithm that
works its way up from the endsequent in a local way, reflecting the local character
of sequent calculus rules. It produces syntactically correct derivation trees with
discharges fully formalized. The variable restrictions in rules V/ and 3E follow
from those in rules RV andLB. The translation of derivations with cuts will be
treated in Section 8.4.

(b) The meaning of weakening and contraction: The translation of applica-
tions of the rule of weakening into natural deduction may seem somewhat sur-
prising, but it will lead to a useful insight about the nature of this rule. Natural
deduction rules permit the discharge of formulas that have not occurred in a
derivation. Similarly, natural deduction rules permit the discharge of any num-
ber of occurrences of an assumption, not just the occurrence indicated in the
schematic rule. Unfolding Definition 8.2.1, we have:

Observation 8.2.3: Rule D/ and the elimination rules produce a vacuous
(multiple) discharge whenever one of the following occurs:

1. In DI concluding A D B, no occurrence (more than one occurrence) of
assumption A was discharged.

2. In 8LE and vE with major premisses ASLB and Ay B, no occurrence of
A or B (more than one occurrence of A or B, or more than two if A = B) was
discharged.

3. In DE with major premiss A D B, no (more than one) occurrence ofB was
discharged.

4. In WE and 3E with major premiss VxA or 3xA, no (more than one) occur-
rence of A(t/x) or A(y/x) was discharged.

A weakening formula (respectively, contraction formula) is a formula A in-
troduced by weakening (contraction) in a derivation. There can be applications
of weakening and contraction that have no correspondence in natural deduction:
Whenever we have a derivation with a weakening or contraction formula A that
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is not used, the endsequent is of the form A, F =>• C, where A is an inactive
weakening or contraction formula throughout.

The condition of no inactive weakening or contraction formulas in a sequent
calculus derivation permits a correspondence with the formal derivability relation
of natural deduction:

Theorem 8.2.4: Given a derivation ofT^C in GOi with no inactive weakening
or contraction formulas, there is a natural deduction derivation of C from open
assumptions F.

Proof: The proof is by induction on the height of the given derivation and uses
the translation from sequent calculus. If F =$> C is an axiom or instance of L_L,
F = C or F = _L and the translation gives the natural deduction derivations C
and ^±E with open assumptions C and J_, respectively. If the last rule is L&, we
have F = ASLB, F', and the translation gives

A&B
&EI2

Ifthere are no inactive weakenings or contractions in the derivation of A, B, F" =>•
C, there is by inductive hypothesis a natural deduction derivation of C from open
assumptions A, B, Ff. Now assume A&B and apply SLE to obtain a derivation
ofCfromA&£, F'.

If there is an inactive weakening or contraction formula in the derivation of
A, B, V =>> C, it is by assumption not in F", so it is A or B or both. Deleting
the weakenings and contractions with unused formulas, we obtain a derivation of
Am, Bn, F" =>• C, with m, n ^ 0 copies of A and B, respectively. By the induc-
tive hypothesis, there is a corresponding natural deduction derivation with open
assumptions Am, Bn, F'. Application of SLE now gives a derivation of C from
A&B, F r. All the other cases of logical rules are dealt with similarly.

The last step cannot be weakening or contraction by the assumption about no
inactive weakening or contraction formulas. QED.

By the translation, the natural deduction derivation in Theorem 8.2.4 is normal.
Later we show the converse of the theorem. Equivalence of derivability between
sequent calculus and natural deduction applies only if unused weakenings and
contractions are absent. The usual accounts of translation from sequent calculus to
natural deduction pass silently over such problems, by use of a metamathematical
derivability relation for natural deduction instead of the formal one.

Theorem 8.2.5: Given a derivation ofF=>C in GOi with no inactive weaken-
ing or contraction formulas, if A is a weakening (contraction) formula in the



BACK TO NATURAL DEDUCTION 177

derivation, then A is vacuously (multiply) discharged in the translation to a nat-
ural deduction derivation.

Proof: Formula A can be used in left rules and ED only. In the translation to
natural deduction, A becomes a labeled formula in the antecedent. It disappears
when a weakening with A is reached and is multiplied when a contraction on A
is reached. QED.

If a derivation of F =$> C contains unused weakenings or contractions, we can
delete them to obtain a derivation of F* => C such that each formula in F* also
occurs in F. Then F* is a multiset reduct of F as defined in 5.2.1. Now the
translation to natural deduction can be applied to F* =>• C.

Sometimes one sees systems of natural deduction with explicit weakening and
contraction rules. They have the same effect as a metamathematical derivability
relation, and we shall not use them.

Perhaps the simplest example of a derivation with weakening is, with the
corresponding natural deduction obtained through translation at right,

-Wk 1.
A,B =>> A [A&B] [A]

=• A&B D A A&B DA '

In the natural deduction derivation, B is vacuously discharged. The translation
produces the "ghost" label 3 to which no open assumption corresponds. An inter-
mediate stage of the translation just before the disappearance of the weakening
formula is

[A&B] [A], [B]=> A
&£,2.,3.

-D/,1.
A&B D A

In Gentzen's original sequent calculus there were two left rules for conjunction:

, ^ C
• L & , . „ „ „ L&2A&B, F =^ C A&B, F

These left rules correspond to the usual elimination rules for conjunction, and the
derivation of A&B D A and its translation become

1.
A -K A [A&B]

- L&i &Ei
— A -D/,1.

A&B D A A&B D A
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Weakening is hidden in Gentzen's left conjunction rules and vacuous discharge
in the special conjunction elimination rules. It is not possible to state fully the
meaning of weakening in terms of natural deduction without using the general
elimination rules.

The premiss of a contraction step in GOi can arise in three ways: First, the
duplication A, A comes from a rule with two premisses, each having one occur-
rence of A. Second, A is the principal formula of a left rule and a premiss had A
already in the antecedent. Third, weakening is applied to a premiss having A in
the antecedent. Only the first two have a correspondence in natural deduction.

The simplest example of a multiple discharge should be the derivation of
A D A&A, given here both in GOi with a contraction and in a translation to
natural deduction with a double discharge:

A,A=>A&A [A] [A]
A&A "

4 A D A&A A D A&A

In Definition 8.2.3, the clause about more than two occurrences of the discharged
formula in 8LE and vis, in case of A = B, is exemplified by the derivation of
A v A D A in sequent calculus and its translation:

A A^A [AvA] [A] [A]

AVA^A _ . A . L
v£,2.,3.

Aw AD A Aw AD A

Here there is no contraction even if two occurrences of A are discharged at vis.
Often in the literature one sees translations of L& and LD with the "dotted"

inference below the inference line,

A&B A&B AD B A
A B B

C C

but these have the effect of confounding different sequent calculus derivations.
When general elimination rules are used, the order of rules in a sequent calculus
derivation is reflected in natural deduction. Consider, for example, the derivations

A
A*A

An A V * f l " A A
' ' R&

R A&B ^ A&B L&A&B, A&B => A&B R A&B =^ A&B
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The usual translation does not distinguish between the two derivations, but gives
for both the natural deduction derivation

A&B

We get instead the two translations

A&B [A] A&B [B] [A] [B]
— - &E 1 — - &E 2 -——-—- &/

A B ' A&B A&B
A&B A&B

We have defined the translation root-first, rule after rule, and the order of logical
rules in the natural deduction derivation is the same as that in the sequent calculus
derivation.

(c) Translation from sequent calculus in natural deduction style: The above
translation works on derivations in the calculus GOi. A translation from the sequent
calculus in natural deduction style GN to natural deduction is simpler as there are
no structural rules to be translated. The translation differs from the above only
with rules that use assumptions. Rule L& is translated by

Am,Bn,r=*C A&B [Am],[BnlV =>C
A&B, V^C C

where m and n occurrences of A and B, respectively, are turned into discharged
assumptions. The other rules are translated in the same way.

A translation from G3i to natural deduction is obtained by use of the connection
between G3i and GOi or GN of Section 5.2(c). Proof editor PESCA produces
natural deduction derivations through proof-search in G3i and a translation to
natural deduction, as in the example of Section C.2(a).

8.3. TRANSLATION FROM NATURAL DEDUCTION TO SEQUENT CALCULUS

We first define a translation from natural deduction to the calculus GOi, then
indicate how derivations in GN are obtained through a simplification of the trans-
lation, and last consider the translation of the special elimination rules of natural
deduction.

(a) The translation: Translation from fully normal natural deduction derivations
with unique discharge to the calculus GOi is defined inductively according to the
last rule used:
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1. The last rule is Scl:

r A r A

2. The last rule is &.E: The natural deduction derivation is

[Am], [Bn], T

A&B
 c c &EU2

The translation is by cases according to values of m and n:

r

A,B,T=>C
^ T; L&

m = 1, n = 1:

A,B,T

A&B, F
: L&

Note that the closed assumptions have been opened anew by removal of the

discharge labels and brackets. The cases of m = l,n = 0 and m = 0, n = 1 have

one weakening step before the L& inference.

m > l,n = 0:

C ; O ,
A , r

, r => c L &
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Here Ctr* indicates an m-1 fold contraction, and m occurrences of the closed
assumption A have been opened. The rest of the cases for &E are similar.

3. The last rule is v / :

r r r r

AvB T^AvB AvB V =» A v B

4. The last rule is vE: The natural deduction derivation is

[Am], r [Bnl A

C

and the translation is again by cases according to the values of m and n, as in
2. We shall indicate by Str the appropriate weakening and contraction steps. The
case without any such steps is when m = 1, n = 1:

A,T B, A

C C

The closed assumptions [A] and [B] have been opened. The general case is

Am ,T Bn,A

C C
—.—^ 7^ Str — — Str

5. The last rule is DI: The general case is translated by

x A m , r
[Am], T :

: B
B A,T ^ B

Str

r\ —J D 1 ^ ^ r\ -J JD

Again closed assumptions have been opened. If m = 1, there is just the RD rule.
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6. The last rule is DE: The general case is translated as

Bn,A

C ADB, T,

7. 77ie to? rw/e w V/:

r r

VJCA T

rw/e w V£: The general case is translated as

m, r

: C

c

9. The last rule is 31:

r

A(t/x)

rule is 3E: The general case is translated as

A(y/x)m,Y

C - ^
3xA C _ V £ 1 ^ A(y/x), T •.

C ' 3xA,T=>C

11. The last rule is the rule of assumption:

A ~> A ^ A

12. The last rule is ±E:
_L
— ±E ^^ L±c ±=>c
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Note that in a fully normal derivation, the premiss of rule 1_E is an assumption
and nothing remains to be translated in step 72. If in 77 or 72 there are discharges
they are undone.

Theorem 8.3.1: Given a fully normal natural deduction derivation of C from
open assumptions T, there is a derivation ofY^C in GOi.

Proof: By the translation defined. QED.

There are no unused weakenings or contractions in the derivation of F =>• C. By
the translation, we obtain the converse of Theorem 8.2.5:

Theorem 8.3.2: If A is vacuously (multiply) discharged in the derivation of C
from open assumptions T, then A is a weakening (contraction) formula in the
derivation ofT^C in GOi.

The usual explanation of contraction runs something like this: "If you can derive a
formula using assumption A twice, you can also derive it using A only once." But
this is just a verbal statement of the rule of contraction. Logical rules of natural
deduction that discharge assumptions vacuously or multiply are reproduced as
weakenings or contractions plus a logical rule in sequent calculus. However, the
weakening and contraction rules in themselves have no proof-theoretical meaning,
as was pointed out by Gentzen (1936, pp. 513-14) already.

By the translation of a normal derivation in natural deduction to sequent cal-
culus, each formula in the former appears in the latter. We therefore have, by the
subformula property of GOi, a somewhat surprising proof of

Corollary 8.3.3: Subformula property. In a normal derivation of C from open
assumptions F, each formula in the derivation is a subformula of T, C.

The translation of non-normal derivations will be given in Section 8.4.

(b) Isomorphic translation: The translations we have defined from natural de-
duction to the sequent calculus GOi and the other way around do not quite estab-
lish an isomorphism between the two: It is possible to permute weakenings and
contractions on a formula A as long as A remains inactive so that isomorphism
obtains modulo such permutations. This is a minor point that we could circum-
vent by adding to the requirement of no unused weakening or contraction the
"last-minute" condition that that there must be no other logical rule between a
weakening or contraction and the logical rules in which the weakening or contrac-
tion formula is used. Another way is to translate directly to the calculus GN that
has no explicit weakening or contraction rules. This also dispenses with the cases
on n and m, and vacuous and multiple discharges are turned into vacuous and
multiple uses in perfect reverse to the translation from GN to natural deduction.
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Normal natural deduction derivations and cut-free sequent calculus derivations
differ only in notation.

A translation from natural deduction to G3i is obtained by the connection
between G3i and GOi or GN.

(c) Translation of the special elimination rules: The translations of the special
elimination rules of conjunction lead to the following sequent calculus rules:

A&B, F = • A A&B, F => B
L&S2

These zero-premiss rules are obtained from rule L & as special cases by setting
C = A and C = B, respectively, translating them, and deleting the premisses
A , B, F =» A and A, B, F =» B that are derivable from A =» A and B => B by
weakening.

Consider the following derivation of (A&B)&C => A with the special rules
L&S:

L&Sl(A&B)&C => ASLB
 L&Sl A&B => A L&*

(A&B)&C => A CM'

The conclusion is not an instance of rule L & S , and therefore cut elimination
fails in this case. We can rewrite the corresponding natural deduction derivation
in terms of the general SLE rule and then convert it into normal form, but the
resulting derivation is not of the form of the special rules anymore.

The sequent calculus rule corresponding to modus ponens is

A D B,T =>> B
LDS

It can be obtained from rule LD by setting C = B and deleting the right premiss
that is derivable. An example of failure of cut elimination when this special rule
is used is given by

B =>• B

A P (B D C), A =» B D C B D C,B => C
AD(B D C),A,B ^C Cm

where the conclusion is not an instance of LDS and cannot be obtained without
cut. Thus we see that the use of special elimination rules in natural deduction
involves "hidden cuts."

In Gentzen's original work, a translation of natural deduction derivations into
sequent calculus is described (1934-35, sec. V. 4). Each formula C is first replaced
by a sequent F =^ C, where F is a list of open assumptions C depends on, and
then the rules are translated. Rules &/ and v / are translated in the obvious way.
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Translations of D/ and vE involve possible weakenings and contractions, corre-
sponding to vacuous and multiple discharges. Whenever in the natural deduction
there are instances of SLE and DE, the first phase of the translation gives steps
such as

T =^ AScB F ^ AD B A=^A
r =» A r, A =̂  #

These are turned into sequent calculus inferences by the following replacements,
in which in the first derivation a left conjunction rule in Gentzen's original for-
mulation occurs:

A=>A_TJ^ A^A B^B

Cut f^X^B Cut

With the knowledge that the special elimination rules of natural deduction cor-
respond to hidden cuts, it is to be expected that a normal derivation in the old
sense translates into a sequent calculus derivation with cuts. In Gentzen's work,
the "Hauptsatz" is proved in terms of sequent calculus, and the possibility of a
formulation in terms of a normal form in intuitionistic natural deduction is only
mentioned. No comment is made about the cuts that the translation of normal
derivations to sequent calculus produces.

8.4. DERIVATIONS WITH CUTS AND NON-NORMAL DERIVATIONS

We first define a translation from sequent calculus with cuts of a suitable kind
to natural deduction. Then a translation taking any non-normal derivation into a
sequent calculus derivation with cuts is defined. The latter, in combination with
cut elimination and translation back to a normal derivation, gives a normalization
algorithm for natural deduction with general elimination rules.

(a) Derivations with cuts: We show that derivations with cuts can be translated
into natural deduction if the cut formula is principal in both premisses or the
right premiss. These detour cuts and permutation cuts are the principal cuts;
the rest are nonprincipal cuts. Principal cuts correspond, in terms of natural
deduction, to instances of rules of elimination in which the major premisses are
not assumptions. We shall call such premisses conversion formulas.

A sequent calculus derivation has an equivalent in natural deduction only if
it has no unused weakening or contraction formulas. By this criterion, there is
no correspondence in natural deduction for many of the nonprincipal cuts of
sequent calculus. In particular, if the right premiss of cut has been derived by
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contraction, the contraction formula is not used in the derivation and there is no
corresponding natural deduction derivation. This is precisely the problematic case
that led Gentzen to use the rule of multicut. If cut and contraction are permuted,
the right premiss of a cut becomes derived by another cut and there is likewise
no translation.

In translating derivations with cuts, if the left premiss is an axiom, the cut
is deleted. There are five detour cuts and another 25 permutation cuts with left
premiss derived by a logical rule to be translated. We also translate principal cuts
on J_ as well as cases in which the left premiss has been derived by a structural
rule, but derivations with other cases of cuts will not be translated. The translation
of rules other than cut have been given in Section 8.2.

1. Detour cut on A&B, and we have the derivation

r,
The translation is

r, A =^ A&B A&B, 0 ^ C
^ ^ Cut

1.

A&B [A], [B], 0 =» C

Translation now continues from the premisses.

2-5. Detour cuts on A V /?, A D B, WxA, and 3xA. The translations are
analogous to 1, with the left and right rules translated as in Section 8.2.

6. Permutation cut on C&D with left premiss derived by L&:

A B F =>• C&D C D A =$> E
A&B, r => C&D L& C&D, A=> EL&

A&B, V,A^E CM

The translation is

A&B [A], [B], r =» C&D 3 4 :

C&D ' • ' • [C], [P], A =» E



BACK TO NATURAL DEDUCTION 187

Permutation cuts on C&D with left premiss derived by L v, LD, LV, and L3 are
translated analogously, and the same when there are permutation cuts on C v D,
C D D, VxC, and 3xC.

7. We also have permutation cuts on _L E but no detour cuts since ± can never
be principal in the left premiss. The derivation and its translation are, where L
stands for a (one-premiss) left rule and E for an elimination,

r => c c

5. "Structural" cuts with left premiss derived by weakening, contraction, or
cut. For weakening and contraction the translation reaches, by the condition of
no unused weakening or contraction formulas, a conclusion of cut of the form
[A], r , A => C. These are modified as follows and then the translations are
continued:

-Wk - ;

• cut r =k> B B , A
[A], r, A =̂  c r, A =̂  c

A, A,r =̂

CUt

Ctr : n. n. : ;

Cut ! Cut

[A], r , A => C [A], r , A => C

For left premiss of cut derived by another cut the translation is modular and the
upper cut is handled as above.

(b) Non-normal derivations: In translating non-normal derivations into deriva-
tions in GOi, there are five cases of non-normality in which the major premiss of
an elimination rule has been derived by the corresponding introduction rule:

1. The conversion formula has been derived by &/ and the derivation is

r A i. 2.
i i [Am], [Bn], 0

A B :
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The translation is by cases according to values of m and n. The general case is

Am,B\®

A :
: C

A B _R& A,B,S^C Str

r , A =» A&ff A&£, 0 =» C

2-5. The conversion formula has been derived by v / , D/, V/, or 3 / , and the
translation is analogous.

If the conversion formula has been derived by an elimination rule, we have
again a number of cases:

6. If the rule is &E, the derivation with conversion formula C&D is

[A-], [Bni r 3. 4.
\ [Ck], [Dl], A

«.=..,

The translation is by cases according to values of m, n, k, /, with the general case

A m , £ n , r Ck,D\A

C&D c ^
Str

L&
A&B, r => C&D C&D, A =» ^

r, A =^ ̂  CM'

If A&5 in turn is a conversion formula, another cut, on A&B, is inserted after
the L& rule that concludes the left premiss of the cut on C&D.

There are altogether 25 cases of translations when the major premiss of an
elimination rule has been derived by an elimination rule. All translations are
analogous to the above.

Consider a typical principal cut, say, on A&B:

T =» A&B A&B, A^CL&

r^^c Cut
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We see that the cut is redundant, in the sense that its left premiss is an ax-
iom, precisely when A&B is an assumption in the corresponding natural deduc-
tion derivation. In this case, the cut is not translated but deleted. We have, in
general:

A non-normal instance of a logical rule in natural deduction is
represented in sequent calculus by the corresponding left rule and
a cut.

Let us compare this explanation of cut to the presentation of cut as a combination
of two lemmas F =>• A and A, A =>• C into a theorem F, A =>• C. Consider the
derivation of C from assumptions A, A in natural deduction. Obviously A plays
an essential role only if it is analyzed into components by an elimination rule;
thus A is a major premiss of that elimination rule. If not, it acts just as a parameter
in the derivation. Our explanation of cut makes more precise the idea of cut as a
combination of lemmas: In terms of sequent calculus, the cut formula has to be
principal in a left rule in the derivation of A, A =>• C.

Given a non-normal derivation, translation to sequent calculus, followed by
cut elimination and translation back to natural deduction, will produce a normal
derivation:

Theorem 8.4.1: Normalization. Given a natural deduction derivation of C from
F, the derivation converts to a normal derivation of C from F* where each formula
in F* is a formula in F.

The normalization procedure will not produce a unique result since cut elimination
has no unique result.

8.5. THE STRUCTURE OF NORMAL DERIVATIONS

We consider three different ways in which a natural deduction derivation with
general elimination rules can fail to be normal, depending on how a major premiss
of an elimination rule was derived. Then the subformula structure of normal
derivations is detailed, with a direct proof of the subformula property. Last, we
give a direct proof of normalization.

(a) Detour conversions: The usual definition of a normal derivation in natural
deduction is that no conclusion of an introduction rule must be the major premiss
of an elimination rule. Non-normal derivations are transformed into normal ones
by detour conversions that delete each such pair of introduction and elimination
rule instances, in the way shown in Section 1.2. To keep things simple, only the
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cases with no vacuous or multiple discharges were considered there. In a fully
general form, a detour convertibility on the formula A&B obtains in a derivation
whenever it has a part of the form

[Aml [Bn]

A B
A&B

&i

C
• &E,1.,2.

Detour conversion on A&B gives, through simultaneous substitution, the modi-
fied derivation

A, ™x. , A B, .nx. ,B

C

A detour convertibility on A V B is quite analogous. For implication, the situation
is more complicated since a vacuous or multiple discharge is possible also in the
introduction of the conversion formula:

[Am]

AD B

[B»]

A C
C

DE,2.

Detour conversion on A D B gives the modified derivation

A, ^x. , A A, f.x. , A

B, .wx. , B

C
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Detour convertibilities on V* A and 3x A are as follows:

: [A(t)x)m] : [A(y)x)m]
A(y/x) : A(f/x) :

- ^ — V£ 5 ^ k _ 3 £

In the detour convertibility on VJCA, the variable restriction on y permits the sub-
stitution of x by t in the derivation of A(y/x). The resulting derivation of A(t/x) is
composed m times with the derivation of C from A(t/x)m. In the detour convert-
ibility on 3x A, since in the auxiliary derivation C was derived from A(y/x) for an
arbitrary j , substitution of x by £ produces a derivation of C from A(t/x)m. The
derivation of A(t/x) is composed m times with it. Thus, detour convertibilities
on VJCA and 3xA convert into one and the same derivation:

A(t/x), .̂x. , A(t/x)

C

In detour conversions, the open assumptions typically get multiplied into mul-
tiset reducts of the original assumptions, in the way shown in the cases of elim-
ination of principal cuts in the calculus GN of Section 5.2. For example, the
derivation

fi
&, 1.

A&B [A]
— - &E,l.

A
converts into the derivation A. The same result is obtained through translation to
sequent calculus:

A=» A g=?>g A,B ^ A
A,B^A&B A&B^A

Cut elimination produces the derivation
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Deletion of the unused weakening gives the derivation A =>> A, corresponding to
the result of the detour conversion.

(b) Permutation conversions for general elimination rules: Normal deriva-
tions with the usual natural deduction rules for conjunction and implication and
without disjunctions have a pleasant property: In each step of inference, the for-
mula below is an immediate subformula of a formula above, or the other way
around. With disjunction elimination, this simple subformula structure along all
branches of a normal derivation tree is lost. On the other hand, if the major premiss
of an elimination step is concluded by disjunction elimination, the derivation can
be transformed into a still more direct form through a permutation conversion.
For example, if both steps are disjunction eliminations, we have

A v B

[A]

C v D
C v D

2
[B]

C v D
[C]

:
E

4.

This derivation can be transformed into

[A]

CvD
Ay B

[C]

E

4.

[ Z > ]

WZT 3 4

[B]

CvD

[C]

E

6.
[D]

E

1 9

by permutation of the second elimination up into the auxiliary derivations of the
first elimination. Fresh discharge labels are introduced in accordance with the
unique discharge principle. Consider now the possibility that C v D i n one of
the auxiliary derivations of the unpermuted derivation is concluded by v / . After
the permutation conversion, this occurrence of C v D is both a major premiss
of an elimination rule and a conclusion of an introduction rule. There obtains a
"hidden" detour convertibility that becomes an actual one after the permutation
conversion.

For predicate logic, there is a permutation conversion for existence elimination.
Permutation conversions for disjunction and existence were found by Prawitz in
1965.

The above derivations with disjunction elimination are not fully normal in the
sense of Definition 8.2.2. As was shown in the previous section, their translations
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to sequent calculus are

C V D B => C v D C => E D => E
Av B =^C V D V Cv D^ E

Cut

and

C =» E D ̂  E C ^ E D =>> ^
A ^ C v / ) CvD=>E V B^CvD CvD^

Lv

Thus the convers ion of the natural deduct ion derivation into a more direct form
corresponds to a step of cut el iminat ion, where a cut with cut formula principal in
the r ight p remiss only is pe rmuted with L v to move it upward in the derivation.

The general e l iminat ion rules for conjunction, implicat ion, and universal
quantification permi t the permuta t ion of el iminat ions up in the same way as with
disjunction and exis tence el iminat ion. Thus the structural propert ies of deriva-
t ions wi th the three special e l iminat ion rules are quite different from those with
the general e l iminat ion rules . To give an example , with the special rules w e have
the derivation

(AScB)ScC
A&B~~

A

With the general rule, this becomes the derivation

{ASLB)8LC [A&B]
&E,1.

A&B [A]
A &EX (1)

Here the major premiss of the second inference is a conclusion of &E, and we
have a permutation conversion into

[A&B] [A]
(A&B)&C A &EX

(2)

where the major premisses of both instances of &E are assumptions. With the
special elimination rules, hidden convertibilities remain, in the form of major
premisses of elimination rules that are not assumptions, as is made clear in the
translation from non-normal derivations to sequent calculus derivations with cuts.
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The above examples showed how permutation conversion works for disjunc-
tion elimination and general conjunction elimination. As an illustration of full nor-
mal form with general implication elimination, we solve a problem of normal form
of Ekman (1998). Ekman found that a derivation of the formula ~ (P DC ~ P),
in which equivalence is implication in both directions, either is not normal or else
has a subderivation of the form

Mp
P D ~P P

Mp

The derivation has the redundancy, or is "indirect" in Ekman's terminology, in
that the derivation of the conclusion could be replaced by the derivation of the
first occurrence of ~ P . However, this will produce a non-normal derivation, for
the top occurrence of ~ P is the conclusion of DI and the bottom occurrence is
a major premiss of DE. This problem is solved by use of the general implication
elimination rule:

2 3 1

— ' £L , 1 r- J-J -i r j-v -i r . -i

DEaT T DEa [ f 3 ~P] IP]
D/3

[(PD~P)&(~P D />)] J.
&E,7 ,8

DE,6

&E,7 ,8

All major premisses of elimination rules in the derivation are assumptions, which
is the characteristic property of normal derivations with general elimination rules.
Further, the conclusion ~ P by DI is not a major premiss of DE.

The origin of the above problem is in the observation that Russell's paradox
about "the set of all sets that are not members of themselves" can be derived
intuitionistically, without the law of excluded middle. Deleting the last line of our
derivation and reading P as "the set of all sets that are not members of themselves
belongs to itself," we derive a contradiction from ( P D ~ P)&(~ P D P).

(c) Simplification conversions: Other reductions of natural deduction deriva-
tions exist besides detour and permutation conversions. In Prawitz (1971), a
simplification of derivations in natural deduction is suggested, called properly
simplification conversion. The convertibility arises from disjunction elimina-
tion when in at least one of the auxiliary derivations, say, the first one, a disjunct
was not assumed:

T A [B],&

c c_yEX
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The elimination step is not needed, for C is already concluded in the first auxiliary
derivation. With general elimination rules for conjunction and implication, we
analogously have

r A r A ©

C
 &E

 A ^ B A C , E

In both inferences, C is already concluded without the elimination rule, and sim-
plification conversion extends to all elimination rules, quantifier rules included.
In terms of sequent calculus GN, Definition 5.2.7, there is in each of these infer-
ences a (hereditarily) vacuous cut with cut formula concluded by a left rule in the
right premiss. For example, translating the disjunction case to GN we have

- Lv

Cut

which converts to A =>• C, and A is a multiset reduct of the antecedent of conclu-
sion of the original cut. The other elimination rules lead to similar conversions.
In the notion of vacuous cut, we find the systematic origin of simplification con-
versions, extending to all elimination rules. The notion is captured in terms of
natural deduction by

Definition 8.5.1: A simplification convertibility in a derivation is an instance
of an E-rule with no discharged assumptions, or an instance ofvE with no
discharges of at least one disjunct.

A simplification convertibility can prevent the normalization of a derivation, as
is shown by the following:

[A] [B]
D/1 D/,2.BDB- J C ] _

CDC'(A D A)&(B D B ) CDC
C~D~C &E

There is a detour convertibility but the pieces of derivation do not fit together in
the right way to remove it. Instead, a simplification conversion into the derivation

[C]
CDC

will remove the detour convertibility.

D/,3.
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It is possible that in a simplification convertibility with vE, both auxiliary as-
sumptions are vacuously discharged. In this case, there are two converted deriva-
tions of the conclusion.

(d) The subformula structure of general elimination rules: With special elim-
ination rules in the v- and 3-free fragment, there is a simple subformula structure
along all branches of a normal derivation, from assumptions to a minor premiss
of rule DE or to the conclusion. In fully normal derivations with general elimina-
tion rules, branches are replaced by threads that jump from major premisses to
their auxiliary assumptions. Contrary to first appearance, a greater uniformity in
the structure of derivations, for the full language of predicate logic, is achieved.

The subformula property in natural deduction is more complicated than in
sequent calculus because of the nonlocal character of the rules of inference. It is
obtained through the notion of thread where for simplicity we assume that no
simplification convertibilities obtain:

Definition 8.5.2: A thread in a natural deduction derivation of C from open
assumptions F without simplification convertibilities is a sequence of formulas
A\, ..., An such that

1. An is either C or a minor premiss of DE.
2. A/_i is either a major premiss with auxiliary assumption At in an E-rule,

or a minor premiss with A/_i = At in an E-rule, or a premiss with conclu-
sion At in an I-rule.

3. A\ is a top formula not discharged by an E-rule.

Threads typically run through a sequence of major premisses of £-rules until the
conclusion of the innermost major premiss is built up by /-rules, and so on. If
vacuous instances of elimination rules are admitted, there can be threads that stop
at the major premiss.

Threads in a normal derivation, briefly, normal threads, have the following
structure:

E-part

In the £-part, the major premisses follow in succession and Ai+\ is an immediate
subformula of At. In the /-part, either Ai+\ is equal to At or At is an immediate
subformula of A i+1.

We concluded in Corollary 8.3.3 the subformula property of normal derivations
with general elimination rules by a corresponding result that is immediate for the
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sequent calculus GOi. A more direct proof in terms of natural deduction sheds
some light on the structure of threads:

Direct proof of the subformula property: Each formula A is in at least one
normal thread, and it is a subformula of the topformula or of the endformula of
the thread. In the former case, the topformula is either an open assumption and the
subformula property follows, else it is discharged by DI and A is a subformula
of the endformula of the thread. If the endformula is the conclusion of the whole
derivation, the subformula property follows. If it is the endformula of a minor
thread, it is also a subformula of the corresponding major premiss. The major
premiss is either an open assumption and the subformula property follows. Else
the major premiss is discharged by D/and belongs to some normal thread with the
endformula further down in the derivation. If this endformula is the conclusion
of the derivation, the subformula property follows; if not, by repetition of the
argument, the conclusion is reached. QED.

In sequent calculus, the rule of falsity elimination is represented by a sequent
_L =>> C by which derivations can start. In standard natural deduction, instead,
falsity elimination can apply at any stage of a derivation. This discrepancy is now
explained as a hidden convertibility. In particular, if the conversion formula is
_L derived by ±E, we have a derivation with two non-normal instances of ±E.
Since _LE has only a major premiss, a permutation conversion just removes one
of these instances:

The first derivation has the translation to sequent calculus

Cut

and the converted one

Fully normal derivations do not have redundant iterations of ±E. In Prawitz
(1965, p. 20), the effect of the above permutation conversion is achieved by the
ad hoc restriction that in _L E the conclusion be different from _L.
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In a typical application of _L E in natural deduction with the special elimination
rules we have, using the modus ponens rule,

A^>± AMP

With the more general implication elimination rule, the derivation and its permu-
tation conversion are

A D I A [_L] [JL]

Here the premiss _L is converted into a topformula of the derivation. The same
applies in general and we thus obtain

Proposition 8.5.3: A fully normal intuitionistic derivation begins with assump-
tions and instances of the intuitionistic rule _L E, followed by a subderivation in
minimal logic.

This fact will give a natural translation of intuitionistic into minimal logic: Con-
sider an intuitionistic derivation of C in full normal form. The conclusions of
falsity elimination are derivable from falsity eliminations concluding atoms. By
the subformula property, these are atoms of C, and let them be P\,.. .,Pn. Each
step y is replaced by an assumption _L D />•, and Pt is concluded from _L by DE
instead of ±E. Collecting all the new assumptions, we obtain

Theorem 8.5.4: Formula C is intuitionistically derivable if and only if

(_L DPi)&...&(_L DPn)DC

is derivable in minimal logic.

In normal derivations with special elimination rules in the v- and 3-free fragment,
there is a simple subformula structure along all branches from assumptions to a
minor premiss of rule DE or the conclusion. In normal derivations with gen-
eral elimination rules, branches are replaced by threads that jump from major
premisses to their auxiliary assumptions. Contrary to first appearance, a greater
uniformity in the structure of derivations is achieved.

(e) Normalization: Theorem 8.4.1 gave a proof of normalization for intuition-
istic natural deduction with general elimination rules through a translation to
sequent calculus, cut elimination, and translation back to natural deduction. A di-
rect proof of normalization is also possible. To simplify matters, we assume that
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no simplification convertibilities are met in normalization. The proof is presented
in its main lines.

Direct proof of normalization: In order to prove normalization, we shall define
an ordering on threads of a derivation depending on their conversion formulas and
a secondary ordering depending on the position of major premisses of elimination
rules in them.

With each thread is associated a multiset of convertible formulas, giving the
number of convertible formulas of length 0, length 1, length 2 , . . . , of a maximum
length /. These multisets are ordered as follows: Of two multisets, the one with the
shorter formula of maximum length comes first. If both have maximum length /,
the one with a lesser number formulas of that length comes first. If these numbers
are equal, consider formulas of length / — 1, and so on. Multisets of convertible
formulas in threads are ordered so that detour conversions reduce threads in the
ordering.

The height along a thread of a major premiss At is measured as follows. Let
h\ be the number of steps from the topformula to a first major premiss in the
thread and ht the number of steps from the auxiliary assumption of major premiss
A/_i to major premiss At. The height of At in the thread is the sum h\ + • • • + hi.
Thus, if A\ o B\,... ,Am o Bm are the major premisses of a thread (A,. . . ,C),
height along the thread can be depicted as follows, where major premisses are
separated by a semicolon from the auxiliary assumptions that follow them:

From the construction of threads it is immediate that each formula in a derivation
is in at least one thread. The height of each major premiss along normal threads
is equal to zero. It is easily seen that the converse also holds. A permutation
conversion on At has the effect of diminishing the height of At by one while
maintaining the heights of major premisses coming before At along the thread.
The threads are ordered lexicographically, according to the height of their first
major premiss, second major premiss, and so on, with the effect that permutation
conversions give threads that are reduced in the ordering.

Next we control the effect of conversions on threads. Given a non-normal
derivation, its major premisses are the possible conversion formulas and no new
possible conversion formulas are created under conversions:

1. Detour conversion on &: Assume the relevant part of the full derivation to be
as in Section 8.5(a). The convertibility on the formula A&B in a thread such as

(. . . , A, A&fi ;A, . . . ,C,C, . . . )
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disappears, and there is a possible new convertibility on the formula A in the
corresponding thread

so that the multiset of convertible formulas is reduced.

2. Detour conversion on v: This case is identical to the above, save for changing
& into V.

3. Detour conversion on D: Assume that the thread comes from a derivation such
as the one in Section 8.5(a), and assume that the thread includes the discharged
assumption A of D/. Before the conversion, we have a major thread

(A

In the conversion, the derivation of A is substituted for the assumption A, which
creates a converted thread

( . . . , A , . . . , £ , . . . , C, . . . )

The addition of a minor thread ( . . . , A) leading to the minor premiss A in the
beginning of the converted thread could add new convertible formulas longer
than any in the original major thread. We instead do the following: In a detour
conversion on implication, the discharged assumptions A in DI are temporarily
replaced by open assumptions A, with threads of type

(A , . . . , £ , . . . , C , . . . )

as a result, and a separate derivation of the minor premiss A. Thus the derivation
is cut into parts, and we show that these parts and any subsequent parts that might
turn up normalize, after which the assumptions A can be substituted by their
normal derivations. If this creates new convertibilities, they are on strictly shorter
formulas so that the process terminates.

We shall next show that permutation conversions reduce the heights of major
premisses along threads without importing new convertible formulas. There are
many cases, but we consider only one of them as the rest act in the same way on
threads.

4. Permutation conversion on & with major premiss C&D derived by &E, the
latter rule having A&B as major premiss: Typical threads before and after con-
version are

(..., A&B, A, . . . , C&D, C&D; C, . . . , E, E, ...)

~> ( . . . , A&B; A, . . . , C&D; C,..., E, E, E, . . . )
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Height along thread of major premiss CSLD is reduced by one while heights
of major premisses preceding it remain the same. The multiset of convertible
formulas does not increase.

The effect of conversions on threads for the case of quantifiers is analogous to
the above and will not be detailed.

The cutting into parts of the original derivation whenever a detour convertibility
on implication is met can happen only a bounded number of times, since no new
major premisses of elimination rules are created by any conversions. Each detour
conversion reduces the multiset of convertible formulas and each permutation
conversion does not increase it but reduces the height of a major premiss along
threads. When no convertibilities remain, the assumptions in detour convertibil-
ities on implication are substituted by the derivations of the minor premisses.
Since these formulas are proper subformulas of the original convertible formulas,
also this process terminates, and we have threads with no convertible formulas
and zero heights along threads for major premisses of elimination rules. QED.

The proof of normalization almost establishes strong normalization, that is,
the termination of conversions in any order whatsoever. The only restriction is
that the detour conversions on implication are completed only after all other
convertibilities have been exhausted. This restriction is not essential, as is shown
by the proof of strong normalization and uniqueness of normal form for our system
of natural deduction given by Joachimski and Matthes (2001). Their proof uses a
system of term assignment.

It would be a redundancy in a normal derivation if it had major premisses of
elimination rules that are derivable formulas:

Definition 8.5.5: A major premiss of an elimination rule is a proper assumption
if it is underivable.

Theorem 8.5.6: Given a derivation, there is a derivation in which all major
premisses of elimination rules are proper assumptions.

Proof: Consider a derivable maj or premiss A. In a normal derivation of A, the last
rule must be an /-rule since an £-rule would leave an open assumption. A substi-
tution of assumption A with a normal derivation creates a detour convertibility.
From the conversion schemes, we observe that no conversion ever produces new
major premisses of £-rules and that detour conversions produce shorter convert-
ible formulas. Therefore the process of substituting derivable major premisses
of E -rules with their derivations and subsequent normalization terminates in a
derivation with proper assumptions. QED.

By the undecidability of predicate logic, the theorem does not give an effective
proof transformation. A translation to sequent calculus gives
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Corollary 8.5.7: If the sequent T => C is derivable in GOi, it has a derivation
in which all formulas principal in left rules are underivable.

The eliminability of derivable principal formulas in left rules was discovered by
Mints (1993). The formulation in terms of natural deduction makes it clear what
the result means. The result can, of course, be extended to all assumptions.

8.6. CLASSICAL NATURAL DEDUCTION FOR PROPOSITIONAL LOGIC

We shall add to the sequent calculus GOip the law of excluded middle in the
form of a rule for atomic formulas similar to the one in Section 5.4, but with
independent contexts. We then note that cut remains admissible, and that the
rule itself is admissible for arbitrary propositional formulas. It follows that the
calculus is complete for classical propositional logic. Then the translation from
sequent calculus to natural deduction is extended by the translation of the rule of
excluded middle.

(a) The rule of excluded middle: With P an atom and F, A, C arbitrary, the
rule of excluded middle for atoms is

Gem0-at

The only difference with respect to the rule of excluded middle added to the
calculus G3ip in Section 5.4 is that now we have independent contexts. Proofs of
all essential results go through without difficulty.

Theorem 8.6.1: The rule of cut is admissible in GOip+GemO-at.

Proof: The proof is a continuation of the proof of cut elimination for the intuition-
istic calculus GOip by induction on the length of cut formula A with subinduction
on the sum of heights of premisses of cut. Cut is permuted upward to cuts on
the same formula but with lower cut-height, entirely analogously to the proof of
Theorem 5.4.4. QED.

Theorem 8.6.2: The rule of excluded middle for arbitrary formulas,

-GemO

r, A=>C
is admissible in GOip+GemO-at.

Proof: The proof is by induction on formula length. Cut is admissible and can
be used in the proof.
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For A \— JL, we derive the conclusion from the right premiss already by a cut
with the derivable sequent F =^ J_ D _L. For A := P, excluded middle is the rule
GemO-at.

For A := A&B, we have the premisses A&£, F => C,and~(A&£), A =» C.
Cut of the first by the derivable sequent A, B =>• A&5 gives A, #, F =^ C, and
cut of the second by the derivable sequent ~ A =>• ~ (A&5) gives ~ A, A =>• C.
By inductive hypothesis, the rule GemO applied to A gives B, F, A =^ C. Cut of
the second premiss by the derivable sequent ~ 5 =>~(A&#) gives ~ # , A =>• C,
and rule GemO applied to B now gives F, A, A => C that can be contracted to
r, A => C.

The cases of disjunction and implication are similar. QED.

Using the rule, we easily derive the sequent =^Av~A. Since cut is admissible
and the law of excluded middle derivable, the calculus is complete for classical
propositional logic.

(b) Translation to natural deduction and back: The rule of excluded middle,
in a notation not indicating possible vacuous or multiple discharges, is given by

C C
-Nem-at,l.,2.c

where the assumptions P and ~ P are discharged at the inference. The common
natural deduction rule in classical logic, concluding an atom P if ~ P leads to
falsity, is a special case, as we shall see.

The translation from sequent calculus to classical natural deduction is obtained
by the addition of the following to the previous translation in Section 8.2:

p , r > c P , A > C [ P ] , r ^ c [ > ] , A » C
— — — GemO-at ~ > — Nem-at,\., 2.
1 , ZA —•? i_^ \~s

The converse translation of an instance of the rule Nem-at requires the use of
unique labeling for the m discharged assumptions P and n assumptions ~ P ,
where ~ Pn denotes n copies of formula ~ P:

[ H , r [ ~ P W ] , A

c c
— Nem-at,l., 2.c



204 STRUCTURAL PROOF THEORY

The translation is by cases according to the values of m, n. The general case is

pm p ^ pn A

C C
-—i Str — Str

r,A=>c Gem0-at

The closed assumptions have been opened. If m = n = 1, there is just rule
GemO-at and no weakening or contraction.

We obtain a sequent calculus closer to classical natural deduction by starting
with the calculus GN and adding to it a rule of excluded middle with weakening
and contraction with P and ~ P built in:

r, A =^c
Translation to natural deduction and back is simplified in the same way as with
the translation of logical rules in Section 8.2(c).

(c) Full normal form for classical propositional logic: We can now conclude
the main results for normal derivations in classical natural deduction from the
corresponding results in the single succedent sequent calculus formulation.

The usual system of classical natural deduction uses the rule of indirect proof
for atoms, a special case of our rule. The rule of indirect proof is derivable from
Nem-at: Assume that there is a derivation of _L from ~ P\ then use rule ±E to
get the derivation

Nem-at, l.,2.

Contrary to the rule of indirect proof, the premiss ~ P is not discharged after
_L, but one step later. It is possible to convert indirect inferences on disjunc-
tions into their components only if the disjunctions are also major premisses
in a vE'-rule. Thus full normal form fails for this rule (see also Prawitz 1965,
p. 39, and Stalmarck 1991), but this is repaired in natural deduction for classical
propositional logic with general elimination rules and the rule of excluded middle:
Translations into natural deduction of the derivations in the proof of admissibility
of excluded middle for arbitrary formulas, Theorem 5.4.6, give a uniform method
for converting instances of the natural deduction rule of excluded middle for
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arbitrary formulas A

[Am] [~An]

-Nem,l.,2.
c

into ones with the rule Nem-at.

Lemma 8.6.3: Application of the rule of natural deduction excluded middle con-
verts to applications of natural deduction excluded middle to atoms.

Proof: Consider the case in which indirect proof is insufficient, that of a disjunc-
tion A v B: We assume given the two derivations

AvB -(AvB)

C C

Derivation of C by Nem applied to Aw B,

[AVB] [ - (AvB)]

C C M
Nemc

is converted into the derivation with Nem applied to A and B,

3.
[A] [~g] [B]

\A^
6. L^J

[AvB] JL
[ ] []

[B] AVB ~(AVB)
VIAy B

: C C

c c
-Nem, 6.,7.

Nem, 4.,5.

The other cases of conversions of Nem-at are obtained by translating to natural
deduction the rest of the transformations in the proof of Theorem 5.4.6. QED.

Definition 8.6.4: A derivation in intuitionistic natural deduction H-Nem-at is in
full normal form if no instance of Nem-at is followed by a logical rule and
all sub derivations up to instances of Nem-at are fully normal intuitionistic
derivations.
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Theorem 8.6.5: If a formula C is derivable from open assumptions T in intuition-
istic natural deduction +Nem-at there is a derivation of C from open assumptions
F* in full normal form, where F* is a multiset reduct of T.

Proof: A routine verification shows that rule Nem-at commutes with the logical
rules, modulo possible multiplications of open assumptions. QED.

Thus, if formula C is classically derivable, the corresponding natural deduc-
tion derivation has by the theorem a neat separation of minimal, intuitionistic
and classical parts: It begins with assumptions and instances of the intuitionistic
^±E rule, followed by a minimal subderivation, and ends with purely classical
applications of the rule of excluded middle. As in sequent calculus, these can
further be restricted to atoms of C:

Theorem 8.6.6: In a derivation of C from open assumptions T in intuitionis-
tic natural deduction +Nem-at, instances of Nem-at can be restricted to atoms
ofC.

Proof: Permute down applications of Nem-at so that those on atoms not in C
come right after the intuitionistic subderivation. Let the first of these be on an
atom P:

c c
c

The first subderivation of C, from P, Ff, is transformed into a derivation of ~ P
from ~ C, Fr which is then substituted for the assumption of ~ P in the second
subderivation, followed by an application of Nem to C:

in r

1̂ 3 C-,E
T"

[C] C_
c

•Nem,2.,3.

By Lemma 8.6.3, the application of Nem to C converts to atoms of C. The proof
transformation is repeated for the remaining atoms that are not atoms in C. QED.
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Full normal form gives a translation from classical to intuitionistic and minimal
propositional logic:

Proposition 8.6.7: Let P\,..., Pnbe the atoms ofC. Then C is classically deriv-
able if and only if

(PlV~P1)&...&(PBV~PB)DC

is intuitionistically derivable. Further, C is classically derivable if and only if

(± D P0&...&U. D P«)&(PiV ~P!)&...&(PBV - P J 3 C

w derivable in minimal logic.

Proof: In a given classical derivation of C, transform each instance of Nem-at,
at the bottom of the intuitionistic subderivation, into an intuitionistic inference
concluding C by v E through the assumptions Pt v ~ Pt for all atoms Pt of C. Now
collect all these assumptions together and use the translation from intuitionistic
to minimal logic, Theorem 8.5.4. QED.

Given a classical derivation with rule Nem, normalization will give a derivation
with instances of Nem-at. The above translations can be optimized by leaving
out those assumptions P(v ~ Pt for which there is no corresponding instance of
Nem-at in the derivation.

Next consider the translation of a classical derivation of C into an intuitionistic
derivation of (Pi v ~P\)8c... &(Pnw ~ Pn) D C. If C is already intuitionistically
derivable, the antecedent is empty and we can identify C as the set of its formal
proofs through the Curry-Howard isomorphism. If not, the proof of Proposition
8.6.7 shows how, in terms of natural deduction, the proof of C reduces to the
intuitionistic subderivations. The usual way of applying the formulas-as-types
principle to classical theories is to assume the law of excluded middle for arbi-
trary formulas. In the notation of constructive type theory, this can be done by
the type declaration em : Av ~ A. No one, of course, can in general tell how
such a function em should be evaluated. However, now we can look on the fully
normal classical derivation of Cas an instruction on how to construct the function
that converts decisions on atoms P\,..., Pn into a proof of C. For example,
if we have a set S with a decidable equality Eq : (S)(S)Prop, the declaration
deq : (a,b : S)Or(Eq(a, b), ~Eq(a, b)) will implement a classical logic for the
language of this equality. Sometimes, as with equality for natural numbers, we
can actually define such a function deq.

By adding proof terms to the rule of excluded middle, a satisfactory formulation
of the Curry-Howard isomorphism for classical propositional logic is obtained,
but we shall not go into the details.
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NOTES TO CHAPTER 8

In Prawitz' book of 1965, a system of sequent calculus is given with shared contexts
treated as sets and axioms of the form A,T =$> A, thus with weakening built into
the system and no cut rule. A proof of closure with respect to cut is sketched, through
completeness of natural deduction and translation of normal derivations into cut-free
sequent calculus derivations (p. 91). Prawitz uses a sequent calculus with Gentzen's
original L& rules, and therefore the special conjunction elimination rules do not
produce cuts. Uses of modus ponens can also be turned into a cut-free sequent cal-
culus derivation, for a detailed study shows that a cut elimination procedure is infact
contained in its translation.

In Zucker's paper (1974) on translation from sequent calculus to natural deduction,
it is stated that "one or both of these systems must be modified to some extent," but the
change on natural deduction just concerns discharge of assumptions. In a related paper
by Pottinger (1977) an example demonstrates the failure of isomorphism between
sequent calculus and natural deduction with the usual 8LE rules (p. 350, see also
Zucker, p. 2). No one seems to have followed the idea that it is this system of natural
deduction, not sequent calculus, that lies at the back of the failure of isomorphism
between derivations in the two calculi. In Herbelin (1995) (see also Dyckhoff and
Pinto 1998), a sequent calculus is given that does not distinguish between derivations
obtainable in standard calculi from each other through certain permutations, and a
unique correspondence with natural deduction derivations with special elimination
rules is achieved.

There is another way of arriving at the general elimination rule for conjunction
than the inversion principle we have used, namely, constructive type theory. The
general rule comes straight out by suppressing the proof objects in the typed rule,
as in Martin-L6f (1984, p. 44). In the other direction, typing our general implication
elimination rule will result in a new selector, generalized application:

[x : B]

c: A P B a: A d : C
gap(c,a,(x)d) : C

A full type-theoretical rule uses the function type (A)B that has no correspondence in
first-order logic. The usual first-order selector ap that corresponds to modus ponens
is defined, for B = C, by ap(c, a) = gap(c, a, (x)x) : B. Normality means that each
selector term has a variable as first argument. A direct proof of strong normalization
for natural deduction with general elimination rules was found by Joachimski and
Matthes (2001), through a term assignment system. (They also suggested the term
generalized application for general implication elimination typed.)

The solution of Ekman's problem comes from von Plato (2000).
The natural deduction formulation of the rule of excluded middle was studied al-

ready in Tennant (1978) but has remained relatively unknown even if its first appear-
ance is due to Gentzen (1936). The reason should be that no subformula property
had been proved within a natural deduction approach. However, Tennant proves a
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natural deduction version of our Lemma 8.6.3 and the important result that applica-
tions of the rule reduce to applications on atoms.

In Gordeev (1987), a sequent calculus rule corresponding to Peirce's law is given,
concluding F =$> A from A D B,F =$> A. Admissibility of cut and the subformula
property are proved. This calculus is complete for classical propositional logic, but
cannot be extended with nonlogical rules of inference while maintaining cut elimi-
nation, contrary to our classical calculus.

Extensions of the sequent calculus G3i by nonlogical rules translate into normal
natural deductions, in which the nonlogical natural deduction rules are obtained from
the translation of the single succedent rule-scheme for sequents:

[Gil [Qn]

Py...Pm C . . . C

This is the natural deduction scheme for nonlogical elimination rules. An early work
that uses rules of this form, for equality and apartness, is Van Dalen and Statman
(1979).

In Hallnas and Schroeder-Heister (1990), regular sequents P i , . . . , Pm =>> Q are
translated, for the purposes of logic programming, into natural deduction rules of the
form

Q

The two kinds of nonlogical natural deduction rules are interderivable. The relation
of these two ways of extending natural deduction is analogous to the situation in
sequent calculus: Extension of sequent systems with regular sequents does not in
general permit cut-free derivations, whereas extension with nonlogical rules does.
This is seen clearly in the example of predicate logic with equality.





CONCLUSION

Diversity and Unity in Structural Proof Theory

COMPARING SEQUENT CALCULUS AND NATURAL DEDUCTION

Structural proof theory was born in two forms, natural deduction and sequent
calculus. The former has been the more accessible way to proof theory, used in
teaching. The latter, instead, has yielded better to structural proof analysis. For
example, the underivability results for intuitionistic predicate logic in Section 4.3
were obtained for sequent calculus in the early 1950s.

Even if natural deduction gives the easier access, in the end proofs are easier
to find in sequent calculus. It formalizes the analysis into subgoals of the theo-
rem to be proved, whereas in natural deduction this has to be done intuitively.
Furthermore, the sequent calculi we studied in Chapters 2-4, with their shared
contexts in two-premiss rules, support root-first proof search.

With independent contexts, we found sequent calculi that come very close to
natural deduction, especially if in the latter general elimination rules are used.
One essential difference, the presence in sequent calculus of explicit rules of
weakening and contraction, was overcome by a suitable change of the logical
rules of sequent calculus to permit implicit weakening and contraction similarly
to natural deduction. Then cut-free proofs in sequent calculus and normal proofs
in natural deduction became mere notational variants of one and the same proof.
Isomorphic translation turned the sequent calculus derivation with its locally
applied rules into a standard nonlocal natural deduction derivation. One difference
between the two types of calculi remained: Where the logical rules of natural
deduction admit of non-normal instances, sequent calculus uses a logical rule and
a cut. It is a cut with the cut formula principal in at least the right premiss. Because
of the presence of an independent rule of cut, transformation of a sequent calculus
derivation into cut-free form is profoundly different from the conversion of a
natural deduction derivation into normal form. There are cuts with nonprincipal
formulas that have no interpretation in terms of natural deduction. Even here the
gap between the two formulations of structural proof theory was narrowed: first,
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by the restriction of cut elimination to the hereditarily principal cuts of Section 5.2,
and secondly, by the implicit treatment of weakening and contraction that does
away with a number of cuts and permutations of cuts to which nothing corresponds
in natural deduction.

Gentzen's doctoral thesis gave the rules of sequent calculus in two groups,
the structural rules as the first group, and the logical rules as the second. A few
years later he called the rules of weakening, contraction, exchange and change
of bound variable "Strukturanderungen," structural modifications (1936, p. 513).
(Gentzen treated contexts as lists in which the exchange of order was needed,
contrary to multisets.) All of the structural modifications except weakening "do
not change the meaning of a sequent... all these possibilities of modification are
of a purely formal nature. It is only because of special features of the formalism
that these rules must be expressly given." (ibid., pp. 513-14). Weakening can be
justified by admitting that if a proposition is correct under given assumptions, it
should remain correct if arbitrary additional assumptions are made. Despite these
words of Gentzen, a lot of work has been done in structural proof theory in the
search of some ultimate meaning of weakening and contraction in themselves,
independent of a formalism of logical rules. We have shown that the change to
general elimination rules permits the interpretation of weakening and contraction
in terms of natural deduction, as vacuous and multiple discharge of assumptions,
respectively. Here again, as with the rule of cut, the formulation of weakening
and contraction as independent rules brings cases that have no correspondence in
natural deduction.

There is more work to be done in relating cut elimination to normalization.
The rule of cut has been usually left as something one should not touch; but
going back to the historical origins in Gentzen (in particular, his first paper that
appeared in 1932), we find that he considered various forms of rules, one of which
is the cut rule. It descends from work of Paul Hertz in the 1920s: In Hertz (1929,
p. 462), a rule of "syllogism" is suggested that we can write as

The n formulas A\,..., An in the rightmost premiss are cut in one step of infer-
ence, so we can call Hertz' rule simultaneous cut. Gentzen's rule of cut is the
special case of n = 1. The rule of multicut of Section 5.1 is a somewhat different
generalization of cut, with just one premiss F => A on the left and all of the At
identical to A, thus with n copies of A in the right premiss deleted in one step.
Gentzen's mix rule in (1934-35, III.3.1) is a cut in which n copies of the cut
formula in the left premiss and m copies in the right one are deleted.
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Another rule relating to cut is the "chain rule" ("Kettenschluss," Gentzen 1936,
p. 543) that we can write as

f r1 1 , . . . , i „
chn

Looking at the indices, one sees that the idea of the rule comes from the way
recursion on natural numbers works.

As Gentzen (1932, p. 332) remarks, the rule of simultaneous cut follows by
repeated applications of the rule of cut. However, we should note that once a
series of cuts reproduces the conclusion of a simultaneous cut, these cuts can be
eliminated in any order, typically leading to different cut-free proofs. The rule of
simultaneous cut with all of the premisses Tt =>• At identical corresponds exactly
to the simultaneous substitution created by a detour conversion, as in Section 8.5.

It seems plausible that one can define a cut elimination procedure that uses
some generalization of cut in intermediate stages, with results analogous to those
of strong normalization and confluence (uniqueness of normal form) in natural
deduction. Moreover, if this can be done for a single succedent intuitionistic
calculus, the calculus GN in the first place, it should be possible for a classical
multisuccedent calculus such as GM as well.

When sequent calculus and natural deduction are compared, an outstanding
difference is the elegant treatment of classical predicate logic in multisuccedent
sequent calculus. Natural deduction has a satisfactory proof theory of classical
propositional logic, as shown in Section 8.6, but equally satisfactory classical rules
of natural deduction for the full language of predicate logic have not been found.

A UNIFORM LOGICAL CALCULUS

Modifications in sequent calculus can bring it closer to natural deduction, but
one would also like to relate the two approaches to structural proof theory in a
more direct manner. There are some more general ways of viewing proof the-
ory based on semantical considerations. Constructive type theory formalizes the
computational semantics of intuitionistic logic and goes beyond the division of
proof theory into systems of natural deduction and sequent calculus.

In this last section, we suggest a syntactic approach to unifying proof theory
through a logical calculus, the rules of which contain as particular instances the
rules of sequent calculus and natural deduction. The rules of the logical calculus to
be presented can be described as the obvious formulation of a "multiple conclusion
natural deduction calculus with general logical rules, written in sequent calculus
style." By general logical rules is meant a formulation with general elimination
rules and their dual general introduction rules. As indicated, the rules of natural
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deduction in sequent calculus style as well as the rules of sequent calculus itself, in
single succedent and multisuccedent versions, will come out as instances. Further,
the inverses of the sequent calculus rules will be instances.

In the rules of the uniform calculus, denoted by MG, contexts will be treated
as multisets. Gentzen's original single-arrow notation for the formal derivability
relation is used to distinguish it from the turnstile we have occasionally used when
reasoning about derivations in natural deduction and from the double arrow of
sequent calculus. In the logical rules, the major premiss is the sequent with the
connective. The other premisses are minor premisses. Rules that display multiple
occurrences Am, Bn of formulas have instances for any m, n ^ 0. We show only
the propositional rules.

MG

Rule of assumption:

A^ A

Logical rules:

A&B, r -> A

r, r

A v 5 , T -> A

r,r-

r, r-

r-
,r"

r-
-> A

Am

-> A

> A',
-> A

-> A7

, A'

, r r -
, A'

Am

,A7 ,

,Am

r

•> A

r -

, Ar/

-+ A , A

> A, A :

A",

r

v i

r,

r j

—>•

i .

H,

I

r, i
1 /7

& /

A,

Am,

A&5

r,r-

-> A,

•> A ' , ^

-^ A , Z

-> A , A'

A! Bn,

Af, A"

V, A"

, rr-

r" -

r" -*

* A'

> A"

• A "

General introduction rules are formulated in perfect symmetry to the general
elimination rules. From the calculus it is clear that the rule for falsity is a logical
elimination rule, a fact confounded in sequent calculi when _L =^ C is treated as
an axiom on a par with A ^ A.

The previous definition of normality for natural deduction with general elim-
ination rules is extended to introduction rules also, by requiring that the major
premisses of all rules in a derivation are assumptions. Normalization for the
uniform calculus MG is obtained through a translation to the sequent calculus
GM+Cut: General introduction rules are translated as right rules followed by
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a cut and general elimination rules dually as left rules followed by a cut. For
example, rule &/ of the above table is translated as

n =̂  A', Am r" => A", #"
r\ r" => A', A", A & # A & # , r ^ A

r, rr, r " ^ A , A', A"
 CMf

Other introduction rules have analogous translations. For elimination rules, con-
sider as an example DE. It has the translation

r = > Af,Am Bn,T" => A"
, F', F" => A', A"

Cut
r, n, r"=̂  A, A', A"

Given a derivation in MG, a translation to GM, cut elimination for GM (Corollary
5.2.14), and translation back to MG produces a derivation in which all major
premisses are assumptions. In the translation back, rule i?v, for example, is
translated as follows:

F = ^ A , A m , £ n AvB^AvB r->A,Am,Bn

V => A,Av B Rv ~> F^A,Av5 W

Other rules are translated similarly, with major premisses in MG rules always
becoming assumptions. We therefore have the

Theorem: A derivation of T —> A in MG can be transformed into a normal
derivation of F* —• A* where F* and A* are multiset reducts of F.

The uniform calculus is not strongly normalizing, for there are rules that can
be permuted with each other with no end.

We shall show how to obtain the rules of various logical calculi from the
uniform calculus.

(a) The rules of multisuccedent sequent calculus: To recover the sequent cal-
culus rules, we do the following two things:

1. Find the substitution that makes the major premiss of each rule an assumption.
Thus, for the introduction rules, we set F = 0 and A equal to the principal formula
and the other way around for the elimination rules.

2. Delete the major premiss that has become an assumption, and change the single
arrow to a double one and the introduction rule symbols to right rule symbols and
elimination rule symbols to left rule symbols.
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The result of the above is the classical multisuccedent sequent calculus GM
of Section 5.2. The standard logical rules of multisuccedent sequent calculus
with independent contexts, the calculus GOc of Section 5.1, are obtained as special
cases, with m, n = 1 in the above rules. Weakening and contraction must be added
as primitive rules.

(b) Single succedent sequent calculus: By restricting in the rules of the uniform
calculus the succedent in each premiss and conclusion to be one formula and
otherwise proceeding as in points 1 and 2 above, we obtain the intuitionistic
sequent calculus GN of Section 5.2. The two right disjunction rules arise quite
naturally from the requirement of a single succedent formula.

As above, with m, n = 1 and weakening and contraction added, the intuition-
istic single succedent calculus with independent contexts GOi of Section 5.1 is
obtained.

(c) Inverses of sequent calculus rules: The rules of the uniform calculus give
as instances the inverses of the rules of GM, by the following:

1. Find the substitution that makes the minor premisses of each rule assumptions.

2. Delete the minor premisses that have become assumptions, change the single
arrow to a double one, etc.

Introduction rules of MG produce inverses of left rules of GM and elimination
rules inverses of right rules. For obtaining these inverses, the axiom has to be for-
mulated with just one formula and no context. The true reason for our formulation
of the axiom is that it is needed for having uniquely determined first occurrences
of certain formulas in cut elimination procedures, as in Section 5.2. The rule of
falsity elimination has no minor premiss so there is nothing to invert.

Inverses of GN are obtained by setting the succedent to be empty or just one
formula in the inverses of GM, whichever gives a single succedent rule. Inversions
are produced for all but rule Rv and the first premiss of LD.

Remarkably, the inverses obtained as instances of the uniform calculus are all
inverses of shared context rules.

(d) Natural deduction: We obtain systems of natural deduction from the uniform
calculus by restricting the succedent in the rules for MG to one formula. Doing just
this will give a system with general introduction and elimination rules, denoted
by NG. Further restrictions lead to systems with general elimination rules only,
and to the usual system in which only disjunction elimination is of the form
of a general rule. The rules of natural deduction with general introduction and
elimination rules are as follows:
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NG
Rule of assumption:

A^ A

Logical rules:

, r -> c r7 -
&Ir, n, r" -> c &I r, r -> c

v 5 , r - > c n-^A Av5, r ->c r ^ #
v/2

v/i

r, n -> c r, n -> c

r, r\ r;/ -̂  c
-vE

A B\ r" -> c
DI r n r" c DEr, n -* c DI r, n, r" -+ c

r -+ ±
r -* c

±E

The general introduction rules have a more striking look if written in natural
deduction style:

[A&B] [A V B] [A V B] [A D B] [A]

C A B C A T C B r C B
-&/ v/i V/2 D/c c c c

A comparison with the general elimination rules, as in Section 1.2, displays the
perfect symmetry of general introduction and elimination rules. We can also
express it in words:

General introduction rules state that if a formula C follows from a
formula A, then it already follows from the immediate grounds for A;
general elimination rules state that if C follows from the immediate
grounds for A, then it already follows from A.

When the major premisses of introduction rules are assumptions and are left un-
written, the usual introduction rules of natural deduction and the general elimina-
tion rules remain. When also the minor premisses of SLE and DE are assumptions
and left unwritten, Gentzen's original rules of natural deduction in sequent calcu-
lus style, a notational variant of the calculus that started structural proof theory,
are obtained.
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Simple Type Theory and Categorial Grammar

In this appendix we describe a general framework for functions that are used in
categorial grammars. It is known as simple type theory. Then the grammars for
the languages of propositional and predicate logic are given.

A.I. SIMPLE TYPE THEORY

We shall use the term type for domains and ranges of functions. Each object
is typed, meaning that it always belongs to some type. There will be some basic
types, upon which the functional hierarchy of simple type theory is built. Arbitrary
types will be denoted by a, /3, y,.... Given two types a and /3, we can form
the type of functions from a to /3, denoted (a)/3. The statement that a is an
object in type a is written as a : a ("declaration of an object a of type a"). To
get started with the formation of types of functions, we declare some basic types.
Given a type of functions (a)P, we can apply a function that is an object of that
type, say / : (a)/3, to obtain as value an object of type /3:

f:(<x)P a:<*
f(a) : 0 (1)

This is the scheme of functional application. (The first premiss looks more
familiar if written in the usual notation in mathematics, / : a -> f3.) In the other
direction, we have a scheme for functional abstraction. It is a way of forming a
function from an expression containing a variable:

[x : a]

b\p
(x)b : (a)P (2)

Assuming an arbitrary object x of type a given, if we are able to construct an object
b of type ft, then (x)b is the functional abstract, an object of type (a)P, where
the parenthesis notation in (x)b indicates the variable over which abstraction is
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taken. The square brackets [x : a] are used to indicate that the assumption x : a
is discharged when the functional abstract is formed. A functional abstract is
always applied through substitution: If the value a is given to x, the value of
(x)b applied to a is given by the expression b(a/x), where the notation a/x
indicates substitution of JC by a. Formally, application through substitution is
written as a rule that defines the value of the application of a functional abstract.
A notation expressing definitional equality is needed for this. In general, the
judgment that two objects a and b of a type a are equal is written as a = b : a
("a and b are equal in of"). In /3-conversion, we conclude such an equality from
two premisses:

[x : a]

a:a
{(x)b)(a) = b(a/x) : 0 (3)

Extra parentheses are used to indicate the functional abstract (x)b uniquely; if
merely (x)b(a) is written, it could also be the functional abstract, over JC, of b
applied to a.

Repeated functional application leads to expressions of the form f{a)... (c)
that we write as f(a,..., c). Thus functions of several arguments are formally
functions of one argument that have as values other functions.

Schemes (l)-(3) of functional abstraction, application, and /?-conversion are
the three principles of simple type theory.

Simple type theory is expressive enough to work as a categorial grammar of
predicate logic. There we have a ground category of individual objects, the
category of propositions, and properties over the category of individual objects,
represented as propositional functions. These take individual objects as argu-
ments and return propositions as values. The category of propositions is denoted
by Prop. "Category" here is a synonym for type.

Before showing how logical languages are represented through categorial
grammars, we look at propositions that do not have logical structure, namely
those that are atomic propositions from a logical point of view.

In any discourse, domains of individuals are introduced. In arithmetic, we
have the domain N of natural numbers. Individual objects are introduced by
declarations of the form n : TV; for example, 0 : N introduces the natural number
zero. Next we have propositional functions over N, for example, a function we can
call Even, the category of which is (N)Prop. Thus functional application gives us

Even : (N)Prop 12 : N
Even(l2) : Prop
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In geometry, we have the two domains Point and Line, and a two-place proposi-
tional function

Incident: (Point)(Line)Prop

that gives, by successive application to a : Point and / : Line, the proposition
Incident(a, I) as value. The usual way of expressing this, "point a is incident with
line /," leaves implicit the functional form of the proposition.

A.2. CATEGORIAL GRAMMAR FOR LOGICAL LANGUAGES

In pure logic, the interest is in logical structure, not in the structure of the basic
building blocks, the atomic propositions. In propositional logic, no structure at
all is given to atomic propositions, but these are introduced just as pure parameters
P, Q, R,..., with the categorizations

P : Prop, Q : Prop, R : Prop, . . .

Connectives are functions for forming new propositions out of given ones. We
have the constant function _L, called falsity, for which we simply write _L : Prop.
Next we have negation, with the categorization

Not: (Prop)Prop

The two-place connectives And, Or, and Implies are categorized by

And : {Prop)(Prop)Prop

Or : (Prop)(Prop)Prop

Implies : (Prop)(Prop)Prop

The use of symbols used to be considered an essential characteristic of logical
languages. We shall need symbols for expressing generality: First we have the
atomic propositions that are denoted symbolically by P, Q, R Next we have
arbitrary propositions, denoted by A, B, C, For the rest, the only thing that
matters is the categorization, and symbols serve only to make formulas shorter.
They will be introduced through the following definitional equalities:

~ = Not : (Prop)Prop

& = And : (Prop)(Prop)Prop

V = Or: (Prop)(Prop)Prop

D = Implies : (Prop)(Prop)Prop

Further, the functional structure is hidden by an infix notation and by the dropping
of parentheses, ~ P for ~ ( P ) , A&B for &(A, B), and so on. This will create an



222 APPENDIX A

ambiguity not present in the purely functional notation, such as A&B D C that
could be both &(A, D (B, C)) and D (&(A, B), C). We follow the usual con-
vention of writing A&{B D C) for the former and A&B D C for the latter, and in
general, having conjunction and disjunction bind more strongly than implication.

Equivalence is a defined notion:

A DC B = (A D B)&(B D A) : Prop

The definition of negation through implication and falsity is given by

~ A = A D 1 : Prop

These are somewhat abbreviated notations ("pattern-matching equations").
More formally, if an arbitrary proposition is given by the declaration
A : Prop, functional application of D gives, successively, D (A) : (Prop)Prop and
D (A, _L) : Prop. Negation is the one-place defined connective ~ = (A) D (A, _L) :
(Prop)Prop, where the first A in parentheses indicates functional abstraction over
A in D (A, _L). Then, by ^-conversion, we get for the negation of a proposition B

Given an arbitrary proposition A, it is either the constant proposition _L, an
atomic proposition, or (the value of) conjunction, disjunction, or implication. The
notation often used in categorial grammar is

A := _L | P | A&B | A V B \ A D B

By the method of functional abstraction, propositions can be presented as
values of constant functions from any type to the type Prop. For example, given a
type a with x : a, we can abstract vacuously over x in ± to obtain (jt)_L : (a)Prop.
The rule of /3-conversion gives trivially the value J_ to applications of the constant
function (JC)_L; we always have ((x)±)(a) = _L : Prop, as there is no place in _L
to substitute a value of x.

We can put predicate logic into the framework of simple type theory if we
assume for simplicity that we deal with just one domain V. The objects, individ-
ual constants, are denoted by a, b, c,.... Instead of the propositional constants
P, Q, R,..., atomic propositions can be values of propositional functions over
D, thus categorized as P : (V)Prop, Q : (T>)(T>)Prop, and so on. Next we have
individual variables JC, y, z , . . . taking values in V.1 Following the usual cus-
tom, we permit free variables in propositions. Propositions with free variables

^n traditional terminology, we can think of the constants as the "given" objects, thought of
as fixed in value, and of the variables as the "sought," as when a and b are assumed given, and
a value is sought for x such that the condition ax + b = 0 is fulfilled.
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are understood as propositions under assumptions, say, if A : (V)Prop, then
A(x) : Prop under the assumption x : V. Terms t,u,v,... are either individual
parameters or variables. The language of predicate logic is obtained by adding to
propositional logic the quantifiers Every and Some, with the categorizations

Every : ((V)Prop)Prop

Some : ((V)Prop)Prop

These are relative to a given domain V. Thus, for each domain V, a quantifier
over that domain is a function that takes as argument a one-place propositional
function A : (V)Prop and gives as value a proposition, here either Every(A) or
Some(A). The symbolic notation for quantifiers is given in the definitions

V = Every : {{V)Prop)Prop

3 = Some : ((V)Prop)Prop

The usual way of writing quantified propositions is either Wx A and 3x A or Wx A (x)
and 3xA(x). In the latter, the expression A(x) does not stand for the application
of A to x, but just mentions the quantified variable.

For greater generality, we can consider the domain a parameter that can be var-
ied. Each domain V is a set, or belongs to the type of sets, formally V : Set. Simple
type theory is not expressive enough for the categorization of bounded quantifiers
that take as first argument a set V that acts as the domain, then a propositional
function A : (V)Prop depending on that set, and give as value a proposition, either
V(£>, A) or 3(X>, A). These propositions have convenient variable-free readings, in
the style of the Aristotelian syllogisms: all D's are A, some Vis A. With bounded
quantifiers, we have in use any number of domains of individuals. The set over
which a quantifier ranges can be indicated by a notation such as (VJC : V)A(x).
We can now write propositions such as (VJC : Line)(3y : Point)Incident(y, x).

When logical languages are defined through categorial grammars, quantifiers
always apply to one-place propositional functions, but not to arbitrary formu-
las. If we have, say, B : (V){V)Prop and a : V, then B(a) : (V)Prop, and we
get in the usual notation VxB(a) which looks uncommon, instead of the func-
tional notation V(D, B(a)). A writing with free variables displayed would be
B(x, y) : Prop, and functional abstraction over y gives (y)B(x, y) : (D)Prop, so
we have Vx(y)B(x, v). Since we permit free variables in propositions, we can
write WxB(x, y), provided that we have made the assumption y : V.

In general, from the purely functional notation V(A), where A : (V)Prop, we
see that two quantified propositions must be set equal if they differ only in the
symbol used for the quantified variable. This can be effected in two ways: The
first is to have an explicit rule of a-conversion that permits renaming variables
bound by a quantifier. The second way is to build a-conversion into a logical
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system by a suitable formulation of the rules of inference for quantifiers, as in
Section 4.1.

NOTES TO APPENDIX A

Functional abstraction, found by Alonzo Church in the 1930s, formalizes the common
notion of a function as an expression with a variable. The application of a function
consists of a substitution, and the computation of values of a function consists of
steps of /?-conversion, until no such conversion applies. None of these concepts,
abstraction, application, and computation of values of a function, is recognized by
the set-theoretical notion of a function. Thus the appreciation of Church's work as
one of the most important contributions to foundations of mathematics has been slow
in coming.

The early work of Church is found in his (1940) and in the monograph The
Calculi of Lambda-Conversion, 1941. The impact of Church's A-calculus in logic
and computer science is described in Barendregt (1997). The definition of the lan-
guage of predicate logic through type theory and categorial grammar is treated in
detail in Ranta (1994).



APPENDIX B

Proof Theory and Constructive Type Theory

In this second appendix, we shall first introduce lower-level type theory, and then
show how it can be used for the semantical justification of the rules of natural
deduction. Next we introduce higher-level type theory, then show by an example
how mathematical theories can be represented formally as type systems.

B.I. LOWER-LEVEL TYPE THEORY

We start with a type of propositions, designated Prop. Propositions are thought of
as their sets of formal proofs, in accordance with the propositions-as-sets princi-
ple. For each kind of proposition, there will be rules of formation, introduction,
elimination, and computation. The rules operate on assertions or, as one often
says, judgments, of which there are four kinds. Prop and Set are considered syn-
onyms, and we use whatever terminology is appropriate in a situation, logical or
set-theoretical:

A : Prop, A : Set, A is a proposition, A is a set,
a : A, a is a proof of proposition A, a is an element of set A,
a = b : A, a and b are equal elements of set A,
A = B : Set, A and B are equal sets.

To emphasize the formal character of a proof a of a proposition A, it is often
called a proof-object or also a proof term. We also call them simply objects, a
word that can equally well mean the element of a set. The equality of two objects
in the judgment a = b : A is definitional. There will be two general rules for the
definitional equality of objects:

a = c : A b = c : A
a = a : A a = b : A

The first, premissless rule expresses the reflexivity and the second the transitivity
of the definitional equality of two objects. In these rules, the premisses include that
A : Set, a : A, b : A, etc., but we do not write these out. Let us derive symmetry
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of definitional equality from the above rules: Assume b — a : A. By reflexivity,
a = a : A, and therefore, by transitivity, a = b : A. Thus definitional equality of
objects in a given set is an equivalence relation in that set.

Similarly to the equality of objects, there will be general rules for the equality
of sets:

A = C :Set B = C : Set
A = A: Set A = B : Set

Symmetry follows as in the case of equality of objects.
Dependent types are families of sets indexed by a set: If B(x) is a set whenever

x : A, we can form the product type (x : A)B. The notation is a generalization
of that of simple type theory. In the latter, with B a constant type, we write
(A)B for the function type. Thus we can also call (x : A)B a dependent function
type. Connected to dependent types, we have hypothetical judgments, or judg-
ments in a context, of all the four forms of judgment of type theory. Contexts
are progressive lists of variable declarations. We now stipulate that A is a set
in the context x\ : A\, x2 : A 2 , . . . , xn : An if A(a,\/x\,..., an/xn) is a set when-
ever a\ : Ai,a2 : A2(ai/xi),..., an : An(ai/x\,..., an-\/xn-\). Similarly, x : A
in the contextx\ : A\, x2 : A 2 , . . . , xn : An \ix(a\,... ,an) : A(a i /* i , . . . , an/xn)
whenever ax : Ai, a2 : A2(fli /*i), . . . , an : Aw(fli/.xi,..., an-\/xn-{).

In type theory, it is usual to give the rules for forming propositions as explicit
syntactical rules. The rules for propositional logic are

A : Prop B : Prop A : Prop B : Prop A : Prop B : Prop
AScB : Prop A V B : Pro/? A D B :

The rules for quantified propositions are

[x : A] [x : A]

A : Prop B : Prop A : Prop B : Pro/?

(VJC : A)£ : Pro/? (3* : A)£ : Pro/?

To these we add the zero-premiss rule J_ : Prop.
For each form of proposition, we have a function constant that gives as values

objects of that set, called the constructor. Then we have selectors, functions that
operate on the set. The constructor for conjunction introduction is a function, to
be called pair, operating on proofs a of A and b of B, to give as value pair(a, b)
a proof of A&B, with the rule notation

a:A b:B
pair(a,b) : A&B
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The constructors for disjunction introduction are

a: A T b : B
i(a) : A v B j(b) : A v B

The constructors / and j are the "canonical injections" into the "disjoint union"
Av B.

The constructor for implication introduction is

[x : A]

b:B

For conjunction elimination, we have the two rules with selectors

c : ASLB C : A&B
&E 2

The functions p and q are the projections of the "product" AScB.

For disjunction, we have the elimination rule, where (x)d and (y)e are obtained
by functional abstraction as in Appendix A,

[x:A] [y:B]

c: A V B d:C e : C ^
VE(C, (x)d, (y)e) : C

Thus the selector VE is a function that takes as arguments an arbitrary proof c of
A V B, a function (x)J that converts arbitrary proofs of A into proofs of C, and
a function (y)e that converts arbitrary proofs of B into proofs of C. The value of
WE is a proof of C.

For implication, we have

c : AD B a'. ADE

ap(c, a) : B

The quantifier introduction rules with constructors are

[x : A]

B a : A b : B(a/x)

(Xx)b : (VJC : A)B pair(a, b) : (3x :



228 APPENDIX B

The corresponding elimination rule for universal quantification is

c : Qfx : A)B a : A
ap(c, a) : B(a/x)

For existential quantification, there are two rules:

c : (3x : A)B c : (3JC :
p(c) : A 3£l

 9(c) : B(p(c)/x) ^

To the introduction and elimination rules we add a rule corresponding to falsity
elimination:

e/?(c) : C(C/JC)

The rule is more general than the corresponding rule in propositional logic because
of the possible dependence of C on the proof-object of the premiss. The quantifier
rules are almost the same as the rules for implication and conjunction: The only
difference is that, in the latter two, B is a constant proposition. Indeed, the rules for
implication are special cases of the rules for universal quantification and similarly
for conjunction and existence. Thus it is sufficient to have the quantifier rules and
the rules for disjunction and falsity.

If in the above rules we hide all the proof-objects, we are back to the usual
rules of natural deduction.

The rules of type theory have judgments or assertions as premisses and as
conclusion. In Chapter 1, we used a turnstile notation \- A for emphasizing that
rules of inference act on assertions, not propositions. The assertion h A is what
remains from a : A when the proof-object is deleted. Lower-level type theory can
be seen as a formalization of the computational semantics of intuitionistic logic,
and we see that the type-theoretical rules make the rules of natural deduction valid
under this semantics.

In Dummett's constructive semantics, meaning is explained in terms of proof.
A proof of an implication A D B is a function that converts an arbitrary proof of
A into some proof of B. Thus, to explain what a proof of A D B is, we would
have to accept the notion of an arbitrary proof. To avoid the circularity of this
explanation, Dummett (1975) distinguished direct or canonical and indirect or
noncanonical proofs and required that the semantical explanations for the latter
reduce to those for the former. In type theory, a canonical proof-object is one that
is of the form of a constructor, and a noncanonical is one of the form of a selector.
The requirement is, in these terms, that noncanonical objects must always convert
to canonical ones. The conversions are made explicit in computation rules, also
called equality rules, that is, rules that prescribe how the values of selectors are
computed into canonical form:



APPENDIX B 229

The computation rules for conjunction are

a: A b:B o a: A b: B
p(pair(a, b)) = a : A q(pair(a, b)) = b : B

The computation rules for disjunction are

[x:A] [y:B] [x : A] [y : B]

a : A C e:C b: B d:C e:C
Veq Veq

/ " • / ' T \ / ' \ T / ' \ \ / 1 i \ S~*1vE(i(a), (x)d, (y)e) = d(a/x) : C vE(j(b), (x)d, (y)e) = e(b/y): C

Finally, the computation rule for implication is

[x : A]

b: B
• Deqap((Xx)b, a) = b(a/x) : B

The computation rules for the quantifiers are just like the rules for implication
and conjunction, with a dependent type in place of the constant type B. The
computation of a noncanonical expression proceeds outside-in and corresponds
exactly to the detour conversion of natural deduction derivations as in Section 8.5;
for example, the last computation rule above corresponds to converting an intro-
duction of implication followed by elimination.

In order to explain the notion of an arbitrary proof, it is essential that the
conversion of a noncanonical expression terminate in a finite number of steps in
a unique canonical form. This was shown by Martin-Lof (1975).

Similarly to natural deduction with general elimination rules, we can give
general elimination rules for conjunction and implication in type theory:

[x:AUy:B] [y : B]

c : A&B d : C c : AD B a: A d : C
&E(c, (x)(y)d) : C gap(c, a, (y)d) : C

The selectors &E and gap are computed by the equalities

&E(pair(a, b), (x)(y)d) = d(a/x, b/y) : C

gap((Xx)b, a, (y)d) = d(b(a/x)/y) : C

The selectors in the special elimination rules for conjunction can be defined:

p(c) = &E(c, (x)(y)x) : A q(c) = &E(C, (x)(y)y) : B

Similarly, the selector corresponding to modus ponens has the definition

ap(c, a) = gap(c, a, (y)y) : B



230 APPENDIX B

The rule of universal elimination has analogous general and special rules in type
theory.

B.2. HIGHER-LEVEL TYPE THEORY

Simple type theory was briefly presented in Section A.I. Its generalization by
dependent types results in higher-level type theory. A dependent type is a family
of types parametrized by another type. The objects of a dependent type are func-
tions over the parameter type such that the range of the function depends on the
argument. More formally, /3 is a dependent type over a if a is a type and ft is a
type whenever an object x : a is given. The family of dependent types is written
as (x : a)/3. In the case of dependent typing, the notation for typings of functions
has to display the dependency, here the variable x acting as argument, and this
is achieved by generalizing the scheme of functional abstraction of simple type
theory into

[x : a]

b p
(x)b : (x : a)0 (1)

We write fi(x) for a type in the context x : a. We can consider the notation (a)/3
of simple type theory as an abbreviation of (x : a)fi when /3 is a constant type.

The scheme of functional application becomes

f:(x:a)P a:a
f(a) : p(a/x) (2)

Functions formed by abstraction are applied by the rule of ^-conversion:

[x : a]

a:a
= b(a/x) : p(a/x) (3)

In lower-level type theory, we added proof-objects to predicate logic and gave
rules of formation, introduction, elimination, and computation separately for each
logical operation. With higher-level type theory, these rules come out as instances
of the general schemes of functional application and ^-conversion.

Higher-level type theory works as a general framework for categorial gram-
mars. In the case of logical languages, the connectives are categorized as in sim-
ple type theory, but the categorization of bounded quantifiers requires dependent
typing:

V : (A : Set)(B : (A)Prop)Prop, 3 : (A : Set)(B : (A)Prop)Prop
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The quantifiers are functions that take as arguments a set A, a propositional
function B over A (that is, a property of objects of A), and give as value a
proposition V(A, B) or 3(A, B). Proof-objects for the introduction of universally
quantified propositions have the categorization

X : (A : Set)(B : (A)Pwp)((x : A)B(x))V(A, B)

Here the proof-object for the third argument, of type (x : A)B(x), is left out by
the convention about constant types. Also, since B is a propositional function
over A, it must be written out that it is applied to x : A with the proposition B(x)
as value. By the typing, k is a function that takes as arguments, in turn, a set A, a
propositional function B over A, and a function that transforms any proof a : A
into a proof of B(a), and gives as value a proof of V(A, B). For the special case
of B constant over A, we have

A : (A : Pwp)(fl : Prop)((A)B)Implies(A, B)

Written as a rule, A-abstraction looks very much like the rule for functional
abstraction. The difference is that Implies(A, B) is a set with a constructor A,
whereas {pt)fi is a type that does not need to have a constructor. This is also
reflected in the order of the rules. For ^-abstraction, the rule for the constructor is
given first, and then the selector rule is justified by the conversion rule. In general
functional abstraction, instead, the application rule comes first in conceptual order.
(See Ranta 1994, p. 166, for detailed explanation.)

For the introduction of the existential quantifier, we have the categorization

pair : (A : Set)(B : (A)Pwp)(x : A)(B(x))3(A, B)

It is usual not to write out the type arguments A and B of pair, but to take
it as a function in a context A : Set, B : (A)Prop. Thus the value is written as
pair(a, b) instead of pair(A, B,a,b). Since all objects have to be typed, the first
two arguments in the latter can be read off from a and b.

The selectors have the categorizations

ap : (A : Set)(B : (A)Prop)(V(A, B))(a : A)B{a)

p:(A: Set)(B : (A)Prop)(3(A, B))A

q : (A : Set)(B : (A)Pwp)(3(A, B))B(p(A, B, c))

The third argument of p is c : 3(A, B). The categorizations for implication and
conjunction are special cases. For disjunction introduction, we have

i : (A : Prop)(B : Pmp)(A)Or(A, B)

j : (A : Prop){B : Prop)(B)Or(A, B)
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The categorization of the elimination rule has to be written on two lines:

WE : (A : Prop)(B : Pwp)(C : (Or(A, B))Prop)
(c : Or(A, B))((a : A)C(i(A, B, a)))((b : B)C(j(A, B, b)))C(c)

The general elimination rules for universal and existential quantification are typed
analogously.

The computation rules are definitional equalities showing how selectors act on
constructors. We show only the selectors corresponding to the special elimination
rules. The computation rule for universal quantification concludes the equality

ap(A, B, A(A, B, c), a) = c(a) : B(a)

The computation rules for existential quantification give

p(A, B,pair(A, B,a,b)) = a : A

q(A, B,pair(A, B, a,b)) = b: B

For disjunction, we have two computation rules with the equalities

VE(A, B, C, i(A, B, a), d, e) = d(a) : C(i(A, B, a))

VE(A, B, C, j(A, B, b), d, e) = e(b) : C(j(A, B, b))

B.3. TYPE SYSTEMS

Type theory has a reading as a constructive set theory, with the basic form of
assertion a : A read as: a is an element of the set A. Conjunction corresponds to
the intersection and disjunction to the (disjoint) union of two sets, and universal
quantification to the Cartesian product of a family of sets, existential quantification
to the direct sum of a family of sets.

Another reading of type theory is that types A, B, C , . . . express problems to be
solved, in particular, specifications of programming problems. Then objects can
be interpreted as programs and the basic form of assertion a : A as the statement
that program a meets the specification A. In traditional programming languages,
there is no formal way of expressing program specifications. In traditional logical
languages, there is no formal way of expressing proofs, but type theory unites
these two. The effect on programming methodology is that the correctness of a
program becomes a formally well-defined property of correct typing.

Higher-level type theory offers a general framework for defining type systems,
not limited to predicate logic. As a simple example, let us consider a type system
for elementary geometry (compare also the example from Section 6.6(e)). We
declare the basic sets of points and lines by Pt: Set, Ln : Set. Next we declare
the basic relations of distinct points, distinct lines, and apartness of a point from
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a line, with some obvious abbreviations to make the declarations fit a line. Also,
since Prop is a constant type, the arguments in x : Pt,... are left out:

DiPt: (Pt)(Pt)Prop, DiLn : (Ln)(Ln)Prop, Apt: (Pt)(Ln)Pwp

The reason for using distinct instead of equal points and lines as basic relations
is that the construction of connecting lines and intersection points requires con-
ditions expressed by dependent typing. These two geometrical constructions are
introduced by the declarations

In: (a: Pt)(b : Pt)(DiPt(a, b))Ln, pt: (/ : Ln)(m : Ln)(DiLn(l, m))Pt

The usual geometrical axioms are: There is a unique connecting line for any two
distinct points, and the points are incident with the line. There is a unique inter-
section point for any two distinct lines, and the point is incident with both lines,
where incidence is defined as the negation of apartness. The incidences are ex-
pressed by the propositions Inc(a, ln(a, b)), Inc(b, ln(a, b)), Inc(pt(l, m), /), and
Inc(pt(l, m), m) but these are well-formed only if the conditions in the construc-
tions are verified. Thus we have a simple case of dependent typing going beyond
the expressive means of usual predicate logic. Looking at the typings of the two
constructions, we notice that they both have three arguments, the connecting line
construction two points a and b and a proof, say w, of DiPt{a, b). Thus functional
application gives us ln(a, b, w) : Ln in the context a : Pt, b : Pt, w : DiPt(a, b).

In type theory, the incidence properties of constructed objects are implemented
by declaring function constants that prove these properties:

inc-lnl : (a : Pt)(b : Pt)(w : DiPt(a, b))Inc(a, ln(a, b, w))

inc-ln2 : (a : Pt)(b : Pt)(w : DiPt(a, b))Inc(b, ln(a, b, w))

The uniqueness of connecting lines can be formalized by

uni-ln : (a : Pt)(b : Pt)(w : DiPt(a, b))(l : Ln)(Inc(a, l))(Inc(b, l))EqLn(l, ln(a, b, w))

where equality of lines is defined as negation of DiLn. For a complete formaliza-
tion, the axiomatic properties of the basic relations have to be given, as well as
principles that permit the substitution of equal objects in the basic relations, as in
Section 6.6.

When a theory is formalized as a type system, computer implementations of
type theory, known as proof editors, can be used for the formal development of
proofs. Such proof editors are interactive systems of proof and program develop-
ment, in which each step is checked for correctness through the type-checker,
which is the heart of the computer implementation. A formally verified proof can
be seen as a program that converts whatever is needed to verify the assumptions of
a theorem into what is claimed in the theorem. In terms of programming problems,
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a formally verified proof converts the data of a problem into its solution. This
is particularly clear in geometrical problems: Each problem has some "given"
objects with assumed properties, and the solution-program transforms these into
the "sought" objects with required properties. The effect of constructivity is that
such programs are provably terminating.

NOTES TO APPENDIX B

Type theory as understood here was developed by Martin-Lof on the basis of ideas
such as dependent typing and proof-objects (also found in de Bruijn 1970) and the
propositions-as-sets principle or "Curry-Howard isomorphism" in Howard (1969).
An early exposition is Martin-Lof (1975). The lower-level theory is explained in the
booklet Martin-Lof (1984). The rules he gives for propositional equality permit the
conclusion of a definitional equality from propositional equality which turned out to
be erroneous. This is corrected in later expositions of type theory, such as Nordstrom,
Petersson, and Smith (1990) and Ranta (1994).

The use of type theory as a programming system with the possibility of program
verification was explained in Martin-Lof (1982). Actual computer implementation
benefitted from the introduction of the efficient higher-level notation developed by
Martin-Lof since 1985 on the basis of the calculus of constructions of Coquand and
Huet (1988). A concise exposition, with applications to logic and linguistics, is given
in Ranta (1994). The example of formalization of elementary geometry as a type
system comes from von Plato (1995).
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PESCA - A Proof Editor for Sequent Calculus

by
AARNE RANTA

aarne@cs.Chalmers.se

PESCA is a program that helps in the construction of proofs in sequent calcu-
lus. It works both as a proof editor and as an automatic theorem prover. Proofs
constructed in PESCA can both be seen on the terminal and printed into ETjnX
files. The user of PESCA can choose among different versions of classical and
intuitionistic propositional and predicate calculi and extend them by systems of
nonlogical axioms. The aim of this appendix is to show what PESCA can be
used for, as well as to give an outline of its implementation, which is written
in the functional programming language Haskell. PESCA is a simple and small
program, and extending it by implementing various calculi and algorithms of this
book can provide instructive student projects on a level more advanced than the
mere use of the editor.

C.I. INTRODUCTION

It was already realized by Gentzen that sequent calculus is not very natural for
humans actually to write proofs. It carries around a lot of information that humans
tend to keep in their heads rather than to put on paper. Although greatly improving
the performance of machines operating on proofs, this information easily obscures
the human inspection of them, and actually writing sequent calculus proofs in full
detail is tedious and error prone. Thus it is obviously a task for which a machine
can be helpful.

The domain of sequent calculi allows for indefinitely many variations, which
are not due to disagreements on what should be provable but to different decisions
on the fine structure of proofs. In terms of provability, it is usually enough to tell
whether a calculus is intuitionistic or classical. In the properties of proof structure,
there are many more choices. The very implementation of PESCA precludes most
of them, but it still leaves room for different calculi, only some of which are
included in the basic distribution. These calculi can be characterized as having:

Shared multiset contexts, no structural rules.
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However, calculi can have a single formula as well as several formulas in the
succedents of their sequents.

The fundamental common property of the calculi treated by PESCA is top-
down determinacy:

Given a conclusion and a rule, the premisses are determined.

This property is essential for our method of top-down proof search. The user of
PESCA starts with a conclusion and then tries to refine it by suggesting a rule.
If the rule is applicable, the proof of the conclusion is completed by the derived
premisses, and the proof search can continue from them. A branch in a proof is
successfully terminated when a rule gives an empty list of premisses. A branch
fails if no rule applies to it. This simple procedure, which has been adopted
from the proof editor ALF (Magnusson 1994) for the much richer formalism
of constructive type theory, is not applicable to calculi that are not top-down
determinate.

The term top-down runs counter to the standard typographical layout of proof
trees, in which premisses appear above conclusions. The term is frequent in
computer science, where it may come from the standard layout of syntax trees,
in which the root is above the trees. In proof theory, the confusion is usually
avoided by saying "root-first" instead. There will be slight notational differences
as compared to earlier chapters.

C.2. TWO EXAMPLE SESSIONS

(a) A proof in propositional calculus: Let us first construct a proof of the law
of commutativity for disjunction, in the sequent form,

Ay B ^ By A.

Having started PESCA, we see its prompt | - . We then enter a new goal by the
command n followed by the sequent written in ASCII notation:

| - n A v B => B v A

The reply of PESCA is a new proof tree, consisting of the conclusion alone,
which is the only subgoal of the tree. Subgoals are identified by sequences of
digits starting from the root, as in the following example:

111 112 121
11 12 13

1

The command s shows the current subgoals, of which we still have just one,
numbered 1. More interestingly, the command a shows the applicable rules for



APPENDIX C 237

a given subgoal. In the situation where we are in our proof, we have

| - a 1

r 1 Al SI Lv - - A v B => B v A
r 1 Al SI Rvl - - A v B => B v A
r 1 Al SI Rv2 - - A v B => B v A

Any of the displayed r commands (line segments preceding - - ) can be cut and
pasted to a command line, and it gives rise to a refinement of the subgoal, an ex-
tension of the tree that is determined by the chosen rule. For instance, choosing the
first alternative takes us to a proof by the left disjunction rule from two premisses,

| - r 1 Al SI Lv

A => B v A B => B v A

A v B => B v A

As will be explained below, the part Al SI specifies the active formulas in the
antecedent and the succedent; when the first formulas are chosen, as here, this
part could be omitted, as in the next refinement,

| - r 11 Rv2

A => A

A = > B v A B => B v A

A v B => B v A

The left branch 111 can now be refined by rule ax, which does not generate any
more subgoals:

| - r 111 ax

The right branch 12 can be refined analogously with 11, by Rvl followed by
ax. When the proof is ready, its ASCII appearance is usually not of very good
quality. Now, at last, it is rewarding to use the command

I- 1
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to write the current proof into a ET]HX document, which looks like

BvA
Lv

when processed.
Finally,

| - d

shows the proof translated into natural deduction:

1 1
A B

ass.
• v /2 T; 7 v / i

Av B By A Bv A
; v£,U

Bv A
(b) A proof in predicate calculus: In predicate calculus, one more command is
usually needed than in propositional calculus: the command i for instantiating
parameters. Logically, a parameter such as t in the existential introduction rule R3

T =• A(t/x)
T => (3x)A

is just like another premiss, which calls for a construction to be complete. This
logic is made explicit in the H introduction rule of Martin-Lof 's type theory and
simplifies greatly the implementation of inference rules. Here, staying faithful to
the syntax of predicate calculus, we have to treat such parameters as hidden pre-
misses in the rules. Thus a proof that has uninstantiated parameters is incomplete
in the same way as a proof that has open subgoals.

Let us prove the quantifier switch law;

C(jc, y) => (Vx)(3y)C(x, y).

After introducing the goal, we make a couple of ordinary refinements:

|-n (/Ey)(/Ax)C(x,y) => (/Ax)(/Ey)C(x,y)

|- r 1 Al SI R/A
|- r 11 L/E
|- r 111 Al SI R/E

The last refinement introduces a parameter t , which we instantiate by y:

| - i t y
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Continuing by L/A, x, and ax, we obtain a complete proof, in which we have
afterward marked next to the rule symbols the two instantiations made:

(Wx)C(x, y) => C(x, y)
(Wx)C(x, y) =» (3y)C(x, y) y

(3y)(Vx)C(x, y) =»• (3y)C(x, y) LB

(3y)(Vx)C(x, y) =• (Vjt)Oy)C(jc, y ) '

C.3. SOME COMMANDS

Some PESCA commands were already exemplified in the two sessions of the pre-
vious section. This section will give a synopsis of them, as well as explain a couple
of other commands. For the full set of commands, we refer to the electronically
distributed manual.

Each command consists of one character followed by zero or more arguments,
some of which may be optional. In the following, as in the on-line help file of
PESCA, the arguments are denoted by words indicating their types. Optional
arguments are enclosed in brackets. Typewriter font is used for terminal symbols.

To understand the commands fully, one should know that a PESCA session
takes place in an environment which changes as a function of the commands.
The environment consists of a current calculus and a current proof. In the
beginning, the calculus is the intuitionistic predicate calculus G3i, and the proof
is the one consisting of the impossible empty sequent =>>.

r goal [A int] [S int] rule (refine)

replaces the goal by an application of the rule, if applicable, and leaves the cur-
rent proof unchanged otherwise. The goal is denoted by a sequence of digits, as
explained in the previous section. The options [A int] [S int] reset the active
formulas in the antecedent and the succedent of the goal - by default, the active
formula is number 1, which in the antecedent is the first and in the succedent
the last printed formula. If the number exceeds the length, resetting the active
formula has no effect.

i parameter term (instantiate)

replaces all occurrences of the parameter in the current proof by the term.

t goal int (try to refine)

replaces the goal by the first proof that it finds by recursively trying to apply
all rules maximally int times. This is the automatic proof search method of
PESCA, based on brute force but always terminating. With certain calculi, such
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as G4ip, this method always finds a proof after a predictable number of steps.
With predicate calculus rules that require instantiations, the method usually fails.

n sequent (new)

replaces the current proof by a proof consisting of the given sequent which there-
by becomes its open subgoal number 1.

u subtree (undo)

replaces the subtree by a goal consisting of the conclusion of the subtree. Subtrees
are identified by sequences of digits in the same way as subgoals: Subtree n is
the tree, the root node of which is the node n.

s (show subgoals)

shows all open subgoals. If the system responds by showing nothing, the current
proof is complete.

a goal (applicable rules)

shows all refinement commands applicable to the goal,

c calculus (change calculus)

changes the current calculus. The help command ? shows available calculi. As a
calculus is just a set of rules, calculi can be unioned by the operation +. Thus the
command c G3 c + Geq selects classical predicate calculus with equality.

x file (read axioms)

reads a file with nonlogical axioms, parses it into rules, adds the rules into the
current calculus, and writes the rules into a file.

1 [file] (print proof in a ETEX file)

prints the current proof in ETjnX format in the indicated file. To process
file, the style file p r o o f . s t y (Tatsuta 1990) is needed.

d [file] (print proof in natural deduction in a ETjnX file)

prints the current proof in ETjnX format in the indicated file. It works for G3i and
G3ip only.

All ET]nX-producing commands also call the system to run ETgX and then
create the xdvi image on the background.
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C.4. AXIOM FILES

Certain kinds of formulas can be interpreted as sequent calculus rules that preserve
the possibility of cut elimination and are hence favorable for proof search. These
formulas are implications with conjunctions of atoms on their left-hand sides and
disjunctions of atoms on their right-hand sides. Either side can be empty. An empty
left-hand side is represented by the omission of the implication sign. An empty
right-hand side is represented by the absurdity _L. Alternatively, the negation of a
left-hand side is interpreted as its implication of absurdity. All those variables that
occur on the right-hand side but not on the left-hand side are treated as parameters.

As an example, consider a set of axioms for the theory of lattices. What the
user of PESCA types into a file looks as follows:

- - s t a r t s header . Text above header i s sent to l a t e x
as such.
Mtl
Mtr
Jnl
Jnr

Unimt
Unijn
Ref
Trans

(a
(a
a
b
c
a
a
a

\wedge
\wedge
\leq
\leq
\leq
\leq
\leq
\leq

(a
(a
a
c
a
b

b)
b)

\leq a
\leq b

\vee b)
\vee b)
& c
& b

& b

\leq b
\leq c

\leq c

-> c \leq (a \wedge b)
-> (a \vee b) \leq c

-> a \leq c

The command x makes PESCA read the file and construct a set of sequent calculus
rules. These rule are also printed in ETjnX:

a Ab < a,Y =>> A

r=^ A
a Ab <b,F => A

Mtl

Mtr

a < aV b, T^A
" r^A M

b < a V b, T =
- Jnr

:—
c < a,c < b,

Unimt

awb<c, a < c, b < c, T

b T A

A
a <c, b <c,

Unijn

c , a b , b c , V ^ A
;—; = : Transa <b,b <c, T=^A
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C.5. ON THE IMPLEMENTATION

The full source code of PESCA is approximately 1400 lines of Haskell code,
divided into nine modules.

(a) Abstract syntax. The central module is the one defining an abstract syntax
of sequents, formulas, singular terms, proofs, etc. On the level of abstract syntax,
all these expressions are Haskell data objects, which could also be called syntax
trees. With the exception of the communication with the user, PESCA always
operates on syntax trees. There are lots of operations defined by pattern match-
ing on the basic types of syntax trees: Sequent, Formula, Term, Proof,
AbsRule.

The definition that expresses the top-down determinacy of PESCA (see Section
C. 1) is the definition of the type of abstract inference rules:

type AbsRule = Sequent -> Maybe [Either Sequent Ident]

A rule is a function that takes a conclusion sequent as its argument and returns
either a list of premisses or a failure. Returning an empty list of premisses means
that the proof of the conclusion is complete. The premisses can be either se-
quents or parameter identifiers. (It was already argued, in Section C.2 above, that
parameters are really premisses.)

Sequents are treated as pairs of multisets of formulas. The definition of the
type of sequents is as pairs of lists rather than multisets: The multiset aspect is
implicit in various functions that consider variants of these lists obtained when
one formula in turn is made the active formula. In most cases, this is enough, and
it is not necessary to consider all permutations.

Some calculi restrict the succedents of sequents to be single formulas. PESCA
does not use a distinct type for these calculi: It simply is the property of certain
calculi, such as G3ip, that the rules never require or produce multisuccedent
sequents.

(b) Parsing and printing. In user input and PESCA output, syntax trees are
represented by strings of characters. The relation between syntax trees and strings
is defined by the parsing and printing. Parsing follows the top-down combinator
method explained in Wadler (1985). The printing functions produce terminal
output for PESCA sessions as well as ETJHX to be written into files.

(c) Predefined calculi. Some intuitionistic and classical calculi are defined di-
rectly as sets of abstract rules. Because abstract rules are functions, they cannot
be read from separate files at runtime, but must be compiled into PESCA. Also
considered was a special syntax that could be used for reading calculi from files,
but finally this was restricted to nonlogical axioms: There is, after all, so much
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variation and irregularity in the rules, that the syntax and the operations on it
become complicated and are not guaranteed to cope with "arbitrary sequent cal-
culus rules." However, to experiment with new calculi, it is enough to edit one
file.

(d) Interaction - refinement and proof search. The central proof search func-
tions are refinement, instantiation, undoing, and automatic search. All of these
operations are based on the underlying operation of replacing a subtree by another
tree,

r ep l ace : : Proof -> [Int] -> Proof -> Proof

where lists of integers denote subtrees. Another underlying operation is to list all
those rules of a calculus that apply to a given sequent,

applicableRules :: AbsCalculus -> Sequent ->

[((Ident,AbsRule) , [Either Sequent Ident])]

Automatic proving calls this function in performing top-down proof search, fol-
lowing the methods of Wadler (1985), just like parsing.

(e) Natural deduction. This translates proofs in calculi G3i and G3ip into natural
deduction. This would easily extend to G4i and G4ip, but this and the more
demanding other calculi are left as an exercise.

(f) Dialogue and command language. The dialogue is based on monadic input
and output. While commands are executed in an environment of a current calculus
and a current proof, they produce output to the screen and files and change the
environment.

NOTES TO APPENDIX C

PESCA is an experimental system still under development. Contributions and bug
reports are thus welcome.

ELECTRONIC REFERENCES

Haskell home page, h t t p : //www.haskell .o rg /
PESCA home page, h t t p : //www. cs . Chalmers . se /~aarne /pesca /
M. Tatsuta (1990) proof . s t y (Proof Figure Macros), ErgX style file.

Home page of this book, h t t p : / /proof theory . h e l s i n k i . f i
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Index of Logical Systems

NOMENCLATURE

The letter G stands for sequent systems (Gentzen systems):

GO-systems have independent contexts in two-premiss rules.
G3-systems have shared contexts in two-premiss rules.
p stands for the propositional part of a system.
i stands for an intuitionistic system.
c stands for a classical system.
m stands for a multisuccedent system.
G4ip is obtained from G3ip by changing the left implication rules.
Extension of a system by Rule is indicated through writing -{-Rule.
A superscript * denotes an arbitrary extension.

The letter N indicates natural deduction style:

GN is a sequent system in natural deduction style.
GM is the corresponding multisuccedent system.
NG is natural deduction in sequent style.
MG is the corresponding multisuccedent system.

TABLES OF RULES

GOi 89
GOc 95
G3ip 28
G3cp 49
G3i 67
G3c 67
G3ipm 108
G3im 108
G3LC 162
G4ip 122
GN 99
GM 106
NG 217
MG 214
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